1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Security-Enhanced Linux (SELinux) security module 4 * 5 * This file contains the SELinux hook function implementations. 6 * 7 * Authors: Stephen Smalley, <stephen.smalley.work@gmail.com> 8 * Chris Vance, <cvance@nai.com> 9 * Wayne Salamon, <wsalamon@nai.com> 10 * James Morris <jmorris@redhat.com> 11 * 12 * Copyright (C) 2001,2002 Networks Associates Technology, Inc. 13 * Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com> 14 * Eric Paris <eparis@redhat.com> 15 * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc. 16 * <dgoeddel@trustedcs.com> 17 * Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P. 18 * Paul Moore <paul@paul-moore.com> 19 * Copyright (C) 2007 Hitachi Software Engineering Co., Ltd. 20 * Yuichi Nakamura <ynakam@hitachisoft.jp> 21 * Copyright (C) 2016 Mellanox Technologies 22 */ 23 24 #include <linux/init.h> 25 #include <linux/kd.h> 26 #include <linux/kernel.h> 27 #include <linux/kernel_read_file.h> 28 #include <linux/errno.h> 29 #include <linux/sched/signal.h> 30 #include <linux/sched/task.h> 31 #include <linux/lsm_hooks.h> 32 #include <linux/xattr.h> 33 #include <linux/capability.h> 34 #include <linux/unistd.h> 35 #include <linux/mm.h> 36 #include <linux/mman.h> 37 #include <linux/slab.h> 38 #include <linux/pagemap.h> 39 #include <linux/proc_fs.h> 40 #include <linux/swap.h> 41 #include <linux/spinlock.h> 42 #include <linux/syscalls.h> 43 #include <linux/dcache.h> 44 #include <linux/file.h> 45 #include <linux/fdtable.h> 46 #include <linux/namei.h> 47 #include <linux/mount.h> 48 #include <linux/fs_context.h> 49 #include <linux/fs_parser.h> 50 #include <linux/netfilter_ipv4.h> 51 #include <linux/netfilter_ipv6.h> 52 #include <linux/tty.h> 53 #include <net/icmp.h> 54 #include <net/ip.h> /* for local_port_range[] */ 55 #include <net/tcp.h> /* struct or_callable used in sock_rcv_skb */ 56 #include <net/inet_connection_sock.h> 57 #include <net/net_namespace.h> 58 #include <net/netlabel.h> 59 #include <linux/uaccess.h> 60 #include <asm/ioctls.h> 61 #include <linux/atomic.h> 62 #include <linux/bitops.h> 63 #include <linux/interrupt.h> 64 #include <linux/netdevice.h> /* for network interface checks */ 65 #include <net/netlink.h> 66 #include <linux/tcp.h> 67 #include <linux/udp.h> 68 #include <linux/dccp.h> 69 #include <linux/sctp.h> 70 #include <net/sctp/structs.h> 71 #include <linux/quota.h> 72 #include <linux/un.h> /* for Unix socket types */ 73 #include <net/af_unix.h> /* for Unix socket types */ 74 #include <linux/parser.h> 75 #include <linux/nfs_mount.h> 76 #include <net/ipv6.h> 77 #include <linux/hugetlb.h> 78 #include <linux/personality.h> 79 #include <linux/audit.h> 80 #include <linux/string.h> 81 #include <linux/mutex.h> 82 #include <linux/posix-timers.h> 83 #include <linux/syslog.h> 84 #include <linux/user_namespace.h> 85 #include <linux/export.h> 86 #include <linux/msg.h> 87 #include <linux/shm.h> 88 #include <uapi/linux/shm.h> 89 #include <linux/bpf.h> 90 #include <linux/kernfs.h> 91 #include <linux/stringhash.h> /* for hashlen_string() */ 92 #include <uapi/linux/mount.h> 93 #include <linux/fsnotify.h> 94 #include <linux/fanotify.h> 95 #include <linux/io_uring/cmd.h> 96 #include <uapi/linux/lsm.h> 97 98 #include "avc.h" 99 #include "objsec.h" 100 #include "netif.h" 101 #include "netnode.h" 102 #include "netport.h" 103 #include "ibpkey.h" 104 #include "xfrm.h" 105 #include "netlabel.h" 106 #include "audit.h" 107 #include "avc_ss.h" 108 109 #define SELINUX_INODE_INIT_XATTRS 1 110 111 struct selinux_state selinux_state; 112 113 /* SECMARK reference count */ 114 static atomic_t selinux_secmark_refcount = ATOMIC_INIT(0); 115 116 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP 117 static int selinux_enforcing_boot __initdata; 118 119 static int __init enforcing_setup(char *str) 120 { 121 unsigned long enforcing; 122 if (!kstrtoul(str, 0, &enforcing)) 123 selinux_enforcing_boot = enforcing ? 1 : 0; 124 return 1; 125 } 126 __setup("enforcing=", enforcing_setup); 127 #else 128 #define selinux_enforcing_boot 1 129 #endif 130 131 int selinux_enabled_boot __initdata = 1; 132 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM 133 static int __init selinux_enabled_setup(char *str) 134 { 135 unsigned long enabled; 136 if (!kstrtoul(str, 0, &enabled)) 137 selinux_enabled_boot = enabled ? 1 : 0; 138 return 1; 139 } 140 __setup("selinux=", selinux_enabled_setup); 141 #endif 142 143 static int __init checkreqprot_setup(char *str) 144 { 145 unsigned long checkreqprot; 146 147 if (!kstrtoul(str, 0, &checkreqprot)) { 148 if (checkreqprot) 149 pr_err("SELinux: checkreqprot set to 1 via kernel parameter. This is no longer supported.\n"); 150 } 151 return 1; 152 } 153 __setup("checkreqprot=", checkreqprot_setup); 154 155 /** 156 * selinux_secmark_enabled - Check to see if SECMARK is currently enabled 157 * 158 * Description: 159 * This function checks the SECMARK reference counter to see if any SECMARK 160 * targets are currently configured, if the reference counter is greater than 161 * zero SECMARK is considered to be enabled. Returns true (1) if SECMARK is 162 * enabled, false (0) if SECMARK is disabled. If the always_check_network 163 * policy capability is enabled, SECMARK is always considered enabled. 164 * 165 */ 166 static int selinux_secmark_enabled(void) 167 { 168 return (selinux_policycap_alwaysnetwork() || 169 atomic_read(&selinux_secmark_refcount)); 170 } 171 172 /** 173 * selinux_peerlbl_enabled - Check to see if peer labeling is currently enabled 174 * 175 * Description: 176 * This function checks if NetLabel or labeled IPSEC is enabled. Returns true 177 * (1) if any are enabled or false (0) if neither are enabled. If the 178 * always_check_network policy capability is enabled, peer labeling 179 * is always considered enabled. 180 * 181 */ 182 static int selinux_peerlbl_enabled(void) 183 { 184 return (selinux_policycap_alwaysnetwork() || 185 netlbl_enabled() || selinux_xfrm_enabled()); 186 } 187 188 static int selinux_netcache_avc_callback(u32 event) 189 { 190 if (event == AVC_CALLBACK_RESET) { 191 sel_netif_flush(); 192 sel_netnode_flush(); 193 sel_netport_flush(); 194 synchronize_net(); 195 } 196 return 0; 197 } 198 199 static int selinux_lsm_notifier_avc_callback(u32 event) 200 { 201 if (event == AVC_CALLBACK_RESET) { 202 sel_ib_pkey_flush(); 203 call_blocking_lsm_notifier(LSM_POLICY_CHANGE, NULL); 204 } 205 206 return 0; 207 } 208 209 /* 210 * initialise the security for the init task 211 */ 212 static void cred_init_security(void) 213 { 214 struct task_security_struct *tsec; 215 216 tsec = selinux_cred(unrcu_pointer(current->real_cred)); 217 tsec->osid = tsec->sid = SECINITSID_KERNEL; 218 } 219 220 /* 221 * get the security ID of a set of credentials 222 */ 223 static inline u32 cred_sid(const struct cred *cred) 224 { 225 const struct task_security_struct *tsec; 226 227 tsec = selinux_cred(cred); 228 return tsec->sid; 229 } 230 231 static void __ad_net_init(struct common_audit_data *ad, 232 struct lsm_network_audit *net, 233 int ifindex, struct sock *sk, u16 family) 234 { 235 ad->type = LSM_AUDIT_DATA_NET; 236 ad->u.net = net; 237 net->netif = ifindex; 238 net->sk = sk; 239 net->family = family; 240 } 241 242 static void ad_net_init_from_sk(struct common_audit_data *ad, 243 struct lsm_network_audit *net, 244 struct sock *sk) 245 { 246 __ad_net_init(ad, net, 0, sk, 0); 247 } 248 249 static void ad_net_init_from_iif(struct common_audit_data *ad, 250 struct lsm_network_audit *net, 251 int ifindex, u16 family) 252 { 253 __ad_net_init(ad, net, ifindex, NULL, family); 254 } 255 256 /* 257 * get the objective security ID of a task 258 */ 259 static inline u32 task_sid_obj(const struct task_struct *task) 260 { 261 u32 sid; 262 263 rcu_read_lock(); 264 sid = cred_sid(__task_cred(task)); 265 rcu_read_unlock(); 266 return sid; 267 } 268 269 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry); 270 271 /* 272 * Try reloading inode security labels that have been marked as invalid. The 273 * @may_sleep parameter indicates when sleeping and thus reloading labels is 274 * allowed; when set to false, returns -ECHILD when the label is 275 * invalid. The @dentry parameter should be set to a dentry of the inode. 276 */ 277 static int __inode_security_revalidate(struct inode *inode, 278 struct dentry *dentry, 279 bool may_sleep) 280 { 281 struct inode_security_struct *isec = selinux_inode(inode); 282 283 might_sleep_if(may_sleep); 284 285 if (selinux_initialized() && 286 isec->initialized != LABEL_INITIALIZED) { 287 if (!may_sleep) 288 return -ECHILD; 289 290 /* 291 * Try reloading the inode security label. This will fail if 292 * @opt_dentry is NULL and no dentry for this inode can be 293 * found; in that case, continue using the old label. 294 */ 295 inode_doinit_with_dentry(inode, dentry); 296 } 297 return 0; 298 } 299 300 static struct inode_security_struct *inode_security_novalidate(struct inode *inode) 301 { 302 return selinux_inode(inode); 303 } 304 305 static struct inode_security_struct *inode_security_rcu(struct inode *inode, bool rcu) 306 { 307 int error; 308 309 error = __inode_security_revalidate(inode, NULL, !rcu); 310 if (error) 311 return ERR_PTR(error); 312 return selinux_inode(inode); 313 } 314 315 /* 316 * Get the security label of an inode. 317 */ 318 static struct inode_security_struct *inode_security(struct inode *inode) 319 { 320 __inode_security_revalidate(inode, NULL, true); 321 return selinux_inode(inode); 322 } 323 324 static struct inode_security_struct *backing_inode_security_novalidate(struct dentry *dentry) 325 { 326 struct inode *inode = d_backing_inode(dentry); 327 328 return selinux_inode(inode); 329 } 330 331 /* 332 * Get the security label of a dentry's backing inode. 333 */ 334 static struct inode_security_struct *backing_inode_security(struct dentry *dentry) 335 { 336 struct inode *inode = d_backing_inode(dentry); 337 338 __inode_security_revalidate(inode, dentry, true); 339 return selinux_inode(inode); 340 } 341 342 static void inode_free_security(struct inode *inode) 343 { 344 struct inode_security_struct *isec = selinux_inode(inode); 345 struct superblock_security_struct *sbsec; 346 347 if (!isec) 348 return; 349 sbsec = selinux_superblock(inode->i_sb); 350 /* 351 * As not all inode security structures are in a list, we check for 352 * empty list outside of the lock to make sure that we won't waste 353 * time taking a lock doing nothing. 354 * 355 * The list_del_init() function can be safely called more than once. 356 * It should not be possible for this function to be called with 357 * concurrent list_add(), but for better safety against future changes 358 * in the code, we use list_empty_careful() here. 359 */ 360 if (!list_empty_careful(&isec->list)) { 361 spin_lock(&sbsec->isec_lock); 362 list_del_init(&isec->list); 363 spin_unlock(&sbsec->isec_lock); 364 } 365 } 366 367 struct selinux_mnt_opts { 368 u32 fscontext_sid; 369 u32 context_sid; 370 u32 rootcontext_sid; 371 u32 defcontext_sid; 372 }; 373 374 static void selinux_free_mnt_opts(void *mnt_opts) 375 { 376 kfree(mnt_opts); 377 } 378 379 enum { 380 Opt_error = -1, 381 Opt_context = 0, 382 Opt_defcontext = 1, 383 Opt_fscontext = 2, 384 Opt_rootcontext = 3, 385 Opt_seclabel = 4, 386 }; 387 388 #define A(s, has_arg) {#s, sizeof(#s) - 1, Opt_##s, has_arg} 389 static const struct { 390 const char *name; 391 int len; 392 int opt; 393 bool has_arg; 394 } tokens[] = { 395 A(context, true), 396 A(fscontext, true), 397 A(defcontext, true), 398 A(rootcontext, true), 399 A(seclabel, false), 400 }; 401 #undef A 402 403 static int match_opt_prefix(char *s, int l, char **arg) 404 { 405 int i; 406 407 for (i = 0; i < ARRAY_SIZE(tokens); i++) { 408 size_t len = tokens[i].len; 409 if (len > l || memcmp(s, tokens[i].name, len)) 410 continue; 411 if (tokens[i].has_arg) { 412 if (len == l || s[len] != '=') 413 continue; 414 *arg = s + len + 1; 415 } else if (len != l) 416 continue; 417 return tokens[i].opt; 418 } 419 return Opt_error; 420 } 421 422 #define SEL_MOUNT_FAIL_MSG "SELinux: duplicate or incompatible mount options\n" 423 424 static int may_context_mount_sb_relabel(u32 sid, 425 struct superblock_security_struct *sbsec, 426 const struct cred *cred) 427 { 428 const struct task_security_struct *tsec = selinux_cred(cred); 429 int rc; 430 431 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM, 432 FILESYSTEM__RELABELFROM, NULL); 433 if (rc) 434 return rc; 435 436 rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM, 437 FILESYSTEM__RELABELTO, NULL); 438 return rc; 439 } 440 441 static int may_context_mount_inode_relabel(u32 sid, 442 struct superblock_security_struct *sbsec, 443 const struct cred *cred) 444 { 445 const struct task_security_struct *tsec = selinux_cred(cred); 446 int rc; 447 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM, 448 FILESYSTEM__RELABELFROM, NULL); 449 if (rc) 450 return rc; 451 452 rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, 453 FILESYSTEM__ASSOCIATE, NULL); 454 return rc; 455 } 456 457 static int selinux_is_genfs_special_handling(struct super_block *sb) 458 { 459 /* Special handling. Genfs but also in-core setxattr handler */ 460 return !strcmp(sb->s_type->name, "sysfs") || 461 !strcmp(sb->s_type->name, "pstore") || 462 !strcmp(sb->s_type->name, "debugfs") || 463 !strcmp(sb->s_type->name, "tracefs") || 464 !strcmp(sb->s_type->name, "rootfs") || 465 (selinux_policycap_cgroupseclabel() && 466 (!strcmp(sb->s_type->name, "cgroup") || 467 !strcmp(sb->s_type->name, "cgroup2"))); 468 } 469 470 static int selinux_is_sblabel_mnt(struct super_block *sb) 471 { 472 struct superblock_security_struct *sbsec = selinux_superblock(sb); 473 474 /* 475 * IMPORTANT: Double-check logic in this function when adding a new 476 * SECURITY_FS_USE_* definition! 477 */ 478 BUILD_BUG_ON(SECURITY_FS_USE_MAX != 7); 479 480 switch (sbsec->behavior) { 481 case SECURITY_FS_USE_XATTR: 482 case SECURITY_FS_USE_TRANS: 483 case SECURITY_FS_USE_TASK: 484 case SECURITY_FS_USE_NATIVE: 485 return 1; 486 487 case SECURITY_FS_USE_GENFS: 488 return selinux_is_genfs_special_handling(sb); 489 490 /* Never allow relabeling on context mounts */ 491 case SECURITY_FS_USE_MNTPOINT: 492 case SECURITY_FS_USE_NONE: 493 default: 494 return 0; 495 } 496 } 497 498 static int sb_check_xattr_support(struct super_block *sb) 499 { 500 struct superblock_security_struct *sbsec = selinux_superblock(sb); 501 struct dentry *root = sb->s_root; 502 struct inode *root_inode = d_backing_inode(root); 503 u32 sid; 504 int rc; 505 506 /* 507 * Make sure that the xattr handler exists and that no 508 * error other than -ENODATA is returned by getxattr on 509 * the root directory. -ENODATA is ok, as this may be 510 * the first boot of the SELinux kernel before we have 511 * assigned xattr values to the filesystem. 512 */ 513 if (!(root_inode->i_opflags & IOP_XATTR)) { 514 pr_warn("SELinux: (dev %s, type %s) has no xattr support\n", 515 sb->s_id, sb->s_type->name); 516 goto fallback; 517 } 518 519 rc = __vfs_getxattr(root, root_inode, XATTR_NAME_SELINUX, NULL, 0); 520 if (rc < 0 && rc != -ENODATA) { 521 if (rc == -EOPNOTSUPP) { 522 pr_warn("SELinux: (dev %s, type %s) has no security xattr handler\n", 523 sb->s_id, sb->s_type->name); 524 goto fallback; 525 } else { 526 pr_warn("SELinux: (dev %s, type %s) getxattr errno %d\n", 527 sb->s_id, sb->s_type->name, -rc); 528 return rc; 529 } 530 } 531 return 0; 532 533 fallback: 534 /* No xattr support - try to fallback to genfs if possible. */ 535 rc = security_genfs_sid(sb->s_type->name, "/", 536 SECCLASS_DIR, &sid); 537 if (rc) 538 return -EOPNOTSUPP; 539 540 pr_warn("SELinux: (dev %s, type %s) falling back to genfs\n", 541 sb->s_id, sb->s_type->name); 542 sbsec->behavior = SECURITY_FS_USE_GENFS; 543 sbsec->sid = sid; 544 return 0; 545 } 546 547 static int sb_finish_set_opts(struct super_block *sb) 548 { 549 struct superblock_security_struct *sbsec = selinux_superblock(sb); 550 struct dentry *root = sb->s_root; 551 struct inode *root_inode = d_backing_inode(root); 552 int rc = 0; 553 554 if (sbsec->behavior == SECURITY_FS_USE_XATTR) { 555 rc = sb_check_xattr_support(sb); 556 if (rc) 557 return rc; 558 } 559 560 sbsec->flags |= SE_SBINITIALIZED; 561 562 /* 563 * Explicitly set or clear SBLABEL_MNT. It's not sufficient to simply 564 * leave the flag untouched because sb_clone_mnt_opts might be handing 565 * us a superblock that needs the flag to be cleared. 566 */ 567 if (selinux_is_sblabel_mnt(sb)) 568 sbsec->flags |= SBLABEL_MNT; 569 else 570 sbsec->flags &= ~SBLABEL_MNT; 571 572 /* Initialize the root inode. */ 573 rc = inode_doinit_with_dentry(root_inode, root); 574 575 /* Initialize any other inodes associated with the superblock, e.g. 576 inodes created prior to initial policy load or inodes created 577 during get_sb by a pseudo filesystem that directly 578 populates itself. */ 579 spin_lock(&sbsec->isec_lock); 580 while (!list_empty(&sbsec->isec_head)) { 581 struct inode_security_struct *isec = 582 list_first_entry(&sbsec->isec_head, 583 struct inode_security_struct, list); 584 struct inode *inode = isec->inode; 585 list_del_init(&isec->list); 586 spin_unlock(&sbsec->isec_lock); 587 inode = igrab(inode); 588 if (inode) { 589 if (!IS_PRIVATE(inode)) 590 inode_doinit_with_dentry(inode, NULL); 591 iput(inode); 592 } 593 spin_lock(&sbsec->isec_lock); 594 } 595 spin_unlock(&sbsec->isec_lock); 596 return rc; 597 } 598 599 static int bad_option(struct superblock_security_struct *sbsec, char flag, 600 u32 old_sid, u32 new_sid) 601 { 602 char mnt_flags = sbsec->flags & SE_MNTMASK; 603 604 /* check if the old mount command had the same options */ 605 if (sbsec->flags & SE_SBINITIALIZED) 606 if (!(sbsec->flags & flag) || 607 (old_sid != new_sid)) 608 return 1; 609 610 /* check if we were passed the same options twice, 611 * aka someone passed context=a,context=b 612 */ 613 if (!(sbsec->flags & SE_SBINITIALIZED)) 614 if (mnt_flags & flag) 615 return 1; 616 return 0; 617 } 618 619 /* 620 * Allow filesystems with binary mount data to explicitly set mount point 621 * labeling information. 622 */ 623 static int selinux_set_mnt_opts(struct super_block *sb, 624 void *mnt_opts, 625 unsigned long kern_flags, 626 unsigned long *set_kern_flags) 627 { 628 const struct cred *cred = current_cred(); 629 struct superblock_security_struct *sbsec = selinux_superblock(sb); 630 struct dentry *root = sb->s_root; 631 struct selinux_mnt_opts *opts = mnt_opts; 632 struct inode_security_struct *root_isec; 633 u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0; 634 u32 defcontext_sid = 0; 635 int rc = 0; 636 637 /* 638 * Specifying internal flags without providing a place to 639 * place the results is not allowed 640 */ 641 if (kern_flags && !set_kern_flags) 642 return -EINVAL; 643 644 mutex_lock(&sbsec->lock); 645 646 if (!selinux_initialized()) { 647 if (!opts) { 648 /* Defer initialization until selinux_complete_init, 649 after the initial policy is loaded and the security 650 server is ready to handle calls. */ 651 if (kern_flags & SECURITY_LSM_NATIVE_LABELS) { 652 sbsec->flags |= SE_SBNATIVE; 653 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS; 654 } 655 goto out; 656 } 657 rc = -EINVAL; 658 pr_warn("SELinux: Unable to set superblock options " 659 "before the security server is initialized\n"); 660 goto out; 661 } 662 663 /* 664 * Binary mount data FS will come through this function twice. Once 665 * from an explicit call and once from the generic calls from the vfs. 666 * Since the generic VFS calls will not contain any security mount data 667 * we need to skip the double mount verification. 668 * 669 * This does open a hole in which we will not notice if the first 670 * mount using this sb set explicit options and a second mount using 671 * this sb does not set any security options. (The first options 672 * will be used for both mounts) 673 */ 674 if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA) 675 && !opts) 676 goto out; 677 678 root_isec = backing_inode_security_novalidate(root); 679 680 /* 681 * parse the mount options, check if they are valid sids. 682 * also check if someone is trying to mount the same sb more 683 * than once with different security options. 