1 /* 2 * NSA Security-Enhanced Linux (SELinux) security module 3 * 4 * This file contains the SELinux hook function implementations. 5 * 6 * Authors: Stephen Smalley, <sds@epoch.ncsc.mil> 7 * Chris Vance, <cvance@nai.com> 8 * Wayne Salamon, <wsalamon@nai.com> 9 * James Morris <jmorris@redhat.com> 10 * 11 * Copyright (C) 2001,2002 Networks Associates Technology, Inc. 12 * Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com> 13 * Eric Paris <eparis@redhat.com> 14 * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc. 15 * <dgoeddel@trustedcs.com> 16 * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P. 17 * Paul Moore <paul.moore@hp.com> 18 * Copyright (C) 2007 Hitachi Software Engineering Co., Ltd. 19 * Yuichi Nakamura <ynakam@hitachisoft.jp> 20 * 21 * This program is free software; you can redistribute it and/or modify 22 * it under the terms of the GNU General Public License version 2, 23 * as published by the Free Software Foundation. 24 */ 25 26 #include <linux/init.h> 27 #include <linux/kernel.h> 28 #include <linux/tracehook.h> 29 #include <linux/errno.h> 30 #include <linux/sched.h> 31 #include <linux/security.h> 32 #include <linux/xattr.h> 33 #include <linux/capability.h> 34 #include <linux/unistd.h> 35 #include <linux/mm.h> 36 #include <linux/mman.h> 37 #include <linux/slab.h> 38 #include <linux/pagemap.h> 39 #include <linux/swap.h> 40 #include <linux/spinlock.h> 41 #include <linux/syscalls.h> 42 #include <linux/file.h> 43 #include <linux/fdtable.h> 44 #include <linux/namei.h> 45 #include <linux/mount.h> 46 #include <linux/proc_fs.h> 47 #include <linux/netfilter_ipv4.h> 48 #include <linux/netfilter_ipv6.h> 49 #include <linux/tty.h> 50 #include <net/icmp.h> 51 #include <net/ip.h> /* for local_port_range[] */ 52 #include <net/tcp.h> /* struct or_callable used in sock_rcv_skb */ 53 #include <net/net_namespace.h> 54 #include <net/netlabel.h> 55 #include <linux/uaccess.h> 56 #include <asm/ioctls.h> 57 #include <asm/atomic.h> 58 #include <linux/bitops.h> 59 #include <linux/interrupt.h> 60 #include <linux/netdevice.h> /* for network interface checks */ 61 #include <linux/netlink.h> 62 #include <linux/tcp.h> 63 #include <linux/udp.h> 64 #include <linux/dccp.h> 65 #include <linux/quota.h> 66 #include <linux/un.h> /* for Unix socket types */ 67 #include <net/af_unix.h> /* for Unix socket types */ 68 #include <linux/parser.h> 69 #include <linux/nfs_mount.h> 70 #include <net/ipv6.h> 71 #include <linux/hugetlb.h> 72 #include <linux/personality.h> 73 #include <linux/sysctl.h> 74 #include <linux/audit.h> 75 #include <linux/string.h> 76 #include <linux/selinux.h> 77 #include <linux/mutex.h> 78 79 #include "avc.h" 80 #include "objsec.h" 81 #include "netif.h" 82 #include "netnode.h" 83 #include "netport.h" 84 #include "xfrm.h" 85 #include "netlabel.h" 86 #include "audit.h" 87 88 #define XATTR_SELINUX_SUFFIX "selinux" 89 #define XATTR_NAME_SELINUX XATTR_SECURITY_PREFIX XATTR_SELINUX_SUFFIX 90 91 #define NUM_SEL_MNT_OPTS 4 92 93 extern unsigned int policydb_loaded_version; 94 extern int selinux_nlmsg_lookup(u16 sclass, u16 nlmsg_type, u32 *perm); 95 extern int selinux_compat_net; 96 extern struct security_operations *security_ops; 97 98 /* SECMARK reference count */ 99 atomic_t selinux_secmark_refcount = ATOMIC_INIT(0); 100 101 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP 102 int selinux_enforcing; 103 104 static int __init enforcing_setup(char *str) 105 { 106 unsigned long enforcing; 107 if (!strict_strtoul(str, 0, &enforcing)) 108 selinux_enforcing = enforcing ? 1 : 0; 109 return 1; 110 } 111 __setup("enforcing=", enforcing_setup); 112 #endif 113 114 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM 115 int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE; 116 117 static int __init selinux_enabled_setup(char *str) 118 { 119 unsigned long enabled; 120 if (!strict_strtoul(str, 0, &enabled)) 121 selinux_enabled = enabled ? 1 : 0; 122 return 1; 123 } 124 __setup("selinux=", selinux_enabled_setup); 125 #else 126 int selinux_enabled = 1; 127 #endif 128 129 130 /* 131 * Minimal support for a secondary security module, 132 * just to allow the use of the capability module. 133 */ 134 static struct security_operations *secondary_ops; 135 136 /* Lists of inode and superblock security structures initialized 137 before the policy was loaded. */ 138 static LIST_HEAD(superblock_security_head); 139 static DEFINE_SPINLOCK(sb_security_lock); 140 141 static struct kmem_cache *sel_inode_cache; 142 143 /** 144 * selinux_secmark_enabled - Check to see if SECMARK is currently enabled 145 * 146 * Description: 147 * This function checks the SECMARK reference counter to see if any SECMARK 148 * targets are currently configured, if the reference counter is greater than 149 * zero SECMARK is considered to be enabled. Returns true (1) if SECMARK is 150 * enabled, false (0) if SECMARK is disabled. 151 * 152 */ 153 static int selinux_secmark_enabled(void) 154 { 155 return (atomic_read(&selinux_secmark_refcount) > 0); 156 } 157 158 /* Allocate and free functions for each kind of security blob. */ 159 160 static int task_alloc_security(struct task_struct *task) 161 { 162 struct task_security_struct *tsec; 163 164 tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL); 165 if (!tsec) 166 return -ENOMEM; 167 168 tsec->osid = tsec->sid = SECINITSID_UNLABELED; 169 task->security = tsec; 170 171 return 0; 172 } 173 174 static void task_free_security(struct task_struct *task) 175 { 176 struct task_security_struct *tsec = task->security; 177 task->security = NULL; 178 kfree(tsec); 179 } 180 181 static int inode_alloc_security(struct inode *inode) 182 { 183 struct task_security_struct *tsec = current->security; 184 struct inode_security_struct *isec; 185 186 isec = kmem_cache_zalloc(sel_inode_cache, GFP_NOFS); 187 if (!isec) 188 return -ENOMEM; 189 190 mutex_init(&isec->lock); 191 INIT_LIST_HEAD(&isec->list); 192 isec->inode = inode; 193 isec->sid = SECINITSID_UNLABELED; 194 isec->sclass = SECCLASS_FILE; 195 isec->task_sid = tsec->sid; 196 inode->i_security = isec; 197 198 return 0; 199 } 200 201 static void inode_free_security(struct inode *inode) 202 { 203 struct inode_security_struct *isec = inode->i_security; 204 struct superblock_security_struct *sbsec = inode->i_sb->s_security; 205 206 spin_lock(&sbsec->isec_lock); 207 if (!list_empty(&isec->list)) 208 list_del_init(&isec->list); 209 spin_unlock(&sbsec->isec_lock); 210 211 inode->i_security = NULL; 212 kmem_cache_free(sel_inode_cache, isec); 213 } 214 215 static int file_alloc_security(struct file *file) 216 { 217 struct task_security_struct *tsec = current->security; 218 struct file_security_struct *fsec; 219 220 fsec = kzalloc(sizeof(struct file_security_struct), GFP_KERNEL); 221 if (!fsec) 222 return -ENOMEM; 223 224 fsec->sid = tsec->sid; 225 fsec->fown_sid = tsec->sid; 226 file->f_security = fsec; 227 228 return 0; 229 } 230 231 static void file_free_security(struct file *file) 232 { 233 struct file_security_struct *fsec = file->f_security; 234 file->f_security = NULL; 235 kfree(fsec); 236 } 237 238 static int superblock_alloc_security(struct super_block *sb) 239 { 240 struct superblock_security_struct *sbsec; 241 242 sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL); 243 if (!sbsec) 244 return -ENOMEM; 245 246 mutex_init(&sbsec->lock); 247 INIT_LIST_HEAD(&sbsec->list); 248 INIT_LIST_HEAD(&sbsec->isec_head); 249 spin_lock_init(&sbsec->isec_lock); 250 sbsec->sb = sb; 251 sbsec->sid = SECINITSID_UNLABELED; 252 sbsec->def_sid = SECINITSID_FILE; 253 sbsec->mntpoint_sid = SECINITSID_UNLABELED; 254 sb->s_security = sbsec; 255 256 return 0; 257 } 258 259 static void superblock_free_security(struct super_block *sb) 260 { 261 struct superblock_security_struct *sbsec = sb->s_security; 262 263 spin_lock(&sb_security_lock); 264 if (!list_empty(&sbsec->list)) 265 list_del_init(&sbsec->list); 266 spin_unlock(&sb_security_lock); 267 268 sb->s_security = NULL; 269 kfree(sbsec); 270 } 271 272 static int sk_alloc_security(struct sock *sk, int family, gfp_t priority) 273 { 274 struct sk_security_struct *ssec; 275 276 ssec = kzalloc(sizeof(*ssec), priority); 277 if (!ssec) 278 return -ENOMEM; 279 280 ssec->peer_sid = SECINITSID_UNLABELED; 281 ssec->sid = SECINITSID_UNLABELED; 282 sk->sk_security = ssec; 283 284 selinux_netlbl_sk_security_reset(ssec, family); 285 286 return 0; 287 } 288 289 static void sk_free_security(struct sock *sk) 290 { 291 struct sk_security_struct *ssec = sk->sk_security; 292 293 sk->sk_security = NULL; 294 kfree(ssec); 295 } 296 297 /* The security server must be initialized before 298 any labeling or access decisions can be provided. */ 299 extern int ss_initialized; 300 301 /* The file system's label must be initialized prior to use. */ 302 303 static char *labeling_behaviors[6] = { 304 "uses xattr", 305 "uses transition SIDs", 306 "uses task SIDs", 307 "uses genfs_contexts", 308 "not configured for labeling", 309 "uses mountpoint labeling", 310 }; 311 312 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry); 313 314 static inline int inode_doinit(struct inode *inode) 315 { 316 return inode_doinit_with_dentry(inode, NULL); 317 } 318 319 enum { 320 Opt_error = -1, 321 Opt_context = 1, 322 Opt_fscontext = 2, 323 Opt_defcontext = 3, 324 Opt_rootcontext = 4, 325 }; 326 327 static match_table_t tokens = { 328 {Opt_context, CONTEXT_STR "%s"}, 329 {Opt_fscontext, FSCONTEXT_STR "%s"}, 330 {Opt_defcontext, DEFCONTEXT_STR "%s"}, 331 {Opt_rootcontext, ROOTCONTEXT_STR "%s"}, 332 {Opt_error, NULL}, 333 }; 334 335 #define SEL_MOUNT_FAIL_MSG "SELinux: duplicate or incompatible mount options\n" 336 337 static int may_context_mount_sb_relabel(u32 sid, 338 struct superblock_security_struct *sbsec, 339 struct task_security_struct *tsec) 340 { 341 int rc; 342 343 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM, 344 FILESYSTEM__RELABELFROM, NULL); 345 if (rc) 346 return rc; 347 348 rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM, 349 FILESYSTEM__RELABELTO, NULL); 350 return rc; 351 } 352 353 static int may_context_mount_inode_relabel(u32 sid, 354 struct superblock_security_struct *sbsec, 355 struct task_security_struct *tsec) 356 { 357 int rc; 358 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM, 359 FILESYSTEM__RELABELFROM, NULL); 360 if (rc) 361 return rc; 362 363 rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, 364 FILESYSTEM__ASSOCIATE, NULL); 365 return rc; 366 } 367 368 static int sb_finish_set_opts(struct super_block *sb) 369 { 370 struct superblock_security_struct *sbsec = sb->s_security; 371 struct dentry *root = sb->s_root; 372 struct inode *root_inode = root->d_inode; 373 int rc = 0; 374 375 if (sbsec->behavior == SECURITY_FS_USE_XATTR) { 376 /* Make sure that the xattr handler exists and that no 377 error other than -ENODATA is returned by getxattr on 378 the root directory. -ENODATA is ok, as this may be 379 the first boot of the SELinux kernel before we have 380 assigned xattr values to the filesystem. */ 381 if (!root_inode->i_op->getxattr) { 382 printk(KERN_WARNING "SELinux: (dev %s, type %s) has no " 383 "xattr support\n", sb->s_id, sb->s_type->name); 384 rc = -EOPNOTSUPP; 385 goto out; 386 } 387 rc = root_inode->i_op->getxattr(root, XATTR_NAME_SELINUX, NULL, 0); 388 if (rc < 0 && rc != -ENODATA) { 389 if (rc == -EOPNOTSUPP) 390 printk(KERN_WARNING "SELinux: (dev %s, type " 391 "%s) has no security xattr handler\n", 392 sb->s_id, sb->s_type->name); 393 else 394 printk(KERN_WARNING "SELinux: (dev %s, type " 395 "%s) getxattr errno %d\n", sb->s_id, 396 sb->s_type->name, -rc); 397 goto out; 398 } 399 } 400 401 sbsec->initialized = 1; 402 403 if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors)) 404 printk(KERN_ERR "SELinux: initialized (dev %s, type %s), unknown behavior\n", 405 sb->s_id, sb->s_type->name); 406 else 407 printk(KERN_DEBUG "SELinux: initialized (dev %s, type %s), %s\n", 408 sb->s_id, sb->s_type->name, 409 labeling_behaviors[sbsec->behavior-1]); 410 411 /* Initialize the root inode. */ 412 rc = inode_doinit_with_dentry(root_inode, root); 413 414 /* Initialize any other inodes associated with the superblock, e.g. 415 inodes created prior to initial policy load or inodes created 416 during get_sb by a pseudo filesystem that directly 417 populates itself. */ 418 spin_lock(&sbsec->isec_lock); 419 next_inode: 420 if (!list_empty(&sbsec->isec_head)) { 421 struct inode_security_struct *isec = 422 list_entry(sbsec->isec_head.next, 423 struct inode_security_struct, list); 424 struct inode *inode = isec->inode; 425 spin_unlock(&sbsec->isec_lock); 426 inode = igrab(inode); 427 if (inode) { 428 if (!IS_PRIVATE(inode)) 429 inode_doinit(inode); 430 iput(inode); 431 } 432 spin_lock(&sbsec->isec_lock); 433 list_del_init(&isec->list); 434 goto next_inode; 435 } 436 spin_unlock(&sbsec->isec_lock); 437 out: 438 return rc; 439 } 440 441 /* 442 * This function should allow an FS to ask what it's mount security 443 * options were so it can use those later for submounts, displaying 444 * mount options, or whatever. 445 */ 446 static int selinux_get_mnt_opts(const struct super_block *sb, 447 struct security_mnt_opts *opts) 448 { 449 int rc = 0, i; 450 struct superblock_security_struct *sbsec = sb->s_security; 451 char *context = NULL; 452 u32 len; 453 char tmp; 454 455 security_init_mnt_opts(opts); 456 457 if (!sbsec->initialized) 458 return -EINVAL; 459 460 if (!ss_initialized) 461 return -EINVAL; 462 463 /* 464 * if we ever use sbsec flags for anything other than tracking mount 465 * settings this is going to need a mask 466 */ 467 tmp = sbsec->flags; 468 /* count the number of mount options for this sb */ 469 for (i = 0; i < 8; i++) { 470 if (tmp & 0x01) 471 opts->num_mnt_opts++; 472 tmp >>= 1; 473 } 474 475 opts->mnt_opts = kcalloc(opts->num_mnt_opts, sizeof(char *), GFP_ATOMIC); 476 if (!opts->mnt_opts) { 477 rc = -ENOMEM; 478 goto out_free; 479 } 480 481 opts->mnt_opts_flags = kcalloc(opts->num_mnt_opts, sizeof(int), GFP_ATOMIC); 482 if (!opts->mnt_opts_flags) { 483 rc = -ENOMEM; 484 goto out_free; 485 } 486 487 i = 0; 488 if (sbsec->flags & FSCONTEXT_MNT) { 489 rc = security_sid_to_context(sbsec->sid, &context, &len); 490 if (rc) 491 goto out_free; 492 opts->mnt_opts[i] = context; 493 opts->mnt_opts_flags[i++] = FSCONTEXT_MNT; 494 } 495 if (sbsec->flags & CONTEXT_MNT) { 496 rc = security_sid_to_context(sbsec->mntpoint_sid, &context, &len); 497 if (rc) 498 goto out_free; 499 opts->mnt_opts[i] = context; 500 opts->mnt_opts_flags[i++] = CONTEXT_MNT; 501 } 502 if (sbsec->flags & DEFCONTEXT_MNT) { 503 rc = security_sid_to_context(sbsec->def_sid, &context, &len); 504 if (rc) 505 goto out_free; 506 opts->mnt_opts[i] = context; 507 opts->mnt_opts_flags[i++] = DEFCONTEXT_MNT; 508 } 509 if (sbsec->flags & ROOTCONTEXT_MNT) { 510 struct inode *root = sbsec->sb->s_root->d_inode; 511 struct inode_security_struct *isec = root->i_security; 512 513 rc = security_sid_to_context(isec->sid, &context, &len); 514 if (rc) 515 goto out_free; 516 opts->mnt_opts[i] = context; 517 opts->mnt_opts_flags[i++] = ROOTCONTEXT_MNT; 518 } 519 520 BUG_ON(i != opts->num_mnt_opts); 521 522 return 0; 523 524 out_free: 525 security_free_mnt_opts(opts); 526 return rc; 527 } 528 529 static int bad_option(struct superblock_security_struct *sbsec, char flag, 530 u32 old_sid, u32 new_sid) 531 { 532 /* check if the old mount command had the same options */ 533 if (sbsec->initialized) 534 if (!(sbsec->flags & flag) || 535 (old_sid != new_sid)) 536 return 1; 537 538 /* check if we were passed the same options twice, 539 * aka someone passed context=a,context=b 540 */ 541 if (!sbsec->initialized) 542 if (sbsec->flags & flag) 543 return 1; 544 return 0; 545 } 546 547 /* 548 * Allow filesystems with binary mount data to explicitly set mount point 549 * labeling information. 550 */ 551 static int selinux_set_mnt_opts(struct super_block *sb, 552 struct security_mnt_opts *opts) 553 { 554 int rc = 0, i; 555 struct task_security_struct *tsec = current->security; 556 struct superblock_security_struct *sbsec = sb->s_security; 557 const char *name = sb->s_type->name; 558 struct inode *inode = sbsec->sb->s_root->d_inode; 559 struct inode_security_struct *root_isec = inode->i_security; 560 u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0; 561 u32 defcontext_sid = 0; 562 char **mount_options = opts->mnt_opts; 563 int *flags = opts->mnt_opts_flags; 564 int num_opts = opts->num_mnt_opts; 565 566 mutex_lock(&sbsec->lock); 567 568 if (!ss_initialized) { 569 if (!num_opts) { 570 /* Defer initialization until selinux_complete_init, 571 after the initial policy is loaded and the security 572 server is ready to handle calls. */ 573 spin_lock(&sb_security_lock); 574 if (list_empty(&sbsec->list)) 575 list_add(&sbsec->list, &superblock_security_head); 576 spin_unlock(&sb_security_lock); 577 goto out; 578 } 579 rc = -EINVAL; 580 printk(KERN_WARNING "SELinux: Unable to set superblock options " 581 "before the security server is initialized\n"); 582 goto out; 583 } 584 585 /* 586 * Binary mount data FS will come through this function twice. Once 587 * from an explicit call and once from the generic calls from the vfs. 588 * Since the generic VFS calls will not contain any security mount data 589 * we need to skip the double mount verification. 590 * 591 * This does open a hole in which we will not notice if the first 592 * mount using this sb set explict options and a second mount using 593 * this sb does not set any security options. (The first options 594 * will be used for both mounts) 595 */ 596 if (sbsec->initialized && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA) 597 && (num_opts == 0)) 598 goto out; 599 600 /* 601 * parse the mount options, check if they are valid sids. 602 * also check if someone is trying to mount the same sb more 603 * than once with different security options. 604 */ 605 for (i = 0; i < num_opts; i++) { 606 u32 sid; 607 rc = security_context_to_sid(mount_options[i], 608 strlen(mount_options[i]), &sid); 609 if (rc) { 610 printk(KERN_WARNING "SELinux: security_context_to_sid" 611 "(%s) failed for (dev %s, type %s) errno=%d\n", 612 mount_options[i], sb->s_id, name, rc); 613 goto out; 614 } 615 switch (flags[i]) { 616 case FSCONTEXT_MNT: 617 fscontext_sid = sid; 618 619 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, 620 fscontext_sid)) 621 goto out_double_mount; 622 623 sbsec->flags |= FSCONTEXT_MNT; 624 break; 625 case CONTEXT_MNT: 626 context_sid = sid; 627 628 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, 629 context_sid)) 630 goto out_double_mount; 631 632 sbsec->flags |= CONTEXT_MNT; 633 break; 634 case ROOTCONTEXT_MNT: 635 rootcontext_sid = sid; 636 637 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, 638 rootcontext_sid)) 639 goto out_double_mount; 640 641 sbsec->flags |= ROOTCONTEXT_MNT; 642 643 break; 644 case DEFCONTEXT_MNT: 645 defcontext_sid = sid; 646 647 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, 648 defcontext_sid)) 649 goto out_double_mount; 650 651 sbsec->flags |= DEFCONTEXT_MNT; 652 653 break; 654 default: 655 rc = -EINVAL; 656 goto out; 657 } 658 } 659 660 if (sbsec->initialized) { 661 /* previously mounted with options, but not on this attempt? */ 662 if (sbsec->flags && !num_opts) 663 goto out_double_mount; 664 rc = 0; 665 goto out; 666 } 667 668 if (strcmp(sb->s_type->name, "proc") == 0) 669 sbsec->proc = 1; 670 671 /* Determine the labeling behavior to use for this filesystem type. */ 672 rc = security_fs_use(sb->s_type->name, &sbsec->behavior, &sbsec->sid); 673 if (rc) { 674 printk(KERN_WARNING "%s: security_fs_use(%s) returned %d\n", 675 __func__, sb->s_type->name, rc); 676 goto out; 677 } 678 679 /* sets the context of the superblock for the fs being mounted. */ 680 if (fscontext_sid) { 681 682 rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, tsec); 683 if (rc) 684 goto out; 685 686 sbsec->sid = fscontext_sid; 687 } 688 689 /* 690 * Switch to using mount point labeling behavior. 