xref: /linux/security/selinux/hooks.c (revision 5cd2340cb6a383d04fd88e48fabc2a21a909d6a1)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Security-Enhanced Linux (SELinux) security module
4  *
5  *  This file contains the SELinux hook function implementations.
6  *
7  *  Authors:  Stephen Smalley, <stephen.smalley.work@gmail.com>
8  *	      Chris Vance, <cvance@nai.com>
9  *	      Wayne Salamon, <wsalamon@nai.com>
10  *	      James Morris <jmorris@redhat.com>
11  *
12  *  Copyright (C) 2001,2002 Networks Associates Technology, Inc.
13  *  Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
14  *					   Eric Paris <eparis@redhat.com>
15  *  Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
16  *			    <dgoeddel@trustedcs.com>
17  *  Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P.
18  *	Paul Moore <paul@paul-moore.com>
19  *  Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
20  *		       Yuichi Nakamura <ynakam@hitachisoft.jp>
21  *  Copyright (C) 2016 Mellanox Technologies
22  */
23 
24 #include <linux/init.h>
25 #include <linux/kd.h>
26 #include <linux/kernel.h>
27 #include <linux/kernel_read_file.h>
28 #include <linux/errno.h>
29 #include <linux/sched/signal.h>
30 #include <linux/sched/task.h>
31 #include <linux/lsm_hooks.h>
32 #include <linux/xattr.h>
33 #include <linux/capability.h>
34 #include <linux/unistd.h>
35 #include <linux/mm.h>
36 #include <linux/mman.h>
37 #include <linux/slab.h>
38 #include <linux/pagemap.h>
39 #include <linux/proc_fs.h>
40 #include <linux/swap.h>
41 #include <linux/spinlock.h>
42 #include <linux/syscalls.h>
43 #include <linux/dcache.h>
44 #include <linux/file.h>
45 #include <linux/fdtable.h>
46 #include <linux/namei.h>
47 #include <linux/mount.h>
48 #include <linux/fs_context.h>
49 #include <linux/fs_parser.h>
50 #include <linux/netfilter_ipv4.h>
51 #include <linux/netfilter_ipv6.h>
52 #include <linux/tty.h>
53 #include <net/icmp.h>
54 #include <net/ip.h>		/* for local_port_range[] */
55 #include <net/tcp.h>		/* struct or_callable used in sock_rcv_skb */
56 #include <net/inet_connection_sock.h>
57 #include <net/net_namespace.h>
58 #include <net/netlabel.h>
59 #include <linux/uaccess.h>
60 #include <asm/ioctls.h>
61 #include <linux/atomic.h>
62 #include <linux/bitops.h>
63 #include <linux/interrupt.h>
64 #include <linux/netdevice.h>	/* for network interface checks */
65 #include <net/netlink.h>
66 #include <linux/tcp.h>
67 #include <linux/udp.h>
68 #include <linux/dccp.h>
69 #include <linux/sctp.h>
70 #include <net/sctp/structs.h>
71 #include <linux/quota.h>
72 #include <linux/un.h>		/* for Unix socket types */
73 #include <net/af_unix.h>	/* for Unix socket types */
74 #include <linux/parser.h>
75 #include <linux/nfs_mount.h>
76 #include <net/ipv6.h>
77 #include <linux/hugetlb.h>
78 #include <linux/personality.h>
79 #include <linux/audit.h>
80 #include <linux/string.h>
81 #include <linux/mutex.h>
82 #include <linux/posix-timers.h>
83 #include <linux/syslog.h>
84 #include <linux/user_namespace.h>
85 #include <linux/export.h>
86 #include <linux/msg.h>
87 #include <linux/shm.h>
88 #include <uapi/linux/shm.h>
89 #include <linux/bpf.h>
90 #include <linux/kernfs.h>
91 #include <linux/stringhash.h>	/* for hashlen_string() */
92 #include <uapi/linux/mount.h>
93 #include <linux/fsnotify.h>
94 #include <linux/fanotify.h>
95 #include <linux/io_uring/cmd.h>
96 #include <uapi/linux/lsm.h>
97 
98 #include "avc.h"
99 #include "objsec.h"
100 #include "netif.h"
101 #include "netnode.h"
102 #include "netport.h"
103 #include "ibpkey.h"
104 #include "xfrm.h"
105 #include "netlabel.h"
106 #include "audit.h"
107 #include "avc_ss.h"
108 
109 #define SELINUX_INODE_INIT_XATTRS 1
110 
111 struct selinux_state selinux_state;
112 
113 /* SECMARK reference count */
114 static atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
115 
116 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP
117 static int selinux_enforcing_boot __initdata;
118 
119 static int __init enforcing_setup(char *str)
120 {
121 	unsigned long enforcing;
122 	if (!kstrtoul(str, 0, &enforcing))
123 		selinux_enforcing_boot = enforcing ? 1 : 0;
124 	return 1;
125 }
126 __setup("enforcing=", enforcing_setup);
127 #else
128 #define selinux_enforcing_boot 1
129 #endif
130 
131 int selinux_enabled_boot __initdata = 1;
132 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
133 static int __init selinux_enabled_setup(char *str)
134 {
135 	unsigned long enabled;
136 	if (!kstrtoul(str, 0, &enabled))
137 		selinux_enabled_boot = enabled ? 1 : 0;
138 	return 1;
139 }
140 __setup("selinux=", selinux_enabled_setup);
141 #endif
142 
143 static int __init checkreqprot_setup(char *str)
144 {
145 	unsigned long checkreqprot;
146 
147 	if (!kstrtoul(str, 0, &checkreqprot)) {
148 		if (checkreqprot)
149 			pr_err("SELinux: checkreqprot set to 1 via kernel parameter.  This is no longer supported.\n");
150 	}
151 	return 1;
152 }
153 __setup("checkreqprot=", checkreqprot_setup);
154 
155 /**
156  * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
157  *
158  * Description:
159  * This function checks the SECMARK reference counter to see if any SECMARK
160  * targets are currently configured, if the reference counter is greater than
161  * zero SECMARK is considered to be enabled.  Returns true (1) if SECMARK is
162  * enabled, false (0) if SECMARK is disabled.  If the always_check_network
163  * policy capability is enabled, SECMARK is always considered enabled.
164  *
165  */
166 static int selinux_secmark_enabled(void)
167 {
168 	return (selinux_policycap_alwaysnetwork() ||
169 		atomic_read(&selinux_secmark_refcount));
170 }
171 
172 /**
173  * selinux_peerlbl_enabled - Check to see if peer labeling is currently enabled
174  *
175  * Description:
176  * This function checks if NetLabel or labeled IPSEC is enabled.  Returns true
177  * (1) if any are enabled or false (0) if neither are enabled.  If the
178  * always_check_network policy capability is enabled, peer labeling
179  * is always considered enabled.
180  *
181  */
182 static int selinux_peerlbl_enabled(void)
183 {
184 	return (selinux_policycap_alwaysnetwork() ||
185 		netlbl_enabled() || selinux_xfrm_enabled());
186 }
187 
188 static int selinux_netcache_avc_callback(u32 event)
189 {
190 	if (event == AVC_CALLBACK_RESET) {
191 		sel_netif_flush();
192 		sel_netnode_flush();
193 		sel_netport_flush();
194 		synchronize_net();
195 	}
196 	return 0;
197 }
198 
199 static int selinux_lsm_notifier_avc_callback(u32 event)
200 {
201 	if (event == AVC_CALLBACK_RESET) {
202 		sel_ib_pkey_flush();
203 		call_blocking_lsm_notifier(LSM_POLICY_CHANGE, NULL);
204 	}
205 
206 	return 0;
207 }
208 
209 /*
210  * initialise the security for the init task
211  */
212 static void cred_init_security(void)
213 {
214 	struct task_security_struct *tsec;
215 
216 	tsec = selinux_cred(unrcu_pointer(current->real_cred));
217 	tsec->osid = tsec->sid = SECINITSID_KERNEL;
218 }
219 
220 /*
221  * get the security ID of a set of credentials
222  */
223 static inline u32 cred_sid(const struct cred *cred)
224 {
225 	const struct task_security_struct *tsec;
226 
227 	tsec = selinux_cred(cred);
228 	return tsec->sid;
229 }
230 
231 static void __ad_net_init(struct common_audit_data *ad,
232 			  struct lsm_network_audit *net,
233 			  int ifindex, struct sock *sk, u16 family)
234 {
235 	ad->type = LSM_AUDIT_DATA_NET;
236 	ad->u.net = net;
237 	net->netif = ifindex;
238 	net->sk = sk;
239 	net->family = family;
240 }
241 
242 static void ad_net_init_from_sk(struct common_audit_data *ad,
243 				struct lsm_network_audit *net,
244 				struct sock *sk)
245 {
246 	__ad_net_init(ad, net, 0, sk, 0);
247 }
248 
249 static void ad_net_init_from_iif(struct common_audit_data *ad,
250 				 struct lsm_network_audit *net,
251 				 int ifindex, u16 family)
252 {
253 	__ad_net_init(ad, net, ifindex, NULL, family);
254 }
255 
256 /*
257  * get the objective security ID of a task
258  */
259 static inline u32 task_sid_obj(const struct task_struct *task)
260 {
261 	u32 sid;
262 
263 	rcu_read_lock();
264 	sid = cred_sid(__task_cred(task));
265 	rcu_read_unlock();
266 	return sid;
267 }
268 
269 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
270 
271 /*
272  * Try reloading inode security labels that have been marked as invalid.  The
273  * @may_sleep parameter indicates when sleeping and thus reloading labels is
274  * allowed; when set to false, returns -ECHILD when the label is
275  * invalid.  The @dentry parameter should be set to a dentry of the inode.
276  */
277 static int __inode_security_revalidate(struct inode *inode,
278 				       struct dentry *dentry,
279 				       bool may_sleep)
280 {
281 	struct inode_security_struct *isec = selinux_inode(inode);
282 
283 	might_sleep_if(may_sleep);
284 
285 	if (selinux_initialized() &&
286 	    isec->initialized != LABEL_INITIALIZED) {
287 		if (!may_sleep)
288 			return -ECHILD;
289 
290 		/*
291 		 * Try reloading the inode security label.  This will fail if
292 		 * @opt_dentry is NULL and no dentry for this inode can be
293 		 * found; in that case, continue using the old label.
294 		 */
295 		inode_doinit_with_dentry(inode, dentry);
296 	}
297 	return 0;
298 }
299 
300 static struct inode_security_struct *inode_security_novalidate(struct inode *inode)
301 {
302 	return selinux_inode(inode);
303 }
304 
305 static struct inode_security_struct *inode_security_rcu(struct inode *inode, bool rcu)
306 {
307 	int error;
308 
309 	error = __inode_security_revalidate(inode, NULL, !rcu);
310 	if (error)
311 		return ERR_PTR(error);
312 	return selinux_inode(inode);
313 }
314 
315 /*
316  * Get the security label of an inode.
317  */
318 static struct inode_security_struct *inode_security(struct inode *inode)
319 {
320 	__inode_security_revalidate(inode, NULL, true);
321 	return selinux_inode(inode);
322 }
323 
324 static struct inode_security_struct *backing_inode_security_novalidate(struct dentry *dentry)
325 {
326 	struct inode *inode = d_backing_inode(dentry);
327 
328 	return selinux_inode(inode);
329 }
330 
331 /*
332  * Get the security label of a dentry's backing inode.
333  */
334 static struct inode_security_struct *backing_inode_security(struct dentry *dentry)
335 {
336 	struct inode *inode = d_backing_inode(dentry);
337 
338 	__inode_security_revalidate(inode, dentry, true);
339 	return selinux_inode(inode);
340 }
341 
342 static void inode_free_security(struct inode *inode)
343 {
344 	struct inode_security_struct *isec = selinux_inode(inode);
345 	struct superblock_security_struct *sbsec;
346 
347 	if (!isec)
348 		return;
349 	sbsec = selinux_superblock(inode->i_sb);
350 	/*
351 	 * As not all inode security structures are in a list, we check for
352 	 * empty list outside of the lock to make sure that we won't waste
353 	 * time taking a lock doing nothing.
354 	 *
355 	 * The list_del_init() function can be safely called more than once.
356 	 * It should not be possible for this function to be called with
357 	 * concurrent list_add(), but for better safety against future changes
358 	 * in the code, we use list_empty_careful() here.
359 	 */
360 	if (!list_empty_careful(&isec->list)) {
361 		spin_lock(&sbsec->isec_lock);
362 		list_del_init(&isec->list);
363 		spin_unlock(&sbsec->isec_lock);
364 	}
365 }
366 
367 struct selinux_mnt_opts {
368 	u32 fscontext_sid;
369 	u32 context_sid;
370 	u32 rootcontext_sid;
371 	u32 defcontext_sid;
372 };
373 
374 static void selinux_free_mnt_opts(void *mnt_opts)
375 {
376 	kfree(mnt_opts);
377 }
378 
379 enum {
380 	Opt_error = -1,
381 	Opt_context = 0,
382 	Opt_defcontext = 1,
383 	Opt_fscontext = 2,
384 	Opt_rootcontext = 3,
385 	Opt_seclabel = 4,
386 };
387 
388 #define A(s, has_arg) {#s, sizeof(#s) - 1, Opt_##s, has_arg}
389 static const struct {
390 	const char *name;
391 	int len;
392 	int opt;
393 	bool has_arg;
394 } tokens[] = {
395 	A(context, true),
396 	A(fscontext, true),
397 	A(defcontext, true),
398 	A(rootcontext, true),
399 	A(seclabel, false),
400 };
401 #undef A
402 
403 static int match_opt_prefix(char *s, int l, char **arg)
404 {
405 	int i;
406 
407 	for (i = 0; i < ARRAY_SIZE(tokens); i++) {
408 		size_t len = tokens[i].len;
409 		if (len > l || memcmp(s, tokens[i].name, len))
410 			continue;
411 		if (tokens[i].has_arg) {
412 			if (len == l || s[len] != '=')
413 				continue;
414 			*arg = s + len + 1;
415 		} else if (len != l)
416 			continue;
417 		return tokens[i].opt;
418 	}
419 	return Opt_error;
420 }
421 
422 #define SEL_MOUNT_FAIL_MSG "SELinux:  duplicate or incompatible mount options\n"
423 
424 static int may_context_mount_sb_relabel(u32 sid,
425 			struct superblock_security_struct *sbsec,
426 			const struct cred *cred)
427 {
428 	const struct task_security_struct *tsec = selinux_cred(cred);
429 	int rc;
430 
431 	rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
432 			  FILESYSTEM__RELABELFROM, NULL);
433 	if (rc)
434 		return rc;
435 
436 	rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
437 			  FILESYSTEM__RELABELTO, NULL);
438 	return rc;
439 }
440 
441 static int may_context_mount_inode_relabel(u32 sid,
442 			struct superblock_security_struct *sbsec,
443 			const struct cred *cred)
444 {
445 	const struct task_security_struct *tsec = selinux_cred(cred);
446 	int rc;
447 	rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
448 			  FILESYSTEM__RELABELFROM, NULL);
449 	if (rc)
450 		return rc;
451 
452 	rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
453 			  FILESYSTEM__ASSOCIATE, NULL);
454 	return rc;
455 }
456 
457 static int selinux_is_genfs_special_handling(struct super_block *sb)
458 {
459 	/* Special handling. Genfs but also in-core setxattr handler */
460 	return	!strcmp(sb->s_type->name, "sysfs") ||
461 		!strcmp(sb->s_type->name, "pstore") ||
462 		!strcmp(sb->s_type->name, "debugfs") ||
463 		!strcmp(sb->s_type->name, "tracefs") ||
464 		!strcmp(sb->s_type->name, "rootfs") ||
465 		(selinux_policycap_cgroupseclabel() &&
466 		 (!strcmp(sb->s_type->name, "cgroup") ||
467 		  !strcmp(sb->s_type->name, "cgroup2")));
468 }
469 
470 static int selinux_is_sblabel_mnt(struct super_block *sb)
471 {
472 	struct superblock_security_struct *sbsec = selinux_superblock(sb);
473 
474 	/*
475 	 * IMPORTANT: Double-check logic in this function when adding a new
476 	 * SECURITY_FS_USE_* definition!
477 	 */
478 	BUILD_BUG_ON(SECURITY_FS_USE_MAX != 7);
479 
480 	switch (sbsec->behavior) {
481 	case SECURITY_FS_USE_XATTR:
482 	case SECURITY_FS_USE_TRANS:
483 	case SECURITY_FS_USE_TASK:
484 	case SECURITY_FS_USE_NATIVE:
485 		return 1;
486 
487 	case SECURITY_FS_USE_GENFS:
488 		return selinux_is_genfs_special_handling(sb);
489 
490 	/* Never allow relabeling on context mounts */
491 	case SECURITY_FS_USE_MNTPOINT:
492 	case SECURITY_FS_USE_NONE:
493 	default:
494 		return 0;
495 	}
496 }
497 
498 static int sb_check_xattr_support(struct super_block *sb)
499 {
500 	struct superblock_security_struct *sbsec = selinux_superblock(sb);
501 	struct dentry *root = sb->s_root;
502 	struct inode *root_inode = d_backing_inode(root);
503 	u32 sid;
504 	int rc;
505 
506 	/*
507 	 * Make sure that the xattr handler exists and that no
508 	 * error other than -ENODATA is returned by getxattr on
509 	 * the root directory.  -ENODATA is ok, as this may be
510 	 * the first boot of the SELinux kernel before we have
511 	 * assigned xattr values to the filesystem.
512 	 */
513 	if (!(root_inode->i_opflags & IOP_XATTR)) {
514 		pr_warn("SELinux: (dev %s, type %s) has no xattr support\n",
515 			sb->s_id, sb->s_type->name);
516 		goto fallback;
517 	}
518 
519 	rc = __vfs_getxattr(root, root_inode, XATTR_NAME_SELINUX, NULL, 0);
520 	if (rc < 0 && rc != -ENODATA) {
521 		if (rc == -EOPNOTSUPP) {
522 			pr_warn("SELinux: (dev %s, type %s) has no security xattr handler\n",
523 				sb->s_id, sb->s_type->name);
524 			goto fallback;
525 		} else {
526 			pr_warn("SELinux: (dev %s, type %s) getxattr errno %d\n",
527 				sb->s_id, sb->s_type->name, -rc);
528 			return rc;
529 		}
530 	}
531 	return 0;
532 
533 fallback:
534 	/* No xattr support - try to fallback to genfs if possible. */
535 	rc = security_genfs_sid(sb->s_type->name, "/",
536 				SECCLASS_DIR, &sid);
537 	if (rc)
538 		return -EOPNOTSUPP;
539 
540 	pr_warn("SELinux: (dev %s, type %s) falling back to genfs\n",
541 		sb->s_id, sb->s_type->name);
542 	sbsec->behavior = SECURITY_FS_USE_GENFS;
543 	sbsec->sid = sid;
544 	return 0;
545 }
546 
547 static int sb_finish_set_opts(struct super_block *sb)
548 {
549 	struct superblock_security_struct *sbsec = selinux_superblock(sb);
550 	struct dentry *root = sb->s_root;
551 	struct inode *root_inode = d_backing_inode(root);
552 	int rc = 0;
553 
554 	if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
555 		rc = sb_check_xattr_support(sb);
556 		if (rc)
557 			return rc;
558 	}
559 
560 	sbsec->flags |= SE_SBINITIALIZED;
561 
562 	/*
563 	 * Explicitly set or clear SBLABEL_MNT.  It's not sufficient to simply
564 	 * leave the flag untouched because sb_clone_mnt_opts might be handing
565 	 * us a superblock that needs the flag to be cleared.
566 	 */
567 	if (selinux_is_sblabel_mnt(sb))
568 		sbsec->flags |= SBLABEL_MNT;
569 	else
570 		sbsec->flags &= ~SBLABEL_MNT;
571 
572 	/* Initialize the root inode. */
573 	rc = inode_doinit_with_dentry(root_inode, root);
574 
575 	/* Initialize any other inodes associated with the superblock, e.g.
576 	   inodes created prior to initial policy load or inodes created
577 	   during get_sb by a pseudo filesystem that directly
578 	   populates itself. */
579 	spin_lock(&sbsec->isec_lock);
580 	while (!list_empty(&sbsec->isec_head)) {
581 		struct inode_security_struct *isec =
582 				list_first_entry(&sbsec->isec_head,
583 					   struct inode_security_struct, list);
584 		struct inode *inode = isec->inode;
585 		list_del_init(&isec->list);
586 		spin_unlock(&sbsec->isec_lock);
587 		inode = igrab(inode);
588 		if (inode) {
589 			if (!IS_PRIVATE(inode))
590 				inode_doinit_with_dentry(inode, NULL);
591 			iput(inode);
592 		}
593 		spin_lock(&sbsec->isec_lock);
594 	}
595 	spin_unlock(&sbsec->isec_lock);
596 	return rc;
597 }
598 
599 static int bad_option(struct superblock_security_struct *sbsec, char flag,
600 		      u32 old_sid, u32 new_sid)
601 {
602 	char mnt_flags = sbsec->flags & SE_MNTMASK;
603 
604 	/* check if the old mount command had the same options */
605 	if (sbsec->flags & SE_SBINITIALIZED)
606 		if (!(sbsec->flags & flag) ||
607 		    (old_sid != new_sid))
608 			return 1;
609 
610 	/* check if we were passed the same options twice,
611 	 * aka someone passed context=a,context=b
612 	 */
613 	if (!(sbsec->flags & SE_SBINITIALIZED))
614 		if (mnt_flags & flag)
615 			return 1;
616 	return 0;
617 }
618 
619 /*
620  * Allow filesystems with binary mount data to explicitly set mount point
621  * labeling information.
622  */
623 static int selinux_set_mnt_opts(struct super_block *sb,
624 				void *mnt_opts,
625 				unsigned long kern_flags,
626 				unsigned long *set_kern_flags)
627 {
628 	const struct cred *cred = current_cred();
629 	struct superblock_security_struct *sbsec = selinux_superblock(sb);
630 	struct dentry *root = sb->s_root;
631 	struct selinux_mnt_opts *opts = mnt_opts;
632 	struct inode_security_struct *root_isec;
633 	u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
634 	u32 defcontext_sid = 0;
635 	int rc = 0;
636 
637 	/*
638 	 * Specifying internal flags without providing a place to
639 	 * place the results is not allowed
640 	 */
641 	if (kern_flags && !set_kern_flags)
642 		return -EINVAL;
643 
644 	mutex_lock(&sbsec->lock);
645 
646 	if (!selinux_initialized()) {
647 		if (!opts) {
648 			/* Defer initialization until selinux_complete_init,
649 			   after the initial policy is loaded and the security
650 			   server is ready to handle calls. */
651 			if (kern_flags & SECURITY_LSM_NATIVE_LABELS) {
652 				sbsec->flags |= SE_SBNATIVE;
653 				*set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
654 			}
655 			goto out;
656 		}
657 		rc = -EINVAL;
658 		pr_warn("SELinux: Unable to set superblock options "
659 			"before the security server is initialized\n");
660 		goto out;
661 	}
662 
663 	/*
664 	 * Binary mount data FS will come through this function twice.  Once
665 	 * from an explicit call and once from the generic calls from the vfs.
666 	 * Since the generic VFS calls will not contain any security mount data
667 	 * we need to skip the double mount verification.
668 	 *
669 	 * This does open a hole in which we will not notice if the first
670 	 * mount using this sb set explicit options and a second mount using
671 	 * this sb does not set any security options.  (The first options
672 	 * will be used for both mounts)
673 	 */
674 	if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
675 	    && !opts)
676 		goto out;
677 
678 	root_isec = backing_inode_security_novalidate(root);
679 
680 	/*
681 	 * parse the mount options, check if they are valid sids.
682 	 * also check if someone is trying to mount the same sb more
683 	 * than once with different security options.
684 	 */
685 	if (opts) {
686 		if (opts->fscontext_sid) {
687 			fscontext_sid = opts->fscontext_sid;
688 			if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
689 					fscontext_sid))
690 				goto out_double_mount;
691 			sbsec->flags |= FSCONTEXT_MNT;
692 		}
693 		if (opts->context_sid) {
694 			context_sid = opts->context_sid;
695 			if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
696 					context_sid))
697 				goto out_double_mount;
698 			sbsec->flags |= CONTEXT_MNT;
699 		}
700 		if (opts->rootcontext_sid) {
701 			rootcontext_sid = opts->rootcontext_sid;
702 			if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
703 					rootcontext_sid))
704 				goto out_double_mount;
705 			sbsec->flags |= ROOTCONTEXT_MNT;
706 		}
707 		if (opts->defcontext_sid) {
708 			defcontext_sid = opts->defcontext_sid;
709 			if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
710 					defcontext_sid))
711 				goto out_double_mount;
712 			sbsec->flags |= DEFCONTEXT_MNT;
713 		}
714 	}
715 
716 	if (sbsec->flags & SE_SBINITIALIZED) {
717 		/* previously mounted with options, but not on this attempt? */
718 		if ((sbsec->flags & SE_MNTMASK) && !opts)
719 			goto out_double_mount;
720 		rc = 0;
721 		goto out;
722 	}
723 
724 	if (strcmp(sb->s_type->name, "proc") == 0)
725 		sbsec->flags |= SE_SBPROC | SE_SBGENFS;
726 
727 	if (!strcmp(sb->s_type->name, "debugfs") ||
728 	    !strcmp(sb->s_type->name, "tracefs") ||
729 	    !strcmp(sb->s_type->name, "binder") ||
730 	    !strcmp(sb->s_type->name, "bpf") ||
731 	    !strcmp(sb->s_type->name, "pstore") ||
732 	    !strcmp(sb->s_type->name, "securityfs"))
733 		sbsec->flags |= SE_SBGENFS;
734 
735 	if (!strcmp(sb->s_type->name, "sysfs") ||
736 	    !strcmp(sb->s_type->name, "cgroup") ||
737 	    !strcmp(sb->s_type->name, "cgroup2"))
738 		sbsec->flags |= SE_SBGENFS | SE_SBGENFS_XATTR;
739 
740 	if (!sbsec->behavior) {
741 		/*
742 		 * Determine the labeling behavior to use for this
743 		 * filesystem type.
744 		 */
745 		rc = security_fs_use(sb);
746 		if (rc) {
747 			pr_warn("%s: security_fs_use(%s) returned %d\n",
748 					__func__, sb->s_type->name, rc);
749 			goto out;
750 		}
751 	}
752 
753 	/*
754 	 * If this is a user namespace mount and the filesystem type is not
755 	 * explicitly whitelisted, then no contexts are allowed on the command
756 	 * line and security labels must be ignored.
757 	 */
758 	if (sb->s_user_ns != &init_user_ns &&
759 	    strcmp(sb->s_type->name, "tmpfs") &&
760 	    strcmp(sb->s_type->name, "ramfs") &&
761 	    strcmp(sb->s_type->name, "devpts") &&
762 	    strcmp(sb->s_type->name, "overlay")) {
763 		if (context_sid || fscontext_sid || rootcontext_sid ||
764 		    defcontext_sid) {
765 			rc = -EACCES;
766 			goto out;
767 		}
768 		if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
769 			sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
770 			rc = security_transition_sid(current_sid(),
771 						     current_sid(),
772 						     SECCLASS_FILE, NULL,
773 						     &sbsec->mntpoint_sid);
774 			if (rc)
775 				goto out;
776 		}
777 		goto out_set_opts;
778 	}
779 
780 	/* sets the context of the superblock for the fs being mounted. */
781 	if (fscontext_sid) {
782 		rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
783 		if (rc)
784 			goto out;
785 
786 		sbsec->sid = fscontext_sid;
787 	}
788 
789 	/*
790 	 * Switch to using mount point labeling behavior.
791 	 * sets the label used on all file below the mountpoint, and will set
792 	 * the superblock context if not already set.
793 	 */
794 	if (sbsec->flags & SE_SBNATIVE) {
795 		/*
796 		 * This means we are initializing a superblock that has been
797 		 * mounted before the SELinux was initialized and the
798 		 * filesystem requested native labeling. We had already
799 		 * returned SECURITY_LSM_NATIVE_LABELS in *set_kern_flags
800 		 * in the original mount attempt, so now we just need to set
801 		 * the SECURITY_FS_USE_NATIVE behavior.
802 		 */
803 		sbsec->behavior = SECURITY_FS_USE_NATIVE;
804 	} else if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !context_sid) {
805 		sbsec->behavior = SECURITY_FS_USE_NATIVE;
806 		*set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
807 	}
808 
809 	if (context_sid) {
810 		if (!fscontext_sid) {
811 			rc = may_context_mount_sb_relabel(context_sid, sbsec,
812 							  cred);
813 			if (rc)
814 				goto out;
815 			sbsec->sid = context_sid;
816 		} else {
817 			rc = may_context_mount_inode_relabel(context_sid, sbsec,
818 							     cred);
819 			if (rc)
820 				goto out;
821 		}
822 		if (!rootcontext_sid)
823 			rootcontext_sid = context_sid;
824 
825 		sbsec->mntpoint_sid = context_sid;
826 		sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
827 	}
828 
829 	if (rootcontext_sid) {
830 		rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
831 						     cred);
832 		if (rc)
833 			goto out;
834 
835 		root_isec->sid = rootcontext_sid;
836 		root_isec->initialized = LABEL_INITIALIZED;
837 	}
838 
839 	if (defcontext_sid) {
840 		if (sbsec->behavior != SECURITY_FS_USE_XATTR &&
841 			sbsec->behavior != SECURITY_FS_USE_NATIVE) {
842 			rc = -EINVAL;
843 			pr_warn("SELinux: defcontext option is "
844 			       "invalid for this filesystem type\n");
845 			goto out;
846 		}
847 
848 		if (defcontext_sid != sbsec->def_sid) {
849 			rc = may_context_mount_inode_relabel(defcontext_sid,
850 							     sbsec, cred);
851 			if (rc)
852 				goto out;
853 		}
854 
855 		sbsec->def_sid = defcontext_sid;
856 	}
857 
858 out_set_opts:
859 	rc = sb_finish_set_opts(sb);
860 out:
861 	mutex_unlock(&sbsec->lock);
862 	return rc;
863 out_double_mount:
864 	rc = -EINVAL;
865 	pr_warn("SELinux: mount invalid.  Same superblock, different "
866 	       "security settings for (dev %s, type %s)\n", sb->s_id,
867 	       sb->s_type->name);
868 	goto out;
869 }
870 
871 static int selinux_cmp_sb_context(const struct super_block *oldsb,
872 				    const struct super_block *newsb)
873 {
874 	struct superblock_security_struct *old = selinux_superblock(oldsb);
875 	struct superblock_security_struct *new = selinux_superblock(newsb);
876 	char oldflags = old->flags & SE_MNTMASK;
877 	char newflags = new->flags & SE_MNTMASK;
878 
879 	if (oldflags != newflags)
880 		goto mismatch;
881 	if ((oldflags & FSCONTEXT_MNT) && old->sid != new->sid)
882 		goto mismatch;
883 	if ((oldflags & CONTEXT_MNT) && old->mntpoint_sid != new->mntpoint_sid)
884 		goto mismatch;
885 	if ((oldflags & DEFCONTEXT_MNT) && old->def_sid != new->def_sid)
886 		goto mismatch;
887 	if (oldflags & ROOTCONTEXT_MNT) {
888 		struct inode_security_struct *oldroot = backing_inode_security(oldsb->s_root);
889 		struct inode_security_struct *newroot = backing_inode_security(newsb->s_root);
890 		if (oldroot->sid != newroot->sid)
891 			goto mismatch;
892 	}
893 	return 0;
894 mismatch:
895 	pr_warn("SELinux: mount invalid.  Same superblock, "
896 			    "different security settings for (dev %s, "
897 			    "type %s)\n", newsb->s_id, newsb->s_type->name);
898 	return -EBUSY;
899 }
900 
901 static int selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
902 					struct super_block *newsb,
903 					unsigned long kern_flags,
904 					unsigned long *set_kern_flags)
905 {
906 	int rc = 0;
907 	const struct superblock_security_struct *oldsbsec =
908 						selinux_superblock(oldsb);
909 	struct superblock_security_struct *newsbsec = selinux_superblock(newsb);
910 
911 	int set_fscontext =	(oldsbsec->flags & FSCONTEXT_MNT);
912 	int set_context =	(oldsbsec->flags & CONTEXT_MNT);
913 	int set_rootcontext =	(oldsbsec->flags & ROOTCONTEXT_MNT);
914 
915 	/*
916 	 * Specifying internal flags without providing a place to
917 	 * place the results is not allowed.
918 	 */
919 	if (kern_flags && !set_kern_flags)
920 		return -EINVAL;
921 
922 	mutex_lock(&newsbsec->lock);
923 
924 	/*
925 	 * if the parent was able to be mounted it clearly had no special lsm
926 	 * mount options.  thus we can safely deal with this superblock later
927 	 */
928 	if (!selinux_initialized()) {
929 		if (kern_flags & SECURITY_LSM_NATIVE_LABELS) {
930 			newsbsec->flags |= SE_SBNATIVE;
931 			*set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
932 		}
933 		goto out;
934 	}
935 
936 	/* how can we clone if the old one wasn't set up?? */
937 	BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
938 
939 	/* if fs is reusing a sb, make sure that the contexts match */
940 	if (newsbsec->flags & SE_SBINITIALIZED) {
941 		mutex_unlock(&newsbsec->lock);
942 		if ((kern_flags & SECURITY_LSM_NATIVE_LABELS) && !set_context)
943 			*set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
944 		return selinux_cmp_sb_context(oldsb, newsb);
945 	}
946 
947 	newsbsec->flags = oldsbsec->flags;
948 
949 	newsbsec->sid = oldsbsec->sid;
950 	newsbsec->def_sid = oldsbsec->def_sid;
951 	newsbsec->behavior = oldsbsec->behavior;
952 
953 	if (newsbsec->behavior == SECURITY_FS_USE_NATIVE &&
954 		!(kern_flags & SECURITY_LSM_NATIVE_LABELS) && !set_context) {
955 		rc = security_fs_use(newsb);
956 		if (rc)
957 			goto out;
958 	}
959 
960 	if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !set_context) {
961 		newsbsec->behavior = SECURITY_FS_USE_NATIVE;
962 		*set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
963 	}
964 
965 	if (set_context) {
966 		u32 sid = oldsbsec->mntpoint_sid;
967 
968 		if (!set_fscontext)
969 			newsbsec->sid = sid;
970 		if (!set_rootcontext) {
971 			struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
972 			newisec->sid = sid;
973 		}
974 		newsbsec->mntpoint_sid = sid;
975 	}
976 	if (set_rootcontext) {
977 		const struct inode_security_struct *oldisec = backing_inode_security(oldsb->s_root);
978 		struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
979 
980 		newisec->sid = oldisec->sid;
981 	}
982 
983 	sb_finish_set_opts(newsb);
984 out:
985 	mutex_unlock(&newsbsec->lock);
986 	return rc;
987 }
988 
989 /*
990  * NOTE: the caller is responsible for freeing the memory even if on error.
