1 /* 2 * NSA Security-Enhanced Linux (SELinux) security module 3 * 4 * This file contains the SELinux hook function implementations. 5 * 6 * Authors: Stephen Smalley, <sds@epoch.ncsc.mil> 7 * Chris Vance, <cvance@nai.com> 8 * Wayne Salamon, <wsalamon@nai.com> 9 * James Morris <jmorris@redhat.com> 10 * 11 * Copyright (C) 2001,2002 Networks Associates Technology, Inc. 12 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com> 13 * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc. 14 * <dgoeddel@trustedcs.com> 15 * 16 * This program is free software; you can redistribute it and/or modify 17 * it under the terms of the GNU General Public License version 2, 18 * as published by the Free Software Foundation. 19 */ 20 21 #include <linux/config.h> 22 #include <linux/module.h> 23 #include <linux/init.h> 24 #include <linux/kernel.h> 25 #include <linux/ptrace.h> 26 #include <linux/errno.h> 27 #include <linux/sched.h> 28 #include <linux/security.h> 29 #include <linux/xattr.h> 30 #include <linux/capability.h> 31 #include <linux/unistd.h> 32 #include <linux/mm.h> 33 #include <linux/mman.h> 34 #include <linux/slab.h> 35 #include <linux/pagemap.h> 36 #include <linux/swap.h> 37 #include <linux/smp_lock.h> 38 #include <linux/spinlock.h> 39 #include <linux/syscalls.h> 40 #include <linux/file.h> 41 #include <linux/namei.h> 42 #include <linux/mount.h> 43 #include <linux/ext2_fs.h> 44 #include <linux/proc_fs.h> 45 #include <linux/kd.h> 46 #include <linux/netfilter_ipv4.h> 47 #include <linux/netfilter_ipv6.h> 48 #include <linux/tty.h> 49 #include <net/icmp.h> 50 #include <net/ip.h> /* for sysctl_local_port_range[] */ 51 #include <net/tcp.h> /* struct or_callable used in sock_rcv_skb */ 52 #include <asm/uaccess.h> 53 #include <asm/semaphore.h> 54 #include <asm/ioctls.h> 55 #include <linux/bitops.h> 56 #include <linux/interrupt.h> 57 #include <linux/netdevice.h> /* for network interface checks */ 58 #include <linux/netlink.h> 59 #include <linux/tcp.h> 60 #include <linux/udp.h> 61 #include <linux/quota.h> 62 #include <linux/un.h> /* for Unix socket types */ 63 #include <net/af_unix.h> /* for Unix socket types */ 64 #include <linux/parser.h> 65 #include <linux/nfs_mount.h> 66 #include <net/ipv6.h> 67 #include <linux/hugetlb.h> 68 #include <linux/personality.h> 69 #include <linux/sysctl.h> 70 #include <linux/audit.h> 71 72 #include "avc.h" 73 #include "objsec.h" 74 #include "netif.h" 75 76 #define XATTR_SELINUX_SUFFIX "selinux" 77 #define XATTR_NAME_SELINUX XATTR_SECURITY_PREFIX XATTR_SELINUX_SUFFIX 78 79 extern unsigned int policydb_loaded_version; 80 extern int selinux_nlmsg_lookup(u16 sclass, u16 nlmsg_type, u32 *perm); 81 82 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP 83 int selinux_enforcing = 0; 84 85 static int __init enforcing_setup(char *str) 86 { 87 selinux_enforcing = simple_strtol(str,NULL,0); 88 return 1; 89 } 90 __setup("enforcing=", enforcing_setup); 91 #endif 92 93 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM 94 int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE; 95 96 static int __init selinux_enabled_setup(char *str) 97 { 98 selinux_enabled = simple_strtol(str, NULL, 0); 99 return 1; 100 } 101 __setup("selinux=", selinux_enabled_setup); 102 #endif 103 104 /* Original (dummy) security module. */ 105 static struct security_operations *original_ops = NULL; 106 107 /* Minimal support for a secondary security module, 108 just to allow the use of the dummy or capability modules. 109 The owlsm module can alternatively be used as a secondary 110 module as long as CONFIG_OWLSM_FD is not enabled. */ 111 static struct security_operations *secondary_ops = NULL; 112 113 /* Lists of inode and superblock security structures initialized 114 before the policy was loaded. */ 115 static LIST_HEAD(superblock_security_head); 116 static DEFINE_SPINLOCK(sb_security_lock); 117 118 /* Allocate and free functions for each kind of security blob. */ 119 120 static int task_alloc_security(struct task_struct *task) 121 { 122 struct task_security_struct *tsec; 123 124 tsec = kmalloc(sizeof(struct task_security_struct), GFP_KERNEL); 125 if (!tsec) 126 return -ENOMEM; 127 128 memset(tsec, 0, sizeof(struct task_security_struct)); 129 tsec->magic = SELINUX_MAGIC; 130 tsec->task = task; 131 tsec->osid = tsec->sid = tsec->ptrace_sid = SECINITSID_UNLABELED; 132 task->security = tsec; 133 134 return 0; 135 } 136 137 static void task_free_security(struct task_struct *task) 138 { 139 struct task_security_struct *tsec = task->security; 140 141 if (!tsec || tsec->magic != SELINUX_MAGIC) 142 return; 143 144 task->security = NULL; 145 kfree(tsec); 146 } 147 148 static int inode_alloc_security(struct inode *inode) 149 { 150 struct task_security_struct *tsec = current->security; 151 struct inode_security_struct *isec; 152 153 isec = kmalloc(sizeof(struct inode_security_struct), GFP_KERNEL); 154 if (!isec) 155 return -ENOMEM; 156 157 memset(isec, 0, sizeof(struct inode_security_struct)); 158 init_MUTEX(&isec->sem); 159 INIT_LIST_HEAD(&isec->list); 160 isec->magic = SELINUX_MAGIC; 161 isec->inode = inode; 162 isec->sid = SECINITSID_UNLABELED; 163 isec->sclass = SECCLASS_FILE; 164 if (tsec && tsec->magic == SELINUX_MAGIC) 165 isec->task_sid = tsec->sid; 166 else 167 isec->task_sid = SECINITSID_UNLABELED; 168 inode->i_security = isec; 169 170 return 0; 171 } 172 173 static void inode_free_security(struct inode *inode) 174 { 175 struct inode_security_struct *isec = inode->i_security; 176 struct superblock_security_struct *sbsec = inode->i_sb->s_security; 177 178 if (!isec || isec->magic != SELINUX_MAGIC) 179 return; 180 181 spin_lock(&sbsec->isec_lock); 182 if (!list_empty(&isec->list)) 183 list_del_init(&isec->list); 184 spin_unlock(&sbsec->isec_lock); 185 186 inode->i_security = NULL; 187 kfree(isec); 188 } 189 190 static int file_alloc_security(struct file *file) 191 { 192 struct task_security_struct *tsec = current->security; 193 struct file_security_struct *fsec; 194 195 fsec = kmalloc(sizeof(struct file_security_struct), GFP_ATOMIC); 196 if (!fsec) 197 return -ENOMEM; 198 199 memset(fsec, 0, sizeof(struct file_security_struct)); 200 fsec->magic = SELINUX_MAGIC; 201 fsec->file = file; 202 if (tsec && tsec->magic == SELINUX_MAGIC) { 203 fsec->sid = tsec->sid; 204 fsec->fown_sid = tsec->sid; 205 } else { 206 fsec->sid = SECINITSID_UNLABELED; 207 fsec->fown_sid = SECINITSID_UNLABELED; 208 } 209 file->f_security = fsec; 210 211 return 0; 212 } 213 214 static void file_free_security(struct file *file) 215 { 216 struct file_security_struct *fsec = file->f_security; 217 218 if (!fsec || fsec->magic != SELINUX_MAGIC) 219 return; 220 221 file->f_security = NULL; 222 kfree(fsec); 223 } 224 225 static int superblock_alloc_security(struct super_block *sb) 226 { 227 struct superblock_security_struct *sbsec; 228 229 sbsec = kmalloc(sizeof(struct superblock_security_struct), GFP_KERNEL); 230 if (!sbsec) 231 return -ENOMEM; 232 233 memset(sbsec, 0, sizeof(struct superblock_security_struct)); 234 init_MUTEX(&sbsec->sem); 235 INIT_LIST_HEAD(&sbsec->list); 236 INIT_LIST_HEAD(&sbsec->isec_head); 237 spin_lock_init(&sbsec->isec_lock); 238 sbsec->magic = SELINUX_MAGIC; 239 sbsec->sb = sb; 240 sbsec->sid = SECINITSID_UNLABELED; 241 sbsec->def_sid = SECINITSID_FILE; 242 sb->s_security = sbsec; 243 244 return 0; 245 } 246 247 static void superblock_free_security(struct super_block *sb) 248 { 249 struct superblock_security_struct *sbsec = sb->s_security; 250 251 if (!sbsec || sbsec->magic != SELINUX_MAGIC) 252 return; 253 254 spin_lock(&sb_security_lock); 255 if (!list_empty(&sbsec->list)) 256 list_del_init(&sbsec->list); 257 spin_unlock(&sb_security_lock); 258 259 sb->s_security = NULL; 260 kfree(sbsec); 261 } 262 263 #ifdef CONFIG_SECURITY_NETWORK 264 static int sk_alloc_security(struct sock *sk, int family, int priority) 265 { 266 struct sk_security_struct *ssec; 267 268 if (family != PF_UNIX) 269 return 0; 270 271 ssec = kmalloc(sizeof(*ssec), priority); 272 if (!ssec) 273 return -ENOMEM; 274 275 memset(ssec, 0, sizeof(*ssec)); 276 ssec->magic = SELINUX_MAGIC; 277 ssec->sk = sk; 278 ssec->peer_sid = SECINITSID_UNLABELED; 279 sk->sk_security = ssec; 280 281 return 0; 282 } 283 284 static void sk_free_security(struct sock *sk) 285 { 286 struct sk_security_struct *ssec = sk->sk_security; 287 288 if (sk->sk_family != PF_UNIX || ssec->magic != SELINUX_MAGIC) 289 return; 290 291 sk->sk_security = NULL; 292 kfree(ssec); 293 } 294 #endif /* CONFIG_SECURITY_NETWORK */ 295 296 /* The security server must be initialized before 297 any labeling or access decisions can be provided. */ 298 extern int ss_initialized; 299 300 /* The file system's label must be initialized prior to use. */ 301 302 static char *labeling_behaviors[6] = { 303 "uses xattr", 304 "uses transition SIDs", 305 "uses task SIDs", 306 "uses genfs_contexts", 307 "not configured for labeling", 308 "uses mountpoint labeling", 309 }; 310 311 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry); 312 313 static inline int inode_doinit(struct inode *inode) 314 { 315 return inode_doinit_with_dentry(inode, NULL); 316 } 317 318 enum { 319 Opt_context = 1, 320 Opt_fscontext = 2, 321 Opt_defcontext = 4, 322 }; 323 324 static match_table_t tokens = { 325 {Opt_context, "context=%s"}, 326 {Opt_fscontext, "fscontext=%s"}, 327 {Opt_defcontext, "defcontext=%s"}, 328 }; 329 330 #define SEL_MOUNT_FAIL_MSG "SELinux: duplicate or incompatible mount options\n" 331 332 static int try_context_mount(struct super_block *sb, void *data) 333 { 334 char *context = NULL, *defcontext = NULL; 335 const char *name; 336 u32 sid; 337 int alloc = 0, rc = 0, seen = 0; 338 struct task_security_struct *tsec = current->security; 339 struct superblock_security_struct *sbsec = sb->s_security; 340 341 if (!data) 342 goto out; 343 344 name = sb->s_type->name; 345 346 if (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA) { 347 348 /* NFS we understand. */ 349 if (!strcmp(name, "nfs")) { 350 struct nfs_mount_data *d = data; 351 352 if (d->version < NFS_MOUNT_VERSION) 353 goto out; 354 355 if (d->context[0]) { 356 context = d->context; 357 seen |= Opt_context; 358 } 359 } else 360 goto out; 361 362 } else { 363 /* Standard string-based options. */ 364 char *p, *options = data; 365 366 while ((p = strsep(&options, ",")) != NULL) { 367 int token; 368 substring_t args[MAX_OPT_ARGS]; 369 370 if (!*p) 371 continue; 372 373 token = match_token(p, tokens, args); 374 375 switch (token) { 376 case Opt_context: 377 if (seen) { 378 rc = -EINVAL; 379 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG); 380 goto out_free; 381 } 382 context = match_strdup(&args[0]); 383 if (!context) { 384 rc = -ENOMEM; 385 goto out_free; 386 } 387 if (!alloc) 388 alloc = 1; 389 seen |= Opt_context; 390 break; 391 392 case Opt_fscontext: 393 if (seen & (Opt_context|Opt_fscontext)) { 394 rc = -EINVAL; 395 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG); 396 goto out_free; 397 } 398 context = match_strdup(&args[0]); 399 if (!context) { 400 rc = -ENOMEM; 401 goto out_free; 402 } 403 if (!alloc) 404 alloc = 1; 405 seen |= Opt_fscontext; 406 break; 407 408 case Opt_defcontext: 409 if (sbsec->behavior != SECURITY_FS_USE_XATTR) { 410 rc = -EINVAL; 411 printk(KERN_WARNING "SELinux: " 412 "defcontext option is invalid " 413 "for this filesystem type\n"); 414 goto out_free; 415 } 416 if (seen & (Opt_context|Opt_defcontext)) { 417 rc = -EINVAL; 418 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG); 419 goto out_free; 420 } 421 defcontext = match_strdup(&args[0]); 422 if (!defcontext) { 423 rc = -ENOMEM; 424 goto out_free; 425 } 426 if (!alloc) 427 alloc = 1; 428 seen |= Opt_defcontext; 429 break; 430 431 default: 432 rc = -EINVAL; 433 printk(KERN_WARNING "SELinux: unknown mount " 434 "option\n"); 435 goto out_free; 436 437 } 438 } 439 } 440 441 if (!seen) 442 goto out; 443 444 if (context) { 445 rc = security_context_to_sid(context, strlen(context), &sid); 446 if (rc) { 447 printk(KERN_WARNING "SELinux: security_context_to_sid" 448 "(%s) failed for (dev %s, type %s) errno=%d\n", 449 context, sb->s_id, name, rc); 450 goto out_free; 451 } 452 453 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM, 454 FILESYSTEM__RELABELFROM, NULL); 455 if (rc) 456 goto out_free; 457 458 rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM, 459 FILESYSTEM__RELABELTO, NULL); 460 if (rc) 461 goto out_free; 462 463 sbsec->sid = sid; 464 465 if (seen & Opt_context) 466 sbsec->behavior = SECURITY_FS_USE_MNTPOINT; 467 } 468 469 if (defcontext) { 470 rc = security_context_to_sid(defcontext, strlen(defcontext), &sid); 471 if (rc) { 472 printk(KERN_WARNING "SELinux: security_context_to_sid" 473 "(%s) failed for (dev %s, type %s) errno=%d\n", 474 defcontext, sb->s_id, name, rc); 475 goto out_free; 476 } 477 478 if (sid == sbsec->def_sid) 479 goto out_free; 480 481 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM, 482 FILESYSTEM__RELABELFROM, NULL); 483 if (rc) 484 goto out_free; 485 486 rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, 487 FILESYSTEM__ASSOCIATE, NULL); 488 if (rc) 489 goto out_free; 490 491 sbsec->def_sid = sid; 492 } 493 494 out_free: 495 if (alloc) { 496 kfree(context); 497 kfree(defcontext); 498 } 499 out: 500 return rc; 501 } 502 503 static int superblock_doinit(struct super_block *sb, void *data) 504 { 505 struct superblock_security_struct *sbsec = sb->s_security; 506 struct dentry *root = sb->s_root; 507 struct inode *inode = root->d_inode; 508 int rc = 0; 509 510 down(&sbsec->sem); 511 if (sbsec->initialized) 512 goto out; 513 514 if (!ss_initialized) { 515 /* Defer initialization until selinux_complete_init, 516 after the initial policy is loaded and the security 517 server is ready to handle calls. */ 518 spin_lock(&sb_security_lock); 519 if (list_empty(&sbsec->list)) 520 list_add(&sbsec->list, &superblock_security_head); 521 spin_unlock(&sb_security_lock); 522 goto out; 523 } 524 525 /* Determine the labeling behavior to use for this filesystem type. */ 526 rc = security_fs_use(sb->s_type->name, &sbsec->behavior, &sbsec->sid); 527 if (rc) { 528 printk(KERN_WARNING "%s: security_fs_use(%s) returned %d\n", 529 __FUNCTION__, sb->s_type->name, rc); 530 goto out; 531 } 532 533 rc = try_context_mount(sb, data); 534 if (rc) 535 goto out; 536 537 if (sbsec->behavior == SECURITY_FS_USE_XATTR) { 538 /* Make sure that the xattr handler exists and that no 539 error other than -ENODATA is returned by getxattr on 540 the root directory. -ENODATA is ok, as this may be 541 the first boot of the SELinux kernel before we have 542 assigned xattr values to the filesystem. */ 543 if (!inode->i_op->getxattr) { 544 printk(KERN_WARNING "SELinux: (dev %s, type %s) has no " 545 "xattr support\n", sb->s_id, sb->s_type->name); 546 rc = -EOPNOTSUPP; 547 goto out; 548 } 549 rc = inode->i_op->getxattr(root, XATTR_NAME_SELINUX, NULL, 0); 550 if (rc < 0 && rc != -ENODATA) { 551 if (rc == -EOPNOTSUPP) 552 printk(KERN_WARNING "SELinux: (dev %s, type " 553 "%s) has no security xattr handler\n", 554 sb->s_id, sb->s_type->name); 555 else 556 printk(KERN_WARNING "SELinux: (dev %s, type " 557 "%s) getxattr errno %d\n", sb->s_id, 558 sb->s_type->name, -rc); 559 goto out; 560 } 561 } 562 563 if (strcmp(sb->s_type->name, "proc") == 0) 564 sbsec->proc = 1; 565 566 sbsec->initialized = 1; 567 568 if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors)) { 