1 /* 2 * NSA Security-Enhanced Linux (SELinux) security module 3 * 4 * This file contains the SELinux hook function implementations. 5 * 6 * Authors: Stephen Smalley, <sds@tycho.nsa.gov> 7 * Chris Vance, <cvance@nai.com> 8 * Wayne Salamon, <wsalamon@nai.com> 9 * James Morris <jmorris@redhat.com> 10 * 11 * Copyright (C) 2001,2002 Networks Associates Technology, Inc. 12 * Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com> 13 * Eric Paris <eparis@redhat.com> 14 * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc. 15 * <dgoeddel@trustedcs.com> 16 * Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P. 17 * Paul Moore <paul@paul-moore.com> 18 * Copyright (C) 2007 Hitachi Software Engineering Co., Ltd. 19 * Yuichi Nakamura <ynakam@hitachisoft.jp> 20 * Copyright (C) 2016 Mellanox Technologies 21 * 22 * This program is free software; you can redistribute it and/or modify 23 * it under the terms of the GNU General Public License version 2, 24 * as published by the Free Software Foundation. 25 */ 26 27 #include <linux/init.h> 28 #include <linux/kd.h> 29 #include <linux/kernel.h> 30 #include <linux/tracehook.h> 31 #include <linux/errno.h> 32 #include <linux/sched/signal.h> 33 #include <linux/sched/task.h> 34 #include <linux/lsm_hooks.h> 35 #include <linux/xattr.h> 36 #include <linux/capability.h> 37 #include <linux/unistd.h> 38 #include <linux/mm.h> 39 #include <linux/mman.h> 40 #include <linux/slab.h> 41 #include <linux/pagemap.h> 42 #include <linux/proc_fs.h> 43 #include <linux/swap.h> 44 #include <linux/spinlock.h> 45 #include <linux/syscalls.h> 46 #include <linux/dcache.h> 47 #include <linux/file.h> 48 #include <linux/fdtable.h> 49 #include <linux/namei.h> 50 #include <linux/mount.h> 51 #include <linux/netfilter_ipv4.h> 52 #include <linux/netfilter_ipv6.h> 53 #include <linux/tty.h> 54 #include <net/icmp.h> 55 #include <net/ip.h> /* for local_port_range[] */ 56 #include <net/tcp.h> /* struct or_callable used in sock_rcv_skb */ 57 #include <net/inet_connection_sock.h> 58 #include <net/net_namespace.h> 59 #include <net/netlabel.h> 60 #include <linux/uaccess.h> 61 #include <asm/ioctls.h> 62 #include <linux/atomic.h> 63 #include <linux/bitops.h> 64 #include <linux/interrupt.h> 65 #include <linux/netdevice.h> /* for network interface checks */ 66 #include <net/netlink.h> 67 #include <linux/tcp.h> 68 #include <linux/udp.h> 69 #include <linux/dccp.h> 70 #include <linux/sctp.h> 71 #include <net/sctp/structs.h> 72 #include <linux/quota.h> 73 #include <linux/un.h> /* for Unix socket types */ 74 #include <net/af_unix.h> /* for Unix socket types */ 75 #include <linux/parser.h> 76 #include <linux/nfs_mount.h> 77 #include <net/ipv6.h> 78 #include <linux/hugetlb.h> 79 #include <linux/personality.h> 80 #include <linux/audit.h> 81 #include <linux/string.h> 82 #include <linux/selinux.h> 83 #include <linux/mutex.h> 84 #include <linux/posix-timers.h> 85 #include <linux/syslog.h> 86 #include <linux/user_namespace.h> 87 #include <linux/export.h> 88 #include <linux/msg.h> 89 #include <linux/shm.h> 90 #include <linux/bpf.h> 91 92 #include "avc.h" 93 #include "objsec.h" 94 #include "netif.h" 95 #include "netnode.h" 96 #include "netport.h" 97 #include "ibpkey.h" 98 #include "xfrm.h" 99 #include "netlabel.h" 100 #include "audit.h" 101 #include "avc_ss.h" 102 103 struct selinux_state selinux_state; 104 105 /* SECMARK reference count */ 106 static atomic_t selinux_secmark_refcount = ATOMIC_INIT(0); 107 108 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP 109 static int selinux_enforcing_boot; 110 111 static int __init enforcing_setup(char *str) 112 { 113 unsigned long enforcing; 114 if (!kstrtoul(str, 0, &enforcing)) 115 selinux_enforcing_boot = enforcing ? 1 : 0; 116 return 1; 117 } 118 __setup("enforcing=", enforcing_setup); 119 #else 120 #define selinux_enforcing_boot 1 121 #endif 122 123 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM 124 int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE; 125 126 static int __init selinux_enabled_setup(char *str) 127 { 128 unsigned long enabled; 129 if (!kstrtoul(str, 0, &enabled)) 130 selinux_enabled = enabled ? 1 : 0; 131 return 1; 132 } 133 __setup("selinux=", selinux_enabled_setup); 134 #else 135 int selinux_enabled = 1; 136 #endif 137 138 static unsigned int selinux_checkreqprot_boot = 139 CONFIG_SECURITY_SELINUX_CHECKREQPROT_VALUE; 140 141 static int __init checkreqprot_setup(char *str) 142 { 143 unsigned long checkreqprot; 144 145 if (!kstrtoul(str, 0, &checkreqprot)) 146 selinux_checkreqprot_boot = checkreqprot ? 1 : 0; 147 return 1; 148 } 149 __setup("checkreqprot=", checkreqprot_setup); 150 151 static struct kmem_cache *sel_inode_cache; 152 static struct kmem_cache *file_security_cache; 153 154 /** 155 * selinux_secmark_enabled - Check to see if SECMARK is currently enabled 156 * 157 * Description: 158 * This function checks the SECMARK reference counter to see if any SECMARK 159 * targets are currently configured, if the reference counter is greater than 160 * zero SECMARK is considered to be enabled. Returns true (1) if SECMARK is 161 * enabled, false (0) if SECMARK is disabled. If the always_check_network 162 * policy capability is enabled, SECMARK is always considered enabled. 163 * 164 */ 165 static int selinux_secmark_enabled(void) 166 { 167 return (selinux_policycap_alwaysnetwork() || 168 atomic_read(&selinux_secmark_refcount)); 169 } 170 171 /** 172 * selinux_peerlbl_enabled - Check to see if peer labeling is currently enabled 173 * 174 * Description: 175 * This function checks if NetLabel or labeled IPSEC is enabled. Returns true 176 * (1) if any are enabled or false (0) if neither are enabled. If the 177 * always_check_network policy capability is enabled, peer labeling 178 * is always considered enabled. 179 * 180 */ 181 static int selinux_peerlbl_enabled(void) 182 { 183 return (selinux_policycap_alwaysnetwork() || 184 netlbl_enabled() || selinux_xfrm_enabled()); 185 } 186 187 static int selinux_netcache_avc_callback(u32 event) 188 { 189 if (event == AVC_CALLBACK_RESET) { 190 sel_netif_flush(); 191 sel_netnode_flush(); 192 sel_netport_flush(); 193 synchronize_net(); 194 } 195 return 0; 196 } 197 198 static int selinux_lsm_notifier_avc_callback(u32 event) 199 { 200 if (event == AVC_CALLBACK_RESET) { 201 sel_ib_pkey_flush(); 202 call_lsm_notifier(LSM_POLICY_CHANGE, NULL); 203 } 204 205 return 0; 206 } 207 208 /* 209 * initialise the security for the init task 210 */ 211 static void cred_init_security(void) 212 { 213 struct cred *cred = (struct cred *) current->real_cred; 214 struct task_security_struct *tsec; 215 216 tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL); 217 if (!tsec) 218 panic("SELinux: Failed to initialize initial task.\n"); 219 220 tsec->osid = tsec->sid = SECINITSID_KERNEL; 221 cred->security = tsec; 222 } 223 224 /* 225 * get the security ID of a set of credentials 226 */ 227 static inline u32 cred_sid(const struct cred *cred) 228 { 229 const struct task_security_struct *tsec; 230 231 tsec = cred->security; 232 return tsec->sid; 233 } 234 235 /* 236 * get the objective security ID of a task 237 */ 238 static inline u32 task_sid(const struct task_struct *task) 239 { 240 u32 sid; 241 242 rcu_read_lock(); 243 sid = cred_sid(__task_cred(task)); 244 rcu_read_unlock(); 245 return sid; 246 } 247 248 /* Allocate and free functions for each kind of security blob. */ 249 250 static int inode_alloc_security(struct inode *inode) 251 { 252 struct inode_security_struct *isec; 253 u32 sid = current_sid(); 254 255 isec = kmem_cache_zalloc(sel_inode_cache, GFP_NOFS); 256 if (!isec) 257 return -ENOMEM; 258 259 spin_lock_init(&isec->lock); 260 INIT_LIST_HEAD(&isec->list); 261 isec->inode = inode; 262 isec->sid = SECINITSID_UNLABELED; 263 isec->sclass = SECCLASS_FILE; 264 isec->task_sid = sid; 265 isec->initialized = LABEL_INVALID; 266 inode->i_security = isec; 267 268 return 0; 269 } 270 271 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry); 272 273 /* 274 * Try reloading inode security labels that have been marked as invalid. The 275 * @may_sleep parameter indicates when sleeping and thus reloading labels is 276 * allowed; when set to false, returns -ECHILD when the label is 277 * invalid. The @opt_dentry parameter should be set to a dentry of the inode; 278 * when no dentry is available, set it to NULL instead. 279 */ 280 static int __inode_security_revalidate(struct inode *inode, 281 struct dentry *opt_dentry, 282 bool may_sleep) 283 { 284 struct inode_security_struct *isec = inode->i_security; 285 286 might_sleep_if(may_sleep); 287 288 if (selinux_state.initialized && 289 isec->initialized != LABEL_INITIALIZED) { 290 if (!may_sleep) 291 return -ECHILD; 292 293 /* 294 * Try reloading the inode security label. This will fail if 295 * @opt_dentry is NULL and no dentry for this inode can be 296 * found; in that case, continue using the old label. 297 */ 298 inode_doinit_with_dentry(inode, opt_dentry); 299 } 300 return 0; 301 } 302 303 static struct inode_security_struct *inode_security_novalidate(struct inode *inode) 304 { 305 return inode->i_security; 306 } 307 308 static struct inode_security_struct *inode_security_rcu(struct inode *inode, bool rcu) 309 { 310 int error; 311 312 error = __inode_security_revalidate(inode, NULL, !rcu); 313 if (error) 314 return ERR_PTR(error); 315 return inode->i_security; 316 } 317 318 /* 319 * Get the security label of an inode. 320 */ 321 static struct inode_security_struct *inode_security(struct inode *inode) 322 { 323 __inode_security_revalidate(inode, NULL, true); 324 return inode->i_security; 325 } 326 327 static struct inode_security_struct *backing_inode_security_novalidate(struct dentry *dentry) 328 { 329 struct inode *inode = d_backing_inode(dentry); 330 331 return inode->i_security; 332 } 333 334 /* 335 * Get the security label of a dentry's backing inode. 336 */ 337 static struct inode_security_struct *backing_inode_security(struct dentry *dentry) 338 { 339 struct inode *inode = d_backing_inode(dentry); 340 341 __inode_security_revalidate(inode, dentry, true); 342 return inode->i_security; 343 } 344 345 static void inode_free_rcu(struct rcu_head *head) 346 { 347 struct inode_security_struct *isec; 348 349 isec = container_of(head, struct inode_security_struct, rcu); 350 kmem_cache_free(sel_inode_cache, isec); 351 } 352 353 static void inode_free_security(struct inode *inode) 354 { 355 struct inode_security_struct *isec = inode->i_security; 356 struct superblock_security_struct *sbsec = inode->i_sb->s_security; 357 358 /* 359 * As not all inode security structures are in a list, we check for 360 * empty list outside of the lock to make sure that we won't waste 361 * time taking a lock doing nothing. 362 * 363 * The list_del_init() function can be safely called more than once. 364 * It should not be possible for this function to be called with 365 * concurrent list_add(), but for better safety against future changes 366 * in the code, we use list_empty_careful() here. 367 */ 368 if (!list_empty_careful(&isec->list)) { 369 spin_lock(&sbsec->isec_lock); 370 list_del_init(&isec->list); 371 spin_unlock(&sbsec->isec_lock); 372 } 373 374 /* 375 * The inode may still be referenced in a path walk and 376 * a call to selinux_inode_permission() can be made 377 * after inode_free_security() is called. Ideally, the VFS 378 * wouldn't do this, but fixing that is a much harder 379 * job. For now, simply free the i_security via RCU, and 380 * leave the current inode->i_security pointer intact. 381 * The inode will be freed after the RCU grace period too. 382 */ 383 call_rcu(&isec->rcu, inode_free_rcu); 384 } 385 386 static int file_alloc_security(struct file *file) 387 { 388 struct file_security_struct *fsec; 389 u32 sid = current_sid(); 390 391 fsec = kmem_cache_zalloc(file_security_cache, GFP_KERNEL); 392 if (!fsec) 393 return -ENOMEM; 394 395 fsec->sid = sid; 396 fsec->fown_sid = sid; 397 file->f_security = fsec; 398 399 return 0; 400 } 401 402 static void file_free_security(struct file *file) 403 { 404 struct file_security_struct *fsec = file->f_security; 405 file->f_security = NULL; 406 kmem_cache_free(file_security_cache, fsec); 407 } 408 409 static int superblock_alloc_security(struct super_block *sb) 410 { 411 struct superblock_security_struct *sbsec; 412 413 sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL); 414 if (!sbsec) 415 return -ENOMEM; 416 417 mutex_init(&sbsec->lock); 418 INIT_LIST_HEAD(&sbsec->isec_head); 419 spin_lock_init(&sbsec->isec_lock); 420 sbsec->sb = sb; 421 sbsec->sid = SECINITSID_UNLABELED; 422 sbsec->def_sid = SECINITSID_FILE; 423 sbsec->mntpoint_sid = SECINITSID_UNLABELED; 424 sb->s_security = sbsec; 425 426 return 0; 427 } 428 429 static void superblock_free_security(struct super_block *sb) 430 { 431 struct superblock_security_struct *sbsec = sb->s_security; 432 sb->s_security = NULL; 433 kfree(sbsec); 434 } 435 436 static inline int inode_doinit(struct inode *inode) 437 { 438 return inode_doinit_with_dentry(inode, NULL); 439 } 440 441 enum { 442 Opt_error = -1, 443 Opt_context = 1, 444 Opt_fscontext = 2, 445 Opt_defcontext = 3, 446 Opt_rootcontext = 4, 447 Opt_labelsupport = 5, 448 Opt_nextmntopt = 6, 449 }; 450 451 #define NUM_SEL_MNT_OPTS (Opt_nextmntopt - 1) 452 453 static const match_table_t tokens = { 454 {Opt_context, CONTEXT_STR "%s"}, 455 {Opt_fscontext, FSCONTEXT_STR "%s"}, 456 {Opt_defcontext, DEFCONTEXT_STR "%s"}, 457 {Opt_rootcontext, ROOTCONTEXT_STR "%s"}, 458 {Opt_labelsupport, LABELSUPP_STR}, 459 {Opt_error, NULL}, 460 }; 461 462 #define SEL_MOUNT_FAIL_MSG "SELinux: duplicate or incompatible mount options\n" 463 464 static int may_context_mount_sb_relabel(u32 sid, 465 struct superblock_security_struct *sbsec, 466 const struct cred *cred) 467 { 468 const struct task_security_struct *tsec = cred->security; 469 int rc; 470 471 rc = avc_has_perm(&selinux_state, 472 tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM, 473 FILESYSTEM__RELABELFROM, NULL); 474 if (rc) 475 return rc; 476 477 rc = avc_has_perm(&selinux_state, 478 tsec->sid, sid, SECCLASS_FILESYSTEM, 479 FILESYSTEM__RELABELTO, NULL); 480 return rc; 481 } 482 483 static int may_context_mount_inode_relabel(u32 sid, 484 struct superblock_security_struct *sbsec, 485 const struct cred *cred) 486 { 487 const struct task_security_struct *tsec = cred->security; 488 int rc; 489 rc = avc_has_perm(&selinux_state, 490 tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM, 491 FILESYSTEM__RELABELFROM, NULL); 492 if (rc) 493 return rc; 494 495 rc = avc_has_perm(&selinux_state, 496 sid, sbsec->sid, SECCLASS_FILESYSTEM, 497 FILESYSTEM__ASSOCIATE, NULL); 498 return rc; 499 } 500 501 static int selinux_is_sblabel_mnt(struct super_block *sb) 502 { 503 struct superblock_security_struct *sbsec = sb->s_security; 504 505 return sbsec->behavior == SECURITY_FS_USE_XATTR || 506 sbsec->behavior == SECURITY_FS_USE_TRANS || 507 sbsec->behavior == SECURITY_FS_USE_TASK || 508 sbsec->behavior == SECURITY_FS_USE_NATIVE || 509 /* Special handling. Genfs but also in-core setxattr handler */ 510 !strcmp(sb->s_type->name, "sysfs") || 511 !strcmp(sb->s_type->name, "pstore") || 512 !strcmp(sb->s_type->name, "debugfs") || 513 !strcmp(sb->s_type->name, "tracefs") || 514 !strcmp(sb->s_type->name, "rootfs") || 515 (selinux_policycap_cgroupseclabel() && 516 (!strcmp(sb->s_type->name, "cgroup") || 517 !strcmp(sb->s_type->name, "cgroup2"))); 518 } 519 520 static int sb_finish_set_opts(struct super_block *sb) 521 { 522 struct superblock_security_struct *sbsec = sb->s_security; 523 struct dentry *root = sb->s_root; 524 struct inode *root_inode = d_backing_inode(root); 525 int rc = 0; 526 527 if (sbsec->behavior == SECURITY_FS_USE_XATTR) { 528 /* Make sure that the xattr handler exists and that no 529 error other than -ENODATA is returned by getxattr on 530 the root directory. -ENODATA is ok, as this may be 531 the first boot of the SELinux kernel before we have 532 assigned xattr values to the filesystem. */ 533 if (!(root_inode->i_opflags & IOP_XATTR)) { 534 printk(KERN_WARNING "SELinux: (dev %s, type %s) has no " 535 "xattr support\n", sb->s_id, sb->s_type->name); 536 rc = -EOPNOTSUPP; 537 goto out; 538 } 539 540 rc = __vfs_getxattr(root, root_inode, XATTR_NAME_SELINUX, NULL, 0); 541 if (rc < 0 && rc != -ENODATA) { 542 if (rc == -EOPNOTSUPP) 543 printk(KERN_WARNING "SELinux: (dev %s, type " 544 "%s) has no security xattr handler\n", 545 sb->s_id, sb->s_type->name); 546 else 547 printk(KERN_WARNING "SELinux: (dev %s, type " 548 "%s) getxattr errno %d\n", sb->s_id, 549 sb->s_type->name, -rc); 550 goto out; 551 } 552 } 553 554 sbsec->flags |= SE_SBINITIALIZED; 555 556 /* 557 * Explicitly set or clear SBLABEL_MNT. It's not sufficient to simply 558 * leave the flag untouched because sb_clone_mnt_opts might be handing 559 * us a superblock that needs the flag to be cleared. 560 */ 561 if (selinux_is_sblabel_mnt(sb)) 562 sbsec->flags |= SBLABEL_MNT; 563 else 564 sbsec->flags &= ~SBLABEL_MNT; 565 566 /* Initialize the root inode. */ 567 rc = inode_doinit_with_dentry(root_inode, root); 568 569 /* Initialize any other inodes associated with the superblock, e.g. 570 inodes created prior to initial policy load or inodes created 571 during get_sb by a pseudo filesystem that directly 572 populates itself. */ 573 spin_lock(&sbsec->isec_lock); 574 next_inode: 575 if (!list_empty(&sbsec->isec_head)) { 576 struct inode_security_struct *isec = 577 list_entry(sbsec->isec_head.next, 578 struct inode_security_struct, list); 579 struct inode *inode = isec->inode; 580 list_del_init(&isec->list); 581 spin_unlock(&sbsec->isec_lock); 582 inode = igrab(inode); 583 if (inode) { 584 if (!IS_PRIVATE(inode)) 585 inode_doinit(inode); 586 iput(inode); 587 } 588 spin_lock(&sbsec->isec_lock); 589 goto next_inode; 590 } 591 spin_unlock(&sbsec->isec_lock); 592 out: 593 return rc; 594 } 595 596 /* 597 * This function should allow an FS to ask what it's mount security 598 * options were so it can use those later for submounts, displaying 599 * mount options, or whatever. 600 */ 601 static int selinux_get_mnt_opts(const struct super_block *sb, 602 struct security_mnt_opts *opts) 603 { 604 int rc = 0, i; 605 struct superblock_security_struct *sbsec = sb->s_security; 606 char *context = NULL; 607 u32 len; 608 char tmp; 609 610 security_init_mnt_opts(opts); 611 612 if (!(sbsec->flags & SE_SBINITIALIZED)) 613 return -EINVAL; 614 615 if (!selinux_state.initialized) 616 return -EINVAL; 617 618 /* make sure we always check enough bits to cover the mask */ 619 BUILD_BUG_ON(SE_MNTMASK >= (1 << NUM_SEL_MNT_OPTS)); 620 621 tmp = sbsec->flags & SE_MNTMASK; 622 /* count the number of mount options for this sb */ 623 for (i = 0; i < NUM_SEL_MNT_OPTS; i++) { 624 if (tmp & 0x01) 625 opts->num_mnt_opts++; 626 tmp >>= 1; 627 } 628 /* Check if the Label support flag is set */ 629 if (sbsec->flags & SBLABEL_MNT) 630 opts->num_mnt_opts++; 631 632 opts->mnt_opts = kcalloc(opts->num_mnt_opts, sizeof(char *), GFP_ATOMIC); 633 if (!opts->mnt_opts) { 634 rc = -ENOMEM; 635 goto out_free; 636 } 637 638 opts->mnt_opts_flags = kcalloc(opts->num_mnt_opts, sizeof(int), GFP_ATOMIC); 639 if (!opts->mnt_opts_flags) { 640 rc = -ENOMEM; 641 goto out_free; 642 } 643 644 i = 0; 645 if (sbsec->flags & FSCONTEXT_MNT) { 646 rc = security_sid_to_context(&selinux_state, sbsec->sid, 647 &context, &len); 648 if (rc) 649 goto out_free; 650 opts->mnt_opts[i] = context; 651 opts->mnt_opts_flags[i++] = FSCONTEXT_MNT; 652 } 653 if (sbsec->flags & CONTEXT_MNT) { 654 rc = security_sid_to_context(&selinux_state, 655 sbsec->mntpoint_sid, 656 &context, &len); 657 if (rc) 658 goto out_free; 659 opts->mnt_opts[i] = context; 660 opts->mnt_opts_flags[i++] = CONTEXT_MNT; 661 } 662 if (sbsec->flags & DEFCONTEXT_MNT) { 663 rc = security_sid_to_context(&selinux_state, sbsec->def_sid, 664 &context, &len); 665 if (rc) 666 goto out_free; 667 opts->mnt_opts[i] = context; 668 opts->mnt_opts_flags[i++] = DEFCONTEXT_MNT; 669 } 670 if (sbsec->flags & ROOTCONTEXT_MNT) { 671 struct dentry *root = sbsec->sb->s_root; 672 struct inode_security_struct *isec = backing_inode_security(root); 673 674 rc = security_sid_to_context(&selinux_state, isec->sid, 675 &context, &len); 676 if (rc) 677 goto out_free; 678 opts->mnt_opts[i] = context; 679 opts->mnt_opts_flags[i++] = ROOTCONTEXT_MNT; 680 } 681 if (sbsec->flags & SBLABEL_MNT) { 682 opts->mnt_opts[i] = NULL; 683 opts->mnt_opts_flags[i++] = SBLABEL_MNT; 684 } 685 686 BUG_ON(i != opts->num_mnt_opts); 687 688 return 0; 689 690 out_free: 691 security_free_mnt_opts(opts); 692 return rc; 693 } 694 695 static int bad_option(struct superblock_security_struct *sbsec, char flag, 696 u32 old_sid, u32 new_sid) 697 { 698 char mnt_flags = sbsec->flags & SE_MNTMASK; 699 700 /* check if the old mount command had the same options */ 701 if (sbsec->flags & SE_SBINITIALIZED) 702 if (!(sbsec->flags & flag) || 703 (old_sid != new_sid)) 704 return 1; 705 706 /* check if we were passed the same options twice, 707 * aka someone passed context=a,context=b 708 */ 709 if (!(sbsec->flags & SE_SBINITIALIZED)) 710 if (mnt_flags & flag) 711 return 1; 712 return 0; 713 } 714 715 /* 716 * Allow filesystems with binary mount data to explicitly set mount point 717 * labeling information. 718 */ 719 static int selinux_set_mnt_opts(struct super_block *sb, 720 struct security_mnt_opts *opts, 721 unsigned long kern_flags, 722 unsigned long *set_kern_flags) 723 { 724 const struct cred *cred = current_cred(); 725 int rc = 0, i; 726 struct superblock_security_struct *sbsec = sb->s_security; 727 const char *name = sb->s_type->name; 728 struct dentry *root = sbsec->sb->s_root; 729 struct inode_security_struct *root_isec; 730 u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0; 731 u32 defcontext_sid = 0; 732 char **mount_options = opts->mnt_opts; 733 int *flags = opts->mnt_opts_flags; 734 int num_opts = opts->num_mnt_opts; 735 736 mutex_lock(&sbsec->lock); 737 738 if (!selinux_state.initialized) { 739 if (!num_opts) { 740 /* Defer initialization until selinux_complete_init, 741 after the initial policy is loaded and the security 742 server is ready to handle calls. */ 743 goto out; 744 } 745 rc = -EINVAL; 746 printk(KERN_WARNING "SELinux: Unable to set superblock options " 747 "before the security server is initialized\n"); 748 goto out; 749 } 750 if (kern_flags && !set_kern_flags) { 751 /* Specifying internal flags without providing a place to 752 * place the results is not allowed */ 753 rc = -EINVAL; 754 goto out; 755 } 756 757 /* 758 * Binary mount data FS will come through this function twice. Once 759 * from an explicit call and once from the generic calls from the vfs. 760 * Since the generic VFS calls will not contain any security mount data 761 * we need to skip the double mount verification. 762 * 763 * This does open a hole in which we will not notice if the first 764 * mount using this sb set explict options and a second mount using 765 * this sb does not set any security options. (The first options 766 * will be used for both mounts) 767 */ 768 if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA) 769 && (num_opts == 0)) 770 goto out; 771 772 root_isec = backing_inode_security_novalidate(root); 773 774 /* 775 * parse the mount options, check if they are valid sids. 776 * also check if someone is trying to mount the same sb more 777 * than once with different security options. 778 */ 779 for (i = 0; i < num_opts; i++) { 780 u32 sid; 781 782 if (flags[i] == SBLABEL_MNT) 783 continue; 784 rc = security_context_str_to_sid(&selinux_state, 785 mount_options[i], &sid, 786 GFP_KERNEL); 787 if (rc) { 788 printk(KERN_WARNING "SELinux: security_context_str_to_sid" 789 "(%s) failed for (dev %s, type %s) errno=%d\n", 790 mount_options[i], sb->s_id, name, rc); 791 goto out; 792 } 793 switch (flags[i]) { 794 case FSCONTEXT_MNT: 795 fscontext_sid = sid; 796 797 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, 798 fscontext_sid)) 799 goto out_double_mount; 800 801 sbsec->flags |= FSCONTEXT_MNT; 802 break; 803 case CONTEXT_MNT: 804 context_sid = sid; 805 806 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, 807 context_sid)) 808 goto out_double_mount; 809 810 sbsec->flags |= CONTEXT_MNT; 811 break; 812 case ROOTCONTEXT_MNT: 813 rootcontext_sid = sid; 814 815 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, 816 rootcontext_sid)) 817 goto out_double_mount; 818 819 sbsec->flags |= ROOTCONTEXT_MNT; 820 821 break; 822 case DEFCONTEXT_MNT: 823 defcontext_sid = sid; 824 825 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, 826 defcontext_sid)) 827 goto out_double_mount; 828 829 sbsec->flags |= DEFCONTEXT_MNT; 830 831 break; 832 default: 833 rc = -EINVAL; 834 goto out; 835 } 836 } 837 838 if (sbsec->flags & SE_SBINITIALIZED) { 839 /* previously mounted with options, but not on this attempt? */ 840 if ((sbsec->flags & SE_MNTMASK) && !num_opts) 841 goto out_double_mount; 842 rc = 0; 843 goto out; 844 } 845 846 if (strcmp(sb->s_type->name, "proc") == 0) 847 sbsec->flags |= SE_SBPROC | SE_SBGENFS; 848 849 if (!strcmp(sb->s_type->name, "debugfs") || 850 !strcmp(sb->s_type->name, "tracefs") || 851 !strcmp(sb->s_type->name, "sysfs") || 852 !strcmp(sb->s_type->name, "pstore") || 853 !strcmp(sb->s_type->name, "cgroup") || 854 !strcmp(sb->s_type->name, "cgroup2")) 855 sbsec->flags |= SE_SBGENFS; 856 857 if (!sbsec->behavior) { 858 /* 859 * Determine the labeling behavior to use for this 860 * filesystem type. 861 */ 862 rc = security_fs_use(&selinux_state, sb); 863 if (rc) { 864 printk(KERN_WARNING 865 "%s: security_fs_use(%s) returned %d\n", 866 __func__, sb->s_type->name, rc); 867 goto out; 868 } 869 } 870 871 /* 872 * If this is a user namespace mount and the filesystem type is not 873 * explicitly whitelisted, then no contexts are allowed on the command 874 * line and security labels must be ignored. 