xref: /linux/security/selinux/hooks.c (revision 4b660dbd9ee2059850fd30e0df420ca7a38a1856)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Security-Enhanced Linux (SELinux) security module
4  *
5  *  This file contains the SELinux hook function implementations.
6  *
7  *  Authors:  Stephen Smalley, <stephen.smalley.work@gmail.com>
8  *	      Chris Vance, <cvance@nai.com>
9  *	      Wayne Salamon, <wsalamon@nai.com>
10  *	      James Morris <jmorris@redhat.com>
11  *
12  *  Copyright (C) 2001,2002 Networks Associates Technology, Inc.
13  *  Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
14  *					   Eric Paris <eparis@redhat.com>
15  *  Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
16  *			    <dgoeddel@trustedcs.com>
17  *  Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P.
18  *	Paul Moore <paul@paul-moore.com>
19  *  Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
20  *		       Yuichi Nakamura <ynakam@hitachisoft.jp>
21  *  Copyright (C) 2016 Mellanox Technologies
22  */
23 
24 #include <linux/init.h>
25 #include <linux/kd.h>
26 #include <linux/kernel.h>
27 #include <linux/kernel_read_file.h>
28 #include <linux/errno.h>
29 #include <linux/sched/signal.h>
30 #include <linux/sched/task.h>
31 #include <linux/lsm_hooks.h>
32 #include <linux/xattr.h>
33 #include <linux/capability.h>
34 #include <linux/unistd.h>
35 #include <linux/mm.h>
36 #include <linux/mman.h>
37 #include <linux/slab.h>
38 #include <linux/pagemap.h>
39 #include <linux/proc_fs.h>
40 #include <linux/swap.h>
41 #include <linux/spinlock.h>
42 #include <linux/syscalls.h>
43 #include <linux/dcache.h>
44 #include <linux/file.h>
45 #include <linux/fdtable.h>
46 #include <linux/namei.h>
47 #include <linux/mount.h>
48 #include <linux/fs_context.h>
49 #include <linux/fs_parser.h>
50 #include <linux/netfilter_ipv4.h>
51 #include <linux/netfilter_ipv6.h>
52 #include <linux/tty.h>
53 #include <net/icmp.h>
54 #include <net/ip.h>		/* for local_port_range[] */
55 #include <net/tcp.h>		/* struct or_callable used in sock_rcv_skb */
56 #include <net/inet_connection_sock.h>
57 #include <net/net_namespace.h>
58 #include <net/netlabel.h>
59 #include <linux/uaccess.h>
60 #include <asm/ioctls.h>
61 #include <linux/atomic.h>
62 #include <linux/bitops.h>
63 #include <linux/interrupt.h>
64 #include <linux/netdevice.h>	/* for network interface checks */
65 #include <net/netlink.h>
66 #include <linux/tcp.h>
67 #include <linux/udp.h>
68 #include <linux/dccp.h>
69 #include <linux/sctp.h>
70 #include <net/sctp/structs.h>
71 #include <linux/quota.h>
72 #include <linux/un.h>		/* for Unix socket types */
73 #include <net/af_unix.h>	/* for Unix socket types */
74 #include <linux/parser.h>
75 #include <linux/nfs_mount.h>
76 #include <net/ipv6.h>
77 #include <linux/hugetlb.h>
78 #include <linux/personality.h>
79 #include <linux/audit.h>
80 #include <linux/string.h>
81 #include <linux/mutex.h>
82 #include <linux/posix-timers.h>
83 #include <linux/syslog.h>
84 #include <linux/user_namespace.h>
85 #include <linux/export.h>
86 #include <linux/msg.h>
87 #include <linux/shm.h>
88 #include <uapi/linux/shm.h>
89 #include <linux/bpf.h>
90 #include <linux/kernfs.h>
91 #include <linux/stringhash.h>	/* for hashlen_string() */
92 #include <uapi/linux/mount.h>
93 #include <linux/fsnotify.h>
94 #include <linux/fanotify.h>
95 #include <linux/io_uring/cmd.h>
96 #include <uapi/linux/lsm.h>
97 
98 #include "avc.h"
99 #include "objsec.h"
100 #include "netif.h"
101 #include "netnode.h"
102 #include "netport.h"
103 #include "ibpkey.h"
104 #include "xfrm.h"
105 #include "netlabel.h"
106 #include "audit.h"
107 #include "avc_ss.h"
108 
109 #define SELINUX_INODE_INIT_XATTRS 1
110 
111 struct selinux_state selinux_state;
112 
113 /* SECMARK reference count */
114 static atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
115 
116 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP
117 static int selinux_enforcing_boot __initdata;
118 
119 static int __init enforcing_setup(char *str)
120 {
121 	unsigned long enforcing;
122 	if (!kstrtoul(str, 0, &enforcing))
123 		selinux_enforcing_boot = enforcing ? 1 : 0;
124 	return 1;
125 }
126 __setup("enforcing=", enforcing_setup);
127 #else
128 #define selinux_enforcing_boot 1
129 #endif
130 
131 int selinux_enabled_boot __initdata = 1;
132 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
133 static int __init selinux_enabled_setup(char *str)
134 {
135 	unsigned long enabled;
136 	if (!kstrtoul(str, 0, &enabled))
137 		selinux_enabled_boot = enabled ? 1 : 0;
138 	return 1;
139 }
140 __setup("selinux=", selinux_enabled_setup);
141 #endif
142 
143 static int __init checkreqprot_setup(char *str)
144 {
145 	unsigned long checkreqprot;
146 
147 	if (!kstrtoul(str, 0, &checkreqprot)) {
148 		if (checkreqprot)
149 			pr_err("SELinux: checkreqprot set to 1 via kernel parameter.  This is no longer supported.\n");
150 	}
151 	return 1;
152 }
153 __setup("checkreqprot=", checkreqprot_setup);
154 
155 /**
156  * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
157  *
158  * Description:
159  * This function checks the SECMARK reference counter to see if any SECMARK
160  * targets are currently configured, if the reference counter is greater than
161  * zero SECMARK is considered to be enabled.  Returns true (1) if SECMARK is
162  * enabled, false (0) if SECMARK is disabled.  If the always_check_network
163  * policy capability is enabled, SECMARK is always considered enabled.
164  *
165  */
166 static int selinux_secmark_enabled(void)
167 {
168 	return (selinux_policycap_alwaysnetwork() ||
169 		atomic_read(&selinux_secmark_refcount));
170 }
171 
172 /**
173  * selinux_peerlbl_enabled - Check to see if peer labeling is currently enabled
174  *
175  * Description:
176  * This function checks if NetLabel or labeled IPSEC is enabled.  Returns true
177  * (1) if any are enabled or false (0) if neither are enabled.  If the
178  * always_check_network policy capability is enabled, peer labeling
179  * is always considered enabled.
180  *
181  */
182 static int selinux_peerlbl_enabled(void)
183 {
184 	return (selinux_policycap_alwaysnetwork() ||
185 		netlbl_enabled() || selinux_xfrm_enabled());
186 }
187 
188 static int selinux_netcache_avc_callback(u32 event)
189 {
190 	if (event == AVC_CALLBACK_RESET) {
191 		sel_netif_flush();
192 		sel_netnode_flush();
193 		sel_netport_flush();
194 		synchronize_net();
195 	}
196 	return 0;
197 }
198 
199 static int selinux_lsm_notifier_avc_callback(u32 event)
200 {
201 	if (event == AVC_CALLBACK_RESET) {
202 		sel_ib_pkey_flush();
203 		call_blocking_lsm_notifier(LSM_POLICY_CHANGE, NULL);
204 	}
205 
206 	return 0;
207 }
208 
209 /*
210  * initialise the security for the init task
211  */
212 static void cred_init_security(void)
213 {
214 	struct task_security_struct *tsec;
215 
216 	tsec = selinux_cred(unrcu_pointer(current->real_cred));
217 	tsec->osid = tsec->sid = SECINITSID_KERNEL;
218 }
219 
220 /*
221  * get the security ID of a set of credentials
222  */
223 static inline u32 cred_sid(const struct cred *cred)
224 {
225 	const struct task_security_struct *tsec;
226 
227 	tsec = selinux_cred(cred);
228 	return tsec->sid;
229 }
230 
231 static void __ad_net_init(struct common_audit_data *ad,
232 			  struct lsm_network_audit *net,
233 			  int ifindex, struct sock *sk, u16 family)
234 {
235 	ad->type = LSM_AUDIT_DATA_NET;
236 	ad->u.net = net;
237 	net->netif = ifindex;
238 	net->sk = sk;
239 	net->family = family;
240 }
241 
242 static void ad_net_init_from_sk(struct common_audit_data *ad,
243 				struct lsm_network_audit *net,
244 				struct sock *sk)
245 {
246 	__ad_net_init(ad, net, 0, sk, 0);
247 }
248 
249 static void ad_net_init_from_iif(struct common_audit_data *ad,
250 				 struct lsm_network_audit *net,
251 				 int ifindex, u16 family)
252 {
253 	__ad_net_init(ad, net, ifindex, NULL, family);
254 }
255 
256 /*
257  * get the objective security ID of a task
258  */
259 static inline u32 task_sid_obj(const struct task_struct *task)
260 {
261 	u32 sid;
262 
263 	rcu_read_lock();
264 	sid = cred_sid(__task_cred(task));
265 	rcu_read_unlock();
266 	return sid;
267 }
268 
269 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
270 
271 /*
272  * Try reloading inode security labels that have been marked as invalid.  The
273  * @may_sleep parameter indicates when sleeping and thus reloading labels is
274  * allowed; when set to false, returns -ECHILD when the label is
275  * invalid.  The @dentry parameter should be set to a dentry of the inode.
276  */
277 static int __inode_security_revalidate(struct inode *inode,
278 				       struct dentry *dentry,
279 				       bool may_sleep)
280 {
281 	struct inode_security_struct *isec = selinux_inode(inode);
282 
283 	might_sleep_if(may_sleep);
284 
285 	if (selinux_initialized() &&
286 	    isec->initialized != LABEL_INITIALIZED) {
287 		if (!may_sleep)
288 			return -ECHILD;
289 
290 		/*
291 		 * Try reloading the inode security label.  This will fail if
292 		 * @opt_dentry is NULL and no dentry for this inode can be
293 		 * found; in that case, continue using the old label.
294 		 */
295 		inode_doinit_with_dentry(inode, dentry);
296 	}
297 	return 0;
298 }
299 
300 static struct inode_security_struct *inode_security_novalidate(struct inode *inode)
301 {
302 	return selinux_inode(inode);
303 }
304 
305 static struct inode_security_struct *inode_security_rcu(struct inode *inode, bool rcu)
306 {
307 	int error;
308 
309 	error = __inode_security_revalidate(inode, NULL, !rcu);
310 	if (error)
311 		return ERR_PTR(error);
312 	return selinux_inode(inode);
313 }
314 
315 /*
316  * Get the security label of an inode.
317  */
318 static struct inode_security_struct *inode_security(struct inode *inode)
319 {
320 	__inode_security_revalidate(inode, NULL, true);
321 	return selinux_inode(inode);
322 }
323 
324 static struct inode_security_struct *backing_inode_security_novalidate(struct dentry *dentry)
325 {
326 	struct inode *inode = d_backing_inode(dentry);
327 
328 	return selinux_inode(inode);
329 }
330 
331 /*
332  * Get the security label of a dentry's backing inode.
333  */
334 static struct inode_security_struct *backing_inode_security(struct dentry *dentry)
335 {
336 	struct inode *inode = d_backing_inode(dentry);
337 
338 	__inode_security_revalidate(inode, dentry, true);
339 	return selinux_inode(inode);
340 }
341 
342 static void inode_free_security(struct inode *inode)
343 {
344 	struct inode_security_struct *isec = selinux_inode(inode);
345 	struct superblock_security_struct *sbsec;
346 
347 	if (!isec)
348 		return;
349 	sbsec = selinux_superblock(inode->i_sb);
350 	/*
351 	 * As not all inode security structures are in a list, we check for
352 	 * empty list outside of the lock to make sure that we won't waste
353 	 * time taking a lock doing nothing.
354 	 *
355 	 * The list_del_init() function can be safely called more than once.
356 	 * It should not be possible for this function to be called with
357 	 * concurrent list_add(), but for better safety against future changes
358 	 * in the code, we use list_empty_careful() here.
359 	 */
360 	if (!list_empty_careful(&isec->list)) {
361 		spin_lock(&sbsec->isec_lock);
362 		list_del_init(&isec->list);
363 		spin_unlock(&sbsec->isec_lock);
364 	}
365 }
366 
367 struct selinux_mnt_opts {
368 	u32 fscontext_sid;
369 	u32 context_sid;
370 	u32 rootcontext_sid;
371 	u32 defcontext_sid;
372 };
373 
374 static void selinux_free_mnt_opts(void *mnt_opts)
375 {
376 	kfree(mnt_opts);
377 }
378 
379 enum {
380 	Opt_error = -1,
381 	Opt_context = 0,
382 	Opt_defcontext = 1,
383 	Opt_fscontext = 2,
384 	Opt_rootcontext = 3,
385 	Opt_seclabel = 4,
386 };
387 
388 #define A(s, has_arg) {#s, sizeof(#s) - 1, Opt_##s, has_arg}
389 static const struct {
390 	const char *name;
391 	int len;
392 	int opt;
393 	bool has_arg;
394 } tokens[] = {
395 	A(context, true),
396 	A(fscontext, true),
397 	A(defcontext, true),
398 	A(rootcontext, true),
399 	A(seclabel, false),
400 };
401 #undef A
402 
403 static int match_opt_prefix(char *s, int l, char **arg)
404 {
405 	int i;
406 
407 	for (i = 0; i < ARRAY_SIZE(tokens); i++) {
408 		size_t len = tokens[i].len;
409 		if (len > l || memcmp(s, tokens[i].name, len))
410 			continue;
411 		if (tokens[i].has_arg) {
412 			if (len == l || s[len] != '=')
413 				continue;
414 			*arg = s + len + 1;
415 		} else if (len != l)
416 			continue;
417 		return tokens[i].opt;
418 	}
419 	return Opt_error;
420 }
421 
422 #define SEL_MOUNT_FAIL_MSG "SELinux:  duplicate or incompatible mount options\n"
423 
424 static int may_context_mount_sb_relabel(u32 sid,
425 			struct superblock_security_struct *sbsec,
426 			const struct cred *cred)
427 {
428 	const struct task_security_struct *tsec = selinux_cred(cred);
429 	int rc;
430 
431 	rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
432 			  FILESYSTEM__RELABELFROM, NULL);
433 	if (rc)
434 		return rc;
435 
436 	rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
437 			  FILESYSTEM__RELABELTO, NULL);
438 	return rc;
439 }
440 
441 static int may_context_mount_inode_relabel(u32 sid,
442 			struct superblock_security_struct *sbsec,
443 			const struct cred *cred)
444 {
445 	const struct task_security_struct *tsec = selinux_cred(cred);
446 	int rc;
447 	rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
448 			  FILESYSTEM__RELABELFROM, NULL);
449 	if (rc)
450 		return rc;
451 
452 	rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
453 			  FILESYSTEM__ASSOCIATE, NULL);
454 	return rc;
455 }
456 
457 static int selinux_is_genfs_special_handling(struct super_block *sb)
458 {
459 	/* Special handling. Genfs but also in-core setxattr handler */
460 	return	!strcmp(sb->s_type->name, "sysfs") ||
461 		!strcmp(sb->s_type->name, "pstore") ||
462 		!strcmp(sb->s_type->name, "debugfs") ||
463 		!strcmp(sb->s_type->name, "tracefs") ||
464 		!strcmp(sb->s_type->name, "rootfs") ||
465 		(selinux_policycap_cgroupseclabel() &&
466 		 (!strcmp(sb->s_type->name, "cgroup") ||
467 		  !strcmp(sb->s_type->name, "cgroup2")));
468 }
469 
470 static int selinux_is_sblabel_mnt(struct super_block *sb)
471 {
472 	struct superblock_security_struct *sbsec = selinux_superblock(sb);
473 
474 	/*
475 	 * IMPORTANT: Double-check logic in this function when adding a new
476 	 * SECURITY_FS_USE_* definition!
477 	 */
478 	BUILD_BUG_ON(SECURITY_FS_USE_MAX != 7);
479 
480 	switch (sbsec->behavior) {
481 	case SECURITY_FS_USE_XATTR:
482 	case SECURITY_FS_USE_TRANS:
483 	case SECURITY_FS_USE_TASK:
484 	case SECURITY_FS_USE_NATIVE:
485 		return 1;
486 
487 	case SECURITY_FS_USE_GENFS:
488 		return selinux_is_genfs_special_handling(sb);
489 
490 	/* Never allow relabeling on context mounts */
491 	case SECURITY_FS_USE_MNTPOINT:
492 	case SECURITY_FS_USE_NONE:
493 	default:
494 		return 0;
495 	}
496 }
497 
498 static int sb_check_xattr_support(struct super_block *sb)
499 {
500 	struct superblock_security_struct *sbsec = selinux_superblock(sb);
501 	struct dentry *root = sb->s_root;
502 	struct inode *root_inode = d_backing_inode(root);
503 	u32 sid;
504 	int rc;
505 
506 	/*
507 	 * Make sure that the xattr handler exists and that no
508 	 * error other than -ENODATA is returned by getxattr on
509 	 * the root directory.  -ENODATA is ok, as this may be
510 	 * the first boot of the SELinux kernel before we have
511 	 * assigned xattr values to the filesystem.
512 	 */
513 	if (!(root_inode->i_opflags & IOP_XATTR)) {
514 		pr_warn("SELinux: (dev %s, type %s) has no xattr support\n",
515 			sb->s_id, sb->s_type->name);
516 		goto fallback;
517 	}
518 
519 	rc = __vfs_getxattr(root, root_inode, XATTR_NAME_SELINUX, NULL, 0);
520 	if (rc < 0 && rc != -ENODATA) {
521 		if (rc == -EOPNOTSUPP) {
522 			pr_warn("SELinux: (dev %s, type %s) has no security xattr handler\n",
523 				sb->s_id, sb->s_type->name);
524 			goto fallback;
525 		} else {
526 			pr_warn("SELinux: (dev %s, type %s) getxattr errno %d\n",
527 				sb->s_id, sb->s_type->name, -rc);
528 			return rc;
529 		}
530 	}
531 	return 0;
532 
533 fallback:
534 	/* No xattr support - try to fallback to genfs if possible. */
535 	rc = security_genfs_sid(sb->s_type->name, "/",
536 				SECCLASS_DIR, &sid);
537 	if (rc)
538 		return -EOPNOTSUPP;
539 
540 	pr_warn("SELinux: (dev %s, type %s) falling back to genfs\n",
541 		sb->s_id, sb->s_type->name);
542 	sbsec->behavior = SECURITY_FS_USE_GENFS;
543 	sbsec->sid = sid;
544 	return 0;
545 }
546 
547 static int sb_finish_set_opts(struct super_block *sb)
548 {
549 	struct superblock_security_struct *sbsec = selinux_superblock(sb);
550 	struct dentry *root = sb->s_root;
551 	struct inode *root_inode = d_backing_inode(root);
552 	int rc = 0;
553 
554 	if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
555 		rc = sb_check_xattr_support(sb);
556 		if (rc)
557 			return rc;
558 	}
559 
560 	sbsec->flags |= SE_SBINITIALIZED;
561 
562 	/*
563 	 * Explicitly set or clear SBLABEL_MNT.  It's not sufficient to simply
564 	 * leave the flag untouched because sb_clone_mnt_opts might be handing
565 	 * us a superblock that needs the flag to be cleared.
566 	 */
567 	if (selinux_is_sblabel_mnt(sb))
568 		sbsec->flags |= SBLABEL_MNT;
569 	else
570 		sbsec->flags &= ~SBLABEL_MNT;
571 
572 	/* Initialize the root inode. */
573 	rc = inode_doinit_with_dentry(root_inode, root);
574 
575 	/* Initialize any other inodes associated with the superblock, e.g.
576 	   inodes created prior to initial policy load or inodes created
577 	   during get_sb by a pseudo filesystem that directly
578 	   populates itself. */
579 	spin_lock(&sbsec->isec_lock);
580 	while (!list_empty(&sbsec->isec_head)) {
581 		struct inode_security_struct *isec =
582 				list_first_entry(&sbsec->isec_head,
583 					   struct inode_security_struct, list);
584 		struct inode *inode = isec->inode;
585 		list_del_init(&isec->list);
586 		spin_unlock(&sbsec->isec_lock);
587 		inode = igrab(inode);
588 		if (inode) {
589 			if (!IS_PRIVATE(inode))
590 				inode_doinit_with_dentry(inode, NULL);
591 			iput(inode);
592 		}
593 		spin_lock(&sbsec->isec_lock);
594 	}
595 	spin_unlock(&sbsec->isec_lock);
596 	return rc;
597 }
598 
599 static int bad_option(struct superblock_security_struct *sbsec, char flag,
600 		      u32 old_sid, u32 new_sid)
601 {
602 	char mnt_flags = sbsec->flags & SE_MNTMASK;
603 
604 	/* check if the old mount command had the same options */
605 	if (sbsec->flags & SE_SBINITIALIZED)
606 		if (!(sbsec->flags & flag) ||
607 		    (old_sid != new_sid))
608 			return 1;
609 
610 	/* check if we were passed the same options twice,
611 	 * aka someone passed context=a,context=b
612 	 */
613 	if (!(sbsec->flags & SE_SBINITIALIZED))
614 		if (mnt_flags & flag)
615 			return 1;
616 	return 0;
617 }
618 
619 /*
620  * Allow filesystems with binary mount data to explicitly set mount point
621  * labeling information.
622  */
623 static int selinux_set_mnt_opts(struct super_block *sb,
624 				void *mnt_opts,
625 				unsigned long kern_flags,
626 				unsigned long *set_kern_flags)
627 {
628 	const struct cred *cred = current_cred();
629 	struct superblock_security_struct *sbsec = selinux_superblock(sb);
630 	struct dentry *root = sb->s_root;
631 	struct selinux_mnt_opts *opts = mnt_opts;
632 	struct inode_security_struct *root_isec;
633 	u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
634 	u32 defcontext_sid = 0;
635 	int rc = 0;
636 
637 	/*
638 	 * Specifying internal flags without providing a place to
639 	 * place the results is not allowed
640 	 */
641 	if (kern_flags && !set_kern_flags)
642 		return -EINVAL;
643 
644 	mutex_lock(&sbsec->lock);
645 
646 	if (!selinux_initialized()) {
647 		if (!opts) {
648 			/* Defer initialization until selinux_complete_init,
649 			   after the initial policy is loaded and the security
650 			   server is ready to handle calls. */
651 			if (kern_flags & SECURITY_LSM_NATIVE_LABELS) {
652 				sbsec->flags |= SE_SBNATIVE;
653 				*set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
654 			}
655 			goto out;
656 		}
657 		rc = -EINVAL;
658 		pr_warn("SELinux: Unable to set superblock options "
659 			"before the security server is initialized\n");
660 		goto out;
661 	}
662 
663 	/*
664 	 * Binary mount data FS will come through this function twice.  Once
665 	 * from an explicit call and once from the generic calls from the vfs.
666 	 * Since the generic VFS calls will not contain any security mount data
667 	 * we need to skip the double mount verification.
668 	 *
669 	 * This does open a hole in which we will not notice if the first
670 	 * mount using this sb set explicit options and a second mount using
671 	 * this sb does not set any security options.  (The first options
672 	 * will be used for both mounts)
673 	 */
674 	if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
675 	    && !opts)
676 		goto out;
677 
678 	root_isec = backing_inode_security_novalidate(root);
679 
680 	/*
681 	 * parse the mount options, check if they are valid sids.
682 	 * also check if someone is trying to mount the same sb more
683 	 * than once with different security options.
684 	 */
685 	if (opts) {
686 		if (opts->fscontext_sid) {
687 			fscontext_sid = opts->fscontext_sid;
688 			if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
689 					fscontext_sid))
690 				goto out_double_mount;
691 			sbsec->flags |= FSCONTEXT_MNT;
692 		}
693 		if (opts->context_sid) {
694 			context_sid = opts->context_sid;
695 			if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
696 					context_sid))
697 				goto out_double_mount;
698 			sbsec->flags |= CONTEXT_MNT;
699 		}
700 		if (opts->rootcontext_sid) {
701 			rootcontext_sid = opts->rootcontext_sid;
702 			if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
703 					rootcontext_sid))
704 				goto out_double_mount;
705 			sbsec->flags |= ROOTCONTEXT_MNT;
706 		}
707 		if (opts->defcontext_sid) {
708 			defcontext_sid = opts->defcontext_sid;
709 			if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
710 					defcontext_sid))
711 				goto out_double_mount;
712 			sbsec->flags |= DEFCONTEXT_MNT;
713 		}
714 	}
715 
716 	if (sbsec->flags & SE_SBINITIALIZED) {
717 		/* previously mounted with options, but not on this attempt? */
718 		if ((sbsec->flags & SE_MNTMASK) && !opts)
719 			goto out_double_mount;
720 		rc = 0;
721 		goto out;
722 	}
723 
724 	if (strcmp(sb->s_type->name, "proc") == 0)
725 		sbsec->flags |= SE_SBPROC | SE_SBGENFS;
726 
727 	if (!strcmp(sb->s_type->name, "debugfs") ||
728 	    !strcmp(sb->s_type->name, "tracefs") ||
729 	    !strcmp(sb->s_type->name, "binder") ||
730 	    !strcmp(sb->s_type->name, "bpf") ||
731 	    !strcmp(sb->s_type->name, "pstore") ||
732 	    !strcmp(sb->s_type->name, "securityfs"))
733 		sbsec->flags |= SE_SBGENFS;
734 
735 	if (!strcmp(sb->s_type->name, "sysfs") ||
736 	    !strcmp(sb->s_type->name, "cgroup") ||
737 	    !strcmp(sb->s_type->name, "cgroup2"))
738 		sbsec->flags |= SE_SBGENFS | SE_SBGENFS_XATTR;
739 
740 	if (!sbsec->behavior) {
741 		/*
742 		 * Determine the labeling behavior to use for this
743 		 * filesystem type.
744 		 */
745 		rc = security_fs_use(sb);
746 		if (rc) {
747 			pr_warn("%s: security_fs_use(%s) returned %d\n",
748 					__func__, sb->s_type->name, rc);
749 			goto out;
750 		}
751 	}
752 
753 	/*
754 	 * If this is a user namespace mount and the filesystem type is not
755 	 * explicitly whitelisted, then no contexts are allowed on the command
756 	 * line and security labels must be ignored.
757 	 */
758 	if (sb->s_user_ns != &init_user_ns &&
759 	    strcmp(sb->s_type->name, "tmpfs") &&
760 	    strcmp(sb->s_type->name, "ramfs") &&
761 	    strcmp(sb->s_type->name, "devpts") &&
762 	    strcmp(sb->s_type->name, "overlay")) {
763 		if (context_sid || fscontext_sid || rootcontext_sid ||
764 		    defcontext_sid) {
765 			rc = -EACCES;
766 			goto out;
767 		}
768 		if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
769 			sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
770 			rc = security_transition_sid(current_sid(),
771 						     current_sid(),
772 						     SECCLASS_FILE, NULL,
773 						     &sbsec->mntpoint_sid);
774 			if (rc)
775 				goto out;
776 		}
777 		goto out_set_opts;
778 	}
779 
780 	/* sets the context of the superblock for the fs being mounted. */
781 	if (fscontext_sid) {
782 		rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
783 		if (rc)
784 			goto out;
785 
786 		sbsec->sid = fscontext_sid;
787 	}
788 
789 	/*
790 	 * Switch to using mount point labeling behavior.
791 	 * sets the label used on all file below the mountpoint, and will set
792 	 * the superblock context if not already set.
793 	 */
794 	if (sbsec->flags & SE_SBNATIVE) {
795 		/*
796 		 * This means we are initializing a superblock that has been
797 		 * mounted before the SELinux was initialized and the
798 		 * filesystem requested native labeling. We had already
799 		 * returned SECURITY_LSM_NATIVE_LABELS in *set_kern_flags
800 		 * in the original mount attempt, so now we just need to set
801 		 * the SECURITY_FS_USE_NATIVE behavior.
802 		 */
803 		sbsec->behavior = SECURITY_FS_USE_NATIVE;
804 	} else if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !context_sid) {
805 		sbsec->behavior = SECURITY_FS_USE_NATIVE;
806 		*set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
807 	}
808 
809 	if (context_sid) {
810 		if (!fscontext_sid) {
811 			rc = may_context_mount_sb_relabel(context_sid, sbsec,
812 							  cred);
813 			if (rc)
814 				goto out;
815 			sbsec->sid = context_sid;
816 		} else {
817 			rc = may_context_mount_inode_relabel(context_sid, sbsec,
818 							     cred);
819 			if (rc)
820 				goto out;
821 		}
822 		if (!rootcontext_sid)
823 			rootcontext_sid = context_sid;
824 
825 		sbsec->mntpoint_sid = context_sid;
826 		sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
827 	}
828 
829 	if (rootcontext_sid) {
830 		rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
831 						     cred);
832 		if (rc)
833 			goto out;
834 
835 		root_isec->sid = rootcontext_sid;
836 		root_isec->initialized = LABEL_INITIALIZED;
837 	}
838 
839 	if (defcontext_sid) {
840 		if (sbsec->behavior != SECURITY_FS_USE_XATTR &&
841 			sbsec->behavior != SECURITY_FS_USE_NATIVE) {
842 			rc = -EINVAL;
843 			pr_warn("SELinux: defcontext option is "
844 			       "invalid for this filesystem type\n");
845 			goto out;
846 		}
847 
848 		if (defcontext_sid != sbsec->def_sid) {
849 			rc = may_context_mount_inode_relabel(defcontext_sid,
850 							     sbsec, cred);
851 			if (rc)
852 				goto out;
853 		}
854 
855 		sbsec->def_sid = defcontext_sid;
856 	}
857 
858 out_set_opts:
859 	rc = sb_finish_set_opts(sb);
860 out:
861 	mutex_unlock(&sbsec->lock);
862 	return rc;
863 out_double_mount:
864 	rc = -EINVAL;
865 	pr_warn("SELinux: mount invalid.  Same superblock, different "
866 	       "security settings for (dev %s, type %s)\n", sb->s_id,
867 	       sb->s_type->name);
868 	goto out;
869 }
870 
871 static int selinux_cmp_sb_context(const struct super_block *oldsb,
872 				    const struct super_block *newsb)
873 {
874 	struct superblock_security_struct *old = selinux_superblock(oldsb);
875 	struct superblock_security_struct *new = selinux_superblock(newsb);
876 	char oldflags = old->flags & SE_MNTMASK;
877 	char newflags = new->flags & SE_MNTMASK;
878 
879 	if (oldflags != newflags)
880 		goto mismatch;
881 	if ((oldflags & FSCONTEXT_MNT) && old->sid != new->sid)
882 		goto mismatch;
883 	if ((oldflags & CONTEXT_MNT) && old->mntpoint_sid != new->mntpoint_sid)
884 		goto mismatch;
885 	if ((oldflags & DEFCONTEXT_MNT) && old->def_sid != new->def_sid)
886 		goto mismatch;
887 	if (oldflags & ROOTCONTEXT_MNT) {
888 		struct inode_security_struct *oldroot = backing_inode_security(oldsb->s_root);
889 		struct inode_security_struct *newroot = backing_inode_security(newsb->s_root);
890 		if (oldroot->sid != newroot->sid)
891 			goto mismatch;
892 	}
893 	return 0;
894 mismatch:
895 	pr_warn("SELinux: mount invalid.  Same superblock, "
896 			    "different security settings for (dev %s, "
897 			    "type %s)\n", newsb->s_id, newsb->s_type->name);
898 	return -EBUSY;
899 }
900 
901 static int selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
902 					struct super_block *newsb,
903 					unsigned long kern_flags,
904 					unsigned long *set_kern_flags)
905 {
906 	int rc = 0;
907 	const struct superblock_security_struct *oldsbsec =
908 						selinux_superblock(oldsb);
909 	struct superblock_security_struct *newsbsec = selinux_superblock(newsb);
910 
911 	int set_fscontext =	(oldsbsec->flags & FSCONTEXT_MNT);
912 	int set_context =	(oldsbsec->flags & CONTEXT_MNT);
913 	int set_rootcontext =	(oldsbsec->flags & ROOTCONTEXT_MNT);
914 
915 	/*
916 	 * Specifying internal flags without providing a place to
917 	 * place the results is not allowed.
918 	 */
919 	if (kern_flags && !set_kern_flags)
920 		return -EINVAL;
921 
922 	mutex_lock(&newsbsec->lock);
923 
924 	/*
925 	 * if the parent was able to be mounted it clearly had no special lsm
926 	 * mount options.  thus we can safely deal with this superblock later
927 	 */
928 	if (!selinux_initialized()) {
929 		if (kern_flags & SECURITY_LSM_NATIVE_LABELS) {
930 			newsbsec->flags |= SE_SBNATIVE;
931 			*set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
932 		}
933 		goto out;
934 	}
935 
936 	/* how can we clone if the old one wasn't set up?? */
937 	BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
938 
939 	/* if fs is reusing a sb, make sure that the contexts match */
940 	if (newsbsec->flags & SE_SBINITIALIZED) {
941 		mutex_unlock(&newsbsec->lock);
942 		if ((kern_flags & SECURITY_LSM_NATIVE_LABELS) && !set_context)
943 			*set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
944 		return selinux_cmp_sb_context(oldsb, newsb);
945 	}
946 
947 	newsbsec->flags = oldsbsec->flags;
948 
949 	newsbsec->sid = oldsbsec->sid;
950 	newsbsec->def_sid = oldsbsec->def_sid;
951 	newsbsec->behavior = oldsbsec->behavior;
952 
953 	if (newsbsec->behavior == SECURITY_FS_USE_NATIVE &&
954 		!(kern_flags & SECURITY_LSM_NATIVE_LABELS) && !set_context) {
955 		rc = security_fs_use(newsb);
956 		if (rc)
957 			goto out;
958 	}
959 
960 	if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !set_context) {
961 		newsbsec->behavior = SECURITY_FS_USE_NATIVE;
962 		*set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
963 	}
964 
965 	if (set_context) {
966 		u32 sid = oldsbsec->mntpoint_sid;
967 
968 		if (!set_fscontext)
969 			newsbsec->sid = sid;
970 		if (!set_rootcontext) {
971 			struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
972 			newisec->sid = sid;
973 		}
974 		newsbsec->mntpoint_sid = sid;
975 	}
976 	if (set_rootcontext) {
977 		const struct inode_security_struct *oldisec = backing_inode_security(oldsb->s_root);
978 		struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
979 
980 		newisec->sid = oldisec->sid;
981 	}
982 
983 	sb_finish_set_opts(newsb);
984 out:
985 	mutex_unlock(&newsbsec->lock);
986 	return rc;
987 }
988 
989 /*
990  * NOTE: the caller is responsible for freeing the memory even if on error.