991  */
992 static int selinux_add_opt(int token, const char *s, void **mnt_opts)
993 {
994 	struct selinux_mnt_opts *opts = *mnt_opts;
995 	u32 *dst_sid;
996 	int rc;
997 
998 	if (token == Opt_seclabel)
999 		/* eaten and completely ignored */
1000 		return 0;
1001 	if (!s)
1002 		return -EINVAL;
1003 
1004 	if (!selinux_initialized()) {
1005 		pr_warn("SELinux: Unable to set superblock options before the security server is initialized\n");
1006 		return -EINVAL;
1007 	}
1008 
1009 	if (!opts) {
1010 		opts = kzalloc(sizeof(*opts), GFP_KERNEL);
1011 		if (!opts)
1012 			return -ENOMEM;
1013 		*mnt_opts = opts;
1014 	}
1015 
1016 	switch (token) {
1017 	case Opt_context:
1018 		if (opts->context_sid || opts->defcontext_sid)
1019 			goto err;
1020 		dst_sid = &opts->context_sid;
1021 		break;
1022 	case Opt_fscontext:
1023 		if (opts->fscontext_sid)
1024 			goto err;
1025 		dst_sid = &opts->fscontext_sid;
1026 		break;
1027 	case Opt_rootcontext:
1028 		if (opts->rootcontext_sid)
1029 			goto err;
1030 		dst_sid = &opts->rootcontext_sid;
1031 		break;
1032 	case Opt_defcontext:
1033 		if (opts->context_sid || opts->defcontext_sid)
1034 			goto err;
1035 		dst_sid = &opts->defcontext_sid;
1036 		break;
1037 	default:
1038 		WARN_ON(1);
1039 		return -EINVAL;
1040 	}
1041 	rc = security_context_str_to_sid(s, dst_sid, GFP_KERNEL);
1042 	if (rc)
1043 		pr_warn("SELinux: security_context_str_to_sid (%s) failed with errno=%d\n",
1044 			s, rc);
1045 	return rc;
1046 
1047 err:
1048 	pr_warn(SEL_MOUNT_FAIL_MSG);
1049 	return -EINVAL;
1050 }
1051 
1052 static int show_sid(struct seq_file *m, u32 sid)
1053 {
1054 	char *context = NULL;
1055 	u32 len;
1056 	int rc;
1057 
1058 	rc = security_sid_to_context(sid, &context, &len);
1059 	if (!rc) {
1060 		bool has_comma = strchr(context, ',');
1061 
1062 		seq_putc(m, '=');
1063 		if (has_comma)
1064 			seq_putc(m, '\"');
1065 		seq_escape(m, context, "\"\n\\");
1066 		if (has_comma)
1067 			seq_putc(m, '\"');
1068 	}
1069 	kfree(context);
1070 	return rc;
1071 }
1072 
1073 static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1074 {
1075 	struct superblock_security_struct *sbsec = selinux_superblock(sb);
1076 	int rc;
1077 
1078 	if (!(sbsec->flags & SE_SBINITIALIZED))
1079 		return 0;
1080 
1081 	if (!selinux_initialized())
1082 		return 0;
1083 
1084 	if (sbsec->flags & FSCONTEXT_MNT) {
1085 		seq_putc(m, ',');
1086 		seq_puts(m, FSCONTEXT_STR);
1087 		rc = show_sid(m, sbsec->sid);
1088 		if (rc)
1089 			return rc;
1090 	}
1091 	if (sbsec->flags & CONTEXT_MNT) {
1092 		seq_putc(m, ',');
1093 		seq_puts(m, CONTEXT_STR);
1094 		rc = show_sid(m, sbsec->mntpoint_sid);
1095 		if (rc)
1096 			return rc;
1097 	}
1098 	if (sbsec->flags & DEFCONTEXT_MNT) {
1099 		seq_putc(m, ',');
1100 		seq_puts(m, DEFCONTEXT_STR);
1101 		rc = show_sid(m, sbsec->def_sid);
1102 		if (rc)
1103 			return rc;
1104 	}
1105 	if (sbsec->flags & ROOTCONTEXT_MNT) {
1106 		struct dentry *root = sb->s_root;
1107 		struct inode_security_struct *isec = backing_inode_security(root);
1108 		seq_putc(m, ',');
1109 		seq_puts(m, ROOTCONTEXT_STR);
1110 		rc = show_sid(m, isec->sid);
1111 		if (rc)
1112 			return rc;
1113 	}
1114 	if (sbsec->flags & SBLABEL_MNT) {
1115 		seq_putc(m, ',');
1116 		seq_puts(m, SECLABEL_STR);
1117 	}
1118 	return 0;
1119 }
1120 
1121 static inline u16 inode_mode_to_security_class(umode_t mode)
1122 {
1123 	switch (mode & S_IFMT) {
1124 	case S_IFSOCK:
1125 		return SECCLASS_SOCK_FILE;
1126 	case S_IFLNK:
1127 		return SECCLASS_LNK_FILE;
1128 	case S_IFREG:
1129 		return SECCLASS_FILE;
1130 	case S_IFBLK:
1131 		return SECCLASS_BLK_FILE;
1132 	case S_IFDIR:
1133 		return SECCLASS_DIR;
1134 	case S_IFCHR:
1135 		return SECCLASS_CHR_FILE;
1136 	case S_IFIFO:
1137 		return SECCLASS_FIFO_FILE;
1138 
1139 	}
1140 
1141 	return SECCLASS_FILE;
1142 }
1143 
1144 static inline int default_protocol_stream(int protocol)
1145 {
1146 	return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP ||
1147 		protocol == IPPROTO_MPTCP);
1148 }
1149 
1150 static inline int default_protocol_dgram(int protocol)
1151 {
1152 	return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1153 }
1154 
1155 static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1156 {
1157 	bool extsockclass = selinux_policycap_extsockclass();
1158 
1159 	switch (family) {
1160 	case PF_UNIX:
1161 		switch (type) {
1162 		case SOCK_STREAM:
1163 		case SOCK_SEQPACKET:
1164 			return SECCLASS_UNIX_STREAM_SOCKET;
1165 		case SOCK_DGRAM:
1166 		case SOCK_RAW:
1167 			return SECCLASS_UNIX_DGRAM_SOCKET;
1168 		}
1169 		break;
1170 	case PF_INET:
1171 	case PF_INET6:
1172 		switch (type) {
1173 		case SOCK_STREAM:
1174 		case SOCK_SEQPACKET:
1175 			if (default_protocol_stream(protocol))
1176 				return SECCLASS_TCP_SOCKET;
1177 			else if (extsockclass && protocol == IPPROTO_SCTP)
1178 				return SECCLASS_SCTP_SOCKET;
1179 			else
1180 				return SECCLASS_RAWIP_SOCKET;
1181 		case SOCK_DGRAM:
1182 			if (default_protocol_dgram(protocol))
1183 				return SECCLASS_UDP_SOCKET;
1184 			else if (extsockclass && (protocol == IPPROTO_ICMP ||
1185 						  protocol == IPPROTO_ICMPV6))
1186 				return SECCLASS_ICMP_SOCKET;
1187 			else
1188 				return SECCLASS_RAWIP_SOCKET;
1189 		case SOCK_DCCP:
1190 			return SECCLASS_DCCP_SOCKET;
1191 		default:
1192 			return SECCLASS_RAWIP_SOCKET;
1193 		}
1194 		break;
1195 	case PF_NETLINK:
1196 		switch (protocol) {
1197 		case NETLINK_ROUTE:
1198 			return SECCLASS_NETLINK_ROUTE_SOCKET;
1199 		case NETLINK_SOCK_DIAG:
1200 			return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1201 		case NETLINK_NFLOG:
1202 			return SECCLASS_NETLINK_NFLOG_SOCKET;
1203 		case NETLINK_XFRM:
1204 			return SECCLASS_NETLINK_XFRM_SOCKET;
1205 		case NETLINK_SELINUX:
1206 			return SECCLASS_NETLINK_SELINUX_SOCKET;
1207 		case NETLINK_ISCSI:
1208 			return SECCLASS_NETLINK_ISCSI_SOCKET;
1209 		case NETLINK_AUDIT:
1210 			return SECCLASS_NETLINK_AUDIT_SOCKET;
1211 		case NETLINK_FIB_LOOKUP:
1212 			return SECCLASS_NETLINK_FIB_LOOKUP_SOCKET;
1213 		case NETLINK_CONNECTOR:
1214 			return SECCLASS_NETLINK_CONNECTOR_SOCKET;
1215 		case NETLINK_NETFILTER:
1216 			return SECCLASS_NETLINK_NETFILTER_SOCKET;
1217 		case NETLINK_DNRTMSG:
1218 			return SECCLASS_NETLINK_DNRT_SOCKET;
1219 		case NETLINK_KOBJECT_UEVENT:
1220 			return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1221 		case NETLINK_GENERIC:
1222 			return SECCLASS_NETLINK_GENERIC_SOCKET;
1223 		case NETLINK_SCSITRANSPORT:
1224 			return SECCLASS_NETLINK_SCSITRANSPORT_SOCKET;
1225 		case NETLINK_RDMA:
1226 			return SECCLASS_NETLINK_RDMA_SOCKET;
1227 		case NETLINK_CRYPTO:
1228 			return SECCLASS_NETLINK_CRYPTO_SOCKET;
1229 		default:
1230 			return SECCLASS_NETLINK_SOCKET;
1231 		}
1232 	case PF_PACKET:
1233 		return SECCLASS_PACKET_SOCKET;
1234 	case PF_KEY:
1235 		return SECCLASS_KEY_SOCKET;
1236 	case PF_APPLETALK:
1237 		return SECCLASS_APPLETALK_SOCKET;
1238 	}
1239 
1240 	if (extsockclass) {
1241 		switch (family) {
1242 		case PF_AX25:
1243 			return SECCLASS_AX25_SOCKET;
1244 		case PF_IPX:
1245 			return SECCLASS_IPX_SOCKET;
1246 		case PF_NETROM:
1247 			return SECCLASS_NETROM_SOCKET;
1248 		case PF_ATMPVC:
1249 			return SECCLASS_ATMPVC_SOCKET;
1250 		case PF_X25:
1251 			return SECCLASS_X25_SOCKET;
1252 		case PF_ROSE:
1253 			return SECCLASS_ROSE_SOCKET;
1254 		case PF_DECnet:
1255 			return SECCLASS_DECNET_SOCKET;
1256 		case PF_ATMSVC:
1257 			return SECCLASS_ATMSVC_SOCKET;
1258 		case PF_RDS:
1259 			return SECCLASS_RDS_SOCKET;
1260 		case PF_IRDA:
1261 			return SECCLASS_IRDA_SOCKET;
1262 		case PF_PPPOX:
1263 			return SECCLASS_PPPOX_SOCKET;
1264 		case PF_LLC:
1265 			return SECCLASS_LLC_SOCKET;
1266 		case PF_CAN:
1267 			return SECCLASS_CAN_SOCKET;
1268 		case PF_TIPC:
1269 			return SECCLASS_TIPC_SOCKET;
1270 		case PF_BLUETOOTH:
1271 			return SECCLASS_BLUETOOTH_SOCKET;
1272 		case PF_IUCV:
1273 			return SECCLASS_IUCV_SOCKET;
1274 		case PF_RXRPC:
1275 			return SECCLASS_RXRPC_SOCKET;
1276 		case PF_ISDN:
1277 			return SECCLASS_ISDN_SOCKET;
1278 		case PF_PHONET:
1279 			return SECCLASS_PHONET_SOCKET;
1280 		case PF_IEEE802154:
1281 			return SECCLASS_IEEE802154_SOCKET;
1282 		case PF_CAIF:
1283 			return SECCLASS_CAIF_SOCKET;
1284 		case PF_ALG:
1285 			return SECCLASS_ALG_SOCKET;
1286 		case PF_NFC:
1287 			return SECCLASS_NFC_SOCKET;
1288 		case PF_VSOCK:
1289 			return SECCLASS_VSOCK_SOCKET;
1290 		case PF_KCM:
1291 			return SECCLASS_KCM_SOCKET;
1292 		case PF_QIPCRTR:
1293 			return SECCLASS_QIPCRTR_SOCKET;
1294 		case PF_SMC:
1295 			return SECCLASS_SMC_SOCKET;
1296 		case PF_XDP:
1297 			return SECCLASS_XDP_SOCKET;
1298 		case PF_MCTP:
1299 			return SECCLASS_MCTP_SOCKET;
1300 #if PF_MAX > 46
1301 #error New address family defined, please update this function.
1302 #endif
1303 		}
1304 	}
1305 
1306 	return SECCLASS_SOCKET;
1307 }
1308 
1309 static int selinux_genfs_get_sid(struct dentry *dentry,
1310 				 u16 tclass,
1311 				 u16 flags,
1312 				 u32 *sid)
1313 {
1314 	int rc;
1315 	struct super_block *sb = dentry->d_sb;
1316 	char *buffer, *path;
1317 
1318 	buffer = (char *)__get_free_page(GFP_KERNEL);
1319 	if (!buffer)
1320 		return -ENOMEM;
1321 
1322 	path = dentry_path_raw(dentry, buffer, PAGE_SIZE);
1323 	if (IS_ERR(path))
1324 		rc = PTR_ERR(path);
1325 	else {
1326 		if (flags & SE_SBPROC) {
1327 			/* each process gets a /proc/PID/ entry. Strip off the
1328 			 * PID part to get a valid selinux labeling.
1329 			 * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */
1330 			while (path[1] >= '0' && path[1] <= '9') {
1331 				path[1] = '/';
1332 				path++;
1333 			}
1334 		}
1335 		rc = security_genfs_sid(sb->s_type->name,
1336 					path, tclass, sid);
1337 		if (rc == -ENOENT) {
1338 			/* No match in policy, mark as unlabeled. */
1339 			*sid = SECINITSID_UNLABELED;
1340 			rc = 0;
1341 		}
1342 	}
1343 	free_page((unsigned long)buffer);
1344 	return rc;
1345 }
1346 
1347 static int inode_doinit_use_xattr(struct inode *inode, struct dentry *dentry,
1348 				  u32 def_sid, u32 *sid)
1349 {
1350 #define INITCONTEXTLEN 255
1351 	char *context;
1352 	unsigned int len;
1353 	int rc;
1354 
1355 	len = INITCONTEXTLEN;
1356 	context = kmalloc(len + 1, GFP_NOFS);
1357 	if (!context)
1358 		return -ENOMEM;
1359 
1360 	context[len] = '\0';
1361 	rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, context, len);
1362 	if (rc == -ERANGE) {
1363 		kfree(context);
1364 
1365 		/* Need a larger buffer.  Query for the right size. */
1366 		rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, NULL, 0);
1367 		if (rc < 0)
1368 			return rc;
1369 
1370 		len = rc;
1371 		context = kmalloc(len + 1, GFP_NOFS);
1372 		if (!context)
1373 			return -ENOMEM;
1374 
1375 		context[len] = '\0';
1376 		rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX,
1377 				    context, len);
1378 	}
1379 	if (rc < 0) {
1380 		kfree(context);
1381 		if (rc != -ENODATA) {
1382 			pr_warn("SELinux: %s:  getxattr returned %d for dev=%s ino=%ld\n",
1383 				__func__, -rc, inode->i_sb->s_id, inode->i_ino);
1384 			return rc;
1385 		}
1386 		*sid = def_sid;
1387 		return 0;
1388 	}
1389 
1390 	rc = security_context_to_sid_default(context, rc, sid,
1391 					     def_sid, GFP_NOFS);
1392 	if (rc) {
1393 		char *dev = inode->i_sb->s_id;
1394 		unsigned long ino = inode->i_ino;
1395 
1396 		if (rc == -EINVAL) {
1397 			pr_notice_ratelimited("SELinux: inode=%lu on dev=%s was found to have an invalid context=%s.  This indicates you may need to relabel the inode or the filesystem in question.\n",
1398 					      ino, dev, context);
1399 		} else {
1400 			pr_warn("SELinux: %s:  context_to_sid(%s) returned %d for dev=%s ino=%ld\n",
1401 				__func__, context, -rc, dev, ino);
1402 		}
1403 	}
1404 	kfree(context);
1405 	return 0;
1406 }
1407 
1408 /* The inode's security attributes must be initialized before first use. */
1409 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1410 {
1411 	struct superblock_security_struct *sbsec = NULL;
1412 	struct inode_security_struct *isec = selinux_inode(inode);
1413 	u32 task_sid, sid = 0;
1414 	u16 sclass;
1415 	struct dentry *dentry;
1416 	int rc = 0;
1417 
1418 	if (isec->initialized == LABEL_INITIALIZED)
1419 		return 0;
1420 
1421 	spin_lock(&isec->lock);
1422 	if (isec->initialized == LABEL_INITIALIZED)
1423 		goto out_unlock;
1424 
1425 	if (isec->sclass == SECCLASS_FILE)
1426 		isec->sclass = inode_mode_to_security_class(inode->i_mode);
1427 
1428 	sbsec = selinux_superblock(inode->i_sb);
1429 	if (!(sbsec->flags & SE_SBINITIALIZED)) {
1430 		/* Defer initialization until selinux_complete_init,
1431 		   after the initial policy is loaded and the security
1432 		   server is ready to handle calls. */
1433 		spin_lock(&sbsec->isec_lock);
1434 		if (list_empty(&isec->list))
1435 			list_add(&isec->list, &sbsec->isec_head);
1436 		spin_unlock(&sbsec->isec_lock);
1437 		goto out_unlock;
1438 	}
1439 
1440 	sclass = isec->sclass;
1441 	task_sid = isec->task_sid;
1442 	sid = isec->sid;
1443 	isec->initialized = LABEL_PENDING;
1444 	spin_unlock(&isec->lock);
1445 
1446 	switch (sbsec->behavior) {
1447 	/*
1448 	 * In case of SECURITY_FS_USE_NATIVE we need to re-fetch the labels
1449 	 * via xattr when called from delayed_superblock_init().
1450 	 */
1451 	case SECURITY_FS_USE_NATIVE:
1452 	case SECURITY_FS_USE_XATTR:
1453 		if (!(inode->i_opflags & IOP_XATTR)) {
1454 			sid = sbsec->def_sid;
1455 			break;
1456 		}
1457 		/* Need a dentry, since the xattr API requires one.
1458 		   Life would be simpler if we could just pass the inode. */
1459 		if (opt_dentry) {
1460 			/* Called from d_instantiate or d_splice_alias. */
1461 			dentry = dget(opt_dentry);
1462 		} else {
1463 			/*
1464 			 * Called from selinux_complete_init, try to find a dentry.
1465 			 * Some filesystems really want a connected one, so try
1466 			 * that first.  We could split SECURITY_FS_USE_XATTR in
1467 			 * two, depending upon that...
1468 			 */
1469 			dentry = d_find_alias(inode);
1470 			if (!dentry)
1471 				dentry = d_find_any_alias(inode);
1472 		}
1473 		if (!dentry) {
1474 			/*
1475 			 * this is can be hit on boot when a file is accessed
1476 			 * before the policy is loaded.  When we load policy we
1477 			 * may find inodes that have no dentry on the
1478 			 * sbsec->isec_head list.  No reason to complain as these
1479 			 * will get fixed up the next time we go through
1480 			 * inode_doinit with a dentry, before these inodes could
1481 			 * be used again by userspace.
1482 			 */
1483 			goto out_invalid;
1484 		}
1485 
1486 		rc = inode_doinit_use_xattr(inode, dentry, sbsec->def_sid,
1487 					    &sid);
1488 		dput(dentry);
1489 		if (rc)
1490 			goto out;
1491 		break;
1492 	case SECURITY_FS_USE_TASK:
1493 		sid = task_sid;
1494 		break;
1495 	case SECURITY_FS_USE_TRANS:
1496 		/* Default to the fs SID. */
1497 		sid = sbsec->sid;
1498 
1499 		/* Try to obtain a transition SID. */
1500 		rc = security_transition_sid(task_sid, sid,
1501 					     sclass, NULL, &sid);
1502 		if (rc)
1503 			goto out;
1504 		break;
1505 	case SECURITY_FS_USE_MNTPOINT:
1506 		sid = sbsec->mntpoint_sid;
1507 		break;
1508 	default:
1509 		/* Default to the fs superblock SID. */
1510 		sid = sbsec->sid;
1511 
1512 		if ((sbsec->flags & SE_SBGENFS) &&
1513 		     (!S_ISLNK(inode->i_mode) ||
1514 		      selinux_policycap_genfs_seclabel_symlinks())) {
1515 			/* We must have a dentry to determine the label on
1516 			 * procfs inodes */
1517 			if (opt_dentry) {
1518 				/* Called from d_instantiate or
1519 				 * d_splice_alias. */
1520 				dentry = dget(opt_dentry);
1521 			} else {
1522 				/* Called from selinux_complete_init, try to
1523 				 * find a dentry.  Some filesystems really want
1524 				 * a connected one, so try that first.
1525 				 */
1526 				dentry = d_find_alias(inode);
1527 				if (!dentry)
1528 					dentry = d_find_any_alias(inode);
1529 			}
1530 			/*
1531 			 * This can be hit on boot when a file is accessed
1532 			 * before the policy is loaded.  When we load policy we
1533 			 * may find inodes that have no dentry on the
1534 			 * sbsec->isec_head list.  No reason to complain as
1535 			 * these will get fixed up the next time we go through
1536 			 * inode_doinit() with a dentry, before these inodes
1537 			 * could be used again by userspace.
1538 			 */
1539 			if (!dentry)
1540 				goto out_invalid;
1541 			rc = selinux_genfs_get_sid(dentry, sclass,
1542 						   sbsec->flags, &sid);
1543 			if (rc) {
1544 				dput(dentry);
1545 				goto out;
1546 			}
1547 
1548 			if ((sbsec->flags & SE_SBGENFS_XATTR) &&
1549 			    (inode->i_opflags & IOP_XATTR)) {
1550 				rc = inode_doinit_use_xattr(inode, dentry,
1551 							    sid, &sid);
1552 				if (rc) {
1553 					dput(dentry);
1554 					goto out;
1555 				}
1556 			}
1557 			dput(dentry);
1558 		}
1559 		break;
1560 	}
1561 
1562 out:
1563 	spin_lock(&isec->lock);
1564 	if (isec->initialized == LABEL_PENDING) {
1565 		if (rc) {
1566 			isec->initialized = LABEL_INVALID;
1567 			goto out_unlock;
1568 		}
1569 		isec->initialized = LABEL_INITIALIZED;
1570 		isec->sid = sid;
1571 	}
1572 
1573 out_unlock:
1574 	spin_unlock(&isec->lock);
1575 	return rc;
1576 
1577 out_invalid:
1578 	spin_lock(&isec->lock);
1579 	if (isec->initialized == LABEL_PENDING) {
1580 		isec->initialized = LABEL_INVALID;
1581 		isec->sid = sid;
1582 	}
1583 	spin_unlock(&isec->lock);
1584 	return 0;
1585 }
1586 
1587 /* Convert a Linux signal to an access vector. */
1588 static inline u32 signal_to_av(int sig)
1589 {
1590 	u32 perm = 0;
1591 
1592 	switch (sig) {
1593 	case SIGCHLD:
1594 		/* Commonly granted from child to parent. */
1595 		perm = PROCESS__SIGCHLD;
1596 		break;
1597 	case SIGKILL:
1598 		/* Cannot be caught or ignored */
1599 		perm = PROCESS__SIGKILL;
1600 		break;
1601 	case SIGSTOP:
1602 		/* Cannot be caught or ignored */
1603 		perm = PROCESS__SIGSTOP;
1604 		break;
1605 	default:
1606 		/* All other signals. */
1607 		perm = PROCESS__SIGNAL;
1608 		break;
1609 	}
1610 
1611 	return perm;
1612 }
1613 
1614 #if CAP_LAST_CAP > 63
1615 #error Fix SELinux to handle capabilities > 63.
1616 #endif
1617 
1618 /* Check whether a task is allowed to use a capability. */
1619 static int cred_has_capability(const struct cred *cred,
1620 			       int cap, unsigned int opts, bool initns)
1621 {
1622 	struct common_audit_data ad;
1623 	struct av_decision avd;
1624 	u16 sclass;
1625 	u32 sid = cred_sid(cred);
1626 	u32 av = CAP_TO_MASK(cap);
1627 	int rc;
1628 
1629 	ad.type = LSM_AUDIT_DATA_CAP;
1630 	ad.u.cap = cap;
1631 
1632 	switch (CAP_TO_INDEX(cap)) {
1633 	case 0:
1634 		sclass = initns ? SECCLASS_CAPABILITY : SECCLASS_CAP_USERNS;
1635 		break;
1636 	case 1:
1637 		sclass = initns ? SECCLASS_CAPABILITY2 : SECCLASS_CAP2_USERNS;
1638 		break;
1639 	default:
1640 		pr_err("SELinux:  out of range capability %d\n", cap);
1641 		BUG();
1642 		return -EINVAL;
1643 	}
1644 
1645 	rc = avc_has_perm_noaudit(sid, sid, sclass, av, 0, &avd);
1646 	if (!(opts & CAP_OPT_NOAUDIT)) {
1647 		int rc2 = avc_audit(sid, sid, sclass, av, &avd, rc, &ad);
1648 		if (rc2)
1649 			return rc2;
1650 	}
1651 	return rc;
1652 }
1653 
1654 /* Check whether a task has a particular permission to an inode.
1655    The 'adp' parameter is optional and allows other audit
1656    data to be passed (e.g. the dentry). */
1657 static int inode_has_perm(const struct cred *cred,
1658 			  struct inode *inode,
1659 			  u32 perms,
1660 			  struct common_audit_data *adp)
1661 {
1662 	struct inode_security_struct *isec;
1663 	u32 sid;
1664 
1665 	if (unlikely(IS_PRIVATE(inode)))
1666 		return 0;
1667 
1668 	sid = cred_sid(cred);
1669 	isec = selinux_inode(inode);
1670 
1671 	return avc_has_perm(sid, isec->sid, isec->sclass, perms, adp);
1672 }
1673 
1674 /* Same as inode_has_perm, but pass explicit audit data containing
1675    the dentry to help the auditing code to more easily generate the
1676    pathname if needed. */
1677 static inline int dentry_has_perm(const struct cred *cred,
1678 				  struct dentry *dentry,
1679 				  u32 av)
1680 {
1681 	struct inode *inode = d_backing_inode(dentry);
1682 	struct common_audit_data ad;
1683 
1684 	ad.type = LSM_AUDIT_DATA_DENTRY;
1685 	ad.u.dentry = dentry;
1686 	__inode_security_revalidate(inode, dentry, true);
1687 	return inode_has_perm(cred, inode, av, &ad);
1688 }
1689 
1690 /* Same as inode_has_perm, but pass explicit audit data containing
1691    the path to help the auditing code to more easily generate the
1692    pathname if needed. */
1693 static inline int path_has_perm(const struct cred *cred,
1694 				const struct path *path,
1695 				u32 av)
1696 {
1697 	struct inode *inode = d_backing_inode(path->dentry);
1698 	struct common_audit_data ad;
1699 
1700 	ad.type = LSM_AUDIT_DATA_PATH;
1701 	ad.u.path = *path;
1702 	__inode_security_revalidate(inode, path->dentry, true);
1703 	return inode_has_perm(cred, inode, av, &ad);
1704 }
1705 
1706 /* Same as path_has_perm, but uses the inode from the file struct. */
1707 static inline int file_path_has_perm(const struct cred *cred,
1708 				     struct file *file,
1709 				     u32 av)
1710 {
1711 	struct common_audit_data ad;
1712 
1713 	ad.type = LSM_AUDIT_DATA_FILE;
1714 	ad.u.file = file;
1715 	return inode_has_perm(cred, file_inode(file), av, &ad);
1716 }
1717 
1718 #ifdef CONFIG_BPF_SYSCALL
1719 static int bpf_fd_pass(const struct file *file, u32 sid);
1720 #endif
1721 
1722 /* Check whether a task can use an open file descriptor to
1723    access an inode in a given way.  Check access to the
1724    descriptor itself, and then use dentry_has_perm to
1725    check a particular permission to the file.
1726    Access to the descriptor is implicitly granted if it
1727    has the same SID as the process.  If av is zero, then
1728    access to the file is not checked, e.g. for cases
1729    where only the descriptor is affected like seek. */
1730 static int file_has_perm(const struct cred *cred,
1731 			 struct file *file,
1732 			 u32 av)
1733 {
1734 	struct file_security_struct *fsec = selinux_file(file);
1735 	struct inode *inode = file_inode(file);
1736 	struct common_audit_data ad;
1737 	u32 sid = cred_sid(cred);
1738 	int rc;
1739 
1740 	ad.type = LSM_AUDIT_DATA_FILE;
1741 	ad.u.file = file;
1742 
1743 	if (sid != fsec->sid) {
1744 		rc = avc_has_perm(sid, fsec->sid,
1745 				  SECCLASS_FD,
1746 				  FD__USE,
1747 				  &ad);
1748 		if (rc)
1749 			goto out;
1750 	}
1751 
1752 #ifdef CONFIG_BPF_SYSCALL
1753 	rc = bpf_fd_pass(file, cred_sid(cred));
1754 	if (rc)
1755 		return rc;
1756 #endif
1757 
1758 	/* av is zero if only checking access to the descriptor. */
1759 	rc = 0;
1760 	if (av)
1761 		rc = inode_has_perm(cred, inode, av, &ad);
1762 
1763 out:
1764 	return rc;
1765 }
1766 
1767 /*
1768  * Determine the label for an inode that might be unioned.
1769  */
1770 static int
1771 selinux_determine_inode_label(const struct task_security_struct *tsec,
1772 				 struct inode *dir,
1773 				 const struct qstr *name, u16 tclass,
1774 				 u32 *_new_isid)
1775 {
1776 	const struct superblock_security_struct *sbsec =
1777 						selinux_superblock(dir->i_sb);
1778 
1779 	if ((sbsec->flags & SE_SBINITIALIZED) &&
1780 	    (sbsec->behavior == SECURITY_FS_USE_MNTPOINT)) {
1781 		*_new_isid = sbsec->mntpoint_sid;
1782 	} else if ((sbsec->flags & SBLABEL_MNT) &&
1783 		   tsec->create_sid) {
1784 		*_new_isid = tsec->create_sid;
1785 	} else {
1786 		const struct inode_security_struct *dsec = inode_security(dir);
1787 		return security_transition_sid(tsec->sid,
1788 					       dsec->sid, tclass,
1789 					       name, _new_isid);
1790 	}
1791 
1792 	return 0;
1793 }
1794 
1795 /* Check whether a task can create a file. */
1796 static int may_create(struct inode *dir,
1797 		      struct dentry *dentry,
1798 		      u16 tclass)
1799 {
1800 	const struct task_security_struct *tsec = selinux_cred(current_cred());
1801 	struct inode_security_struct *dsec;
1802 	struct superblock_security_struct *sbsec;
1803 	u32 sid, newsid;
1804 	struct common_audit_data ad;
1805 	int rc;
1806 
1807 	dsec = inode_security(dir);
1808 	sbsec = selinux_superblock(dir->i_sb);
1809 
1810 	sid = tsec->sid;
1811 
1812 	ad.type = LSM_AUDIT_DATA_DENTRY;
1813 	ad.u.dentry = dentry;
1814 
1815 	rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR,
1816 			  DIR__ADD_NAME | DIR__SEARCH,
1817 			  &ad);
1818 	if (rc)
1819 		return rc;
1820 
1821 	rc = selinux_determine_inode_label(tsec, dir, &dentry->d_name, tclass,
1822 					   &newsid);
1823 	if (rc)
1824 		return rc;
1825 
1826 	rc = avc_has_perm(sid, newsid, tclass, FILE__CREATE, &ad);
1827 	if (rc)
1828 		return rc;
1829 
1830 	return avc_has_perm(newsid, sbsec->sid,
1831 			    SECCLASS_FILESYSTEM,
1832 			    FILESYSTEM__ASSOCIATE, &ad);
1833 }
1834 
1835 #define MAY_LINK	0
1836 #define MAY_UNLINK	1
1837 #define MAY_RMDIR	2
1838 
1839 /* Check whether a task can link, unlink, or rmdir a file/directory. */
1840 static int may_link(struct inode *dir,
1841 		    struct dentry *dentry,
1842 		    int kind)
1843 
1844 {
1845 	struct inode_security_struct *dsec, *isec;
1846 	struct common_audit_data ad;
1847 	u32 sid = current_sid();
1848 	u32 av;
1849 	int rc;
1850 
1851 	dsec = inode_security(dir);
1852 	isec = backing_inode_security(dentry);
1853 
1854 	ad.type = LSM_AUDIT_DATA_DENTRY;
1855 	ad.u.dentry = dentry;
1856 
1857 	av = DIR__SEARCH;
1858 	av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1859 	rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, av, &ad);
1860 	if (rc)
1861 		return rc;
1862 
1863 	switch (kind) {
1864 	case MAY_LINK:
1865 		av = FILE__LINK;
1866 		break;
1867 	case MAY_UNLINK:
1868 		av = FILE__UNLINK;
1869 		break;
1870 	case MAY_RMDIR:
1871 		av = DIR__RMDIR;
1872 		break;
1873 	default:
1874 		pr_warn("SELinux: %s:  unrecognized kind %d\n",
1875 			__func__, kind);
1876 		return 0;
1877 	}
1878 
1879 	rc = avc_has_perm(sid, isec->sid, isec->sclass, av, &ad);
1880 	return rc;
1881 }
1882 
1883 static inline int may_rename(struct inode *old_dir,
1884 			     struct dentry *old_dentry,
1885 			     struct inode *new_dir,
1886 			     struct dentry *new_dentry)
1887 {
1888 	struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1889 	struct common_audit_data ad;
1890 	u32 sid = current_sid();
1891 	u32 av;
1892 	int old_is_dir, new_is_dir;
1893 	int rc;
1894 
1895 	old_dsec = inode_security(old_dir);
1896 	old_isec = backing_inode_security(old_dentry);
1897 	old_is_dir = d_is_dir(old_dentry);
1898 	new_dsec = inode_security(new_dir);
1899 
1900 	ad.type = LSM_AUDIT_DATA_DENTRY;
1901 
1902 	ad.u.dentry = old_dentry;
1903 	rc = avc_has_perm(sid, old_dsec->sid, SECCLASS_DIR,
1904 			  DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1905 	if (rc)
1906 		return rc;
1907 	rc = avc_has_perm(sid, old_isec->sid,
1908 			  old_isec->sclass, FILE__RENAME, &ad);
1909 	if (rc)
1910 		return rc;
1911 	if (old_is_dir && new_dir != old_dir) {
1912 		rc = avc_has_perm(sid, old_isec->sid,
1913 				  old_isec->sclass, DIR__REPARENT, &ad);
1914 		if (rc)
1915 			return rc;
1916 	}
1917 
1918 	ad.u.dentry = new_dentry;
1919 	av = DIR__ADD_NAME | DIR__SEARCH;
1920 	if (d_is_positive(new_dentry))
1921 		av |= DIR__REMOVE_NAME;
1922 	rc = avc_has_perm(sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1923 	if (rc)
1924 		return rc;
1925 	if (d_is_positive(new_dentry)) {
1926 		new_isec = backing_inode_security(new_dentry);
1927 		new_is_dir = d_is_dir(new_dentry);
1928 		rc = avc_has_perm(sid, new_isec->sid,
1929 				  new_isec->sclass,
1930 				  (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1931 		if (rc)
1932 			return rc;
1933 	}
1934 
1935 	return 0;
1936 }
1937 
1938 /* Check whether a task can perform a filesystem operation. */
1939 static int superblock_has_perm(const struct cred *cred,
1940 			       const struct super_block *sb,
1941 			       u32 perms,
1942 			       struct common_audit_data *ad)
1943 {
1944 	struct superblock_security_struct *sbsec;
1945 	u32 sid = cred_sid(cred);
1946 
1947 	sbsec = selinux_superblock(sb);
1948 	return avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
1949 }
1950 
1951 /* Convert a Linux mode and permission mask to an access vector. */
1952 static inline u32 file_mask_to_av(int mode, int mask)
1953 {
1954 	u32 av = 0;
1955 
1956 	if (!S_ISDIR(mode)) {
1957 		if (mask & MAY_EXEC)
1958 			av |= FILE__EXECUTE;
1959 		if (mask & MAY_READ)
1960 			av |= FILE__READ;
1961 
1962 		if (mask & MAY_APPEND)
1963 			av |= FILE__APPEND;
1964 		else if (mask & MAY_WRITE)
1965 			av |= FILE__WRITE;
1966 
1967 	} else {
1968 		if (mask & MAY_EXEC)
1969 			av |= DIR__SEARCH;
1970 		if (mask & MAY_WRITE)
1971 			av |= DIR__WRITE;
1972 		if (mask & MAY_READ)
1973 			av |= DIR__READ;
1974 	}
1975 
1976 	return av;
1977 }
1978 
1979 /* Convert a Linux file to an access vector. */
1980 static inline u32 file_to_av(const struct file *file)
1981 {
1982 	u32 av = 0;
1983 
1984 	if (file->f_mode & FMODE_READ)
1985 		av |= FILE__READ;
1986 	if (file->f_mode & FMODE_WRITE) {
1987 		if (file->f_flags & O_APPEND)
1988 			av |= FILE__APPEND;
1989 		else
1990 			av |= FILE__WRITE;
1991 	}
1992 	if (!av) {
1993 		/*
1994 		 * Special file opened with flags 3 for ioctl-only use.