875 */ 876 if (sb->s_user_ns != &init_user_ns && 877 strcmp(sb->s_type->name, "tmpfs") && 878 strcmp(sb->s_type->name, "ramfs") && 879 strcmp(sb->s_type->name, "devpts")) { 880 if (context_sid || fscontext_sid || rootcontext_sid || 881 defcontext_sid) { 882 rc = -EACCES; 883 goto out; 884 } 885 if (sbsec->behavior == SECURITY_FS_USE_XATTR) { 886 sbsec->behavior = SECURITY_FS_USE_MNTPOINT; 887 rc = security_transition_sid(&selinux_state, 888 current_sid(), 889 current_sid(), 890 SECCLASS_FILE, NULL, 891 &sbsec->mntpoint_sid); 892 if (rc) 893 goto out; 894 } 895 goto out_set_opts; 896 } 897 898 /* sets the context of the superblock for the fs being mounted. */ 899 if (fscontext_sid) { 900 rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred); 901 if (rc) 902 goto out; 903 904 sbsec->sid = fscontext_sid; 905 } 906 907 /* 908 * Switch to using mount point labeling behavior. 909 * sets the label used on all file below the mountpoint, and will set 910 * the superblock context if not already set. 911 */ 912 if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !context_sid) { 913 sbsec->behavior = SECURITY_FS_USE_NATIVE; 914 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS; 915 } 916 917 if (context_sid) { 918 if (!fscontext_sid) { 919 rc = may_context_mount_sb_relabel(context_sid, sbsec, 920 cred); 921 if (rc) 922 goto out; 923 sbsec->sid = context_sid; 924 } else { 925 rc = may_context_mount_inode_relabel(context_sid, sbsec, 926 cred); 927 if (rc) 928 goto out; 929 } 930 if (!rootcontext_sid) 931 rootcontext_sid = context_sid; 932 933 sbsec->mntpoint_sid = context_sid; 934 sbsec->behavior = SECURITY_FS_USE_MNTPOINT; 935 } 936 937 if (rootcontext_sid) { 938 rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec, 939 cred); 940 if (rc) 941 goto out; 942 943 root_isec->sid = rootcontext_sid; 944 root_isec->initialized = LABEL_INITIALIZED; 945 } 946 947 if (defcontext_sid) { 948 if (sbsec->behavior != SECURITY_FS_USE_XATTR && 949 sbsec->behavior != SECURITY_FS_USE_NATIVE) { 950 rc = -EINVAL; 951 printk(KERN_WARNING "SELinux: defcontext option is " 952 "invalid for this filesystem type\n"); 953 goto out; 954 } 955 956 if (defcontext_sid != sbsec->def_sid) { 957 rc = may_context_mount_inode_relabel(defcontext_sid, 958 sbsec, cred); 959 if (rc) 960 goto out; 961 } 962 963 sbsec->def_sid = defcontext_sid; 964 } 965 966 out_set_opts: 967 rc = sb_finish_set_opts(sb); 968 out: 969 mutex_unlock(&sbsec->lock); 970 return rc; 971 out_double_mount: 972 rc = -EINVAL; 973 printk(KERN_WARNING "SELinux: mount invalid. Same superblock, different " 974 "security settings for (dev %s, type %s)\n", sb->s_id, name); 975 goto out; 976 } 977 978 static int selinux_cmp_sb_context(const struct super_block *oldsb, 979 const struct super_block *newsb) 980 { 981 struct superblock_security_struct *old = oldsb->s_security; 982 struct superblock_security_struct *new = newsb->s_security; 983 char oldflags = old->flags & SE_MNTMASK; 984 char newflags = new->flags & SE_MNTMASK; 985 986 if (oldflags != newflags) 987 goto mismatch; 988 if ((oldflags & FSCONTEXT_MNT) && old->sid != new->sid) 989 goto mismatch; 990 if ((oldflags & CONTEXT_MNT) && old->mntpoint_sid != new->mntpoint_sid) 991 goto mismatch; 992 if ((oldflags & DEFCONTEXT_MNT) && old->def_sid != new->def_sid) 993 goto mismatch; 994 if (oldflags & ROOTCONTEXT_MNT) { 995 struct inode_security_struct *oldroot = backing_inode_security(oldsb->s_root); 996 struct inode_security_struct *newroot = backing_inode_security(newsb->s_root); 997 if (oldroot->sid != newroot->sid) 998 goto mismatch; 999 } 1000 return 0; 1001 mismatch: 1002 printk(KERN_WARNING "SELinux: mount invalid. Same superblock, " 1003 "different security settings for (dev %s, " 1004 "type %s)\n", newsb->s_id, newsb->s_type->name); 1005 return -EBUSY; 1006 } 1007 1008 static int selinux_sb_clone_mnt_opts(const struct super_block *oldsb, 1009 struct super_block *newsb, 1010 unsigned long kern_flags, 1011 unsigned long *set_kern_flags) 1012 { 1013 int rc = 0; 1014 const struct superblock_security_struct *oldsbsec = oldsb->s_security; 1015 struct superblock_security_struct *newsbsec = newsb->s_security; 1016 1017 int set_fscontext = (oldsbsec->flags & FSCONTEXT_MNT); 1018 int set_context = (oldsbsec->flags & CONTEXT_MNT); 1019 int set_rootcontext = (oldsbsec->flags & ROOTCONTEXT_MNT); 1020 1021 /* 1022 * if the parent was able to be mounted it clearly had no special lsm 1023 * mount options. thus we can safely deal with this superblock later 1024 */ 1025 if (!selinux_state.initialized) 1026 return 0; 1027 1028 /* 1029 * Specifying internal flags without providing a place to 1030 * place the results is not allowed. 1031 */ 1032 if (kern_flags && !set_kern_flags) 1033 return -EINVAL; 1034 1035 /* how can we clone if the old one wasn't set up?? */ 1036 BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED)); 1037 1038 /* if fs is reusing a sb, make sure that the contexts match */ 1039 if (newsbsec->flags & SE_SBINITIALIZED) 1040 return selinux_cmp_sb_context(oldsb, newsb); 1041 1042 mutex_lock(&newsbsec->lock); 1043 1044 newsbsec->flags = oldsbsec->flags; 1045 1046 newsbsec->sid = oldsbsec->sid; 1047 newsbsec->def_sid = oldsbsec->def_sid; 1048 newsbsec->behavior = oldsbsec->behavior; 1049 1050 if (newsbsec->behavior == SECURITY_FS_USE_NATIVE && 1051 !(kern_flags & SECURITY_LSM_NATIVE_LABELS) && !set_context) { 1052 rc = security_fs_use(&selinux_state, newsb); 1053 if (rc) 1054 goto out; 1055 } 1056 1057 if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !set_context) { 1058 newsbsec->behavior = SECURITY_FS_USE_NATIVE; 1059 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS; 1060 } 1061 1062 if (set_context) { 1063 u32 sid = oldsbsec->mntpoint_sid; 1064 1065 if (!set_fscontext) 1066 newsbsec->sid = sid; 1067 if (!set_rootcontext) { 1068 struct inode_security_struct *newisec = backing_inode_security(newsb->s_root); 1069 newisec->sid = sid; 1070 } 1071 newsbsec->mntpoint_sid = sid; 1072 } 1073 if (set_rootcontext) { 1074 const struct inode_security_struct *oldisec = backing_inode_security(oldsb->s_root); 1075 struct inode_security_struct *newisec = backing_inode_security(newsb->s_root); 1076 1077 newisec->sid = oldisec->sid; 1078 } 1079 1080 sb_finish_set_opts(newsb); 1081 out: 1082 mutex_unlock(&newsbsec->lock); 1083 return rc; 1084 } 1085 1086 static int selinux_parse_opts_str(char *options, 1087 struct security_mnt_opts *opts) 1088 { 1089 char *p; 1090 char *context = NULL, *defcontext = NULL; 1091 char *fscontext = NULL, *rootcontext = NULL; 1092 int rc, num_mnt_opts = 0; 1093 1094 opts->num_mnt_opts = 0; 1095 1096 /* Standard string-based options. */ 1097 while ((p = strsep(&options, "|")) != NULL) { 1098 int token; 1099 substring_t args[MAX_OPT_ARGS]; 1100 1101 if (!*p) 1102 continue; 1103 1104 token = match_token(p, tokens, args); 1105 1106 switch (token) { 1107 case Opt_context: 1108 if (context || defcontext) { 1109 rc = -EINVAL; 1110 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG); 1111 goto out_err; 1112 } 1113 context = match_strdup(&args[0]); 1114 if (!context) { 1115 rc = -ENOMEM; 1116 goto out_err; 1117 } 1118 break; 1119 1120 case Opt_fscontext: 1121 if (fscontext) { 1122 rc = -EINVAL; 1123 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG); 1124 goto out_err; 1125 } 1126 fscontext = match_strdup(&args[0]); 1127 if (!fscontext) { 1128 rc = -ENOMEM; 1129 goto out_err; 1130 } 1131 break; 1132 1133 case Opt_rootcontext: 1134 if (rootcontext) { 1135 rc = -EINVAL; 1136 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG); 1137 goto out_err; 1138 } 1139 rootcontext = match_strdup(&args[0]); 1140 if (!rootcontext) { 1141 rc = -ENOMEM; 1142 goto out_err; 1143 } 1144 break; 1145 1146 case Opt_defcontext: 1147 if (context || defcontext) { 1148 rc = -EINVAL; 1149 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG); 1150 goto out_err; 1151 } 1152 defcontext = match_strdup(&args[0]); 1153 if (!defcontext) { 1154 rc = -ENOMEM; 1155 goto out_err; 1156 } 1157 break; 1158 case Opt_labelsupport: 1159 break; 1160 default: 1161 rc = -EINVAL; 1162 printk(KERN_WARNING "SELinux: unknown mount option\n"); 1163 goto out_err; 1164 1165 } 1166 } 1167 1168 rc = -ENOMEM; 1169 opts->mnt_opts = kcalloc(NUM_SEL_MNT_OPTS, sizeof(char *), GFP_KERNEL); 1170 if (!opts->mnt_opts) 1171 goto out_err; 1172 1173 opts->mnt_opts_flags = kcalloc(NUM_SEL_MNT_OPTS, sizeof(int), 1174 GFP_KERNEL); 1175 if (!opts->mnt_opts_flags) 1176 goto out_err; 1177 1178 if (fscontext) { 1179 opts->mnt_opts[num_mnt_opts] = fscontext; 1180 opts->mnt_opts_flags[num_mnt_opts++] = FSCONTEXT_MNT; 1181 } 1182 if (context) { 1183 opts->mnt_opts[num_mnt_opts] = context; 1184 opts->mnt_opts_flags[num_mnt_opts++] = CONTEXT_MNT; 1185 } 1186 if (rootcontext) { 1187 opts->mnt_opts[num_mnt_opts] = rootcontext; 1188 opts->mnt_opts_flags[num_mnt_opts++] = ROOTCONTEXT_MNT; 1189 } 1190 if (defcontext) { 1191 opts->mnt_opts[num_mnt_opts] = defcontext; 1192 opts->mnt_opts_flags[num_mnt_opts++] = DEFCONTEXT_MNT; 1193 } 1194 1195 opts->num_mnt_opts = num_mnt_opts; 1196 return 0; 1197 1198 out_err: 1199 security_free_mnt_opts(opts); 1200 kfree(context); 1201 kfree(defcontext); 1202 kfree(fscontext); 1203 kfree(rootcontext); 1204 return rc; 1205 } 1206 /* 1207 * string mount options parsing and call set the sbsec 1208 */ 1209 static int superblock_doinit(struct super_block *sb, void *data) 1210 { 1211 int rc = 0; 1212 char *options = data; 1213 struct security_mnt_opts opts; 1214 1215 security_init_mnt_opts(&opts); 1216 1217 if (!data) 1218 goto out; 1219 1220 BUG_ON(sb->s_type->fs_flags & FS_BINARY_MOUNTDATA); 1221 1222 rc = selinux_parse_opts_str(options, &opts); 1223 if (rc) 1224 goto out_err; 1225 1226 out: 1227 rc = selinux_set_mnt_opts(sb, &opts, 0, NULL); 1228 1229 out_err: 1230 security_free_mnt_opts(&opts); 1231 return rc; 1232 } 1233 1234 static void selinux_write_opts(struct seq_file *m, 1235 struct security_mnt_opts *opts) 1236 { 1237 int i; 1238 char *prefix; 1239 1240 for (i = 0; i < opts->num_mnt_opts; i++) { 1241 char *has_comma; 1242 1243 if (opts->mnt_opts[i]) 1244 has_comma = strchr(opts->mnt_opts[i], ','); 1245 else 1246 has_comma = NULL; 1247 1248 switch (opts->mnt_opts_flags[i]) { 1249 case CONTEXT_MNT: 1250 prefix = CONTEXT_STR; 1251 break; 1252 case FSCONTEXT_MNT: 1253 prefix = FSCONTEXT_STR; 1254 break; 1255 case ROOTCONTEXT_MNT: 1256 prefix = ROOTCONTEXT_STR; 1257 break; 1258 case DEFCONTEXT_MNT: 1259 prefix = DEFCONTEXT_STR; 1260 break; 1261 case SBLABEL_MNT: 1262 seq_putc(m, ','); 1263 seq_puts(m, LABELSUPP_STR); 1264 continue; 1265 default: 1266 BUG(); 1267 return; 1268 }; 1269 /* we need a comma before each option */ 1270 seq_putc(m, ','); 1271 seq_puts(m, prefix); 1272 if (has_comma) 1273 seq_putc(m, '\"'); 1274 seq_escape(m, opts->mnt_opts[i], "\"\n\\"); 1275 if (has_comma) 1276 seq_putc(m, '\"'); 1277 } 1278 } 1279 1280 static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb) 1281 { 1282 struct security_mnt_opts opts; 1283 int rc; 1284 1285 rc = selinux_get_mnt_opts(sb, &opts); 1286 if (rc) { 1287 /* before policy load we may get EINVAL, don't show anything */ 1288 if (rc == -EINVAL) 1289 rc = 0; 1290 return rc; 1291 } 1292 1293 selinux_write_opts(m, &opts); 1294 1295 security_free_mnt_opts(&opts); 1296 1297 return rc; 1298 } 1299 1300 static inline u16 inode_mode_to_security_class(umode_t mode) 1301 { 1302 switch (mode & S_IFMT) { 1303 case S_IFSOCK: 1304 return SECCLASS_SOCK_FILE; 1305 case S_IFLNK: 1306 return SECCLASS_LNK_FILE; 1307 case S_IFREG: 1308 return SECCLASS_FILE; 1309 case S_IFBLK: 1310 return SECCLASS_BLK_FILE; 1311 case S_IFDIR: 1312 return SECCLASS_DIR; 1313 case S_IFCHR: 1314 return SECCLASS_CHR_FILE; 1315 case S_IFIFO: 1316 return SECCLASS_FIFO_FILE; 1317 1318 } 1319 1320 return SECCLASS_FILE; 1321 } 1322 1323 static inline int default_protocol_stream(int protocol) 1324 { 1325 return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP); 1326 } 1327 1328 static inline int default_protocol_dgram(int protocol) 1329 { 1330 return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP); 1331 } 1332 1333 static inline u16 socket_type_to_security_class(int family, int type, int protocol) 1334 { 1335 int extsockclass = selinux_policycap_extsockclass(); 1336 1337 switch (family) { 1338 case PF_UNIX: 1339 switch (type) { 1340 case SOCK_STREAM: 1341 case SOCK_SEQPACKET: 1342 return SECCLASS_UNIX_STREAM_SOCKET; 1343 case SOCK_DGRAM: 1344 case SOCK_RAW: 1345 return SECCLASS_UNIX_DGRAM_SOCKET; 1346 } 1347 break; 1348 case PF_INET: 1349 case PF_INET6: 1350 switch (type) { 1351 case SOCK_STREAM: 1352 case SOCK_SEQPACKET: 1353 if (default_protocol_stream(protocol)) 1354 return SECCLASS_TCP_SOCKET; 1355 else if (extsockclass && protocol == IPPROTO_SCTP) 1356 return SECCLASS_SCTP_SOCKET; 1357 else 1358 return SECCLASS_RAWIP_SOCKET; 1359 case SOCK_DGRAM: 1360 if (default_protocol_dgram(protocol)) 1361 return SECCLASS_UDP_SOCKET; 1362 else if (extsockclass && (protocol == IPPROTO_ICMP || 1363 protocol == IPPROTO_ICMPV6)) 1364 return SECCLASS_ICMP_SOCKET; 1365 else 1366 return SECCLASS_RAWIP_SOCKET; 1367 case SOCK_DCCP: 1368 return SECCLASS_DCCP_SOCKET; 1369 default: 1370 return SECCLASS_RAWIP_SOCKET; 1371 } 1372 break; 1373 case PF_NETLINK: 1374 switch (protocol) { 1375 case NETLINK_ROUTE: 1376 return SECCLASS_NETLINK_ROUTE_SOCKET; 1377 case NETLINK_SOCK_DIAG: 1378 return SECCLASS_NETLINK_TCPDIAG_SOCKET; 1379 case NETLINK_NFLOG: 1380 return SECCLASS_NETLINK_NFLOG_SOCKET; 1381 case NETLINK_XFRM: 1382 return SECCLASS_NETLINK_XFRM_SOCKET; 1383 case NETLINK_SELINUX: 1384 return SECCLASS_NETLINK_SELINUX_SOCKET; 1385 case NETLINK_ISCSI: 1386 return SECCLASS_NETLINK_ISCSI_SOCKET; 1387 case NETLINK_AUDIT: 1388 return SECCLASS_NETLINK_AUDIT_SOCKET; 1389 case NETLINK_FIB_LOOKUP: 1390 return SECCLASS_NETLINK_FIB_LOOKUP_SOCKET; 1391 case NETLINK_CONNECTOR: 1392 return SECCLASS_NETLINK_CONNECTOR_SOCKET; 1393 case NETLINK_NETFILTER: 1394 return SECCLASS_NETLINK_NETFILTER_SOCKET; 1395 case NETLINK_DNRTMSG: 1396 return SECCLASS_NETLINK_DNRT_SOCKET; 1397 case NETLINK_KOBJECT_UEVENT: 1398 return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET; 1399 case NETLINK_GENERIC: 1400 return SECCLASS_NETLINK_GENERIC_SOCKET; 1401 case NETLINK_SCSITRANSPORT: 1402 return SECCLASS_NETLINK_SCSITRANSPORT_SOCKET; 1403 case NETLINK_RDMA: 1404 return SECCLASS_NETLINK_RDMA_SOCKET; 1405 case NETLINK_CRYPTO: 1406 return SECCLASS_NETLINK_CRYPTO_SOCKET; 1407 default: 1408 return SECCLASS_NETLINK_SOCKET; 1409 } 1410 case PF_PACKET: 1411 return SECCLASS_PACKET_SOCKET; 1412 case PF_KEY: 1413 return SECCLASS_KEY_SOCKET; 1414 case PF_APPLETALK: 1415 return SECCLASS_APPLETALK_SOCKET; 1416 } 1417 1418 if (extsockclass) { 1419 switch (family) { 1420 case PF_AX25: 1421 return SECCLASS_AX25_SOCKET; 1422 case PF_IPX: 1423 return SECCLASS_IPX_SOCKET; 1424 case PF_NETROM: 1425 return SECCLASS_NETROM_SOCKET; 1426 case PF_ATMPVC: 1427 return SECCLASS_ATMPVC_SOCKET; 1428 case PF_X25: 1429 return SECCLASS_X25_SOCKET; 1430 case PF_ROSE: 1431 return SECCLASS_ROSE_SOCKET; 1432 case PF_DECnet: 1433 return SECCLASS_DECNET_SOCKET; 1434 case PF_ATMSVC: 1435 return SECCLASS_ATMSVC_SOCKET; 1436 case PF_RDS: 1437 return SECCLASS_RDS_SOCKET; 1438 case PF_IRDA: 1439 return SECCLASS_IRDA_SOCKET; 1440 case PF_PPPOX: 1441 return SECCLASS_PPPOX_SOCKET; 1442 case PF_LLC: 1443 return SECCLASS_LLC_SOCKET; 1444 case PF_CAN: 1445 return SECCLASS_CAN_SOCKET; 1446 case PF_TIPC: 1447 return SECCLASS_TIPC_SOCKET; 1448 case PF_BLUETOOTH: 1449 return SECCLASS_BLUETOOTH_SOCKET; 1450 case PF_IUCV: 1451 return SECCLASS_IUCV_SOCKET; 1452 case PF_RXRPC: 1453 return SECCLASS_RXRPC_SOCKET; 1454 case PF_ISDN: 1455 return SECCLASS_ISDN_SOCKET; 1456 case PF_PHONET: 1457 return SECCLASS_PHONET_SOCKET; 1458 case PF_IEEE802154: 1459 return SECCLASS_IEEE802154_SOCKET; 1460 case PF_CAIF: 1461 return SECCLASS_CAIF_SOCKET; 1462 case PF_ALG: 1463 return SECCLASS_ALG_SOCKET; 1464 case PF_NFC: 1465 return SECCLASS_NFC_SOCKET; 1466 case PF_VSOCK: 1467 return SECCLASS_VSOCK_SOCKET; 1468 case PF_KCM: 1469 return SECCLASS_KCM_SOCKET; 1470 case PF_QIPCRTR: 1471 return SECCLASS_QIPCRTR_SOCKET; 1472 case PF_SMC: 1473 return SECCLASS_SMC_SOCKET; 1474 #if PF_MAX > 44 1475 #error New address family defined, please update this function. 1476 #endif 1477 } 1478 } 1479 1480 return SECCLASS_SOCKET; 1481 } 1482 1483 static int selinux_genfs_get_sid(struct dentry *dentry, 1484 u16 tclass, 1485 u16 flags, 1486 u32 *sid) 1487 { 1488 int rc; 1489 struct super_block *sb = dentry->d_sb; 1490 char *buffer, *path; 1491 1492 buffer = (char *)__get_free_page(GFP_KERNEL); 1493 if (!buffer) 1494 return -ENOMEM; 1495 1496 path = dentry_path_raw(dentry, buffer, PAGE_SIZE); 1497 if (IS_ERR(path)) 1498 rc = PTR_ERR(path); 1499 else { 1500 if (flags & SE_SBPROC) { 1501 /* each process gets a /proc/PID/ entry. Strip off the 1502 * PID part to get a valid selinux labeling. 1503 * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */ 1504 while (path[1] >= '0' && path[1] <= '9') { 1505 path[1] = '/'; 1506 path++; 1507 } 1508 } 1509 rc = security_genfs_sid(&selinux_state, sb->s_type->name, 1510 path, tclass, sid); 1511 } 1512 free_page((unsigned long)buffer); 1513 return rc; 1514 } 1515 1516 /* The inode's security attributes must be initialized before first use. */ 1517 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry) 1518 { 1519 struct superblock_security_struct *sbsec = NULL; 1520 struct inode_security_struct *isec = inode->i_security; 1521 u32 task_sid, sid = 0; 1522 u16 sclass; 1523 struct dentry *dentry; 1524 #define INITCONTEXTLEN 255 1525 char *context = NULL; 1526 unsigned len = 0; 1527 int rc = 0; 1528 1529 if (isec->initialized == LABEL_INITIALIZED) 1530 return 0; 1531 1532 spin_lock(&isec->lock); 1533 if (isec->initialized == LABEL_INITIALIZED) 1534 goto out_unlock; 1535 1536 if (isec->sclass == SECCLASS_FILE) 1537 isec->sclass = inode_mode_to_security_class(inode->i_mode); 1538 1539 sbsec = inode->i_sb->s_security; 1540 if (!(sbsec->flags & SE_SBINITIALIZED)) { 1541 /* Defer initialization until selinux_complete_init, 1542 after the initial policy is loaded and the security 1543 server is ready to handle calls. */ 1544 spin_lock(&sbsec->isec_lock); 1545 if (list_empty(&isec->list)) 1546 list_add(&isec->list, &sbsec->isec_head); 1547 spin_unlock(&sbsec->isec_lock); 1548 goto out_unlock; 1549 } 1550 1551 sclass = isec->sclass; 1552 task_sid = isec->task_sid; 1553 sid = isec->sid; 1554 isec->initialized = LABEL_PENDING; 1555 spin_unlock(&isec->lock); 1556 1557 switch (sbsec->behavior) { 1558 case SECURITY_FS_USE_NATIVE: 1559 break; 1560 case SECURITY_FS_USE_XATTR: 1561 if (!(inode->i_opflags & IOP_XATTR)) { 1562 sid = sbsec->def_sid; 1563 break; 1564 } 1565 /* Need a dentry, since the xattr API requires one. 1566 Life would be simpler if we could just pass the inode. */ 1567 if (opt_dentry) { 1568 /* Called from d_instantiate or d_splice_alias. */ 1569 dentry = dget(opt_dentry); 1570 } else { 1571 /* Called from selinux_complete_init, try to find a dentry. */ 1572 dentry = d_find_alias(inode); 1573 } 1574 if (!dentry) { 1575 /* 1576 * this is can be hit on boot when a file is accessed 1577 * before the policy is loaded. When we load policy we 1578 * may find inodes that have no dentry on the 1579 * sbsec->isec_head list. No reason to complain as these 1580 * will get fixed up the next time we go through 1581 * inode_doinit with a dentry, before these inodes could 1582 * be used again by userspace. 1583 */ 1584 goto out; 1585 } 1586 1587 len = INITCONTEXTLEN; 1588 context = kmalloc(len+1, GFP_NOFS); 1589 if (!context) { 1590 rc = -ENOMEM; 1591 dput(dentry); 1592 goto out; 1593 } 1594 context[len] = '\0'; 1595 rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, context, len); 1596 if (rc == -ERANGE) { 1597 kfree(context); 1598 1599 /* Need a larger buffer. Query for the right size. */ 1600 rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, NULL, 0); 1601 if (rc < 0) { 1602 dput(dentry); 1603 goto out; 1604 } 1605 len = rc; 1606 context = kmalloc(len+1, GFP_NOFS); 1607 if (!context) { 1608 rc = -ENOMEM; 1609 dput(dentry); 1610 goto out; 1611 } 1612 context[len] = '\0'; 1613 rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, context, len); 1614 } 1615 dput(dentry); 1616 if (rc < 0) { 1617 if (rc != -ENODATA) { 1618 printk(KERN_WARNING "SELinux: %s: getxattr returned " 1619 "%d for dev=%s ino=%ld\n", __func__, 1620 -rc, inode->i_sb->s_id, inode->i_ino); 1621 kfree(context); 1622 goto out; 1623 } 1624 /* Map ENODATA to the default file SID */ 1625 sid = sbsec->def_sid; 1626 rc = 0; 1627 } else { 1628 rc = security_context_to_sid_default(&selinux_state, 1629 context, rc, &sid, 1630 sbsec->def_sid, 1631 GFP_NOFS); 1632 if (rc) { 1633 char *dev = inode->i_sb->s_id; 1634 unsigned long ino = inode->i_ino; 1635 1636 if (rc == -EINVAL) { 1637 if (printk_ratelimit()) 1638 printk(KERN_NOTICE "SELinux: inode=%lu on dev=%s was found to have an invalid " 1639 "context=%s. This indicates you may need to relabel the inode or the " 1640 "filesystem in question.\n", ino, dev, context); 1641 } else { 1642 printk(KERN_WARNING "SELinux: %s: context_to_sid(%s) " 1643 "returned %d for dev=%s ino=%ld\n", 1644 __func__, context, -rc, dev, ino); 1645 } 1646 kfree(context); 1647 /* Leave with the unlabeled SID */ 1648 rc = 0; 1649 break; 1650 } 1651 } 1652 kfree(context); 1653 break; 1654 case SECURITY_FS_USE_TASK: 1655 sid = task_sid; 1656 break; 1657 case SECURITY_FS_USE_TRANS: 1658 /* Default to the fs SID. */ 1659 sid = sbsec->sid; 1660 1661 /* Try to obtain a transition SID. */ 1662 rc = security_transition_sid(&selinux_state, task_sid, sid, 1663 sclass, NULL, &sid); 1664 if (rc) 1665 goto out; 1666 break; 1667 case SECURITY_FS_USE_MNTPOINT: 1668 sid = sbsec->mntpoint_sid; 1669 break; 1670 default: 1671 /* Default to the fs superblock SID. */ 1672 sid = sbsec->sid; 1673 1674 if ((sbsec->flags & SE_SBGENFS) && !S_ISLNK(inode->i_mode)) { 1675 /* We must have a dentry to determine the label on 1676 * procfs inodes */ 1677 if (opt_dentry) 1678 /* Called from d_instantiate or 1679 * d_splice_alias. */ 1680 dentry = dget(opt_dentry); 1681 else 1682 /* Called from selinux_complete_init, try to 1683 * find a dentry. */ 1684 dentry = d_find_alias(inode); 1685 /* 1686 * This can be hit on boot when a file is accessed 1687 * before the policy is loaded. When we load policy we 1688 * may find inodes that have no dentry on the 1689 * sbsec->isec_head list. No reason to complain as 1690 * these will get fixed up the next time we go through 1691 * inode_doinit() with a dentry, before these inodes 1692 * could be used again by userspace. 1693 */ 1694 if (!dentry) 1695 goto out; 1696 rc = selinux_genfs_get_sid(dentry, sclass, 1697 sbsec->flags, &sid); 1698 dput(dentry); 1699 if (rc) 1700 goto out; 1701 } 1702 break; 1703 } 1704 1705 out: 1706 spin_lock(&isec->lock); 1707 if (isec->initialized == LABEL_PENDING) { 1708 if (!sid || rc) { 1709 isec->initialized = LABEL_INVALID; 1710 goto out_unlock; 1711 } 1712 1713 isec->initialized = LABEL_INITIALIZED; 1714 isec->sid = sid; 1715 } 1716 1717 out_unlock: 1718 spin_unlock(&isec->lock); 1719 return rc; 1720 } 1721 1722 /* Convert a Linux signal to an access vector. */ 1723 static inline u32 signal_to_av(int sig) 1724 { 1725 u32 perm = 0; 1726 1727 switch (sig) { 1728 case SIGCHLD: 1729 /* Commonly granted from child to parent. */ 1730 perm = PROCESS__SIGCHLD; 1731 break; 1732 case SIGKILL: 1733 /* Cannot be caught or ignored */ 1734 perm = PROCESS__SIGKILL; 1735 break; 1736 case SIGSTOP: 1737 /* Cannot be caught or ignored */ 1738 perm = PROCESS__SIGSTOP; 1739 break; 1740 default: 1741 /* All other signals. */ 1742 perm = PROCESS__SIGNAL; 1743 break; 1744 } 1745 1746 return perm; 1747 } 1748 1749 #if CAP_LAST_CAP > 63 1750 #error Fix SELinux to handle capabilities > 63. 1751 #endif 1752 1753 /* Check whether a task is allowed to use a capability. */ 1754 static int cred_has_capability(const struct cred *cred, 1755 int cap, int audit, bool initns) 1756 { 1757 struct common_audit_data ad; 1758 struct av_decision avd; 1759 u16 sclass; 1760 u32 sid = cred_sid(cred); 1761 u32 av = CAP_TO_MASK(cap); 1762 int rc; 1763 1764 ad.type = LSM_AUDIT_DATA_CAP; 1765 ad.u.cap = cap; 1766 1767 switch (CAP_TO_INDEX(cap)) { 1768 case 0: 1769 sclass = initns ? SECCLASS_CAPABILITY : SECCLASS_CAP_USERNS; 1770 break; 1771 case 1: 1772 sclass = initns ? SECCLASS_CAPABILITY2 : SECCLASS_CAP2_USERNS; 1773 break; 1774 default: 1775 printk(KERN_ERR 1776 "SELinux: out of range capability %d\n", cap); 1777 BUG(); 1778 return -EINVAL; 1779 } 1780 1781 rc = avc_has_perm_noaudit(&selinux_state, 1782 sid, sid, sclass, av, 0, &avd); 1783 if (audit == SECURITY_CAP_AUDIT) { 1784 int rc2 = avc_audit(&selinux_state, 1785 sid, sid, sclass, av, &avd, rc, &ad, 0); 1786 if (rc2) 1787 return rc2; 1788 } 1789 return rc; 1790 } 1791 1792 /* Check whether a task has a particular permission to an inode. 