569 printk(KERN_INFO "SELinux: initialized (dev %s, type %s), unknown behavior\n", 570 sb->s_id, sb->s_type->name); 571 } 572 else { 573 printk(KERN_INFO "SELinux: initialized (dev %s, type %s), %s\n", 574 sb->s_id, sb->s_type->name, 575 labeling_behaviors[sbsec->behavior-1]); 576 } 577 578 /* Initialize the root inode. */ 579 rc = inode_doinit_with_dentry(sb->s_root->d_inode, sb->s_root); 580 581 /* Initialize any other inodes associated with the superblock, e.g. 582 inodes created prior to initial policy load or inodes created 583 during get_sb by a pseudo filesystem that directly 584 populates itself. */ 585 spin_lock(&sbsec->isec_lock); 586 next_inode: 587 if (!list_empty(&sbsec->isec_head)) { 588 struct inode_security_struct *isec = 589 list_entry(sbsec->isec_head.next, 590 struct inode_security_struct, list); 591 struct inode *inode = isec->inode; 592 spin_unlock(&sbsec->isec_lock); 593 inode = igrab(inode); 594 if (inode) { 595 if (!IS_PRIVATE (inode)) 596 inode_doinit(inode); 597 iput(inode); 598 } 599 spin_lock(&sbsec->isec_lock); 600 list_del_init(&isec->list); 601 goto next_inode; 602 } 603 spin_unlock(&sbsec->isec_lock); 604 out: 605 up(&sbsec->sem); 606 return rc; 607 } 608 609 static inline u16 inode_mode_to_security_class(umode_t mode) 610 { 611 switch (mode & S_IFMT) { 612 case S_IFSOCK: 613 return SECCLASS_SOCK_FILE; 614 case S_IFLNK: 615 return SECCLASS_LNK_FILE; 616 case S_IFREG: 617 return SECCLASS_FILE; 618 case S_IFBLK: 619 return SECCLASS_BLK_FILE; 620 case S_IFDIR: 621 return SECCLASS_DIR; 622 case S_IFCHR: 623 return SECCLASS_CHR_FILE; 624 case S_IFIFO: 625 return SECCLASS_FIFO_FILE; 626 627 } 628 629 return SECCLASS_FILE; 630 } 631 632 static inline u16 socket_type_to_security_class(int family, int type, int protocol) 633 { 634 switch (family) { 635 case PF_UNIX: 636 switch (type) { 637 case SOCK_STREAM: 638 case SOCK_SEQPACKET: 639 return SECCLASS_UNIX_STREAM_SOCKET; 640 case SOCK_DGRAM: 641 return SECCLASS_UNIX_DGRAM_SOCKET; 642 } 643 break; 644 case PF_INET: 645 case PF_INET6: 646 switch (type) { 647 case SOCK_STREAM: 648 return SECCLASS_TCP_SOCKET; 649 case SOCK_DGRAM: 650 return SECCLASS_UDP_SOCKET; 651 case SOCK_RAW: 652 return SECCLASS_RAWIP_SOCKET; 653 } 654 break; 655 case PF_NETLINK: 656 switch (protocol) { 657 case NETLINK_ROUTE: 658 return SECCLASS_NETLINK_ROUTE_SOCKET; 659 case NETLINK_FIREWALL: 660 return SECCLASS_NETLINK_FIREWALL_SOCKET; 661 case NETLINK_TCPDIAG: 662 return SECCLASS_NETLINK_TCPDIAG_SOCKET; 663 case NETLINK_NFLOG: 664 return SECCLASS_NETLINK_NFLOG_SOCKET; 665 case NETLINK_XFRM: 666 return SECCLASS_NETLINK_XFRM_SOCKET; 667 case NETLINK_SELINUX: 668 return SECCLASS_NETLINK_SELINUX_SOCKET; 669 case NETLINK_AUDIT: 670 return SECCLASS_NETLINK_AUDIT_SOCKET; 671 case NETLINK_IP6_FW: 672 return SECCLASS_NETLINK_IP6FW_SOCKET; 673 case NETLINK_DNRTMSG: 674 return SECCLASS_NETLINK_DNRT_SOCKET; 675 case NETLINK_KOBJECT_UEVENT: 676 return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET; 677 default: 678 return SECCLASS_NETLINK_SOCKET; 679 } 680 case PF_PACKET: 681 return SECCLASS_PACKET_SOCKET; 682 case PF_KEY: 683 return SECCLASS_KEY_SOCKET; 684 } 685 686 return SECCLASS_SOCKET; 687 } 688 689 #ifdef CONFIG_PROC_FS 690 static int selinux_proc_get_sid(struct proc_dir_entry *de, 691 u16 tclass, 692 u32 *sid) 693 { 694 int buflen, rc; 695 char *buffer, *path, *end; 696 697 buffer = (char*)__get_free_page(GFP_KERNEL); 698 if (!buffer) 699 return -ENOMEM; 700 701 buflen = PAGE_SIZE; 702 end = buffer+buflen; 703 *--end = '\0'; 704 buflen--; 705 path = end-1; 706 *path = '/'; 707 while (de && de != de->parent) { 708 buflen -= de->namelen + 1; 709 if (buflen < 0) 710 break; 711 end -= de->namelen; 712 memcpy(end, de->name, de->namelen); 713 *--end = '/'; 714 path = end; 715 de = de->parent; 716 } 717 rc = security_genfs_sid("proc", path, tclass, sid); 718 free_page((unsigned long)buffer); 719 return rc; 720 } 721 #else 722 static int selinux_proc_get_sid(struct proc_dir_entry *de, 723 u16 tclass, 724 u32 *sid) 725 { 726 return -EINVAL; 727 } 728 #endif 729 730 /* The inode's security attributes must be initialized before first use. */ 731 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry) 732 { 733 struct superblock_security_struct *sbsec = NULL; 734 struct inode_security_struct *isec = inode->i_security; 735 u32 sid; 736 struct dentry *dentry; 737 #define INITCONTEXTLEN 255 738 char *context = NULL; 739 unsigned len = 0; 740 int rc = 0; 741 int hold_sem = 0; 742 743 if (isec->initialized) 744 goto out; 745 746 down(&isec->sem); 747 hold_sem = 1; 748 if (isec->initialized) 749 goto out; 750 751 sbsec = inode->i_sb->s_security; 752 if (!sbsec->initialized) { 753 /* Defer initialization until selinux_complete_init, 754 after the initial policy is loaded and the security 755 server is ready to handle calls. */ 756 spin_lock(&sbsec->isec_lock); 757 if (list_empty(&isec->list)) 758 list_add(&isec->list, &sbsec->isec_head); 759 spin_unlock(&sbsec->isec_lock); 760 goto out; 761 } 762 763 switch (sbsec->behavior) { 764 case SECURITY_FS_USE_XATTR: 765 if (!inode->i_op->getxattr) { 766 isec->sid = sbsec->def_sid; 767 break; 768 } 769 770 /* Need a dentry, since the xattr API requires one. 771 Life would be simpler if we could just pass the inode. */ 772 if (opt_dentry) { 773 /* Called from d_instantiate or d_splice_alias. */ 774 dentry = dget(opt_dentry); 775 } else { 776 /* Called from selinux_complete_init, try to find a dentry. */ 777 dentry = d_find_alias(inode); 778 } 779 if (!dentry) { 780 printk(KERN_WARNING "%s: no dentry for dev=%s " 781 "ino=%ld\n", __FUNCTION__, inode->i_sb->s_id, 782 inode->i_ino); 783 goto out; 784 } 785 786 len = INITCONTEXTLEN; 787 context = kmalloc(len, GFP_KERNEL); 788 if (!context) { 789 rc = -ENOMEM; 790 dput(dentry); 791 goto out; 792 } 793 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX, 794 context, len); 795 if (rc == -ERANGE) { 796 /* Need a larger buffer. Query for the right size. */ 797 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX, 798 NULL, 0); 799 if (rc < 0) { 800 dput(dentry); 801 goto out; 802 } 803 kfree(context); 804 len = rc; 805 context = kmalloc(len, GFP_KERNEL); 806 if (!context) { 807 rc = -ENOMEM; 808 dput(dentry); 809 goto out; 810 } 811 rc = inode->i_op->getxattr(dentry, 812 XATTR_NAME_SELINUX, 813 context, len); 814 } 815 dput(dentry); 816 if (rc < 0) { 817 if (rc != -ENODATA) { 818 printk(KERN_WARNING "%s: getxattr returned " 819 "%d for dev=%s ino=%ld\n", __FUNCTION__, 820 -rc, inode->i_sb->s_id, inode->i_ino); 821 kfree(context); 822 goto out; 823 } 824 /* Map ENODATA to the default file SID */ 825 sid = sbsec->def_sid; 826 rc = 0; 827 } else { 828 rc = security_context_to_sid(context, rc, &sid); 829 if (rc) { 830 printk(KERN_WARNING "%s: context_to_sid(%s) " 831 "returned %d for dev=%s ino=%ld\n", 832 __FUNCTION__, context, -rc, 833 inode->i_sb->s_id, inode->i_ino); 834 kfree(context); 835 /* Leave with the unlabeled SID */ 836 rc = 0; 837 break; 838 } 839 } 840 kfree(context); 841 isec->sid = sid; 842 break; 843 case SECURITY_FS_USE_TASK: 844 isec->sid = isec->task_sid; 845 break; 846 case SECURITY_FS_USE_TRANS: 847 /* Default to the fs SID. */ 848 isec->sid = sbsec->sid; 849 850 /* Try to obtain a transition SID. */ 851 isec->sclass = inode_mode_to_security_class(inode->i_mode); 852 rc = security_transition_sid(isec->task_sid, 853 sbsec->sid, 854 isec->sclass, 855 &sid); 856 if (rc) 857 goto out; 858 isec->sid = sid; 859 break; 860 default: 861 /* Default to the fs SID. */ 862 isec->sid = sbsec->sid; 863 864 if (sbsec->proc) { 865 struct proc_inode *proci = PROC_I(inode); 866 if (proci->pde) { 867 isec->sclass = inode_mode_to_security_class(inode->i_mode); 868 rc = selinux_proc_get_sid(proci->pde, 869 isec->sclass, 870 &sid); 871 if (rc) 872 goto out; 873 isec->sid = sid; 874 } 875 } 876 break; 877 } 878 879 isec->initialized = 1; 880 881 out: 882 if (isec->sclass == SECCLASS_FILE) 883 isec->sclass = inode_mode_to_security_class(inode->i_mode); 884 885 if (hold_sem) 886 up(&isec->sem); 887 return rc; 888 } 889 890 /* Convert a Linux signal to an access vector. */ 891 static inline u32 signal_to_av(int sig) 892 { 893 u32 perm = 0; 894 895 switch (sig) { 896 case SIGCHLD: 897 /* Commonly granted from child to parent. */ 898 perm = PROCESS__SIGCHLD; 899 break; 900 case SIGKILL: 901 /* Cannot be caught or ignored */ 902 perm = PROCESS__SIGKILL; 903 break; 904 case SIGSTOP: 905 /* Cannot be caught or ignored */ 906 perm = PROCESS__SIGSTOP; 907 break; 908 default: 909 /* All other signals. */ 910 perm = PROCESS__SIGNAL; 911 break; 912 } 913 914 return perm; 915 } 916 917 /* Check permission betweeen a pair of tasks, e.g. signal checks, 918 fork check, ptrace check, etc. */ 919 static int task_has_perm(struct task_struct *tsk1, 920 struct task_struct *tsk2, 921 u32 perms) 922 { 923 struct task_security_struct *tsec1, *tsec2; 924 925 tsec1 = tsk1->security; 926 tsec2 = tsk2->security; 927 return avc_has_perm(tsec1->sid, tsec2->sid, 928 SECCLASS_PROCESS, perms, NULL); 929 } 930 931 /* Check whether a task is allowed to use a capability. */ 932 static int task_has_capability(struct task_struct *tsk, 933 int cap) 934 { 935 struct task_security_struct *tsec; 936 struct avc_audit_data ad; 937 938 tsec = tsk->security; 939 940 AVC_AUDIT_DATA_INIT(&ad,CAP); 941 ad.tsk = tsk; 942 ad.u.cap = cap; 943 944 return avc_has_perm(tsec->sid, tsec->sid, 945 SECCLASS_CAPABILITY, CAP_TO_MASK(cap), &ad); 946 } 947 948 /* Check whether a task is allowed to use a system operation. */ 949 static int task_has_system(struct task_struct *tsk, 950 u32 perms) 951 { 952 struct task_security_struct *tsec; 953 954 tsec = tsk->security; 955 956 return avc_has_perm(tsec->sid, SECINITSID_KERNEL, 957 SECCLASS_SYSTEM, perms, NULL); 958 } 959 960 /* Check whether a task has a particular permission to an inode. 961 The 'adp' parameter is optional and allows other audit 962 data to be passed (e.g. the dentry). */ 963 static int inode_has_perm(struct task_struct *tsk, 964 struct inode *inode, 965 u32 perms, 966 struct avc_audit_data *adp) 967 { 968 struct task_security_struct *tsec; 969 struct inode_security_struct *isec; 970 struct avc_audit_data ad; 971 972 tsec = tsk->security; 973 isec = inode->i_security; 974 975 if (!adp) { 976 adp = &ad; 977 AVC_AUDIT_DATA_INIT(&ad, FS); 978 ad.u.fs.inode = inode; 979 } 980 981 return avc_has_perm(tsec->sid, isec->sid, isec->sclass, perms, adp); 982 } 983 984 /* Same as inode_has_perm, but pass explicit audit data containing 985 the dentry to help the auditing code to more easily generate the 986 pathname if needed. */ 987 static inline int dentry_has_perm(struct task_struct *tsk, 988 struct vfsmount *mnt, 989 struct dentry *dentry, 990 u32 av) 991 { 992 struct inode *inode = dentry->d_inode; 993 struct avc_audit_data ad; 994 AVC_AUDIT_DATA_INIT(&ad,FS); 995 ad.u.fs.mnt = mnt; 996 ad.u.fs.dentry = dentry; 997 return inode_has_perm(tsk, inode, av, &ad); 998 } 999 1000 /* Check whether a task can use an open file descriptor to 1001 access an inode in a given way. Check access to the 1002 descriptor itself, and then use dentry_has_perm to 1003 check a particular permission to the file. 1004 Access to the descriptor is implicitly granted if it 1005 has the same SID as the process. If av is zero, then 1006 access to the file is not checked, e.g. for cases 1007 where only the descriptor is affected like seek. */ 1008 static inline int file_has_perm(struct task_struct *tsk, 1009 struct file *file, 1010 u32 av) 1011 { 1012 struct task_security_struct *tsec = tsk->security; 1013 struct file_security_struct *fsec = file->f_security; 1014 struct vfsmount *mnt = file->f_vfsmnt; 1015 struct dentry *dentry = file->f_dentry; 1016 struct inode *inode = dentry->d_inode; 1017 struct avc_audit_data ad; 1018 int rc; 1019 1020 AVC_AUDIT_DATA_INIT(&ad, FS); 1021 ad.u.fs.mnt = mnt; 1022 ad.u.fs.dentry = dentry; 1023 1024 if (tsec->sid != fsec->sid) { 1025 rc = avc_has_perm(tsec->sid, fsec->sid, 1026 SECCLASS_FD, 1027 FD__USE, 1028 &ad); 1029 if (rc) 1030 return rc; 1031 } 1032 1033 /* av is zero if only checking access to the descriptor. */ 1034 if (av) 1035 return inode_has_perm(tsk, inode, av, &ad); 1036 1037 return 0; 1038 } 1039 1040 /* Check whether a task can create a file. */ 1041 static int may_create(struct inode *dir, 1042 struct dentry *dentry, 1043 u16 tclass) 1044 { 1045 struct task_security_struct *tsec; 1046 struct inode_security_struct *dsec; 1047 struct superblock_security_struct *sbsec; 1048 u32 newsid; 1049 struct avc_audit_data ad; 1050 int rc; 1051 1052 tsec = current->security; 1053 dsec = dir->i_security; 1054 sbsec = dir->i_sb->s_security; 1055 1056 AVC_AUDIT_DATA_INIT(&ad, FS); 1057 ad.u.fs.dentry = dentry; 1058 1059 rc = avc_has_perm(tsec->sid, dsec->sid, SECCLASS_DIR, 1060 DIR__ADD_NAME | DIR__SEARCH, 1061 &ad); 1062 if (rc) 1063 return rc; 1064 1065 if (tsec->create_sid && sbsec->behavior != SECURITY_FS_USE_MNTPOINT) { 1066 newsid = tsec->create_sid; 1067 } else { 1068 rc = security_transition_sid(tsec->sid, dsec->sid, tclass, 1069 &newsid); 1070 if (rc) 1071 return rc; 1072 } 1073 1074 rc = avc_has_perm(tsec->sid, newsid, tclass, FILE__CREATE, &ad); 1075 if (rc) 1076 return rc; 1077 1078 return avc_has_perm(newsid, sbsec->sid, 1079 SECCLASS_FILESYSTEM, 1080 FILESYSTEM__ASSOCIATE, &ad); 1081 } 1082 1083 #define MAY_LINK 0 1084 #define MAY_UNLINK 1 1085 #define MAY_RMDIR 2 1086 1087 /* Check whether a task can link, unlink, or rmdir a file/directory. */ 1088 static int may_link(struct inode *dir, 1089 struct dentry *dentry, 1090 int kind) 1091 1092 { 1093 struct task_security_struct *tsec; 1094 struct inode_security_struct *dsec, *isec; 1095 struct avc_audit_data ad; 1096 u32 av; 1097 int rc; 1098 1099 tsec = current->security; 1100 dsec = dir->i_security; 1101 isec = dentry->d_inode->i_security; 1102 1103 AVC_AUDIT_DATA_INIT(&ad, FS); 1104 ad.u.fs.dentry = dentry; 1105 1106 av = DIR__SEARCH; 1107 av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME); 1108 rc = avc_has_perm(tsec->sid, dsec->sid, SECCLASS_DIR, av, &ad); 1109 if (rc) 1110 return rc; 1111 1112 switch (kind) { 1113 case MAY_LINK: 1114 av = FILE__LINK; 1115 break; 1116 case MAY_UNLINK: 1117 av = FILE__UNLINK; 1118 break; 1119 case MAY_RMDIR: 1120 av = DIR__RMDIR; 1121 break; 1122 default: 1123 printk(KERN_WARNING "may_link: unrecognized kind %d\n", kind); 1124 return 0; 1125 } 1126 1127 rc = avc_has_perm(tsec->sid, isec->sid, isec->sclass, av, &ad); 1128 return rc; 1129 } 1130 1131 static inline int may_rename(struct inode *old_dir, 1132 struct dentry *old_dentry, 1133 struct inode *new_dir, 1134 struct dentry *new_dentry) 1135 { 1136 struct task_security_struct *tsec; 1137 struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec; 1138 struct avc_audit_data ad; 1139 u32 av; 1140 int old_is_dir, new_is_dir; 1141 int rc; 1142 1143 tsec = current->security; 1144 old_dsec = old_dir->i_security; 1145 old_isec = old_dentry->d_inode->i_security; 1146 old_is_dir = S_ISDIR(old_dentry->d_inode->i_mode); 1147 new_dsec = new_dir->i_security; 1148 1149 AVC_AUDIT_DATA_INIT(&ad, FS); 1150 1151 ad.u.fs.dentry = old_dentry; 1152 rc = avc_has_perm(tsec->sid, old_dsec->sid, SECCLASS_DIR, 1153 DIR__REMOVE_NAME | DIR__SEARCH, &ad); 1154 if (rc) 1155 return rc; 1156 rc = avc_has_perm(tsec->sid, old_isec->sid, 1157 