1995 		 */
1996 		av = FILE__IOCTL;
1997 	}
1998 
1999 	return av;
2000 }
2001 
2002 /*
2003  * Convert a file to an access vector and include the correct
2004  * open permission.
2005  */
2006 static inline u32 open_file_to_av(struct file *file)
2007 {
2008 	u32 av = file_to_av(file);
2009 	struct inode *inode = file_inode(file);
2010 
2011 	if (selinux_policycap_openperm() &&
2012 	    inode->i_sb->s_magic != SOCKFS_MAGIC)
2013 		av |= FILE__OPEN;
2014 
2015 	return av;
2016 }
2017 
2018 /* Hook functions begin here. */
2019 
2020 static int selinux_binder_set_context_mgr(const struct cred *mgr)
2021 {
2022 	return avc_has_perm(current_sid(), cred_sid(mgr), SECCLASS_BINDER,
2023 			    BINDER__SET_CONTEXT_MGR, NULL);
2024 }
2025 
2026 static int selinux_binder_transaction(const struct cred *from,
2027 				      const struct cred *to)
2028 {
2029 	u32 mysid = current_sid();
2030 	u32 fromsid = cred_sid(from);
2031 	u32 tosid = cred_sid(to);
2032 	int rc;
2033 
2034 	if (mysid != fromsid) {
2035 		rc = avc_has_perm(mysid, fromsid, SECCLASS_BINDER,
2036 				  BINDER__IMPERSONATE, NULL);
2037 		if (rc)
2038 			return rc;
2039 	}
2040 
2041 	return avc_has_perm(fromsid, tosid,
2042 			    SECCLASS_BINDER, BINDER__CALL, NULL);
2043 }
2044 
2045 static int selinux_binder_transfer_binder(const struct cred *from,
2046 					  const struct cred *to)
2047 {
2048 	return avc_has_perm(cred_sid(from), cred_sid(to),
2049 			    SECCLASS_BINDER, BINDER__TRANSFER,
2050 			    NULL);
2051 }
2052 
2053 static int selinux_binder_transfer_file(const struct cred *from,
2054 					const struct cred *to,
2055 					const struct file *file)
2056 {
2057 	u32 sid = cred_sid(to);
2058 	struct file_security_struct *fsec = selinux_file(file);
2059 	struct dentry *dentry = file->f_path.dentry;
2060 	struct inode_security_struct *isec;
2061 	struct common_audit_data ad;
2062 	int rc;
2063 
2064 	ad.type = LSM_AUDIT_DATA_PATH;
2065 	ad.u.path = file->f_path;
2066 
2067 	if (sid != fsec->sid) {
2068 		rc = avc_has_perm(sid, fsec->sid,
2069 				  SECCLASS_FD,
2070 				  FD__USE,
2071 				  &ad);
2072 		if (rc)
2073 			return rc;
2074 	}
2075 
2076 #ifdef CONFIG_BPF_SYSCALL
2077 	rc = bpf_fd_pass(file, sid);
2078 	if (rc)
2079 		return rc;
2080 #endif
2081 
2082 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2083 		return 0;
2084 
2085 	isec = backing_inode_security(dentry);
2086 	return avc_has_perm(sid, isec->sid, isec->sclass, file_to_av(file),
2087 			    &ad);
2088 }
2089 
2090 static int selinux_ptrace_access_check(struct task_struct *child,
2091 				       unsigned int mode)
2092 {
2093 	u32 sid = current_sid();
2094 	u32 csid = task_sid_obj(child);
2095 
2096 	if (mode & PTRACE_MODE_READ)
2097 		return avc_has_perm(sid, csid, SECCLASS_FILE, FILE__READ,
2098 				NULL);
2099 
2100 	return avc_has_perm(sid, csid, SECCLASS_PROCESS, PROCESS__PTRACE,
2101 			NULL);
2102 }
2103 
2104 static int selinux_ptrace_traceme(struct task_struct *parent)
2105 {
2106 	return avc_has_perm(task_sid_obj(parent), task_sid_obj(current),
2107 			    SECCLASS_PROCESS, PROCESS__PTRACE, NULL);
2108 }
2109 
2110 static int selinux_capget(const struct task_struct *target, kernel_cap_t *effective,
2111 			  kernel_cap_t *inheritable, kernel_cap_t *permitted)
2112 {
2113 	return avc_has_perm(current_sid(), task_sid_obj(target),
2114 			SECCLASS_PROCESS, PROCESS__GETCAP, NULL);
2115 }
2116 
2117 static int selinux_capset(struct cred *new, const struct cred *old,
2118 			  const kernel_cap_t *effective,
2119 			  const kernel_cap_t *inheritable,
2120 			  const kernel_cap_t *permitted)
2121 {
2122 	return avc_has_perm(cred_sid(old), cred_sid(new), SECCLASS_PROCESS,
2123 			    PROCESS__SETCAP, NULL);
2124 }
2125 
2126 /*
2127  * (This comment used to live with the selinux_task_setuid hook,
2128  * which was removed).
2129  *
2130  * Since setuid only affects the current process, and since the SELinux
2131  * controls are not based on the Linux identity attributes, SELinux does not
2132  * need to control this operation.  However, SELinux does control the use of
2133  * the CAP_SETUID and CAP_SETGID capabilities using the capable hook.
2134  */
2135 
2136 static int selinux_capable(const struct cred *cred, struct user_namespace *ns,
2137 			   int cap, unsigned int opts)
2138 {
2139 	return cred_has_capability(cred, cap, opts, ns == &init_user_ns);
2140 }
2141 
2142 static int selinux_quotactl(int cmds, int type, int id, const struct super_block *sb)
2143 {
2144 	const struct cred *cred = current_cred();
2145 	int rc = 0;
2146 
2147 	if (!sb)
2148 		return 0;
2149 
2150 	switch (cmds) {
2151 	case Q_SYNC:
2152 	case Q_QUOTAON:
2153 	case Q_QUOTAOFF:
2154 	case Q_SETINFO:
2155 	case Q_SETQUOTA:
2156 	case Q_XQUOTAOFF:
2157 	case Q_XQUOTAON:
2158 	case Q_XSETQLIM:
2159 		rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
2160 		break;
2161 	case Q_GETFMT:
2162 	case Q_GETINFO:
2163 	case Q_GETQUOTA:
2164 	case Q_XGETQUOTA:
2165 	case Q_XGETQSTAT:
2166 	case Q_XGETQSTATV:
2167 	case Q_XGETNEXTQUOTA:
2168 		rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
2169 		break;
2170 	default:
2171 		rc = 0;  /* let the kernel handle invalid cmds */
2172 		break;
2173 	}
2174 	return rc;
2175 }
2176 
2177 static int selinux_quota_on(struct dentry *dentry)
2178 {
2179 	const struct cred *cred = current_cred();
2180 
2181 	return dentry_has_perm(cred, dentry, FILE__QUOTAON);
2182 }
2183 
2184 static int selinux_syslog(int type)
2185 {
2186 	switch (type) {
2187 	case SYSLOG_ACTION_READ_ALL:	/* Read last kernel messages */
2188 	case SYSLOG_ACTION_SIZE_BUFFER:	/* Return size of the log buffer */
2189 		return avc_has_perm(current_sid(), SECINITSID_KERNEL,
2190 				    SECCLASS_SYSTEM, SYSTEM__SYSLOG_READ, NULL);
2191 	case SYSLOG_ACTION_CONSOLE_OFF:	/* Disable logging to console */
2192 	case SYSLOG_ACTION_CONSOLE_ON:	/* Enable logging to console */
2193 	/* Set level of messages printed to console */
2194 	case SYSLOG_ACTION_CONSOLE_LEVEL:
2195 		return avc_has_perm(current_sid(), SECINITSID_KERNEL,
2196 				    SECCLASS_SYSTEM, SYSTEM__SYSLOG_CONSOLE,
2197 				    NULL);
2198 	}
2199 	/* All other syslog types */
2200 	return avc_has_perm(current_sid(), SECINITSID_KERNEL,
2201 			    SECCLASS_SYSTEM, SYSTEM__SYSLOG_MOD, NULL);
2202 }
2203 
2204 /*
2205  * Check that a process has enough memory to allocate a new virtual
2206  * mapping. 0 means there is enough memory for the allocation to
2207  * succeed and -ENOMEM implies there is not.
2208  *
2209  * Do not audit the selinux permission check, as this is applied to all
2210  * processes that allocate mappings.
2211  */
2212 static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
2213 {
2214 	int rc, cap_sys_admin = 0;
2215 
2216 	rc = cred_has_capability(current_cred(), CAP_SYS_ADMIN,
2217 				 CAP_OPT_NOAUDIT, true);
2218 	if (rc == 0)
2219 		cap_sys_admin = 1;
2220 
2221 	return cap_sys_admin;
2222 }
2223 
2224 /* binprm security operations */
2225 
2226 static u32 ptrace_parent_sid(void)
2227 {
2228 	u32 sid = 0;
2229 	struct task_struct *tracer;
2230 
2231 	rcu_read_lock();
2232 	tracer = ptrace_parent(current);
2233 	if (tracer)
2234 		sid = task_sid_obj(tracer);
2235 	rcu_read_unlock();
2236 
2237 	return sid;
2238 }
2239 
2240 static int check_nnp_nosuid(const struct linux_binprm *bprm,
2241 			    const struct task_security_struct *old_tsec,
2242 			    const struct task_security_struct *new_tsec)
2243 {
2244 	int nnp = (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS);
2245 	int nosuid = !mnt_may_suid(bprm->file->f_path.mnt);
2246 	int rc;
2247 	u32 av;
2248 
2249 	if (!nnp && !nosuid)
2250 		return 0; /* neither NNP nor nosuid */
2251 
2252 	if (new_tsec->sid == old_tsec->sid)
2253 		return 0; /* No change in credentials */
2254 
2255 	/*
2256 	 * If the policy enables the nnp_nosuid_transition policy capability,
2257 	 * then we permit transitions under NNP or nosuid if the
2258 	 * policy allows the corresponding permission between
2259 	 * the old and new contexts.
2260 	 */
2261 	if (selinux_policycap_nnp_nosuid_transition()) {
2262 		av = 0;
2263 		if (nnp)
2264 			av |= PROCESS2__NNP_TRANSITION;
2265 		if (nosuid)
2266 			av |= PROCESS2__NOSUID_TRANSITION;
2267 		rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2268 				  SECCLASS_PROCESS2, av, NULL);
2269 		if (!rc)
2270 			return 0;
2271 	}
2272 
2273 	/*
2274 	 * We also permit NNP or nosuid transitions to bounded SIDs,
2275 	 * i.e. SIDs that are guaranteed to only be allowed a subset
2276 	 * of the permissions of the current SID.
2277 	 */
2278 	rc = security_bounded_transition(old_tsec->sid,
2279 					 new_tsec->sid);
2280 	if (!rc)
2281 		return 0;
2282 
2283 	/*
2284 	 * On failure, preserve the errno values for NNP vs nosuid.
2285 	 * NNP:  Operation not permitted for caller.
2286 	 * nosuid:  Permission denied to file.
2287 	 */
2288 	if (nnp)
2289 		return -EPERM;
2290 	return -EACCES;
2291 }
2292 
2293 static int selinux_bprm_creds_for_exec(struct linux_binprm *bprm)
2294 {
2295 	const struct task_security_struct *old_tsec;
2296 	struct task_security_struct *new_tsec;
2297 	struct inode_security_struct *isec;
2298 	struct common_audit_data ad;
2299 	struct inode *inode = file_inode(bprm->file);
2300 	int rc;
2301 
2302 	/* SELinux context only depends on initial program or script and not
2303 	 * the script interpreter */
2304 
2305 	old_tsec = selinux_cred(current_cred());
2306 	new_tsec = selinux_cred(bprm->cred);
2307 	isec = inode_security(inode);
2308 
2309 	/* Default to the current task SID. */
2310 	new_tsec->sid = old_tsec->sid;
2311 	new_tsec->osid = old_tsec->sid;
2312 
2313 	/* Reset fs, key, and sock SIDs on execve. */
2314 	new_tsec->create_sid = 0;
2315 	new_tsec->keycreate_sid = 0;
2316 	new_tsec->sockcreate_sid = 0;
2317 
2318 	/*
2319 	 * Before policy is loaded, label any task outside kernel space
2320 	 * as SECINITSID_INIT, so that any userspace tasks surviving from
2321 	 * early boot end up with a label different from SECINITSID_KERNEL
2322 	 * (if the policy chooses to set SECINITSID_INIT != SECINITSID_KERNEL).
2323 	 */
2324 	if (!selinux_initialized()) {
2325 		new_tsec->sid = SECINITSID_INIT;
2326 		/* also clear the exec_sid just in case */
2327 		new_tsec->exec_sid = 0;
2328 		return 0;
2329 	}
2330 
2331 	if (old_tsec->exec_sid) {
2332 		new_tsec->sid = old_tsec->exec_sid;
2333 		/* Reset exec SID on execve. */
2334 		new_tsec->exec_sid = 0;
2335 
2336 		/* Fail on NNP or nosuid if not an allowed transition. */
2337 		rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2338 		if (rc)
2339 			return rc;
2340 	} else {
2341 		/* Check for a default transition on this program. */
2342 		rc = security_transition_sid(old_tsec->sid,
2343 					     isec->sid, SECCLASS_PROCESS, NULL,
2344 					     &new_tsec->sid);
2345 		if (rc)
2346 			return rc;
2347 
2348 		/*
2349 		 * Fallback to old SID on NNP or nosuid if not an allowed
2350 		 * transition.
2351 		 */
2352 		rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2353 		if (rc)
2354 			new_tsec->sid = old_tsec->sid;
2355 	}
2356 
2357 	ad.type = LSM_AUDIT_DATA_FILE;
2358 	ad.u.file = bprm->file;
2359 
2360 	if (new_tsec->sid == old_tsec->sid) {
2361 		rc = avc_has_perm(old_tsec->sid, isec->sid,
2362 				  SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2363 		if (rc)
2364 			return rc;
2365 	} else {
2366 		/* Check permissions for the transition. */
2367 		rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2368 				  SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2369 		if (rc)
2370 			return rc;
2371 
2372 		rc = avc_has_perm(new_tsec->sid, isec->sid,
2373 				  SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2374 		if (rc)
2375 			return rc;
2376 
2377 		/* Check for shared state */
2378 		if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2379 			rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2380 					  SECCLASS_PROCESS, PROCESS__SHARE,
2381 					  NULL);
2382 			if (rc)
2383 				return -EPERM;
2384 		}
2385 
2386 		/* Make sure that anyone attempting to ptrace over a task that
2387 		 * changes its SID has the appropriate permit */
2388 		if (bprm->unsafe & LSM_UNSAFE_PTRACE) {
2389 			u32 ptsid = ptrace_parent_sid();
2390 			if (ptsid != 0) {
2391 				rc = avc_has_perm(ptsid, new_tsec->sid,
2392 						  SECCLASS_PROCESS,
2393 						  PROCESS__PTRACE, NULL);
2394 				if (rc)
2395 					return -EPERM;
2396 			}
2397 		}
2398 
2399 		/* Clear any possibly unsafe personality bits on exec: */
2400 		bprm->per_clear |= PER_CLEAR_ON_SETID;
2401 
2402 		/* Enable secure mode for SIDs transitions unless
2403 		   the noatsecure permission is granted between
2404 		   the two SIDs, i.e. ahp returns 0. */
2405 		rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2406 				  SECCLASS_PROCESS, PROCESS__NOATSECURE,
2407 				  NULL);
2408 		bprm->secureexec |= !!rc;
2409 	}
2410 
2411 	return 0;
2412 }
2413 
2414 static int match_file(const void *p, struct file *file, unsigned fd)
2415 {
2416 	return file_has_perm(p, file, file_to_av(file)) ? fd + 1 : 0;
2417 }
2418 
2419 /* Derived from fs/exec.c:flush_old_files. */
2420 static inline void flush_unauthorized_files(const struct cred *cred,
2421 					    struct files_struct *files)
2422 {
2423 	struct file *file, *devnull = NULL;
2424 	struct tty_struct *tty;
2425 	int drop_tty = 0;
2426 	unsigned n;
2427 
2428 	tty = get_current_tty();
2429 	if (tty) {
2430 		spin_lock(&tty->files_lock);
2431 		if (!list_empty(&tty->tty_files)) {
2432 			struct tty_file_private *file_priv;
2433 
2434 			/* Revalidate access to controlling tty.
2435 			   Use file_path_has_perm on the tty path directly
2436 			   rather than using file_has_perm, as this particular
2437 			   open file may belong to another process and we are
2438 			   only interested in the inode-based check here. */
2439 			file_priv = list_first_entry(&tty->tty_files,
2440 						struct tty_file_private, list);
2441 			file = file_priv->file;
2442 			if (file_path_has_perm(cred, file, FILE__READ | FILE__WRITE))
2443 				drop_tty = 1;
2444 		}
2445 		spin_unlock(&tty->files_lock);
2446 		tty_kref_put(tty);
2447 	}
2448 	/* Reset controlling tty. */
2449 	if (drop_tty)
2450 		no_tty();
2451 
2452 	/* Revalidate access to inherited open files. */
2453 	n = iterate_fd(files, 0, match_file, cred);
2454 	if (!n) /* none found? */
2455 		return;
2456 
2457 	devnull = dentry_open(&selinux_null, O_RDWR, cred);
2458 	if (IS_ERR(devnull))
2459 		devnull = NULL;
2460 	/* replace all the matching ones with this */
2461 	do {
2462 		replace_fd(n - 1, devnull, 0);
2463 	} while ((n = iterate_fd(files, n, match_file, cred)) != 0);
2464 	if (devnull)
2465 		fput(devnull);
2466 }
2467 
2468 /*
2469  * Prepare a process for imminent new credential changes due to exec
2470  */
2471 static void selinux_bprm_committing_creds(const struct linux_binprm *bprm)
2472 {
2473 	struct task_security_struct *new_tsec;
2474 	struct rlimit *rlim, *initrlim;
2475 	int rc, i;
2476 
2477 	new_tsec = selinux_cred(bprm->cred);
2478 	if (new_tsec->sid == new_tsec->osid)
2479 		return;
2480 
2481 	/* Close files for which the new task SID is not authorized. */
2482 	flush_unauthorized_files(bprm->cred, current->files);
2483 
2484 	/* Always clear parent death signal on SID transitions. */
2485 	current->pdeath_signal = 0;
2486 
2487 	/* Check whether the new SID can inherit resource limits from the old
2488 	 * SID.  If not, reset all soft limits to the lower of the current
2489 	 * task's hard limit and the init task's soft limit.
2490 	 *
2491 	 * Note that the setting of hard limits (even to lower them) can be
2492 	 * controlled by the setrlimit check.  The inclusion of the init task's
2493 	 * soft limit into the computation is to avoid resetting soft limits
2494 	 * higher than the default soft limit for cases where the default is
2495 	 * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2496 	 */
2497 	rc = avc_has_perm(new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
2498 			  PROCESS__RLIMITINH, NULL);
2499 	if (rc) {
2500 		/* protect against do_prlimit() */
2501 		task_lock(current);
2502 		for (i = 0; i < RLIM_NLIMITS; i++) {
2503 			rlim = current->signal->rlim + i;
2504 			initrlim = init_task.signal->rlim + i;
2505 			rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2506 		}
2507 		task_unlock(current);
2508 		if (IS_ENABLED(CONFIG_POSIX_TIMERS))
2509 			update_rlimit_cpu(current, rlimit(RLIMIT_CPU));
2510 	}
2511 }
2512 
2513 /*
2514  * Clean up the process immediately after the installation of new credentials
2515  * due to exec
2516  */
2517 static void selinux_bprm_committed_creds(const struct linux_binprm *bprm)
2518 {
2519 	const struct task_security_struct *tsec = selinux_cred(current_cred());
2520 	u32 osid, sid;
2521 	int rc;
2522 
2523 	osid = tsec->osid;
2524 	sid = tsec->sid;
2525 
2526 	if (sid == osid)
2527 		return;
2528 
2529 	/* Check whether the new SID can inherit signal state from the old SID.
2530 	 * If not, clear itimers to avoid subsequent signal generation and
2531 	 * flush and unblock signals.
2532 	 *
2533 	 * This must occur _after_ the task SID has been updated so that any
2534 	 * kill done after the flush will be checked against the new SID.
2535 	 */
2536 	rc = avc_has_perm(osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
2537 	if (rc) {
2538 		clear_itimer();
2539 
2540 		spin_lock_irq(&unrcu_pointer(current->sighand)->siglock);
2541 		if (!fatal_signal_pending(current)) {
2542 			flush_sigqueue(&current->pending);
2543 			flush_sigqueue(&current->signal->shared_pending);
2544 			flush_signal_handlers(current, 1);
2545 			sigemptyset(&current->blocked);
2546 			recalc_sigpending();
2547 		}
2548 		spin_unlock_irq(&unrcu_pointer(current->sighand)->siglock);
2549 	}
2550 
2551 	/* Wake up the parent if it is waiting so that it can recheck
2552 	 * wait permission to the new task SID. */
2553 	read_lock(&tasklist_lock);
2554 	__wake_up_parent(current, unrcu_pointer(current->real_parent));
2555 	read_unlock(&tasklist_lock);
2556 }
2557 
2558 /* superblock security operations */
2559 
2560 static int selinux_sb_alloc_security(struct super_block *sb)
2561 {
2562 	struct superblock_security_struct *sbsec = selinux_superblock(sb);
2563 
2564 	mutex_init(&sbsec->lock);
2565 	INIT_LIST_HEAD(&sbsec->isec_head);
2566 	spin_lock_init(&sbsec->isec_lock);
2567 	sbsec->sid = SECINITSID_UNLABELED;
2568 	sbsec->def_sid = SECINITSID_FILE;
2569 	sbsec->mntpoint_sid = SECINITSID_UNLABELED;
2570 
2571 	return 0;
2572 }
2573 
2574 static inline int opt_len(const char *s)
2575 {
2576 	bool open_quote = false;
2577 	int len;
2578 	char c;
2579 
2580 	for (len = 0; (c = s[len]) != '\0'; len++) {
2581 		if (c == '"')
2582 			open_quote = !open_quote;
2583 		if (c == ',' && !open_quote)
2584 			break;
2585 	}
2586 	return len;
2587 }
2588 
2589 static int selinux_sb_eat_lsm_opts(char *options, void **mnt_opts)
2590 {
2591 	char *from = options;
2592 	char *to = options;
2593 	bool first = true;
2594 	int rc;
2595 
2596 	while (1) {
2597 		int len = opt_len(from);
2598 		int token;
2599 		char *arg = NULL;
2600 
2601 		token = match_opt_prefix(from, len, &arg);
2602 
2603 		if (token != Opt_error) {
2604 			char *p, *q;
2605 
2606 			/* strip quotes */
2607 			if (arg) {
2608 				for (p = q = arg; p < from + len; p++) {
2609 					char c = *p;
2610 					if (c != '"')
2611 						*q++ = c;
2612 				}
2613 				arg = kmemdup_nul(arg, q - arg, GFP_KERNEL);
2614 				if (!arg) {
2615 					rc = -ENOMEM;
2616 					goto free_opt;
2617 				}
2618 			}
2619 			rc = selinux_add_opt(token, arg, mnt_opts);
2620 			kfree(arg);
2621 			arg = NULL;
2622 			if (unlikely(rc)) {
2623 				goto free_opt;
2624 			}
2625 		} else {
2626 			if (!first) {	// copy with preceding comma
2627 				from--;
2628 				len++;
2629 			}
2630 			if (to != from)
2631 				memmove(to, from, len);
2632 			to += len;
2633 			first = false;
2634 		}
2635 		if (!from[len])
2636 			break;
2637 		from += len + 1;
2638 	}
2639 	*to = '\0';
2640 	return 0;
2641 
2642 free_opt:
2643 	if (*mnt_opts) {
2644 		selinux_free_mnt_opts(*mnt_opts);
2645 		*mnt_opts = NULL;
2646 	}
2647 	return rc;
2648 }
2649 
2650 static int selinux_sb_mnt_opts_compat(struct super_block *sb, void *mnt_opts)
2651 {
2652 	struct selinux_mnt_opts *opts = mnt_opts;
2653 	struct superblock_security_struct *sbsec = selinux_superblock(sb);
2654 
2655 	/*
2656 	 * Superblock not initialized (i.e. no options) - reject if any
2657 	 * options specified, otherwise accept.
2658 	 */
2659 	if (!(sbsec->flags & SE_SBINITIALIZED))
2660 		return opts ? 1 : 0;
2661 
2662 	/*
2663 	 * Superblock initialized and no options specified - reject if
2664 	 * superblock has any options set, otherwise accept.
2665 	 */
2666 	if (!opts)
2667 		return (sbsec->flags & SE_MNTMASK) ? 1 : 0;
2668 
2669 	if (opts->fscontext_sid) {
2670 		if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
2671 			       opts->fscontext_sid))
2672 			return 1;
2673 	}
2674 	if (opts->context_sid) {
2675 		if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
2676 			       opts->context_sid))
2677 			return 1;
2678 	}
2679 	if (opts->rootcontext_sid) {
2680 		struct inode_security_struct *root_isec;
2681 
2682 		root_isec = backing_inode_security(sb->s_root);
2683 		if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
2684 			       opts->rootcontext_sid))
2685 			return 1;
2686 	}
2687 	if (opts->defcontext_sid) {
2688 		if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
2689 			       opts->defcontext_sid))
2690 			return 1;
2691 	}
2692 	return 0;
2693 }
2694 
2695 static int selinux_sb_remount(struct super_block *sb, void *mnt_opts)
2696 {
2697 	struct selinux_mnt_opts *opts = mnt_opts;
2698 	struct superblock_security_struct *sbsec = selinux_superblock(sb);
2699 
2700 	if (!(sbsec->flags & SE_SBINITIALIZED))
2701 		return 0;
2702 
2703 	if (!opts)
2704 		return 0;
2705 
2706 	if (opts->fscontext_sid) {
2707 		if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
2708 			       opts->fscontext_sid))
2709 			goto out_bad_option;
2710 	}
2711 	if (opts->context_sid) {
2712 		if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
2713 			       opts->context_sid))
2714 			goto out_bad_option;
2715 	}
2716 	if (opts->rootcontext_sid) {
2717 		struct inode_security_struct *root_isec;
2718 		root_isec = backing_inode_security(sb->s_root);
2719 		if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
2720 			       opts->rootcontext_sid))
2721 			goto out_bad_option;
2722 	}
2723 	if (opts->defcontext_sid) {
2724 		if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
2725 			       opts->defcontext_sid))
2726 			goto out_bad_option;
2727 	}
2728 	return 0;
2729 
2730 out_bad_option:
2731 	pr_warn("SELinux: unable to change security options "
2732 	       "during remount (dev %s, type=%s)\n", sb->s_id,
2733 	       sb->s_type->name);
2734 	return -EINVAL;
2735 }
2736 
2737 static int selinux_sb_kern_mount(const struct super_block *sb)
2738 {
2739 	const struct cred *cred = current_cred();
2740 	struct common_audit_data ad;
2741 
2742 	ad.type = LSM_AUDIT_DATA_DENTRY;
2743 	ad.u.dentry = sb->s_root;
2744 	return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2745 }
2746 
2747 static int selinux_sb_statfs(struct dentry *dentry)
2748 {
2749 	const struct cred *cred = current_cred();
2750 	struct common_audit_data ad;
2751 
2752 	ad.type = LSM_AUDIT_DATA_DENTRY;
2753 	ad.u.dentry = dentry->d_sb->s_root;
2754 	return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2755 }
2756 
2757 static int selinux_mount(const char *dev_name,
2758 			 const struct path *path,
2759 			 const char *type,
2760 			 unsigned long flags,
2761 			 void *data)
2762 {
2763 	const struct cred *cred = current_cred();
2764 
2765 	if (flags & MS_REMOUNT)
2766 		return superblock_has_perm(cred, path->dentry->d_sb,
2767 					   FILESYSTEM__REMOUNT, NULL);
2768 	else
2769 		return path_has_perm(cred, path, FILE__MOUNTON);
2770 }
2771 
2772 static int selinux_move_mount(const struct path *from_path,
2773 			      const struct path *to_path)
2774 {
2775 	const struct cred *cred = current_cred();
2776 
2777 	return path_has_perm(cred, to_path, FILE__MOUNTON);
2778 }
2779 
2780 static int selinux_umount(struct vfsmount *mnt, int flags)
2781 {
2782 	const struct cred *cred = current_cred();
2783 
2784 	return superblock_has_perm(cred, mnt->mnt_sb,
2785 				   FILESYSTEM__UNMOUNT, NULL);
2786 }
2787 
2788 static int selinux_fs_context_submount(struct fs_context *fc,
2789 				   struct super_block *reference)
2790 {
2791 	const struct superblock_security_struct *sbsec = selinux_superblock(reference);
2792 	struct selinux_mnt_opts *opts;
2793 
2794 	/*
2795 	 * Ensure that fc->security remains NULL when no options are set
2796 	 * as expected by selinux_set_mnt_opts().
2797 	 */
2798 	if (!(sbsec->flags & (FSCONTEXT_MNT|CONTEXT_MNT|DEFCONTEXT_MNT)))
2799 		return 0;
2800 
2801 	opts = kzalloc(sizeof(*opts), GFP_KERNEL);
2802 	if (!opts)
2803 		return -ENOMEM;
2804 
2805 	if (sbsec->flags & FSCONTEXT_MNT)
2806 		opts->fscontext_sid = sbsec->sid;
2807 	if (sbsec->flags & CONTEXT_MNT)
2808 		opts->context_sid = sbsec->mntpoint_sid;
2809 	if (sbsec->flags & DEFCONTEXT_MNT)
2810 		opts->defcontext_sid = sbsec->def_sid;
2811 	fc->security = opts;
2812 	return 0;
2813 }
2814 
2815 static int selinux_fs_context_dup(struct fs_context *fc,
2816 				  struct fs_context *src_fc)
2817 {
2818 	const struct selinux_mnt_opts *src = src_fc->security;
2819 
2820 	if (!src)
2821 		return 0;
2822 
2823 	fc->security = kmemdup(src, sizeof(*src), GFP_KERNEL);
2824 	return fc->security ? 0 : -ENOMEM;
2825 }
2826 
2827 static const struct fs_parameter_spec selinux_fs_parameters[] = {
2828 	fsparam_string(CONTEXT_STR,	Opt_context),
2829 	fsparam_string(DEFCONTEXT_STR,	Opt_defcontext),
2830 	fsparam_string(FSCONTEXT_STR,	Opt_fscontext),
2831 	fsparam_string(ROOTCONTEXT_STR,	Opt_rootcontext),
2832 	fsparam_flag  (SECLABEL_STR,	Opt_seclabel),
2833 	{}
2834 };
2835 
2836 static int selinux_fs_context_parse_param(struct fs_context *fc,
2837 					  struct fs_parameter *param)
2838 {
2839 	struct fs_parse_result result;
2840 	int opt;
2841 
2842 	opt = fs_parse(fc, selinux_fs_parameters, param, &result);
2843 	if (opt < 0)
2844 		return opt;
2845 
2846 	return selinux_add_opt(opt, param->string, &fc->security);
2847 }
2848 
2849 /* inode security operations */
2850 
2851 static int selinux_inode_alloc_security(struct inode *inode)
2852 {
2853 	struct inode_security_struct *isec = selinux_inode(inode);
2854 	u32 sid = current_sid();
2855 
2856 	spin_lock_init(&isec->lock);
2857 	INIT_LIST_HEAD(&isec->list);
2858 	isec->inode = inode;
2859 	isec->sid = SECINITSID_UNLABELED;
2860 	isec->sclass = SECCLASS_FILE;
2861 	isec->task_sid = sid;
2862 	isec->initialized = LABEL_INVALID;
2863 
2864 	return 0;
2865 }
2866 
2867 static void selinux_inode_free_security(struct inode *inode)
2868 {
2869 	inode_free_security(inode);
2870 }
2871 
2872 static int selinux_dentry_init_security(struct dentry *dentry, int mode,
2873 					const struct qstr *name,
2874 					const char **xattr_name, void **ctx,
2875 					u32 *ctxlen)
2876 {
2877 	u32 newsid;
2878 	int rc;
2879 
2880 	rc = selinux_determine_inode_label(selinux_cred(current_cred()),
2881 					   d_inode(dentry->d_parent), name,
2882 					   inode_mode_to_security_class(mode),
2883 					   &newsid);
2884 	if (rc)
2885 		return rc;
2886 
2887 	if (xattr_name)
2888 		*xattr_name = XATTR_NAME_SELINUX;
2889 
2890 	return security_sid_to_context(newsid, (char **)ctx,
2891 				       ctxlen);
2892 }
2893 
2894 static int selinux_dentry_create_files_as(struct dentry *dentry, int mode,
2895 					  struct qstr *name,
2896 					  const struct cred *old,
2897 					  struct cred *new)
2898 {
2899 	u32 newsid;
2900 	int rc;
2901 	struct task_security_struct *tsec;
2902 
2903 	rc = selinux_determine_inode_label(selinux_cred(old),
2904 					   d_inode(dentry->d_parent), name,
2905 					   inode_mode_to_security_class(mode),
2906 					   &newsid);
2907 	if (rc)
2908 		return rc;
2909 
2910 	tsec = selinux_cred(new);
2911 	tsec->create_sid = newsid;
2912 	return 0;
2913 }
2914 
2915 static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2916 				       const struct qstr *qstr,
2917 				       struct xattr *xattrs, int *xattr_count)
2918 {
2919 	const struct task_security_struct *tsec = selinux_cred(current_cred());
2920 	struct superblock_security_struct *sbsec;
2921 	struct xattr *xattr = lsm_get_xattr_slot(xattrs, xattr_count);
2922 	u32 newsid, clen;
2923 	u16 newsclass;
2924 	int rc;
2925 	char *context;
2926 
2927 	sbsec = selinux_superblock(dir->i_sb);
2928 
2929 	newsid = tsec->create_sid;
2930 	newsclass = inode_mode_to_security_class(inode->i_mode);
2931 	rc = selinux_determine_inode_label(tsec, dir, qstr, newsclass, &newsid);
2932 	if (rc)
2933 		return rc;
2934 
2935 	/* Possibly defer initialization to selinux_complete_init. */
2936 	if (sbsec->flags & SE_SBINITIALIZED) {
2937 		struct inode_security_struct *isec = selinux_inode(inode);
2938 		isec->sclass = newsclass;
2939 		isec->sid = newsid;
2940 		isec->initialized = LABEL_INITIALIZED;
2941 	}
2942 
2943 	if (!selinux_initialized() ||
2944 	    !(sbsec->flags & SBLABEL_MNT))
2945 		return -EOPNOTSUPP;
2946 
2947 	if (xattr) {
2948 		rc = security_sid_to_context_force(newsid,
2949 						   &context, &clen);
2950 		if (rc)
2951 			return rc;
2952 		xattr->value = context;
2953 		xattr->value_len = clen;
2954 		xattr->name = XATTR_SELINUX_SUFFIX;
2955 	}
2956 
2957 	return 0;
2958 }
2959 
2960 static int selinux_inode_init_security_anon(struct inode *inode,
2961 					    const struct qstr *name,
2962 					    const struct inode *context_inode)
2963 {
2964 	u32 sid = current_sid();
2965 	struct common_audit_data ad;
2966 	struct inode_security_struct *isec;
2967 	int rc;
2968 
2969 	if (unlikely(!selinux_initialized()))
2970 		return 0;
2971 
2972 	isec = selinux_inode(inode);
2973 
2974 	/*
2975 	 * We only get here once per ephemeral inode.  The inode has
2976 	 * been initialized via inode_alloc_security but is otherwise
2977 	 * untouched.