1793 The 'adp' parameter is optional and allows other audit 1794 data to be passed (e.g. the dentry). */ 1795 static int inode_has_perm(const struct cred *cred, 1796 struct inode *inode, 1797 u32 perms, 1798 struct common_audit_data *adp) 1799 { 1800 struct inode_security_struct *isec; 1801 u32 sid; 1802 1803 validate_creds(cred); 1804 1805 if (unlikely(IS_PRIVATE(inode))) 1806 return 0; 1807 1808 sid = cred_sid(cred); 1809 isec = inode->i_security; 1810 1811 return avc_has_perm(&selinux_state, 1812 sid, isec->sid, isec->sclass, perms, adp); 1813 } 1814 1815 /* Same as inode_has_perm, but pass explicit audit data containing 1816 the dentry to help the auditing code to more easily generate the 1817 pathname if needed. */ 1818 static inline int dentry_has_perm(const struct cred *cred, 1819 struct dentry *dentry, 1820 u32 av) 1821 { 1822 struct inode *inode = d_backing_inode(dentry); 1823 struct common_audit_data ad; 1824 1825 ad.type = LSM_AUDIT_DATA_DENTRY; 1826 ad.u.dentry = dentry; 1827 __inode_security_revalidate(inode, dentry, true); 1828 return inode_has_perm(cred, inode, av, &ad); 1829 } 1830 1831 /* Same as inode_has_perm, but pass explicit audit data containing 1832 the path to help the auditing code to more easily generate the 1833 pathname if needed. */ 1834 static inline int path_has_perm(const struct cred *cred, 1835 const struct path *path, 1836 u32 av) 1837 { 1838 struct inode *inode = d_backing_inode(path->dentry); 1839 struct common_audit_data ad; 1840 1841 ad.type = LSM_AUDIT_DATA_PATH; 1842 ad.u.path = *path; 1843 __inode_security_revalidate(inode, path->dentry, true); 1844 return inode_has_perm(cred, inode, av, &ad); 1845 } 1846 1847 /* Same as path_has_perm, but uses the inode from the file struct. */ 1848 static inline int file_path_has_perm(const struct cred *cred, 1849 struct file *file, 1850 u32 av) 1851 { 1852 struct common_audit_data ad; 1853 1854 ad.type = LSM_AUDIT_DATA_FILE; 1855 ad.u.file = file; 1856 return inode_has_perm(cred, file_inode(file), av, &ad); 1857 } 1858 1859 #ifdef CONFIG_BPF_SYSCALL 1860 static int bpf_fd_pass(struct file *file, u32 sid); 1861 #endif 1862 1863 /* Check whether a task can use an open file descriptor to 1864 access an inode in a given way. Check access to the 1865 descriptor itself, and then use dentry_has_perm to 1866 check a particular permission to the file. 1867 Access to the descriptor is implicitly granted if it 1868 has the same SID as the process. If av is zero, then 1869 access to the file is not checked, e.g. for cases 1870 where only the descriptor is affected like seek. */ 1871 static int file_has_perm(const struct cred *cred, 1872 struct file *file, 1873 u32 av) 1874 { 1875 struct file_security_struct *fsec = file->f_security; 1876 struct inode *inode = file_inode(file); 1877 struct common_audit_data ad; 1878 u32 sid = cred_sid(cred); 1879 int rc; 1880 1881 ad.type = LSM_AUDIT_DATA_FILE; 1882 ad.u.file = file; 1883 1884 if (sid != fsec->sid) { 1885 rc = avc_has_perm(&selinux_state, 1886 sid, fsec->sid, 1887 SECCLASS_FD, 1888 FD__USE, 1889 &ad); 1890 if (rc) 1891 goto out; 1892 } 1893 1894 #ifdef CONFIG_BPF_SYSCALL 1895 rc = bpf_fd_pass(file, cred_sid(cred)); 1896 if (rc) 1897 return rc; 1898 #endif 1899 1900 /* av is zero if only checking access to the descriptor. */ 1901 rc = 0; 1902 if (av) 1903 rc = inode_has_perm(cred, inode, av, &ad); 1904 1905 out: 1906 return rc; 1907 } 1908 1909 /* 1910 * Determine the label for an inode that might be unioned. 1911 */ 1912 static int 1913 selinux_determine_inode_label(const struct task_security_struct *tsec, 1914 struct inode *dir, 1915 const struct qstr *name, u16 tclass, 1916 u32 *_new_isid) 1917 { 1918 const struct superblock_security_struct *sbsec = dir->i_sb->s_security; 1919 1920 if ((sbsec->flags & SE_SBINITIALIZED) && 1921 (sbsec->behavior == SECURITY_FS_USE_MNTPOINT)) { 1922 *_new_isid = sbsec->mntpoint_sid; 1923 } else if ((sbsec->flags & SBLABEL_MNT) && 1924 tsec->create_sid) { 1925 *_new_isid = tsec->create_sid; 1926 } else { 1927 const struct inode_security_struct *dsec = inode_security(dir); 1928 return security_transition_sid(&selinux_state, tsec->sid, 1929 dsec->sid, tclass, 1930 name, _new_isid); 1931 } 1932 1933 return 0; 1934 } 1935 1936 /* Check whether a task can create a file. */ 1937 static int may_create(struct inode *dir, 1938 struct dentry *dentry, 1939 u16 tclass) 1940 { 1941 const struct task_security_struct *tsec = current_security(); 1942 struct inode_security_struct *dsec; 1943 struct superblock_security_struct *sbsec; 1944 u32 sid, newsid; 1945 struct common_audit_data ad; 1946 int rc; 1947 1948 dsec = inode_security(dir); 1949 sbsec = dir->i_sb->s_security; 1950 1951 sid = tsec->sid; 1952 1953 ad.type = LSM_AUDIT_DATA_DENTRY; 1954 ad.u.dentry = dentry; 1955 1956 rc = avc_has_perm(&selinux_state, 1957 sid, dsec->sid, SECCLASS_DIR, 1958 DIR__ADD_NAME | DIR__SEARCH, 1959 &ad); 1960 if (rc) 1961 return rc; 1962 1963 rc = selinux_determine_inode_label(current_security(), dir, 1964 &dentry->d_name, tclass, &newsid); 1965 if (rc) 1966 return rc; 1967 1968 rc = avc_has_perm(&selinux_state, 1969 sid, newsid, tclass, FILE__CREATE, &ad); 1970 if (rc) 1971 return rc; 1972 1973 return avc_has_perm(&selinux_state, 1974 newsid, sbsec->sid, 1975 SECCLASS_FILESYSTEM, 1976 FILESYSTEM__ASSOCIATE, &ad); 1977 } 1978 1979 #define MAY_LINK 0 1980 #define MAY_UNLINK 1 1981 #define MAY_RMDIR 2 1982 1983 /* Check whether a task can link, unlink, or rmdir a file/directory. */ 1984 static int may_link(struct inode *dir, 1985 struct dentry *dentry, 1986 int kind) 1987 1988 { 1989 struct inode_security_struct *dsec, *isec; 1990 struct common_audit_data ad; 1991 u32 sid = current_sid(); 1992 u32 av; 1993 int rc; 1994 1995 dsec = inode_security(dir); 1996 isec = backing_inode_security(dentry); 1997 1998 ad.type = LSM_AUDIT_DATA_DENTRY; 1999 ad.u.dentry = dentry; 2000 2001 av = DIR__SEARCH; 2002 av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME); 2003 rc = avc_has_perm(&selinux_state, 2004 sid, dsec->sid, SECCLASS_DIR, av, &ad); 2005 if (rc) 2006 return rc; 2007 2008 switch (kind) { 2009 case MAY_LINK: 2010 av = FILE__LINK; 2011 break; 2012 case MAY_UNLINK: 2013 av = FILE__UNLINK; 2014 break; 2015 case MAY_RMDIR: 2016 av = DIR__RMDIR; 2017 break; 2018 default: 2019 printk(KERN_WARNING "SELinux: %s: unrecognized kind %d\n", 2020 __func__, kind); 2021 return 0; 2022 } 2023 2024 rc = avc_has_perm(&selinux_state, 2025 sid, isec->sid, isec->sclass, av, &ad); 2026 return rc; 2027 } 2028 2029 static inline int may_rename(struct inode *old_dir, 2030 struct dentry *old_dentry, 2031 struct inode *new_dir, 2032 struct dentry *new_dentry) 2033 { 2034 struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec; 2035 struct common_audit_data ad; 2036 u32 sid = current_sid(); 2037 u32 av; 2038 int old_is_dir, new_is_dir; 2039 int rc; 2040 2041 old_dsec = inode_security(old_dir); 2042 old_isec = backing_inode_security(old_dentry); 2043 old_is_dir = d_is_dir(old_dentry); 2044 new_dsec = inode_security(new_dir); 2045 2046 ad.type = LSM_AUDIT_DATA_DENTRY; 2047 2048 ad.u.dentry = old_dentry; 2049 rc = avc_has_perm(&selinux_state, 2050 sid, old_dsec->sid, SECCLASS_DIR, 2051 DIR__REMOVE_NAME | DIR__SEARCH, &ad); 2052 if (rc) 2053 return rc; 2054 rc = avc_has_perm(&selinux_state, 2055 sid, old_isec->sid, 2056 old_isec->sclass, FILE__RENAME, &ad); 2057 if (rc) 2058 return rc; 2059 if (old_is_dir && new_dir != old_dir) { 2060 rc = avc_has_perm(&selinux_state, 2061 sid, old_isec->sid, 2062 old_isec->sclass, DIR__REPARENT, &ad); 2063 if (rc) 2064 return rc; 2065 } 2066 2067 ad.u.dentry = new_dentry; 2068 av = DIR__ADD_NAME | DIR__SEARCH; 2069 if (d_is_positive(new_dentry)) 2070 av |= DIR__REMOVE_NAME; 2071 rc = avc_has_perm(&selinux_state, 2072 sid, new_dsec->sid, SECCLASS_DIR, av, &ad); 2073 if (rc) 2074 return rc; 2075 if (d_is_positive(new_dentry)) { 2076 new_isec = backing_inode_security(new_dentry); 2077 new_is_dir = d_is_dir(new_dentry); 2078 rc = avc_has_perm(&selinux_state, 2079 sid, new_isec->sid, 2080 new_isec->sclass, 2081 (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad); 2082 if (rc) 2083 return rc; 2084 } 2085 2086 return 0; 2087 } 2088 2089 /* Check whether a task can perform a filesystem operation. */ 2090 static int superblock_has_perm(const struct cred *cred, 2091 struct super_block *sb, 2092 u32 perms, 2093 struct common_audit_data *ad) 2094 { 2095 struct superblock_security_struct *sbsec; 2096 u32 sid = cred_sid(cred); 2097 2098 sbsec = sb->s_security; 2099 return avc_has_perm(&selinux_state, 2100 sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad); 2101 } 2102 2103 /* Convert a Linux mode and permission mask to an access vector. */ 2104 static inline u32 file_mask_to_av(int mode, int mask) 2105 { 2106 u32 av = 0; 2107 2108 if (!S_ISDIR(mode)) { 2109 if (mask & MAY_EXEC) 2110 av |= FILE__EXECUTE; 2111 if (mask & MAY_READ) 2112 av |= FILE__READ; 2113 2114 if (mask & MAY_APPEND) 2115 av |= FILE__APPEND; 2116 else if (mask & MAY_WRITE) 2117 av |= FILE__WRITE; 2118 2119 } else { 2120 if (mask & MAY_EXEC) 2121 av |= DIR__SEARCH; 2122 if (mask & MAY_WRITE) 2123 av |= DIR__WRITE; 2124 if (mask & MAY_READ) 2125 av |= DIR__READ; 2126 } 2127 2128 return av; 2129 } 2130 2131 /* Convert a Linux file to an access vector. */ 2132 static inline u32 file_to_av(struct file *file) 2133 { 2134 u32 av = 0; 2135 2136 if (file->f_mode & FMODE_READ) 2137 av |= FILE__READ; 2138 if (file->f_mode & FMODE_WRITE) { 2139 if (file->f_flags & O_APPEND) 2140 av |= FILE__APPEND; 2141 else 2142 av |= FILE__WRITE; 2143 } 2144 if (!av) { 2145 /* 2146 * Special file opened with flags 3 for ioctl-only use. 2147 */ 2148 av = FILE__IOCTL; 2149 } 2150 2151 return av; 2152 } 2153 2154 /* 2155 * Convert a file to an access vector and include the correct open 2156 * open permission. 2157 */ 2158 static inline u32 open_file_to_av(struct file *file) 2159 { 2160 u32 av = file_to_av(file); 2161 struct inode *inode = file_inode(file); 2162 2163 if (selinux_policycap_openperm() && 2164 inode->i_sb->s_magic != SOCKFS_MAGIC) 2165 av |= FILE__OPEN; 2166 2167 return av; 2168 } 2169 2170 /* Hook functions begin here. */ 2171 2172 static int selinux_binder_set_context_mgr(struct task_struct *mgr) 2173 { 2174 u32 mysid = current_sid(); 2175 u32 mgrsid = task_sid(mgr); 2176 2177 return avc_has_perm(&selinux_state, 2178 mysid, mgrsid, SECCLASS_BINDER, 2179 BINDER__SET_CONTEXT_MGR, NULL); 2180 } 2181 2182 static int selinux_binder_transaction(struct task_struct *from, 2183 struct task_struct *to) 2184 { 2185 u32 mysid = current_sid(); 2186 u32 fromsid = task_sid(from); 2187 u32 tosid = task_sid(to); 2188 int rc; 2189 2190 if (mysid != fromsid) { 2191 rc = avc_has_perm(&selinux_state, 2192 mysid, fromsid, SECCLASS_BINDER, 2193 BINDER__IMPERSONATE, NULL); 2194 if (rc) 2195 return rc; 2196 } 2197 2198 return avc_has_perm(&selinux_state, 2199 fromsid, tosid, SECCLASS_BINDER, BINDER__CALL, 2200 NULL); 2201 } 2202 2203 static int selinux_binder_transfer_binder(struct task_struct *from, 2204 struct task_struct *to) 2205 { 2206 u32 fromsid = task_sid(from); 2207 u32 tosid = task_sid(to); 2208 2209 return avc_has_perm(&selinux_state, 2210 fromsid, tosid, SECCLASS_BINDER, BINDER__TRANSFER, 2211 NULL); 2212 } 2213 2214 static int selinux_binder_transfer_file(struct task_struct *from, 2215 struct task_struct *to, 2216 struct file *file) 2217 { 2218 u32 sid = task_sid(to); 2219 struct file_security_struct *fsec = file->f_security; 2220 struct dentry *dentry = file->f_path.dentry; 2221 struct inode_security_struct *isec; 2222 struct common_audit_data ad; 2223 int rc; 2224 2225 ad.type = LSM_AUDIT_DATA_PATH; 2226 ad.u.path = file->f_path; 2227 2228 if (sid != fsec->sid) { 2229 rc = avc_has_perm(&selinux_state, 2230 sid, fsec->sid, 2231 SECCLASS_FD, 2232 FD__USE, 2233 &ad); 2234 if (rc) 2235 return rc; 2236 } 2237 2238 #ifdef CONFIG_BPF_SYSCALL 2239 rc = bpf_fd_pass(file, sid); 2240 if (rc) 2241 return rc; 2242 #endif 2243 2244 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2245 return 0; 2246 2247 isec = backing_inode_security(dentry); 2248 return avc_has_perm(&selinux_state, 2249 sid, isec->sid, isec->sclass, file_to_av(file), 2250 &ad); 2251 } 2252 2253 static int selinux_ptrace_access_check(struct task_struct *child, 2254 unsigned int mode) 2255 { 2256 u32 sid = current_sid(); 2257 u32 csid = task_sid(child); 2258 2259 if (mode & PTRACE_MODE_READ) 2260 return avc_has_perm(&selinux_state, 2261 sid, csid, SECCLASS_FILE, FILE__READ, NULL); 2262 2263 return avc_has_perm(&selinux_state, 2264 sid, csid, SECCLASS_PROCESS, PROCESS__PTRACE, NULL); 2265 } 2266 2267 static int selinux_ptrace_traceme(struct task_struct *parent) 2268 { 2269 return avc_has_perm(&selinux_state, 2270 task_sid(parent), current_sid(), SECCLASS_PROCESS, 2271 PROCESS__PTRACE, NULL); 2272 } 2273 2274 static int selinux_capget(struct task_struct *target, kernel_cap_t *effective, 2275 kernel_cap_t *inheritable, kernel_cap_t *permitted) 2276 { 2277 return avc_has_perm(&selinux_state, 2278 current_sid(), task_sid(target), SECCLASS_PROCESS, 2279 PROCESS__GETCAP, NULL); 2280 } 2281 2282 static int selinux_capset(struct cred *new, const struct cred *old, 2283 const kernel_cap_t *effective, 2284 const kernel_cap_t *inheritable, 2285 const kernel_cap_t *permitted) 2286 { 2287 return avc_has_perm(&selinux_state, 2288 cred_sid(old), cred_sid(new), SECCLASS_PROCESS, 2289 PROCESS__SETCAP, NULL); 2290 } 2291 2292 /* 2293 * (This comment used to live with the selinux_task_setuid hook, 2294 * which was removed). 2295 * 2296 * Since setuid only affects the current process, and since the SELinux 2297 * controls are not based on the Linux identity attributes, SELinux does not 2298 * need to control this operation. However, SELinux does control the use of 2299 * the CAP_SETUID and CAP_SETGID capabilities using the capable hook. 2300 */ 2301 2302 static int selinux_capable(const struct cred *cred, struct user_namespace *ns, 2303 int cap, int audit) 2304 { 2305 return cred_has_capability(cred, cap, audit, ns == &init_user_ns); 2306 } 2307 2308 static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb) 2309 { 2310 const struct cred *cred = current_cred(); 2311 int rc = 0; 2312 2313 if (!sb) 2314 return 0; 2315 2316 switch (cmds) { 2317 case Q_SYNC: 2318 case Q_QUOTAON: 2319 case Q_QUOTAOFF: 2320 case Q_SETINFO: 2321 case Q_SETQUOTA: 2322 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL); 2323 break; 2324 case Q_GETFMT: 2325 case Q_GETINFO: 2326 case Q_GETQUOTA: 2327 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL); 2328 break; 2329 default: 2330 rc = 0; /* let the kernel handle invalid cmds */ 2331 break; 2332 } 2333 return rc; 2334 } 2335 2336 static int selinux_quota_on(struct dentry *dentry) 2337 { 2338 const struct cred *cred = current_cred(); 2339 2340 return dentry_has_perm(cred, dentry, FILE__QUOTAON); 2341 } 2342 2343 static int selinux_syslog(int type) 2344 { 2345 switch (type) { 2346 case SYSLOG_ACTION_READ_ALL: /* Read last kernel messages */ 2347 case SYSLOG_ACTION_SIZE_BUFFER: /* Return size of the log buffer */ 2348 return avc_has_perm(&selinux_state, 2349 current_sid(), SECINITSID_KERNEL, 2350 SECCLASS_SYSTEM, SYSTEM__SYSLOG_READ, NULL); 2351 case SYSLOG_ACTION_CONSOLE_OFF: /* Disable logging to console */ 2352 case SYSLOG_ACTION_CONSOLE_ON: /* Enable logging to console */ 2353 /* Set level of messages printed to console */ 2354 case SYSLOG_ACTION_CONSOLE_LEVEL: 2355 return avc_has_perm(&selinux_state, 2356 current_sid(), SECINITSID_KERNEL, 2357 SECCLASS_SYSTEM, SYSTEM__SYSLOG_CONSOLE, 2358 NULL); 2359 } 2360 /* All other syslog types */ 2361 return avc_has_perm(&selinux_state, 2362 current_sid(), SECINITSID_KERNEL, 2363 SECCLASS_SYSTEM, SYSTEM__SYSLOG_MOD, NULL); 2364 } 2365 2366 /* 2367 * Check that a process has enough memory to allocate a new virtual 2368 * mapping. 0 means there is enough memory for the allocation to 2369 * succeed and -ENOMEM implies there is not. 2370 * 2371 * Do not audit the selinux permission check, as this is applied to all 2372 * processes that allocate mappings. 2373 */ 2374 static int selinux_vm_enough_memory(struct mm_struct *mm, long pages) 2375 { 2376 int rc, cap_sys_admin = 0; 2377 2378 rc = cred_has_capability(current_cred(), CAP_SYS_ADMIN, 2379 SECURITY_CAP_NOAUDIT, true); 2380 if (rc == 0) 2381 cap_sys_admin = 1; 2382 2383 return cap_sys_admin; 2384 } 2385 2386 /* binprm security operations */ 2387 2388 static u32 ptrace_parent_sid(void) 2389 { 2390 u32 sid = 0; 2391 struct task_struct *tracer; 2392 2393 rcu_read_lock(); 2394 tracer = ptrace_parent(current); 2395 if (tracer) 2396 sid = task_sid(tracer); 2397 rcu_read_unlock(); 2398 2399 return sid; 2400 } 2401 2402 static int check_nnp_nosuid(const struct linux_binprm *bprm, 2403 const struct task_security_struct *old_tsec, 2404 const struct task_security_struct *new_tsec) 2405 { 2406 int nnp = (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS); 2407 int nosuid = !mnt_may_suid(bprm->file->f_path.mnt); 2408 int rc; 2409 u32 av; 2410 2411 if (!nnp && !nosuid) 2412 return 0; /* neither NNP nor nosuid */ 2413 2414 if (new_tsec->sid == old_tsec->sid) 2415 return 0; /* No change in credentials */ 2416 2417 /* 2418 * If the policy enables the nnp_nosuid_transition policy capability, 2419 * then we permit transitions under NNP or nosuid if the 2420 * policy allows the corresponding permission between 2421 * the old and new contexts. 2422 */ 2423 if (selinux_policycap_nnp_nosuid_transition()) { 2424 av = 0; 2425 if (nnp) 2426 av |= PROCESS2__NNP_TRANSITION; 2427 if (nosuid) 2428 av |= PROCESS2__NOSUID_TRANSITION; 2429 rc = avc_has_perm(&selinux_state, 2430 old_tsec->sid, new_tsec->sid, 2431 SECCLASS_PROCESS2, av, NULL); 2432 if (!rc) 2433 return 0; 2434 } 2435 2436 /* 2437 * We also permit NNP or nosuid transitions to bounded SIDs, 2438 * i.e. SIDs that are guaranteed to only be allowed a subset 2439 * of the permissions of the current SID. 2440 */ 2441 rc = security_bounded_transition(&selinux_state, old_tsec->sid, 2442 new_tsec->sid); 2443 if (!rc) 2444 return 0; 2445 2446 /* 2447 * On failure, preserve the errno values for NNP vs nosuid. 2448 * NNP: Operation not permitted for caller. 2449 * nosuid: Permission denied to file. 2450 */ 2451 if (nnp) 2452 return -EPERM; 2453 return -EACCES; 2454 } 2455 2456 static int selinux_bprm_set_creds(struct linux_binprm *bprm) 2457 { 2458 const struct task_security_struct *old_tsec; 2459 struct task_security_struct *new_tsec; 2460 struct inode_security_struct *isec; 2461 struct common_audit_data ad; 2462 struct inode *inode = file_inode(bprm->file); 2463 int rc; 2464 2465 /* SELinux context only depends on initial program or script and not 2466 * the script interpreter */ 2467 if (bprm->called_set_creds) 2468 return 0; 2469 2470 old_tsec = current_security(); 2471 new_tsec = bprm->cred->security; 2472 isec = inode_security(inode); 2473 2474 /* Default to the current task SID. */ 2475 new_tsec->sid = old_tsec->sid; 2476 new_tsec->osid = old_tsec->sid; 2477 2478 /* Reset fs, key, and sock SIDs on execve. */ 2479 new_tsec->create_sid = 0; 2480 new_tsec->keycreate_sid = 0; 2481 new_tsec->sockcreate_sid = 0; 2482 2483 if (old_tsec->exec_sid) { 2484 new_tsec->sid = old_tsec->exec_sid; 2485 /* Reset exec SID on execve. */ 2486 new_tsec->exec_sid = 0; 2487 2488 /* Fail on NNP or nosuid if not an allowed transition. */ 2489 rc = check_nnp_nosuid(bprm, old_tsec, new_tsec); 2490 if (rc) 2491 return rc; 2492 } else { 2493 /* Check for a default transition on this program. */ 2494 rc = security_transition_sid(&selinux_state, old_tsec->sid, 2495 isec->sid, SECCLASS_PROCESS, NULL, 2496 &new_tsec->sid); 2497 if (rc) 2498 return rc; 2499 2500 /* 2501 * Fallback to old SID on NNP or nosuid if not an allowed 2502 * transition. 2503 */ 2504 rc = check_nnp_nosuid(bprm, old_tsec, new_tsec); 2505 if (rc) 2506 new_tsec->sid = old_tsec->sid; 2507 } 2508 2509 ad.type = LSM_AUDIT_DATA_FILE; 2510 ad.u.file = bprm->file; 2511 2512 if (new_tsec->sid == old_tsec->sid) { 2513 rc = avc_has_perm(&selinux_state, 2514 old_tsec->sid, isec->sid, 2515 SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad); 2516 if (rc) 2517 return rc; 2518 } else { 2519 /* Check permissions for the transition. */ 2520 rc = avc_has_perm(&selinux_state, 2521 old_tsec->sid, new_tsec->sid, 2522 SECCLASS_PROCESS, PROCESS__TRANSITION, &ad); 2523 if (rc) 2524 return rc; 2525 2526 rc = avc_has_perm(&selinux_state, 2527 new_tsec->sid, isec->sid, 2528 SECCLASS_FILE, FILE__ENTRYPOINT, &ad); 2529 if (rc) 2530 return rc; 2531 2532 /* Check for shared state */ 2533 if (bprm->unsafe & LSM_UNSAFE_SHARE) { 2534 rc = avc_has_perm(&selinux_state, 2535 old_tsec->sid, new_tsec->sid, 2536 SECCLASS_PROCESS, PROCESS__SHARE, 2537 NULL); 2538 if (rc) 2539 return -EPERM; 2540 } 2541 2542 /* Make sure that anyone attempting to ptrace over a task that 2543 * changes its SID has the appropriate permit */ 2544 if (bprm->unsafe & LSM_UNSAFE_PTRACE) { 2545 u32 ptsid = ptrace_parent_sid(); 2546 if (ptsid != 0) { 2547 rc = avc_has_perm(&selinux_state, 2548 ptsid, new_tsec->sid, 2549 SECCLASS_PROCESS, 2550 PROCESS__PTRACE, NULL); 2551 if (rc) 2552 return -EPERM; 2553 } 2554 } 2555 2556 /* Clear any possibly unsafe personality bits on exec: */ 2557 bprm->per_clear |= PER_CLEAR_ON_SETID; 2558 2559 /* Enable secure mode for SIDs transitions unless 2560 the noatsecure permission is granted between 2561 the two SIDs, i.e. ahp returns 0. */ 2562 rc = avc_has_perm(&selinux_state, 2563 old_tsec->sid, new_tsec->sid, 2564 SECCLASS_PROCESS, PROCESS__NOATSECURE, 2565 NULL); 2566 bprm->secureexec |= !!rc; 2567 } 2568 2569 return 0; 2570 } 2571 2572 static int match_file(const void *p, struct file *file, unsigned fd) 2573 { 2574 return file_has_perm(p, file, file_to_av(file)) ? fd + 1 : 0; 2575 } 2576 2577 /* Derived from fs/exec.c:flush_old_files. */ 2578 static inline void flush_unauthorized_files(const struct cred *cred, 2579 struct files_struct *files) 2580 { 2581 struct file *file, *devnull = NULL; 2582 struct tty_struct *tty; 2583 int drop_tty = 0; 2584 unsigned n; 2585 2586 tty = get_current_tty(); 2587 if (tty) { 2588 spin_lock(&tty->files_lock); 2589 if (!list_empty(&tty->tty_files)) { 2590 struct tty_file_private *file_priv; 2591 2592 /* Revalidate access to controlling tty. 2593 Use file_path_has_perm on the tty path directly 2594 rather than using file_has_perm, as this particular 2595 open file may belong to another process and we are 2596 only interested in the inode-based check here. */ 2597 file_priv = list_first_entry(&tty->tty_files, 2598 struct tty_file_private, list); 2599 file = file_priv->file; 2600 if (file_path_has_perm(cred, file, FILE__READ | FILE__WRITE)) 2601 drop_tty = 1; 2602 } 2603 spin_unlock(&tty->files_lock); 2604 tty_kref_put(tty); 2605 } 2606 /* Reset controlling tty. */ 2607 if (drop_tty) 2608 no_tty(); 2609 2610 /* Revalidate access to inherited open files. */ 2611 n = iterate_fd(files, 0, match_file, cred); 2612 if (!n) /* none found? */ 2613 return; 2614 2615 devnull = dentry_open(&selinux_null, O_RDWR, cred); 2616 if (IS_ERR(devnull)) 2617 devnull = NULL; 2618 /* replace all the matching ones with this */ 2619 do { 2620 replace_fd(n - 1, devnull, 0); 2621 } while ((n = iterate_fd(files, n, match_file, cred)) != 0); 2622 if (devnull) 2623 fput(devnull); 2624 } 2625 2626 /* 2627 * Prepare a process for imminent new credential changes due to exec 2628 */ 2629 static void selinux_bprm_committing_creds(struct linux_binprm *bprm) 2630 { 2631 struct task_security_struct *new_tsec; 2632 struct rlimit *rlim, *initrlim; 2633 int rc, i; 2634 2635 new_tsec = bprm->cred->security; 2636 if (new_tsec->sid == new_tsec->osid) 2637 return; 2638 2639 /* Close files for which the new task SID is not authorized. */ 2640 flush_unauthorized_files(bprm->cred, current->files); 2641 2642 /* Always clear parent death signal on SID transitions. */ 2643 current->pdeath_signal = 0; 2644 2645 /* Check whether the new SID can inherit resource limits from the old 2646 * SID. If not, reset all soft limits to the lower of the current 2647 * task's hard limit and the init task's soft limit. 2648 * 2649 * Note that the setting of hard limits (even to lower them) can be 2650 * controlled by the setrlimit check. The inclusion of the init task's 2651 * soft limit into the computation is to avoid resetting soft limits 2652 * higher than the default soft limit for cases where the default is 2653 * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK. 2654 */ 2655 rc = avc_has_perm(&selinux_state, 2656 new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS, 2657 PROCESS__RLIMITINH, NULL); 2658 if (rc) { 2659 /* protect against do_prlimit() */ 2660 task_lock(current); 2661 for (i = 0; i < RLIM_NLIMITS; i++) { 2662 rlim = current->signal->rlim + i; 2663 initrlim = init_task.signal->rlim + i; 2664 rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur); 2665 } 2666 task_unlock(current); 2667 if (IS_ENABLED(CONFIG_POSIX_TIMERS)) 2668 update_rlimit_cpu(current, rlimit(RLIMIT_CPU)); 2669 } 2670 } 2671 2672 /* 2673 * Clean up the process immediately after the installation of new credentials 2674 * due to exec 2675 */ 2676 static void selinux_bprm_committed_creds(struct linux_binprm *bprm) 2677 { 2678 const struct task_security_struct *tsec = current_security(); 2679 struct itimerval itimer; 2680 u32 osid, sid; 2681 int rc, i; 2682 2683 osid = tsec->osid; 2684 sid = tsec->sid; 2685 2686 if (sid == osid) 2687 return; 2688 2689 /* Check whether the new SID can inherit signal state from the old SID. 2690 * If not, clear itimers to avoid subsequent signal generation and 2691 * flush and unblock signals. 2692 * 2693 * This must occur _after_ the task SID has been updated so that any 2694 * kill done after the flush will be checked against the new SID. 2695 */ 2696 rc = avc_has_perm(&selinux_state, 2697 osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL); 2698 if (rc) { 2699 if (IS_ENABLED(CONFIG_POSIX_TIMERS)) { 2700 memset(&itimer, 0, sizeof itimer); 2701 for (i = 0; i < 3; i++) 2702 do_setitimer(i, &itimer, NULL); 2703 } 2704 spin_lock_irq(¤t->sighand->siglock); 2705 if (!fatal_signal_pending(current)) { 2706 flush_sigqueue(¤t->pending); 2707 flush_sigqueue(¤t->signal->shared_pending); 2708 flush_signal_handlers(current, 1); 2709 sigemptyset(¤t->blocked); 2710 recalc_sigpending(); 2711 } 2712 spin_unlock_irq(¤t->sighand->siglock); 2713 } 2714 2715 /* Wake up the parent if it is waiting so that it can recheck 2716 * wait permission to the new task SID. */ 2717 read_lock(&tasklist_lock); 2718 __wake_up_parent(current, current->real_parent); 2719 read_unlock(&tasklist_lock); 2720 } 2721 2722 /* superblock security operations */ 2723 2724 static int selinux_sb_alloc_security(struct super_block *sb) 2725 { 2726 return superblock_alloc_security(sb); 2727 } 2728 2729 static void selinux_sb_free_security(struct super_block *sb) 2730 { 2731 superblock_free_security(sb); 2732 } 2733 2734 static inline int match_prefix(char *prefix, int plen, char *option, int olen) 2735 { 2736 if (plen > olen) 2737 return 0; 2738 2739 return !memcmp(prefix, option, plen); 2740 } 2741 2742 static inline int selinux_option(char *option, int len) 2743 { 2744 return (match_prefix(CONTEXT_STR, sizeof(CONTEXT_STR)-1, option, len) || 2745 match_prefix(FSCONTEXT_STR, sizeof(FSCONTEXT_STR)-1, option, len) || 2746 match_prefix(DEFCONTEXT_STR, sizeof(DEFCONTEXT_STR)-1, option, len) || 2747 match_prefix(ROOTCONTEXT_STR, sizeof(ROOTCONTEXT_STR)-1, option, len) || 2748 match_prefix(LABELSUPP_STR, sizeof(LABELSUPP_STR)-1, option, len)); 2749 } 2750 2751 static inline void take_option(char **to, char *from, int *first, int len) 2752 { 2753 if (!