684 */ 685 if (opts) { 686 if (opts->fscontext_sid) { 687 fscontext_sid = opts->fscontext_sid; 688 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, 689 fscontext_sid)) 690 goto out_double_mount; 691 sbsec->flags |= FSCONTEXT_MNT; 692 } 693 if (opts->context_sid) { 694 context_sid = opts->context_sid; 695 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, 696 context_sid)) 697 goto out_double_mount; 698 sbsec->flags |= CONTEXT_MNT; 699 } 700 if (opts->rootcontext_sid) { 701 rootcontext_sid = opts->rootcontext_sid; 702 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, 703 rootcontext_sid)) 704 goto out_double_mount; 705 sbsec->flags |= ROOTCONTEXT_MNT; 706 } 707 if (opts->defcontext_sid) { 708 defcontext_sid = opts->defcontext_sid; 709 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, 710 defcontext_sid)) 711 goto out_double_mount; 712 sbsec->flags |= DEFCONTEXT_MNT; 713 } 714 } 715 716 if (sbsec->flags & SE_SBINITIALIZED) { 717 /* previously mounted with options, but not on this attempt? */ 718 if ((sbsec->flags & SE_MNTMASK) && !opts) 719 goto out_double_mount; 720 rc = 0; 721 goto out; 722 } 723 724 if (strcmp(sb->s_type->name, "proc") == 0) 725 sbsec->flags |= SE_SBPROC | SE_SBGENFS; 726 727 if (!strcmp(sb->s_type->name, "debugfs") || 728 !strcmp(sb->s_type->name, "tracefs") || 729 !strcmp(sb->s_type->name, "binder") || 730 !strcmp(sb->s_type->name, "bpf") || 731 !strcmp(sb->s_type->name, "pstore") || 732 !strcmp(sb->s_type->name, "securityfs")) 733 sbsec->flags |= SE_SBGENFS; 734 735 if (!strcmp(sb->s_type->name, "sysfs") || 736 !strcmp(sb->s_type->name, "cgroup") || 737 !strcmp(sb->s_type->name, "cgroup2")) 738 sbsec->flags |= SE_SBGENFS | SE_SBGENFS_XATTR; 739 740 if (!sbsec->behavior) { 741 /* 742 * Determine the labeling behavior to use for this 743 * filesystem type. 744 */ 745 rc = security_fs_use(sb); 746 if (rc) { 747 pr_warn("%s: security_fs_use(%s) returned %d\n", 748 __func__, sb->s_type->name, rc); 749 goto out; 750 } 751 } 752 753 /* 754 * If this is a user namespace mount and the filesystem type is not 755 * explicitly whitelisted, then no contexts are allowed on the command 756 * line and security labels must be ignored. 757 */ 758 if (sb->s_user_ns != &init_user_ns && 759 strcmp(sb->s_type->name, "tmpfs") && 760 strcmp(sb->s_type->name, "ramfs") && 761 strcmp(sb->s_type->name, "devpts") && 762 strcmp(sb->s_type->name, "overlay")) { 763 if (context_sid || fscontext_sid || rootcontext_sid || 764 defcontext_sid) { 765 rc = -EACCES; 766 goto out; 767 } 768 if (sbsec->behavior == SECURITY_FS_USE_XATTR) { 769 sbsec->behavior = SECURITY_FS_USE_MNTPOINT; 770 rc = security_transition_sid(current_sid(), 771 current_sid(), 772 SECCLASS_FILE, NULL, 773 &sbsec->mntpoint_sid); 774 if (rc) 775 goto out; 776 } 777 goto out_set_opts; 778 } 779 780 /* sets the context of the superblock for the fs being mounted. */ 781 if (fscontext_sid) { 782 rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred); 783 if (rc) 784 goto out; 785 786 sbsec->sid = fscontext_sid; 787 } 788 789 /* 790 * Switch to using mount point labeling behavior. 791 * sets the label used on all file below the mountpoint, and will set 792 * the superblock context if not already set. 793 */ 794 if (sbsec->flags & SE_SBNATIVE) { 795 /* 796 * This means we are initializing a superblock that has been 797 * mounted before the SELinux was initialized and the 798 * filesystem requested native labeling. We had already 799 * returned SECURITY_LSM_NATIVE_LABELS in *set_kern_flags 800 * in the original mount attempt, so now we just need to set 801 * the SECURITY_FS_USE_NATIVE behavior. 802 */ 803 sbsec->behavior = SECURITY_FS_USE_NATIVE; 804 } else if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !context_sid) { 805 sbsec->behavior = SECURITY_FS_USE_NATIVE; 806 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS; 807 } 808 809 if (context_sid) { 810 if (!fscontext_sid) { 811 rc = may_context_mount_sb_relabel(context_sid, sbsec, 812 cred); 813 if (rc) 814 goto out; 815 sbsec->sid = context_sid; 816 } else { 817 rc = may_context_mount_inode_relabel(context_sid, sbsec, 818 cred); 819 if (rc) 820 goto out; 821 } 822 if (!rootcontext_sid) 823 rootcontext_sid = context_sid; 824 825 sbsec->mntpoint_sid = context_sid; 826 sbsec->behavior = SECURITY_FS_USE_MNTPOINT; 827 } 828 829 if (rootcontext_sid) { 830 rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec, 831 cred); 832 if (rc) 833 goto out; 834 835 root_isec->sid = rootcontext_sid; 836 root_isec->initialized = LABEL_INITIALIZED; 837 } 838 839 if (defcontext_sid) { 840 if (sbsec->behavior != SECURITY_FS_USE_XATTR && 841 sbsec->behavior != SECURITY_FS_USE_NATIVE) { 842 rc = -EINVAL; 843 pr_warn("SELinux: defcontext option is " 844 "invalid for this filesystem type\n"); 845 goto out; 846 } 847 848 if (defcontext_sid != sbsec->def_sid) { 849 rc = may_context_mount_inode_relabel(defcontext_sid, 850 sbsec, cred); 851 if (rc) 852 goto out; 853 } 854 855 sbsec->def_sid = defcontext_sid; 856 } 857 858 out_set_opts: 859 rc = sb_finish_set_opts(sb); 860 out: 861 mutex_unlock(&sbsec->lock); 862 return rc; 863 out_double_mount: 864 rc = -EINVAL; 865 pr_warn("SELinux: mount invalid. Same superblock, different " 866 "security settings for (dev %s, type %s)\n", sb->s_id, 867 sb->s_type->name); 868 goto out; 869 } 870 871 static int selinux_cmp_sb_context(const struct super_block *oldsb, 872 const struct super_block *newsb) 873 { 874 struct superblock_security_struct *old = selinux_superblock(oldsb); 875 struct superblock_security_struct *new = selinux_superblock(newsb); 876 char oldflags = old->flags & SE_MNTMASK; 877 char newflags = new->flags & SE_MNTMASK; 878 879 if (oldflags != newflags) 880 goto mismatch; 881 if ((oldflags & FSCONTEXT_MNT) && old->sid != new->sid) 882 goto mismatch; 883 if ((oldflags & CONTEXT_MNT) && old->mntpoint_sid != new->mntpoint_sid) 884 goto mismatch; 885 if ((oldflags & DEFCONTEXT_MNT) && old->def_sid != new->def_sid) 886 goto mismatch; 887 if (oldflags & ROOTCONTEXT_MNT) { 888 struct inode_security_struct *oldroot = backing_inode_security(oldsb->s_root); 889 struct inode_security_struct *newroot = backing_inode_security(newsb->s_root); 890 if (oldroot->sid != newroot->sid) 891 goto mismatch; 892 } 893 return 0; 894 mismatch: 895 pr_warn("SELinux: mount invalid. Same superblock, " 896 "different security settings for (dev %s, " 897 "type %s)\n", newsb->s_id, newsb->s_type->name); 898 return -EBUSY; 899 } 900 901 static int selinux_sb_clone_mnt_opts(const struct super_block *oldsb, 902 struct super_block *newsb, 903 unsigned long kern_flags, 904 unsigned long *set_kern_flags) 905 { 906 int rc = 0; 907 const struct superblock_security_struct *oldsbsec = 908 selinux_superblock(oldsb); 909 struct superblock_security_struct *newsbsec = selinux_superblock(newsb); 910 911 int set_fscontext = (oldsbsec->flags & FSCONTEXT_MNT); 912 int set_context = (oldsbsec->flags & CONTEXT_MNT); 913 int set_rootcontext = (oldsbsec->flags & ROOTCONTEXT_MNT); 914 915 /* 916 * Specifying internal flags without providing a place to 917 * place the results is not allowed. 918 */ 919 if (kern_flags && !set_kern_flags) 920 return -EINVAL; 921 922 mutex_lock(&newsbsec->lock); 923 924 /* 925 * if the parent was able to be mounted it clearly had no special lsm 926 * mount options. thus we can safely deal with this superblock later 927 */ 928 if (!selinux_initialized()) { 929 if (kern_flags & SECURITY_LSM_NATIVE_LABELS) { 930 newsbsec->flags |= SE_SBNATIVE; 931 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS; 932 } 933 goto out; 934 } 935 936 /* how can we clone if the old one wasn't set up?? */ 937 BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED)); 938 939 /* if fs is reusing a sb, make sure that the contexts match */ 940 if (newsbsec->flags & SE_SBINITIALIZED) { 941 mutex_unlock(&newsbsec->lock); 942 if ((kern_flags & SECURITY_LSM_NATIVE_LABELS) && !set_context) 943 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS; 944 return selinux_cmp_sb_context(oldsb, newsb); 945 } 946 947 newsbsec->flags = oldsbsec->flags; 948 949 newsbsec->sid = oldsbsec->sid; 950 newsbsec->def_sid = oldsbsec->def_sid; 951 newsbsec->behavior = oldsbsec->behavior; 952 953 if (newsbsec->behavior == SECURITY_FS_USE_NATIVE && 954 !(kern_flags & SECURITY_LSM_NATIVE_LABELS) && !set_context) { 955 rc = security_fs_use(newsb); 956 if (rc) 957 goto out; 958 } 959 960 if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !set_context) { 961 newsbsec->behavior = SECURITY_FS_USE_NATIVE; 962 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS; 963 } 964 965 if (set_context) { 966 u32 sid = oldsbsec->mntpoint_sid; 967 968 if (!set_fscontext) 969 newsbsec->sid = sid; 970 if (!set_rootcontext) { 971 struct inode_security_struct *newisec = backing_inode_security(newsb->s_root); 972 newisec->sid = sid; 973 } 974 newsbsec->mntpoint_sid = sid; 975 } 976 if (set_rootcontext) { 977 const struct inode_security_struct *oldisec = backing_inode_security(oldsb->s_root); 978 struct inode_security_struct *newisec = backing_inode_security(newsb->s_root); 979 980 newisec->sid = oldisec->sid; 981 } 982 983 sb_finish_set_opts(newsb); 984 out: 985 mutex_unlock(&newsbsec->lock); 986 return rc; 987 } 988 989 /* 990 * NOTE: the caller is responsible for freeing the memory even if on error. 991 */ 992 static int selinux_add_opt(int token, const char *s, void **mnt_opts) 993 { 994 struct selinux_mnt_opts *opts = *mnt_opts; 995 u32 *dst_sid; 996 int rc; 997 998 if (token == Opt_seclabel) 999 /* eaten and completely ignored */ 1000 return 0; 1001 if (!s) 1002 return -EINVAL; 1003 1004 if (!selinux_initialized()) { 1005 pr_warn("SELinux: Unable to set superblock options before the security server is initialized\n"); 1006 return -EINVAL; 1007 } 1008 1009 if (!opts) { 1010 opts = kzalloc(sizeof(*opts), GFP_KERNEL); 1011 if (!opts) 1012 return -ENOMEM; 1013 *mnt_opts = opts; 1014 } 1015 1016 switch (token) { 1017 case Opt_context: 1018 if (opts->context_sid || opts->defcontext_sid) 1019 goto err; 1020 dst_sid = &opts->context_sid; 1021 break; 1022 case Opt_fscontext: 1023 if (opts->fscontext_sid) 1024 goto err; 1025 dst_sid = &opts->fscontext_sid; 1026 break; 1027 case Opt_rootcontext: 1028 if (opts->rootcontext_sid) 1029 goto err; 1030 dst_sid = &opts->rootcontext_sid; 1031 break; 1032 case Opt_defcontext: 1033 if (opts->context_sid || opts->defcontext_sid) 1034 goto err; 1035 dst_sid = &opts->defcontext_sid; 1036 break; 1037 default: 1038 WARN_ON(1); 1039 return -EINVAL; 1040 } 1041 rc = security_context_str_to_sid(s, dst_sid, GFP_KERNEL); 1042 if (rc) 1043 pr_warn("SELinux: security_context_str_to_sid (%s) failed with errno=%d\n", 1044 s, rc); 1045 return rc; 1046 1047 err: 1048 pr_warn(SEL_MOUNT_FAIL_MSG); 1049 return -EINVAL; 1050 } 1051 1052 static int show_sid(struct seq_file *m, u32 sid) 1053 { 1054 char *context = NULL; 1055 u32 len; 1056 int rc; 1057 1058 rc = security_sid_to_context(sid, &context, &len); 1059 if (!rc) { 1060 bool has_comma = strchr(context, ','); 1061 1062 seq_putc(m, '='); 1063 if (has_comma) 1064 seq_putc(m, '\"'); 1065 seq_escape(m, context, "\"\n\\"); 1066 if (has_comma) 1067 seq_putc(m, '\"'); 1068 } 1069 kfree(context); 1070 return rc; 1071 } 1072 1073 static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb) 1074 { 1075 struct superblock_security_struct *sbsec = selinux_superblock(sb); 1076 int rc; 1077 1078 if (!(sbsec->flags & SE_SBINITIALIZED)) 1079 return 0; 1080 1081 if (!selinux_initialized()) 1082 return 0; 1083 1084 if (sbsec->flags & FSCONTEXT_MNT) { 1085 seq_putc(m, ','); 1086 seq_puts(m, FSCONTEXT_STR); 1087 rc = show_sid(m, sbsec->sid); 1088 if (rc) 1089 return rc; 1090 } 1091 if (sbsec->flags & CONTEXT_MNT) { 1092 seq_putc(m, ','); 1093 seq_puts(m, CONTEXT_STR); 1094 rc = show_sid(m, sbsec->mntpoint_sid); 1095 if (rc) 1096 return rc; 1097 } 1098 if (sbsec->flags & DEFCONTEXT_MNT) { 1099 seq_putc(m, ','); 1100 seq_puts(m, DEFCONTEXT_STR); 1101 rc = show_sid(m, sbsec->def_sid); 1102 if (rc) 1103 return rc; 1104 } 1105 if (sbsec->flags & ROOTCONTEXT_MNT) { 1106 struct dentry *root = sb->s_root; 1107 struct inode_security_struct *isec = backing_inode_security(root); 1108 seq_putc(m, ','); 1109 seq_puts(m, ROOTCONTEXT_STR); 1110 rc = show_sid(m, isec->sid); 1111 if (rc) 1112 return rc; 1113 } 1114 if (sbsec->flags & SBLABEL_MNT) { 1115 seq_putc(m, ','); 1116 seq_puts(m, SECLABEL_STR); 1117 } 1118 return 0; 1119 } 1120 1121 static inline u16 inode_mode_to_security_class(umode_t mode) 1122 { 1123 switch (mode & S_IFMT) { 1124 case S_IFSOCK: 1125 return SECCLASS_SOCK_FILE; 1126 case S_IFLNK: 1127 return SECCLASS_LNK_FILE; 1128 case S_IFREG: 1129 return SECCLASS_FILE; 1130 case S_IFBLK: 1131 return SECCLASS_BLK_FILE; 1132 case S_IFDIR: 1133 return SECCLASS_DIR; 1134 case S_IFCHR: 1135 return SECCLASS_CHR_FILE; 1136 case S_IFIFO: 1137 return SECCLASS_FIFO_FILE; 1138 1139 } 1140 1141 return SECCLASS_FILE; 1142 } 1143 1144 static inline int default_protocol_stream(int protocol) 1145 { 1146 return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP || 1147 protocol == IPPROTO_MPTCP); 1148 } 1149 1150 static inline int default_protocol_dgram(int protocol) 1151 { 1152 return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP); 1153 } 1154 1155 static inline u16 socket_type_to_security_class(int family, int type, int protocol) 1156 { 1157 bool extsockclass = selinux_policycap_extsockclass(); 1158 1159 switch (family) { 1160 case PF_UNIX: 1161 switch (type) { 1162 case SOCK_STREAM: 1163 case SOCK_SEQPACKET: 1164 return SECCLASS_UNIX_STREAM_SOCKET; 1165 case SOCK_DGRAM: 1166 case SOCK_RAW: 1167 return SECCLASS_UNIX_DGRAM_SOCKET; 1168 } 1169 break; 1170 case PF_INET: 1171 case PF_INET6: 1172 switch (type) { 1173 case SOCK_STREAM: 1174 case SOCK_SEQPACKET: 1175 if (default_protocol_stream(protocol)) 1176 return SECCLASS_TCP_SOCKET; 1177 else if (extsockclass && protocol == IPPROTO_SCTP) 1178 return SECCLASS_SCTP_SOCKET; 1179 else 1180 return SECCLASS_RAWIP_SOCKET; 1181 case SOCK_DGRAM: 1182 if (default_protocol_dgram(protocol)) 1183 return SECCLASS_UDP_SOCKET; 1184 else if (extsockclass && (protocol == IPPROTO_ICMP || 1185 protocol == IPPROTO_ICMPV6)) 1186 return SECCLASS_ICMP_SOCKET; 1187 else 1188 return SECCLASS_RAWIP_SOCKET; 1189 case SOCK_DCCP: 1190 return SECCLASS_DCCP_SOCKET; 1191 default: 1192 return SECCLASS_RAWIP_SOCKET; 1193 } 1194 break; 1195 case PF_NETLINK: 1196 switch (protocol) { 1197 case NETLINK_ROUTE: 1198 return SECCLASS_NETLINK_ROUTE_SOCKET; 1199 case NETLINK_SOCK_DIAG: 1200 return SECCLASS_NETLINK_TCPDIAG_SOCKET; 1201 case NETLINK_NFLOG: 1202 return SECCLASS_NETLINK_NFLOG_SOCKET; 1203 case NETLINK_XFRM: 1204 return SECCLASS_NETLINK_XFRM_SOCKET; 1205 case NETLINK_SELINUX: 1206 return SECCLASS_NETLINK_SELINUX_SOCKET; 1207 case NETLINK_ISCSI: 1208 return SECCLASS_NETLINK_ISCSI_SOCKET; 1209 case NETLINK_AUDIT: 1210 return SECCLASS_NETLINK_AUDIT_SOCKET; 1211 case NETLINK_FIB_LOOKUP: 1212 return SECCLASS_NETLINK_FIB_LOOKUP_SOCKET; 1213 case NETLINK_CONNECTOR: 1214 return SECCLASS_NETLINK_CONNECTOR_SOCKET; 1215 case NETLINK_NETFILTER: 1216 return SECCLASS_NETLINK_NETFILTER_SOCKET; 1217 case NETLINK_DNRTMSG: 1218 return SECCLASS_NETLINK_DNRT_SOCKET; 1219 case NETLINK_KOBJECT_UEVENT: 1220 return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET; 1221 case NETLINK_GENERIC: 1222 return SECCLASS_NETLINK_GENERIC_SOCKET; 1223 case NETLINK_SCSITRANSPORT: 1224 return SECCLASS_NETLINK_SCSITRANSPORT_SOCKET; 1225 case NETLINK_RDMA: 1226 return SECCLASS_NETLINK_RDMA_SOCKET; 1227 case NETLINK_CRYPTO: 1228 return SECCLASS_NETLINK_CRYPTO_SOCKET; 1229 default: 1230 return SECCLASS_NETLINK_SOCKET; 1231 } 1232 case PF_PACKET: 1233 return SECCLASS_PACKET_SOCKET; 1234 case PF_KEY: 1235 return SECCLASS_KEY_SOCKET; 1236 case PF_APPLETALK: 1237 return SECCLASS_APPLETALK_SOCKET; 1238 } 1239 1240 if (extsockclass) { 1241 switch (family) { 1242 case PF_AX25: 1243 return SECCLASS_AX25_SOCKET; 1244 case PF_IPX: 1245 return SECCLASS_IPX_SOCKET; 1246 case PF_NETROM: 1247 return SECCLASS_NETROM_SOCKET; 1248 case PF_ATMPVC: 1249 return SECCLASS_ATMPVC_SOCKET; 1250 case PF_X25: 1251 return SECCLASS_X25_SOCKET; 1252 case PF_ROSE: 1253 return SECCLASS_ROSE_SOCKET; 1254 case PF_DECnet: 1255 return SECCLASS_DECNET_SOCKET; 1256 case PF_ATMSVC: 1257 return SECCLASS_ATMSVC_SOCKET; 1258 case PF_RDS: 1259 return SECCLASS_RDS_SOCKET; 1260 case PF_IRDA: 1261 return SECCLASS_IRDA_SOCKET; 1262 case PF_PPPOX: 1263 return SECCLASS_PPPOX_SOCKET; 1264 case PF_LLC: 1265 return SECCLASS_LLC_SOCKET; 1266 case PF_CAN: 1267 return SECCLASS_CAN_SOCKET; 1268 case PF_TIPC: 1269 return SECCLASS_TIPC_SOCKET; 1270 case PF_BLUETOOTH: 1271 return SECCLASS_BLUETOOTH_SOCKET; 1272 case PF_IUCV: 1273 return SECCLASS_IUCV_SOCKET; 1274 case PF_RXRPC: 1275 return SECCLASS_RXRPC_SOCKET; 1276 case PF_ISDN: 1277 return SECCLASS_ISDN_SOCKET; 1278 case PF_PHONET: 1279 return SECCLASS_PHONET_SOCKET; 1280 case PF_IEEE802154: 1281 return SECCLASS_IEEE802154_SOCKET; 1282 case PF_CAIF: 1283 return SECCLASS_CAIF_SOCKET; 1284 case PF_ALG: 1285 return SECCLASS_ALG_SOCKET; 1286 case PF_NFC: 1287 return SECCLASS_NFC_SOCKET; 1288 case PF_VSOCK: 1289 return SECCLASS_VSOCK_SOCKET; 1290 case PF_KCM: 1291 return SECCLASS_KCM_SOCKET; 1292 case PF_QIPCRTR: 1293 return SECCLASS_QIPCRTR_SOCKET; 1294 case PF_SMC: 1295 return SECCLASS_SMC_SOCKET; 1296 case PF_XDP: 1297 return SECCLASS_XDP_SOCKET; 1298 case PF_MCTP: 1299 return SECCLASS_MCTP_SOCKET; 1300 #if PF_MAX > 46 1301 #error New address family defined, please update this function. 1302 #endif 1303 } 1304 } 1305 1306 return SECCLASS_SOCKET; 1307 } 1308 1309 static int selinux_genfs_get_sid(struct dentry *dentry, 1310 u16 tclass, 1311 u16 flags, 1312 u32 *sid) 1313 { 1314 int rc; 1315 struct super_block *sb = dentry->d_sb; 1316 char *buffer, *path; 1317 1318 buffer = (char *)__get_free_page(GFP_KERNEL); 1319 if (!buffer) 1320 return -ENOMEM; 1321 1322 path = dentry_path_raw(dentry, buffer, PAGE_SIZE); 1323 if (IS_ERR(path)) 1324 rc = PTR_ERR(path); 1325 else { 1326 if (flags & SE_SBPROC) { 1327 /* each process gets a /proc/PID/ entry. Strip off the 1328 * PID part to get a valid selinux labeling. 1329 * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */ 1330 while (path[1] >= '0' && path[1] <= '9') { 1331 path[1] = '/'; 1332 path++; 1333 } 1334 } 1335 rc = security_genfs_sid(sb->s_type->name, 1336 path, tclass, sid); 1337 if (rc == -ENOENT) { 1338 /* No match in policy, mark as unlabeled. */ 1339 *sid = SECINITSID_UNLABELED; 1340 rc = 0; 1341 } 1342 } 1343 free_page((unsigned long)buffer); 1344 return rc; 1345 } 1346 1347 static int inode_doinit_use_xattr(struct inode *inode, struct dentry *dentry, 1348 u32 def_sid, u32 *sid) 1349 { 1350 #define INITCONTEXTLEN 255 1351 char *context; 1352 unsigned int len; 1353 int rc; 1354 1355 len = INITCONTEXTLEN; 1356 context = kmalloc(len + 1, GFP_NOFS); 1357 if (!context) 1358 return -ENOMEM; 1359 1360 context[len] = '\0'; 1361 rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, context, len); 1362 if (rc == -ERANGE) { 1363 kfree(context); 1364 1365 /* Need a larger buffer. Query for the right size. */ 1366 rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, NULL, 0); 1367 if (rc < 0) 1368 return rc; 1369 1370 len = rc; 1371 context = kmalloc(len + 1, GFP_NOFS); 1372 if (!context) 1373 return -ENOMEM; 1374 1375 context[len] = '\0'; 1376 rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, 1377 context, len); 1378 } 1379 if (rc < 0) { 1380 kfree(context); 1381 if (rc != -ENODATA) { 1382 pr_warn("SELinux: %s: getxattr returned %d for dev=%s ino=%ld\n", 1383 __func__, -rc, inode->i_sb->s_id, inode->i_ino); 1384 return rc; 1385 } 1386 *sid = def_sid; 1387 return 0; 1388 } 1389 1390 rc = security_context_to_sid_default(context, rc, sid, 1391 def_sid, GFP_NOFS); 1392 if (rc) { 1393 char *dev = inode->i_sb->s_id; 1394 unsigned long ino = inode->i_ino; 1395 1396 if (rc == -EINVAL) { 1397 pr_notice_ratelimited("SELinux: inode=%lu on dev=%s was found to have an invalid context=%s. This indicates you may need to relabel the inode or the filesystem in question.