2978 	 */
2979 
2980 	if (context_inode) {
2981 		struct inode_security_struct *context_isec =
2982 			selinux_inode(context_inode);
2983 		if (context_isec->initialized != LABEL_INITIALIZED) {
2984 			pr_err("SELinux:  context_inode is not initialized\n");
2985 			return -EACCES;
2986 		}
2987 
2988 		isec->sclass = context_isec->sclass;
2989 		isec->sid = context_isec->sid;
2990 	} else {
2991 		isec->sclass = SECCLASS_ANON_INODE;
2992 		rc = security_transition_sid(
2993 			sid, sid,
2994 			isec->sclass, name, &isec->sid);
2995 		if (rc)
2996 			return rc;
2997 	}
2998 
2999 	isec->initialized = LABEL_INITIALIZED;
3000 	/*
3001 	 * Now that we've initialized security, check whether we're
3002 	 * allowed to actually create this type of anonymous inode.
3003 	 */
3004 
3005 	ad.type = LSM_AUDIT_DATA_ANONINODE;
3006 	ad.u.anonclass = name ? (const char *)name->name : "?";
3007 
3008 	return avc_has_perm(sid,
3009 			    isec->sid,
3010 			    isec->sclass,
3011 			    FILE__CREATE,
3012 			    &ad);
3013 }
3014 
3015 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
3016 {
3017 	return may_create(dir, dentry, SECCLASS_FILE);
3018 }
3019 
3020 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
3021 {
3022 	return may_link(dir, old_dentry, MAY_LINK);
3023 }
3024 
3025 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
3026 {
3027 	return may_link(dir, dentry, MAY_UNLINK);
3028 }
3029 
3030 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
3031 {
3032 	return may_create(dir, dentry, SECCLASS_LNK_FILE);
3033 }
3034 
3035 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mask)
3036 {
3037 	return may_create(dir, dentry, SECCLASS_DIR);
3038 }
3039 
3040 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
3041 {
3042 	return may_link(dir, dentry, MAY_RMDIR);
3043 }
3044 
3045 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3046 {
3047 	return may_create(dir, dentry, inode_mode_to_security_class(mode));
3048 }
3049 
3050 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
3051 				struct inode *new_inode, struct dentry *new_dentry)
3052 {
3053 	return may_rename(old_inode, old_dentry, new_inode, new_dentry);
3054 }
3055 
3056 static int selinux_inode_readlink(struct dentry *dentry)
3057 {
3058 	const struct cred *cred = current_cred();
3059 
3060 	return dentry_has_perm(cred, dentry, FILE__READ);
3061 }
3062 
3063 static int selinux_inode_follow_link(struct dentry *dentry, struct inode *inode,
3064 				     bool rcu)
3065 {
3066 	struct common_audit_data ad;
3067 	struct inode_security_struct *isec;
3068 	u32 sid = current_sid();
3069 
3070 	ad.type = LSM_AUDIT_DATA_DENTRY;
3071 	ad.u.dentry = dentry;
3072 	isec = inode_security_rcu(inode, rcu);
3073 	if (IS_ERR(isec))
3074 		return PTR_ERR(isec);
3075 
3076 	return avc_has_perm(sid, isec->sid, isec->sclass, FILE__READ, &ad);
3077 }
3078 
3079 static noinline int audit_inode_permission(struct inode *inode,
3080 					   u32 perms, u32 audited, u32 denied,
3081 					   int result)
3082 {
3083 	struct common_audit_data ad;
3084 	struct inode_security_struct *isec = selinux_inode(inode);
3085 
3086 	ad.type = LSM_AUDIT_DATA_INODE;
3087 	ad.u.inode = inode;
3088 
3089 	return slow_avc_audit(current_sid(), isec->sid, isec->sclass, perms,
3090 			    audited, denied, result, &ad);
3091 }
3092 
3093 static int selinux_inode_permission(struct inode *inode, int mask)
3094 {
3095 	u32 perms;
3096 	bool from_access;
3097 	bool no_block = mask & MAY_NOT_BLOCK;
3098 	struct inode_security_struct *isec;
3099 	u32 sid = current_sid();
3100 	struct av_decision avd;
3101 	int rc, rc2;
3102 	u32 audited, denied;
3103 
3104 	from_access = mask & MAY_ACCESS;
3105 	mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND);
3106 
3107 	/* No permission to check.  Existence test. */
3108 	if (!mask)
3109 		return 0;
3110 
3111 	if (unlikely(IS_PRIVATE(inode)))
3112 		return 0;
3113 
3114 	perms = file_mask_to_av(inode->i_mode, mask);
3115 
3116 	isec = inode_security_rcu(inode, no_block);
3117 	if (IS_ERR(isec))
3118 		return PTR_ERR(isec);
3119 
3120 	rc = avc_has_perm_noaudit(sid, isec->sid, isec->sclass, perms, 0,
3121 				  &avd);
3122 	audited = avc_audit_required(perms, &avd, rc,
3123 				     from_access ? FILE__AUDIT_ACCESS : 0,
3124 				     &denied);
3125 	if (likely(!audited))
3126 		return rc;
3127 
3128 	rc2 = audit_inode_permission(inode, perms, audited, denied, rc);
3129 	if (rc2)
3130 		return rc2;
3131 	return rc;
3132 }
3133 
3134 static int selinux_inode_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
3135 				 struct iattr *iattr)
3136 {
3137 	const struct cred *cred = current_cred();
3138 	struct inode *inode = d_backing_inode(dentry);
3139 	unsigned int ia_valid = iattr->ia_valid;
3140 	__u32 av = FILE__WRITE;
3141 
3142 	/* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */
3143 	if (ia_valid & ATTR_FORCE) {
3144 		ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE |
3145 			      ATTR_FORCE);
3146 		if (!ia_valid)
3147 			return 0;
3148 	}
3149 
3150 	if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
3151 			ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET))
3152 		return dentry_has_perm(cred, dentry, FILE__SETATTR);
3153 
3154 	if (selinux_policycap_openperm() &&
3155 	    inode->i_sb->s_magic != SOCKFS_MAGIC &&
3156 	    (ia_valid & ATTR_SIZE) &&
3157 	    !(ia_valid & ATTR_FILE))
3158 		av |= FILE__OPEN;
3159 
3160 	return dentry_has_perm(cred, dentry, av);
3161 }
3162 
3163 static int selinux_inode_getattr(const struct path *path)
3164 {
3165 	return path_has_perm(current_cred(), path, FILE__GETATTR);
3166 }
3167 
3168 static bool has_cap_mac_admin(bool audit)
3169 {
3170 	const struct cred *cred = current_cred();
3171 	unsigned int opts = audit ? CAP_OPT_NONE : CAP_OPT_NOAUDIT;
3172 
3173 	if (cap_capable(cred, &init_user_ns, CAP_MAC_ADMIN, opts))
3174 		return false;
3175 	if (cred_has_capability(cred, CAP_MAC_ADMIN, opts, true))
3176 		return false;
3177 	return true;
3178 }
3179 
3180 /**
3181  * selinux_inode_xattr_skipcap - Skip the xattr capability checks?
3182  * @name: name of the xattr
3183  *
3184  * Returns 1 to indicate that SELinux "owns" the access control rights to xattrs
3185  * named @name; the LSM layer should avoid enforcing any traditional
3186  * capability based access controls on this xattr.  Returns 0 to indicate that
3187  * SELinux does not "own" the access control rights to xattrs named @name and is
3188  * deferring to the LSM layer for further access controls, including capability
3189  * based controls.
3190  */
3191 static int selinux_inode_xattr_skipcap(const char *name)
3192 {
3193 	/* require capability check if not a selinux xattr */
3194 	return !strcmp(name, XATTR_NAME_SELINUX);
3195 }
3196 
3197 static int selinux_inode_setxattr(struct mnt_idmap *idmap,
3198 				  struct dentry *dentry, const char *name,
3199 				  const void *value, size_t size, int flags)
3200 {
3201 	struct inode *inode = d_backing_inode(dentry);
3202 	struct inode_security_struct *isec;
3203 	struct superblock_security_struct *sbsec;
3204 	struct common_audit_data ad;
3205 	u32 newsid, sid = current_sid();
3206 	int rc = 0;
3207 
3208 	/* if not a selinux xattr, only check the ordinary setattr perm */
3209 	if (strcmp(name, XATTR_NAME_SELINUX))
3210 		return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3211 
3212 	if (!selinux_initialized())
3213 		return (inode_owner_or_capable(idmap, inode) ? 0 : -EPERM);
3214 
3215 	sbsec = selinux_superblock(inode->i_sb);
3216 	if (!(sbsec->flags & SBLABEL_MNT))
3217 		return -EOPNOTSUPP;
3218 
3219 	if (!inode_owner_or_capable(idmap, inode))
3220 		return -EPERM;
3221 
3222 	ad.type = LSM_AUDIT_DATA_DENTRY;
3223 	ad.u.dentry = dentry;
3224 
3225 	isec = backing_inode_security(dentry);
3226 	rc = avc_has_perm(sid, isec->sid, isec->sclass,
3227 			  FILE__RELABELFROM, &ad);
3228 	if (rc)
3229 		return rc;
3230 
3231 	rc = security_context_to_sid(value, size, &newsid,
3232 				     GFP_KERNEL);
3233 	if (rc == -EINVAL) {
3234 		if (!has_cap_mac_admin(true)) {
3235 			struct audit_buffer *ab;
3236 			size_t audit_size;
3237 
3238 			/* We strip a nul only if it is at the end, otherwise the
3239 			 * context contains a nul and we should audit that */
3240 			if (value) {
3241 				const char *str = value;
3242 
3243 				if (str[size - 1] == '\0')
3244 					audit_size = size - 1;
3245 				else
3246 					audit_size = size;
3247 			} else {
3248 				audit_size = 0;
3249 			}
3250 			ab = audit_log_start(audit_context(),
3251 					     GFP_ATOMIC, AUDIT_SELINUX_ERR);
3252 			if (!ab)
3253 				return rc;
3254 			audit_log_format(ab, "op=setxattr invalid_context=");
3255 			audit_log_n_untrustedstring(ab, value, audit_size);
3256 			audit_log_end(ab);
3257 
3258 			return rc;
3259 		}
3260 		rc = security_context_to_sid_force(value,
3261 						   size, &newsid);
3262 	}
3263 	if (rc)
3264 		return rc;
3265 
3266 	rc = avc_has_perm(sid, newsid, isec->sclass,
3267 			  FILE__RELABELTO, &ad);
3268 	if (rc)
3269 		return rc;
3270 
3271 	rc = security_validate_transition(isec->sid, newsid,
3272 					  sid, isec->sclass);
3273 	if (rc)
3274 		return rc;
3275 
3276 	return avc_has_perm(newsid,
3277 			    sbsec->sid,
3278 			    SECCLASS_FILESYSTEM,
3279 			    FILESYSTEM__ASSOCIATE,
3280 			    &ad);
3281 }
3282 
3283 static int selinux_inode_set_acl(struct mnt_idmap *idmap,
3284 				 struct dentry *dentry, const char *acl_name,
3285 				 struct posix_acl *kacl)
3286 {
3287 	return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3288 }
3289 
3290 static int selinux_inode_get_acl(struct mnt_idmap *idmap,
3291 				 struct dentry *dentry, const char *acl_name)
3292 {
3293 	return dentry_has_perm(current_cred(), dentry, FILE__GETATTR);
3294 }
3295 
3296 static int selinux_inode_remove_acl(struct mnt_idmap *idmap,
3297 				    struct dentry *dentry, const char *acl_name)
3298 {
3299 	return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3300 }
3301 
3302 static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
3303 					const void *value, size_t size,
3304 					int flags)
3305 {
3306 	struct inode *inode = d_backing_inode(dentry);
3307 	struct inode_security_struct *isec;
3308 	u32 newsid;
3309 	int rc;
3310 
3311 	if (strcmp(name, XATTR_NAME_SELINUX)) {
3312 		/* Not an attribute we recognize, so nothing to do. */
3313 		return;
3314 	}
3315 
3316 	if (!selinux_initialized()) {
3317 		/* If we haven't even been initialized, then we can't validate
3318 		 * against a policy, so leave the label as invalid. It may
3319 		 * resolve to a valid label on the next revalidation try if
3320 		 * we've since initialized.
3321 		 */
3322 		return;
3323 	}
3324 
3325 	rc = security_context_to_sid_force(value, size,
3326 					   &newsid);
3327 	if (rc) {
3328 		pr_err("SELinux:  unable to map context to SID"
3329 		       "for (%s, %lu), rc=%d\n",
3330 		       inode->i_sb->s_id, inode->i_ino, -rc);
3331 		return;
3332 	}
3333 
3334 	isec = backing_inode_security(dentry);
3335 	spin_lock(&isec->lock);
3336 	isec->sclass = inode_mode_to_security_class(inode->i_mode);
3337 	isec->sid = newsid;
3338 	isec->initialized = LABEL_INITIALIZED;
3339 	spin_unlock(&isec->lock);
3340 }
3341 
3342 static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
3343 {
3344 	const struct cred *cred = current_cred();
3345 
3346 	return dentry_has_perm(cred, dentry, FILE__GETATTR);
3347 }
3348 
3349 static int selinux_inode_listxattr(struct dentry *dentry)
3350 {
3351 	const struct cred *cred = current_cred();
3352 
3353 	return dentry_has_perm(cred, dentry, FILE__GETATTR);
3354 }
3355 
3356 static int selinux_inode_removexattr(struct mnt_idmap *idmap,
3357 				     struct dentry *dentry, const char *name)
3358 {
3359 	/* if not a selinux xattr, only check the ordinary setattr perm */
3360 	if (strcmp(name, XATTR_NAME_SELINUX))
3361 		return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3362 
3363 	if (!selinux_initialized())
3364 		return 0;
3365 
3366 	/* No one is allowed to remove a SELinux security label.
3367 	   You can change the label, but all data must be labeled. */
3368 	return -EACCES;
3369 }
3370 
3371 static int selinux_path_notify(const struct path *path, u64 mask,
3372 						unsigned int obj_type)
3373 {
3374 	int ret;
3375 	u32 perm;
3376 
3377 	struct common_audit_data ad;
3378 
3379 	ad.type = LSM_AUDIT_DATA_PATH;
3380 	ad.u.path = *path;
3381 
3382 	/*
3383 	 * Set permission needed based on the type of mark being set.
3384 	 * Performs an additional check for sb watches.
3385 	 */
3386 	switch (obj_type) {
3387 	case FSNOTIFY_OBJ_TYPE_VFSMOUNT:
3388 		perm = FILE__WATCH_MOUNT;
3389 		break;
3390 	case FSNOTIFY_OBJ_TYPE_SB:
3391 		perm = FILE__WATCH_SB;
3392 		ret = superblock_has_perm(current_cred(), path->dentry->d_sb,
3393 						FILESYSTEM__WATCH, &ad);
3394 		if (ret)
3395 			return ret;
3396 		break;
3397 	case FSNOTIFY_OBJ_TYPE_INODE:
3398 		perm = FILE__WATCH;
3399 		break;
3400 	default:
3401 		return -EINVAL;
3402 	}
3403 
3404 	/* blocking watches require the file:watch_with_perm permission */
3405 	if (mask & (ALL_FSNOTIFY_PERM_EVENTS))
3406 		perm |= FILE__WATCH_WITH_PERM;
3407 
3408 	/* watches on read-like events need the file:watch_reads permission */
3409 	if (mask & (FS_ACCESS | FS_ACCESS_PERM | FS_CLOSE_NOWRITE))
3410 		perm |= FILE__WATCH_READS;
3411 
3412 	return path_has_perm(current_cred(), path, perm);
3413 }
3414 
3415 /*
3416  * Copy the inode security context value to the user.
3417  *
3418  * Permission check is handled by selinux_inode_getxattr hook.
3419  */
3420 static int selinux_inode_getsecurity(struct mnt_idmap *idmap,
3421 				     struct inode *inode, const char *name,
3422 				     void **buffer, bool alloc)
3423 {
3424 	u32 size;
3425 	int error;
3426 	char *context = NULL;
3427 	struct inode_security_struct *isec;
3428 
3429 	/*
3430 	 * If we're not initialized yet, then we can't validate contexts, so
3431 	 * just let vfs_getxattr fall back to using the on-disk xattr.
3432 	 */
3433 	if (!selinux_initialized() ||
3434 	    strcmp(name, XATTR_SELINUX_SUFFIX))
3435 		return -EOPNOTSUPP;
3436 
3437 	/*
3438 	 * If the caller has CAP_MAC_ADMIN, then get the raw context
3439 	 * value even if it is not defined by current policy; otherwise,
3440 	 * use the in-core value under current policy.
3441 	 * Use the non-auditing forms of the permission checks since
3442 	 * getxattr may be called by unprivileged processes commonly
3443 	 * and lack of permission just means that we fall back to the
3444 	 * in-core context value, not a denial.
3445 	 */
3446 	isec = inode_security(inode);
3447 	if (has_cap_mac_admin(false))
3448 		error = security_sid_to_context_force(isec->sid, &context,
3449 						      &size);
3450 	else
3451 		error = security_sid_to_context(isec->sid,
3452 						&context, &size);
3453 	if (error)
3454 		return error;
3455 	error = size;
3456 	if (alloc) {
3457 		*buffer = context;
3458 		goto out_nofree;
3459 	}
3460 	kfree(context);
3461 out_nofree:
3462 	return error;
3463 }
3464 
3465 static int selinux_inode_setsecurity(struct inode *inode, const char *name,
3466 				     const void *value, size_t size, int flags)
3467 {
3468 	struct inode_security_struct *isec = inode_security_novalidate(inode);
3469 	struct superblock_security_struct *sbsec;
3470 	u32 newsid;
3471 	int rc;
3472 
3473 	if (strcmp(name, XATTR_SELINUX_SUFFIX))
3474 		return -EOPNOTSUPP;
3475 
3476 	sbsec = selinux_superblock(inode->i_sb);
3477 	if (!(sbsec->flags & SBLABEL_MNT))
3478 		return -EOPNOTSUPP;
3479 
3480 	if (!value || !size)
3481 		return -EACCES;
3482 
3483 	rc = security_context_to_sid(value, size, &newsid,
3484 				     GFP_KERNEL);
3485 	if (rc)
3486 		return rc;
3487 
3488 	spin_lock(&isec->lock);
3489 	isec->sclass = inode_mode_to_security_class(inode->i_mode);
3490 	isec->sid = newsid;
3491 	isec->initialized = LABEL_INITIALIZED;
3492 	spin_unlock(&isec->lock);
3493 	return 0;
3494 }
3495 
3496 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
3497 {
3498 	const int len = sizeof(XATTR_NAME_SELINUX);
3499 
3500 	if (!selinux_initialized())
3501 		return 0;
3502 
3503 	if (buffer && len <= buffer_size)
3504 		memcpy(buffer, XATTR_NAME_SELINUX, len);
3505 	return len;
3506 }
3507 
3508 static void selinux_inode_getsecid(struct inode *inode, u32 *secid)
3509 {
3510 	struct inode_security_struct *isec = inode_security_novalidate(inode);
3511 	*secid = isec->sid;
3512 }
3513 
3514 static int selinux_inode_copy_up(struct dentry *src, struct cred **new)
3515 {
3516 	u32 sid;
3517 	struct task_security_struct *tsec;
3518 	struct cred *new_creds = *new;
3519 
3520 	if (new_creds == NULL) {
3521 		new_creds = prepare_creds();
3522 		if (!new_creds)
3523 			return -ENOMEM;
3524 	}
3525 
3526 	tsec = selinux_cred(new_creds);
3527 	/* Get label from overlay inode and set it in create_sid */
3528 	selinux_inode_getsecid(d_inode(src), &sid);
3529 	tsec->create_sid = sid;
3530 	*new = new_creds;
3531 	return 0;
3532 }
3533 
3534 static int selinux_inode_copy_up_xattr(struct dentry *dentry, const char *name)
3535 {
3536 	/* The copy_up hook above sets the initial context on an inode, but we
3537 	 * don't then want to overwrite it by blindly copying all the lower
3538 	 * xattrs up.  Instead, filter out SELinux-related xattrs following
3539 	 * policy load.
3540 	 */
3541 	if (selinux_initialized() && strcmp(name, XATTR_NAME_SELINUX) == 0)
3542 		return 1; /* Discard */
3543 	/*
3544 	 * Any other attribute apart from SELINUX is not claimed, supported
3545 	 * by selinux.
3546 	 */
3547 	return -EOPNOTSUPP;
3548 }
3549 
3550 /* kernfs node operations */
3551 
3552 static int selinux_kernfs_init_security(struct kernfs_node *kn_dir,
3553 					struct kernfs_node *kn)
3554 {
3555 	const struct task_security_struct *tsec = selinux_cred(current_cred());
3556 	u32 parent_sid, newsid, clen;
3557 	int rc;
3558 	char *context;
3559 
3560 	rc = kernfs_xattr_get(kn_dir, XATTR_NAME_SELINUX, NULL, 0);
3561 	if (rc == -ENODATA)
3562 		return 0;
3563 	else if (rc < 0)
3564 		return rc;
3565 
3566 	clen = (u32)rc;
3567 	context = kmalloc(clen, GFP_KERNEL);
3568 	if (!context)
3569 		return -ENOMEM;
3570 
3571 	rc = kernfs_xattr_get(kn_dir, XATTR_NAME_SELINUX, context, clen);
3572 	if (rc < 0) {
3573 		kfree(context);
3574 		return rc;
3575 	}
3576 
3577 	rc = security_context_to_sid(context, clen, &parent_sid,
3578 				     GFP_KERNEL);
3579 	kfree(context);
3580 	if (rc)
3581 		return rc;
3582 
3583 	if (tsec->create_sid) {
3584 		newsid = tsec->create_sid;
3585 	} else {
3586 		u16 secclass = inode_mode_to_security_class(kn->mode);
3587 		struct qstr q;
3588 
3589 		q.name = kn->name;
3590 		q.hash_len = hashlen_string(kn_dir, kn->name);
3591 
3592 		rc = security_transition_sid(tsec->sid,
3593 					     parent_sid, secclass, &q,
3594 					     &newsid);
3595 		if (rc)
3596 			return rc;
3597 	}
3598 
3599 	rc = security_sid_to_context_force(newsid,
3600 					   &context, &clen);
3601 	if (rc)
3602 		return rc;
3603 
3604 	rc = kernfs_xattr_set(kn, XATTR_NAME_SELINUX, context, clen,
3605 			      XATTR_CREATE);
3606 	kfree(context);
3607 	return rc;
3608 }
3609 
3610 
3611 /* file security operations */
3612 
3613 static int selinux_revalidate_file_permission(struct file *file, int mask)
3614 {
3615 	const struct cred *cred = current_cred();
3616 	struct inode *inode = file_inode(file);
3617 
3618 	/* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
3619 	if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
3620 		mask |= MAY_APPEND;
3621 
3622 	return file_has_perm(cred, file,
3623 			     file_mask_to_av(inode->i_mode, mask));
3624 }
3625 
3626 static int selinux_file_permission(struct file *file, int mask)
3627 {
3628 	struct inode *inode = file_inode(file);
3629 	struct file_security_struct *fsec = selinux_file(file);
3630 	struct inode_security_struct *isec;
3631 	u32 sid = current_sid();
3632 
3633 	if (!mask)
3634 		/* No permission to check.  Existence test. */
3635 		return 0;
3636 
3637 	isec = inode_security(inode);
3638 	if (sid == fsec->sid && fsec->isid == isec->sid &&
3639 	    fsec->pseqno == avc_policy_seqno())
3640 		/* No change since file_open check. */
3641 		return 0;
3642 
3643 	return selinux_revalidate_file_permission(file, mask);
3644 }
3645 
3646 static int selinux_file_alloc_security(struct file *file)
3647 {
3648 	struct file_security_struct *fsec = selinux_file(file);
3649 	u32 sid = current_sid();
3650 
3651 	fsec->sid = sid;
3652 	fsec->fown_sid = sid;
3653 
3654 	return 0;
3655 }
3656 
3657 /*
3658  * Check whether a task has the ioctl permission and cmd
3659  * operation to an inode.
3660  */
3661 static int ioctl_has_perm(const struct cred *cred, struct file *file,
3662 		u32 requested, u16 cmd)
3663 {
3664 	struct common_audit_data ad;
3665 	struct file_security_struct *fsec = selinux_file(file);
3666 	struct inode *inode = file_inode(file);
3667 	struct inode_security_struct *isec;
3668 	struct lsm_ioctlop_audit ioctl;
3669 	u32 ssid = cred_sid(cred);
3670 	int rc;
3671 	u8 driver = cmd >> 8;
3672 	u8 xperm = cmd & 0xff;
3673 
3674 	ad.type = LSM_AUDIT_DATA_IOCTL_OP;
3675 	ad.u.op = &ioctl;
3676 	ad.u.op->cmd = cmd;
3677 	ad.u.op->path = file->f_path;
3678 
3679 	if (ssid != fsec->sid) {
3680 		rc = avc_has_perm(ssid, fsec->sid,
3681 				SECCLASS_FD,
3682 				FD__USE,
3683 				&ad);
3684 		if (rc)
3685 			goto out;
3686 	}
3687 
3688 	if (unlikely(IS_PRIVATE(inode)))
3689 		return 0;
3690 
3691 	isec = inode_security(inode);
3692 	rc = avc_has_extended_perms(ssid, isec->sid, isec->sclass,
3693 				    requested, driver, xperm, &ad);
3694 out:
3695 	return rc;
3696 }
3697 
3698 static int selinux_file_ioctl(struct file *file, unsigned int cmd,
3699 			      unsigned long arg)
3700 {
3701 	const struct cred *cred = current_cred();
3702 	int error = 0;
3703 
3704 	switch (cmd) {
3705 	case FIONREAD:
3706 	case FIBMAP:
3707 	case FIGETBSZ:
3708 	case FS_IOC_GETFLAGS:
3709 	case FS_IOC_GETVERSION:
3710 		error = file_has_perm(cred, file, FILE__GETATTR);
3711 		break;
3712 
3713 	case FS_IOC_SETFLAGS:
3714 	case FS_IOC_SETVERSION:
3715 		error = file_has_perm(cred, file, FILE__SETATTR);
3716 		break;
3717 
3718 	/* sys_ioctl() checks */
3719 	case FIONBIO:
3720 	case FIOASYNC:
3721 		error = file_has_perm(cred, file, 0);
3722 		break;
3723 
3724 	case KDSKBENT:
3725 	case KDSKBSENT:
3726 		error = cred_has_capability(cred, CAP_SYS_TTY_CONFIG,
3727 					    CAP_OPT_NONE, true);
3728 		break;
3729 
3730 	case FIOCLEX:
3731 	case FIONCLEX:
3732 		if (!selinux_policycap_ioctl_skip_cloexec())
3733 			error = ioctl_has_perm(cred, file, FILE__IOCTL, (u16) cmd);
3734 		break;
3735 
3736 	/* default case assumes that the command will go
3737 	 * to the file's ioctl() function.
3738 	 */
3739 	default:
3740 		error = ioctl_has_perm(cred, file, FILE__IOCTL, (u16) cmd);
3741 	}
3742 	return error;
3743 }
3744 
3745 static int selinux_file_ioctl_compat(struct file *file, unsigned int cmd,
3746 			      unsigned long arg)
3747 {
3748 	/*
3749 	 * If we are in a 64-bit kernel running 32-bit userspace, we need to
3750 	 * make sure we don't compare 32-bit flags to 64-bit flags.
3751 	 */
3752 	switch (cmd) {
3753 	case FS_IOC32_GETFLAGS:
3754 		cmd = FS_IOC_GETFLAGS;
3755 		break;
3756 	case FS_IOC32_SETFLAGS:
3757 		cmd = FS_IOC_SETFLAGS;
3758 		break;
3759 	case FS_IOC32_GETVERSION:
3760 		cmd = FS_IOC_GETVERSION;
3761 		break;
3762 	case FS_IOC32_SETVERSION:
3763 		cmd = FS_IOC_SETVERSION;
3764 		break;
3765 	default:
3766 		break;
3767 	}
3768 
3769 	return selinux_file_ioctl(file, cmd, arg);
3770 }
3771 
3772 static int default_noexec __ro_after_init;
3773 
3774 static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
3775 {
3776 	const struct cred *cred = current_cred();
3777 	u32 sid = cred_sid(cred);
3778 	int rc = 0;
3779 
3780 	if (default_noexec &&
3781 	    (prot & PROT_EXEC) && (!file || IS_PRIVATE(file_inode(file)) ||
3782 				   (!shared && (prot & PROT_WRITE)))) {
3783 		/*
3784 		 * We are making executable an anonymous mapping or a
3785 		 * private file mapping that will also be writable.
3786 		 * This has an additional check.
3787 		 */
3788 		rc = avc_has_perm(sid, sid, SECCLASS_PROCESS,
3789 				  PROCESS__EXECMEM, NULL);
3790 		if (rc)
3791 			goto error;
3792 	}
3793 
3794 	if (file) {
3795 		/* read access is always possible with a mapping */
3796 		u32 av = FILE__READ;
3797 
3798 		/* write access only matters if the mapping is shared */
3799 		if (shared && (prot & PROT_WRITE))
3800 			av |= FILE__WRITE;
3801 
3802 		if (prot & PROT_EXEC)
3803 			av |= FILE__EXECUTE;
3804 
3805 		return file_has_perm(cred, file, av);
3806 	}
3807 
3808 error:
3809 	return rc;
3810 }
3811 
3812 static int selinux_mmap_addr(unsigned long addr)
3813 {
3814 	int rc = 0;
3815 
3816 	if (addr < CONFIG_LSM_MMAP_MIN_ADDR) {
3817 		u32 sid = current_sid();
3818 		rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT,
3819 				  MEMPROTECT__MMAP_ZERO, NULL);
3820 	}
3821 
3822 	return rc;
3823 }
3824 
3825 static int selinux_mmap_file(struct file *file,
3826 			     unsigned long reqprot __always_unused,
3827 			     unsigned long prot, unsigned long flags)
3828 {
3829 	struct common_audit_data ad;
3830 	int rc;
3831 
3832 	if (file) {
3833 		ad.type = LSM_AUDIT_DATA_FILE;
3834 		ad.u.file = file;
3835 		rc = inode_has_perm(current_cred(), file_inode(file),
3836 				    FILE__MAP, &ad);
3837 		if (rc)
3838 			return rc;
3839 	}
3840 
3841 	return file_map_prot_check(file, prot,
3842 				   (flags & MAP_TYPE) == MAP_SHARED);
3843 }
3844 
3845 static int selinux_file_mprotect(struct vm_area_struct *vma,
3846 				 unsigned long reqprot __always_unused,
3847 				 unsigned long prot)
3848 {
3849 	const struct cred *cred = current_cred();
3850 	u32 sid = cred_sid(cred);
3851 
3852 	if (default_noexec &&
3853 	    (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3854 		int rc = 0;
3855 		/*
3856 		 * We don't use the vma_is_initial_heap() helper as it has
3857 		 * a history of problems and is currently broken on systems
3858 		 * where there is no heap, e.g. brk == start_brk.  Before
3859 		 * replacing the conditional below with vma_is_initial_heap(),
3860 		 * or something similar, please ensure that the logic is the
3861 		 * same as what we have below or you have tested every possible
3862 		 * corner case you can think to test.
3863 		 */
3864 		if (vma->vm_start >= vma->vm_mm->start_brk &&
3865 		    vma->vm_end <= vma->vm_mm->brk) {
3866 			rc = avc_has_perm(sid, sid, SECCLASS_PROCESS,
3867 					  PROCESS__EXECHEAP, NULL);
3868 		} else if (!vma->vm_file && (vma_is_initial_stack(vma) ||
3869 			    vma_is_stack_for_current(vma))) {
3870 			rc = avc_has_perm(sid, sid, SECCLASS_PROCESS,
3871 					  PROCESS__EXECSTACK, NULL);
3872 		} else if (vma->vm_file && vma->anon_vma) {
3873 			/*
3874 			 * We are making executable a file mapping that has
3875 			 * had some COW done. Since pages might have been
3876 			 * written, check ability to execute the possibly
3877 			 * modified content.  This typically should only
3878 			 * occur for text relocations.
3879 			 */
3880 			rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3881 		}
3882 		if (rc)
3883 			return rc;
3884 	}
3885 
3886 	return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3887 }
3888 
3889 static int selinux_file_lock(struct file *file, unsigned int cmd)
3890 {
3891 	const struct cred *cred = current_cred();
3892 
3893 	return file_has_perm(cred, file, FILE__LOCK);
3894 }
3895 
3896 static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3897 			      unsigned long arg)
3898 {
3899 	const struct cred *cred = current_cred();
3900 	int err = 0;
3901 
3902 	switch (cmd) {
3903 	case F_SETFL:
3904 		if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3905 			err = file_has_perm(cred, file, FILE__WRITE);
3906 			break;
3907 		}
3908 		fallthrough;
3909 	case F_SETOWN:
3910 	case F_SETSIG:
3911 	case F_GETFL:
3912 	case F_GETOWN:
3913 	case F_GETSIG:
3914 	case F_GETOWNER_UIDS:
3915 		/* Just check FD__USE permission */
3916 		err = file_has_perm(cred, file, 0);
3917 		break;
3918 	case F_GETLK:
3919 	case F_SETLK:
3920 	case F_SETLKW:
3921 	case F_OFD_GETLK:
3922 	case F_OFD_SETLK:
3923 	case F_OFD_SETLKW:
3924 #if BITS_PER_LONG == 32
3925 	case F_GETLK64:
3926 	case F_SETLK64:
3927 	case F_SETLKW64:
3928 #endif
3929 		err = file_has_perm(cred, file, FILE__LOCK);
3930 		break;
3931 	}
3932 
3933 	return err;
3934 }
3935 
3936 static void selinux_file_set_fowner(struct file *file)
3937 {
3938 	struct file_security_struct *fsec;
3939 
3940 	fsec = selinux_file(file);
3941 	fsec->fown_sid = current_sid();
3942 }
3943 
3944 static int selinux_file_send_sigiotask(struct task_struct *tsk,
3945 				       struct fown_struct *fown, int signum)
3946 {
3947 	struct file *file;
3948 	u32 sid = task_sid_obj(tsk);
3949 	u32 perm;
3950 	struct file_security_struct *fsec;
3951 
3952 	/* struct fown_struct is never outside the context of a struct file */
3953 	file = container_of(fown, struct file, f_owner);
3954 
3955 	fsec = selinux_file(file);
3956 
3957 	if (!signum)
3958 		perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3959 	else
3960 		perm = signal_to_av(signum);
3961 
3962 	return avc_has_perm(fsec->fown_sid, sid,
3963 			    SECCLASS_PROCESS, perm, NULL);
3964 }
3965 
3966 static int selinux_file_receive(struct file *file)
3967 {
3968 	const struct cred *cred = current_cred();
3969 
3970 	return file_has_perm(cred, file, file_to_av(file));
3971 }
3972 
3973 static int selinux_file_open(struct file *file)
3974 {
3975 	struct file_security_struct *fsec;
3976 	struct inode_security_struct *isec;
3977 
3978 	fsec = selinux_file(file);
3979 	isec = inode_security(file_inode(file));
3980 	/*
3981 	 * Save inode label and policy sequence number
3982 	 * at open-time so that selinux_file_permission
3983 	 * can determine whether revalidation is necessary.