*first) { 2754 **to = ','; 2755 *to += 1; 2756 } else 2757 *first = 0; 2758 memcpy(*to, from, len); 2759 *to += len; 2760 } 2761 2762 static inline void take_selinux_option(char **to, char *from, int *first, 2763 int len) 2764 { 2765 int current_size = 0; 2766 2767 if (!*first) { 2768 **to = '|'; 2769 *to += 1; 2770 } else 2771 *first = 0; 2772 2773 while (current_size < len) { 2774 if (*from != '"') { 2775 **to = *from; 2776 *to += 1; 2777 } 2778 from += 1; 2779 current_size += 1; 2780 } 2781 } 2782 2783 static int selinux_sb_copy_data(char *orig, char *copy) 2784 { 2785 int fnosec, fsec, rc = 0; 2786 char *in_save, *in_curr, *in_end; 2787 char *sec_curr, *nosec_save, *nosec; 2788 int open_quote = 0; 2789 2790 in_curr = orig; 2791 sec_curr = copy; 2792 2793 nosec = (char *)get_zeroed_page(GFP_KERNEL); 2794 if (!nosec) { 2795 rc = -ENOMEM; 2796 goto out; 2797 } 2798 2799 nosec_save = nosec; 2800 fnosec = fsec = 1; 2801 in_save = in_end = orig; 2802 2803 do { 2804 if (*in_end == '"') 2805 open_quote = !open_quote; 2806 if ((*in_end == ',' && open_quote == 0) || 2807 *in_end == '\0') { 2808 int len = in_end - in_curr; 2809 2810 if (selinux_option(in_curr, len)) 2811 take_selinux_option(&sec_curr, in_curr, &fsec, len); 2812 else 2813 take_option(&nosec, in_curr, &fnosec, len); 2814 2815 in_curr = in_end + 1; 2816 } 2817 } while (*in_end++); 2818 2819 strcpy(in_save, nosec_save); 2820 free_page((unsigned long)nosec_save); 2821 out: 2822 return rc; 2823 } 2824 2825 static int selinux_sb_remount(struct super_block *sb, void *data) 2826 { 2827 int rc, i, *flags; 2828 struct security_mnt_opts opts; 2829 char *secdata, **mount_options; 2830 struct superblock_security_struct *sbsec = sb->s_security; 2831 2832 if (!(sbsec->flags & SE_SBINITIALIZED)) 2833 return 0; 2834 2835 if (!data) 2836 return 0; 2837 2838 if (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA) 2839 return 0; 2840 2841 security_init_mnt_opts(&opts); 2842 secdata = alloc_secdata(); 2843 if (!secdata) 2844 return -ENOMEM; 2845 rc = selinux_sb_copy_data(data, secdata); 2846 if (rc) 2847 goto out_free_secdata; 2848 2849 rc = selinux_parse_opts_str(secdata, &opts); 2850 if (rc) 2851 goto out_free_secdata; 2852 2853 mount_options = opts.mnt_opts; 2854 flags = opts.mnt_opts_flags; 2855 2856 for (i = 0; i < opts.num_mnt_opts; i++) { 2857 u32 sid; 2858 2859 if (flags[i] == SBLABEL_MNT) 2860 continue; 2861 rc = security_context_str_to_sid(&selinux_state, 2862 mount_options[i], &sid, 2863 GFP_KERNEL); 2864 if (rc) { 2865 printk(KERN_WARNING "SELinux: security_context_str_to_sid" 2866 "(%s) failed for (dev %s, type %s) errno=%d\n", 2867 mount_options[i], sb->s_id, sb->s_type->name, rc); 2868 goto out_free_opts; 2869 } 2870 rc = -EINVAL; 2871 switch (flags[i]) { 2872 case FSCONTEXT_MNT: 2873 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, sid)) 2874 goto out_bad_option; 2875 break; 2876 case CONTEXT_MNT: 2877 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, sid)) 2878 goto out_bad_option; 2879 break; 2880 case ROOTCONTEXT_MNT: { 2881 struct inode_security_struct *root_isec; 2882 root_isec = backing_inode_security(sb->s_root); 2883 2884 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, sid)) 2885 goto out_bad_option; 2886 break; 2887 } 2888 case DEFCONTEXT_MNT: 2889 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, sid)) 2890 goto out_bad_option; 2891 break; 2892 default: 2893 goto out_free_opts; 2894 } 2895 } 2896 2897 rc = 0; 2898 out_free_opts: 2899 security_free_mnt_opts(&opts); 2900 out_free_secdata: 2901 free_secdata(secdata); 2902 return rc; 2903 out_bad_option: 2904 printk(KERN_WARNING "SELinux: unable to change security options " 2905 "during remount (dev %s, type=%s)\n", sb->s_id, 2906 sb->s_type->name); 2907 goto out_free_opts; 2908 } 2909 2910 static int selinux_sb_kern_mount(struct super_block *sb, int flags, void *data) 2911 { 2912 const struct cred *cred = current_cred(); 2913 struct common_audit_data ad; 2914 int rc; 2915 2916 rc = superblock_doinit(sb, data); 2917 if (rc) 2918 return rc; 2919 2920 /* Allow all mounts performed by the kernel */ 2921 if (flags & MS_KERNMOUNT) 2922 return 0; 2923 2924 ad.type = LSM_AUDIT_DATA_DENTRY; 2925 ad.u.dentry = sb->s_root; 2926 return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad); 2927 } 2928 2929 static int selinux_sb_statfs(struct dentry *dentry) 2930 { 2931 const struct cred *cred = current_cred(); 2932 struct common_audit_data ad; 2933 2934 ad.type = LSM_AUDIT_DATA_DENTRY; 2935 ad.u.dentry = dentry->d_sb->s_root; 2936 return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad); 2937 } 2938 2939 static int selinux_mount(const char *dev_name, 2940 const struct path *path, 2941 const char *type, 2942 unsigned long flags, 2943 void *data) 2944 { 2945 const struct cred *cred = current_cred(); 2946 2947 if (flags & MS_REMOUNT) 2948 return superblock_has_perm(cred, path->dentry->d_sb, 2949 FILESYSTEM__REMOUNT, NULL); 2950 else 2951 return path_has_perm(cred, path, FILE__MOUNTON); 2952 } 2953 2954 static int selinux_umount(struct vfsmount *mnt, int flags) 2955 { 2956 const struct cred *cred = current_cred(); 2957 2958 return superblock_has_perm(cred, mnt->mnt_sb, 2959 FILESYSTEM__UNMOUNT, NULL); 2960 } 2961 2962 /* inode security operations */ 2963 2964 static int selinux_inode_alloc_security(struct inode *inode) 2965 { 2966 return inode_alloc_security(inode); 2967 } 2968 2969 static void selinux_inode_free_security(struct inode *inode) 2970 { 2971 inode_free_security(inode); 2972 } 2973 2974 static int selinux_dentry_init_security(struct dentry *dentry, int mode, 2975 const struct qstr *name, void **ctx, 2976 u32 *ctxlen) 2977 { 2978 u32 newsid; 2979 int rc; 2980 2981 rc = selinux_determine_inode_label(current_security(), 2982 d_inode(dentry->d_parent), name, 2983 inode_mode_to_security_class(mode), 2984 &newsid); 2985 if (rc) 2986 return rc; 2987 2988 return security_sid_to_context(&selinux_state, newsid, (char **)ctx, 2989 ctxlen); 2990 } 2991 2992 static int selinux_dentry_create_files_as(struct dentry *dentry, int mode, 2993 struct qstr *name, 2994 const struct cred *old, 2995 struct cred *new) 2996 { 2997 u32 newsid; 2998 int rc; 2999 struct task_security_struct *tsec; 3000 3001 rc = selinux_determine_inode_label(old->security, 3002 d_inode(dentry->d_parent), name, 3003 inode_mode_to_security_class(mode), 3004 &newsid); 3005 if (rc) 3006 return rc; 3007 3008 tsec = new->security; 3009 tsec->create_sid = newsid; 3010 return 0; 3011 } 3012 3013 static int selinux_inode_init_security(struct inode *inode, struct inode *dir, 3014 const struct qstr *qstr, 3015 const char **name, 3016 void **value, size_t *len) 3017 { 3018 const struct task_security_struct *tsec = current_security(); 3019 struct superblock_security_struct *sbsec; 3020 u32 newsid, clen; 3021 int rc; 3022 char *context; 3023 3024 sbsec = dir->i_sb->s_security; 3025 3026 newsid = tsec->create_sid; 3027 3028 rc = selinux_determine_inode_label(current_security(), 3029 dir, qstr, 3030 inode_mode_to_security_class(inode->i_mode), 3031 &newsid); 3032 if (rc) 3033 return rc; 3034 3035 /* Possibly defer initialization to selinux_complete_init. */ 3036 if (sbsec->flags & SE_SBINITIALIZED) { 3037 struct inode_security_struct *isec = inode->i_security; 3038 isec->sclass = inode_mode_to_security_class(inode->i_mode); 3039 isec->sid = newsid; 3040 isec->initialized = LABEL_INITIALIZED; 3041 } 3042 3043 if (!selinux_state.initialized || !(sbsec->flags & SBLABEL_MNT)) 3044 return -EOPNOTSUPP; 3045 3046 if (name) 3047 *name = XATTR_SELINUX_SUFFIX; 3048 3049 if (value && len) { 3050 rc = security_sid_to_context_force(&selinux_state, newsid, 3051 &context, &clen); 3052 if (rc) 3053 return rc; 3054 *value = context; 3055 *len = clen; 3056 } 3057 3058 return 0; 3059 } 3060 3061 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode) 3062 { 3063 return may_create(dir, dentry, SECCLASS_FILE); 3064 } 3065 3066 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry) 3067 { 3068 return may_link(dir, old_dentry, MAY_LINK); 3069 } 3070 3071 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry) 3072 { 3073 return may_link(dir, dentry, MAY_UNLINK); 3074 } 3075 3076 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name) 3077 { 3078 return may_create(dir, dentry, SECCLASS_LNK_FILE); 3079 } 3080 3081 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mask) 3082 { 3083 return may_create(dir, dentry, SECCLASS_DIR); 3084 } 3085 3086 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry) 3087 { 3088 return may_link(dir, dentry, MAY_RMDIR); 3089 } 3090 3091 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) 3092 { 3093 return may_create(dir, dentry, inode_mode_to_security_class(mode)); 3094 } 3095 3096 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry, 3097 struct inode *new_inode, struct dentry *new_dentry) 3098 { 3099 return may_rename(old_inode, old_dentry, new_inode, new_dentry); 3100 } 3101 3102 static int selinux_inode_readlink(struct dentry *dentry) 3103 { 3104 const struct cred *cred = current_cred(); 3105 3106 return dentry_has_perm(cred, dentry, FILE__READ); 3107 } 3108 3109 static int selinux_inode_follow_link(struct dentry *dentry, struct inode *inode, 3110 bool rcu) 3111 { 3112 const struct cred *cred = current_cred(); 3113 struct common_audit_data ad; 3114 struct inode_security_struct *isec; 3115 u32 sid; 3116 3117 validate_creds(cred); 3118 3119 ad.type = LSM_AUDIT_DATA_DENTRY; 3120 ad.u.dentry = dentry; 3121 sid = cred_sid(cred); 3122 isec = inode_security_rcu(inode, rcu); 3123 if (IS_ERR(isec)) 3124 return PTR_ERR(isec); 3125 3126 return avc_has_perm_flags(&selinux_state, 3127 sid, isec->sid, isec->sclass, FILE__READ, &ad, 3128 rcu ? MAY_NOT_BLOCK : 0); 3129 } 3130 3131 static noinline int audit_inode_permission(struct inode *inode, 3132 u32 perms, u32 audited, u32 denied, 3133 int result, 3134 unsigned flags) 3135 { 3136 struct common_audit_data ad; 3137 struct inode_security_struct *isec = inode->i_security; 3138 int rc; 3139 3140 ad.type = LSM_AUDIT_DATA_INODE; 3141 ad.u.inode = inode; 3142 3143 rc = slow_avc_audit(&selinux_state, 3144 current_sid(), isec->sid, isec->sclass, perms, 3145 audited, denied, result, &ad, flags); 3146 if (rc) 3147 return rc; 3148 return 0; 3149 } 3150 3151 static int selinux_inode_permission(struct inode *inode, int mask) 3152 { 3153 const struct cred *cred = current_cred(); 3154 u32 perms; 3155 bool from_access; 3156 unsigned flags = mask & MAY_NOT_BLOCK; 3157 struct inode_security_struct *isec; 3158 u32 sid; 3159 struct av_decision avd; 3160 int rc, rc2; 3161 u32 audited, denied; 3162 3163 from_access = mask & MAY_ACCESS; 3164 mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND); 3165 3166 /* No permission to check. Existence test. */ 3167 if (!mask) 3168 return 0; 3169 3170 validate_creds(cred); 3171 3172 if (unlikely(IS_PRIVATE(inode))) 3173 return 0; 3174 3175 perms = file_mask_to_av(inode->i_mode, mask); 3176 3177 sid = cred_sid(cred); 3178 isec = inode_security_rcu(inode, flags & MAY_NOT_BLOCK); 3179 if (IS_ERR(isec)) 3180 return PTR_ERR(isec); 3181 3182 rc = avc_has_perm_noaudit(&selinux_state, 3183 sid, isec->sid, isec->sclass, perms, 0, &avd); 3184 audited = avc_audit_required(perms, &avd, rc, 3185 from_access ? FILE__AUDIT_ACCESS : 0, 3186 &denied); 3187 if (likely(!audited)) 3188 return rc; 3189 3190 rc2 = audit_inode_permission(inode, perms, audited, denied, rc, flags); 3191 if (rc2) 3192 return rc2; 3193 return rc; 3194 } 3195 3196 static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr) 3197 { 3198 const struct cred *cred = current_cred(); 3199 struct inode *inode = d_backing_inode(dentry); 3200 unsigned int ia_valid = iattr->ia_valid; 3201 __u32 av = FILE__WRITE; 3202 3203 /* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */ 3204 if (ia_valid & ATTR_FORCE) { 3205 ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE | 3206 ATTR_FORCE); 3207 if (!ia_valid) 3208 return 0; 3209 } 3210 3211 if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID | 3212 ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET)) 3213 return dentry_has_perm(cred, dentry, FILE__SETATTR); 3214 3215 if (selinux_policycap_openperm() && 3216 inode->i_sb->s_magic != SOCKFS_MAGIC && 3217 (ia_valid & ATTR_SIZE) && 3218 !(ia_valid & ATTR_FILE)) 3219 av |= FILE__OPEN; 3220 3221 return dentry_has_perm(cred, dentry, av); 3222 } 3223 3224 static int selinux_inode_getattr(const struct path *path) 3225 { 3226 return path_has_perm(current_cred(), path, FILE__GETATTR); 3227 } 3228 3229 static bool has_cap_mac_admin(bool audit) 3230 { 3231 const struct cred *cred = current_cred(); 3232 int cap_audit = audit ? SECURITY_CAP_AUDIT : SECURITY_CAP_NOAUDIT; 3233 3234 if (cap_capable(cred, &init_user_ns, CAP_MAC_ADMIN, cap_audit)) 3235 return false; 3236 if (cred_has_capability(cred, CAP_MAC_ADMIN, cap_audit, true)) 3237 return false; 3238 return true; 3239 } 3240 3241 static int selinux_inode_setxattr(struct dentry *dentry, const char *name, 3242 const void *value, size_t size, int flags) 3243 { 3244 struct inode *inode = d_backing_inode(dentry); 3245 struct inode_security_struct *isec; 3246 struct superblock_security_struct *sbsec; 3247 struct common_audit_data ad; 3248 u32 newsid, sid = current_sid(); 3249 int rc = 0; 3250 3251 if (strcmp(name, XATTR_NAME_SELINUX)) { 3252 rc = cap_inode_setxattr(dentry, name, value, size, flags); 3253 if (rc) 3254 return rc; 3255 3256 /* Not an attribute we recognize, so just check the 3257 ordinary setattr permission. */ 3258 return dentry_has_perm(current_cred(), dentry, FILE__SETATTR); 3259 } 3260 3261 sbsec = inode->i_sb->s_security; 3262 if (!(sbsec->flags & SBLABEL_MNT)) 3263 return -EOPNOTSUPP; 3264 3265 if (!inode_owner_or_capable(inode)) 3266 return -EPERM; 3267 3268 ad.type = LSM_AUDIT_DATA_DENTRY; 3269 ad.u.dentry = dentry; 3270 3271 isec = backing_inode_security(dentry); 3272 rc = avc_has_perm(&selinux_state, 3273 sid, isec->sid, isec->sclass, 3274 FILE__RELABELFROM, &ad); 3275 if (rc) 3276 return rc; 3277 3278 rc = security_context_to_sid(&selinux_state, value, size, &newsid, 3279 GFP_KERNEL); 3280 if (rc == -EINVAL) { 3281 if (!has_cap_mac_admin(true)) { 3282 struct audit_buffer *ab; 3283 size_t audit_size; 3284 3285 /* We strip a nul only if it is at the end, otherwise the 3286 * context contains a nul and we should audit that */ 3287 if (value) { 3288 const char *str = value; 3289 3290 if (str[size - 1] == '\0') 3291 audit_size = size - 1; 3292 else 3293 audit_size = size; 3294 } else { 3295 audit_size = 0; 3296 } 3297 ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR); 3298 audit_log_format(ab, "op=setxattr invalid_context="); 3299 audit_log_n_untrustedstring(ab, value, audit_size); 3300 audit_log_end(ab); 3301 3302 return rc; 3303 } 3304 rc = security_context_to_sid_force(&selinux_state, value, 3305 size, &newsid); 3306 } 3307 if (rc) 3308 return rc; 3309 3310 rc = avc_has_perm(&selinux_state, 3311 sid, newsid, isec->sclass, 3312 FILE__RELABELTO, &ad); 3313 if (rc) 3314 return rc; 3315 3316 rc = security_validate_transition(&selinux_state, isec->sid, newsid, 3317 sid, isec->sclass); 3318 if (rc) 3319 return rc; 3320 3321 return avc_has_perm(&selinux_state, 3322 newsid, 3323 sbsec->sid, 3324 SECCLASS_FILESYSTEM, 3325 FILESYSTEM__ASSOCIATE, 3326 &ad); 3327 } 3328 3329 static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name, 3330 const void *value, size_t size, 3331 int flags) 3332 { 3333 struct inode *inode = d_backing_inode(dentry); 3334 struct inode_security_struct *isec; 3335 u32 newsid; 3336 int rc; 3337 3338 if (strcmp(name, XATTR_NAME_SELINUX)) { 3339 /* Not an attribute we recognize, so nothing to do. */ 3340 return; 3341 } 3342 3343 rc = security_context_to_sid_force(&selinux_state, value, size, 3344 &newsid); 3345 if (rc) { 3346 printk(KERN_ERR "SELinux: unable to map context to SID" 3347 "for (%s, %lu), rc=%d\n", 3348 inode->i_sb->s_id, inode->i_ino, -rc); 3349 return; 3350 } 3351 3352 isec = backing_inode_security(dentry); 3353 spin_lock(&isec->lock); 3354 isec->sclass = inode_mode_to_security_class(inode->i_mode); 3355 isec->sid = newsid; 3356 isec->initialized = LABEL_INITIALIZED; 3357 spin_unlock(&isec->lock); 3358 3359 return; 3360 } 3361 3362 static int selinux_inode_getxattr(struct dentry *dentry, const char *name) 3363 { 3364 const struct cred *cred = current_cred(); 3365 3366 return dentry_has_perm(cred, dentry, FILE__GETATTR); 3367 } 3368 3369 static int selinux_inode_listxattr(struct dentry *dentry) 3370 { 3371 const struct cred *cred = current_cred(); 3372 3373 return dentry_has_perm(cred, dentry, FILE__GETATTR); 3374 } 3375 3376 static int selinux_inode_removexattr(struct dentry *dentry, const char *name) 3377 { 3378 if (strcmp(name, XATTR_NAME_SELINUX)) { 3379 int rc = cap_inode_removexattr(dentry, name); 3380 if (rc) 3381 return rc; 3382 3383 /* Not an attribute we recognize, so just check the 3384 ordinary setattr permission. */ 3385 return dentry_has_perm(current_cred(), dentry, FILE__SETATTR); 3386 } 3387 3388 /* No one is allowed to remove a SELinux security label. 3389 You can change the label, but all data must be labeled. */ 3390 return -EACCES; 3391 } 3392 3393 /* 3394 * Copy the inode security context value to the user. 3395 * 3396 * Permission check is handled by selinux_inode_getxattr hook. 3397 */ 3398 static int selinux_inode_getsecurity(struct inode *inode, const char *name, void **buffer, bool alloc) 3399 { 3400 u32 size; 3401 int error; 3402 char *context = NULL; 3403 struct inode_security_struct *isec; 3404 3405 if (strcmp(name, XATTR_SELINUX_SUFFIX)) 3406 return -EOPNOTSUPP; 3407 3408 /* 3409 * If the caller has CAP_MAC_ADMIN, then get the raw context 3410 * value even if it is not defined by current policy; otherwise, 3411 * use the in-core value under current policy. 3412 * Use the non-auditing forms of the permission checks since 3413 * getxattr may be called by unprivileged processes commonly 3414 * and lack of permission just means that we fall back to the 3415 * in-core context value, not a denial. 3416 */ 3417 isec = inode_security(inode); 3418 if (has_cap_mac_admin(false)) 3419 error = security_sid_to_context_force(&selinux_state, 3420 isec->sid, &context, 3421 &size); 3422 else 3423 error = security_sid_to_context(&selinux_state, isec->sid, 3424 &context, &size); 3425 if (error) 3426 return error; 3427 error = size; 3428 if (alloc) { 3429 *buffer = context; 3430 goto out_nofree; 3431 } 3432 kfree(context); 3433 out_nofree: 3434 return error; 3435 } 3436 3437 static int selinux_inode_setsecurity(struct inode *inode, const char *name, 3438 const void *value, size_t size, int flags) 3439 { 3440 struct inode_security_struct *isec = inode_security_novalidate(inode); 3441 u32 newsid; 3442 int rc; 3443 3444 if (strcmp(name, XATTR_SELINUX_SUFFIX)) 3445 return -EOPNOTSUPP; 3446 3447 if (!value || !size) 3448 return -EACCES; 3449 3450 rc = security_context_to_sid(&selinux_state, value, size, &newsid, 3451 GFP_KERNEL); 3452 if (rc) 3453 return rc; 3454 3455 spin_lock(&isec->lock); 3456 isec->sclass = inode_mode_to_security_class(inode->i_mode); 3457 isec->sid = newsid; 3458 isec->initialized = LABEL_INITIALIZED; 3459 spin_unlock(&isec->lock); 3460 return 0; 3461 } 3462 3463 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size) 3464 { 3465 const int len = sizeof(XATTR_NAME_SELINUX); 3466 if (buffer && len <= buffer_size) 3467 memcpy(buffer, XATTR_NAME_SELINUX, len); 3468 return len; 3469 } 3470 3471 static void selinux_inode_getsecid(struct inode *inode, u32 *secid) 3472 { 3473 struct inode_security_struct *isec = inode_security_novalidate(inode); 3474 *secid = isec->sid; 3475 } 3476 3477 static int selinux_inode_copy_up(struct dentry *src, struct cred **new) 3478 { 3479 u32 sid; 3480 struct task_security_struct *tsec; 3481 struct cred *new_creds = *new; 3482 3483 if (new_creds == NULL) { 3484 new_creds = prepare_creds(); 3485 if (!new_creds) 3486 return -ENOMEM; 3487 } 3488 3489 tsec = new_creds->security; 3490 /* Get label from overlay inode and set it in create_sid */ 3491 selinux_inode_getsecid(d_inode(src), &sid); 3492 tsec->create_sid = sid; 3493 *new = new_creds; 3494 return 0; 3495 } 3496 3497 static int selinux_inode_copy_up_xattr(const char *name) 3498 { 3499 /* The copy_up hook above sets the initial context on an inode, but we 3500 * don't then want to overwrite it by blindly copying all the lower 3501 * xattrs up. Instead, we have to filter out SELinux-related xattrs. 3502 */ 3503 if (strcmp(name, XATTR_NAME_SELINUX) == 0) 3504 return 1; /* Discard */ 3505 /* 3506 * Any other attribute apart from SELINUX is not claimed, supported 3507 * by selinux. 3508 */ 3509 return -EOPNOTSUPP; 3510 } 3511 3512 /* file security operations */ 3513 3514 static int selinux_revalidate_file_permission(struct file *file, int mask) 3515 { 3516 const struct cred *cred = current_cred(); 3517 struct inode *inode = file_inode(file); 3518 3519 /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */ 3520 if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE)) 3521 mask |= MAY_APPEND; 3522 3523 return file_has_perm(cred, file, 3524 file_mask_to_av(inode->i_mode, mask)); 3525 } 3526 3527 static int selinux_file_permission(struct file *file, int mask) 3528 { 3529 struct inode *inode = file_inode(file); 3530 struct file_security_struct *fsec = file->f_security; 3531 struct inode_security_struct *isec; 3532 u32 sid = current_sid(); 3533 3534 if (!mask) 3535 /* No permission to check. Existence test. */ 3536 return 0; 3537 3538 isec = inode_security(inode); 3539 if (sid == fsec->sid && fsec->isid == isec->sid && 3540 fsec->pseqno == avc_policy_seqno(&selinux_state)) 3541 /* No change since file_open check. */ 3542 return 0; 3543 3544 return selinux_revalidate_file_permission(file, mask); 3545 } 3546 3547 static int selinux_file_alloc_security(struct file *file) 3548 { 3549 return file_alloc_security(file); 3550 } 3551 3552 static void selinux_file_free_security(struct file *file) 3553 { 3554 file_free_security(file); 3555 } 3556 3557 /* 3558 * Check whether a task has the ioctl permission and cmd 3559 * operation to an inode. 3560 */ 3561 static int ioctl_has_perm(const struct cred *cred, struct file *file, 3562 u32 requested, u16 cmd) 3563 { 3564 struct common_audit_data ad; 3565 struct file_security_struct *fsec = file->f_security; 3566 struct inode *inode = file_inode(file); 3567 struct inode_security_struct *isec; 3568 struct lsm_ioctlop_audit ioctl; 3569 u32 ssid = cred_sid(cred); 3570 int rc; 3571 u8 driver = cmd >> 8; 3572 u8 xperm = cmd & 0xff; 3573 3574 ad.type = LSM_AUDIT_DATA_IOCTL_OP; 3575 ad.u.op = &ioctl; 3576 ad.u.op->cmd = cmd; 3577 ad.u.op->path = file->f_path; 3578 3579 if (ssid != fsec->sid) { 3580 rc = avc_has_perm(&selinux_state, 3581 ssid, fsec->sid, 3582 SECCLASS_FD, 3583 FD__USE, 3584 &ad); 3585 if (rc) 3586 goto out; 3587 } 3588 3589 if (unlikely(IS_PRIVATE(inode))) 3590 return 0; 3591 3592 isec = inode_security(inode); 3593 rc = avc_has_extended_perms(&selinux_state, 3594 ssid, isec->sid, isec->sclass, 3595 requested, driver, xperm, &ad); 3596 out: 3597 return rc; 3598 } 3599 3600 static int selinux_file_ioctl(struct file *file, unsigned int cmd, 3601 unsigned long arg) 3602 { 3603 const struct cred *cred = current_cred(); 3604 int error = 0; 3605 3606 switch (cmd) { 3607 case FIONREAD: 3608 /* fall through */ 3609 case FIBMAP: 3610 /* fall through */ 3611 case FIGETBSZ: 3612 /* fall through */ 3613 case FS_IOC_GETFLAGS: 3614 /* fall through */ 3615 case FS_IOC_GETVERSION: 3616 error = file_has_perm(cred, file, FILE__GETATTR); 3617 break; 3618 3619 case FS_IOC_SETFLAGS: 3620 /* fall through */ 3621 case FS_IOC_SETVERSION: 3622 error = file_has_perm(cred, file, FILE__SETATTR); 3623 break; 3624 3625 /* sys_ioctl() checks */ 3626 case FIONBIO: 3627 /* fall through */ 3628 case FIOASYNC: 3629 error = file_has_perm(cred, file, 0); 3630 break; 3631 3632 case KDSKBENT: 3633 case KDSKBSENT: 3634 error = cred_has_capability(cred, CAP_SYS_TTY_CONFIG, 3635 SECURITY_CAP_AUDIT, true); 3636 break; 3637 3638 /* default case assumes that the command will go 3639 * to the file's ioctl() function. 3640 */ 3641 default: 3642 error = ioctl_has_perm(cred, file, FILE__IOCTL, (u16) cmd); 3643 } 3644 return error; 3645 } 3646 3647 static int default_noexec; 3648 3649 static int file_map_prot_check(struct file *file, unsigned long prot, int shared) 3650 { 3651 const struct cred *cred = current_cred(); 3652 u32 sid = cred_sid(cred); 3653 int rc = 0; 3654 3655 if (default_noexec && 3656 (prot & PROT_EXEC) && (!file || IS_PRIVATE(file_inode(file)) || 3657 (!shared && (prot & PROT_WRITE)))) { 3658 /* 3659 * We are making executable an anonymous mapping or a 3660 * private file mapping that will also be writable. 3661 * This has an additional check. 