old_isec->sclass, FILE__RENAME, &ad); 1158 if (rc) 1159 return rc; 1160 if (old_is_dir && new_dir != old_dir) { 1161 rc = avc_has_perm(tsec->sid, old_isec->sid, 1162 old_isec->sclass, DIR__REPARENT, &ad); 1163 if (rc) 1164 return rc; 1165 } 1166 1167 ad.u.fs.dentry = new_dentry; 1168 av = DIR__ADD_NAME | DIR__SEARCH; 1169 if (new_dentry->d_inode) 1170 av |= DIR__REMOVE_NAME; 1171 rc = avc_has_perm(tsec->sid, new_dsec->sid, SECCLASS_DIR, av, &ad); 1172 if (rc) 1173 return rc; 1174 if (new_dentry->d_inode) { 1175 new_isec = new_dentry->d_inode->i_security; 1176 new_is_dir = S_ISDIR(new_dentry->d_inode->i_mode); 1177 rc = avc_has_perm(tsec->sid, new_isec->sid, 1178 new_isec->sclass, 1179 (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad); 1180 if (rc) 1181 return rc; 1182 } 1183 1184 return 0; 1185 } 1186 1187 /* Check whether a task can perform a filesystem operation. */ 1188 static int superblock_has_perm(struct task_struct *tsk, 1189 struct super_block *sb, 1190 u32 perms, 1191 struct avc_audit_data *ad) 1192 { 1193 struct task_security_struct *tsec; 1194 struct superblock_security_struct *sbsec; 1195 1196 tsec = tsk->security; 1197 sbsec = sb->s_security; 1198 return avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM, 1199 perms, ad); 1200 } 1201 1202 /* Convert a Linux mode and permission mask to an access vector. */ 1203 static inline u32 file_mask_to_av(int mode, int mask) 1204 { 1205 u32 av = 0; 1206 1207 if ((mode & S_IFMT) != S_IFDIR) { 1208 if (mask & MAY_EXEC) 1209 av |= FILE__EXECUTE; 1210 if (mask & MAY_READ) 1211 av |= FILE__READ; 1212 1213 if (mask & MAY_APPEND) 1214 av |= FILE__APPEND; 1215 else if (mask & MAY_WRITE) 1216 av |= FILE__WRITE; 1217 1218 } else { 1219 if (mask & MAY_EXEC) 1220 av |= DIR__SEARCH; 1221 if (mask & MAY_WRITE) 1222 av |= DIR__WRITE; 1223 if (mask & MAY_READ) 1224 av |= DIR__READ; 1225 } 1226 1227 return av; 1228 } 1229 1230 /* Convert a Linux file to an access vector. */ 1231 static inline u32 file_to_av(struct file *file) 1232 { 1233 u32 av = 0; 1234 1235 if (file->f_mode & FMODE_READ) 1236 av |= FILE__READ; 1237 if (file->f_mode & FMODE_WRITE) { 1238 if (file->f_flags & O_APPEND) 1239 av |= FILE__APPEND; 1240 else 1241 av |= FILE__WRITE; 1242 } 1243 1244 return av; 1245 } 1246 1247 /* Set an inode's SID to a specified value. */ 1248 static int inode_security_set_sid(struct inode *inode, u32 sid) 1249 { 1250 struct inode_security_struct *isec = inode->i_security; 1251 struct superblock_security_struct *sbsec = inode->i_sb->s_security; 1252 1253 if (!sbsec->initialized) { 1254 /* Defer initialization to selinux_complete_init. */ 1255 return 0; 1256 } 1257 1258 down(&isec->sem); 1259 isec->sclass = inode_mode_to_security_class(inode->i_mode); 1260 isec->sid = sid; 1261 isec->initialized = 1; 1262 up(&isec->sem); 1263 return 0; 1264 } 1265 1266 /* Set the security attributes on a newly created file. */ 1267 static int post_create(struct inode *dir, 1268 struct dentry *dentry) 1269 { 1270 1271 struct task_security_struct *tsec; 1272 struct inode *inode; 1273 struct inode_security_struct *dsec; 1274 struct superblock_security_struct *sbsec; 1275 u32 newsid; 1276 char *context; 1277 unsigned int len; 1278 int rc; 1279 1280 tsec = current->security; 1281 dsec = dir->i_security; 1282 sbsec = dir->i_sb->s_security; 1283 1284 inode = dentry->d_inode; 1285 if (!inode) { 1286 /* Some file system types (e.g. NFS) may not instantiate 1287 a dentry for all create operations (e.g. symlink), 1288 so we have to check to see if the inode is non-NULL. */ 1289 printk(KERN_WARNING "post_create: no inode, dir (dev=%s, " 1290 "ino=%ld)\n", dir->i_sb->s_id, dir->i_ino); 1291 return 0; 1292 } 1293 1294 if (tsec->create_sid && sbsec->behavior != SECURITY_FS_USE_MNTPOINT) { 1295 newsid = tsec->create_sid; 1296 } else { 1297 rc = security_transition_sid(tsec->sid, dsec->sid, 1298 inode_mode_to_security_class(inode->i_mode), 1299 &newsid); 1300 if (rc) { 1301 printk(KERN_WARNING "post_create: " 1302 "security_transition_sid failed, rc=%d (dev=%s " 1303 "ino=%ld)\n", 1304 -rc, inode->i_sb->s_id, inode->i_ino); 1305 return rc; 1306 } 1307 } 1308 1309 rc = inode_security_set_sid(inode, newsid); 1310 if (rc) { 1311 printk(KERN_WARNING "post_create: inode_security_set_sid " 1312 "failed, rc=%d (dev=%s ino=%ld)\n", 1313 -rc, inode->i_sb->s_id, inode->i_ino); 1314 return rc; 1315 } 1316 1317 if (sbsec->behavior == SECURITY_FS_USE_XATTR && 1318 inode->i_op->setxattr) { 1319 /* Use extended attributes. */ 1320 rc = security_sid_to_context(newsid, &context, &len); 1321 if (rc) { 1322 printk(KERN_WARNING "post_create: sid_to_context " 1323 "failed, rc=%d (dev=%s ino=%ld)\n", 1324 -rc, inode->i_sb->s_id, inode->i_ino); 1325 return rc; 1326 } 1327 down(&inode->i_sem); 1328 rc = inode->i_op->setxattr(dentry, 1329 XATTR_NAME_SELINUX, 1330 context, len, 0); 1331 up(&inode->i_sem); 1332 kfree(context); 1333 if (rc < 0) { 1334 printk(KERN_WARNING "post_create: setxattr failed, " 1335 "rc=%d (dev=%s ino=%ld)\n", 1336 -rc, inode->i_sb->s_id, inode->i_ino); 1337 return rc; 1338 } 1339 } 1340 1341 return 0; 1342 } 1343 1344 1345 /* Hook functions begin here. */ 1346 1347 static int selinux_ptrace(struct task_struct *parent, struct task_struct *child) 1348 { 1349 struct task_security_struct *psec = parent->security; 1350 struct task_security_struct *csec = child->security; 1351 int rc; 1352 1353 rc = secondary_ops->ptrace(parent,child); 1354 if (rc) 1355 return rc; 1356 1357 rc = task_has_perm(parent, child, PROCESS__PTRACE); 1358 /* Save the SID of the tracing process for later use in apply_creds. */ 1359 if (!rc) 1360 csec->ptrace_sid = psec->sid; 1361 return rc; 1362 } 1363 1364 static int selinux_capget(struct task_struct *target, kernel_cap_t *effective, 1365 kernel_cap_t *inheritable, kernel_cap_t *permitted) 1366 { 1367 int error; 1368 1369 error = task_has_perm(current, target, PROCESS__GETCAP); 1370 if (error) 1371 return error; 1372 1373 return secondary_ops->capget(target, effective, inheritable, permitted); 1374 } 1375 1376 static int selinux_capset_check(struct task_struct *target, kernel_cap_t *effective, 1377 kernel_cap_t *inheritable, kernel_cap_t *permitted) 1378 { 1379 int error; 1380 1381 error = secondary_ops->capset_check(target, effective, inheritable, permitted); 1382 if (error) 1383 return error; 1384 1385 return task_has_perm(current, target, PROCESS__SETCAP); 1386 } 1387 1388 static void selinux_capset_set(struct task_struct *target, kernel_cap_t *effective, 1389 kernel_cap_t *inheritable, kernel_cap_t *permitted) 1390 { 1391 secondary_ops->capset_set(target, effective, inheritable, permitted); 1392 } 1393 1394 static int selinux_capable(struct task_struct *tsk, int cap) 1395 { 1396 int rc; 1397 1398 rc = secondary_ops->capable(tsk, cap); 1399 if (rc) 1400 return rc; 1401 1402 return task_has_capability(tsk,cap); 1403 } 1404 1405 static int selinux_sysctl(ctl_table *table, int op) 1406 { 1407 int error = 0; 1408 u32 av; 1409 struct task_security_struct *tsec; 1410 u32 tsid; 1411 int rc; 1412 1413 rc = secondary_ops->sysctl(table, op); 1414 if (rc) 1415 return rc; 1416 1417 tsec = current->security; 1418 1419 rc = selinux_proc_get_sid(table->de, (op == 001) ? 1420 SECCLASS_DIR : SECCLASS_FILE, &tsid); 1421 if (rc) { 1422 /* Default to the well-defined sysctl SID. */ 1423 tsid = SECINITSID_SYSCTL; 1424 } 1425 1426 /* The op values are "defined" in sysctl.c, thereby creating 1427 * a bad coupling between this module and sysctl.c */ 1428 if(op == 001) { 1429 error = avc_has_perm(tsec->sid, tsid, 1430 SECCLASS_DIR, DIR__SEARCH, NULL); 1431 } else { 1432 av = 0; 1433 if (op & 004) 1434 av |= FILE__READ; 1435 if (op & 002) 1436 av |= FILE__WRITE; 1437 if (av) 1438 error = avc_has_perm(tsec->sid, tsid, 1439 SECCLASS_FILE, av, NULL); 1440 } 1441 1442 return error; 1443 } 1444 1445 static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb) 1446 { 1447 int rc = 0; 1448 1449 if (!sb) 1450 return 0; 1451 1452 switch (cmds) { 1453 case Q_SYNC: 1454 case Q_QUOTAON: 1455 case Q_QUOTAOFF: 1456 case Q_SETINFO: 1457 case Q_SETQUOTA: 1458 rc = superblock_has_perm(current, 1459 sb, 1460 FILESYSTEM__QUOTAMOD, NULL); 1461 break; 1462 case Q_GETFMT: 1463 case Q_GETINFO: 1464 case Q_GETQUOTA: 1465 rc = superblock_has_perm(current, 1466 sb, 1467 FILESYSTEM__QUOTAGET, NULL); 1468 break; 1469 default: 1470 rc = 0; /* let the kernel handle invalid cmds */ 1471 break; 1472 } 1473 return rc; 1474 } 1475 1476 static int selinux_quota_on(struct dentry *dentry) 1477 { 1478 return dentry_has_perm(current, NULL, dentry, FILE__QUOTAON); 1479 } 1480 1481 static int selinux_syslog(int type) 1482 { 1483 int rc; 1484 1485 rc = secondary_ops->syslog(type); 1486 if (rc) 1487 return rc; 1488 1489 switch (type) { 1490 case 3: /* Read last kernel messages */ 1491 case 10: /* Return size of the log buffer */ 1492 rc = task_has_system(current, SYSTEM__SYSLOG_READ); 1493 break; 1494 case 6: /* Disable logging to console */ 1495 case 7: /* Enable logging to console */ 1496 case 8: /* Set level of messages printed to console */ 1497 rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE); 1498 break; 1499 case 0: /* Close log */ 1500 case 1: /* Open log */ 1501 case 2: /* Read from log */ 1502 case 4: /* Read/clear last kernel messages */ 1503 case 5: /* Clear ring buffer */ 1504 default: 1505 rc = task_has_system(current, SYSTEM__SYSLOG_MOD); 1506 break; 1507 } 1508 return rc; 1509 } 1510 1511 /* 1512 * Check that a process has enough memory to allocate a new virtual 1513 * mapping. 0 means there is enough memory for the allocation to 1514 * succeed and -ENOMEM implies there is not. 1515 * 1516 * Note that secondary_ops->capable and task_has_perm_noaudit return 0 1517 * if the capability is granted, but __vm_enough_memory requires 1 if 1518 * the capability is granted. 1519 * 1520 * Do not audit the selinux permission check, as this is applied to all 1521 * processes that allocate mappings. 1522 */ 1523 static int selinux_vm_enough_memory(long pages) 1524 { 1525 int rc, cap_sys_admin = 0; 1526 struct task_security_struct *tsec = current->security; 1527 1528 rc = secondary_ops->capable(current, CAP_SYS_ADMIN); 1529 if (rc == 0) 1530 rc = avc_has_perm_noaudit(tsec->sid, tsec->sid, 1531 SECCLASS_CAPABILITY, 1532 CAP_TO_MASK(CAP_SYS_ADMIN), 1533 NULL); 1534 1535 if (rc == 0) 1536 cap_sys_admin = 1; 1537 1538 return __vm_enough_memory(pages, cap_sys_admin); 1539 } 1540 1541 /* binprm security operations */ 1542 1543 static int selinux_bprm_alloc_security(struct linux_binprm *bprm) 1544 { 1545 struct bprm_security_struct *bsec; 1546 1547 bsec = kmalloc(sizeof(struct bprm_security_struct), GFP_KERNEL); 1548 if (!bsec) 1549 return -ENOMEM; 1550 1551 memset(bsec, 0, sizeof *bsec); 1552 bsec->magic = SELINUX_MAGIC; 1553 bsec->bprm = bprm; 1554 bsec->sid = SECINITSID_UNLABELED; 1555 bsec->set = 0; 1556 1557 bprm->security = bsec; 1558 return 0; 1559 } 1560 1561 static int selinux_bprm_set_security(struct linux_binprm *bprm) 1562 { 1563 struct task_security_struct *tsec; 1564 struct inode *inode = bprm->file->f_dentry->d_inode; 1565 struct inode_security_struct *isec; 1566 struct bprm_security_struct *bsec; 1567 u32 newsid; 1568 struct avc_audit_data ad; 1569 int rc; 1570 1571 rc = secondary_ops->bprm_set_security(bprm); 1572 if (rc) 1573 return rc; 1574 1575 bsec = bprm->security; 1576 1577 if (bsec->set) 1578 return 0; 1579 1580 tsec = current->security; 1581 isec = inode->i_security; 1582 1583 /* Default to the current task SID. */ 1584 bsec->sid = tsec->sid; 1585 1586 /* Reset create SID on execve. */ 1587 tsec->create_sid = 0; 1588 1589 if (tsec->exec_sid) { 1590 newsid = tsec->exec_sid; 1591 /* Reset exec SID on execve. */ 1592 tsec->exec_sid = 0; 1593 } else { 1594 /* Check for a default transition on this program. */ 1595 rc = security_transition_sid(tsec->sid, isec->sid, 1596 SECCLASS_PROCESS, &newsid); 1597 if (rc) 1598 return rc; 1599 } 1600 1601 AVC_AUDIT_DATA_INIT(&ad, FS); 1602 ad.u.fs.mnt = bprm->file->f_vfsmnt; 1603 ad.u.fs.dentry = bprm->file->f_dentry; 1604 1605 if (bprm->file->f_vfsmnt->mnt_flags & MNT_NOSUID) 1606 newsid = tsec->sid; 1607 1608 if (tsec->sid == newsid) { 1609 rc = avc_has_perm(tsec->sid, isec->sid, 1610 SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad); 1611 if (rc) 1612 return rc; 1613 } else { 1614 /* Check permissions for the transition. */ 1615 rc = avc_has_perm(tsec->sid, newsid, 1616 SECCLASS_PROCESS, PROCESS__TRANSITION, &ad); 1617 if (rc) 1618 return rc; 1619 1620 rc = avc_has_perm(newsid, isec->sid, 1621 SECCLASS_FILE, FILE__ENTRYPOINT, &ad); 1622 if (rc) 1623 return rc; 1624 1625 /* Clear any possibly unsafe personality bits on exec: */ 1626 current->personality &= ~PER_CLEAR_ON_SETID; 1627 1628 /* Set the security field to the new SID. */ 1629 bsec->sid = newsid; 1630 } 1631 1632 bsec->set = 1; 1633 return 0; 1634 } 1635 1636 static int selinux_bprm_check_security (struct linux_binprm *bprm) 1637 { 1638 return secondary_ops->bprm_check_security(bprm); 1639 } 1640 1641 1642 static int selinux_bprm_secureexec (struct linux_binprm *bprm) 1643 { 1644 struct task_security_struct *tsec = current->security; 1645 int atsecure = 0; 1646 1647 if (tsec->osid != tsec->sid) { 1648 /* Enable secure mode for SIDs transitions unless 1649 the noatsecure permission is granted between 1650 the two SIDs, i.e. ahp returns 0. */ 1651 atsecure = avc_has_perm(tsec->osid, tsec->sid, 1652 SECCLASS_PROCESS, 1653 PROCESS__NOATSECURE, NULL); 1654 } 1655 1656 return (atsecure || secondary_ops->bprm_secureexec(bprm)); 1657 } 1658 1659 static void selinux_bprm_free_security(struct linux_binprm *bprm) 1660 { 1661 struct bprm_security_struct *bsec = bprm->security; 1662 bprm->security = NULL; 1663 kfree(bsec); 1664 } 1665 1666 extern struct vfsmount *selinuxfs_mount; 1667 extern struct dentry *selinux_null; 1668 1669 /* Derived from fs/exec.c:flush_old_files. */ 1670 static inline void flush_unauthorized_files(struct files_struct * files) 1671 { 1672 struct avc_audit_data ad; 1673 struct file *file, *devnull = NULL; 1674 struct tty_struct *tty = current->signal->tty; 1675 long j = -1; 1676 1677 if (tty) { 1678 file_list_lock(); 1679 file = list_entry(tty->tty_files.next, typeof(*file), f_list); 1680 if (file) { 1681 /* Revalidate access to controlling tty. 1682 Use inode_has_perm on the tty inode directly rather 1683 than using file_has_perm, as this particular open 1684 file may belong to another process and we are only 1685 interested in the inode-based check here. */ 1686 struct inode *inode = file->f_dentry->d_inode; 1687 if (inode_has_perm(current, inode, 1688 FILE__READ | FILE__WRITE, NULL)) { 1689 /* Reset controlling tty. */ 1690 current->signal->tty = NULL; 1691 current->signal->tty_old_pgrp = 0; 1692 } 1693 } 1694 file_list_unlock(); 1695 } 1696 1697 /* Revalidate access to inherited open files. */ 1698 1699 AVC_AUDIT_DATA_INIT(&ad,FS); 1700 1701 spin_lock(&files->file_lock); 1702 for (;;) { 1703 unsigned long set, i; 1704 int fd; 1705 1706 j++; 1707 i = j * __NFDBITS; 1708 if (i >= files->max_fds || i >= files->max_fdset) 1709 break; 1710 set = files->open_fds->fds_bits[j]; 1711 if (!set) 1712 continue; 1713 spin_unlock(&files->file_lock); 1714 for ( ; set ; i++,set >>= 1) { 1715 if (set & 1) { 1716 file = fget(i); 1717 if (!file) 1718 continue; 1719 if (file_has_perm(current, 1720 file, 1721 