\n", 1398 ino, dev, context); 1399 } else { 1400 pr_warn("SELinux: %s: context_to_sid(%s) returned %d for dev=%s ino=%ld\n", 1401 __func__, context, -rc, dev, ino); 1402 } 1403 } 1404 kfree(context); 1405 return 0; 1406 } 1407 1408 /* The inode's security attributes must be initialized before first use. */ 1409 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry) 1410 { 1411 struct superblock_security_struct *sbsec = NULL; 1412 struct inode_security_struct *isec = selinux_inode(inode); 1413 u32 task_sid, sid = 0; 1414 u16 sclass; 1415 struct dentry *dentry; 1416 int rc = 0; 1417 1418 if (isec->initialized == LABEL_INITIALIZED) 1419 return 0; 1420 1421 spin_lock(&isec->lock); 1422 if (isec->initialized == LABEL_INITIALIZED) 1423 goto out_unlock; 1424 1425 if (isec->sclass == SECCLASS_FILE) 1426 isec->sclass = inode_mode_to_security_class(inode->i_mode); 1427 1428 sbsec = selinux_superblock(inode->i_sb); 1429 if (!(sbsec->flags & SE_SBINITIALIZED)) { 1430 /* Defer initialization until selinux_complete_init, 1431 after the initial policy is loaded and the security 1432 server is ready to handle calls. */ 1433 spin_lock(&sbsec->isec_lock); 1434 if (list_empty(&isec->list)) 1435 list_add(&isec->list, &sbsec->isec_head); 1436 spin_unlock(&sbsec->isec_lock); 1437 goto out_unlock; 1438 } 1439 1440 sclass = isec->sclass; 1441 task_sid = isec->task_sid; 1442 sid = isec->sid; 1443 isec->initialized = LABEL_PENDING; 1444 spin_unlock(&isec->lock); 1445 1446 switch (sbsec->behavior) { 1447 /* 1448 * In case of SECURITY_FS_USE_NATIVE we need to re-fetch the labels 1449 * via xattr when called from delayed_superblock_init(). 1450 */ 1451 case SECURITY_FS_USE_NATIVE: 1452 case SECURITY_FS_USE_XATTR: 1453 if (!(inode->i_opflags & IOP_XATTR)) { 1454 sid = sbsec->def_sid; 1455 break; 1456 } 1457 /* Need a dentry, since the xattr API requires one. 1458 Life would be simpler if we could just pass the inode. */ 1459 if (opt_dentry) { 1460 /* Called from d_instantiate or d_splice_alias. */ 1461 dentry = dget(opt_dentry); 1462 } else { 1463 /* 1464 * Called from selinux_complete_init, try to find a dentry. 1465 * Some filesystems really want a connected one, so try 1466 * that first. We could split SECURITY_FS_USE_XATTR in 1467 * two, depending upon that... 1468 */ 1469 dentry = d_find_alias(inode); 1470 if (!dentry) 1471 dentry = d_find_any_alias(inode); 1472 } 1473 if (!dentry) { 1474 /* 1475 * this is can be hit on boot when a file is accessed 1476 * before the policy is loaded. When we load policy we 1477 * may find inodes that have no dentry on the 1478 * sbsec->isec_head list. No reason to complain as these 1479 * will get fixed up the next time we go through 1480 * inode_doinit with a dentry, before these inodes could 1481 * be used again by userspace. 1482 */ 1483 goto out_invalid; 1484 } 1485 1486 rc = inode_doinit_use_xattr(inode, dentry, sbsec->def_sid, 1487 &sid); 1488 dput(dentry); 1489 if (rc) 1490 goto out; 1491 break; 1492 case SECURITY_FS_USE_TASK: 1493 sid = task_sid; 1494 break; 1495 case SECURITY_FS_USE_TRANS: 1496 /* Default to the fs SID. */ 1497 sid = sbsec->sid; 1498 1499 /* Try to obtain a transition SID. */ 1500 rc = security_transition_sid(task_sid, sid, 1501 sclass, NULL, &sid); 1502 if (rc) 1503 goto out; 1504 break; 1505 case SECURITY_FS_USE_MNTPOINT: 1506 sid = sbsec->mntpoint_sid; 1507 break; 1508 default: 1509 /* Default to the fs superblock SID. */ 1510 sid = sbsec->sid; 1511 1512 if ((sbsec->flags & SE_SBGENFS) && 1513 (!S_ISLNK(inode->i_mode) || 1514 selinux_policycap_genfs_seclabel_symlinks())) { 1515 /* We must have a dentry to determine the label on 1516 * procfs inodes */ 1517 if (opt_dentry) { 1518 /* Called from d_instantiate or 1519 * d_splice_alias. */ 1520 dentry = dget(opt_dentry); 1521 } else { 1522 /* Called from selinux_complete_init, try to 1523 * find a dentry. Some filesystems really want 1524 * a connected one, so try that first. 1525 */ 1526 dentry = d_find_alias(inode); 1527 if (!dentry) 1528 dentry = d_find_any_alias(inode); 1529 } 1530 /* 1531 * This can be hit on boot when a file is accessed 1532 * before the policy is loaded. When we load policy we 1533 * may find inodes that have no dentry on the 1534 * sbsec->isec_head list. No reason to complain as 1535 * these will get fixed up the next time we go through 1536 * inode_doinit() with a dentry, before these inodes 1537 * could be used again by userspace. 1538 */ 1539 if (!dentry) 1540 goto out_invalid; 1541 rc = selinux_genfs_get_sid(dentry, sclass, 1542 sbsec->flags, &sid); 1543 if (rc) { 1544 dput(dentry); 1545 goto out; 1546 } 1547 1548 if ((sbsec->flags & SE_SBGENFS_XATTR) && 1549 (inode->i_opflags & IOP_XATTR)) { 1550 rc = inode_doinit_use_xattr(inode, dentry, 1551 sid, &sid); 1552 if (rc) { 1553 dput(dentry); 1554 goto out; 1555 } 1556 } 1557 dput(dentry); 1558 } 1559 break; 1560 } 1561 1562 out: 1563 spin_lock(&isec->lock); 1564 if (isec->initialized == LABEL_PENDING) { 1565 if (rc) { 1566 isec->initialized = LABEL_INVALID; 1567 goto out_unlock; 1568 } 1569 isec->initialized = LABEL_INITIALIZED; 1570 isec->sid = sid; 1571 } 1572 1573 out_unlock: 1574 spin_unlock(&isec->lock); 1575 return rc; 1576 1577 out_invalid: 1578 spin_lock(&isec->lock); 1579 if (isec->initialized == LABEL_PENDING) { 1580 isec->initialized = LABEL_INVALID; 1581 isec->sid = sid; 1582 } 1583 spin_unlock(&isec->lock); 1584 return 0; 1585 } 1586 1587 /* Convert a Linux signal to an access vector. */ 1588 static inline u32 signal_to_av(int sig) 1589 { 1590 u32 perm = 0; 1591 1592 switch (sig) { 1593 case SIGCHLD: 1594 /* Commonly granted from child to parent. */ 1595 perm = PROCESS__SIGCHLD; 1596 break; 1597 case SIGKILL: 1598 /* Cannot be caught or ignored */ 1599 perm = PROCESS__SIGKILL; 1600 break; 1601 case SIGSTOP: 1602 /* Cannot be caught or ignored */ 1603 perm = PROCESS__SIGSTOP; 1604 break; 1605 default: 1606 /* All other signals. */ 1607 perm = PROCESS__SIGNAL; 1608 break; 1609 } 1610 1611 return perm; 1612 } 1613 1614 #if CAP_LAST_CAP > 63 1615 #error Fix SELinux to handle capabilities > 63. 1616 #endif 1617 1618 /* Check whether a task is allowed to use a capability. */ 1619 static int cred_has_capability(const struct cred *cred, 1620 int cap, unsigned int opts, bool initns) 1621 { 1622 struct common_audit_data ad; 1623 struct av_decision avd; 1624 u16 sclass; 1625 u32 sid = cred_sid(cred); 1626 u32 av = CAP_TO_MASK(cap); 1627 int rc; 1628 1629 ad.type = LSM_AUDIT_DATA_CAP; 1630 ad.u.cap = cap; 1631 1632 switch (CAP_TO_INDEX(cap)) { 1633 case 0: 1634 sclass = initns ? SECCLASS_CAPABILITY : SECCLASS_CAP_USERNS; 1635 break; 1636 case 1: 1637 sclass = initns ? SECCLASS_CAPABILITY2 : SECCLASS_CAP2_USERNS; 1638 break; 1639 default: 1640 pr_err("SELinux: out of range capability %d\n", cap); 1641 BUG(); 1642 return -EINVAL; 1643 } 1644 1645 rc = avc_has_perm_noaudit(sid, sid, sclass, av, 0, &avd); 1646 if (!(opts & CAP_OPT_NOAUDIT)) { 1647 int rc2 = avc_audit(sid, sid, sclass, av, &avd, rc, &ad); 1648 if (rc2) 1649 return rc2; 1650 } 1651 return rc; 1652 } 1653 1654 /* Check whether a task has a particular permission to an inode. 1655 The 'adp' parameter is optional and allows other audit 1656 data to be passed (e.g. the dentry). */ 1657 static int inode_has_perm(const struct cred *cred, 1658 struct inode *inode, 1659 u32 perms, 1660 struct common_audit_data *adp) 1661 { 1662 struct inode_security_struct *isec; 1663 u32 sid; 1664 1665 if (unlikely(IS_PRIVATE(inode))) 1666 return 0; 1667 1668 sid = cred_sid(cred); 1669 isec = selinux_inode(inode); 1670 1671 return avc_has_perm(sid, isec->sid, isec->sclass, perms, adp); 1672 } 1673 1674 /* Same as inode_has_perm, but pass explicit audit data containing 1675 the dentry to help the auditing code to more easily generate the 1676 pathname if needed. */ 1677 static inline int dentry_has_perm(const struct cred *cred, 1678 struct dentry *dentry, 1679 u32 av) 1680 { 1681 struct inode *inode = d_backing_inode(dentry); 1682 struct common_audit_data ad; 1683 1684 ad.type = LSM_AUDIT_DATA_DENTRY; 1685 ad.u.dentry = dentry; 1686 __inode_security_revalidate(inode, dentry, true); 1687 return inode_has_perm(cred, inode, av, &ad); 1688 } 1689 1690 /* Same as inode_has_perm, but pass explicit audit data containing 1691 the path to help the auditing code to more easily generate the 1692 pathname if needed. */ 1693 static inline int path_has_perm(const struct cred *cred, 1694 const struct path *path, 1695 u32 av) 1696 { 1697 struct inode *inode = d_backing_inode(path->dentry); 1698 struct common_audit_data ad; 1699 1700 ad.type = LSM_AUDIT_DATA_PATH; 1701 ad.u.path = *path; 1702 __inode_security_revalidate(inode, path->dentry, true); 1703 return inode_has_perm(cred, inode, av, &ad); 1704 } 1705 1706 /* Same as path_has_perm, but uses the inode from the file struct. */ 1707 static inline int file_path_has_perm(const struct cred *cred, 1708 struct file *file, 1709 u32 av) 1710 { 1711 struct common_audit_data ad; 1712 1713 ad.type = LSM_AUDIT_DATA_FILE; 1714 ad.u.file = file; 1715 return inode_has_perm(cred, file_inode(file), av, &ad); 1716 } 1717 1718 #ifdef CONFIG_BPF_SYSCALL 1719 static int bpf_fd_pass(const struct file *file, u32 sid); 1720 #endif 1721 1722 /* Check whether a task can use an open file descriptor to 1723 access an inode in a given way. Check access to the 1724 descriptor itself, and then use dentry_has_perm to 1725 check a particular permission to the file. 1726 Access to the descriptor is implicitly granted if it 1727 has the same SID as the process. If av is zero, then 1728 access to the file is not checked, e.g. for cases 1729 where only the descriptor is affected like seek. */ 1730 static int file_has_perm(const struct cred *cred, 1731 struct file *file, 1732 u32 av) 1733 { 1734 struct file_security_struct *fsec = selinux_file(file); 1735 struct inode *inode = file_inode(file); 1736 struct common_audit_data ad; 1737 u32 sid = cred_sid(cred); 1738 int rc; 1739 1740 ad.type = LSM_AUDIT_DATA_FILE; 1741 ad.u.file = file; 1742 1743 if (sid != fsec->sid) { 1744 rc = avc_has_perm(sid, fsec->sid, 1745 SECCLASS_FD, 1746 FD__USE, 1747 &ad); 1748 if (rc) 1749 goto out; 1750 } 1751 1752 #ifdef CONFIG_BPF_SYSCALL 1753 rc = bpf_fd_pass(file, cred_sid(cred)); 1754 if (rc) 1755 return rc; 1756 #endif 1757 1758 /* av is zero if only checking access to the descriptor. */ 1759 rc = 0; 1760 if (av) 1761 rc = inode_has_perm(cred, inode, av, &ad); 1762 1763 out: 1764 return rc; 1765 } 1766 1767 /* 1768 * Determine the label for an inode that might be unioned. 1769 */ 1770 static int 1771 selinux_determine_inode_label(const struct task_security_struct *tsec, 1772 struct inode *dir, 1773 const struct qstr *name, u16 tclass, 1774 u32 *_new_isid) 1775 { 1776 const struct superblock_security_struct *sbsec = 1777 selinux_superblock(dir->i_sb); 1778 1779 if ((sbsec->flags & SE_SBINITIALIZED) && 1780 (sbsec->behavior == SECURITY_FS_USE_MNTPOINT)) { 1781 *_new_isid = sbsec->mntpoint_sid; 1782 } else if ((sbsec->flags & SBLABEL_MNT) && 1783 tsec->create_sid) { 1784 *_new_isid = tsec->create_sid; 1785 } else { 1786 const struct inode_security_struct *dsec = inode_security(dir); 1787 return security_transition_sid(tsec->sid, 1788 dsec->sid, tclass, 1789 name, _new_isid); 1790 } 1791 1792 return 0; 1793 } 1794 1795 /* Check whether a task can create a file. */ 1796 static int may_create(struct inode *dir, 1797 struct dentry *dentry, 1798 u16 tclass) 1799 { 1800 const struct task_security_struct *tsec = selinux_cred(current_cred()); 1801 struct inode_security_struct *dsec; 1802 struct superblock_security_struct *sbsec; 1803 u32 sid, newsid; 1804 struct common_audit_data ad; 1805 int rc; 1806 1807 dsec = inode_security(dir); 1808 sbsec = selinux_superblock(dir->i_sb); 1809 1810 sid = tsec->sid; 1811 1812 ad.type = LSM_AUDIT_DATA_DENTRY; 1813 ad.u.dentry = dentry; 1814 1815 rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, 1816 DIR__ADD_NAME | DIR__SEARCH, 1817 &ad); 1818 if (rc) 1819 return rc; 1820 1821 rc = selinux_determine_inode_label(tsec, dir, &dentry->d_name, tclass, 1822 &newsid); 1823 if (rc) 1824 return rc; 1825 1826 rc = avc_has_perm(sid, newsid, tclass, FILE__CREATE, &ad); 1827 if (rc) 1828 return rc; 1829 1830 return avc_has_perm(newsid, sbsec->sid, 1831 SECCLASS_FILESYSTEM, 1832 FILESYSTEM__ASSOCIATE, &ad); 1833 } 1834 1835 #define MAY_LINK 0 1836 #define MAY_UNLINK 1 1837 #define MAY_RMDIR 2 1838 1839 /* Check whether a task can link, unlink, or rmdir a file/directory. */ 1840 static int may_link(struct inode *dir, 1841 struct dentry *dentry, 1842 int kind) 1843 1844 { 1845 struct inode_security_struct *dsec, *isec; 1846 struct common_audit_data ad; 1847 u32 sid = current_sid(); 1848 u32 av; 1849 int rc; 1850 1851 dsec = inode_security(dir); 1852 isec = backing_inode_security(dentry); 1853 1854 ad.type = LSM_AUDIT_DATA_DENTRY; 1855 ad.u.dentry = dentry; 1856 1857 av = DIR__SEARCH; 1858 av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME); 1859 rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, av, &ad); 1860 if (rc) 1861 return rc; 1862 1863 switch (kind) { 1864 case MAY_LINK: 1865 av = FILE__LINK; 1866 break; 1867 case MAY_UNLINK: 1868 av = FILE__UNLINK; 1869 break; 1870 case MAY_RMDIR: 1871 av = DIR__RMDIR; 1872 break; 1873 default: 1874 pr_warn("SELinux: %s: unrecognized kind %d\n", 1875 __func__, kind); 1876 return 0; 1877 } 1878 1879 rc = avc_has_perm(sid, isec->sid, isec->sclass, av, &ad); 1880 return rc; 1881 } 1882 1883 static inline int may_rename(struct inode *old_dir, 1884 struct dentry *old_dentry, 1885 struct inode *new_dir, 1886 struct dentry *new_dentry) 1887 { 1888 struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec; 1889 struct common_audit_data ad; 1890 u32 sid = current_sid(); 1891 u32 av; 1892 int old_is_dir, new_is_dir; 1893 int rc; 1894 1895 old_dsec = inode_security(old_dir); 1896 old_isec = backing_inode_security(old_dentry); 1897 old_is_dir = d_is_dir(old_dentry); 1898 new_dsec = inode_security(new_dir); 1899 1900 ad.type = LSM_AUDIT_DATA_DENTRY; 1901 1902 ad.u.dentry = old_dentry; 1903 rc = avc_has_perm(sid, old_dsec->sid, SECCLASS_DIR, 1904 DIR__REMOVE_NAME | DIR__SEARCH, &ad); 1905 if (rc) 1906 return rc; 1907 rc = avc_has_perm(sid, old_isec->sid, 1908 old_isec->sclass, FILE__RENAME, &ad); 1909 if (rc) 1910 return rc; 1911 if (old_is_dir && new_dir != old_dir) { 1912 rc = avc_has_perm(sid, old_isec->sid, 1913 old_isec->sclass, DIR__REPARENT, &ad); 1914 if (rc) 1915 return rc; 1916 } 1917 1918 ad.u.dentry = new_dentry; 1919 av = DIR__ADD_NAME | DIR__SEARCH; 1920 if (d_is_positive(new_dentry)) 1921 av |= DIR__REMOVE_NAME; 1922 rc = avc_has_perm(sid, new_dsec->sid, SECCLASS_DIR, av, &ad); 1923 if (rc) 1924 return rc; 1925 if (d_is_positive(new_dentry)) { 1926 new_isec = backing_inode_security(new_dentry); 1927 new_is_dir = d_is_dir(new_dentry); 1928 rc = avc_has_perm(sid, new_isec->sid, 1929 new_isec->sclass, 1930 (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad); 1931 if (rc) 1932 return rc; 1933 } 1934 1935 return 0; 1936 } 1937 1938 /* Check whether a task can perform a filesystem operation. */ 1939 static int superblock_has_perm(const struct cred *cred, 1940 const struct super_block *sb, 1941 u32 perms, 1942 struct common_audit_data *ad) 1943 { 1944 struct superblock_security_struct *sbsec; 1945 u32 sid = cred_sid(cred); 1946 1947 sbsec = selinux_superblock(sb); 1948 return avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad); 1949 } 1950 1951 /* Convert a Linux mode and permission mask to an access vector. */ 1952 static inline u32 file_mask_to_av(int mode, int mask) 1953 { 1954 u32 av = 0; 1955 1956 if (!S_ISDIR(mode)) { 1957 if (mask & MAY_EXEC) 1958 av |= FILE__EXECUTE; 1959 if (mask & MAY_READ) 1960 av |= FILE__READ; 1961 1962 if (mask & MAY_APPEND) 1963 av |= FILE__APPEND; 1964 else if (mask & MAY_WRITE) 1965 av |= FILE__WRITE; 1966 1967 } else { 1968 if (mask & MAY_EXEC) 1969 av |= DIR__SEARCH; 1970 if (mask & MAY_WRITE) 1971 av |= DIR__WRITE; 1972 if (mask & MAY_READ) 1973 av |= DIR__READ; 1974 } 1975 1976 return av; 1977 } 1978 1979 /* Convert a Linux file to an access vector. */ 1980 static inline u32 file_to_av(const struct file *file) 1981 { 1982 u32 av = 0; 1983 1984 if (file->f_mode & FMODE_READ) 1985 av |= FILE__READ; 1986 if (file->f_mode & FMODE_WRITE) { 1987 if (file->f_flags & O_APPEND) 1988 av |= FILE__APPEND; 1989 else 1990 av |= FILE__WRITE; 1991 } 1992 if (!av) { 1993 /* 1994 * Special file opened with flags 3 for ioctl-only use. 1995 */ 1996 av = FILE__IOCTL; 1997 } 1998 1999 return av; 2000 } 2001 2002 /* 2003 * Convert a file to an access vector and include the correct 2004 * open permission. 2005 */ 2006 static inline u32 open_file_to_av(struct file *file) 2007 { 2008 u32 av = file_to_av(file); 2009 struct inode *inode = file_inode(file); 2010 2011 if (selinux_policycap_openperm() && 2012 inode->i_sb->s_magic != SOCKFS_MAGIC) 2013 av |= FILE__OPEN; 2014 2015 return av; 2016 } 2017 2018 /* Hook functions begin here. */ 2019 2020 static int selinux_binder_set_context_mgr(const struct cred *mgr) 2021 { 2022 return avc_has_perm(current_sid(), cred_sid(mgr), SECCLASS_BINDER, 2023 BINDER__SET_CONTEXT_MGR, NULL); 2024 } 2025 2026 static int selinux_binder_transaction(const struct cred *from, 2027 const struct cred *to) 2028 { 2029 u32 mysid = current_sid(); 2030 u32 fromsid = cred_sid(from); 2031 u32 tosid = cred_sid(to); 2032 int rc; 2033 2034 if (mysid != fromsid) { 2035 rc = avc_has_perm(mysid, fromsid, SECCLASS_BINDER, 2036 BINDER__IMPERSONATE, NULL); 2037 if (rc) 2038 return rc; 2039 } 2040 2041 return avc_has_perm(fromsid, tosid, 2042 SECCLASS_BINDER, BINDER__CALL, NULL); 2043 } 2044 2045 static int selinux_binder_transfer_binder(const struct cred *from, 2046 const struct cred *to) 2047 { 2048 return avc_has_perm(cred_sid(from), cred_sid(to), 2049 SECCLASS_BINDER, BINDER__TRANSFER, 2050 NULL); 2051 } 2052 2053 static int selinux_binder_transfer_file(const struct cred *from, 2054 const struct cred *to, 2055 const struct file *file) 2056 { 2057 u32 sid = cred_sid(to); 2058 struct file_security_struct *fsec = selinux_file(file); 2059 struct dentry *dentry = file->f_path.dentry; 2060 struct inode_security_struct *isec; 2061 struct common_audit_data ad; 2062 int rc; 2063 2064 ad.type = LSM_AUDIT_DATA_PATH; 2065 ad.u.path = file->f_path; 2066 2067 if (sid != fsec->sid) { 2068 rc = avc_has_perm(sid, fsec->sid, 2069 SECCLASS_FD, 2070 FD__USE, 2071 &ad); 2072 if (rc) 2073 return rc; 2074 } 2075 2076 #ifdef CONFIG_BPF_SYSCALL 2077 rc = bpf_fd_pass(file, sid); 2078 if (rc) 2079 return rc; 2080 #endif 2081 2082 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2083 return 0; 2084 2085 isec = backing_inode_security(dentry); 2086 return avc_has_perm(sid, isec->sid, isec->sclass, file_to_av(file), 2087 &ad); 2088 } 2089 2090 static int selinux_ptrace_access_check(struct task_struct *child, 2091 unsigned int mode) 2092 { 2093 u32 sid = current_sid(); 2094 u32 csid = task_sid_obj(child); 2095 2096 if (mode & PTRACE_MODE_READ) 2097 return avc_has_perm(sid, csid, SECCLASS_FILE, FILE__READ, 2098 NULL); 2099 2100 return avc_has_perm(sid, csid, SECCLASS_PROCESS, PROCESS__PTRACE, 2101 NULL); 2102 } 2103 2104 static int selinux_ptrace_traceme(struct task_struct *parent) 2105 { 2106 return avc_has_perm(task_sid_obj(parent), task_sid_obj(current), 2107 SECCLASS_PROCESS, PROCESS__PTRACE, NULL); 2108 } 2109 2110 static int selinux_capget(const struct task_struct *target, kernel_cap_t *effective, 2111 kernel_cap_t *inheritable, kernel_cap_t *permitted) 2112 { 2113 return avc_has_perm(current_sid(), task_sid_obj(target), 2114 SECCLASS_PROCESS, PROCESS__GETCAP, NULL); 2115 } 2116 2117 static int selinux_capset(struct cred *new, const struct cred *old, 2118 const kernel_cap_t *effective, 2119 const kernel_cap_t *inheritable, 2120 const kernel_cap_t *permitted) 2121 { 2122 return avc_has_perm(cred_sid(old), cred_sid(new), SECCLASS_PROCESS, 2123 PROCESS__SETCAP, NULL); 2124 } 2125 2126 /* 2127 * (This comment used to live with the selinux_task_setuid hook, 2128 * which was removed). 