3662 */ 3663 rc = avc_has_perm(&selinux_state, 3664 sid, sid, SECCLASS_PROCESS, 3665 PROCESS__EXECMEM, NULL); 3666 if (rc) 3667 goto error; 3668 } 3669 3670 if (file) { 3671 /* read access is always possible with a mapping */ 3672 u32 av = FILE__READ; 3673 3674 /* write access only matters if the mapping is shared */ 3675 if (shared && (prot & PROT_WRITE)) 3676 av |= FILE__WRITE; 3677 3678 if (prot & PROT_EXEC) 3679 av |= FILE__EXECUTE; 3680 3681 return file_has_perm(cred, file, av); 3682 } 3683 3684 error: 3685 return rc; 3686 } 3687 3688 static int selinux_mmap_addr(unsigned long addr) 3689 { 3690 int rc = 0; 3691 3692 if (addr < CONFIG_LSM_MMAP_MIN_ADDR) { 3693 u32 sid = current_sid(); 3694 rc = avc_has_perm(&selinux_state, 3695 sid, sid, SECCLASS_MEMPROTECT, 3696 MEMPROTECT__MMAP_ZERO, NULL); 3697 } 3698 3699 return rc; 3700 } 3701 3702 static int selinux_mmap_file(struct file *file, unsigned long reqprot, 3703 unsigned long prot, unsigned long flags) 3704 { 3705 struct common_audit_data ad; 3706 int rc; 3707 3708 if (file) { 3709 ad.type = LSM_AUDIT_DATA_FILE; 3710 ad.u.file = file; 3711 rc = inode_has_perm(current_cred(), file_inode(file), 3712 FILE__MAP, &ad); 3713 if (rc) 3714 return rc; 3715 } 3716 3717 if (selinux_state.checkreqprot) 3718 prot = reqprot; 3719 3720 return file_map_prot_check(file, prot, 3721 (flags & MAP_TYPE) == MAP_SHARED); 3722 } 3723 3724 static int selinux_file_mprotect(struct vm_area_struct *vma, 3725 unsigned long reqprot, 3726 unsigned long prot) 3727 { 3728 const struct cred *cred = current_cred(); 3729 u32 sid = cred_sid(cred); 3730 3731 if (selinux_state.checkreqprot) 3732 prot = reqprot; 3733 3734 if (default_noexec && 3735 (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) { 3736 int rc = 0; 3737 if (vma->vm_start >= vma->vm_mm->start_brk && 3738 vma->vm_end <= vma->vm_mm->brk) { 3739 rc = avc_has_perm(&selinux_state, 3740 sid, sid, SECCLASS_PROCESS, 3741 PROCESS__EXECHEAP, NULL); 3742 } else if (!vma->vm_file && 3743 ((vma->vm_start <= vma->vm_mm->start_stack && 3744 vma->vm_end >= vma->vm_mm->start_stack) || 3745 vma_is_stack_for_current(vma))) { 3746 rc = avc_has_perm(&selinux_state, 3747 sid, sid, SECCLASS_PROCESS, 3748 PROCESS__EXECSTACK, NULL); 3749 } else if (vma->vm_file && vma->anon_vma) { 3750 /* 3751 * We are making executable a file mapping that has 3752 * had some COW done. Since pages might have been 3753 * written, check ability to execute the possibly 3754 * modified content. This typically should only 3755 * occur for text relocations. 3756 */ 3757 rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD); 3758 } 3759 if (rc) 3760 return rc; 3761 } 3762 3763 return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED); 3764 } 3765 3766 static int selinux_file_lock(struct file *file, unsigned int cmd) 3767 { 3768 const struct cred *cred = current_cred(); 3769 3770 return file_has_perm(cred, file, FILE__LOCK); 3771 } 3772 3773 static int selinux_file_fcntl(struct file *file, unsigned int cmd, 3774 unsigned long arg) 3775 { 3776 const struct cred *cred = current_cred(); 3777 int err = 0; 3778 3779 switch (cmd) { 3780 case F_SETFL: 3781 if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) { 3782 err = file_has_perm(cred, file, FILE__WRITE); 3783 break; 3784 } 3785 /* fall through */ 3786 case F_SETOWN: 3787 case F_SETSIG: 3788 case F_GETFL: 3789 case F_GETOWN: 3790 case F_GETSIG: 3791 case F_GETOWNER_UIDS: 3792 /* Just check FD__USE permission */ 3793 err = file_has_perm(cred, file, 0); 3794 break; 3795 case F_GETLK: 3796 case F_SETLK: 3797 case F_SETLKW: 3798 case F_OFD_GETLK: 3799 case F_OFD_SETLK: 3800 case F_OFD_SETLKW: 3801 #if BITS_PER_LONG == 32 3802 case F_GETLK64: 3803 case F_SETLK64: 3804 case F_SETLKW64: 3805 #endif 3806 err = file_has_perm(cred, file, FILE__LOCK); 3807 break; 3808 } 3809 3810 return err; 3811 } 3812 3813 static void selinux_file_set_fowner(struct file *file) 3814 { 3815 struct file_security_struct *fsec; 3816 3817 fsec = file->f_security; 3818 fsec->fown_sid = current_sid(); 3819 } 3820 3821 static int selinux_file_send_sigiotask(struct task_struct *tsk, 3822 struct fown_struct *fown, int signum) 3823 { 3824 struct file *file; 3825 u32 sid = task_sid(tsk); 3826 u32 perm; 3827 struct file_security_struct *fsec; 3828 3829 /* struct fown_struct is never outside the context of a struct file */ 3830 file = container_of(fown, struct file, f_owner); 3831 3832 fsec = file->f_security; 3833 3834 if (!signum) 3835 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */ 3836 else 3837 perm = signal_to_av(signum); 3838 3839 return avc_has_perm(&selinux_state, 3840 fsec->fown_sid, sid, 3841 SECCLASS_PROCESS, perm, NULL); 3842 } 3843 3844 static int selinux_file_receive(struct file *file) 3845 { 3846 const struct cred *cred = current_cred(); 3847 3848 return file_has_perm(cred, file, file_to_av(file)); 3849 } 3850 3851 static int selinux_file_open(struct file *file, const struct cred *cred) 3852 { 3853 struct file_security_struct *fsec; 3854 struct inode_security_struct *isec; 3855 3856 fsec = file->f_security; 3857 isec = inode_security(file_inode(file)); 3858 /* 3859 * Save inode label and policy sequence number 3860 * at open-time so that selinux_file_permission 3861 * can determine whether revalidation is necessary. 3862 * Task label is already saved in the file security 3863 * struct as its SID. 3864 */ 3865 fsec->isid = isec->sid; 3866 fsec->pseqno = avc_policy_seqno(&selinux_state); 3867 /* 3868 * Since the inode label or policy seqno may have changed 3869 * between the selinux_inode_permission check and the saving 3870 * of state above, recheck that access is still permitted. 3871 * Otherwise, access might never be revalidated against the 3872 * new inode label or new policy. 3873 * This check is not redundant - do not remove. 3874 */ 3875 return file_path_has_perm(cred, file, open_file_to_av(file)); 3876 } 3877 3878 /* task security operations */ 3879 3880 static int selinux_task_alloc(struct task_struct *task, 3881 unsigned long clone_flags) 3882 { 3883 u32 sid = current_sid(); 3884 3885 return avc_has_perm(&selinux_state, 3886 sid, sid, SECCLASS_PROCESS, PROCESS__FORK, NULL); 3887 } 3888 3889 /* 3890 * allocate the SELinux part of blank credentials 3891 */ 3892 static int selinux_cred_alloc_blank(struct cred *cred, gfp_t gfp) 3893 { 3894 struct task_security_struct *tsec; 3895 3896 tsec = kzalloc(sizeof(struct task_security_struct), gfp); 3897 if (!tsec) 3898 return -ENOMEM; 3899 3900 cred->security = tsec; 3901 return 0; 3902 } 3903 3904 /* 3905 * detach and free the LSM part of a set of credentials 3906 */ 3907 static void selinux_cred_free(struct cred *cred) 3908 { 3909 struct task_security_struct *tsec = cred->security; 3910 3911 /* 3912 * cred->security == NULL if security_cred_alloc_blank() or 3913 * security_prepare_creds() returned an error. 3914 */ 3915 BUG_ON(cred->security && (unsigned long) cred->security < PAGE_SIZE); 3916 cred->security = (void *) 0x7UL; 3917 kfree(tsec); 3918 } 3919 3920 /* 3921 * prepare a new set of credentials for modification 3922 */ 3923 static int selinux_cred_prepare(struct cred *new, const struct cred *old, 3924 gfp_t gfp) 3925 { 3926 const struct task_security_struct *old_tsec; 3927 struct task_security_struct *tsec; 3928 3929 old_tsec = old->security; 3930 3931 tsec = kmemdup(old_tsec, sizeof(struct task_security_struct), gfp); 3932 if (!tsec) 3933 return -ENOMEM; 3934 3935 new->security = tsec; 3936 return 0; 3937 } 3938 3939 /* 3940 * transfer the SELinux data to a blank set of creds 3941 */ 3942 static void selinux_cred_transfer(struct cred *new, const struct cred *old) 3943 { 3944 const struct task_security_struct *old_tsec = old->security; 3945 struct task_security_struct *tsec = new->security; 3946 3947 *tsec = *old_tsec; 3948 } 3949 3950 /* 3951 * set the security data for a kernel service 3952 * - all the creation contexts are set to unlabelled 3953 */ 3954 static int selinux_kernel_act_as(struct cred *new, u32 secid) 3955 { 3956 struct task_security_struct *tsec = new->security; 3957 u32 sid = current_sid(); 3958 int ret; 3959 3960 ret = avc_has_perm(&selinux_state, 3961 sid, secid, 3962 SECCLASS_KERNEL_SERVICE, 3963 KERNEL_SERVICE__USE_AS_OVERRIDE, 3964 NULL); 3965 if (ret == 0) { 3966 tsec->sid = secid; 3967 tsec->create_sid = 0; 3968 tsec->keycreate_sid = 0; 3969 tsec->sockcreate_sid = 0; 3970 } 3971 return ret; 3972 } 3973 3974 /* 3975 * set the file creation context in a security record to the same as the 3976 * objective context of the specified inode 3977 */ 3978 static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode) 3979 { 3980 struct inode_security_struct *isec = inode_security(inode); 3981 struct task_security_struct *tsec = new->security; 3982 u32 sid = current_sid(); 3983 int ret; 3984 3985 ret = avc_has_perm(&selinux_state, 3986 sid, isec->sid, 3987 SECCLASS_KERNEL_SERVICE, 3988 KERNEL_SERVICE__CREATE_FILES_AS, 3989 NULL); 3990 3991 if (ret == 0) 3992 tsec->create_sid = isec->sid; 3993 return ret; 3994 } 3995 3996 static int selinux_kernel_module_request(char *kmod_name) 3997 { 3998 struct common_audit_data ad; 3999 4000 ad.type = LSM_AUDIT_DATA_KMOD; 4001 ad.u.kmod_name = kmod_name; 4002 4003 return avc_has_perm(&selinux_state, 4004 current_sid(), SECINITSID_KERNEL, SECCLASS_SYSTEM, 4005 SYSTEM__MODULE_REQUEST, &ad); 4006 } 4007 4008 static int selinux_kernel_module_from_file(struct file *file) 4009 { 4010 struct common_audit_data ad; 4011 struct inode_security_struct *isec; 4012 struct file_security_struct *fsec; 4013 u32 sid = current_sid(); 4014 int rc; 4015 4016 /* init_module */ 4017 if (file == NULL) 4018 return avc_has_perm(&selinux_state, 4019 sid, sid, SECCLASS_SYSTEM, 4020 SYSTEM__MODULE_LOAD, NULL); 4021 4022 /* finit_module */ 4023 4024 ad.type = LSM_AUDIT_DATA_FILE; 4025 ad.u.file = file; 4026 4027 fsec = file->f_security; 4028 if (sid != fsec->sid) { 4029 rc = avc_has_perm(&selinux_state, 4030 sid, fsec->sid, SECCLASS_FD, FD__USE, &ad); 4031 if (rc) 4032 return rc; 4033 } 4034 4035 isec = inode_security(file_inode(file)); 4036 return avc_has_perm(&selinux_state, 4037 sid, isec->sid, SECCLASS_SYSTEM, 4038 SYSTEM__MODULE_LOAD, &ad); 4039 } 4040 4041 static int selinux_kernel_read_file(struct file *file, 4042 enum kernel_read_file_id id) 4043 { 4044 int rc = 0; 4045 4046 switch (id) { 4047 case READING_MODULE: 4048 rc = selinux_kernel_module_from_file(file); 4049 break; 4050 default: 4051 break; 4052 } 4053 4054 return rc; 4055 } 4056 4057 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid) 4058 { 4059 return avc_has_perm(&selinux_state, 4060 current_sid(), task_sid(p), SECCLASS_PROCESS, 4061 PROCESS__SETPGID, NULL); 4062 } 4063 4064 static int selinux_task_getpgid(struct task_struct *p) 4065 { 4066 return avc_has_perm(&selinux_state, 4067 current_sid(), task_sid(p), SECCLASS_PROCESS, 4068 PROCESS__GETPGID, NULL); 4069 } 4070 4071 static int selinux_task_getsid(struct task_struct *p) 4072 { 4073 return avc_has_perm(&selinux_state, 4074 current_sid(), task_sid(p), SECCLASS_PROCESS, 4075 PROCESS__GETSESSION, NULL); 4076 } 4077 4078 static void selinux_task_getsecid(struct task_struct *p, u32 *secid) 4079 { 4080 *secid = task_sid(p); 4081 } 4082 4083 static int selinux_task_setnice(struct task_struct *p, int nice) 4084 { 4085 return avc_has_perm(&selinux_state, 4086 current_sid(), task_sid(p), SECCLASS_PROCESS, 4087 PROCESS__SETSCHED, NULL); 4088 } 4089 4090 static int selinux_task_setioprio(struct task_struct *p, int ioprio) 4091 { 4092 return avc_has_perm(&selinux_state, 4093 current_sid(), task_sid(p), SECCLASS_PROCESS, 4094 PROCESS__SETSCHED, NULL); 4095 } 4096 4097 static int selinux_task_getioprio(struct task_struct *p) 4098 { 4099 return avc_has_perm(&selinux_state, 4100 current_sid(), task_sid(p), SECCLASS_PROCESS, 4101 PROCESS__GETSCHED, NULL); 4102 } 4103 4104 static int selinux_task_prlimit(const struct cred *cred, const struct cred *tcred, 4105 unsigned int flags) 4106 { 4107 u32 av = 0; 4108 4109 if (!flags) 4110 return 0; 4111 if (flags & LSM_PRLIMIT_WRITE) 4112 av |= PROCESS__SETRLIMIT; 4113 if (flags & LSM_PRLIMIT_READ) 4114 av |= PROCESS__GETRLIMIT; 4115 return avc_has_perm(&selinux_state, 4116 cred_sid(cred), cred_sid(tcred), 4117 SECCLASS_PROCESS, av, NULL); 4118 } 4119 4120 static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource, 4121 struct rlimit *new_rlim) 4122 { 4123 struct rlimit *old_rlim = p->signal->rlim + resource; 4124 4125 /* Control the ability to change the hard limit (whether 4126 lowering or raising it), so that the hard limit can 4127 later be used as a safe reset point for the soft limit 4128 upon context transitions. See selinux_bprm_committing_creds. */ 4129 if (old_rlim->rlim_max != new_rlim->rlim_max) 4130 return avc_has_perm(&selinux_state, 4131 current_sid(), task_sid(p), 4132 SECCLASS_PROCESS, PROCESS__SETRLIMIT, NULL); 4133 4134 return 0; 4135 } 4136 4137 static int selinux_task_setscheduler(struct task_struct *p) 4138 { 4139 return avc_has_perm(&selinux_state, 4140 current_sid(), task_sid(p), SECCLASS_PROCESS, 4141 PROCESS__SETSCHED, NULL); 4142 } 4143 4144 static int selinux_task_getscheduler(struct task_struct *p) 4145 { 4146 return avc_has_perm(&selinux_state, 4147 current_sid(), task_sid(p), SECCLASS_PROCESS, 4148 PROCESS__GETSCHED, NULL); 4149 } 4150 4151 static int selinux_task_movememory(struct task_struct *p) 4152 { 4153 return avc_has_perm(&selinux_state, 4154 current_sid(), task_sid(p), SECCLASS_PROCESS, 4155 PROCESS__SETSCHED, NULL); 4156 } 4157 4158 static int selinux_task_kill(struct task_struct *p, struct siginfo *info, 4159 int sig, const struct cred *cred) 4160 { 4161 u32 secid; 4162 u32 perm; 4163 4164 if (!sig) 4165 perm = PROCESS__SIGNULL; /* null signal; existence test */ 4166 else 4167 perm = signal_to_av(sig); 4168 if (!cred) 4169 secid = current_sid(); 4170 else 4171 secid = cred_sid(cred); 4172 return avc_has_perm(&selinux_state, 4173 secid, task_sid(p), SECCLASS_PROCESS, perm, NULL); 4174 } 4175 4176 static void selinux_task_to_inode(struct task_struct *p, 4177 struct inode *inode) 4178 { 4179 struct inode_security_struct *isec = inode->i_security; 4180 u32 sid = task_sid(p); 4181 4182 spin_lock(&isec->lock); 4183 isec->sclass = inode_mode_to_security_class(inode->i_mode); 4184 isec->sid = sid; 4185 isec->initialized = LABEL_INITIALIZED; 4186 spin_unlock(&isec->lock); 4187 } 4188 4189 /* Returns error only if unable to parse addresses */ 4190 static int selinux_parse_skb_ipv4(struct sk_buff *skb, 4191 struct common_audit_data *ad, u8 *proto) 4192 { 4193 int offset, ihlen, ret = -EINVAL; 4194 struct iphdr _iph, *ih; 4195 4196 offset = skb_network_offset(skb); 4197 ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph); 4198 if (ih == NULL) 4199 goto out; 4200 4201 ihlen = ih->ihl * 4; 4202 if (ihlen < sizeof(_iph)) 4203 goto out; 4204 4205 ad->u.net->v4info.saddr = ih->saddr; 4206 ad->u.net->v4info.daddr = ih->daddr; 4207 ret = 0; 4208 4209 if (proto) 4210 *proto = ih->protocol; 4211 4212 switch (ih->protocol) { 4213 case IPPROTO_TCP: { 4214 struct tcphdr _tcph, *th; 4215 4216 if (ntohs(ih->frag_off) & IP_OFFSET) 4217 break; 4218 4219 offset += ihlen; 4220 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph); 4221 if (th == NULL) 4222 break; 4223 4224 ad->u.net->sport = th->source; 4225 ad->u.net->dport = th->dest; 4226 break; 4227 } 4228 4229 case IPPROTO_UDP: { 4230 struct udphdr _udph, *uh; 4231 4232 if (ntohs(ih->frag_off) & IP_OFFSET) 4233 break; 4234 4235 offset += ihlen; 4236 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph); 4237 if (uh == NULL) 4238 break; 4239 4240 ad->u.net->sport = uh->source; 4241 ad->u.net->dport = uh->dest; 4242 break; 4243 } 4244 4245 case IPPROTO_DCCP: { 4246 struct dccp_hdr _dccph, *dh; 4247 4248 if (ntohs(ih->frag_off) & IP_OFFSET) 4249 break; 4250 4251 offset += ihlen; 4252 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph); 4253 if (dh == NULL) 4254 break; 4255 4256 ad->u.net->sport = dh->dccph_sport; 4257 ad->u.net->dport = dh->dccph_dport; 4258 break; 4259 } 4260 4261 #if IS_ENABLED(CONFIG_IP_SCTP) 4262 case IPPROTO_SCTP: { 4263 struct sctphdr _sctph, *sh; 4264 4265 if (ntohs(ih->frag_off) & IP_OFFSET) 4266 break; 4267 4268 offset += ihlen; 4269 sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph); 4270 if (sh == NULL) 4271 break; 4272 4273 ad->u.net->sport = sh->source; 4274 ad->u.net->dport = sh->dest; 4275 break; 4276 } 4277 #endif 4278 default: 4279 break; 4280 } 4281 out: 4282 return ret; 4283 } 4284 4285 #if IS_ENABLED(CONFIG_IPV6) 4286 4287 /* Returns error only if unable to parse addresses */ 4288 static int selinux_parse_skb_ipv6(struct sk_buff *skb, 4289 struct common_audit_data *ad, u8 *proto) 4290 { 4291 u8 nexthdr; 4292 int ret = -EINVAL, offset; 4293 struct ipv6hdr _ipv6h, *ip6; 4294 __be16 frag_off; 4295 4296 offset = skb_network_offset(skb); 4297 ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h); 4298 if (ip6 == NULL) 4299 goto out; 4300 4301 ad->u.net->v6info.saddr = ip6->saddr; 4302 ad->u.net->v6info.daddr = ip6->daddr; 4303 ret = 0; 4304 4305 nexthdr = ip6->nexthdr; 4306 offset += sizeof(_ipv6h); 4307 offset = ipv6_skip_exthdr(skb, offset, &nexthdr, &frag_off); 4308 if (offset < 0) 4309 goto out; 4310 4311 if (proto) 4312 *proto = nexthdr; 4313 4314 switch (nexthdr) { 4315 case IPPROTO_TCP: { 4316 struct tcphdr _tcph, *th; 4317 4318 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph); 4319 if (th == NULL) 4320 break; 4321 4322 ad->u.net->sport = th->source; 4323 ad->u.net->dport = th->dest; 4324 break; 4325 } 4326 4327 case IPPROTO_UDP: { 4328 struct udphdr _udph, *uh; 4329 4330 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph); 4331 if (uh == NULL) 4332 break; 4333 4334 ad->u.net->sport = uh->source; 4335 ad->u.net->dport = uh->dest; 4336 break; 4337 } 4338 4339 case IPPROTO_DCCP: { 4340 struct dccp_hdr _dccph, *dh; 4341 4342 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph); 4343 if (dh == NULL) 4344 break; 4345 4346 ad->u.net->sport = dh->dccph_sport; 4347 ad->u.net->dport = dh->dccph_dport; 4348 break; 4349 } 4350 4351 #if IS_ENABLED(CONFIG_IP_SCTP) 4352 case IPPROTO_SCTP: { 4353 struct sctphdr _sctph, *sh; 4354 4355 sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph); 4356 if (sh == NULL) 4357 break; 4358 4359 ad->u.net->sport = sh->source; 4360 ad->u.net->dport = sh->dest; 4361 break; 4362 } 4363 #endif 4364 /* includes fragments */ 4365 default: 4366 break; 4367 } 4368 out: 4369 return ret; 4370 } 4371 4372 #endif /* IPV6 */ 4373 4374 static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad, 4375 char **_addrp, int src, u8 *proto) 4376 { 4377 char *addrp; 4378 int ret; 4379 4380 switch (ad->u.net->family) { 4381 case PF_INET: 4382 ret = selinux_parse_skb_ipv4(skb, ad, proto); 4383 if (ret) 4384 goto parse_error; 4385 addrp = (char *)(src ? &ad->u.net->v4info.saddr : 4386 &ad->u.net->v4info.daddr); 4387 goto okay; 4388 4389 #if IS_ENABLED(CONFIG_IPV6) 4390 case PF_INET6: 4391 ret = selinux_parse_skb_ipv6(skb, ad, proto); 4392 if (ret) 4393 goto parse_error; 4394 addrp = (char *)(src ? &ad->u.net->v6info.saddr : 4395 &ad->u.net->v6info.daddr); 4396 goto okay; 4397 #endif /* IPV6 */ 4398 default: 4399 addrp = NULL; 4400 goto okay; 4401 } 4402 4403 parse_error: 4404 printk(KERN_WARNING 4405 "SELinux: failure in selinux_parse_skb()," 4406 " unable to parse packet\n"); 4407 return ret; 4408 4409 okay: 4410 if (_addrp) 4411 *_addrp = addrp; 4412 return 0; 4413 } 4414 4415 /** 4416 * selinux_skb_peerlbl_sid - Determine the peer label of a packet 4417 * @skb: the packet 4418 * @family: protocol family 4419 * @sid: the packet's peer label SID 4420 * 4421 * Description: 4422 * Check the various different forms of network peer labeling and determine 4423 * the peer label/SID for the packet; most of the magic actually occurs in 4424 * the security server function security_net_peersid_cmp(). The function 4425 * returns zero if the value in @sid is valid (although it may be SECSID_NULL) 4426 * or -EACCES if @sid is invalid due to inconsistencies with the different 4427 * peer labels. 4428 * 4429 */ 4430 static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid) 4431 { 4432 int err; 4433 u32 xfrm_sid; 4434 u32 nlbl_sid; 4435 u32 nlbl_type; 4436 4437 err = selinux_xfrm_skb_sid(skb, &xfrm_sid); 4438 if (unlikely(err)) 4439 return -EACCES; 4440 err = selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid); 4441 if (unlikely(err)) 4442 return -EACCES; 4443 4444 err = security_net_peersid_resolve(&selinux_state, nlbl_sid, 4445 nlbl_type, xfrm_sid, sid); 4446 if (unlikely(err)) { 4447 printk(KERN_WARNING 4448 "SELinux: failure in selinux_skb_peerlbl_sid()," 4449 " unable to determine packet's peer label\n"); 4450 return -EACCES; 4451 } 4452 4453 return 0; 4454 } 4455 4456 /** 4457 * selinux_conn_sid - Determine the child socket label for a connection 4458 * @sk_sid: the parent socket's SID 4459 * @skb_sid: the packet's SID 4460 * @conn_sid: the resulting connection SID 4461 * 4462 * If @skb_sid is valid then the user:role:type information from @sk_sid is 4463 * combined with the MLS information from @skb_sid in order to create 4464 * @conn_sid. If @skb_sid is not valid then then @conn_sid is simply a copy 4465 * of @sk_sid. Returns zero on success, negative values on failure. 4466 * 4467 */ 4468 static int selinux_conn_sid(u32 sk_sid, u32 skb_sid, u32 *conn_sid) 4469 { 4470 int err = 0; 4471 4472 if (skb_sid != SECSID_NULL) 4473 err = security_sid_mls_copy(&selinux_state, sk_sid, skb_sid, 4474 conn_sid); 4475 else 4476 *conn_sid = sk_sid; 4477 4478 return err; 4479 } 4480 4481 /* socket security operations */ 4482 4483 static int socket_sockcreate_sid(const struct task_security_struct *tsec, 4484 u16 secclass, u32 *socksid) 4485 { 4486 if (tsec->sockcreate_sid > SECSID_NULL) { 4487 *socksid = tsec->sockcreate_sid; 4488 return 0; 4489 } 4490 4491 return security_transition_sid(&selinux_state, tsec->sid, tsec->sid, 4492 secclass, NULL, socksid); 4493 } 4494 4495 static int sock_has_perm(struct sock *sk, u32 perms) 4496 { 4497 struct sk_security_struct *sksec = sk->sk_security; 4498 struct common_audit_data ad; 4499 struct lsm_network_audit net = {0,}; 4500 4501 if (sksec->sid == SECINITSID_KERNEL) 4502 return 0; 4503 4504 ad.type = LSM_AUDIT_DATA_NET; 4505 ad.u.net = &net; 4506 ad.u.net->sk = sk; 4507 4508 return avc_has_perm(&selinux_state, 4509 current_sid(), sksec->sid, sksec->sclass, perms, 4510 &ad); 4511 } 4512 4513 static int selinux_socket_create(int family, int type, 4514 int protocol, int kern) 4515 { 4516 const struct task_security_struct *tsec = current_security(); 4517 u32 newsid; 4518 u16 secclass; 4519 int rc; 4520 4521 if (kern) 4522 return 0; 4523 4524 secclass = socket_type_to_security_class(family, type, protocol); 4525 rc = socket_sockcreate_sid(tsec, secclass, &newsid); 4526 if (rc) 4527 return rc; 4528 4529 return avc_has_perm(&selinux_state, 4530 tsec->sid, newsid, secclass, SOCKET__CREATE, NULL); 4531 } 4532 4533 static int selinux_socket_post_create(struct socket *sock, int family, 4534 int type, int protocol, int kern) 4535 { 4536 const struct task_security_struct *tsec = current_security(); 4537 struct inode_security_struct *isec = inode_security_novalidate(SOCK_INODE(sock)); 4538 struct sk_security_struct *sksec; 4539 u16 sclass = socket_type_to_security_class(family, type, protocol); 4540 u32 sid = SECINITSID_KERNEL; 4541 int err = 0; 4542 4543 if (!kern) { 4544 err = socket_sockcreate_sid(tsec, sclass, &sid); 4545 if (err) 4546 return err; 4547 } 4548 4549 isec->sclass = sclass; 4550 isec->sid = sid; 4551 isec->initialized = LABEL_INITIALIZED; 4552 4553 if (sock->sk) { 4554 sksec = sock->sk->sk_security; 4555 sksec->sclass = sclass; 4556 sksec->sid = sid; 4557 /* Allows detection of the first association on this socket */ 4558 if (sksec->sclass == SECCLASS_SCTP_SOCKET) 4559 sksec->sctp_assoc_state = SCTP_ASSOC_UNSET; 4560 4561 err = selinux_netlbl_socket_post_create(sock->sk, family); 4562 } 4563 4564 return err; 4565 } 4566 4567 /* Range of port numbers used to automatically bind. 4568 Need to determine whether we should perform a name_bind 4569 permission check between the socket and the port number. */ 4570 4571 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen) 4572 { 4573 struct sock *sk = sock->sk; 4574 u16 family; 4575 int err; 4576 4577 err = sock_has_perm(sk, SOCKET__BIND); 4578 if (err) 4579 goto out; 4580 4581 /* If PF_INET or PF_INET6, check name_bind permission for the port. */ 4582 family = sk->sk_family; 4583 if (family == PF_INET || family == PF_INET6) { 4584 char *addrp; 4585 struct sk_security_struct *sksec = sk->sk_security; 4586 struct common_audit_data ad; 4587 struct lsm_network_audit net = {0,}; 4588 struct sockaddr_in *addr4 = NULL; 4589 struct sockaddr_in6 *addr6 = NULL; 4590 unsigned short snum; 4591 u32 sid, node_perm; 4592 4593 /* 4594 * sctp_bindx(3) calls via selinux_sctp_bind_connect() 4595 * that validates multiple binding addresses. Because of this 4596 * need to check address->sa_family as it is possible to have 4597 * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET. 4598 */ 4599 switch (address->sa_family) { 4600 case AF_INET: 4601 if (addrlen < sizeof(struct sockaddr_in)) 4602 return -EINVAL; 4603 addr4 = (struct sockaddr_in *)address; 4604 snum = ntohs(addr4->sin_port); 4605 addrp = (char *)&addr4->sin_addr.s_addr; 4606 break; 4607 case AF_INET6: 4608 if (addrlen < SIN6_LEN_RFC2133) 4609 return -EINVAL; 4610 addr6 = (struct sockaddr_in6 *)address; 4611 snum = ntohs(addr6->sin6_port); 4612 addrp = (char *)&addr6->sin6_addr.s6_addr; 4613 break; 4614 default: 4615 /* Note that SCTP services expect -EINVAL, whereas 4616 * others expect -EAFNOSUPPORT. 