file_to_av(file))) { 1722 sys_close(i); 1723 fd = get_unused_fd(); 1724 if (fd != i) { 1725 if (fd >= 0) 1726 put_unused_fd(fd); 1727 fput(file); 1728 continue; 1729 } 1730 if (devnull) { 1731 atomic_inc(&devnull->f_count); 1732 } else { 1733 devnull = dentry_open(dget(selinux_null), mntget(selinuxfs_mount), O_RDWR); 1734 if (!devnull) { 1735 put_unused_fd(fd); 1736 fput(file); 1737 continue; 1738 } 1739 } 1740 fd_install(fd, devnull); 1741 } 1742 fput(file); 1743 } 1744 } 1745 spin_lock(&files->file_lock); 1746 1747 } 1748 spin_unlock(&files->file_lock); 1749 } 1750 1751 static void selinux_bprm_apply_creds(struct linux_binprm *bprm, int unsafe) 1752 { 1753 struct task_security_struct *tsec; 1754 struct bprm_security_struct *bsec; 1755 u32 sid; 1756 int rc; 1757 1758 secondary_ops->bprm_apply_creds(bprm, unsafe); 1759 1760 tsec = current->security; 1761 1762 bsec = bprm->security; 1763 sid = bsec->sid; 1764 1765 tsec->osid = tsec->sid; 1766 bsec->unsafe = 0; 1767 if (tsec->sid != sid) { 1768 /* Check for shared state. If not ok, leave SID 1769 unchanged and kill. */ 1770 if (unsafe & LSM_UNSAFE_SHARE) { 1771 rc = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS, 1772 PROCESS__SHARE, NULL); 1773 if (rc) { 1774 bsec->unsafe = 1; 1775 return; 1776 } 1777 } 1778 1779 /* Check for ptracing, and update the task SID if ok. 1780 Otherwise, leave SID unchanged and kill. */ 1781 if (unsafe & (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) { 1782 rc = avc_has_perm(tsec->ptrace_sid, sid, 1783 SECCLASS_PROCESS, PROCESS__PTRACE, 1784 NULL); 1785 if (rc) { 1786 bsec->unsafe = 1; 1787 return; 1788 } 1789 } 1790 tsec->sid = sid; 1791 } 1792 } 1793 1794 /* 1795 * called after apply_creds without the task lock held 1796 */ 1797 static void selinux_bprm_post_apply_creds(struct linux_binprm *bprm) 1798 { 1799 struct task_security_struct *tsec; 1800 struct rlimit *rlim, *initrlim; 1801 struct itimerval itimer; 1802 struct bprm_security_struct *bsec; 1803 int rc, i; 1804 1805 tsec = current->security; 1806 bsec = bprm->security; 1807 1808 if (bsec->unsafe) { 1809 force_sig_specific(SIGKILL, current); 1810 return; 1811 } 1812 if (tsec->osid == tsec->sid) 1813 return; 1814 1815 /* Close files for which the new task SID is not authorized. */ 1816 flush_unauthorized_files(current->files); 1817 1818 /* Check whether the new SID can inherit signal state 1819 from the old SID. If not, clear itimers to avoid 1820 subsequent signal generation and flush and unblock 1821 signals. This must occur _after_ the task SID has 1822 been updated so that any kill done after the flush 1823 will be checked against the new SID. */ 1824 rc = avc_has_perm(tsec->osid, tsec->sid, SECCLASS_PROCESS, 1825 PROCESS__SIGINH, NULL); 1826 if (rc) { 1827 memset(&itimer, 0, sizeof itimer); 1828 for (i = 0; i < 3; i++) 1829 do_setitimer(i, &itimer, NULL); 1830 flush_signals(current); 1831 spin_lock_irq(¤t->sighand->siglock); 1832 flush_signal_handlers(current, 1); 1833 sigemptyset(¤t->blocked); 1834 recalc_sigpending(); 1835 spin_unlock_irq(¤t->sighand->siglock); 1836 } 1837 1838 /* Check whether the new SID can inherit resource limits 1839 from the old SID. If not, reset all soft limits to 1840 the lower of the current task's hard limit and the init 1841 task's soft limit. Note that the setting of hard limits 1842 (even to lower them) can be controlled by the setrlimit 1843 check. The inclusion of the init task's soft limit into 1844 the computation is to avoid resetting soft limits higher 1845 than the default soft limit for cases where the default 1846 is lower than the hard limit, e.g. RLIMIT_CORE or 1847 RLIMIT_STACK.*/ 1848 rc = avc_has_perm(tsec->osid, tsec->sid, SECCLASS_PROCESS, 1849 PROCESS__RLIMITINH, NULL); 1850 if (rc) { 1851 for (i = 0; i < RLIM_NLIMITS; i++) { 1852 rlim = current->signal->rlim + i; 1853 initrlim = init_task.signal->rlim+i; 1854 rlim->rlim_cur = min(rlim->rlim_max,initrlim->rlim_cur); 1855 } 1856 if (current->signal->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) { 1857 /* 1858 * This will cause RLIMIT_CPU calculations 1859 * to be refigured. 1860 */ 1861 current->it_prof_expires = jiffies_to_cputime(1); 1862 } 1863 } 1864 1865 /* Wake up the parent if it is waiting so that it can 1866 recheck wait permission to the new task SID. */ 1867 wake_up_interruptible(¤t->parent->signal->wait_chldexit); 1868 } 1869 1870 /* superblock security operations */ 1871 1872 static int selinux_sb_alloc_security(struct super_block *sb) 1873 { 1874 return superblock_alloc_security(sb); 1875 } 1876 1877 static void selinux_sb_free_security(struct super_block *sb) 1878 { 1879 superblock_free_security(sb); 1880 } 1881 1882 static inline int match_prefix(char *prefix, int plen, char *option, int olen) 1883 { 1884 if (plen > olen) 1885 return 0; 1886 1887 return !memcmp(prefix, option, plen); 1888 } 1889 1890 static inline int selinux_option(char *option, int len) 1891 { 1892 return (match_prefix("context=", sizeof("context=")-1, option, len) || 1893 match_prefix("fscontext=", sizeof("fscontext=")-1, option, len) || 1894 match_prefix("defcontext=", sizeof("defcontext=")-1, option, len)); 1895 } 1896 1897 static inline void take_option(char **to, char *from, int *first, int len) 1898 { 1899 if (!*first) { 1900 **to = ','; 1901 *to += 1; 1902 } 1903 else 1904 *first = 0; 1905 memcpy(*to, from, len); 1906 *to += len; 1907 } 1908 1909 static int selinux_sb_copy_data(struct file_system_type *type, void *orig, void *copy) 1910 { 1911 int fnosec, fsec, rc = 0; 1912 char *in_save, *in_curr, *in_end; 1913 char *sec_curr, *nosec_save, *nosec; 1914 1915 in_curr = orig; 1916 sec_curr = copy; 1917 1918 /* Binary mount data: just copy */ 1919 if (type->fs_flags & FS_BINARY_MOUNTDATA) { 1920 copy_page(sec_curr, in_curr); 1921 goto out; 1922 } 1923 1924 nosec = (char *)get_zeroed_page(GFP_KERNEL); 1925 if (!nosec) { 1926 rc = -ENOMEM; 1927 goto out; 1928 } 1929 1930 nosec_save = nosec; 1931 fnosec = fsec = 1; 1932 in_save = in_end = orig; 1933 1934 do { 1935 if (*in_end == ',' || *in_end == '\0') { 1936 int len = in_end - in_curr; 1937 1938 if (selinux_option(in_curr, len)) 1939 take_option(&sec_curr, in_curr, &fsec, len); 1940 else 1941 take_option(&nosec, in_curr, &fnosec, len); 1942 1943 in_curr = in_end + 1; 1944 } 1945 } while (*in_end++); 1946 1947 copy_page(in_save, nosec_save); 1948 free_page((unsigned long)nosec_save); 1949 out: 1950 return rc; 1951 } 1952 1953 static int selinux_sb_kern_mount(struct super_block *sb, void *data) 1954 { 1955 struct avc_audit_data ad; 1956 int rc; 1957 1958 rc = superblock_doinit(sb, data); 1959 if (rc) 1960 return rc; 1961 1962 AVC_AUDIT_DATA_INIT(&ad,FS); 1963 ad.u.fs.dentry = sb->s_root; 1964 return superblock_has_perm(current, sb, FILESYSTEM__MOUNT, &ad); 1965 } 1966 1967 static int selinux_sb_statfs(struct super_block *sb) 1968 { 1969 struct avc_audit_data ad; 1970 1971 AVC_AUDIT_DATA_INIT(&ad,FS); 1972 ad.u.fs.dentry = sb->s_root; 1973 return superblock_has_perm(current, sb, FILESYSTEM__GETATTR, &ad); 1974 } 1975 1976 static int selinux_mount(char * dev_name, 1977 struct nameidata *nd, 1978 char * type, 1979 unsigned long flags, 1980 void * data) 1981 { 1982 int rc; 1983 1984 rc = secondary_ops->sb_mount(dev_name, nd, type, flags, data); 1985 if (rc) 1986 return rc; 1987 1988 if (flags & MS_REMOUNT) 1989 return superblock_has_perm(current, nd->mnt->mnt_sb, 1990 FILESYSTEM__REMOUNT, NULL); 1991 else 1992 return dentry_has_perm(current, nd->mnt, nd->dentry, 1993 FILE__MOUNTON); 1994 } 1995 1996 static int selinux_umount(struct vfsmount *mnt, int flags) 1997 { 1998 int rc; 1999 2000 rc = secondary_ops->sb_umount(mnt, flags); 2001 if (rc) 2002 return rc; 2003 2004 return superblock_has_perm(current,mnt->mnt_sb, 2005 FILESYSTEM__UNMOUNT,NULL); 2006 } 2007 2008 /* inode security operations */ 2009 2010 static int selinux_inode_alloc_security(struct inode *inode) 2011 { 2012 return inode_alloc_security(inode); 2013 } 2014 2015 static void selinux_inode_free_security(struct inode *inode) 2016 { 2017 inode_free_security(inode); 2018 } 2019 2020 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, int mask) 2021 { 2022 return may_create(dir, dentry, SECCLASS_FILE); 2023 } 2024 2025 static void selinux_inode_post_create(struct inode *dir, struct dentry *dentry, int mask) 2026 { 2027 post_create(dir, dentry); 2028 } 2029 2030 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry) 2031 { 2032 int rc; 2033 2034 rc = secondary_ops->inode_link(old_dentry,dir,new_dentry); 2035 if (rc) 2036 return rc; 2037 return may_link(dir, old_dentry, MAY_LINK); 2038 } 2039 2040 static void selinux_inode_post_link(struct dentry *old_dentry, struct inode *inode, struct dentry *new_dentry) 2041 { 2042 return; 2043 } 2044 2045 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry) 2046 { 2047 int rc; 2048 2049 rc = secondary_ops->inode_unlink(dir, dentry); 2050 if (rc) 2051 return rc; 2052 return may_link(dir, dentry, MAY_UNLINK); 2053 } 2054 2055 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name) 2056 { 2057 return may_create(dir, dentry, SECCLASS_LNK_FILE); 2058 } 2059 2060 static void selinux_inode_post_symlink(struct inode *dir, struct dentry *dentry, const char *name) 2061 { 2062 post_create(dir, dentry); 2063 } 2064 2065 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, int mask) 2066 { 2067 return may_create(dir, dentry, SECCLASS_DIR); 2068 } 2069 2070 static void selinux_inode_post_mkdir(struct inode *dir, struct dentry *dentry, int mask) 2071 { 2072 post_create(dir, dentry); 2073 } 2074 2075 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry) 2076 { 2077 return may_link(dir, dentry, MAY_RMDIR); 2078 } 2079 2080 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev) 2081 { 2082 int rc; 2083 2084 rc = secondary_ops->inode_mknod(dir, dentry, mode, dev); 2085 if (rc) 2086 return rc; 2087 2088 return may_create(dir, dentry, inode_mode_to_security_class(mode)); 2089 } 2090 2091 static void selinux_inode_post_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev) 2092 { 2093 post_create(dir, dentry); 2094 } 2095 2096 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry, 2097 struct inode *new_inode, struct dentry *new_dentry) 2098 { 2099 return may_rename(old_inode, old_dentry, new_inode, new_dentry); 2100 } 2101 2102 static void selinux_inode_post_rename(struct inode *old_inode, struct dentry *old_dentry, 2103 struct inode *new_inode, struct dentry *new_dentry) 2104 { 2105 return; 2106 } 2107 2108 static int selinux_inode_readlink(struct dentry *dentry) 2109 { 2110 return dentry_has_perm(current, NULL, dentry, FILE__READ); 2111 } 2112 2113 static int selinux_inode_follow_link(struct dentry *dentry, struct nameidata *nameidata) 2114 { 2115 int rc; 2116 2117 rc = secondary_ops->inode_follow_link(dentry,nameidata); 2118 if (rc) 2119 return rc; 2120 return dentry_has_perm(current, NULL, dentry, FILE__READ); 2121 } 2122 2123 static int selinux_inode_permission(struct inode *inode, int mask, 2124 struct nameidata *nd) 2125 { 2126 int rc; 2127 2128 rc = secondary_ops->inode_permission(inode, mask, nd); 2129 if (rc) 2130 return rc; 2131 2132 if (!mask) { 2133 /* No permission to check. Existence test. */ 2134 return 0; 2135 } 2136 2137 return inode_has_perm(current, inode, 2138 file_mask_to_av(inode->i_mode, mask), NULL); 2139 } 2140 2141 static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr) 2142 { 2143 int rc; 2144 2145 rc = secondary_ops->inode_setattr(dentry, iattr); 2146 if (rc) 2147 return rc; 2148 2149 if (iattr->ia_valid & ATTR_FORCE) 2150 return 0; 2151 2152 if (iattr->ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID | 2153 ATTR_ATIME_SET | ATTR_MTIME_SET)) 2154 return dentry_has_perm(current, NULL, dentry, FILE__SETATTR); 2155 2156 return dentry_has_perm(current, NULL, dentry, FILE__WRITE); 2157 } 2158 2159 static int selinux_inode_getattr(struct vfsmount *mnt, struct dentry *dentry) 2160 { 2161 return dentry_has_perm(current, mnt, dentry, FILE__GETATTR); 2162 } 2163 2164 static int selinux_inode_setxattr(struct dentry *dentry, char *name, void *value, size_t size, int flags) 2165 { 2166 struct task_security_struct *tsec = current->security; 2167 struct inode *inode = dentry->d_inode; 2168 struct inode_security_struct *isec = inode->i_security; 2169 struct superblock_security_struct *sbsec; 2170 struct avc_audit_data ad; 2171 u32 newsid; 2172 int rc = 0; 2173 2174 if (strcmp(name, XATTR_NAME_SELINUX)) { 2175 if (!strncmp(name, XATTR_SECURITY_PREFIX, 2176 sizeof XATTR_SECURITY_PREFIX - 1) && 2177 !capable(CAP_SYS_ADMIN)) { 2178 /* A different attribute in the security namespace. 2179 Restrict to administrator. */ 2180 return -EPERM; 2181 } 2182 2183 /* Not an attribute we recognize, so just check the 2184 ordinary setattr permission. */ 2185 return dentry_has_perm(current, NULL, dentry, FILE__SETATTR); 2186 } 2187 2188 sbsec = inode->i_sb->s_security; 2189 if (sbsec->behavior == SECURITY_FS_USE_MNTPOINT) 2190 return -EOPNOTSUPP; 2191 2192 if ((current->fsuid != inode->i_uid) && !capable(CAP_FOWNER)) 2193 return -EPERM; 2194 2195 AVC_AUDIT_DATA_INIT(&ad,FS); 2196 ad.u.fs.dentry = dentry; 2197 2198 rc = avc_has_perm(tsec->sid, isec->sid, isec->sclass, 2199 FILE__RELABELFROM, &ad); 2200 if (rc) 2201 return rc; 2202 2203 rc = security_context_to_sid(value, size, &newsid); 2204 if (rc) 2205 return rc; 2206 2207 rc = avc_has_perm(tsec->sid, newsid, isec->sclass, 2208 FILE__RELABELTO, &ad); 2209 if (rc) 2210 return rc; 2211 2212 rc = security_validate_transition(isec->sid, newsid, tsec->sid, 2213 isec->sclass); 2214 if (rc) 2215 return rc; 2216 2217 return avc_has_perm(newsid, 2218 sbsec->sid, 2219 SECCLASS_FILESYSTEM, 2220 FILESYSTEM__ASSOCIATE, 2221 &ad); 2222 } 2223 2224 static void selinux_inode_post_setxattr(struct dentry *dentry, char *name, 2225 void *value, size_t size, int flags) 2226 { 2227 struct inode *inode = dentry->d_inode; 2228 struct inode_security_struct *isec = inode->i_security; 2229 u32 newsid; 2230 int rc; 2231 2232 if (strcmp(name, XATTR_NAME_SELINUX)) { 2233 /* Not an attribute we recognize, so nothing to do. */ 2234 return; 2235 } 2236 2237 rc = security_context_to_sid(value, size, &newsid); 2238 if (rc) { 2239 printk(KERN_WARNING "%s: unable to obtain SID for context " 2240 "%s, rc=%d\n", __FUNCTION__, (char*)value, -rc); 2241 return; 2242 } 2243 2244 isec->sid = newsid; 2245 return; 2246 } 2247 2248 static int selinux_inode_getxattr (struct dentry *dentry, char *name) 2249 { 2250 struct inode *inode = dentry->d_inode; 2251 struct superblock_security_struct *sbsec = inode->i_sb->s_security; 2252 2253 if (sbsec->behavior == SECURITY_FS_USE_MNTPOINT) 2254 return -EOPNOTSUPP; 2255 2256 return dentry_has_perm(current, NULL, dentry, FILE__GETATTR); 2257 } 2258 2259 static int selinux_inode_listxattr (struct dentry *dentry) 2260 { 2261 return dentry_has_perm(current, NULL, dentry, FILE__GETATTR); 2262 } 2263 2264 static int selinux_inode_removexattr (struct dentry *dentry, char *name) 2265 { 2266 if (strcmp(name, XATTR_NAME_SELINUX)) { 2267 if (!strncmp(name, XATTR_SECURITY_PREFIX, 2268 sizeof XATTR_SECURITY_PREFIX - 1) && 2269 !capable(CAP_SYS_ADMIN)) { 2270 /* A different attribute in the security namespace. 