991  */
992 static int selinux_add_opt(int token, const char *s, void **mnt_opts)
993 {
994 	struct selinux_mnt_opts *opts = *mnt_opts;
995 	u32 *dst_sid;
996 	int rc;
997 
998 	if (token == Opt_seclabel)
999 		/* eaten and completely ignored */
1000 		return 0;
1001 	if (!s)
1002 		return -EINVAL;
1003 
1004 	if (!selinux_initialized()) {
1005 		pr_warn("SELinux: Unable to set superblock options before the security server is initialized\n");
1006 		return -EINVAL;
1007 	}
1008 
1009 	if (!opts) {
1010 		opts = kzalloc(sizeof(*opts), GFP_KERNEL);
1011 		if (!opts)
1012 			return -ENOMEM;
1013 		*mnt_opts = opts;
1014 	}
1015 
1016 	switch (token) {
1017 	case Opt_context:
1018 		if (opts->context_sid || opts->defcontext_sid)
1019 			goto err;
1020 		dst_sid = &opts->context_sid;
1021 		break;
1022 	case Opt_fscontext:
1023 		if (opts->fscontext_sid)
1024 			goto err;
1025 		dst_sid = &opts->fscontext_sid;
1026 		break;
1027 	case Opt_rootcontext:
1028 		if (opts->rootcontext_sid)
1029 			goto err;
1030 		dst_sid = &opts->rootcontext_sid;
1031 		break;
1032 	case Opt_defcontext:
1033 		if (opts->context_sid || opts->defcontext_sid)
1034 			goto err;
1035 		dst_sid = &opts->defcontext_sid;
1036 		break;
1037 	default:
1038 		WARN_ON(1);
1039 		return -EINVAL;
1040 	}
1041 	rc = security_context_str_to_sid(s, dst_sid, GFP_KERNEL);
1042 	if (rc)
1043 		pr_warn("SELinux: security_context_str_to_sid (%s) failed with errno=%d\n",
1044 			s, rc);
1045 	return rc;
1046 
1047 err:
1048 	pr_warn(SEL_MOUNT_FAIL_MSG);
1049 	return -EINVAL;
1050 }
1051 
1052 static int show_sid(struct seq_file *m, u32 sid)
1053 {
1054 	char *context = NULL;
1055 	u32 len;
1056 	int rc;
1057 
1058 	rc = security_sid_to_context(sid, &context, &len);
1059 	if (!rc) {
1060 		bool has_comma = strchr(context, ',');
1061 
1062 		seq_putc(m, '=');
1063 		if (has_comma)
1064 			seq_putc(m, '\"');
1065 		seq_escape(m, context, "\"\n\\");
1066 		if (has_comma)
1067 			seq_putc(m, '\"');
1068 	}
1069 	kfree(context);
1070 	return rc;
1071 }
1072 
1073 static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1074 {
1075 	struct superblock_security_struct *sbsec = selinux_superblock(sb);
1076 	int rc;
1077 
1078 	if (!(sbsec->flags & SE_SBINITIALIZED))
1079 		return 0;
1080 
1081 	if (!selinux_initialized())
1082 		return 0;
1083 
1084 	if (sbsec->flags & FSCONTEXT_MNT) {
1085 		seq_putc(m, ',');
1086 		seq_puts(m, FSCONTEXT_STR);
1087 		rc = show_sid(m, sbsec->sid);
1088 		if (rc)
1089 			return rc;
1090 	}
1091 	if (sbsec->flags & CONTEXT_MNT) {
1092 		seq_putc(m, ',');
1093 		seq_puts(m, CONTEXT_STR);
1094 		rc = show_sid(m, sbsec->mntpoint_sid);
1095 		if (rc)
1096 			return rc;
1097 	}
1098 	if (sbsec->flags & DEFCONTEXT_MNT) {
1099 		seq_putc(m, ',');
1100 		seq_puts(m, DEFCONTEXT_STR);
1101 		rc = show_sid(m, sbsec->def_sid);
1102 		if (rc)
1103 			return rc;
1104 	}
1105 	if (sbsec->flags & ROOTCONTEXT_MNT) {
1106 		struct dentry *root = sb->s_root;
1107 		struct inode_security_struct *isec = backing_inode_security(root);
1108 		seq_putc(m, ',');
1109 		seq_puts(m, ROOTCONTEXT_STR);
1110 		rc = show_sid(m, isec->sid);
1111 		if (rc)
1112 			return rc;
1113 	}
1114 	if (sbsec->flags & SBLABEL_MNT) {
1115 		seq_putc(m, ',');
1116 		seq_puts(m, SECLABEL_STR);
1117 	}
1118 	return 0;
1119 }
1120 
1121 static inline u16 inode_mode_to_security_class(umode_t mode)
1122 {
1123 	switch (mode & S_IFMT) {
1124 	case S_IFSOCK:
1125 		return SECCLASS_SOCK_FILE;
1126 	case S_IFLNK:
1127 		return SECCLASS_LNK_FILE;
1128 	case S_IFREG:
1129 		return SECCLASS_FILE;
1130 	case S_IFBLK:
1131 		return SECCLASS_BLK_FILE;
1132 	case S_IFDIR:
1133 		return SECCLASS_DIR;
1134 	case S_IFCHR:
1135 		return SECCLASS_CHR_FILE;
1136 	case S_IFIFO:
1137 		return SECCLASS_FIFO_FILE;
1138 
1139 	}
1140 
1141 	return SECCLASS_FILE;
1142 }
1143 
1144 static inline int default_protocol_stream(int protocol)
1145 {
1146 	return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP ||
1147 		protocol == IPPROTO_MPTCP);
1148 }
1149 
1150 static inline int default_protocol_dgram(int protocol)
1151 {
1152 	return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1153 }
1154 
1155 static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1156 {
1157 	bool extsockclass = selinux_policycap_extsockclass();
1158 
1159 	switch (family) {
1160 	case PF_UNIX:
1161 		switch (type) {
1162 		case SOCK_STREAM:
1163 		case SOCK_SEQPACKET:
1164 			return SECCLASS_UNIX_STREAM_SOCKET;
1165 		case SOCK_DGRAM:
1166 		case SOCK_RAW:
1167 			return SECCLASS_UNIX_DGRAM_SOCKET;
1168 		}
1169 		break;
1170 	case PF_INET:
1171 	case PF_INET6:
1172 		switch (type) {
1173 		case SOCK_STREAM:
1174 		case SOCK_SEQPACKET:
1175 			if (default_protocol_stream(protocol))
1176 				return SECCLASS_TCP_SOCKET;
1177 			else if (extsockclass && protocol == IPPROTO_SCTP)
1178 				return SECCLASS_SCTP_SOCKET;
1179 			else
1180 				return SECCLASS_RAWIP_SOCKET;
1181 		case SOCK_DGRAM:
1182 			if (default_protocol_dgram(protocol))
1183 				return SECCLASS_UDP_SOCKET;
1184 			else if (extsockclass && (protocol == IPPROTO_ICMP ||
1185 						  protocol == IPPROTO_ICMPV6))
1186 				return SECCLASS_ICMP_SOCKET;
1187 			else
1188 				return SECCLASS_RAWIP_SOCKET;
1189 		case SOCK_DCCP:
1190 			return SECCLASS_DCCP_SOCKET;
1191 		default:
1192 			return SECCLASS_RAWIP_SOCKET;
1193 		}
1194 		break;
1195 	case PF_NETLINK:
1196 		switch (protocol) {
1197 		case NETLINK_ROUTE:
1198 			return SECCLASS_NETLINK_ROUTE_SOCKET;
1199 		case NETLINK_SOCK_DIAG:
1200 			return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1201 		case NETLINK_NFLOG:
1202 			return SECCLASS_NETLINK_NFLOG_SOCKET;
1203 		case NETLINK_XFRM:
1204 			return SECCLASS_NETLINK_XFRM_SOCKET;
1205 		case NETLINK_SELINUX:
1206 			return SECCLASS_NETLINK_SELINUX_SOCKET;
1207 		case NETLINK_ISCSI:
1208 			return SECCLASS_NETLINK_ISCSI_SOCKET;
1209 		case NETLINK_AUDIT:
1210 			return SECCLASS_NETLINK_AUDIT_SOCKET;
1211 		case NETLINK_FIB_LOOKUP:
1212 			return SECCLASS_NETLINK_FIB_LOOKUP_SOCKET;
1213 		case NETLINK_CONNECTOR:
1214 			return SECCLASS_NETLINK_CONNECTOR_SOCKET;
1215 		case NETLINK_NETFILTER:
1216 			return SECCLASS_NETLINK_NETFILTER_SOCKET;
1217 		case NETLINK_DNRTMSG:
1218 			return SECCLASS_NETLINK_DNRT_SOCKET;
1219 		case NETLINK_KOBJECT_UEVENT:
1220 			return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1221 		case NETLINK_GENERIC:
1222 			return SECCLASS_NETLINK_GENERIC_SOCKET;
1223 		case NETLINK_SCSITRANSPORT:
1224 			return SECCLASS_NETLINK_SCSITRANSPORT_SOCKET;
1225 		case NETLINK_RDMA:
1226 			return SECCLASS_NETLINK_RDMA_SOCKET;
1227 		case NETLINK_CRYPTO:
1228 			return SECCLASS_NETLINK_CRYPTO_SOCKET;
1229 		default:
1230 			return SECCLASS_NETLINK_SOCKET;
1231 		}
1232 	case PF_PACKET:
1233 		return SECCLASS_PACKET_SOCKET;
1234 	case PF_KEY:
1235 		return SECCLASS_KEY_SOCKET;
1236 	case PF_APPLETALK:
1237 		return SECCLASS_APPLETALK_SOCKET;
1238 	}
1239 
1240 	if (extsockclass) {
1241 		switch (family) {
1242 		case PF_AX25:
1243 			return SECCLASS_AX25_SOCKET;
1244 		case PF_IPX:
1245 			return SECCLASS_IPX_SOCKET;
1246 		case PF_NETROM:
1247 			return SECCLASS_NETROM_SOCKET;
1248 		case PF_ATMPVC:
1249 			return SECCLASS_ATMPVC_SOCKET;
1250 		case PF_X25:
1251 			return SECCLASS_X25_SOCKET;
1252 		case PF_ROSE:
1253 			return SECCLASS_ROSE_SOCKET;
1254 		case PF_DECnet:
1255 			return SECCLASS_DECNET_SOCKET;
1256 		case PF_ATMSVC:
1257 			return SECCLASS_ATMSVC_SOCKET;
1258 		case PF_RDS:
1259 			return SECCLASS_RDS_SOCKET;
1260 		case PF_IRDA:
1261 			return SECCLASS_IRDA_SOCKET;
1262 		case PF_PPPOX:
1263 			return SECCLASS_PPPOX_SOCKET;
1264 		case PF_LLC:
1265 			return SECCLASS_LLC_SOCKET;
1266 		case PF_CAN:
1267 			return SECCLASS_CAN_SOCKET;
1268 		case PF_TIPC:
1269 			return SECCLASS_TIPC_SOCKET;
1270 		case PF_BLUETOOTH:
1271 			return SECCLASS_BLUETOOTH_SOCKET;
1272 		case PF_IUCV:
1273 			return SECCLASS_IUCV_SOCKET;
1274 		case PF_RXRPC:
1275 			return SECCLASS_RXRPC_SOCKET;
1276 		case PF_ISDN:
1277 			return SECCLASS_ISDN_SOCKET;
1278 		case PF_PHONET:
1279 			return SECCLASS_PHONET_SOCKET;
1280 		case PF_IEEE802154:
1281 			return SECCLASS_IEEE802154_SOCKET;
1282 		case PF_CAIF:
1283 			return SECCLASS_CAIF_SOCKET;
1284 		case PF_ALG:
1285 			return SECCLASS_ALG_SOCKET;
1286 		case PF_NFC:
1287 			return SECCLASS_NFC_SOCKET;
1288 		case PF_VSOCK:
1289 			return SECCLASS_VSOCK_SOCKET;
1290 		case PF_KCM:
1291 			return SECCLASS_KCM_SOCKET;
1292 		case PF_QIPCRTR:
1293 			return SECCLASS_QIPCRTR_SOCKET;
1294 		case PF_SMC:
1295 			return SECCLASS_SMC_SOCKET;
1296 		case PF_XDP:
1297 			return SECCLASS_XDP_SOCKET;
1298 		case PF_MCTP:
1299 			return SECCLASS_MCTP_SOCKET;
1300 #if PF_MAX > 46
1301 #error New address family defined, please update this function.
1302 #endif
1303 		}
1304 	}
1305 
1306 	return SECCLASS_SOCKET;
1307 }
1308 
1309 static int selinux_genfs_get_sid(struct dentry *dentry,
1310 				 u16 tclass,
1311 				 u16 flags,
1312 				 u32 *sid)
1313 {
1314 	int rc;
1315 	struct super_block *sb = dentry->d_sb;
1316 	char *buffer, *path;
1317 
1318 	buffer = (char *)__get_free_page(GFP_KERNEL);
1319 	if (!buffer)
1320 		return -ENOMEM;
1321 
1322 	path = dentry_path_raw(dentry, buffer, PAGE_SIZE);
1323 	if (IS_ERR(path))
1324 		rc = PTR_ERR(path);
1325 	else {
1326 		if (flags & SE_SBPROC) {
1327 			/* each process gets a /proc/PID/ entry. Strip off the
1328 			 * PID part to get a valid selinux labeling.
1329 			 * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */
1330 			while (path[1] >= '0' && path[1] <= '9') {
1331 				path[1] = '/';
1332 				path++;
1333 			}
1334 		}
1335 		rc = security_genfs_sid(sb->s_type->name,
1336 					path, tclass, sid);
1337 		if (rc == -ENOENT) {
1338 			/* No match in policy, mark as unlabeled. */
1339 			*sid = SECINITSID_UNLABELED;
1340 			rc = 0;
1341 		}
1342 	}
1343 	free_page((unsigned long)buffer);
1344 	return rc;
1345 }
1346 
1347 static int inode_doinit_use_xattr(struct inode *inode, struct dentry *dentry,
1348 				  u32 def_sid, u32 *sid)
1349 {
1350 #define INITCONTEXTLEN 255
1351 	char *context;
1352 	unsigned int len;
1353 	int rc;
1354 
1355 	len = INITCONTEXTLEN;
1356 	context = kmalloc(len + 1, GFP_NOFS);
1357 	if (!context)
1358 		return -ENOMEM;
1359 
1360 	context[len] = '\0';
1361 	rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, context, len);
1362 	if (rc == -ERANGE) {
1363 		kfree(context);
1364 
1365 		/* Need a larger buffer.  Query for the right size. */
1366 		rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, NULL, 0);
1367 		if (rc < 0)
1368 			return rc;
1369 
1370 		len = rc;
1371 		context = kmalloc(len + 1, GFP_NOFS);
1372 		if (!context)
1373 			return -ENOMEM;
1374 
1375 		context[len] = '\0';
1376 		rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX,
1377 				    context, len);
1378 	}
1379 	if (rc < 0) {
1380 		kfree(context);
1381 		if (rc != -ENODATA) {
1382 			pr_warn("SELinux: %s:  getxattr returned %d for dev=%s ino=%ld\n",
1383 				__func__, -rc, inode->i_sb->s_id, inode->i_ino);
1384 			return rc;
1385 		}
1386 		*sid = def_sid;
1387 		return 0;
1388 	}
1389 
1390 	rc = security_context_to_sid_default(context, rc, sid,
1391 					     def_sid, GFP_NOFS);
1392 	if (rc) {
1393 		char *dev = inode->i_sb->s_id;
1394 		unsigned long ino = inode->i_ino;
1395 
1396 		if (rc == -EINVAL) {
1397 			pr_notice_ratelimited("SELinux: inode=%lu on dev=%s was found to have an invalid context=%s.  This indicates you may need to relabel the inode or the filesystem in question.\n",
1398 					      ino, dev, context);
1399 		} else {
1400 			pr_warn("SELinux: %s:  context_to_sid(%s) returned %d for dev=%s ino=%ld\n",
1401 				__func__, context, -rc, dev, ino);
1402 		}
1403 	}
1404 	kfree(context);
1405 	return 0;
1406 }
1407 
1408 /* The inode's security attributes must be initialized before first use. */
1409 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1410 {
1411 	struct superblock_security_struct *sbsec = NULL;
1412 	struct inode_security_struct *isec = selinux_inode(inode);
1413 	u32 task_sid, sid = 0;
1414 	u16 sclass;
1415 	struct dentry *dentry;
1416 	int rc = 0;
1417 
1418 	if (isec->initialized == LABEL_INITIALIZED)
1419 		return 0;
1420 
1421 	spin_lock(&isec->lock);
1422 	if (isec->initialized == LABEL_INITIALIZED)
1423 		goto out_unlock;
1424 
1425 	if (isec->sclass == SECCLASS_FILE)
1426 		isec->sclass = inode_mode_to_security_class(inode->i_mode);
1427 
1428 	sbsec = selinux_superblock(inode->i_sb);
1429 	if (!(sbsec->flags & SE_SBINITIALIZED)) {
1430 		/* Defer initialization until selinux_complete_init,
1431 		   after the initial policy is loaded and the security
1432 		   server is ready to handle calls. */
1433 		spin_lock(&sbsec->isec_lock);
1434 		if (list_empty(&isec->list))
1435 			list_add(&isec->list, &sbsec->isec_head);
1436 		spin_unlock(&sbsec->isec_lock);
1437 		goto out_unlock;
1438 	}
1439 
1440 	sclass = isec->sclass;
1441 	task_sid = isec->task_sid;
1442 	sid = isec->sid;
1443 	isec->initialized = LABEL_PENDING;
1444 	spin_unlock(&isec->lock);
1445 
1446 	switch (sbsec->behavior) {
1447 	/*
1448 	 * In case of SECURITY_FS_USE_NATIVE we need to re-fetch the labels
1449 	 * via xattr when called from delayed_superblock_init().
1450 	 */
1451 	case SECURITY_FS_USE_NATIVE:
1452 	case SECURITY_FS_USE_XATTR:
1453 		if (!(inode->i_opflags & IOP_XATTR)) {
1454 			sid = sbsec->def_sid;
1455 			break;
1456 		}
1457 		/* Need a dentry, since the xattr API requires one.
1458 		   Life would be simpler if we could just pass the inode. */
1459 		if (opt_dentry) {
1460 			/* Called from d_instantiate or d_splice_alias. */
1461 			dentry = dget(opt_dentry);
1462 		} else {
1463 			/*
1464 			 * Called from selinux_complete_init, try to find a dentry.
1465 			 * Some filesystems really want a connected one, so try
1466 			 * that first.  We could split SECURITY_FS_USE_XATTR in
1467 			 * two, depending upon that...
1468 			 */
1469 			dentry = d_find_alias(inode);
1470 			if (!dentry)
1471 				dentry = d_find_any_alias(inode);
1472 		}
1473 		if (!dentry) {
1474 			/*
1475 			 * this is can be hit on boot when a file is accessed
1476 			 * before the policy is loaded.  When we load policy we
1477 			 * may find inodes that have no dentry on the
1478 			 * sbsec->isec_head list.  No reason to complain as these
1479 			 * will get fixed up the next time we go through
1480 			 * inode_doinit with a dentry, before these inodes could
1481 			 * be used again by userspace.
1482 			 */
1483 			goto out_invalid;
1484 		}
1485 
1486 		rc = inode_doinit_use_xattr(inode, dentry, sbsec->def_sid,
1487 					    &sid);
1488 		dput(dentry);
1489 		if (rc)
1490 			goto out;
1491 		break;
1492 	case SECURITY_FS_USE_TASK:
1493 		sid = task_sid;
1494 		break;
1495 	case SECURITY_FS_USE_TRANS:
1496 		/* Default to the fs SID. */
1497 		sid = sbsec->sid;
1498 
1499 		/* Try to obtain a transition SID. */
1500 		rc = security_transition_sid(task_sid, sid,
1501 					     sclass, NULL, &sid);
1502 		if (rc)
1503 			goto out;
1504 		break;
1505 	case SECURITY_FS_USE_MNTPOINT:
1506 		sid = sbsec->mntpoint_sid;
1507 		break;
1508 	default:
1509 		/* Default to the fs superblock SID. */
1510 		sid = sbsec->sid;
1511 
1512 		if ((sbsec->flags & SE_SBGENFS) &&
1513 		     (!S_ISLNK(inode->i_mode) ||
1514 		      selinux_policycap_genfs_seclabel_symlinks())) {
1515 			/* We must have a dentry to determine the label on
1516 			 * procfs inodes */
1517 			if (opt_dentry) {
1518 				/* Called from d_instantiate or
1519 				 * d_splice_alias. */
1520 				dentry = dget(opt_dentry);
1521 			} else {
1522 				/* Called from selinux_complete_init, try to
1523 				 * find a dentry.  Some filesystems really want
1524 				 * a connected one, so try that first.
1525 				 */
1526 				dentry = d_find_alias(inode);
1527 				if (!dentry)
1528 					dentry = d_find_any_alias(inode);
1529 			}
1530 			/*
1531 			 * This can be hit on boot when a file is accessed
1532 			 * before the policy is loaded.  When we load policy we
1533 			 * may find inodes that have no dentry on the
1534 			 * sbsec->isec_head list.  No reason to complain as
1535 			 * these will get fixed up the next time we go through
1536 			 * inode_doinit() with a dentry, before these inodes
1537 			 * could be used again by userspace.
1538 			 */
1539 			if (!dentry)
1540 				goto out_invalid;
1541 			rc = selinux_genfs_get_sid(dentry, sclass,
1542 						   sbsec->flags, &sid);
1543 			if (rc) {
1544 				dput(dentry);
1545 				goto out;
1546 			}
1547 
1548 			if ((sbsec->flags & SE_SBGENFS_XATTR) &&
1549 			    (inode->i_opflags & IOP_XATTR)) {
1550 				rc = inode_doinit_use_xattr(inode, dentry,
1551 							    sid, &sid);
1552 				if (rc) {
1553 					dput(dentry);
1554 					goto out;
1555 				}
1556 			}
1557 			dput(dentry);
1558 		}
1559 		break;
1560 	}
1561 
1562 out:
1563 	spin_lock(&isec->lock);
1564 	if (isec->initialized == LABEL_PENDING) {
1565 		if (rc) {
1566 			isec->initialized = LABEL_INVALID;
1567 			goto out_unlock;
1568 		}
1569 		isec->initialized = LABEL_INITIALIZED;
1570 		isec->sid = sid;
1571 	}
1572 
1573 out_unlock:
1574 	spin_unlock(&isec->lock);
1575 	return rc;
1576 
1577 out_invalid:
1578 	spin_lock(&isec->lock);
1579 	if (isec->initialized == LABEL_PENDING) {
1580 		isec->initialized = LABEL_INVALID;
1581 		isec->sid = sid;
1582 	}
1583 	spin_unlock(&isec->lock);
1584 	return 0;
1585 }
1586 
1587 /* Convert a Linux signal to an access vector. */
1588 static inline u32 signal_to_av(int sig)
1589 {
1590 	u32 perm = 0;
1591 
1592 	switch (sig) {
1593 	case SIGCHLD:
1594 		/* Commonly granted from child to parent. */
1595 		perm = PROCESS__SIGCHLD;
1596 		break;
1597 	case SIGKILL:
1598 		/* Cannot be caught or ignored */
1599 		perm = PROCESS__SIGKILL;
1600 		break;
1601 	case SIGSTOP:
1602 		/* Cannot be caught or ignored */
1603 		perm = PROCESS__SIGSTOP;
1604 		break;
1605 	default:
1606 		/* All other signals. */
1607 		perm = PROCESS__SIGNAL;
1608 		break;
1609 	}
1610 
1611 	return perm;
1612 }
1613 
1614 #if CAP_LAST_CAP > 63
1615 #error Fix SELinux to handle capabilities > 63.
1616 #endif
1617 
1618 /* Check whether a task is allowed to use a capability. */
1619 static int cred_has_capability(const struct cred *cred,
1620 			       int cap, unsigned int opts, bool initns)
1621 {
1622 	struct common_audit_data ad;
1623 	struct av_decision avd;
1624 	u16 sclass;
1625 	u32 sid = cred_sid(cred);
1626 	u32 av = CAP_TO_MASK(cap);
1627 	int rc;
1628 
1629 	ad.type = LSM_AUDIT_DATA_CAP;
1630 	ad.u.cap = cap;
1631 
1632 	switch (CAP_TO_INDEX(cap)) {
1633 	case 0:
1634 		sclass = initns ? SECCLASS_CAPABILITY : SECCLASS_CAP_USERNS;
1635 		break;
1636 	case 1:
1637 		sclass = initns ? SECCLASS_CAPABILITY2 : SECCLASS_CAP2_USERNS;
1638 		break;
1639 	default:
1640 		pr_err("SELinux:  out of range capability %d\n", cap);
1641 		BUG();
1642 		return -EINVAL;
1643 	}
1644 
1645 	rc = avc_has_perm_noaudit(sid, sid, sclass, av, 0, &avd);
1646 	if (!(opts & CAP_OPT_NOAUDIT)) {
1647 		int rc2 = avc_audit(sid, sid, sclass, av, &avd, rc, &ad);
1648 		if (rc2)
1649 			return rc2;
1650 	}
1651 	return rc;
1652 }
1653 
1654 /* Check whether a task has a particular permission to an inode.
1655    The 'adp' parameter is optional and allows other audit
1656    data to be passed (e.g. the dentry). */
1657 static int inode_has_perm(const struct cred *cred,
1658 			  struct inode *inode,
1659 			  u32 perms,
1660 			  struct common_audit_data *adp)
1661 {
1662 	struct inode_security_struct *isec;
1663 	u32 sid;
1664 
1665 	if (unlikely(IS_PRIVATE(inode)))
1666 		return 0;
1667 
1668 	sid = cred_sid(cred);
1669 	isec = selinux_inode(inode);
1670 
1671 	return avc_has_perm(sid, isec->sid, isec->sclass, perms, adp);
1672 }
1673 
1674 /* Same as inode_has_perm, but pass explicit audit data containing
1675    the dentry to help the auditing code to more easily generate the
1676    pathname if needed. */
1677 static inline int dentry_has_perm(const struct cred *cred,
1678 				  struct dentry *dentry,
1679 				  u32 av)
1680 {
1681 	struct inode *inode = d_backing_inode(dentry);
1682 	struct common_audit_data ad;
1683 
1684 	ad.type = LSM_AUDIT_DATA_DENTRY;
1685 	ad.u.dentry = dentry;
1686 	__inode_security_revalidate(inode, dentry, true);
1687 	return inode_has_perm(cred, inode, av, &ad);
1688 }
1689 
1690 /* Same as inode_has_perm, but pass explicit audit data containing
1691    the path to help the auditing code to more easily generate the
1692    pathname if needed. */
1693 static inline int path_has_perm(const struct cred *cred,
1694 				const struct path *path,
1695 				u32 av)
1696 {
1697 	struct inode *inode = d_backing_inode(path->dentry);
1698 	struct common_audit_data ad;
1699 
1700 	ad.type = LSM_AUDIT_DATA_PATH;
1701 	ad.u.path = *path;
1702 	__inode_security_revalidate(inode, path->dentry, true);
1703 	return inode_has_perm(cred, inode, av, &ad);
1704 }
1705 
1706 /* Same as path_has_perm, but uses the inode from the file struct. */
1707 static inline int file_path_has_perm(const struct cred *cred,
1708 				     struct file *file,
1709 				     u32 av)
1710 {
1711 	struct common_audit_data ad;
1712 
1713 	ad.type = LSM_AUDIT_DATA_FILE;
1714 	ad.u.file = file;
1715 	return inode_has_perm(cred, file_inode(file), av, &ad);
1716 }
1717 
1718 #ifdef CONFIG_BPF_SYSCALL
1719 static int bpf_fd_pass(const struct file *file, u32 sid);
1720 #endif
1721 
1722 /* Check whether a task can use an open file descriptor to
1723    access an inode in a given way.  Check access to the
1724    descriptor itself, and then use dentry_has_perm to
1725    check a particular permission to the file.
1726    Access to the descriptor is implicitly granted if it
1727    has the same SID as the process.  If av is zero, then
1728    access to the file is not checked, e.g. for cases
1729    where only the descriptor is affected like seek. */
1730 static int file_has_perm(const struct cred *cred,
1731 			 struct file *file,
1732 			 u32 av)
1733 {
1734 	struct file_security_struct *fsec = selinux_file(file);
1735 	struct inode *inode = file_inode(file);
1736 	struct common_audit_data ad;
1737 	u32 sid = cred_sid(cred);
1738 	int rc;
1739 
1740 	ad.type = LSM_AUDIT_DATA_FILE;
1741 	ad.u.file = file;
1742 
1743 	if (sid != fsec->sid) {
1744 		rc = avc_has_perm(sid, fsec->sid,
1745 				  SECCLASS_FD,
1746 				  FD__USE,
1747 				  &ad);
1748 		if (rc)
1749 			goto out;
1750 	}
1751 
1752 #ifdef CONFIG_BPF_SYSCALL
1753 	rc = bpf_fd_pass(file, cred_sid(cred));
1754 	if (rc)
1755 		return rc;
1756 #endif
1757 
1758 	/* av is zero if only checking access to the descriptor. */
1759 	rc = 0;
1760 	if (av)
1761 		rc = inode_has_perm(cred, inode, av, &ad);
1762 
1763 out:
1764 	return rc;
1765 }
1766 
1767 /*
1768  * Determine the label for an inode that might be unioned.
1769  */
1770 static int
1771 selinux_determine_inode_label(const struct task_security_struct *tsec,
1772 				 struct inode *dir,
1773 				 const struct qstr *name, u16 tclass,
1774 				 u32 *_new_isid)
1775 {
1776 	const struct superblock_security_struct *sbsec =
1777 						selinux_superblock(dir->i_sb);
1778 
1779 	if ((sbsec->flags & SE_SBINITIALIZED) &&
1780 	    (sbsec->behavior == SECURITY_FS_USE_MNTPOINT)) {
1781 		*_new_isid = sbsec->mntpoint_sid;
1782 	} else if ((sbsec->flags & SBLABEL_MNT) &&
1783 		   tsec->create_sid) {
1784 		*_new_isid = tsec->create_sid;
1785 	} else {
1786 		const struct inode_security_struct *dsec = inode_security(dir);
1787 		return security_transition_sid(tsec->sid,
1788 					       dsec->sid, tclass,
1789 					       name, _new_isid);
1790 	}
1791 
1792 	return 0;
1793 }
1794 
1795 /* Check whether a task can create a file. */
1796 static int may_create(struct inode *dir,
1797 		      struct dentry *dentry,
1798 		      u16 tclass)
1799 {
1800 	const struct task_security_struct *tsec = selinux_cred(current_cred());
1801 	struct inode_security_struct *dsec;
1802 	struct superblock_security_struct *sbsec;
1803 	u32 sid, newsid;
1804 	struct common_audit_data ad;
1805 	int rc;
1806 
1807 	dsec = inode_security(dir);
1808 	sbsec = selinux_superblock(dir->i_sb);
1809 
1810 	sid = tsec->sid;
1811 
1812 	ad.type = LSM_AUDIT_DATA_DENTRY;
1813 	ad.u.dentry = dentry;
1814 
1815 	rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR,
1816 			  DIR__ADD_NAME | DIR__SEARCH,
1817 			  &ad);
1818 	if (rc)
1819 		return rc;
1820 
1821 	rc = selinux_determine_inode_label(tsec, dir, &dentry->d_name, tclass,
1822 					   &newsid);
1823 	if (rc)
1824 		return rc;
1825 
1826 	rc = avc_has_perm(sid, newsid, tclass, FILE__CREATE, &ad);
1827 	if (rc)
1828 		return rc;
1829 
1830 	return avc_has_perm(newsid, sbsec->sid,
1831 			    SECCLASS_FILESYSTEM,
1832 			    FILESYSTEM__ASSOCIATE, &ad);
1833 }
1834 
1835 #define MAY_LINK	0
1836 #define MAY_UNLINK	1
1837 #define MAY_RMDIR	2
1838 
1839 /* Check whether a task can link, unlink, or rmdir a file/directory. */
1840 static int may_link(struct inode *dir,
1841 		    struct dentry *dentry,
1842 		    int kind)
1843 
1844 {
1845 	struct inode_security_struct *dsec, *isec;
1846 	struct common_audit_data ad;
1847 	u32 sid = current_sid();
1848 	u32 av;
1849 	int rc;
1850 
1851 	dsec = inode_security(dir);
1852 	isec = backing_inode_security(dentry);
1853 
1854 	ad.type = LSM_AUDIT_DATA_DENTRY;
1855 	ad.u.dentry = dentry;
1856 
1857 	av = DIR__SEARCH;
1858 	av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1859 	rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, av, &ad);
1860 	if (rc)
1861 		return rc;
1862 
1863 	switch (kind) {
1864 	case MAY_LINK:
1865 		av = FILE__LINK;
1866 		break;
1867 	case MAY_UNLINK:
1868 		av = FILE__UNLINK;
1869 		break;
1870 	case MAY_RMDIR:
1871 		av = DIR__RMDIR;
1872 		break;
1873 	default:
1874 		pr_warn("SELinux: %s:  unrecognized kind %d\n",
1875 			__func__, kind);
1876 		return 0;
1877 	}
1878 
1879 	rc = avc_has_perm(sid, isec->sid, isec->sclass, av, &ad);
1880 	return rc;
1881 }
1882 
1883 static inline int may_rename(struct inode *old_dir,
1884 			     struct dentry *old_dentry,
1885 			     struct inode *new_dir,
1886 			     struct dentry *new_dentry)
1887 {
1888 	struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1889 	struct common_audit_data ad;
1890 	u32 sid = current_sid();
1891 	u32 av;
1892 	int old_is_dir, new_is_dir;
1893 	int rc;
1894 
1895 	old_dsec = inode_security(old_dir);
1896 	old_isec = backing_inode_security(old_dentry);
1897 	old_is_dir = d_is_dir(old_dentry);
1898 	new_dsec = inode_security(new_dir);
1899 
1900 	ad.type = LSM_AUDIT_DATA_DENTRY;
1901 
1902 	ad.u.dentry = old_dentry;
1903 	rc = avc_has_perm(sid, old_dsec->sid, SECCLASS_DIR,
1904 			  DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1905 	if (rc)
1906 		return rc;
1907 	rc = avc_has_perm(sid, old_isec->sid,
1908 			  old_isec->sclass, FILE__RENAME, &ad);
1909 	if (rc)
1910 		return rc;
1911 	if (old_is_dir && new_dir != old_dir) {
1912 		rc = avc_has_perm(sid, old_isec->sid,
1913 				  old_isec->sclass, DIR__REPARENT, &ad);
1914 		if (rc)
1915 			return rc;
1916 	}
1917 
1918 	ad.u.dentry = new_dentry;
1919 	av = DIR__ADD_NAME | DIR__SEARCH;
1920 	if (d_is_positive(new_dentry))
1921 		av |= DIR__REMOVE_NAME;
1922 	rc = avc_has_perm(sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1923 	if (rc)
1924 		return rc;
1925 	if (d_is_positive(new_dentry)) {
1926 		new_isec = backing_inode_security(new_dentry);
1927 		new_is_dir = d_is_dir(new_dentry);
1928 		rc = avc_has_perm(sid, new_isec->sid,
1929 				  new_isec->sclass,
1930 				  (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1931 		if (rc)
1932 			return rc;
1933 	}
1934 
1935 	return 0;
1936 }
1937 
1938 /* Check whether a task can perform a filesystem operation. */
1939 static int superblock_has_perm(const struct cred *cred,
1940 			       const struct super_block *sb,
1941 			       u32 perms,
1942 			       struct common_audit_data *ad)
1943 {
1944 	struct superblock_security_struct *sbsec;
1945 	u32 sid = cred_sid(cred);
1946 
1947 	sbsec = selinux_superblock(sb);
1948 	return avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
1949 }
1950 
1951 /* Convert a Linux mode and permission mask to an access vector. */
1952 static inline u32 file_mask_to_av(int mode, int mask)
1953 {
1954 	u32 av = 0;
1955 
1956 	if (!S_ISDIR(mode)) {
1957 		if (mask & MAY_EXEC)
1958 			av |= FILE__EXECUTE;
1959 		if (mask & MAY_READ)
1960 			av |= FILE__READ;
1961 
1962 		if (mask & MAY_APPEND)
1963 			av |= FILE__APPEND;
1964 		else if (mask & MAY_WRITE)
1965 			av |= FILE__WRITE;
1966 
1967 	} else {
1968 		if (mask & MAY_EXEC)
1969 			av |= DIR__SEARCH;
1970 		if (mask & MAY_WRITE)
1971 			av |= DIR__WRITE;
1972 		if (mask & MAY_READ)
1973 			av |= DIR__READ;
1974 	}
1975 
1976 	return av;
1977 }
1978 
1979 /* Convert a Linux file to an access vector. */
1980 static inline u32 file_to_av(const struct file *file)
1981 {
1982 	u32 av = 0;
1983 
1984 	if (file->f_mode & FMODE_READ)
1985 		av |= FILE__READ;
1986 	if (file->f_mode & FMODE_WRITE) {
1987 		if (file->f_flags & O_APPEND)
1988 			av |= FILE__APPEND;
1989 		else
1990 			av |= FILE__WRITE;
1991 	}
1992 	if (!av) {
1993 		/*
1994 		 * Special file opened with flags 3 for ioctl-only use.