3984 	 * Task label is already saved in the file security
3985 	 * struct as its SID.
3986 	 */
3987 	fsec->isid = isec->sid;
3988 	fsec->pseqno = avc_policy_seqno();
3989 	/*
3990 	 * Since the inode label or policy seqno may have changed
3991 	 * between the selinux_inode_permission check and the saving
3992 	 * of state above, recheck that access is still permitted.
3993 	 * Otherwise, access might never be revalidated against the
3994 	 * new inode label or new policy.
3995 	 * This check is not redundant - do not remove.
3996 	 */
3997 	return file_path_has_perm(file->f_cred, file, open_file_to_av(file));
3998 }
3999 
4000 /* task security operations */
4001 
4002 static int selinux_task_alloc(struct task_struct *task,
4003 			      unsigned long clone_flags)
4004 {
4005 	u32 sid = current_sid();
4006 
4007 	return avc_has_perm(sid, sid, SECCLASS_PROCESS, PROCESS__FORK, NULL);
4008 }
4009 
4010 /*
4011  * prepare a new set of credentials for modification
4012  */
4013 static int selinux_cred_prepare(struct cred *new, const struct cred *old,
4014 				gfp_t gfp)
4015 {
4016 	const struct task_security_struct *old_tsec = selinux_cred(old);
4017 	struct task_security_struct *tsec = selinux_cred(new);
4018 
4019 	*tsec = *old_tsec;
4020 	return 0;
4021 }
4022 
4023 /*
4024  * transfer the SELinux data to a blank set of creds
4025  */
4026 static void selinux_cred_transfer(struct cred *new, const struct cred *old)
4027 {
4028 	const struct task_security_struct *old_tsec = selinux_cred(old);
4029 	struct task_security_struct *tsec = selinux_cred(new);
4030 
4031 	*tsec = *old_tsec;
4032 }
4033 
4034 static void selinux_cred_getsecid(const struct cred *c, u32 *secid)
4035 {
4036 	*secid = cred_sid(c);
4037 }
4038 
4039 /*
4040  * set the security data for a kernel service
4041  * - all the creation contexts are set to unlabelled
4042  */
4043 static int selinux_kernel_act_as(struct cred *new, u32 secid)
4044 {
4045 	struct task_security_struct *tsec = selinux_cred(new);
4046 	u32 sid = current_sid();
4047 	int ret;
4048 
4049 	ret = avc_has_perm(sid, secid,
4050 			   SECCLASS_KERNEL_SERVICE,
4051 			   KERNEL_SERVICE__USE_AS_OVERRIDE,
4052 			   NULL);
4053 	if (ret == 0) {
4054 		tsec->sid = secid;
4055 		tsec->create_sid = 0;
4056 		tsec->keycreate_sid = 0;
4057 		tsec->sockcreate_sid = 0;
4058 	}
4059 	return ret;
4060 }
4061 
4062 /*
4063  * set the file creation context in a security record to the same as the
4064  * objective context of the specified inode
4065  */
4066 static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
4067 {
4068 	struct inode_security_struct *isec = inode_security(inode);
4069 	struct task_security_struct *tsec = selinux_cred(new);
4070 	u32 sid = current_sid();
4071 	int ret;
4072 
4073 	ret = avc_has_perm(sid, isec->sid,
4074 			   SECCLASS_KERNEL_SERVICE,
4075 			   KERNEL_SERVICE__CREATE_FILES_AS,
4076 			   NULL);
4077 
4078 	if (ret == 0)
4079 		tsec->create_sid = isec->sid;
4080 	return ret;
4081 }
4082 
4083 static int selinux_kernel_module_request(char *kmod_name)
4084 {
4085 	struct common_audit_data ad;
4086 
4087 	ad.type = LSM_AUDIT_DATA_KMOD;
4088 	ad.u.kmod_name = kmod_name;
4089 
4090 	return avc_has_perm(current_sid(), SECINITSID_KERNEL, SECCLASS_SYSTEM,
4091 			    SYSTEM__MODULE_REQUEST, &ad);
4092 }
4093 
4094 static int selinux_kernel_module_from_file(struct file *file)
4095 {
4096 	struct common_audit_data ad;
4097 	struct inode_security_struct *isec;
4098 	struct file_security_struct *fsec;
4099 	u32 sid = current_sid();
4100 	int rc;
4101 
4102 	/* init_module */
4103 	if (file == NULL)
4104 		return avc_has_perm(sid, sid, SECCLASS_SYSTEM,
4105 					SYSTEM__MODULE_LOAD, NULL);
4106 
4107 	/* finit_module */
4108 
4109 	ad.type = LSM_AUDIT_DATA_FILE;
4110 	ad.u.file = file;
4111 
4112 	fsec = selinux_file(file);
4113 	if (sid != fsec->sid) {
4114 		rc = avc_has_perm(sid, fsec->sid, SECCLASS_FD, FD__USE, &ad);
4115 		if (rc)
4116 			return rc;
4117 	}
4118 
4119 	isec = inode_security(file_inode(file));
4120 	return avc_has_perm(sid, isec->sid, SECCLASS_SYSTEM,
4121 				SYSTEM__MODULE_LOAD, &ad);
4122 }
4123 
4124 static int selinux_kernel_read_file(struct file *file,
4125 				    enum kernel_read_file_id id,
4126 				    bool contents)
4127 {
4128 	int rc = 0;
4129 
4130 	switch (id) {
4131 	case READING_MODULE:
4132 		rc = selinux_kernel_module_from_file(contents ? file : NULL);
4133 		break;
4134 	default:
4135 		break;
4136 	}
4137 
4138 	return rc;
4139 }
4140 
4141 static int selinux_kernel_load_data(enum kernel_load_data_id id, bool contents)
4142 {
4143 	int rc = 0;
4144 
4145 	switch (id) {
4146 	case LOADING_MODULE:
4147 		rc = selinux_kernel_module_from_file(NULL);
4148 		break;
4149 	default:
4150 		break;
4151 	}
4152 
4153 	return rc;
4154 }
4155 
4156 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
4157 {
4158 	return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4159 			    PROCESS__SETPGID, NULL);
4160 }
4161 
4162 static int selinux_task_getpgid(struct task_struct *p)
4163 {
4164 	return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4165 			    PROCESS__GETPGID, NULL);
4166 }
4167 
4168 static int selinux_task_getsid(struct task_struct *p)
4169 {
4170 	return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4171 			    PROCESS__GETSESSION, NULL);
4172 }
4173 
4174 static void selinux_current_getsecid_subj(u32 *secid)
4175 {
4176 	*secid = current_sid();
4177 }
4178 
4179 static void selinux_task_getsecid_obj(struct task_struct *p, u32 *secid)
4180 {
4181 	*secid = task_sid_obj(p);
4182 }
4183 
4184 static int selinux_task_setnice(struct task_struct *p, int nice)
4185 {
4186 	return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4187 			    PROCESS__SETSCHED, NULL);
4188 }
4189 
4190 static int selinux_task_setioprio(struct task_struct *p, int ioprio)
4191 {
4192 	return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4193 			    PROCESS__SETSCHED, NULL);
4194 }
4195 
4196 static int selinux_task_getioprio(struct task_struct *p)
4197 {
4198 	return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4199 			    PROCESS__GETSCHED, NULL);
4200 }
4201 
4202 static int selinux_task_prlimit(const struct cred *cred, const struct cred *tcred,
4203 				unsigned int flags)
4204 {
4205 	u32 av = 0;
4206 
4207 	if (!flags)
4208 		return 0;
4209 	if (flags & LSM_PRLIMIT_WRITE)
4210 		av |= PROCESS__SETRLIMIT;
4211 	if (flags & LSM_PRLIMIT_READ)
4212 		av |= PROCESS__GETRLIMIT;
4213 	return avc_has_perm(cred_sid(cred), cred_sid(tcred),
4214 			    SECCLASS_PROCESS, av, NULL);
4215 }
4216 
4217 static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource,
4218 		struct rlimit *new_rlim)
4219 {
4220 	struct rlimit *old_rlim = p->signal->rlim + resource;
4221 
4222 	/* Control the ability to change the hard limit (whether
4223 	   lowering or raising it), so that the hard limit can
4224 	   later be used as a safe reset point for the soft limit
4225 	   upon context transitions.  See selinux_bprm_committing_creds. */
4226 	if (old_rlim->rlim_max != new_rlim->rlim_max)
4227 		return avc_has_perm(current_sid(), task_sid_obj(p),
4228 				    SECCLASS_PROCESS, PROCESS__SETRLIMIT, NULL);
4229 
4230 	return 0;
4231 }
4232 
4233 static int selinux_task_setscheduler(struct task_struct *p)
4234 {
4235 	return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4236 			    PROCESS__SETSCHED, NULL);
4237 }
4238 
4239 static int selinux_task_getscheduler(struct task_struct *p)
4240 {
4241 	return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4242 			    PROCESS__GETSCHED, NULL);
4243 }
4244 
4245 static int selinux_task_movememory(struct task_struct *p)
4246 {
4247 	return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4248 			    PROCESS__SETSCHED, NULL);
4249 }
4250 
4251 static int selinux_task_kill(struct task_struct *p, struct kernel_siginfo *info,
4252 				int sig, const struct cred *cred)
4253 {
4254 	u32 secid;
4255 	u32 perm;
4256 
4257 	if (!sig)
4258 		perm = PROCESS__SIGNULL; /* null signal; existence test */
4259 	else
4260 		perm = signal_to_av(sig);
4261 	if (!cred)
4262 		secid = current_sid();
4263 	else
4264 		secid = cred_sid(cred);
4265 	return avc_has_perm(secid, task_sid_obj(p), SECCLASS_PROCESS, perm, NULL);
4266 }
4267 
4268 static void selinux_task_to_inode(struct task_struct *p,
4269 				  struct inode *inode)
4270 {
4271 	struct inode_security_struct *isec = selinux_inode(inode);
4272 	u32 sid = task_sid_obj(p);
4273 
4274 	spin_lock(&isec->lock);
4275 	isec->sclass = inode_mode_to_security_class(inode->i_mode);
4276 	isec->sid = sid;
4277 	isec->initialized = LABEL_INITIALIZED;
4278 	spin_unlock(&isec->lock);
4279 }
4280 
4281 static int selinux_userns_create(const struct cred *cred)
4282 {
4283 	u32 sid = current_sid();
4284 
4285 	return avc_has_perm(sid, sid, SECCLASS_USER_NAMESPACE,
4286 			USER_NAMESPACE__CREATE, NULL);
4287 }
4288 
4289 /* Returns error only if unable to parse addresses */
4290 static int selinux_parse_skb_ipv4(struct sk_buff *skb,
4291 			struct common_audit_data *ad, u8 *proto)
4292 {
4293 	int offset, ihlen, ret = -EINVAL;
4294 	struct iphdr _iph, *ih;
4295 
4296 	offset = skb_network_offset(skb);
4297 	ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
4298 	if (ih == NULL)
4299 		goto out;
4300 
4301 	ihlen = ih->ihl * 4;
4302 	if (ihlen < sizeof(_iph))
4303 		goto out;
4304 
4305 	ad->u.net->v4info.saddr = ih->saddr;
4306 	ad->u.net->v4info.daddr = ih->daddr;
4307 	ret = 0;
4308 
4309 	if (proto)
4310 		*proto = ih->protocol;
4311 
4312 	switch (ih->protocol) {
4313 	case IPPROTO_TCP: {
4314 		struct tcphdr _tcph, *th;
4315 
4316 		if (ntohs(ih->frag_off) & IP_OFFSET)
4317 			break;
4318 
4319 		offset += ihlen;
4320 		th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
4321 		if (th == NULL)
4322 			break;
4323 
4324 		ad->u.net->sport = th->source;
4325 		ad->u.net->dport = th->dest;
4326 		break;
4327 	}
4328 
4329 	case IPPROTO_UDP: {
4330 		struct udphdr _udph, *uh;
4331 
4332 		if (ntohs(ih->frag_off) & IP_OFFSET)
4333 			break;
4334 
4335 		offset += ihlen;
4336 		uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
4337 		if (uh == NULL)
4338 			break;
4339 
4340 		ad->u.net->sport = uh->source;
4341 		ad->u.net->dport = uh->dest;
4342 		break;
4343 	}
4344 
4345 	case IPPROTO_DCCP: {
4346 		struct dccp_hdr _dccph, *dh;
4347 
4348 		if (ntohs(ih->frag_off) & IP_OFFSET)
4349 			break;
4350 
4351 		offset += ihlen;
4352 		dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
4353 		if (dh == NULL)
4354 			break;
4355 
4356 		ad->u.net->sport = dh->dccph_sport;
4357 		ad->u.net->dport = dh->dccph_dport;
4358 		break;
4359 	}
4360 
4361 #if IS_ENABLED(CONFIG_IP_SCTP)
4362 	case IPPROTO_SCTP: {
4363 		struct sctphdr _sctph, *sh;
4364 
4365 		if (ntohs(ih->frag_off) & IP_OFFSET)
4366 			break;
4367 
4368 		offset += ihlen;
4369 		sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph);
4370 		if (sh == NULL)
4371 			break;
4372 
4373 		ad->u.net->sport = sh->source;
4374 		ad->u.net->dport = sh->dest;
4375 		break;
4376 	}
4377 #endif
4378 	default:
4379 		break;
4380 	}
4381 out:
4382 	return ret;
4383 }
4384 
4385 #if IS_ENABLED(CONFIG_IPV6)
4386 
4387 /* Returns error only if unable to parse addresses */
4388 static int selinux_parse_skb_ipv6(struct sk_buff *skb,
4389 			struct common_audit_data *ad, u8 *proto)
4390 {
4391 	u8 nexthdr;
4392 	int ret = -EINVAL, offset;
4393 	struct ipv6hdr _ipv6h, *ip6;
4394 	__be16 frag_off;
4395 
4396 	offset = skb_network_offset(skb);
4397 	ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
4398 	if (ip6 == NULL)
4399 		goto out;
4400 
4401 	ad->u.net->v6info.saddr = ip6->saddr;
4402 	ad->u.net->v6info.daddr = ip6->daddr;
4403 	ret = 0;
4404 
4405 	nexthdr = ip6->nexthdr;
4406 	offset += sizeof(_ipv6h);
4407 	offset = ipv6_skip_exthdr(skb, offset, &nexthdr, &frag_off);
4408 	if (offset < 0)
4409 		goto out;
4410 
4411 	if (proto)
4412 		*proto = nexthdr;
4413 
4414 	switch (nexthdr) {
4415 	case IPPROTO_TCP: {
4416 		struct tcphdr _tcph, *th;
4417 
4418 		th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
4419 		if (th == NULL)
4420 			break;
4421 
4422 		ad->u.net->sport = th->source;
4423 		ad->u.net->dport = th->dest;
4424 		break;
4425 	}
4426 
4427 	case IPPROTO_UDP: {
4428 		struct udphdr _udph, *uh;
4429 
4430 		uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
4431 		if (uh == NULL)
4432 			break;
4433 
4434 		ad->u.net->sport = uh->source;
4435 		ad->u.net->dport = uh->dest;
4436 		break;
4437 	}
4438 
4439 	case IPPROTO_DCCP: {
4440 		struct dccp_hdr _dccph, *dh;
4441 
4442 		dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
4443 		if (dh == NULL)
4444 			break;
4445 
4446 		ad->u.net->sport = dh->dccph_sport;
4447 		ad->u.net->dport = dh->dccph_dport;
4448 		break;
4449 	}
4450 
4451 #if IS_ENABLED(CONFIG_IP_SCTP)
4452 	case IPPROTO_SCTP: {
4453 		struct sctphdr _sctph, *sh;
4454 
4455 		sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph);
4456 		if (sh == NULL)
4457 			break;
4458 
4459 		ad->u.net->sport = sh->source;
4460 		ad->u.net->dport = sh->dest;
4461 		break;
4462 	}
4463 #endif
4464 	/* includes fragments */
4465 	default:
4466 		break;
4467 	}
4468 out:
4469 	return ret;
4470 }
4471 
4472 #endif /* IPV6 */
4473 
4474 static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad,
4475 			     char **_addrp, int src, u8 *proto)
4476 {
4477 	char *addrp;
4478 	int ret;
4479 
4480 	switch (ad->u.net->family) {
4481 	case PF_INET:
4482 		ret = selinux_parse_skb_ipv4(skb, ad, proto);
4483 		if (ret)
4484 			goto parse_error;
4485 		addrp = (char *)(src ? &ad->u.net->v4info.saddr :
4486 				       &ad->u.net->v4info.daddr);
4487 		goto okay;
4488 
4489 #if IS_ENABLED(CONFIG_IPV6)
4490 	case PF_INET6:
4491 		ret = selinux_parse_skb_ipv6(skb, ad, proto);
4492 		if (ret)
4493 			goto parse_error;
4494 		addrp = (char *)(src ? &ad->u.net->v6info.saddr :
4495 				       &ad->u.net->v6info.daddr);
4496 		goto okay;
4497 #endif	/* IPV6 */
4498 	default:
4499 		addrp = NULL;
4500 		goto okay;
4501 	}
4502 
4503 parse_error:
4504 	pr_warn(
4505 	       "SELinux: failure in selinux_parse_skb(),"
4506 	       " unable to parse packet\n");
4507 	return ret;
4508 
4509 okay:
4510 	if (_addrp)
4511 		*_addrp = addrp;
4512 	return 0;
4513 }
4514 
4515 /**
4516  * selinux_skb_peerlbl_sid - Determine the peer label of a packet
4517  * @skb: the packet
4518  * @family: protocol family
4519  * @sid: the packet's peer label SID
4520  *
4521  * Description:
4522  * Check the various different forms of network peer labeling and determine
4523  * the peer label/SID for the packet; most of the magic actually occurs in
4524  * the security server function security_net_peersid_cmp().  The function
4525  * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
4526  * or -EACCES if @sid is invalid due to inconsistencies with the different
4527  * peer labels.
4528  *
4529  */
4530 static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
4531 {
4532 	int err;
4533 	u32 xfrm_sid;
4534 	u32 nlbl_sid;
4535 	u32 nlbl_type;
4536 
4537 	err = selinux_xfrm_skb_sid(skb, &xfrm_sid);
4538 	if (unlikely(err))
4539 		return -EACCES;
4540 	err = selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
4541 	if (unlikely(err))
4542 		return -EACCES;
4543 
4544 	err = security_net_peersid_resolve(nlbl_sid,
4545 					   nlbl_type, xfrm_sid, sid);
4546 	if (unlikely(err)) {
4547 		pr_warn(
4548 		       "SELinux: failure in selinux_skb_peerlbl_sid(),"
4549 		       " unable to determine packet's peer label\n");
4550 		return -EACCES;
4551 	}
4552 
4553 	return 0;
4554 }
4555 
4556 /**
4557  * selinux_conn_sid - Determine the child socket label for a connection
4558  * @sk_sid: the parent socket's SID
4559  * @skb_sid: the packet's SID
4560  * @conn_sid: the resulting connection SID
4561  *
4562  * If @skb_sid is valid then the user:role:type information from @sk_sid is
4563  * combined with the MLS information from @skb_sid in order to create
4564  * @conn_sid.  If @skb_sid is not valid then @conn_sid is simply a copy
4565  * of @sk_sid.  Returns zero on success, negative values on failure.
4566  *
4567  */
4568 static int selinux_conn_sid(u32 sk_sid, u32 skb_sid, u32 *conn_sid)
4569 {
4570 	int err = 0;
4571 
4572 	if (skb_sid != SECSID_NULL)
4573 		err = security_sid_mls_copy(sk_sid, skb_sid,
4574 					    conn_sid);
4575 	else
4576 		*conn_sid = sk_sid;
4577 
4578 	return err;
4579 }
4580 
4581 /* socket security operations */
4582 
4583 static int socket_sockcreate_sid(const struct task_security_struct *tsec,
4584 				 u16 secclass, u32 *socksid)
4585 {
4586 	if (tsec->sockcreate_sid > SECSID_NULL) {
4587 		*socksid = tsec->sockcreate_sid;
4588 		return 0;
4589 	}
4590 
4591 	return security_transition_sid(tsec->sid, tsec->sid,
4592 				       secclass, NULL, socksid);
4593 }
4594 
4595 static int sock_has_perm(struct sock *sk, u32 perms)
4596 {
4597 	struct sk_security_struct *sksec = sk->sk_security;
4598 	struct common_audit_data ad;
4599 	struct lsm_network_audit net;
4600 
4601 	if (sksec->sid == SECINITSID_KERNEL)
4602 		return 0;
4603 
4604 	/*
4605 	 * Before POLICYDB_CAP_USERSPACE_INITIAL_CONTEXT, sockets that
4606 	 * inherited the kernel context from early boot used to be skipped
4607 	 * here, so preserve that behavior unless the capability is set.
4608 	 *
4609 	 * By setting the capability the policy signals that it is ready
4610 	 * for this quirk to be fixed. Note that sockets created by a kernel
4611 	 * thread or a usermode helper executed without a transition will
4612 	 * still be skipped in this check regardless of the policycap
4613 	 * setting.
4614 	 */
4615 	if (!selinux_policycap_userspace_initial_context() &&
4616 	    sksec->sid == SECINITSID_INIT)
4617 		return 0;
4618 
4619 	ad_net_init_from_sk(&ad, &net, sk);
4620 
4621 	return avc_has_perm(current_sid(), sksec->sid, sksec->sclass, perms,
4622 			    &ad);
4623 }
4624 
4625 static int selinux_socket_create(int family, int type,
4626 				 int protocol, int kern)
4627 {
4628 	const struct task_security_struct *tsec = selinux_cred(current_cred());
4629 	u32 newsid;
4630 	u16 secclass;
4631 	int rc;
4632 
4633 	if (kern)
4634 		return 0;
4635 
4636 	secclass = socket_type_to_security_class(family, type, protocol);
4637 	rc = socket_sockcreate_sid(tsec, secclass, &newsid);
4638 	if (rc)
4639 		return rc;
4640 
4641 	return avc_has_perm(tsec->sid, newsid, secclass, SOCKET__CREATE, NULL);
4642 }
4643 
4644 static int selinux_socket_post_create(struct socket *sock, int family,
4645 				      int type, int protocol, int kern)
4646 {
4647 	const struct task_security_struct *tsec = selinux_cred(current_cred());
4648 	struct inode_security_struct *isec = inode_security_novalidate(SOCK_INODE(sock));
4649 	struct sk_security_struct *sksec;
4650 	u16 sclass = socket_type_to_security_class(family, type, protocol);
4651 	u32 sid = SECINITSID_KERNEL;
4652 	int err = 0;
4653 
4654 	if (!kern) {
4655 		err = socket_sockcreate_sid(tsec, sclass, &sid);
4656 		if (err)
4657 			return err;
4658 	}
4659 
4660 	isec->sclass = sclass;
4661 	isec->sid = sid;
4662 	isec->initialized = LABEL_INITIALIZED;
4663 
4664 	if (sock->sk) {
4665 		sksec = sock->sk->sk_security;
4666 		sksec->sclass = sclass;
4667 		sksec->sid = sid;
4668 		/* Allows detection of the first association on this socket */
4669 		if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4670 			sksec->sctp_assoc_state = SCTP_ASSOC_UNSET;
4671 
4672 		err = selinux_netlbl_socket_post_create(sock->sk, family);
4673 	}
4674 
4675 	return err;
4676 }
4677 
4678 static int selinux_socket_socketpair(struct socket *socka,
4679 				     struct socket *sockb)
4680 {
4681 	struct sk_security_struct *sksec_a = socka->sk->sk_security;
4682 	struct sk_security_struct *sksec_b = sockb->sk->sk_security;
4683 
4684 	sksec_a->peer_sid = sksec_b->sid;
4685 	sksec_b->peer_sid = sksec_a->sid;
4686 
4687 	return 0;
4688 }
4689 
4690 /* Range of port numbers used to automatically bind.
4691    Need to determine whether we should perform a name_bind
4692    permission check between the socket and the port number. */
4693 
4694 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
4695 {
4696 	struct sock *sk = sock->sk;
4697 	struct sk_security_struct *sksec = sk->sk_security;
4698 	u16 family;
4699 	int err;
4700 
4701 	err = sock_has_perm(sk, SOCKET__BIND);
4702 	if (err)
4703 		goto out;
4704 
4705 	/* If PF_INET or PF_INET6, check name_bind permission for the port. */
4706 	family = sk->sk_family;
4707 	if (family == PF_INET || family == PF_INET6) {
4708 		char *addrp;
4709 		struct common_audit_data ad;
4710 		struct lsm_network_audit net = {0,};
4711 		struct sockaddr_in *addr4 = NULL;
4712 		struct sockaddr_in6 *addr6 = NULL;
4713 		u16 family_sa;
4714 		unsigned short snum;
4715 		u32 sid, node_perm;
4716 
4717 		/*
4718 		 * sctp_bindx(3) calls via selinux_sctp_bind_connect()
4719 		 * that validates multiple binding addresses. Because of this
4720 		 * need to check address->sa_family as it is possible to have
4721 		 * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET.
4722 		 */
4723 		if (addrlen < offsetofend(struct sockaddr, sa_family))
4724 			return -EINVAL;
4725 		family_sa = address->sa_family;
4726 		switch (family_sa) {
4727 		case AF_UNSPEC:
4728 		case AF_INET:
4729 			if (addrlen < sizeof(struct sockaddr_in))
4730 				return -EINVAL;
4731 			addr4 = (struct sockaddr_in *)address;
4732 			if (family_sa == AF_UNSPEC) {
4733 				if (family == PF_INET6) {
4734 					/* Length check from inet6_bind_sk() */
4735 					if (addrlen < SIN6_LEN_RFC2133)
4736 						return -EINVAL;
4737 					/* Family check from __inet6_bind() */
4738 					goto err_af;
4739 				}
4740 				/* see __inet_bind(), we only want to allow
4741 				 * AF_UNSPEC if the address is INADDR_ANY
4742 				 */
4743 				if (addr4->sin_addr.s_addr != htonl(INADDR_ANY))
4744 					goto err_af;
4745 				family_sa = AF_INET;
4746 			}
4747 			snum = ntohs(addr4->sin_port);
4748 			addrp = (char *)&addr4->sin_addr.s_addr;
4749 			break;
4750 		case AF_INET6:
4751 			if (addrlen < SIN6_LEN_RFC2133)
4752 				return -EINVAL;
4753 			addr6 = (struct sockaddr_in6 *)address;
4754 			snum = ntohs(addr6->sin6_port);
4755 			addrp = (char *)&addr6->sin6_addr.s6_addr;
4756 			break;
4757 		default:
4758 			goto err_af;
4759 		}
4760 
4761 		ad.type = LSM_AUDIT_DATA_NET;
4762 		ad.u.net = &net;
4763 		ad.u.net->sport = htons(snum);
4764 		ad.u.net->family = family_sa;
4765 
4766 		if (snum) {
4767 			int low, high;
4768 
4769 			inet_get_local_port_range(sock_net(sk), &low, &high);
4770 
4771 			if (inet_port_requires_bind_service(sock_net(sk), snum) ||
4772 			    snum < low || snum > high) {
4773 				err = sel_netport_sid(sk->sk_protocol,
4774 						      snum, &sid);
4775 				if (err)
4776 					goto out;
4777 				err = avc_has_perm(sksec->sid, sid,
4778 						   sksec->sclass,
4779 						   SOCKET__NAME_BIND, &ad);
4780 				if (err)
4781 					goto out;
4782 			}
4783 		}
4784 
4785 		switch (sksec->sclass) {
4786 		case SECCLASS_TCP_SOCKET:
4787 			node_perm = TCP_SOCKET__NODE_BIND;
4788 			break;
4789 
4790 		case SECCLASS_UDP_SOCKET:
4791 			node_perm = UDP_SOCKET__NODE_BIND;
4792 			break;
4793 
4794 		case SECCLASS_DCCP_SOCKET:
4795 			node_perm = DCCP_SOCKET__NODE_BIND;
4796 			break;
4797 
4798 		case SECCLASS_SCTP_SOCKET:
4799 			node_perm = SCTP_SOCKET__NODE_BIND;
4800 			break;
4801 
4802 		default:
4803 			node_perm = RAWIP_SOCKET__NODE_BIND;
4804 			break;
4805 		}
4806 
4807 		err = sel_netnode_sid(addrp, family_sa, &sid);
4808 		if (err)
4809 			goto out;
4810 
4811 		if (family_sa == AF_INET)
4812 			ad.u.net->v4info.saddr = addr4->sin_addr.s_addr;
4813 		else
4814 			ad.u.net->v6info.saddr = addr6->sin6_addr;
4815 
4816 		err = avc_has_perm(sksec->sid, sid,
4817 				   sksec->sclass, node_perm, &ad);
4818 		if (err)
4819 			goto out;
4820 	}
4821 out:
4822 	return err;
4823 err_af:
4824 	/* Note that SCTP services expect -EINVAL, others -EAFNOSUPPORT. */
4825 	if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4826 		return -EINVAL;
4827 	return -EAFNOSUPPORT;
4828 }
4829 
4830 /* This supports connect(2) and SCTP connect services such as sctp_connectx(3)
4831  * and sctp_sendmsg(3) as described in Documentation/security/SCTP.rst
4832  */
4833 static int selinux_socket_connect_helper(struct socket *sock,
4834 					 struct sockaddr *address, int addrlen)
4835 {
4836 	struct sock *sk = sock->sk;
4837 	struct sk_security_struct *sksec = sk->sk_security;
4838 	int err;
4839 
4840 	err = sock_has_perm(sk, SOCKET__CONNECT);
4841 	if (err)
4842 		return err;
4843 	if (addrlen < offsetofend(struct sockaddr, sa_family))
4844 		return -EINVAL;
4845 
4846 	/* connect(AF_UNSPEC) has special handling, as it is a documented
4847 	 * way to disconnect the socket
4848 	 */
4849 	if (address->sa_family == AF_UNSPEC)
4850 		return 0;
4851 
4852 	/*
4853 	 * If a TCP, DCCP or SCTP socket, check name_connect permission
4854 	 * for the port.
4855 	 */
4856 	if (sksec->sclass == SECCLASS_TCP_SOCKET ||
4857 	    sksec->sclass == SECCLASS_DCCP_SOCKET ||
4858 	    sksec->sclass == SECCLASS_SCTP_SOCKET) {
4859 		struct common_audit_data ad;
4860 		struct lsm_network_audit net = {0,};
4861 		struct sockaddr_in *addr4 = NULL;
4862 		struct sockaddr_in6 *addr6 = NULL;
4863 		unsigned short snum;
4864 		u32 sid, perm;
4865 
4866 		/* sctp_connectx(3) calls via selinux_sctp_bind_connect()
4867 		 * that validates multiple connect addresses. Because of this
4868 		 * need to check address->sa_family as it is possible to have
4869 		 * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET.
4870 		 */
4871 		switch (address->sa_family) {
4872 		case AF_INET:
4873 			addr4 = (struct sockaddr_in *)address;
4874 			if (addrlen < sizeof(struct sockaddr_in))
4875 				return -EINVAL;
4876 			snum = ntohs(addr4->sin_port);
4877 			break;
4878 		case AF_INET6:
4879 			addr6 = (struct sockaddr_in6 *)address;
4880 			if (addrlen < SIN6_LEN_RFC2133)
4881 				return -EINVAL;
4882 			snum = ntohs(addr6->sin6_port);
4883 			break;
4884 		default:
4885 			/* Note that SCTP services expect -EINVAL, whereas
4886 			 * others expect -EAFNOSUPPORT.