691 * sets the label used on all file below the mountpoint, and will set 692 * the superblock context if not already set. 693 */ 694 if (context_sid) { 695 if (!fscontext_sid) { 696 rc = may_context_mount_sb_relabel(context_sid, sbsec, tsec); 697 if (rc) 698 goto out; 699 sbsec->sid = context_sid; 700 } else { 701 rc = may_context_mount_inode_relabel(context_sid, sbsec, tsec); 702 if (rc) 703 goto out; 704 } 705 if (!rootcontext_sid) 706 rootcontext_sid = context_sid; 707 708 sbsec->mntpoint_sid = context_sid; 709 sbsec->behavior = SECURITY_FS_USE_MNTPOINT; 710 } 711 712 if (rootcontext_sid) { 713 rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec, tsec); 714 if (rc) 715 goto out; 716 717 root_isec->sid = rootcontext_sid; 718 root_isec->initialized = 1; 719 } 720 721 if (defcontext_sid) { 722 if (sbsec->behavior != SECURITY_FS_USE_XATTR) { 723 rc = -EINVAL; 724 printk(KERN_WARNING "SELinux: defcontext option is " 725 "invalid for this filesystem type\n"); 726 goto out; 727 } 728 729 if (defcontext_sid != sbsec->def_sid) { 730 rc = may_context_mount_inode_relabel(defcontext_sid, 731 sbsec, tsec); 732 if (rc) 733 goto out; 734 } 735 736 sbsec->def_sid = defcontext_sid; 737 } 738 739 rc = sb_finish_set_opts(sb); 740 out: 741 mutex_unlock(&sbsec->lock); 742 return rc; 743 out_double_mount: 744 rc = -EINVAL; 745 printk(KERN_WARNING "SELinux: mount invalid. Same superblock, different " 746 "security settings for (dev %s, type %s)\n", sb->s_id, name); 747 goto out; 748 } 749 750 static void selinux_sb_clone_mnt_opts(const struct super_block *oldsb, 751 struct super_block *newsb) 752 { 753 const struct superblock_security_struct *oldsbsec = oldsb->s_security; 754 struct superblock_security_struct *newsbsec = newsb->s_security; 755 756 int set_fscontext = (oldsbsec->flags & FSCONTEXT_MNT); 757 int set_context = (oldsbsec->flags & CONTEXT_MNT); 758 int set_rootcontext = (oldsbsec->flags & ROOTCONTEXT_MNT); 759 760 /* 761 * if the parent was able to be mounted it clearly had no special lsm 762 * mount options. thus we can safely put this sb on the list and deal 763 * with it later 764 */ 765 if (!ss_initialized) { 766 spin_lock(&sb_security_lock); 767 if (list_empty(&newsbsec->list)) 768 list_add(&newsbsec->list, &superblock_security_head); 769 spin_unlock(&sb_security_lock); 770 return; 771 } 772 773 /* how can we clone if the old one wasn't set up?? */ 774 BUG_ON(!oldsbsec->initialized); 775 776 /* if fs is reusing a sb, just let its options stand... */ 777 if (newsbsec->initialized) 778 return; 779 780 mutex_lock(&newsbsec->lock); 781 782 newsbsec->flags = oldsbsec->flags; 783 784 newsbsec->sid = oldsbsec->sid; 785 newsbsec->def_sid = oldsbsec->def_sid; 786 newsbsec->behavior = oldsbsec->behavior; 787 788 if (set_context) { 789 u32 sid = oldsbsec->mntpoint_sid; 790 791 if (!set_fscontext) 792 newsbsec->sid = sid; 793 if (!set_rootcontext) { 794 struct inode *newinode = newsb->s_root->d_inode; 795 struct inode_security_struct *newisec = newinode->i_security; 796 newisec->sid = sid; 797 } 798 newsbsec->mntpoint_sid = sid; 799 } 800 if (set_rootcontext) { 801 const struct inode *oldinode = oldsb->s_root->d_inode; 802 const struct inode_security_struct *oldisec = oldinode->i_security; 803 struct inode *newinode = newsb->s_root->d_inode; 804 struct inode_security_struct *newisec = newinode->i_security; 805 806 newisec->sid = oldisec->sid; 807 } 808 809 sb_finish_set_opts(newsb); 810 mutex_unlock(&newsbsec->lock); 811 } 812 813 static int selinux_parse_opts_str(char *options, 814 struct security_mnt_opts *opts) 815 { 816 char *p; 817 char *context = NULL, *defcontext = NULL; 818 char *fscontext = NULL, *rootcontext = NULL; 819 int rc, num_mnt_opts = 0; 820 821 opts->num_mnt_opts = 0; 822 823 /* Standard string-based options. */ 824 while ((p = strsep(&options, "|")) != NULL) { 825 int token; 826 substring_t args[MAX_OPT_ARGS]; 827 828 if (!*p) 829 continue; 830 831 token = match_token(p, tokens, args); 832 833 switch (token) { 834 case Opt_context: 835 if (context || defcontext) { 836 rc = -EINVAL; 837 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG); 838 goto out_err; 839 } 840 context = match_strdup(&args[0]); 841 if (!context) { 842 rc = -ENOMEM; 843 goto out_err; 844 } 845 break; 846 847 case Opt_fscontext: 848 if (fscontext) { 849 rc = -EINVAL; 850 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG); 851 goto out_err; 852 } 853 fscontext = match_strdup(&args[0]); 854 if (!fscontext) { 855 rc = -ENOMEM; 856 goto out_err; 857 } 858 break; 859 860 case Opt_rootcontext: 861 if (rootcontext) { 862 rc = -EINVAL; 863 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG); 864 goto out_err; 865 } 866 rootcontext = match_strdup(&args[0]); 867 if (!rootcontext) { 868 rc = -ENOMEM; 869 goto out_err; 870 } 871 break; 872 873 case Opt_defcontext: 874 if (context || defcontext) { 875 rc = -EINVAL; 876 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG); 877 goto out_err; 878 } 879 defcontext = match_strdup(&args[0]); 880 if (!defcontext) { 881 rc = -ENOMEM; 882 goto out_err; 883 } 884 break; 885 886 default: 887 rc = -EINVAL; 888 printk(KERN_WARNING "SELinux: unknown mount option\n"); 889 goto out_err; 890 891 } 892 } 893 894 rc = -ENOMEM; 895 opts->mnt_opts = kcalloc(NUM_SEL_MNT_OPTS, sizeof(char *), GFP_ATOMIC); 896 if (!opts->mnt_opts) 897 goto out_err; 898 899 opts->mnt_opts_flags = kcalloc(NUM_SEL_MNT_OPTS, sizeof(int), GFP_ATOMIC); 900 if (!opts->mnt_opts_flags) { 901 kfree(opts->mnt_opts); 902 goto out_err; 903 } 904 905 if (fscontext) { 906 opts->mnt_opts[num_mnt_opts] = fscontext; 907 opts->mnt_opts_flags[num_mnt_opts++] = FSCONTEXT_MNT; 908 } 909 if (context) { 910 opts->mnt_opts[num_mnt_opts] = context; 911 opts->mnt_opts_flags[num_mnt_opts++] = CONTEXT_MNT; 912 } 913 if (rootcontext) { 914 opts->mnt_opts[num_mnt_opts] = rootcontext; 915 opts->mnt_opts_flags[num_mnt_opts++] = ROOTCONTEXT_MNT; 916 } 917 if (defcontext) { 918 opts->mnt_opts[num_mnt_opts] = defcontext; 919 opts->mnt_opts_flags[num_mnt_opts++] = DEFCONTEXT_MNT; 920 } 921 922 opts->num_mnt_opts = num_mnt_opts; 923 return 0; 924 925 out_err: 926 kfree(context); 927 kfree(defcontext); 928 kfree(fscontext); 929 kfree(rootcontext); 930 return rc; 931 } 932 /* 933 * string mount options parsing and call set the sbsec 934 */ 935 static int superblock_doinit(struct super_block *sb, void *data) 936 { 937 int rc = 0; 938 char *options = data; 939 struct security_mnt_opts opts; 940 941 security_init_mnt_opts(&opts); 942 943 if (!data) 944 goto out; 945 946 BUG_ON(sb->s_type->fs_flags & FS_BINARY_MOUNTDATA); 947 948 rc = selinux_parse_opts_str(options, &opts); 949 if (rc) 950 goto out_err; 951 952 out: 953 rc = selinux_set_mnt_opts(sb, &opts); 954 955 out_err: 956 security_free_mnt_opts(&opts); 957 return rc; 958 } 959 960 void selinux_write_opts(struct seq_file *m, struct security_mnt_opts *opts) 961 { 962 int i; 963 char *prefix; 964 965 for (i = 0; i < opts->num_mnt_opts; i++) { 966 char *has_comma = strchr(opts->mnt_opts[i], ','); 967 968 switch (opts->mnt_opts_flags[i]) { 969 case CONTEXT_MNT: 970 prefix = CONTEXT_STR; 971 break; 972 case FSCONTEXT_MNT: 973 prefix = FSCONTEXT_STR; 974 break; 975 case ROOTCONTEXT_MNT: 976 prefix = ROOTCONTEXT_STR; 977 break; 978 case DEFCONTEXT_MNT: 979 prefix = DEFCONTEXT_STR; 980 break; 981 default: 982 BUG(); 983 }; 984 /* we need a comma before each option */ 985 seq_putc(m, ','); 986 seq_puts(m, prefix); 987 if (has_comma) 988 seq_putc(m, '\"'); 989 seq_puts(m, opts->mnt_opts[i]); 990 if (has_comma) 991 seq_putc(m, '\"'); 992 } 993 } 994 995 static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb) 996 { 997 struct security_mnt_opts opts; 998 int rc; 999 1000 rc = selinux_get_mnt_opts(sb, &opts); 1001 if (rc) { 1002 /* before policy load we may get EINVAL, don't show anything */ 1003 if (rc == -EINVAL) 1004 rc = 0; 1005 return rc; 1006 } 1007 1008 selinux_write_opts(m, &opts); 1009 1010 security_free_mnt_opts(&opts); 1011 1012 return rc; 1013 } 1014 1015 static inline u16 inode_mode_to_security_class(umode_t mode) 1016 { 1017 switch (mode & S_IFMT) { 1018 case S_IFSOCK: 1019 return SECCLASS_SOCK_FILE; 1020 case S_IFLNK: 1021 return SECCLASS_LNK_FILE; 1022 case S_IFREG: 1023 return SECCLASS_FILE; 1024 case S_IFBLK: 1025 return SECCLASS_BLK_FILE; 1026 case S_IFDIR: 1027 return SECCLASS_DIR; 1028 case S_IFCHR: 1029 return SECCLASS_CHR_FILE; 1030 case S_IFIFO: 1031 return SECCLASS_FIFO_FILE; 1032 1033 } 1034 1035 return SECCLASS_FILE; 1036 } 1037 1038 static inline int default_protocol_stream(int protocol) 1039 { 1040 return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP); 1041 } 1042 1043 static inline int default_protocol_dgram(int protocol) 1044 { 1045 return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP); 1046 } 1047 1048 static inline u16 socket_type_to_security_class(int family, int type, int protocol) 1049 { 1050 switch (family) { 1051 case PF_UNIX: 1052 switch (type) { 1053 case SOCK_STREAM: 1054 case SOCK_SEQPACKET: 1055 return SECCLASS_UNIX_STREAM_SOCKET; 1056 case SOCK_DGRAM: 1057 return SECCLASS_UNIX_DGRAM_SOCKET; 1058 } 1059 break; 1060 case PF_INET: 1061 case PF_INET6: 1062 switch (type) { 1063 case SOCK_STREAM: 1064 if (default_protocol_stream(protocol)) 1065 return SECCLASS_TCP_SOCKET; 1066 else 1067 return SECCLASS_RAWIP_SOCKET; 1068 case SOCK_DGRAM: 1069 if (default_protocol_dgram(protocol)) 1070 return SECCLASS_UDP_SOCKET; 1071 else 1072 return SECCLASS_RAWIP_SOCKET; 1073 case SOCK_DCCP: 1074 return SECCLASS_DCCP_SOCKET; 1075 default: 1076 return SECCLASS_RAWIP_SOCKET; 1077 } 1078 break; 1079 case PF_NETLINK: 1080 switch (protocol) { 1081 case NETLINK_ROUTE: 1082 return SECCLASS_NETLINK_ROUTE_SOCKET; 1083 case NETLINK_FIREWALL: 1084 return SECCLASS_NETLINK_FIREWALL_SOCKET; 1085 case NETLINK_INET_DIAG: 1086 return SECCLASS_NETLINK_TCPDIAG_SOCKET; 1087 case NETLINK_NFLOG: 1088 return SECCLASS_NETLINK_NFLOG_SOCKET; 1089 case NETLINK_XFRM: 1090 return SECCLASS_NETLINK_XFRM_SOCKET; 1091 case NETLINK_SELINUX: 1092 return SECCLASS_NETLINK_SELINUX_SOCKET; 1093 case NETLINK_AUDIT: 1094 return SECCLASS_NETLINK_AUDIT_SOCKET; 1095 case NETLINK_IP6_FW: 1096 return SECCLASS_NETLINK_IP6FW_SOCKET; 1097 case NETLINK_DNRTMSG: 1098 return SECCLASS_NETLINK_DNRT_SOCKET; 1099 case NETLINK_KOBJECT_UEVENT: 1100 return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET; 1101 default: 1102 return SECCLASS_NETLINK_SOCKET; 1103 } 1104 case PF_PACKET: 1105 return SECCLASS_PACKET_SOCKET; 1106 case PF_KEY: 1107 return SECCLASS_KEY_SOCKET; 1108 case PF_APPLETALK: 1109 return SECCLASS_APPLETALK_SOCKET; 1110 } 1111 1112 return SECCLASS_SOCKET; 1113 } 1114 1115 #ifdef CONFIG_PROC_FS 1116 static int selinux_proc_get_sid(struct proc_dir_entry *de, 1117 u16 tclass, 1118 u32 *sid) 1119 { 1120 int buflen, rc; 1121 char *buffer, *path, *end; 1122 1123 buffer = (char *)__get_free_page(GFP_KERNEL); 1124 if (!buffer) 1125 return -ENOMEM; 1126 1127 buflen = PAGE_SIZE; 1128 end = buffer+buflen; 1129 *--end = '\0'; 1130 buflen--; 1131 path = end-1; 1132 *path = '/'; 1133 while (de && de != de->parent) { 1134 buflen -= de->namelen + 1; 1135 if (buflen < 0) 1136 break; 1137 end -= de->namelen; 1138 memcpy(end, de->name, de->namelen); 1139 *--end = '/'; 1140 path = end; 1141 de = de->parent; 1142 } 1143 rc = security_genfs_sid("proc", path, tclass, sid); 1144 free_page((unsigned long)buffer); 1145 return rc; 1146 } 1147 #else 1148 static int selinux_proc_get_sid(struct proc_dir_entry *de, 1149 u16 tclass, 1150 u32 *sid) 1151 { 1152 return -EINVAL; 1153 } 1154 #endif 1155 1156 /* The inode's security attributes must be initialized before first use. */ 1157 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry) 1158 { 1159 struct superblock_security_struct *sbsec = NULL; 1160 struct inode_security_struct *isec = inode->i_security; 1161 u32 sid; 1162 struct dentry *dentry; 1163 #define INITCONTEXTLEN 255 1164 char *context = NULL; 1165 unsigned len = 0; 1166 int rc = 0; 1167 1168 if (isec->initialized) 1169 goto out; 1170 1171 mutex_lock(&isec->lock); 1172 if (isec->initialized) 1173 goto out_unlock; 1174 1175 sbsec = inode->i_sb->s_security; 1176 if (!sbsec->initialized) { 1177 /* Defer initialization until selinux_complete_init, 1178 after the initial policy is loaded and the security 1179 server is ready to handle calls. */ 1180 spin_lock(&sbsec->isec_lock); 1181 if (list_empty(&isec->list)) 1182 list_add(&isec->list, &sbsec->isec_head); 1183 spin_unlock(&sbsec->isec_lock); 1184 goto out_unlock; 1185 } 1186 1187 switch (sbsec->behavior) { 1188 case SECURITY_FS_USE_XATTR: 1189 if (!inode->i_op->getxattr) { 1190 isec->sid = sbsec->def_sid; 1191 break; 1192 } 1193 1194 /* Need a dentry, since the xattr API requires one. 1195 Life would be simpler if we could just pass the inode. */ 1196 if (opt_dentry) { 1197 /* Called from d_instantiate or d_splice_alias. */ 1198 dentry = dget(opt_dentry); 1199 } else { 1200 /* Called from selinux_complete_init, try to find a dentry. */ 1201 dentry = d_find_alias(inode); 1202 } 1203 if (!dentry) { 1204 printk(KERN_WARNING "SELinux: %s: no dentry for dev=%s " 1205 "ino=%ld\n", __func__, inode->i_sb->s_id, 1206 inode->i_ino); 1207 goto out_unlock; 1208 } 1209 1210 len = INITCONTEXTLEN; 1211 context = kmalloc(len, GFP_NOFS); 1212 if (!context) { 1213 rc = -ENOMEM; 1214 dput(dentry); 1215 goto out_unlock; 1216 } 1217 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX, 1218 context, len); 1219 if (rc == -ERANGE) { 1220 /* Need a larger buffer. Query for the right size. */ 1221 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX, 1222 NULL, 0); 1223 if (rc < 0) { 1224 dput(dentry); 1225 goto out_unlock; 1226 } 1227 kfree(context); 1228 len = rc; 1229 context = kmalloc(len, GFP_NOFS); 1230 if (!context) { 1231 rc = -ENOMEM; 1232 dput(dentry); 1233 goto out_unlock; 1234 } 1235 rc = inode->i_op->getxattr(dentry, 1236 XATTR_NAME_SELINUX, 1237 context, len); 1238 } 1239 dput(dentry); 1240 if (rc < 0) { 1241 if (rc != -ENODATA) { 1242 printk(KERN_WARNING "SELinux: %s: getxattr returned " 1243 "%d for dev=%s ino=%ld\n", __func__, 1244 -rc, inode->i_sb->s_id, inode->i_ino); 1245 kfree(context); 1246 goto out_unlock; 1247 } 1248 /* Map ENODATA to the default file SID */ 1249 sid = sbsec->def_sid; 1250 rc = 0; 1251 } else { 1252 rc = security_context_to_sid_default(context, rc, &sid, 1253 sbsec->def_sid, 1254 GFP_NOFS); 1255 if (rc) { 1256 printk(KERN_WARNING "SELinux: %s: context_to_sid(%s) " 1257 "returned %d for dev=%s ino=%ld\n", 1258 __func__, context, -rc, 1259 inode->i_sb->s_id, inode->i_ino); 1260 kfree(context); 1261 /* Leave with the unlabeled SID */ 1262 rc = 0; 1263 break; 1264 } 1265 } 1266 kfree(context); 1267 isec->sid = sid; 1268 break; 1269 case SECURITY_FS_USE_TASK: 1270 isec->sid = isec->task_sid; 1271 break; 1272 case SECURITY_FS_USE_TRANS: 1273 /* Default to the fs SID. */ 1274 isec->sid = sbsec->sid; 1275 1276 /* Try to obtain a transition SID. */ 1277 isec->sclass = inode_mode_to_security_class(inode->i_mode); 1278 rc = security_transition_sid(isec->task_sid, 1279 sbsec->sid, 1280 isec->sclass, 1281 &sid); 1282 if (rc) 1283 goto out_unlock; 1284 isec->sid = sid; 1285 break; 1286 case SECURITY_FS_USE_MNTPOINT: 1287 isec->sid = sbsec->mntpoint_sid; 1288 break; 1289 default: 1290 /* Default to the fs superblock SID. */ 1291 isec->sid = sbsec->sid; 1292 1293 if (sbsec->proc) { 1294 struct proc_inode *proci = PROC_I(inode); 1295 if (proci->pde) { 1296 isec->sclass = inode_mode_to_security_class(inode->i_mode); 1297 rc = selinux_proc_get_sid(proci->pde, 1298 isec->sclass, 1299 &sid); 1300 if (rc) 1301 goto out_unlock; 1302 isec->sid = sid; 1303 } 1304 } 1305 break; 1306 } 1307 1308 isec->initialized = 1; 1309 1310 out_unlock: 1311 mutex_unlock(&isec->lock); 1312 out: 1313 if (isec->sclass == SECCLASS_FILE) 1314 isec->sclass = inode_mode_to_security_class(inode->i_mode); 1315 return rc; 1316 } 1317 1318 /* Convert a Linux signal to an access vector. */ 1319 static inline u32 signal_to_av(int sig) 1320 { 1321 u32 perm = 0; 1322 1323 switch (sig) { 1324 case SIGCHLD: 1325 /* Commonly granted from child to parent. */ 1326 perm = PROCESS__SIGCHLD; 1327 break; 1328 case SIGKILL: 1329 /* Cannot be caught or ignored */ 1330 perm = PROCESS__SIGKILL; 1331 break; 1332 case SIGSTOP: 1333 /* Cannot be caught or ignored */ 1334 perm = PROCESS__SIGSTOP; 1335 break; 1336 default: 1337 /* All other signals. */ 1338 perm = PROCESS__SIGNAL; 1339 break; 1340 } 1341 1342 return perm; 1343 } 1344 1345 /* Check permission betweeen a pair of tasks, e.g. signal checks, 1346 fork check, ptrace check, etc. */ 1347 static int task_has_perm(struct task_struct *tsk1, 1348 struct task_struct *tsk2, 1349 u32 perms) 1350 { 1351 struct task_security_struct *tsec1, *tsec2; 1352 1353 tsec1 = tsk1->security; 1354 tsec2 = tsk2->security; 1355 return avc_has_perm(tsec1->sid, tsec2->sid, 1356 SECCLASS_PROCESS, perms, NULL); 1357 } 1358 1359 #if CAP_LAST_CAP > 63 1360 #error Fix SELinux to handle capabilities > 63. 1361 #endif 1362 1363 /* Check whether a task is allowed to use a capability. */ 1364 static int task_has_capability(struct task_struct *tsk, 1365 int cap) 1366 { 1367 struct task_security_struct *tsec; 1368 struct avc_audit_data ad; 1369 u16 sclass; 1370 u32 av = CAP_TO_MASK(cap); 1371 1372 tsec = tsk->security; 1373 1374 AVC_AUDIT_DATA_INIT(&ad, CAP); 1375 ad.tsk = tsk; 1376 ad.u.cap = cap; 1377 1378 switch (CAP_TO_INDEX(cap)) { 1379 case 0: 1380 sclass = SECCLASS_CAPABILITY; 1381 break; 1382 case 1: 1383 sclass = SECCLASS_CAPABILITY2; 1384 break; 1385 default: 1386 printk(KERN_ERR 1387 "SELinux: out of range capability %d\n", cap); 1388 BUG(); 1389 } 1390 return avc_has_perm(tsec->sid, tsec->sid, sclass, av, &ad); 1391 } 1392 1393 /* Check whether a task is allowed to use a system operation. */ 1394 static int task_has_system(struct task_struct *tsk, 1395 u32 perms) 1396 { 1397 struct task_security_struct *tsec; 1398 1399 tsec = tsk->security; 1400 1401 return avc_has_perm(tsec->sid, SECINITSID_KERNEL, 1402 SECCLASS_SYSTEM, perms, NULL); 1403 } 1404 1405 /* Check whether a task has a particular permission to an inode. 