2129 * 2130 * Since setuid only affects the current process, and since the SELinux 2131 * controls are not based on the Linux identity attributes, SELinux does not 2132 * need to control this operation. However, SELinux does control the use of 2133 * the CAP_SETUID and CAP_SETGID capabilities using the capable hook. 2134 */ 2135 2136 static int selinux_capable(const struct cred *cred, struct user_namespace *ns, 2137 int cap, unsigned int opts) 2138 { 2139 return cred_has_capability(cred, cap, opts, ns == &init_user_ns); 2140 } 2141 2142 static int selinux_quotactl(int cmds, int type, int id, const struct super_block *sb) 2143 { 2144 const struct cred *cred = current_cred(); 2145 int rc = 0; 2146 2147 if (!sb) 2148 return 0; 2149 2150 switch (cmds) { 2151 case Q_SYNC: 2152 case Q_QUOTAON: 2153 case Q_QUOTAOFF: 2154 case Q_SETINFO: 2155 case Q_SETQUOTA: 2156 case Q_XQUOTAOFF: 2157 case Q_XQUOTAON: 2158 case Q_XSETQLIM: 2159 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL); 2160 break; 2161 case Q_GETFMT: 2162 case Q_GETINFO: 2163 case Q_GETQUOTA: 2164 case Q_XGETQUOTA: 2165 case Q_XGETQSTAT: 2166 case Q_XGETQSTATV: 2167 case Q_XGETNEXTQUOTA: 2168 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL); 2169 break; 2170 default: 2171 rc = 0; /* let the kernel handle invalid cmds */ 2172 break; 2173 } 2174 return rc; 2175 } 2176 2177 static int selinux_quota_on(struct dentry *dentry) 2178 { 2179 const struct cred *cred = current_cred(); 2180 2181 return dentry_has_perm(cred, dentry, FILE__QUOTAON); 2182 } 2183 2184 static int selinux_syslog(int type) 2185 { 2186 switch (type) { 2187 case SYSLOG_ACTION_READ_ALL: /* Read last kernel messages */ 2188 case SYSLOG_ACTION_SIZE_BUFFER: /* Return size of the log buffer */ 2189 return avc_has_perm(current_sid(), SECINITSID_KERNEL, 2190 SECCLASS_SYSTEM, SYSTEM__SYSLOG_READ, NULL); 2191 case SYSLOG_ACTION_CONSOLE_OFF: /* Disable logging to console */ 2192 case SYSLOG_ACTION_CONSOLE_ON: /* Enable logging to console */ 2193 /* Set level of messages printed to console */ 2194 case SYSLOG_ACTION_CONSOLE_LEVEL: 2195 return avc_has_perm(current_sid(), SECINITSID_KERNEL, 2196 SECCLASS_SYSTEM, SYSTEM__SYSLOG_CONSOLE, 2197 NULL); 2198 } 2199 /* All other syslog types */ 2200 return avc_has_perm(current_sid(), SECINITSID_KERNEL, 2201 SECCLASS_SYSTEM, SYSTEM__SYSLOG_MOD, NULL); 2202 } 2203 2204 /* 2205 * Check that a process has enough memory to allocate a new virtual 2206 * mapping. 0 means there is enough memory for the allocation to 2207 * succeed and -ENOMEM implies there is not. 2208 * 2209 * Do not audit the selinux permission check, as this is applied to all 2210 * processes that allocate mappings. 2211 */ 2212 static int selinux_vm_enough_memory(struct mm_struct *mm, long pages) 2213 { 2214 int rc, cap_sys_admin = 0; 2215 2216 rc = cred_has_capability(current_cred(), CAP_SYS_ADMIN, 2217 CAP_OPT_NOAUDIT, true); 2218 if (rc == 0) 2219 cap_sys_admin = 1; 2220 2221 return cap_sys_admin; 2222 } 2223 2224 /* binprm security operations */ 2225 2226 static u32 ptrace_parent_sid(void) 2227 { 2228 u32 sid = 0; 2229 struct task_struct *tracer; 2230 2231 rcu_read_lock(); 2232 tracer = ptrace_parent(current); 2233 if (tracer) 2234 sid = task_sid_obj(tracer); 2235 rcu_read_unlock(); 2236 2237 return sid; 2238 } 2239 2240 static int check_nnp_nosuid(const struct linux_binprm *bprm, 2241 const struct task_security_struct *old_tsec, 2242 const struct task_security_struct *new_tsec) 2243 { 2244 int nnp = (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS); 2245 int nosuid = !mnt_may_suid(bprm->file->f_path.mnt); 2246 int rc; 2247 u32 av; 2248 2249 if (!nnp && !nosuid) 2250 return 0; /* neither NNP nor nosuid */ 2251 2252 if (new_tsec->sid == old_tsec->sid) 2253 return 0; /* No change in credentials */ 2254 2255 /* 2256 * If the policy enables the nnp_nosuid_transition policy capability, 2257 * then we permit transitions under NNP or nosuid if the 2258 * policy allows the corresponding permission between 2259 * the old and new contexts. 2260 */ 2261 if (selinux_policycap_nnp_nosuid_transition()) { 2262 av = 0; 2263 if (nnp) 2264 av |= PROCESS2__NNP_TRANSITION; 2265 if (nosuid) 2266 av |= PROCESS2__NOSUID_TRANSITION; 2267 rc = avc_has_perm(old_tsec->sid, new_tsec->sid, 2268 SECCLASS_PROCESS2, av, NULL); 2269 if (!rc) 2270 return 0; 2271 } 2272 2273 /* 2274 * We also permit NNP or nosuid transitions to bounded SIDs, 2275 * i.e. SIDs that are guaranteed to only be allowed a subset 2276 * of the permissions of the current SID. 2277 */ 2278 rc = security_bounded_transition(old_tsec->sid, 2279 new_tsec->sid); 2280 if (!rc) 2281 return 0; 2282 2283 /* 2284 * On failure, preserve the errno values for NNP vs nosuid. 2285 * NNP: Operation not permitted for caller. 2286 * nosuid: Permission denied to file. 2287 */ 2288 if (nnp) 2289 return -EPERM; 2290 return -EACCES; 2291 } 2292 2293 static int selinux_bprm_creds_for_exec(struct linux_binprm *bprm) 2294 { 2295 const struct task_security_struct *old_tsec; 2296 struct task_security_struct *new_tsec; 2297 struct inode_security_struct *isec; 2298 struct common_audit_data ad; 2299 struct inode *inode = file_inode(bprm->file); 2300 int rc; 2301 2302 /* SELinux context only depends on initial program or script and not 2303 * the script interpreter */ 2304 2305 old_tsec = selinux_cred(current_cred()); 2306 new_tsec = selinux_cred(bprm->cred); 2307 isec = inode_security(inode); 2308 2309 /* Default to the current task SID. */ 2310 new_tsec->sid = old_tsec->sid; 2311 new_tsec->osid = old_tsec->sid; 2312 2313 /* Reset fs, key, and sock SIDs on execve. */ 2314 new_tsec->create_sid = 0; 2315 new_tsec->keycreate_sid = 0; 2316 new_tsec->sockcreate_sid = 0; 2317 2318 /* 2319 * Before policy is loaded, label any task outside kernel space 2320 * as SECINITSID_INIT, so that any userspace tasks surviving from 2321 * early boot end up with a label different from SECINITSID_KERNEL 2322 * (if the policy chooses to set SECINITSID_INIT != SECINITSID_KERNEL). 2323 */ 2324 if (!selinux_initialized()) { 2325 new_tsec->sid = SECINITSID_INIT; 2326 /* also clear the exec_sid just in case */ 2327 new_tsec->exec_sid = 0; 2328 return 0; 2329 } 2330 2331 if (old_tsec->exec_sid) { 2332 new_tsec->sid = old_tsec->exec_sid; 2333 /* Reset exec SID on execve. */ 2334 new_tsec->exec_sid = 0; 2335 2336 /* Fail on NNP or nosuid if not an allowed transition. */ 2337 rc = check_nnp_nosuid(bprm, old_tsec, new_tsec); 2338 if (rc) 2339 return rc; 2340 } else { 2341 /* Check for a default transition on this program. */ 2342 rc = security_transition_sid(old_tsec->sid, 2343 isec->sid, SECCLASS_PROCESS, NULL, 2344 &new_tsec->sid); 2345 if (rc) 2346 return rc; 2347 2348 /* 2349 * Fallback to old SID on NNP or nosuid if not an allowed 2350 * transition. 2351 */ 2352 rc = check_nnp_nosuid(bprm, old_tsec, new_tsec); 2353 if (rc) 2354 new_tsec->sid = old_tsec->sid; 2355 } 2356 2357 ad.type = LSM_AUDIT_DATA_FILE; 2358 ad.u.file = bprm->file; 2359 2360 if (new_tsec->sid == old_tsec->sid) { 2361 rc = avc_has_perm(old_tsec->sid, isec->sid, 2362 SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad); 2363 if (rc) 2364 return rc; 2365 } else { 2366 /* Check permissions for the transition. */ 2367 rc = avc_has_perm(old_tsec->sid, new_tsec->sid, 2368 SECCLASS_PROCESS, PROCESS__TRANSITION, &ad); 2369 if (rc) 2370 return rc; 2371 2372 rc = avc_has_perm(new_tsec->sid, isec->sid, 2373 SECCLASS_FILE, FILE__ENTRYPOINT, &ad); 2374 if (rc) 2375 return rc; 2376 2377 /* Check for shared state */ 2378 if (bprm->unsafe & LSM_UNSAFE_SHARE) { 2379 rc = avc_has_perm(old_tsec->sid, new_tsec->sid, 2380 SECCLASS_PROCESS, PROCESS__SHARE, 2381 NULL); 2382 if (rc) 2383 return -EPERM; 2384 } 2385 2386 /* Make sure that anyone attempting to ptrace over a task that 2387 * changes its SID has the appropriate permit */ 2388 if (bprm->unsafe & LSM_UNSAFE_PTRACE) { 2389 u32 ptsid = ptrace_parent_sid(); 2390 if (ptsid != 0) { 2391 rc = avc_has_perm(ptsid, new_tsec->sid, 2392 SECCLASS_PROCESS, 2393 PROCESS__PTRACE, NULL); 2394 if (rc) 2395 return -EPERM; 2396 } 2397 } 2398 2399 /* Clear any possibly unsafe personality bits on exec: */ 2400 bprm->per_clear |= PER_CLEAR_ON_SETID; 2401 2402 /* Enable secure mode for SIDs transitions unless 2403 the noatsecure permission is granted between 2404 the two SIDs, i.e. ahp returns 0. */ 2405 rc = avc_has_perm(old_tsec->sid, new_tsec->sid, 2406 SECCLASS_PROCESS, PROCESS__NOATSECURE, 2407 NULL); 2408 bprm->secureexec |= !!rc; 2409 } 2410 2411 return 0; 2412 } 2413 2414 static int match_file(const void *p, struct file *file, unsigned fd) 2415 { 2416 return file_has_perm(p, file, file_to_av(file)) ? fd + 1 : 0; 2417 } 2418 2419 /* Derived from fs/exec.c:flush_old_files. */ 2420 static inline void flush_unauthorized_files(const struct cred *cred, 2421 struct files_struct *files) 2422 { 2423 struct file *file, *devnull = NULL; 2424 struct tty_struct *tty; 2425 int drop_tty = 0; 2426 unsigned n; 2427 2428 tty = get_current_tty(); 2429 if (tty) { 2430 spin_lock(&tty->files_lock); 2431 if (!list_empty(&tty->tty_files)) { 2432 struct tty_file_private *file_priv; 2433 2434 /* Revalidate access to controlling tty. 2435 Use file_path_has_perm on the tty path directly 2436 rather than using file_has_perm, as this particular 2437 open file may belong to another process and we are 2438 only interested in the inode-based check here. */ 2439 file_priv = list_first_entry(&tty->tty_files, 2440 struct tty_file_private, list); 2441 file = file_priv->file; 2442 if (file_path_has_perm(cred, file, FILE__READ | FILE__WRITE)) 2443 drop_tty = 1; 2444 } 2445 spin_unlock(&tty->files_lock); 2446 tty_kref_put(tty); 2447 } 2448 /* Reset controlling tty. */ 2449 if (drop_tty) 2450 no_tty(); 2451 2452 /* Revalidate access to inherited open files. */ 2453 n = iterate_fd(files, 0, match_file, cred); 2454 if (!n) /* none found? */ 2455 return; 2456 2457 devnull = dentry_open(&selinux_null, O_RDWR, cred); 2458 if (IS_ERR(devnull)) 2459 devnull = NULL; 2460 /* replace all the matching ones with this */ 2461 do { 2462 replace_fd(n - 1, devnull, 0); 2463 } while ((n = iterate_fd(files, n, match_file, cred)) != 0); 2464 if (devnull) 2465 fput(devnull); 2466 } 2467 2468 /* 2469 * Prepare a process for imminent new credential changes due to exec 2470 */ 2471 static void selinux_bprm_committing_creds(const struct linux_binprm *bprm) 2472 { 2473 struct task_security_struct *new_tsec; 2474 struct rlimit *rlim, *initrlim; 2475 int rc, i; 2476 2477 new_tsec = selinux_cred(bprm->cred); 2478 if (new_tsec->sid == new_tsec->osid) 2479 return; 2480 2481 /* Close files for which the new task SID is not authorized. */ 2482 flush_unauthorized_files(bprm->cred, current->files); 2483 2484 /* Always clear parent death signal on SID transitions. */ 2485 current->pdeath_signal = 0; 2486 2487 /* Check whether the new SID can inherit resource limits from the old 2488 * SID. If not, reset all soft limits to the lower of the current 2489 * task's hard limit and the init task's soft limit. 2490 * 2491 * Note that the setting of hard limits (even to lower them) can be 2492 * controlled by the setrlimit check. The inclusion of the init task's 2493 * soft limit into the computation is to avoid resetting soft limits 2494 * higher than the default soft limit for cases where the default is 2495 * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK. 2496 */ 2497 rc = avc_has_perm(new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS, 2498 PROCESS__RLIMITINH, NULL); 2499 if (rc) { 2500 /* protect against do_prlimit() */ 2501 task_lock(current); 2502 for (i = 0; i < RLIM_NLIMITS; i++) { 2503 rlim = current->signal->rlim + i; 2504 initrlim = init_task.signal->rlim + i; 2505 rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur); 2506 } 2507 task_unlock(current); 2508 if (IS_ENABLED(CONFIG_POSIX_TIMERS)) 2509 update_rlimit_cpu(current, rlimit(RLIMIT_CPU)); 2510 } 2511 } 2512 2513 /* 2514 * Clean up the process immediately after the installation of new credentials 2515 * due to exec 2516 */ 2517 static void selinux_bprm_committed_creds(const struct linux_binprm *bprm) 2518 { 2519 const struct task_security_struct *tsec = selinux_cred(current_cred()); 2520 u32 osid, sid; 2521 int rc; 2522 2523 osid = tsec->osid; 2524 sid = tsec->sid; 2525 2526 if (sid == osid) 2527 return; 2528 2529 /* Check whether the new SID can inherit signal state from the old SID. 2530 * If not, clear itimers to avoid subsequent signal generation and 2531 * flush and unblock signals. 2532 * 2533 * This must occur _after_ the task SID has been updated so that any 2534 * kill done after the flush will be checked against the new SID. 2535 */ 2536 rc = avc_has_perm(osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL); 2537 if (rc) { 2538 clear_itimer(); 2539 2540 spin_lock_irq(&unrcu_pointer(current->sighand)->siglock); 2541 if (!fatal_signal_pending(current)) { 2542 flush_sigqueue(¤t->pending); 2543 flush_sigqueue(¤t->signal->shared_pending); 2544 flush_signal_handlers(current, 1); 2545 sigemptyset(¤t->blocked); 2546 recalc_sigpending(); 2547 } 2548 spin_unlock_irq(&unrcu_pointer(current->sighand)->siglock); 2549 } 2550 2551 /* Wake up the parent if it is waiting so that it can recheck 2552 * wait permission to the new task SID. */ 2553 read_lock(&tasklist_lock); 2554 __wake_up_parent(current, unrcu_pointer(current->real_parent)); 2555 read_unlock(&tasklist_lock); 2556 } 2557 2558 /* superblock security operations */ 2559 2560 static int selinux_sb_alloc_security(struct super_block *sb) 2561 { 2562 struct superblock_security_struct *sbsec = selinux_superblock(sb); 2563 2564 mutex_init(&sbsec->lock); 2565 INIT_LIST_HEAD(&sbsec->isec_head); 2566 spin_lock_init(&sbsec->isec_lock); 2567 sbsec->sid = SECINITSID_UNLABELED; 2568 sbsec->def_sid = SECINITSID_FILE; 2569 sbsec->mntpoint_sid = SECINITSID_UNLABELED; 2570 2571 return 0; 2572 } 2573 2574 static inline int opt_len(const char *s) 2575 { 2576 bool open_quote = false; 2577 int len; 2578 char c; 2579 2580 for (len = 0; (c = s[len]) != '\0'; len++) { 2581 if (c == '"') 2582 open_quote = !open_quote; 2583 if (c == ',' && !open_quote) 2584 break; 2585 } 2586 return len; 2587 } 2588 2589 static int selinux_sb_eat_lsm_opts(char *options, void **mnt_opts) 2590 { 2591 char *from = options; 2592 char *to = options; 2593 bool first = true; 2594 int rc; 2595 2596 while (1) { 2597 int len = opt_len(from); 2598 int token; 2599 char *arg = NULL; 2600 2601 token = match_opt_prefix(from, len, &arg); 2602 2603 if (token != Opt_error) { 2604 char *p, *q; 2605 2606 /* strip quotes */ 2607 if (arg) { 2608 for (p = q = arg; p < from + len; p++) { 2609 char c = *p; 2610 if (c != '"') 2611 *q++ = c; 2612 } 2613 arg = kmemdup_nul(arg, q - arg, GFP_KERNEL); 2614 if (!arg) { 2615 rc = -ENOMEM; 2616 goto free_opt; 2617 } 2618 } 2619 rc = selinux_add_opt(token, arg, mnt_opts); 2620 kfree(arg); 2621 arg = NULL; 2622 if (unlikely(rc)) { 2623 goto free_opt; 2624 } 2625 } else { 2626 if (!first) { // copy with preceding comma 2627 from--; 2628 len++; 2629 } 2630 if (to != from) 2631 memmove(to, from, len); 2632 to += len; 2633 first = false; 2634 } 2635 if (!from[len]) 2636 break; 2637 from += len + 1; 2638 } 2639 *to = '\0'; 2640 return 0; 2641 2642 free_opt: 2643 if (*mnt_opts) { 2644 selinux_free_mnt_opts(*mnt_opts); 2645 *mnt_opts = NULL; 2646 } 2647 return rc; 2648 } 2649 2650 static int selinux_sb_mnt_opts_compat(struct super_block *sb, void *mnt_opts) 2651 { 2652 struct selinux_mnt_opts *opts = mnt_opts; 2653 struct superblock_security_struct *sbsec = selinux_superblock(sb); 2654 2655 /* 2656 * Superblock not initialized (i.e. no options) - reject if any 2657 * options specified, otherwise accept. 2658 */ 2659 if (!(sbsec->flags & SE_SBINITIALIZED)) 2660 return opts ? 1 : 0; 2661 2662 /* 2663 * Superblock initialized and no options specified - reject if 2664 * superblock has any options set, otherwise accept. 2665 */ 2666 if (!opts) 2667 return (sbsec->flags & SE_MNTMASK) ? 1 : 0; 2668 2669 if (opts->fscontext_sid) { 2670 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, 2671 opts->fscontext_sid)) 2672 return 1; 2673 } 2674 if (opts->context_sid) { 2675 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, 2676 opts->context_sid)) 2677 return 1; 2678 } 2679 if (opts->rootcontext_sid) { 2680 struct inode_security_struct *root_isec; 2681 2682 root_isec = backing_inode_security(sb->s_root); 2683 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, 2684 opts->rootcontext_sid)) 2685 return 1; 2686 } 2687 if (opts->defcontext_sid) { 2688 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, 2689 opts->defcontext_sid)) 2690 return 1; 2691 } 2692 return 0; 2693 } 2694 2695 static int selinux_sb_remount(struct super_block *sb, void *mnt_opts) 2696 { 2697 struct selinux_mnt_opts *opts = mnt_opts; 2698 struct superblock_security_struct *sbsec = selinux_superblock(sb); 2699 2700 if (!(sbsec->flags & SE_SBINITIALIZED)) 2701 return 0; 2702 2703 if (!opts) 2704 return 0; 2705 2706 if (opts->fscontext_sid) { 2707 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, 2708 opts->fscontext_sid)) 2709 goto out_bad_option; 2710 } 2711 if (opts->context_sid) { 2712 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, 2713 opts->context_sid)) 2714 goto out_bad_option; 2715 } 2716 if (opts->rootcontext_sid) { 2717 struct inode_security_struct *root_isec; 2718 root_isec = backing_inode_security(sb->s_root); 2719 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, 2720 opts->rootcontext_sid)) 2721 goto out_bad_option; 2722 } 2723 if (opts->defcontext_sid) { 2724 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, 2725 opts->defcontext_sid)) 2726 goto out_bad_option; 2727 } 2728 return 0; 2729 2730 out_bad_option: 2731 pr_warn("SELinux: unable to change security options " 2732 "during remount (dev %s, type=%s)\n", sb->s_id, 2733 sb->s_type->name); 2734 return -EINVAL; 2735 } 2736 2737 static int selinux_sb_kern_mount(const struct super_block *sb) 2738 { 2739 const struct cred *cred = current_cred(); 2740 struct common_audit_data ad; 2741 2742 ad.type = LSM_AUDIT_DATA_DENTRY; 2743 ad.u.dentry = sb->s_root; 2744 return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad); 2745 } 2746 2747 static int selinux_sb_statfs(struct dentry *dentry) 2748 { 2749 const struct cred *cred = current_cred(); 2750 struct common_audit_data ad; 2751 2752 ad.type = LSM_AUDIT_DATA_DENTRY; 2753 ad.u.dentry = dentry->d_sb->s_root; 2754 return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad); 2755 } 2756 2757 static int selinux_mount(const char *dev_name, 2758 const struct path *path, 2759 const char *type, 2760 unsigned long flags, 2761 void *data) 2762 { 2763 const struct cred *cred = current_cred(); 2764 2765 if (flags & MS_REMOUNT) 2766 return superblock_has_perm(cred, path->dentry->d_sb, 2767 FILESYSTEM__REMOUNT, NULL); 2768 else 2769 return path_has_perm(cred, path, FILE__MOUNTON); 2770 } 2771 2772 static int selinux_move_mount(const struct path *from_path, 2773 const struct path *to_path) 2774 { 2775 const struct cred *cred = current_cred(); 2776 2777 return path_has_perm(cred, to_path, FILE__MOUNTON); 2778 } 2779 2780 static int selinux_umount(struct vfsmount *mnt, int flags) 2781 { 2782 const struct cred *cred = current_cred(); 2783 2784 return superblock_has_perm(cred, mnt->mnt_sb, 2785 FILESYSTEM__UNMOUNT, NULL); 2786 } 2787 2788 static int selinux_fs_context_submount(struct fs_context *fc, 2789 struct super_block *reference) 2790 { 2791 const struct superblock_security_struct *sbsec = selinux_superblock(reference); 2792 struct selinux_mnt_opts *opts; 2793 2794 /* 2795 * Ensure that fc->security remains NULL when no options are set 2796 * as expected by selinux_set_mnt_opts(). 2797 */ 2798 if (!(sbsec->flags & (FSCONTEXT_MNT|CONTEXT_MNT|DEFCONTEXT_MNT))) 2799 return 0; 2800 2801 opts = kzalloc(sizeof(*opts), GFP_KERNEL); 2802 if (!opts) 2803 return -ENOMEM; 2804 2805 if (sbsec->flags & FSCONTEXT_MNT) 2806 opts->fscontext_sid = sbsec->sid; 2807 if (sbsec->flags & CONTEXT_MNT) 2808 opts->context_sid = sbsec->mntpoint_sid; 2809 if (sbsec->flags & DEFCONTEXT_MNT) 2810 opts->defcontext_sid = sbsec->def_sid; 2811 fc->security = opts; 2812 return 0; 2813 } 2814 2815 static int selinux_fs_context_dup(struct fs_context *fc, 2816 struct fs_context *src_fc) 2817 { 2818 const struct selinux_mnt_opts *src = src_fc->security; 2819 2820 if (!src) 2821 return 0; 2822 2823 fc->security = kmemdup(src, sizeof(*src), GFP_KERNEL); 2824 return fc->security ? 