4887 			 */
4888 			if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4889 				return -EINVAL;
4890 			else
4891 				return -EAFNOSUPPORT;
4892 		}
4893 
4894 		err = sel_netport_sid(sk->sk_protocol, snum, &sid);
4895 		if (err)
4896 			return err;
4897 
4898 		switch (sksec->sclass) {
4899 		case SECCLASS_TCP_SOCKET:
4900 			perm = TCP_SOCKET__NAME_CONNECT;
4901 			break;
4902 		case SECCLASS_DCCP_SOCKET:
4903 			perm = DCCP_SOCKET__NAME_CONNECT;
4904 			break;
4905 		case SECCLASS_SCTP_SOCKET:
4906 			perm = SCTP_SOCKET__NAME_CONNECT;
4907 			break;
4908 		}
4909 
4910 		ad.type = LSM_AUDIT_DATA_NET;
4911 		ad.u.net = &net;
4912 		ad.u.net->dport = htons(snum);
4913 		ad.u.net->family = address->sa_family;
4914 		err = avc_has_perm(sksec->sid, sid, sksec->sclass, perm, &ad);
4915 		if (err)
4916 			return err;
4917 	}
4918 
4919 	return 0;
4920 }
4921 
4922 /* Supports connect(2), see comments in selinux_socket_connect_helper() */
4923 static int selinux_socket_connect(struct socket *sock,
4924 				  struct sockaddr *address, int addrlen)
4925 {
4926 	int err;
4927 	struct sock *sk = sock->sk;
4928 
4929 	err = selinux_socket_connect_helper(sock, address, addrlen);
4930 	if (err)
4931 		return err;
4932 
4933 	return selinux_netlbl_socket_connect(sk, address);
4934 }
4935 
4936 static int selinux_socket_listen(struct socket *sock, int backlog)
4937 {
4938 	return sock_has_perm(sock->sk, SOCKET__LISTEN);
4939 }
4940 
4941 static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
4942 {
4943 	int err;
4944 	struct inode_security_struct *isec;
4945 	struct inode_security_struct *newisec;
4946 	u16 sclass;
4947 	u32 sid;
4948 
4949 	err = sock_has_perm(sock->sk, SOCKET__ACCEPT);
4950 	if (err)
4951 		return err;
4952 
4953 	isec = inode_security_novalidate(SOCK_INODE(sock));
4954 	spin_lock(&isec->lock);
4955 	sclass = isec->sclass;
4956 	sid = isec->sid;
4957 	spin_unlock(&isec->lock);
4958 
4959 	newisec = inode_security_novalidate(SOCK_INODE(newsock));
4960 	newisec->sclass = sclass;
4961 	newisec->sid = sid;
4962 	newisec->initialized = LABEL_INITIALIZED;
4963 
4964 	return 0;
4965 }
4966 
4967 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
4968 				  int size)
4969 {
4970 	return sock_has_perm(sock->sk, SOCKET__WRITE);
4971 }
4972 
4973 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
4974 				  int size, int flags)
4975 {
4976 	return sock_has_perm(sock->sk, SOCKET__READ);
4977 }
4978 
4979 static int selinux_socket_getsockname(struct socket *sock)
4980 {
4981 	return sock_has_perm(sock->sk, SOCKET__GETATTR);
4982 }
4983 
4984 static int selinux_socket_getpeername(struct socket *sock)
4985 {
4986 	return sock_has_perm(sock->sk, SOCKET__GETATTR);
4987 }
4988 
4989 static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
4990 {
4991 	int err;
4992 
4993 	err = sock_has_perm(sock->sk, SOCKET__SETOPT);
4994 	if (err)
4995 		return err;
4996 
4997 	return selinux_netlbl_socket_setsockopt(sock, level, optname);
4998 }
4999 
5000 static int selinux_socket_getsockopt(struct socket *sock, int level,
5001 				     int optname)
5002 {
5003 	return sock_has_perm(sock->sk, SOCKET__GETOPT);
5004 }
5005 
5006 static int selinux_socket_shutdown(struct socket *sock, int how)
5007 {
5008 	return sock_has_perm(sock->sk, SOCKET__SHUTDOWN);
5009 }
5010 
5011 static int selinux_socket_unix_stream_connect(struct sock *sock,
5012 					      struct sock *other,
5013 					      struct sock *newsk)
5014 {
5015 	struct sk_security_struct *sksec_sock = sock->sk_security;
5016 	struct sk_security_struct *sksec_other = other->sk_security;
5017 	struct sk_security_struct *sksec_new = newsk->sk_security;
5018 	struct common_audit_data ad;
5019 	struct lsm_network_audit net;
5020 	int err;
5021 
5022 	ad_net_init_from_sk(&ad, &net, other);
5023 
5024 	err = avc_has_perm(sksec_sock->sid, sksec_other->sid,
5025 			   sksec_other->sclass,
5026 			   UNIX_STREAM_SOCKET__CONNECTTO, &ad);
5027 	if (err)
5028 		return err;
5029 
5030 	/* server child socket */
5031 	sksec_new->peer_sid = sksec_sock->sid;
5032 	err = security_sid_mls_copy(sksec_other->sid,
5033 				    sksec_sock->sid, &sksec_new->sid);
5034 	if (err)
5035 		return err;
5036 
5037 	/* connecting socket */
5038 	sksec_sock->peer_sid = sksec_new->sid;
5039 
5040 	return 0;
5041 }
5042 
5043 static int selinux_socket_unix_may_send(struct socket *sock,
5044 					struct socket *other)
5045 {
5046 	struct sk_security_struct *ssec = sock->sk->sk_security;
5047 	struct sk_security_struct *osec = other->sk->sk_security;
5048 	struct common_audit_data ad;
5049 	struct lsm_network_audit net;
5050 
5051 	ad_net_init_from_sk(&ad, &net, other->sk);
5052 
5053 	return avc_has_perm(ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO,
5054 			    &ad);
5055 }
5056 
5057 static int selinux_inet_sys_rcv_skb(struct net *ns, int ifindex,
5058 				    char *addrp, u16 family, u32 peer_sid,
5059 				    struct common_audit_data *ad)
5060 {
5061 	int err;
5062 	u32 if_sid;
5063 	u32 node_sid;
5064 
5065 	err = sel_netif_sid(ns, ifindex, &if_sid);
5066 	if (err)
5067 		return err;
5068 	err = avc_has_perm(peer_sid, if_sid,
5069 			   SECCLASS_NETIF, NETIF__INGRESS, ad);
5070 	if (err)
5071 		return err;
5072 
5073 	err = sel_netnode_sid(addrp, family, &node_sid);
5074 	if (err)
5075 		return err;
5076 	return avc_has_perm(peer_sid, node_sid,
5077 			    SECCLASS_NODE, NODE__RECVFROM, ad);
5078 }
5079 
5080 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
5081 				       u16 family)
5082 {
5083 	int err = 0;
5084 	struct sk_security_struct *sksec = sk->sk_security;
5085 	u32 sk_sid = sksec->sid;
5086 	struct common_audit_data ad;
5087 	struct lsm_network_audit net;
5088 	char *addrp;
5089 
5090 	ad_net_init_from_iif(&ad, &net, skb->skb_iif, family);
5091 	err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
5092 	if (err)
5093 		return err;
5094 
5095 	if (selinux_secmark_enabled()) {
5096 		err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
5097 				   PACKET__RECV, &ad);
5098 		if (err)
5099 			return err;
5100 	}
5101 
5102 	err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
5103 	if (err)
5104 		return err;
5105 	err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
5106 
5107 	return err;
5108 }
5109 
5110 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
5111 {
5112 	int err, peerlbl_active, secmark_active;
5113 	struct sk_security_struct *sksec = sk->sk_security;
5114 	u16 family = sk->sk_family;
5115 	u32 sk_sid = sksec->sid;
5116 	struct common_audit_data ad;
5117 	struct lsm_network_audit net;
5118 	char *addrp;
5119 
5120 	if (family != PF_INET && family != PF_INET6)
5121 		return 0;
5122 
5123 	/* Handle mapped IPv4 packets arriving via IPv6 sockets */
5124 	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
5125 		family = PF_INET;
5126 
5127 	/* If any sort of compatibility mode is enabled then handoff processing
5128 	 * to the selinux_sock_rcv_skb_compat() function to deal with the
5129 	 * special handling.  We do this in an attempt to keep this function
5130 	 * as fast and as clean as possible. */
5131 	if (!selinux_policycap_netpeer())
5132 		return selinux_sock_rcv_skb_compat(sk, skb, family);
5133 
5134 	secmark_active = selinux_secmark_enabled();
5135 	peerlbl_active = selinux_peerlbl_enabled();
5136 	if (!secmark_active && !peerlbl_active)
5137 		return 0;
5138 
5139 	ad_net_init_from_iif(&ad, &net, skb->skb_iif, family);
5140 	err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
5141 	if (err)
5142 		return err;
5143 
5144 	if (peerlbl_active) {
5145 		u32 peer_sid;
5146 
5147 		err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
5148 		if (err)
5149 			return err;
5150 		err = selinux_inet_sys_rcv_skb(sock_net(sk), skb->skb_iif,
5151 					       addrp, family, peer_sid, &ad);
5152 		if (err) {
5153 			selinux_netlbl_err(skb, family, err, 0);
5154 			return err;
5155 		}
5156 		err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER,
5157 				   PEER__RECV, &ad);
5158 		if (err) {
5159 			selinux_netlbl_err(skb, family, err, 0);
5160 			return err;
5161 		}
5162 	}
5163 
5164 	if (secmark_active) {
5165 		err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
5166 				   PACKET__RECV, &ad);
5167 		if (err)
5168 			return err;
5169 	}
5170 
5171 	return err;
5172 }
5173 
5174 static int selinux_socket_getpeersec_stream(struct socket *sock,
5175 					    sockptr_t optval, sockptr_t optlen,
5176 					    unsigned int len)
5177 {
5178 	int err = 0;
5179 	char *scontext = NULL;
5180 	u32 scontext_len;
5181 	struct sk_security_struct *sksec = sock->sk->sk_security;
5182 	u32 peer_sid = SECSID_NULL;
5183 
5184 	if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
5185 	    sksec->sclass == SECCLASS_TCP_SOCKET ||
5186 	    sksec->sclass == SECCLASS_SCTP_SOCKET)
5187 		peer_sid = sksec->peer_sid;
5188 	if (peer_sid == SECSID_NULL)
5189 		return -ENOPROTOOPT;
5190 
5191 	err = security_sid_to_context(peer_sid, &scontext,
5192 				      &scontext_len);
5193 	if (err)
5194 		return err;
5195 	if (scontext_len > len) {
5196 		err = -ERANGE;
5197 		goto out_len;
5198 	}
5199 
5200 	if (copy_to_sockptr(optval, scontext, scontext_len))
5201 		err = -EFAULT;
5202 out_len:
5203 	if (copy_to_sockptr(optlen, &scontext_len, sizeof(scontext_len)))
5204 		err = -EFAULT;
5205 	kfree(scontext);
5206 	return err;
5207 }
5208 
5209 static int selinux_socket_getpeersec_dgram(struct socket *sock,
5210 					   struct sk_buff *skb, u32 *secid)
5211 {
5212 	u32 peer_secid = SECSID_NULL;
5213 	u16 family;
5214 
5215 	if (skb && skb->protocol == htons(ETH_P_IP))
5216 		family = PF_INET;
5217 	else if (skb && skb->protocol == htons(ETH_P_IPV6))
5218 		family = PF_INET6;
5219 	else if (sock)
5220 		family = sock->sk->sk_family;
5221 	else {
5222 		*secid = SECSID_NULL;
5223 		return -EINVAL;
5224 	}
5225 
5226 	if (sock && family == PF_UNIX) {
5227 		struct inode_security_struct *isec;
5228 		isec = inode_security_novalidate(SOCK_INODE(sock));
5229 		peer_secid = isec->sid;
5230 	} else if (skb)
5231 		selinux_skb_peerlbl_sid(skb, family, &peer_secid);
5232 
5233 	*secid = peer_secid;
5234 	if (peer_secid == SECSID_NULL)
5235 		return -ENOPROTOOPT;
5236 	return 0;
5237 }
5238 
5239 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
5240 {
5241 	struct sk_security_struct *sksec;
5242 
5243 	sksec = kzalloc(sizeof(*sksec), priority);
5244 	if (!sksec)
5245 		return -ENOMEM;
5246 
5247 	sksec->peer_sid = SECINITSID_UNLABELED;
5248 	sksec->sid = SECINITSID_UNLABELED;
5249 	sksec->sclass = SECCLASS_SOCKET;
5250 	selinux_netlbl_sk_security_reset(sksec);
5251 	sk->sk_security = sksec;
5252 
5253 	return 0;
5254 }
5255 
5256 static void selinux_sk_free_security(struct sock *sk)
5257 {
5258 	struct sk_security_struct *sksec = sk->sk_security;
5259 
5260 	sk->sk_security = NULL;
5261 	selinux_netlbl_sk_security_free(sksec);
5262 	kfree(sksec);
5263 }
5264 
5265 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
5266 {
5267 	struct sk_security_struct *sksec = sk->sk_security;
5268 	struct sk_security_struct *newsksec = newsk->sk_security;
5269 
5270 	newsksec->sid = sksec->sid;
5271 	newsksec->peer_sid = sksec->peer_sid;
5272 	newsksec->sclass = sksec->sclass;
5273 
5274 	selinux_netlbl_sk_security_reset(newsksec);
5275 }
5276 
5277 static void selinux_sk_getsecid(const struct sock *sk, u32 *secid)
5278 {
5279 	if (!sk)
5280 		*secid = SECINITSID_ANY_SOCKET;
5281 	else {
5282 		const struct sk_security_struct *sksec = sk->sk_security;
5283 
5284 		*secid = sksec->sid;
5285 	}
5286 }
5287 
5288 static void selinux_sock_graft(struct sock *sk, struct socket *parent)
5289 {
5290 	struct inode_security_struct *isec =
5291 		inode_security_novalidate(SOCK_INODE(parent));
5292 	struct sk_security_struct *sksec = sk->sk_security;
5293 
5294 	if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
5295 	    sk->sk_family == PF_UNIX)
5296 		isec->sid = sksec->sid;
5297 	sksec->sclass = isec->sclass;
5298 }
5299 
5300 /*
5301  * Determines peer_secid for the asoc and updates socket's peer label
5302  * if it's the first association on the socket.
5303  */
5304 static int selinux_sctp_process_new_assoc(struct sctp_association *asoc,
5305 					  struct sk_buff *skb)
5306 {
5307 	struct sock *sk = asoc->base.sk;
5308 	u16 family = sk->sk_family;
5309 	struct sk_security_struct *sksec = sk->sk_security;
5310 	struct common_audit_data ad;
5311 	struct lsm_network_audit net;
5312 	int err;
5313 
5314 	/* handle mapped IPv4 packets arriving via IPv6 sockets */
5315 	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
5316 		family = PF_INET;
5317 
5318 	if (selinux_peerlbl_enabled()) {
5319 		asoc->peer_secid = SECSID_NULL;
5320 
5321 		/* This will return peer_sid = SECSID_NULL if there are
5322 		 * no peer labels, see security_net_peersid_resolve().
5323 		 */
5324 		err = selinux_skb_peerlbl_sid(skb, family, &asoc->peer_secid);
5325 		if (err)
5326 			return err;
5327 
5328 		if (asoc->peer_secid == SECSID_NULL)
5329 			asoc->peer_secid = SECINITSID_UNLABELED;
5330 	} else {
5331 		asoc->peer_secid = SECINITSID_UNLABELED;
5332 	}
5333 
5334 	if (sksec->sctp_assoc_state == SCTP_ASSOC_UNSET) {
5335 		sksec->sctp_assoc_state = SCTP_ASSOC_SET;
5336 
5337 		/* Here as first association on socket. As the peer SID
5338 		 * was allowed by peer recv (and the netif/node checks),
5339 		 * then it is approved by policy and used as the primary
5340 		 * peer SID for getpeercon(3).
5341 		 */
5342 		sksec->peer_sid = asoc->peer_secid;
5343 	} else if (sksec->peer_sid != asoc->peer_secid) {
5344 		/* Other association peer SIDs are checked to enforce
5345 		 * consistency among the peer SIDs.
5346 		 */
5347 		ad_net_init_from_sk(&ad, &net, asoc->base.sk);
5348 		err = avc_has_perm(sksec->peer_sid, asoc->peer_secid,
5349 				   sksec->sclass, SCTP_SOCKET__ASSOCIATION,
5350 				   &ad);
5351 		if (err)
5352 			return err;
5353 	}
5354 	return 0;
5355 }
5356 
5357 /* Called whenever SCTP receives an INIT or COOKIE ECHO chunk. This
5358  * happens on an incoming connect(2), sctp_connectx(3) or
5359  * sctp_sendmsg(3) (with no association already present).
5360  */
5361 static int selinux_sctp_assoc_request(struct sctp_association *asoc,
5362 				      struct sk_buff *skb)
5363 {
5364 	struct sk_security_struct *sksec = asoc->base.sk->sk_security;
5365 	u32 conn_sid;
5366 	int err;
5367 
5368 	if (!selinux_policycap_extsockclass())
5369 		return 0;
5370 
5371 	err = selinux_sctp_process_new_assoc(asoc, skb);
5372 	if (err)
5373 		return err;
5374 
5375 	/* Compute the MLS component for the connection and store
5376 	 * the information in asoc. This will be used by SCTP TCP type
5377 	 * sockets and peeled off connections as they cause a new
5378 	 * socket to be generated. selinux_sctp_sk_clone() will then
5379 	 * plug this into the new socket.
5380 	 */
5381 	err = selinux_conn_sid(sksec->sid, asoc->peer_secid, &conn_sid);
5382 	if (err)
5383 		return err;
5384 
5385 	asoc->secid = conn_sid;
5386 
5387 	/* Set any NetLabel labels including CIPSO/CALIPSO options. */
5388 	return selinux_netlbl_sctp_assoc_request(asoc, skb);
5389 }
5390 
5391 /* Called when SCTP receives a COOKIE ACK chunk as the final
5392  * response to an association request (initited by us).
5393  */
5394 static int selinux_sctp_assoc_established(struct sctp_association *asoc,
5395 					  struct sk_buff *skb)
5396 {
5397 	struct sk_security_struct *sksec = asoc->base.sk->sk_security;
5398 
5399 	if (!selinux_policycap_extsockclass())
5400 		return 0;
5401 
5402 	/* Inherit secid from the parent socket - this will be picked up
5403 	 * by selinux_sctp_sk_clone() if the association gets peeled off
5404 	 * into a new socket.
5405 	 */
5406 	asoc->secid = sksec->sid;
5407 
5408 	return selinux_sctp_process_new_assoc(asoc, skb);
5409 }
5410 
5411 /* Check if sctp IPv4/IPv6 addresses are valid for binding or connecting
5412  * based on their @optname.
5413  */
5414 static int selinux_sctp_bind_connect(struct sock *sk, int optname,
5415 				     struct sockaddr *address,
5416 				     int addrlen)
5417 {
5418 	int len, err = 0, walk_size = 0;
5419 	void *addr_buf;
5420 	struct sockaddr *addr;
5421 	struct socket *sock;
5422 
5423 	if (!selinux_policycap_extsockclass())
5424 		return 0;
5425 
5426 	/* Process one or more addresses that may be IPv4 or IPv6 */
5427 	sock = sk->sk_socket;
5428 	addr_buf = address;
5429 
5430 	while (walk_size < addrlen) {
5431 		if (walk_size + sizeof(sa_family_t) > addrlen)
5432 			return -EINVAL;
5433 
5434 		addr = addr_buf;
5435 		switch (addr->sa_family) {
5436 		case AF_UNSPEC:
5437 		case AF_INET:
5438 			len = sizeof(struct sockaddr_in);
5439 			break;
5440 		case AF_INET6:
5441 			len = sizeof(struct sockaddr_in6);
5442 			break;
5443 		default:
5444 			return -EINVAL;
5445 		}
5446 
5447 		if (walk_size + len > addrlen)
5448 			return -EINVAL;
5449 
5450 		err = -EINVAL;
5451 		switch (optname) {
5452 		/* Bind checks */
5453 		case SCTP_PRIMARY_ADDR:
5454 		case SCTP_SET_PEER_PRIMARY_ADDR:
5455 		case SCTP_SOCKOPT_BINDX_ADD:
5456 			err = selinux_socket_bind(sock, addr, len);
5457 			break;
5458 		/* Connect checks */
5459 		case SCTP_SOCKOPT_CONNECTX:
5460 		case SCTP_PARAM_SET_PRIMARY:
5461 		case SCTP_PARAM_ADD_IP:
5462 		case SCTP_SENDMSG_CONNECT:
5463 			err = selinux_socket_connect_helper(sock, addr, len);
5464 			if (err)
5465 				return err;
5466 
5467 			/* As selinux_sctp_bind_connect() is called by the
5468 			 * SCTP protocol layer, the socket is already locked,
5469 			 * therefore selinux_netlbl_socket_connect_locked()
5470 			 * is called here. The situations handled are:
5471 			 * sctp_connectx(3), sctp_sendmsg(3), sendmsg(2),
5472 			 * whenever a new IP address is added or when a new
5473 			 * primary address is selected.
5474 			 * Note that an SCTP connect(2) call happens before
5475 			 * the SCTP protocol layer and is handled via
5476 			 * selinux_socket_connect().
5477 			 */
5478 			err = selinux_netlbl_socket_connect_locked(sk, addr);
5479 			break;
5480 		}
5481 
5482 		if (err)
5483 			return err;
5484 
5485 		addr_buf += len;
5486 		walk_size += len;
5487 	}
5488 
5489 	return 0;
5490 }
5491 
5492 /* Called whenever a new socket is created by accept(2) or sctp_peeloff(3). */
5493 static void selinux_sctp_sk_clone(struct sctp_association *asoc, struct sock *sk,
5494 				  struct sock *newsk)
5495 {
5496 	struct sk_security_struct *sksec = sk->sk_security;
5497 	struct sk_security_struct *newsksec = newsk->sk_security;
5498 
5499 	/* If policy does not support SECCLASS_SCTP_SOCKET then call
5500 	 * the non-sctp clone version.
5501 	 */
5502 	if (!selinux_policycap_extsockclass())
5503 		return selinux_sk_clone_security(sk, newsk);
5504 
5505 	newsksec->sid = asoc->secid;
5506 	newsksec->peer_sid = asoc->peer_secid;
5507 	newsksec->sclass = sksec->sclass;
5508 	selinux_netlbl_sctp_sk_clone(sk, newsk);
5509 }
5510 
5511 static int selinux_mptcp_add_subflow(struct sock *sk, struct sock *ssk)
5512 {
5513 	struct sk_security_struct *ssksec = ssk->sk_security;
5514 	struct sk_security_struct *sksec = sk->sk_security;
5515 
5516 	ssksec->sclass = sksec->sclass;
5517 	ssksec->sid = sksec->sid;
5518 
5519 	/* replace the existing subflow label deleting the existing one
5520 	 * and re-recreating a new label using the updated context
5521 	 */
5522 	selinux_netlbl_sk_security_free(ssksec);
5523 	return selinux_netlbl_socket_post_create(ssk, ssk->sk_family);
5524 }
5525 
5526 static int selinux_inet_conn_request(const struct sock *sk, struct sk_buff *skb,
5527 				     struct request_sock *req)
5528 {
5529 	struct sk_security_struct *sksec = sk->sk_security;
5530 	int err;
5531 	u16 family = req->rsk_ops->family;
5532 	u32 connsid;
5533 	u32 peersid;
5534 
5535 	err = selinux_skb_peerlbl_sid(skb, family, &peersid);
5536 	if (err)
5537 		return err;
5538 	err = selinux_conn_sid(sksec->sid, peersid, &connsid);
5539 	if (err)
5540 		return err;
5541 	req->secid = connsid;
5542 	req->peer_secid = peersid;
5543 
5544 	return selinux_netlbl_inet_conn_request(req, family);
5545 }
5546 
5547 static void selinux_inet_csk_clone(struct sock *newsk,
5548 				   const struct request_sock *req)
5549 {
5550 	struct sk_security_struct *newsksec = newsk->sk_security;
5551 
5552 	newsksec->sid = req->secid;
5553 	newsksec->peer_sid = req->peer_secid;
5554 	/* NOTE: Ideally, we should also get the isec->sid for the
5555 	   new socket in sync, but we don't have the isec available yet.
5556 	   So we will wait until sock_graft to do it, by which
5557 	   time it will have been created and available. */
5558 
5559 	/* We don't need to take any sort of lock here as we are the only
5560 	 * thread with access to newsksec */
5561 	selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family);
5562 }
5563 
5564 static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
5565 {
5566 	u16 family = sk->sk_family;
5567 	struct sk_security_struct *sksec = sk->sk_security;
5568 
5569 	/* handle mapped IPv4 packets arriving via IPv6 sockets */
5570 	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
5571 		family = PF_INET;
5572 
5573 	selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
5574 }
5575 
5576 static int selinux_secmark_relabel_packet(u32 sid)
5577 {
5578 	return avc_has_perm(current_sid(), sid, SECCLASS_PACKET, PACKET__RELABELTO,
5579 			    NULL);
5580 }
5581 
5582 static void selinux_secmark_refcount_inc(void)
5583 {
5584 	atomic_inc(&selinux_secmark_refcount);
5585 }
5586 
5587 static void selinux_secmark_refcount_dec(void)
5588 {
5589 	atomic_dec(&selinux_secmark_refcount);
5590 }
5591 
5592 static void selinux_req_classify_flow(const struct request_sock *req,
5593 				      struct flowi_common *flic)
5594 {
5595 	flic->flowic_secid = req->secid;
5596 }
5597 
5598 static int selinux_tun_dev_alloc_security(void **security)
5599 {
5600 	struct tun_security_struct *tunsec;
5601 
5602 	tunsec = kzalloc(sizeof(*tunsec), GFP_KERNEL);
5603 	if (!tunsec)
5604 		return -ENOMEM;
5605 	tunsec->sid = current_sid();
5606 
5607 	*security = tunsec;
5608 	return 0;
5609 }
5610 
5611 static void selinux_tun_dev_free_security(void *security)
5612 {
5613 	kfree(security);
5614 }
5615 
5616 static int selinux_tun_dev_create(void)
5617 {
5618 	u32 sid = current_sid();
5619 
5620 	/* we aren't taking into account the "sockcreate" SID since the socket
5621 	 * that is being created here is not a socket in the traditional sense,
5622 	 * instead it is a private sock, accessible only to the kernel, and
5623 	 * representing a wide range of network traffic spanning multiple
5624 	 * connections unlike traditional sockets - check the TUN driver to
5625 	 * get a better understanding of why this socket is special */
5626 
5627 	return avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE,
5628 			    NULL);
5629 }
5630 
5631 static int selinux_tun_dev_attach_queue(void *security)
5632 {
5633 	struct tun_security_struct *tunsec = security;
5634 
5635 	return avc_has_perm(current_sid(), tunsec->sid, SECCLASS_TUN_SOCKET,
5636 			    TUN_SOCKET__ATTACH_QUEUE, NULL);
5637 }
5638 
5639 static int selinux_tun_dev_attach(struct sock *sk, void *security)
5640 {
5641 	struct tun_security_struct *tunsec = security;
5642 	struct sk_security_struct *sksec = sk->sk_security;
5643 
5644 	/* we don't currently perform any NetLabel based labeling here and it
5645 	 * isn't clear that we would want to do so anyway; while we could apply
5646 	 * labeling without the support of the TUN user the resulting labeled
5647 	 * traffic from the other end of the connection would almost certainly
5648 	 * cause confusion to the TUN user that had no idea network labeling
5649 	 * protocols were being used */
5650 
5651 	sksec->sid = tunsec->sid;
5652 	sksec->sclass = SECCLASS_TUN_SOCKET;
5653 
5654 	return 0;
5655 }
5656 
5657 static int selinux_tun_dev_open(void *security)
5658 {
5659 	struct tun_security_struct *tunsec = security;
5660 	u32 sid = current_sid();
5661 	int err;
5662 
5663 	err = avc_has_perm(sid, tunsec->sid, SECCLASS_TUN_SOCKET,
5664 			   TUN_SOCKET__RELABELFROM, NULL);
5665 	if (err)
5666 		return err;
5667 	err = avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET,
5668 			   TUN_SOCKET__RELABELTO, NULL);
5669 	if (err)
5670 		return err;
5671 	tunsec->sid = sid;
5672 
5673 	return 0;
5674 }
5675 
5676 #ifdef CONFIG_NETFILTER
5677 
5678 static unsigned int selinux_ip_forward(void *priv, struct sk_buff *skb,
5679 				       const struct nf_hook_state *state)
5680 {
5681 	int ifindex;
5682 	u16 family;
5683 	char *addrp;
5684 	u32 peer_sid;
5685 	struct common_audit_data ad;
5686 	struct lsm_network_audit net;
5687 	int secmark_active, peerlbl_active;
5688 
5689 	if (!selinux_policycap_netpeer())
5690 		return NF_ACCEPT;
5691 
5692 	secmark_active = selinux_secmark_enabled();
5693 	peerlbl_active = selinux_peerlbl_enabled();
5694 	if (!secmark_active && !peerlbl_active)
5695 		return NF_ACCEPT;
5696 
5697 	family = state->pf;
5698 	if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
5699 		return NF_DROP;
5700 
5701 	ifindex = state->in->ifindex;
5702 	ad_net_init_from_iif(&ad, &net, ifindex, family);
5703 	if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
5704 		return NF_DROP;
5705 
5706 	if (peerlbl_active) {
5707 		int err;
5708 
5709 		err = selinux_inet_sys_rcv_skb(state->net, ifindex,
5710 					       addrp, family, peer_sid, &ad);
5711 		if (err) {
5712 			selinux_netlbl_err(skb, family, err, 1);
5713 			return NF_DROP;
5714 		}
5715 	}
5716 
5717 	if (secmark_active)
5718 		if (avc_has_perm(peer_sid, skb->secmark,
5719 				 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
5720 			return NF_DROP;
5721 
5722 	if (netlbl_enabled())
5723 		/* we do this in the FORWARD path and not the POST_ROUTING
5724 		 * path because we want to make sure we apply the necessary
5725 		 * labeling before IPsec is applied so we can leverage AH
5726 		 * protection */
5727 		if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
5728 			return NF_DROP;
5729 
5730 	return NF_ACCEPT;
5731 }
5732 
5733 static unsigned int selinux_ip_output(void *priv, struct sk_buff *skb,
5734 				      const struct nf_hook_state *state)
5735 {
5736 	struct sock *sk;
5737 	u32 sid;
5738 
5739 	if (!netlbl_enabled())
5740 		return NF_ACCEPT;
5741 
5742 	/* we do this in the LOCAL_OUT path and not the POST_ROUTING path
5743 	 * because we want to make sure we apply the necessary labeling
5744 	 * before IPsec is applied so we can leverage AH protection */
5745 	sk = skb->sk;
5746 	if (sk) {
5747 		struct sk_security_struct *sksec;
5748 
5749 		if (sk_listener(sk))
5750 			/* if the socket is the listening state then this
5751 			 * packet is a SYN-ACK packet which means it needs to
5752 			 * be labeled based on the connection/request_sock and
5753 			 * not the parent socket.  unfortunately, we can't
5754 			 * lookup the request_sock yet as it isn't queued on
5755 			 * the parent socket until after the SYN-ACK is sent.
5756 			 * the "solution" is to simply pass the packet as-is
5757 			 * as any IP option based labeling should be copied
5758 			 * from the initial connection request (in the IP
5759 			 * layer).  it is far from ideal, but until we get a
5760 			 * security label in the packet itself this is the
5761 			 * best we can do. */
5762 			return NF_ACCEPT;
5763 
5764 		/* standard practice, label using the parent socket */
5765 		sksec = sk->sk_security;
5766 		sid = sksec->sid;
5767 	} else
5768 		sid = SECINITSID_KERNEL;
5769 	if (selinux_netlbl_skbuff_setsid(skb, state->pf, sid) != 0)
5770 		return NF_DROP;
5771 
5772 	return NF_ACCEPT;
5773 }
5774 
5775 
5776 static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
5777 					const struct nf_hook_state *state)
5778 {
5779 	struct sock *sk;
5780 	struct sk_security_struct *sksec;
5781 	struct common_audit_data ad;
5782 	struct lsm_network_audit net;
5783 	u8 proto = 0;
5784 
5785 	sk = skb_to_full_sk(skb);
5786 	if (sk == NULL)
5787 		return NF_ACCEPT;
5788 	sksec = sk->sk_security;
5789 
5790 	ad_net_init_from_iif(&ad, &net, state->out->ifindex, state->pf);
5791 	if (selinux_parse_skb(skb, &ad, NULL, 0, &proto))
5792 		return NF_DROP;
5793 
5794 	if (selinux_secmark_enabled())
5795 		if (avc_has_perm(sksec->sid, skb->secmark,
5796 				 SECCLASS_PACKET, PACKET__SEND, &ad))
5797 			return NF_DROP_ERR(-ECONNREFUSED);
5798 
5799 	if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
5800 		return NF_DROP_ERR(-ECONNREFUSED);
5801 
5802 	return NF_ACCEPT;
5803 }
5804 
5805 static unsigned int selinux_ip_postroute(void *priv,
5806 					 struct sk_buff *skb,
5807 					 const struct nf_hook_state *state)
5808 {
5809 	u16 family;
5810 	u32 secmark_perm;
5811 	u32 peer_sid;
5812 	int ifindex;
5813 	struct sock *sk;
5814 	struct common_audit_data ad;
5815 	struct lsm_network_audit net;
5816 	char *addrp;
5817 	int secmark_active, peerlbl_active;
5818 
5819 	/* If any sort of compatibility mode is enabled then handoff processing
5820 	 * to the selinux_ip_postroute_compat() function to deal with the
5821 	 * special handling.  We do this in an attempt to keep this function
5822 	 * as fast and as clean as possible. */
5823 	if (!selinux_policycap_netpeer())
5824 		return selinux_ip_postroute_compat(skb, state);
5825 
5826 	secmark_active = selinux_secmark_enabled();
5827 	peerlbl_active = selinux_peerlbl_enabled();
5828 	if (!secmark_active && !peerlbl_active)
5829 		return NF_ACCEPT;
5830 
5831 	sk = skb_to_full_sk(skb);
5832 
5833 #ifdef CONFIG_XFRM
5834 	/* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
5835 	 * packet transformation so allow the packet to pass without any checks
5836 	 * since we'll have another chance to perform access control checks
5837 	 * when the packet is on it's final way out.
5838 	 * NOTE: there appear to be some IPv6 multicast cases where skb->dst
5839 	 *       is NULL, in this case go ahead and apply access control.