1406 The 'adp' parameter is optional and allows other audit 1407 data to be passed (e.g. the dentry). */ 1408 static int inode_has_perm(struct task_struct *tsk, 1409 struct inode *inode, 1410 u32 perms, 1411 struct avc_audit_data *adp) 1412 { 1413 struct task_security_struct *tsec; 1414 struct inode_security_struct *isec; 1415 struct avc_audit_data ad; 1416 1417 if (unlikely(IS_PRIVATE(inode))) 1418 return 0; 1419 1420 tsec = tsk->security; 1421 isec = inode->i_security; 1422 1423 if (!adp) { 1424 adp = &ad; 1425 AVC_AUDIT_DATA_INIT(&ad, FS); 1426 ad.u.fs.inode = inode; 1427 } 1428 1429 return avc_has_perm(tsec->sid, isec->sid, isec->sclass, perms, adp); 1430 } 1431 1432 /* Same as inode_has_perm, but pass explicit audit data containing 1433 the dentry to help the auditing code to more easily generate the 1434 pathname if needed. */ 1435 static inline int dentry_has_perm(struct task_struct *tsk, 1436 struct vfsmount *mnt, 1437 struct dentry *dentry, 1438 u32 av) 1439 { 1440 struct inode *inode = dentry->d_inode; 1441 struct avc_audit_data ad; 1442 AVC_AUDIT_DATA_INIT(&ad, FS); 1443 ad.u.fs.path.mnt = mnt; 1444 ad.u.fs.path.dentry = dentry; 1445 return inode_has_perm(tsk, inode, av, &ad); 1446 } 1447 1448 /* Check whether a task can use an open file descriptor to 1449 access an inode in a given way. Check access to the 1450 descriptor itself, and then use dentry_has_perm to 1451 check a particular permission to the file. 1452 Access to the descriptor is implicitly granted if it 1453 has the same SID as the process. If av is zero, then 1454 access to the file is not checked, e.g. for cases 1455 where only the descriptor is affected like seek. */ 1456 static int file_has_perm(struct task_struct *tsk, 1457 struct file *file, 1458 u32 av) 1459 { 1460 struct task_security_struct *tsec = tsk->security; 1461 struct file_security_struct *fsec = file->f_security; 1462 struct inode *inode = file->f_path.dentry->d_inode; 1463 struct avc_audit_data ad; 1464 int rc; 1465 1466 AVC_AUDIT_DATA_INIT(&ad, FS); 1467 ad.u.fs.path = file->f_path; 1468 1469 if (tsec->sid != fsec->sid) { 1470 rc = avc_has_perm(tsec->sid, fsec->sid, 1471 SECCLASS_FD, 1472 FD__USE, 1473 &ad); 1474 if (rc) 1475 return rc; 1476 } 1477 1478 /* av is zero if only checking access to the descriptor. */ 1479 if (av) 1480 return inode_has_perm(tsk, inode, av, &ad); 1481 1482 return 0; 1483 } 1484 1485 /* Check whether a task can create a file. */ 1486 static int may_create(struct inode *dir, 1487 struct dentry *dentry, 1488 u16 tclass) 1489 { 1490 struct task_security_struct *tsec; 1491 struct inode_security_struct *dsec; 1492 struct superblock_security_struct *sbsec; 1493 u32 newsid; 1494 struct avc_audit_data ad; 1495 int rc; 1496 1497 tsec = current->security; 1498 dsec = dir->i_security; 1499 sbsec = dir->i_sb->s_security; 1500 1501 AVC_AUDIT_DATA_INIT(&ad, FS); 1502 ad.u.fs.path.dentry = dentry; 1503 1504 rc = avc_has_perm(tsec->sid, dsec->sid, SECCLASS_DIR, 1505 DIR__ADD_NAME | DIR__SEARCH, 1506 &ad); 1507 if (rc) 1508 return rc; 1509 1510 if (tsec->create_sid && sbsec->behavior != SECURITY_FS_USE_MNTPOINT) { 1511 newsid = tsec->create_sid; 1512 } else { 1513 rc = security_transition_sid(tsec->sid, dsec->sid, tclass, 1514 &newsid); 1515 if (rc) 1516 return rc; 1517 } 1518 1519 rc = avc_has_perm(tsec->sid, newsid, tclass, FILE__CREATE, &ad); 1520 if (rc) 1521 return rc; 1522 1523 return avc_has_perm(newsid, sbsec->sid, 1524 SECCLASS_FILESYSTEM, 1525 FILESYSTEM__ASSOCIATE, &ad); 1526 } 1527 1528 /* Check whether a task can create a key. */ 1529 static int may_create_key(u32 ksid, 1530 struct task_struct *ctx) 1531 { 1532 struct task_security_struct *tsec; 1533 1534 tsec = ctx->security; 1535 1536 return avc_has_perm(tsec->sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL); 1537 } 1538 1539 #define MAY_LINK 0 1540 #define MAY_UNLINK 1 1541 #define MAY_RMDIR 2 1542 1543 /* Check whether a task can link, unlink, or rmdir a file/directory. */ 1544 static int may_link(struct inode *dir, 1545 struct dentry *dentry, 1546 int kind) 1547 1548 { 1549 struct task_security_struct *tsec; 1550 struct inode_security_struct *dsec, *isec; 1551 struct avc_audit_data ad; 1552 u32 av; 1553 int rc; 1554 1555 tsec = current->security; 1556 dsec = dir->i_security; 1557 isec = dentry->d_inode->i_security; 1558 1559 AVC_AUDIT_DATA_INIT(&ad, FS); 1560 ad.u.fs.path.dentry = dentry; 1561 1562 av = DIR__SEARCH; 1563 av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME); 1564 rc = avc_has_perm(tsec->sid, dsec->sid, SECCLASS_DIR, av, &ad); 1565 if (rc) 1566 return rc; 1567 1568 switch (kind) { 1569 case MAY_LINK: 1570 av = FILE__LINK; 1571 break; 1572 case MAY_UNLINK: 1573 av = FILE__UNLINK; 1574 break; 1575 case MAY_RMDIR: 1576 av = DIR__RMDIR; 1577 break; 1578 default: 1579 printk(KERN_WARNING "SELinux: %s: unrecognized kind %d\n", 1580 __func__, kind); 1581 return 0; 1582 } 1583 1584 rc = avc_has_perm(tsec->sid, isec->sid, isec->sclass, av, &ad); 1585 return rc; 1586 } 1587 1588 static inline int may_rename(struct inode *old_dir, 1589 struct dentry *old_dentry, 1590 struct inode *new_dir, 1591 struct dentry *new_dentry) 1592 { 1593 struct task_security_struct *tsec; 1594 struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec; 1595 struct avc_audit_data ad; 1596 u32 av; 1597 int old_is_dir, new_is_dir; 1598 int rc; 1599 1600 tsec = current->security; 1601 old_dsec = old_dir->i_security; 1602 old_isec = old_dentry->d_inode->i_security; 1603 old_is_dir = S_ISDIR(old_dentry->d_inode->i_mode); 1604 new_dsec = new_dir->i_security; 1605 1606 AVC_AUDIT_DATA_INIT(&ad, FS); 1607 1608 ad.u.fs.path.dentry = old_dentry; 1609 rc = avc_has_perm(tsec->sid, old_dsec->sid, SECCLASS_DIR, 1610 DIR__REMOVE_NAME | DIR__SEARCH, &ad); 1611 if (rc) 1612 return rc; 1613 rc = avc_has_perm(tsec->sid, old_isec->sid, 1614 old_isec->sclass, FILE__RENAME, &ad); 1615 if (rc) 1616 return rc; 1617 if (old_is_dir && new_dir != old_dir) { 1618 rc = avc_has_perm(tsec->sid, old_isec->sid, 1619 old_isec->sclass, DIR__REPARENT, &ad); 1620 if (rc) 1621 return rc; 1622 } 1623 1624 ad.u.fs.path.dentry = new_dentry; 1625 av = DIR__ADD_NAME | DIR__SEARCH; 1626 if (new_dentry->d_inode) 1627 av |= DIR__REMOVE_NAME; 1628 rc = avc_has_perm(tsec->sid, new_dsec->sid, SECCLASS_DIR, av, &ad); 1629 if (rc) 1630 return rc; 1631 if (new_dentry->d_inode) { 1632 new_isec = new_dentry->d_inode->i_security; 1633 new_is_dir = S_ISDIR(new_dentry->d_inode->i_mode); 1634 rc = avc_has_perm(tsec->sid, new_isec->sid, 1635 new_isec->sclass, 1636 (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad); 1637 if (rc) 1638 return rc; 1639 } 1640 1641 return 0; 1642 } 1643 1644 /* Check whether a task can perform a filesystem operation. */ 1645 static int superblock_has_perm(struct task_struct *tsk, 1646 struct super_block *sb, 1647 u32 perms, 1648 struct avc_audit_data *ad) 1649 { 1650 struct task_security_struct *tsec; 1651 struct superblock_security_struct *sbsec; 1652 1653 tsec = tsk->security; 1654 sbsec = sb->s_security; 1655 return avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM, 1656 perms, ad); 1657 } 1658 1659 /* Convert a Linux mode and permission mask to an access vector. */ 1660 static inline u32 file_mask_to_av(int mode, int mask) 1661 { 1662 u32 av = 0; 1663 1664 if ((mode & S_IFMT) != S_IFDIR) { 1665 if (mask & MAY_EXEC) 1666 av |= FILE__EXECUTE; 1667 if (mask & MAY_READ) 1668 av |= FILE__READ; 1669 1670 if (mask & MAY_APPEND) 1671 av |= FILE__APPEND; 1672 else if (mask & MAY_WRITE) 1673 av |= FILE__WRITE; 1674 1675 } else { 1676 if (mask & MAY_EXEC) 1677 av |= DIR__SEARCH; 1678 if (mask & MAY_WRITE) 1679 av |= DIR__WRITE; 1680 if (mask & MAY_READ) 1681 av |= DIR__READ; 1682 } 1683 1684 return av; 1685 } 1686 1687 /* 1688 * Convert a file mask to an access vector and include the correct open 1689 * open permission. 1690 */ 1691 static inline u32 open_file_mask_to_av(int mode, int mask) 1692 { 1693 u32 av = file_mask_to_av(mode, mask); 1694 1695 if (selinux_policycap_openperm) { 1696 /* 1697 * lnk files and socks do not really have an 'open' 1698 */ 1699 if (S_ISREG(mode)) 1700 av |= FILE__OPEN; 1701 else if (S_ISCHR(mode)) 1702 av |= CHR_FILE__OPEN; 1703 else if (S_ISBLK(mode)) 1704 av |= BLK_FILE__OPEN; 1705 else if (S_ISFIFO(mode)) 1706 av |= FIFO_FILE__OPEN; 1707 else if (S_ISDIR(mode)) 1708 av |= DIR__OPEN; 1709 else 1710 printk(KERN_ERR "SELinux: WARNING: inside %s with " 1711 "unknown mode:%x\n", __func__, mode); 1712 } 1713 return av; 1714 } 1715 1716 /* Convert a Linux file to an access vector. */ 1717 static inline u32 file_to_av(struct file *file) 1718 { 1719 u32 av = 0; 1720 1721 if (file->f_mode & FMODE_READ) 1722 av |= FILE__READ; 1723 if (file->f_mode & FMODE_WRITE) { 1724 if (file->f_flags & O_APPEND) 1725 av |= FILE__APPEND; 1726 else 1727 av |= FILE__WRITE; 1728 } 1729 if (!av) { 1730 /* 1731 * Special file opened with flags 3 for ioctl-only use. 1732 */ 1733 av = FILE__IOCTL; 1734 } 1735 1736 return av; 1737 } 1738 1739 /* Hook functions begin here. */ 1740 1741 static int selinux_ptrace_may_access(struct task_struct *child, 1742 unsigned int mode) 1743 { 1744 int rc; 1745 1746 rc = secondary_ops->ptrace_may_access(child, mode); 1747 if (rc) 1748 return rc; 1749 1750 if (mode == PTRACE_MODE_READ) { 1751 struct task_security_struct *tsec = current->security; 1752 struct task_security_struct *csec = child->security; 1753 return avc_has_perm(tsec->sid, csec->sid, 1754 SECCLASS_FILE, FILE__READ, NULL); 1755 } 1756 1757 return task_has_perm(current, child, PROCESS__PTRACE); 1758 } 1759 1760 static int selinux_ptrace_traceme(struct task_struct *parent) 1761 { 1762 int rc; 1763 1764 rc = secondary_ops->ptrace_traceme(parent); 1765 if (rc) 1766 return rc; 1767 1768 return task_has_perm(parent, current, PROCESS__PTRACE); 1769 } 1770 1771 static int selinux_capget(struct task_struct *target, kernel_cap_t *effective, 1772 kernel_cap_t *inheritable, kernel_cap_t *permitted) 1773 { 1774 int error; 1775 1776 error = task_has_perm(current, target, PROCESS__GETCAP); 1777 if (error) 1778 return error; 1779 1780 return secondary_ops->capget(target, effective, inheritable, permitted); 1781 } 1782 1783 static int selinux_capset_check(struct task_struct *target, kernel_cap_t *effective, 1784 kernel_cap_t *inheritable, kernel_cap_t *permitted) 1785 { 1786 int error; 1787 1788 error = secondary_ops->capset_check(target, effective, inheritable, permitted); 1789 if (error) 1790 return error; 1791 1792 return task_has_perm(current, target, PROCESS__SETCAP); 1793 } 1794 1795 static void selinux_capset_set(struct task_struct *target, kernel_cap_t *effective, 1796 kernel_cap_t *inheritable, kernel_cap_t *permitted) 1797 { 1798 secondary_ops->capset_set(target, effective, inheritable, permitted); 1799 } 1800 1801 static int selinux_capable(struct task_struct *tsk, int cap) 1802 { 1803 int rc; 1804 1805 rc = secondary_ops->capable(tsk, cap); 1806 if (rc) 1807 return rc; 1808 1809 return task_has_capability(tsk, cap); 1810 } 1811 1812 static int selinux_sysctl_get_sid(ctl_table *table, u16 tclass, u32 *sid) 1813 { 1814 int buflen, rc; 1815 char *buffer, *path, *end; 1816 1817 rc = -ENOMEM; 1818 buffer = (char *)__get_free_page(GFP_KERNEL); 1819 if (!buffer) 1820 goto out; 1821 1822 buflen = PAGE_SIZE; 1823 end = buffer+buflen; 1824 *--end = '\0'; 1825 buflen--; 1826 path = end-1; 1827 *path = '/'; 1828 while (table) { 1829 const char *name = table->procname; 1830 size_t namelen = strlen(name); 1831 buflen -= namelen + 1; 1832 if (buflen < 0) 1833 goto out_free; 1834 end -= namelen; 1835 memcpy(end, name, namelen); 1836 *--end = '/'; 1837 path = end; 1838 table = table->parent; 1839 } 1840 buflen -= 4; 1841 if (buflen < 0) 1842 goto out_free; 1843 end -= 4; 1844 memcpy(end, "/sys", 4); 1845 path = end; 1846 rc = security_genfs_sid("proc", path, tclass, sid); 1847 out_free: 1848 free_page((unsigned long)buffer); 1849 out: 1850 return rc; 1851 } 1852 1853 static int selinux_sysctl(ctl_table *table, int op) 1854 { 1855 int error = 0; 1856 u32 av; 1857 struct task_security_struct *tsec; 1858 u32 tsid; 1859 int rc; 1860 1861 rc = secondary_ops->sysctl(table, op); 1862 if (rc) 1863 return rc; 1864 1865 tsec = current->security; 1866 1867 rc = selinux_sysctl_get_sid(table, (op == 0001) ? 1868 SECCLASS_DIR : SECCLASS_FILE, &tsid); 1869 if (rc) { 1870 /* Default to the well-defined sysctl SID. */ 1871 tsid = SECINITSID_SYSCTL; 1872 } 1873 1874 /* The op values are "defined" in sysctl.c, thereby creating 1875 * a bad coupling between this module and sysctl.c */ 1876 if (op == 001) { 1877 error = avc_has_perm(tsec->sid, tsid, 1878 SECCLASS_DIR, DIR__SEARCH, NULL); 1879 } else { 1880 av = 0; 1881 if (op & 004) 1882 av |= FILE__READ; 1883 if (op & 002) 1884 av |= FILE__WRITE; 1885 if (av) 1886 error = avc_has_perm(tsec->sid, tsid, 1887 SECCLASS_FILE, av, NULL); 1888 } 1889 1890 return error; 1891 } 1892 1893 static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb) 1894 { 1895 int rc = 0; 1896 1897 if (!sb) 1898 return 0; 1899 1900 switch (cmds) { 1901 case Q_SYNC: 1902 case Q_QUOTAON: 1903 case Q_QUOTAOFF: 1904 case Q_SETINFO: 1905 case Q_SETQUOTA: 1906 rc = superblock_has_perm(current, sb, FILESYSTEM__QUOTAMOD, 1907 NULL); 1908 break; 1909 case Q_GETFMT: 1910 case Q_GETINFO: 1911 case Q_GETQUOTA: 1912 rc = superblock_has_perm(current, sb, FILESYSTEM__QUOTAGET, 1913 NULL); 1914 break; 1915 default: 1916 rc = 0; /* let the kernel handle invalid cmds */ 1917 break; 1918 } 1919 return rc; 1920 } 1921 1922 static int selinux_quota_on(struct dentry *dentry) 1923 { 1924 return dentry_has_perm(current, NULL, dentry, FILE__QUOTAON); 1925 } 1926 1927 static int selinux_syslog(int type) 1928 { 1929 int rc; 1930 1931 rc = secondary_ops->syslog(type); 1932 if (rc) 1933 return rc; 1934 1935 switch (type) { 1936 case 3: /* Read last kernel messages */ 1937 case 10: /* Return size of the log buffer */ 1938 rc = task_has_system(current, SYSTEM__SYSLOG_READ); 1939 break; 1940 case 6: /* Disable logging to console */ 1941 case 7: /* Enable logging to console */ 1942 case 8: /* Set level of messages printed to console */ 1943 rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE); 1944 break; 1945 case 0: /* Close log */ 1946 case 1: /* Open log */ 1947 case 2: /* Read from log */ 1948 case 4: /* Read/clear last kernel messages */ 1949 case 5: /* Clear ring buffer */ 1950 default: 1951 rc = task_has_system(current, SYSTEM__SYSLOG_MOD); 1952 break; 1953 } 1954 return rc; 1955 } 1956 1957 /* 1958 * Check that a process has enough memory to allocate a new virtual 1959 * mapping. 0 means there is enough memory for the allocation to 1960 * succeed and -ENOMEM implies there is not. 1961 * 1962 * Note that secondary_ops->capable and task_has_perm_noaudit return 0 1963 * if the capability is granted, but __vm_enough_memory requires 1 if 1964 * the capability is granted. 1965 * 1966 * Do not audit the selinux permission check, as this is applied to all 1967 * processes that allocate mappings. 1968 */ 1969 static int selinux_vm_enough_memory(struct mm_struct *mm, long pages) 1970 { 1971 int rc, cap_sys_admin = 0; 1972 struct task_security_struct *tsec = current->security; 1973 1974 rc = secondary_ops->capable(current, CAP_SYS_ADMIN); 1975 if (rc == 0) 1976 rc = avc_has_perm_noaudit(tsec->sid, tsec->sid, 1977 SECCLASS_CAPABILITY, 1978 CAP_TO_MASK(CAP_SYS_ADMIN), 1979 0, 1980 NULL); 1981 1982 if (rc == 0) 1983 cap_sys_admin = 1; 1984 1985 return __vm_enough_memory(mm, pages, cap_sys_admin); 1986 } 1987 1988 /* binprm security operations */ 1989 1990 static int selinux_bprm_alloc_security(struct linux_binprm *bprm) 1991 { 1992 struct bprm_security_struct *bsec; 1993 1994 bsec = kzalloc(sizeof(struct bprm_security_struct), GFP_KERNEL); 1995 if (!bsec) 1996 return -ENOMEM; 1997 1998 bsec->sid = SECINITSID_UNLABELED; 1999 bsec->set = 0; 2000 2001 bprm->security = bsec; 2002 return 0; 2003 } 2004 2005 static int selinux_bprm_set_security(struct linux_binprm *bprm) 2006 { 2007 struct task_security_struct *tsec; 2008 struct inode *inode = bprm->file->f_path.dentry->d_inode; 2009 struct inode_security_struct *isec; 2010 struct bprm_security_struct *bsec; 2011 u32 newsid; 2012 struct avc_audit_data ad; 2013 int rc; 2014 2015 rc = secondary_ops->bprm_set_security(bprm); 2016 if (rc) 2017 return rc; 2018 2019 bsec = bprm->security; 2020 2021 if (bsec->set) 2022 return 0; 2023 2024 tsec = current->security; 2025 isec = inode->i_security; 2026 2027 /* Default to the current task SID. */ 2028 bsec->sid = tsec->sid; 2029 2030 /* Reset fs, key, and sock SIDs on execve. */ 2031 tsec->create_sid = 0; 2032 tsec->keycreate_sid = 0; 2033 tsec->sockcreate_sid = 0; 2034 2035 if (tsec->exec_sid) { 2036 newsid = tsec->exec_sid; 2037 /* Reset exec SID on execve. */ 2038 tsec->exec_sid = 0; 2039 } else { 2040 /* Check for a default transition on this program. */ 2041 rc = security_transition_sid(tsec->sid, isec->sid, 2042 SECCLASS_PROCESS, &newsid); 2043 if (rc) 2044 return rc; 2045 } 2046 2047 AVC_AUDIT_DATA_INIT(&ad, FS); 2048 ad.u.fs.path = bprm->file->f_path; 2049 2050 if (bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID) 2051 newsid = tsec->sid; 2052 2053 if (tsec->sid == newsid) { 2054 rc = avc_has_perm(tsec->sid, isec->sid, 2055 SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad); 2056 if (rc) 2057 return rc; 2058 } else { 2059 /* Check permissions for the transition. */ 2060 rc = avc_has_perm(tsec->sid, newsid, 2061 SECCLASS_PROCESS, PROCESS__TRANSITION, &ad); 2062 if (rc) 2063 return rc; 2064 2065 rc = avc_has_perm(newsid, isec->sid, 2066 SECCLASS_FILE, FILE__ENTRYPOINT, &ad); 2067 if (rc) 2068 return rc; 2069 2070 /* Clear any possibly unsafe personality bits on exec: */ 2071 current->personality &= ~PER_CLEAR_ON_SETID; 2072 2073 /* Set the security field to the new SID. */ 2074 bsec->sid = newsid; 2075 } 2076 2077 bsec->set = 1; 2078 return 0; 2079 } 2080 2081 static int selinux_bprm_check_security(struct linux_binprm *bprm) 2082 { 2083 return secondary_ops->bprm_check_security(bprm); 2084 } 2085 2086 2087 static int selinux_bprm_secureexec(struct linux_binprm *bprm) 2088 { 2089 struct task_security_struct *tsec = current->security; 2090 int atsecure = 0; 2091 2092 if (tsec->osid != tsec->sid) { 2093 /* Enable secure mode for SIDs transitions unless 2094 the noatsecure permission is granted between 2095 the two SIDs, i.e. ahp returns 0. */ 2096 atsecure = avc_has_perm(tsec->osid, tsec->sid, 2097 SECCLASS_PROCESS, 2098 PROCESS__NOATSECURE, NULL); 2099 } 2100 2101 return (atsecure || secondary_ops->bprm_secureexec(bprm)); 2102 } 2103 2104 static void selinux_bprm_free_security(struct linux_binprm *bprm) 2105 { 2106 kfree(bprm->security); 2107 bprm->security = NULL; 2108 } 2109 2110 extern struct vfsmount *selinuxfs_mount; 2111 extern struct dentry *selinux_null; 2112 2113 /* Derived from fs/exec.c:flush_old_files. */ 2114 static inline void flush_unauthorized_files(struct files_struct *files) 2115 { 2116 struct avc_audit_data ad; 2117 struct file *file, *devnull = NULL; 2118 struct tty_struct *tty; 2119 struct fdtable *fdt; 2120 long j = -1; 2121 int drop_tty = 0; 2122 2123 mutex_lock(&tty_mutex); 2124 tty = get_current_tty(); 2125 if (tty) { 2126 file_list_lock(); 2127 file = list_entry(tty->tty_files.next, typeof(*file), f_u.fu_list); 2128 if (file) { 2129 /* Revalidate access to controlling tty. 2130 Use inode_has_perm on the tty inode directly rather 2131 than using file_has_perm, as this particular open 2132 file may belong to another process and we are only 2133 interested in the inode-based check here. */ 2134 struct inode *inode = file->f_path.dentry->d_inode; 2135 if (inode_has_perm(current, inode, 2136 FILE__READ | FILE__WRITE, NULL)) { 2137 drop_tty = 1; 2138 } 2139 } 2140 file_list_unlock(); 2141 } 2142 mutex_unlock(&tty_mutex); 2143 /* Reset controlling tty. */ 2144 if (drop_tty) 2145 no_tty(); 2146 2147 /* Revalidate access to inherited open files. */ 2148 2149 AVC_AUDIT_DATA_INIT(&ad, FS); 2150 2151 spin_lock(&files->file_lock); 2152 for (;;) { 2153 unsigned long set, i; 2154 int fd; 2155 2156 j++; 2157 i = j * __NFDBITS; 2158 fdt = files_fdtable(files); 2159 if (i >= fdt->max_fds) 2160 break; 2161 set = fdt->open_fds->fds_bits[j]; 2162 if (!set) 2163 continue; 2164 spin_unlock(&files->file_lock); 2165 for ( ; set ; i++, set >>= 1) { 2166 if (set & 1) { 2167 file = fget(i); 2168 if (!file) 2169 continue; 2170 if (file_has_perm(current, 2171 file, 2172 file_to_av(file))) { 2173 sys_close(i); 2174 fd = get_unused_fd(); 2175 if (fd != i) { 2176 if (fd >= 0) 2177 put_unused_fd(fd); 2178 fput(file); 2179 continue; 2180 } 2181 if (devnull) { 2182 get_file(devnull); 2183 } else { 2184 devnull = dentry_open(dget(selinux_null), mntget(selinuxfs_mount), O_RDWR); 2185 if (IS_ERR(devnull)) { 2186 devnull = NULL; 2187 put_unused_fd(fd); 2188 fput(file); 2189 continue; 2190 } 2191 } 2192 fd_install(fd, devnull); 2193 } 2194 fput(file); 2195 } 2196 } 2197 spin_lock(&files->file_lock); 2198 2199 } 2200 spin_unlock(&files->file_lock); 2201 } 2202 2203 static void selinux_bprm_apply_creds(struct