1995 		 */
1996 		av = FILE__IOCTL;
1997 	}
1998 
1999 	return av;
2000 }
2001 
2002 /*
2003  * Convert a file to an access vector and include the correct
2004  * open permission.
2005  */
2006 static inline u32 open_file_to_av(struct file *file)
2007 {
2008 	u32 av = file_to_av(file);
2009 	struct inode *inode = file_inode(file);
2010 
2011 	if (selinux_policycap_openperm() &&
2012 	    inode->i_sb->s_magic != SOCKFS_MAGIC)
2013 		av |= FILE__OPEN;
2014 
2015 	return av;
2016 }
2017 
2018 /* Hook functions begin here. */
2019 
2020 static int selinux_binder_set_context_mgr(const struct cred *mgr)
2021 {
2022 	return avc_has_perm(current_sid(), cred_sid(mgr), SECCLASS_BINDER,
2023 			    BINDER__SET_CONTEXT_MGR, NULL);
2024 }
2025 
2026 static int selinux_binder_transaction(const struct cred *from,
2027 				      const struct cred *to)
2028 {
2029 	u32 mysid = current_sid();
2030 	u32 fromsid = cred_sid(from);
2031 	u32 tosid = cred_sid(to);
2032 	int rc;
2033 
2034 	if (mysid != fromsid) {
2035 		rc = avc_has_perm(mysid, fromsid, SECCLASS_BINDER,
2036 				  BINDER__IMPERSONATE, NULL);
2037 		if (rc)
2038 			return rc;
2039 	}
2040 
2041 	return avc_has_perm(fromsid, tosid,
2042 			    SECCLASS_BINDER, BINDER__CALL, NULL);
2043 }
2044 
2045 static int selinux_binder_transfer_binder(const struct cred *from,
2046 					  const struct cred *to)
2047 {
2048 	return avc_has_perm(cred_sid(from), cred_sid(to),
2049 			    SECCLASS_BINDER, BINDER__TRANSFER,
2050 			    NULL);
2051 }
2052 
2053 static int selinux_binder_transfer_file(const struct cred *from,
2054 					const struct cred *to,
2055 					const struct file *file)
2056 {
2057 	u32 sid = cred_sid(to);
2058 	struct file_security_struct *fsec = selinux_file(file);
2059 	struct dentry *dentry = file->f_path.dentry;
2060 	struct inode_security_struct *isec;
2061 	struct common_audit_data ad;
2062 	int rc;
2063 
2064 	ad.type = LSM_AUDIT_DATA_PATH;
2065 	ad.u.path = file->f_path;
2066 
2067 	if (sid != fsec->sid) {
2068 		rc = avc_has_perm(sid, fsec->sid,
2069 				  SECCLASS_FD,
2070 				  FD__USE,
2071 				  &ad);
2072 		if (rc)
2073 			return rc;
2074 	}
2075 
2076 #ifdef CONFIG_BPF_SYSCALL
2077 	rc = bpf_fd_pass(file, sid);
2078 	if (rc)
2079 		return rc;
2080 #endif
2081 
2082 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2083 		return 0;
2084 
2085 	isec = backing_inode_security(dentry);
2086 	return avc_has_perm(sid, isec->sid, isec->sclass, file_to_av(file),
2087 			    &ad);
2088 }
2089 
2090 static int selinux_ptrace_access_check(struct task_struct *child,
2091 				       unsigned int mode)
2092 {
2093 	u32 sid = current_sid();
2094 	u32 csid = task_sid_obj(child);
2095 
2096 	if (mode & PTRACE_MODE_READ)
2097 		return avc_has_perm(sid, csid, SECCLASS_FILE, FILE__READ,
2098 				NULL);
2099 
2100 	return avc_has_perm(sid, csid, SECCLASS_PROCESS, PROCESS__PTRACE,
2101 			NULL);
2102 }
2103 
2104 static int selinux_ptrace_traceme(struct task_struct *parent)
2105 {
2106 	return avc_has_perm(task_sid_obj(parent), task_sid_obj(current),
2107 			    SECCLASS_PROCESS, PROCESS__PTRACE, NULL);
2108 }
2109 
2110 static int selinux_capget(const struct task_struct *target, kernel_cap_t *effective,
2111 			  kernel_cap_t *inheritable, kernel_cap_t *permitted)
2112 {
2113 	return avc_has_perm(current_sid(), task_sid_obj(target),
2114 			SECCLASS_PROCESS, PROCESS__GETCAP, NULL);
2115 }
2116 
2117 static int selinux_capset(struct cred *new, const struct cred *old,
2118 			  const kernel_cap_t *effective,
2119 			  const kernel_cap_t *inheritable,
2120 			  const kernel_cap_t *permitted)
2121 {
2122 	return avc_has_perm(cred_sid(old), cred_sid(new), SECCLASS_PROCESS,
2123 			    PROCESS__SETCAP, NULL);
2124 }
2125 
2126 /*
2127  * (This comment used to live with the selinux_task_setuid hook,
2128  * which was removed).
2129  *
2130  * Since setuid only affects the current process, and since the SELinux
2131  * controls are not based on the Linux identity attributes, SELinux does not
2132  * need to control this operation.  However, SELinux does control the use of
2133  * the CAP_SETUID and CAP_SETGID capabilities using the capable hook.
2134  */
2135 
2136 static int selinux_capable(const struct cred *cred, struct user_namespace *ns,
2137 			   int cap, unsigned int opts)
2138 {
2139 	return cred_has_capability(cred, cap, opts, ns == &init_user_ns);
2140 }
2141 
2142 static int selinux_quotactl(int cmds, int type, int id, const struct super_block *sb)
2143 {
2144 	const struct cred *cred = current_cred();
2145 	int rc = 0;
2146 
2147 	if (!sb)
2148 		return 0;
2149 
2150 	switch (cmds) {
2151 	case Q_SYNC:
2152 	case Q_QUOTAON:
2153 	case Q_QUOTAOFF:
2154 	case Q_SETINFO:
2155 	case Q_SETQUOTA:
2156 	case Q_XQUOTAOFF:
2157 	case Q_XQUOTAON:
2158 	case Q_XSETQLIM:
2159 		rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
2160 		break;
2161 	case Q_GETFMT:
2162 	case Q_GETINFO:
2163 	case Q_GETQUOTA:
2164 	case Q_XGETQUOTA:
2165 	case Q_XGETQSTAT:
2166 	case Q_XGETQSTATV:
2167 	case Q_XGETNEXTQUOTA:
2168 		rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
2169 		break;
2170 	default:
2171 		rc = 0;  /* let the kernel handle invalid cmds */
2172 		break;
2173 	}
2174 	return rc;
2175 }
2176 
2177 static int selinux_quota_on(struct dentry *dentry)
2178 {
2179 	const struct cred *cred = current_cred();
2180 
2181 	return dentry_has_perm(cred, dentry, FILE__QUOTAON);
2182 }
2183 
2184 static int selinux_syslog(int type)
2185 {
2186 	switch (type) {
2187 	case SYSLOG_ACTION_READ_ALL:	/* Read last kernel messages */
2188 	case SYSLOG_ACTION_SIZE_BUFFER:	/* Return size of the log buffer */
2189 		return avc_has_perm(current_sid(), SECINITSID_KERNEL,
2190 				    SECCLASS_SYSTEM, SYSTEM__SYSLOG_READ, NULL);
2191 	case SYSLOG_ACTION_CONSOLE_OFF:	/* Disable logging to console */
2192 	case SYSLOG_ACTION_CONSOLE_ON:	/* Enable logging to console */
2193 	/* Set level of messages printed to console */
2194 	case SYSLOG_ACTION_CONSOLE_LEVEL:
2195 		return avc_has_perm(current_sid(), SECINITSID_KERNEL,
2196 				    SECCLASS_SYSTEM, SYSTEM__SYSLOG_CONSOLE,
2197 				    NULL);
2198 	}
2199 	/* All other syslog types */
2200 	return avc_has_perm(current_sid(), SECINITSID_KERNEL,
2201 			    SECCLASS_SYSTEM, SYSTEM__SYSLOG_MOD, NULL);
2202 }
2203 
2204 /*
2205  * Check that a process has enough memory to allocate a new virtual
2206  * mapping. 0 means there is enough memory for the allocation to
2207  * succeed and -ENOMEM implies there is not.
2208  *
2209  * Do not audit the selinux permission check, as this is applied to all
2210  * processes that allocate mappings.
2211  */
2212 static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
2213 {
2214 	int rc, cap_sys_admin = 0;
2215 
2216 	rc = cred_has_capability(current_cred(), CAP_SYS_ADMIN,
2217 				 CAP_OPT_NOAUDIT, true);
2218 	if (rc == 0)
2219 		cap_sys_admin = 1;
2220 
2221 	return cap_sys_admin;
2222 }
2223 
2224 /* binprm security operations */
2225 
2226 static u32 ptrace_parent_sid(void)
2227 {
2228 	u32 sid = 0;
2229 	struct task_struct *tracer;
2230 
2231 	rcu_read_lock();
2232 	tracer = ptrace_parent(current);
2233 	if (tracer)
2234 		sid = task_sid_obj(tracer);
2235 	rcu_read_unlock();
2236 
2237 	return sid;
2238 }
2239 
2240 static int check_nnp_nosuid(const struct linux_binprm *bprm,
2241 			    const struct task_security_struct *old_tsec,
2242 			    const struct task_security_struct *new_tsec)
2243 {
2244 	int nnp = (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS);
2245 	int nosuid = !mnt_may_suid(bprm->file->f_path.mnt);
2246 	int rc;
2247 	u32 av;
2248 
2249 	if (!nnp && !nosuid)
2250 		return 0; /* neither NNP nor nosuid */
2251 
2252 	if (new_tsec->sid == old_tsec->sid)
2253 		return 0; /* No change in credentials */
2254 
2255 	/*
2256 	 * If the policy enables the nnp_nosuid_transition policy capability,
2257 	 * then we permit transitions under NNP or nosuid if the
2258 	 * policy allows the corresponding permission between
2259 	 * the old and new contexts.
2260 	 */
2261 	if (selinux_policycap_nnp_nosuid_transition()) {
2262 		av = 0;
2263 		if (nnp)
2264 			av |= PROCESS2__NNP_TRANSITION;
2265 		if (nosuid)
2266 			av |= PROCESS2__NOSUID_TRANSITION;
2267 		rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2268 				  SECCLASS_PROCESS2, av, NULL);
2269 		if (!rc)
2270 			return 0;
2271 	}
2272 
2273 	/*
2274 	 * We also permit NNP or nosuid transitions to bounded SIDs,
2275 	 * i.e. SIDs that are guaranteed to only be allowed a subset
2276 	 * of the permissions of the current SID.
2277 	 */
2278 	rc = security_bounded_transition(old_tsec->sid,
2279 					 new_tsec->sid);
2280 	if (!rc)
2281 		return 0;
2282 
2283 	/*
2284 	 * On failure, preserve the errno values for NNP vs nosuid.
2285 	 * NNP:  Operation not permitted for caller.
2286 	 * nosuid:  Permission denied to file.
2287 	 */
2288 	if (nnp)
2289 		return -EPERM;
2290 	return -EACCES;
2291 }
2292 
2293 static int selinux_bprm_creds_for_exec(struct linux_binprm *bprm)
2294 {
2295 	const struct task_security_struct *old_tsec;
2296 	struct task_security_struct *new_tsec;
2297 	struct inode_security_struct *isec;
2298 	struct common_audit_data ad;
2299 	struct inode *inode = file_inode(bprm->file);
2300 	int rc;
2301 
2302 	/* SELinux context only depends on initial program or script and not
2303 	 * the script interpreter */
2304 
2305 	old_tsec = selinux_cred(current_cred());
2306 	new_tsec = selinux_cred(bprm->cred);
2307 	isec = inode_security(inode);
2308 
2309 	/* Default to the current task SID. */
2310 	new_tsec->sid = old_tsec->sid;
2311 	new_tsec->osid = old_tsec->sid;
2312 
2313 	/* Reset fs, key, and sock SIDs on execve. */
2314 	new_tsec->create_sid = 0;
2315 	new_tsec->keycreate_sid = 0;
2316 	new_tsec->sockcreate_sid = 0;
2317 
2318 	/*
2319 	 * Before policy is loaded, label any task outside kernel space
2320 	 * as SECINITSID_INIT, so that any userspace tasks surviving from
2321 	 * early boot end up with a label different from SECINITSID_KERNEL
2322 	 * (if the policy chooses to set SECINITSID_INIT != SECINITSID_KERNEL).
2323 	 */
2324 	if (!selinux_initialized()) {
2325 		new_tsec->sid = SECINITSID_INIT;
2326 		/* also clear the exec_sid just in case */
2327 		new_tsec->exec_sid = 0;
2328 		return 0;
2329 	}
2330 
2331 	if (old_tsec->exec_sid) {
2332 		new_tsec->sid = old_tsec->exec_sid;
2333 		/* Reset exec SID on execve. */
2334 		new_tsec->exec_sid = 0;
2335 
2336 		/* Fail on NNP or nosuid if not an allowed transition. */
2337 		rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2338 		if (rc)
2339 			return rc;
2340 	} else {
2341 		/* Check for a default transition on this program. */
2342 		rc = security_transition_sid(old_tsec->sid,
2343 					     isec->sid, SECCLASS_PROCESS, NULL,
2344 					     &new_tsec->sid);
2345 		if (rc)
2346 			return rc;
2347 
2348 		/*
2349 		 * Fallback to old SID on NNP or nosuid if not an allowed
2350 		 * transition.
2351 		 */
2352 		rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2353 		if (rc)
2354 			new_tsec->sid = old_tsec->sid;
2355 	}
2356 
2357 	ad.type = LSM_AUDIT_DATA_FILE;
2358 	ad.u.file = bprm->file;
2359 
2360 	if (new_tsec->sid == old_tsec->sid) {
2361 		rc = avc_has_perm(old_tsec->sid, isec->sid,
2362 				  SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2363 		if (rc)
2364 			return rc;
2365 	} else {
2366 		/* Check permissions for the transition. */
2367 		rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2368 				  SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2369 		if (rc)
2370 			return rc;
2371 
2372 		rc = avc_has_perm(new_tsec->sid, isec->sid,
2373 				  SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2374 		if (rc)
2375 			return rc;
2376 
2377 		/* Check for shared state */
2378 		if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2379 			rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2380 					  SECCLASS_PROCESS, PROCESS__SHARE,
2381 					  NULL);
2382 			if (rc)
2383 				return -EPERM;
2384 		}
2385 
2386 		/* Make sure that anyone attempting to ptrace over a task that
2387 		 * changes its SID has the appropriate permit */
2388 		if (bprm->unsafe & LSM_UNSAFE_PTRACE) {
2389 			u32 ptsid = ptrace_parent_sid();
2390 			if (ptsid != 0) {
2391 				rc = avc_has_perm(ptsid, new_tsec->sid,
2392 						  SECCLASS_PROCESS,
2393 						  PROCESS__PTRACE, NULL);
2394 				if (rc)
2395 					return -EPERM;
2396 			}
2397 		}
2398 
2399 		/* Clear any possibly unsafe personality bits on exec: */
2400 		bprm->per_clear |= PER_CLEAR_ON_SETID;
2401 
2402 		/* Enable secure mode for SIDs transitions unless
2403 		   the noatsecure permission is granted between
2404 		   the two SIDs, i.e. ahp returns 0. */
2405 		rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2406 				  SECCLASS_PROCESS, PROCESS__NOATSECURE,
2407 				  NULL);
2408 		bprm->secureexec |= !!rc;
2409 	}
2410 
2411 	return 0;
2412 }
2413 
2414 static int match_file(const void *p, struct file *file, unsigned fd)
2415 {
2416 	return file_has_perm(p, file, file_to_av(file)) ? fd + 1 : 0;
2417 }
2418 
2419 /* Derived from fs/exec.c:flush_old_files. */
2420 static inline void flush_unauthorized_files(const struct cred *cred,
2421 					    struct files_struct *files)
2422 {
2423 	struct file *file, *devnull = NULL;
2424 	struct tty_struct *tty;
2425 	int drop_tty = 0;
2426 	unsigned n;
2427 
2428 	tty = get_current_tty();
2429 	if (tty) {
2430 		spin_lock(&tty->files_lock);
2431 		if (!list_empty(&tty->tty_files)) {
2432 			struct tty_file_private *file_priv;
2433 
2434 			/* Revalidate access to controlling tty.
2435 			   Use file_path_has_perm on the tty path directly
2436 			   rather than using file_has_perm, as this particular
2437 			   open file may belong to another process and we are
2438 			   only interested in the inode-based check here. */
2439 			file_priv = list_first_entry(&tty->tty_files,
2440 						struct tty_file_private, list);
2441 			file = file_priv->file;
2442 			if (file_path_has_perm(cred, file, FILE__READ | FILE__WRITE))
2443 				drop_tty = 1;
2444 		}
2445 		spin_unlock(&tty->files_lock);
2446 		tty_kref_put(tty);
2447 	}
2448 	/* Reset controlling tty. */
2449 	if (drop_tty)
2450 		no_tty();
2451 
2452 	/* Revalidate access to inherited open files. */
2453 	n = iterate_fd(files, 0, match_file, cred);
2454 	if (!n) /* none found? */
2455 		return;
2456 
2457 	devnull = dentry_open(&selinux_null, O_RDWR, cred);
2458 	if (IS_ERR(devnull))
2459 		devnull = NULL;
2460 	/* replace all the matching ones with this */
2461 	do {
2462 		replace_fd(n - 1, devnull, 0);
2463 	} while ((n = iterate_fd(files, n, match_file, cred)) != 0);
2464 	if (devnull)
2465 		fput(devnull);
2466 }
2467 
2468 /*
2469  * Prepare a process for imminent new credential changes due to exec
2470  */
2471 static void selinux_bprm_committing_creds(const struct linux_binprm *bprm)
2472 {
2473 	struct task_security_struct *new_tsec;
2474 	struct rlimit *rlim, *initrlim;
2475 	int rc, i;
2476 
2477 	new_tsec = selinux_cred(bprm->cred);
2478 	if (new_tsec->sid == new_tsec->osid)
2479 		return;
2480 
2481 	/* Close files for which the new task SID is not authorized. */
2482 	flush_unauthorized_files(bprm->cred, current->files);
2483 
2484 	/* Always clear parent death signal on SID transitions. */
2485 	current->pdeath_signal = 0;
2486 
2487 	/* Check whether the new SID can inherit resource limits from the old
2488 	 * SID.  If not, reset all soft limits to the lower of the current
2489 	 * task's hard limit and the init task's soft limit.
2490 	 *
2491 	 * Note that the setting of hard limits (even to lower them) can be
2492 	 * controlled by the setrlimit check.  The inclusion of the init task's
2493 	 * soft limit into the computation is to avoid resetting soft limits
2494 	 * higher than the default soft limit for cases where the default is
2495 	 * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2496 	 */
2497 	rc = avc_has_perm(new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
2498 			  PROCESS__RLIMITINH, NULL);
2499 	if (rc) {
2500 		/* protect against do_prlimit() */
2501 		task_lock(current);
2502 		for (i = 0; i < RLIM_NLIMITS; i++) {
2503 			rlim = current->signal->rlim + i;
2504 			initrlim = init_task.signal->rlim + i;
2505 			rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2506 		}
2507 		task_unlock(current);
2508 		if (IS_ENABLED(CONFIG_POSIX_TIMERS))
2509 			update_rlimit_cpu(current, rlimit(RLIMIT_CPU));
2510 	}
2511 }
2512 
2513 /*
2514  * Clean up the process immediately after the installation of new credentials
2515  * due to exec
2516  */
2517 static void selinux_bprm_committed_creds(const struct linux_binprm *bprm)
2518 {
2519 	const struct task_security_struct *tsec = selinux_cred(current_cred());
2520 	u32 osid, sid;
2521 	int rc;
2522 
2523 	osid = tsec->osid;
2524 	sid = tsec->sid;
2525 
2526 	if (sid == osid)
2527 		return;
2528 
2529 	/* Check whether the new SID can inherit signal state from the old SID.
2530 	 * If not, clear itimers to avoid subsequent signal generation and
2531 	 * flush and unblock signals.
2532 	 *
2533 	 * This must occur _after_ the task SID has been updated so that any
2534 	 * kill done after the flush will be checked against the new SID.
2535 	 */
2536 	rc = avc_has_perm(osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
2537 	if (rc) {
2538 		clear_itimer();
2539 
2540 		spin_lock_irq(&unrcu_pointer(current->sighand)->siglock);
2541 		if (!fatal_signal_pending(current)) {
2542 			flush_sigqueue(&current->pending);
2543 			flush_sigqueue(&current->signal->shared_pending);
2544 			flush_signal_handlers(current, 1);
2545 			sigemptyset(&current->blocked);
2546 			recalc_sigpending();
2547 		}
2548 		spin_unlock_irq(&unrcu_pointer(current->sighand)->siglock);
2549 	}
2550 
2551 	/* Wake up the parent if it is waiting so that it can recheck
2552 	 * wait permission to the new task SID. */
2553 	read_lock(&tasklist_lock);
2554 	__wake_up_parent(current, unrcu_pointer(current->real_parent));
2555 	read_unlock(&tasklist_lock);
2556 }
2557 
2558 /* superblock security operations */
2559 
2560 static int selinux_sb_alloc_security(struct super_block *sb)
2561 {
2562 	struct superblock_security_struct *sbsec = selinux_superblock(sb);
2563 
2564 	mutex_init(&sbsec->lock);
2565 	INIT_LIST_HEAD(&sbsec->isec_head);
2566 	spin_lock_init(&sbsec->isec_lock);
2567 	sbsec->sid = SECINITSID_UNLABELED;
2568 	sbsec->def_sid = SECINITSID_FILE;
2569 	sbsec->mntpoint_sid = SECINITSID_UNLABELED;
2570 
2571 	return 0;
2572 }
2573 
2574 static inline int opt_len(const char *s)
2575 {
2576 	bool open_quote = false;
2577 	int len;
2578 	char c;
2579 
2580 	for (len = 0; (c = s[len]) != '\0'; len++) {
2581 		if (c == '"')
2582 			open_quote = !open_quote;
2583 		if (c == ',' && !open_quote)
2584 			break;
2585 	}
2586 	return len;
2587 }
2588 
2589 static int selinux_sb_eat_lsm_opts(char *options, void **mnt_opts)
2590 {
2591 	char *from = options;
2592 	char *to = options;
2593 	bool first = true;
2594 	int rc;
2595 
2596 	while (1) {
2597 		int len = opt_len(from);
2598 		int token;
2599 		char *arg = NULL;
2600 
2601 		token = match_opt_prefix(from, len, &arg);
2602 
2603 		if (token != Opt_error) {
2604 			char *p, *q;
2605 
2606 			/* strip quotes */
2607 			if (arg) {
2608 				for (p = q = arg; p < from + len; p++) {
2609 					char c = *p;
2610 					if (c != '"')
2611 						*q++ = c;
2612 				}
2613 				arg = kmemdup_nul(arg, q - arg, GFP_KERNEL);
2614 				if (!arg) {
2615 					rc = -ENOMEM;
2616 					goto free_opt;
2617 				}
2618 			}
2619 			rc = selinux_add_opt(token, arg, mnt_opts);
2620 			kfree(arg);
2621 			arg = NULL;
2622 			if (unlikely(rc)) {
2623 				goto free_opt;
2624 			}
2625 		} else {
2626 			if (!first) {	// copy with preceding comma
2627 				from--;
2628 				len++;
2629 			}
2630 			if (to != from)
2631 				memmove(to, from, len);
2632 			to += len;
2633 			first = false;
2634 		}
2635 		if (!from[len])
2636 			break;
2637 		from += len + 1;
2638 	}
2639 	*to = '\0';
2640 	return 0;
2641 
2642 free_opt:
2643 	if (*mnt_opts) {
2644 		selinux_free_mnt_opts(*mnt_opts);
2645 		*mnt_opts = NULL;
2646 	}
2647 	return rc;
2648 }
2649 
2650 static int selinux_sb_mnt_opts_compat(struct super_block *sb, void *mnt_opts)
2651 {
2652 	struct selinux_mnt_opts *opts = mnt_opts;
2653 	struct superblock_security_struct *sbsec = selinux_superblock(sb);
2654 
2655 	/*
2656 	 * Superblock not initialized (i.e. no options) - reject if any
2657 	 * options specified, otherwise accept.
2658 	 */
2659 	if (!(sbsec->flags & SE_SBINITIALIZED))
2660 		return opts ? 1 : 0;
2661 
2662 	/*
2663 	 * Superblock initialized and no options specified - reject if
2664 	 * superblock has any options set, otherwise accept.
2665 	 */
2666 	if (!opts)
2667 		return (sbsec->flags & SE_MNTMASK) ? 1 : 0;
2668 
2669 	if (opts->fscontext_sid) {
2670 		if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
2671 			       opts->fscontext_sid))
2672 			return 1;
2673 	}
2674 	if (opts->context_sid) {
2675 		if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
2676 			       opts->context_sid))
2677 			return 1;
2678 	}
2679 	if (opts->rootcontext_sid) {
2680 		struct inode_security_struct *root_isec;
2681 
2682 		root_isec = backing_inode_security(sb->s_root);
2683 		if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
2684 			       opts->rootcontext_sid))
2685 			return 1;
2686 	}
2687 	if (opts->defcontext_sid) {
2688 		if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
2689 			       opts->defcontext_sid))
2690 			return 1;
2691 	}
2692 	return 0;
2693 }
2694 
2695 static int selinux_sb_remount(struct super_block *sb, void *mnt_opts)
2696 {
2697 	struct selinux_mnt_opts *opts = mnt_opts;
2698 	struct superblock_security_struct *sbsec = selinux_superblock(sb);
2699 
2700 	if (!(sbsec->flags & SE_SBINITIALIZED))
2701 		return 0;
2702 
2703 	if (!opts)
2704 		return 0;
2705 
2706 	if (opts->fscontext_sid) {
2707 		if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
2708 			       opts->fscontext_sid))
2709 			goto out_bad_option;
2710 	}
2711 	if (opts->context_sid) {
2712 		if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
2713 			       opts->context_sid))
2714 			goto out_bad_option;
2715 	}
2716 	if (opts->rootcontext_sid) {
2717 		struct inode_security_struct *root_isec;
2718 		root_isec = backing_inode_security(sb->s_root);
2719 		if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
2720 			       opts->rootcontext_sid))
2721 			goto out_bad_option;
2722 	}
2723 	if (opts->defcontext_sid) {
2724 		if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
2725 			       opts->defcontext_sid))
2726 			goto out_bad_option;
2727 	}
2728 	return 0;
2729 
2730 out_bad_option:
2731 	pr_warn("SELinux: unable to change security options "
2732 	       "during remount (dev %s, type=%s)\n", sb->s_id,
2733 	       sb->s_type->name);
2734 	return -EINVAL;
2735 }
2736 
2737 static int selinux_sb_kern_mount(const struct super_block *sb)
2738 {
2739 	const struct cred *cred = current_cred();
2740 	struct common_audit_data ad;
2741 
2742 	ad.type = LSM_AUDIT_DATA_DENTRY;
2743 	ad.u.dentry = sb->s_root;
2744 	return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2745 }
2746 
2747 static int selinux_sb_statfs(struct dentry *dentry)
2748 {
2749 	const struct cred *cred = current_cred();
2750 	struct common_audit_data ad;
2751 
2752 	ad.type = LSM_AUDIT_DATA_DENTRY;
2753 	ad.u.dentry = dentry->d_sb->s_root;
2754 	return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2755 }
2756 
2757 static int selinux_mount(const char *dev_name,
2758 			 const struct path *path,
2759 			 const char *type,
2760 			 unsigned long flags,
2761 			 void *data)
2762 {
2763 	const struct cred *cred = current_cred();
2764 
2765 	if (flags & MS_REMOUNT)
2766 		return superblock_has_perm(cred, path->dentry->d_sb,
2767 					   FILESYSTEM__REMOUNT, NULL);
2768 	else
2769 		return path_has_perm(cred, path, FILE__MOUNTON);
2770 }
2771 
2772 static int selinux_move_mount(const struct path *from_path,
2773 			      const struct path *to_path)
2774 {
2775 	const struct cred *cred = current_cred();
2776 
2777 	return path_has_perm(cred, to_path, FILE__MOUNTON);
2778 }
2779 
2780 static int selinux_umount(struct vfsmount *mnt, int flags)
2781 {
2782 	const struct cred *cred = current_cred();
2783 
2784 	return superblock_has_perm(cred, mnt->mnt_sb,
2785 				   FILESYSTEM__UNMOUNT, NULL);
2786 }
2787 
2788 static int selinux_fs_context_submount(struct fs_context *fc,
2789 				   struct super_block *reference)
2790 {
2791 	const struct superblock_security_struct *sbsec = selinux_superblock(reference);
2792 	struct selinux_mnt_opts *opts;
2793 
2794 	/*
2795 	 * Ensure that fc->security remains NULL when no options are set
2796 	 * as expected by selinux_set_mnt_opts().
2797 	 */
2798 	if (!(sbsec->flags & (FSCONTEXT_MNT|CONTEXT_MNT|DEFCONTEXT_MNT)))
2799 		return 0;
2800 
2801 	opts = kzalloc(sizeof(*opts), GFP_KERNEL);
2802 	if (!opts)
2803 		return -ENOMEM;
2804 
2805 	if (sbsec->flags & FSCONTEXT_MNT)
2806 		opts->fscontext_sid = sbsec->sid;
2807 	if (sbsec->flags & CONTEXT_MNT)
2808 		opts->context_sid = sbsec->mntpoint_sid;
2809 	if (sbsec->flags & DEFCONTEXT_MNT)
2810 		opts->defcontext_sid = sbsec->def_sid;
2811 	fc->security = opts;
2812 	return 0;
2813 }
2814 
2815 static int selinux_fs_context_dup(struct fs_context *fc,
2816 				  struct fs_context *src_fc)
2817 {
2818 	const struct selinux_mnt_opts *src = src_fc->security;
2819 
2820 	if (!src)
2821 		return 0;
2822 
2823 	fc->security = kmemdup(src, sizeof(*src), GFP_KERNEL);
2824 	return fc->security ? 0 : -ENOMEM;
2825 }
2826 
2827 static const struct fs_parameter_spec selinux_fs_parameters[] = {
2828 	fsparam_string(CONTEXT_STR,	Opt_context),
2829 	fsparam_string(DEFCONTEXT_STR,	Opt_defcontext),
2830 	fsparam_string(FSCONTEXT_STR,	Opt_fscontext),
2831 	fsparam_string(ROOTCONTEXT_STR,	Opt_rootcontext),
2832 	fsparam_flag  (SECLABEL_STR,	Opt_seclabel),
2833 	{}
2834 };
2835 
2836 static int selinux_fs_context_parse_param(struct fs_context *fc,
2837 					  struct fs_parameter *param)
2838 {
2839 	struct fs_parse_result result;
2840 	int opt;
2841 
2842 	opt = fs_parse(fc, selinux_fs_parameters, param, &result);
2843 	if (opt < 0)
2844 		return opt;
2845 
2846 	return selinux_add_opt(opt, param->string, &fc->security);
2847 }
2848 
2849 /* inode security operations */
2850 
2851 static int selinux_inode_alloc_security(struct inode *inode)
2852 {
2853 	struct inode_security_struct *isec = selinux_inode(inode);
2854 	u32 sid = current_sid();
2855 
2856 	spin_lock_init(&isec->lock);
2857 	INIT_LIST_HEAD(&isec->list);
2858 	isec->inode = inode;
2859 	isec->sid = SECINITSID_UNLABELED;
2860 	isec->sclass = SECCLASS_FILE;
2861 	isec->task_sid = sid;
2862 	isec->initialized = LABEL_INVALID;
2863 
2864 	return 0;
2865 }
2866 
2867 static void selinux_inode_free_security(struct inode *inode)
2868 {
2869 	inode_free_security(inode);
2870 }
2871 
2872 static int selinux_dentry_init_security(struct dentry *dentry, int mode,
2873 					const struct qstr *name,
2874 					const char **xattr_name, void **ctx,
2875 					u32 *ctxlen)
2876 {
2877 	u32 newsid;
2878 	int rc;
2879 
2880 	rc = selinux_determine_inode_label(selinux_cred(current_cred()),
2881 					   d_inode(dentry->d_parent), name,
2882 					   inode_mode_to_security_class(mode),
2883 					   &newsid);
2884 	if (rc)
2885 		return rc;
2886 
2887 	if (xattr_name)
2888 		*xattr_name = XATTR_NAME_SELINUX;
2889 
2890 	return security_sid_to_context(newsid, (char **)ctx,
2891 				       ctxlen);
2892 }
2893 
2894 static int selinux_dentry_create_files_as(struct dentry *dentry, int mode,
2895 					  struct qstr *name,
2896 					  const struct cred *old,
2897 					  struct cred *new)
2898 {
2899 	u32 newsid;
2900 	int rc;
2901 	struct task_security_struct *tsec;
2902 
2903 	rc = selinux_determine_inode_label(selinux_cred(old),
2904 					   d_inode(dentry->d_parent), name,
2905 					   inode_mode_to_security_class(mode),
2906 					   &newsid);
2907 	if (rc)
2908 		return rc;
2909 
2910 	tsec = selinux_cred(new);
2911 	tsec->create_sid = newsid;
2912 	return 0;
2913 }
2914 
2915 static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2916 				       const struct qstr *qstr,
2917 				       struct xattr *xattrs, int *xattr_count)
2918 {
2919 	const struct task_security_struct *tsec = selinux_cred(current_cred());
2920 	struct superblock_security_struct *sbsec;
2921 	struct xattr *xattr = lsm_get_xattr_slot(xattrs, xattr_count);
2922 	u32 newsid, clen;
2923 	u16 newsclass;
2924 	int rc;
2925 	char *context;
2926 
2927 	sbsec = selinux_superblock(dir->i_sb);
2928 
2929 	newsid = tsec->create_sid;
2930 	newsclass = inode_mode_to_security_class(inode->i_mode);
2931 	rc = selinux_determine_inode_label(tsec, dir, qstr, newsclass, &newsid);
2932 	if (rc)
2933 		return rc;
2934 
2935 	/* Possibly defer initialization to selinux_complete_init. */
2936 	if (sbsec->flags & SE_SBINITIALIZED) {
2937 		struct inode_security_struct *isec = selinux_inode(inode);
2938 		isec->sclass = newsclass;
2939 		isec->sid = newsid;
2940 		isec->initialized = LABEL_INITIALIZED;
2941 	}
2942 
2943 	if (!selinux_initialized() ||
2944 	    !(sbsec->flags & SBLABEL_MNT))
2945 		return -EOPNOTSUPP;
2946 
2947 	if (xattr) {
2948 		rc = security_sid_to_context_force(newsid,
2949 						   &context, &clen);
2950 		if (rc)
2951 			return rc;
2952 		xattr->value = context;
2953 		xattr->value_len = clen;
2954 		xattr->name = XATTR_SELINUX_SUFFIX;
2955 	}
2956 
2957 	return 0;
2958 }
2959 
2960 static int selinux_inode_init_security_anon(struct inode *inode,
2961 					    const struct qstr *name,
2962 					    const struct inode *context_inode)
2963 {
2964 	const struct task_security_struct *tsec = selinux_cred(current_cred());
2965 	struct common_audit_data ad;
2966 	struct inode_security_struct *isec;
2967 	int rc;
2968 
2969 	if (unlikely(!selinux_initialized()))
2970 		return 0;
2971 
2972 	isec = selinux_inode(inode);
2973 
2974 	/*
2975 	 * We only get here once per ephemeral inode.  The inode has
2976 	 * been initialized via inode_alloc_security but is otherwise
2977 	 * untouched.