5840 	 * NOTE: if this is a local socket (skb->sk != NULL) that is in the
5841 	 *       TCP listening state we cannot wait until the XFRM processing
5842 	 *       is done as we will miss out on the SA label if we do;
5843 	 *       unfortunately, this means more work, but it is only once per
5844 	 *       connection. */
5845 	if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL &&
5846 	    !(sk && sk_listener(sk)))
5847 		return NF_ACCEPT;
5848 #endif
5849 
5850 	family = state->pf;
5851 	if (sk == NULL) {
5852 		/* Without an associated socket the packet is either coming
5853 		 * from the kernel or it is being forwarded; check the packet
5854 		 * to determine which and if the packet is being forwarded
5855 		 * query the packet directly to determine the security label. */
5856 		if (skb->skb_iif) {
5857 			secmark_perm = PACKET__FORWARD_OUT;
5858 			if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
5859 				return NF_DROP;
5860 		} else {
5861 			secmark_perm = PACKET__SEND;
5862 			peer_sid = SECINITSID_KERNEL;
5863 		}
5864 	} else if (sk_listener(sk)) {
5865 		/* Locally generated packet but the associated socket is in the
5866 		 * listening state which means this is a SYN-ACK packet.  In
5867 		 * this particular case the correct security label is assigned
5868 		 * to the connection/request_sock but unfortunately we can't
5869 		 * query the request_sock as it isn't queued on the parent
5870 		 * socket until after the SYN-ACK packet is sent; the only
5871 		 * viable choice is to regenerate the label like we do in
5872 		 * selinux_inet_conn_request().  See also selinux_ip_output()
5873 		 * for similar problems. */
5874 		u32 skb_sid;
5875 		struct sk_security_struct *sksec;
5876 
5877 		sksec = sk->sk_security;
5878 		if (selinux_skb_peerlbl_sid(skb, family, &skb_sid))
5879 			return NF_DROP;
5880 		/* At this point, if the returned skb peerlbl is SECSID_NULL
5881 		 * and the packet has been through at least one XFRM
5882 		 * transformation then we must be dealing with the "final"
5883 		 * form of labeled IPsec packet; since we've already applied
5884 		 * all of our access controls on this packet we can safely
5885 		 * pass the packet. */
5886 		if (skb_sid == SECSID_NULL) {
5887 			switch (family) {
5888 			case PF_INET:
5889 				if (IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED)
5890 					return NF_ACCEPT;
5891 				break;
5892 			case PF_INET6:
5893 				if (IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED)
5894 					return NF_ACCEPT;
5895 				break;
5896 			default:
5897 				return NF_DROP_ERR(-ECONNREFUSED);
5898 			}
5899 		}
5900 		if (selinux_conn_sid(sksec->sid, skb_sid, &peer_sid))
5901 			return NF_DROP;
5902 		secmark_perm = PACKET__SEND;
5903 	} else {
5904 		/* Locally generated packet, fetch the security label from the
5905 		 * associated socket. */
5906 		struct sk_security_struct *sksec = sk->sk_security;
5907 		peer_sid = sksec->sid;
5908 		secmark_perm = PACKET__SEND;
5909 	}
5910 
5911 	ifindex = state->out->ifindex;
5912 	ad_net_init_from_iif(&ad, &net, ifindex, family);
5913 	if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
5914 		return NF_DROP;
5915 
5916 	if (secmark_active)
5917 		if (avc_has_perm(peer_sid, skb->secmark,
5918 				 SECCLASS_PACKET, secmark_perm, &ad))
5919 			return NF_DROP_ERR(-ECONNREFUSED);
5920 
5921 	if (peerlbl_active) {
5922 		u32 if_sid;
5923 		u32 node_sid;
5924 
5925 		if (sel_netif_sid(state->net, ifindex, &if_sid))
5926 			return NF_DROP;
5927 		if (avc_has_perm(peer_sid, if_sid,
5928 				 SECCLASS_NETIF, NETIF__EGRESS, &ad))
5929 			return NF_DROP_ERR(-ECONNREFUSED);
5930 
5931 		if (sel_netnode_sid(addrp, family, &node_sid))
5932 			return NF_DROP;
5933 		if (avc_has_perm(peer_sid, node_sid,
5934 				 SECCLASS_NODE, NODE__SENDTO, &ad))
5935 			return NF_DROP_ERR(-ECONNREFUSED);
5936 	}
5937 
5938 	return NF_ACCEPT;
5939 }
5940 #endif	/* CONFIG_NETFILTER */
5941 
5942 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
5943 {
5944 	int rc = 0;
5945 	unsigned int msg_len;
5946 	unsigned int data_len = skb->len;
5947 	unsigned char *data = skb->data;
5948 	struct nlmsghdr *nlh;
5949 	struct sk_security_struct *sksec = sk->sk_security;
5950 	u16 sclass = sksec->sclass;
5951 	u32 perm;
5952 
5953 	while (data_len >= nlmsg_total_size(0)) {
5954 		nlh = (struct nlmsghdr *)data;
5955 
5956 		/* NOTE: the nlmsg_len field isn't reliably set by some netlink
5957 		 *       users which means we can't reject skb's with bogus
5958 		 *       length fields; our solution is to follow what
5959 		 *       netlink_rcv_skb() does and simply skip processing at
5960 		 *       messages with length fields that are clearly junk
5961 		 */
5962 		if (nlh->nlmsg_len < NLMSG_HDRLEN || nlh->nlmsg_len > data_len)
5963 			return 0;
5964 
5965 		rc = selinux_nlmsg_lookup(sclass, nlh->nlmsg_type, &perm);
5966 		if (rc == 0) {
5967 			rc = sock_has_perm(sk, perm);
5968 			if (rc)
5969 				return rc;
5970 		} else if (rc == -EINVAL) {
5971 			/* -EINVAL is a missing msg/perm mapping */
5972 			pr_warn_ratelimited("SELinux: unrecognized netlink"
5973 				" message: protocol=%hu nlmsg_type=%hu sclass=%s"
5974 				" pid=%d comm=%s\n",
5975 				sk->sk_protocol, nlh->nlmsg_type,
5976 				secclass_map[sclass - 1].name,
5977 				task_pid_nr(current), current->comm);
5978 			if (enforcing_enabled() &&
5979 			    !security_get_allow_unknown())
5980 				return rc;
5981 			rc = 0;
5982 		} else if (rc == -ENOENT) {
5983 			/* -ENOENT is a missing socket/class mapping, ignore */
5984 			rc = 0;
5985 		} else {
5986 			return rc;
5987 		}
5988 
5989 		/* move to the next message after applying netlink padding */
5990 		msg_len = NLMSG_ALIGN(nlh->nlmsg_len);
5991 		if (msg_len >= data_len)
5992 			return 0;
5993 		data_len -= msg_len;
5994 		data += msg_len;
5995 	}
5996 
5997 	return rc;
5998 }
5999 
6000 static void ipc_init_security(struct ipc_security_struct *isec, u16 sclass)
6001 {
6002 	isec->sclass = sclass;
6003 	isec->sid = current_sid();
6004 }
6005 
6006 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
6007 			u32 perms)
6008 {
6009 	struct ipc_security_struct *isec;
6010 	struct common_audit_data ad;
6011 	u32 sid = current_sid();
6012 
6013 	isec = selinux_ipc(ipc_perms);
6014 
6015 	ad.type = LSM_AUDIT_DATA_IPC;
6016 	ad.u.ipc_id = ipc_perms->key;
6017 
6018 	return avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad);
6019 }
6020 
6021 static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
6022 {
6023 	struct msg_security_struct *msec;
6024 
6025 	msec = selinux_msg_msg(msg);
6026 	msec->sid = SECINITSID_UNLABELED;
6027 
6028 	return 0;
6029 }
6030 
6031 /* message queue security operations */
6032 static int selinux_msg_queue_alloc_security(struct kern_ipc_perm *msq)
6033 {
6034 	struct ipc_security_struct *isec;
6035 	struct common_audit_data ad;
6036 	u32 sid = current_sid();
6037 
6038 	isec = selinux_ipc(msq);
6039 	ipc_init_security(isec, SECCLASS_MSGQ);
6040 
6041 	ad.type = LSM_AUDIT_DATA_IPC;
6042 	ad.u.ipc_id = msq->key;
6043 
6044 	return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
6045 			    MSGQ__CREATE, &ad);
6046 }
6047 
6048 static int selinux_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
6049 {
6050 	struct ipc_security_struct *isec;
6051 	struct common_audit_data ad;
6052 	u32 sid = current_sid();
6053 
6054 	isec = selinux_ipc(msq);
6055 
6056 	ad.type = LSM_AUDIT_DATA_IPC;
6057 	ad.u.ipc_id = msq->key;
6058 
6059 	return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
6060 			    MSGQ__ASSOCIATE, &ad);
6061 }
6062 
6063 static int selinux_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
6064 {
6065 	u32 perms;
6066 
6067 	switch (cmd) {
6068 	case IPC_INFO:
6069 	case MSG_INFO:
6070 		/* No specific object, just general system-wide information. */
6071 		return avc_has_perm(current_sid(), SECINITSID_KERNEL,
6072 				    SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6073 	case IPC_STAT:
6074 	case MSG_STAT:
6075 	case MSG_STAT_ANY:
6076 		perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
6077 		break;
6078 	case IPC_SET:
6079 		perms = MSGQ__SETATTR;
6080 		break;
6081 	case IPC_RMID:
6082 		perms = MSGQ__DESTROY;
6083 		break;
6084 	default:
6085 		return 0;
6086 	}
6087 
6088 	return ipc_has_perm(msq, perms);
6089 }
6090 
6091 static int selinux_msg_queue_msgsnd(struct kern_ipc_perm *msq, struct msg_msg *msg, int msqflg)
6092 {
6093 	struct ipc_security_struct *isec;
6094 	struct msg_security_struct *msec;
6095 	struct common_audit_data ad;
6096 	u32 sid = current_sid();
6097 	int rc;
6098 
6099 	isec = selinux_ipc(msq);
6100 	msec = selinux_msg_msg(msg);
6101 
6102 	/*
6103 	 * First time through, need to assign label to the message
6104 	 */
6105 	if (msec->sid == SECINITSID_UNLABELED) {
6106 		/*
6107 		 * Compute new sid based on current process and
6108 		 * message queue this message will be stored in
6109 		 */
6110 		rc = security_transition_sid(sid, isec->sid,
6111 					     SECCLASS_MSG, NULL, &msec->sid);
6112 		if (rc)
6113 			return rc;
6114 	}
6115 
6116 	ad.type = LSM_AUDIT_DATA_IPC;
6117 	ad.u.ipc_id = msq->key;
6118 
6119 	/* Can this process write to the queue? */
6120 	rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
6121 			  MSGQ__WRITE, &ad);
6122 	if (!rc)
6123 		/* Can this process send the message */
6124 		rc = avc_has_perm(sid, msec->sid, SECCLASS_MSG,
6125 				  MSG__SEND, &ad);
6126 	if (!rc)
6127 		/* Can the message be put in the queue? */
6128 		rc = avc_has_perm(msec->sid, isec->sid, SECCLASS_MSGQ,
6129 				  MSGQ__ENQUEUE, &ad);
6130 
6131 	return rc;
6132 }
6133 
6134 static int selinux_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
6135 				    struct task_struct *target,
6136 				    long type, int mode)
6137 {
6138 	struct ipc_security_struct *isec;
6139 	struct msg_security_struct *msec;
6140 	struct common_audit_data ad;
6141 	u32 sid = task_sid_obj(target);
6142 	int rc;
6143 
6144 	isec = selinux_ipc(msq);
6145 	msec = selinux_msg_msg(msg);
6146 
6147 	ad.type = LSM_AUDIT_DATA_IPC;
6148 	ad.u.ipc_id = msq->key;
6149 
6150 	rc = avc_has_perm(sid, isec->sid,
6151 			  SECCLASS_MSGQ, MSGQ__READ, &ad);
6152 	if (!rc)
6153 		rc = avc_has_perm(sid, msec->sid,
6154 				  SECCLASS_MSG, MSG__RECEIVE, &ad);
6155 	return rc;
6156 }
6157 
6158 /* Shared Memory security operations */
6159 static int selinux_shm_alloc_security(struct kern_ipc_perm *shp)
6160 {
6161 	struct ipc_security_struct *isec;
6162 	struct common_audit_data ad;
6163 	u32 sid = current_sid();
6164 
6165 	isec = selinux_ipc(shp);
6166 	ipc_init_security(isec, SECCLASS_SHM);
6167 
6168 	ad.type = LSM_AUDIT_DATA_IPC;
6169 	ad.u.ipc_id = shp->key;
6170 
6171 	return avc_has_perm(sid, isec->sid, SECCLASS_SHM,
6172 			    SHM__CREATE, &ad);
6173 }
6174 
6175 static int selinux_shm_associate(struct kern_ipc_perm *shp, int shmflg)
6176 {
6177 	struct ipc_security_struct *isec;
6178 	struct common_audit_data ad;
6179 	u32 sid = current_sid();
6180 
6181 	isec = selinux_ipc(shp);
6182 
6183 	ad.type = LSM_AUDIT_DATA_IPC;
6184 	ad.u.ipc_id = shp->key;
6185 
6186 	return avc_has_perm(sid, isec->sid, SECCLASS_SHM,
6187 			    SHM__ASSOCIATE, &ad);
6188 }
6189 
6190 /* Note, at this point, shp is locked down */
6191 static int selinux_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
6192 {
6193 	u32 perms;
6194 
6195 	switch (cmd) {
6196 	case IPC_INFO:
6197 	case SHM_INFO:
6198 		/* No specific object, just general system-wide information. */
6199 		return avc_has_perm(current_sid(), SECINITSID_KERNEL,
6200 				    SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6201 	case IPC_STAT:
6202 	case SHM_STAT:
6203 	case SHM_STAT_ANY:
6204 		perms = SHM__GETATTR | SHM__ASSOCIATE;
6205 		break;
6206 	case IPC_SET:
6207 		perms = SHM__SETATTR;
6208 		break;
6209 	case SHM_LOCK:
6210 	case SHM_UNLOCK:
6211 		perms = SHM__LOCK;
6212 		break;
6213 	case IPC_RMID:
6214 		perms = SHM__DESTROY;
6215 		break;
6216 	default:
6217 		return 0;
6218 	}
6219 
6220 	return ipc_has_perm(shp, perms);
6221 }
6222 
6223 static int selinux_shm_shmat(struct kern_ipc_perm *shp,
6224 			     char __user *shmaddr, int shmflg)
6225 {
6226 	u32 perms;
6227 
6228 	if (shmflg & SHM_RDONLY)
6229 		perms = SHM__READ;
6230 	else
6231 		perms = SHM__READ | SHM__WRITE;
6232 
6233 	return ipc_has_perm(shp, perms);
6234 }
6235 
6236 /* Semaphore security operations */
6237 static int selinux_sem_alloc_security(struct kern_ipc_perm *sma)
6238 {
6239 	struct ipc_security_struct *isec;
6240 	struct common_audit_data ad;
6241 	u32 sid = current_sid();
6242 
6243 	isec = selinux_ipc(sma);
6244 	ipc_init_security(isec, SECCLASS_SEM);
6245 
6246 	ad.type = LSM_AUDIT_DATA_IPC;
6247 	ad.u.ipc_id = sma->key;
6248 
6249 	return avc_has_perm(sid, isec->sid, SECCLASS_SEM,
6250 			    SEM__CREATE, &ad);
6251 }
6252 
6253 static int selinux_sem_associate(struct kern_ipc_perm *sma, int semflg)
6254 {
6255 	struct ipc_security_struct *isec;
6256 	struct common_audit_data ad;
6257 	u32 sid = current_sid();
6258 
6259 	isec = selinux_ipc(sma);
6260 
6261 	ad.type = LSM_AUDIT_DATA_IPC;
6262 	ad.u.ipc_id = sma->key;
6263 
6264 	return avc_has_perm(sid, isec->sid, SECCLASS_SEM,
6265 			    SEM__ASSOCIATE, &ad);
6266 }
6267 
6268 /* Note, at this point, sma is locked down */
6269 static int selinux_sem_semctl(struct kern_ipc_perm *sma, int cmd)
6270 {
6271 	int err;
6272 	u32 perms;
6273 
6274 	switch (cmd) {
6275 	case IPC_INFO:
6276 	case SEM_INFO:
6277 		/* No specific object, just general system-wide information. */
6278 		return avc_has_perm(current_sid(), SECINITSID_KERNEL,
6279 				    SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6280 	case GETPID:
6281 	case GETNCNT:
6282 	case GETZCNT:
6283 		perms = SEM__GETATTR;
6284 		break;
6285 	case GETVAL:
6286 	case GETALL:
6287 		perms = SEM__READ;
6288 		break;
6289 	case SETVAL:
6290 	case SETALL:
6291 		perms = SEM__WRITE;
6292 		break;
6293 	case IPC_RMID:
6294 		perms = SEM__DESTROY;
6295 		break;
6296 	case IPC_SET:
6297 		perms = SEM__SETATTR;
6298 		break;
6299 	case IPC_STAT:
6300 	case SEM_STAT:
6301 	case SEM_STAT_ANY:
6302 		perms = SEM__GETATTR | SEM__ASSOCIATE;
6303 		break;
6304 	default:
6305 		return 0;
6306 	}
6307 
6308 	err = ipc_has_perm(sma, perms);
6309 	return err;
6310 }
6311 
6312 static int selinux_sem_semop(struct kern_ipc_perm *sma,
6313 			     struct sembuf *sops, unsigned nsops, int alter)
6314 {
6315 	u32 perms;
6316 
6317 	if (alter)
6318 		perms = SEM__READ | SEM__WRITE;
6319 	else
6320 		perms = SEM__READ;
6321 
6322 	return ipc_has_perm(sma, perms);
6323 }
6324 
6325 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
6326 {
6327 	u32 av = 0;
6328 
6329 	av = 0;
6330 	if (flag & S_IRUGO)
6331 		av |= IPC__UNIX_READ;
6332 	if (flag & S_IWUGO)
6333 		av |= IPC__UNIX_WRITE;
6334 
6335 	if (av == 0)
6336 		return 0;
6337 
6338 	return ipc_has_perm(ipcp, av);
6339 }
6340 
6341 static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
6342 {
6343 	struct ipc_security_struct *isec = selinux_ipc(ipcp);
6344 	*secid = isec->sid;
6345 }
6346 
6347 static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
6348 {
6349 	if (inode)
6350 		inode_doinit_with_dentry(inode, dentry);
6351 }
6352 
6353 static int selinux_lsm_getattr(unsigned int attr, struct task_struct *p,
6354 			       char **value)
6355 {
6356 	const struct task_security_struct *tsec;
6357 	int error;
6358 	u32 sid;
6359 	u32 len;
6360 
6361 	rcu_read_lock();
6362 	tsec = selinux_cred(__task_cred(p));
6363 	if (p != current) {
6364 		error = avc_has_perm(current_sid(), tsec->sid,
6365 				     SECCLASS_PROCESS, PROCESS__GETATTR, NULL);
6366 		if (error)
6367 			goto err_unlock;
6368 	}
6369 	switch (attr) {
6370 	case LSM_ATTR_CURRENT:
6371 		sid = tsec->sid;
6372 		break;
6373 	case LSM_ATTR_PREV:
6374 		sid = tsec->osid;
6375 		break;
6376 	case LSM_ATTR_EXEC:
6377 		sid = tsec->exec_sid;
6378 		break;
6379 	case LSM_ATTR_FSCREATE:
6380 		sid = tsec->create_sid;
6381 		break;
6382 	case LSM_ATTR_KEYCREATE:
6383 		sid = tsec->keycreate_sid;
6384 		break;
6385 	case LSM_ATTR_SOCKCREATE:
6386 		sid = tsec->sockcreate_sid;
6387 		break;
6388 	default:
6389 		error = -EOPNOTSUPP;
6390 		goto err_unlock;
6391 	}
6392 	rcu_read_unlock();
6393 
6394 	if (sid == SECSID_NULL) {
6395 		*value = NULL;
6396 		return 0;
6397 	}
6398 
6399 	error = security_sid_to_context(sid, value, &len);
6400 	if (error)
6401 		return error;
6402 	return len;
6403 
6404 err_unlock:
6405 	rcu_read_unlock();
6406 	return error;
6407 }
6408 
6409 static int selinux_lsm_setattr(u64 attr, void *value, size_t size)
6410 {
6411 	struct task_security_struct *tsec;
6412 	struct cred *new;
6413 	u32 mysid = current_sid(), sid = 0, ptsid;
6414 	int error;
6415 	char *str = value;
6416 
6417 	/*
6418 	 * Basic control over ability to set these attributes at all.
6419 	 */
6420 	switch (attr) {
6421 	case LSM_ATTR_EXEC:
6422 		error = avc_has_perm(mysid, mysid, SECCLASS_PROCESS,
6423 				     PROCESS__SETEXEC, NULL);
6424 		break;
6425 	case LSM_ATTR_FSCREATE:
6426 		error = avc_has_perm(mysid, mysid, SECCLASS_PROCESS,
6427 				     PROCESS__SETFSCREATE, NULL);
6428 		break;
6429 	case LSM_ATTR_KEYCREATE:
6430 		error = avc_has_perm(mysid, mysid, SECCLASS_PROCESS,
6431 				     PROCESS__SETKEYCREATE, NULL);
6432 		break;
6433 	case LSM_ATTR_SOCKCREATE:
6434 		error = avc_has_perm(mysid, mysid, SECCLASS_PROCESS,
6435 				     PROCESS__SETSOCKCREATE, NULL);
6436 		break;
6437 	case LSM_ATTR_CURRENT:
6438 		error = avc_has_perm(mysid, mysid, SECCLASS_PROCESS,
6439 				     PROCESS__SETCURRENT, NULL);
6440 		break;
6441 	default:
6442 		error = -EOPNOTSUPP;
6443 		break;
6444 	}
6445 	if (error)
6446 		return error;
6447 
6448 	/* Obtain a SID for the context, if one was specified. */
6449 	if (size && str[0] && str[0] != '\n') {
6450 		if (str[size-1] == '\n') {
6451 			str[size-1] = 0;
6452 			size--;
6453 		}
6454 		error = security_context_to_sid(value, size,
6455 						&sid, GFP_KERNEL);
6456 		if (error == -EINVAL && attr == LSM_ATTR_FSCREATE) {
6457 			if (!has_cap_mac_admin(true)) {
6458 				struct audit_buffer *ab;
6459 				size_t audit_size;
6460 
6461 				/* We strip a nul only if it is at the end,
6462 				 * otherwise the context contains a nul and
6463 				 * we should audit that */
6464 				if (str[size - 1] == '\0')
6465 					audit_size = size - 1;
6466 				else
6467 					audit_size = size;
6468 				ab = audit_log_start(audit_context(),
6469 						     GFP_ATOMIC,
6470 						     AUDIT_SELINUX_ERR);
6471 				if (!ab)
6472 					return error;
6473 				audit_log_format(ab, "op=fscreate invalid_context=");
6474 				audit_log_n_untrustedstring(ab, value,
6475 							    audit_size);
6476 				audit_log_end(ab);
6477 
6478 				return error;
6479 			}
6480 			error = security_context_to_sid_force(value, size,
6481 							&sid);
6482 		}
6483 		if (error)
6484 			return error;
6485 	}
6486 
6487 	new = prepare_creds();
6488 	if (!new)
6489 		return -ENOMEM;
6490 
6491 	/* Permission checking based on the specified context is
6492 	   performed during the actual operation (execve,
6493 	   open/mkdir/...), when we know the full context of the
6494 	   operation.  See selinux_bprm_creds_for_exec for the execve
6495 	   checks and may_create for the file creation checks. The
6496 	   operation will then fail if the context is not permitted. */
6497 	tsec = selinux_cred(new);
6498 	if (attr == LSM_ATTR_EXEC) {
6499 		tsec->exec_sid = sid;
6500 	} else if (attr == LSM_ATTR_FSCREATE) {
6501 		tsec->create_sid = sid;
6502 	} else if (attr == LSM_ATTR_KEYCREATE) {
6503 		if (sid) {
6504 			error = avc_has_perm(mysid, sid,
6505 					     SECCLASS_KEY, KEY__CREATE, NULL);
6506 			if (error)
6507 				goto abort_change;
6508 		}
6509 		tsec->keycreate_sid = sid;
6510 	} else if (attr == LSM_ATTR_SOCKCREATE) {
6511 		tsec->sockcreate_sid = sid;
6512 	} else if (attr == LSM_ATTR_CURRENT) {
6513 		error = -EINVAL;
6514 		if (sid == 0)
6515 			goto abort_change;
6516 
6517 		if (!current_is_single_threaded()) {
6518 			error = security_bounded_transition(tsec->sid, sid);
6519 			if (error)
6520 				goto abort_change;
6521 		}
6522 
6523 		/* Check permissions for the transition. */
6524 		error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
6525 				     PROCESS__DYNTRANSITION, NULL);
6526 		if (error)
6527 			goto abort_change;
6528 
6529 		/* Check for ptracing, and update the task SID if ok.
6530 		   Otherwise, leave SID unchanged and fail. */
6531 		ptsid = ptrace_parent_sid();
6532 		if (ptsid != 0) {
6533 			error = avc_has_perm(ptsid, sid, SECCLASS_PROCESS,
6534 					     PROCESS__PTRACE, NULL);
6535 			if (error)
6536 				goto abort_change;
6537 		}
6538 
6539 		tsec->sid = sid;
6540 	} else {
6541 		error = -EINVAL;
6542 		goto abort_change;
6543 	}
6544 
6545 	commit_creds(new);
6546 	return size;
6547 
6548 abort_change:
6549 	abort_creds(new);
6550 	return error;
6551 }
6552 
6553 /**
6554  * selinux_getselfattr - Get SELinux current task attributes
6555  * @attr: the requested attribute
6556  * @ctx: buffer to receive the result
6557  * @size: buffer size (input), buffer size used (output)
6558  * @flags: unused
6559  *
6560  * Fill the passed user space @ctx with the details of the requested
6561  * attribute.
6562  *
6563  * Returns the number of attributes on success, an error code otherwise.
6564  * There will only ever be one attribute.
6565  */
6566 static int selinux_getselfattr(unsigned int attr, struct lsm_ctx __user *ctx,
6567 			       u32 *size, u32 flags)
6568 {
6569 	int rc;
6570 	char *val = NULL;
6571 	int val_len;
6572 
6573 	val_len = selinux_lsm_getattr(attr, current, &val);
6574 	if (val_len < 0)
6575 		return val_len;
6576 	rc = lsm_fill_user_ctx(ctx, size, val, val_len, LSM_ID_SELINUX, 0);
6577 	kfree(val);
6578 	return (!rc ? 1 : rc);
6579 }
6580 
6581 static int selinux_setselfattr(unsigned int attr, struct lsm_ctx *ctx,
6582 			       u32 size, u32 flags)
6583 {
6584 	int rc;
6585 
6586 	rc = selinux_lsm_setattr(attr, ctx->ctx, ctx->ctx_len);
6587 	if (rc > 0)
6588 		return 0;
6589 	return rc;
6590 }
6591 
6592 static int selinux_getprocattr(struct task_struct *p,
6593 			       const char *name, char **value)
6594 {
6595 	unsigned int attr = lsm_name_to_attr(name);
6596 	int rc;
6597 
6598 	if (attr) {
6599 		rc = selinux_lsm_getattr(attr, p, value);
6600 		if (rc != -EOPNOTSUPP)
6601 			return rc;
6602 	}
6603 
6604 	return -EINVAL;
6605 }
6606 
6607 static int selinux_setprocattr(const char *name, void *value, size_t size)
6608 {
6609 	int attr = lsm_name_to_attr(name);
6610 
6611 	if (attr)
6612 		return selinux_lsm_setattr(attr, value, size);
6613 	return -EINVAL;
6614 }
6615 
6616 static int selinux_ismaclabel(const char *name)
6617 {
6618 	return (strcmp(name, XATTR_SELINUX_SUFFIX) == 0);
6619 }
6620 
6621 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
6622 {
6623 	return security_sid_to_context(secid,
6624 				       secdata, seclen);
6625 }
6626 
6627 static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
6628 {
6629 	return security_context_to_sid(secdata, seclen,
6630 				       secid, GFP_KERNEL);
6631 }
6632 
6633 static void selinux_release_secctx(char *secdata, u32 seclen)
6634 {
6635 	kfree(secdata);
6636 }
6637 
6638 static void selinux_inode_invalidate_secctx(struct inode *inode)
6639 {
6640 	struct inode_security_struct *isec = selinux_inode(inode);
6641 
6642 	spin_lock(&isec->lock);
6643 	isec->initialized = LABEL_INVALID;
6644 	spin_unlock(&isec->lock);
6645 }
6646 
6647 /*
6648  *	called with inode->i_mutex locked
6649  */
6650 static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
6651 {
6652 	int rc = selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX,
6653 					   ctx, ctxlen, 0);
6654 	/* Do not return error when suppressing label (SBLABEL_MNT not set). */
6655 	return rc == -EOPNOTSUPP ? 0 : rc;
6656 }
6657 
6658 /*
6659  *	called with inode->i_mutex locked
6660  */
6661 static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
6662 {
6663 	return __vfs_setxattr_locked(&nop_mnt_idmap, dentry, XATTR_NAME_SELINUX,
6664 				     ctx, ctxlen, 0, NULL);
6665 }
6666 
6667 static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
6668 {
6669 	int len = 0;
6670 	len = selinux_inode_getsecurity(&nop_mnt_idmap, inode,
6671 					XATTR_SELINUX_SUFFIX, ctx, true);
6672 	if (len < 0)
6673 		return len;
6674 	*ctxlen = len;
6675 	return 0;
6676 }
6677 #ifdef CONFIG_KEYS
6678 
6679 static int selinux_key_alloc(struct key *k, const struct cred *cred,
6680 			     unsigned long flags)
6681 {
6682 	const struct task_security_struct *tsec;
6683 	struct key_security_struct *ksec;
6684 
6685 	ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
6686 	if (!ksec)
6687 		return -ENOMEM;
6688 
6689 	tsec = selinux_cred(cred);
6690 	if (tsec->keycreate_sid)
6691 		ksec->sid = tsec->keycreate_sid;
6692 	else
6693 		ksec->sid = tsec->sid;
6694 
6695 	k->security = ksec;
6696 	return 0;
6697 }
6698 
6699 static void selinux_key_free(struct key *k)
6700 {
6701 	struct key_security_struct *ksec = k->security;
6702 
6703 	k->security = NULL;
6704 	kfree(ksec);
6705 }
6706 
6707 static int selinux_key_permission(key_ref_t key_ref,
6708 				  const struct cred *cred,
6709 				  enum key_need_perm need_perm)
6710 {
6711 	struct key *key;
6712 	struct key_security_struct *ksec;
6713 	u32 perm, sid;
6714 
6715 	switch (need_perm) {
6716 	case KEY_NEED_VIEW:
6717 		perm = KEY__VIEW;
6718 		break;
6719 	case KEY_NEED_READ:
6720 		perm = KEY__READ;
6721 		break;
6722 	case KEY_NEED_WRITE:
6723 		perm = KEY__WRITE;
6724 		break;
6725 	case KEY_NEED_SEARCH:
6726 		perm = KEY__SEARCH;
6727 		break;
6728 	case KEY_NEED_LINK:
6729 		perm = KEY__LINK;
6730 		break;
6731 	case KEY_NEED_SETATTR:
6732 		perm = KEY__SETATTR;
6733 		break;
6734 	case KEY_NEED_UNLINK:
6735 	case KEY_SYSADMIN_OVERRIDE:
6736 	case KEY_AUTHTOKEN_OVERRIDE:
6737 	case KEY_DEFER_PERM_CHECK:
6738 		return 0;
6739 	default:
6740 		WARN_ON(1);
6741 		return -EPERM;
6742 
6743 	}
6744 
6745 	sid = cred_sid(cred);
6746 	key = key_ref_to_ptr(key_ref);
6747 	ksec = key->security;
6748 
6749 	return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, perm, NULL);
6750 }
6751 
6752 static int selinux_key_getsecurity(struct key *key, char **_buffer)
6753 {
6754 	struct key_security_struct *ksec = key->security;
6755 	char *context = NULL;
6756 	unsigned len;
6757 	int rc;
6758 
6759 	rc = security_sid_to_context(ksec->sid,
6760 				     &context, &len);
6761 	if (!rc)
6762 		rc = len;
6763 	*_buffer = context;
6764 	return rc;
6765 }
6766 
6767 #ifdef CONFIG_KEY_NOTIFICATIONS
6768 static int selinux_watch_key(struct key *key)
6769 {
6770 	struct key_security_struct *ksec = key->security;
6771 	u32 sid = current_sid();
6772 
6773 	return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, KEY__VIEW, NULL);
6774 }
6775 #endif
6776 #endif
6777 
6778 #ifdef CONFIG_SECURITY_INFINIBAND
6779 static int selinux_ib_pkey_access(void *ib_sec, u64 subnet_prefix, u16 pkey_val)
6780 {
6781 	struct common_audit_data ad;
6782 	int err;
6783 	u32 sid = 0;
6784 	struct ib_security_struct *sec = ib_sec;
6785 	struct lsm_ibpkey_audit ibpkey;
6786 
6787 	err = sel_ib_pkey_sid(subnet_prefix, pkey_val, &sid);
6788 	if (err)
6789 		return err;
6790 
6791 	ad.type = LSM_AUDIT_DATA_IBPKEY;
6792 	ibpkey.subnet_prefix = subnet_prefix;
6793 	ibpkey.pkey = pkey_val;
6794 	ad.u.ibpkey = &ibpkey;
6795 	return avc_has_perm(sec->sid, sid,
6796 			    SECCLASS_INFINIBAND_PKEY,
6797 			    INFINIBAND_PKEY__ACCESS, &ad);
6798 }
6799 
6800 static int selinux_ib_endport_manage_subnet(void *ib_sec, const char *dev_name,
6801 					    u8 port_num)
6802 {
6803 	struct common_audit_data ad;
6804 	int err;
6805 	u32 sid = 0;
6806 	struct ib_security_struct *sec = ib_sec;
6807 	struct lsm_ibendport_audit ibendport;
6808 
6809 	err = security_ib_endport_sid(dev_name, port_num,
6810 				      &sid);
6811 
6812 	if (err)
6813 		return err;
6814 
6815 	ad.type = LSM_AUDIT_DATA_IBENDPORT;
6816 	ibendport.dev_name = dev_name;
6817 	ibendport.port = port_num;
6818 	ad.u.ibendport = &ibendport;
6819 	return avc_has_perm(sec->sid, sid,
6820 			    SECCLASS_INFINIBAND_ENDPORT,
6821 			    INFINIBAND_ENDPORT__MANAGE_SUBNET, &ad);
6822 }
6823 
6824 static int selinux_ib_alloc_security(void **ib_sec)
6825 {
6826 	struct ib_security_struct *sec;
6827 
6828 	sec = kzalloc(sizeof(*sec), GFP_KERNEL);
6829 	if (!sec)
6830 		return -ENOMEM;
6831 	sec->sid = current_sid();
6832 
6833 	*ib_sec = sec;
6834 	return 0;
6835 }
6836 
6837 static void selinux_ib_free_security(void *ib_sec)
6838 {
6839 	kfree(ib_sec);
6840 }
6841 #endif
6842 
6843 #ifdef CONFIG_BPF_SYSCALL
6844 static int selinux_bpf(int cmd, union bpf_attr *attr,
6845 				     unsigned int size)
6846 {
6847 	u32 sid = current_sid();
6848 	int ret;
6849 
6850 	switch (cmd) {
6851 	case BPF_MAP_CREATE:
6852 		ret = avc_has_perm(sid, sid, SECCLASS_BPF, BPF__MAP_CREATE,
6853 				   NULL);
6854 		break;
6855 	case BPF_PROG_LOAD:
6856 		ret = avc_has_perm(sid, sid, SECCLASS_BPF, BPF__PROG_LOAD,
6857 				   NULL);
6858 		break;
6859 	default:
6860 		ret = 0;
6861 		break;
6862 	}
6863 
6864 	return ret;
6865 }
6866 
6867 static u32 bpf_map_fmode_to_av(fmode_t fmode)
6868 {
6869 	u32 av = 0;
6870 
6871 	if (fmode & FMODE_READ)
6872 		av |= BPF__MAP_READ;
6873 	if (fmode & FMODE_WRITE)
6874 		av |= BPF__MAP_WRITE;
6875 	return av;
6876 }
6877 
6878 /* This function will check the file pass through unix socket or binder to see
6879  * if it is a bpf related object. And apply corresponding checks on the bpf
6880  * object based on the type. The bpf maps and programs, not like other files and
6881  * socket, are using a shared anonymous inode inside the kernel as their inode.
6882  * So checking that inode cannot identify if the process have privilege to
6883  * access the bpf object and that's why we have to add this additional check in
6884  * selinux_file_receive and selinux_binder_transfer_files.