2271 Restrict to administrator. */ 2272 return -EPERM; 2273 } 2274 2275 /* Not an attribute we recognize, so just check the 2276 ordinary setattr permission. Might want a separate 2277 permission for removexattr. */ 2278 return dentry_has_perm(current, NULL, dentry, FILE__SETATTR); 2279 } 2280 2281 /* No one is allowed to remove a SELinux security label. 2282 You can change the label, but all data must be labeled. */ 2283 return -EACCES; 2284 } 2285 2286 static int selinux_inode_getsecurity(struct inode *inode, const char *name, void *buffer, size_t size) 2287 { 2288 struct inode_security_struct *isec = inode->i_security; 2289 char *context; 2290 unsigned len; 2291 int rc; 2292 2293 /* Permission check handled by selinux_inode_getxattr hook.*/ 2294 2295 if (strcmp(name, XATTR_SELINUX_SUFFIX)) 2296 return -EOPNOTSUPP; 2297 2298 rc = security_sid_to_context(isec->sid, &context, &len); 2299 if (rc) 2300 return rc; 2301 2302 if (!buffer || !size) { 2303 kfree(context); 2304 return len; 2305 } 2306 if (size < len) { 2307 kfree(context); 2308 return -ERANGE; 2309 } 2310 memcpy(buffer, context, len); 2311 kfree(context); 2312 return len; 2313 } 2314 2315 static int selinux_inode_setsecurity(struct inode *inode, const char *name, 2316 const void *value, size_t size, int flags) 2317 { 2318 struct inode_security_struct *isec = inode->i_security; 2319 u32 newsid; 2320 int rc; 2321 2322 if (strcmp(name, XATTR_SELINUX_SUFFIX)) 2323 return -EOPNOTSUPP; 2324 2325 if (!value || !size) 2326 return -EACCES; 2327 2328 rc = security_context_to_sid((void*)value, size, &newsid); 2329 if (rc) 2330 return rc; 2331 2332 isec->sid = newsid; 2333 return 0; 2334 } 2335 2336 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size) 2337 { 2338 const int len = sizeof(XATTR_NAME_SELINUX); 2339 if (buffer && len <= buffer_size) 2340 memcpy(buffer, XATTR_NAME_SELINUX, len); 2341 return len; 2342 } 2343 2344 /* file security operations */ 2345 2346 static int selinux_file_permission(struct file *file, int mask) 2347 { 2348 struct inode *inode = file->f_dentry->d_inode; 2349 2350 if (!mask) { 2351 /* No permission to check. Existence test. */ 2352 return 0; 2353 } 2354 2355 /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */ 2356 if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE)) 2357 mask |= MAY_APPEND; 2358 2359 return file_has_perm(current, file, 2360 file_mask_to_av(inode->i_mode, mask)); 2361 } 2362 2363 static int selinux_file_alloc_security(struct file *file) 2364 { 2365 return file_alloc_security(file); 2366 } 2367 2368 static void selinux_file_free_security(struct file *file) 2369 { 2370 file_free_security(file); 2371 } 2372 2373 static int selinux_file_ioctl(struct file *file, unsigned int cmd, 2374 unsigned long arg) 2375 { 2376 int error = 0; 2377 2378 switch (cmd) { 2379 case FIONREAD: 2380 /* fall through */ 2381 case FIBMAP: 2382 /* fall through */ 2383 case FIGETBSZ: 2384 /* fall through */ 2385 case EXT2_IOC_GETFLAGS: 2386 /* fall through */ 2387 case EXT2_IOC_GETVERSION: 2388 error = file_has_perm(current, file, FILE__GETATTR); 2389 break; 2390 2391 case EXT2_IOC_SETFLAGS: 2392 /* fall through */ 2393 case EXT2_IOC_SETVERSION: 2394 error = file_has_perm(current, file, FILE__SETATTR); 2395 break; 2396 2397 /* sys_ioctl() checks */ 2398 case FIONBIO: 2399 /* fall through */ 2400 case FIOASYNC: 2401 error = file_has_perm(current, file, 0); 2402 break; 2403 2404 case KDSKBENT: 2405 case KDSKBSENT: 2406 error = task_has_capability(current,CAP_SYS_TTY_CONFIG); 2407 break; 2408 2409 /* default case assumes that the command will go 2410 * to the file's ioctl() function. 2411 */ 2412 default: 2413 error = file_has_perm(current, file, FILE__IOCTL); 2414 2415 } 2416 return error; 2417 } 2418 2419 static int file_map_prot_check(struct file *file, unsigned long prot, int shared) 2420 { 2421 #ifndef CONFIG_PPC32 2422 if ((prot & PROT_EXEC) && (!file || (!shared && (prot & PROT_WRITE)))) { 2423 /* 2424 * We are making executable an anonymous mapping or a 2425 * private file mapping that will also be writable. 2426 * This has an additional check. 2427 */ 2428 int rc = task_has_perm(current, current, PROCESS__EXECMEM); 2429 if (rc) 2430 return rc; 2431 } 2432 #endif 2433 2434 if (file) { 2435 /* read access is always possible with a mapping */ 2436 u32 av = FILE__READ; 2437 2438 /* write access only matters if the mapping is shared */ 2439 if (shared && (prot & PROT_WRITE)) 2440 av |= FILE__WRITE; 2441 2442 if (prot & PROT_EXEC) 2443 av |= FILE__EXECUTE; 2444 2445 return file_has_perm(current, file, av); 2446 } 2447 return 0; 2448 } 2449 2450 static int selinux_file_mmap(struct file *file, unsigned long reqprot, 2451 unsigned long prot, unsigned long flags) 2452 { 2453 int rc; 2454 2455 rc = secondary_ops->file_mmap(file, reqprot, prot, flags); 2456 if (rc) 2457 return rc; 2458 2459 if (selinux_checkreqprot) 2460 prot = reqprot; 2461 2462 return file_map_prot_check(file, prot, 2463 (flags & MAP_TYPE) == MAP_SHARED); 2464 } 2465 2466 static int selinux_file_mprotect(struct vm_area_struct *vma, 2467 unsigned long reqprot, 2468 unsigned long prot) 2469 { 2470 int rc; 2471 2472 rc = secondary_ops->file_mprotect(vma, reqprot, prot); 2473 if (rc) 2474 return rc; 2475 2476 if (selinux_checkreqprot) 2477 prot = reqprot; 2478 2479 #ifndef CONFIG_PPC32 2480 if (vma->vm_file != NULL && vma->anon_vma != NULL && (prot & PROT_EXEC)) { 2481 /* 2482 * We are making executable a file mapping that has 2483 * had some COW done. Since pages might have been written, 2484 * check ability to execute the possibly modified content. 2485 * This typically should only occur for text relocations. 2486 */ 2487 int rc = file_has_perm(current, vma->vm_file, FILE__EXECMOD); 2488 if (rc) 2489 return rc; 2490 } 2491 #endif 2492 2493 return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED); 2494 } 2495 2496 static int selinux_file_lock(struct file *file, unsigned int cmd) 2497 { 2498 return file_has_perm(current, file, FILE__LOCK); 2499 } 2500 2501 static int selinux_file_fcntl(struct file *file, unsigned int cmd, 2502 unsigned long arg) 2503 { 2504 int err = 0; 2505 2506 switch (cmd) { 2507 case F_SETFL: 2508 if (!file->f_dentry || !file->f_dentry->d_inode) { 2509 err = -EINVAL; 2510 break; 2511 } 2512 2513 if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) { 2514 err = file_has_perm(current, file,FILE__WRITE); 2515 break; 2516 } 2517 /* fall through */ 2518 case F_SETOWN: 2519 case F_SETSIG: 2520 case F_GETFL: 2521 case F_GETOWN: 2522 case F_GETSIG: 2523 /* Just check FD__USE permission */ 2524 err = file_has_perm(current, file, 0); 2525 break; 2526 case F_GETLK: 2527 case F_SETLK: 2528 case F_SETLKW: 2529 #if BITS_PER_LONG == 32 2530 case F_GETLK64: 2531 case F_SETLK64: 2532 case F_SETLKW64: 2533 #endif 2534 if (!file->f_dentry || !file->f_dentry->d_inode) { 2535 err = -EINVAL; 2536 break; 2537 } 2538 err = file_has_perm(current, file, FILE__LOCK); 2539 break; 2540 } 2541 2542 return err; 2543 } 2544 2545 static int selinux_file_set_fowner(struct file *file) 2546 { 2547 struct task_security_struct *tsec; 2548 struct file_security_struct *fsec; 2549 2550 tsec = current->security; 2551 fsec = file->f_security; 2552 fsec->fown_sid = tsec->sid; 2553 2554 return 0; 2555 } 2556 2557 static int selinux_file_send_sigiotask(struct task_struct *tsk, 2558 struct fown_struct *fown, int signum) 2559 { 2560 struct file *file; 2561 u32 perm; 2562 struct task_security_struct *tsec; 2563 struct file_security_struct *fsec; 2564 2565 /* struct fown_struct is never outside the context of a struct file */ 2566 file = (struct file *)((long)fown - offsetof(struct file,f_owner)); 2567 2568 tsec = tsk->security; 2569 fsec = file->f_security; 2570 2571 if (!signum) 2572 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */ 2573 else 2574 perm = signal_to_av(signum); 2575 2576 return avc_has_perm(fsec->fown_sid, tsec->sid, 2577 SECCLASS_PROCESS, perm, NULL); 2578 } 2579 2580 static int selinux_file_receive(struct file *file) 2581 { 2582 return file_has_perm(current, file, file_to_av(file)); 2583 } 2584 2585 /* task security operations */ 2586 2587 static int selinux_task_create(unsigned long clone_flags) 2588 { 2589 int rc; 2590 2591 rc = secondary_ops->task_create(clone_flags); 2592 if (rc) 2593 return rc; 2594 2595 return task_has_perm(current, current, PROCESS__FORK); 2596 } 2597 2598 static int selinux_task_alloc_security(struct task_struct *tsk) 2599 { 2600 struct task_security_struct *tsec1, *tsec2; 2601 int rc; 2602 2603 tsec1 = current->security; 2604 2605 rc = task_alloc_security(tsk); 2606 if (rc) 2607 return rc; 2608 tsec2 = tsk->security; 2609 2610 tsec2->osid = tsec1->osid; 2611 tsec2->sid = tsec1->sid; 2612 2613 /* Retain the exec and create SIDs across fork */ 2614 tsec2->exec_sid = tsec1->exec_sid; 2615 tsec2->create_sid = tsec1->create_sid; 2616 2617 /* Retain ptracer SID across fork, if any. 2618 This will be reset by the ptrace hook upon any 2619 subsequent ptrace_attach operations. */ 2620 tsec2->ptrace_sid = tsec1->ptrace_sid; 2621 2622 return 0; 2623 } 2624 2625 static void selinux_task_free_security(struct task_struct *tsk) 2626 { 2627 task_free_security(tsk); 2628 } 2629 2630 static int selinux_task_setuid(uid_t id0, uid_t id1, uid_t id2, int flags) 2631 { 2632 /* Since setuid only affects the current process, and 2633 since the SELinux controls are not based on the Linux 2634 identity attributes, SELinux does not need to control 2635 this operation. However, SELinux does control the use 2636 of the CAP_SETUID and CAP_SETGID capabilities using the 2637 capable hook. */ 2638 return 0; 2639 } 2640 2641 static int selinux_task_post_setuid(uid_t id0, uid_t id1, uid_t id2, int flags) 2642 { 2643 return secondary_ops->task_post_setuid(id0,id1,id2,flags); 2644 } 2645 2646 static int selinux_task_setgid(gid_t id0, gid_t id1, gid_t id2, int flags) 2647 { 2648 /* See the comment for setuid above. */ 2649 return 0; 2650 } 2651 2652 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid) 2653 { 2654 return task_has_perm(current, p, PROCESS__SETPGID); 2655 } 2656 2657 static int selinux_task_getpgid(struct task_struct *p) 2658 { 2659 return task_has_perm(current, p, PROCESS__GETPGID); 2660 } 2661 2662 static int selinux_task_getsid(struct task_struct *p) 2663 { 2664 return task_has_perm(current, p, PROCESS__GETSESSION); 2665 } 2666 2667 static int selinux_task_setgroups(struct group_info *group_info) 2668 { 2669 /* See the comment for setuid above. */ 2670 return 0; 2671 } 2672 2673 static int selinux_task_setnice(struct task_struct *p, int nice) 2674 { 2675 int rc; 2676 2677 rc = secondary_ops->task_setnice(p, nice); 2678 if (rc) 2679 return rc; 2680 2681 return task_has_perm(current,p, PROCESS__SETSCHED); 2682 } 2683 2684 static int selinux_task_setrlimit(unsigned int resource, struct rlimit *new_rlim) 2685 { 2686 struct rlimit *old_rlim = current->signal->rlim + resource; 2687 int rc; 2688 2689 rc = secondary_ops->task_setrlimit(resource, new_rlim); 2690 if (rc) 2691 return rc; 2692 2693 /* Control the ability to change the hard limit (whether 2694 lowering or raising it), so that the hard limit can 2695 later be used as a safe reset point for the soft limit 2696 upon context transitions. See selinux_bprm_apply_creds. */ 2697 if (old_rlim->rlim_max != new_rlim->rlim_max) 2698 return task_has_perm(current, current, PROCESS__SETRLIMIT); 2699 2700 return 0; 2701 } 2702 2703 static int selinux_task_setscheduler(struct task_struct *p, int policy, struct sched_param *lp) 2704 { 2705 return task_has_perm(current, p, PROCESS__SETSCHED); 2706 } 2707 2708 static int selinux_task_getscheduler(struct task_struct *p) 2709 { 2710 return task_has_perm(current, p, PROCESS__GETSCHED); 2711 } 2712 2713 static int selinux_task_kill(struct task_struct *p, struct siginfo *info, int sig) 2714 { 2715 u32 perm; 2716 int rc; 2717 2718 rc = secondary_ops->task_kill(p, info, sig); 2719 if (rc) 2720 return rc; 2721 2722 if (info && ((unsigned long)info == 1 || 2723 (unsigned long)info == 2 || SI_FROMKERNEL(info))) 2724 return 0; 2725 2726 if (!sig) 2727 perm = PROCESS__SIGNULL; /* null signal; existence test */ 2728 else 2729 perm = signal_to_av(sig); 2730 2731 return task_has_perm(current, p, perm); 2732 } 2733 2734 static int selinux_task_prctl(int option, 2735 unsigned long arg2, 2736 unsigned long arg3, 2737 unsigned long arg4, 2738 unsigned long arg5) 2739 { 2740 /* The current prctl operations do not appear to require 2741 any SELinux controls since they merely observe or modify 2742 the state of the current process. */ 2743 return 0; 2744 } 2745 2746 static int selinux_task_wait(struct task_struct *p) 2747 { 2748 u32 perm; 2749 2750 perm = signal_to_av(p->exit_signal); 2751 2752 return task_has_perm(p, current, perm); 2753 } 2754 2755 static void selinux_task_reparent_to_init(struct task_struct *p) 2756 { 2757 struct task_security_struct *tsec; 2758 2759 secondary_ops->task_reparent_to_init(p); 2760 2761 tsec = p->security; 2762 tsec->osid = tsec->sid; 2763 tsec->sid = SECINITSID_KERNEL; 2764 return; 2765 } 2766 2767 static void selinux_task_to_inode(struct task_struct *p, 2768 struct inode *inode) 2769 { 2770 struct task_security_struct *tsec = p->security; 2771 struct inode_security_struct *isec = inode->i_security; 2772 2773 isec->sid = tsec->sid; 2774 isec->initialized = 1; 2775 return; 2776 } 2777 2778 #ifdef CONFIG_SECURITY_NETWORK 2779 2780 /* Returns error only if unable to parse addresses */ 2781 static int selinux_parse_skb_ipv4(struct sk_buff *skb, struct avc_audit_data *ad) 2782 { 2783 int offset, ihlen, ret = -EINVAL; 2784 struct iphdr _iph, *ih; 2785 2786 offset = skb->nh.raw - skb->data; 2787 ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph); 2788 if (ih == NULL) 2789 goto out; 2790 2791 ihlen = ih->ihl * 4; 2792 if (ihlen < sizeof(_iph)) 2793 goto out; 2794 2795 ad->u.net.v4info.saddr = ih->saddr; 2796 ad->u.net.v4info.daddr = ih->daddr; 2797 ret = 0; 2798 2799 switch (ih->protocol) { 2800 case IPPROTO_TCP: { 2801 struct tcphdr _tcph, *th; 2802 2803 if (ntohs(ih->frag_off) & IP_OFFSET) 2804 break; 2805 2806 offset += ihlen; 2807 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph); 2808 if (th == NULL) 2809 break; 2810 2811 ad->u.net.sport = th->source; 2812 ad->u.net.dport = th->dest; 2813 break; 2814 } 2815 2816 case IPPROTO_UDP: { 2817 struct udphdr _udph, *uh; 2818 2819 if (ntohs(ih->frag_off) & IP_OFFSET) 2820 break; 2821 2822 offset += ihlen; 2823 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph); 2824 if (uh == NULL) 2825 break; 2826 2827 ad->u.net.sport = uh->source; 2828 ad->u.net.dport = uh->dest; 2829 break; 2830 } 2831 2832 default: 2833 break; 2834 } 2835 out: 2836 return ret; 2837 } 2838 2839 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 2840 2841 /* Returns error only if unable to parse addresses */ 2842 static int selinux_parse_skb_ipv6(struct sk_buff *skb, struct avc_audit_data *ad) 2843 { 2844 u8 nexthdr; 2845 int ret = -EINVAL, offset; 2846 struct ipv6hdr _ipv6h, *ip6; 2847 2848 offset = skb->nh.raw - skb->data; 2849 ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h); 2850 if (ip6 == NULL) 2851 goto out; 2852 2853 ipv6_addr_copy(&ad->u.net.v6info.saddr, &ip6->saddr); 2854 ipv6_addr_copy(&ad->u.net.v6info.daddr, &ip6->daddr); 2855 ret = 0; 2856 2857 nexthdr = ip6->nexthdr; 2858 offset += sizeof(_ipv6h); 2859 offset = ipv6_skip_exthdr(skb, offset, &nexthdr); 2860 if (offset < 0) 2861 goto out; 2862 2863 switch (nexthdr) { 2864 case