0 : -ENOMEM; 2825 } 2826 2827 static const struct fs_parameter_spec selinux_fs_parameters[] = { 2828 fsparam_string(CONTEXT_STR, Opt_context), 2829 fsparam_string(DEFCONTEXT_STR, Opt_defcontext), 2830 fsparam_string(FSCONTEXT_STR, Opt_fscontext), 2831 fsparam_string(ROOTCONTEXT_STR, Opt_rootcontext), 2832 fsparam_flag (SECLABEL_STR, Opt_seclabel), 2833 {} 2834 }; 2835 2836 static int selinux_fs_context_parse_param(struct fs_context *fc, 2837 struct fs_parameter *param) 2838 { 2839 struct fs_parse_result result; 2840 int opt; 2841 2842 opt = fs_parse(fc, selinux_fs_parameters, param, &result); 2843 if (opt < 0) 2844 return opt; 2845 2846 return selinux_add_opt(opt, param->string, &fc->security); 2847 } 2848 2849 /* inode security operations */ 2850 2851 static int selinux_inode_alloc_security(struct inode *inode) 2852 { 2853 struct inode_security_struct *isec = selinux_inode(inode); 2854 u32 sid = current_sid(); 2855 2856 spin_lock_init(&isec->lock); 2857 INIT_LIST_HEAD(&isec->list); 2858 isec->inode = inode; 2859 isec->sid = SECINITSID_UNLABELED; 2860 isec->sclass = SECCLASS_FILE; 2861 isec->task_sid = sid; 2862 isec->initialized = LABEL_INVALID; 2863 2864 return 0; 2865 } 2866 2867 static void selinux_inode_free_security(struct inode *inode) 2868 { 2869 inode_free_security(inode); 2870 } 2871 2872 static int selinux_dentry_init_security(struct dentry *dentry, int mode, 2873 const struct qstr *name, 2874 const char **xattr_name, void **ctx, 2875 u32 *ctxlen) 2876 { 2877 u32 newsid; 2878 int rc; 2879 2880 rc = selinux_determine_inode_label(selinux_cred(current_cred()), 2881 d_inode(dentry->d_parent), name, 2882 inode_mode_to_security_class(mode), 2883 &newsid); 2884 if (rc) 2885 return rc; 2886 2887 if (xattr_name) 2888 *xattr_name = XATTR_NAME_SELINUX; 2889 2890 return security_sid_to_context(newsid, (char **)ctx, 2891 ctxlen); 2892 } 2893 2894 static int selinux_dentry_create_files_as(struct dentry *dentry, int mode, 2895 struct qstr *name, 2896 const struct cred *old, 2897 struct cred *new) 2898 { 2899 u32 newsid; 2900 int rc; 2901 struct task_security_struct *tsec; 2902 2903 rc = selinux_determine_inode_label(selinux_cred(old), 2904 d_inode(dentry->d_parent), name, 2905 inode_mode_to_security_class(mode), 2906 &newsid); 2907 if (rc) 2908 return rc; 2909 2910 tsec = selinux_cred(new); 2911 tsec->create_sid = newsid; 2912 return 0; 2913 } 2914 2915 static int selinux_inode_init_security(struct inode *inode, struct inode *dir, 2916 const struct qstr *qstr, 2917 struct xattr *xattrs, int *xattr_count) 2918 { 2919 const struct task_security_struct *tsec = selinux_cred(current_cred()); 2920 struct superblock_security_struct *sbsec; 2921 struct xattr *xattr = lsm_get_xattr_slot(xattrs, xattr_count); 2922 u32 newsid, clen; 2923 u16 newsclass; 2924 int rc; 2925 char *context; 2926 2927 sbsec = selinux_superblock(dir->i_sb); 2928 2929 newsid = tsec->create_sid; 2930 newsclass = inode_mode_to_security_class(inode->i_mode); 2931 rc = selinux_determine_inode_label(tsec, dir, qstr, newsclass, &newsid); 2932 if (rc) 2933 return rc; 2934 2935 /* Possibly defer initialization to selinux_complete_init. */ 2936 if (sbsec->flags & SE_SBINITIALIZED) { 2937 struct inode_security_struct *isec = selinux_inode(inode); 2938 isec->sclass = newsclass; 2939 isec->sid = newsid; 2940 isec->initialized = LABEL_INITIALIZED; 2941 } 2942 2943 if (!selinux_initialized() || 2944 !(sbsec->flags & SBLABEL_MNT)) 2945 return -EOPNOTSUPP; 2946 2947 if (xattr) { 2948 rc = security_sid_to_context_force(newsid, 2949 &context, &clen); 2950 if (rc) 2951 return rc; 2952 xattr->value = context; 2953 xattr->value_len = clen; 2954 xattr->name = XATTR_SELINUX_SUFFIX; 2955 } 2956 2957 return 0; 2958 } 2959 2960 static int selinux_inode_init_security_anon(struct inode *inode, 2961 const struct qstr *name, 2962 const struct inode *context_inode) 2963 { 2964 u32 sid = current_sid(); 2965 struct common_audit_data ad; 2966 struct inode_security_struct *isec; 2967 int rc; 2968 2969 if (unlikely(!selinux_initialized())) 2970 return 0; 2971 2972 isec = selinux_inode(inode); 2973 2974 /* 2975 * We only get here once per ephemeral inode. The inode has 2976 * been initialized via inode_alloc_security but is otherwise 2977 * untouched. 2978 */ 2979 2980 if (context_inode) { 2981 struct inode_security_struct *context_isec = 2982 selinux_inode(context_inode); 2983 if (context_isec->initialized != LABEL_INITIALIZED) { 2984 pr_err("SELinux: context_inode is not initialized\n"); 2985 return -EACCES; 2986 } 2987 2988 isec->sclass = context_isec->sclass; 2989 isec->sid = context_isec->sid; 2990 } else { 2991 isec->sclass = SECCLASS_ANON_INODE; 2992 rc = security_transition_sid( 2993 sid, sid, 2994 isec->sclass, name, &isec->sid); 2995 if (rc) 2996 return rc; 2997 } 2998 2999 isec->initialized = LABEL_INITIALIZED; 3000 /* 3001 * Now that we've initialized security, check whether we're 3002 * allowed to actually create this type of anonymous inode. 3003 */ 3004 3005 ad.type = LSM_AUDIT_DATA_ANONINODE; 3006 ad.u.anonclass = name ? (const char *)name->name : "?"; 3007 3008 return avc_has_perm(sid, 3009 isec->sid, 3010 isec->sclass, 3011 FILE__CREATE, 3012 &ad); 3013 } 3014 3015 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode) 3016 { 3017 return may_create(dir, dentry, SECCLASS_FILE); 3018 } 3019 3020 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry) 3021 { 3022 return may_link(dir, old_dentry, MAY_LINK); 3023 } 3024 3025 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry) 3026 { 3027 return may_link(dir, dentry, MAY_UNLINK); 3028 } 3029 3030 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name) 3031 { 3032 return may_create(dir, dentry, SECCLASS_LNK_FILE); 3033 } 3034 3035 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mask) 3036 { 3037 return may_create(dir, dentry, SECCLASS_DIR); 3038 } 3039 3040 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry) 3041 { 3042 return may_link(dir, dentry, MAY_RMDIR); 3043 } 3044 3045 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) 3046 { 3047 return may_create(dir, dentry, inode_mode_to_security_class(mode)); 3048 } 3049 3050 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry, 3051 struct inode *new_inode, struct dentry *new_dentry) 3052 { 3053 return may_rename(old_inode, old_dentry, new_inode, new_dentry); 3054 } 3055 3056 static int selinux_inode_readlink(struct dentry *dentry) 3057 { 3058 const struct cred *cred = current_cred(); 3059 3060 return dentry_has_perm(cred, dentry, FILE__READ); 3061 } 3062 3063 static int selinux_inode_follow_link(struct dentry *dentry, struct inode *inode, 3064 bool rcu) 3065 { 3066 struct common_audit_data ad; 3067 struct inode_security_struct *isec; 3068 u32 sid = current_sid(); 3069 3070 ad.type = LSM_AUDIT_DATA_DENTRY; 3071 ad.u.dentry = dentry; 3072 isec = inode_security_rcu(inode, rcu); 3073 if (IS_ERR(isec)) 3074 return PTR_ERR(isec); 3075 3076 return avc_has_perm(sid, isec->sid, isec->sclass, FILE__READ, &ad); 3077 } 3078 3079 static noinline int audit_inode_permission(struct inode *inode, 3080 u32 perms, u32 audited, u32 denied, 3081 int result) 3082 { 3083 struct common_audit_data ad; 3084 struct inode_security_struct *isec = selinux_inode(inode); 3085 3086 ad.type = LSM_AUDIT_DATA_INODE; 3087 ad.u.inode = inode; 3088 3089 return slow_avc_audit(current_sid(), isec->sid, isec->sclass, perms, 3090 audited, denied, result, &ad); 3091 } 3092 3093 static int selinux_inode_permission(struct inode *inode, int mask) 3094 { 3095 u32 perms; 3096 bool from_access; 3097 bool no_block = mask & MAY_NOT_BLOCK; 3098 struct inode_security_struct *isec; 3099 u32 sid = current_sid(); 3100 struct av_decision avd; 3101 int rc, rc2; 3102 u32 audited, denied; 3103 3104 from_access = mask & MAY_ACCESS; 3105 mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND); 3106 3107 /* No permission to check. Existence test. */ 3108 if (!mask) 3109 return 0; 3110 3111 if (unlikely(IS_PRIVATE(inode))) 3112 return 0; 3113 3114 perms = file_mask_to_av(inode->i_mode, mask); 3115 3116 isec = inode_security_rcu(inode, no_block); 3117 if (IS_ERR(isec)) 3118 return PTR_ERR(isec); 3119 3120 rc = avc_has_perm_noaudit(sid, isec->sid, isec->sclass, perms, 0, 3121 &avd); 3122 audited = avc_audit_required(perms, &avd, rc, 3123 from_access ? FILE__AUDIT_ACCESS : 0, 3124 &denied); 3125 if (likely(!audited)) 3126 return rc; 3127 3128 rc2 = audit_inode_permission(inode, perms, audited, denied, rc); 3129 if (rc2) 3130 return rc2; 3131 return rc; 3132 } 3133 3134 static int selinux_inode_setattr(struct mnt_idmap *idmap, struct dentry *dentry, 3135 struct iattr *iattr) 3136 { 3137 const struct cred *cred = current_cred(); 3138 struct inode *inode = d_backing_inode(dentry); 3139 unsigned int ia_valid = iattr->ia_valid; 3140 __u32 av = FILE__WRITE; 3141 3142 /* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */ 3143 if (ia_valid & ATTR_FORCE) { 3144 ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE | 3145 ATTR_FORCE); 3146 if (!ia_valid) 3147 return 0; 3148 } 3149 3150 if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID | 3151 ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET)) 3152 return dentry_has_perm(cred, dentry, FILE__SETATTR); 3153 3154 if (selinux_policycap_openperm() && 3155 inode->i_sb->s_magic != SOCKFS_MAGIC && 3156 (ia_valid & ATTR_SIZE) && 3157 !(ia_valid & ATTR_FILE)) 3158 av |= FILE__OPEN; 3159 3160 return dentry_has_perm(cred, dentry, av); 3161 } 3162 3163 static int selinux_inode_getattr(const struct path *path) 3164 { 3165 return path_has_perm(current_cred(), path, FILE__GETATTR); 3166 } 3167 3168 static bool has_cap_mac_admin(bool audit) 3169 { 3170 const struct cred *cred = current_cred(); 3171 unsigned int opts = audit ? CAP_OPT_NONE : CAP_OPT_NOAUDIT; 3172 3173 if (cap_capable(cred, &init_user_ns, CAP_MAC_ADMIN, opts)) 3174 return false; 3175 if (cred_has_capability(cred, CAP_MAC_ADMIN, opts, true)) 3176 return false; 3177 return true; 3178 } 3179 3180 static int selinux_inode_setxattr(struct mnt_idmap *idmap, 3181 struct dentry *dentry, const char *name, 3182 const void *value, size_t size, int flags) 3183 { 3184 struct inode *inode = d_backing_inode(dentry); 3185 struct inode_security_struct *isec; 3186 struct superblock_security_struct *sbsec; 3187 struct common_audit_data ad; 3188 u32 newsid, sid = current_sid(); 3189 int rc = 0; 3190 3191 if (strcmp(name, XATTR_NAME_SELINUX)) { 3192 rc = cap_inode_setxattr(dentry, name, value, size, flags); 3193 if (rc) 3194 return rc; 3195 3196 /* Not an attribute we recognize, so just check the 3197 ordinary setattr permission. */ 3198 return dentry_has_perm(current_cred(), dentry, FILE__SETATTR); 3199 } 3200 3201 if (!selinux_initialized()) 3202 return (inode_owner_or_capable(idmap, inode) ? 0 : -EPERM); 3203 3204 sbsec = selinux_superblock(inode->i_sb); 3205 if (!(sbsec->flags & SBLABEL_MNT)) 3206 return -EOPNOTSUPP; 3207 3208 if (!inode_owner_or_capable(idmap, inode)) 3209 return -EPERM; 3210 3211 ad.type = LSM_AUDIT_DATA_DENTRY; 3212 ad.u.dentry = dentry; 3213 3214 isec = backing_inode_security(dentry); 3215 rc = avc_has_perm(sid, isec->sid, isec->sclass, 3216 FILE__RELABELFROM, &ad); 3217 if (rc) 3218 return rc; 3219 3220 rc = security_context_to_sid(value, size, &newsid, 3221 GFP_KERNEL); 3222 if (rc == -EINVAL) { 3223 if (!has_cap_mac_admin(true)) { 3224 struct audit_buffer *ab; 3225 size_t audit_size; 3226 3227 /* We strip a nul only if it is at the end, otherwise the 3228 * context contains a nul and we should audit that */ 3229 if (value) { 3230 const char *str = value; 3231 3232 if (str[size - 1] == '\0') 3233 audit_size = size - 1; 3234 else 3235 audit_size = size; 3236 } else { 3237 audit_size = 0; 3238 } 3239 ab = audit_log_start(audit_context(), 3240 GFP_ATOMIC, AUDIT_SELINUX_ERR); 3241 if (!ab) 3242 return rc; 3243 audit_log_format(ab, "op=setxattr invalid_context="); 3244 audit_log_n_untrustedstring(ab, value, audit_size); 3245 audit_log_end(ab); 3246 3247 return rc; 3248 } 3249 rc = security_context_to_sid_force(value, 3250 size, &newsid); 3251 } 3252 if (rc) 3253 return rc; 3254 3255 rc = avc_has_perm(sid, newsid, isec->sclass, 3256 FILE__RELABELTO, &ad); 3257 if (rc) 3258 return rc; 3259 3260 rc = security_validate_transition(isec->sid, newsid, 3261 sid, isec->sclass); 3262 if (rc) 3263 return rc; 3264 3265 return avc_has_perm(newsid, 3266 sbsec->sid, 3267 SECCLASS_FILESYSTEM, 3268 FILESYSTEM__ASSOCIATE, 3269 &ad); 3270 } 3271 3272 static int selinux_inode_set_acl(struct mnt_idmap *idmap, 3273 struct dentry *dentry, const char *acl_name, 3274 struct posix_acl *kacl) 3275 { 3276 return dentry_has_perm(current_cred(), dentry, FILE__SETATTR); 3277 } 3278 3279 static int selinux_inode_get_acl(struct mnt_idmap *idmap, 3280 struct dentry *dentry, const char *acl_name) 3281 { 3282 return dentry_has_perm(current_cred(), dentry, FILE__GETATTR); 3283 } 3284 3285 static int selinux_inode_remove_acl(struct mnt_idmap *idmap, 3286 struct dentry *dentry, const char *acl_name) 3287 { 3288 return dentry_has_perm(current_cred(), dentry, FILE__SETATTR); 3289 } 3290 3291 static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name, 3292 const void *value, size_t size, 3293 int flags) 3294 { 3295 struct inode *inode = d_backing_inode(dentry); 3296 struct inode_security_struct *isec; 3297 u32 newsid; 3298 int rc; 3299 3300 if (strcmp(name, XATTR_NAME_SELINUX)) { 3301 /* Not an attribute we recognize, so nothing to do. */ 3302 return; 3303 } 3304 3305 if (!selinux_initialized()) { 3306 /* If we haven't even been initialized, then we can't validate 3307 * against a policy, so leave the label as invalid. It may 3308 * resolve to a valid label on the next revalidation try if 3309 * we've since initialized. 3310 */ 3311 return; 3312 } 3313 3314 rc = security_context_to_sid_force(value, size, 3315 &newsid); 3316 if (rc) { 3317 pr_err("SELinux: unable to map context to SID" 3318 "for (%s, %lu), rc=%d\n", 3319 inode->i_sb->s_id, inode->i_ino, -rc); 3320 return; 3321 } 3322 3323 isec = backing_inode_security(dentry); 3324 spin_lock(&isec->lock); 3325 isec->sclass = inode_mode_to_security_class(inode->i_mode); 3326 isec->sid = newsid; 3327 isec->initialized = LABEL_INITIALIZED; 3328 spin_unlock(&isec->lock); 3329 } 3330 3331 static int selinux_inode_getxattr(struct dentry *dentry, const char *name) 3332 { 3333 const struct cred *cred = current_cred(); 3334 3335 return dentry_has_perm(cred, dentry, FILE__GETATTR); 3336 } 3337 3338 static int selinux_inode_listxattr(struct dentry *dentry) 3339 { 3340 const struct cred *cred = current_cred(); 3341 3342 return dentry_has_perm(cred, dentry, FILE__GETATTR); 3343 } 3344 3345 static int selinux_inode_removexattr(struct mnt_idmap *idmap, 3346 struct dentry *dentry, const char *name) 3347 { 3348 if (strcmp(name, XATTR_NAME_SELINUX)) { 3349 int rc = cap_inode_removexattr(idmap, dentry, name); 3350 if (rc) 3351 return rc; 3352 3353 /* Not an attribute we recognize, so just check the 3354 ordinary setattr permission. */ 3355 return dentry_has_perm(current_cred(), dentry, FILE__SETATTR); 3356 } 3357 3358 if (!selinux_initialized()) 3359 return 0; 3360 3361 /* No one is allowed to remove a SELinux security label. 3362 You can change the label, but all data must be labeled. */ 3363 return -EACCES; 3364 } 3365 3366 static int selinux_path_notify(const struct path *path, u64 mask, 3367 unsigned int obj_type) 3368 { 3369 int ret; 3370 u32 perm; 3371 3372 struct common_audit_data ad; 3373 3374 ad.type = LSM_AUDIT_DATA_PATH; 3375 ad.u.path = *path; 3376 3377 /* 3378 * Set permission needed based on the type of mark being set. 3379 * Performs an additional check for sb watches. 3380 */ 3381 switch (obj_type) { 3382 case FSNOTIFY_OBJ_TYPE_VFSMOUNT: 3383 perm = FILE__WATCH_MOUNT; 3384 break; 3385 case FSNOTIFY_OBJ_TYPE_SB: 3386 perm = FILE__WATCH_SB; 3387 ret = superblock_has_perm(current_cred(), path->dentry->d_sb, 3388 FILESYSTEM__WATCH, &ad); 3389 if (ret) 3390 return ret; 3391 break; 3392 case FSNOTIFY_OBJ_TYPE_INODE: 3393 perm = FILE__WATCH; 3394 break; 3395 default: 3396 return -EINVAL; 3397 } 3398 3399 /* blocking watches require the file:watch_with_perm permission */ 3400 if (mask & (ALL_FSNOTIFY_PERM_EVENTS)) 3401 perm |= FILE__WATCH_WITH_PERM; 3402 3403 /* watches on read-like events need the file:watch_reads permission */ 3404 if (mask & (FS_ACCESS | FS_ACCESS_PERM | FS_CLOSE_NOWRITE)) 3405 perm |= FILE__WATCH_READS; 3406 3407 return path_has_perm(current_cred(), path, perm); 3408 } 3409 3410 /* 3411 * Copy the inode security context value to the user. 3412 * 3413 * Permission check is handled by selinux_inode_getxattr hook. 3414 */ 3415 static int selinux_inode_getsecurity(struct mnt_idmap *idmap, 3416 struct inode *inode, const char *name, 3417 void **buffer, bool alloc) 3418 { 3419 u32 size; 3420 int error; 3421 char *context = NULL; 3422 struct inode_security_struct *isec; 3423 3424 /* 3425 * If we're not initialized yet, then we can't validate contexts, so 3426 * just let vfs_getxattr fall back to using the on-disk xattr. 3427 */ 3428 if (!selinux_initialized() || 3429 strcmp(name, XATTR_SELINUX_SUFFIX)) 3430 return -EOPNOTSUPP; 3431 3432 /* 3433 * If the caller has CAP_MAC_ADMIN, then get the raw context 3434 * value even if it is not defined by current policy; otherwise, 3435 * use the in-core value under current policy. 3436 * Use the non-auditing forms of the permission checks since 3437 * getxattr may be called by unprivileged processes commonly 3438 * and lack of permission just means that we fall back to the 3439 * in-core context value, not a denial. 3440 */ 3441 isec = inode_security(inode); 3442 if (has_cap_mac_admin(false)) 3443 error = security_sid_to_context_force(isec->sid, &context, 3444 &size); 3445 else 3446 error = security_sid_to_context(isec->sid, 3447 &context, &size); 3448 if (error) 3449 return error; 3450 error = size; 3451 if (alloc) { 3452 *buffer = context; 3453 goto out_nofree; 3454 } 3455 kfree(context); 3456 out_nofree: 3457 return error; 3458 } 3459 3460 static int selinux_inode_setsecurity(struct inode *inode, const char *name, 3461 const void *value, size_t size, int flags) 3462 { 3463 struct inode_security_struct *isec = inode_security_novalidate(inode); 3464 struct superblock_security_struct *sbsec; 3465 u32 newsid; 3466 int rc; 3467 3468 if (strcmp(name, XATTR_SELINUX_SUFFIX)) 3469 return -EOPNOTSUPP; 3470 3471 sbsec = selinux_superblock(inode->i_sb); 3472 if (!(sbsec->flags & SBLABEL_MNT)) 3473 return -EOPNOTSUPP; 3474 3475 if (!value || !size) 3476 return -EACCES; 3477 3478 rc = security_context_to_sid(value, size, &newsid, 3479 GFP_KERNEL); 3480 if (rc) 3481 return rc; 3482 3483 spin_lock(&isec->lock); 3484 isec->sclass = inode_mode_to_security_class(inode->i_mode); 3485 isec->sid = newsid; 3486 isec->initialized = LABEL_INITIALIZED; 3487 spin_unlock(&isec->lock); 3488 return 0; 3489 } 3490 3491 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size) 3492 { 3493 const int len = sizeof(XATTR_NAME_SELINUX); 3494 3495 if (!selinux_initialized()) 3496 return 0; 3497 3498 if (buffer && len <= buffer_size) 3499 memcpy(buffer, XATTR_NAME_SELINUX, len); 3500 return len; 3501 } 3502 3503 static void selinux_inode_getsecid(struct inode *inode, u32 *secid) 3504 { 3505 struct inode_security_struct *isec = inode_security_novalidate(inode); 3506 *secid = isec->sid; 3507 } 3508 3509 static int selinux_inode_copy_up(struct dentry *src, struct cred **new) 3510 { 3511 u32 sid; 3512 struct task_security_struct *tsec; 3513 struct cred *new_creds = *new; 3514 3515 if (new_creds == NULL) { 3516 new_creds = prepare_creds(); 3517 if (!new_creds) 3518 return -ENOMEM; 3519 } 3520 3521 tsec = selinux_cred(new_creds); 3522 /* Get label from overlay inode and set it in create_sid */ 3523 selinux_inode_getsecid(d_inode(src), &sid); 3524 tsec->create_sid = sid; 3525 *new = new_creds; 3526 return 0; 3527 } 3528 3529 static int selinux_inode_copy_up_xattr(struct dentry *dentry, const char *name) 3530 { 3531 /* The copy_up hook above sets the initial context on an inode, but we 3532 * don't then want to overwrite it by blindly copying all the lower 3533 * xattrs up. Instead, filter out SELinux-related xattrs following 3534 * policy load. 3535 */ 3536 if (selinux_initialized() && strcmp(name, XATTR_NAME_SELINUX) == 0) 3537 return 1; /* Discard */ 3538 /* 3539 * Any other attribute apart from SELINUX is not claimed, supported 3540 * by selinux. 