4617 */ 4618 if (sksec->sclass == SECCLASS_SCTP_SOCKET) 4619 return -EINVAL; 4620 else 4621 return -EAFNOSUPPORT; 4622 } 4623 4624 if (snum) { 4625 int low, high; 4626 4627 inet_get_local_port_range(sock_net(sk), &low, &high); 4628 4629 if (snum < max(inet_prot_sock(sock_net(sk)), low) || 4630 snum > high) { 4631 err = sel_netport_sid(sk->sk_protocol, 4632 snum, &sid); 4633 if (err) 4634 goto out; 4635 ad.type = LSM_AUDIT_DATA_NET; 4636 ad.u.net = &net; 4637 ad.u.net->sport = htons(snum); 4638 ad.u.net->family = family; 4639 err = avc_has_perm(&selinux_state, 4640 sksec->sid, sid, 4641 sksec->sclass, 4642 SOCKET__NAME_BIND, &ad); 4643 if (err) 4644 goto out; 4645 } 4646 } 4647 4648 switch (sksec->sclass) { 4649 case SECCLASS_TCP_SOCKET: 4650 node_perm = TCP_SOCKET__NODE_BIND; 4651 break; 4652 4653 case SECCLASS_UDP_SOCKET: 4654 node_perm = UDP_SOCKET__NODE_BIND; 4655 break; 4656 4657 case SECCLASS_DCCP_SOCKET: 4658 node_perm = DCCP_SOCKET__NODE_BIND; 4659 break; 4660 4661 case SECCLASS_SCTP_SOCKET: 4662 node_perm = SCTP_SOCKET__NODE_BIND; 4663 break; 4664 4665 default: 4666 node_perm = RAWIP_SOCKET__NODE_BIND; 4667 break; 4668 } 4669 4670 err = sel_netnode_sid(addrp, family, &sid); 4671 if (err) 4672 goto out; 4673 4674 ad.type = LSM_AUDIT_DATA_NET; 4675 ad.u.net = &net; 4676 ad.u.net->sport = htons(snum); 4677 ad.u.net->family = family; 4678 4679 if (address->sa_family == AF_INET) 4680 ad.u.net->v4info.saddr = addr4->sin_addr.s_addr; 4681 else 4682 ad.u.net->v6info.saddr = addr6->sin6_addr; 4683 4684 err = avc_has_perm(&selinux_state, 4685 sksec->sid, sid, 4686 sksec->sclass, node_perm, &ad); 4687 if (err) 4688 goto out; 4689 } 4690 out: 4691 return err; 4692 } 4693 4694 /* This supports connect(2) and SCTP connect services such as sctp_connectx(3) 4695 * and sctp_sendmsg(3) as described in Documentation/security/LSM-sctp.txt 4696 */ 4697 static int selinux_socket_connect_helper(struct socket *sock, 4698 struct sockaddr *address, int addrlen) 4699 { 4700 struct sock *sk = sock->sk; 4701 struct sk_security_struct *sksec = sk->sk_security; 4702 int err; 4703 4704 err = sock_has_perm(sk, SOCKET__CONNECT); 4705 if (err) 4706 return err; 4707 4708 /* 4709 * If a TCP, DCCP or SCTP socket, check name_connect permission 4710 * for the port. 4711 */ 4712 if (sksec->sclass == SECCLASS_TCP_SOCKET || 4713 sksec->sclass == SECCLASS_DCCP_SOCKET || 4714 sksec->sclass == SECCLASS_SCTP_SOCKET) { 4715 struct common_audit_data ad; 4716 struct lsm_network_audit net = {0,}; 4717 struct sockaddr_in *addr4 = NULL; 4718 struct sockaddr_in6 *addr6 = NULL; 4719 unsigned short snum; 4720 u32 sid, perm; 4721 4722 /* sctp_connectx(3) calls via selinux_sctp_bind_connect() 4723 * that validates multiple connect addresses. Because of this 4724 * need to check address->sa_family as it is possible to have 4725 * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET. 4726 */ 4727 switch (address->sa_family) { 4728 case AF_INET: 4729 addr4 = (struct sockaddr_in *)address; 4730 if (addrlen < sizeof(struct sockaddr_in)) 4731 return -EINVAL; 4732 snum = ntohs(addr4->sin_port); 4733 break; 4734 case AF_INET6: 4735 addr6 = (struct sockaddr_in6 *)address; 4736 if (addrlen < SIN6_LEN_RFC2133) 4737 return -EINVAL; 4738 snum = ntohs(addr6->sin6_port); 4739 break; 4740 default: 4741 /* Note that SCTP services expect -EINVAL, whereas 4742 * others expect -EAFNOSUPPORT. 4743 */ 4744 if (sksec->sclass == SECCLASS_SCTP_SOCKET) 4745 return -EINVAL; 4746 else 4747 return -EAFNOSUPPORT; 4748 } 4749 4750 err = sel_netport_sid(sk->sk_protocol, snum, &sid); 4751 if (err) 4752 return err; 4753 4754 switch (sksec->sclass) { 4755 case SECCLASS_TCP_SOCKET: 4756 perm = TCP_SOCKET__NAME_CONNECT; 4757 break; 4758 case SECCLASS_DCCP_SOCKET: 4759 perm = DCCP_SOCKET__NAME_CONNECT; 4760 break; 4761 case SECCLASS_SCTP_SOCKET: 4762 perm = SCTP_SOCKET__NAME_CONNECT; 4763 break; 4764 } 4765 4766 ad.type = LSM_AUDIT_DATA_NET; 4767 ad.u.net = &net; 4768 ad.u.net->dport = htons(snum); 4769 ad.u.net->family = sk->sk_family; 4770 err = avc_has_perm(&selinux_state, 4771 sksec->sid, sid, sksec->sclass, perm, &ad); 4772 if (err) 4773 return err; 4774 } 4775 4776 return 0; 4777 } 4778 4779 /* Supports connect(2), see comments in selinux_socket_connect_helper() */ 4780 static int selinux_socket_connect(struct socket *sock, 4781 struct sockaddr *address, int addrlen) 4782 { 4783 int err; 4784 struct sock *sk = sock->sk; 4785 4786 err = selinux_socket_connect_helper(sock, address, addrlen); 4787 if (err) 4788 return err; 4789 4790 return selinux_netlbl_socket_connect(sk, address); 4791 } 4792 4793 static int selinux_socket_listen(struct socket *sock, int backlog) 4794 { 4795 return sock_has_perm(sock->sk, SOCKET__LISTEN); 4796 } 4797 4798 static int selinux_socket_accept(struct socket *sock, struct socket *newsock) 4799 { 4800 int err; 4801 struct inode_security_struct *isec; 4802 struct inode_security_struct *newisec; 4803 u16 sclass; 4804 u32 sid; 4805 4806 err = sock_has_perm(sock->sk, SOCKET__ACCEPT); 4807 if (err) 4808 return err; 4809 4810 isec = inode_security_novalidate(SOCK_INODE(sock)); 4811 spin_lock(&isec->lock); 4812 sclass = isec->sclass; 4813 sid = isec->sid; 4814 spin_unlock(&isec->lock); 4815 4816 newisec = inode_security_novalidate(SOCK_INODE(newsock)); 4817 newisec->sclass = sclass; 4818 newisec->sid = sid; 4819 newisec->initialized = LABEL_INITIALIZED; 4820 4821 return 0; 4822 } 4823 4824 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg, 4825 int size) 4826 { 4827 return sock_has_perm(sock->sk, SOCKET__WRITE); 4828 } 4829 4830 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg, 4831 int size, int flags) 4832 { 4833 return sock_has_perm(sock->sk, SOCKET__READ); 4834 } 4835 4836 static int selinux_socket_getsockname(struct socket *sock) 4837 { 4838 return sock_has_perm(sock->sk, SOCKET__GETATTR); 4839 } 4840 4841 static int selinux_socket_getpeername(struct socket *sock) 4842 { 4843 return sock_has_perm(sock->sk, SOCKET__GETATTR); 4844 } 4845 4846 static int selinux_socket_setsockopt(struct socket *sock, int level, int optname) 4847 { 4848 int err; 4849 4850 err = sock_has_perm(sock->sk, SOCKET__SETOPT); 4851 if (err) 4852 return err; 4853 4854 return selinux_netlbl_socket_setsockopt(sock, level, optname); 4855 } 4856 4857 static int selinux_socket_getsockopt(struct socket *sock, int level, 4858 int optname) 4859 { 4860 return sock_has_perm(sock->sk, SOCKET__GETOPT); 4861 } 4862 4863 static int selinux_socket_shutdown(struct socket *sock, int how) 4864 { 4865 return sock_has_perm(sock->sk, SOCKET__SHUTDOWN); 4866 } 4867 4868 static int selinux_socket_unix_stream_connect(struct sock *sock, 4869 struct sock *other, 4870 struct sock *newsk) 4871 { 4872 struct sk_security_struct *sksec_sock = sock->sk_security; 4873 struct sk_security_struct *sksec_other = other->sk_security; 4874 struct sk_security_struct *sksec_new = newsk->sk_security; 4875 struct common_audit_data ad; 4876 struct lsm_network_audit net = {0,}; 4877 int err; 4878 4879 ad.type = LSM_AUDIT_DATA_NET; 4880 ad.u.net = &net; 4881 ad.u.net->sk = other; 4882 4883 err = avc_has_perm(&selinux_state, 4884 sksec_sock->sid, sksec_other->sid, 4885 sksec_other->sclass, 4886 UNIX_STREAM_SOCKET__CONNECTTO, &ad); 4887 if (err) 4888 return err; 4889 4890 /* server child socket */ 4891 sksec_new->peer_sid = sksec_sock->sid; 4892 err = security_sid_mls_copy(&selinux_state, sksec_other->sid, 4893 sksec_sock->sid, &sksec_new->sid); 4894 if (err) 4895 return err; 4896 4897 /* connecting socket */ 4898 sksec_sock->peer_sid = sksec_new->sid; 4899 4900 return 0; 4901 } 4902 4903 static int selinux_socket_unix_may_send(struct socket *sock, 4904 struct socket *other) 4905 { 4906 struct sk_security_struct *ssec = sock->sk->sk_security; 4907 struct sk_security_struct *osec = other->sk->sk_security; 4908 struct common_audit_data ad; 4909 struct lsm_network_audit net = {0,}; 4910 4911 ad.type = LSM_AUDIT_DATA_NET; 4912 ad.u.net = &net; 4913 ad.u.net->sk = other->sk; 4914 4915 return avc_has_perm(&selinux_state, 4916 ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO, 4917 &ad); 4918 } 4919 4920 static int selinux_inet_sys_rcv_skb(struct net *ns, int ifindex, 4921 char *addrp, u16 family, u32 peer_sid, 4922 struct common_audit_data *ad) 4923 { 4924 int err; 4925 u32 if_sid; 4926 u32 node_sid; 4927 4928 err = sel_netif_sid(ns, ifindex, &if_sid); 4929 if (err) 4930 return err; 4931 err = avc_has_perm(&selinux_state, 4932 peer_sid, if_sid, 4933 SECCLASS_NETIF, NETIF__INGRESS, ad); 4934 if (err) 4935 return err; 4936 4937 err = sel_netnode_sid(addrp, family, &node_sid); 4938 if (err) 4939 return err; 4940 return avc_has_perm(&selinux_state, 4941 peer_sid, node_sid, 4942 SECCLASS_NODE, NODE__RECVFROM, ad); 4943 } 4944 4945 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb, 4946 u16 family) 4947 { 4948 int err = 0; 4949 struct sk_security_struct *sksec = sk->sk_security; 4950 u32 sk_sid = sksec->sid; 4951 struct common_audit_data ad; 4952 struct lsm_network_audit net = {0,}; 4953 char *addrp; 4954 4955 ad.type = LSM_AUDIT_DATA_NET; 4956 ad.u.net = &net; 4957 ad.u.net->netif = skb->skb_iif; 4958 ad.u.net->family = family; 4959 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL); 4960 if (err) 4961 return err; 4962 4963 if (selinux_secmark_enabled()) { 4964 err = avc_has_perm(&selinux_state, 4965 sk_sid, skb->secmark, SECCLASS_PACKET, 4966 PACKET__RECV, &ad); 4967 if (err) 4968 return err; 4969 } 4970 4971 err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad); 4972 if (err) 4973 return err; 4974 err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad); 4975 4976 return err; 4977 } 4978 4979 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb) 4980 { 4981 int err; 4982 struct sk_security_struct *sksec = sk->sk_security; 4983 u16 family = sk->sk_family; 4984 u32 sk_sid = sksec->sid; 4985 struct common_audit_data ad; 4986 struct lsm_network_audit net = {0,}; 4987 char *addrp; 4988 u8 secmark_active; 4989 u8 peerlbl_active; 4990 4991 if (family != PF_INET && family != PF_INET6) 4992 return 0; 4993 4994 /* Handle mapped IPv4 packets arriving via IPv6 sockets */ 4995 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP)) 4996 family = PF_INET; 4997 4998 /* If any sort of compatibility mode is enabled then handoff processing 4999 * to the selinux_sock_rcv_skb_compat() function to deal with the 5000 * special handling. We do this in an attempt to keep this function 5001 * as fast and as clean as possible. */ 5002 if (!selinux_policycap_netpeer()) 5003 return selinux_sock_rcv_skb_compat(sk, skb, family); 5004 5005 secmark_active = selinux_secmark_enabled(); 5006 peerlbl_active = selinux_peerlbl_enabled(); 5007 if (!secmark_active && !peerlbl_active) 5008 return 0; 5009 5010 ad.type = LSM_AUDIT_DATA_NET; 5011 ad.u.net = &net; 5012 ad.u.net->netif = skb->skb_iif; 5013 ad.u.net->family = family; 5014 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL); 5015 if (err) 5016 return err; 5017 5018 if (peerlbl_active) { 5019 u32 peer_sid; 5020 5021 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid); 5022 if (err) 5023 return err; 5024 err = selinux_inet_sys_rcv_skb(sock_net(sk), skb->skb_iif, 5025 addrp, family, peer_sid, &ad); 5026 if (err) { 5027 selinux_netlbl_err(skb, family, err, 0); 5028 return err; 5029 } 5030 err = avc_has_perm(&selinux_state, 5031 sk_sid, peer_sid, SECCLASS_PEER, 5032 PEER__RECV, &ad); 5033 if (err) { 5034 selinux_netlbl_err(skb, family, err, 0); 5035 return err; 5036 } 5037 } 5038 5039 if (secmark_active) { 5040 err = avc_has_perm(&selinux_state, 5041 sk_sid, skb->secmark, SECCLASS_PACKET, 5042 PACKET__RECV, &ad); 5043 if (err) 5044 return err; 5045 } 5046 5047 return err; 5048 } 5049 5050 static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval, 5051 int __user *optlen, unsigned len) 5052 { 5053 int err = 0; 5054 char *scontext; 5055 u32 scontext_len; 5056 struct sk_security_struct *sksec = sock->sk->sk_security; 5057 u32 peer_sid = SECSID_NULL; 5058 5059 if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET || 5060 sksec->sclass == SECCLASS_TCP_SOCKET || 5061 sksec->sclass == SECCLASS_SCTP_SOCKET) 5062 peer_sid = sksec->peer_sid; 5063 if (peer_sid == SECSID_NULL) 5064 return -ENOPROTOOPT; 5065 5066 err = security_sid_to_context(&selinux_state, peer_sid, &scontext, 5067 &scontext_len); 5068 if (err) 5069 return err; 5070 5071 if (scontext_len > len) { 5072 err = -ERANGE; 5073 goto out_len; 5074 } 5075 5076 if (copy_to_user(optval, scontext, scontext_len)) 5077 err = -EFAULT; 5078 5079 out_len: 5080 if (put_user(scontext_len, optlen)) 5081 err = -EFAULT; 5082 kfree(scontext); 5083 return err; 5084 } 5085 5086 static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid) 5087 { 5088 u32 peer_secid = SECSID_NULL; 5089 u16 family; 5090 struct inode_security_struct *isec; 5091 5092 if (skb && skb->protocol == htons(ETH_P_IP)) 5093 family = PF_INET; 5094 else if (skb && skb->protocol == htons(ETH_P_IPV6)) 5095 family = PF_INET6; 5096 else if (sock) 5097 family = sock->sk->sk_family; 5098 else 5099 goto out; 5100 5101 if (sock && family == PF_UNIX) { 5102 isec = inode_security_novalidate(SOCK_INODE(sock)); 5103 peer_secid = isec->sid; 5104 } else if (skb) 5105 selinux_skb_peerlbl_sid(skb, family, &peer_secid); 5106 5107 out: 5108 *secid = peer_secid; 5109 if (peer_secid == SECSID_NULL) 5110 return -EINVAL; 5111 return 0; 5112 } 5113 5114 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority) 5115 { 5116 struct sk_security_struct *sksec; 5117 5118 sksec = kzalloc(sizeof(*sksec), priority); 5119 if (!sksec) 5120 return -ENOMEM; 5121 5122 sksec->peer_sid = SECINITSID_UNLABELED; 5123 sksec->sid = SECINITSID_UNLABELED; 5124 sksec->sclass = SECCLASS_SOCKET; 5125 selinux_netlbl_sk_security_reset(sksec); 5126 sk->sk_security = sksec; 5127 5128 return 0; 5129 } 5130 5131 static void selinux_sk_free_security(struct sock *sk) 5132 { 5133 struct sk_security_struct *sksec = sk->sk_security; 5134 5135 sk->sk_security = NULL; 5136 selinux_netlbl_sk_security_free(sksec); 5137 kfree(sksec); 5138 } 5139 5140 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk) 5141 { 5142 struct sk_security_struct *sksec = sk->sk_security; 5143 struct sk_security_struct *newsksec = newsk->sk_security; 5144 5145 newsksec->sid = sksec->sid; 5146 newsksec->peer_sid = sksec->peer_sid; 5147 newsksec->sclass = sksec->sclass; 5148 5149 selinux_netlbl_sk_security_reset(newsksec); 5150 } 5151 5152 static void selinux_sk_getsecid(struct sock *sk, u32 *secid) 5153 { 5154 if (!sk) 5155 *secid = SECINITSID_ANY_SOCKET; 5156 else { 5157 struct sk_security_struct *sksec = sk->sk_security; 5158 5159 *secid = sksec->sid; 5160 } 5161 } 5162 5163 static void selinux_sock_graft(struct sock *sk, struct socket *parent) 5164 { 5165 struct inode_security_struct *isec = 5166 inode_security_novalidate(SOCK_INODE(parent)); 5167 struct sk_security_struct *sksec = sk->sk_security; 5168 5169 if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 || 5170 sk->sk_family == PF_UNIX) 5171 isec->sid = sksec->sid; 5172 sksec->sclass = isec->sclass; 5173 } 5174 5175 /* Called whenever SCTP receives an INIT chunk. This happens when an incoming 5176 * connect(2), sctp_connectx(3) or sctp_sendmsg(3) (with no association 5177 * already present). 5178 */ 5179 static int selinux_sctp_assoc_request(struct sctp_endpoint *ep, 5180 struct sk_buff *skb) 5181 { 5182 struct sk_security_struct *sksec = ep->base.sk->sk_security; 5183 struct common_audit_data ad; 5184 struct lsm_network_audit net = {0,}; 5185 u8 peerlbl_active; 5186 u32 peer_sid = SECINITSID_UNLABELED; 5187 u32 conn_sid; 5188 int err = 0; 5189 5190 if (!selinux_policycap_extsockclass()) 5191 return 0; 5192 5193 peerlbl_active = selinux_peerlbl_enabled(); 5194 5195 if (peerlbl_active) { 5196 /* This will return peer_sid = SECSID_NULL if there are 5197 * no peer labels, see security_net_peersid_resolve(). 5198 */ 5199 err = selinux_skb_peerlbl_sid(skb, ep->base.sk->sk_family, 5200 &peer_sid); 5201 if (err) 5202 return err; 5203 5204 if (peer_sid == SECSID_NULL) 5205 peer_sid = SECINITSID_UNLABELED; 5206 } 5207 5208 if (sksec->sctp_assoc_state == SCTP_ASSOC_UNSET) { 5209 sksec->sctp_assoc_state = SCTP_ASSOC_SET; 5210 5211 /* Here as first association on socket. As the peer SID 5212 * was allowed by peer recv (and the netif/node checks), 5213 * then it is approved by policy and used as the primary 5214 * peer SID for getpeercon(3). 5215 */ 5216 sksec->peer_sid = peer_sid; 5217 } else if (sksec->peer_sid != peer_sid) { 5218 /* Other association peer SIDs are checked to enforce 5219 * consistency among the peer SIDs. 5220 */ 5221 ad.type = LSM_AUDIT_DATA_NET; 5222 ad.u.net = &net; 5223 ad.u.net->sk = ep->base.sk; 5224 err = avc_has_perm(&selinux_state, 5225 sksec->peer_sid, peer_sid, sksec->sclass, 5226 SCTP_SOCKET__ASSOCIATION, &ad); 5227 if (err) 5228 return err; 5229 } 5230 5231 /* Compute the MLS component for the connection and store 5232 * the information in ep. This will be used by SCTP TCP type 5233 * sockets and peeled off connections as they cause a new 5234 * socket to be generated. selinux_sctp_sk_clone() will then 5235 * plug this into the new socket. 5236 */ 5237 err = selinux_conn_sid(sksec->sid, peer_sid, &conn_sid); 5238 if (err) 5239 return err; 5240 5241 ep->secid = conn_sid; 5242 ep->peer_secid = peer_sid; 5243 5244 /* Set any NetLabel labels including CIPSO/CALIPSO options. */ 5245 return selinux_netlbl_sctp_assoc_request(ep, skb); 5246 } 5247 5248 /* Check if sctp IPv4/IPv6 addresses are valid for binding or connecting 5249 * based on their @optname. 5250 */ 5251 static int selinux_sctp_bind_connect(struct sock *sk, int optname, 5252 struct sockaddr *address, 5253 int addrlen) 5254 { 5255 int len, err = 0, walk_size = 0; 5256 void *addr_buf; 5257 struct sockaddr *addr; 5258 struct socket *sock; 5259 5260 if (!selinux_policycap_extsockclass()) 5261 return 0; 5262 5263 /* Process one or more addresses that may be IPv4 or IPv6 */ 5264 sock = sk->sk_socket; 5265 addr_buf = address; 5266 5267 while (walk_size < addrlen) { 5268 addr = addr_buf; 5269 switch (addr->sa_family) { 5270 case AF_INET: 5271 len = sizeof(struct sockaddr_in); 5272 break; 5273 case AF_INET6: 5274 len = sizeof(struct sockaddr_in6); 5275 break; 5276 default: 5277 return -EAFNOSUPPORT; 5278 } 5279 5280 err = -EINVAL; 5281 switch (optname) { 5282 /* Bind checks */ 5283 case SCTP_PRIMARY_ADDR: 5284 case SCTP_SET_PEER_PRIMARY_ADDR: 5285 case SCTP_SOCKOPT_BINDX_ADD: 5286 err = selinux_socket_bind(sock, addr, len); 5287 break; 5288 /* Connect checks */ 5289 case SCTP_SOCKOPT_CONNECTX: 5290 case SCTP_PARAM_SET_PRIMARY: 5291 case SCTP_PARAM_ADD_IP: 5292 case SCTP_SENDMSG_CONNECT: 5293 err = selinux_socket_connect_helper(sock, addr, len); 5294 if (err) 5295 return err; 5296 5297 /* As selinux_sctp_bind_connect() is called by the 5298 * SCTP protocol layer, the socket is already locked, 5299 * therefore selinux_netlbl_socket_connect_locked() is 5300 * is called here. The situations handled are: 5301 * sctp_connectx(3), sctp_sendmsg(3), sendmsg(2), 5302 * whenever a new IP address is added or when a new 5303 * primary address is selected. 5304 * Note that an SCTP connect(2) call happens before 5305 * the SCTP protocol layer and is handled via 5306 * selinux_socket_connect(). 5307 */ 5308 err = selinux_netlbl_socket_connect_locked(sk, addr); 5309 break; 5310 } 5311 5312 if (err) 5313 return err; 5314 5315 addr_buf += len; 5316 walk_size += len; 5317 } 5318 5319 return 0; 5320 } 5321 5322 /* Called whenever a new socket is created by accept(2) or sctp_peeloff(3). */ 5323 static void selinux_sctp_sk_clone(struct sctp_endpoint *ep, struct sock *sk, 5324 struct sock *newsk) 5325 { 5326 struct sk_security_struct *sksec = sk->sk_security; 5327 struct sk_security_struct *newsksec = newsk->sk_security; 5328 5329 /* If policy does not support SECCLASS_SCTP_SOCKET then call 5330 * the non-sctp clone version. 5331 */ 5332 if (!selinux_policycap_extsockclass()) 5333 return selinux_sk_clone_security(sk, newsk); 5334 5335 newsksec->sid = ep->secid; 5336 newsksec->peer_sid = ep->peer_secid; 5337 newsksec->sclass = sksec->sclass; 5338 selinux_netlbl_sctp_sk_clone(sk, newsk); 5339 } 5340 5341 static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb, 5342 struct request_sock *req) 5343 { 5344 struct sk_security_struct *sksec = sk->sk_security; 5345 int err; 5346 u16 family = req->rsk_ops->family; 5347 u32 connsid; 5348 u32 peersid; 5349 5350 err = selinux_skb_peerlbl_sid(skb, family, &peersid); 5351 if (err) 5352 return err; 5353 err = selinux_conn_sid(sksec->sid, peersid, &connsid); 5354 if (err) 5355 return err; 5356 req->secid = connsid; 5357 req->peer_secid = peersid; 5358 5359 return selinux_netlbl_inet_conn_request(req, family); 5360 } 5361 5362 static void selinux_inet_csk_clone(struct sock *newsk, 5363 const struct request_sock *req) 5364 { 5365 struct sk_security_struct *newsksec = newsk->sk_security; 5366 5367 newsksec->sid = req->secid; 5368 newsksec->peer_sid = req->peer_secid; 5369 /* NOTE: Ideally, we should also get the isec->sid for the 5370 new socket in sync, but we don't have the isec available yet. 5371 So we will wait until sock_graft to do it, by which 5372 time it will have been created and available. */ 5373 5374 /* We don't need to take any sort of lock here as we are the only 5375 * thread with access to newsksec */ 5376 selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family); 5377 } 5378 5379 static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb) 5380 { 5381 u16 family = sk->sk_family; 5382 struct sk_security_struct *sksec = sk->sk_security; 5383 5384 /* handle mapped IPv4 packets arriving via IPv6 sockets */ 5385 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP)) 5386 family = PF_INET; 5387 5388 selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid); 5389 } 5390 5391 static int selinux_secmark_relabel_packet(u32 sid) 5392 { 5393 const struct task_security_struct *__tsec; 5394 u32 tsid; 5395 5396 __tsec = current_security(); 5397 tsid = __tsec->sid; 5398 5399 return avc_has_perm(&selinux_state, 5400 tsid, sid, SECCLASS_PACKET, PACKET__RELABELTO, 5401 NULL); 5402 } 5403 5404 static void selinux_secmark_refcount_inc(void) 5405 { 5406 atomic_inc(&selinux_secmark_refcount); 5407 } 5408 5409 static void selinux_secmark_refcount_dec(void) 5410 { 5411 atomic_dec(&selinux_secmark_refcount); 5412 } 5413 5414 static void selinux_req_classify_flow(const struct request_sock *req, 5415 struct flowi *fl) 5416 { 5417 fl->flowi_secid = req->secid; 5418 } 5419 5420 static int selinux_tun_dev_alloc_security(void **security) 5421 { 5422 struct tun_security_struct *tunsec; 5423 5424 tunsec = kzalloc(sizeof(*tunsec), GFP_KERNEL); 5425 if (!tunsec) 5426 return -ENOMEM; 5427 tunsec->sid = current_sid(); 5428 5429 *security = tunsec; 5430 return 0; 5431 } 5432 5433 static void selinux_tun_dev_free_security(void *security) 5434 { 5435 kfree(security); 5436 } 5437 5438 static int selinux_tun_dev_create(void) 5439 { 5440 u32 sid = current_sid(); 5441 5442 /* we aren't taking into account the "sockcreate" SID since the socket 5443 * that is being created here is not a socket in the traditional sense, 5444 * instead it is a private sock, accessible only to the kernel, and 5445 * representing a wide range of network traffic spanning multiple 5446 * connections unlike traditional sockets - check the TUN driver to 5447 * get a better understanding of why this socket is special */ 5448 5449 return avc_has_perm(&selinux_state, 5450 sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE, 5451 NULL); 5452 } 5453 5454 static int selinux_tun_dev_attach_queue(void *security) 5455 { 5456 struct tun_security_struct *tunsec = security; 5457 5458 return avc_has_perm(&selinux_state, 5459 current_sid(), tunsec->sid, SECCLASS_TUN_SOCKET, 5460 TUN_SOCKET__ATTACH_QUEUE, NULL); 5461 } 5462 5463 static int selinux_tun_dev_attach(struct sock *sk, void *security) 5464 { 5465 struct tun_security_struct *tunsec = security; 5466 struct sk_security_struct *sksec = sk->sk_security; 5467 5468 /* we don't currently perform any NetLabel based labeling here and it 5469 * isn't clear that we would want to do so anyway; while we could apply 5470 * labeling without the support of the TUN user the resulting labeled 5471 * traffic from the other end of the connection would almost certainly 5472 * cause confusion to the TUN user that had no idea network labeling 5473 * protocols were being used */ 5474 5475 sksec->sid = tunsec->sid; 5476 sksec->sclass = SECCLASS_TUN_SOCKET; 5477 5478 return 0; 5479 } 5480 5481 static int selinux_tun_dev_open(void *security) 5482 { 5483 struct tun_security_struct *tunsec = security; 5484 u32 sid = current_sid(); 5485 int err; 5486 5487 err = avc_has_perm(&selinux_state, 5488 sid, tunsec->sid, SECCLASS_TUN_SOCKET, 5489 TUN_SOCKET__RELABELFROM, NULL); 5490 if (err) 5491 return err; 5492 err = avc_has_perm(&selinux_state, 5493 sid, sid, SECCLASS_TUN_SOCKET, 5494 TUN_SOCKET__RELABELTO, NULL); 5495 if (err) 5496 return err; 5497 tunsec->sid = sid; 5498 5499 return 0; 5500 } 5501 5502 static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb) 5503 { 5504 int err = 0; 5505 u32 perm; 5506 struct nlmsghdr *nlh; 5507 struct sk_security_struct *sksec = sk->sk_security; 5508 5509 if (skb->len < NLMSG_HDRLEN) { 5510 err = -EINVAL; 5511 goto out; 5512 } 5513 nlh = nlmsg_hdr(skb); 5514 5515 err = selinux_nlmsg_lookup(sksec->sclass, nlh->nlmsg_type, &perm); 5516 if (err) { 5517 if (err == -EINVAL) { 5518 pr_warn_ratelimited("SELinux: unrecognized netlink" 5519 " message: protocol=%hu nlmsg_type=%hu sclass=%s" 5520 " pig=%d comm=%s\n", 5521 sk->sk_protocol, nlh->nlmsg_type, 5522 secclass_map[sksec->sclass - 1].name, 5523 task_pid_nr(current), current->comm); 5524 if (!enforcing_enabled(&selinux_state) || 5525 security_get_allow_unknown(&selinux_state)) 5526 err = 0; 5527 } 5528 5529 /* Ignore */ 5530 if (err == -ENOENT) 5531 err = 0; 5532 goto out; 5533 } 5534 5535 err = sock_has_perm(sk, perm); 5536 out: 5537 return err; 5538 } 5539 5540 #ifdef CONFIG_NETFILTER 5541 5542 static unsigned int selinux_ip_forward(struct sk_buff *skb, 5543 const struct net_device *indev, 5544 u16 family) 5545 { 5546 int err; 5547 char *addrp; 5548 u32 peer_sid; 5549 struct common_audit_data ad; 5550 struct lsm_network_audit net = {0,}; 5551 u8 secmark_active; 5552 u8 netlbl_active; 5553 u8 peerlbl_active; 5554 5555 if (!selinux_policycap_netpeer()) 5556 return NF_ACCEPT; 5557 5558 secmark_active = selinux_secmark_enabled(); 5559 netlbl_active = netlbl_enabled(); 5560 peerlbl_active = selinux_peerlbl_enabled(); 5561 if (!secmark_active && !peerlbl_active) 5562 return NF_ACCEPT; 5563 5564 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0) 5565 return NF_DROP; 5566 5567 ad.type = LSM_AUDIT_DATA_NET; 5568 ad.u.net = &net; 5569 ad.u.net->netif = indev->ifindex; 5570 ad.u.net->family = family; 5571 if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0) 5572 return NF_DROP; 5573 5574 if (peerlbl_active) { 5575 err = selinux_inet_sys_rcv_skb(dev_net(indev), indev->ifindex, 5576 addrp, family, peer_sid, &ad); 5577 if (err) { 5578 selinux_netlbl_err(skb, family, err, 1); 5579 return NF_DROP; 5580 } 5581 } 5582 5583 if (secmark_active) 5584 if (avc_has_perm(&selinux_state, 5585 peer_sid, skb->secmark, 5586 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad)) 5587 return