IPPROTO_TCP: { 2865 struct tcphdr _tcph, *th; 2866 2867 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph); 2868 if (th == NULL) 2869 break; 2870 2871 ad->u.net.sport = th->source; 2872 ad->u.net.dport = th->dest; 2873 break; 2874 } 2875 2876 case IPPROTO_UDP: { 2877 struct udphdr _udph, *uh; 2878 2879 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph); 2880 if (uh == NULL) 2881 break; 2882 2883 ad->u.net.sport = uh->source; 2884 ad->u.net.dport = uh->dest; 2885 break; 2886 } 2887 2888 /* includes fragments */ 2889 default: 2890 break; 2891 } 2892 out: 2893 return ret; 2894 } 2895 2896 #endif /* IPV6 */ 2897 2898 static int selinux_parse_skb(struct sk_buff *skb, struct avc_audit_data *ad, 2899 char **addrp, int *len, int src) 2900 { 2901 int ret = 0; 2902 2903 switch (ad->u.net.family) { 2904 case PF_INET: 2905 ret = selinux_parse_skb_ipv4(skb, ad); 2906 if (ret || !addrp) 2907 break; 2908 *len = 4; 2909 *addrp = (char *)(src ? &ad->u.net.v4info.saddr : 2910 &ad->u.net.v4info.daddr); 2911 break; 2912 2913 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 2914 case PF_INET6: 2915 ret = selinux_parse_skb_ipv6(skb, ad); 2916 if (ret || !addrp) 2917 break; 2918 *len = 16; 2919 *addrp = (char *)(src ? &ad->u.net.v6info.saddr : 2920 &ad->u.net.v6info.daddr); 2921 break; 2922 #endif /* IPV6 */ 2923 default: 2924 break; 2925 } 2926 2927 return ret; 2928 } 2929 2930 /* socket security operations */ 2931 static int socket_has_perm(struct task_struct *task, struct socket *sock, 2932 u32 perms) 2933 { 2934 struct inode_security_struct *isec; 2935 struct task_security_struct *tsec; 2936 struct avc_audit_data ad; 2937 int err = 0; 2938 2939 tsec = task->security; 2940 isec = SOCK_INODE(sock)->i_security; 2941 2942 if (isec->sid == SECINITSID_KERNEL) 2943 goto out; 2944 2945 AVC_AUDIT_DATA_INIT(&ad,NET); 2946 ad.u.net.sk = sock->sk; 2947 err = avc_has_perm(tsec->sid, isec->sid, isec->sclass, perms, &ad); 2948 2949 out: 2950 return err; 2951 } 2952 2953 static int selinux_socket_create(int family, int type, 2954 int protocol, int kern) 2955 { 2956 int err = 0; 2957 struct task_security_struct *tsec; 2958 2959 if (kern) 2960 goto out; 2961 2962 tsec = current->security; 2963 err = avc_has_perm(tsec->sid, tsec->sid, 2964 socket_type_to_security_class(family, type, 2965 protocol), SOCKET__CREATE, NULL); 2966 2967 out: 2968 return err; 2969 } 2970 2971 static void selinux_socket_post_create(struct socket *sock, int family, 2972 int type, int protocol, int kern) 2973 { 2974 struct inode_security_struct *isec; 2975 struct task_security_struct *tsec; 2976 2977 isec = SOCK_INODE(sock)->i_security; 2978 2979 tsec = current->security; 2980 isec->sclass = socket_type_to_security_class(family, type, protocol); 2981 isec->sid = kern ? SECINITSID_KERNEL : tsec->sid; 2982 isec->initialized = 1; 2983 2984 return; 2985 } 2986 2987 /* Range of port numbers used to automatically bind. 2988 Need to determine whether we should perform a name_bind 2989 permission check between the socket and the port number. */ 2990 #define ip_local_port_range_0 sysctl_local_port_range[0] 2991 #define ip_local_port_range_1 sysctl_local_port_range[1] 2992 2993 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen) 2994 { 2995 u16 family; 2996 int err; 2997 2998 err = socket_has_perm(current, sock, SOCKET__BIND); 2999 if (err) 3000 goto out; 3001 3002 /* 3003 * If PF_INET or PF_INET6, check name_bind permission for the port. 3004 */ 3005 family = sock->sk->sk_family; 3006 if (family == PF_INET || family == PF_INET6) { 3007 char *addrp; 3008 struct inode_security_struct *isec; 3009 struct task_security_struct *tsec; 3010 struct avc_audit_data ad; 3011 struct sockaddr_in *addr4 = NULL; 3012 struct sockaddr_in6 *addr6 = NULL; 3013 unsigned short snum; 3014 struct sock *sk = sock->sk; 3015 u32 sid, node_perm, addrlen; 3016 3017 tsec = current->security; 3018 isec = SOCK_INODE(sock)->i_security; 3019 3020 if (family == PF_INET) { 3021 addr4 = (struct sockaddr_in *)address; 3022 snum = ntohs(addr4->sin_port); 3023 addrlen = sizeof(addr4->sin_addr.s_addr); 3024 addrp = (char *)&addr4->sin_addr.s_addr; 3025 } else { 3026 addr6 = (struct sockaddr_in6 *)address; 3027 snum = ntohs(addr6->sin6_port); 3028 addrlen = sizeof(addr6->sin6_addr.s6_addr); 3029 addrp = (char *)&addr6->sin6_addr.s6_addr; 3030 } 3031 3032 if (snum&&(snum < max(PROT_SOCK,ip_local_port_range_0) || 3033 snum > ip_local_port_range_1)) { 3034 err = security_port_sid(sk->sk_family, sk->sk_type, 3035 sk->sk_protocol, snum, &sid); 3036 if (err) 3037 goto out; 3038 AVC_AUDIT_DATA_INIT(&ad,NET); 3039 ad.u.net.sport = htons(snum); 3040 ad.u.net.family = family; 3041 err = avc_has_perm(isec->sid, sid, 3042 isec->sclass, 3043 SOCKET__NAME_BIND, &ad); 3044 if (err) 3045 goto out; 3046 } 3047 3048 switch(sk->sk_protocol) { 3049 case IPPROTO_TCP: 3050 node_perm = TCP_SOCKET__NODE_BIND; 3051 break; 3052 3053 case IPPROTO_UDP: 3054 node_perm = UDP_SOCKET__NODE_BIND; 3055 break; 3056 3057 default: 3058 node_perm = RAWIP_SOCKET__NODE_BIND; 3059 break; 3060 } 3061 3062 err = security_node_sid(family, addrp, addrlen, &sid); 3063 if (err) 3064 goto out; 3065 3066 AVC_AUDIT_DATA_INIT(&ad,NET); 3067 ad.u.net.sport = htons(snum); 3068 ad.u.net.family = family; 3069 3070 if (family == PF_INET) 3071 ad.u.net.v4info.saddr = addr4->sin_addr.s_addr; 3072 else 3073 ipv6_addr_copy(&ad.u.net.v6info.saddr, &addr6->sin6_addr); 3074 3075 err = avc_has_perm(isec->sid, sid, 3076 isec->sclass, node_perm, &ad); 3077 if (err) 3078 goto out; 3079 } 3080 out: 3081 return err; 3082 } 3083 3084 static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen) 3085 { 3086 struct inode_security_struct *isec; 3087 int err; 3088 3089 err = socket_has_perm(current, sock, SOCKET__CONNECT); 3090 if (err) 3091 return err; 3092 3093 /* 3094 * If a TCP socket, check name_connect permission for the port. 3095 */ 3096 isec = SOCK_INODE(sock)->i_security; 3097 if (isec->sclass == SECCLASS_TCP_SOCKET) { 3098 struct sock *sk = sock->sk; 3099 struct avc_audit_data ad; 3100 struct sockaddr_in *addr4 = NULL; 3101 struct sockaddr_in6 *addr6 = NULL; 3102 unsigned short snum; 3103 u32 sid; 3104 3105 if (sk->sk_family == PF_INET) { 3106 addr4 = (struct sockaddr_in *)address; 3107 if (addrlen != sizeof(struct sockaddr_in)) 3108 return -EINVAL; 3109 snum = ntohs(addr4->sin_port); 3110 } else { 3111 addr6 = (struct sockaddr_in6 *)address; 3112 if (addrlen != sizeof(struct sockaddr_in6)) 3113 return -EINVAL; 3114 snum = ntohs(addr6->sin6_port); 3115 } 3116 3117 err = security_port_sid(sk->sk_family, sk->sk_type, 3118 sk->sk_protocol, snum, &sid); 3119 if (err) 3120 goto out; 3121 3122 AVC_AUDIT_DATA_INIT(&ad,NET); 3123 ad.u.net.dport = htons(snum); 3124 ad.u.net.family = sk->sk_family; 3125 err = avc_has_perm(isec->sid, sid, isec->sclass, 3126 TCP_SOCKET__NAME_CONNECT, &ad); 3127 if (err) 3128 goto out; 3129 } 3130 3131 out: 3132 return err; 3133 } 3134 3135 static int selinux_socket_listen(struct socket *sock, int backlog) 3136 { 3137 return socket_has_perm(current, sock, SOCKET__LISTEN); 3138 } 3139 3140 static int selinux_socket_accept(struct socket *sock, struct socket *newsock) 3141 { 3142 int err; 3143 struct inode_security_struct *isec; 3144 struct inode_security_struct *newisec; 3145 3146 err = socket_has_perm(current, sock, SOCKET__ACCEPT); 3147 if (err) 3148 return err; 3149 3150 newisec = SOCK_INODE(newsock)->i_security; 3151 3152 isec = SOCK_INODE(sock)->i_security; 3153 newisec->sclass = isec->sclass; 3154 newisec->sid = isec->sid; 3155 newisec->initialized = 1; 3156 3157 return 0; 3158 } 3159 3160 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg, 3161 int size) 3162 { 3163 return socket_has_perm(current, sock, SOCKET__WRITE); 3164 } 3165 3166 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg, 3167 int size, int flags) 3168 { 3169 return socket_has_perm(current, sock, SOCKET__READ); 3170 } 3171 3172 static int selinux_socket_getsockname(struct socket *sock) 3173 { 3174 return socket_has_perm(current, sock, SOCKET__GETATTR); 3175 } 3176 3177 static int selinux_socket_getpeername(struct socket *sock) 3178 { 3179 return socket_has_perm(current, sock, SOCKET__GETATTR); 3180 } 3181 3182 static int selinux_socket_setsockopt(struct socket *sock,int level,int optname) 3183 { 3184 return socket_has_perm(current, sock, SOCKET__SETOPT); 3185 } 3186 3187 static int selinux_socket_getsockopt(struct socket *sock, int level, 3188 int optname) 3189 { 3190 return socket_has_perm(current, sock, SOCKET__GETOPT); 3191 } 3192 3193 static int selinux_socket_shutdown(struct socket *sock, int how) 3194 { 3195 return socket_has_perm(current, sock, SOCKET__SHUTDOWN); 3196 } 3197 3198 static int selinux_socket_unix_stream_connect(struct socket *sock, 3199 struct socket *other, 3200 struct sock *newsk) 3201 { 3202 struct sk_security_struct *ssec; 3203 struct inode_security_struct *isec; 3204 struct inode_security_struct *other_isec; 3205 struct avc_audit_data ad; 3206 int err; 3207 3208 err = secondary_ops->unix_stream_connect(sock, other, newsk); 3209 if (err) 3210 return err; 3211 3212 isec = SOCK_INODE(sock)->i_security; 3213 other_isec = SOCK_INODE(other)->i_security; 3214 3215 AVC_AUDIT_DATA_INIT(&ad,NET); 3216 ad.u.net.sk = other->sk; 3217 3218 err = avc_has_perm(isec->sid, other_isec->sid, 3219 isec->sclass, 3220 UNIX_STREAM_SOCKET__CONNECTTO, &ad); 3221 if (err) 3222 return err; 3223 3224 /* connecting socket */ 3225 ssec = sock->sk->sk_security; 3226 ssec->peer_sid = other_isec->sid; 3227 3228 /* server child socket */ 3229 ssec = newsk->sk_security; 3230 ssec->peer_sid = isec->sid; 3231 3232 return 0; 3233 } 3234 3235 static int selinux_socket_unix_may_send(struct socket *sock, 3236 struct socket *other) 3237 { 3238 struct inode_security_struct *isec; 3239 struct inode_security_struct *other_isec; 3240 struct avc_audit_data ad; 3241 int err; 3242 3243 isec = SOCK_INODE(sock)->i_security; 3244 other_isec = SOCK_INODE(other)->i_security; 3245 3246 AVC_AUDIT_DATA_INIT(&ad,NET); 3247 ad.u.net.sk = other->sk; 3248 3249 err = avc_has_perm(isec->sid, other_isec->sid, 3250 isec->sclass, SOCKET__SENDTO, &ad); 3251 if (err) 3252 return err; 3253 3254 return 0; 3255 } 3256 3257 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb) 3258 { 3259 u16 family; 3260 char *addrp; 3261 int len, err = 0; 3262 u32 netif_perm, node_perm, node_sid, if_sid, recv_perm = 0; 3263 u32 sock_sid = 0; 3264 u16 sock_class = 0; 3265 struct socket *sock; 3266 struct net_device *dev; 3267 struct avc_audit_data ad; 3268 3269 family = sk->sk_family; 3270 if (family != PF_INET && family != PF_INET6) 3271 goto out; 3272 3273 /* Handle mapped IPv4 packets arriving via IPv6 sockets */ 3274 if (family == PF_INET6 && skb->protocol == ntohs(ETH_P_IP)) 3275 family = PF_INET; 3276 3277 read_lock_bh(&sk->sk_callback_lock); 3278 sock = sk->sk_socket; 3279 if (sock) { 3280 struct inode *inode; 3281 inode = SOCK_INODE(sock); 3282 if (inode) { 3283 struct inode_security_struct *isec; 3284 isec = inode->i_security; 3285 sock_sid = isec->sid; 3286 sock_class = isec->sclass; 3287 } 3288 } 3289 read_unlock_bh(&sk->sk_callback_lock); 3290 if (!sock_sid) 3291 goto out; 3292 3293 dev = skb->dev; 3294 if (!dev) 3295 goto out; 3296 3297 err = sel_netif_sids(dev, &if_sid, NULL); 3298 if (err) 3299 goto out; 3300 3301 switch (sock_class) { 3302 case SECCLASS_UDP_SOCKET: 3303 netif_perm = NETIF__UDP_RECV; 3304 node_perm = NODE__UDP_RECV; 3305 recv_perm = UDP_SOCKET__RECV_MSG; 3306 break; 3307 3308 case SECCLASS_TCP_SOCKET: 3309 netif_perm = NETIF__TCP_RECV; 3310 node_perm = NODE__TCP_RECV; 3311 recv_perm = TCP_SOCKET__RECV_MSG; 3312 break; 3313 3314 default: 3315 netif_perm = NETIF__RAWIP_RECV; 3316 node_perm = NODE__RAWIP_RECV; 3317 break; 3318 } 3319 3320 AVC_AUDIT_DATA_INIT(&ad, NET); 3321 ad.u.net.netif = dev->name; 3322 ad.u.net.family = family; 3323 3324 err = selinux_parse_skb(skb, &ad, &addrp, &len, 1); 3325 if (err) 3326 goto out; 3327 3328 err = avc_has_perm(sock_sid, if_sid, SECCLASS_NETIF, netif_perm, &ad); 3329 if (err) 3330 goto out; 3331 3332 /* Fixme: this lookup is inefficient */ 3333 err = security_node_sid(family, addrp, len, &node_sid); 3334 if (err) 3335 goto out; 3336 3337 err = avc_has_perm(sock_sid, node_sid, SECCLASS_NODE, node_perm, &ad); 3338 if (err) 3339 goto out; 3340 3341 if (recv_perm) { 3342 u32 port_sid; 3343 3344 /* Fixme: make this more efficient */ 3345 err = security_port_sid(sk->sk_family, sk->sk_type, 3346 sk->sk_protocol, ntohs(ad.u.net.sport), 3347 &port_sid); 3348 if (err) 3349 goto out; 3350 3351 err = avc_has_perm(sock_sid, port_sid, 3352 sock_class, recv_perm, &ad); 3353 } 3354 out: 3355 return err; 3356 } 3357 3358 static int selinux_socket_getpeersec(struct socket *sock, char __user *optval, 3359 int __user *optlen, unsigned len) 3360 { 3361 int err = 0; 3362 char *scontext; 3363 u32 scontext_len; 3364 struct sk_security_struct *ssec; 3365 struct inode_security_struct *isec; 3366 3367 isec = SOCK_INODE(sock)->i_security; 3368 if (isec->sclass != SECCLASS_UNIX_STREAM_SOCKET) { 3369 err = -ENOPROTOOPT; 3370 goto out; 3371 } 3372 3373 ssec = sock->sk->sk_security; 3374 3375 err = security_sid_to_context(ssec->peer_sid, &scontext, &scontext_len); 3376 if (err) 3377 goto out; 3378 3379 if (scontext_len > len) { 3380 err = -ERANGE; 3381 goto out_len; 3382 } 3383 3384 if (copy_to_user(optval, scontext, scontext_len)) 3385 err = -EFAULT; 3386 3387 out_len: 3388 if (put_user(scontext_len, optlen)) 3389 err = -EFAULT; 3390 3391 kfree(scontext); 3392 out: 3393 return err; 3394 } 3395 3396 static int selinux_sk_alloc_security(struct sock *sk, int family, int priority) 3397 { 3398 return sk_alloc_security(sk, family, priority); 3399 } 3400 3401 static void selinux_sk_free_security(struct sock *sk) 3402 { 3403 sk_free_security(sk); 3404 } 3405 3406 static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb) 3407 { 3408 int err = 0; 3409 u32 perm; 3410 struct nlmsghdr *nlh; 3411 struct socket *sock = sk->sk_socket; 3412 struct inode_security_struct *isec = SOCK_INODE(sock)->i_security; 3413 3414 if (skb->len < NLMSG_SPACE(0)) { 3415 err = -EINVAL; 3416 goto out; 3417 } 3418 nlh = (struct nlmsghdr *)skb->data; 3419 3420 err = selinux_nlmsg_lookup(isec->sclass, nlh->nlmsg_type, &perm); 3421 if (err) { 3422 if (err == -EINVAL) { 3423 audit_log(current->audit_context, AUDIT_SELINUX_ERR, 3424 "SELinux: unrecognized netlink message" 3425 " type=%hu for sclass=%hu\n", 3426 nlh->nlmsg_type, isec->sclass); 3427 if (!selinux_enforcing) 3428 err = 0; 3429 } 3430 3431 /* Ignore */ 3432 if (err == -ENOENT) 3433 err = 0; 3434 goto out; 3435 } 3436 3437 err = socket_has_perm(current, sock, perm); 3438 out: 3439 return err; 3440 } 3441 3442 #ifdef CONFIG_NETFILTER 3443 3444 static unsigned int selinux_ip_postroute_last(unsigned int hooknum, 3445 struct sk_buff **pskb, 3446 const struct net_device *in, 3447 const struct net_device *out, 3448 int (*okfn)(struct sk_buff *), 3449 u16 family) 3450 { 3451 char *addrp; 3452 int len, err = NF_ACCEPT; 3453 u32 netif_perm, node_perm, node_sid, if_sid, send_perm = 0; 3454 struct sock *sk; 3455 struct socket *sock; 3456 struct inode *inode; 3457 struct sk_buff *skb = *pskb; 3458 struct inode_security_struct *isec; 3459 struct avc_audit_data ad; 3460 struct net_device *dev = (struct net_device *)out; 3461 3462 sk = skb->sk; 3463 if (!sk) 