2978 	 */
2979 
2980 	if (context_inode) {
2981 		struct inode_security_struct *context_isec =
2982 			selinux_inode(context_inode);
2983 		if (context_isec->initialized != LABEL_INITIALIZED) {
2984 			pr_err("SELinux:  context_inode is not initialized\n");
2985 			return -EACCES;
2986 		}
2987 
2988 		isec->sclass = context_isec->sclass;
2989 		isec->sid = context_isec->sid;
2990 	} else {
2991 		isec->sclass = SECCLASS_ANON_INODE;
2992 		rc = security_transition_sid(
2993 			tsec->sid, tsec->sid,
2994 			isec->sclass, name, &isec->sid);
2995 		if (rc)
2996 			return rc;
2997 	}
2998 
2999 	isec->initialized = LABEL_INITIALIZED;
3000 	/*
3001 	 * Now that we've initialized security, check whether we're
3002 	 * allowed to actually create this type of anonymous inode.
3003 	 */
3004 
3005 	ad.type = LSM_AUDIT_DATA_ANONINODE;
3006 	ad.u.anonclass = name ? (const char *)name->name : "?";
3007 
3008 	return avc_has_perm(tsec->sid,
3009 			    isec->sid,
3010 			    isec->sclass,
3011 			    FILE__CREATE,
3012 			    &ad);
3013 }
3014 
3015 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
3016 {
3017 	return may_create(dir, dentry, SECCLASS_FILE);
3018 }
3019 
3020 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
3021 {
3022 	return may_link(dir, old_dentry, MAY_LINK);
3023 }
3024 
3025 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
3026 {
3027 	return may_link(dir, dentry, MAY_UNLINK);
3028 }
3029 
3030 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
3031 {
3032 	return may_create(dir, dentry, SECCLASS_LNK_FILE);
3033 }
3034 
3035 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mask)
3036 {
3037 	return may_create(dir, dentry, SECCLASS_DIR);
3038 }
3039 
3040 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
3041 {
3042 	return may_link(dir, dentry, MAY_RMDIR);
3043 }
3044 
3045 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3046 {
3047 	return may_create(dir, dentry, inode_mode_to_security_class(mode));
3048 }
3049 
3050 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
3051 				struct inode *new_inode, struct dentry *new_dentry)
3052 {
3053 	return may_rename(old_inode, old_dentry, new_inode, new_dentry);
3054 }
3055 
3056 static int selinux_inode_readlink(struct dentry *dentry)
3057 {
3058 	const struct cred *cred = current_cred();
3059 
3060 	return dentry_has_perm(cred, dentry, FILE__READ);
3061 }
3062 
3063 static int selinux_inode_follow_link(struct dentry *dentry, struct inode *inode,
3064 				     bool rcu)
3065 {
3066 	const struct cred *cred = current_cred();
3067 	struct common_audit_data ad;
3068 	struct inode_security_struct *isec;
3069 	u32 sid;
3070 
3071 	ad.type = LSM_AUDIT_DATA_DENTRY;
3072 	ad.u.dentry = dentry;
3073 	sid = cred_sid(cred);
3074 	isec = inode_security_rcu(inode, rcu);
3075 	if (IS_ERR(isec))
3076 		return PTR_ERR(isec);
3077 
3078 	return avc_has_perm(sid, isec->sid, isec->sclass, FILE__READ, &ad);
3079 }
3080 
3081 static noinline int audit_inode_permission(struct inode *inode,
3082 					   u32 perms, u32 audited, u32 denied,
3083 					   int result)
3084 {
3085 	struct common_audit_data ad;
3086 	struct inode_security_struct *isec = selinux_inode(inode);
3087 
3088 	ad.type = LSM_AUDIT_DATA_INODE;
3089 	ad.u.inode = inode;
3090 
3091 	return slow_avc_audit(current_sid(), isec->sid, isec->sclass, perms,
3092 			    audited, denied, result, &ad);
3093 }
3094 
3095 static int selinux_inode_permission(struct inode *inode, int mask)
3096 {
3097 	const struct cred *cred = current_cred();
3098 	u32 perms;
3099 	bool from_access;
3100 	bool no_block = mask & MAY_NOT_BLOCK;
3101 	struct inode_security_struct *isec;
3102 	u32 sid;
3103 	struct av_decision avd;
3104 	int rc, rc2;
3105 	u32 audited, denied;
3106 
3107 	from_access = mask & MAY_ACCESS;
3108 	mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND);
3109 
3110 	/* No permission to check.  Existence test. */
3111 	if (!mask)
3112 		return 0;
3113 
3114 	if (unlikely(IS_PRIVATE(inode)))
3115 		return 0;
3116 
3117 	perms = file_mask_to_av(inode->i_mode, mask);
3118 
3119 	sid = cred_sid(cred);
3120 	isec = inode_security_rcu(inode, no_block);
3121 	if (IS_ERR(isec))
3122 		return PTR_ERR(isec);
3123 
3124 	rc = avc_has_perm_noaudit(sid, isec->sid, isec->sclass, perms, 0,
3125 				  &avd);
3126 	audited = avc_audit_required(perms, &avd, rc,
3127 				     from_access ? FILE__AUDIT_ACCESS : 0,
3128 				     &denied);
3129 	if (likely(!audited))
3130 		return rc;
3131 
3132 	rc2 = audit_inode_permission(inode, perms, audited, denied, rc);
3133 	if (rc2)
3134 		return rc2;
3135 	return rc;
3136 }
3137 
3138 static int selinux_inode_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
3139 				 struct iattr *iattr)
3140 {
3141 	const struct cred *cred = current_cred();
3142 	struct inode *inode = d_backing_inode(dentry);
3143 	unsigned int ia_valid = iattr->ia_valid;
3144 	__u32 av = FILE__WRITE;
3145 
3146 	/* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */
3147 	if (ia_valid & ATTR_FORCE) {
3148 		ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE |
3149 			      ATTR_FORCE);
3150 		if (!ia_valid)
3151 			return 0;
3152 	}
3153 
3154 	if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
3155 			ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET))
3156 		return dentry_has_perm(cred, dentry, FILE__SETATTR);
3157 
3158 	if (selinux_policycap_openperm() &&
3159 	    inode->i_sb->s_magic != SOCKFS_MAGIC &&
3160 	    (ia_valid & ATTR_SIZE) &&
3161 	    !(ia_valid & ATTR_FILE))
3162 		av |= FILE__OPEN;
3163 
3164 	return dentry_has_perm(cred, dentry, av);
3165 }
3166 
3167 static int selinux_inode_getattr(const struct path *path)
3168 {
3169 	return path_has_perm(current_cred(), path, FILE__GETATTR);
3170 }
3171 
3172 static bool has_cap_mac_admin(bool audit)
3173 {
3174 	const struct cred *cred = current_cred();
3175 	unsigned int opts = audit ? CAP_OPT_NONE : CAP_OPT_NOAUDIT;
3176 
3177 	if (cap_capable(cred, &init_user_ns, CAP_MAC_ADMIN, opts))
3178 		return false;
3179 	if (cred_has_capability(cred, CAP_MAC_ADMIN, opts, true))
3180 		return false;
3181 	return true;
3182 }
3183 
3184 static int selinux_inode_setxattr(struct mnt_idmap *idmap,
3185 				  struct dentry *dentry, const char *name,
3186 				  const void *value, size_t size, int flags)
3187 {
3188 	struct inode *inode = d_backing_inode(dentry);
3189 	struct inode_security_struct *isec;
3190 	struct superblock_security_struct *sbsec;
3191 	struct common_audit_data ad;
3192 	u32 newsid, sid = current_sid();
3193 	int rc = 0;
3194 
3195 	if (strcmp(name, XATTR_NAME_SELINUX)) {
3196 		rc = cap_inode_setxattr(dentry, name, value, size, flags);
3197 		if (rc)
3198 			return rc;
3199 
3200 		/* Not an attribute we recognize, so just check the
3201 		   ordinary setattr permission. */
3202 		return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3203 	}
3204 
3205 	if (!selinux_initialized())
3206 		return (inode_owner_or_capable(idmap, inode) ? 0 : -EPERM);
3207 
3208 	sbsec = selinux_superblock(inode->i_sb);
3209 	if (!(sbsec->flags & SBLABEL_MNT))
3210 		return -EOPNOTSUPP;
3211 
3212 	if (!inode_owner_or_capable(idmap, inode))
3213 		return -EPERM;
3214 
3215 	ad.type = LSM_AUDIT_DATA_DENTRY;
3216 	ad.u.dentry = dentry;
3217 
3218 	isec = backing_inode_security(dentry);
3219 	rc = avc_has_perm(sid, isec->sid, isec->sclass,
3220 			  FILE__RELABELFROM, &ad);
3221 	if (rc)
3222 		return rc;
3223 
3224 	rc = security_context_to_sid(value, size, &newsid,
3225 				     GFP_KERNEL);
3226 	if (rc == -EINVAL) {
3227 		if (!has_cap_mac_admin(true)) {
3228 			struct audit_buffer *ab;
3229 			size_t audit_size;
3230 
3231 			/* We strip a nul only if it is at the end, otherwise the
3232 			 * context contains a nul and we should audit that */
3233 			if (value) {
3234 				const char *str = value;
3235 
3236 				if (str[size - 1] == '\0')
3237 					audit_size = size - 1;
3238 				else
3239 					audit_size = size;
3240 			} else {
3241 				audit_size = 0;
3242 			}
3243 			ab = audit_log_start(audit_context(),
3244 					     GFP_ATOMIC, AUDIT_SELINUX_ERR);
3245 			if (!ab)
3246 				return rc;
3247 			audit_log_format(ab, "op=setxattr invalid_context=");
3248 			audit_log_n_untrustedstring(ab, value, audit_size);
3249 			audit_log_end(ab);
3250 
3251 			return rc;
3252 		}
3253 		rc = security_context_to_sid_force(value,
3254 						   size, &newsid);
3255 	}
3256 	if (rc)
3257 		return rc;
3258 
3259 	rc = avc_has_perm(sid, newsid, isec->sclass,
3260 			  FILE__RELABELTO, &ad);
3261 	if (rc)
3262 		return rc;
3263 
3264 	rc = security_validate_transition(isec->sid, newsid,
3265 					  sid, isec->sclass);
3266 	if (rc)
3267 		return rc;
3268 
3269 	return avc_has_perm(newsid,
3270 			    sbsec->sid,
3271 			    SECCLASS_FILESYSTEM,
3272 			    FILESYSTEM__ASSOCIATE,
3273 			    &ad);
3274 }
3275 
3276 static int selinux_inode_set_acl(struct mnt_idmap *idmap,
3277 				 struct dentry *dentry, const char *acl_name,
3278 				 struct posix_acl *kacl)
3279 {
3280 	return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3281 }
3282 
3283 static int selinux_inode_get_acl(struct mnt_idmap *idmap,
3284 				 struct dentry *dentry, const char *acl_name)
3285 {
3286 	return dentry_has_perm(current_cred(), dentry, FILE__GETATTR);
3287 }
3288 
3289 static int selinux_inode_remove_acl(struct mnt_idmap *idmap,
3290 				    struct dentry *dentry, const char *acl_name)
3291 {
3292 	return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3293 }
3294 
3295 static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
3296 					const void *value, size_t size,
3297 					int flags)
3298 {
3299 	struct inode *inode = d_backing_inode(dentry);
3300 	struct inode_security_struct *isec;
3301 	u32 newsid;
3302 	int rc;
3303 
3304 	if (strcmp(name, XATTR_NAME_SELINUX)) {
3305 		/* Not an attribute we recognize, so nothing to do. */
3306 		return;
3307 	}
3308 
3309 	if (!selinux_initialized()) {
3310 		/* If we haven't even been initialized, then we can't validate
3311 		 * against a policy, so leave the label as invalid. It may
3312 		 * resolve to a valid label on the next revalidation try if
3313 		 * we've since initialized.
3314 		 */
3315 		return;
3316 	}
3317 
3318 	rc = security_context_to_sid_force(value, size,
3319 					   &newsid);
3320 	if (rc) {
3321 		pr_err("SELinux:  unable to map context to SID"
3322 		       "for (%s, %lu), rc=%d\n",
3323 		       inode->i_sb->s_id, inode->i_ino, -rc);
3324 		return;
3325 	}
3326 
3327 	isec = backing_inode_security(dentry);
3328 	spin_lock(&isec->lock);
3329 	isec->sclass = inode_mode_to_security_class(inode->i_mode);
3330 	isec->sid = newsid;
3331 	isec->initialized = LABEL_INITIALIZED;
3332 	spin_unlock(&isec->lock);
3333 }
3334 
3335 static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
3336 {
3337 	const struct cred *cred = current_cred();
3338 
3339 	return dentry_has_perm(cred, dentry, FILE__GETATTR);
3340 }
3341 
3342 static int selinux_inode_listxattr(struct dentry *dentry)
3343 {
3344 	const struct cred *cred = current_cred();
3345 
3346 	return dentry_has_perm(cred, dentry, FILE__GETATTR);
3347 }
3348 
3349 static int selinux_inode_removexattr(struct mnt_idmap *idmap,
3350 				     struct dentry *dentry, const char *name)
3351 {
3352 	if (strcmp(name, XATTR_NAME_SELINUX)) {
3353 		int rc = cap_inode_removexattr(idmap, dentry, name);
3354 		if (rc)
3355 			return rc;
3356 
3357 		/* Not an attribute we recognize, so just check the
3358 		   ordinary setattr permission. */
3359 		return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3360 	}
3361 
3362 	if (!selinux_initialized())
3363 		return 0;
3364 
3365 	/* No one is allowed to remove a SELinux security label.
3366 	   You can change the label, but all data must be labeled. */
3367 	return -EACCES;
3368 }
3369 
3370 static int selinux_path_notify(const struct path *path, u64 mask,
3371 						unsigned int obj_type)
3372 {
3373 	int ret;
3374 	u32 perm;
3375 
3376 	struct common_audit_data ad;
3377 
3378 	ad.type = LSM_AUDIT_DATA_PATH;
3379 	ad.u.path = *path;
3380 
3381 	/*
3382 	 * Set permission needed based on the type of mark being set.
3383 	 * Performs an additional check for sb watches.
3384 	 */
3385 	switch (obj_type) {
3386 	case FSNOTIFY_OBJ_TYPE_VFSMOUNT:
3387 		perm = FILE__WATCH_MOUNT;
3388 		break;
3389 	case FSNOTIFY_OBJ_TYPE_SB:
3390 		perm = FILE__WATCH_SB;
3391 		ret = superblock_has_perm(current_cred(), path->dentry->d_sb,
3392 						FILESYSTEM__WATCH, &ad);
3393 		if (ret)
3394 			return ret;
3395 		break;
3396 	case FSNOTIFY_OBJ_TYPE_INODE:
3397 		perm = FILE__WATCH;
3398 		break;
3399 	default:
3400 		return -EINVAL;
3401 	}
3402 
3403 	/* blocking watches require the file:watch_with_perm permission */
3404 	if (mask & (ALL_FSNOTIFY_PERM_EVENTS))
3405 		perm |= FILE__WATCH_WITH_PERM;
3406 
3407 	/* watches on read-like events need the file:watch_reads permission */
3408 	if (mask & (FS_ACCESS | FS_ACCESS_PERM | FS_CLOSE_NOWRITE))
3409 		perm |= FILE__WATCH_READS;
3410 
3411 	return path_has_perm(current_cred(), path, perm);
3412 }
3413 
3414 /*
3415  * Copy the inode security context value to the user.
3416  *
3417  * Permission check is handled by selinux_inode_getxattr hook.
3418  */
3419 static int selinux_inode_getsecurity(struct mnt_idmap *idmap,
3420 				     struct inode *inode, const char *name,
3421 				     void **buffer, bool alloc)
3422 {
3423 	u32 size;
3424 	int error;
3425 	char *context = NULL;
3426 	struct inode_security_struct *isec;
3427 
3428 	/*
3429 	 * If we're not initialized yet, then we can't validate contexts, so
3430 	 * just let vfs_getxattr fall back to using the on-disk xattr.
3431 	 */
3432 	if (!selinux_initialized() ||
3433 	    strcmp(name, XATTR_SELINUX_SUFFIX))
3434 		return -EOPNOTSUPP;
3435 
3436 	/*
3437 	 * If the caller has CAP_MAC_ADMIN, then get the raw context
3438 	 * value even if it is not defined by current policy; otherwise,
3439 	 * use the in-core value under current policy.
3440 	 * Use the non-auditing forms of the permission checks since
3441 	 * getxattr may be called by unprivileged processes commonly
3442 	 * and lack of permission just means that we fall back to the
3443 	 * in-core context value, not a denial.
3444 	 */
3445 	isec = inode_security(inode);
3446 	if (has_cap_mac_admin(false))
3447 		error = security_sid_to_context_force(isec->sid, &context,
3448 						      &size);
3449 	else
3450 		error = security_sid_to_context(isec->sid,
3451 						&context, &size);
3452 	if (error)
3453 		return error;
3454 	error = size;
3455 	if (alloc) {
3456 		*buffer = context;
3457 		goto out_nofree;
3458 	}
3459 	kfree(context);
3460 out_nofree:
3461 	return error;
3462 }
3463 
3464 static int selinux_inode_setsecurity(struct inode *inode, const char *name,
3465 				     const void *value, size_t size, int flags)
3466 {
3467 	struct inode_security_struct *isec = inode_security_novalidate(inode);
3468 	struct superblock_security_struct *sbsec;
3469 	u32 newsid;
3470 	int rc;
3471 
3472 	if (strcmp(name, XATTR_SELINUX_SUFFIX))
3473 		return -EOPNOTSUPP;
3474 
3475 	sbsec = selinux_superblock(inode->i_sb);
3476 	if (!(sbsec->flags & SBLABEL_MNT))
3477 		return -EOPNOTSUPP;
3478 
3479 	if (!value || !size)
3480 		return -EACCES;
3481 
3482 	rc = security_context_to_sid(value, size, &newsid,
3483 				     GFP_KERNEL);
3484 	if (rc)
3485 		return rc;
3486 
3487 	spin_lock(&isec->lock);
3488 	isec->sclass = inode_mode_to_security_class(inode->i_mode);
3489 	isec->sid = newsid;
3490 	isec->initialized = LABEL_INITIALIZED;
3491 	spin_unlock(&isec->lock);
3492 	return 0;
3493 }
3494 
3495 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
3496 {
3497 	const int len = sizeof(XATTR_NAME_SELINUX);
3498 
3499 	if (!selinux_initialized())
3500 		return 0;
3501 
3502 	if (buffer && len <= buffer_size)
3503 		memcpy(buffer, XATTR_NAME_SELINUX, len);
3504 	return len;
3505 }
3506 
3507 static void selinux_inode_getsecid(struct inode *inode, u32 *secid)
3508 {
3509 	struct inode_security_struct *isec = inode_security_novalidate(inode);
3510 	*secid = isec->sid;
3511 }
3512 
3513 static int selinux_inode_copy_up(struct dentry *src, struct cred **new)
3514 {
3515 	u32 sid;
3516 	struct task_security_struct *tsec;
3517 	struct cred *new_creds = *new;
3518 
3519 	if (new_creds == NULL) {
3520 		new_creds = prepare_creds();
3521 		if (!new_creds)
3522 			return -ENOMEM;
3523 	}
3524 
3525 	tsec = selinux_cred(new_creds);
3526 	/* Get label from overlay inode and set it in create_sid */
3527 	selinux_inode_getsecid(d_inode(src), &sid);
3528 	tsec->create_sid = sid;
3529 	*new = new_creds;
3530 	return 0;
3531 }
3532 
3533 static int selinux_inode_copy_up_xattr(const char *name)
3534 {
3535 	/* The copy_up hook above sets the initial context on an inode, but we
3536 	 * don't then want to overwrite it by blindly copying all the lower
3537 	 * xattrs up.  Instead, filter out SELinux-related xattrs following
3538 	 * policy load.
3539 	 */
3540 	if (selinux_initialized() && strcmp(name, XATTR_NAME_SELINUX) == 0)
3541 		return 1; /* Discard */
3542 	/*
3543 	 * Any other attribute apart from SELINUX is not claimed, supported
3544 	 * by selinux.
3545 	 */
3546 	return -EOPNOTSUPP;
3547 }
3548 
3549 /* kernfs node operations */
3550 
3551 static int selinux_kernfs_init_security(struct kernfs_node *kn_dir,
3552 					struct kernfs_node *kn)
3553 {
3554 	const struct task_security_struct *tsec = selinux_cred(current_cred());
3555 	u32 parent_sid, newsid, clen;
3556 	int rc;
3557 	char *context;
3558 
3559 	rc = kernfs_xattr_get(kn_dir, XATTR_NAME_SELINUX, NULL, 0);
3560 	if (rc == -ENODATA)
3561 		return 0;
3562 	else if (rc < 0)
3563 		return rc;
3564 
3565 	clen = (u32)rc;
3566 	context = kmalloc(clen, GFP_KERNEL);
3567 	if (!context)
3568 		return -ENOMEM;
3569 
3570 	rc = kernfs_xattr_get(kn_dir, XATTR_NAME_SELINUX, context, clen);
3571 	if (rc < 0) {
3572 		kfree(context);
3573 		return rc;
3574 	}
3575 
3576 	rc = security_context_to_sid(context, clen, &parent_sid,
3577 				     GFP_KERNEL);
3578 	kfree(context);
3579 	if (rc)
3580 		return rc;
3581 
3582 	if (tsec->create_sid) {
3583 		newsid = tsec->create_sid;
3584 	} else {
3585 		u16 secclass = inode_mode_to_security_class(kn->mode);
3586 		struct qstr q;
3587 
3588 		q.name = kn->name;
3589 		q.hash_len = hashlen_string(kn_dir, kn->name);
3590 
3591 		rc = security_transition_sid(tsec->sid,
3592 					     parent_sid, secclass, &q,
3593 					     &newsid);
3594 		if (rc)
3595 			return rc;
3596 	}
3597 
3598 	rc = security_sid_to_context_force(newsid,
3599 					   &context, &clen);
3600 	if (rc)
3601 		return rc;
3602 
3603 	rc = kernfs_xattr_set(kn, XATTR_NAME_SELINUX, context, clen,
3604 			      XATTR_CREATE);
3605 	kfree(context);
3606 	return rc;
3607 }
3608 
3609 
3610 /* file security operations */
3611 
3612 static int selinux_revalidate_file_permission(struct file *file, int mask)
3613 {
3614 	const struct cred *cred = current_cred();
3615 	struct inode *inode = file_inode(file);
3616 
3617 	/* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
3618 	if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
3619 		mask |= MAY_APPEND;
3620 
3621 	return file_has_perm(cred, file,
3622 			     file_mask_to_av(inode->i_mode, mask));
3623 }
3624 
3625 static int selinux_file_permission(struct file *file, int mask)
3626 {
3627 	struct inode *inode = file_inode(file);
3628 	struct file_security_struct *fsec = selinux_file(file);
3629 	struct inode_security_struct *isec;
3630 	u32 sid = current_sid();
3631 
3632 	if (!mask)
3633 		/* No permission to check.  Existence test. */
3634 		return 0;
3635 
3636 	isec = inode_security(inode);
3637 	if (sid == fsec->sid && fsec->isid == isec->sid &&
3638 	    fsec->pseqno == avc_policy_seqno())
3639 		/* No change since file_open check. */
3640 		return 0;
3641 
3642 	return selinux_revalidate_file_permission(file, mask);
3643 }
3644 
3645 static int selinux_file_alloc_security(struct file *file)
3646 {
3647 	struct file_security_struct *fsec = selinux_file(file);
3648 	u32 sid = current_sid();
3649 
3650 	fsec->sid = sid;
3651 	fsec->fown_sid = sid;
3652 
3653 	return 0;
3654 }
3655 
3656 /*
3657  * Check whether a task has the ioctl permission and cmd
3658  * operation to an inode.
3659  */
3660 static int ioctl_has_perm(const struct cred *cred, struct file *file,
3661 		u32 requested, u16 cmd)
3662 {
3663 	struct common_audit_data ad;
3664 	struct file_security_struct *fsec = selinux_file(file);
3665 	struct inode *inode = file_inode(file);
3666 	struct inode_security_struct *isec;
3667 	struct lsm_ioctlop_audit ioctl;
3668 	u32 ssid = cred_sid(cred);
3669 	int rc;
3670 	u8 driver = cmd >> 8;
3671 	u8 xperm = cmd & 0xff;
3672 
3673 	ad.type = LSM_AUDIT_DATA_IOCTL_OP;
3674 	ad.u.op = &ioctl;
3675 	ad.u.op->cmd = cmd;
3676 	ad.u.op->path = file->f_path;
3677 
3678 	if (ssid != fsec->sid) {
3679 		rc = avc_has_perm(ssid, fsec->sid,
3680 				SECCLASS_FD,
3681 				FD__USE,
3682 				&ad);
3683 		if (rc)
3684 			goto out;
3685 	}
3686 
3687 	if (unlikely(IS_PRIVATE(inode)))
3688 		return 0;
3689 
3690 	isec = inode_security(inode);
3691 	rc = avc_has_extended_perms(ssid, isec->sid, isec->sclass,
3692 				    requested, driver, xperm, &ad);
3693 out:
3694 	return rc;
3695 }
3696 
3697 static int selinux_file_ioctl(struct file *file, unsigned int cmd,
3698 			      unsigned long arg)
3699 {
3700 	const struct cred *cred = current_cred();
3701 	int error = 0;
3702 
3703 	switch (cmd) {
3704 	case FIONREAD:
3705 	case FIBMAP:
3706 	case FIGETBSZ:
3707 	case FS_IOC_GETFLAGS:
3708 	case FS_IOC_GETVERSION:
3709 		error = file_has_perm(cred, file, FILE__GETATTR);
3710 		break;
3711 
3712 	case FS_IOC_SETFLAGS:
3713 	case FS_IOC_SETVERSION:
3714 		error = file_has_perm(cred, file, FILE__SETATTR);
3715 		break;
3716 
3717 	/* sys_ioctl() checks */
3718 	case FIONBIO:
3719 	case FIOASYNC:
3720 		error = file_has_perm(cred, file, 0);
3721 		break;
3722 
3723 	case KDSKBENT:
3724 	case KDSKBSENT:
3725 		error = cred_has_capability(cred, CAP_SYS_TTY_CONFIG,
3726 					    CAP_OPT_NONE, true);
3727 		break;
3728 
3729 	case FIOCLEX:
3730 	case FIONCLEX:
3731 		if (!selinux_policycap_ioctl_skip_cloexec())
3732 			error = ioctl_has_perm(cred, file, FILE__IOCTL, (u16) cmd);
3733 		break;
3734 
3735 	/* default case assumes that the command will go
3736 	 * to the file's ioctl() function.
3737 	 */
3738 	default:
3739 		error = ioctl_has_perm(cred, file, FILE__IOCTL, (u16) cmd);
3740 	}
3741 	return error;
3742 }
3743 
3744 static int selinux_file_ioctl_compat(struct file *file, unsigned int cmd,
3745 			      unsigned long arg)
3746 {
3747 	/*
3748 	 * If we are in a 64-bit kernel running 32-bit userspace, we need to
3749 	 * make sure we don't compare 32-bit flags to 64-bit flags.
3750 	 */
3751 	switch (cmd) {
3752 	case FS_IOC32_GETFLAGS:
3753 		cmd = FS_IOC_GETFLAGS;
3754 		break;
3755 	case FS_IOC32_SETFLAGS:
3756 		cmd = FS_IOC_SETFLAGS;
3757 		break;
3758 	case FS_IOC32_GETVERSION:
3759 		cmd = FS_IOC_GETVERSION;
3760 		break;
3761 	case FS_IOC32_SETVERSION:
3762 		cmd = FS_IOC_SETVERSION;
3763 		break;
3764 	default:
3765 		break;
3766 	}
3767 
3768 	return selinux_file_ioctl(file, cmd, arg);
3769 }
3770 
3771 static int default_noexec __ro_after_init;
3772 
3773 static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
3774 {
3775 	const struct cred *cred = current_cred();
3776 	u32 sid = cred_sid(cred);
3777 	int rc = 0;
3778 
3779 	if (default_noexec &&
3780 	    (prot & PROT_EXEC) && (!file || IS_PRIVATE(file_inode(file)) ||
3781 				   (!shared && (prot & PROT_WRITE)))) {
3782 		/*
3783 		 * We are making executable an anonymous mapping or a
3784 		 * private file mapping that will also be writable.
3785 		 * This has an additional check.
3786 		 */
3787 		rc = avc_has_perm(sid, sid, SECCLASS_PROCESS,
3788 				  PROCESS__EXECMEM, NULL);
3789 		if (rc)
3790 			goto error;
3791 	}
3792 
3793 	if (file) {
3794 		/* read access is always possible with a mapping */
3795 		u32 av = FILE__READ;
3796 
3797 		/* write access only matters if the mapping is shared */
3798 		if (shared && (prot & PROT_WRITE))
3799 			av |= FILE__WRITE;
3800 
3801 		if (prot & PROT_EXEC)
3802 			av |= FILE__EXECUTE;
3803 
3804 		return file_has_perm(cred, file, av);
3805 	}
3806 
3807 error:
3808 	return rc;
3809 }
3810 
3811 static int selinux_mmap_addr(unsigned long addr)
3812 {
3813 	int rc = 0;
3814 
3815 	if (addr < CONFIG_LSM_MMAP_MIN_ADDR) {
3816 		u32 sid = current_sid();
3817 		rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT,
3818 				  MEMPROTECT__MMAP_ZERO, NULL);
3819 	}
3820 
3821 	return rc;
3822 }
3823 
3824 static int selinux_mmap_file(struct file *file,
3825 			     unsigned long reqprot __always_unused,
3826 			     unsigned long prot, unsigned long flags)
3827 {
3828 	struct common_audit_data ad;
3829 	int rc;
3830 
3831 	if (file) {
3832 		ad.type = LSM_AUDIT_DATA_FILE;
3833 		ad.u.file = file;
3834 		rc = inode_has_perm(current_cred(), file_inode(file),
3835 				    FILE__MAP, &ad);
3836 		if (rc)
3837 			return rc;
3838 	}
3839 
3840 	return file_map_prot_check(file, prot,
3841 				   (flags & MAP_TYPE) == MAP_SHARED);
3842 }
3843 
3844 static int selinux_file_mprotect(struct vm_area_struct *vma,
3845 				 unsigned long reqprot __always_unused,
3846 				 unsigned long prot)
3847 {
3848 	const struct cred *cred = current_cred();
3849 	u32 sid = cred_sid(cred);
3850 
3851 	if (default_noexec &&
3852 	    (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3853 		int rc = 0;
3854 		if (vma_is_initial_heap(vma)) {
3855 			rc = avc_has_perm(sid, sid, SECCLASS_PROCESS,
3856 					  PROCESS__EXECHEAP, NULL);
3857 		} else if (!vma->vm_file && (vma_is_initial_stack(vma) ||
3858 			    vma_is_stack_for_current(vma))) {
3859 			rc = avc_has_perm(sid, sid, SECCLASS_PROCESS,
3860 					  PROCESS__EXECSTACK, NULL);
3861 		} else if (vma->vm_file && vma->anon_vma) {
3862 			/*
3863 			 * We are making executable a file mapping that has
3864 			 * had some COW done. Since pages might have been
3865 			 * written, check ability to execute the possibly
3866 			 * modified content.  This typically should only
3867 			 * occur for text relocations.
3868 			 */
3869 			rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3870 		}
3871 		if (rc)
3872 			return rc;
3873 	}
3874 
3875 	return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3876 }
3877 
3878 static int selinux_file_lock(struct file *file, unsigned int cmd)
3879 {
3880 	const struct cred *cred = current_cred();
3881 
3882 	return file_has_perm(cred, file, FILE__LOCK);
3883 }
3884 
3885 static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3886 			      unsigned long arg)
3887 {
3888 	const struct cred *cred = current_cred();
3889 	int err = 0;
3890 
3891 	switch (cmd) {
3892 	case F_SETFL:
3893 		if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3894 			err = file_has_perm(cred, file, FILE__WRITE);
3895 			break;
3896 		}
3897 		fallthrough;
3898 	case F_SETOWN:
3899 	case F_SETSIG:
3900 	case F_GETFL:
3901 	case F_GETOWN:
3902 	case F_GETSIG:
3903 	case F_GETOWNER_UIDS:
3904 		/* Just check FD__USE permission */
3905 		err = file_has_perm(cred, file, 0);
3906 		break;
3907 	case F_GETLK:
3908 	case F_SETLK:
3909 	case F_SETLKW:
3910 	case F_OFD_GETLK:
3911 	case F_OFD_SETLK:
3912 	case F_OFD_SETLKW:
3913 #if BITS_PER_LONG == 32
3914 	case F_GETLK64:
3915 	case F_SETLK64:
3916 	case F_SETLKW64:
3917 #endif
3918 		err = file_has_perm(cred, file, FILE__LOCK);
3919 		break;
3920 	}
3921 
3922 	return err;
3923 }
3924 
3925 static void selinux_file_set_fowner(struct file *file)
3926 {
3927 	struct file_security_struct *fsec;
3928 
3929 	fsec = selinux_file(file);
3930 	fsec->fown_sid = current_sid();
3931 }
3932 
3933 static int selinux_file_send_sigiotask(struct task_struct *tsk,
3934 				       struct fown_struct *fown, int signum)
3935 {
3936 	struct file *file;
3937 	u32 sid = task_sid_obj(tsk);
3938 	u32 perm;
3939 	struct file_security_struct *fsec;
3940 
3941 	/* struct fown_struct is never outside the context of a struct file */
3942 	file = container_of(fown, struct file, f_owner);
3943 
3944 	fsec = selinux_file(file);
3945 
3946 	if (!signum)
3947 		perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3948 	else
3949 		perm = signal_to_av(signum);
3950 
3951 	return avc_has_perm(fsec->fown_sid, sid,
3952 			    SECCLASS_PROCESS, perm, NULL);
3953 }
3954 
3955 static int selinux_file_receive(struct file *file)
3956 {
3957 	const struct cred *cred = current_cred();
3958 
3959 	return file_has_perm(cred, file, file_to_av(file));
3960 }
3961 
3962 static int selinux_file_open(struct file *file)
3963 {
3964 	struct file_security_struct *fsec;
3965 	struct inode_security_struct *isec;
3966 
3967 	fsec = selinux_file(file);
3968 	isec = inode_security(file_inode(file));
3969 	/*
3970 	 * Save inode label and policy sequence number
3971 	 * at open-time so that selinux_file_permission
3972 	 * can determine whether revalidation is necessary.