linux_binprm *bprm, int unsafe) 2204 { 2205 struct task_security_struct *tsec; 2206 struct bprm_security_struct *bsec; 2207 u32 sid; 2208 int rc; 2209 2210 secondary_ops->bprm_apply_creds(bprm, unsafe); 2211 2212 tsec = current->security; 2213 2214 bsec = bprm->security; 2215 sid = bsec->sid; 2216 2217 tsec->osid = tsec->sid; 2218 bsec->unsafe = 0; 2219 if (tsec->sid != sid) { 2220 /* Check for shared state. If not ok, leave SID 2221 unchanged and kill. */ 2222 if (unsafe & LSM_UNSAFE_SHARE) { 2223 rc = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS, 2224 PROCESS__SHARE, NULL); 2225 if (rc) { 2226 bsec->unsafe = 1; 2227 return; 2228 } 2229 } 2230 2231 /* Check for ptracing, and update the task SID if ok. 2232 Otherwise, leave SID unchanged and kill. */ 2233 if (unsafe & (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) { 2234 struct task_struct *tracer; 2235 struct task_security_struct *sec; 2236 u32 ptsid = 0; 2237 2238 rcu_read_lock(); 2239 tracer = tracehook_tracer_task(current); 2240 if (likely(tracer != NULL)) { 2241 sec = tracer->security; 2242 ptsid = sec->sid; 2243 } 2244 rcu_read_unlock(); 2245 2246 if (ptsid != 0) { 2247 rc = avc_has_perm(ptsid, sid, SECCLASS_PROCESS, 2248 PROCESS__PTRACE, NULL); 2249 if (rc) { 2250 bsec->unsafe = 1; 2251 return; 2252 } 2253 } 2254 } 2255 tsec->sid = sid; 2256 } 2257 } 2258 2259 /* 2260 * called after apply_creds without the task lock held 2261 */ 2262 static void selinux_bprm_post_apply_creds(struct linux_binprm *bprm) 2263 { 2264 struct task_security_struct *tsec; 2265 struct rlimit *rlim, *initrlim; 2266 struct itimerval itimer; 2267 struct bprm_security_struct *bsec; 2268 int rc, i; 2269 2270 tsec = current->security; 2271 bsec = bprm->security; 2272 2273 if (bsec->unsafe) { 2274 force_sig_specific(SIGKILL, current); 2275 return; 2276 } 2277 if (tsec->osid == tsec->sid) 2278 return; 2279 2280 /* Close files for which the new task SID is not authorized. */ 2281 flush_unauthorized_files(current->files); 2282 2283 /* Check whether the new SID can inherit signal state 2284 from the old SID. If not, clear itimers to avoid 2285 subsequent signal generation and flush and unblock 2286 signals. This must occur _after_ the task SID has 2287 been updated so that any kill done after the flush 2288 will be checked against the new SID. */ 2289 rc = avc_has_perm(tsec->osid, tsec->sid, SECCLASS_PROCESS, 2290 PROCESS__SIGINH, NULL); 2291 if (rc) { 2292 memset(&itimer, 0, sizeof itimer); 2293 for (i = 0; i < 3; i++) 2294 do_setitimer(i, &itimer, NULL); 2295 flush_signals(current); 2296 spin_lock_irq(¤t->sighand->siglock); 2297 flush_signal_handlers(current, 1); 2298 sigemptyset(¤t->blocked); 2299 recalc_sigpending(); 2300 spin_unlock_irq(¤t->sighand->siglock); 2301 } 2302 2303 /* Always clear parent death signal on SID transitions. */ 2304 current->pdeath_signal = 0; 2305 2306 /* Check whether the new SID can inherit resource limits 2307 from the old SID. If not, reset all soft limits to 2308 the lower of the current task's hard limit and the init 2309 task's soft limit. Note that the setting of hard limits 2310 (even to lower them) can be controlled by the setrlimit 2311 check. The inclusion of the init task's soft limit into 2312 the computation is to avoid resetting soft limits higher 2313 than the default soft limit for cases where the default 2314 is lower than the hard limit, e.g. RLIMIT_CORE or 2315 RLIMIT_STACK.*/ 2316 rc = avc_has_perm(tsec->osid, tsec->sid, SECCLASS_PROCESS, 2317 PROCESS__RLIMITINH, NULL); 2318 if (rc) { 2319 for (i = 0; i < RLIM_NLIMITS; i++) { 2320 rlim = current->signal->rlim + i; 2321 initrlim = init_task.signal->rlim+i; 2322 rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur); 2323 } 2324 if (current->signal->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) { 2325 /* 2326 * This will cause RLIMIT_CPU calculations 2327 * to be refigured. 2328 */ 2329 current->it_prof_expires = jiffies_to_cputime(1); 2330 } 2331 } 2332 2333 /* Wake up the parent if it is waiting so that it can 2334 recheck wait permission to the new task SID. */ 2335 wake_up_interruptible(¤t->parent->signal->wait_chldexit); 2336 } 2337 2338 /* superblock security operations */ 2339 2340 static int selinux_sb_alloc_security(struct super_block *sb) 2341 { 2342 return superblock_alloc_security(sb); 2343 } 2344 2345 static void selinux_sb_free_security(struct super_block *sb) 2346 { 2347 superblock_free_security(sb); 2348 } 2349 2350 static inline int match_prefix(char *prefix, int plen, char *option, int olen) 2351 { 2352 if (plen > olen) 2353 return 0; 2354 2355 return !memcmp(prefix, option, plen); 2356 } 2357 2358 static inline int selinux_option(char *option, int len) 2359 { 2360 return (match_prefix(CONTEXT_STR, sizeof(CONTEXT_STR)-1, option, len) || 2361 match_prefix(FSCONTEXT_STR, sizeof(FSCONTEXT_STR)-1, option, len) || 2362 match_prefix(DEFCONTEXT_STR, sizeof(DEFCONTEXT_STR)-1, option, len) || 2363 match_prefix(ROOTCONTEXT_STR, sizeof(ROOTCONTEXT_STR)-1, option, len)); 2364 } 2365 2366 static inline void take_option(char **to, char *from, int *first, int len) 2367 { 2368 if (!*first) { 2369 **to = ','; 2370 *to += 1; 2371 } else 2372 *first = 0; 2373 memcpy(*to, from, len); 2374 *to += len; 2375 } 2376 2377 static inline void take_selinux_option(char **to, char *from, int *first, 2378 int len) 2379 { 2380 int current_size = 0; 2381 2382 if (!*first) { 2383 **to = '|'; 2384 *to += 1; 2385 } else 2386 *first = 0; 2387 2388 while (current_size < len) { 2389 if (*from != '"') { 2390 **to = *from; 2391 *to += 1; 2392 } 2393 from += 1; 2394 current_size += 1; 2395 } 2396 } 2397 2398 static int selinux_sb_copy_data(char *orig, char *copy) 2399 { 2400 int fnosec, fsec, rc = 0; 2401 char *in_save, *in_curr, *in_end; 2402 char *sec_curr, *nosec_save, *nosec; 2403 int open_quote = 0; 2404 2405 in_curr = orig; 2406 sec_curr = copy; 2407 2408 nosec = (char *)get_zeroed_page(GFP_KERNEL); 2409 if (!nosec) { 2410 rc = -ENOMEM; 2411 goto out; 2412 } 2413 2414 nosec_save = nosec; 2415 fnosec = fsec = 1; 2416 in_save = in_end = orig; 2417 2418 do { 2419 if (*in_end == '"') 2420 open_quote = !open_quote; 2421 if ((*in_end == ',' && open_quote == 0) || 2422 *in_end == '\0') { 2423 int len = in_end - in_curr; 2424 2425 if (selinux_option(in_curr, len)) 2426 take_selinux_option(&sec_curr, in_curr, &fsec, len); 2427 else 2428 take_option(&nosec, in_curr, &fnosec, len); 2429 2430 in_curr = in_end + 1; 2431 } 2432 } while (*in_end++); 2433 2434 strcpy(in_save, nosec_save); 2435 free_page((unsigned long)nosec_save); 2436 out: 2437 return rc; 2438 } 2439 2440 static int selinux_sb_kern_mount(struct super_block *sb, void *data) 2441 { 2442 struct avc_audit_data ad; 2443 int rc; 2444 2445 rc = superblock_doinit(sb, data); 2446 if (rc) 2447 return rc; 2448 2449 AVC_AUDIT_DATA_INIT(&ad, FS); 2450 ad.u.fs.path.dentry = sb->s_root; 2451 return superblock_has_perm(current, sb, FILESYSTEM__MOUNT, &ad); 2452 } 2453 2454 static int selinux_sb_statfs(struct dentry *dentry) 2455 { 2456 struct avc_audit_data ad; 2457 2458 AVC_AUDIT_DATA_INIT(&ad, FS); 2459 ad.u.fs.path.dentry = dentry->d_sb->s_root; 2460 return superblock_has_perm(current, dentry->d_sb, FILESYSTEM__GETATTR, &ad); 2461 } 2462 2463 static int selinux_mount(char *dev_name, 2464 struct path *path, 2465 char *type, 2466 unsigned long flags, 2467 void *data) 2468 { 2469 int rc; 2470 2471 rc = secondary_ops->sb_mount(dev_name, path, type, flags, data); 2472 if (rc) 2473 return rc; 2474 2475 if (flags & MS_REMOUNT) 2476 return superblock_has_perm(current, path->mnt->mnt_sb, 2477 FILESYSTEM__REMOUNT, NULL); 2478 else 2479 return dentry_has_perm(current, path->mnt, path->dentry, 2480 FILE__MOUNTON); 2481 } 2482 2483 static int selinux_umount(struct vfsmount *mnt, int flags) 2484 { 2485 int rc; 2486 2487 rc = secondary_ops->sb_umount(mnt, flags); 2488 if (rc) 2489 return rc; 2490 2491 return superblock_has_perm(current, mnt->mnt_sb, 2492 FILESYSTEM__UNMOUNT, NULL); 2493 } 2494 2495 /* inode security operations */ 2496 2497 static int selinux_inode_alloc_security(struct inode *inode) 2498 { 2499 return inode_alloc_security(inode); 2500 } 2501 2502 static void selinux_inode_free_security(struct inode *inode) 2503 { 2504 inode_free_security(inode); 2505 } 2506 2507 static int selinux_inode_init_security(struct inode *inode, struct inode *dir, 2508 char **name, void **value, 2509 size_t *len) 2510 { 2511 struct task_security_struct *tsec; 2512 struct inode_security_struct *dsec; 2513 struct superblock_security_struct *sbsec; 2514 u32 newsid, clen; 2515 int rc; 2516 char *namep = NULL, *context; 2517 2518 tsec = current->security; 2519 dsec = dir->i_security; 2520 sbsec = dir->i_sb->s_security; 2521 2522 if (tsec->create_sid && sbsec->behavior != SECURITY_FS_USE_MNTPOINT) { 2523 newsid = tsec->create_sid; 2524 } else { 2525 rc = security_transition_sid(tsec->sid, dsec->sid, 2526 inode_mode_to_security_class(inode->i_mode), 2527 &newsid); 2528 if (rc) { 2529 printk(KERN_WARNING "%s: " 2530 "security_transition_sid failed, rc=%d (dev=%s " 2531 "ino=%ld)\n", 2532 __func__, 2533 -rc, inode->i_sb->s_id, inode->i_ino); 2534 return rc; 2535 } 2536 } 2537 2538 /* Possibly defer initialization to selinux_complete_init. */ 2539 if (sbsec->initialized) { 2540 struct inode_security_struct *isec = inode->i_security; 2541 isec->sclass = inode_mode_to_security_class(inode->i_mode); 2542 isec->sid = newsid; 2543 isec->initialized = 1; 2544 } 2545 2546 if (!ss_initialized || sbsec->behavior == SECURITY_FS_USE_MNTPOINT) 2547 return -EOPNOTSUPP; 2548 2549 if (name) { 2550 namep = kstrdup(XATTR_SELINUX_SUFFIX, GFP_NOFS); 2551 if (!namep) 2552 return -ENOMEM; 2553 *name = namep; 2554 } 2555 2556 if (value && len) { 2557 rc = security_sid_to_context_force(newsid, &context, &clen); 2558 if (rc) { 2559 kfree(namep); 2560 return rc; 2561 } 2562 *value = context; 2563 *len = clen; 2564 } 2565 2566 return 0; 2567 } 2568 2569 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, int mask) 2570 { 2571 return may_create(dir, dentry, SECCLASS_FILE); 2572 } 2573 2574 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry) 2575 { 2576 int rc; 2577 2578 rc = secondary_ops->inode_link(old_dentry, dir, new_dentry); 2579 if (rc) 2580 return rc; 2581 return may_link(dir, old_dentry, MAY_LINK); 2582 } 2583 2584 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry) 2585 { 2586 int rc; 2587 2588 rc = secondary_ops->inode_unlink(dir, dentry); 2589 if (rc) 2590 return rc; 2591 return may_link(dir, dentry, MAY_UNLINK); 2592 } 2593 2594 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name) 2595 { 2596 return may_create(dir, dentry, SECCLASS_LNK_FILE); 2597 } 2598 2599 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, int mask) 2600 { 2601 return may_create(dir, dentry, SECCLASS_DIR); 2602 } 2603 2604 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry) 2605 { 2606 return may_link(dir, dentry, MAY_RMDIR); 2607 } 2608 2609 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev) 2610 { 2611 int rc; 2612 2613 rc = secondary_ops->inode_mknod(dir, dentry, mode, dev); 2614 if (rc) 2615 return rc; 2616 2617 return may_create(dir, dentry, inode_mode_to_security_class(mode)); 2618 } 2619 2620 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry, 2621 struct inode *new_inode, struct dentry *new_dentry) 2622 { 2623 return may_rename(old_inode, old_dentry, new_inode, new_dentry); 2624 } 2625 2626 static int selinux_inode_readlink(struct dentry *dentry) 2627 { 2628 return dentry_has_perm(current, NULL, dentry, FILE__READ); 2629 } 2630 2631 static int selinux_inode_follow_link(struct dentry *dentry, struct nameidata *nameidata) 2632 { 2633 int rc; 2634 2635 rc = secondary_ops->inode_follow_link(dentry, nameidata); 2636 if (rc) 2637 return rc; 2638 return dentry_has_perm(current, NULL, dentry, FILE__READ); 2639 } 2640 2641 static int selinux_inode_permission(struct inode *inode, int mask) 2642 { 2643 int rc; 2644 2645 rc = secondary_ops->inode_permission(inode, mask); 2646 if (rc) 2647 return rc; 2648 2649 if (!mask) { 2650 /* No permission to check. Existence test. */ 2651 return 0; 2652 } 2653 2654 return inode_has_perm(current, inode, 2655 open_file_mask_to_av(inode->i_mode, mask), NULL); 2656 } 2657 2658 static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr) 2659 { 2660 int rc; 2661 2662 rc = secondary_ops->inode_setattr(dentry, iattr); 2663 if (rc) 2664 return rc; 2665 2666 if (iattr->ia_valid & ATTR_FORCE) 2667 return 0; 2668 2669 if (iattr->ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID | 2670 ATTR_ATIME_SET | ATTR_MTIME_SET)) 2671 return dentry_has_perm(current, NULL, dentry, FILE__SETATTR); 2672 2673 return dentry_has_perm(current, NULL, dentry, FILE__WRITE); 2674 } 2675 2676 static int selinux_inode_getattr(struct vfsmount *mnt, struct dentry *dentry) 2677 { 2678 return dentry_has_perm(current, mnt, dentry, FILE__GETATTR); 2679 } 2680 2681 static int selinux_inode_setotherxattr(struct dentry *dentry, const char *name) 2682 { 2683 if (!strncmp(name, XATTR_SECURITY_PREFIX, 2684 sizeof XATTR_SECURITY_PREFIX - 1)) { 2685 if (!strcmp(name, XATTR_NAME_CAPS)) { 2686 if (!capable(CAP_SETFCAP)) 2687 return -EPERM; 2688 } else if (!capable(CAP_SYS_ADMIN)) { 2689 /* A different attribute in the security namespace. 2690 Restrict to administrator. */ 2691 return -EPERM; 2692 } 2693 } 2694 2695 /* Not an attribute we recognize, so just check the 2696 ordinary setattr permission. */ 2697 return dentry_has_perm(current, NULL, dentry, FILE__SETATTR); 2698 } 2699 2700 static int selinux_inode_setxattr(struct dentry *dentry, const char *name, 2701 const void *value, size_t size, int flags) 2702 { 2703 struct task_security_struct *tsec = current->security; 2704 struct inode *inode = dentry->d_inode; 2705 struct inode_security_struct *isec = inode->i_security; 2706 struct superblock_security_struct *sbsec; 2707 struct avc_audit_data ad; 2708 u32 newsid; 2709 int rc = 0; 2710 2711 if (strcmp(name, XATTR_NAME_SELINUX)) 2712 return selinux_inode_setotherxattr(dentry, name); 2713 2714 sbsec = inode->i_sb->s_security; 2715 if (sbsec->behavior == SECURITY_FS_USE_MNTPOINT) 2716 return -EOPNOTSUPP; 2717 2718 if (!is_owner_or_cap(inode)) 2719 return -EPERM; 2720 2721 AVC_AUDIT_DATA_INIT(&ad, FS); 2722 ad.u.fs.path.dentry = dentry; 2723 2724 rc = avc_has_perm(tsec->sid, isec->sid, isec->sclass, 2725 FILE__RELABELFROM, &ad); 2726 if (rc) 2727 return rc; 2728 2729 rc = security_context_to_sid(value, size, &newsid); 2730 if (rc == -EINVAL) { 2731 if (!capable(CAP_MAC_ADMIN)) 2732 return rc; 2733 rc = security_context_to_sid_force(value, size, &newsid); 2734 } 2735 if (rc) 2736 return rc; 2737 2738 rc = avc_has_perm(tsec->sid, newsid, isec->sclass, 2739 FILE__RELABELTO, &ad); 2740 if (rc) 2741 return rc; 2742 2743 rc = security_validate_transition(isec->sid, newsid, tsec->sid, 2744 isec->sclass); 2745 if (rc) 2746 return rc; 2747 2748 return avc_has_perm(newsid, 2749 sbsec->sid, 2750 SECCLASS_FILESYSTEM, 2751 FILESYSTEM__ASSOCIATE, 2752 &ad); 2753 } 2754 2755 static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name, 2756 const void *value, size_t size, 2757 int flags) 2758 { 2759 struct inode *inode = dentry->d_inode; 2760 struct inode_security_struct *isec = inode->i_security; 2761 u32 newsid; 2762 int rc; 2763 2764 if (strcmp(name, XATTR_NAME_SELINUX)) { 2765 /* Not an attribute we recognize, so nothing to do. */ 2766 return; 2767 } 2768 2769 rc = security_context_to_sid_force(value, size, &newsid); 2770 if (rc) { 2771 printk(KERN_ERR "SELinux: unable to map context to SID" 2772 "for (%s, %lu), rc=%d\n", 2773 inode->i_sb->s_id, inode->i_ino, -rc); 2774 return; 2775 } 2776 2777 isec->sid = newsid; 2778 return; 2779 } 2780 2781 static int selinux_inode_getxattr(struct dentry *dentry, const char *name) 2782 { 2783 return dentry_has_perm(current, NULL, dentry, FILE__GETATTR); 2784 } 2785 2786 static int selinux_inode_listxattr(struct dentry *dentry) 2787 { 2788 return dentry_has_perm(current, NULL, dentry, FILE__GETATTR); 2789 } 2790 2791 static int selinux_inode_removexattr(struct dentry *dentry, const char *name) 2792 { 2793 if (strcmp(name, XATTR_NAME_SELINUX)) 2794 return selinux_inode_setotherxattr(dentry, name); 2795 2796 /* No one is allowed to remove a SELinux security label. 2797 You can change the label, but all data must be labeled. */ 2798 return -EACCES; 2799 } 2800 2801 /* 2802 * Copy the inode security context value to the user. 2803 * 2804 * Permission check is handled by selinux_inode_getxattr hook. 2805 */ 2806 static int selinux_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc) 2807 { 2808 u32 size; 2809 int error; 2810 char *context = NULL; 2811 struct task_security_struct *tsec = current->security; 2812 struct inode_security_struct *isec = inode->i_security; 2813 2814 if (strcmp(name, XATTR_SELINUX_SUFFIX)) 2815 return -EOPNOTSUPP; 2816 2817 /* 2818 * If the caller has CAP_MAC_ADMIN, then get the raw context 2819 * value even if it is not defined by current policy; otherwise, 2820 * use the in-core value under current policy. 2821 * Use the non-auditing forms of the permission checks since 2822 * getxattr may be called by unprivileged processes commonly 2823 * and lack of permission just means that we fall back to the 2824 * in-core context value, not a denial. 2825 */ 2826 error = secondary_ops->capable(current, CAP_MAC_ADMIN); 2827 if (!error) 2828 error = avc_has_perm_noaudit(tsec->sid, tsec->sid, 2829 SECCLASS_CAPABILITY2, 2830 CAPABILITY2__MAC_ADMIN, 2831 0, 2832 NULL); 2833 if (!error) 2834 error = security_sid_to_context_force(isec->sid, &context, 2835 &size); 2836 else 2837 error = security_sid_to_context(isec->sid, &context, &size); 2838 if (error) 2839 return error; 2840 error = size; 2841 if (alloc) { 2842 *buffer = context; 2843 goto out_nofree; 2844 } 2845 kfree(context); 2846 out_nofree: 2847 return error; 2848 } 2849 2850 static int selinux_inode_setsecurity(struct inode *inode, const char *name, 2851 const void *value, size_t size, int flags) 2852 { 2853 struct inode_security_struct *isec = inode->i_security; 2854 u32 newsid; 2855 int rc; 2856 2857 if (strcmp(name, XATTR_SELINUX_SUFFIX)) 2858 return -EOPNOTSUPP; 2859 2860 if (!value || !size) 2861 return -EACCES; 2862 2863 rc = security_context_to_sid((void *)value, size, &newsid); 2864 if (rc) 2865 return rc; 2866 2867 isec->sid = newsid; 2868 return 0; 2869 } 2870 2871 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size) 2872 { 2873 const int len = sizeof(XATTR_NAME_SELINUX); 2874 if (buffer && len <= buffer_size) 2875 memcpy(buffer, XATTR_NAME_SELINUX, len); 2876 return len; 2877 } 2878 2879 static int selinux_inode_need_killpriv(struct dentry *dentry) 2880 { 2881 return secondary_ops->inode_need_killpriv(dentry); 2882 } 2883 2884 static int selinux_inode_killpriv(struct dentry *dentry) 2885 { 2886 return secondary_ops->inode_killpriv(dentry); 2887 } 2888 2889 static void selinux_inode_getsecid(const struct inode *inode, u32 *secid) 2890 { 2891 struct inode_security_struct *isec = inode->i_security; 2892 *secid = isec->sid; 2893 } 2894 2895 /* file security operations */ 2896 2897 static int selinux_revalidate_file_permission(struct file *file, int mask) 2898 { 2899 int rc; 2900 struct inode *inode = file->f_path.dentry->d_inode; 2901 2902 if (!mask) { 2903 /* No permission to check. Existence test. */ 2904 return 0; 2905 } 2906 2907 /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */ 2908 if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE)) 2909 mask |= MAY_APPEND; 2910 2911 rc = file_has_perm(current, file, 2912 file_mask_to_av(inode->i_mode, mask)); 2913 if (rc) 2914 return rc; 2915 2916 return selinux_netlbl_inode_permission(inode, mask); 2917 } 2918 2919 static int selinux_file_permission(struct file *file, int mask) 2920 { 2921 struct inode *inode = file->f_path.dentry->d_inode; 2922 struct task_security_struct *tsec = current->security; 2923 struct file_security_struct *fsec = file->f_security; 2924 struct inode_security_struct *isec = inode->i_security; 2925 2926 if (!mask) { 2927 /* No permission to check. Existence test. */ 2928 return 0; 2929 } 2930 2931 if (tsec->sid == fsec->sid && fsec->isid == isec->sid 2932 && fsec->pseqno == avc_policy_seqno()) 2933 return selinux_netlbl_inode_permission(inode, mask); 2934 2935 return selinux_revalidate_file_permission(file, mask); 2936 } 2937 2938 static int selinux_file_alloc_security(struct file *file) 2939 { 2940 return file_alloc_security(file); 2941 } 2942 2943 static void selinux_file_free_security(struct file *file) 2944 { 2945 file_free_security(file); 2946 } 2947 2948 static int selinux_file_ioctl(struct file *file, unsigned int cmd, 2949 unsigned long arg) 2950 { 2951 u32 av = 0; 2952 2953 if (_IOC_DIR(cmd) & _IOC_WRITE) 2954 av |= FILE__WRITE; 2955 if (_IOC_DIR(cmd) & _IOC_READ) 2956 av |= FILE__READ; 2957 if (!av) 2958 av = FILE__IOCTL; 2959 2960 return file_has_perm(current, file, av); 2961 } 2962 2963 static int file_map_prot_check(struct file *file, unsigned long prot, int shared) 2964 { 2965 #ifndef CONFIG_PPC32 2966 if ((prot & PROT_EXEC) && (!file || (!shared && (prot & PROT_WRITE)))) { 2967 /* 2968 * We are making executable an anonymous mapping or a 2969 * private file mapping that will also be writable. 