3541 */ 3542 return -EOPNOTSUPP; 3543 } 3544 3545 /* kernfs node operations */ 3546 3547 static int selinux_kernfs_init_security(struct kernfs_node *kn_dir, 3548 struct kernfs_node *kn) 3549 { 3550 const struct task_security_struct *tsec = selinux_cred(current_cred()); 3551 u32 parent_sid, newsid, clen; 3552 int rc; 3553 char *context; 3554 3555 rc = kernfs_xattr_get(kn_dir, XATTR_NAME_SELINUX, NULL, 0); 3556 if (rc == -ENODATA) 3557 return 0; 3558 else if (rc < 0) 3559 return rc; 3560 3561 clen = (u32)rc; 3562 context = kmalloc(clen, GFP_KERNEL); 3563 if (!context) 3564 return -ENOMEM; 3565 3566 rc = kernfs_xattr_get(kn_dir, XATTR_NAME_SELINUX, context, clen); 3567 if (rc < 0) { 3568 kfree(context); 3569 return rc; 3570 } 3571 3572 rc = security_context_to_sid(context, clen, &parent_sid, 3573 GFP_KERNEL); 3574 kfree(context); 3575 if (rc) 3576 return rc; 3577 3578 if (tsec->create_sid) { 3579 newsid = tsec->create_sid; 3580 } else { 3581 u16 secclass = inode_mode_to_security_class(kn->mode); 3582 struct qstr q; 3583 3584 q.name = kn->name; 3585 q.hash_len = hashlen_string(kn_dir, kn->name); 3586 3587 rc = security_transition_sid(tsec->sid, 3588 parent_sid, secclass, &q, 3589 &newsid); 3590 if (rc) 3591 return rc; 3592 } 3593 3594 rc = security_sid_to_context_force(newsid, 3595 &context, &clen); 3596 if (rc) 3597 return rc; 3598 3599 rc = kernfs_xattr_set(kn, XATTR_NAME_SELINUX, context, clen, 3600 XATTR_CREATE); 3601 kfree(context); 3602 return rc; 3603 } 3604 3605 3606 /* file security operations */ 3607 3608 static int selinux_revalidate_file_permission(struct file *file, int mask) 3609 { 3610 const struct cred *cred = current_cred(); 3611 struct inode *inode = file_inode(file); 3612 3613 /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */ 3614 if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE)) 3615 mask |= MAY_APPEND; 3616 3617 return file_has_perm(cred, file, 3618 file_mask_to_av(inode->i_mode, mask)); 3619 } 3620 3621 static int selinux_file_permission(struct file *file, int mask) 3622 { 3623 struct inode *inode = file_inode(file); 3624 struct file_security_struct *fsec = selinux_file(file); 3625 struct inode_security_struct *isec; 3626 u32 sid = current_sid(); 3627 3628 if (!mask) 3629 /* No permission to check. Existence test. */ 3630 return 0; 3631 3632 isec = inode_security(inode); 3633 if (sid == fsec->sid && fsec->isid == isec->sid && 3634 fsec->pseqno == avc_policy_seqno()) 3635 /* No change since file_open check. */ 3636 return 0; 3637 3638 return selinux_revalidate_file_permission(file, mask); 3639 } 3640 3641 static int selinux_file_alloc_security(struct file *file) 3642 { 3643 struct file_security_struct *fsec = selinux_file(file); 3644 u32 sid = current_sid(); 3645 3646 fsec->sid = sid; 3647 fsec->fown_sid = sid; 3648 3649 return 0; 3650 } 3651 3652 /* 3653 * Check whether a task has the ioctl permission and cmd 3654 * operation to an inode. 3655 */ 3656 static int ioctl_has_perm(const struct cred *cred, struct file *file, 3657 u32 requested, u16 cmd) 3658 { 3659 struct common_audit_data ad; 3660 struct file_security_struct *fsec = selinux_file(file); 3661 struct inode *inode = file_inode(file); 3662 struct inode_security_struct *isec; 3663 struct lsm_ioctlop_audit ioctl; 3664 u32 ssid = cred_sid(cred); 3665 int rc; 3666 u8 driver = cmd >> 8; 3667 u8 xperm = cmd & 0xff; 3668 3669 ad.type = LSM_AUDIT_DATA_IOCTL_OP; 3670 ad.u.op = &ioctl; 3671 ad.u.op->cmd = cmd; 3672 ad.u.op->path = file->f_path; 3673 3674 if (ssid != fsec->sid) { 3675 rc = avc_has_perm(ssid, fsec->sid, 3676 SECCLASS_FD, 3677 FD__USE, 3678 &ad); 3679 if (rc) 3680 goto out; 3681 } 3682 3683 if (unlikely(IS_PRIVATE(inode))) 3684 return 0; 3685 3686 isec = inode_security(inode); 3687 rc = avc_has_extended_perms(ssid, isec->sid, isec->sclass, 3688 requested, driver, xperm, &ad); 3689 out: 3690 return rc; 3691 } 3692 3693 static int selinux_file_ioctl(struct file *file, unsigned int cmd, 3694 unsigned long arg) 3695 { 3696 const struct cred *cred = current_cred(); 3697 int error = 0; 3698 3699 switch (cmd) { 3700 case FIONREAD: 3701 case FIBMAP: 3702 case FIGETBSZ: 3703 case FS_IOC_GETFLAGS: 3704 case FS_IOC_GETVERSION: 3705 error = file_has_perm(cred, file, FILE__GETATTR); 3706 break; 3707 3708 case FS_IOC_SETFLAGS: 3709 case FS_IOC_SETVERSION: 3710 error = file_has_perm(cred, file, FILE__SETATTR); 3711 break; 3712 3713 /* sys_ioctl() checks */ 3714 case FIONBIO: 3715 case FIOASYNC: 3716 error = file_has_perm(cred, file, 0); 3717 break; 3718 3719 case KDSKBENT: 3720 case KDSKBSENT: 3721 error = cred_has_capability(cred, CAP_SYS_TTY_CONFIG, 3722 CAP_OPT_NONE, true); 3723 break; 3724 3725 case FIOCLEX: 3726 case FIONCLEX: 3727 if (!selinux_policycap_ioctl_skip_cloexec()) 3728 error = ioctl_has_perm(cred, file, FILE__IOCTL, (u16) cmd); 3729 break; 3730 3731 /* default case assumes that the command will go 3732 * to the file's ioctl() function. 3733 */ 3734 default: 3735 error = ioctl_has_perm(cred, file, FILE__IOCTL, (u16) cmd); 3736 } 3737 return error; 3738 } 3739 3740 static int selinux_file_ioctl_compat(struct file *file, unsigned int cmd, 3741 unsigned long arg) 3742 { 3743 /* 3744 * If we are in a 64-bit kernel running 32-bit userspace, we need to 3745 * make sure we don't compare 32-bit flags to 64-bit flags. 3746 */ 3747 switch (cmd) { 3748 case FS_IOC32_GETFLAGS: 3749 cmd = FS_IOC_GETFLAGS; 3750 break; 3751 case FS_IOC32_SETFLAGS: 3752 cmd = FS_IOC_SETFLAGS; 3753 break; 3754 case FS_IOC32_GETVERSION: 3755 cmd = FS_IOC_GETVERSION; 3756 break; 3757 case FS_IOC32_SETVERSION: 3758 cmd = FS_IOC_SETVERSION; 3759 break; 3760 default: 3761 break; 3762 } 3763 3764 return selinux_file_ioctl(file, cmd, arg); 3765 } 3766 3767 static int default_noexec __ro_after_init; 3768 3769 static int file_map_prot_check(struct file *file, unsigned long prot, int shared) 3770 { 3771 const struct cred *cred = current_cred(); 3772 u32 sid = cred_sid(cred); 3773 int rc = 0; 3774 3775 if (default_noexec && 3776 (prot & PROT_EXEC) && (!file || IS_PRIVATE(file_inode(file)) || 3777 (!shared && (prot & PROT_WRITE)))) { 3778 /* 3779 * We are making executable an anonymous mapping or a 3780 * private file mapping that will also be writable. 3781 * This has an additional check. 3782 */ 3783 rc = avc_has_perm(sid, sid, SECCLASS_PROCESS, 3784 PROCESS__EXECMEM, NULL); 3785 if (rc) 3786 goto error; 3787 } 3788 3789 if (file) { 3790 /* read access is always possible with a mapping */ 3791 u32 av = FILE__READ; 3792 3793 /* write access only matters if the mapping is shared */ 3794 if (shared && (prot & PROT_WRITE)) 3795 av |= FILE__WRITE; 3796 3797 if (prot & PROT_EXEC) 3798 av |= FILE__EXECUTE; 3799 3800 return file_has_perm(cred, file, av); 3801 } 3802 3803 error: 3804 return rc; 3805 } 3806 3807 static int selinux_mmap_addr(unsigned long addr) 3808 { 3809 int rc = 0; 3810 3811 if (addr < CONFIG_LSM_MMAP_MIN_ADDR) { 3812 u32 sid = current_sid(); 3813 rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT, 3814 MEMPROTECT__MMAP_ZERO, NULL); 3815 } 3816 3817 return rc; 3818 } 3819 3820 static int selinux_mmap_file(struct file *file, 3821 unsigned long reqprot __always_unused, 3822 unsigned long prot, unsigned long flags) 3823 { 3824 struct common_audit_data ad; 3825 int rc; 3826 3827 if (file) { 3828 ad.type = LSM_AUDIT_DATA_FILE; 3829 ad.u.file = file; 3830 rc = inode_has_perm(current_cred(), file_inode(file), 3831 FILE__MAP, &ad); 3832 if (rc) 3833 return rc; 3834 } 3835 3836 return file_map_prot_check(file, prot, 3837 (flags & MAP_TYPE) == MAP_SHARED); 3838 } 3839 3840 static int selinux_file_mprotect(struct vm_area_struct *vma, 3841 unsigned long reqprot __always_unused, 3842 unsigned long prot) 3843 { 3844 const struct cred *cred = current_cred(); 3845 u32 sid = cred_sid(cred); 3846 3847 if (default_noexec && 3848 (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) { 3849 int rc = 0; 3850 if (vma_is_initial_heap(vma)) { 3851 rc = avc_has_perm(sid, sid, SECCLASS_PROCESS, 3852 PROCESS__EXECHEAP, NULL); 3853 } else if (!vma->vm_file && (vma_is_initial_stack(vma) || 3854 vma_is_stack_for_current(vma))) { 3855 rc = avc_has_perm(sid, sid, SECCLASS_PROCESS, 3856 PROCESS__EXECSTACK, NULL); 3857 } else if (vma->vm_file && vma->anon_vma) { 3858 /* 3859 * We are making executable a file mapping that has 3860 * had some COW done. Since pages might have been 3861 * written, check ability to execute the possibly 3862 * modified content. This typically should only 3863 * occur for text relocations. 3864 */ 3865 rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD); 3866 } 3867 if (rc) 3868 return rc; 3869 } 3870 3871 return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED); 3872 } 3873 3874 static int selinux_file_lock(struct file *file, unsigned int cmd) 3875 { 3876 const struct cred *cred = current_cred(); 3877 3878 return file_has_perm(cred, file, FILE__LOCK); 3879 } 3880 3881 static int selinux_file_fcntl(struct file *file, unsigned int cmd, 3882 unsigned long arg) 3883 { 3884 const struct cred *cred = current_cred(); 3885 int err = 0; 3886 3887 switch (cmd) { 3888 case F_SETFL: 3889 if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) { 3890 err = file_has_perm(cred, file, FILE__WRITE); 3891 break; 3892 } 3893 fallthrough; 3894 case F_SETOWN: 3895 case F_SETSIG: 3896 case F_GETFL: 3897 case F_GETOWN: 3898 case F_GETSIG: 3899 case F_GETOWNER_UIDS: 3900 /* Just check FD__USE permission */ 3901 err = file_has_perm(cred, file, 0); 3902 break; 3903 case F_GETLK: 3904 case F_SETLK: 3905 case F_SETLKW: 3906 case F_OFD_GETLK: 3907 case F_OFD_SETLK: 3908 case F_OFD_SETLKW: 3909 #if BITS_PER_LONG == 32 3910 case F_GETLK64: 3911 case F_SETLK64: 3912 case F_SETLKW64: 3913 #endif 3914 err = file_has_perm(cred, file, FILE__LOCK); 3915 break; 3916 } 3917 3918 return err; 3919 } 3920 3921 static void selinux_file_set_fowner(struct file *file) 3922 { 3923 struct file_security_struct *fsec; 3924 3925 fsec = selinux_file(file); 3926 fsec->fown_sid = current_sid(); 3927 } 3928 3929 static int selinux_file_send_sigiotask(struct task_struct *tsk, 3930 struct fown_struct *fown, int signum) 3931 { 3932 struct file *file; 3933 u32 sid = task_sid_obj(tsk); 3934 u32 perm; 3935 struct file_security_struct *fsec; 3936 3937 /* struct fown_struct is never outside the context of a struct file */ 3938 file = container_of(fown, struct file, f_owner); 3939 3940 fsec = selinux_file(file); 3941 3942 if (!signum) 3943 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */ 3944 else 3945 perm = signal_to_av(signum); 3946 3947 return avc_has_perm(fsec->fown_sid, sid, 3948 SECCLASS_PROCESS, perm, NULL); 3949 } 3950 3951 static int selinux_file_receive(struct file *file) 3952 { 3953 const struct cred *cred = current_cred(); 3954 3955 return file_has_perm(cred, file, file_to_av(file)); 3956 } 3957 3958 static int selinux_file_open(struct file *file) 3959 { 3960 struct file_security_struct *fsec; 3961 struct inode_security_struct *isec; 3962 3963 fsec = selinux_file(file); 3964 isec = inode_security(file_inode(file)); 3965 /* 3966 * Save inode label and policy sequence number 3967 * at open-time so that selinux_file_permission 3968 * can determine whether revalidation is necessary. 3969 * Task label is already saved in the file security 3970 * struct as its SID. 3971 */ 3972 fsec->isid = isec->sid; 3973 fsec->pseqno = avc_policy_seqno(); 3974 /* 3975 * Since the inode label or policy seqno may have changed 3976 * between the selinux_inode_permission check and the saving 3977 * of state above, recheck that access is still permitted. 3978 * Otherwise, access might never be revalidated against the 3979 * new inode label or new policy. 3980 * This check is not redundant - do not remove. 3981 */ 3982 return file_path_has_perm(file->f_cred, file, open_file_to_av(file)); 3983 } 3984 3985 /* task security operations */ 3986 3987 static int selinux_task_alloc(struct task_struct *task, 3988 unsigned long clone_flags) 3989 { 3990 u32 sid = current_sid(); 3991 3992 return avc_has_perm(sid, sid, SECCLASS_PROCESS, PROCESS__FORK, NULL); 3993 } 3994 3995 /* 3996 * prepare a new set of credentials for modification 3997 */ 3998 static int selinux_cred_prepare(struct cred *new, const struct cred *old, 3999 gfp_t gfp) 4000 { 4001 const struct task_security_struct *old_tsec = selinux_cred(old); 4002 struct task_security_struct *tsec = selinux_cred(new); 4003 4004 *tsec = *old_tsec; 4005 return 0; 4006 } 4007 4008 /* 4009 * transfer the SELinux data to a blank set of creds 4010 */ 4011 static void selinux_cred_transfer(struct cred *new, const struct cred *old) 4012 { 4013 const struct task_security_struct *old_tsec = selinux_cred(old); 4014 struct task_security_struct *tsec = selinux_cred(new); 4015 4016 *tsec = *old_tsec; 4017 } 4018 4019 static void selinux_cred_getsecid(const struct cred *c, u32 *secid) 4020 { 4021 *secid = cred_sid(c); 4022 } 4023 4024 /* 4025 * set the security data for a kernel service 4026 * - all the creation contexts are set to unlabelled 4027 */ 4028 static int selinux_kernel_act_as(struct cred *new, u32 secid) 4029 { 4030 struct task_security_struct *tsec = selinux_cred(new); 4031 u32 sid = current_sid(); 4032 int ret; 4033 4034 ret = avc_has_perm(sid, secid, 4035 SECCLASS_KERNEL_SERVICE, 4036 KERNEL_SERVICE__USE_AS_OVERRIDE, 4037 NULL); 4038 if (ret == 0) { 4039 tsec->sid = secid; 4040 tsec->create_sid = 0; 4041 tsec->keycreate_sid = 0; 4042 tsec->sockcreate_sid = 0; 4043 } 4044 return ret; 4045 } 4046 4047 /* 4048 * set the file creation context in a security record to the same as the 4049 * objective context of the specified inode 4050 */ 4051 static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode) 4052 { 4053 struct inode_security_struct *isec = inode_security(inode); 4054 struct task_security_struct *tsec = selinux_cred(new); 4055 u32 sid = current_sid(); 4056 int ret; 4057 4058 ret = avc_has_perm(sid, isec->sid, 4059 SECCLASS_KERNEL_SERVICE, 4060 KERNEL_SERVICE__CREATE_FILES_AS, 4061 NULL); 4062 4063 if (ret == 0) 4064 tsec->create_sid = isec->sid; 4065 return ret; 4066 } 4067 4068 static int selinux_kernel_module_request(char *kmod_name) 4069 { 4070 struct common_audit_data ad; 4071 4072 ad.type = LSM_AUDIT_DATA_KMOD; 4073 ad.u.kmod_name = kmod_name; 4074 4075 return avc_has_perm(current_sid(), SECINITSID_KERNEL, SECCLASS_SYSTEM, 4076 SYSTEM__MODULE_REQUEST, &ad); 4077 } 4078 4079 static int selinux_kernel_module_from_file(struct file *file) 4080 { 4081 struct common_audit_data ad; 4082 struct inode_security_struct *isec; 4083 struct file_security_struct *fsec; 4084 u32 sid = current_sid(); 4085 int rc; 4086 4087 /* init_module */ 4088 if (file == NULL) 4089 return avc_has_perm(sid, sid, SECCLASS_SYSTEM, 4090 SYSTEM__MODULE_LOAD, NULL); 4091 4092 /* finit_module */ 4093 4094 ad.type = LSM_AUDIT_DATA_FILE; 4095 ad.u.file = file; 4096 4097 fsec = selinux_file(file); 4098 if (sid != fsec->sid) { 4099 rc = avc_has_perm(sid, fsec->sid, SECCLASS_FD, FD__USE, &ad); 4100 if (rc) 4101 return rc; 4102 } 4103 4104 isec = inode_security(file_inode(file)); 4105 return avc_has_perm(sid, isec->sid, SECCLASS_SYSTEM, 4106 SYSTEM__MODULE_LOAD, &ad); 4107 } 4108 4109 static int selinux_kernel_read_file(struct file *file, 4110 enum kernel_read_file_id id, 4111 bool contents) 4112 { 4113 int rc = 0; 4114 4115 switch (id) { 4116 case READING_MODULE: 4117 rc = selinux_kernel_module_from_file(contents ? file : NULL); 4118 break; 4119 default: 4120 break; 4121 } 4122 4123 return rc; 4124 } 4125 4126 static int selinux_kernel_load_data(enum kernel_load_data_id id, bool contents) 4127 { 4128 int rc = 0; 4129 4130 switch (id) { 4131 case LOADING_MODULE: 4132 rc = selinux_kernel_module_from_file(NULL); 4133 break; 4134 default: 4135 break; 4136 } 4137 4138 return rc; 4139 } 4140 4141 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid) 4142 { 4143 return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS, 4144 PROCESS__SETPGID, NULL); 4145 } 4146 4147 static int selinux_task_getpgid(struct task_struct *p) 4148 { 4149 return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS, 4150 PROCESS__GETPGID, NULL); 4151 } 4152 4153 static int selinux_task_getsid(struct task_struct *p) 4154 { 4155 return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS, 4156 PROCESS__GETSESSION, NULL); 4157 } 4158 4159 static void selinux_current_getsecid_subj(u32 *secid) 4160 { 4161 *secid = current_sid(); 4162 } 4163 4164 static void selinux_task_getsecid_obj(struct task_struct *p, u32 *secid) 4165 { 4166 *secid = task_sid_obj(p); 4167 } 4168 4169 static int selinux_task_setnice(struct task_struct *p, int nice) 4170 { 4171 return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS, 4172 PROCESS__SETSCHED, NULL); 4173 } 4174 4175 static int selinux_task_setioprio(struct task_struct *p, int ioprio) 4176 { 4177 return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS, 4178 PROCESS__SETSCHED, NULL); 4179 } 4180 4181 static int selinux_task_getioprio(struct task_struct *p) 4182 { 4183 return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS, 4184 PROCESS__GETSCHED, NULL); 4185 } 4186 4187 static int selinux_task_prlimit(const struct cred *cred, const struct cred *tcred, 4188 unsigned int flags) 4189 { 4190 u32 av = 0; 4191 4192 if (!flags) 4193 return 0; 4194 if (flags & LSM_PRLIMIT_WRITE) 4195 av |= PROCESS__SETRLIMIT; 4196 if (flags & LSM_PRLIMIT_READ) 4197 av |= PROCESS__GETRLIMIT; 4198 return avc_has_perm(cred_sid(cred), cred_sid(tcred), 4199 SECCLASS_PROCESS, av, NULL); 4200 } 4201 4202 static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource, 4203 struct rlimit *new_rlim) 4204 { 4205 struct rlimit *old_rlim = p->signal->rlim + resource; 4206 4207 /* Control the ability to change the hard limit (whether 4208 lowering or raising it), so that the hard limit can 4209 later be used as a safe reset point for the soft limit 4210 upon context transitions. See selinux_bprm_committing_creds. */ 4211 if (old_rlim->rlim_max != new_rlim->rlim_max) 4212 return avc_has_perm(current_sid(), task_sid_obj(p), 4213 SECCLASS_PROCESS, PROCESS__SETRLIMIT, NULL); 4214 4215 return 0; 4216 } 4217 4218 static int selinux_task_setscheduler(struct task_struct *p) 4219 { 4220 return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS, 4221 PROCESS__SETSCHED, NULL); 4222 } 4223 4224 static int selinux_task_getscheduler(struct task_struct *p) 4225 { 4226 return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS, 4227 PROCESS__GETSCHED, NULL); 4228 } 4229 4230 static int selinux_task_movememory(struct task_struct *p) 4231 { 4232 return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS, 4233 PROCESS__SETSCHED, NULL); 4234 } 4235 4236 static int selinux_task_kill(struct task_struct *p, struct kernel_siginfo *info, 4237 int sig, const struct cred *cred) 4238 { 4239 u32 secid; 4240 u32 perm; 4241 4242 if (!sig) 4243 perm = PROCESS__SIGNULL; /* null signal; existence test */ 4244 else 4245 perm = signal_to_av(sig); 4246 if (!cred) 4247 secid = current_sid(); 4248 else 4249 secid = cred_sid(cred); 4250 return avc_has_perm(secid, task_sid_obj(p), SECCLASS_PROCESS, perm, NULL); 4251 } 4252 4253 static void selinux_task_to_inode(struct task_struct *p, 4254 struct inode *inode) 4255 { 4256 struct inode_security_struct *isec = selinux_inode(inode); 4257 u32 sid = task_sid_obj(p); 4258 4259 spin_lock(&isec->lock); 4260 isec->sclass = inode_mode_to_security_class(inode->i_mode); 4261 isec->sid = sid; 4262 isec->initialized = LABEL_INITIALIZED; 4263 spin_unlock(&isec->lock); 4264 } 4265 4266 static int selinux_userns_create(const struct cred *cred) 4267 { 4268 u32 sid = current_sid(); 4269 4270 return avc_has_perm(sid, sid, SECCLASS_USER_NAMESPACE, 4271 USER_NAMESPACE__CREATE, NULL); 4272 } 4273 4274 /* Returns error only if unable to parse addresses */ 4275 static int selinux_parse_skb_ipv4(struct sk_buff *skb, 4276 struct common_audit_data *ad, u8 *proto) 4277 { 4278 int offset, ihlen, ret = -EINVAL; 4279 struct iphdr _iph, *ih; 4280 4281 offset = skb_network_offset(skb); 4282 ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph); 4283 if (ih == NULL) 4284 goto out; 4285 4286 ihlen = ih->ihl * 4; 4287 if (ihlen < sizeof(_iph)) 4288 goto out; 4289 4290 ad->u.net->v4info.saddr = ih->saddr; 4291 ad->u.net->v4info.daddr = ih->daddr; 4292 ret = 0; 4293 4294 if (proto) 4295 *proto = ih->protocol; 4296 4297 switch (ih->protocol) { 4298 case IPPROTO_TCP: { 4299 struct tcphdr _tcph, *th; 4300 4301 if (ntohs(ih->frag_off) & IP_OFFSET) 4302 break; 4303 4304 offset += ihlen; 4305 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph); 4306 if (th == NULL) 4307 break; 4308 4309 ad->u.net->sport = th->source; 4310 ad->u.net->dport = th->dest; 4311 break; 4312 } 4313 4314 case IPPROTO_UDP: { 4315 struct udphdr _udph, *uh; 4316 4317 if (ntohs(ih->frag_off) & IP_OFFSET) 