3973 	 * Task label is already saved in the file security
3974 	 * struct as its SID.
3975 	 */
3976 	fsec->isid = isec->sid;
3977 	fsec->pseqno = avc_policy_seqno();
3978 	/*
3979 	 * Since the inode label or policy seqno may have changed
3980 	 * between the selinux_inode_permission check and the saving
3981 	 * of state above, recheck that access is still permitted.
3982 	 * Otherwise, access might never be revalidated against the
3983 	 * new inode label or new policy.
3984 	 * This check is not redundant - do not remove.
3985 	 */
3986 	return file_path_has_perm(file->f_cred, file, open_file_to_av(file));
3987 }
3988 
3989 /* task security operations */
3990 
3991 static int selinux_task_alloc(struct task_struct *task,
3992 			      unsigned long clone_flags)
3993 {
3994 	u32 sid = current_sid();
3995 
3996 	return avc_has_perm(sid, sid, SECCLASS_PROCESS, PROCESS__FORK, NULL);
3997 }
3998 
3999 /*
4000  * prepare a new set of credentials for modification
4001  */
4002 static int selinux_cred_prepare(struct cred *new, const struct cred *old,
4003 				gfp_t gfp)
4004 {
4005 	const struct task_security_struct *old_tsec = selinux_cred(old);
4006 	struct task_security_struct *tsec = selinux_cred(new);
4007 
4008 	*tsec = *old_tsec;
4009 	return 0;
4010 }
4011 
4012 /*
4013  * transfer the SELinux data to a blank set of creds
4014  */
4015 static void selinux_cred_transfer(struct cred *new, const struct cred *old)
4016 {
4017 	const struct task_security_struct *old_tsec = selinux_cred(old);
4018 	struct task_security_struct *tsec = selinux_cred(new);
4019 
4020 	*tsec = *old_tsec;
4021 }
4022 
4023 static void selinux_cred_getsecid(const struct cred *c, u32 *secid)
4024 {
4025 	*secid = cred_sid(c);
4026 }
4027 
4028 /*
4029  * set the security data for a kernel service
4030  * - all the creation contexts are set to unlabelled
4031  */
4032 static int selinux_kernel_act_as(struct cred *new, u32 secid)
4033 {
4034 	struct task_security_struct *tsec = selinux_cred(new);
4035 	u32 sid = current_sid();
4036 	int ret;
4037 
4038 	ret = avc_has_perm(sid, secid,
4039 			   SECCLASS_KERNEL_SERVICE,
4040 			   KERNEL_SERVICE__USE_AS_OVERRIDE,
4041 			   NULL);
4042 	if (ret == 0) {
4043 		tsec->sid = secid;
4044 		tsec->create_sid = 0;
4045 		tsec->keycreate_sid = 0;
4046 		tsec->sockcreate_sid = 0;
4047 	}
4048 	return ret;
4049 }
4050 
4051 /*
4052  * set the file creation context in a security record to the same as the
4053  * objective context of the specified inode
4054  */
4055 static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
4056 {
4057 	struct inode_security_struct *isec = inode_security(inode);
4058 	struct task_security_struct *tsec = selinux_cred(new);
4059 	u32 sid = current_sid();
4060 	int ret;
4061 
4062 	ret = avc_has_perm(sid, isec->sid,
4063 			   SECCLASS_KERNEL_SERVICE,
4064 			   KERNEL_SERVICE__CREATE_FILES_AS,
4065 			   NULL);
4066 
4067 	if (ret == 0)
4068 		tsec->create_sid = isec->sid;
4069 	return ret;
4070 }
4071 
4072 static int selinux_kernel_module_request(char *kmod_name)
4073 {
4074 	struct common_audit_data ad;
4075 
4076 	ad.type = LSM_AUDIT_DATA_KMOD;
4077 	ad.u.kmod_name = kmod_name;
4078 
4079 	return avc_has_perm(current_sid(), SECINITSID_KERNEL, SECCLASS_SYSTEM,
4080 			    SYSTEM__MODULE_REQUEST, &ad);
4081 }
4082 
4083 static int selinux_kernel_module_from_file(struct file *file)
4084 {
4085 	struct common_audit_data ad;
4086 	struct inode_security_struct *isec;
4087 	struct file_security_struct *fsec;
4088 	u32 sid = current_sid();
4089 	int rc;
4090 
4091 	/* init_module */
4092 	if (file == NULL)
4093 		return avc_has_perm(sid, sid, SECCLASS_SYSTEM,
4094 					SYSTEM__MODULE_LOAD, NULL);
4095 
4096 	/* finit_module */
4097 
4098 	ad.type = LSM_AUDIT_DATA_FILE;
4099 	ad.u.file = file;
4100 
4101 	fsec = selinux_file(file);
4102 	if (sid != fsec->sid) {
4103 		rc = avc_has_perm(sid, fsec->sid, SECCLASS_FD, FD__USE, &ad);
4104 		if (rc)
4105 			return rc;
4106 	}
4107 
4108 	isec = inode_security(file_inode(file));
4109 	return avc_has_perm(sid, isec->sid, SECCLASS_SYSTEM,
4110 				SYSTEM__MODULE_LOAD, &ad);
4111 }
4112 
4113 static int selinux_kernel_read_file(struct file *file,
4114 				    enum kernel_read_file_id id,
4115 				    bool contents)
4116 {
4117 	int rc = 0;
4118 
4119 	switch (id) {
4120 	case READING_MODULE:
4121 		rc = selinux_kernel_module_from_file(contents ? file : NULL);
4122 		break;
4123 	default:
4124 		break;
4125 	}
4126 
4127 	return rc;
4128 }
4129 
4130 static int selinux_kernel_load_data(enum kernel_load_data_id id, bool contents)
4131 {
4132 	int rc = 0;
4133 
4134 	switch (id) {
4135 	case LOADING_MODULE:
4136 		rc = selinux_kernel_module_from_file(NULL);
4137 		break;
4138 	default:
4139 		break;
4140 	}
4141 
4142 	return rc;
4143 }
4144 
4145 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
4146 {
4147 	return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4148 			    PROCESS__SETPGID, NULL);
4149 }
4150 
4151 static int selinux_task_getpgid(struct task_struct *p)
4152 {
4153 	return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4154 			    PROCESS__GETPGID, NULL);
4155 }
4156 
4157 static int selinux_task_getsid(struct task_struct *p)
4158 {
4159 	return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4160 			    PROCESS__GETSESSION, NULL);
4161 }
4162 
4163 static void selinux_current_getsecid_subj(u32 *secid)
4164 {
4165 	*secid = current_sid();
4166 }
4167 
4168 static void selinux_task_getsecid_obj(struct task_struct *p, u32 *secid)
4169 {
4170 	*secid = task_sid_obj(p);
4171 }
4172 
4173 static int selinux_task_setnice(struct task_struct *p, int nice)
4174 {
4175 	return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4176 			    PROCESS__SETSCHED, NULL);
4177 }
4178 
4179 static int selinux_task_setioprio(struct task_struct *p, int ioprio)
4180 {
4181 	return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4182 			    PROCESS__SETSCHED, NULL);
4183 }
4184 
4185 static int selinux_task_getioprio(struct task_struct *p)
4186 {
4187 	return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4188 			    PROCESS__GETSCHED, NULL);
4189 }
4190 
4191 static int selinux_task_prlimit(const struct cred *cred, const struct cred *tcred,
4192 				unsigned int flags)
4193 {
4194 	u32 av = 0;
4195 
4196 	if (!flags)
4197 		return 0;
4198 	if (flags & LSM_PRLIMIT_WRITE)
4199 		av |= PROCESS__SETRLIMIT;
4200 	if (flags & LSM_PRLIMIT_READ)
4201 		av |= PROCESS__GETRLIMIT;
4202 	return avc_has_perm(cred_sid(cred), cred_sid(tcred),
4203 			    SECCLASS_PROCESS, av, NULL);
4204 }
4205 
4206 static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource,
4207 		struct rlimit *new_rlim)
4208 {
4209 	struct rlimit *old_rlim = p->signal->rlim + resource;
4210 
4211 	/* Control the ability to change the hard limit (whether
4212 	   lowering or raising it), so that the hard limit can
4213 	   later be used as a safe reset point for the soft limit
4214 	   upon context transitions.  See selinux_bprm_committing_creds. */
4215 	if (old_rlim->rlim_max != new_rlim->rlim_max)
4216 		return avc_has_perm(current_sid(), task_sid_obj(p),
4217 				    SECCLASS_PROCESS, PROCESS__SETRLIMIT, NULL);
4218 
4219 	return 0;
4220 }
4221 
4222 static int selinux_task_setscheduler(struct task_struct *p)
4223 {
4224 	return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4225 			    PROCESS__SETSCHED, NULL);
4226 }
4227 
4228 static int selinux_task_getscheduler(struct task_struct *p)
4229 {
4230 	return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4231 			    PROCESS__GETSCHED, NULL);
4232 }
4233 
4234 static int selinux_task_movememory(struct task_struct *p)
4235 {
4236 	return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4237 			    PROCESS__SETSCHED, NULL);
4238 }
4239 
4240 static int selinux_task_kill(struct task_struct *p, struct kernel_siginfo *info,
4241 				int sig, const struct cred *cred)
4242 {
4243 	u32 secid;
4244 	u32 perm;
4245 
4246 	if (!sig)
4247 		perm = PROCESS__SIGNULL; /* null signal; existence test */
4248 	else
4249 		perm = signal_to_av(sig);
4250 	if (!cred)
4251 		secid = current_sid();
4252 	else
4253 		secid = cred_sid(cred);
4254 	return avc_has_perm(secid, task_sid_obj(p), SECCLASS_PROCESS, perm, NULL);
4255 }
4256 
4257 static void selinux_task_to_inode(struct task_struct *p,
4258 				  struct inode *inode)
4259 {
4260 	struct inode_security_struct *isec = selinux_inode(inode);
4261 	u32 sid = task_sid_obj(p);
4262 
4263 	spin_lock(&isec->lock);
4264 	isec->sclass = inode_mode_to_security_class(inode->i_mode);
4265 	isec->sid = sid;
4266 	isec->initialized = LABEL_INITIALIZED;
4267 	spin_unlock(&isec->lock);
4268 }
4269 
4270 static int selinux_userns_create(const struct cred *cred)
4271 {
4272 	u32 sid = current_sid();
4273 
4274 	return avc_has_perm(sid, sid, SECCLASS_USER_NAMESPACE,
4275 			USER_NAMESPACE__CREATE, NULL);
4276 }
4277 
4278 /* Returns error only if unable to parse addresses */
4279 static int selinux_parse_skb_ipv4(struct sk_buff *skb,
4280 			struct common_audit_data *ad, u8 *proto)
4281 {
4282 	int offset, ihlen, ret = -EINVAL;
4283 	struct iphdr _iph, *ih;
4284 
4285 	offset = skb_network_offset(skb);
4286 	ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
4287 	if (ih == NULL)
4288 		goto out;
4289 
4290 	ihlen = ih->ihl * 4;
4291 	if (ihlen < sizeof(_iph))
4292 		goto out;
4293 
4294 	ad->u.net->v4info.saddr = ih->saddr;
4295 	ad->u.net->v4info.daddr = ih->daddr;
4296 	ret = 0;
4297 
4298 	if (proto)
4299 		*proto = ih->protocol;
4300 
4301 	switch (ih->protocol) {
4302 	case IPPROTO_TCP: {
4303 		struct tcphdr _tcph, *th;
4304 
4305 		if (ntohs(ih->frag_off) & IP_OFFSET)
4306 			break;
4307 
4308 		offset += ihlen;
4309 		th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
4310 		if (th == NULL)
4311 			break;
4312 
4313 		ad->u.net->sport = th->source;
4314 		ad->u.net->dport = th->dest;
4315 		break;
4316 	}
4317 
4318 	case IPPROTO_UDP: {
4319 		struct udphdr _udph, *uh;
4320 
4321 		if (ntohs(ih->frag_off) & IP_OFFSET)
4322 			break;
4323 
4324 		offset += ihlen;
4325 		uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
4326 		if (uh == NULL)
4327 			break;
4328 
4329 		ad->u.net->sport = uh->source;
4330 		ad->u.net->dport = uh->dest;
4331 		break;
4332 	}
4333 
4334 	case IPPROTO_DCCP: {
4335 		struct dccp_hdr _dccph, *dh;
4336 
4337 		if (ntohs(ih->frag_off) & IP_OFFSET)
4338 			break;
4339 
4340 		offset += ihlen;
4341 		dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
4342 		if (dh == NULL)
4343 			break;
4344 
4345 		ad->u.net->sport = dh->dccph_sport;
4346 		ad->u.net->dport = dh->dccph_dport;
4347 		break;
4348 	}
4349 
4350 #if IS_ENABLED(CONFIG_IP_SCTP)
4351 	case IPPROTO_SCTP: {
4352 		struct sctphdr _sctph, *sh;
4353 
4354 		if (ntohs(ih->frag_off) & IP_OFFSET)
4355 			break;
4356 
4357 		offset += ihlen;
4358 		sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph);
4359 		if (sh == NULL)
4360 			break;
4361 
4362 		ad->u.net->sport = sh->source;
4363 		ad->u.net->dport = sh->dest;
4364 		break;
4365 	}
4366 #endif
4367 	default:
4368 		break;
4369 	}
4370 out:
4371 	return ret;
4372 }
4373 
4374 #if IS_ENABLED(CONFIG_IPV6)
4375 
4376 /* Returns error only if unable to parse addresses */
4377 static int selinux_parse_skb_ipv6(struct sk_buff *skb,
4378 			struct common_audit_data *ad, u8 *proto)
4379 {
4380 	u8 nexthdr;
4381 	int ret = -EINVAL, offset;
4382 	struct ipv6hdr _ipv6h, *ip6;
4383 	__be16 frag_off;
4384 
4385 	offset = skb_network_offset(skb);
4386 	ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
4387 	if (ip6 == NULL)
4388 		goto out;
4389 
4390 	ad->u.net->v6info.saddr = ip6->saddr;
4391 	ad->u.net->v6info.daddr = ip6->daddr;
4392 	ret = 0;
4393 
4394 	nexthdr = ip6->nexthdr;
4395 	offset += sizeof(_ipv6h);
4396 	offset = ipv6_skip_exthdr(skb, offset, &nexthdr, &frag_off);
4397 	if (offset < 0)
4398 		goto out;
4399 
4400 	if (proto)
4401 		*proto = nexthdr;
4402 
4403 	switch (nexthdr) {
4404 	case IPPROTO_TCP: {
4405 		struct tcphdr _tcph, *th;
4406 
4407 		th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
4408 		if (th == NULL)
4409 			break;
4410 
4411 		ad->u.net->sport = th->source;
4412 		ad->u.net->dport = th->dest;
4413 		break;
4414 	}
4415 
4416 	case IPPROTO_UDP: {
4417 		struct udphdr _udph, *uh;
4418 
4419 		uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
4420 		if (uh == NULL)
4421 			break;
4422 
4423 		ad->u.net->sport = uh->source;
4424 		ad->u.net->dport = uh->dest;
4425 		break;
4426 	}
4427 
4428 	case IPPROTO_DCCP: {
4429 		struct dccp_hdr _dccph, *dh;
4430 
4431 		dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
4432 		if (dh == NULL)
4433 			break;
4434 
4435 		ad->u.net->sport = dh->dccph_sport;
4436 		ad->u.net->dport = dh->dccph_dport;
4437 		break;
4438 	}
4439 
4440 #if IS_ENABLED(CONFIG_IP_SCTP)
4441 	case IPPROTO_SCTP: {
4442 		struct sctphdr _sctph, *sh;
4443 
4444 		sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph);
4445 		if (sh == NULL)
4446 			break;
4447 
4448 		ad->u.net->sport = sh->source;
4449 		ad->u.net->dport = sh->dest;
4450 		break;
4451 	}
4452 #endif
4453 	/* includes fragments */
4454 	default:
4455 		break;
4456 	}
4457 out:
4458 	return ret;
4459 }
4460 
4461 #endif /* IPV6 */
4462 
4463 static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad,
4464 			     char **_addrp, int src, u8 *proto)
4465 {
4466 	char *addrp;
4467 	int ret;
4468 
4469 	switch (ad->u.net->family) {
4470 	case PF_INET:
4471 		ret = selinux_parse_skb_ipv4(skb, ad, proto);
4472 		if (ret)
4473 			goto parse_error;
4474 		addrp = (char *)(src ? &ad->u.net->v4info.saddr :
4475 				       &ad->u.net->v4info.daddr);
4476 		goto okay;
4477 
4478 #if IS_ENABLED(CONFIG_IPV6)
4479 	case PF_INET6:
4480 		ret = selinux_parse_skb_ipv6(skb, ad, proto);
4481 		if (ret)
4482 			goto parse_error;
4483 		addrp = (char *)(src ? &ad->u.net->v6info.saddr :
4484 				       &ad->u.net->v6info.daddr);
4485 		goto okay;
4486 #endif	/* IPV6 */
4487 	default:
4488 		addrp = NULL;
4489 		goto okay;
4490 	}
4491 
4492 parse_error:
4493 	pr_warn(
4494 	       "SELinux: failure in selinux_parse_skb(),"
4495 	       " unable to parse packet\n");
4496 	return ret;
4497 
4498 okay:
4499 	if (_addrp)
4500 		*_addrp = addrp;
4501 	return 0;
4502 }
4503 
4504 /**
4505  * selinux_skb_peerlbl_sid - Determine the peer label of a packet
4506  * @skb: the packet
4507  * @family: protocol family
4508  * @sid: the packet's peer label SID
4509  *
4510  * Description:
4511  * Check the various different forms of network peer labeling and determine
4512  * the peer label/SID for the packet; most of the magic actually occurs in
4513  * the security server function security_net_peersid_cmp().  The function
4514  * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
4515  * or -EACCES if @sid is invalid due to inconsistencies with the different
4516  * peer labels.
4517  *
4518  */
4519 static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
4520 {
4521 	int err;
4522 	u32 xfrm_sid;
4523 	u32 nlbl_sid;
4524 	u32 nlbl_type;
4525 
4526 	err = selinux_xfrm_skb_sid(skb, &xfrm_sid);
4527 	if (unlikely(err))
4528 		return -EACCES;
4529 	err = selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
4530 	if (unlikely(err))
4531 		return -EACCES;
4532 
4533 	err = security_net_peersid_resolve(nlbl_sid,
4534 					   nlbl_type, xfrm_sid, sid);
4535 	if (unlikely(err)) {
4536 		pr_warn(
4537 		       "SELinux: failure in selinux_skb_peerlbl_sid(),"
4538 		       " unable to determine packet's peer label\n");
4539 		return -EACCES;
4540 	}
4541 
4542 	return 0;
4543 }
4544 
4545 /**
4546  * selinux_conn_sid - Determine the child socket label for a connection
4547  * @sk_sid: the parent socket's SID
4548  * @skb_sid: the packet's SID
4549  * @conn_sid: the resulting connection SID
4550  *
4551  * If @skb_sid is valid then the user:role:type information from @sk_sid is
4552  * combined with the MLS information from @skb_sid in order to create
4553  * @conn_sid.  If @skb_sid is not valid then @conn_sid is simply a copy
4554  * of @sk_sid.  Returns zero on success, negative values on failure.
4555  *
4556  */
4557 static int selinux_conn_sid(u32 sk_sid, u32 skb_sid, u32 *conn_sid)
4558 {
4559 	int err = 0;
4560 
4561 	if (skb_sid != SECSID_NULL)
4562 		err = security_sid_mls_copy(sk_sid, skb_sid,
4563 					    conn_sid);
4564 	else
4565 		*conn_sid = sk_sid;
4566 
4567 	return err;
4568 }
4569 
4570 /* socket security operations */
4571 
4572 static int socket_sockcreate_sid(const struct task_security_struct *tsec,
4573 				 u16 secclass, u32 *socksid)
4574 {
4575 	if (tsec->sockcreate_sid > SECSID_NULL) {
4576 		*socksid = tsec->sockcreate_sid;
4577 		return 0;
4578 	}
4579 
4580 	return security_transition_sid(tsec->sid, tsec->sid,
4581 				       secclass, NULL, socksid);
4582 }
4583 
4584 static int sock_has_perm(struct sock *sk, u32 perms)
4585 {
4586 	struct sk_security_struct *sksec = sk->sk_security;
4587 	struct common_audit_data ad;
4588 	struct lsm_network_audit net;
4589 
4590 	if (sksec->sid == SECINITSID_KERNEL)
4591 		return 0;
4592 
4593 	/*
4594 	 * Before POLICYDB_CAP_USERSPACE_INITIAL_CONTEXT, sockets that
4595 	 * inherited the kernel context from early boot used to be skipped
4596 	 * here, so preserve that behavior unless the capability is set.
4597 	 *
4598 	 * By setting the capability the policy signals that it is ready
4599 	 * for this quirk to be fixed. Note that sockets created by a kernel
4600 	 * thread or a usermode helper executed without a transition will
4601 	 * still be skipped in this check regardless of the policycap
4602 	 * setting.
4603 	 */
4604 	if (!selinux_policycap_userspace_initial_context() &&
4605 	    sksec->sid == SECINITSID_INIT)
4606 		return 0;
4607 
4608 	ad_net_init_from_sk(&ad, &net, sk);
4609 
4610 	return avc_has_perm(current_sid(), sksec->sid, sksec->sclass, perms,
4611 			    &ad);
4612 }
4613 
4614 static int selinux_socket_create(int family, int type,
4615 				 int protocol, int kern)
4616 {
4617 	const struct task_security_struct *tsec = selinux_cred(current_cred());
4618 	u32 newsid;
4619 	u16 secclass;
4620 	int rc;
4621 
4622 	if (kern)
4623 		return 0;
4624 
4625 	secclass = socket_type_to_security_class(family, type, protocol);
4626 	rc = socket_sockcreate_sid(tsec, secclass, &newsid);
4627 	if (rc)
4628 		return rc;
4629 
4630 	return avc_has_perm(tsec->sid, newsid, secclass, SOCKET__CREATE, NULL);
4631 }
4632 
4633 static int selinux_socket_post_create(struct socket *sock, int family,
4634 				      int type, int protocol, int kern)
4635 {
4636 	const struct task_security_struct *tsec = selinux_cred(current_cred());
4637 	struct inode_security_struct *isec = inode_security_novalidate(SOCK_INODE(sock));
4638 	struct sk_security_struct *sksec;
4639 	u16 sclass = socket_type_to_security_class(family, type, protocol);
4640 	u32 sid = SECINITSID_KERNEL;
4641 	int err = 0;
4642 
4643 	if (!kern) {
4644 		err = socket_sockcreate_sid(tsec, sclass, &sid);
4645 		if (err)
4646 			return err;
4647 	}
4648 
4649 	isec->sclass = sclass;
4650 	isec->sid = sid;
4651 	isec->initialized = LABEL_INITIALIZED;
4652 
4653 	if (sock->sk) {
4654 		sksec = sock->sk->sk_security;
4655 		sksec->sclass = sclass;
4656 		sksec->sid = sid;
4657 		/* Allows detection of the first association on this socket */
4658 		if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4659 			sksec->sctp_assoc_state = SCTP_ASSOC_UNSET;
4660 
4661 		err = selinux_netlbl_socket_post_create(sock->sk, family);
4662 	}
4663 
4664 	return err;
4665 }
4666 
4667 static int selinux_socket_socketpair(struct socket *socka,
4668 				     struct socket *sockb)
4669 {
4670 	struct sk_security_struct *sksec_a = socka->sk->sk_security;
4671 	struct sk_security_struct *sksec_b = sockb->sk->sk_security;
4672 
4673 	sksec_a->peer_sid = sksec_b->sid;
4674 	sksec_b->peer_sid = sksec_a->sid;
4675 
4676 	return 0;
4677 }
4678 
4679 /* Range of port numbers used to automatically bind.
4680    Need to determine whether we should perform a name_bind
4681    permission check between the socket and the port number. */
4682 
4683 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
4684 {
4685 	struct sock *sk = sock->sk;
4686 	struct sk_security_struct *sksec = sk->sk_security;
4687 	u16 family;
4688 	int err;
4689 
4690 	err = sock_has_perm(sk, SOCKET__BIND);
4691 	if (err)
4692 		goto out;
4693 
4694 	/* If PF_INET or PF_INET6, check name_bind permission for the port. */
4695 	family = sk->sk_family;
4696 	if (family == PF_INET || family == PF_INET6) {
4697 		char *addrp;
4698 		struct common_audit_data ad;
4699 		struct lsm_network_audit net = {0,};
4700 		struct sockaddr_in *addr4 = NULL;
4701 		struct sockaddr_in6 *addr6 = NULL;
4702 		u16 family_sa;
4703 		unsigned short snum;
4704 		u32 sid, node_perm;
4705 
4706 		/*
4707 		 * sctp_bindx(3) calls via selinux_sctp_bind_connect()
4708 		 * that validates multiple binding addresses. Because of this
4709 		 * need to check address->sa_family as it is possible to have
4710 		 * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET.
4711 		 */
4712 		if (addrlen < offsetofend(struct sockaddr, sa_family))
4713 			return -EINVAL;
4714 		family_sa = address->sa_family;
4715 		switch (family_sa) {
4716 		case AF_UNSPEC:
4717 		case AF_INET:
4718 			if (addrlen < sizeof(struct sockaddr_in))
4719 				return -EINVAL;
4720 			addr4 = (struct sockaddr_in *)address;
4721 			if (family_sa == AF_UNSPEC) {
4722 				if (family == PF_INET6) {
4723 					/* Length check from inet6_bind_sk() */
4724 					if (addrlen < SIN6_LEN_RFC2133)
4725 						return -EINVAL;
4726 					/* Family check from __inet6_bind() */
4727 					goto err_af;
4728 				}
4729 				/* see __inet_bind(), we only want to allow
4730 				 * AF_UNSPEC if the address is INADDR_ANY
4731 				 */
4732 				if (addr4->sin_addr.s_addr != htonl(INADDR_ANY))
4733 					goto err_af;
4734 				family_sa = AF_INET;
4735 			}
4736 			snum = ntohs(addr4->sin_port);
4737 			addrp = (char *)&addr4->sin_addr.s_addr;
4738 			break;
4739 		case AF_INET6:
4740 			if (addrlen < SIN6_LEN_RFC2133)
4741 				return -EINVAL;
4742 			addr6 = (struct sockaddr_in6 *)address;
4743 			snum = ntohs(addr6->sin6_port);
4744 			addrp = (char *)&addr6->sin6_addr.s6_addr;
4745 			break;
4746 		default:
4747 			goto err_af;
4748 		}
4749 
4750 		ad.type = LSM_AUDIT_DATA_NET;
4751 		ad.u.net = &net;
4752 		ad.u.net->sport = htons(snum);
4753 		ad.u.net->family = family_sa;
4754 
4755 		if (snum) {
4756 			int low, high;
4757 
4758 			inet_get_local_port_range(sock_net(sk), &low, &high);
4759 
4760 			if (inet_port_requires_bind_service(sock_net(sk), snum) ||
4761 			    snum < low || snum > high) {
4762 				err = sel_netport_sid(sk->sk_protocol,
4763 						      snum, &sid);
4764 				if (err)
4765 					goto out;
4766 				err = avc_has_perm(sksec->sid, sid,
4767 						   sksec->sclass,
4768 						   SOCKET__NAME_BIND, &ad);
4769 				if (err)
4770 					goto out;
4771 			}
4772 		}
4773 
4774 		switch (sksec->sclass) {
4775 		case SECCLASS_TCP_SOCKET:
4776 			node_perm = TCP_SOCKET__NODE_BIND;
4777 			break;
4778 
4779 		case SECCLASS_UDP_SOCKET:
4780 			node_perm = UDP_SOCKET__NODE_BIND;
4781 			break;
4782 
4783 		case SECCLASS_DCCP_SOCKET:
4784 			node_perm = DCCP_SOCKET__NODE_BIND;
4785 			break;
4786 
4787 		case SECCLASS_SCTP_SOCKET:
4788 			node_perm = SCTP_SOCKET__NODE_BIND;
4789 			break;
4790 
4791 		default:
4792 			node_perm = RAWIP_SOCKET__NODE_BIND;
4793 			break;
4794 		}
4795 
4796 		err = sel_netnode_sid(addrp, family_sa, &sid);
4797 		if (err)
4798 			goto out;
4799 
4800 		if (family_sa == AF_INET)
4801 			ad.u.net->v4info.saddr = addr4->sin_addr.s_addr;
4802 		else
4803 			ad.u.net->v6info.saddr = addr6->sin6_addr;
4804 
4805 		err = avc_has_perm(sksec->sid, sid,
4806 				   sksec->sclass, node_perm, &ad);
4807 		if (err)
4808 			goto out;
4809 	}
4810 out:
4811 	return err;
4812 err_af:
4813 	/* Note that SCTP services expect -EINVAL, others -EAFNOSUPPORT. */
4814 	if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4815 		return -EINVAL;
4816 	return -EAFNOSUPPORT;
4817 }
4818 
4819 /* This supports connect(2) and SCTP connect services such as sctp_connectx(3)
4820  * and sctp_sendmsg(3) as described in Documentation/security/SCTP.rst
4821  */
4822 static int selinux_socket_connect_helper(struct socket *sock,
4823 					 struct sockaddr *address, int addrlen)
4824 {
4825 	struct sock *sk = sock->sk;
4826 	struct sk_security_struct *sksec = sk->sk_security;
4827 	int err;
4828 
4829 	err = sock_has_perm(sk, SOCKET__CONNECT);
4830 	if (err)
4831 		return err;
4832 	if (addrlen < offsetofend(struct sockaddr, sa_family))
4833 		return -EINVAL;
4834 
4835 	/* connect(AF_UNSPEC) has special handling, as it is a documented
4836 	 * way to disconnect the socket
4837 	 */
4838 	if (address->sa_family == AF_UNSPEC)
4839 		return 0;
4840 
4841 	/*
4842 	 * If a TCP, DCCP or SCTP socket, check name_connect permission
4843 	 * for the port.
4844 	 */
4845 	if (sksec->sclass == SECCLASS_TCP_SOCKET ||
4846 	    sksec->sclass == SECCLASS_DCCP_SOCKET ||
4847 	    sksec->sclass == SECCLASS_SCTP_SOCKET) {
4848 		struct common_audit_data ad;
4849 		struct lsm_network_audit net = {0,};
4850 		struct sockaddr_in *addr4 = NULL;
4851 		struct sockaddr_in6 *addr6 = NULL;
4852 		unsigned short snum;
4853 		u32 sid, perm;
4854 
4855 		/* sctp_connectx(3) calls via selinux_sctp_bind_connect()
4856 		 * that validates multiple connect addresses. Because of this
4857 		 * need to check address->sa_family as it is possible to have
4858 		 * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET.
4859 		 */
4860 		switch (address->sa_family) {
4861 		case AF_INET:
4862 			addr4 = (struct sockaddr_in *)address;
4863 			if (addrlen < sizeof(struct sockaddr_in))
4864 				return -EINVAL;
4865 			snum = ntohs(addr4->sin_port);
4866 			break;
4867 		case AF_INET6:
4868 			addr6 = (struct sockaddr_in6 *)address;
4869 			if (addrlen < SIN6_LEN_RFC2133)
4870 				return -EINVAL;
4871 			snum = ntohs(addr6->sin6_port);
4872 			break;
4873 		default:
4874 			/* Note that SCTP services expect -EINVAL, whereas
4875 			 * others expect -EAFNOSUPPORT.