6885  */
6886 static int bpf_fd_pass(const struct file *file, u32 sid)
6887 {
6888 	struct bpf_security_struct *bpfsec;
6889 	struct bpf_prog *prog;
6890 	struct bpf_map *map;
6891 	int ret;
6892 
6893 	if (file->f_op == &bpf_map_fops) {
6894 		map = file->private_data;
6895 		bpfsec = map->security;
6896 		ret = avc_has_perm(sid, bpfsec->sid, SECCLASS_BPF,
6897 				   bpf_map_fmode_to_av(file->f_mode), NULL);
6898 		if (ret)
6899 			return ret;
6900 	} else if (file->f_op == &bpf_prog_fops) {
6901 		prog = file->private_data;
6902 		bpfsec = prog->aux->security;
6903 		ret = avc_has_perm(sid, bpfsec->sid, SECCLASS_BPF,
6904 				   BPF__PROG_RUN, NULL);
6905 		if (ret)
6906 			return ret;
6907 	}
6908 	return 0;
6909 }
6910 
6911 static int selinux_bpf_map(struct bpf_map *map, fmode_t fmode)
6912 {
6913 	u32 sid = current_sid();
6914 	struct bpf_security_struct *bpfsec;
6915 
6916 	bpfsec = map->security;
6917 	return avc_has_perm(sid, bpfsec->sid, SECCLASS_BPF,
6918 			    bpf_map_fmode_to_av(fmode), NULL);
6919 }
6920 
6921 static int selinux_bpf_prog(struct bpf_prog *prog)
6922 {
6923 	u32 sid = current_sid();
6924 	struct bpf_security_struct *bpfsec;
6925 
6926 	bpfsec = prog->aux->security;
6927 	return avc_has_perm(sid, bpfsec->sid, SECCLASS_BPF,
6928 			    BPF__PROG_RUN, NULL);
6929 }
6930 
6931 static int selinux_bpf_map_create(struct bpf_map *map, union bpf_attr *attr,
6932 				  struct bpf_token *token)
6933 {
6934 	struct bpf_security_struct *bpfsec;
6935 
6936 	bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL);
6937 	if (!bpfsec)
6938 		return -ENOMEM;
6939 
6940 	bpfsec->sid = current_sid();
6941 	map->security = bpfsec;
6942 
6943 	return 0;
6944 }
6945 
6946 static void selinux_bpf_map_free(struct bpf_map *map)
6947 {
6948 	struct bpf_security_struct *bpfsec = map->security;
6949 
6950 	map->security = NULL;
6951 	kfree(bpfsec);
6952 }
6953 
6954 static int selinux_bpf_prog_load(struct bpf_prog *prog, union bpf_attr *attr,
6955 				 struct bpf_token *token)
6956 {
6957 	struct bpf_security_struct *bpfsec;
6958 
6959 	bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL);
6960 	if (!bpfsec)
6961 		return -ENOMEM;
6962 
6963 	bpfsec->sid = current_sid();
6964 	prog->aux->security = bpfsec;
6965 
6966 	return 0;
6967 }
6968 
6969 static void selinux_bpf_prog_free(struct bpf_prog *prog)
6970 {
6971 	struct bpf_security_struct *bpfsec = prog->aux->security;
6972 
6973 	prog->aux->security = NULL;
6974 	kfree(bpfsec);
6975 }
6976 
6977 static int selinux_bpf_token_create(struct bpf_token *token, union bpf_attr *attr,
6978 				    struct path *path)
6979 {
6980 	struct bpf_security_struct *bpfsec;
6981 
6982 	bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL);
6983 	if (!bpfsec)
6984 		return -ENOMEM;
6985 
6986 	bpfsec->sid = current_sid();
6987 	token->security = bpfsec;
6988 
6989 	return 0;
6990 }
6991 
6992 static void selinux_bpf_token_free(struct bpf_token *token)
6993 {
6994 	struct bpf_security_struct *bpfsec = token->security;
6995 
6996 	token->security = NULL;
6997 	kfree(bpfsec);
6998 }
6999 #endif
7000 
7001 struct lsm_blob_sizes selinux_blob_sizes __ro_after_init = {
7002 	.lbs_cred = sizeof(struct task_security_struct),
7003 	.lbs_file = sizeof(struct file_security_struct),
7004 	.lbs_inode = sizeof(struct inode_security_struct),
7005 	.lbs_ipc = sizeof(struct ipc_security_struct),
7006 	.lbs_msg_msg = sizeof(struct msg_security_struct),
7007 	.lbs_superblock = sizeof(struct superblock_security_struct),
7008 	.lbs_xattr_count = SELINUX_INODE_INIT_XATTRS,
7009 };
7010 
7011 #ifdef CONFIG_PERF_EVENTS
7012 static int selinux_perf_event_open(struct perf_event_attr *attr, int type)
7013 {
7014 	u32 requested, sid = current_sid();
7015 
7016 	if (type == PERF_SECURITY_OPEN)
7017 		requested = PERF_EVENT__OPEN;
7018 	else if (type == PERF_SECURITY_CPU)
7019 		requested = PERF_EVENT__CPU;
7020 	else if (type == PERF_SECURITY_KERNEL)
7021 		requested = PERF_EVENT__KERNEL;
7022 	else if (type == PERF_SECURITY_TRACEPOINT)
7023 		requested = PERF_EVENT__TRACEPOINT;
7024 	else
7025 		return -EINVAL;
7026 
7027 	return avc_has_perm(sid, sid, SECCLASS_PERF_EVENT,
7028 			    requested, NULL);
7029 }
7030 
7031 static int selinux_perf_event_alloc(struct perf_event *event)
7032 {
7033 	struct perf_event_security_struct *perfsec;
7034 
7035 	perfsec = kzalloc(sizeof(*perfsec), GFP_KERNEL);
7036 	if (!perfsec)
7037 		return -ENOMEM;
7038 
7039 	perfsec->sid = current_sid();
7040 	event->security = perfsec;
7041 
7042 	return 0;
7043 }
7044 
7045 static void selinux_perf_event_free(struct perf_event *event)
7046 {
7047 	struct perf_event_security_struct *perfsec = event->security;
7048 
7049 	event->security = NULL;
7050 	kfree(perfsec);
7051 }
7052 
7053 static int selinux_perf_event_read(struct perf_event *event)
7054 {
7055 	struct perf_event_security_struct *perfsec = event->security;
7056 	u32 sid = current_sid();
7057 
7058 	return avc_has_perm(sid, perfsec->sid,
7059 			    SECCLASS_PERF_EVENT, PERF_EVENT__READ, NULL);
7060 }
7061 
7062 static int selinux_perf_event_write(struct perf_event *event)
7063 {
7064 	struct perf_event_security_struct *perfsec = event->security;
7065 	u32 sid = current_sid();
7066 
7067 	return avc_has_perm(sid, perfsec->sid,
7068 			    SECCLASS_PERF_EVENT, PERF_EVENT__WRITE, NULL);
7069 }
7070 #endif
7071 
7072 #ifdef CONFIG_IO_URING
7073 /**
7074  * selinux_uring_override_creds - check the requested cred override
7075  * @new: the target creds
7076  *
7077  * Check to see if the current task is allowed to override it's credentials
7078  * to service an io_uring operation.
7079  */
7080 static int selinux_uring_override_creds(const struct cred *new)
7081 {
7082 	return avc_has_perm(current_sid(), cred_sid(new),
7083 			    SECCLASS_IO_URING, IO_URING__OVERRIDE_CREDS, NULL);
7084 }
7085 
7086 /**
7087  * selinux_uring_sqpoll - check if a io_uring polling thread can be created
7088  *
7089  * Check to see if the current task is allowed to create a new io_uring
7090  * kernel polling thread.
7091  */
7092 static int selinux_uring_sqpoll(void)
7093 {
7094 	u32 sid = current_sid();
7095 
7096 	return avc_has_perm(sid, sid,
7097 			    SECCLASS_IO_URING, IO_URING__SQPOLL, NULL);
7098 }
7099 
7100 /**
7101  * selinux_uring_cmd - check if IORING_OP_URING_CMD is allowed
7102  * @ioucmd: the io_uring command structure
7103  *
7104  * Check to see if the current domain is allowed to execute an
7105  * IORING_OP_URING_CMD against the device/file specified in @ioucmd.
7106  *
7107  */
7108 static int selinux_uring_cmd(struct io_uring_cmd *ioucmd)
7109 {
7110 	struct file *file = ioucmd->file;
7111 	struct inode *inode = file_inode(file);
7112 	struct inode_security_struct *isec = selinux_inode(inode);
7113 	struct common_audit_data ad;
7114 
7115 	ad.type = LSM_AUDIT_DATA_FILE;
7116 	ad.u.file = file;
7117 
7118 	return avc_has_perm(current_sid(), isec->sid,
7119 			    SECCLASS_IO_URING, IO_URING__CMD, &ad);
7120 }
7121 #endif /* CONFIG_IO_URING */
7122 
7123 static const struct lsm_id selinux_lsmid = {
7124 	.name = "selinux",
7125 	.id = LSM_ID_SELINUX,
7126 };
7127 
7128 /*
7129  * IMPORTANT NOTE: When adding new hooks, please be careful to keep this order:
7130  * 1. any hooks that don't belong to (2.) or (3.) below,
7131  * 2. hooks that both access structures allocated by other hooks, and allocate
7132  *    structures that can be later accessed by other hooks (mostly "cloning"
7133  *    hooks),
7134  * 3. hooks that only allocate structures that can be later accessed by other
7135  *    hooks ("allocating" hooks).
7136  *
7137  * Please follow block comment delimiters in the list to keep this order.
7138  */
7139 static struct security_hook_list selinux_hooks[] __ro_after_init = {
7140 	LSM_HOOK_INIT(binder_set_context_mgr, selinux_binder_set_context_mgr),
7141 	LSM_HOOK_INIT(binder_transaction, selinux_binder_transaction),
7142 	LSM_HOOK_INIT(binder_transfer_binder, selinux_binder_transfer_binder),
7143 	LSM_HOOK_INIT(binder_transfer_file, selinux_binder_transfer_file),
7144 
7145 	LSM_HOOK_INIT(ptrace_access_check, selinux_ptrace_access_check),
7146 	LSM_HOOK_INIT(ptrace_traceme, selinux_ptrace_traceme),
7147 	LSM_HOOK_INIT(capget, selinux_capget),
7148 	LSM_HOOK_INIT(capset, selinux_capset),
7149 	LSM_HOOK_INIT(capable, selinux_capable),
7150 	LSM_HOOK_INIT(quotactl, selinux_quotactl),
7151 	LSM_HOOK_INIT(quota_on, selinux_quota_on),
7152 	LSM_HOOK_INIT(syslog, selinux_syslog),
7153 	LSM_HOOK_INIT(vm_enough_memory, selinux_vm_enough_memory),
7154 
7155 	LSM_HOOK_INIT(netlink_send, selinux_netlink_send),
7156 
7157 	LSM_HOOK_INIT(bprm_creds_for_exec, selinux_bprm_creds_for_exec),
7158 	LSM_HOOK_INIT(bprm_committing_creds, selinux_bprm_committing_creds),
7159 	LSM_HOOK_INIT(bprm_committed_creds, selinux_bprm_committed_creds),
7160 
7161 	LSM_HOOK_INIT(sb_free_mnt_opts, selinux_free_mnt_opts),
7162 	LSM_HOOK_INIT(sb_mnt_opts_compat, selinux_sb_mnt_opts_compat),
7163 	LSM_HOOK_INIT(sb_remount, selinux_sb_remount),
7164 	LSM_HOOK_INIT(sb_kern_mount, selinux_sb_kern_mount),
7165 	LSM_HOOK_INIT(sb_show_options, selinux_sb_show_options),
7166 	LSM_HOOK_INIT(sb_statfs, selinux_sb_statfs),
7167 	LSM_HOOK_INIT(sb_mount, selinux_mount),
7168 	LSM_HOOK_INIT(sb_umount, selinux_umount),
7169 	LSM_HOOK_INIT(sb_set_mnt_opts, selinux_set_mnt_opts),
7170 	LSM_HOOK_INIT(sb_clone_mnt_opts, selinux_sb_clone_mnt_opts),
7171 
7172 	LSM_HOOK_INIT(move_mount, selinux_move_mount),
7173 
7174 	LSM_HOOK_INIT(dentry_init_security, selinux_dentry_init_security),
7175 	LSM_HOOK_INIT(dentry_create_files_as, selinux_dentry_create_files_as),
7176 
7177 	LSM_HOOK_INIT(inode_free_security, selinux_inode_free_security),
7178 	LSM_HOOK_INIT(inode_init_security, selinux_inode_init_security),
7179 	LSM_HOOK_INIT(inode_init_security_anon, selinux_inode_init_security_anon),
7180 	LSM_HOOK_INIT(inode_create, selinux_inode_create),
7181 	LSM_HOOK_INIT(inode_link, selinux_inode_link),
7182 	LSM_HOOK_INIT(inode_unlink, selinux_inode_unlink),
7183 	LSM_HOOK_INIT(inode_symlink, selinux_inode_symlink),
7184 	LSM_HOOK_INIT(inode_mkdir, selinux_inode_mkdir),
7185 	LSM_HOOK_INIT(inode_rmdir, selinux_inode_rmdir),
7186 	LSM_HOOK_INIT(inode_mknod, selinux_inode_mknod),
7187 	LSM_HOOK_INIT(inode_rename, selinux_inode_rename),
7188 	LSM_HOOK_INIT(inode_readlink, selinux_inode_readlink),
7189 	LSM_HOOK_INIT(inode_follow_link, selinux_inode_follow_link),
7190 	LSM_HOOK_INIT(inode_permission, selinux_inode_permission),
7191 	LSM_HOOK_INIT(inode_setattr, selinux_inode_setattr),
7192 	LSM_HOOK_INIT(inode_getattr, selinux_inode_getattr),
7193 	LSM_HOOK_INIT(inode_xattr_skipcap, selinux_inode_xattr_skipcap),
7194 	LSM_HOOK_INIT(inode_setxattr, selinux_inode_setxattr),
7195 	LSM_HOOK_INIT(inode_post_setxattr, selinux_inode_post_setxattr),
7196 	LSM_HOOK_INIT(inode_getxattr, selinux_inode_getxattr),
7197 	LSM_HOOK_INIT(inode_listxattr, selinux_inode_listxattr),
7198 	LSM_HOOK_INIT(inode_removexattr, selinux_inode_removexattr),
7199 	LSM_HOOK_INIT(inode_set_acl, selinux_inode_set_acl),
7200 	LSM_HOOK_INIT(inode_get_acl, selinux_inode_get_acl),
7201 	LSM_HOOK_INIT(inode_remove_acl, selinux_inode_remove_acl),
7202 	LSM_HOOK_INIT(inode_getsecurity, selinux_inode_getsecurity),
7203 	LSM_HOOK_INIT(inode_setsecurity, selinux_inode_setsecurity),
7204 	LSM_HOOK_INIT(inode_listsecurity, selinux_inode_listsecurity),
7205 	LSM_HOOK_INIT(inode_getsecid, selinux_inode_getsecid),
7206 	LSM_HOOK_INIT(inode_copy_up, selinux_inode_copy_up),
7207 	LSM_HOOK_INIT(inode_copy_up_xattr, selinux_inode_copy_up_xattr),
7208 	LSM_HOOK_INIT(path_notify, selinux_path_notify),
7209 
7210 	LSM_HOOK_INIT(kernfs_init_security, selinux_kernfs_init_security),
7211 
7212 	LSM_HOOK_INIT(file_permission, selinux_file_permission),
7213 	LSM_HOOK_INIT(file_alloc_security, selinux_file_alloc_security),
7214 	LSM_HOOK_INIT(file_ioctl, selinux_file_ioctl),
7215 	LSM_HOOK_INIT(file_ioctl_compat, selinux_file_ioctl_compat),
7216 	LSM_HOOK_INIT(mmap_file, selinux_mmap_file),
7217 	LSM_HOOK_INIT(mmap_addr, selinux_mmap_addr),
7218 	LSM_HOOK_INIT(file_mprotect, selinux_file_mprotect),
7219 	LSM_HOOK_INIT(file_lock, selinux_file_lock),
7220 	LSM_HOOK_INIT(file_fcntl, selinux_file_fcntl),
7221 	LSM_HOOK_INIT(file_set_fowner, selinux_file_set_fowner),
7222 	LSM_HOOK_INIT(file_send_sigiotask, selinux_file_send_sigiotask),
7223 	LSM_HOOK_INIT(file_receive, selinux_file_receive),
7224 
7225 	LSM_HOOK_INIT(file_open, selinux_file_open),
7226 
7227 	LSM_HOOK_INIT(task_alloc, selinux_task_alloc),
7228 	LSM_HOOK_INIT(cred_prepare, selinux_cred_prepare),
7229 	LSM_HOOK_INIT(cred_transfer, selinux_cred_transfer),
7230 	LSM_HOOK_INIT(cred_getsecid, selinux_cred_getsecid),
7231 	LSM_HOOK_INIT(kernel_act_as, selinux_kernel_act_as),
7232 	LSM_HOOK_INIT(kernel_create_files_as, selinux_kernel_create_files_as),
7233 	LSM_HOOK_INIT(kernel_module_request, selinux_kernel_module_request),
7234 	LSM_HOOK_INIT(kernel_load_data, selinux_kernel_load_data),
7235 	LSM_HOOK_INIT(kernel_read_file, selinux_kernel_read_file),
7236 	LSM_HOOK_INIT(task_setpgid, selinux_task_setpgid),
7237 	LSM_HOOK_INIT(task_getpgid, selinux_task_getpgid),
7238 	LSM_HOOK_INIT(task_getsid, selinux_task_getsid),
7239 	LSM_HOOK_INIT(current_getsecid_subj, selinux_current_getsecid_subj),
7240 	LSM_HOOK_INIT(task_getsecid_obj, selinux_task_getsecid_obj),
7241 	LSM_HOOK_INIT(task_setnice, selinux_task_setnice),
7242 	LSM_HOOK_INIT(task_setioprio, selinux_task_setioprio),
7243 	LSM_HOOK_INIT(task_getioprio, selinux_task_getioprio),
7244 	LSM_HOOK_INIT(task_prlimit, selinux_task_prlimit),
7245 	LSM_HOOK_INIT(task_setrlimit, selinux_task_setrlimit),
7246 	LSM_HOOK_INIT(task_setscheduler, selinux_task_setscheduler),
7247 	LSM_HOOK_INIT(task_getscheduler, selinux_task_getscheduler),
7248 	LSM_HOOK_INIT(task_movememory, selinux_task_movememory),
7249 	LSM_HOOK_INIT(task_kill, selinux_task_kill),
7250 	LSM_HOOK_INIT(task_to_inode, selinux_task_to_inode),
7251 	LSM_HOOK_INIT(userns_create, selinux_userns_create),
7252 
7253 	LSM_HOOK_INIT(ipc_permission, selinux_ipc_permission),
7254 	LSM_HOOK_INIT(ipc_getsecid, selinux_ipc_getsecid),
7255 
7256 	LSM_HOOK_INIT(msg_queue_associate, selinux_msg_queue_associate),
7257 	LSM_HOOK_INIT(msg_queue_msgctl, selinux_msg_queue_msgctl),
7258 	LSM_HOOK_INIT(msg_queue_msgsnd, selinux_msg_queue_msgsnd),
7259 	LSM_HOOK_INIT(msg_queue_msgrcv, selinux_msg_queue_msgrcv),
7260 
7261 	LSM_HOOK_INIT(shm_associate, selinux_shm_associate),
7262 	LSM_HOOK_INIT(shm_shmctl, selinux_shm_shmctl),
7263 	LSM_HOOK_INIT(shm_shmat, selinux_shm_shmat),
7264 
7265 	LSM_HOOK_INIT(sem_associate, selinux_sem_associate),
7266 	LSM_HOOK_INIT(sem_semctl, selinux_sem_semctl),
7267 	LSM_HOOK_INIT(sem_semop, selinux_sem_semop),
7268 
7269 	LSM_HOOK_INIT(d_instantiate, selinux_d_instantiate),
7270 
7271 	LSM_HOOK_INIT(getselfattr, selinux_getselfattr),
7272 	LSM_HOOK_INIT(setselfattr, selinux_setselfattr),
7273 	LSM_HOOK_INIT(getprocattr, selinux_getprocattr),
7274 	LSM_HOOK_INIT(setprocattr, selinux_setprocattr),
7275 
7276 	LSM_HOOK_INIT(ismaclabel, selinux_ismaclabel),
7277 	LSM_HOOK_INIT(secctx_to_secid, selinux_secctx_to_secid),
7278 	LSM_HOOK_INIT(release_secctx, selinux_release_secctx),
7279 	LSM_HOOK_INIT(inode_invalidate_secctx, selinux_inode_invalidate_secctx),
7280 	LSM_HOOK_INIT(inode_notifysecctx, selinux_inode_notifysecctx),
7281 	LSM_HOOK_INIT(inode_setsecctx, selinux_inode_setsecctx),
7282 
7283 	LSM_HOOK_INIT(unix_stream_connect, selinux_socket_unix_stream_connect),
7284 	LSM_HOOK_INIT(unix_may_send, selinux_socket_unix_may_send),
7285 
7286 	LSM_HOOK_INIT(socket_create, selinux_socket_create),
7287 	LSM_HOOK_INIT(socket_post_create, selinux_socket_post_create),
7288 	LSM_HOOK_INIT(socket_socketpair, selinux_socket_socketpair),
7289 	LSM_HOOK_INIT(socket_bind, selinux_socket_bind),
7290 	LSM_HOOK_INIT(socket_connect, selinux_socket_connect),
7291 	LSM_HOOK_INIT(socket_listen, selinux_socket_listen),
7292 	LSM_HOOK_INIT(socket_accept, selinux_socket_accept),
7293 	LSM_HOOK_INIT(socket_sendmsg, selinux_socket_sendmsg),
7294 	LSM_HOOK_INIT(socket_recvmsg, selinux_socket_recvmsg),
7295 	LSM_HOOK_INIT(socket_getsockname, selinux_socket_getsockname),
7296 	LSM_HOOK_INIT(socket_getpeername, selinux_socket_getpeername),
7297 	LSM_HOOK_INIT(socket_getsockopt, selinux_socket_getsockopt),
7298 	LSM_HOOK_INIT(socket_setsockopt, selinux_socket_setsockopt),
7299 	LSM_HOOK_INIT(socket_shutdown, selinux_socket_shutdown),
7300 	LSM_HOOK_INIT(socket_sock_rcv_skb, selinux_socket_sock_rcv_skb),
7301 	LSM_HOOK_INIT(socket_getpeersec_stream,
7302 			selinux_socket_getpeersec_stream),
7303 	LSM_HOOK_INIT(socket_getpeersec_dgram, selinux_socket_getpeersec_dgram),
7304 	LSM_HOOK_INIT(sk_free_security, selinux_sk_free_security),
7305 	LSM_HOOK_INIT(sk_clone_security, selinux_sk_clone_security),
7306 	LSM_HOOK_INIT(sk_getsecid, selinux_sk_getsecid),
7307 	LSM_HOOK_INIT(sock_graft, selinux_sock_graft),
7308 	LSM_HOOK_INIT(sctp_assoc_request, selinux_sctp_assoc_request),
7309 	LSM_HOOK_INIT(sctp_sk_clone, selinux_sctp_sk_clone),
7310 	LSM_HOOK_INIT(sctp_bind_connect, selinux_sctp_bind_connect),
7311 	LSM_HOOK_INIT(sctp_assoc_established, selinux_sctp_assoc_established),
7312 	LSM_HOOK_INIT(mptcp_add_subflow, selinux_mptcp_add_subflow),
7313 	LSM_HOOK_INIT(inet_conn_request, selinux_inet_conn_request),
7314 	LSM_HOOK_INIT(inet_csk_clone, selinux_inet_csk_clone),
7315 	LSM_HOOK_INIT(inet_conn_established, selinux_inet_conn_established),
7316 	LSM_HOOK_INIT(secmark_relabel_packet, selinux_secmark_relabel_packet),
7317 	LSM_HOOK_INIT(secmark_refcount_inc, selinux_secmark_refcount_inc),
7318 	LSM_HOOK_INIT(secmark_refcount_dec, selinux_secmark_refcount_dec),
7319 	LSM_HOOK_INIT(req_classify_flow, selinux_req_classify_flow),
7320 	LSM_HOOK_INIT(tun_dev_free_security, selinux_tun_dev_free_security),
7321 	LSM_HOOK_INIT(tun_dev_create, selinux_tun_dev_create),
7322 	LSM_HOOK_INIT(tun_dev_attach_queue, selinux_tun_dev_attach_queue),
7323 	LSM_HOOK_INIT(tun_dev_attach, selinux_tun_dev_attach),
7324 	LSM_HOOK_INIT(tun_dev_open, selinux_tun_dev_open),
7325 #ifdef CONFIG_SECURITY_INFINIBAND
7326 	LSM_HOOK_INIT(ib_pkey_access, selinux_ib_pkey_access),
7327 	LSM_HOOK_INIT(ib_endport_manage_subnet,
7328 		      selinux_ib_endport_manage_subnet),
7329 	LSM_HOOK_INIT(ib_free_security, selinux_ib_free_security),
7330 #endif
7331 #ifdef CONFIG_SECURITY_NETWORK_XFRM
7332 	LSM_HOOK_INIT(xfrm_policy_free_security, selinux_xfrm_policy_free),
7333 	LSM_HOOK_INIT(xfrm_policy_delete_security, selinux_xfrm_policy_delete),
7334 	LSM_HOOK_INIT(xfrm_state_free_security, selinux_xfrm_state_free),
7335 	LSM_HOOK_INIT(xfrm_state_delete_security, selinux_xfrm_state_delete),
7336 	LSM_HOOK_INIT(xfrm_policy_lookup, selinux_xfrm_policy_lookup),
7337 	LSM_HOOK_INIT(xfrm_state_pol_flow_match,
7338 			selinux_xfrm_state_pol_flow_match),
7339 	LSM_HOOK_INIT(xfrm_decode_session, selinux_xfrm_decode_session),
7340 #endif
7341 
7342 #ifdef CONFIG_KEYS
7343 	LSM_HOOK_INIT(key_free, selinux_key_free),
7344 	LSM_HOOK_INIT(key_permission, selinux_key_permission),
7345 	LSM_HOOK_INIT(key_getsecurity, selinux_key_getsecurity),
7346 #ifdef CONFIG_KEY_NOTIFICATIONS
7347 	LSM_HOOK_INIT(watch_key, selinux_watch_key),
7348 #endif
7349 #endif
7350 
7351 #ifdef CONFIG_AUDIT
7352 	LSM_HOOK_INIT(audit_rule_known, selinux_audit_rule_known),
7353 	LSM_HOOK_INIT(audit_rule_match, selinux_audit_rule_match),
7354 	LSM_HOOK_INIT(audit_rule_free, selinux_audit_rule_free),
7355 #endif
7356 
7357 #ifdef CONFIG_BPF_SYSCALL
7358 	LSM_HOOK_INIT(bpf, selinux_bpf),
7359 	LSM_HOOK_INIT(bpf_map, selinux_bpf_map),
7360 	LSM_HOOK_INIT(bpf_prog, selinux_bpf_prog),
7361 	LSM_HOOK_INIT(bpf_map_free, selinux_bpf_map_free),
7362 	LSM_HOOK_INIT(bpf_prog_free, selinux_bpf_prog_free),
7363 	LSM_HOOK_INIT(bpf_token_free, selinux_bpf_token_free),
7364 #endif
7365 
7366 #ifdef CONFIG_PERF_EVENTS
7367 	LSM_HOOK_INIT(perf_event_open, selinux_perf_event_open),
7368 	LSM_HOOK_INIT(perf_event_free, selinux_perf_event_free),
7369 	LSM_HOOK_INIT(perf_event_read, selinux_perf_event_read),
7370 	LSM_HOOK_INIT(perf_event_write, selinux_perf_event_write),
7371 #endif
7372 
7373 #ifdef CONFIG_IO_URING
7374 	LSM_HOOK_INIT(uring_override_creds, selinux_uring_override_creds),
7375 	LSM_HOOK_INIT(uring_sqpoll, selinux_uring_sqpoll),
7376 	LSM_HOOK_INIT(uring_cmd, selinux_uring_cmd),
7377 #endif
7378 
7379 	/*
7380 	 * PUT "CLONING" (ACCESSING + ALLOCATING) HOOKS HERE
7381 	 */
7382 	LSM_HOOK_INIT(fs_context_submount, selinux_fs_context_submount),
7383 	LSM_HOOK_INIT(fs_context_dup, selinux_fs_context_dup),
7384 	LSM_HOOK_INIT(fs_context_parse_param, selinux_fs_context_parse_param),
7385 	LSM_HOOK_INIT(sb_eat_lsm_opts, selinux_sb_eat_lsm_opts),
7386 #ifdef CONFIG_SECURITY_NETWORK_XFRM
7387 	LSM_HOOK_INIT(xfrm_policy_clone_security, selinux_xfrm_policy_clone),
7388 #endif
7389 
7390 	/*
7391 	 * PUT "ALLOCATING" HOOKS HERE
7392 	 */
7393 	LSM_HOOK_INIT(msg_msg_alloc_security, selinux_msg_msg_alloc_security),
7394 	LSM_HOOK_INIT(msg_queue_alloc_security,
7395 		      selinux_msg_queue_alloc_security),
7396 	LSM_HOOK_INIT(shm_alloc_security, selinux_shm_alloc_security),
7397 	LSM_HOOK_INIT(sb_alloc_security, selinux_sb_alloc_security),
7398 	LSM_HOOK_INIT(inode_alloc_security, selinux_inode_alloc_security),
7399 	LSM_HOOK_INIT(sem_alloc_security, selinux_sem_alloc_security),
7400 	LSM_HOOK_INIT(secid_to_secctx, selinux_secid_to_secctx),
7401 	LSM_HOOK_INIT(inode_getsecctx, selinux_inode_getsecctx),
7402 	LSM_HOOK_INIT(sk_alloc_security, selinux_sk_alloc_security),
7403 	LSM_HOOK_INIT(tun_dev_alloc_security, selinux_tun_dev_alloc_security),
7404 #ifdef CONFIG_SECURITY_INFINIBAND
7405 	LSM_HOOK_INIT(ib_alloc_security, selinux_ib_alloc_security),
7406 #endif
7407 #ifdef CONFIG_SECURITY_NETWORK_XFRM
7408 	LSM_HOOK_INIT(xfrm_policy_alloc_security, selinux_xfrm_policy_alloc),
7409 	LSM_HOOK_INIT(xfrm_state_alloc, selinux_xfrm_state_alloc),
7410 	LSM_HOOK_INIT(xfrm_state_alloc_acquire,
7411 		      selinux_xfrm_state_alloc_acquire),
7412 #endif
7413 #ifdef CONFIG_KEYS
7414 	LSM_HOOK_INIT(key_alloc, selinux_key_alloc),
7415 #endif
7416 #ifdef CONFIG_AUDIT
7417 	LSM_HOOK_INIT(audit_rule_init, selinux_audit_rule_init),
7418 #endif
7419 #ifdef CONFIG_BPF_SYSCALL
7420 	LSM_HOOK_INIT(bpf_map_create, selinux_bpf_map_create),
7421 	LSM_HOOK_INIT(bpf_prog_load, selinux_bpf_prog_load),
7422 	LSM_HOOK_INIT(bpf_token_create, selinux_bpf_token_create),
7423 #endif
7424 #ifdef CONFIG_PERF_EVENTS
7425 	LSM_HOOK_INIT(perf_event_alloc, selinux_perf_event_alloc),
7426 #endif
7427 };
7428 
7429 static __init int selinux_init(void)
7430 {
7431 	pr_info("SELinux:  Initializing.\n");
7432 
7433 	memset(&selinux_state, 0, sizeof(selinux_state));
7434 	enforcing_set(selinux_enforcing_boot);
7435 	selinux_avc_init();
7436 	mutex_init(&selinux_state.status_lock);
7437 	mutex_init(&selinux_state.policy_mutex);
7438 
7439 	/* Set the security state for the initial task. */
7440 	cred_init_security();
7441 
7442 	default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC);
7443 	if (!default_noexec)
7444 		pr_notice("SELinux:  virtual memory is executable by default\n");
7445 
7446 	avc_init();
7447 
7448 	avtab_cache_init();
7449 
7450 	ebitmap_cache_init();
7451 
7452 	hashtab_cache_init();
7453 
7454 	security_add_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks),
7455 			   &selinux_lsmid);
7456 
7457 	if (avc_add_callback(selinux_netcache_avc_callback, AVC_CALLBACK_RESET))
7458 		panic("SELinux: Unable to register AVC netcache callback\n");
7459 
7460 	if (avc_add_callback(selinux_lsm_notifier_avc_callback, AVC_CALLBACK_RESET))
7461 		panic("SELinux: Unable to register AVC LSM notifier callback\n");
7462 
7463 	if (selinux_enforcing_boot)
7464 		pr_debug("SELinux:  Starting in enforcing mode\n");
7465 	else
7466 		pr_debug("SELinux:  Starting in permissive mode\n");
7467 
7468 	fs_validate_description("selinux", selinux_fs_parameters);
7469 
7470 	return 0;
7471 }
7472 
7473 static void delayed_superblock_init(struct super_block *sb, void *unused)
7474 {
7475 	selinux_set_mnt_opts(sb, NULL, 0, NULL);
7476 }
7477 
7478 void selinux_complete_init(void)
7479 {
7480 	pr_debug("SELinux:  Completing initialization.\n");
7481 
7482 	/* Set up any superblocks initialized prior to the policy load. */
7483 	pr_debug("SELinux:  Setting up existing superblocks.\n");
7484 	iterate_supers(delayed_superblock_init, NULL);
7485 }
7486 
7487 /* SELinux requires early initialization in order to label
7488    all processes and objects when they are created. */
7489 DEFINE_LSM(selinux) = {
7490 	.name = "selinux",
7491 	.flags = LSM_FLAG_LEGACY_MAJOR | LSM_FLAG_EXCLUSIVE,
7492 	.enabled = &selinux_enabled_boot,
7493 	.blobs = &selinux_blob_sizes,
7494 	.init = selinux_init,
7495 };
7496 
7497 #if defined(CONFIG_NETFILTER)
7498 static const struct nf_hook_ops selinux_nf_ops[] = {
7499 	{
7500 		.hook =		selinux_ip_postroute,
7501 		.pf =		NFPROTO_IPV4,
7502 		.hooknum =	NF_INET_POST_ROUTING,
7503 		.priority =	NF_IP_PRI_SELINUX_LAST,
7504 	},
7505 	{
7506 		.hook =		selinux_ip_forward,
7507 		.pf =		NFPROTO_IPV4,
7508 		.hooknum =	NF_INET_FORWARD,
7509 		.priority =	NF_IP_PRI_SELINUX_FIRST,
7510 	},
7511 	{
7512 		.hook =		selinux_ip_output,
7513 		.pf =		NFPROTO_IPV4,
7514 		.hooknum =	NF_INET_LOCAL_OUT,
7515 		.priority =	NF_IP_PRI_SELINUX_FIRST,
7516 	},
7517 #if IS_ENABLED(CONFIG_IPV6)
7518 	{
7519 		.hook =		selinux_ip_postroute,
7520 		.pf =		NFPROTO_IPV6,
7521 		.hooknum =	NF_INET_POST_ROUTING,
7522 		.priority =	NF_IP6_PRI_SELINUX_LAST,
7523 	},
7524 	{
7525 		.hook =		selinux_ip_forward,
7526 		.pf =		NFPROTO_IPV6,
7527 		.hooknum =	NF_INET_FORWARD,
7528 		.priority =	NF_IP6_PRI_SELINUX_FIRST,
7529 	},
7530 	{
7531 		.hook =		selinux_ip_output,
7532 		.pf =		NFPROTO_IPV6,
7533 		.hooknum =	NF_INET_LOCAL_OUT,
7534 		.priority =	NF_IP6_PRI_SELINUX_FIRST,
7535 	},
7536 #endif	/* IPV6 */
7537 };
7538 
7539 static int __net_init selinux_nf_register(struct net *net)
7540 {
7541 	return nf_register_net_hooks(net, selinux_nf_ops,
7542 				     ARRAY_SIZE(selinux_nf_ops));
7543 }
7544 
7545 static void __net_exit selinux_nf_unregister(struct net *net)
7546 {
7547 	nf_unregister_net_hooks(net, selinux_nf_ops,
7548 				ARRAY_SIZE(selinux_nf_ops));
7549 }
7550 
7551 static struct pernet_operations selinux_net_ops = {
7552 	.init = selinux_nf_register,
7553 	.exit = selinux_nf_unregister,
7554 };
7555 
7556 static int __init selinux_nf_ip_init(void)
7557 {
7558 	int err;
7559 
7560 	if (!selinux_enabled_boot)
7561 		return 0;
7562 
7563 	pr_debug("SELinux:  Registering netfilter hooks\n");
7564 
7565 	err = register_pernet_subsys(&selinux_net_ops);
7566 	if (err)
7567 		panic("SELinux: register_pernet_subsys: error %d\n", err);
7568 
7569 	return 0;
7570 }
7571 __initcall(selinux_nf_ip_init);
7572 #endif /* CONFIG_NETFILTER */
7573