4318 break; 4319 4320 offset += ihlen; 4321 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph); 4322 if (uh == NULL) 4323 break; 4324 4325 ad->u.net->sport = uh->source; 4326 ad->u.net->dport = uh->dest; 4327 break; 4328 } 4329 4330 case IPPROTO_DCCP: { 4331 struct dccp_hdr _dccph, *dh; 4332 4333 if (ntohs(ih->frag_off) & IP_OFFSET) 4334 break; 4335 4336 offset += ihlen; 4337 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph); 4338 if (dh == NULL) 4339 break; 4340 4341 ad->u.net->sport = dh->dccph_sport; 4342 ad->u.net->dport = dh->dccph_dport; 4343 break; 4344 } 4345 4346 #if IS_ENABLED(CONFIG_IP_SCTP) 4347 case IPPROTO_SCTP: { 4348 struct sctphdr _sctph, *sh; 4349 4350 if (ntohs(ih->frag_off) & IP_OFFSET) 4351 break; 4352 4353 offset += ihlen; 4354 sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph); 4355 if (sh == NULL) 4356 break; 4357 4358 ad->u.net->sport = sh->source; 4359 ad->u.net->dport = sh->dest; 4360 break; 4361 } 4362 #endif 4363 default: 4364 break; 4365 } 4366 out: 4367 return ret; 4368 } 4369 4370 #if IS_ENABLED(CONFIG_IPV6) 4371 4372 /* Returns error only if unable to parse addresses */ 4373 static int selinux_parse_skb_ipv6(struct sk_buff *skb, 4374 struct common_audit_data *ad, u8 *proto) 4375 { 4376 u8 nexthdr; 4377 int ret = -EINVAL, offset; 4378 struct ipv6hdr _ipv6h, *ip6; 4379 __be16 frag_off; 4380 4381 offset = skb_network_offset(skb); 4382 ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h); 4383 if (ip6 == NULL) 4384 goto out; 4385 4386 ad->u.net->v6info.saddr = ip6->saddr; 4387 ad->u.net->v6info.daddr = ip6->daddr; 4388 ret = 0; 4389 4390 nexthdr = ip6->nexthdr; 4391 offset += sizeof(_ipv6h); 4392 offset = ipv6_skip_exthdr(skb, offset, &nexthdr, &frag_off); 4393 if (offset < 0) 4394 goto out; 4395 4396 if (proto) 4397 *proto = nexthdr; 4398 4399 switch (nexthdr) { 4400 case IPPROTO_TCP: { 4401 struct tcphdr _tcph, *th; 4402 4403 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph); 4404 if (th == NULL) 4405 break; 4406 4407 ad->u.net->sport = th->source; 4408 ad->u.net->dport = th->dest; 4409 break; 4410 } 4411 4412 case IPPROTO_UDP: { 4413 struct udphdr _udph, *uh; 4414 4415 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph); 4416 if (uh == NULL) 4417 break; 4418 4419 ad->u.net->sport = uh->source; 4420 ad->u.net->dport = uh->dest; 4421 break; 4422 } 4423 4424 case IPPROTO_DCCP: { 4425 struct dccp_hdr _dccph, *dh; 4426 4427 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph); 4428 if (dh == NULL) 4429 break; 4430 4431 ad->u.net->sport = dh->dccph_sport; 4432 ad->u.net->dport = dh->dccph_dport; 4433 break; 4434 } 4435 4436 #if IS_ENABLED(CONFIG_IP_SCTP) 4437 case IPPROTO_SCTP: { 4438 struct sctphdr _sctph, *sh; 4439 4440 sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph); 4441 if (sh == NULL) 4442 break; 4443 4444 ad->u.net->sport = sh->source; 4445 ad->u.net->dport = sh->dest; 4446 break; 4447 } 4448 #endif 4449 /* includes fragments */ 4450 default: 4451 break; 4452 } 4453 out: 4454 return ret; 4455 } 4456 4457 #endif /* IPV6 */ 4458 4459 static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad, 4460 char **_addrp, int src, u8 *proto) 4461 { 4462 char *addrp; 4463 int ret; 4464 4465 switch (ad->u.net->family) { 4466 case PF_INET: 4467 ret = selinux_parse_skb_ipv4(skb, ad, proto); 4468 if (ret) 4469 goto parse_error; 4470 addrp = (char *)(src ? &ad->u.net->v4info.saddr : 4471 &ad->u.net->v4info.daddr); 4472 goto okay; 4473 4474 #if IS_ENABLED(CONFIG_IPV6) 4475 case PF_INET6: 4476 ret = selinux_parse_skb_ipv6(skb, ad, proto); 4477 if (ret) 4478 goto parse_error; 4479 addrp = (char *)(src ? &ad->u.net->v6info.saddr : 4480 &ad->u.net->v6info.daddr); 4481 goto okay; 4482 #endif /* IPV6 */ 4483 default: 4484 addrp = NULL; 4485 goto okay; 4486 } 4487 4488 parse_error: 4489 pr_warn( 4490 "SELinux: failure in selinux_parse_skb()," 4491 " unable to parse packet\n"); 4492 return ret; 4493 4494 okay: 4495 if (_addrp) 4496 *_addrp = addrp; 4497 return 0; 4498 } 4499 4500 /** 4501 * selinux_skb_peerlbl_sid - Determine the peer label of a packet 4502 * @skb: the packet 4503 * @family: protocol family 4504 * @sid: the packet's peer label SID 4505 * 4506 * Description: 4507 * Check the various different forms of network peer labeling and determine 4508 * the peer label/SID for the packet; most of the magic actually occurs in 4509 * the security server function security_net_peersid_cmp(). The function 4510 * returns zero if the value in @sid is valid (although it may be SECSID_NULL) 4511 * or -EACCES if @sid is invalid due to inconsistencies with the different 4512 * peer labels. 4513 * 4514 */ 4515 static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid) 4516 { 4517 int err; 4518 u32 xfrm_sid; 4519 u32 nlbl_sid; 4520 u32 nlbl_type; 4521 4522 err = selinux_xfrm_skb_sid(skb, &xfrm_sid); 4523 if (unlikely(err)) 4524 return -EACCES; 4525 err = selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid); 4526 if (unlikely(err)) 4527 return -EACCES; 4528 4529 err = security_net_peersid_resolve(nlbl_sid, 4530 nlbl_type, xfrm_sid, sid); 4531 if (unlikely(err)) { 4532 pr_warn( 4533 "SELinux: failure in selinux_skb_peerlbl_sid()," 4534 " unable to determine packet's peer label\n"); 4535 return -EACCES; 4536 } 4537 4538 return 0; 4539 } 4540 4541 /** 4542 * selinux_conn_sid - Determine the child socket label for a connection 4543 * @sk_sid: the parent socket's SID 4544 * @skb_sid: the packet's SID 4545 * @conn_sid: the resulting connection SID 4546 * 4547 * If @skb_sid is valid then the user:role:type information from @sk_sid is 4548 * combined with the MLS information from @skb_sid in order to create 4549 * @conn_sid. If @skb_sid is not valid then @conn_sid is simply a copy 4550 * of @sk_sid. Returns zero on success, negative values on failure. 4551 * 4552 */ 4553 static int selinux_conn_sid(u32 sk_sid, u32 skb_sid, u32 *conn_sid) 4554 { 4555 int err = 0; 4556 4557 if (skb_sid != SECSID_NULL) 4558 err = security_sid_mls_copy(sk_sid, skb_sid, 4559 conn_sid); 4560 else 4561 *conn_sid = sk_sid; 4562 4563 return err; 4564 } 4565 4566 /* socket security operations */ 4567 4568 static int socket_sockcreate_sid(const struct task_security_struct *tsec, 4569 u16 secclass, u32 *socksid) 4570 { 4571 if (tsec->sockcreate_sid > SECSID_NULL) { 4572 *socksid = tsec->sockcreate_sid; 4573 return 0; 4574 } 4575 4576 return security_transition_sid(tsec->sid, tsec->sid, 4577 secclass, NULL, socksid); 4578 } 4579 4580 static int sock_has_perm(struct sock *sk, u32 perms) 4581 { 4582 struct sk_security_struct *sksec = sk->sk_security; 4583 struct common_audit_data ad; 4584 struct lsm_network_audit net; 4585 4586 if (sksec->sid == SECINITSID_KERNEL) 4587 return 0; 4588 4589 /* 4590 * Before POLICYDB_CAP_USERSPACE_INITIAL_CONTEXT, sockets that 4591 * inherited the kernel context from early boot used to be skipped 4592 * here, so preserve that behavior unless the capability is set. 4593 * 4594 * By setting the capability the policy signals that it is ready 4595 * for this quirk to be fixed. Note that sockets created by a kernel 4596 * thread or a usermode helper executed without a transition will 4597 * still be skipped in this check regardless of the policycap 4598 * setting. 4599 */ 4600 if (!selinux_policycap_userspace_initial_context() && 4601 sksec->sid == SECINITSID_INIT) 4602 return 0; 4603 4604 ad_net_init_from_sk(&ad, &net, sk); 4605 4606 return avc_has_perm(current_sid(), sksec->sid, sksec->sclass, perms, 4607 &ad); 4608 } 4609 4610 static int selinux_socket_create(int family, int type, 4611 int protocol, int kern) 4612 { 4613 const struct task_security_struct *tsec = selinux_cred(current_cred()); 4614 u32 newsid; 4615 u16 secclass; 4616 int rc; 4617 4618 if (kern) 4619 return 0; 4620 4621 secclass = socket_type_to_security_class(family, type, protocol); 4622 rc = socket_sockcreate_sid(tsec, secclass, &newsid); 4623 if (rc) 4624 return rc; 4625 4626 return avc_has_perm(tsec->sid, newsid, secclass, SOCKET__CREATE, NULL); 4627 } 4628 4629 static int selinux_socket_post_create(struct socket *sock, int family, 4630 int type, int protocol, int kern) 4631 { 4632 const struct task_security_struct *tsec = selinux_cred(current_cred()); 4633 struct inode_security_struct *isec = inode_security_novalidate(SOCK_INODE(sock)); 4634 struct sk_security_struct *sksec; 4635 u16 sclass = socket_type_to_security_class(family, type, protocol); 4636 u32 sid = SECINITSID_KERNEL; 4637 int err = 0; 4638 4639 if (!kern) { 4640 err = socket_sockcreate_sid(tsec, sclass, &sid); 4641 if (err) 4642 return err; 4643 } 4644 4645 isec->sclass = sclass; 4646 isec->sid = sid; 4647 isec->initialized = LABEL_INITIALIZED; 4648 4649 if (sock->sk) { 4650 sksec = sock->sk->sk_security; 4651 sksec->sclass = sclass; 4652 sksec->sid = sid; 4653 /* Allows detection of the first association on this socket */ 4654 if (sksec->sclass == SECCLASS_SCTP_SOCKET) 4655 sksec->sctp_assoc_state = SCTP_ASSOC_UNSET; 4656 4657 err = selinux_netlbl_socket_post_create(sock->sk, family); 4658 } 4659 4660 return err; 4661 } 4662 4663 static int selinux_socket_socketpair(struct socket *socka, 4664 struct socket *sockb) 4665 { 4666 struct sk_security_struct *sksec_a = socka->sk->sk_security; 4667 struct sk_security_struct *sksec_b = sockb->sk->sk_security; 4668 4669 sksec_a->peer_sid = sksec_b->sid; 4670 sksec_b->peer_sid = sksec_a->sid; 4671 4672 return 0; 4673 } 4674 4675 /* Range of port numbers used to automatically bind. 4676 Need to determine whether we should perform a name_bind 4677 permission check between the socket and the port number. */ 4678 4679 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen) 4680 { 4681 struct sock *sk = sock->sk; 4682 struct sk_security_struct *sksec = sk->sk_security; 4683 u16 family; 4684 int err; 4685 4686 err = sock_has_perm(sk, SOCKET__BIND); 4687 if (err) 4688 goto out; 4689 4690 /* If PF_INET or PF_INET6, check name_bind permission for the port. */ 4691 family = sk->sk_family; 4692 if (family == PF_INET || family == PF_INET6) { 4693 char *addrp; 4694 struct common_audit_data ad; 4695 struct lsm_network_audit net = {0,}; 4696 struct sockaddr_in *addr4 = NULL; 4697 struct sockaddr_in6 *addr6 = NULL; 4698 u16 family_sa; 4699 unsigned short snum; 4700 u32 sid, node_perm; 4701 4702 /* 4703 * sctp_bindx(3) calls via selinux_sctp_bind_connect() 4704 * that validates multiple binding addresses. Because of this 4705 * need to check address->sa_family as it is possible to have 4706 * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET. 4707 */ 4708 if (addrlen < offsetofend(struct sockaddr, sa_family)) 4709 return -EINVAL; 4710 family_sa = address->sa_family; 4711 switch (family_sa) { 4712 case AF_UNSPEC: 4713 case AF_INET: 4714 if (addrlen < sizeof(struct sockaddr_in)) 4715 return -EINVAL; 4716 addr4 = (struct sockaddr_in *)address; 4717 if (family_sa == AF_UNSPEC) { 4718 if (family == PF_INET6) { 4719 /* Length check from inet6_bind_sk() */ 4720 if (addrlen < SIN6_LEN_RFC2133) 4721 return -EINVAL; 4722 /* Family check from __inet6_bind() */ 4723 goto err_af; 4724 } 4725 /* see __inet_bind(), we only want to allow 4726 * AF_UNSPEC if the address is INADDR_ANY 4727 */ 4728 if (addr4->sin_addr.s_addr != htonl(INADDR_ANY)) 4729 goto err_af; 4730 family_sa = AF_INET; 4731 } 4732 snum = ntohs(addr4->sin_port); 4733 addrp = (char *)&addr4->sin_addr.s_addr; 4734 break; 4735 case AF_INET6: 4736 if (addrlen < SIN6_LEN_RFC2133) 4737 return -EINVAL; 4738 addr6 = (struct sockaddr_in6 *)address; 4739 snum = ntohs(addr6->sin6_port); 4740 addrp = (char *)&addr6->sin6_addr.s6_addr; 4741 break; 4742 default: 4743 goto err_af; 4744 } 4745 4746 ad.type = LSM_AUDIT_DATA_NET; 4747 ad.u.net = &net; 4748 ad.u.net->sport = htons(snum); 4749 ad.u.net->family = family_sa; 4750 4751 if (snum) { 4752 int low, high; 4753 4754 inet_get_local_port_range(sock_net(sk), &low, &high); 4755 4756 if (inet_port_requires_bind_service(sock_net(sk), snum) || 4757 snum < low || snum > high) { 4758 err = sel_netport_sid(sk->sk_protocol, 4759 snum, &sid); 4760 if (err) 4761 goto out; 4762 err = avc_has_perm(sksec->sid, sid, 4763 sksec->sclass, 4764 SOCKET__NAME_BIND, &ad); 4765 if (err) 4766 goto out; 4767 } 4768 } 4769 4770 switch (sksec->sclass) { 4771 case SECCLASS_TCP_SOCKET: 4772 node_perm = TCP_SOCKET__NODE_BIND; 4773 break; 4774 4775 case SECCLASS_UDP_SOCKET: 4776 node_perm = UDP_SOCKET__NODE_BIND; 4777 break; 4778 4779 case SECCLASS_DCCP_SOCKET: 4780 node_perm = DCCP_SOCKET__NODE_BIND; 4781 break; 4782 4783 case SECCLASS_SCTP_SOCKET: 4784 node_perm = SCTP_SOCKET__NODE_BIND; 4785 break; 4786 4787 default: 4788 node_perm = RAWIP_SOCKET__NODE_BIND; 4789 break; 4790 } 4791 4792 err = sel_netnode_sid(addrp, family_sa, &sid); 4793 if (err) 4794 goto out; 4795 4796 if (family_sa == AF_INET) 4797 ad.u.net->v4info.saddr = addr4->sin_addr.s_addr; 4798 else 4799 ad.u.net->v6info.saddr = addr6->sin6_addr; 4800 4801 err = avc_has_perm(sksec->sid, sid, 4802 sksec->sclass, node_perm, &ad); 4803 if (err) 4804 goto out; 4805 } 4806 out: 4807 return err; 4808 err_af: 4809 /* Note that SCTP services expect -EINVAL, others -EAFNOSUPPORT. */ 4810 if (sksec->sclass == SECCLASS_SCTP_SOCKET) 4811 return -EINVAL; 4812 return -EAFNOSUPPORT; 4813 } 4814 4815 /* This supports connect(2) and SCTP connect services such as sctp_connectx(3) 4816 * and sctp_sendmsg(3) as described in Documentation/security/SCTP.rst 4817 */ 4818 static int selinux_socket_connect_helper(struct socket *sock, 4819 struct sockaddr *address, int addrlen) 4820 { 4821 struct sock *sk = sock->sk; 4822 struct sk_security_struct *sksec = sk->sk_security; 4823 int err; 4824 4825 err = sock_has_perm(sk, SOCKET__CONNECT); 4826 if (err) 4827 return err; 4828 if (addrlen < offsetofend(struct sockaddr, sa_family)) 4829 return -EINVAL; 4830 4831 /* connect(AF_UNSPEC) has special handling, as it is a documented 4832 * way to disconnect the socket 4833 */ 4834 if (address->sa_family == AF_UNSPEC) 4835 return 0; 4836 4837 /* 4838 * If a TCP, DCCP or SCTP socket, check name_connect permission 4839 * for the port. 4840 */ 4841 if (sksec->sclass == SECCLASS_TCP_SOCKET || 4842 sksec->sclass == SECCLASS_DCCP_SOCKET || 4843 sksec->sclass == SECCLASS_SCTP_SOCKET) { 4844 struct common_audit_data ad; 4845 struct lsm_network_audit net = {0,}; 4846 struct sockaddr_in *addr4 = NULL; 4847 struct sockaddr_in6 *addr6 = NULL; 4848 unsigned short snum; 4849 u32 sid, perm; 4850 4851 /* sctp_connectx(3) calls via selinux_sctp_bind_connect() 4852 * that validates multiple connect addresses. Because of this 4853 * need to check address->sa_family as it is possible to have 4854 * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET. 4855 */ 4856 switch (address->sa_family) { 4857 case AF_INET: 4858 addr4 = (struct sockaddr_in *)address; 4859 if (addrlen < sizeof(struct sockaddr_in)) 4860 return -EINVAL; 4861 snum = ntohs(addr4->sin_port); 4862 break; 4863 case AF_INET6: 4864 addr6 = (struct sockaddr_in6 *)address; 4865 if (addrlen < SIN6_LEN_RFC2133) 4866 return -EINVAL; 4867 snum = ntohs(addr6->sin6_port); 4868 break; 4869 default: 4870 /* Note that SCTP services expect -EINVAL, whereas 4871 * others expect -EAFNOSUPPORT. 4872 */ 4873 if (sksec->sclass == SECCLASS_SCTP_SOCKET) 4874 return -EINVAL; 4875 else 4876 return -EAFNOSUPPORT; 4877 } 4878 4879 err = sel_netport_sid(sk->sk_protocol, snum, &sid); 4880 if (err) 4881 return err; 4882 4883 switch (sksec->sclass) { 4884 case SECCLASS_TCP_SOCKET: 4885 perm = TCP_SOCKET__NAME_CONNECT; 4886 break; 4887 case SECCLASS_DCCP_SOCKET: 4888 perm = DCCP_SOCKET__NAME_CONNECT; 4889 break; 4890 case SECCLASS_SCTP_SOCKET: 4891 perm = SCTP_SOCKET__NAME_CONNECT; 4892 break; 4893 } 4894 4895 ad.type = LSM_AUDIT_DATA_NET; 4896 ad.u.net = &net; 4897 ad.u.net->dport = htons(snum); 4898 ad.u.net->family = address->sa_family; 4899 err = avc_has_perm(sksec->sid, sid, sksec->sclass, perm, &ad); 4900 if (err) 4901 return err; 4902 } 4903 4904 return 0; 4905 } 4906 4907 /* Supports connect(2), see comments in selinux_socket_connect_helper() */ 4908 static int selinux_socket_connect(struct socket *sock, 4909 struct sockaddr *address, int addrlen) 4910 { 4911 int err; 4912 struct sock *sk = sock->sk; 4913 4914 err = selinux_socket_connect_helper(sock, address, addrlen); 4915 if (err) 4916 return err; 4917 4918 return selinux_netlbl_socket_connect(sk, address); 4919 } 4920 4921 static int selinux_socket_listen(struct socket *sock, int backlog) 4922 { 4923 return sock_has_perm(sock->sk, SOCKET__LISTEN); 4924 } 4925 4926 static int selinux_socket_accept(struct socket *sock, struct socket *newsock) 4927 { 4928 int err; 4929 struct inode_security_struct *isec; 4930 struct inode_security_struct *newisec; 4931 u16 sclass; 4932 u32 sid; 4933 4934 err = sock_has_perm(sock->sk, SOCKET__ACCEPT); 4935 if (err) 4936 return err; 4937 4938 isec = inode_security_novalidate(SOCK_INODE(sock)); 4939 spin_lock(&isec->lock); 4940 sclass = isec->sclass; 4941 sid = isec->sid; 4942 spin_unlock(&isec->lock); 4943 4944 newisec = inode_security_novalidate(SOCK_INODE(newsock)); 4945 newisec->sclass = sclass; 4946 newisec->sid = sid; 4947 newisec->initialized = LABEL_INITIALIZED; 4948 4949 return 0; 4950 } 4951 4952 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg, 4953 int size) 4954 { 4955 return sock_has_perm(sock->sk, SOCKET__WRITE); 4956 } 4957 4958 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg, 4959 int size, int flags) 4960 { 4961 return sock_has_perm(sock->sk, SOCKET__READ); 4962 } 4963 4964 static int selinux_socket_getsockname(struct socket *sock) 4965 { 4966 return sock_has_perm(sock->sk, SOCKET__GETATTR); 4967 } 4968 4969 static int selinux_socket_getpeername(struct socket *sock) 4970 { 4971 return sock_has_perm(sock->sk, SOCKET__GETATTR); 4972 } 4973 4974 static int selinux_socket_setsockopt(struct socket *sock, int level, int optname) 4975 { 4976 int err; 4977 4978 err = sock_has_perm(sock->sk, SOCKET__SETOPT); 4979 if (err) 4980 return err; 4981 4982 return selinux_netlbl_socket_setsockopt(sock, level, optname); 4983 } 4984 4985 static int selinux_socket_getsockopt(struct socket *sock, int level, 4986 int optname) 4987 { 4988 return sock_has_perm(sock->sk, SOCKET__GETOPT); 4989 } 4990 4991 static int selinux_socket_shutdown(struct socket *sock, int how) 4992 { 4993 return sock_has_perm(sock->sk, SOCKET__SHUTDOWN); 4994 } 4995 4996 static int selinux_socket_unix_stream_connect(struct sock *sock, 4997 struct sock *other, 4998 struct sock *newsk) 4999 { 5000 struct sk_security_struct *sksec_sock = sock->sk_security; 5001 struct sk_security_struct *sksec_other = other->sk_security; 5002 struct sk_security_struct *sksec_new = newsk->sk_security; 5003 struct common_audit_data ad; 5004 struct lsm_network_audit net; 5005 int err; 5006 5007 ad_net_init_from_sk(&ad, &net, other); 5008 5009 err = avc_has_perm(sksec_sock->sid, sksec_other->sid, 5010 sksec_other->sclass, 5011 UNIX_STREAM_SOCKET__CONNECTTO, &ad); 5012 if (err) 5013 return err; 5014 5015 /* server child socket */ 5016 sksec_new->peer_sid = sksec_sock->sid; 5017 err = security_sid_mls_copy(sksec_other->sid, 5018 sksec_sock->sid, &sksec_new->sid); 5019 if (err) 5020 return err; 5021 5022 /* connecting socket */ 5023 sksec_sock->peer_sid = sksec_new->sid; 5024 5025 return 0; 5026 } 5027 5028 static int selinux_socket_unix_may_send(struct socket *sock, 5029 struct socket *other) 5030 { 5031 struct sk_security_struct *ssec = sock->sk->sk_security; 5032 struct sk_security_struct *osec = other->sk->sk_security; 5033 struct common_audit_data ad; 5034 struct lsm_network_audit net; 5035 5036 ad_net_init_from_sk(&ad, &net, other->sk); 5037 5038 return avc_has_perm(ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO, 5039 &ad); 5040 } 5041 5042 static int selinux_inet_sys_rcv_skb(struct net *ns, int ifindex, 5043 char *addrp, u16 family, u32 peer_sid, 5044 struct common_audit_data *ad) 5045 { 5046 int err; 5047 u32 if_sid; 5048 u32 node_sid; 5049 5050 err = sel_netif_sid(ns, ifindex, &if_sid); 5051 if (err) 5052 return err; 5053 err = avc_has_perm(peer_sid, if_sid, 5054 SECCLASS_NETIF, NETIF__INGRESS, ad); 5055 if (err) 5056 return err; 5057 5058 err = sel_netnode_sid(addrp, family, &node_sid); 5059 if (err) 5060 return err; 5061 return avc_has_perm(peer_sid, node_sid, 5062 SECCLASS_NODE, NODE__RECVFROM, ad); 5063 } 5064 5065 