4876 			 */
4877 			if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4878 				return -EINVAL;
4879 			else
4880 				return -EAFNOSUPPORT;
4881 		}
4882 
4883 		err = sel_netport_sid(sk->sk_protocol, snum, &sid);
4884 		if (err)
4885 			return err;
4886 
4887 		switch (sksec->sclass) {
4888 		case SECCLASS_TCP_SOCKET:
4889 			perm = TCP_SOCKET__NAME_CONNECT;
4890 			break;
4891 		case SECCLASS_DCCP_SOCKET:
4892 			perm = DCCP_SOCKET__NAME_CONNECT;
4893 			break;
4894 		case SECCLASS_SCTP_SOCKET:
4895 			perm = SCTP_SOCKET__NAME_CONNECT;
4896 			break;
4897 		}
4898 
4899 		ad.type = LSM_AUDIT_DATA_NET;
4900 		ad.u.net = &net;
4901 		ad.u.net->dport = htons(snum);
4902 		ad.u.net->family = address->sa_family;
4903 		err = avc_has_perm(sksec->sid, sid, sksec->sclass, perm, &ad);
4904 		if (err)
4905 			return err;
4906 	}
4907 
4908 	return 0;
4909 }
4910 
4911 /* Supports connect(2), see comments in selinux_socket_connect_helper() */
4912 static int selinux_socket_connect(struct socket *sock,
4913 				  struct sockaddr *address, int addrlen)
4914 {
4915 	int err;
4916 	struct sock *sk = sock->sk;
4917 
4918 	err = selinux_socket_connect_helper(sock, address, addrlen);
4919 	if (err)
4920 		return err;
4921 
4922 	return selinux_netlbl_socket_connect(sk, address);
4923 }
4924 
4925 static int selinux_socket_listen(struct socket *sock, int backlog)
4926 {
4927 	return sock_has_perm(sock->sk, SOCKET__LISTEN);
4928 }
4929 
4930 static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
4931 {
4932 	int err;
4933 	struct inode_security_struct *isec;
4934 	struct inode_security_struct *newisec;
4935 	u16 sclass;
4936 	u32 sid;
4937 
4938 	err = sock_has_perm(sock->sk, SOCKET__ACCEPT);
4939 	if (err)
4940 		return err;
4941 
4942 	isec = inode_security_novalidate(SOCK_INODE(sock));
4943 	spin_lock(&isec->lock);
4944 	sclass = isec->sclass;
4945 	sid = isec->sid;
4946 	spin_unlock(&isec->lock);
4947 
4948 	newisec = inode_security_novalidate(SOCK_INODE(newsock));
4949 	newisec->sclass = sclass;
4950 	newisec->sid = sid;
4951 	newisec->initialized = LABEL_INITIALIZED;
4952 
4953 	return 0;
4954 }
4955 
4956 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
4957 				  int size)
4958 {
4959 	return sock_has_perm(sock->sk, SOCKET__WRITE);
4960 }
4961 
4962 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
4963 				  int size, int flags)
4964 {
4965 	return sock_has_perm(sock->sk, SOCKET__READ);
4966 }
4967 
4968 static int selinux_socket_getsockname(struct socket *sock)
4969 {
4970 	return sock_has_perm(sock->sk, SOCKET__GETATTR);
4971 }
4972 
4973 static int selinux_socket_getpeername(struct socket *sock)
4974 {
4975 	return sock_has_perm(sock->sk, SOCKET__GETATTR);
4976 }
4977 
4978 static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
4979 {
4980 	int err;
4981 
4982 	err = sock_has_perm(sock->sk, SOCKET__SETOPT);
4983 	if (err)
4984 		return err;
4985 
4986 	return selinux_netlbl_socket_setsockopt(sock, level, optname);
4987 }
4988 
4989 static int selinux_socket_getsockopt(struct socket *sock, int level,
4990 				     int optname)
4991 {
4992 	return sock_has_perm(sock->sk, SOCKET__GETOPT);
4993 }
4994 
4995 static int selinux_socket_shutdown(struct socket *sock, int how)
4996 {
4997 	return sock_has_perm(sock->sk, SOCKET__SHUTDOWN);
4998 }
4999 
5000 static int selinux_socket_unix_stream_connect(struct sock *sock,
5001 					      struct sock *other,
5002 					      struct sock *newsk)
5003 {
5004 	struct sk_security_struct *sksec_sock = sock->sk_security;
5005 	struct sk_security_struct *sksec_other = other->sk_security;
5006 	struct sk_security_struct *sksec_new = newsk->sk_security;
5007 	struct common_audit_data ad;
5008 	struct lsm_network_audit net;
5009 	int err;
5010 
5011 	ad_net_init_from_sk(&ad, &net, other);
5012 
5013 	err = avc_has_perm(sksec_sock->sid, sksec_other->sid,
5014 			   sksec_other->sclass,
5015 			   UNIX_STREAM_SOCKET__CONNECTTO, &ad);
5016 	if (err)
5017 		return err;
5018 
5019 	/* server child socket */
5020 	sksec_new->peer_sid = sksec_sock->sid;
5021 	err = security_sid_mls_copy(sksec_other->sid,
5022 				    sksec_sock->sid, &sksec_new->sid);
5023 	if (err)
5024 		return err;
5025 
5026 	/* connecting socket */
5027 	sksec_sock->peer_sid = sksec_new->sid;
5028 
5029 	return 0;
5030 }
5031 
5032 static int selinux_socket_unix_may_send(struct socket *sock,
5033 					struct socket *other)
5034 {
5035 	struct sk_security_struct *ssec = sock->sk->sk_security;
5036 	struct sk_security_struct *osec = other->sk->sk_security;
5037 	struct common_audit_data ad;
5038 	struct lsm_network_audit net;
5039 
5040 	ad_net_init_from_sk(&ad, &net, other->sk);
5041 
5042 	return avc_has_perm(ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO,
5043 			    &ad);
5044 }
5045 
5046 static int selinux_inet_sys_rcv_skb(struct net *ns, int ifindex,
5047 				    char *addrp, u16 family, u32 peer_sid,
5048 				    struct common_audit_data *ad)
5049 {
5050 	int err;
5051 	u32 if_sid;
5052 	u32 node_sid;
5053 
5054 	err = sel_netif_sid(ns, ifindex, &if_sid);
5055 	if (err)
5056 		return err;
5057 	err = avc_has_perm(peer_sid, if_sid,
5058 			   SECCLASS_NETIF, NETIF__INGRESS, ad);
5059 	if (err)
5060 		return err;
5061 
5062 	err = sel_netnode_sid(addrp, family, &node_sid);
5063 	if (err)
5064 		return err;
5065 	return avc_has_perm(peer_sid, node_sid,
5066 			    SECCLASS_NODE, NODE__RECVFROM, ad);
5067 }
5068 
5069 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
5070 				       u16 family)
5071 {
5072 	int err = 0;
5073 	struct sk_security_struct *sksec = sk->sk_security;
5074 	u32 sk_sid = sksec->sid;
5075 	struct common_audit_data ad;
5076 	struct lsm_network_audit net;
5077 	char *addrp;
5078 
5079 	ad_net_init_from_iif(&ad, &net, skb->skb_iif, family);
5080 	err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
5081 	if (err)
5082 		return err;
5083 
5084 	if (selinux_secmark_enabled()) {
5085 		err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
5086 				   PACKET__RECV, &ad);
5087 		if (err)
5088 			return err;
5089 	}
5090 
5091 	err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
5092 	if (err)
5093 		return err;
5094 	err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
5095 
5096 	return err;
5097 }
5098 
5099 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
5100 {
5101 	int err, peerlbl_active, secmark_active;
5102 	struct sk_security_struct *sksec = sk->sk_security;
5103 	u16 family = sk->sk_family;
5104 	u32 sk_sid = sksec->sid;
5105 	struct common_audit_data ad;
5106 	struct lsm_network_audit net;
5107 	char *addrp;
5108 
5109 	if (family != PF_INET && family != PF_INET6)
5110 		return 0;
5111 
5112 	/* Handle mapped IPv4 packets arriving via IPv6 sockets */
5113 	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
5114 		family = PF_INET;
5115 
5116 	/* If any sort of compatibility mode is enabled then handoff processing
5117 	 * to the selinux_sock_rcv_skb_compat() function to deal with the
5118 	 * special handling.  We do this in an attempt to keep this function
5119 	 * as fast and as clean as possible. */
5120 	if (!selinux_policycap_netpeer())
5121 		return selinux_sock_rcv_skb_compat(sk, skb, family);
5122 
5123 	secmark_active = selinux_secmark_enabled();
5124 	peerlbl_active = selinux_peerlbl_enabled();
5125 	if (!secmark_active && !peerlbl_active)
5126 		return 0;
5127 
5128 	ad_net_init_from_iif(&ad, &net, skb->skb_iif, family);
5129 	err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
5130 	if (err)
5131 		return err;
5132 
5133 	if (peerlbl_active) {
5134 		u32 peer_sid;
5135 
5136 		err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
5137 		if (err)
5138 			return err;
5139 		err = selinux_inet_sys_rcv_skb(sock_net(sk), skb->skb_iif,
5140 					       addrp, family, peer_sid, &ad);
5141 		if (err) {
5142 			selinux_netlbl_err(skb, family, err, 0);
5143 			return err;
5144 		}
5145 		err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER,
5146 				   PEER__RECV, &ad);
5147 		if (err) {
5148 			selinux_netlbl_err(skb, family, err, 0);
5149 			return err;
5150 		}
5151 	}
5152 
5153 	if (secmark_active) {
5154 		err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
5155 				   PACKET__RECV, &ad);
5156 		if (err)
5157 			return err;
5158 	}
5159 
5160 	return err;
5161 }
5162 
5163 static int selinux_socket_getpeersec_stream(struct socket *sock,
5164 					    sockptr_t optval, sockptr_t optlen,
5165 					    unsigned int len)
5166 {
5167 	int err = 0;
5168 	char *scontext = NULL;
5169 	u32 scontext_len;
5170 	struct sk_security_struct *sksec = sock->sk->sk_security;
5171 	u32 peer_sid = SECSID_NULL;
5172 
5173 	if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
5174 	    sksec->sclass == SECCLASS_TCP_SOCKET ||
5175 	    sksec->sclass == SECCLASS_SCTP_SOCKET)
5176 		peer_sid = sksec->peer_sid;
5177 	if (peer_sid == SECSID_NULL)
5178 		return -ENOPROTOOPT;
5179 
5180 	err = security_sid_to_context(peer_sid, &scontext,
5181 				      &scontext_len);
5182 	if (err)
5183 		return err;
5184 	if (scontext_len > len) {
5185 		err = -ERANGE;
5186 		goto out_len;
5187 	}
5188 
5189 	if (copy_to_sockptr(optval, scontext, scontext_len))
5190 		err = -EFAULT;
5191 out_len:
5192 	if (copy_to_sockptr(optlen, &scontext_len, sizeof(scontext_len)))
5193 		err = -EFAULT;
5194 	kfree(scontext);
5195 	return err;
5196 }
5197 
5198 static int selinux_socket_getpeersec_dgram(struct socket *sock,
5199 					   struct sk_buff *skb, u32 *secid)
5200 {
5201 	u32 peer_secid = SECSID_NULL;
5202 	u16 family;
5203 
5204 	if (skb && skb->protocol == htons(ETH_P_IP))
5205 		family = PF_INET;
5206 	else if (skb && skb->protocol == htons(ETH_P_IPV6))
5207 		family = PF_INET6;
5208 	else if (sock)
5209 		family = sock->sk->sk_family;
5210 	else {
5211 		*secid = SECSID_NULL;
5212 		return -EINVAL;
5213 	}
5214 
5215 	if (sock && family == PF_UNIX) {
5216 		struct inode_security_struct *isec;
5217 		isec = inode_security_novalidate(SOCK_INODE(sock));
5218 		peer_secid = isec->sid;
5219 	} else if (skb)
5220 		selinux_skb_peerlbl_sid(skb, family, &peer_secid);
5221 
5222 	*secid = peer_secid;
5223 	if (peer_secid == SECSID_NULL)
5224 		return -ENOPROTOOPT;
5225 	return 0;
5226 }
5227 
5228 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
5229 {
5230 	struct sk_security_struct *sksec;
5231 
5232 	sksec = kzalloc(sizeof(*sksec), priority);
5233 	if (!sksec)
5234 		return -ENOMEM;
5235 
5236 	sksec->peer_sid = SECINITSID_UNLABELED;
5237 	sksec->sid = SECINITSID_UNLABELED;
5238 	sksec->sclass = SECCLASS_SOCKET;
5239 	selinux_netlbl_sk_security_reset(sksec);
5240 	sk->sk_security = sksec;
5241 
5242 	return 0;
5243 }
5244 
5245 static void selinux_sk_free_security(struct sock *sk)
5246 {
5247 	struct sk_security_struct *sksec = sk->sk_security;
5248 
5249 	sk->sk_security = NULL;
5250 	selinux_netlbl_sk_security_free(sksec);
5251 	kfree(sksec);
5252 }
5253 
5254 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
5255 {
5256 	struct sk_security_struct *sksec = sk->sk_security;
5257 	struct sk_security_struct *newsksec = newsk->sk_security;
5258 
5259 	newsksec->sid = sksec->sid;
5260 	newsksec->peer_sid = sksec->peer_sid;
5261 	newsksec->sclass = sksec->sclass;
5262 
5263 	selinux_netlbl_sk_security_reset(newsksec);
5264 }
5265 
5266 static void selinux_sk_getsecid(const struct sock *sk, u32 *secid)
5267 {
5268 	if (!sk)
5269 		*secid = SECINITSID_ANY_SOCKET;
5270 	else {
5271 		const struct sk_security_struct *sksec = sk->sk_security;
5272 
5273 		*secid = sksec->sid;
5274 	}
5275 }
5276 
5277 static void selinux_sock_graft(struct sock *sk, struct socket *parent)
5278 {
5279 	struct inode_security_struct *isec =
5280 		inode_security_novalidate(SOCK_INODE(parent));
5281 	struct sk_security_struct *sksec = sk->sk_security;
5282 
5283 	if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
5284 	    sk->sk_family == PF_UNIX)
5285 		isec->sid = sksec->sid;
5286 	sksec->sclass = isec->sclass;
5287 }
5288 
5289 /*
5290  * Determines peer_secid for the asoc and updates socket's peer label
5291  * if it's the first association on the socket.
5292  */
5293 static int selinux_sctp_process_new_assoc(struct sctp_association *asoc,
5294 					  struct sk_buff *skb)
5295 {
5296 	struct sock *sk = asoc->base.sk;
5297 	u16 family = sk->sk_family;
5298 	struct sk_security_struct *sksec = sk->sk_security;
5299 	struct common_audit_data ad;
5300 	struct lsm_network_audit net;
5301 	int err;
5302 
5303 	/* handle mapped IPv4 packets arriving via IPv6 sockets */
5304 	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
5305 		family = PF_INET;
5306 
5307 	if (selinux_peerlbl_enabled()) {
5308 		asoc->peer_secid = SECSID_NULL;
5309 
5310 		/* This will return peer_sid = SECSID_NULL if there are
5311 		 * no peer labels, see security_net_peersid_resolve().
5312 		 */
5313 		err = selinux_skb_peerlbl_sid(skb, family, &asoc->peer_secid);
5314 		if (err)
5315 			return err;
5316 
5317 		if (asoc->peer_secid == SECSID_NULL)
5318 			asoc->peer_secid = SECINITSID_UNLABELED;
5319 	} else {
5320 		asoc->peer_secid = SECINITSID_UNLABELED;
5321 	}
5322 
5323 	if (sksec->sctp_assoc_state == SCTP_ASSOC_UNSET) {
5324 		sksec->sctp_assoc_state = SCTP_ASSOC_SET;
5325 
5326 		/* Here as first association on socket. As the peer SID
5327 		 * was allowed by peer recv (and the netif/node checks),
5328 		 * then it is approved by policy and used as the primary
5329 		 * peer SID for getpeercon(3).
5330 		 */
5331 		sksec->peer_sid = asoc->peer_secid;
5332 	} else if (sksec->peer_sid != asoc->peer_secid) {
5333 		/* Other association peer SIDs are checked to enforce
5334 		 * consistency among the peer SIDs.
5335 		 */
5336 		ad_net_init_from_sk(&ad, &net, asoc->base.sk);
5337 		err = avc_has_perm(sksec->peer_sid, asoc->peer_secid,
5338 				   sksec->sclass, SCTP_SOCKET__ASSOCIATION,
5339 				   &ad);
5340 		if (err)
5341 			return err;
5342 	}
5343 	return 0;
5344 }
5345 
5346 /* Called whenever SCTP receives an INIT or COOKIE ECHO chunk. This
5347  * happens on an incoming connect(2), sctp_connectx(3) or
5348  * sctp_sendmsg(3) (with no association already present).
5349  */
5350 static int selinux_sctp_assoc_request(struct sctp_association *asoc,
5351 				      struct sk_buff *skb)
5352 {
5353 	struct sk_security_struct *sksec = asoc->base.sk->sk_security;
5354 	u32 conn_sid;
5355 	int err;
5356 
5357 	if (!selinux_policycap_extsockclass())
5358 		return 0;
5359 
5360 	err = selinux_sctp_process_new_assoc(asoc, skb);
5361 	if (err)
5362 		return err;
5363 
5364 	/* Compute the MLS component for the connection and store
5365 	 * the information in asoc. This will be used by SCTP TCP type
5366 	 * sockets and peeled off connections as they cause a new
5367 	 * socket to be generated. selinux_sctp_sk_clone() will then
5368 	 * plug this into the new socket.
5369 	 */
5370 	err = selinux_conn_sid(sksec->sid, asoc->peer_secid, &conn_sid);
5371 	if (err)
5372 		return err;
5373 
5374 	asoc->secid = conn_sid;
5375 
5376 	/* Set any NetLabel labels including CIPSO/CALIPSO options. */
5377 	return selinux_netlbl_sctp_assoc_request(asoc, skb);
5378 }
5379 
5380 /* Called when SCTP receives a COOKIE ACK chunk as the final
5381  * response to an association request (initited by us).
5382  */
5383 static int selinux_sctp_assoc_established(struct sctp_association *asoc,
5384 					  struct sk_buff *skb)
5385 {
5386 	struct sk_security_struct *sksec = asoc->base.sk->sk_security;
5387 
5388 	if (!selinux_policycap_extsockclass())
5389 		return 0;
5390 
5391 	/* Inherit secid from the parent socket - this will be picked up
5392 	 * by selinux_sctp_sk_clone() if the association gets peeled off
5393 	 * into a new socket.
5394 	 */
5395 	asoc->secid = sksec->sid;
5396 
5397 	return selinux_sctp_process_new_assoc(asoc, skb);
5398 }
5399 
5400 /* Check if sctp IPv4/IPv6 addresses are valid for binding or connecting
5401  * based on their @optname.
5402  */
5403 static int selinux_sctp_bind_connect(struct sock *sk, int optname,
5404 				     struct sockaddr *address,
5405 				     int addrlen)
5406 {
5407 	int len, err = 0, walk_size = 0;
5408 	void *addr_buf;
5409 	struct sockaddr *addr;
5410 	struct socket *sock;
5411 
5412 	if (!selinux_policycap_extsockclass())
5413 		return 0;
5414 
5415 	/* Process one or more addresses that may be IPv4 or IPv6 */
5416 	sock = sk->sk_socket;
5417 	addr_buf = address;
5418 
5419 	while (walk_size < addrlen) {
5420 		if (walk_size + sizeof(sa_family_t) > addrlen)
5421 			return -EINVAL;
5422 
5423 		addr = addr_buf;
5424 		switch (addr->sa_family) {
5425 		case AF_UNSPEC:
5426 		case AF_INET:
5427 			len = sizeof(struct sockaddr_in);
5428 			break;
5429 		case AF_INET6:
5430 			len = sizeof(struct sockaddr_in6);
5431 			break;
5432 		default:
5433 			return -EINVAL;
5434 		}
5435 
5436 		if (walk_size + len > addrlen)
5437 			return -EINVAL;
5438 
5439 		err = -EINVAL;
5440 		switch (optname) {
5441 		/* Bind checks */
5442 		case SCTP_PRIMARY_ADDR:
5443 		case SCTP_SET_PEER_PRIMARY_ADDR:
5444 		case SCTP_SOCKOPT_BINDX_ADD:
5445 			err = selinux_socket_bind(sock, addr, len);
5446 			break;
5447 		/* Connect checks */
5448 		case SCTP_SOCKOPT_CONNECTX:
5449 		case SCTP_PARAM_SET_PRIMARY:
5450 		case SCTP_PARAM_ADD_IP:
5451 		case SCTP_SENDMSG_CONNECT:
5452 			err = selinux_socket_connect_helper(sock, addr, len);
5453 			if (err)
5454 				return err;
5455 
5456 			/* As selinux_sctp_bind_connect() is called by the
5457 			 * SCTP protocol layer, the socket is already locked,
5458 			 * therefore selinux_netlbl_socket_connect_locked()
5459 			 * is called here. The situations handled are:
5460 			 * sctp_connectx(3), sctp_sendmsg(3), sendmsg(2),
5461 			 * whenever a new IP address is added or when a new
5462 			 * primary address is selected.
5463 			 * Note that an SCTP connect(2) call happens before
5464 			 * the SCTP protocol layer and is handled via
5465 			 * selinux_socket_connect().
5466 			 */
5467 			err = selinux_netlbl_socket_connect_locked(sk, addr);
5468 			break;
5469 		}
5470 
5471 		if (err)
5472 			return err;
5473 
5474 		addr_buf += len;
5475 		walk_size += len;
5476 	}
5477 
5478 	return 0;
5479 }
5480 
5481 /* Called whenever a new socket is created by accept(2) or sctp_peeloff(3). */
5482 static void selinux_sctp_sk_clone(struct sctp_association *asoc, struct sock *sk,
5483 				  struct sock *newsk)
5484 {
5485 	struct sk_security_struct *sksec = sk->sk_security;
5486 	struct sk_security_struct *newsksec = newsk->sk_security;
5487 
5488 	/* If policy does not support SECCLASS_SCTP_SOCKET then call
5489 	 * the non-sctp clone version.
5490 	 */
5491 	if (!selinux_policycap_extsockclass())
5492 		return selinux_sk_clone_security(sk, newsk);
5493 
5494 	newsksec->sid = asoc->secid;
5495 	newsksec->peer_sid = asoc->peer_secid;
5496 	newsksec->sclass = sksec->sclass;
5497 	selinux_netlbl_sctp_sk_clone(sk, newsk);
5498 }
5499 
5500 static int selinux_mptcp_add_subflow(struct sock *sk, struct sock *ssk)
5501 {
5502 	struct sk_security_struct *ssksec = ssk->sk_security;
5503 	struct sk_security_struct *sksec = sk->sk_security;
5504 
5505 	ssksec->sclass = sksec->sclass;
5506 	ssksec->sid = sksec->sid;
5507 
5508 	/* replace the existing subflow label deleting the existing one
5509 	 * and re-recreating a new label using the updated context
5510 	 */
5511 	selinux_netlbl_sk_security_free(ssksec);
5512 	return selinux_netlbl_socket_post_create(ssk, ssk->sk_family);
5513 }
5514 
5515 static int selinux_inet_conn_request(const struct sock *sk, struct sk_buff *skb,
5516 				     struct request_sock *req)
5517 {
5518 	struct sk_security_struct *sksec = sk->sk_security;
5519 	int err;
5520 	u16 family = req->rsk_ops->family;
5521 	u32 connsid;
5522 	u32 peersid;
5523 
5524 	err = selinux_skb_peerlbl_sid(skb, family, &peersid);
5525 	if (err)
5526 		return err;
5527 	err = selinux_conn_sid(sksec->sid, peersid, &connsid);
5528 	if (err)
5529 		return err;
5530 	req->secid = connsid;
5531 	req->peer_secid = peersid;
5532 
5533 	return selinux_netlbl_inet_conn_request(req, family);
5534 }
5535 
5536 static void selinux_inet_csk_clone(struct sock *newsk,
5537 				   const struct request_sock *req)
5538 {
5539 	struct sk_security_struct *newsksec = newsk->sk_security;
5540 
5541 	newsksec->sid = req->secid;
5542 	newsksec->peer_sid = req->peer_secid;
5543 	/* NOTE: Ideally, we should also get the isec->sid for the
5544 	   new socket in sync, but we don't have the isec available yet.
5545 	   So we will wait until sock_graft to do it, by which
5546 	   time it will have been created and available. */
5547 
5548 	/* We don't need to take any sort of lock here as we are the only
5549 	 * thread with access to newsksec */
5550 	selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family);
5551 }
5552 
5553 static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
5554 {
5555 	u16 family = sk->sk_family;
5556 	struct sk_security_struct *sksec = sk->sk_security;
5557 
5558 	/* handle mapped IPv4 packets arriving via IPv6 sockets */
5559 	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
5560 		family = PF_INET;
5561 
5562 	selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
5563 }
5564 
5565 static int selinux_secmark_relabel_packet(u32 sid)
5566 {
5567 	const struct task_security_struct *tsec;
5568 	u32 tsid;
5569 
5570 	tsec = selinux_cred(current_cred());
5571 	tsid = tsec->sid;
5572 
5573 	return avc_has_perm(tsid, sid, SECCLASS_PACKET, PACKET__RELABELTO,
5574 			    NULL);
5575 }
5576 
5577 static void selinux_secmark_refcount_inc(void)
5578 {
5579 	atomic_inc(&selinux_secmark_refcount);
5580 }
5581 
5582 static void selinux_secmark_refcount_dec(void)
5583 {
5584 	atomic_dec(&selinux_secmark_refcount);
5585 }
5586 
5587 static void selinux_req_classify_flow(const struct request_sock *req,
5588 				      struct flowi_common *flic)
5589 {
5590 	flic->flowic_secid = req->secid;
5591 }
5592 
5593 static int selinux_tun_dev_alloc_security(void **security)
5594 {
5595 	struct tun_security_struct *tunsec;
5596 
5597 	tunsec = kzalloc(sizeof(*tunsec), GFP_KERNEL);
5598 	if (!tunsec)
5599 		return -ENOMEM;
5600 	tunsec->sid = current_sid();
5601 
5602 	*security = tunsec;
5603 	return 0;
5604 }
5605 
5606 static void selinux_tun_dev_free_security(void *security)
5607 {
5608 	kfree(security);
5609 }
5610 
5611 static int selinux_tun_dev_create(void)
5612 {
5613 	u32 sid = current_sid();
5614 
5615 	/* we aren't taking into account the "sockcreate" SID since the socket
5616 	 * that is being created here is not a socket in the traditional sense,
5617 	 * instead it is a private sock, accessible only to the kernel, and
5618 	 * representing a wide range of network traffic spanning multiple
5619 	 * connections unlike traditional sockets - check the TUN driver to
5620 	 * get a better understanding of why this socket is special */
5621 
5622 	return avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE,
5623 			    NULL);
5624 }
5625 
5626 static int selinux_tun_dev_attach_queue(void *security)
5627 {
5628 	struct tun_security_struct *tunsec = security;
5629 
5630 	return avc_has_perm(current_sid(), tunsec->sid, SECCLASS_TUN_SOCKET,
5631 			    TUN_SOCKET__ATTACH_QUEUE, NULL);
5632 }
5633 
5634 static int selinux_tun_dev_attach(struct sock *sk, void *security)
5635 {
5636 	struct tun_security_struct *tunsec = security;
5637 	struct sk_security_struct *sksec = sk->sk_security;
5638 
5639 	/* we don't currently perform any NetLabel based labeling here and it
5640 	 * isn't clear that we would want to do so anyway; while we could apply
5641 	 * labeling without the support of the TUN user the resulting labeled
5642 	 * traffic from the other end of the connection would almost certainly
5643 	 * cause confusion to the TUN user that had no idea network labeling
5644 	 * protocols were being used */
5645 
5646 	sksec->sid = tunsec->sid;
5647 	sksec->sclass = SECCLASS_TUN_SOCKET;
5648 
5649 	return 0;
5650 }
5651 
5652 static int selinux_tun_dev_open(void *security)
5653 {
5654 	struct tun_security_struct *tunsec = security;
5655 	u32 sid = current_sid();
5656 	int err;
5657 
5658 	err = avc_has_perm(sid, tunsec->sid, SECCLASS_TUN_SOCKET,
5659 			   TUN_SOCKET__RELABELFROM, NULL);
5660 	if (err)
5661 		return err;
5662 	err = avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET,
5663 			   TUN_SOCKET__RELABELTO, NULL);
5664 	if (err)
5665 		return err;
5666 	tunsec->sid = sid;
5667 
5668 	return 0;
5669 }
5670 
5671 #ifdef CONFIG_NETFILTER
5672 
5673 static unsigned int selinux_ip_forward(void *priv, struct sk_buff *skb,
5674 				       const struct nf_hook_state *state)
5675 {
5676 	int ifindex;
5677 	u16 family;
5678 	char *addrp;
5679 	u32 peer_sid;
5680 	struct common_audit_data ad;
5681 	struct lsm_network_audit net;
5682 	int secmark_active, peerlbl_active;
5683 
5684 	if (!selinux_policycap_netpeer())
5685 		return NF_ACCEPT;
5686 
5687 	secmark_active = selinux_secmark_enabled();
5688 	peerlbl_active = selinux_peerlbl_enabled();
5689 	if (!secmark_active && !peerlbl_active)
5690 		return NF_ACCEPT;
5691 
5692 	family = state->pf;
5693 	if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
5694 		return NF_DROP;
5695 
5696 	ifindex = state->in->ifindex;
5697 	ad_net_init_from_iif(&ad, &net, ifindex, family);
5698 	if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
5699 		return NF_DROP;
5700 
5701 	if (peerlbl_active) {
5702 		int err;
5703 
5704 		err = selinux_inet_sys_rcv_skb(state->net, ifindex,
5705 					       addrp, family, peer_sid, &ad);
5706 		if (err) {
5707 			selinux_netlbl_err(skb, family, err, 1);
5708 			return NF_DROP;
5709 		}
5710 	}
5711 
5712 	if (secmark_active)
5713 		if (avc_has_perm(peer_sid, skb->secmark,
5714 				 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
5715 			return NF_DROP;
5716 
5717 	if (netlbl_enabled())
5718 		/* we do this in the FORWARD path and not the POST_ROUTING
5719 		 * path because we want to make sure we apply the necessary
5720 		 * labeling before IPsec is applied so we can leverage AH
5721 		 * protection */
5722 		if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
5723 			return NF_DROP;
5724 
5725 	return NF_ACCEPT;
5726 }
5727 
5728 static unsigned int selinux_ip_output(void *priv, struct sk_buff *skb,
5729 				      const struct nf_hook_state *state)
5730 {
5731 	struct sock *sk;
5732 	u32 sid;
5733 
5734 	if (!netlbl_enabled())
5735 		return NF_ACCEPT;
5736 
5737 	/* we do this in the LOCAL_OUT path and not the POST_ROUTING path
5738 	 * because we want to make sure we apply the necessary labeling
5739 	 * before IPsec is applied so we can leverage AH protection */
5740 	sk = skb->sk;
5741 	if (sk) {
5742 		struct sk_security_struct *sksec;
5743 
5744 		if (sk_listener(sk))
5745 			/* if the socket is the listening state then this
5746 			 * packet is a SYN-ACK packet which means it needs to
5747 			 * be labeled based on the connection/request_sock and
5748 			 * not the parent socket.  unfortunately, we can't
5749 			 * lookup the request_sock yet as it isn't queued on
5750 			 * the parent socket until after the SYN-ACK is sent.
5751 			 * the "solution" is to simply pass the packet as-is
5752 			 * as any IP option based labeling should be copied
5753 			 * from the initial connection request (in the IP
5754 			 * layer).  it is far from ideal, but until we get a
5755 			 * security label in the packet itself this is the
5756 			 * best we can do. */
5757 			return NF_ACCEPT;
5758 
5759 		/* standard practice, label using the parent socket */
5760 		sksec = sk->sk_security;
5761 		sid = sksec->sid;
5762 	} else
5763 		sid = SECINITSID_KERNEL;
5764 	if (selinux_netlbl_skbuff_setsid(skb, state->pf, sid) != 0)
5765 		return NF_DROP;
5766 
5767 	return NF_ACCEPT;
5768 }
5769 
5770 
5771 static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
5772 					const struct nf_hook_state *state)
5773 {
5774 	struct sock *sk;
5775 	struct sk_security_struct *sksec;
5776 	struct common_audit_data ad;
5777 	struct lsm_network_audit net;
5778 	u8 proto = 0;
5779 
5780 	sk = skb_to_full_sk(skb);
5781 	if (sk == NULL)
5782 		return NF_ACCEPT;
5783 	sksec = sk->sk_security;
5784 
5785 	ad_net_init_from_iif(&ad, &net, state->out->ifindex, state->pf);
5786 	if (selinux_parse_skb(skb, &ad, NULL, 0, &proto))
5787 		return NF_DROP;
5788 
5789 	if (selinux_secmark_enabled())
5790 		if (avc_has_perm(sksec->sid, skb->secmark,
5791 				 SECCLASS_PACKET, PACKET__SEND, &ad))
5792 			return NF_DROP_ERR(-ECONNREFUSED);
5793 
5794 	if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
5795 		return NF_DROP_ERR(-ECONNREFUSED);
5796 
5797 	return NF_ACCEPT;
5798 }
5799 
5800 static unsigned int selinux_ip_postroute(void *priv,
5801 					 struct sk_buff *skb,
5802 					 const struct nf_hook_state *state)
5803 {
5804 	u16 family;
5805 	u32 secmark_perm;
5806 	u32 peer_sid;
5807 	int ifindex;
5808 	struct sock *sk;
5809 	struct common_audit_data ad;
5810 	struct lsm_network_audit net;
5811 	char *addrp;
5812 	int secmark_active, peerlbl_active;
5813 
5814 	/* If any sort of compatibility mode is enabled then handoff processing
5815 	 * to the selinux_ip_postroute_compat() function to deal with the
5816 	 * special handling.  We do this in an attempt to keep this function
5817 	 * as fast and as clean as possible. */
5818 	if (!selinux_policycap_netpeer())
5819 		return selinux_ip_postroute_compat(skb, state);
5820 
5821 	secmark_active = selinux_secmark_enabled();
5822 	peerlbl_active = selinux_peerlbl_enabled();
5823 	if (!secmark_active && !peerlbl_active)
5824 		return NF_ACCEPT;
5825 
5826 	sk = skb_to_full_sk(skb);
5827 
5828 #ifdef CONFIG_XFRM
5829 	/* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
5830 	 * packet transformation so allow the packet to pass without any checks
5831 	 * since we'll have another chance to perform access control checks
5832 	 * when the packet is on it's final way out.
5833 	 * NOTE: there appear to be some IPv6 multicast cases where skb->dst
5834 	 *       is NULL, in this case go ahead and apply access control.