2970 * This has an additional check. 2971 */ 2972 int rc = task_has_perm(current, current, PROCESS__EXECMEM); 2973 if (rc) 2974 return rc; 2975 } 2976 #endif 2977 2978 if (file) { 2979 /* read access is always possible with a mapping */ 2980 u32 av = FILE__READ; 2981 2982 /* write access only matters if the mapping is shared */ 2983 if (shared && (prot & PROT_WRITE)) 2984 av |= FILE__WRITE; 2985 2986 if (prot & PROT_EXEC) 2987 av |= FILE__EXECUTE; 2988 2989 return file_has_perm(current, file, av); 2990 } 2991 return 0; 2992 } 2993 2994 static int selinux_file_mmap(struct file *file, unsigned long reqprot, 2995 unsigned long prot, unsigned long flags, 2996 unsigned long addr, unsigned long addr_only) 2997 { 2998 int rc = 0; 2999 u32 sid = ((struct task_security_struct *)(current->security))->sid; 3000 3001 if (addr < mmap_min_addr) 3002 rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT, 3003 MEMPROTECT__MMAP_ZERO, NULL); 3004 if (rc || addr_only) 3005 return rc; 3006 3007 if (selinux_checkreqprot) 3008 prot = reqprot; 3009 3010 return file_map_prot_check(file, prot, 3011 (flags & MAP_TYPE) == MAP_SHARED); 3012 } 3013 3014 static int selinux_file_mprotect(struct vm_area_struct *vma, 3015 unsigned long reqprot, 3016 unsigned long prot) 3017 { 3018 int rc; 3019 3020 rc = secondary_ops->file_mprotect(vma, reqprot, prot); 3021 if (rc) 3022 return rc; 3023 3024 if (selinux_checkreqprot) 3025 prot = reqprot; 3026 3027 #ifndef CONFIG_PPC32 3028 if ((prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) { 3029 rc = 0; 3030 if (vma->vm_start >= vma->vm_mm->start_brk && 3031 vma->vm_end <= vma->vm_mm->brk) { 3032 rc = task_has_perm(current, current, 3033 PROCESS__EXECHEAP); 3034 } else if (!vma->vm_file && 3035 vma->vm_start <= vma->vm_mm->start_stack && 3036 vma->vm_end >= vma->vm_mm->start_stack) { 3037 rc = task_has_perm(current, current, PROCESS__EXECSTACK); 3038 } else if (vma->vm_file && vma->anon_vma) { 3039 /* 3040 * We are making executable a file mapping that has 3041 * had some COW done. Since pages might have been 3042 * written, check ability to execute the possibly 3043 * modified content. This typically should only 3044 * occur for text relocations. 3045 */ 3046 rc = file_has_perm(current, vma->vm_file, 3047 FILE__EXECMOD); 3048 } 3049 if (rc) 3050 return rc; 3051 } 3052 #endif 3053 3054 return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED); 3055 } 3056 3057 static int selinux_file_lock(struct file *file, unsigned int cmd) 3058 { 3059 return file_has_perm(current, file, FILE__LOCK); 3060 } 3061 3062 static int selinux_file_fcntl(struct file *file, unsigned int cmd, 3063 unsigned long arg) 3064 { 3065 int err = 0; 3066 3067 switch (cmd) { 3068 case F_SETFL: 3069 if (!file->f_path.dentry || !file->f_path.dentry->d_inode) { 3070 err = -EINVAL; 3071 break; 3072 } 3073 3074 if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) { 3075 err = file_has_perm(current, file, FILE__WRITE); 3076 break; 3077 } 3078 /* fall through */ 3079 case F_SETOWN: 3080 case F_SETSIG: 3081 case F_GETFL: 3082 case F_GETOWN: 3083 case F_GETSIG: 3084 /* Just check FD__USE permission */ 3085 err = file_has_perm(current, file, 0); 3086 break; 3087 case F_GETLK: 3088 case F_SETLK: 3089 case F_SETLKW: 3090 #if BITS_PER_LONG == 32 3091 case F_GETLK64: 3092 case F_SETLK64: 3093 case F_SETLKW64: 3094 #endif 3095 if (!file->f_path.dentry || !file->f_path.dentry->d_inode) { 3096 err = -EINVAL; 3097 break; 3098 } 3099 err = file_has_perm(current, file, FILE__LOCK); 3100 break; 3101 } 3102 3103 return err; 3104 } 3105 3106 static int selinux_file_set_fowner(struct file *file) 3107 { 3108 struct task_security_struct *tsec; 3109 struct file_security_struct *fsec; 3110 3111 tsec = current->security; 3112 fsec = file->f_security; 3113 fsec->fown_sid = tsec->sid; 3114 3115 return 0; 3116 } 3117 3118 static int selinux_file_send_sigiotask(struct task_struct *tsk, 3119 struct fown_struct *fown, int signum) 3120 { 3121 struct file *file; 3122 u32 perm; 3123 struct task_security_struct *tsec; 3124 struct file_security_struct *fsec; 3125 3126 /* struct fown_struct is never outside the context of a struct file */ 3127 file = container_of(fown, struct file, f_owner); 3128 3129 tsec = tsk->security; 3130 fsec = file->f_security; 3131 3132 if (!signum) 3133 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */ 3134 else 3135 perm = signal_to_av(signum); 3136 3137 return avc_has_perm(fsec->fown_sid, tsec->sid, 3138 SECCLASS_PROCESS, perm, NULL); 3139 } 3140 3141 static int selinux_file_receive(struct file *file) 3142 { 3143 return file_has_perm(current, file, file_to_av(file)); 3144 } 3145 3146 static int selinux_dentry_open(struct file *file) 3147 { 3148 struct file_security_struct *fsec; 3149 struct inode *inode; 3150 struct inode_security_struct *isec; 3151 inode = file->f_path.dentry->d_inode; 3152 fsec = file->f_security; 3153 isec = inode->i_security; 3154 /* 3155 * Save inode label and policy sequence number 3156 * at open-time so that selinux_file_permission 3157 * can determine whether revalidation is necessary. 3158 * Task label is already saved in the file security 3159 * struct as its SID. 3160 */ 3161 fsec->isid = isec->sid; 3162 fsec->pseqno = avc_policy_seqno(); 3163 /* 3164 * Since the inode label or policy seqno may have changed 3165 * between the selinux_inode_permission check and the saving 3166 * of state above, recheck that access is still permitted. 3167 * Otherwise, access might never be revalidated against the 3168 * new inode label or new policy. 3169 * This check is not redundant - do not remove. 3170 */ 3171 return inode_has_perm(current, inode, file_to_av(file), NULL); 3172 } 3173 3174 /* task security operations */ 3175 3176 static int selinux_task_create(unsigned long clone_flags) 3177 { 3178 int rc; 3179 3180 rc = secondary_ops->task_create(clone_flags); 3181 if (rc) 3182 return rc; 3183 3184 return task_has_perm(current, current, PROCESS__FORK); 3185 } 3186 3187 static int selinux_task_alloc_security(struct task_struct *tsk) 3188 { 3189 struct task_security_struct *tsec1, *tsec2; 3190 int rc; 3191 3192 tsec1 = current->security; 3193 3194 rc = task_alloc_security(tsk); 3195 if (rc) 3196 return rc; 3197 tsec2 = tsk->security; 3198 3199 tsec2->osid = tsec1->osid; 3200 tsec2->sid = tsec1->sid; 3201 3202 /* Retain the exec, fs, key, and sock SIDs across fork */ 3203 tsec2->exec_sid = tsec1->exec_sid; 3204 tsec2->create_sid = tsec1->create_sid; 3205 tsec2->keycreate_sid = tsec1->keycreate_sid; 3206 tsec2->sockcreate_sid = tsec1->sockcreate_sid; 3207 3208 return 0; 3209 } 3210 3211 static void selinux_task_free_security(struct task_struct *tsk) 3212 { 3213 task_free_security(tsk); 3214 } 3215 3216 static int selinux_task_setuid(uid_t id0, uid_t id1, uid_t id2, int flags) 3217 { 3218 /* Since setuid only affects the current process, and 3219 since the SELinux controls are not based on the Linux 3220 identity attributes, SELinux does not need to control 3221 this operation. However, SELinux does control the use 3222 of the CAP_SETUID and CAP_SETGID capabilities using the 3223 capable hook. */ 3224 return 0; 3225 } 3226 3227 static int selinux_task_post_setuid(uid_t id0, uid_t id1, uid_t id2, int flags) 3228 { 3229 return secondary_ops->task_post_setuid(id0, id1, id2, flags); 3230 } 3231 3232 static int selinux_task_setgid(gid_t id0, gid_t id1, gid_t id2, int flags) 3233 { 3234 /* See the comment for setuid above. */ 3235 return 0; 3236 } 3237 3238 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid) 3239 { 3240 return task_has_perm(current, p, PROCESS__SETPGID); 3241 } 3242 3243 static int selinux_task_getpgid(struct task_struct *p) 3244 { 3245 return task_has_perm(current, p, PROCESS__GETPGID); 3246 } 3247 3248 static int selinux_task_getsid(struct task_struct *p) 3249 { 3250 return task_has_perm(current, p, PROCESS__GETSESSION); 3251 } 3252 3253 static void selinux_task_getsecid(struct task_struct *p, u32 *secid) 3254 { 3255 struct task_security_struct *tsec = p->security; 3256 *secid = tsec->sid; 3257 } 3258 3259 static int selinux_task_setgroups(struct group_info *group_info) 3260 { 3261 /* See the comment for setuid above. */ 3262 return 0; 3263 } 3264 3265 static int selinux_task_setnice(struct task_struct *p, int nice) 3266 { 3267 int rc; 3268 3269 rc = secondary_ops->task_setnice(p, nice); 3270 if (rc) 3271 return rc; 3272 3273 return task_has_perm(current, p, PROCESS__SETSCHED); 3274 } 3275 3276 static int selinux_task_setioprio(struct task_struct *p, int ioprio) 3277 { 3278 int rc; 3279 3280 rc = secondary_ops->task_setioprio(p, ioprio); 3281 if (rc) 3282 return rc; 3283 3284 return task_has_perm(current, p, PROCESS__SETSCHED); 3285 } 3286 3287 static int selinux_task_getioprio(struct task_struct *p) 3288 { 3289 return task_has_perm(current, p, PROCESS__GETSCHED); 3290 } 3291 3292 static int selinux_task_setrlimit(unsigned int resource, struct rlimit *new_rlim) 3293 { 3294 struct rlimit *old_rlim = current->signal->rlim + resource; 3295 int rc; 3296 3297 rc = secondary_ops->task_setrlimit(resource, new_rlim); 3298 if (rc) 3299 return rc; 3300 3301 /* Control the ability to change the hard limit (whether 3302 lowering or raising it), so that the hard limit can 3303 later be used as a safe reset point for the soft limit 3304 upon context transitions. See selinux_bprm_apply_creds. */ 3305 if (old_rlim->rlim_max != new_rlim->rlim_max) 3306 return task_has_perm(current, current, PROCESS__SETRLIMIT); 3307 3308 return 0; 3309 } 3310 3311 static int selinux_task_setscheduler(struct task_struct *p, int policy, struct sched_param *lp) 3312 { 3313 int rc; 3314 3315 rc = secondary_ops->task_setscheduler(p, policy, lp); 3316 if (rc) 3317 return rc; 3318 3319 return task_has_perm(current, p, PROCESS__SETSCHED); 3320 } 3321 3322 static int selinux_task_getscheduler(struct task_struct *p) 3323 { 3324 return task_has_perm(current, p, PROCESS__GETSCHED); 3325 } 3326 3327 static int selinux_task_movememory(struct task_struct *p) 3328 { 3329 return task_has_perm(current, p, PROCESS__SETSCHED); 3330 } 3331 3332 static int selinux_task_kill(struct task_struct *p, struct siginfo *info, 3333 int sig, u32 secid) 3334 { 3335 u32 perm; 3336 int rc; 3337 struct task_security_struct *tsec; 3338 3339 rc = secondary_ops->task_kill(p, info, sig, secid); 3340 if (rc) 3341 return rc; 3342 3343 if (!sig) 3344 perm = PROCESS__SIGNULL; /* null signal; existence test */ 3345 else 3346 perm = signal_to_av(sig); 3347 tsec = p->security; 3348 if (secid) 3349 rc = avc_has_perm(secid, tsec->sid, SECCLASS_PROCESS, perm, NULL); 3350 else 3351 rc = task_has_perm(current, p, perm); 3352 return rc; 3353 } 3354 3355 static int selinux_task_prctl(int option, 3356 unsigned long arg2, 3357 unsigned long arg3, 3358 unsigned long arg4, 3359 unsigned long arg5, 3360 long *rc_p) 3361 { 3362 /* The current prctl operations do not appear to require 3363 any SELinux controls since they merely observe or modify 3364 the state of the current process. */ 3365 return secondary_ops->task_prctl(option, arg2, arg3, arg4, arg5, rc_p); 3366 } 3367 3368 static int selinux_task_wait(struct task_struct *p) 3369 { 3370 return task_has_perm(p, current, PROCESS__SIGCHLD); 3371 } 3372 3373 static void selinux_task_reparent_to_init(struct task_struct *p) 3374 { 3375 struct task_security_struct *tsec; 3376 3377 secondary_ops->task_reparent_to_init(p); 3378 3379 tsec = p->security; 3380 tsec->osid = tsec->sid; 3381 tsec->sid = SECINITSID_KERNEL; 3382 return; 3383 } 3384 3385 static void selinux_task_to_inode(struct task_struct *p, 3386 struct inode *inode) 3387 { 3388 struct task_security_struct *tsec = p->security; 3389 struct inode_security_struct *isec = inode->i_security; 3390 3391 isec->sid = tsec->sid; 3392 isec->initialized = 1; 3393 return; 3394 } 3395 3396 /* Returns error only if unable to parse addresses */ 3397 static int selinux_parse_skb_ipv4(struct sk_buff *skb, 3398 struct avc_audit_data *ad, u8 *proto) 3399 { 3400 int offset, ihlen, ret = -EINVAL; 3401 struct iphdr _iph, *ih; 3402 3403 offset = skb_network_offset(skb); 3404 ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph); 3405 if (ih == NULL) 3406 goto out; 3407 3408 ihlen = ih->ihl * 4; 3409 if (ihlen < sizeof(_iph)) 3410 goto out; 3411 3412 ad->u.net.v4info.saddr = ih->saddr; 3413 ad->u.net.v4info.daddr = ih->daddr; 3414 ret = 0; 3415 3416 if (proto) 3417 *proto = ih->protocol; 3418 3419 switch (ih->protocol) { 3420 case IPPROTO_TCP: { 3421 struct tcphdr _tcph, *th; 3422 3423 if (ntohs(ih->frag_off) & IP_OFFSET) 3424 break; 3425 3426 offset += ihlen; 3427 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph); 3428 if (th == NULL) 3429 break; 3430 3431 ad->u.net.sport = th->source; 3432 ad->u.net.dport = th->dest; 3433 break; 3434 } 3435 3436 case IPPROTO_UDP: { 3437 struct udphdr _udph, *uh; 3438 3439 if (ntohs(ih->frag_off) & IP_OFFSET) 3440 break; 3441 3442 offset += ihlen; 3443 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph); 3444 if (uh == NULL) 3445 break; 3446 3447 ad->u.net.sport = uh->source; 3448 ad->u.net.dport = uh->dest; 3449 break; 3450 } 3451 3452 case IPPROTO_DCCP: { 3453 struct dccp_hdr _dccph, *dh; 3454 3455 if (ntohs(ih->frag_off) & IP_OFFSET) 3456 break; 3457 3458 offset += ihlen; 3459 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph); 3460 if (dh == NULL) 3461 break; 3462 3463 ad->u.net.sport = dh->dccph_sport; 3464 ad->u.net.dport = dh->dccph_dport; 3465 break; 3466 } 3467 3468 default: 3469 break; 3470 } 3471 out: 3472 return ret; 3473 } 3474 3475 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 3476 3477 /* Returns error only if unable to parse addresses */ 3478 static int selinux_parse_skb_ipv6(struct sk_buff *skb, 3479 struct avc_audit_data *ad, u8 *proto) 3480 { 3481 u8 nexthdr; 3482 int ret = -EINVAL, offset; 3483 struct ipv6hdr _ipv6h, *ip6; 3484 3485 offset = skb_network_offset(skb); 3486 ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h); 3487 if (ip6 == NULL) 3488 goto out; 3489 3490 ipv6_addr_copy(&ad->u.net.v6info.saddr, &ip6->saddr); 3491 ipv6_addr_copy(&ad->u.net.v6info.daddr, &ip6->daddr); 3492 ret = 0; 3493 3494 nexthdr = ip6->nexthdr; 3495 offset += sizeof(_ipv6h); 3496 offset = ipv6_skip_exthdr(skb, offset, &nexthdr); 3497 if (offset < 0) 3498 goto out; 3499 3500 if (proto) 3501 *proto = nexthdr; 3502 3503 switch (nexthdr) { 3504 case IPPROTO_TCP: { 3505 struct tcphdr _tcph, *th; 3506 3507 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph); 3508 if (th == NULL) 3509 break; 3510 3511 ad->u.net.sport = th->source; 3512 ad->u.net.dport = th->dest; 3513 break; 3514 } 3515 3516 case IPPROTO_UDP: { 3517 struct udphdr _udph, *uh; 3518 3519 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph); 3520 if (uh == NULL) 3521 break; 3522 3523 ad->u.net.sport = uh->source; 3524 ad->u.net.dport = uh->dest; 3525 break; 3526 } 3527 3528 case IPPROTO_DCCP: { 3529 struct dccp_hdr _dccph, *dh; 3530 3531 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph); 3532 if (dh == NULL) 3533 break; 3534 3535 ad->u.net.sport = dh->dccph_sport; 3536 ad->u.net.dport = dh->dccph_dport; 3537 break; 3538 } 3539 3540 /* includes fragments */ 3541 default: 3542 break; 3543 } 3544 out: 3545 return ret; 3546 } 3547 3548 #endif /* IPV6 */ 3549 3550 static int selinux_parse_skb(struct sk_buff *skb, struct avc_audit_data *ad, 3551 char **addrp, int src, u8 *proto) 3552 { 3553 int ret = 0; 3554 3555 switch (ad->u.net.family) { 3556 case PF_INET: 3557 ret = selinux_parse_skb_ipv4(skb, ad, proto); 3558 if (ret || !addrp) 3559 break; 3560 *addrp = (char *)(src ? &ad->u.net.v4info.saddr : 3561 &ad->u.net.v4info.daddr); 3562 break; 3563 3564 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 3565 case PF_INET6: 3566 ret = selinux_parse_skb_ipv6(skb, ad, proto); 3567 if (ret || !addrp) 3568 break; 3569 *addrp = (char *)(src ? &ad->u.net.v6info.saddr : 3570 &ad->u.net.v6info.daddr); 3571 break; 3572 #endif /* IPV6 */ 3573 default: 3574 break; 3575 } 3576 3577 if (unlikely(ret)) 3578 printk(KERN_WARNING 3579 "SELinux: failure in selinux_parse_skb()," 3580 " unable to parse packet\n"); 3581 3582 return ret; 3583 } 3584 3585 /** 3586 * selinux_skb_peerlbl_sid - Determine the peer label of a packet 3587 * @skb: the packet 3588 * @family: protocol family 3589 * @sid: the packet's peer label SID 3590 * 3591 * Description: 3592 * Check the various different forms of network peer labeling and determine 3593 * the peer label/SID for the packet; most of the magic actually occurs in 3594 * the security server function security_net_peersid_cmp(). The function 3595 * returns zero if the value in @sid is valid (although it may be SECSID_NULL) 3596 * or -EACCES if @sid is invalid due to inconsistencies with the different 3597 * peer labels. 