3464 goto out; 3465 3466 sock = sk->sk_socket; 3467 if (!sock) 3468 goto out; 3469 3470 inode = SOCK_INODE(sock); 3471 if (!inode) 3472 goto out; 3473 3474 err = sel_netif_sids(dev, &if_sid, NULL); 3475 if (err) 3476 goto out; 3477 3478 isec = inode->i_security; 3479 3480 switch (isec->sclass) { 3481 case SECCLASS_UDP_SOCKET: 3482 netif_perm = NETIF__UDP_SEND; 3483 node_perm = NODE__UDP_SEND; 3484 send_perm = UDP_SOCKET__SEND_MSG; 3485 break; 3486 3487 case SECCLASS_TCP_SOCKET: 3488 netif_perm = NETIF__TCP_SEND; 3489 node_perm = NODE__TCP_SEND; 3490 send_perm = TCP_SOCKET__SEND_MSG; 3491 break; 3492 3493 default: 3494 netif_perm = NETIF__RAWIP_SEND; 3495 node_perm = NODE__RAWIP_SEND; 3496 break; 3497 } 3498 3499 3500 AVC_AUDIT_DATA_INIT(&ad, NET); 3501 ad.u.net.netif = dev->name; 3502 ad.u.net.family = family; 3503 3504 err = selinux_parse_skb(skb, &ad, &addrp, 3505 &len, 0) ? NF_DROP : NF_ACCEPT; 3506 if (err != NF_ACCEPT) 3507 goto out; 3508 3509 err = avc_has_perm(isec->sid, if_sid, SECCLASS_NETIF, 3510 netif_perm, &ad) ? NF_DROP : NF_ACCEPT; 3511 if (err != NF_ACCEPT) 3512 goto out; 3513 3514 /* Fixme: this lookup is inefficient */ 3515 err = security_node_sid(family, addrp, len, 3516 &node_sid) ? NF_DROP : NF_ACCEPT; 3517 if (err != NF_ACCEPT) 3518 goto out; 3519 3520 err = avc_has_perm(isec->sid, node_sid, SECCLASS_NODE, 3521 node_perm, &ad) ? NF_DROP : NF_ACCEPT; 3522 if (err != NF_ACCEPT) 3523 goto out; 3524 3525 if (send_perm) { 3526 u32 port_sid; 3527 3528 /* Fixme: make this more efficient */ 3529 err = security_port_sid(sk->sk_family, 3530 sk->sk_type, 3531 sk->sk_protocol, 3532 ntohs(ad.u.net.dport), 3533 &port_sid) ? NF_DROP : NF_ACCEPT; 3534 if (err != NF_ACCEPT) 3535 goto out; 3536 3537 err = avc_has_perm(isec->sid, port_sid, isec->sclass, 3538 send_perm, &ad) ? NF_DROP : NF_ACCEPT; 3539 } 3540 3541 out: 3542 return err; 3543 } 3544 3545 static unsigned int selinux_ipv4_postroute_last(unsigned int hooknum, 3546 struct sk_buff **pskb, 3547 const struct net_device *in, 3548 const struct net_device *out, 3549 int (*okfn)(struct sk_buff *)) 3550 { 3551 return selinux_ip_postroute_last(hooknum, pskb, in, out, okfn, PF_INET); 3552 } 3553 3554 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 3555 3556 static unsigned int selinux_ipv6_postroute_last(unsigned int hooknum, 3557 struct sk_buff **pskb, 3558 const struct net_device *in, 3559 const struct net_device *out, 3560 int (*okfn)(struct sk_buff *)) 3561 { 3562 return selinux_ip_postroute_last(hooknum, pskb, in, out, okfn, PF_INET6); 3563 } 3564 3565 #endif /* IPV6 */ 3566 3567 #endif /* CONFIG_NETFILTER */ 3568 3569 #else 3570 3571 static inline int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb) 3572 { 3573 return 0; 3574 } 3575 3576 #endif /* CONFIG_SECURITY_NETWORK */ 3577 3578 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb) 3579 { 3580 struct task_security_struct *tsec; 3581 struct av_decision avd; 3582 int err; 3583 3584 err = secondary_ops->netlink_send(sk, skb); 3585 if (err) 3586 return err; 3587 3588 tsec = current->security; 3589 3590 avd.allowed = 0; 3591 avc_has_perm_noaudit(tsec->sid, tsec->sid, 3592 SECCLASS_CAPABILITY, ~0, &avd); 3593 cap_mask(NETLINK_CB(skb).eff_cap, avd.allowed); 3594 3595 if (policydb_loaded_version >= POLICYDB_VERSION_NLCLASS) 3596 err = selinux_nlmsg_perm(sk, skb); 3597 3598 return err; 3599 } 3600 3601 static int selinux_netlink_recv(struct sk_buff *skb) 3602 { 3603 if (!cap_raised(NETLINK_CB(skb).eff_cap, CAP_NET_ADMIN)) 3604 return -EPERM; 3605 return 0; 3606 } 3607 3608 static int ipc_alloc_security(struct task_struct *task, 3609 struct kern_ipc_perm *perm, 3610 u16 sclass) 3611 { 3612 struct task_security_struct *tsec = task->security; 3613 struct ipc_security_struct *isec; 3614 3615 isec = kmalloc(sizeof(struct ipc_security_struct), GFP_KERNEL); 3616 if (!isec) 3617 return -ENOMEM; 3618 3619 memset(isec, 0, sizeof(struct ipc_security_struct)); 3620 isec->magic = SELINUX_MAGIC; 3621 isec->sclass = sclass; 3622 isec->ipc_perm = perm; 3623 if (tsec) { 3624 isec->sid = tsec->sid; 3625 } else { 3626 isec->sid = SECINITSID_UNLABELED; 3627 } 3628 perm->security = isec; 3629 3630 return 0; 3631 } 3632 3633 static void ipc_free_security(struct kern_ipc_perm *perm) 3634 { 3635 struct ipc_security_struct *isec = perm->security; 3636 if (!isec || isec->magic != SELINUX_MAGIC) 3637 return; 3638 3639 perm->security = NULL; 3640 kfree(isec); 3641 } 3642 3643 static int msg_msg_alloc_security(struct msg_msg *msg) 3644 { 3645 struct msg_security_struct *msec; 3646 3647 msec = kmalloc(sizeof(struct msg_security_struct), GFP_KERNEL); 3648 if (!msec) 3649 return -ENOMEM; 3650 3651 memset(msec, 0, sizeof(struct msg_security_struct)); 3652 msec->magic = SELINUX_MAGIC; 3653 msec->msg = msg; 3654 msec->sid = SECINITSID_UNLABELED; 3655 msg->security = msec; 3656 3657 return 0; 3658 } 3659 3660 static void msg_msg_free_security(struct msg_msg *msg) 3661 { 3662 struct msg_security_struct *msec = msg->security; 3663 if (!msec || msec->magic != SELINUX_MAGIC) 3664 return; 3665 3666 msg->security = NULL; 3667 kfree(msec); 3668 } 3669 3670 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms, 3671 u32 perms) 3672 { 3673 struct task_security_struct *tsec; 3674 struct ipc_security_struct *isec; 3675 struct avc_audit_data ad; 3676 3677 tsec = current->security; 3678 isec = ipc_perms->security; 3679 3680 AVC_AUDIT_DATA_INIT(&ad, IPC); 3681 ad.u.ipc_id = ipc_perms->key; 3682 3683 return avc_has_perm(tsec->sid, isec->sid, isec->sclass, perms, &ad); 3684 } 3685 3686 static int selinux_msg_msg_alloc_security(struct msg_msg *msg) 3687 { 3688 return msg_msg_alloc_security(msg); 3689 } 3690 3691 static void selinux_msg_msg_free_security(struct msg_msg *msg) 3692 { 3693 msg_msg_free_security(msg); 3694 } 3695 3696 /* message queue security operations */ 3697 static int selinux_msg_queue_alloc_security(struct msg_queue *msq) 3698 { 3699 struct task_security_struct *tsec; 3700 struct ipc_security_struct *isec; 3701 struct avc_audit_data ad; 3702 int rc; 3703 3704 rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ); 3705 if (rc) 3706 return rc; 3707 3708 tsec = current->security; 3709 isec = msq->q_perm.security; 3710 3711 AVC_AUDIT_DATA_INIT(&ad, IPC); 3712 ad.u.ipc_id = msq->q_perm.key; 3713 3714 rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_MSGQ, 3715 MSGQ__CREATE, &ad); 3716 if (rc) { 3717 ipc_free_security(&msq->q_perm); 3718 return rc; 3719 } 3720 return 0; 3721 } 3722 3723 static void selinux_msg_queue_free_security(struct msg_queue *msq) 3724 { 3725 ipc_free_security(&msq->q_perm); 3726 } 3727 3728 static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg) 3729 { 3730 struct task_security_struct *tsec; 3731 struct ipc_security_struct *isec; 3732 struct avc_audit_data ad; 3733 3734 tsec = current->security; 3735 isec = msq->q_perm.security; 3736 3737 AVC_AUDIT_DATA_INIT(&ad, IPC); 3738 ad.u.ipc_id = msq->q_perm.key; 3739 3740 return avc_has_perm(tsec->sid, isec->sid, SECCLASS_MSGQ, 3741 MSGQ__ASSOCIATE, &ad); 3742 } 3743 3744 static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd) 3745 { 3746 int err; 3747 int perms; 3748 3749 switch(cmd) { 3750 case IPC_INFO: 3751 case MSG_INFO: 3752 /* No specific object, just general system-wide information. */ 3753 return task_has_system(current, SYSTEM__IPC_INFO); 3754 case IPC_STAT: 3755 case MSG_STAT: 3756 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE; 3757 break; 3758 case IPC_SET: 3759 perms = MSGQ__SETATTR; 3760 break; 3761 case IPC_RMID: 3762 perms = MSGQ__DESTROY; 3763 break; 3764 default: 3765 return 0; 3766 } 3767 3768 err = ipc_has_perm(&msq->q_perm, perms); 3769 return err; 3770 } 3771 3772 static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg) 3773 { 3774 struct task_security_struct *tsec; 3775 struct ipc_security_struct *isec; 3776 struct msg_security_struct *msec; 3777 struct avc_audit_data ad; 3778 int rc; 3779 3780 tsec = current->security; 3781 isec = msq->q_perm.security; 3782 msec = msg->security; 3783 3784 /* 3785 * First time through, need to assign label to the message 3786 */ 3787 if (msec->sid == SECINITSID_UNLABELED) { 3788 /* 3789 * Compute new sid based on current process and 3790 * message queue this message will be stored in 3791 */ 3792 rc = security_transition_sid(tsec->sid, 3793 isec->sid, 3794 SECCLASS_MSG, 3795 &msec->sid); 3796 if (rc) 3797 return rc; 3798 } 3799 3800 AVC_AUDIT_DATA_INIT(&ad, IPC); 3801 ad.u.ipc_id = msq->q_perm.key; 3802 3803 /* Can this process write to the queue? */ 3804 rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_MSGQ, 3805 MSGQ__WRITE, &ad); 3806 if (!rc) 3807 /* Can this process send the message */ 3808 rc = avc_has_perm(tsec->sid, msec->sid, 3809 SECCLASS_MSG, MSG__SEND, &ad); 3810 if (!rc) 3811 /* Can the message be put in the queue? */ 3812 rc = avc_has_perm(msec->sid, isec->sid, 3813 SECCLASS_MSGQ, MSGQ__ENQUEUE, &ad); 3814 3815 return rc; 3816 } 3817 3818 static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg, 3819 struct task_struct *target, 3820 long type, int mode) 3821 { 3822 struct task_security_struct *tsec; 3823 struct ipc_security_struct *isec; 3824 struct msg_security_struct *msec; 3825 struct avc_audit_data ad; 3826 int rc; 3827 3828 tsec = target->security; 3829 isec = msq->q_perm.security; 3830 msec = msg->security; 3831 3832 AVC_AUDIT_DATA_INIT(&ad, IPC); 3833 ad.u.ipc_id = msq->q_perm.key; 3834 3835 rc = avc_has_perm(tsec->sid, isec->sid, 3836 SECCLASS_MSGQ, MSGQ__READ, &ad); 3837 if (!rc) 3838 rc = avc_has_perm(tsec->sid, msec->sid, 3839 SECCLASS_MSG, MSG__RECEIVE, &ad); 3840 return rc; 3841 } 3842 3843 /* Shared Memory security operations */ 3844 static int selinux_shm_alloc_security(struct shmid_kernel *shp) 3845 { 3846 struct task_security_struct *tsec; 3847 struct ipc_security_struct *isec; 3848 struct avc_audit_data ad; 3849 int rc; 3850 3851 rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM); 3852 if (rc) 3853 return rc; 3854 3855 tsec = current->security; 3856 isec = shp->shm_perm.security; 3857 3858 AVC_AUDIT_DATA_INIT(&ad, IPC); 3859 ad.u.ipc_id = shp->shm_perm.key; 3860 3861 rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_SHM, 3862 SHM__CREATE, &ad); 3863 if (rc) { 3864 ipc_free_security(&shp->shm_perm); 3865 return rc; 3866 } 3867 return 0; 3868 } 3869 3870 static void selinux_shm_free_security(struct shmid_kernel *shp) 3871 { 3872 ipc_free_security(&shp->shm_perm); 3873 } 3874 3875 static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg) 3876 { 3877 struct task_security_struct *tsec; 3878 struct ipc_security_struct *isec; 3879 struct avc_audit_data ad; 3880 3881 tsec = current->security; 3882 isec = shp->shm_perm.security; 3883 3884 AVC_AUDIT_DATA_INIT(&ad, IPC); 3885 ad.u.ipc_id = shp->shm_perm.key; 3886 3887 return avc_has_perm(tsec->sid, isec->sid, SECCLASS_SHM, 3888 SHM__ASSOCIATE, &ad); 3889 } 3890 3891 /* Note, at this point, shp is locked down */ 3892 static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd) 3893 { 3894 int perms; 3895 int err; 3896 3897 switch(cmd) { 3898 case IPC_INFO: 3899 case SHM_INFO: 3900 /* No specific object, just general system-wide information. */ 3901 return task_has_system(current, SYSTEM__IPC_INFO); 3902 case IPC_STAT: 3903 case SHM_STAT: 3904 perms = SHM__GETATTR | SHM__ASSOCIATE; 3905 break; 3906 case IPC_SET: 3907 perms = SHM__SETATTR; 3908 break; 3909 case SHM_LOCK: 3910 case SHM_UNLOCK: 3911 perms = SHM__LOCK; 3912 break; 3913 case IPC_RMID: 3914 perms = SHM__DESTROY; 3915 break; 3916 default: 3917 return 0; 3918 } 3919 3920 err = ipc_has_perm(&shp->shm_perm, perms); 3921 return err; 3922 } 3923 3924 static int selinux_shm_shmat(struct shmid_kernel *shp, 3925 char __user *shmaddr, int shmflg) 3926 { 3927 u32 perms; 3928 int rc; 3929 3930 rc = secondary_ops->shm_shmat(shp, shmaddr, shmflg); 3931 if (rc) 3932 return rc; 3933 3934 if (shmflg & SHM_RDONLY) 3935 perms = SHM__READ; 3936 else 3937 perms = SHM__READ | SHM__WRITE; 3938 3939 return ipc_has_perm(&shp->shm_perm, perms); 3940 } 3941 3942 /* Semaphore security operations */ 3943 static int selinux_sem_alloc_security(struct sem_array *sma) 3944 { 3945 struct task_security_struct *tsec; 3946 struct ipc_security_struct *isec; 3947 struct avc_audit_data ad; 3948 int rc; 3949 3950 rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM); 3951 if (rc) 3952 return rc; 3953 3954 tsec = current->security; 3955 isec = sma->sem_perm.security; 3956 3957 AVC_AUDIT_DATA_INIT(&ad, IPC); 3958 ad.u.ipc_id = sma->sem_perm.key; 3959 3960 rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_SEM, 3961 SEM__CREATE, &ad); 3962 if (rc) { 3963 ipc_free_security(&sma->sem_perm); 3964 return rc; 3965 } 3966 return 0; 3967 } 3968 3969 static void selinux_sem_free_security(struct sem_array *sma) 3970 { 3971 ipc_free_security(&sma->sem_perm); 3972 } 3973 3974 static int selinux_sem_associate(struct sem_array *sma, int semflg) 3975 { 3976 struct task_security_struct *tsec; 3977 struct ipc_security_struct *isec; 3978 struct avc_audit_data ad; 3979 3980 tsec = current->security; 3981 isec = sma->sem_perm.security; 3982 3983 AVC_AUDIT_DATA_INIT(&ad, IPC); 3984 ad.u.ipc_id = sma->sem_perm.key; 3985 3986 return avc_has_perm(tsec->sid, isec->sid, SECCLASS_SEM, 3987 SEM__ASSOCIATE, &ad); 3988 } 3989 3990 /* Note, at this point, sma is locked down */ 3991 static int selinux_sem_semctl(struct sem_array *sma, int cmd) 3992 { 3993 int err; 3994 u32 perms; 3995 3996 switch(cmd) { 3997 case IPC_INFO: 3998 case SEM_INFO: 3999 /* No specific object, just general system-wide information. */ 4000 return task_has_system(current, SYSTEM__IPC_INFO); 4001 case GETPID: 4002 case GETNCNT: 4003 case GETZCNT: 4004 perms = SEM__GETATTR; 4005 break; 4006 case GETVAL: 4007 case GETALL: 4008 perms = SEM__READ; 4009 break; 4010 case SETVAL: 4011 case SETALL: 4012 perms = SEM__WRITE; 4013 break; 4014 case IPC_RMID: 4015 perms = SEM__DESTROY; 4016 break; 4017 case IPC_SET: 4018 perms = SEM__SETATTR; 4019 break; 4020 case IPC_STAT: 4021 case SEM_STAT: 4022 perms = SEM__GETATTR | SEM__ASSOCIATE; 4023 break; 4024 default: 4025 return 0; 4026 } 4027 4028 err = ipc_has_perm(&sma->sem_perm, perms); 4029 return err; 4030 } 4031 4032 static int selinux_sem_semop(struct sem_array *sma, 4033 struct sembuf *sops, unsigned nsops, int alter) 4034 { 4035 u32 perms; 4036 4037 if (alter) 4038 perms = SEM__READ | SEM__WRITE; 4039 else 4040 perms = SEM__READ; 4041 4042 return ipc_has_perm(&sma->sem_perm, perms); 4043 } 4044 4045 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag) 4046 { 4047 u32 av = 0; 4048 4049 av = 0; 4050 if (flag & S_IRUGO) 4051 av |= IPC__UNIX_READ; 4052 if (flag & S_IWUGO) 4053 av |= IPC__UNIX_WRITE; 4054 4055 if (av == 0) 4056 return 0; 4057 4058 return ipc_has_perm(ipcp, av); 4059 } 4060 4061 /* module stacking operations */ 4062 static int selinux_register_security (const char *name, struct security_operations *ops) 4063 { 4064 if (secondary_ops != original_ops) { 4065 printk(KERN_INFO "%s: There is already a secondary security " 4066 "module registered.\n", __FUNCTION__); 4067 return -EINVAL; 4068 } 4069 4070 secondary_ops = ops; 4071 4072 printk(KERN_INFO "%s: Registering secondary module %s\n", 4073 __FUNCTION__, 4074 name); 4075 4076 return 0; 4077 } 4078 4079 static int selinux_unregister_security (const char *name, struct security_operations *ops) 4080 { 4081 if (ops != secondary_ops) { 4082 printk (KERN_INFO "%s: trying to unregister a security module " 4083 "that is not registered.