5835 	 * NOTE: if this is a local socket (skb->sk != NULL) that is in the
5836 	 *       TCP listening state we cannot wait until the XFRM processing
5837 	 *       is done as we will miss out on the SA label if we do;
5838 	 *       unfortunately, this means more work, but it is only once per
5839 	 *       connection. */
5840 	if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL &&
5841 	    !(sk && sk_listener(sk)))
5842 		return NF_ACCEPT;
5843 #endif
5844 
5845 	family = state->pf;
5846 	if (sk == NULL) {
5847 		/* Without an associated socket the packet is either coming
5848 		 * from the kernel or it is being forwarded; check the packet
5849 		 * to determine which and if the packet is being forwarded
5850 		 * query the packet directly to determine the security label. */
5851 		if (skb->skb_iif) {
5852 			secmark_perm = PACKET__FORWARD_OUT;
5853 			if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
5854 				return NF_DROP;
5855 		} else {
5856 			secmark_perm = PACKET__SEND;
5857 			peer_sid = SECINITSID_KERNEL;
5858 		}
5859 	} else if (sk_listener(sk)) {
5860 		/* Locally generated packet but the associated socket is in the
5861 		 * listening state which means this is a SYN-ACK packet.  In
5862 		 * this particular case the correct security label is assigned
5863 		 * to the connection/request_sock but unfortunately we can't
5864 		 * query the request_sock as it isn't queued on the parent
5865 		 * socket until after the SYN-ACK packet is sent; the only
5866 		 * viable choice is to regenerate the label like we do in
5867 		 * selinux_inet_conn_request().  See also selinux_ip_output()
5868 		 * for similar problems. */
5869 		u32 skb_sid;
5870 		struct sk_security_struct *sksec;
5871 
5872 		sksec = sk->sk_security;
5873 		if (selinux_skb_peerlbl_sid(skb, family, &skb_sid))
5874 			return NF_DROP;
5875 		/* At this point, if the returned skb peerlbl is SECSID_NULL
5876 		 * and the packet has been through at least one XFRM
5877 		 * transformation then we must be dealing with the "final"
5878 		 * form of labeled IPsec packet; since we've already applied
5879 		 * all of our access controls on this packet we can safely
5880 		 * pass the packet. */
5881 		if (skb_sid == SECSID_NULL) {
5882 			switch (family) {
5883 			case PF_INET:
5884 				if (IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED)
5885 					return NF_ACCEPT;
5886 				break;
5887 			case PF_INET6:
5888 				if (IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED)
5889 					return NF_ACCEPT;
5890 				break;
5891 			default:
5892 				return NF_DROP_ERR(-ECONNREFUSED);
5893 			}
5894 		}
5895 		if (selinux_conn_sid(sksec->sid, skb_sid, &peer_sid))
5896 			return NF_DROP;
5897 		secmark_perm = PACKET__SEND;
5898 	} else {
5899 		/* Locally generated packet, fetch the security label from the
5900 		 * associated socket. */
5901 		struct sk_security_struct *sksec = sk->sk_security;
5902 		peer_sid = sksec->sid;
5903 		secmark_perm = PACKET__SEND;
5904 	}
5905 
5906 	ifindex = state->out->ifindex;
5907 	ad_net_init_from_iif(&ad, &net, ifindex, family);
5908 	if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
5909 		return NF_DROP;
5910 
5911 	if (secmark_active)
5912 		if (avc_has_perm(peer_sid, skb->secmark,
5913 				 SECCLASS_PACKET, secmark_perm, &ad))
5914 			return NF_DROP_ERR(-ECONNREFUSED);
5915 
5916 	if (peerlbl_active) {
5917 		u32 if_sid;
5918 		u32 node_sid;
5919 
5920 		if (sel_netif_sid(state->net, ifindex, &if_sid))
5921 			return NF_DROP;
5922 		if (avc_has_perm(peer_sid, if_sid,
5923 				 SECCLASS_NETIF, NETIF__EGRESS, &ad))
5924 			return NF_DROP_ERR(-ECONNREFUSED);
5925 
5926 		if (sel_netnode_sid(addrp, family, &node_sid))
5927 			return NF_DROP;
5928 		if (avc_has_perm(peer_sid, node_sid,
5929 				 SECCLASS_NODE, NODE__SENDTO, &ad))
5930 			return NF_DROP_ERR(-ECONNREFUSED);
5931 	}
5932 
5933 	return NF_ACCEPT;
5934 }
5935 #endif	/* CONFIG_NETFILTER */
5936 
5937 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
5938 {
5939 	int rc = 0;
5940 	unsigned int msg_len;
5941 	unsigned int data_len = skb->len;
5942 	unsigned char *data = skb->data;
5943 	struct nlmsghdr *nlh;
5944 	struct sk_security_struct *sksec = sk->sk_security;
5945 	u16 sclass = sksec->sclass;
5946 	u32 perm;
5947 
5948 	while (data_len >= nlmsg_total_size(0)) {
5949 		nlh = (struct nlmsghdr *)data;
5950 
5951 		/* NOTE: the nlmsg_len field isn't reliably set by some netlink
5952 		 *       users which means we can't reject skb's with bogus
5953 		 *       length fields; our solution is to follow what
5954 		 *       netlink_rcv_skb() does and simply skip processing at
5955 		 *       messages with length fields that are clearly junk
5956 		 */
5957 		if (nlh->nlmsg_len < NLMSG_HDRLEN || nlh->nlmsg_len > data_len)
5958 			return 0;
5959 
5960 		rc = selinux_nlmsg_lookup(sclass, nlh->nlmsg_type, &perm);
5961 		if (rc == 0) {
5962 			rc = sock_has_perm(sk, perm);
5963 			if (rc)
5964 				return rc;
5965 		} else if (rc == -EINVAL) {
5966 			/* -EINVAL is a missing msg/perm mapping */
5967 			pr_warn_ratelimited("SELinux: unrecognized netlink"
5968 				" message: protocol=%hu nlmsg_type=%hu sclass=%s"
5969 				" pid=%d comm=%s\n",
5970 				sk->sk_protocol, nlh->nlmsg_type,
5971 				secclass_map[sclass - 1].name,
5972 				task_pid_nr(current), current->comm);
5973 			if (enforcing_enabled() &&
5974 			    !security_get_allow_unknown())
5975 				return rc;
5976 			rc = 0;
5977 		} else if (rc == -ENOENT) {
5978 			/* -ENOENT is a missing socket/class mapping, ignore */
5979 			rc = 0;
5980 		} else {
5981 			return rc;
5982 		}
5983 
5984 		/* move to the next message after applying netlink padding */
5985 		msg_len = NLMSG_ALIGN(nlh->nlmsg_len);
5986 		if (msg_len >= data_len)
5987 			return 0;
5988 		data_len -= msg_len;
5989 		data += msg_len;
5990 	}
5991 
5992 	return rc;
5993 }
5994 
5995 static void ipc_init_security(struct ipc_security_struct *isec, u16 sclass)
5996 {
5997 	isec->sclass = sclass;
5998 	isec->sid = current_sid();
5999 }
6000 
6001 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
6002 			u32 perms)
6003 {
6004 	struct ipc_security_struct *isec;
6005 	struct common_audit_data ad;
6006 	u32 sid = current_sid();
6007 
6008 	isec = selinux_ipc(ipc_perms);
6009 
6010 	ad.type = LSM_AUDIT_DATA_IPC;
6011 	ad.u.ipc_id = ipc_perms->key;
6012 
6013 	return avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad);
6014 }
6015 
6016 static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
6017 {
6018 	struct msg_security_struct *msec;
6019 
6020 	msec = selinux_msg_msg(msg);
6021 	msec->sid = SECINITSID_UNLABELED;
6022 
6023 	return 0;
6024 }
6025 
6026 /* message queue security operations */
6027 static int selinux_msg_queue_alloc_security(struct kern_ipc_perm *msq)
6028 {
6029 	struct ipc_security_struct *isec;
6030 	struct common_audit_data ad;
6031 	u32 sid = current_sid();
6032 
6033 	isec = selinux_ipc(msq);
6034 	ipc_init_security(isec, SECCLASS_MSGQ);
6035 
6036 	ad.type = LSM_AUDIT_DATA_IPC;
6037 	ad.u.ipc_id = msq->key;
6038 
6039 	return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
6040 			    MSGQ__CREATE, &ad);
6041 }
6042 
6043 static int selinux_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
6044 {
6045 	struct ipc_security_struct *isec;
6046 	struct common_audit_data ad;
6047 	u32 sid = current_sid();
6048 
6049 	isec = selinux_ipc(msq);
6050 
6051 	ad.type = LSM_AUDIT_DATA_IPC;
6052 	ad.u.ipc_id = msq->key;
6053 
6054 	return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
6055 			    MSGQ__ASSOCIATE, &ad);
6056 }
6057 
6058 static int selinux_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
6059 {
6060 	u32 perms;
6061 
6062 	switch (cmd) {
6063 	case IPC_INFO:
6064 	case MSG_INFO:
6065 		/* No specific object, just general system-wide information. */
6066 		return avc_has_perm(current_sid(), SECINITSID_KERNEL,
6067 				    SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6068 	case IPC_STAT:
6069 	case MSG_STAT:
6070 	case MSG_STAT_ANY:
6071 		perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
6072 		break;
6073 	case IPC_SET:
6074 		perms = MSGQ__SETATTR;
6075 		break;
6076 	case IPC_RMID:
6077 		perms = MSGQ__DESTROY;
6078 		break;
6079 	default:
6080 		return 0;
6081 	}
6082 
6083 	return ipc_has_perm(msq, perms);
6084 }
6085 
6086 static int selinux_msg_queue_msgsnd(struct kern_ipc_perm *msq, struct msg_msg *msg, int msqflg)
6087 {
6088 	struct ipc_security_struct *isec;
6089 	struct msg_security_struct *msec;
6090 	struct common_audit_data ad;
6091 	u32 sid = current_sid();
6092 	int rc;
6093 
6094 	isec = selinux_ipc(msq);
6095 	msec = selinux_msg_msg(msg);
6096 
6097 	/*
6098 	 * First time through, need to assign label to the message
6099 	 */
6100 	if (msec->sid == SECINITSID_UNLABELED) {
6101 		/*
6102 		 * Compute new sid based on current process and
6103 		 * message queue this message will be stored in
6104 		 */
6105 		rc = security_transition_sid(sid, isec->sid,
6106 					     SECCLASS_MSG, NULL, &msec->sid);
6107 		if (rc)
6108 			return rc;
6109 	}
6110 
6111 	ad.type = LSM_AUDIT_DATA_IPC;
6112 	ad.u.ipc_id = msq->key;
6113 
6114 	/* Can this process write to the queue? */
6115 	rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
6116 			  MSGQ__WRITE, &ad);
6117 	if (!rc)
6118 		/* Can this process send the message */
6119 		rc = avc_has_perm(sid, msec->sid, SECCLASS_MSG,
6120 				  MSG__SEND, &ad);
6121 	if (!rc)
6122 		/* Can the message be put in the queue? */
6123 		rc = avc_has_perm(msec->sid, isec->sid, SECCLASS_MSGQ,
6124 				  MSGQ__ENQUEUE, &ad);
6125 
6126 	return rc;
6127 }
6128 
6129 static int selinux_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
6130 				    struct task_struct *target,
6131 				    long type, int mode)
6132 {
6133 	struct ipc_security_struct *isec;
6134 	struct msg_security_struct *msec;
6135 	struct common_audit_data ad;
6136 	u32 sid = task_sid_obj(target);
6137 	int rc;
6138 
6139 	isec = selinux_ipc(msq);
6140 	msec = selinux_msg_msg(msg);
6141 
6142 	ad.type = LSM_AUDIT_DATA_IPC;
6143 	ad.u.ipc_id = msq->key;
6144 
6145 	rc = avc_has_perm(sid, isec->sid,
6146 			  SECCLASS_MSGQ, MSGQ__READ, &ad);
6147 	if (!rc)
6148 		rc = avc_has_perm(sid, msec->sid,
6149 				  SECCLASS_MSG, MSG__RECEIVE, &ad);
6150 	return rc;
6151 }
6152 
6153 /* Shared Memory security operations */
6154 static int selinux_shm_alloc_security(struct kern_ipc_perm *shp)
6155 {
6156 	struct ipc_security_struct *isec;
6157 	struct common_audit_data ad;
6158 	u32 sid = current_sid();
6159 
6160 	isec = selinux_ipc(shp);
6161 	ipc_init_security(isec, SECCLASS_SHM);
6162 
6163 	ad.type = LSM_AUDIT_DATA_IPC;
6164 	ad.u.ipc_id = shp->key;
6165 
6166 	return avc_has_perm(sid, isec->sid, SECCLASS_SHM,
6167 			    SHM__CREATE, &ad);
6168 }
6169 
6170 static int selinux_shm_associate(struct kern_ipc_perm *shp, int shmflg)
6171 {
6172 	struct ipc_security_struct *isec;
6173 	struct common_audit_data ad;
6174 	u32 sid = current_sid();
6175 
6176 	isec = selinux_ipc(shp);
6177 
6178 	ad.type = LSM_AUDIT_DATA_IPC;
6179 	ad.u.ipc_id = shp->key;
6180 
6181 	return avc_has_perm(sid, isec->sid, SECCLASS_SHM,
6182 			    SHM__ASSOCIATE, &ad);
6183 }
6184 
6185 /* Note, at this point, shp is locked down */
6186 static int selinux_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
6187 {
6188 	u32 perms;
6189 
6190 	switch (cmd) {
6191 	case IPC_INFO:
6192 	case SHM_INFO:
6193 		/* No specific object, just general system-wide information. */
6194 		return avc_has_perm(current_sid(), SECINITSID_KERNEL,
6195 				    SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6196 	case IPC_STAT:
6197 	case SHM_STAT:
6198 	case SHM_STAT_ANY:
6199 		perms = SHM__GETATTR | SHM__ASSOCIATE;
6200 		break;
6201 	case IPC_SET:
6202 		perms = SHM__SETATTR;
6203 		break;
6204 	case SHM_LOCK:
6205 	case SHM_UNLOCK:
6206 		perms = SHM__LOCK;
6207 		break;
6208 	case IPC_RMID:
6209 		perms = SHM__DESTROY;
6210 		break;
6211 	default:
6212 		return 0;
6213 	}
6214 
6215 	return ipc_has_perm(shp, perms);
6216 }
6217 
6218 static int selinux_shm_shmat(struct kern_ipc_perm *shp,
6219 			     char __user *shmaddr, int shmflg)
6220 {
6221 	u32 perms;
6222 
6223 	if (shmflg & SHM_RDONLY)
6224 		perms = SHM__READ;
6225 	else
6226 		perms = SHM__READ | SHM__WRITE;
6227 
6228 	return ipc_has_perm(shp, perms);
6229 }
6230 
6231 /* Semaphore security operations */
6232 static int selinux_sem_alloc_security(struct kern_ipc_perm *sma)
6233 {
6234 	struct ipc_security_struct *isec;
6235 	struct common_audit_data ad;
6236 	u32 sid = current_sid();
6237 
6238 	isec = selinux_ipc(sma);
6239 	ipc_init_security(isec, SECCLASS_SEM);
6240 
6241 	ad.type = LSM_AUDIT_DATA_IPC;
6242 	ad.u.ipc_id = sma->key;
6243 
6244 	return avc_has_perm(sid, isec->sid, SECCLASS_SEM,
6245 			    SEM__CREATE, &ad);
6246 }
6247 
6248 static int selinux_sem_associate(struct kern_ipc_perm *sma, int semflg)
6249 {
6250 	struct ipc_security_struct *isec;
6251 	struct common_audit_data ad;
6252 	u32 sid = current_sid();
6253 
6254 	isec = selinux_ipc(sma);
6255 
6256 	ad.type = LSM_AUDIT_DATA_IPC;
6257 	ad.u.ipc_id = sma->key;
6258 
6259 	return avc_has_perm(sid, isec->sid, SECCLASS_SEM,
6260 			    SEM__ASSOCIATE, &ad);
6261 }
6262 
6263 /* Note, at this point, sma is locked down */
6264 static int selinux_sem_semctl(struct kern_ipc_perm *sma, int cmd)
6265 {
6266 	int err;
6267 	u32 perms;
6268 
6269 	switch (cmd) {
6270 	case IPC_INFO:
6271 	case SEM_INFO:
6272 		/* No specific object, just general system-wide information. */
6273 		return avc_has_perm(current_sid(), SECINITSID_KERNEL,
6274 				    SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6275 	case GETPID:
6276 	case GETNCNT:
6277 	case GETZCNT:
6278 		perms = SEM__GETATTR;
6279 		break;
6280 	case GETVAL:
6281 	case GETALL:
6282 		perms = SEM__READ;
6283 		break;
6284 	case SETVAL:
6285 	case SETALL:
6286 		perms = SEM__WRITE;
6287 		break;
6288 	case IPC_RMID:
6289 		perms = SEM__DESTROY;
6290 		break;
6291 	case IPC_SET:
6292 		perms = SEM__SETATTR;
6293 		break;
6294 	case IPC_STAT:
6295 	case SEM_STAT:
6296 	case SEM_STAT_ANY:
6297 		perms = SEM__GETATTR | SEM__ASSOCIATE;
6298 		break;
6299 	default:
6300 		return 0;
6301 	}
6302 
6303 	err = ipc_has_perm(sma, perms);
6304 	return err;
6305 }
6306 
6307 static int selinux_sem_semop(struct kern_ipc_perm *sma,
6308 			     struct sembuf *sops, unsigned nsops, int alter)
6309 {
6310 	u32 perms;
6311 
6312 	if (alter)
6313 		perms = SEM__READ | SEM__WRITE;
6314 	else
6315 		perms = SEM__READ;
6316 
6317 	return ipc_has_perm(sma, perms);
6318 }
6319 
6320 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
6321 {
6322 	u32 av = 0;
6323 
6324 	av = 0;
6325 	if (flag & S_IRUGO)
6326 		av |= IPC__UNIX_READ;
6327 	if (flag & S_IWUGO)
6328 		av |= IPC__UNIX_WRITE;
6329 
6330 	if (av == 0)
6331 		return 0;
6332 
6333 	return ipc_has_perm(ipcp, av);
6334 }
6335 
6336 static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
6337 {
6338 	struct ipc_security_struct *isec = selinux_ipc(ipcp);
6339 	*secid = isec->sid;
6340 }
6341 
6342 static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
6343 {
6344 	if (inode)
6345 		inode_doinit_with_dentry(inode, dentry);
6346 }
6347 
6348 static int selinux_lsm_getattr(unsigned int attr, struct task_struct *p,
6349 			       char **value)
6350 {
6351 	const struct task_security_struct *__tsec;
6352 	u32 sid;
6353 	int error;
6354 	unsigned len;
6355 
6356 	rcu_read_lock();
6357 	__tsec = selinux_cred(__task_cred(p));
6358 
6359 	if (current != p) {
6360 		error = avc_has_perm(current_sid(), __tsec->sid,
6361 				     SECCLASS_PROCESS, PROCESS__GETATTR, NULL);
6362 		if (error)
6363 			goto bad;
6364 	}
6365 
6366 	switch (attr) {
6367 	case LSM_ATTR_CURRENT:
6368 		sid = __tsec->sid;
6369 		break;
6370 	case LSM_ATTR_PREV:
6371 		sid = __tsec->osid;
6372 		break;
6373 	case LSM_ATTR_EXEC:
6374 		sid = __tsec->exec_sid;
6375 		break;
6376 	case LSM_ATTR_FSCREATE:
6377 		sid = __tsec->create_sid;
6378 		break;
6379 	case LSM_ATTR_KEYCREATE:
6380 		sid = __tsec->keycreate_sid;
6381 		break;
6382 	case LSM_ATTR_SOCKCREATE:
6383 		sid = __tsec->sockcreate_sid;
6384 		break;
6385 	default:
6386 		error = -EOPNOTSUPP;
6387 		goto bad;
6388 	}
6389 	rcu_read_unlock();
6390 
6391 	if (!sid)
6392 		return 0;
6393 
6394 	error = security_sid_to_context(sid, value, &len);
6395 	if (error)
6396 		return error;
6397 	return len;
6398 
6399 bad:
6400 	rcu_read_unlock();
6401 	return error;
6402 }
6403 
6404 static int selinux_lsm_setattr(u64 attr, void *value, size_t size)
6405 {
6406 	struct task_security_struct *tsec;
6407 	struct cred *new;
6408 	u32 mysid = current_sid(), sid = 0, ptsid;
6409 	int error;
6410 	char *str = value;
6411 
6412 	/*
6413 	 * Basic control over ability to set these attributes at all.
6414 	 */
6415 	switch (attr) {
6416 	case LSM_ATTR_EXEC:
6417 		error = avc_has_perm(mysid, mysid, SECCLASS_PROCESS,
6418 				     PROCESS__SETEXEC, NULL);
6419 		break;
6420 	case LSM_ATTR_FSCREATE:
6421 		error = avc_has_perm(mysid, mysid, SECCLASS_PROCESS,
6422 				     PROCESS__SETFSCREATE, NULL);
6423 		break;
6424 	case LSM_ATTR_KEYCREATE:
6425 		error = avc_has_perm(mysid, mysid, SECCLASS_PROCESS,
6426 				     PROCESS__SETKEYCREATE, NULL);
6427 		break;
6428 	case LSM_ATTR_SOCKCREATE:
6429 		error = avc_has_perm(mysid, mysid, SECCLASS_PROCESS,
6430 				     PROCESS__SETSOCKCREATE, NULL);
6431 		break;
6432 	case LSM_ATTR_CURRENT:
6433 		error = avc_has_perm(mysid, mysid, SECCLASS_PROCESS,
6434 				     PROCESS__SETCURRENT, NULL);
6435 		break;
6436 	default:
6437 		error = -EOPNOTSUPP;
6438 		break;
6439 	}
6440 	if (error)
6441 		return error;
6442 
6443 	/* Obtain a SID for the context, if one was specified. */
6444 	if (size && str[0] && str[0] != '\n') {
6445 		if (str[size-1] == '\n') {
6446 			str[size-1] = 0;
6447 			size--;
6448 		}
6449 		error = security_context_to_sid(value, size,
6450 						&sid, GFP_KERNEL);
6451 		if (error == -EINVAL && attr == LSM_ATTR_FSCREATE) {
6452 			if (!has_cap_mac_admin(true)) {
6453 				struct audit_buffer *ab;
6454 				size_t audit_size;
6455 
6456 				/* We strip a nul only if it is at the end,
6457 				 * otherwise the context contains a nul and
6458 				 * we should audit that */
6459 				if (str[size - 1] == '\0')
6460 					audit_size = size - 1;
6461 				else
6462 					audit_size = size;
6463 				ab = audit_log_start(audit_context(),
6464 						     GFP_ATOMIC,
6465 						     AUDIT_SELINUX_ERR);
6466 				if (!ab)
6467 					return error;
6468 				audit_log_format(ab, "op=fscreate invalid_context=");
6469 				audit_log_n_untrustedstring(ab, value,
6470 							    audit_size);
6471 				audit_log_end(ab);
6472 
6473 				return error;
6474 			}
6475 			error = security_context_to_sid_force(value, size,
6476 							&sid);
6477 		}
6478 		if (error)
6479 			return error;
6480 	}
6481 
6482 	new = prepare_creds();
6483 	if (!new)
6484 		return -ENOMEM;
6485 
6486 	/* Permission checking based on the specified context is
6487 	   performed during the actual operation (execve,
6488 	   open/mkdir/...), when we know the full context of the
6489 	   operation.  See selinux_bprm_creds_for_exec for the execve
6490 	   checks and may_create for the file creation checks. The
6491 	   operation will then fail if the context is not permitted. */
6492 	tsec = selinux_cred(new);
6493 	if (attr == LSM_ATTR_EXEC) {
6494 		tsec->exec_sid = sid;
6495 	} else if (attr == LSM_ATTR_FSCREATE) {
6496 		tsec->create_sid = sid;
6497 	} else if (attr == LSM_ATTR_KEYCREATE) {
6498 		if (sid) {
6499 			error = avc_has_perm(mysid, sid,
6500 					     SECCLASS_KEY, KEY__CREATE, NULL);
6501 			if (error)
6502 				goto abort_change;
6503 		}
6504 		tsec->keycreate_sid = sid;
6505 	} else if (attr == LSM_ATTR_SOCKCREATE) {
6506 		tsec->sockcreate_sid = sid;
6507 	} else if (attr == LSM_ATTR_CURRENT) {
6508 		error = -EINVAL;
6509 		if (sid == 0)
6510 			goto abort_change;
6511 
6512 		if (!current_is_single_threaded()) {
6513 			error = security_bounded_transition(tsec->sid, sid);
6514 			if (error)
6515 				goto abort_change;
6516 		}
6517 
6518 		/* Check permissions for the transition. */
6519 		error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
6520 				     PROCESS__DYNTRANSITION, NULL);
6521 		if (error)
6522 			goto abort_change;
6523 
6524 		/* Check for ptracing, and update the task SID if ok.
6525 		   Otherwise, leave SID unchanged and fail. */
6526 		ptsid = ptrace_parent_sid();
6527 		if (ptsid != 0) {
6528 			error = avc_has_perm(ptsid, sid, SECCLASS_PROCESS,
6529 					     PROCESS__PTRACE, NULL);
6530 			if (error)
6531 				goto abort_change;
6532 		}
6533 
6534 		tsec->sid = sid;
6535 	} else {
6536 		error = -EINVAL;
6537 		goto abort_change;
6538 	}
6539 
6540 	commit_creds(new);
6541 	return size;
6542 
6543 abort_change:
6544 	abort_creds(new);
6545 	return error;
6546 }
6547 
6548 /**
6549  * selinux_getselfattr - Get SELinux current task attributes
6550  * @attr: the requested attribute
6551  * @ctx: buffer to receive the result
6552  * @size: buffer size (input), buffer size used (output)
6553  * @flags: unused
6554  *
6555  * Fill the passed user space @ctx with the details of the requested
6556  * attribute.
6557  *
6558  * Returns the number of attributes on success, an error code otherwise.
6559  * There will only ever be one attribute.
6560  */
6561 static int selinux_getselfattr(unsigned int attr, struct lsm_ctx __user *ctx,
6562 			       u32 *size, u32 flags)
6563 {
6564 	int rc;
6565 	char *val = NULL;
6566 	int val_len;
6567 
6568 	val_len = selinux_lsm_getattr(attr, current, &val);
6569 	if (val_len < 0)
6570 		return val_len;
6571 	rc = lsm_fill_user_ctx(ctx, size, val, val_len, LSM_ID_SELINUX, 0);
6572 	kfree(val);
6573 	return (!rc ? 1 : rc);
6574 }
6575 
6576 static int selinux_setselfattr(unsigned int attr, struct lsm_ctx *ctx,
6577 			       u32 size, u32 flags)
6578 {
6579 	int rc;
6580 
6581 	rc = selinux_lsm_setattr(attr, ctx->ctx, ctx->ctx_len);
6582 	if (rc > 0)
6583 		return 0;
6584 	return rc;
6585 }
6586 
6587 static int selinux_getprocattr(struct task_struct *p,
6588 			       const char *name, char **value)
6589 {
6590 	unsigned int attr = lsm_name_to_attr(name);
6591 	int rc;
6592 
6593 	if (attr) {
6594 		rc = selinux_lsm_getattr(attr, p, value);
6595 		if (rc != -EOPNOTSUPP)
6596 			return rc;
6597 	}
6598 
6599 	return -EINVAL;
6600 }
6601 
6602 static int selinux_setprocattr(const char *name, void *value, size_t size)
6603 {
6604 	int attr = lsm_name_to_attr(name);
6605 
6606 	if (attr)
6607 		return selinux_lsm_setattr(attr, value, size);
6608 	return -EINVAL;
6609 }
6610 
6611 static int selinux_ismaclabel(const char *name)
6612 {
6613 	return (strcmp(name, XATTR_SELINUX_SUFFIX) == 0);
6614 }
6615 
6616 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
6617 {
6618 	return security_sid_to_context(secid,
6619 				       secdata, seclen);
6620 }
6621 
6622 static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
6623 {
6624 	return security_context_to_sid(secdata, seclen,
6625 				       secid, GFP_KERNEL);
6626 }
6627 
6628 static void selinux_release_secctx(char *secdata, u32 seclen)
6629 {
6630 	kfree(secdata);
6631 }
6632 
6633 static void selinux_inode_invalidate_secctx(struct inode *inode)
6634 {
6635 	struct inode_security_struct *isec = selinux_inode(inode);
6636 
6637 	spin_lock(&isec->lock);
6638 	isec->initialized = LABEL_INVALID;
6639 	spin_unlock(&isec->lock);
6640 }
6641 
6642 /*
6643  *	called with inode->i_mutex locked
6644  */
6645 static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
6646 {
6647 	int rc = selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX,
6648 					   ctx, ctxlen, 0);
6649 	/* Do not return error when suppressing label (SBLABEL_MNT not set). */
6650 	return rc == -EOPNOTSUPP ? 0 : rc;
6651 }
6652 
6653 /*
6654  *	called with inode->i_mutex locked
6655  */
6656 static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
6657 {
6658 	return __vfs_setxattr_noperm(&nop_mnt_idmap, dentry, XATTR_NAME_SELINUX,
6659 				     ctx, ctxlen, 0);
6660 }
6661 
6662 static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
6663 {
6664 	int len = 0;
6665 	len = selinux_inode_getsecurity(&nop_mnt_idmap, inode,
6666 					XATTR_SELINUX_SUFFIX, ctx, true);
6667 	if (len < 0)
6668 		return len;
6669 	*ctxlen = len;
6670 	return 0;
6671 }
6672 #ifdef CONFIG_KEYS
6673 
6674 static int selinux_key_alloc(struct key *k, const struct cred *cred,
6675 			     unsigned long flags)
6676 {
6677 	const struct task_security_struct *tsec;
6678 	struct key_security_struct *ksec;
6679 
6680 	ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
6681 	if (!ksec)
6682 		return -ENOMEM;
6683 
6684 	tsec = selinux_cred(cred);
6685 	if (tsec->keycreate_sid)
6686 		ksec->sid = tsec->keycreate_sid;
6687 	else
6688 		ksec->sid = tsec->sid;
6689 
6690 	k->security = ksec;
6691 	return 0;
6692 }
6693 
6694 static void selinux_key_free(struct key *k)
6695 {
6696 	struct key_security_struct *ksec = k->security;
6697 
6698 	k->security = NULL;
6699 	kfree(ksec);
6700 }
6701 
6702 static int selinux_key_permission(key_ref_t key_ref,
6703 				  const struct cred *cred,
6704 				  enum key_need_perm need_perm)
6705 {
6706 	struct key *key;
6707 	struct key_security_struct *ksec;
6708 	u32 perm, sid;
6709 
6710 	switch (need_perm) {
6711 	case KEY_NEED_VIEW:
6712 		perm = KEY__VIEW;
6713 		break;
6714 	case KEY_NEED_READ:
6715 		perm = KEY__READ;
6716 		break;
6717 	case KEY_NEED_WRITE:
6718 		perm = KEY__WRITE;
6719 		break;
6720 	case KEY_NEED_SEARCH:
6721 		perm = KEY__SEARCH;
6722 		break;
6723 	case KEY_NEED_LINK:
6724 		perm = KEY__LINK;
6725 		break;
6726 	case KEY_NEED_SETATTR:
6727 		perm = KEY__SETATTR;
6728 		break;
6729 	case KEY_NEED_UNLINK:
6730 	case KEY_SYSADMIN_OVERRIDE:
6731 	case KEY_AUTHTOKEN_OVERRIDE:
6732 	case KEY_DEFER_PERM_CHECK:
6733 		return 0;
6734 	default:
6735 		WARN_ON(1);
6736 		return -EPERM;
6737 
6738 	}
6739 
6740 	sid = cred_sid(cred);
6741 	key = key_ref_to_ptr(key_ref);
6742 	ksec = key->security;
6743 
6744 	return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, perm, NULL);
6745 }
6746 
6747 static int selinux_key_getsecurity(struct key *key, char **_buffer)
6748 {
6749 	struct key_security_struct *ksec = key->security;
6750 	char *context = NULL;
6751 	unsigned len;
6752 	int rc;
6753 
6754 	rc = security_sid_to_context(ksec->sid,
6755 				     &context, &len);
6756 	if (!rc)
6757 		rc = len;
6758 	*_buffer = context;
6759 	return rc;
6760 }
6761 
6762 #ifdef CONFIG_KEY_NOTIFICATIONS
6763 static int selinux_watch_key(struct key *key)
6764 {
6765 	struct key_security_struct *ksec = key->security;
6766 	u32 sid = current_sid();
6767 
6768 	return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, KEY__VIEW, NULL);
6769 }
6770 #endif
6771 #endif
6772 
6773 #ifdef CONFIG_SECURITY_INFINIBAND
6774 static int selinux_ib_pkey_access(void *ib_sec, u64 subnet_prefix, u16 pkey_val)
6775 {
6776 	struct common_audit_data ad;
6777 	int err;
6778 	u32 sid = 0;
6779 	struct ib_security_struct *sec = ib_sec;
6780 	struct lsm_ibpkey_audit ibpkey;
6781 
6782 	err = sel_ib_pkey_sid(subnet_prefix, pkey_val, &sid);
6783 	if (err)
6784 		return err;
6785 
6786 	ad.type = LSM_AUDIT_DATA_IBPKEY;
6787 	ibpkey.subnet_prefix = subnet_prefix;
6788 	ibpkey.pkey = pkey_val;
6789 	ad.u.ibpkey = &ibpkey;
6790 	return avc_has_perm(sec->sid, sid,
6791 			    SECCLASS_INFINIBAND_PKEY,
6792 			    INFINIBAND_PKEY__ACCESS, &ad);
6793 }
6794 
6795 static int selinux_ib_endport_manage_subnet(void *ib_sec, const char *dev_name,
6796 					    u8 port_num)
6797 {
6798 	struct common_audit_data ad;
6799 	int err;
6800 	u32 sid = 0;
6801 	struct ib_security_struct *sec = ib_sec;
6802 	struct lsm_ibendport_audit ibendport;
6803 
6804 	err = security_ib_endport_sid(dev_name, port_num,
6805 				      &sid);
6806 
6807 	if (err)
6808 		return err;
6809 
6810 	ad.type = LSM_AUDIT_DATA_IBENDPORT;
6811 	ibendport.dev_name = dev_name;
6812 	ibendport.port = port_num;
6813 	ad.u.ibendport = &ibendport;
6814 	return avc_has_perm(sec->sid, sid,
6815 			    SECCLASS_INFINIBAND_ENDPORT,
6816 			    INFINIBAND_ENDPORT__MANAGE_SUBNET, &ad);
6817 }
6818 
6819 static int selinux_ib_alloc_security(void **ib_sec)
6820 {
6821 	struct ib_security_struct *sec;
6822 
6823 	sec = kzalloc(sizeof(*sec), GFP_KERNEL);
6824 	if (!sec)
6825 		return -ENOMEM;
6826 	sec->sid = current_sid();
6827 
6828 	*ib_sec = sec;
6829 	return 0;
6830 }
6831 
6832 static void selinux_ib_free_security(void *ib_sec)
6833 {
6834 	kfree(ib_sec);
6835 }
6836 #endif
6837 
6838 #ifdef CONFIG_BPF_SYSCALL
6839 static int selinux_bpf(int cmd, union bpf_attr *attr,
6840 				     unsigned int size)
6841 {
6842 	u32 sid = current_sid();
6843 	int ret;
6844 
6845 	switch (cmd) {
6846 	case BPF_MAP_CREATE:
6847 		ret = avc_has_perm(sid, sid, SECCLASS_BPF, BPF__MAP_CREATE,
6848 				   NULL);
6849 		break;
6850 	case BPF_PROG_LOAD:
6851 		ret = avc_has_perm(sid, sid, SECCLASS_BPF, BPF__PROG_LOAD,
6852 				   NULL);
6853 		break;
6854 	default:
6855 		ret = 0;
6856 		break;
6857 	}
6858 
6859 	return ret;
6860 }
6861 
6862 static u32 bpf_map_fmode_to_av(fmode_t fmode)
6863 {
6864 	u32 av = 0;
6865 
6866 	if (fmode & FMODE_READ)
6867 		av |= BPF__MAP_READ;
6868 	if (fmode & FMODE_WRITE)
6869 		av |= BPF__MAP_WRITE;
6870 	return av;
6871 }
6872 
6873 /* This function will check the file pass through unix socket or binder to see
6874  * if it is a bpf related object. And apply corresponding checks on the bpf
6875  * object based on the type. The bpf maps and programs, not like other files and
6876  * socket, are using a shared anonymous inode inside the kernel as their inode.
6877  * So checking that inode cannot identify if the process have privilege to
6878  * access the bpf object and that's why we have to add this additional check in
6879  * selinux_file_receive and selinux_binder_transfer_files.