3598 * 3599 */ 3600 static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid) 3601 { 3602 int err; 3603 u32 xfrm_sid; 3604 u32 nlbl_sid; 3605 u32 nlbl_type; 3606 3607 selinux_skb_xfrm_sid(skb, &xfrm_sid); 3608 selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid); 3609 3610 err = security_net_peersid_resolve(nlbl_sid, nlbl_type, xfrm_sid, sid); 3611 if (unlikely(err)) { 3612 printk(KERN_WARNING 3613 "SELinux: failure in selinux_skb_peerlbl_sid()," 3614 " unable to determine packet's peer label\n"); 3615 return -EACCES; 3616 } 3617 3618 return 0; 3619 } 3620 3621 /* socket security operations */ 3622 static int socket_has_perm(struct task_struct *task, struct socket *sock, 3623 u32 perms) 3624 { 3625 struct inode_security_struct *isec; 3626 struct task_security_struct *tsec; 3627 struct avc_audit_data ad; 3628 int err = 0; 3629 3630 tsec = task->security; 3631 isec = SOCK_INODE(sock)->i_security; 3632 3633 if (isec->sid == SECINITSID_KERNEL) 3634 goto out; 3635 3636 AVC_AUDIT_DATA_INIT(&ad, NET); 3637 ad.u.net.sk = sock->sk; 3638 err = avc_has_perm(tsec->sid, isec->sid, isec->sclass, perms, &ad); 3639 3640 out: 3641 return err; 3642 } 3643 3644 static int selinux_socket_create(int family, int type, 3645 int protocol, int kern) 3646 { 3647 int err = 0; 3648 struct task_security_struct *tsec; 3649 u32 newsid; 3650 3651 if (kern) 3652 goto out; 3653 3654 tsec = current->security; 3655 newsid = tsec->sockcreate_sid ? : tsec->sid; 3656 err = avc_has_perm(tsec->sid, newsid, 3657 socket_type_to_security_class(family, type, 3658 protocol), SOCKET__CREATE, NULL); 3659 3660 out: 3661 return err; 3662 } 3663 3664 static int selinux_socket_post_create(struct socket *sock, int family, 3665 int type, int protocol, int kern) 3666 { 3667 int err = 0; 3668 struct inode_security_struct *isec; 3669 struct task_security_struct *tsec; 3670 struct sk_security_struct *sksec; 3671 u32 newsid; 3672 3673 isec = SOCK_INODE(sock)->i_security; 3674 3675 tsec = current->security; 3676 newsid = tsec->sockcreate_sid ? : tsec->sid; 3677 isec->sclass = socket_type_to_security_class(family, type, protocol); 3678 isec->sid = kern ? SECINITSID_KERNEL : newsid; 3679 isec->initialized = 1; 3680 3681 if (sock->sk) { 3682 sksec = sock->sk->sk_security; 3683 sksec->sid = isec->sid; 3684 sksec->sclass = isec->sclass; 3685 err = selinux_netlbl_socket_post_create(sock); 3686 } 3687 3688 return err; 3689 } 3690 3691 /* Range of port numbers used to automatically bind. 3692 Need to determine whether we should perform a name_bind 3693 permission check between the socket and the port number. */ 3694 3695 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen) 3696 { 3697 u16 family; 3698 int err; 3699 3700 err = socket_has_perm(current, sock, SOCKET__BIND); 3701 if (err) 3702 goto out; 3703 3704 /* 3705 * If PF_INET or PF_INET6, check name_bind permission for the port. 3706 * Multiple address binding for SCTP is not supported yet: we just 3707 * check the first address now. 3708 */ 3709 family = sock->sk->sk_family; 3710 if (family == PF_INET || family == PF_INET6) { 3711 char *addrp; 3712 struct inode_security_struct *isec; 3713 struct task_security_struct *tsec; 3714 struct avc_audit_data ad; 3715 struct sockaddr_in *addr4 = NULL; 3716 struct sockaddr_in6 *addr6 = NULL; 3717 unsigned short snum; 3718 struct sock *sk = sock->sk; 3719 u32 sid, node_perm; 3720 3721 tsec = current->security; 3722 isec = SOCK_INODE(sock)->i_security; 3723 3724 if (family == PF_INET) { 3725 addr4 = (struct sockaddr_in *)address; 3726 snum = ntohs(addr4->sin_port); 3727 addrp = (char *)&addr4->sin_addr.s_addr; 3728 } else { 3729 addr6 = (struct sockaddr_in6 *)address; 3730 snum = ntohs(addr6->sin6_port); 3731 addrp = (char *)&addr6->sin6_addr.s6_addr; 3732 } 3733 3734 if (snum) { 3735 int low, high; 3736 3737 inet_get_local_port_range(&low, &high); 3738 3739 if (snum < max(PROT_SOCK, low) || snum > high) { 3740 err = sel_netport_sid(sk->sk_protocol, 3741 snum, &sid); 3742 if (err) 3743 goto out; 3744 AVC_AUDIT_DATA_INIT(&ad, NET); 3745 ad.u.net.sport = htons(snum); 3746 ad.u.net.family = family; 3747 err = avc_has_perm(isec->sid, sid, 3748 isec->sclass, 3749 SOCKET__NAME_BIND, &ad); 3750 if (err) 3751 goto out; 3752 } 3753 } 3754 3755 switch (isec->sclass) { 3756 case SECCLASS_TCP_SOCKET: 3757 node_perm = TCP_SOCKET__NODE_BIND; 3758 break; 3759 3760 case SECCLASS_UDP_SOCKET: 3761 node_perm = UDP_SOCKET__NODE_BIND; 3762 break; 3763 3764 case SECCLASS_DCCP_SOCKET: 3765 node_perm = DCCP_SOCKET__NODE_BIND; 3766 break; 3767 3768 default: 3769 node_perm = RAWIP_SOCKET__NODE_BIND; 3770 break; 3771 } 3772 3773 err = sel_netnode_sid(addrp, family, &sid); 3774 if (err) 3775 goto out; 3776 3777 AVC_AUDIT_DATA_INIT(&ad, NET); 3778 ad.u.net.sport = htons(snum); 3779 ad.u.net.family = family; 3780 3781 if (family == PF_INET) 3782 ad.u.net.v4info.saddr = addr4->sin_addr.s_addr; 3783 else 3784 ipv6_addr_copy(&ad.u.net.v6info.saddr, &addr6->sin6_addr); 3785 3786 err = avc_has_perm(isec->sid, sid, 3787 isec->sclass, node_perm, &ad); 3788 if (err) 3789 goto out; 3790 } 3791 out: 3792 return err; 3793 } 3794 3795 static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen) 3796 { 3797 struct inode_security_struct *isec; 3798 int err; 3799 3800 err = socket_has_perm(current, sock, SOCKET__CONNECT); 3801 if (err) 3802 return err; 3803 3804 /* 3805 * If a TCP or DCCP socket, check name_connect permission for the port. 3806 */ 3807 isec = SOCK_INODE(sock)->i_security; 3808 if (isec->sclass == SECCLASS_TCP_SOCKET || 3809 isec->sclass == SECCLASS_DCCP_SOCKET) { 3810 struct sock *sk = sock->sk; 3811 struct avc_audit_data ad; 3812 struct sockaddr_in *addr4 = NULL; 3813 struct sockaddr_in6 *addr6 = NULL; 3814 unsigned short snum; 3815 u32 sid, perm; 3816 3817 if (sk->sk_family == PF_INET) { 3818 addr4 = (struct sockaddr_in *)address; 3819 if (addrlen < sizeof(struct sockaddr_in)) 3820 return -EINVAL; 3821 snum = ntohs(addr4->sin_port); 3822 } else { 3823 addr6 = (struct sockaddr_in6 *)address; 3824 if (addrlen < SIN6_LEN_RFC2133) 3825 return -EINVAL; 3826 snum = ntohs(addr6->sin6_port); 3827 } 3828 3829 err = sel_netport_sid(sk->sk_protocol, snum, &sid); 3830 if (err) 3831 goto out; 3832 3833 perm = (isec->sclass == SECCLASS_TCP_SOCKET) ? 3834 TCP_SOCKET__NAME_CONNECT : DCCP_SOCKET__NAME_CONNECT; 3835 3836 AVC_AUDIT_DATA_INIT(&ad, NET); 3837 ad.u.net.dport = htons(snum); 3838 ad.u.net.family = sk->sk_family; 3839 err = avc_has_perm(isec->sid, sid, isec->sclass, perm, &ad); 3840 if (err) 3841 goto out; 3842 } 3843 3844 out: 3845 return err; 3846 } 3847 3848 static int selinux_socket_listen(struct socket *sock, int backlog) 3849 { 3850 return socket_has_perm(current, sock, SOCKET__LISTEN); 3851 } 3852 3853 static int selinux_socket_accept(struct socket *sock, struct socket *newsock) 3854 { 3855 int err; 3856 struct inode_security_struct *isec; 3857 struct inode_security_struct *newisec; 3858 3859 err = socket_has_perm(current, sock, SOCKET__ACCEPT); 3860 if (err) 3861 return err; 3862 3863 newisec = SOCK_INODE(newsock)->i_security; 3864 3865 isec = SOCK_INODE(sock)->i_security; 3866 newisec->sclass = isec->sclass; 3867 newisec->sid = isec->sid; 3868 newisec->initialized = 1; 3869 3870 return 0; 3871 } 3872 3873 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg, 3874 int size) 3875 { 3876 int rc; 3877 3878 rc = socket_has_perm(current, sock, SOCKET__WRITE); 3879 if (rc) 3880 return rc; 3881 3882 return selinux_netlbl_inode_permission(SOCK_INODE(sock), MAY_WRITE); 3883 } 3884 3885 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg, 3886 int size, int flags) 3887 { 3888 return socket_has_perm(current, sock, SOCKET__READ); 3889 } 3890 3891 static int selinux_socket_getsockname(struct socket *sock) 3892 { 3893 return socket_has_perm(current, sock, SOCKET__GETATTR); 3894 } 3895 3896 static int selinux_socket_getpeername(struct socket *sock) 3897 { 3898 return socket_has_perm(current, sock, SOCKET__GETATTR); 3899 } 3900 3901 static int selinux_socket_setsockopt(struct socket *sock, int level, int optname) 3902 { 3903 int err; 3904 3905 err = socket_has_perm(current, sock, SOCKET__SETOPT); 3906 if (err) 3907 return err; 3908 3909 return selinux_netlbl_socket_setsockopt(sock, level, optname); 3910 } 3911 3912 static int selinux_socket_getsockopt(struct socket *sock, int level, 3913 int optname) 3914 { 3915 return socket_has_perm(current, sock, SOCKET__GETOPT); 3916 } 3917 3918 static int selinux_socket_shutdown(struct socket *sock, int how) 3919 { 3920 return socket_has_perm(current, sock, SOCKET__SHUTDOWN); 3921 } 3922 3923 static int selinux_socket_unix_stream_connect(struct socket *sock, 3924 struct socket *other, 3925 struct sock *newsk) 3926 { 3927 struct sk_security_struct *ssec; 3928 struct inode_security_struct *isec; 3929 struct inode_security_struct *other_isec; 3930 struct avc_audit_data ad; 3931 int err; 3932 3933 err = secondary_ops->unix_stream_connect(sock, other, newsk); 3934 if (err) 3935 return err; 3936 3937 isec = SOCK_INODE(sock)->i_security; 3938 other_isec = SOCK_INODE(other)->i_security; 3939 3940 AVC_AUDIT_DATA_INIT(&ad, NET); 3941 ad.u.net.sk = other->sk; 3942 3943 err = avc_has_perm(isec->sid, other_isec->sid, 3944 isec->sclass, 3945 UNIX_STREAM_SOCKET__CONNECTTO, &ad); 3946 if (err) 3947 return err; 3948 3949 /* connecting socket */ 3950 ssec = sock->sk->sk_security; 3951 ssec->peer_sid = other_isec->sid; 3952 3953 /* server child socket */ 3954 ssec = newsk->sk_security; 3955 ssec->peer_sid = isec->sid; 3956 err = security_sid_mls_copy(other_isec->sid, ssec->peer_sid, &ssec->sid); 3957 3958 return err; 3959 } 3960 3961 static int selinux_socket_unix_may_send(struct socket *sock, 3962 struct socket *other) 3963 { 3964 struct inode_security_struct *isec; 3965 struct inode_security_struct *other_isec; 3966 struct avc_audit_data ad; 3967 int err; 3968 3969 isec = SOCK_INODE(sock)->i_security; 3970 other_isec = SOCK_INODE(other)->i_security; 3971 3972 AVC_AUDIT_DATA_INIT(&ad, NET); 3973 ad.u.net.sk = other->sk; 3974 3975 err = avc_has_perm(isec->sid, other_isec->sid, 3976 isec->sclass, SOCKET__SENDTO, &ad); 3977 if (err) 3978 return err; 3979 3980 return 0; 3981 } 3982 3983 static int selinux_inet_sys_rcv_skb(int ifindex, char *addrp, u16 family, 3984 u32 peer_sid, 3985 struct avc_audit_data *ad) 3986 { 3987 int err; 3988 u32 if_sid; 3989 u32 node_sid; 3990 3991 err = sel_netif_sid(ifindex, &if_sid); 3992 if (err) 3993 return err; 3994 err = avc_has_perm(peer_sid, if_sid, 3995 SECCLASS_NETIF, NETIF__INGRESS, ad); 3996 if (err) 3997 return err; 3998 3999 err = sel_netnode_sid(addrp, family, &node_sid); 4000 if (err) 4001 return err; 4002 return avc_has_perm(peer_sid, node_sid, 4003 SECCLASS_NODE, NODE__RECVFROM, ad); 4004 } 4005 4006 static int selinux_sock_rcv_skb_iptables_compat(struct sock *sk, 4007 struct sk_buff *skb, 4008 struct avc_audit_data *ad, 4009 u16 family, 4010 char *addrp) 4011 { 4012 int err; 4013 struct sk_security_struct *sksec = sk->sk_security; 4014 u16 sk_class; 4015 u32 netif_perm, node_perm, recv_perm; 4016 u32 port_sid, node_sid, if_sid, sk_sid; 4017 4018 sk_sid = sksec->sid; 4019 sk_class = sksec->sclass; 4020 4021 switch (sk_class) { 4022 case SECCLASS_UDP_SOCKET: 4023 netif_perm = NETIF__UDP_RECV; 4024 node_perm = NODE__UDP_RECV; 4025 recv_perm = UDP_SOCKET__RECV_MSG; 4026 break; 4027 case SECCLASS_TCP_SOCKET: 4028 netif_perm = NETIF__TCP_RECV; 4029 node_perm = NODE__TCP_RECV; 4030 recv_perm = TCP_SOCKET__RECV_MSG; 4031 break; 4032 case SECCLASS_DCCP_SOCKET: 4033 netif_perm = NETIF__DCCP_RECV; 4034 node_perm = NODE__DCCP_RECV; 4035 recv_perm = DCCP_SOCKET__RECV_MSG; 4036 break; 4037 default: 4038 netif_perm = NETIF__RAWIP_RECV; 4039 node_perm = NODE__RAWIP_RECV; 4040 recv_perm = 0; 4041 break; 4042 } 4043 4044 err = sel_netif_sid(skb->iif, &if_sid); 4045 if (err) 4046 return err; 4047 err = avc_has_perm(sk_sid, if_sid, SECCLASS_NETIF, netif_perm, ad); 4048 if (err) 4049 return err; 4050 4051 err = sel_netnode_sid(addrp, family, &node_sid); 4052 if (err) 4053 return err; 4054 err = avc_has_perm(sk_sid, node_sid, SECCLASS_NODE, node_perm, ad); 4055 if (err) 4056 return err; 4057 4058 if (!recv_perm) 4059 return 0; 4060 err = sel_netport_sid(sk->sk_protocol, 4061 ntohs(ad->u.net.sport), &port_sid); 4062 if (unlikely(err)) { 4063 printk(KERN_WARNING 4064 "SELinux: failure in" 4065 " selinux_sock_rcv_skb_iptables_compat()," 4066 " network port label not found\n"); 4067 return err; 4068 } 4069 return avc_has_perm(sk_sid, port_sid, sk_class, recv_perm, ad); 4070 } 4071 4072 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb, 4073 struct avc_audit_data *ad, 4074 u16 family, char *addrp) 4075 { 4076 int err; 4077 struct sk_security_struct *sksec = sk->sk_security; 4078 u32 peer_sid; 4079 u32 sk_sid = sksec->sid; 4080 4081 if (selinux_compat_net) 4082 err = selinux_sock_rcv_skb_iptables_compat(sk, skb, ad, 4083 family, addrp); 4084 else 4085 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET, 4086 PACKET__RECV, ad); 4087 if (err) 4088 return err; 4089 4090 if (selinux_policycap_netpeer) { 4091 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid); 4092 if (err) 4093 return err; 4094 err = avc_has_perm(sk_sid, peer_sid, 4095 SECCLASS_PEER, PEER__RECV, ad); 4096 } else { 4097 err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, ad); 4098 if (err) 4099 return err; 4100 err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, ad); 4101 } 4102 4103 return err; 4104 } 4105 4106 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb) 4107 { 4108 int err; 4109 struct sk_security_struct *sksec = sk->sk_security; 4110 u16 family = sk->sk_family; 4111 u32 sk_sid = sksec->sid; 4112 struct avc_audit_data ad; 4113 char *addrp; 4114 4115 if (family != PF_INET && family != PF_INET6) 4116 return 0; 4117 4118 /* Handle mapped IPv4 packets arriving via IPv6 sockets */ 4119 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP)) 4120 family = PF_INET; 4121 4122 AVC_AUDIT_DATA_INIT(&ad, NET); 4123 ad.u.net.netif = skb->iif; 4124 ad.u.net.family = family; 4125 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL); 4126 if (err) 4127 return err; 4128 4129 /* If any sort of compatibility mode is enabled then handoff processing 4130 * to the selinux_sock_rcv_skb_compat() function to deal with the 4131 * special handling. We do this in an attempt to keep this function 4132 * as fast and as clean as possible. */ 4133 if (selinux_compat_net || !selinux_policycap_netpeer) 4134 return selinux_sock_rcv_skb_compat(sk, skb, &ad, 4135 family, addrp); 4136 4137 if (netlbl_enabled() || selinux_xfrm_enabled()) { 4138 u32 peer_sid; 4139 4140 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid); 4141 if (err) 4142 return err; 4143 err = selinux_inet_sys_rcv_skb(skb->iif, addrp, family, 4144 peer_sid, &ad); 4145 if (err) 4146 return err; 4147 err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER, 4148 PEER__RECV, &ad); 4149 } 4150 4151 if (selinux_secmark_enabled()) { 4152 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET, 4153 PACKET__RECV, &ad); 4154 if (err) 4155 return err; 4156 } 4157 4158 return err; 4159 } 4160 4161 static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval, 4162 int __user *optlen, unsigned len) 4163 { 4164 int err = 0; 4165 char *scontext; 4166 u32 scontext_len; 4167 struct sk_security_struct *ssec; 4168 struct inode_security_struct *isec; 4169 u32 peer_sid = SECSID_NULL; 4170 4171 isec = SOCK_INODE(sock)->i_security; 4172 4173 if (isec->sclass == SECCLASS_UNIX_STREAM_SOCKET || 4174 isec->sclass == SECCLASS_TCP_SOCKET) { 4175 ssec = sock->sk->sk_security; 4176 peer_sid = ssec->peer_sid; 4177 } 4178 if (peer_sid == SECSID_NULL) { 4179 err = -ENOPROTOOPT; 4180 goto out; 4181 } 4182 4183 err = security_sid_to_context(peer_sid, &scontext, &scontext_len); 4184 4185 if (err) 4186 goto out; 4187 4188 if (scontext_len > len) { 4189 err = -ERANGE; 4190 goto out_len; 4191 } 4192 4193 if (copy_to_user(optval, scontext, scontext_len)) 4194 err = -EFAULT; 4195 4196 out_len: 4197 if (put_user(scontext_len, optlen)) 4198 err = -EFAULT; 4199 4200 kfree(scontext); 4201 out: 4202 return err; 4203 } 4204 4205 static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid) 4206 { 4207 u32 peer_secid = SECSID_NULL; 4208 u16 family; 4209 4210 if (sock) 4211 family = sock->sk->sk_family; 4212 else if (skb && skb->sk) 4213 family = skb->sk->sk_family; 4214 else 4215 goto out; 4216 4217 if (sock && family == PF_UNIX) 4218 selinux_inode_getsecid(SOCK_INODE(sock), &peer_secid); 4219 else if (skb) 4220 selinux_skb_peerlbl_sid(skb, family, &peer_secid); 4221 4222 out: 4223 *secid = peer_secid; 4224 if (peer_secid == SECSID_NULL) 4225 return -EINVAL; 4226 return 0; 4227 } 4228 4229 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority) 4230 { 4231 return sk_alloc_security(sk, family, priority); 4232 } 4233 4234 static void selinux_sk_free_security(struct sock *sk) 4235 { 4236 sk_free_security(sk); 4237 } 4238 4239 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk) 4240 { 4241 struct sk_security_struct *ssec = sk->sk_security; 4242 struct sk_security_struct *newssec = newsk->sk_security; 4243 4244 newssec->sid = ssec->sid; 4245 newssec->peer_sid = ssec->peer_sid; 4246 newssec->sclass = ssec->sclass; 4247 4248 selinux_netlbl_sk_security_reset(newssec, newsk->sk_family); 4249 } 4250 4251 static void selinux_sk_getsecid(struct sock *sk, u32 *secid) 4252 { 4253 if (!sk) 4254 *secid = SECINITSID_ANY_SOCKET; 4255 else { 4256 struct sk_security_struct *sksec = sk->sk_security; 4257 4258 *secid = sksec->sid; 4259 } 4260 } 4261 4262 static void selinux_sock_graft(struct sock *sk, struct socket *parent) 4263 { 4264 struct inode_security_struct *isec = SOCK_INODE(parent)->i_security; 4265 struct sk_security_struct *sksec = sk->sk_security; 4266 4267 if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 || 4268 sk->sk_family == PF_UNIX) 4269 isec->sid = sksec->sid; 4270 sksec->sclass = isec->sclass; 4271 4272 selinux_netlbl_sock_graft(sk, parent); 4273 } 4274 4275 static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb, 4276 struct request_sock *req) 4277 { 4278 struct sk_security_struct *sksec = sk->sk_security; 4279 int err; 4280 u32 newsid; 4281 u32 peersid; 4282 4283 err = selinux_skb_peerlbl_sid(skb, sk->sk_family, &peersid); 4284 if (err) 4285 return err; 4286 if (peersid == SECSID_NULL) { 4287 req->secid = sksec->sid; 4288 req->peer_secid = SECSID_NULL; 4289 return 0; 4290 } 4291 4292 err = security_sid_mls_copy(sksec->sid, peersid, &newsid); 4293 if (err) 4294 return err; 4295 4296 req->secid = newsid; 4297 req->peer_secid = peersid; 4298 return 0; 4299 } 4300 4301 static void selinux_inet_csk_clone(struct sock *newsk, 4302 const struct request_sock *req) 4303 { 4304 struct sk_security_struct *newsksec = newsk->sk_security; 4305 4306 newsksec->sid = req->secid; 4307 newsksec->peer_sid = req->peer_secid; 4308 /* NOTE: Ideally, we should also get the isec->sid for the 4309 new socket in sync, but we don't have the isec available yet. 4310 So we will wait until sock_graft to do it, by which 4311 time it will have been created and available. */ 4312 4313 /* We don't need to take any sort of lock here as we are the only 4314 * thread with access to newsksec */ 4315 selinux_netlbl_sk_security_reset(newsksec, req->rsk_ops->family); 4316 } 4317 4318 static void selinux_inet_conn_established(struct sock *sk, 4319 struct sk_buff *skb) 4320 { 4321 struct sk_security_struct *sksec = sk->sk_security; 4322 4323 selinux_skb_peerlbl_sid(skb, sk->sk_family, &sksec->peer_sid); 4324 } 4325 4326 static void selinux_req_classify_flow(const struct request_sock *req, 4327 struct flowi *fl) 4328 { 4329 fl->secid = req->secid; 4330 } 4331 4332 static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb) 4333 { 4334 int err = 0; 4335 u32 perm; 4336 struct nlmsghdr *nlh; 4337 struct socket *sock = sk->sk_socket; 4338 struct inode_security_struct *isec = SOCK_INODE(sock)->i_security; 4339 4340 if (skb->len < NLMSG_SPACE(0)) { 4341 err = -EINVAL; 4342 goto out; 4343 } 4344 nlh = nlmsg_hdr(skb); 4345 4346 err = selinux_nlmsg_lookup(isec->sclass, nlh->nlmsg_type, &perm); 4347 if (err) { 4348 if (err == -EINVAL) { 4349 audit_log(current->audit_context, GFP_KERNEL, AUDIT_SELINUX_ERR, 4350 "SELinux: unrecognized netlink message" 4351 " type=%hu for sclass=%hu\n", 4352 nlh->nlmsg_type, isec->sclass); 4353 if (!selinux_enforcing) 4354 err = 0; 4355 } 4356 4357 /* Ignore */ 4358 if (err == -ENOENT) 4359 err = 0; 4360 goto out; 4361 } 4362 4363 err = socket_has_perm(current, sock, perm); 4364 out: 4365 return err; 4366 } 4367 4368 #ifdef CONFIG_NETFILTER 4369 4370 static unsigned int selinux_ip_forward(struct sk_buff *skb, int ifindex, 4371 u16 family) 4372 { 4373 char *addrp; 4374 u32 peer_sid; 4375 struct avc_audit_data ad; 4376 u8 secmark_active; 4377 u8 peerlbl_active; 4378 4379 if (!selinux_policycap_netpeer) 4380 return NF_ACCEPT; 4381 4382 secmark_active = selinux_secmark_enabled(); 4383 peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled(); 4384 if (!secmark_active && !peerlbl_active) 4385 return NF_ACCEPT; 4386 4387 AVC_AUDIT_DATA_INIT(&ad, NET); 