NF_DROP; 5588 5589 if (netlbl_active) 5590 /* we do this in the FORWARD path and not the POST_ROUTING 5591 * path because we want to make sure we apply the necessary 5592 * labeling before IPsec is applied so we can leverage AH 5593 * protection */ 5594 if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0) 5595 return NF_DROP; 5596 5597 return NF_ACCEPT; 5598 } 5599 5600 static unsigned int selinux_ipv4_forward(void *priv, 5601 struct sk_buff *skb, 5602 const struct nf_hook_state *state) 5603 { 5604 return selinux_ip_forward(skb, state->in, PF_INET); 5605 } 5606 5607 #if IS_ENABLED(CONFIG_IPV6) 5608 static unsigned int selinux_ipv6_forward(void *priv, 5609 struct sk_buff *skb, 5610 const struct nf_hook_state *state) 5611 { 5612 return selinux_ip_forward(skb, state->in, PF_INET6); 5613 } 5614 #endif /* IPV6 */ 5615 5616 static unsigned int selinux_ip_output(struct sk_buff *skb, 5617 u16 family) 5618 { 5619 struct sock *sk; 5620 u32 sid; 5621 5622 if (!netlbl_enabled()) 5623 return NF_ACCEPT; 5624 5625 /* we do this in the LOCAL_OUT path and not the POST_ROUTING path 5626 * because we want to make sure we apply the necessary labeling 5627 * before IPsec is applied so we can leverage AH protection */ 5628 sk = skb->sk; 5629 if (sk) { 5630 struct sk_security_struct *sksec; 5631 5632 if (sk_listener(sk)) 5633 /* if the socket is the listening state then this 5634 * packet is a SYN-ACK packet which means it needs to 5635 * be labeled based on the connection/request_sock and 5636 * not the parent socket. unfortunately, we can't 5637 * lookup the request_sock yet as it isn't queued on 5638 * the parent socket until after the SYN-ACK is sent. 5639 * the "solution" is to simply pass the packet as-is 5640 * as any IP option based labeling should be copied 5641 * from the initial connection request (in the IP 5642 * layer). it is far from ideal, but until we get a 5643 * security label in the packet itself this is the 5644 * best we can do. */ 5645 return NF_ACCEPT; 5646 5647 /* standard practice, label using the parent socket */ 5648 sksec = sk->sk_security; 5649 sid = sksec->sid; 5650 } else 5651 sid = SECINITSID_KERNEL; 5652 if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0) 5653 return NF_DROP; 5654 5655 return NF_ACCEPT; 5656 } 5657 5658 static unsigned int selinux_ipv4_output(void *priv, 5659 struct sk_buff *skb, 5660 const struct nf_hook_state *state) 5661 { 5662 return selinux_ip_output(skb, PF_INET); 5663 } 5664 5665 #if IS_ENABLED(CONFIG_IPV6) 5666 static unsigned int selinux_ipv6_output(void *priv, 5667 struct sk_buff *skb, 5668 const struct nf_hook_state *state) 5669 { 5670 return selinux_ip_output(skb, PF_INET6); 5671 } 5672 #endif /* IPV6 */ 5673 5674 static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb, 5675 int ifindex, 5676 u16 family) 5677 { 5678 struct sock *sk = skb_to_full_sk(skb); 5679 struct sk_security_struct *sksec; 5680 struct common_audit_data ad; 5681 struct lsm_network_audit net = {0,}; 5682 char *addrp; 5683 u8 proto; 5684 5685 if (sk == NULL) 5686 return NF_ACCEPT; 5687 sksec = sk->sk_security; 5688 5689 ad.type = LSM_AUDIT_DATA_NET; 5690 ad.u.net = &net; 5691 ad.u.net->netif = ifindex; 5692 ad.u.net->family = family; 5693 if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto)) 5694 return NF_DROP; 5695 5696 if (selinux_secmark_enabled()) 5697 if (avc_has_perm(&selinux_state, 5698 sksec->sid, skb->secmark, 5699 SECCLASS_PACKET, PACKET__SEND, &ad)) 5700 return NF_DROP_ERR(-ECONNREFUSED); 5701 5702 if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto)) 5703 return NF_DROP_ERR(-ECONNREFUSED); 5704 5705 return NF_ACCEPT; 5706 } 5707 5708 static unsigned int selinux_ip_postroute(struct sk_buff *skb, 5709 const struct net_device *outdev, 5710 u16 family) 5711 { 5712 u32 secmark_perm; 5713 u32 peer_sid; 5714 int ifindex = outdev->ifindex; 5715 struct sock *sk; 5716 struct common_audit_data ad; 5717 struct lsm_network_audit net = {0,}; 5718 char *addrp; 5719 u8 secmark_active; 5720 u8 peerlbl_active; 5721 5722 /* If any sort of compatibility mode is enabled then handoff processing 5723 * to the selinux_ip_postroute_compat() function to deal with the 5724 * special handling. We do this in an attempt to keep this function 5725 * as fast and as clean as possible. */ 5726 if (!selinux_policycap_netpeer()) 5727 return selinux_ip_postroute_compat(skb, ifindex, family); 5728 5729 secmark_active = selinux_secmark_enabled(); 5730 peerlbl_active = selinux_peerlbl_enabled(); 5731 if (!secmark_active && !peerlbl_active) 5732 return NF_ACCEPT; 5733 5734 sk = skb_to_full_sk(skb); 5735 5736 #ifdef CONFIG_XFRM 5737 /* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec 5738 * packet transformation so allow the packet to pass without any checks 5739 * since we'll have another chance to perform access control checks 5740 * when the packet is on it's final way out. 5741 * NOTE: there appear to be some IPv6 multicast cases where skb->dst 5742 * is NULL, in this case go ahead and apply access control. 5743 * NOTE: if this is a local socket (skb->sk != NULL) that is in the 5744 * TCP listening state we cannot wait until the XFRM processing 5745 * is done as we will miss out on the SA label if we do; 5746 * unfortunately, this means more work, but it is only once per 5747 * connection. */ 5748 if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL && 5749 !(sk && sk_listener(sk))) 5750 return NF_ACCEPT; 5751 #endif 5752 5753 if (sk == NULL) { 5754 /* Without an associated socket the packet is either coming 5755 * from the kernel or it is being forwarded; check the packet 5756 * to determine which and if the packet is being forwarded 5757 * query the packet directly to determine the security label. */ 5758 if (skb->skb_iif) { 5759 secmark_perm = PACKET__FORWARD_OUT; 5760 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid)) 5761 return NF_DROP; 5762 } else { 5763 secmark_perm = PACKET__SEND; 5764 peer_sid = SECINITSID_KERNEL; 5765 } 5766 } else if (sk_listener(sk)) { 5767 /* Locally generated packet but the associated socket is in the 5768 * listening state which means this is a SYN-ACK packet. In 5769 * this particular case the correct security label is assigned 5770 * to the connection/request_sock but unfortunately we can't 5771 * query the request_sock as it isn't queued on the parent 5772 * socket until after the SYN-ACK packet is sent; the only 5773 * viable choice is to regenerate the label like we do in 5774 * selinux_inet_conn_request(). See also selinux_ip_output() 5775 * for similar problems. */ 5776 u32 skb_sid; 5777 struct sk_security_struct *sksec; 5778 5779 sksec = sk->sk_security; 5780 if (selinux_skb_peerlbl_sid(skb, family, &skb_sid)) 5781 return NF_DROP; 5782 /* At this point, if the returned skb peerlbl is SECSID_NULL 5783 * and the packet has been through at least one XFRM 5784 * transformation then we must be dealing with the "final" 5785 * form of labeled IPsec packet; since we've already applied 5786 * all of our access controls on this packet we can safely 5787 * pass the packet. */ 5788 if (skb_sid == SECSID_NULL) { 5789 switch (family) { 5790 case PF_INET: 5791 if (IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED) 5792 return NF_ACCEPT; 5793 break; 5794 case PF_INET6: 5795 if (IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED) 5796 return NF_ACCEPT; 5797 break; 5798 default: 5799 return NF_DROP_ERR(-ECONNREFUSED); 5800 } 5801 } 5802 if (selinux_conn_sid(sksec->sid, skb_sid, &peer_sid)) 5803 return NF_DROP; 5804 secmark_perm = PACKET__SEND; 5805 } else { 5806 /* Locally generated packet, fetch the security label from the 5807 * associated socket. */ 5808 struct sk_security_struct *sksec = sk->sk_security; 5809 peer_sid = sksec->sid; 5810 secmark_perm = PACKET__SEND; 5811 } 5812 5813 ad.type = LSM_AUDIT_DATA_NET; 5814 ad.u.net = &net; 5815 ad.u.net->netif = ifindex; 5816 ad.u.net->family = family; 5817 if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL)) 5818 return NF_DROP; 5819 5820 if (secmark_active) 5821 if (avc_has_perm(&selinux_state, 5822 peer_sid, skb->secmark, 5823 SECCLASS_PACKET, secmark_perm, &ad)) 5824 return NF_DROP_ERR(-ECONNREFUSED); 5825 5826 if (peerlbl_active) { 5827 u32 if_sid; 5828 u32 node_sid; 5829 5830 if (sel_netif_sid(dev_net(outdev), ifindex, &if_sid)) 5831 return NF_DROP; 5832 if (avc_has_perm(&selinux_state, 5833 peer_sid, if_sid, 5834 SECCLASS_NETIF, NETIF__EGRESS, &ad)) 5835 return NF_DROP_ERR(-ECONNREFUSED); 5836 5837 if (sel_netnode_sid(addrp, family, &node_sid)) 5838 return NF_DROP; 5839 if (avc_has_perm(&selinux_state, 5840 peer_sid, node_sid, 5841 SECCLASS_NODE, NODE__SENDTO, &ad)) 5842 return NF_DROP_ERR(-ECONNREFUSED); 5843 } 5844 5845 return NF_ACCEPT; 5846 } 5847 5848 static unsigned int selinux_ipv4_postroute(void *priv, 5849 struct sk_buff *skb, 5850 const struct nf_hook_state *state) 5851 { 5852 return selinux_ip_postroute(skb, state->out, PF_INET); 5853 } 5854 5855 #if IS_ENABLED(CONFIG_IPV6) 5856 static unsigned int selinux_ipv6_postroute(void *priv, 5857 struct sk_buff *skb, 5858 const struct nf_hook_state *state) 5859 { 5860 return selinux_ip_postroute(skb, state->out, PF_INET6); 5861 } 5862 #endif /* IPV6 */ 5863 5864 #endif /* CONFIG_NETFILTER */ 5865 5866 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb) 5867 { 5868 return selinux_nlmsg_perm(sk, skb); 5869 } 5870 5871 static int ipc_alloc_security(struct kern_ipc_perm *perm, 5872 u16 sclass) 5873 { 5874 struct ipc_security_struct *isec; 5875 5876 isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL); 5877 if (!isec) 5878 return -ENOMEM; 5879 5880 isec->sclass = sclass; 5881 isec->sid = current_sid(); 5882 perm->security = isec; 5883 5884 return 0; 5885 } 5886 5887 static void ipc_free_security(struct kern_ipc_perm *perm) 5888 { 5889 struct ipc_security_struct *isec = perm->security; 5890 perm->security = NULL; 5891 kfree(isec); 5892 } 5893 5894 static int msg_msg_alloc_security(struct msg_msg *msg) 5895 { 5896 struct msg_security_struct *msec; 5897 5898 msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL); 5899 if (!msec) 5900 return -ENOMEM; 5901 5902 msec->sid = SECINITSID_UNLABELED; 5903 msg->security = msec; 5904 5905 return 0; 5906 } 5907 5908 static void msg_msg_free_security(struct msg_msg *msg) 5909 { 5910 struct msg_security_struct *msec = msg->security; 5911 5912 msg->security = NULL; 5913 kfree(msec); 5914 } 5915 5916 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms, 5917 u32 perms) 5918 { 5919 struct ipc_security_struct *isec; 5920 struct common_audit_data ad; 5921 u32 sid = current_sid(); 5922 5923 isec = ipc_perms->security; 5924 5925 ad.type = LSM_AUDIT_DATA_IPC; 5926 ad.u.ipc_id = ipc_perms->key; 5927 5928 return avc_has_perm(&selinux_state, 5929 sid, isec->sid, isec->sclass, perms, &ad); 5930 } 5931 5932 static int selinux_msg_msg_alloc_security(struct msg_msg *msg) 5933 { 5934 return msg_msg_alloc_security(msg); 5935 } 5936 5937 static void selinux_msg_msg_free_security(struct msg_msg *msg) 5938 { 5939 msg_msg_free_security(msg); 5940 } 5941 5942 /* message queue security operations */ 5943 static int selinux_msg_queue_alloc_security(struct kern_ipc_perm *msq) 5944 { 5945 struct ipc_security_struct *isec; 5946 struct common_audit_data ad; 5947 u32 sid = current_sid(); 5948 int rc; 5949 5950 rc = ipc_alloc_security(msq, SECCLASS_MSGQ); 5951 if (rc) 5952 return rc; 5953 5954 isec = msq->security; 5955 5956 ad.type = LSM_AUDIT_DATA_IPC; 5957 ad.u.ipc_id = msq->key; 5958 5959 rc = avc_has_perm(&selinux_state, 5960 sid, isec->sid, SECCLASS_MSGQ, 5961 MSGQ__CREATE, &ad); 5962 if (rc) { 5963 ipc_free_security(msq); 5964 return rc; 5965 } 5966 return 0; 5967 } 5968 5969 static void selinux_msg_queue_free_security(struct kern_ipc_perm *msq) 5970 { 5971 ipc_free_security(msq); 5972 } 5973 5974 static int selinux_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg) 5975 { 5976 struct ipc_security_struct *isec; 5977 struct common_audit_data ad; 5978 u32 sid = current_sid(); 5979 5980 isec = msq->security; 5981 5982 ad.type = LSM_AUDIT_DATA_IPC; 5983 ad.u.ipc_id = msq->key; 5984 5985 return avc_has_perm(&selinux_state, 5986 sid, isec->sid, SECCLASS_MSGQ, 5987 MSGQ__ASSOCIATE, &ad); 5988 } 5989 5990 static int selinux_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd) 5991 { 5992 int err; 5993 int perms; 5994 5995 switch (cmd) { 5996 case IPC_INFO: 5997 case MSG_INFO: 5998 /* No specific object, just general system-wide information. */ 5999 return avc_has_perm(&selinux_state, 6000 current_sid(), SECINITSID_KERNEL, 6001 SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL); 6002 case IPC_STAT: 6003 case MSG_STAT: 6004 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE; 6005 break; 6006 case IPC_SET: 6007 perms = MSGQ__SETATTR; 6008 break; 6009 case IPC_RMID: 6010 perms = MSGQ__DESTROY; 6011 break; 6012 default: 6013 return 0; 6014 } 6015 6016 err = ipc_has_perm(msq, perms); 6017 return err; 6018 } 6019 6020 static int selinux_msg_queue_msgsnd(struct kern_ipc_perm *msq, struct msg_msg *msg, int msqflg) 6021 { 6022 struct ipc_security_struct *isec; 6023 struct msg_security_struct *msec; 6024 struct common_audit_data ad; 6025 u32 sid = current_sid(); 6026 int rc; 6027 6028 isec = msq->security; 6029 msec = msg->security; 6030 6031 /* 6032 * First time through, need to assign label to the message 6033 */ 6034 if (msec->sid == SECINITSID_UNLABELED) { 6035 /* 6036 * Compute new sid based on current process and 6037 * message queue this message will be stored in 6038 */ 6039 rc = security_transition_sid(&selinux_state, sid, isec->sid, 6040 SECCLASS_MSG, NULL, &msec->sid); 6041 if (rc) 6042 return rc; 6043 } 6044 6045 ad.type = LSM_AUDIT_DATA_IPC; 6046 ad.u.ipc_id = msq->key; 6047 6048 /* Can this process write to the queue? */ 6049 rc = avc_has_perm(&selinux_state, 6050 sid, isec->sid, SECCLASS_MSGQ, 6051 MSGQ__WRITE, &ad); 6052 if (!rc) 6053 /* Can this process send the message */ 6054 rc = avc_has_perm(&selinux_state, 6055 sid, msec->sid, SECCLASS_MSG, 6056 MSG__SEND, &ad); 6057 if (!rc) 6058 /* Can the message be put in the queue? */ 6059 rc = avc_has_perm(&selinux_state, 6060 msec->sid, isec->sid, SECCLASS_MSGQ, 6061 MSGQ__ENQUEUE, &ad); 6062 6063 return rc; 6064 } 6065 6066 static int selinux_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg, 6067 struct task_struct *target, 6068 long type, int mode) 6069 { 6070 struct ipc_security_struct *isec; 6071 struct msg_security_struct *msec; 6072 struct common_audit_data ad; 6073 u32 sid = task_sid(target); 6074 int rc; 6075 6076 isec = msq->security; 6077 msec = msg->security; 6078 6079 ad.type = LSM_AUDIT_DATA_IPC; 6080 ad.u.ipc_id = msq->key; 6081 6082 rc = avc_has_perm(&selinux_state, 6083 sid, isec->sid, 6084 SECCLASS_MSGQ, MSGQ__READ, &ad); 6085 if (!rc) 6086 rc = avc_has_perm(&selinux_state, 6087 sid, msec->sid, 6088 SECCLASS_MSG, MSG__RECEIVE, &ad); 6089 return rc; 6090 } 6091 6092 /* Shared Memory security operations */ 6093 static int selinux_shm_alloc_security(struct kern_ipc_perm *shp) 6094 { 6095 struct ipc_security_struct *isec; 6096 struct common_audit_data ad; 6097 u32 sid = current_sid(); 6098 int rc; 6099 6100 rc = ipc_alloc_security(shp, SECCLASS_SHM); 6101 if (rc) 6102 return rc; 6103 6104 isec = shp->security; 6105 6106 ad.type = LSM_AUDIT_DATA_IPC; 6107 ad.u.ipc_id = shp->key; 6108 6109 rc = avc_has_perm(&selinux_state, 6110 sid, isec->sid, SECCLASS_SHM, 6111 SHM__CREATE, &ad); 6112 if (rc) { 6113 ipc_free_security(shp); 6114 return rc; 6115 } 6116 return 0; 6117 } 6118 6119 static void selinux_shm_free_security(struct kern_ipc_perm *shp) 6120 { 6121 ipc_free_security(shp); 6122 } 6123 6124 static int selinux_shm_associate(struct kern_ipc_perm *shp, int shmflg) 6125 { 6126 struct ipc_security_struct *isec; 6127 struct common_audit_data ad; 6128 u32 sid = current_sid(); 6129 6130 isec = shp->security; 6131 6132 ad.type = LSM_AUDIT_DATA_IPC; 6133 ad.u.ipc_id = shp->key; 6134 6135 return avc_has_perm(&selinux_state, 6136 sid, isec->sid, SECCLASS_SHM, 6137 SHM__ASSOCIATE, &ad); 6138 } 6139 6140 /* Note, at this point, shp is locked down */ 6141 static int selinux_shm_shmctl(struct kern_ipc_perm *shp, int cmd) 6142 { 6143 int perms; 6144 int err; 6145 6146 switch (cmd) { 6147 case IPC_INFO: 6148 case SHM_INFO: 6149 /* No specific object, just general system-wide information. */ 6150 return avc_has_perm(&selinux_state, 6151 current_sid(), SECINITSID_KERNEL, 6152 SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL); 6153 case IPC_STAT: 6154 case SHM_STAT: 6155 perms = SHM__GETATTR | SHM__ASSOCIATE; 6156 break; 6157 case IPC_SET: 6158 perms = SHM__SETATTR; 6159 break; 6160 case SHM_LOCK: 6161 case SHM_UNLOCK: 6162 perms = SHM__LOCK; 6163 break; 6164 case IPC_RMID: 6165 perms = SHM__DESTROY; 6166 break; 6167 default: 6168 return 0; 6169 } 6170 6171 err = ipc_has_perm(shp, perms); 6172 return err; 6173 } 6174 6175 static int selinux_shm_shmat(struct kern_ipc_perm *shp, 6176 char __user *shmaddr, int shmflg) 6177 { 6178 u32 perms; 6179 6180 if (shmflg & SHM_RDONLY) 6181 perms = SHM__READ; 6182 else 6183 perms = SHM__READ | SHM__WRITE; 6184 6185 return ipc_has_perm(shp, perms); 6186 } 6187 6188 /* Semaphore security operations */ 6189 static int selinux_sem_alloc_security(struct kern_ipc_perm *sma) 6190 { 6191 struct ipc_security_struct *isec; 6192 struct common_audit_data ad; 6193 u32 sid = current_sid(); 6194 int rc; 6195 6196 rc = ipc_alloc_security(sma, SECCLASS_SEM); 6197 if (rc) 6198 return rc; 6199 6200 isec = sma->security; 6201 6202 ad.type = LSM_AUDIT_DATA_IPC; 6203 ad.u.ipc_id = sma->key; 6204 6205 rc = avc_has_perm(&selinux_state, 6206 sid, isec->sid, SECCLASS_SEM, 6207 SEM__CREATE, &ad); 6208 if (rc) { 6209 ipc_free_security(sma); 6210 return rc; 6211 } 6212 return 0; 6213 } 6214 6215 static void selinux_sem_free_security(struct kern_ipc_perm *sma) 6216 { 6217 ipc_free_security(sma); 6218 } 6219 6220 static int selinux_sem_associate(struct kern_ipc_perm *sma, int semflg) 6221 { 6222 struct ipc_security_struct *isec; 6223 struct common_audit_data ad; 6224 u32 sid = current_sid(); 6225 6226 isec = sma->security; 6227 6228 ad.type = LSM_AUDIT_DATA_IPC; 6229 ad.u.ipc_id = sma->key; 6230 6231 return avc_has_perm(&selinux_state, 6232 sid, isec->sid, SECCLASS_SEM, 6233 SEM__ASSOCIATE, &ad); 6234 } 6235 6236 /* Note, at this point, sma is locked down */ 6237 static int selinux_sem_semctl(struct kern_ipc_perm *sma, int cmd) 6238 { 6239 int err; 6240 u32 perms; 6241 6242 switch (cmd) { 6243 case IPC_INFO: 6244 case SEM_INFO: 6245 /* No specific object, just general system-wide information. */ 6246 return avc_has_perm(&selinux_state, 6247 current_sid(), SECINITSID_KERNEL, 6248 SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL); 6249 case GETPID: 6250 case GETNCNT: 6251 case GETZCNT: 6252 perms = SEM__GETATTR; 6253 break; 6254 case GETVAL: 6255 case GETALL: 6256 perms = SEM__READ; 6257 break; 6258 case SETVAL: 6259 case SETALL: 6260 perms = SEM__WRITE; 6261 break; 6262 case IPC_RMID: 6263 perms = SEM__DESTROY; 6264 break; 6265 case IPC_SET: 6266 perms = SEM__SETATTR; 6267 break; 6268 case IPC_STAT: 6269 case SEM_STAT: 6270 perms = SEM__GETATTR | SEM__ASSOCIATE; 6271 break; 6272 default: 6273 return 0; 6274 } 6275 6276 err = ipc_has_perm(sma, perms); 6277 return err; 6278 } 6279 6280 static int selinux_sem_semop(struct kern_ipc_perm *sma, 6281 struct sembuf *sops, unsigned nsops, int alter) 6282 { 6283 u32 perms; 6284 6285 if (alter) 6286 perms = SEM__READ | SEM__WRITE; 6287 else 6288 perms = SEM__READ; 6289 6290 return ipc_has_perm(sma, perms); 6291 } 6292 6293 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag) 6294 { 6295 u32 av = 0; 6296 6297 av = 0; 6298 if (flag & S_IRUGO) 6299 av |= IPC__UNIX_READ; 6300 if (flag & S_IWUGO) 6301 av |= IPC__UNIX_WRITE; 6302 6303 if (av == 0) 6304 return 0; 6305 6306 return ipc_has_perm(ipcp, av); 6307 } 6308 6309 static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid) 6310 { 6311 struct ipc_security_struct *isec = ipcp->security; 6312 *secid = isec->sid; 6313 } 6314 6315 static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode) 6316 { 6317 if (inode) 6318 inode_doinit_with_dentry(inode, dentry); 6319 } 6320 6321 static int selinux_getprocattr(struct task_struct *p, 6322 char *name, char **value) 6323 { 6324 const struct task_security_struct *__tsec; 6325 u32 sid; 6326 int error; 6327 unsigned len; 6328 6329 rcu_read_lock(); 6330 __tsec = __task_cred(p)->security; 6331 6332 if (current != p) { 6333 error = avc_has_perm(&selinux_state, 6334 current_sid(), __tsec->sid, 6335 SECCLASS_PROCESS, PROCESS__GETATTR, NULL); 6336 if (error) 6337 goto bad; 6338 } 6339 6340 if (!strcmp(name, "current")) 6341 sid = __tsec->sid; 6342 else if (!strcmp(name, "prev")) 6343 sid = __tsec->osid; 6344 else if (!strcmp(name, "exec")) 6345 sid = __tsec->exec_sid; 6346 else if (!strcmp(name, "fscreate")) 6347 sid = __tsec->create_sid; 6348 else if (!strcmp(name, "keycreate")) 6349 sid = __tsec->keycreate_sid; 6350 else if (!strcmp(name, "sockcreate")) 6351 sid = __tsec->sockcreate_sid; 6352 else { 6353 error = -EINVAL; 6354 goto bad; 6355 } 6356 rcu_read_unlock(); 6357 6358 if (!sid) 6359 return 0; 6360 6361 error = security_sid_to_context(&selinux_state, sid, value, &len); 6362 if (error) 6363 return error; 6364 return len; 6365 6366 bad: 6367 rcu_read_unlock(); 6368 return error; 6369 } 6370 6371 static int selinux_setprocattr(const char *name, void *value, size_t size) 6372 { 6373 struct task_security_struct *tsec; 6374 struct cred *new; 6375 u32 mysid = current_sid(), sid = 0, ptsid; 6376 int error; 6377 char *str = value; 6378 6379 /* 6380 * Basic control over ability to set these attributes at all. 6381 */ 6382 if (!strcmp(name, "exec")) 6383 error = avc_has_perm(&selinux_state, 6384 mysid, mysid, SECCLASS_PROCESS, 6385 PROCESS__SETEXEC, NULL); 6386 else if (!strcmp(name, "fscreate")) 6387 error = avc_has_perm(&selinux_state, 6388 mysid, mysid, SECCLASS_PROCESS, 6389 PROCESS__SETFSCREATE, NULL); 6390 else if (!strcmp(name, "keycreate")) 6391 error = avc_has_perm(&selinux_state, 6392 mysid, mysid, SECCLASS_PROCESS, 6393 PROCESS__SETKEYCREATE, NULL); 6394 else if (!strcmp(name, "sockcreate")) 6395 error = avc_has_perm(&selinux_state, 6396 mysid, mysid, SECCLASS_PROCESS, 6397 PROCESS__SETSOCKCREATE, NULL); 6398 else if (!strcmp(name, "current")) 6399 error = avc_has_perm(&selinux_state, 6400 mysid, mysid, SECCLASS_PROCESS, 6401 PROCESS__SETCURRENT, NULL); 6402 else 6403 error = -EINVAL; 6404 if (error) 6405 return error; 6406 6407 /* Obtain a SID for the context, if one was specified. */ 6408 if (size && str[0] && str[0] != '\n') { 6409 if (str[size-1] == '\n') { 6410 str[size-1] = 0; 6411 size--; 6412 } 6413 error = security_context_to_sid(&selinux_state, value, size, 6414 &sid, GFP_KERNEL); 6415 if (error == -EINVAL && !strcmp(name, "fscreate")) { 6416 if (!has_cap_mac_admin(true)) { 6417 struct audit_buffer *ab; 6418 size_t audit_size; 6419 6420 /* We strip a nul only if it is at the end, otherwise the 6421 * context contains a nul and we should audit that */ 6422 if (str[size - 1] == '\0') 6423 audit_size = size - 1; 6424 else 6425 audit_size = size; 6426 ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR); 6427 audit_log_format(ab, "op=fscreate invalid_context="); 6428 audit_log_n_untrustedstring(ab, value, audit_size); 6429 audit_log_end(ab); 6430 6431 return error; 6432 } 6433 error = security_context_to_sid_force( 6434 &selinux_state, 6435 value, size, &sid); 6436 } 6437 if (error) 6438 return error; 6439 } 6440 6441 new = prepare_creds(); 6442 if (!new) 6443 return -ENOMEM; 6444 6445 /* Permission checking based on the specified context is 6446 performed during the actual operation (execve, 6447 open/mkdir/...), when we know the full context of the 6448 operation. See selinux_bprm_set_creds for the execve 6449 checks and may_create for the file creation checks. The 6450 operation will then fail if the context is not permitted. */ 6451 tsec = new->security; 6452 if (!strcmp(name, "exec")) { 6453 tsec->exec_sid = sid; 6454 } else if (!strcmp(name, "fscreate")) { 6455 tsec->create_sid = sid; 6456 } else if (!strcmp(name, "keycreate")) { 6457 error = avc_has_perm(&selinux_state, 6458 mysid, sid, SECCLASS_KEY, KEY__CREATE, 6459 NULL); 6460 if (error) 6461 goto abort_change; 6462 tsec->keycreate_sid = sid; 6463 } else if (!strcmp(name, "sockcreate")) { 6464 tsec->sockcreate_sid = sid; 6465 } else if (!strcmp(name, "current")) { 6466 error = -EINVAL; 6467 if (sid == 0) 6468 goto abort_change; 6469 6470 /* Only allow single threaded processes to change context */ 6471 error = -EPERM; 6472 if (!current_is_single_threaded()) { 6473 error = security_bounded_transition(&selinux_state, 6474 tsec->sid, sid); 6475 if (error) 6476 goto abort_change; 6477 } 6478 6479 /* Check permissions for the transition. */ 6480 error = avc_has_perm(&selinux_state, 6481 tsec->sid, sid, SECCLASS_PROCESS, 6482 PROCESS__DYNTRANSITION, NULL); 6483 if (error) 6484 goto abort_change; 6485 6486 /* Check for ptracing, and update the task SID if ok. 6487 Otherwise, leave SID unchanged and fail. */ 6488 ptsid = ptrace_parent_sid(); 6489 if (ptsid != 0) { 6490 error = avc_has_perm(&selinux_state, 6491 ptsid, sid, SECCLASS_PROCESS, 6492 PROCESS__PTRACE, NULL); 6493 if (error) 6494 goto abort_change; 6495 } 6496 6497 tsec->sid = sid; 6498 } else { 6499 error = -EINVAL; 6500 goto abort_change; 6501 } 6502 6503 commit_creds(new); 6504 return size; 6505 6506 abort_change: 6507 abort_creds(new); 6508 return error; 6509 } 6510 6511 static int selinux_ismaclabel(const char *name) 6512 { 6513 return (strcmp(name, XATTR_SELINUX_SUFFIX) == 0); 6514 } 6515 6516 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen) 6517 { 6518 return security_sid_to_context(&selinux_state, secid, 6519 secdata, seclen); 6520 } 6521 6522 static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid) 6523 { 6524 return security_context_to_sid(&selinux_state, secdata, seclen, 6525 secid, GFP_KERNEL); 6526 } 6527 6528 static void selinux_release_secctx(char *secdata, u32 