\n", __FUNCTION__); 4084 return -EINVAL; 4085 } 4086 4087 secondary_ops = original_ops; 4088 4089 return 0; 4090 } 4091 4092 static void selinux_d_instantiate (struct dentry *dentry, struct inode *inode) 4093 { 4094 if (inode) 4095 inode_doinit_with_dentry(inode, dentry); 4096 } 4097 4098 static int selinux_getprocattr(struct task_struct *p, 4099 char *name, void *value, size_t size) 4100 { 4101 struct task_security_struct *tsec; 4102 u32 sid, len; 4103 char *context; 4104 int error; 4105 4106 if (current != p) { 4107 error = task_has_perm(current, p, PROCESS__GETATTR); 4108 if (error) 4109 return error; 4110 } 4111 4112 if (!size) 4113 return -ERANGE; 4114 4115 tsec = p->security; 4116 4117 if (!strcmp(name, "current")) 4118 sid = tsec->sid; 4119 else if (!strcmp(name, "prev")) 4120 sid = tsec->osid; 4121 else if (!strcmp(name, "exec")) 4122 sid = tsec->exec_sid; 4123 else if (!strcmp(name, "fscreate")) 4124 sid = tsec->create_sid; 4125 else 4126 return -EINVAL; 4127 4128 if (!sid) 4129 return 0; 4130 4131 error = security_sid_to_context(sid, &context, &len); 4132 if (error) 4133 return error; 4134 if (len > size) { 4135 kfree(context); 4136 return -ERANGE; 4137 } 4138 memcpy(value, context, len); 4139 kfree(context); 4140 return len; 4141 } 4142 4143 static int selinux_setprocattr(struct task_struct *p, 4144 char *name, void *value, size_t size) 4145 { 4146 struct task_security_struct *tsec; 4147 u32 sid = 0; 4148 int error; 4149 char *str = value; 4150 4151 if (current != p) { 4152 /* SELinux only allows a process to change its own 4153 security attributes. */ 4154 return -EACCES; 4155 } 4156 4157 /* 4158 * Basic control over ability to set these attributes at all. 4159 * current == p, but we'll pass them separately in case the 4160 * above restriction is ever removed. 4161 */ 4162 if (!strcmp(name, "exec")) 4163 error = task_has_perm(current, p, PROCESS__SETEXEC); 4164 else if (!strcmp(name, "fscreate")) 4165 error = task_has_perm(current, p, PROCESS__SETFSCREATE); 4166 else if (!strcmp(name, "current")) 4167 error = task_has_perm(current, p, PROCESS__SETCURRENT); 4168 else 4169 error = -EINVAL; 4170 if (error) 4171 return error; 4172 4173 /* Obtain a SID for the context, if one was specified. */ 4174 if (size && str[1] && str[1] != '\n') { 4175 if (str[size-1] == '\n') { 4176 str[size-1] = 0; 4177 size--; 4178 } 4179 error = security_context_to_sid(value, size, &sid); 4180 if (error) 4181 return error; 4182 } 4183 4184 /* Permission checking based on the specified context is 4185 performed during the actual operation (execve, 4186 open/mkdir/...), when we know the full context of the 4187 operation. See selinux_bprm_set_security for the execve 4188 checks and may_create for the file creation checks. The 4189 operation will then fail if the context is not permitted. */ 4190 tsec = p->security; 4191 if (!strcmp(name, "exec")) 4192 tsec->exec_sid = sid; 4193 else if (!strcmp(name, "fscreate")) 4194 tsec->create_sid = sid; 4195 else if (!strcmp(name, "current")) { 4196 struct av_decision avd; 4197 4198 if (sid == 0) 4199 return -EINVAL; 4200 4201 /* Only allow single threaded processes to change context */ 4202 if (atomic_read(&p->mm->mm_users) != 1) { 4203 struct task_struct *g, *t; 4204 struct mm_struct *mm = p->mm; 4205 read_lock(&tasklist_lock); 4206 do_each_thread(g, t) 4207 if (t->mm == mm && t != p) { 4208 read_unlock(&tasklist_lock); 4209 return -EPERM; 4210 } 4211 while_each_thread(g, t); 4212 read_unlock(&tasklist_lock); 4213 } 4214 4215 /* Check permissions for the transition. */ 4216 error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS, 4217 PROCESS__DYNTRANSITION, NULL); 4218 if (error) 4219 return error; 4220 4221 /* Check for ptracing, and update the task SID if ok. 4222 Otherwise, leave SID unchanged and fail. */ 4223 task_lock(p); 4224 if (p->ptrace & PT_PTRACED) { 4225 error = avc_has_perm_noaudit(tsec->ptrace_sid, sid, 4226 SECCLASS_PROCESS, 4227 PROCESS__PTRACE, &avd); 4228 if (!error) 4229 tsec->sid = sid; 4230 task_unlock(p); 4231 avc_audit(tsec->ptrace_sid, sid, SECCLASS_PROCESS, 4232 PROCESS__PTRACE, &avd, error, NULL); 4233 if (error) 4234 return error; 4235 } else { 4236 tsec->sid = sid; 4237 task_unlock(p); 4238 } 4239 } 4240 else 4241 return -EINVAL; 4242 4243 return size; 4244 } 4245 4246 static struct security_operations selinux_ops = { 4247 .ptrace = selinux_ptrace, 4248 .capget = selinux_capget, 4249 .capset_check = selinux_capset_check, 4250 .capset_set = selinux_capset_set, 4251 .sysctl = selinux_sysctl, 4252 .capable = selinux_capable, 4253 .quotactl = selinux_quotactl, 4254 .quota_on = selinux_quota_on, 4255 .syslog = selinux_syslog, 4256 .vm_enough_memory = selinux_vm_enough_memory, 4257 4258 .netlink_send = selinux_netlink_send, 4259 .netlink_recv = selinux_netlink_recv, 4260 4261 .bprm_alloc_security = selinux_bprm_alloc_security, 4262 .bprm_free_security = selinux_bprm_free_security, 4263 .bprm_apply_creds = selinux_bprm_apply_creds, 4264 .bprm_post_apply_creds = selinux_bprm_post_apply_creds, 4265 .bprm_set_security = selinux_bprm_set_security, 4266 .bprm_check_security = selinux_bprm_check_security, 4267 .bprm_secureexec = selinux_bprm_secureexec, 4268 4269 .sb_alloc_security = selinux_sb_alloc_security, 4270 .sb_free_security = selinux_sb_free_security, 4271 .sb_copy_data = selinux_sb_copy_data, 4272 .sb_kern_mount = selinux_sb_kern_mount, 4273 .sb_statfs = selinux_sb_statfs, 4274 .sb_mount = selinux_mount, 4275 .sb_umount = selinux_umount, 4276 4277 .inode_alloc_security = selinux_inode_alloc_security, 4278 .inode_free_security = selinux_inode_free_security, 4279 .inode_create = selinux_inode_create, 4280 .inode_post_create = selinux_inode_post_create, 4281 .inode_link = selinux_inode_link, 4282 .inode_post_link = selinux_inode_post_link, 4283 .inode_unlink = selinux_inode_unlink, 4284 .inode_symlink = selinux_inode_symlink, 4285 .inode_post_symlink = selinux_inode_post_symlink, 4286 .inode_mkdir = selinux_inode_mkdir, 4287 .inode_post_mkdir = selinux_inode_post_mkdir, 4288 .inode_rmdir = selinux_inode_rmdir, 4289 .inode_mknod = selinux_inode_mknod, 4290 .inode_post_mknod = selinux_inode_post_mknod, 4291 .inode_rename = selinux_inode_rename, 4292 .inode_post_rename = selinux_inode_post_rename, 4293 .inode_readlink = selinux_inode_readlink, 4294 .inode_follow_link = selinux_inode_follow_link, 4295 .inode_permission = selinux_inode_permission, 4296 .inode_setattr = selinux_inode_setattr, 4297 .inode_getattr = selinux_inode_getattr, 4298 .inode_setxattr = selinux_inode_setxattr, 4299 .inode_post_setxattr = selinux_inode_post_setxattr, 4300 .inode_getxattr = selinux_inode_getxattr, 4301 .inode_listxattr = selinux_inode_listxattr, 4302 .inode_removexattr = selinux_inode_removexattr, 4303 .inode_getsecurity = selinux_inode_getsecurity, 4304 .inode_setsecurity = selinux_inode_setsecurity, 4305 .inode_listsecurity = selinux_inode_listsecurity, 4306 4307 .file_permission = selinux_file_permission, 4308 .file_alloc_security = selinux_file_alloc_security, 4309 .file_free_security = selinux_file_free_security, 4310 .file_ioctl = selinux_file_ioctl, 4311 .file_mmap = selinux_file_mmap, 4312 .file_mprotect = selinux_file_mprotect, 4313 .file_lock = selinux_file_lock, 4314 .file_fcntl = selinux_file_fcntl, 4315 .file_set_fowner = selinux_file_set_fowner, 4316 .file_send_sigiotask = selinux_file_send_sigiotask, 4317 .file_receive = selinux_file_receive, 4318 4319 .task_create = selinux_task_create, 4320 .task_alloc_security = selinux_task_alloc_security, 4321 .task_free_security = selinux_task_free_security, 4322 .task_setuid = selinux_task_setuid, 4323 .task_post_setuid = selinux_task_post_setuid, 4324 .task_setgid = selinux_task_setgid, 4325 .task_setpgid = selinux_task_setpgid, 4326 .task_getpgid = selinux_task_getpgid, 4327 .task_getsid = selinux_task_getsid, 4328 .task_setgroups = selinux_task_setgroups, 4329 .task_setnice = selinux_task_setnice, 4330 .task_setrlimit = selinux_task_setrlimit, 4331 .task_setscheduler = selinux_task_setscheduler, 4332 .task_getscheduler = selinux_task_getscheduler, 4333 .task_kill = selinux_task_kill, 4334 .task_wait = selinux_task_wait, 4335 .task_prctl = selinux_task_prctl, 4336 .task_reparent_to_init = selinux_task_reparent_to_init, 4337 .task_to_inode = selinux_task_to_inode, 4338 4339 .ipc_permission = selinux_ipc_permission, 4340 4341 .msg_msg_alloc_security = selinux_msg_msg_alloc_security, 4342 .msg_msg_free_security = selinux_msg_msg_free_security, 4343 4344 .msg_queue_alloc_security = selinux_msg_queue_alloc_security, 4345 .msg_queue_free_security = selinux_msg_queue_free_security, 4346 .msg_queue_associate = selinux_msg_queue_associate, 4347 .msg_queue_msgctl = selinux_msg_queue_msgctl, 4348 .msg_queue_msgsnd = selinux_msg_queue_msgsnd, 4349 .msg_queue_msgrcv = selinux_msg_queue_msgrcv, 4350 4351 .shm_alloc_security = selinux_shm_alloc_security, 4352 .shm_free_security = selinux_shm_free_security, 4353 .shm_associate = selinux_shm_associate, 4354 .shm_shmctl = selinux_shm_shmctl, 4355 .shm_shmat = selinux_shm_shmat, 4356 4357 .sem_alloc_security = selinux_sem_alloc_security, 4358 .sem_free_security = selinux_sem_free_security, 4359 .sem_associate = selinux_sem_associate, 4360 .sem_semctl = selinux_sem_semctl, 4361 .sem_semop = selinux_sem_semop, 4362 4363 .register_security = selinux_register_security, 4364 .unregister_security = selinux_unregister_security, 4365 4366 .d_instantiate = selinux_d_instantiate, 4367 4368 .getprocattr = selinux_getprocattr, 4369 .setprocattr = selinux_setprocattr, 4370 4371 #ifdef CONFIG_SECURITY_NETWORK 4372 .unix_stream_connect = selinux_socket_unix_stream_connect, 4373 .unix_may_send = selinux_socket_unix_may_send, 4374 4375 .socket_create = selinux_socket_create, 4376 .socket_post_create = selinux_socket_post_create, 4377 .socket_bind = selinux_socket_bind, 4378 .socket_connect = selinux_socket_connect, 4379 .socket_listen = selinux_socket_listen, 4380 .socket_accept = selinux_socket_accept, 4381 .socket_sendmsg = selinux_socket_sendmsg, 4382 .socket_recvmsg = selinux_socket_recvmsg, 4383 .socket_getsockname = selinux_socket_getsockname, 4384 .socket_getpeername = selinux_socket_getpeername, 4385 .socket_getsockopt = selinux_socket_getsockopt, 4386 .socket_setsockopt = selinux_socket_setsockopt, 4387 .socket_shutdown = selinux_socket_shutdown, 4388 .socket_sock_rcv_skb = selinux_socket_sock_rcv_skb, 4389 .socket_getpeersec = selinux_socket_getpeersec, 4390 .sk_alloc_security = selinux_sk_alloc_security, 4391 .sk_free_security = selinux_sk_free_security, 4392 #endif 4393 }; 4394 4395 static __init int selinux_init(void) 4396 { 4397 struct task_security_struct *tsec; 4398 4399 if (!selinux_enabled) { 4400 printk(KERN_INFO "SELinux: Disabled at boot.\n"); 4401 return 0; 4402 } 4403 4404 printk(KERN_INFO "SELinux: Initializing.\n"); 4405 4406 /* Set the security state for the initial task. */ 4407 if (task_alloc_security(current)) 4408 panic("SELinux: Failed to initialize initial task.\n"); 4409 tsec = current->security; 4410 tsec->osid = tsec->sid = SECINITSID_KERNEL; 4411 4412 avc_init(); 4413 4414 original_ops = secondary_ops = security_ops; 4415 if (!secondary_ops) 4416 panic ("SELinux: No initial security operations\n"); 4417 if (register_security (&selinux_ops)) 4418 panic("SELinux: Unable to register with kernel.\n"); 4419 4420 if (selinux_enforcing) { 4421 printk(KERN_INFO "SELinux: Starting in enforcing mode\n"); 4422 } else { 4423 printk(KERN_INFO "SELinux: Starting in permissive mode\n"); 4424 } 4425 return 0; 4426 } 4427 4428 void selinux_complete_init(void) 4429 { 4430 printk(KERN_INFO "SELinux: Completing initialization.\n"); 4431 4432 /* Set up any superblocks initialized prior to the policy load. */ 4433 printk(KERN_INFO "SELinux: Setting up existing superblocks.\n"); 4434 spin_lock(&sb_security_lock); 4435 next_sb: 4436 if (!list_empty(&superblock_security_head)) { 4437 struct superblock_security_struct *sbsec = 4438 list_entry(superblock_security_head.next, 4439 struct superblock_security_struct, 4440 list); 4441 struct super_block *sb = sbsec->sb; 4442 spin_lock(&sb_lock); 4443 sb->s_count++; 4444 spin_unlock(&sb_lock); 4445 spin_unlock(&sb_security_lock); 4446 down_read(&sb->s_umount); 4447 if (sb->s_root) 4448 superblock_doinit(sb, NULL); 4449 drop_super(sb); 4450 spin_lock(&sb_security_lock); 4451 list_del_init(&sbsec->list); 4452 goto next_sb; 4453 } 4454 spin_unlock(&sb_security_lock); 4455 } 4456 4457 /* SELinux requires early initialization in order to label 4458 all processes and objects when they are created. */ 4459 security_initcall(selinux_init); 4460 4461 #if defined(CONFIG_SECURITY_NETWORK) && defined(CONFIG_NETFILTER) 4462 4463 static struct nf_hook_ops selinux_ipv4_op = { 4464 .hook = selinux_ipv4_postroute_last, 4465 .owner = THIS_MODULE, 4466 .pf = PF_INET, 4467 .hooknum = NF_IP_POST_ROUTING, 4468 .priority = NF_IP_PRI_SELINUX_LAST, 4469 }; 4470 4471 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 4472 4473 static struct nf_hook_ops selinux_ipv6_op = { 4474 .hook = selinux_ipv6_postroute_last, 4475 .owner = THIS_MODULE, 4476 .pf = PF_INET6, 4477 .hooknum = NF_IP6_POST_ROUTING, 4478 .priority = NF_IP6_PRI_SELINUX_LAST, 4479 }; 4480 4481 #endif /* IPV6 */ 4482 4483 static int __init selinux_nf_ip_init(void) 4484 { 4485 int err = 0; 4486 4487 if (!selinux_enabled) 4488 goto out; 4489 4490 printk(KERN_INFO "SELinux: Registering netfilter hooks\n"); 4491 4492 err = nf_register_hook(&selinux_ipv4_op); 4493 if (err) 4494 panic("SELinux: nf_register_hook for IPv4: error %d\n", err); 4495 4496 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 4497 4498 err = nf_register_hook(&selinux_ipv6_op); 4499 if (err) 4500 panic("SELinux: nf_register_hook for IPv6: error %d\n", err); 4501 4502 #endif /* IPV6 */ 4503 out: 4504 return err; 4505 } 4506 4507 __initcall(selinux_nf_ip_init); 4508 4509 #ifdef CONFIG_SECURITY_SELINUX_DISABLE 4510 static void selinux_nf_ip_exit(void) 4511 { 4512 printk(KERN_INFO "SELinux: Unregistering netfilter hooks\n"); 4513 4514 nf_unregister_hook(&selinux_ipv4_op); 4515 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 4516 nf_unregister_hook(&selinux_ipv6_op); 4517 #endif /* IPV6 */ 4518 } 4519 #endif 4520 4521 #else /* CONFIG_SECURITY_NETWORK && CONFIG_NETFILTER */ 4522 4523 #ifdef CONFIG_SECURITY_SELINUX_DISABLE 4524 #define selinux_nf_ip_exit() 4525 #endif 4526 4527 #endif /* CONFIG_SECURITY_NETWORK && CONFIG_NETFILTER */ 4528 4529 #ifdef CONFIG_SECURITY_SELINUX_DISABLE 4530 int selinux_disable(void) 4531 { 4532 extern void exit_sel_fs(void); 4533 static int selinux_disabled = 0; 4534 4535 if (ss_initialized) { 4536 /* Not permitted after initial policy load. */ 4537 return -EINVAL; 4538 } 4539 4540 if (selinux_disabled) { 4541 /* Only do this once. */ 4542 return -EINVAL; 4543 } 4544 4545 printk(KERN_INFO "SELinux: Disabled at runtime.\n"); 4546 4547 selinux_disabled = 1; 4548 4549 /* Reset security_ops to the secondary module, dummy or capability. */ 4550 security_ops = secondary_ops; 4551 4552 /* Unregister netfilter hooks. */ 4553 selinux_nf_ip_exit(); 4554 4555 /* Unregister selinuxfs. */ 4556 exit_sel_fs(); 4557 4558 return 0; 4559 } 4560 #endif 4561 4562 4563