4388 ad.u.net.netif = ifindex; 4389 ad.u.net.family = family; 4390 if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0) 4391 return NF_DROP; 4392 4393 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0) 4394 return NF_DROP; 4395 4396 if (peerlbl_active) 4397 if (selinux_inet_sys_rcv_skb(ifindex, addrp, family, 4398 peer_sid, &ad) != 0) 4399 return NF_DROP; 4400 4401 if (secmark_active) 4402 if (avc_has_perm(peer_sid, skb->secmark, 4403 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad)) 4404 return NF_DROP; 4405 4406 return NF_ACCEPT; 4407 } 4408 4409 static unsigned int selinux_ipv4_forward(unsigned int hooknum, 4410 struct sk_buff *skb, 4411 const struct net_device *in, 4412 const struct net_device *out, 4413 int (*okfn)(struct sk_buff *)) 4414 { 4415 return selinux_ip_forward(skb, in->ifindex, PF_INET); 4416 } 4417 4418 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 4419 static unsigned int selinux_ipv6_forward(unsigned int hooknum, 4420 struct sk_buff *skb, 4421 const struct net_device *in, 4422 const struct net_device *out, 4423 int (*okfn)(struct sk_buff *)) 4424 { 4425 return selinux_ip_forward(skb, in->ifindex, PF_INET6); 4426 } 4427 #endif /* IPV6 */ 4428 4429 static int selinux_ip_postroute_iptables_compat(struct sock *sk, 4430 int ifindex, 4431 struct avc_audit_data *ad, 4432 u16 family, char *addrp) 4433 { 4434 int err; 4435 struct sk_security_struct *sksec = sk->sk_security; 4436 u16 sk_class; 4437 u32 netif_perm, node_perm, send_perm; 4438 u32 port_sid, node_sid, if_sid, sk_sid; 4439 4440 sk_sid = sksec->sid; 4441 sk_class = sksec->sclass; 4442 4443 switch (sk_class) { 4444 case SECCLASS_UDP_SOCKET: 4445 netif_perm = NETIF__UDP_SEND; 4446 node_perm = NODE__UDP_SEND; 4447 send_perm = UDP_SOCKET__SEND_MSG; 4448 break; 4449 case SECCLASS_TCP_SOCKET: 4450 netif_perm = NETIF__TCP_SEND; 4451 node_perm = NODE__TCP_SEND; 4452 send_perm = TCP_SOCKET__SEND_MSG; 4453 break; 4454 case SECCLASS_DCCP_SOCKET: 4455 netif_perm = NETIF__DCCP_SEND; 4456 node_perm = NODE__DCCP_SEND; 4457 send_perm = DCCP_SOCKET__SEND_MSG; 4458 break; 4459 default: 4460 netif_perm = NETIF__RAWIP_SEND; 4461 node_perm = NODE__RAWIP_SEND; 4462 send_perm = 0; 4463 break; 4464 } 4465 4466 err = sel_netif_sid(ifindex, &if_sid); 4467 if (err) 4468 return err; 4469 err = avc_has_perm(sk_sid, if_sid, SECCLASS_NETIF, netif_perm, ad); 4470 return err; 4471 4472 err = sel_netnode_sid(addrp, family, &node_sid); 4473 if (err) 4474 return err; 4475 err = avc_has_perm(sk_sid, node_sid, SECCLASS_NODE, node_perm, ad); 4476 if (err) 4477 return err; 4478 4479 if (send_perm != 0) 4480 return 0; 4481 4482 err = sel_netport_sid(sk->sk_protocol, 4483 ntohs(ad->u.net.dport), &port_sid); 4484 if (unlikely(err)) { 4485 printk(KERN_WARNING 4486 "SELinux: failure in" 4487 " selinux_ip_postroute_iptables_compat()," 4488 " network port label not found\n"); 4489 return err; 4490 } 4491 return avc_has_perm(sk_sid, port_sid, sk_class, send_perm, ad); 4492 } 4493 4494 static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb, 4495 int ifindex, 4496 struct avc_audit_data *ad, 4497 u16 family, 4498 char *addrp, 4499 u8 proto) 4500 { 4501 struct sock *sk = skb->sk; 4502 struct sk_security_struct *sksec; 4503 4504 if (sk == NULL) 4505 return NF_ACCEPT; 4506 sksec = sk->sk_security; 4507 4508 if (selinux_compat_net) { 4509 if (selinux_ip_postroute_iptables_compat(skb->sk, ifindex, 4510 ad, family, addrp)) 4511 return NF_DROP; 4512 } else { 4513 if (avc_has_perm(sksec->sid, skb->secmark, 4514 SECCLASS_PACKET, PACKET__SEND, ad)) 4515 return NF_DROP; 4516 } 4517 4518 if (selinux_policycap_netpeer) 4519 if (selinux_xfrm_postroute_last(sksec->sid, skb, ad, proto)) 4520 return NF_DROP; 4521 4522 return NF_ACCEPT; 4523 } 4524 4525 static unsigned int selinux_ip_postroute(struct sk_buff *skb, int ifindex, 4526 u16 family) 4527 { 4528 u32 secmark_perm; 4529 u32 peer_sid; 4530 struct sock *sk; 4531 struct avc_audit_data ad; 4532 char *addrp; 4533 u8 proto; 4534 u8 secmark_active; 4535 u8 peerlbl_active; 4536 4537 AVC_AUDIT_DATA_INIT(&ad, NET); 4538 ad.u.net.netif = ifindex; 4539 ad.u.net.family = family; 4540 if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto)) 4541 return NF_DROP; 4542 4543 /* If any sort of compatibility mode is enabled then handoff processing 4544 * to the selinux_ip_postroute_compat() function to deal with the 4545 * special handling. We do this in an attempt to keep this function 4546 * as fast and as clean as possible. */ 4547 if (selinux_compat_net || !selinux_policycap_netpeer) 4548 return selinux_ip_postroute_compat(skb, ifindex, &ad, 4549 family, addrp, proto); 4550 4551 /* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec 4552 * packet transformation so allow the packet to pass without any checks 4553 * since we'll have another chance to perform access control checks 4554 * when the packet is on it's final way out. 4555 * NOTE: there appear to be some IPv6 multicast cases where skb->dst 4556 * is NULL, in this case go ahead and apply access control. */ 4557 if (skb->dst != NULL && skb->dst->xfrm != NULL) 4558 return NF_ACCEPT; 4559 4560 secmark_active = selinux_secmark_enabled(); 4561 peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled(); 4562 if (!secmark_active && !peerlbl_active) 4563 return NF_ACCEPT; 4564 4565 /* if the packet is locally generated (skb->sk != NULL) then use the 4566 * socket's label as the peer label, otherwise the packet is being 4567 * forwarded through this system and we need to fetch the peer label 4568 * directly from the packet */ 4569 sk = skb->sk; 4570 if (sk) { 4571 struct sk_security_struct *sksec = sk->sk_security; 4572 peer_sid = sksec->sid; 4573 secmark_perm = PACKET__SEND; 4574 } else { 4575 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid)) 4576 return NF_DROP; 4577 secmark_perm = PACKET__FORWARD_OUT; 4578 } 4579 4580 if (secmark_active) 4581 if (avc_has_perm(peer_sid, skb->secmark, 4582 SECCLASS_PACKET, secmark_perm, &ad)) 4583 return NF_DROP; 4584 4585 if (peerlbl_active) { 4586 u32 if_sid; 4587 u32 node_sid; 4588 4589 if (sel_netif_sid(ifindex, &if_sid)) 4590 return NF_DROP; 4591 if (avc_has_perm(peer_sid, if_sid, 4592 SECCLASS_NETIF, NETIF__EGRESS, &ad)) 4593 return NF_DROP; 4594 4595 if (sel_netnode_sid(addrp, family, &node_sid)) 4596 return NF_DROP; 4597 if (avc_has_perm(peer_sid, node_sid, 4598 SECCLASS_NODE, NODE__SENDTO, &ad)) 4599 return NF_DROP; 4600 } 4601 4602 return NF_ACCEPT; 4603 } 4604 4605 static unsigned int selinux_ipv4_postroute(unsigned int hooknum, 4606 struct sk_buff *skb, 4607 const struct net_device *in, 4608 const struct net_device *out, 4609 int (*okfn)(struct sk_buff *)) 4610 { 4611 return selinux_ip_postroute(skb, out->ifindex, PF_INET); 4612 } 4613 4614 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 4615 static unsigned int selinux_ipv6_postroute(unsigned int hooknum, 4616 struct sk_buff *skb, 4617 const struct net_device *in, 4618 const struct net_device *out, 4619 int (*okfn)(struct sk_buff *)) 4620 { 4621 return selinux_ip_postroute(skb, out->ifindex, PF_INET6); 4622 } 4623 #endif /* IPV6 */ 4624 4625 #endif /* CONFIG_NETFILTER */ 4626 4627 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb) 4628 { 4629 int err; 4630 4631 err = secondary_ops->netlink_send(sk, skb); 4632 if (err) 4633 return err; 4634 4635 if (policydb_loaded_version >= POLICYDB_VERSION_NLCLASS) 4636 err = selinux_nlmsg_perm(sk, skb); 4637 4638 return err; 4639 } 4640 4641 static int selinux_netlink_recv(struct sk_buff *skb, int capability) 4642 { 4643 int err; 4644 struct avc_audit_data ad; 4645 4646 err = secondary_ops->netlink_recv(skb, capability); 4647 if (err) 4648 return err; 4649 4650 AVC_AUDIT_DATA_INIT(&ad, CAP); 4651 ad.u.cap = capability; 4652 4653 return avc_has_perm(NETLINK_CB(skb).sid, NETLINK_CB(skb).sid, 4654 SECCLASS_CAPABILITY, CAP_TO_MASK(capability), &ad); 4655 } 4656 4657 static int ipc_alloc_security(struct task_struct *task, 4658 struct kern_ipc_perm *perm, 4659 u16 sclass) 4660 { 4661 struct task_security_struct *tsec = task->security; 4662 struct ipc_security_struct *isec; 4663 4664 isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL); 4665 if (!isec) 4666 return -ENOMEM; 4667 4668 isec->sclass = sclass; 4669 isec->sid = tsec->sid; 4670 perm->security = isec; 4671 4672 return 0; 4673 } 4674 4675 static void ipc_free_security(struct kern_ipc_perm *perm) 4676 { 4677 struct ipc_security_struct *isec = perm->security; 4678 perm->security = NULL; 4679 kfree(isec); 4680 } 4681 4682 static int msg_msg_alloc_security(struct msg_msg *msg) 4683 { 4684 struct msg_security_struct *msec; 4685 4686 msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL); 4687 if (!msec) 4688 return -ENOMEM; 4689 4690 msec->sid = SECINITSID_UNLABELED; 4691 msg->security = msec; 4692 4693 return 0; 4694 } 4695 4696 static void msg_msg_free_security(struct msg_msg *msg) 4697 { 4698 struct msg_security_struct *msec = msg->security; 4699 4700 msg->security = NULL; 4701 kfree(msec); 4702 } 4703 4704 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms, 4705 u32 perms) 4706 { 4707 struct task_security_struct *tsec; 4708 struct ipc_security_struct *isec; 4709 struct avc_audit_data ad; 4710 4711 tsec = current->security; 4712 isec = ipc_perms->security; 4713 4714 AVC_AUDIT_DATA_INIT(&ad, IPC); 4715 ad.u.ipc_id = ipc_perms->key; 4716 4717 return avc_has_perm(tsec->sid, isec->sid, isec->sclass, perms, &ad); 4718 } 4719 4720 static int selinux_msg_msg_alloc_security(struct msg_msg *msg) 4721 { 4722 return msg_msg_alloc_security(msg); 4723 } 4724 4725 static void selinux_msg_msg_free_security(struct msg_msg *msg) 4726 { 4727 msg_msg_free_security(msg); 4728 } 4729 4730 /* message queue security operations */ 4731 static int selinux_msg_queue_alloc_security(struct msg_queue *msq) 4732 { 4733 struct task_security_struct *tsec; 4734 struct ipc_security_struct *isec; 4735 struct avc_audit_data ad; 4736 int rc; 4737 4738 rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ); 4739 if (rc) 4740 return rc; 4741 4742 tsec = current->security; 4743 isec = msq->q_perm.security; 4744 4745 AVC_AUDIT_DATA_INIT(&ad, IPC); 4746 ad.u.ipc_id = msq->q_perm.key; 4747 4748 rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_MSGQ, 4749 MSGQ__CREATE, &ad); 4750 if (rc) { 4751 ipc_free_security(&msq->q_perm); 4752 return rc; 4753 } 4754 return 0; 4755 } 4756 4757 static void selinux_msg_queue_free_security(struct msg_queue *msq) 4758 { 4759 ipc_free_security(&msq->q_perm); 4760 } 4761 4762 static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg) 4763 { 4764 struct task_security_struct *tsec; 4765 struct ipc_security_struct *isec; 4766 struct avc_audit_data ad; 4767 4768 tsec = current->security; 4769 isec = msq->q_perm.security; 4770 4771 AVC_AUDIT_DATA_INIT(&ad, IPC); 4772 ad.u.ipc_id = msq->q_perm.key; 4773 4774 return avc_has_perm(tsec->sid, isec->sid, SECCLASS_MSGQ, 4775 MSGQ__ASSOCIATE, &ad); 4776 } 4777 4778 static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd) 4779 { 4780 int err; 4781 int perms; 4782 4783 switch (cmd) { 4784 case IPC_INFO: 4785 case MSG_INFO: 4786 /* No specific object, just general system-wide information. */ 4787 return task_has_system(current, SYSTEM__IPC_INFO); 4788 case IPC_STAT: 4789 case MSG_STAT: 4790 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE; 4791 break; 4792 case IPC_SET: 4793 perms = MSGQ__SETATTR; 4794 break; 4795 case IPC_RMID: 4796 perms = MSGQ__DESTROY; 4797 break; 4798 default: 4799 return 0; 4800 } 4801 4802 err = ipc_has_perm(&msq->q_perm, perms); 4803 return err; 4804 } 4805 4806 static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg) 4807 { 4808 struct task_security_struct *tsec; 4809 struct ipc_security_struct *isec; 4810 struct msg_security_struct *msec; 4811 struct avc_audit_data ad; 4812 int rc; 4813 4814 tsec = current->security; 4815 isec = msq->q_perm.security; 4816 msec = msg->security; 4817 4818 /* 4819 * First time through, need to assign label to the message 4820 */ 4821 if (msec->sid == SECINITSID_UNLABELED) { 4822 /* 4823 * Compute new sid based on current process and 4824 * message queue this message will be stored in 4825 */ 4826 rc = security_transition_sid(tsec->sid, 4827 isec->sid, 4828 SECCLASS_MSG, 4829 &msec->sid); 4830 if (rc) 4831 return rc; 4832 } 4833 4834 AVC_AUDIT_DATA_INIT(&ad, IPC); 4835 ad.u.ipc_id = msq->q_perm.key; 4836 4837 /* Can this process write to the queue? */ 4838 rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_MSGQ, 4839 MSGQ__WRITE, &ad); 4840 if (!rc) 4841 /* Can this process send the message */ 4842 rc = avc_has_perm(tsec->sid, msec->sid, 4843 SECCLASS_MSG, MSG__SEND, &ad); 4844 if (!rc) 4845 /* Can the message be put in the queue? */ 4846 rc = avc_has_perm(msec->sid, isec->sid, 4847 SECCLASS_MSGQ, MSGQ__ENQUEUE, &ad); 4848 4849 return rc; 4850 } 4851 4852 static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg, 4853 struct task_struct *target, 4854 long type, int mode) 4855 { 4856 struct task_security_struct *tsec; 4857 struct ipc_security_struct *isec; 4858 struct msg_security_struct *msec; 4859 struct avc_audit_data ad; 4860 int rc; 4861 4862 tsec = target->security; 4863 isec = msq->q_perm.security; 4864 msec = msg->security; 4865 4866 AVC_AUDIT_DATA_INIT(&ad, IPC); 4867 ad.u.ipc_id = msq->q_perm.key; 4868 4869 rc = avc_has_perm(tsec->sid, isec->sid, 4870 SECCLASS_MSGQ, MSGQ__READ, &ad); 4871 if (!rc) 4872 rc = avc_has_perm(tsec->sid, msec->sid, 4873 SECCLASS_MSG, MSG__RECEIVE, &ad); 4874 return rc; 4875 } 4876 4877 /* Shared Memory security operations */ 4878 static int selinux_shm_alloc_security(struct shmid_kernel *shp) 4879 { 4880 struct task_security_struct *tsec; 4881 struct ipc_security_struct *isec; 4882 struct avc_audit_data ad; 4883 int rc; 4884 4885 rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM); 4886 if (rc) 4887 return rc; 4888 4889 tsec = current->security; 4890 isec = shp->shm_perm.security; 4891 4892 AVC_AUDIT_DATA_INIT(&ad, IPC); 4893 ad.u.ipc_id = shp->shm_perm.key; 4894 4895 rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_SHM, 4896 SHM__CREATE, &ad); 4897 if (rc) { 4898 ipc_free_security(&shp->shm_perm); 4899 return rc; 4900 } 4901 return 0; 4902 } 4903 4904 static void selinux_shm_free_security(struct shmid_kernel *shp) 4905 { 4906 ipc_free_security(&shp->shm_perm); 4907 } 4908 4909 static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg) 4910 { 4911 struct task_security_struct *tsec; 4912 struct ipc_security_struct *isec; 4913 struct avc_audit_data ad; 4914 4915 tsec = current->security; 4916 isec = shp->shm_perm.security; 4917 4918 AVC_AUDIT_DATA_INIT(&ad, IPC); 4919 ad.u.ipc_id = shp->shm_perm.key; 4920 4921 return avc_has_perm(tsec->sid, isec->sid, SECCLASS_SHM, 4922 SHM__ASSOCIATE, &ad); 4923 } 4924 4925 /* Note, at this point, shp is locked down */ 4926 static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd) 4927 { 4928 int perms; 4929 int err; 4930 4931 switch (cmd) { 4932 case IPC_INFO: 4933 case SHM_INFO: 4934 /* No specific object, just general system-wide information. */ 4935 return task_has_system(current, SYSTEM__IPC_INFO); 4936 case IPC_STAT: 4937 case SHM_STAT: 4938 perms = SHM__GETATTR | SHM__ASSOCIATE; 4939 break; 4940 case IPC_SET: 4941 perms = SHM__SETATTR; 4942 break; 4943 case SHM_LOCK: 4944 case SHM_UNLOCK: 4945 perms = SHM__LOCK; 4946 break; 4947 case IPC_RMID: 4948 perms = SHM__DESTROY; 4949 break; 4950 default: 4951 return 0; 4952 } 4953 4954 err = ipc_has_perm(&shp->shm_perm, perms); 4955 return err; 4956 } 4957 4958 static int selinux_shm_shmat(struct shmid_kernel *shp, 4959 char __user *shmaddr, int shmflg) 4960 { 4961 u32 perms; 4962 int rc; 4963 4964 rc = secondary_ops->shm_shmat(shp, shmaddr, shmflg); 4965 if (rc) 4966 return rc; 4967 4968 if (shmflg & SHM_RDONLY) 4969 perms = SHM__READ; 4970 else 4971 perms = SHM__READ | SHM__WRITE; 4972 4973 return ipc_has_perm(&shp->shm_perm, perms); 4974 } 4975 4976 /* Semaphore security operations */ 4977 static int selinux_sem_alloc_security(struct sem_array *sma) 4978 { 4979 struct task_security_struct *tsec; 4980 struct ipc_security_struct *isec; 4981 struct avc_audit_data ad; 4982 int rc; 4983 4984 rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM); 4985 if (rc) 4986 return rc; 4987 4988 tsec = current->security; 4989 isec = sma->sem_perm.security; 4990 4991 AVC_AUDIT_DATA_INIT(&ad, IPC); 4992 ad.u.ipc_id = sma->sem_perm.key; 4993 4994 rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_SEM, 4995 SEM__CREATE, &ad); 4996 if (rc) { 4997 ipc_free_security(&sma->sem_perm); 4998 return rc; 4999 } 5000 return 0; 5001 } 5002 5003 static void selinux_sem_free_security(struct sem_array *sma) 5004 { 5005 ipc_free_security(&sma->sem_perm); 5006 } 5007 5008 static int selinux_sem_associate(struct sem_array *sma, int semflg) 5009 { 5010 struct task_security_struct *tsec; 5011 struct ipc_security_struct *isec; 5012 struct avc_audit_data ad; 5013 5014 tsec = current->security; 5015 isec = sma->sem_perm.security; 5016 5017 AVC_AUDIT_DATA_INIT(&ad, IPC); 5018 ad.u.ipc_id = sma->sem_perm.key; 5019 5020 return avc_has_perm(tsec->sid, isec->sid, SECCLASS_SEM, 5021 SEM__ASSOCIATE, &ad); 5022 } 5023 5024 /* Note, at this point, sma is locked down */ 5025 static int selinux_sem_semctl(struct sem_array *sma, int cmd) 5026 { 5027 int err; 5028 u32 perms; 5029 5030 switch (cmd) { 5031 case IPC_INFO: 5032 case SEM_INFO: 5033 /* No specific object, just general system-wide information. */ 5034 return task_has_system(current, SYSTEM__IPC_INFO); 5035 case GETPID: 5036 case GETNCNT: 5037 case GETZCNT: 5038 perms = SEM__GETATTR; 5039 break; 5040 case GETVAL: 5041 case GETALL: 5042 perms = SEM__READ; 5043 break; 5044 case SETVAL: 5045 case SETALL: 5046 perms = SEM__WRITE; 5047 break; 5048 case IPC_RMID: 5049 perms = SEM__DESTROY; 5050 break; 5051 case IPC_SET: 5052 perms = SEM__SETATTR; 5053 break; 5054 case IPC_STAT: 5055 case SEM_STAT: 5056 perms = SEM__GETATTR | SEM__ASSOCIATE; 5057 break; 5058 default: 5059 return 0; 5060 } 5061 5062 err = ipc_has_perm(&sma->sem_perm, perms); 5063 return err; 5064 } 5065 5066 static int selinux_sem_semop(struct sem_array *sma, 5067 struct sembuf *sops, unsigned nsops, int alter) 5068 { 5069 u32 perms; 5070 5071 if (alter) 5072 perms = SEM__READ | SEM__WRITE; 5073 else 5074 perms = SEM__READ; 5075 5076 return ipc_has_perm(&sma->sem_perm, perms); 5077 } 5078 5079 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag) 5080 { 5081 u32 av = 0; 5082 5083 av = 0; 5084 if (flag & S_IRUGO) 5085 av |= IPC__UNIX_READ; 5086 if (flag & S_IWUGO) 5087 av |= IPC__UNIX_WRITE; 5088 5089 if (av == 0) 5090 return 0; 5091 5092 return ipc_has_perm(ipcp, av); 5093 } 5094 5095 static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid) 5096 { 5097 struct ipc_security_struct *isec = ipcp->security; 5098 *secid = isec->sid; 5099 } 5100 5101 static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode) 5102 { 5103 if (inode) 5104 inode_doinit_with_dentry(inode, dentry); 5105 } 5106 5107 static int selinux_getprocattr(struct task_struct *p, 5108 char *name, char **value) 5109 { 5110 struct task_security_struct *tsec; 5111 u32 sid; 5112 int error; 5113 unsigned len; 5114 5115 if (current != p) { 5116 error = task_has_perm(current, p, PROCESS__GETATTR); 5117 if (error) 5118 return error; 5119 } 5120 5121 tsec = p->security; 5122 5123 if (!strcmp(name, "current")) 5124 sid = tsec->sid; 5125 else if (!strcmp(name, "prev")) 5126 sid = tsec->osid; 5127 else if (!strcmp(name, "exec")) 5128 sid = tsec->exec_sid; 5129 else if (!strcmp(name, "fscreate")) 5130 sid = tsec->create_sid; 5131 else if (!strcmp(name, "keycreate")) 5132 sid = tsec->keycreate_sid; 5133 else if (!strcmp(name, "sockcreate")) 5134 sid = tsec->sockcreate_sid; 5135 else 5136 return -EINVAL; 5137 5138 if (!sid) 5139 return 0; 5140 5141 error = security_sid_to_context(sid, value, &len); 5142 if (error) 5143 return error; 5144 return len; 5145 } 5146 5147 static int selinux_setprocattr(struct task_struct *p, 5148 char *name, void *value, size_t size) 5149 { 5150 struct task_security_struct *tsec; 5151 struct task_struct *tracer; 5152 u32 sid = 0; 5153 int error; 5154 char *str = value; 5155 5156 if (current != p) { 5157 /* SELinux only allows a process to change its own 5158 security attributes. */ 5159 return -EACCES; 5160 } 5161 5162 /* 5163 * Basic control over ability to set these attributes at all. 5164 * current == p, but we'll pass them separately in case the 5165 * above restriction is ever removed. 