6880  */
6881 static int bpf_fd_pass(const struct file *file, u32 sid)
6882 {
6883 	struct bpf_security_struct *bpfsec;
6884 	struct bpf_prog *prog;
6885 	struct bpf_map *map;
6886 	int ret;
6887 
6888 	if (file->f_op == &bpf_map_fops) {
6889 		map = file->private_data;
6890 		bpfsec = map->security;
6891 		ret = avc_has_perm(sid, bpfsec->sid, SECCLASS_BPF,
6892 				   bpf_map_fmode_to_av(file->f_mode), NULL);
6893 		if (ret)
6894 			return ret;
6895 	} else if (file->f_op == &bpf_prog_fops) {
6896 		prog = file->private_data;
6897 		bpfsec = prog->aux->security;
6898 		ret = avc_has_perm(sid, bpfsec->sid, SECCLASS_BPF,
6899 				   BPF__PROG_RUN, NULL);
6900 		if (ret)
6901 			return ret;
6902 	}
6903 	return 0;
6904 }
6905 
6906 static int selinux_bpf_map(struct bpf_map *map, fmode_t fmode)
6907 {
6908 	u32 sid = current_sid();
6909 	struct bpf_security_struct *bpfsec;
6910 
6911 	bpfsec = map->security;
6912 	return avc_has_perm(sid, bpfsec->sid, SECCLASS_BPF,
6913 			    bpf_map_fmode_to_av(fmode), NULL);
6914 }
6915 
6916 static int selinux_bpf_prog(struct bpf_prog *prog)
6917 {
6918 	u32 sid = current_sid();
6919 	struct bpf_security_struct *bpfsec;
6920 
6921 	bpfsec = prog->aux->security;
6922 	return avc_has_perm(sid, bpfsec->sid, SECCLASS_BPF,
6923 			    BPF__PROG_RUN, NULL);
6924 }
6925 
6926 static int selinux_bpf_map_create(struct bpf_map *map, union bpf_attr *attr,
6927 				  struct bpf_token *token)
6928 {
6929 	struct bpf_security_struct *bpfsec;
6930 
6931 	bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL);
6932 	if (!bpfsec)
6933 		return -ENOMEM;
6934 
6935 	bpfsec->sid = current_sid();
6936 	map->security = bpfsec;
6937 
6938 	return 0;
6939 }
6940 
6941 static void selinux_bpf_map_free(struct bpf_map *map)
6942 {
6943 	struct bpf_security_struct *bpfsec = map->security;
6944 
6945 	map->security = NULL;
6946 	kfree(bpfsec);
6947 }
6948 
6949 static int selinux_bpf_prog_load(struct bpf_prog *prog, union bpf_attr *attr,
6950 				 struct bpf_token *token)
6951 {
6952 	struct bpf_security_struct *bpfsec;
6953 
6954 	bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL);
6955 	if (!bpfsec)
6956 		return -ENOMEM;
6957 
6958 	bpfsec->sid = current_sid();
6959 	prog->aux->security = bpfsec;
6960 
6961 	return 0;
6962 }
6963 
6964 static void selinux_bpf_prog_free(struct bpf_prog *prog)
6965 {
6966 	struct bpf_security_struct *bpfsec = prog->aux->security;
6967 
6968 	prog->aux->security = NULL;
6969 	kfree(bpfsec);
6970 }
6971 
6972 static int selinux_bpf_token_create(struct bpf_token *token, union bpf_attr *attr,
6973 				    struct path *path)
6974 {
6975 	struct bpf_security_struct *bpfsec;
6976 
6977 	bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL);
6978 	if (!bpfsec)
6979 		return -ENOMEM;
6980 
6981 	bpfsec->sid = current_sid();
6982 	token->security = bpfsec;
6983 
6984 	return 0;
6985 }
6986 
6987 static void selinux_bpf_token_free(struct bpf_token *token)
6988 {
6989 	struct bpf_security_struct *bpfsec = token->security;
6990 
6991 	token->security = NULL;
6992 	kfree(bpfsec);
6993 }
6994 #endif
6995 
6996 struct lsm_blob_sizes selinux_blob_sizes __ro_after_init = {
6997 	.lbs_cred = sizeof(struct task_security_struct),
6998 	.lbs_file = sizeof(struct file_security_struct),
6999 	.lbs_inode = sizeof(struct inode_security_struct),
7000 	.lbs_ipc = sizeof(struct ipc_security_struct),
7001 	.lbs_msg_msg = sizeof(struct msg_security_struct),
7002 	.lbs_superblock = sizeof(struct superblock_security_struct),
7003 	.lbs_xattr_count = SELINUX_INODE_INIT_XATTRS,
7004 };
7005 
7006 #ifdef CONFIG_PERF_EVENTS
7007 static int selinux_perf_event_open(struct perf_event_attr *attr, int type)
7008 {
7009 	u32 requested, sid = current_sid();
7010 
7011 	if (type == PERF_SECURITY_OPEN)
7012 		requested = PERF_EVENT__OPEN;
7013 	else if (type == PERF_SECURITY_CPU)
7014 		requested = PERF_EVENT__CPU;
7015 	else if (type == PERF_SECURITY_KERNEL)
7016 		requested = PERF_EVENT__KERNEL;
7017 	else if (type == PERF_SECURITY_TRACEPOINT)
7018 		requested = PERF_EVENT__TRACEPOINT;
7019 	else
7020 		return -EINVAL;
7021 
7022 	return avc_has_perm(sid, sid, SECCLASS_PERF_EVENT,
7023 			    requested, NULL);
7024 }
7025 
7026 static int selinux_perf_event_alloc(struct perf_event *event)
7027 {
7028 	struct perf_event_security_struct *perfsec;
7029 
7030 	perfsec = kzalloc(sizeof(*perfsec), GFP_KERNEL);
7031 	if (!perfsec)
7032 		return -ENOMEM;
7033 
7034 	perfsec->sid = current_sid();
7035 	event->security = perfsec;
7036 
7037 	return 0;
7038 }
7039 
7040 static void selinux_perf_event_free(struct perf_event *event)
7041 {
7042 	struct perf_event_security_struct *perfsec = event->security;
7043 
7044 	event->security = NULL;
7045 	kfree(perfsec);
7046 }
7047 
7048 static int selinux_perf_event_read(struct perf_event *event)
7049 {
7050 	struct perf_event_security_struct *perfsec = event->security;
7051 	u32 sid = current_sid();
7052 
7053 	return avc_has_perm(sid, perfsec->sid,
7054 			    SECCLASS_PERF_EVENT, PERF_EVENT__READ, NULL);
7055 }
7056 
7057 static int selinux_perf_event_write(struct perf_event *event)
7058 {
7059 	struct perf_event_security_struct *perfsec = event->security;
7060 	u32 sid = current_sid();
7061 
7062 	return avc_has_perm(sid, perfsec->sid,
7063 			    SECCLASS_PERF_EVENT, PERF_EVENT__WRITE, NULL);
7064 }
7065 #endif
7066 
7067 #ifdef CONFIG_IO_URING
7068 /**
7069  * selinux_uring_override_creds - check the requested cred override
7070  * @new: the target creds
7071  *
7072  * Check to see if the current task is allowed to override it's credentials
7073  * to service an io_uring operation.
7074  */
7075 static int selinux_uring_override_creds(const struct cred *new)
7076 {
7077 	return avc_has_perm(current_sid(), cred_sid(new),
7078 			    SECCLASS_IO_URING, IO_URING__OVERRIDE_CREDS, NULL);
7079 }
7080 
7081 /**
7082  * selinux_uring_sqpoll - check if a io_uring polling thread can be created
7083  *
7084  * Check to see if the current task is allowed to create a new io_uring
7085  * kernel polling thread.
7086  */
7087 static int selinux_uring_sqpoll(void)
7088 {
7089 	u32 sid = current_sid();
7090 
7091 	return avc_has_perm(sid, sid,
7092 			    SECCLASS_IO_URING, IO_URING__SQPOLL, NULL);
7093 }
7094 
7095 /**
7096  * selinux_uring_cmd - check if IORING_OP_URING_CMD is allowed
7097  * @ioucmd: the io_uring command structure
7098  *
7099  * Check to see if the current domain is allowed to execute an
7100  * IORING_OP_URING_CMD against the device/file specified in @ioucmd.
7101  *
7102  */
7103 static int selinux_uring_cmd(struct io_uring_cmd *ioucmd)
7104 {
7105 	struct file *file = ioucmd->file;
7106 	struct inode *inode = file_inode(file);
7107 	struct inode_security_struct *isec = selinux_inode(inode);
7108 	struct common_audit_data ad;
7109 
7110 	ad.type = LSM_AUDIT_DATA_FILE;
7111 	ad.u.file = file;
7112 
7113 	return avc_has_perm(current_sid(), isec->sid,
7114 			    SECCLASS_IO_URING, IO_URING__CMD, &ad);
7115 }
7116 #endif /* CONFIG_IO_URING */
7117 
7118 static const struct lsm_id selinux_lsmid = {
7119 	.name = "selinux",
7120 	.id = LSM_ID_SELINUX,
7121 };
7122 
7123 /*
7124  * IMPORTANT NOTE: When adding new hooks, please be careful to keep this order:
7125  * 1. any hooks that don't belong to (2.) or (3.) below,
7126  * 2. hooks that both access structures allocated by other hooks, and allocate
7127  *    structures that can be later accessed by other hooks (mostly "cloning"
7128  *    hooks),
7129  * 3. hooks that only allocate structures that can be later accessed by other
7130  *    hooks ("allocating" hooks).
7131  *
7132  * Please follow block comment delimiters in the list to keep this order.
7133  */
7134 static struct security_hook_list selinux_hooks[] __ro_after_init = {
7135 	LSM_HOOK_INIT(binder_set_context_mgr, selinux_binder_set_context_mgr),
7136 	LSM_HOOK_INIT(binder_transaction, selinux_binder_transaction),
7137 	LSM_HOOK_INIT(binder_transfer_binder, selinux_binder_transfer_binder),
7138 	LSM_HOOK_INIT(binder_transfer_file, selinux_binder_transfer_file),
7139 
7140 	LSM_HOOK_INIT(ptrace_access_check, selinux_ptrace_access_check),
7141 	LSM_HOOK_INIT(ptrace_traceme, selinux_ptrace_traceme),
7142 	LSM_HOOK_INIT(capget, selinux_capget),
7143 	LSM_HOOK_INIT(capset, selinux_capset),
7144 	LSM_HOOK_INIT(capable, selinux_capable),
7145 	LSM_HOOK_INIT(quotactl, selinux_quotactl),
7146 	LSM_HOOK_INIT(quota_on, selinux_quota_on),
7147 	LSM_HOOK_INIT(syslog, selinux_syslog),
7148 	LSM_HOOK_INIT(vm_enough_memory, selinux_vm_enough_memory),
7149 
7150 	LSM_HOOK_INIT(netlink_send, selinux_netlink_send),
7151 
7152 	LSM_HOOK_INIT(bprm_creds_for_exec, selinux_bprm_creds_for_exec),
7153 	LSM_HOOK_INIT(bprm_committing_creds, selinux_bprm_committing_creds),
7154 	LSM_HOOK_INIT(bprm_committed_creds, selinux_bprm_committed_creds),
7155 
7156 	LSM_HOOK_INIT(sb_free_mnt_opts, selinux_free_mnt_opts),
7157 	LSM_HOOK_INIT(sb_mnt_opts_compat, selinux_sb_mnt_opts_compat),
7158 	LSM_HOOK_INIT(sb_remount, selinux_sb_remount),
7159 	LSM_HOOK_INIT(sb_kern_mount, selinux_sb_kern_mount),
7160 	LSM_HOOK_INIT(sb_show_options, selinux_sb_show_options),
7161 	LSM_HOOK_INIT(sb_statfs, selinux_sb_statfs),
7162 	LSM_HOOK_INIT(sb_mount, selinux_mount),
7163 	LSM_HOOK_INIT(sb_umount, selinux_umount),
7164 	LSM_HOOK_INIT(sb_set_mnt_opts, selinux_set_mnt_opts),
7165 	LSM_HOOK_INIT(sb_clone_mnt_opts, selinux_sb_clone_mnt_opts),
7166 
7167 	LSM_HOOK_INIT(move_mount, selinux_move_mount),
7168 
7169 	LSM_HOOK_INIT(dentry_init_security, selinux_dentry_init_security),
7170 	LSM_HOOK_INIT(dentry_create_files_as, selinux_dentry_create_files_as),
7171 
7172 	LSM_HOOK_INIT(inode_free_security, selinux_inode_free_security),
7173 	LSM_HOOK_INIT(inode_init_security, selinux_inode_init_security),
7174 	LSM_HOOK_INIT(inode_init_security_anon, selinux_inode_init_security_anon),
7175 	LSM_HOOK_INIT(inode_create, selinux_inode_create),
7176 	LSM_HOOK_INIT(inode_link, selinux_inode_link),
7177 	LSM_HOOK_INIT(inode_unlink, selinux_inode_unlink),
7178 	LSM_HOOK_INIT(inode_symlink, selinux_inode_symlink),
7179 	LSM_HOOK_INIT(inode_mkdir, selinux_inode_mkdir),
7180 	LSM_HOOK_INIT(inode_rmdir, selinux_inode_rmdir),
7181 	LSM_HOOK_INIT(inode_mknod, selinux_inode_mknod),
7182 	LSM_HOOK_INIT(inode_rename, selinux_inode_rename),
7183 	LSM_HOOK_INIT(inode_readlink, selinux_inode_readlink),
7184 	LSM_HOOK_INIT(inode_follow_link, selinux_inode_follow_link),
7185 	LSM_HOOK_INIT(inode_permission, selinux_inode_permission),
7186 	LSM_HOOK_INIT(inode_setattr, selinux_inode_setattr),
7187 	LSM_HOOK_INIT(inode_getattr, selinux_inode_getattr),
7188 	LSM_HOOK_INIT(inode_setxattr, selinux_inode_setxattr),
7189 	LSM_HOOK_INIT(inode_post_setxattr, selinux_inode_post_setxattr),
7190 	LSM_HOOK_INIT(inode_getxattr, selinux_inode_getxattr),
7191 	LSM_HOOK_INIT(inode_listxattr, selinux_inode_listxattr),
7192 	LSM_HOOK_INIT(inode_removexattr, selinux_inode_removexattr),
7193 	LSM_HOOK_INIT(inode_set_acl, selinux_inode_set_acl),
7194 	LSM_HOOK_INIT(inode_get_acl, selinux_inode_get_acl),
7195 	LSM_HOOK_INIT(inode_remove_acl, selinux_inode_remove_acl),
7196 	LSM_HOOK_INIT(inode_getsecurity, selinux_inode_getsecurity),
7197 	LSM_HOOK_INIT(inode_setsecurity, selinux_inode_setsecurity),
7198 	LSM_HOOK_INIT(inode_listsecurity, selinux_inode_listsecurity),
7199 	LSM_HOOK_INIT(inode_getsecid, selinux_inode_getsecid),
7200 	LSM_HOOK_INIT(inode_copy_up, selinux_inode_copy_up),
7201 	LSM_HOOK_INIT(inode_copy_up_xattr, selinux_inode_copy_up_xattr),
7202 	LSM_HOOK_INIT(path_notify, selinux_path_notify),
7203 
7204 	LSM_HOOK_INIT(kernfs_init_security, selinux_kernfs_init_security),
7205 
7206 	LSM_HOOK_INIT(file_permission, selinux_file_permission),
7207 	LSM_HOOK_INIT(file_alloc_security, selinux_file_alloc_security),
7208 	LSM_HOOK_INIT(file_ioctl, selinux_file_ioctl),
7209 	LSM_HOOK_INIT(file_ioctl_compat, selinux_file_ioctl_compat),
7210 	LSM_HOOK_INIT(mmap_file, selinux_mmap_file),
7211 	LSM_HOOK_INIT(mmap_addr, selinux_mmap_addr),
7212 	LSM_HOOK_INIT(file_mprotect, selinux_file_mprotect),
7213 	LSM_HOOK_INIT(file_lock, selinux_file_lock),
7214 	LSM_HOOK_INIT(file_fcntl, selinux_file_fcntl),
7215 	LSM_HOOK_INIT(file_set_fowner, selinux_file_set_fowner),
7216 	LSM_HOOK_INIT(file_send_sigiotask, selinux_file_send_sigiotask),
7217 	LSM_HOOK_INIT(file_receive, selinux_file_receive),
7218 
7219 	LSM_HOOK_INIT(file_open, selinux_file_open),
7220 
7221 	LSM_HOOK_INIT(task_alloc, selinux_task_alloc),
7222 	LSM_HOOK_INIT(cred_prepare, selinux_cred_prepare),
7223 	LSM_HOOK_INIT(cred_transfer, selinux_cred_transfer),
7224 	LSM_HOOK_INIT(cred_getsecid, selinux_cred_getsecid),
7225 	LSM_HOOK_INIT(kernel_act_as, selinux_kernel_act_as),
7226 	LSM_HOOK_INIT(kernel_create_files_as, selinux_kernel_create_files_as),
7227 	LSM_HOOK_INIT(kernel_module_request, selinux_kernel_module_request),
7228 	LSM_HOOK_INIT(kernel_load_data, selinux_kernel_load_data),
7229 	LSM_HOOK_INIT(kernel_read_file, selinux_kernel_read_file),
7230 	LSM_HOOK_INIT(task_setpgid, selinux_task_setpgid),
7231 	LSM_HOOK_INIT(task_getpgid, selinux_task_getpgid),
7232 	LSM_HOOK_INIT(task_getsid, selinux_task_getsid),
7233 	LSM_HOOK_INIT(current_getsecid_subj, selinux_current_getsecid_subj),
7234 	LSM_HOOK_INIT(task_getsecid_obj, selinux_task_getsecid_obj),
7235 	LSM_HOOK_INIT(task_setnice, selinux_task_setnice),
7236 	LSM_HOOK_INIT(task_setioprio, selinux_task_setioprio),
7237 	LSM_HOOK_INIT(task_getioprio, selinux_task_getioprio),
7238 	LSM_HOOK_INIT(task_prlimit, selinux_task_prlimit),
7239 	LSM_HOOK_INIT(task_setrlimit, selinux_task_setrlimit),
7240 	LSM_HOOK_INIT(task_setscheduler, selinux_task_setscheduler),
7241 	LSM_HOOK_INIT(task_getscheduler, selinux_task_getscheduler),
7242 	LSM_HOOK_INIT(task_movememory, selinux_task_movememory),
7243 	LSM_HOOK_INIT(task_kill, selinux_task_kill),
7244 	LSM_HOOK_INIT(task_to_inode, selinux_task_to_inode),
7245 	LSM_HOOK_INIT(userns_create, selinux_userns_create),
7246 
7247 	LSM_HOOK_INIT(ipc_permission, selinux_ipc_permission),
7248 	LSM_HOOK_INIT(ipc_getsecid, selinux_ipc_getsecid),
7249 
7250 	LSM_HOOK_INIT(msg_queue_associate, selinux_msg_queue_associate),
7251 	LSM_HOOK_INIT(msg_queue_msgctl, selinux_msg_queue_msgctl),
7252 	LSM_HOOK_INIT(msg_queue_msgsnd, selinux_msg_queue_msgsnd),
7253 	LSM_HOOK_INIT(msg_queue_msgrcv, selinux_msg_queue_msgrcv),
7254 
7255 	LSM_HOOK_INIT(shm_associate, selinux_shm_associate),
7256 	LSM_HOOK_INIT(shm_shmctl, selinux_shm_shmctl),
7257 	LSM_HOOK_INIT(shm_shmat, selinux_shm_shmat),
7258 
7259 	LSM_HOOK_INIT(sem_associate, selinux_sem_associate),
7260 	LSM_HOOK_INIT(sem_semctl, selinux_sem_semctl),
7261 	LSM_HOOK_INIT(sem_semop, selinux_sem_semop),
7262 
7263 	LSM_HOOK_INIT(d_instantiate, selinux_d_instantiate),
7264 
7265 	LSM_HOOK_INIT(getselfattr, selinux_getselfattr),
7266 	LSM_HOOK_INIT(setselfattr, selinux_setselfattr),
7267 	LSM_HOOK_INIT(getprocattr, selinux_getprocattr),
7268 	LSM_HOOK_INIT(setprocattr, selinux_setprocattr),
7269 
7270 	LSM_HOOK_INIT(ismaclabel, selinux_ismaclabel),
7271 	LSM_HOOK_INIT(secctx_to_secid, selinux_secctx_to_secid),
7272 	LSM_HOOK_INIT(release_secctx, selinux_release_secctx),
7273 	LSM_HOOK_INIT(inode_invalidate_secctx, selinux_inode_invalidate_secctx),
7274 	LSM_HOOK_INIT(inode_notifysecctx, selinux_inode_notifysecctx),
7275 	LSM_HOOK_INIT(inode_setsecctx, selinux_inode_setsecctx),
7276 
7277 	LSM_HOOK_INIT(unix_stream_connect, selinux_socket_unix_stream_connect),
7278 	LSM_HOOK_INIT(unix_may_send, selinux_socket_unix_may_send),
7279 
7280 	LSM_HOOK_INIT(socket_create, selinux_socket_create),
7281 	LSM_HOOK_INIT(socket_post_create, selinux_socket_post_create),
7282 	LSM_HOOK_INIT(socket_socketpair, selinux_socket_socketpair),
7283 	LSM_HOOK_INIT(socket_bind, selinux_socket_bind),
7284 	LSM_HOOK_INIT(socket_connect, selinux_socket_connect),
7285 	LSM_HOOK_INIT(socket_listen, selinux_socket_listen),
7286 	LSM_HOOK_INIT(socket_accept, selinux_socket_accept),
7287 	LSM_HOOK_INIT(socket_sendmsg, selinux_socket_sendmsg),
7288 	LSM_HOOK_INIT(socket_recvmsg, selinux_socket_recvmsg),
7289 	LSM_HOOK_INIT(socket_getsockname, selinux_socket_getsockname),
7290 	LSM_HOOK_INIT(socket_getpeername, selinux_socket_getpeername),
7291 	LSM_HOOK_INIT(socket_getsockopt, selinux_socket_getsockopt),
7292 	LSM_HOOK_INIT(socket_setsockopt, selinux_socket_setsockopt),
7293 	LSM_HOOK_INIT(socket_shutdown, selinux_socket_shutdown),
7294 	LSM_HOOK_INIT(socket_sock_rcv_skb, selinux_socket_sock_rcv_skb),
7295 	LSM_HOOK_INIT(socket_getpeersec_stream,
7296 			selinux_socket_getpeersec_stream),
7297 	LSM_HOOK_INIT(socket_getpeersec_dgram, selinux_socket_getpeersec_dgram),
7298 	LSM_HOOK_INIT(sk_free_security, selinux_sk_free_security),
7299 	LSM_HOOK_INIT(sk_clone_security, selinux_sk_clone_security),
7300 	LSM_HOOK_INIT(sk_getsecid, selinux_sk_getsecid),
7301 	LSM_HOOK_INIT(sock_graft, selinux_sock_graft),
7302 	LSM_HOOK_INIT(sctp_assoc_request, selinux_sctp_assoc_request),
7303 	LSM_HOOK_INIT(sctp_sk_clone, selinux_sctp_sk_clone),
7304 	LSM_HOOK_INIT(sctp_bind_connect, selinux_sctp_bind_connect),
7305 	LSM_HOOK_INIT(sctp_assoc_established, selinux_sctp_assoc_established),
7306 	LSM_HOOK_INIT(mptcp_add_subflow, selinux_mptcp_add_subflow),
7307 	LSM_HOOK_INIT(inet_conn_request, selinux_inet_conn_request),
7308 	LSM_HOOK_INIT(inet_csk_clone, selinux_inet_csk_clone),
7309 	LSM_HOOK_INIT(inet_conn_established, selinux_inet_conn_established),
7310 	LSM_HOOK_INIT(secmark_relabel_packet, selinux_secmark_relabel_packet),
7311 	LSM_HOOK_INIT(secmark_refcount_inc, selinux_secmark_refcount_inc),
7312 	LSM_HOOK_INIT(secmark_refcount_dec, selinux_secmark_refcount_dec),
7313 	LSM_HOOK_INIT(req_classify_flow, selinux_req_classify_flow),
7314 	LSM_HOOK_INIT(tun_dev_free_security, selinux_tun_dev_free_security),
7315 	LSM_HOOK_INIT(tun_dev_create, selinux_tun_dev_create),
7316 	LSM_HOOK_INIT(tun_dev_attach_queue, selinux_tun_dev_attach_queue),
7317 	LSM_HOOK_INIT(tun_dev_attach, selinux_tun_dev_attach),
7318 	LSM_HOOK_INIT(tun_dev_open, selinux_tun_dev_open),
7319 #ifdef CONFIG_SECURITY_INFINIBAND
7320 	LSM_HOOK_INIT(ib_pkey_access, selinux_ib_pkey_access),
7321 	LSM_HOOK_INIT(ib_endport_manage_subnet,
7322 		      selinux_ib_endport_manage_subnet),
7323 	LSM_HOOK_INIT(ib_free_security, selinux_ib_free_security),
7324 #endif
7325 #ifdef CONFIG_SECURITY_NETWORK_XFRM
7326 	LSM_HOOK_INIT(xfrm_policy_free_security, selinux_xfrm_policy_free),
7327 	LSM_HOOK_INIT(xfrm_policy_delete_security, selinux_xfrm_policy_delete),
7328 	LSM_HOOK_INIT(xfrm_state_free_security, selinux_xfrm_state_free),
7329 	LSM_HOOK_INIT(xfrm_state_delete_security, selinux_xfrm_state_delete),
7330 	LSM_HOOK_INIT(xfrm_policy_lookup, selinux_xfrm_policy_lookup),
7331 	LSM_HOOK_INIT(xfrm_state_pol_flow_match,
7332 			selinux_xfrm_state_pol_flow_match),
7333 	LSM_HOOK_INIT(xfrm_decode_session, selinux_xfrm_decode_session),
7334 #endif
7335 
7336 #ifdef CONFIG_KEYS
7337 	LSM_HOOK_INIT(key_free, selinux_key_free),
7338 	LSM_HOOK_INIT(key_permission, selinux_key_permission),
7339 	LSM_HOOK_INIT(key_getsecurity, selinux_key_getsecurity),
7340 #ifdef CONFIG_KEY_NOTIFICATIONS
7341 	LSM_HOOK_INIT(watch_key, selinux_watch_key),
7342 #endif
7343 #endif
7344 
7345 #ifdef CONFIG_AUDIT
7346 	LSM_HOOK_INIT(audit_rule_known, selinux_audit_rule_known),
7347 	LSM_HOOK_INIT(audit_rule_match, selinux_audit_rule_match),
7348 	LSM_HOOK_INIT(audit_rule_free, selinux_audit_rule_free),
7349 #endif
7350 
7351 #ifdef CONFIG_BPF_SYSCALL
7352 	LSM_HOOK_INIT(bpf, selinux_bpf),
7353 	LSM_HOOK_INIT(bpf_map, selinux_bpf_map),
7354 	LSM_HOOK_INIT(bpf_prog, selinux_bpf_prog),
7355 	LSM_HOOK_INIT(bpf_map_free, selinux_bpf_map_free),
7356 	LSM_HOOK_INIT(bpf_prog_free, selinux_bpf_prog_free),
7357 	LSM_HOOK_INIT(bpf_token_free, selinux_bpf_token_free),
7358 #endif
7359 
7360 #ifdef CONFIG_PERF_EVENTS
7361 	LSM_HOOK_INIT(perf_event_open, selinux_perf_event_open),
7362 	LSM_HOOK_INIT(perf_event_free, selinux_perf_event_free),
7363 	LSM_HOOK_INIT(perf_event_read, selinux_perf_event_read),
7364 	LSM_HOOK_INIT(perf_event_write, selinux_perf_event_write),
7365 #endif
7366 
7367 #ifdef CONFIG_IO_URING
7368 	LSM_HOOK_INIT(uring_override_creds, selinux_uring_override_creds),
7369 	LSM_HOOK_INIT(uring_sqpoll, selinux_uring_sqpoll),
7370 	LSM_HOOK_INIT(uring_cmd, selinux_uring_cmd),
7371 #endif
7372 
7373 	/*
7374 	 * PUT "CLONING" (ACCESSING + ALLOCATING) HOOKS HERE
7375 	 */
7376 	LSM_HOOK_INIT(fs_context_submount, selinux_fs_context_submount),
7377 	LSM_HOOK_INIT(fs_context_dup, selinux_fs_context_dup),
7378 	LSM_HOOK_INIT(fs_context_parse_param, selinux_fs_context_parse_param),
7379 	LSM_HOOK_INIT(sb_eat_lsm_opts, selinux_sb_eat_lsm_opts),
7380 #ifdef CONFIG_SECURITY_NETWORK_XFRM
7381 	LSM_HOOK_INIT(xfrm_policy_clone_security, selinux_xfrm_policy_clone),
7382 #endif
7383 
7384 	/*
7385 	 * PUT "ALLOCATING" HOOKS HERE
7386 	 */
7387 	LSM_HOOK_INIT(msg_msg_alloc_security, selinux_msg_msg_alloc_security),
7388 	LSM_HOOK_INIT(msg_queue_alloc_security,
7389 		      selinux_msg_queue_alloc_security),
7390 	LSM_HOOK_INIT(shm_alloc_security, selinux_shm_alloc_security),
7391 	LSM_HOOK_INIT(sb_alloc_security, selinux_sb_alloc_security),
7392 	LSM_HOOK_INIT(inode_alloc_security, selinux_inode_alloc_security),
7393 	LSM_HOOK_INIT(sem_alloc_security, selinux_sem_alloc_security),
7394 	LSM_HOOK_INIT(secid_to_secctx, selinux_secid_to_secctx),
7395 	LSM_HOOK_INIT(inode_getsecctx, selinux_inode_getsecctx),
7396 	LSM_HOOK_INIT(sk_alloc_security, selinux_sk_alloc_security),
7397 	LSM_HOOK_INIT(tun_dev_alloc_security, selinux_tun_dev_alloc_security),
7398 #ifdef CONFIG_SECURITY_INFINIBAND
7399 	LSM_HOOK_INIT(ib_alloc_security, selinux_ib_alloc_security),
7400 #endif
7401 #ifdef CONFIG_SECURITY_NETWORK_XFRM
7402 	LSM_HOOK_INIT(xfrm_policy_alloc_security, selinux_xfrm_policy_alloc),
7403 	LSM_HOOK_INIT(xfrm_state_alloc, selinux_xfrm_state_alloc),
7404 	LSM_HOOK_INIT(xfrm_state_alloc_acquire,
7405 		      selinux_xfrm_state_alloc_acquire),
7406 #endif
7407 #ifdef CONFIG_KEYS
7408 	LSM_HOOK_INIT(key_alloc, selinux_key_alloc),
7409 #endif
7410 #ifdef CONFIG_AUDIT
7411 	LSM_HOOK_INIT(audit_rule_init, selinux_audit_rule_init),
7412 #endif
7413 #ifdef CONFIG_BPF_SYSCALL
7414 	LSM_HOOK_INIT(bpf_map_create, selinux_bpf_map_create),
7415 	LSM_HOOK_INIT(bpf_prog_load, selinux_bpf_prog_load),
7416 	LSM_HOOK_INIT(bpf_token_create, selinux_bpf_token_create),
7417 #endif
7418 #ifdef CONFIG_PERF_EVENTS
7419 	LSM_HOOK_INIT(perf_event_alloc, selinux_perf_event_alloc),
7420 #endif
7421 };
7422 
7423 static __init int selinux_init(void)
7424 {
7425 	pr_info("SELinux:  Initializing.\n");
7426 
7427 	memset(&selinux_state, 0, sizeof(selinux_state));
7428 	enforcing_set(selinux_enforcing_boot);
7429 	selinux_avc_init();
7430 	mutex_init(&selinux_state.status_lock);
7431 	mutex_init(&selinux_state.policy_mutex);
7432 
7433 	/* Set the security state for the initial task. */
7434 	cred_init_security();
7435 
7436 	default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC);
7437 	if (!default_noexec)
7438 		pr_notice("SELinux:  virtual memory is executable by default\n");
7439 
7440 	avc_init();
7441 
7442 	avtab_cache_init();
7443 
7444 	ebitmap_cache_init();
7445 
7446 	hashtab_cache_init();
7447 
7448 	security_add_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks),
7449 			   &selinux_lsmid);
7450 
7451 	if (avc_add_callback(selinux_netcache_avc_callback, AVC_CALLBACK_RESET))
7452 		panic("SELinux: Unable to register AVC netcache callback\n");
7453 
7454 	if (avc_add_callback(selinux_lsm_notifier_avc_callback, AVC_CALLBACK_RESET))
7455 		panic("SELinux: Unable to register AVC LSM notifier callback\n");
7456 
7457 	if (selinux_enforcing_boot)
7458 		pr_debug("SELinux:  Starting in enforcing mode\n");
7459 	else
7460 		pr_debug("SELinux:  Starting in permissive mode\n");
7461 
7462 	fs_validate_description("selinux", selinux_fs_parameters);
7463 
7464 	return 0;
7465 }
7466 
7467 static void delayed_superblock_init(struct super_block *sb, void *unused)
7468 {
7469 	selinux_set_mnt_opts(sb, NULL, 0, NULL);
7470 }
7471 
7472 void selinux_complete_init(void)
7473 {
7474 	pr_debug("SELinux:  Completing initialization.\n");
7475 
7476 	/* Set up any superblocks initialized prior to the policy load. */
7477 	pr_debug("SELinux:  Setting up existing superblocks.\n");
7478 	iterate_supers(delayed_superblock_init, NULL);
7479 }
7480 
7481 /* SELinux requires early initialization in order to label
7482    all processes and objects when they are created. */
7483 DEFINE_LSM(selinux) = {
7484 	.name = "selinux",
7485 	.flags = LSM_FLAG_LEGACY_MAJOR | LSM_FLAG_EXCLUSIVE,
7486 	.enabled = &selinux_enabled_boot,
7487 	.blobs = &selinux_blob_sizes,
7488 	.init = selinux_init,
7489 };
7490 
7491 #if defined(CONFIG_NETFILTER)
7492 static const struct nf_hook_ops selinux_nf_ops[] = {
7493 	{
7494 		.hook =		selinux_ip_postroute,
7495 		.pf =		NFPROTO_IPV4,
7496 		.hooknum =	NF_INET_POST_ROUTING,
7497 		.priority =	NF_IP_PRI_SELINUX_LAST,
7498 	},
7499 	{
7500 		.hook =		selinux_ip_forward,
7501 		.pf =		NFPROTO_IPV4,
7502 		.hooknum =	NF_INET_FORWARD,
7503 		.priority =	NF_IP_PRI_SELINUX_FIRST,
7504 	},
7505 	{
7506 		.hook =		selinux_ip_output,
7507 		.pf =		NFPROTO_IPV4,
7508 		.hooknum =	NF_INET_LOCAL_OUT,
7509 		.priority =	NF_IP_PRI_SELINUX_FIRST,
7510 	},
7511 #if IS_ENABLED(CONFIG_IPV6)
7512 	{
7513 		.hook =		selinux_ip_postroute,
7514 		.pf =		NFPROTO_IPV6,
7515 		.hooknum =	NF_INET_POST_ROUTING,
7516 		.priority =	NF_IP6_PRI_SELINUX_LAST,
7517 	},
7518 	{
7519 		.hook =		selinux_ip_forward,
7520 		.pf =		NFPROTO_IPV6,
7521 		.hooknum =	NF_INET_FORWARD,
7522 		.priority =	NF_IP6_PRI_SELINUX_FIRST,
7523 	},
7524 	{
7525 		.hook =		selinux_ip_output,
7526 		.pf =		NFPROTO_IPV6,
7527 		.hooknum =	NF_INET_LOCAL_OUT,
7528 		.priority =	NF_IP6_PRI_SELINUX_FIRST,
7529 	},
7530 #endif	/* IPV6 */
7531 };
7532 
7533 static int __net_init selinux_nf_register(struct net *net)
7534 {
7535 	return nf_register_net_hooks(net, selinux_nf_ops,
7536 				     ARRAY_SIZE(selinux_nf_ops));
7537 }
7538 
7539 static void __net_exit selinux_nf_unregister(struct net *net)
7540 {
7541 	nf_unregister_net_hooks(net, selinux_nf_ops,
7542 				ARRAY_SIZE(selinux_nf_ops));
7543 }
7544 
7545 static struct pernet_operations selinux_net_ops = {
7546 	.init = selinux_nf_register,
7547 	.exit = selinux_nf_unregister,
7548 };
7549 
7550 static int __init selinux_nf_ip_init(void)
7551 {
7552 	int err;
7553 
7554 	if (!selinux_enabled_boot)
7555 		return 0;
7556 
7557 	pr_debug("SELinux:  Registering netfilter hooks\n");
7558 
7559 	err = register_pernet_subsys(&selinux_net_ops);
7560 	if (err)
7561 		panic("SELinux: register_pernet_subsys: error %d\n", err);
7562 
7563 	return 0;
7564 }
7565 __initcall(selinux_nf_ip_init);
7566 #endif /* CONFIG_NETFILTER */
7567