seclen) 6529 { 6530 kfree(secdata); 6531 } 6532 6533 static void selinux_inode_invalidate_secctx(struct inode *inode) 6534 { 6535 struct inode_security_struct *isec = inode->i_security; 6536 6537 spin_lock(&isec->lock); 6538 isec->initialized = LABEL_INVALID; 6539 spin_unlock(&isec->lock); 6540 } 6541 6542 /* 6543 * called with inode->i_mutex locked 6544 */ 6545 static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen) 6546 { 6547 return selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX, ctx, ctxlen, 0); 6548 } 6549 6550 /* 6551 * called with inode->i_mutex locked 6552 */ 6553 static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen) 6554 { 6555 return __vfs_setxattr_noperm(dentry, XATTR_NAME_SELINUX, ctx, ctxlen, 0); 6556 } 6557 6558 static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen) 6559 { 6560 int len = 0; 6561 len = selinux_inode_getsecurity(inode, XATTR_SELINUX_SUFFIX, 6562 ctx, true); 6563 if (len < 0) 6564 return len; 6565 *ctxlen = len; 6566 return 0; 6567 } 6568 #ifdef CONFIG_KEYS 6569 6570 static int selinux_key_alloc(struct key *k, const struct cred *cred, 6571 unsigned long flags) 6572 { 6573 const struct task_security_struct *tsec; 6574 struct key_security_struct *ksec; 6575 6576 ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL); 6577 if (!ksec) 6578 return -ENOMEM; 6579 6580 tsec = cred->security; 6581 if (tsec->keycreate_sid) 6582 ksec->sid = tsec->keycreate_sid; 6583 else 6584 ksec->sid = tsec->sid; 6585 6586 k->security = ksec; 6587 return 0; 6588 } 6589 6590 static void selinux_key_free(struct key *k) 6591 { 6592 struct key_security_struct *ksec = k->security; 6593 6594 k->security = NULL; 6595 kfree(ksec); 6596 } 6597 6598 static int selinux_key_permission(key_ref_t key_ref, 6599 const struct cred *cred, 6600 unsigned perm) 6601 { 6602 struct key *key; 6603 struct key_security_struct *ksec; 6604 u32 sid; 6605 6606 /* if no specific permissions are requested, we skip the 6607 permission check. No serious, additional covert channels 6608 appear to be created. */ 6609 if (perm == 0) 6610 return 0; 6611 6612 sid = cred_sid(cred); 6613 6614 key = key_ref_to_ptr(key_ref); 6615 ksec = key->security; 6616 6617 return avc_has_perm(&selinux_state, 6618 sid, ksec->sid, SECCLASS_KEY, perm, NULL); 6619 } 6620 6621 static int selinux_key_getsecurity(struct key *key, char **_buffer) 6622 { 6623 struct key_security_struct *ksec = key->security; 6624 char *context = NULL; 6625 unsigned len; 6626 int rc; 6627 6628 rc = security_sid_to_context(&selinux_state, ksec->sid, 6629 &context, &len); 6630 if (!rc) 6631 rc = len; 6632 *_buffer = context; 6633 return rc; 6634 } 6635 #endif 6636 6637 #ifdef CONFIG_SECURITY_INFINIBAND 6638 static int selinux_ib_pkey_access(void *ib_sec, u64 subnet_prefix, u16 pkey_val) 6639 { 6640 struct common_audit_data ad; 6641 int err; 6642 u32 sid = 0; 6643 struct ib_security_struct *sec = ib_sec; 6644 struct lsm_ibpkey_audit ibpkey; 6645 6646 err = sel_ib_pkey_sid(subnet_prefix, pkey_val, &sid); 6647 if (err) 6648 return err; 6649 6650 ad.type = LSM_AUDIT_DATA_IBPKEY; 6651 ibpkey.subnet_prefix = subnet_prefix; 6652 ibpkey.pkey = pkey_val; 6653 ad.u.ibpkey = &ibpkey; 6654 return avc_has_perm(&selinux_state, 6655 sec->sid, sid, 6656 SECCLASS_INFINIBAND_PKEY, 6657 INFINIBAND_PKEY__ACCESS, &ad); 6658 } 6659 6660 static int selinux_ib_endport_manage_subnet(void *ib_sec, const char *dev_name, 6661 u8 port_num) 6662 { 6663 struct common_audit_data ad; 6664 int err; 6665 u32 sid = 0; 6666 struct ib_security_struct *sec = ib_sec; 6667 struct lsm_ibendport_audit ibendport; 6668 6669 err = security_ib_endport_sid(&selinux_state, dev_name, port_num, 6670 &sid); 6671 6672 if (err) 6673 return err; 6674 6675 ad.type = LSM_AUDIT_DATA_IBENDPORT; 6676 strncpy(ibendport.dev_name, dev_name, sizeof(ibendport.dev_name)); 6677 ibendport.port = port_num; 6678 ad.u.ibendport = &ibendport; 6679 return avc_has_perm(&selinux_state, 6680 sec->sid, sid, 6681 SECCLASS_INFINIBAND_ENDPORT, 6682 INFINIBAND_ENDPORT__MANAGE_SUBNET, &ad); 6683 } 6684 6685 static int selinux_ib_alloc_security(void **ib_sec) 6686 { 6687 struct ib_security_struct *sec; 6688 6689 sec = kzalloc(sizeof(*sec), GFP_KERNEL); 6690 if (!sec) 6691 return -ENOMEM; 6692 sec->sid = current_sid(); 6693 6694 *ib_sec = sec; 6695 return 0; 6696 } 6697 6698 static void selinux_ib_free_security(void *ib_sec) 6699 { 6700 kfree(ib_sec); 6701 } 6702 #endif 6703 6704 #ifdef CONFIG_BPF_SYSCALL 6705 static int selinux_bpf(int cmd, union bpf_attr *attr, 6706 unsigned int size) 6707 { 6708 u32 sid = current_sid(); 6709 int ret; 6710 6711 switch (cmd) { 6712 case BPF_MAP_CREATE: 6713 ret = avc_has_perm(&selinux_state, 6714 sid, sid, SECCLASS_BPF, BPF__MAP_CREATE, 6715 NULL); 6716 break; 6717 case BPF_PROG_LOAD: 6718 ret = avc_has_perm(&selinux_state, 6719 sid, sid, SECCLASS_BPF, BPF__PROG_LOAD, 6720 NULL); 6721 break; 6722 default: 6723 ret = 0; 6724 break; 6725 } 6726 6727 return ret; 6728 } 6729 6730 static u32 bpf_map_fmode_to_av(fmode_t fmode) 6731 { 6732 u32 av = 0; 6733 6734 if (fmode & FMODE_READ) 6735 av |= BPF__MAP_READ; 6736 if (fmode & FMODE_WRITE) 6737 av |= BPF__MAP_WRITE; 6738 return av; 6739 } 6740 6741 /* This function will check the file pass through unix socket or binder to see 6742 * if it is a bpf related object. And apply correspinding checks on the bpf 6743 * object based on the type. The bpf maps and programs, not like other files and 6744 * socket, are using a shared anonymous inode inside the kernel as their inode. 6745 * So checking that inode cannot identify if the process have privilege to 6746 * access the bpf object and that's why we have to add this additional check in 6747 * selinux_file_receive and selinux_binder_transfer_files. 6748 */ 6749 static int bpf_fd_pass(struct file *file, u32 sid) 6750 { 6751 struct bpf_security_struct *bpfsec; 6752 struct bpf_prog *prog; 6753 struct bpf_map *map; 6754 int ret; 6755 6756 if (file->f_op == &bpf_map_fops) { 6757 map = file->private_data; 6758 bpfsec = map->security; 6759 ret = avc_has_perm(&selinux_state, 6760 sid, bpfsec->sid, SECCLASS_BPF, 6761 bpf_map_fmode_to_av(file->f_mode), NULL); 6762 if (ret) 6763 return ret; 6764 } else if (file->f_op == &bpf_prog_fops) { 6765 prog = file->private_data; 6766 bpfsec = prog->aux->security; 6767 ret = avc_has_perm(&selinux_state, 6768 sid, bpfsec->sid, SECCLASS_BPF, 6769 BPF__PROG_RUN, NULL); 6770 if (ret) 6771 return ret; 6772 } 6773 return 0; 6774 } 6775 6776 static int selinux_bpf_map(struct bpf_map *map, fmode_t fmode) 6777 { 6778 u32 sid = current_sid(); 6779 struct bpf_security_struct *bpfsec; 6780 6781 bpfsec = map->security; 6782 return avc_has_perm(&selinux_state, 6783 sid, bpfsec->sid, SECCLASS_BPF, 6784 bpf_map_fmode_to_av(fmode), NULL); 6785 } 6786 6787 static int selinux_bpf_prog(struct bpf_prog *prog) 6788 { 6789 u32 sid = current_sid(); 6790 struct bpf_security_struct *bpfsec; 6791 6792 bpfsec = prog->aux->security; 6793 return avc_has_perm(&selinux_state, 6794 sid, bpfsec->sid, SECCLASS_BPF, 6795 BPF__PROG_RUN, NULL); 6796 } 6797 6798 static int selinux_bpf_map_alloc(struct bpf_map *map) 6799 { 6800 struct bpf_security_struct *bpfsec; 6801 6802 bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL); 6803 if (!bpfsec) 6804 return -ENOMEM; 6805 6806 bpfsec->sid = current_sid(); 6807 map->security = bpfsec; 6808 6809 return 0; 6810 } 6811 6812 static void selinux_bpf_map_free(struct bpf_map *map) 6813 { 6814 struct bpf_security_struct *bpfsec = map->security; 6815 6816 map->security = NULL; 6817 kfree(bpfsec); 6818 } 6819 6820 static int selinux_bpf_prog_alloc(struct bpf_prog_aux *aux) 6821 { 6822 struct bpf_security_struct *bpfsec; 6823 6824 bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL); 6825 if (!bpfsec) 6826 return -ENOMEM; 6827 6828 bpfsec->sid = current_sid(); 6829 aux->security = bpfsec; 6830 6831 return 0; 6832 } 6833 6834 static void selinux_bpf_prog_free(struct bpf_prog_aux *aux) 6835 { 6836 struct bpf_security_struct *bpfsec = aux->security; 6837 6838 aux->security = NULL; 6839 kfree(bpfsec); 6840 } 6841 #endif 6842 6843 static struct security_hook_list selinux_hooks[] __lsm_ro_after_init = { 6844 LSM_HOOK_INIT(binder_set_context_mgr, selinux_binder_set_context_mgr), 6845 LSM_HOOK_INIT(binder_transaction, selinux_binder_transaction), 6846 LSM_HOOK_INIT(binder_transfer_binder, selinux_binder_transfer_binder), 6847 LSM_HOOK_INIT(binder_transfer_file, selinux_binder_transfer_file), 6848 6849 LSM_HOOK_INIT(ptrace_access_check, selinux_ptrace_access_check), 6850 LSM_HOOK_INIT(ptrace_traceme, selinux_ptrace_traceme), 6851 LSM_HOOK_INIT(capget, selinux_capget), 6852 LSM_HOOK_INIT(capset, selinux_capset), 6853 LSM_HOOK_INIT(capable, selinux_capable), 6854 LSM_HOOK_INIT(quotactl, selinux_quotactl), 6855 LSM_HOOK_INIT(quota_on, selinux_quota_on), 6856 LSM_HOOK_INIT(syslog, selinux_syslog), 6857 LSM_HOOK_INIT(vm_enough_memory, selinux_vm_enough_memory), 6858 6859 LSM_HOOK_INIT(netlink_send, selinux_netlink_send), 6860 6861 LSM_HOOK_INIT(bprm_set_creds, selinux_bprm_set_creds), 6862 LSM_HOOK_INIT(bprm_committing_creds, selinux_bprm_committing_creds), 6863 LSM_HOOK_INIT(bprm_committed_creds, selinux_bprm_committed_creds), 6864 6865 LSM_HOOK_INIT(sb_alloc_security, selinux_sb_alloc_security), 6866 LSM_HOOK_INIT(sb_free_security, selinux_sb_free_security), 6867 LSM_HOOK_INIT(sb_copy_data, selinux_sb_copy_data), 6868 LSM_HOOK_INIT(sb_remount, selinux_sb_remount), 6869 LSM_HOOK_INIT(sb_kern_mount, selinux_sb_kern_mount), 6870 LSM_HOOK_INIT(sb_show_options, selinux_sb_show_options), 6871 LSM_HOOK_INIT(sb_statfs, selinux_sb_statfs), 6872 LSM_HOOK_INIT(sb_mount, selinux_mount), 6873 LSM_HOOK_INIT(sb_umount, selinux_umount), 6874 LSM_HOOK_INIT(sb_set_mnt_opts, selinux_set_mnt_opts), 6875 LSM_HOOK_INIT(sb_clone_mnt_opts, selinux_sb_clone_mnt_opts), 6876 LSM_HOOK_INIT(sb_parse_opts_str, selinux_parse_opts_str), 6877 6878 LSM_HOOK_INIT(dentry_init_security, selinux_dentry_init_security), 6879 LSM_HOOK_INIT(dentry_create_files_as, selinux_dentry_create_files_as), 6880 6881 LSM_HOOK_INIT(inode_alloc_security, selinux_inode_alloc_security), 6882 LSM_HOOK_INIT(inode_free_security, selinux_inode_free_security), 6883 LSM_HOOK_INIT(inode_init_security, selinux_inode_init_security), 6884 LSM_HOOK_INIT(inode_create, selinux_inode_create), 6885 LSM_HOOK_INIT(inode_link, selinux_inode_link), 6886 LSM_HOOK_INIT(inode_unlink, selinux_inode_unlink), 6887 LSM_HOOK_INIT(inode_symlink, selinux_inode_symlink), 6888 LSM_HOOK_INIT(inode_mkdir, selinux_inode_mkdir), 6889 LSM_HOOK_INIT(inode_rmdir, selinux_inode_rmdir), 6890 LSM_HOOK_INIT(inode_mknod, selinux_inode_mknod), 6891 LSM_HOOK_INIT(inode_rename, selinux_inode_rename), 6892 LSM_HOOK_INIT(inode_readlink, selinux_inode_readlink), 6893 LSM_HOOK_INIT(inode_follow_link, selinux_inode_follow_link), 6894 LSM_HOOK_INIT(inode_permission, selinux_inode_permission), 6895 LSM_HOOK_INIT(inode_setattr, selinux_inode_setattr), 6896 LSM_HOOK_INIT(inode_getattr, selinux_inode_getattr), 6897 LSM_HOOK_INIT(inode_setxattr, selinux_inode_setxattr), 6898 LSM_HOOK_INIT(inode_post_setxattr, selinux_inode_post_setxattr), 6899 LSM_HOOK_INIT(inode_getxattr, selinux_inode_getxattr), 6900 LSM_HOOK_INIT(inode_listxattr, selinux_inode_listxattr), 6901 LSM_HOOK_INIT(inode_removexattr, selinux_inode_removexattr), 6902 LSM_HOOK_INIT(inode_getsecurity, selinux_inode_getsecurity), 6903 LSM_HOOK_INIT(inode_setsecurity, selinux_inode_setsecurity), 6904 LSM_HOOK_INIT(inode_listsecurity, selinux_inode_listsecurity), 6905 LSM_HOOK_INIT(inode_getsecid, selinux_inode_getsecid), 6906 LSM_HOOK_INIT(inode_copy_up, selinux_inode_copy_up), 6907 LSM_HOOK_INIT(inode_copy_up_xattr, selinux_inode_copy_up_xattr), 6908 6909 LSM_HOOK_INIT(file_permission, selinux_file_permission), 6910 LSM_HOOK_INIT(file_alloc_security, selinux_file_alloc_security), 6911 LSM_HOOK_INIT(file_free_security, selinux_file_free_security), 6912 LSM_HOOK_INIT(file_ioctl, selinux_file_ioctl), 6913 LSM_HOOK_INIT(mmap_file, selinux_mmap_file), 6914 LSM_HOOK_INIT(mmap_addr, selinux_mmap_addr), 6915 LSM_HOOK_INIT(file_mprotect, selinux_file_mprotect), 6916 LSM_HOOK_INIT(file_lock, selinux_file_lock), 6917 LSM_HOOK_INIT(file_fcntl, selinux_file_fcntl), 6918 LSM_HOOK_INIT(file_set_fowner, selinux_file_set_fowner), 6919 LSM_HOOK_INIT(file_send_sigiotask, selinux_file_send_sigiotask), 6920 LSM_HOOK_INIT(file_receive, selinux_file_receive), 6921 6922 LSM_HOOK_INIT(file_open, selinux_file_open), 6923 6924 LSM_HOOK_INIT(task_alloc, selinux_task_alloc), 6925 LSM_HOOK_INIT(cred_alloc_blank, selinux_cred_alloc_blank), 6926 LSM_HOOK_INIT(cred_free, selinux_cred_free), 6927 LSM_HOOK_INIT(cred_prepare, selinux_cred_prepare), 6928 LSM_HOOK_INIT(cred_transfer, selinux_cred_transfer), 6929 LSM_HOOK_INIT(kernel_act_as, selinux_kernel_act_as), 6930 LSM_HOOK_INIT(kernel_create_files_as, selinux_kernel_create_files_as), 6931 LSM_HOOK_INIT(kernel_module_request, selinux_kernel_module_request), 6932 LSM_HOOK_INIT(kernel_read_file, selinux_kernel_read_file), 6933 LSM_HOOK_INIT(task_setpgid, selinux_task_setpgid), 6934 LSM_HOOK_INIT(task_getpgid, selinux_task_getpgid), 6935 LSM_HOOK_INIT(task_getsid, selinux_task_getsid), 6936 LSM_HOOK_INIT(task_getsecid, selinux_task_getsecid), 6937 LSM_HOOK_INIT(task_setnice, selinux_task_setnice), 6938 LSM_HOOK_INIT(task_setioprio, selinux_task_setioprio), 6939 LSM_HOOK_INIT(task_getioprio, selinux_task_getioprio), 6940 LSM_HOOK_INIT(task_prlimit, selinux_task_prlimit), 6941 LSM_HOOK_INIT(task_setrlimit, selinux_task_setrlimit), 6942 LSM_HOOK_INIT(task_setscheduler, selinux_task_setscheduler), 6943 LSM_HOOK_INIT(task_getscheduler, selinux_task_getscheduler), 6944 LSM_HOOK_INIT(task_movememory, selinux_task_movememory), 6945 LSM_HOOK_INIT(task_kill, selinux_task_kill), 6946 LSM_HOOK_INIT(task_to_inode, selinux_task_to_inode), 6947 6948 LSM_HOOK_INIT(ipc_permission, selinux_ipc_permission), 6949 LSM_HOOK_INIT(ipc_getsecid, selinux_ipc_getsecid), 6950 6951 LSM_HOOK_INIT(msg_msg_alloc_security, selinux_msg_msg_alloc_security), 6952 LSM_HOOK_INIT(msg_msg_free_security, selinux_msg_msg_free_security), 6953 6954 LSM_HOOK_INIT(msg_queue_alloc_security, 6955 selinux_msg_queue_alloc_security), 6956 LSM_HOOK_INIT(msg_queue_free_security, selinux_msg_queue_free_security), 6957 LSM_HOOK_INIT(msg_queue_associate, selinux_msg_queue_associate), 6958 LSM_HOOK_INIT(msg_queue_msgctl, selinux_msg_queue_msgctl), 6959 LSM_HOOK_INIT(msg_queue_msgsnd, selinux_msg_queue_msgsnd), 6960 LSM_HOOK_INIT(msg_queue_msgrcv, selinux_msg_queue_msgrcv), 6961 6962 LSM_HOOK_INIT(shm_alloc_security, selinux_shm_alloc_security), 6963 LSM_HOOK_INIT(shm_free_security, selinux_shm_free_security), 6964 LSM_HOOK_INIT(shm_associate, selinux_shm_associate), 6965 LSM_HOOK_INIT(shm_shmctl, selinux_shm_shmctl), 6966 LSM_HOOK_INIT(shm_shmat, selinux_shm_shmat), 6967 6968 LSM_HOOK_INIT(sem_alloc_security, selinux_sem_alloc_security), 6969 LSM_HOOK_INIT(sem_free_security, selinux_sem_free_security), 6970 LSM_HOOK_INIT(sem_associate, selinux_sem_associate), 6971 LSM_HOOK_INIT(sem_semctl, selinux_sem_semctl), 6972 LSM_HOOK_INIT(sem_semop, selinux_sem_semop), 6973 6974 LSM_HOOK_INIT(d_instantiate, selinux_d_instantiate), 6975 6976 LSM_HOOK_INIT(getprocattr, selinux_getprocattr), 6977 LSM_HOOK_INIT(setprocattr, selinux_setprocattr), 6978 6979 LSM_HOOK_INIT(ismaclabel, selinux_ismaclabel), 6980 LSM_HOOK_INIT(secid_to_secctx, selinux_secid_to_secctx), 6981 LSM_HOOK_INIT(secctx_to_secid, selinux_secctx_to_secid), 6982 LSM_HOOK_INIT(release_secctx, selinux_release_secctx), 6983 LSM_HOOK_INIT(inode_invalidate_secctx, selinux_inode_invalidate_secctx), 6984 LSM_HOOK_INIT(inode_notifysecctx, selinux_inode_notifysecctx), 6985 LSM_HOOK_INIT(inode_setsecctx, selinux_inode_setsecctx), 6986 LSM_HOOK_INIT(inode_getsecctx, selinux_inode_getsecctx), 6987 6988 LSM_HOOK_INIT(unix_stream_connect, selinux_socket_unix_stream_connect), 6989 LSM_HOOK_INIT(unix_may_send, selinux_socket_unix_may_send), 6990 6991 LSM_HOOK_INIT(socket_create, selinux_socket_create), 6992 LSM_HOOK_INIT(socket_post_create, selinux_socket_post_create), 6993 LSM_HOOK_INIT(socket_bind, selinux_socket_bind), 6994 LSM_HOOK_INIT(socket_connect, selinux_socket_connect), 6995 LSM_HOOK_INIT(socket_listen, selinux_socket_listen), 6996 LSM_HOOK_INIT(socket_accept, selinux_socket_accept), 6997 LSM_HOOK_INIT(socket_sendmsg, selinux_socket_sendmsg), 6998 LSM_HOOK_INIT(socket_recvmsg, selinux_socket_recvmsg), 6999 LSM_HOOK_INIT(socket_getsockname, selinux_socket_getsockname), 7000 LSM_HOOK_INIT(socket_getpeername, selinux_socket_getpeername), 7001 LSM_HOOK_INIT(socket_getsockopt, selinux_socket_getsockopt), 7002 LSM_HOOK_INIT(socket_setsockopt, selinux_socket_setsockopt), 7003 LSM_HOOK_INIT(socket_shutdown, selinux_socket_shutdown), 7004 LSM_HOOK_INIT(socket_sock_rcv_skb, selinux_socket_sock_rcv_skb), 7005 LSM_HOOK_INIT(socket_getpeersec_stream, 7006 selinux_socket_getpeersec_stream), 7007 LSM_HOOK_INIT(socket_getpeersec_dgram, selinux_socket_getpeersec_dgram), 7008 LSM_HOOK_INIT(sk_alloc_security, selinux_sk_alloc_security), 7009 LSM_HOOK_INIT(sk_free_security, selinux_sk_free_security), 7010 LSM_HOOK_INIT(sk_clone_security, selinux_sk_clone_security), 7011 LSM_HOOK_INIT(sk_getsecid, selinux_sk_getsecid), 7012 LSM_HOOK_INIT(sock_graft, selinux_sock_graft), 7013 LSM_HOOK_INIT(sctp_assoc_request, selinux_sctp_assoc_request), 7014 LSM_HOOK_INIT(sctp_sk_clone, selinux_sctp_sk_clone), 7015 LSM_HOOK_INIT(sctp_bind_connect, selinux_sctp_bind_connect), 7016 LSM_HOOK_INIT(inet_conn_request, selinux_inet_conn_request), 7017 LSM_HOOK_INIT(inet_csk_clone, selinux_inet_csk_clone), 7018 LSM_HOOK_INIT(inet_conn_established, selinux_inet_conn_established), 7019 LSM_HOOK_INIT(secmark_relabel_packet, selinux_secmark_relabel_packet), 7020 LSM_HOOK_INIT(secmark_refcount_inc, selinux_secmark_refcount_inc), 7021 LSM_HOOK_INIT(secmark_refcount_dec, selinux_secmark_refcount_dec), 7022 LSM_HOOK_INIT(req_classify_flow, selinux_req_classify_flow), 7023 LSM_HOOK_INIT(tun_dev_alloc_security, selinux_tun_dev_alloc_security), 7024 LSM_HOOK_INIT(tun_dev_free_security, selinux_tun_dev_free_security), 7025 LSM_HOOK_INIT(tun_dev_create, selinux_tun_dev_create), 7026 LSM_HOOK_INIT(tun_dev_attach_queue, selinux_tun_dev_attach_queue), 7027 LSM_HOOK_INIT(tun_dev_attach, selinux_tun_dev_attach), 7028 LSM_HOOK_INIT(tun_dev_open, selinux_tun_dev_open), 7029 #ifdef CONFIG_SECURITY_INFINIBAND 7030 LSM_HOOK_INIT(ib_pkey_access, selinux_ib_pkey_access), 7031 LSM_HOOK_INIT(ib_endport_manage_subnet, 7032 selinux_ib_endport_manage_subnet), 7033 LSM_HOOK_INIT(ib_alloc_security, selinux_ib_alloc_security), 7034 LSM_HOOK_INIT(ib_free_security, selinux_ib_free_security), 7035 #endif 7036 #ifdef CONFIG_SECURITY_NETWORK_XFRM 7037 LSM_HOOK_INIT(xfrm_policy_alloc_security, selinux_xfrm_policy_alloc), 7038 LSM_HOOK_INIT(xfrm_policy_clone_security, selinux_xfrm_policy_clone), 7039 LSM_HOOK_INIT(xfrm_policy_free_security, selinux_xfrm_policy_free), 7040 LSM_HOOK_INIT(xfrm_policy_delete_security, selinux_xfrm_policy_delete), 7041 LSM_HOOK_INIT(xfrm_state_alloc, selinux_xfrm_state_alloc), 7042 LSM_HOOK_INIT(xfrm_state_alloc_acquire, 7043 selinux_xfrm_state_alloc_acquire), 7044 LSM_HOOK_INIT(xfrm_state_free_security, selinux_xfrm_state_free), 7045 LSM_HOOK_INIT(xfrm_state_delete_security, selinux_xfrm_state_delete), 7046 LSM_HOOK_INIT(xfrm_policy_lookup, selinux_xfrm_policy_lookup), 7047 LSM_HOOK_INIT(xfrm_state_pol_flow_match, 7048 selinux_xfrm_state_pol_flow_match), 7049 LSM_HOOK_INIT(xfrm_decode_session, selinux_xfrm_decode_session), 7050 #endif 7051 7052 #ifdef CONFIG_KEYS 7053 LSM_HOOK_INIT(key_alloc, selinux_key_alloc), 7054 LSM_HOOK_INIT(key_free, selinux_key_free), 7055 LSM_HOOK_INIT(key_permission, selinux_key_permission), 7056 LSM_HOOK_INIT(key_getsecurity, selinux_key_getsecurity), 7057 #endif 7058 7059 #ifdef CONFIG_AUDIT 7060 LSM_HOOK_INIT(audit_rule_init, selinux_audit_rule_init), 7061 LSM_HOOK_INIT(audit_rule_known, selinux_audit_rule_known), 7062 LSM_HOOK_INIT(audit_rule_match, selinux_audit_rule_match), 7063 LSM_HOOK_INIT(audit_rule_free, selinux_audit_rule_free), 7064 #endif 7065 7066 #ifdef CONFIG_BPF_SYSCALL 7067 LSM_HOOK_INIT(bpf, selinux_bpf), 7068 LSM_HOOK_INIT(bpf_map, selinux_bpf_map), 7069 LSM_HOOK_INIT(bpf_prog, selinux_bpf_prog), 7070 LSM_HOOK_INIT(bpf_map_alloc_security, selinux_bpf_map_alloc), 7071 LSM_HOOK_INIT(bpf_prog_alloc_security, selinux_bpf_prog_alloc), 7072 LSM_HOOK_INIT(bpf_map_free_security, selinux_bpf_map_free), 7073 LSM_HOOK_INIT(bpf_prog_free_security, selinux_bpf_prog_free), 7074 #endif 7075 }; 7076 7077 static __init int selinux_init(void) 7078 { 7079 if (!security_module_enable("selinux")) { 7080 selinux_enabled = 0; 7081 return 0; 7082 } 7083 7084 if (!selinux_enabled) { 7085 printk(KERN_INFO "SELinux: Disabled at boot.\n"); 7086 return 0; 7087 } 7088 7089 printk(KERN_INFO "SELinux: Initializing.\n"); 7090 7091 memset(&selinux_state, 0, sizeof(selinux_state)); 7092 enforcing_set(&selinux_state, selinux_enforcing_boot); 7093 selinux_state.checkreqprot = selinux_checkreqprot_boot; 7094 selinux_ss_init(&selinux_state.ss); 7095 selinux_avc_init(&selinux_state.avc); 7096 7097 /* Set the security state for the initial task. */ 7098 cred_init_security(); 7099 7100 default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC); 7101 7102 sel_inode_cache = kmem_cache_create("selinux_inode_security", 7103 sizeof(struct inode_security_struct), 7104 0, SLAB_PANIC, NULL); 7105 file_security_cache = kmem_cache_create("selinux_file_security", 7106 sizeof(struct file_security_struct), 7107 0, SLAB_PANIC, NULL); 7108 avc_init(); 7109 7110 avtab_cache_init(); 7111 7112 ebitmap_cache_init(); 7113 7114 hashtab_cache_init(); 7115 7116 security_add_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks), "selinux"); 7117 7118 if (avc_add_callback(selinux_netcache_avc_callback, AVC_CALLBACK_RESET)) 7119 panic("SELinux: Unable to register AVC netcache callback\n"); 7120 7121 if (avc_add_callback(selinux_lsm_notifier_avc_callback, AVC_CALLBACK_RESET)) 7122 panic("SELinux: Unable to register AVC LSM notifier callback\n"); 7123 7124 if (selinux_enforcing_boot) 7125 printk(KERN_DEBUG "SELinux: Starting in enforcing mode\n"); 7126 else 7127 printk(KERN_DEBUG "SELinux: Starting in permissive mode\n"); 7128 7129 return 0; 7130 } 7131 7132 static void delayed_superblock_init(struct super_block *sb, void *unused) 7133 { 7134 superblock_doinit(sb, NULL); 7135 } 7136 7137 void selinux_complete_init(void) 7138 { 7139 printk(KERN_DEBUG "SELinux: Completing initialization.\n"); 7140 7141 /* Set up any superblocks initialized prior to the policy load. */ 7142 printk(KERN_DEBUG "SELinux: Setting up existing superblocks.\n"); 7143 iterate_supers(delayed_superblock_init, NULL); 7144 } 7145 7146 /* SELinux requires early initialization in order to label 7147 all processes and objects when they are created. */ 7148 security_initcall(selinux_init); 7149 7150 #if defined(CONFIG_NETFILTER) 7151 7152 static const struct nf_hook_ops selinux_nf_ops[] = { 7153 { 7154 .hook = selinux_ipv4_postroute, 7155 .pf = NFPROTO_IPV4, 7156 .hooknum = NF_INET_POST_ROUTING, 7157 .priority = NF_IP_PRI_SELINUX_LAST, 7158 }, 7159 { 7160 .hook = selinux_ipv4_forward, 7161 .pf = NFPROTO_IPV4, 7162 .hooknum = NF_INET_FORWARD, 7163 .priority = NF_IP_PRI_SELINUX_FIRST, 7164 }, 7165 { 7166 .hook = selinux_ipv4_output, 7167 .pf = NFPROTO_IPV4, 7168 .hooknum = NF_INET_LOCAL_OUT, 7169 .priority = NF_IP_PRI_SELINUX_FIRST, 7170 }, 7171 #if IS_ENABLED(CONFIG_IPV6) 7172 { 7173 .hook = selinux_ipv6_postroute, 7174 .pf = NFPROTO_IPV6, 7175 .hooknum = NF_INET_POST_ROUTING, 7176 .priority = NF_IP6_PRI_SELINUX_LAST, 7177 }, 7178 { 7179 .hook = selinux_ipv6_forward, 7180 .pf = NFPROTO_IPV6, 7181 .hooknum = NF_INET_FORWARD, 7182 .priority = NF_IP6_PRI_SELINUX_FIRST, 7183 }, 7184 { 7185 .hook = selinux_ipv6_output, 7186 .pf = NFPROTO_IPV6, 7187 .hooknum = NF_INET_LOCAL_OUT, 7188 .priority = NF_IP6_PRI_SELINUX_FIRST, 7189 }, 7190 #endif /* IPV6 */ 7191 }; 7192 7193 static int __net_init selinux_nf_register(struct net *net) 7194 { 7195 return nf_register_net_hooks(net, selinux_nf_ops, 7196 ARRAY_SIZE(selinux_nf_ops)); 7197 } 7198 7199 static void __net_exit selinux_nf_unregister(struct net *net) 7200 { 7201 nf_unregister_net_hooks(net, selinux_nf_ops, 7202 ARRAY_SIZE(selinux_nf_ops)); 7203 } 7204 7205 static struct pernet_operations selinux_net_ops = { 7206 .init = selinux_nf_register, 7207 .exit = selinux_nf_unregister, 7208 }; 7209 7210 static int __init selinux_nf_ip_init(void) 7211 { 7212 int err; 7213 7214 if (!selinux_enabled) 7215 return 0; 7216 7217 printk(KERN_DEBUG "SELinux: Registering netfilter hooks\n"); 7218 7219 err = register_pernet_subsys(&selinux_net_ops); 7220 if (err) 7221 panic("SELinux: register_pernet_subsys: error %d\n", err); 7222 7223 return 0; 7224 } 7225 __initcall(selinux_nf_ip_init); 7226 7227 #ifdef CONFIG_SECURITY_SELINUX_DISABLE 7228 static void selinux_nf_ip_exit(void) 7229 { 7230 printk(KERN_DEBUG "SELinux: Unregistering netfilter hooks\n"); 7231 7232 unregister_pernet_subsys(&selinux_net_ops); 7233 } 7234 #endif 7235 7236 #else /* CONFIG_NETFILTER */ 7237 7238 #ifdef CONFIG_SECURITY_SELINUX_DISABLE 7239 #define selinux_nf_ip_exit() 7240 #endif 7241 7242 #endif /* CONFIG_NETFILTER */ 7243 7244 #ifdef CONFIG_SECURITY_SELINUX_DISABLE 7245 int selinux_disable(struct selinux_state *state) 7246 { 7247 if (state->initialized) { 7248 /* Not permitted after initial policy load. */ 7249 return -EINVAL; 7250 } 7251 7252 if (state->disabled) { 7253 /* Only do this once. */ 7254 return -EINVAL; 7255 } 7256 7257 state->disabled = 1; 7258 7259 printk(KERN_INFO "SELinux: Disabled at runtime.\n"); 7260 7261 selinux_enabled = 0; 7262 7263 security_delete_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks)); 7264 7265 /* Try to destroy the avc node cache */ 7266 avc_disable(); 7267 7268 /* Unregister netfilter hooks. */ 7269 selinux_nf_ip_exit(); 7270 7271 /* Unregister selinuxfs. */ 7272 exit_sel_fs(); 7273 7274 return 0; 7275 } 7276 #endif 7277