5166 */ 5167 if (!strcmp(name, "exec")) 5168 error = task_has_perm(current, p, PROCESS__SETEXEC); 5169 else if (!strcmp(name, "fscreate")) 5170 error = task_has_perm(current, p, PROCESS__SETFSCREATE); 5171 else if (!strcmp(name, "keycreate")) 5172 error = task_has_perm(current, p, PROCESS__SETKEYCREATE); 5173 else if (!strcmp(name, "sockcreate")) 5174 error = task_has_perm(current, p, PROCESS__SETSOCKCREATE); 5175 else if (!strcmp(name, "current")) 5176 error = task_has_perm(current, p, PROCESS__SETCURRENT); 5177 else 5178 error = -EINVAL; 5179 if (error) 5180 return error; 5181 5182 /* Obtain a SID for the context, if one was specified. */ 5183 if (size && str[1] && str[1] != '\n') { 5184 if (str[size-1] == '\n') { 5185 str[size-1] = 0; 5186 size--; 5187 } 5188 error = security_context_to_sid(value, size, &sid); 5189 if (error == -EINVAL && !strcmp(name, "fscreate")) { 5190 if (!capable(CAP_MAC_ADMIN)) 5191 return error; 5192 error = security_context_to_sid_force(value, size, 5193 &sid); 5194 } 5195 if (error) 5196 return error; 5197 } 5198 5199 /* Permission checking based on the specified context is 5200 performed during the actual operation (execve, 5201 open/mkdir/...), when we know the full context of the 5202 operation. See selinux_bprm_set_security for the execve 5203 checks and may_create for the file creation checks. The 5204 operation will then fail if the context is not permitted. */ 5205 tsec = p->security; 5206 if (!strcmp(name, "exec")) 5207 tsec->exec_sid = sid; 5208 else if (!strcmp(name, "fscreate")) 5209 tsec->create_sid = sid; 5210 else if (!strcmp(name, "keycreate")) { 5211 error = may_create_key(sid, p); 5212 if (error) 5213 return error; 5214 tsec->keycreate_sid = sid; 5215 } else if (!strcmp(name, "sockcreate")) 5216 tsec->sockcreate_sid = sid; 5217 else if (!strcmp(name, "current")) { 5218 struct av_decision avd; 5219 5220 if (sid == 0) 5221 return -EINVAL; 5222 5223 /* Only allow single threaded processes to change context */ 5224 if (atomic_read(&p->mm->mm_users) != 1) { 5225 struct task_struct *g, *t; 5226 struct mm_struct *mm = p->mm; 5227 read_lock(&tasklist_lock); 5228 do_each_thread(g, t) { 5229 if (t->mm == mm && t != p) { 5230 read_unlock(&tasklist_lock); 5231 return -EPERM; 5232 } 5233 } while_each_thread(g, t); 5234 read_unlock(&tasklist_lock); 5235 } 5236 5237 /* Check permissions for the transition. */ 5238 error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS, 5239 PROCESS__DYNTRANSITION, NULL); 5240 if (error) 5241 return error; 5242 5243 /* Check for ptracing, and update the task SID if ok. 5244 Otherwise, leave SID unchanged and fail. */ 5245 task_lock(p); 5246 rcu_read_lock(); 5247 tracer = tracehook_tracer_task(p); 5248 if (tracer != NULL) { 5249 struct task_security_struct *ptsec = tracer->security; 5250 u32 ptsid = ptsec->sid; 5251 rcu_read_unlock(); 5252 error = avc_has_perm_noaudit(ptsid, sid, 5253 SECCLASS_PROCESS, 5254 PROCESS__PTRACE, 0, &avd); 5255 if (!error) 5256 tsec->sid = sid; 5257 task_unlock(p); 5258 avc_audit(ptsid, sid, SECCLASS_PROCESS, 5259 PROCESS__PTRACE, &avd, error, NULL); 5260 if (error) 5261 return error; 5262 } else { 5263 rcu_read_unlock(); 5264 tsec->sid = sid; 5265 task_unlock(p); 5266 } 5267 } else 5268 return -EINVAL; 5269 5270 return size; 5271 } 5272 5273 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen) 5274 { 5275 return security_sid_to_context(secid, secdata, seclen); 5276 } 5277 5278 static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid) 5279 { 5280 return security_context_to_sid(secdata, seclen, secid); 5281 } 5282 5283 static void selinux_release_secctx(char *secdata, u32 seclen) 5284 { 5285 kfree(secdata); 5286 } 5287 5288 #ifdef CONFIG_KEYS 5289 5290 static int selinux_key_alloc(struct key *k, struct task_struct *tsk, 5291 unsigned long flags) 5292 { 5293 struct task_security_struct *tsec = tsk->security; 5294 struct key_security_struct *ksec; 5295 5296 ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL); 5297 if (!ksec) 5298 return -ENOMEM; 5299 5300 if (tsec->keycreate_sid) 5301 ksec->sid = tsec->keycreate_sid; 5302 else 5303 ksec->sid = tsec->sid; 5304 k->security = ksec; 5305 5306 return 0; 5307 } 5308 5309 static void selinux_key_free(struct key *k) 5310 { 5311 struct key_security_struct *ksec = k->security; 5312 5313 k->security = NULL; 5314 kfree(ksec); 5315 } 5316 5317 static int selinux_key_permission(key_ref_t key_ref, 5318 struct task_struct *ctx, 5319 key_perm_t perm) 5320 { 5321 struct key *key; 5322 struct task_security_struct *tsec; 5323 struct key_security_struct *ksec; 5324 5325 key = key_ref_to_ptr(key_ref); 5326 5327 tsec = ctx->security; 5328 ksec = key->security; 5329 5330 /* if no specific permissions are requested, we skip the 5331 permission check. No serious, additional covert channels 5332 appear to be created. */ 5333 if (perm == 0) 5334 return 0; 5335 5336 return avc_has_perm(tsec->sid, ksec->sid, 5337 SECCLASS_KEY, perm, NULL); 5338 } 5339 5340 static int selinux_key_getsecurity(struct key *key, char **_buffer) 5341 { 5342 struct key_security_struct *ksec = key->security; 5343 char *context = NULL; 5344 unsigned len; 5345 int rc; 5346 5347 rc = security_sid_to_context(ksec->sid, &context, &len); 5348 if (!rc) 5349 rc = len; 5350 *_buffer = context; 5351 return rc; 5352 } 5353 5354 #endif 5355 5356 static struct security_operations selinux_ops = { 5357 .name = "selinux", 5358 5359 .ptrace_may_access = selinux_ptrace_may_access, 5360 .ptrace_traceme = selinux_ptrace_traceme, 5361 .capget = selinux_capget, 5362 .capset_check = selinux_capset_check, 5363 .capset_set = selinux_capset_set, 5364 .sysctl = selinux_sysctl, 5365 .capable = selinux_capable, 5366 .quotactl = selinux_quotactl, 5367 .quota_on = selinux_quota_on, 5368 .syslog = selinux_syslog, 5369 .vm_enough_memory = selinux_vm_enough_memory, 5370 5371 .netlink_send = selinux_netlink_send, 5372 .netlink_recv = selinux_netlink_recv, 5373 5374 .bprm_alloc_security = selinux_bprm_alloc_security, 5375 .bprm_free_security = selinux_bprm_free_security, 5376 .bprm_apply_creds = selinux_bprm_apply_creds, 5377 .bprm_post_apply_creds = selinux_bprm_post_apply_creds, 5378 .bprm_set_security = selinux_bprm_set_security, 5379 .bprm_check_security = selinux_bprm_check_security, 5380 .bprm_secureexec = selinux_bprm_secureexec, 5381 5382 .sb_alloc_security = selinux_sb_alloc_security, 5383 .sb_free_security = selinux_sb_free_security, 5384 .sb_copy_data = selinux_sb_copy_data, 5385 .sb_kern_mount = selinux_sb_kern_mount, 5386 .sb_show_options = selinux_sb_show_options, 5387 .sb_statfs = selinux_sb_statfs, 5388 .sb_mount = selinux_mount, 5389 .sb_umount = selinux_umount, 5390 .sb_set_mnt_opts = selinux_set_mnt_opts, 5391 .sb_clone_mnt_opts = selinux_sb_clone_mnt_opts, 5392 .sb_parse_opts_str = selinux_parse_opts_str, 5393 5394 5395 .inode_alloc_security = selinux_inode_alloc_security, 5396 .inode_free_security = selinux_inode_free_security, 5397 .inode_init_security = selinux_inode_init_security, 5398 .inode_create = selinux_inode_create, 5399 .inode_link = selinux_inode_link, 5400 .inode_unlink = selinux_inode_unlink, 5401 .inode_symlink = selinux_inode_symlink, 5402 .inode_mkdir = selinux_inode_mkdir, 5403 .inode_rmdir = selinux_inode_rmdir, 5404 .inode_mknod = selinux_inode_mknod, 5405 .inode_rename = selinux_inode_rename, 5406 .inode_readlink = selinux_inode_readlink, 5407 .inode_follow_link = selinux_inode_follow_link, 5408 .inode_permission = selinux_inode_permission, 5409 .inode_setattr = selinux_inode_setattr, 5410 .inode_getattr = selinux_inode_getattr, 5411 .inode_setxattr = selinux_inode_setxattr, 5412 .inode_post_setxattr = selinux_inode_post_setxattr, 5413 .inode_getxattr = selinux_inode_getxattr, 5414 .inode_listxattr = selinux_inode_listxattr, 5415 .inode_removexattr = selinux_inode_removexattr, 5416 .inode_getsecurity = selinux_inode_getsecurity, 5417 .inode_setsecurity = selinux_inode_setsecurity, 5418 .inode_listsecurity = selinux_inode_listsecurity, 5419 .inode_need_killpriv = selinux_inode_need_killpriv, 5420 .inode_killpriv = selinux_inode_killpriv, 5421 .inode_getsecid = selinux_inode_getsecid, 5422 5423 .file_permission = selinux_file_permission, 5424 .file_alloc_security = selinux_file_alloc_security, 5425 .file_free_security = selinux_file_free_security, 5426 .file_ioctl = selinux_file_ioctl, 5427 .file_mmap = selinux_file_mmap, 5428 .file_mprotect = selinux_file_mprotect, 5429 .file_lock = selinux_file_lock, 5430 .file_fcntl = selinux_file_fcntl, 5431 .file_set_fowner = selinux_file_set_fowner, 5432 .file_send_sigiotask = selinux_file_send_sigiotask, 5433 .file_receive = selinux_file_receive, 5434 5435 .dentry_open = selinux_dentry_open, 5436 5437 .task_create = selinux_task_create, 5438 .task_alloc_security = selinux_task_alloc_security, 5439 .task_free_security = selinux_task_free_security, 5440 .task_setuid = selinux_task_setuid, 5441 .task_post_setuid = selinux_task_post_setuid, 5442 .task_setgid = selinux_task_setgid, 5443 .task_setpgid = selinux_task_setpgid, 5444 .task_getpgid = selinux_task_getpgid, 5445 .task_getsid = selinux_task_getsid, 5446 .task_getsecid = selinux_task_getsecid, 5447 .task_setgroups = selinux_task_setgroups, 5448 .task_setnice = selinux_task_setnice, 5449 .task_setioprio = selinux_task_setioprio, 5450 .task_getioprio = selinux_task_getioprio, 5451 .task_setrlimit = selinux_task_setrlimit, 5452 .task_setscheduler = selinux_task_setscheduler, 5453 .task_getscheduler = selinux_task_getscheduler, 5454 .task_movememory = selinux_task_movememory, 5455 .task_kill = selinux_task_kill, 5456 .task_wait = selinux_task_wait, 5457 .task_prctl = selinux_task_prctl, 5458 .task_reparent_to_init = selinux_task_reparent_to_init, 5459 .task_to_inode = selinux_task_to_inode, 5460 5461 .ipc_permission = selinux_ipc_permission, 5462 .ipc_getsecid = selinux_ipc_getsecid, 5463 5464 .msg_msg_alloc_security = selinux_msg_msg_alloc_security, 5465 .msg_msg_free_security = selinux_msg_msg_free_security, 5466 5467 .msg_queue_alloc_security = selinux_msg_queue_alloc_security, 5468 .msg_queue_free_security = selinux_msg_queue_free_security, 5469 .msg_queue_associate = selinux_msg_queue_associate, 5470 .msg_queue_msgctl = selinux_msg_queue_msgctl, 5471 .msg_queue_msgsnd = selinux_msg_queue_msgsnd, 5472 .msg_queue_msgrcv = selinux_msg_queue_msgrcv, 5473 5474 .shm_alloc_security = selinux_shm_alloc_security, 5475 .shm_free_security = selinux_shm_free_security, 5476 .shm_associate = selinux_shm_associate, 5477 .shm_shmctl = selinux_shm_shmctl, 5478 .shm_shmat = selinux_shm_shmat, 5479 5480 .sem_alloc_security = selinux_sem_alloc_security, 5481 .sem_free_security = selinux_sem_free_security, 5482 .sem_associate = selinux_sem_associate, 5483 .sem_semctl = selinux_sem_semctl, 5484 .sem_semop = selinux_sem_semop, 5485 5486 .d_instantiate = selinux_d_instantiate, 5487 5488 .getprocattr = selinux_getprocattr, 5489 .setprocattr = selinux_setprocattr, 5490 5491 .secid_to_secctx = selinux_secid_to_secctx, 5492 .secctx_to_secid = selinux_secctx_to_secid, 5493 .release_secctx = selinux_release_secctx, 5494 5495 .unix_stream_connect = selinux_socket_unix_stream_connect, 5496 .unix_may_send = selinux_socket_unix_may_send, 5497 5498 .socket_create = selinux_socket_create, 5499 .socket_post_create = selinux_socket_post_create, 5500 .socket_bind = selinux_socket_bind, 5501 .socket_connect = selinux_socket_connect, 5502 .socket_listen = selinux_socket_listen, 5503 .socket_accept = selinux_socket_accept, 5504 .socket_sendmsg = selinux_socket_sendmsg, 5505 .socket_recvmsg = selinux_socket_recvmsg, 5506 .socket_getsockname = selinux_socket_getsockname, 5507 .socket_getpeername = selinux_socket_getpeername, 5508 .socket_getsockopt = selinux_socket_getsockopt, 5509 .socket_setsockopt = selinux_socket_setsockopt, 5510 .socket_shutdown = selinux_socket_shutdown, 5511 .socket_sock_rcv_skb = selinux_socket_sock_rcv_skb, 5512 .socket_getpeersec_stream = selinux_socket_getpeersec_stream, 5513 .socket_getpeersec_dgram = selinux_socket_getpeersec_dgram, 5514 .sk_alloc_security = selinux_sk_alloc_security, 5515 .sk_free_security = selinux_sk_free_security, 5516 .sk_clone_security = selinux_sk_clone_security, 5517 .sk_getsecid = selinux_sk_getsecid, 5518 .sock_graft = selinux_sock_graft, 5519 .inet_conn_request = selinux_inet_conn_request, 5520 .inet_csk_clone = selinux_inet_csk_clone, 5521 .inet_conn_established = selinux_inet_conn_established, 5522 .req_classify_flow = selinux_req_classify_flow, 5523 5524 #ifdef CONFIG_SECURITY_NETWORK_XFRM 5525 .xfrm_policy_alloc_security = selinux_xfrm_policy_alloc, 5526 .xfrm_policy_clone_security = selinux_xfrm_policy_clone, 5527 .xfrm_policy_free_security = selinux_xfrm_policy_free, 5528 .xfrm_policy_delete_security = selinux_xfrm_policy_delete, 5529 .xfrm_state_alloc_security = selinux_xfrm_state_alloc, 5530 .xfrm_state_free_security = selinux_xfrm_state_free, 5531 .xfrm_state_delete_security = selinux_xfrm_state_delete, 5532 .xfrm_policy_lookup = selinux_xfrm_policy_lookup, 5533 .xfrm_state_pol_flow_match = selinux_xfrm_state_pol_flow_match, 5534 .xfrm_decode_session = selinux_xfrm_decode_session, 5535 #endif 5536 5537 #ifdef CONFIG_KEYS 5538 .key_alloc = selinux_key_alloc, 5539 .key_free = selinux_key_free, 5540 .key_permission = selinux_key_permission, 5541 .key_getsecurity = selinux_key_getsecurity, 5542 #endif 5543 5544 #ifdef CONFIG_AUDIT 5545 .audit_rule_init = selinux_audit_rule_init, 5546 .audit_rule_known = selinux_audit_rule_known, 5547 .audit_rule_match = selinux_audit_rule_match, 5548 .audit_rule_free = selinux_audit_rule_free, 5549 #endif 5550 }; 5551 5552 static __init int selinux_init(void) 5553 { 5554 struct task_security_struct *tsec; 5555 5556 if (!security_module_enable(&selinux_ops)) { 5557 selinux_enabled = 0; 5558 return 0; 5559 } 5560 5561 if (!selinux_enabled) { 5562 printk(KERN_INFO "SELinux: Disabled at boot.\n"); 5563 return 0; 5564 } 5565 5566 printk(KERN_INFO "SELinux: Initializing.\n"); 5567 5568 /* Set the security state for the initial task. */ 5569 if (task_alloc_security(current)) 5570 panic("SELinux: Failed to initialize initial task.\n"); 5571 tsec = current->security; 5572 tsec->osid = tsec->sid = SECINITSID_KERNEL; 5573 5574 sel_inode_cache = kmem_cache_create("selinux_inode_security", 5575 sizeof(struct inode_security_struct), 5576 0, SLAB_PANIC, NULL); 5577 avc_init(); 5578 5579 secondary_ops = security_ops; 5580 if (!secondary_ops) 5581 panic("SELinux: No initial security operations\n"); 5582 if (register_security(&selinux_ops)) 5583 panic("SELinux: Unable to register with kernel.\n"); 5584 5585 if (selinux_enforcing) 5586 printk(KERN_DEBUG "SELinux: Starting in enforcing mode\n"); 5587 else 5588 printk(KERN_DEBUG "SELinux: Starting in permissive mode\n"); 5589 5590 return 0; 5591 } 5592 5593 void selinux_complete_init(void) 5594 { 5595 printk(KERN_DEBUG "SELinux: Completing initialization.\n"); 5596 5597 /* Set up any superblocks initialized prior to the policy load. */ 5598 printk(KERN_DEBUG "SELinux: Setting up existing superblocks.\n"); 5599 spin_lock(&sb_lock); 5600 spin_lock(&sb_security_lock); 5601 next_sb: 5602 if (!list_empty(&superblock_security_head)) { 5603 struct superblock_security_struct *sbsec = 5604 list_entry(superblock_security_head.next, 5605 struct superblock_security_struct, 5606 list); 5607 struct super_block *sb = sbsec->sb; 5608 sb->s_count++; 5609 spin_unlock(&sb_security_lock); 5610 spin_unlock(&sb_lock); 5611 down_read(&sb->s_umount); 5612 if (sb->s_root) 5613 superblock_doinit(sb, NULL); 5614 drop_super(sb); 5615 spin_lock(&sb_lock); 5616 spin_lock(&sb_security_lock); 5617 list_del_init(&sbsec->list); 5618 goto next_sb; 5619 } 5620 spin_unlock(&sb_security_lock); 5621 spin_unlock(&sb_lock); 5622 } 5623 5624 /* SELinux requires early initialization in order to label 5625 all processes and objects when they are created. */ 5626 security_initcall(selinux_init); 5627 5628 #if defined(CONFIG_NETFILTER) 5629 5630 static struct nf_hook_ops selinux_ipv4_ops[] = { 5631 { 5632 .hook = selinux_ipv4_postroute, 5633 .owner = THIS_MODULE, 5634 .pf = PF_INET, 5635 .hooknum = NF_INET_POST_ROUTING, 5636 .priority = NF_IP_PRI_SELINUX_LAST, 5637 }, 5638 { 5639 .hook = selinux_ipv4_forward, 5640 .owner = THIS_MODULE, 5641 .pf = PF_INET, 5642 .hooknum = NF_INET_FORWARD, 5643 .priority = NF_IP_PRI_SELINUX_FIRST, 5644 } 5645 }; 5646 5647 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 5648 5649 static struct nf_hook_ops selinux_ipv6_ops[] = { 5650 { 5651 .hook = selinux_ipv6_postroute, 5652 .owner = THIS_MODULE, 5653 .pf = PF_INET6, 5654 .hooknum = NF_INET_POST_ROUTING, 5655 .priority = NF_IP6_PRI_SELINUX_LAST, 5656 }, 5657 { 5658 .hook = selinux_ipv6_forward, 5659 .owner = THIS_MODULE, 5660 .pf = PF_INET6, 5661 .hooknum = NF_INET_FORWARD, 5662 .priority = NF_IP6_PRI_SELINUX_FIRST, 5663 } 5664 }; 5665 5666 #endif /* IPV6 */ 5667 5668 static int __init selinux_nf_ip_init(void) 5669 { 5670 int err = 0; 5671 5672 if (!selinux_enabled) 5673 goto out; 5674 5675 printk(KERN_DEBUG "SELinux: Registering netfilter hooks\n"); 5676 5677 err = nf_register_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops)); 5678 if (err) 5679 panic("SELinux: nf_register_hooks for IPv4: error %d\n", err); 5680 5681 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 5682 err = nf_register_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops)); 5683 if (err) 5684 panic("SELinux: nf_register_hooks for IPv6: error %d\n", err); 5685 #endif /* IPV6 */ 5686 5687 out: 5688 return err; 5689 } 5690 5691 __initcall(selinux_nf_ip_init); 5692 5693 #ifdef CONFIG_SECURITY_SELINUX_DISABLE 5694 static void selinux_nf_ip_exit(void) 5695 { 5696 printk(KERN_DEBUG "SELinux: Unregistering netfilter hooks\n"); 5697 5698 nf_unregister_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops)); 5699 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 5700 nf_unregister_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops)); 5701 #endif /* IPV6 */ 5702 } 5703 #endif 5704 5705 #else /* CONFIG_NETFILTER */ 5706 5707 #ifdef CONFIG_SECURITY_SELINUX_DISABLE 5708 #define selinux_nf_ip_exit() 5709 #endif 5710 5711 #endif /* CONFIG_NETFILTER */ 5712 5713 #ifdef CONFIG_SECURITY_SELINUX_DISABLE 5714 static int selinux_disabled; 5715 5716 int selinux_disable(void) 5717 { 5718 extern void exit_sel_fs(void); 5719 5720 if (ss_initialized) { 5721 /* Not permitted after initial policy load. */ 5722 return -EINVAL; 5723 } 5724 5725 if (selinux_disabled) { 5726 /* Only do this once. */ 5727 return -EINVAL; 5728 } 5729 5730 printk(KERN_INFO "SELinux: Disabled at runtime.\n"); 5731 5732 selinux_disabled = 1; 5733 selinux_enabled = 0; 5734 5735 /* Reset security_ops to the secondary module, dummy or capability. */ 5736 security_ops = secondary_ops; 5737 5738 /* Unregister netfilter hooks. */ 5739 selinux_nf_ip_exit(); 5740 5741 /* Unregister selinuxfs. */ 5742 exit_sel_fs(); 5743 5744 return 0; 5745 } 5746 #endif 5747