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb, 5066 u16 family) 5067 { 5068 int err = 0; 5069 struct sk_security_struct *sksec = sk->sk_security; 5070 u32 sk_sid = sksec->sid; 5071 struct common_audit_data ad; 5072 struct lsm_network_audit net; 5073 char *addrp; 5074 5075 ad_net_init_from_iif(&ad, &net, skb->skb_iif, family); 5076 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL); 5077 if (err) 5078 return err; 5079 5080 if (selinux_secmark_enabled()) { 5081 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET, 5082 PACKET__RECV, &ad); 5083 if (err) 5084 return err; 5085 } 5086 5087 err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad); 5088 if (err) 5089 return err; 5090 err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad); 5091 5092 return err; 5093 } 5094 5095 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb) 5096 { 5097 int err, peerlbl_active, secmark_active; 5098 struct sk_security_struct *sksec = sk->sk_security; 5099 u16 family = sk->sk_family; 5100 u32 sk_sid = sksec->sid; 5101 struct common_audit_data ad; 5102 struct lsm_network_audit net; 5103 char *addrp; 5104 5105 if (family != PF_INET && family != PF_INET6) 5106 return 0; 5107 5108 /* Handle mapped IPv4 packets arriving via IPv6 sockets */ 5109 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP)) 5110 family = PF_INET; 5111 5112 /* If any sort of compatibility mode is enabled then handoff processing 5113 * to the selinux_sock_rcv_skb_compat() function to deal with the 5114 * special handling. We do this in an attempt to keep this function 5115 * as fast and as clean as possible. */ 5116 if (!selinux_policycap_netpeer()) 5117 return selinux_sock_rcv_skb_compat(sk, skb, family); 5118 5119 secmark_active = selinux_secmark_enabled(); 5120 peerlbl_active = selinux_peerlbl_enabled(); 5121 if (!secmark_active && !peerlbl_active) 5122 return 0; 5123 5124 ad_net_init_from_iif(&ad, &net, skb->skb_iif, family); 5125 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL); 5126 if (err) 5127 return err; 5128 5129 if (peerlbl_active) { 5130 u32 peer_sid; 5131 5132 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid); 5133 if (err) 5134 return err; 5135 err = selinux_inet_sys_rcv_skb(sock_net(sk), skb->skb_iif, 5136 addrp, family, peer_sid, &ad); 5137 if (err) { 5138 selinux_netlbl_err(skb, family, err, 0); 5139 return err; 5140 } 5141 err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER, 5142 PEER__RECV, &ad); 5143 if (err) { 5144 selinux_netlbl_err(skb, family, err, 0); 5145 return err; 5146 } 5147 } 5148 5149 if (secmark_active) { 5150 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET, 5151 PACKET__RECV, &ad); 5152 if (err) 5153 return err; 5154 } 5155 5156 return err; 5157 } 5158 5159 static int selinux_socket_getpeersec_stream(struct socket *sock, 5160 sockptr_t optval, sockptr_t optlen, 5161 unsigned int len) 5162 { 5163 int err = 0; 5164 char *scontext = NULL; 5165 u32 scontext_len; 5166 struct sk_security_struct *sksec = sock->sk->sk_security; 5167 u32 peer_sid = SECSID_NULL; 5168 5169 if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET || 5170 sksec->sclass == SECCLASS_TCP_SOCKET || 5171 sksec->sclass == SECCLASS_SCTP_SOCKET) 5172 peer_sid = sksec->peer_sid; 5173 if (peer_sid == SECSID_NULL) 5174 return -ENOPROTOOPT; 5175 5176 err = security_sid_to_context(peer_sid, &scontext, 5177 &scontext_len); 5178 if (err) 5179 return err; 5180 if (scontext_len > len) { 5181 err = -ERANGE; 5182 goto out_len; 5183 } 5184 5185 if (copy_to_sockptr(optval, scontext, scontext_len)) 5186 err = -EFAULT; 5187 out_len: 5188 if (copy_to_sockptr(optlen, &scontext_len, sizeof(scontext_len))) 5189 err = -EFAULT; 5190 kfree(scontext); 5191 return err; 5192 } 5193 5194 static int selinux_socket_getpeersec_dgram(struct socket *sock, 5195 struct sk_buff *skb, u32 *secid) 5196 { 5197 u32 peer_secid = SECSID_NULL; 5198 u16 family; 5199 5200 if (skb && skb->protocol == htons(ETH_P_IP)) 5201 family = PF_INET; 5202 else if (skb && skb->protocol == htons(ETH_P_IPV6)) 5203 family = PF_INET6; 5204 else if (sock) 5205 family = sock->sk->sk_family; 5206 else { 5207 *secid = SECSID_NULL; 5208 return -EINVAL; 5209 } 5210 5211 if (sock && family == PF_UNIX) { 5212 struct inode_security_struct *isec; 5213 isec = inode_security_novalidate(SOCK_INODE(sock)); 5214 peer_secid = isec->sid; 5215 } else if (skb) 5216 selinux_skb_peerlbl_sid(skb, family, &peer_secid); 5217 5218 *secid = peer_secid; 5219 if (peer_secid == SECSID_NULL) 5220 return -ENOPROTOOPT; 5221 return 0; 5222 } 5223 5224 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority) 5225 { 5226 struct sk_security_struct *sksec; 5227 5228 sksec = kzalloc(sizeof(*sksec), priority); 5229 if (!sksec) 5230 return -ENOMEM; 5231 5232 sksec->peer_sid = SECINITSID_UNLABELED; 5233 sksec->sid = SECINITSID_UNLABELED; 5234 sksec->sclass = SECCLASS_SOCKET; 5235 selinux_netlbl_sk_security_reset(sksec); 5236 sk->sk_security = sksec; 5237 5238 return 0; 5239 } 5240 5241 static void selinux_sk_free_security(struct sock *sk) 5242 { 5243 struct sk_security_struct *sksec = sk->sk_security; 5244 5245 sk->sk_security = NULL; 5246 selinux_netlbl_sk_security_free(sksec); 5247 kfree(sksec); 5248 } 5249 5250 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk) 5251 { 5252 struct sk_security_struct *sksec = sk->sk_security; 5253 struct sk_security_struct *newsksec = newsk->sk_security; 5254 5255 newsksec->sid = sksec->sid; 5256 newsksec->peer_sid = sksec->peer_sid; 5257 newsksec->sclass = sksec->sclass; 5258 5259 selinux_netlbl_sk_security_reset(newsksec); 5260 } 5261 5262 static void selinux_sk_getsecid(const struct sock *sk, u32 *secid) 5263 { 5264 if (!sk) 5265 *secid = SECINITSID_ANY_SOCKET; 5266 else { 5267 const struct sk_security_struct *sksec = sk->sk_security; 5268 5269 *secid = sksec->sid; 5270 } 5271 } 5272 5273 static void selinux_sock_graft(struct sock *sk, struct socket *parent) 5274 { 5275 struct inode_security_struct *isec = 5276 inode_security_novalidate(SOCK_INODE(parent)); 5277 struct sk_security_struct *sksec = sk->sk_security; 5278 5279 if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 || 5280 sk->sk_family == PF_UNIX) 5281 isec->sid = sksec->sid; 5282 sksec->sclass = isec->sclass; 5283 } 5284 5285 /* 5286 * Determines peer_secid for the asoc and updates socket's peer label 5287 * if it's the first association on the socket. 5288 */ 5289 static int selinux_sctp_process_new_assoc(struct sctp_association *asoc, 5290 struct sk_buff *skb) 5291 { 5292 struct sock *sk = asoc->base.sk; 5293 u16 family = sk->sk_family; 5294 struct sk_security_struct *sksec = sk->sk_security; 5295 struct common_audit_data ad; 5296 struct lsm_network_audit net; 5297 int err; 5298 5299 /* handle mapped IPv4 packets arriving via IPv6 sockets */ 5300 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP)) 5301 family = PF_INET; 5302 5303 if (selinux_peerlbl_enabled()) { 5304 asoc->peer_secid = SECSID_NULL; 5305 5306 /* This will return peer_sid = SECSID_NULL if there are 5307 * no peer labels, see security_net_peersid_resolve(). 5308 */ 5309 err = selinux_skb_peerlbl_sid(skb, family, &asoc->peer_secid); 5310 if (err) 5311 return err; 5312 5313 if (asoc->peer_secid == SECSID_NULL) 5314 asoc->peer_secid = SECINITSID_UNLABELED; 5315 } else { 5316 asoc->peer_secid = SECINITSID_UNLABELED; 5317 } 5318 5319 if (sksec->sctp_assoc_state == SCTP_ASSOC_UNSET) { 5320 sksec->sctp_assoc_state = SCTP_ASSOC_SET; 5321 5322 /* Here as first association on socket. As the peer SID 5323 * was allowed by peer recv (and the netif/node checks), 5324 * then it is approved by policy and used as the primary 5325 * peer SID for getpeercon(3). 5326 */ 5327 sksec->peer_sid = asoc->peer_secid; 5328 } else if (sksec->peer_sid != asoc->peer_secid) { 5329 /* Other association peer SIDs are checked to enforce 5330 * consistency among the peer SIDs. 5331 */ 5332 ad_net_init_from_sk(&ad, &net, asoc->base.sk); 5333 err = avc_has_perm(sksec->peer_sid, asoc->peer_secid, 5334 sksec->sclass, SCTP_SOCKET__ASSOCIATION, 5335 &ad); 5336 if (err) 5337 return err; 5338 } 5339 return 0; 5340 } 5341 5342 /* Called whenever SCTP receives an INIT or COOKIE ECHO chunk. This 5343 * happens on an incoming connect(2), sctp_connectx(3) or 5344 * sctp_sendmsg(3) (with no association already present). 5345 */ 5346 static int selinux_sctp_assoc_request(struct sctp_association *asoc, 5347 struct sk_buff *skb) 5348 { 5349 struct sk_security_struct *sksec = asoc->base.sk->sk_security; 5350 u32 conn_sid; 5351 int err; 5352 5353 if (!selinux_policycap_extsockclass()) 5354 return 0; 5355 5356 err = selinux_sctp_process_new_assoc(asoc, skb); 5357 if (err) 5358 return err; 5359 5360 /* Compute the MLS component for the connection and store 5361 * the information in asoc. This will be used by SCTP TCP type 5362 * sockets and peeled off connections as they cause a new 5363 * socket to be generated. selinux_sctp_sk_clone() will then 5364 * plug this into the new socket. 5365 */ 5366 err = selinux_conn_sid(sksec->sid, asoc->peer_secid, &conn_sid); 5367 if (err) 5368 return err; 5369 5370 asoc->secid = conn_sid; 5371 5372 /* Set any NetLabel labels including CIPSO/CALIPSO options. */ 5373 return selinux_netlbl_sctp_assoc_request(asoc, skb); 5374 } 5375 5376 /* Called when SCTP receives a COOKIE ACK chunk as the final 5377 * response to an association request (initited by us). 5378 */ 5379 static int selinux_sctp_assoc_established(struct sctp_association *asoc, 5380 struct sk_buff *skb) 5381 { 5382 struct sk_security_struct *sksec = asoc->base.sk->sk_security; 5383 5384 if (!selinux_policycap_extsockclass()) 5385 return 0; 5386 5387 /* Inherit secid from the parent socket - this will be picked up 5388 * by selinux_sctp_sk_clone() if the association gets peeled off 5389 * into a new socket. 5390 */ 5391 asoc->secid = sksec->sid; 5392 5393 return selinux_sctp_process_new_assoc(asoc, skb); 5394 } 5395 5396 /* Check if sctp IPv4/IPv6 addresses are valid for binding or connecting 5397 * based on their @optname. 5398 */ 5399 static int selinux_sctp_bind_connect(struct sock *sk, int optname, 5400 struct sockaddr *address, 5401 int addrlen) 5402 { 5403 int len, err = 0, walk_size = 0; 5404 void *addr_buf; 5405 struct sockaddr *addr; 5406 struct socket *sock; 5407 5408 if (!selinux_policycap_extsockclass()) 5409 return 0; 5410 5411 /* Process one or more addresses that may be IPv4 or IPv6 */ 5412 sock = sk->sk_socket; 5413 addr_buf = address; 5414 5415 while (walk_size < addrlen) { 5416 if (walk_size + sizeof(sa_family_t) > addrlen) 5417 return -EINVAL; 5418 5419 addr = addr_buf; 5420 switch (addr->sa_family) { 5421 case AF_UNSPEC: 5422 case AF_INET: 5423 len = sizeof(struct sockaddr_in); 5424 break; 5425 case AF_INET6: 5426 len = sizeof(struct sockaddr_in6); 5427 break; 5428 default: 5429 return -EINVAL; 5430 } 5431 5432 if (walk_size + len > addrlen) 5433 return -EINVAL; 5434 5435 err = -EINVAL; 5436 switch (optname) { 5437 /* Bind checks */ 5438 case SCTP_PRIMARY_ADDR: 5439 case SCTP_SET_PEER_PRIMARY_ADDR: 5440 case SCTP_SOCKOPT_BINDX_ADD: 5441 err = selinux_socket_bind(sock, addr, len); 5442 break; 5443 /* Connect checks */ 5444 case SCTP_SOCKOPT_CONNECTX: 5445 case SCTP_PARAM_SET_PRIMARY: 5446 case SCTP_PARAM_ADD_IP: 5447 case SCTP_SENDMSG_CONNECT: 5448 err = selinux_socket_connect_helper(sock, addr, len); 5449 if (err) 5450 return err; 5451 5452 /* As selinux_sctp_bind_connect() is called by the 5453 * SCTP protocol layer, the socket is already locked, 5454 * therefore selinux_netlbl_socket_connect_locked() 5455 * is called here. The situations handled are: 5456 * sctp_connectx(3), sctp_sendmsg(3), sendmsg(2), 5457 * whenever a new IP address is added or when a new 5458 * primary address is selected. 5459 * Note that an SCTP connect(2) call happens before 5460 * the SCTP protocol layer and is handled via 5461 * selinux_socket_connect(). 5462 */ 5463 err = selinux_netlbl_socket_connect_locked(sk, addr); 5464 break; 5465 } 5466 5467 if (err) 5468 return err; 5469 5470 addr_buf += len; 5471 walk_size += len; 5472 } 5473 5474 return 0; 5475 } 5476 5477 /* Called whenever a new socket is created by accept(2) or sctp_peeloff(3). */ 5478 static void selinux_sctp_sk_clone(struct sctp_association *asoc, struct sock *sk, 5479 struct sock *newsk) 5480 { 5481 struct sk_security_struct *sksec = sk->sk_security; 5482 struct sk_security_struct *newsksec = newsk->sk_security; 5483 5484 /* If policy does not support SECCLASS_SCTP_SOCKET then call 5485 * the non-sctp clone version. 5486 */ 5487 if (!selinux_policycap_extsockclass()) 5488 return selinux_sk_clone_security(sk, newsk); 5489 5490 newsksec->sid = asoc->secid; 5491 newsksec->peer_sid = asoc->peer_secid; 5492 newsksec->sclass = sksec->sclass; 5493 selinux_netlbl_sctp_sk_clone(sk, newsk); 5494 } 5495 5496 static int selinux_mptcp_add_subflow(struct sock *sk, struct sock *ssk) 5497 { 5498 struct sk_security_struct *ssksec = ssk->sk_security; 5499 struct sk_security_struct *sksec = sk->sk_security; 5500 5501 ssksec->sclass = sksec->sclass; 5502 ssksec->sid = sksec->sid; 5503 5504 /* replace the existing subflow label deleting the existing one 5505 * and re-recreating a new label using the updated context 5506 */ 5507 selinux_netlbl_sk_security_free(ssksec); 5508 return selinux_netlbl_socket_post_create(ssk, ssk->sk_family); 5509 } 5510 5511 static int selinux_inet_conn_request(const struct sock *sk, struct sk_buff *skb, 5512 struct request_sock *req) 5513 { 5514 struct sk_security_struct *sksec = sk->sk_security; 5515 int err; 5516 u16 family = req->rsk_ops->family; 5517 u32 connsid; 5518 u32 peersid; 5519 5520 err = selinux_skb_peerlbl_sid(skb, family, &peersid); 5521 if (err) 5522 return err; 5523 err = selinux_conn_sid(sksec->sid, peersid, &connsid); 5524 if (err) 5525 return err; 5526 req->secid = connsid; 5527 req->peer_secid = peersid; 5528 5529 return selinux_netlbl_inet_conn_request(req, family); 5530 } 5531 5532 static void selinux_inet_csk_clone(struct sock *newsk, 5533 const struct request_sock *req) 5534 { 5535 struct sk_security_struct *newsksec = newsk->sk_security; 5536 5537 newsksec->sid = req->secid; 5538 newsksec->peer_sid = req->peer_secid; 5539 /* NOTE: Ideally, we should also get the isec->sid for the 5540 new socket in sync, but we don't have the isec available yet. 5541 So we will wait until sock_graft to do it, by which 5542 time it will have been created and available. */ 5543 5544 /* We don't need to take any sort of lock here as we are the only 5545 * thread with access to newsksec */ 5546 selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family); 5547 } 5548 5549 static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb) 5550 { 5551 u16 family = sk->sk_family; 5552 struct sk_security_struct *sksec = sk->sk_security; 5553 5554 /* handle mapped IPv4 packets arriving via IPv6 sockets */ 5555 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP)) 5556 family = PF_INET; 5557 5558 selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid); 5559 } 5560 5561 static int selinux_secmark_relabel_packet(u32 sid) 5562 { 5563 return avc_has_perm(current_sid(), sid, SECCLASS_PACKET, PACKET__RELABELTO, 5564 NULL); 5565 } 5566 5567 static void selinux_secmark_refcount_inc(void) 5568 { 5569 atomic_inc(&selinux_secmark_refcount); 5570 } 5571 5572 static void selinux_secmark_refcount_dec(void) 5573 { 5574 atomic_dec(&selinux_secmark_refcount); 5575 } 5576 5577 static void selinux_req_classify_flow(const struct request_sock *req, 5578 struct flowi_common *flic) 5579 { 5580 flic->flowic_secid = req->secid; 5581 } 5582 5583 static int selinux_tun_dev_alloc_security(void **security) 5584 { 5585 struct tun_security_struct *tunsec; 5586 5587 tunsec = kzalloc(sizeof(*tunsec), GFP_KERNEL); 5588 if (!tunsec) 5589 return -ENOMEM; 5590 tunsec->sid = current_sid(); 5591 5592 *security = tunsec; 5593 return 0; 5594 } 5595 5596 static void selinux_tun_dev_free_security(void *security) 5597 { 5598 kfree(security); 5599 } 5600 5601 static int selinux_tun_dev_create(void) 5602 { 5603 u32 sid = current_sid(); 5604 5605 /* we aren't taking into account the "sockcreate" SID since the socket 5606 * that is being created here is not a socket in the traditional sense, 5607 * instead it is a private sock, accessible only to the kernel, and 5608 * representing a wide range of network traffic spanning multiple 5609 * connections unlike traditional sockets - check the TUN driver to 5610 * get a better understanding of why this socket is special */ 5611 5612 return avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE, 5613 NULL); 5614 } 5615 5616 static int selinux_tun_dev_attach_queue(void *security) 5617 { 5618 struct tun_security_struct *tunsec = security; 5619 5620 return avc_has_perm(current_sid(), tunsec->sid, SECCLASS_TUN_SOCKET, 5621 TUN_SOCKET__ATTACH_QUEUE, NULL); 5622 } 5623 5624 static int selinux_tun_dev_attach(struct sock *sk, void *security) 5625 { 5626 struct tun_security_struct *tunsec = security; 5627 struct sk_security_struct *sksec = sk->sk_security; 5628 5629 /* we don't currently perform any NetLabel based labeling here and it 5630 * isn't clear that we would want to do so anyway; while we could apply 5631 * labeling without the support of the TUN user the resulting labeled 5632 * traffic from the other end of the connection would almost certainly 5633 * cause confusion to the TUN user that had no idea network labeling 5634 * protocols were being used */ 5635 5636 sksec->sid = tunsec->sid; 5637 sksec->sclass = SECCLASS_TUN_SOCKET; 5638 5639 return 0; 5640 } 5641 5642 static int selinux_tun_dev_open(void *security) 5643 { 5644 struct tun_security_struct *tunsec = security; 5645 u32 sid = current_sid(); 5646 int err; 5647 5648 err = avc_has_perm(sid, tunsec->sid, SECCLASS_TUN_SOCKET, 5649 TUN_SOCKET__RELABELFROM, NULL); 5650 if (err) 5651 return err; 5652 err = avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET, 5653 TUN_SOCKET__RELABELTO, NULL); 5654 if (err) 5655 return err; 5656 tunsec->sid = sid; 5657 5658 return 0; 5659 } 5660 5661 #ifdef CONFIG_NETFILTER 5662 5663 static unsigned int selinux_ip_forward(void *priv, struct sk_buff *skb, 5664 const struct nf_hook_state *state) 5665 { 5666 int ifindex; 5667 u16 family; 5668 char *addrp; 5669 u32 peer_sid; 5670 struct common_audit_data ad; 5671 struct lsm_network_audit net; 5672 int secmark_active, peerlbl_active; 5673 5674 if (!selinux_policycap_netpeer()) 5675 return NF_ACCEPT; 5676 5677 secmark_active = selinux_secmark_enabled(); 5678 peerlbl_active = selinux_peerlbl_enabled(); 5679 if (!secmark_active && !peerlbl_active) 5680 return NF_ACCEPT; 5681 5682 family = state->pf; 5683 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0) 5684 return NF_DROP; 5685 5686 ifindex = state->in->ifindex; 5687 ad_net_init_from_iif(&ad, &net, ifindex, family); 5688 if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0) 5689 return NF_DROP; 5690 5691 if (peerlbl_active) { 5692 int err; 5693 5694 err = selinux_inet_sys_rcv_skb(state->net, ifindex, 5695 addrp, family, peer_sid, &ad); 5696 if (err) { 5697 selinux_netlbl_err(skb, family, err, 1); 5698 return NF_DROP; 5699 } 5700 } 5701 5702 if (secmark_active) 5703 if (avc_has_perm(peer_sid, skb->secmark, 5704 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad)) 5705 return NF_DROP; 5706 5707 if (netlbl_enabled()) 5708 /* we do this in the FORWARD path and not the POST_ROUTING 5709 * path because we want to make sure we apply the necessary 5710 * labeling before IPsec is applied so we can leverage AH 5711 * protection */ 5712 if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0) 5713 return NF_DROP; 5714 5715 return NF_ACCEPT; 5716 } 5717 5718 static unsigned int selinux_ip_output(void *priv, struct sk_buff *skb, 5719 const struct nf_hook_state *state) 5720 { 5721 struct sock *sk; 5722 u32 sid; 5723 5724 if (!netlbl_enabled()) 5725 return NF_ACCEPT; 5726 5727 /* we do this in the LOCAL_OUT path and not the POST_ROUTING path 5728 * because we want to make sure we apply the necessary labeling 5729 * before IPsec is applied so we can leverage AH protection */ 5730 sk = skb->sk; 5731 if (sk) { 5732 struct sk_security_struct *sksec; 5733 5734 if (sk_listener(sk)) 5735 /* if the socket is the listening state then this 5736 * packet is a SYN-ACK packet which means it needs to 5737 * be labeled based on the connection/request_sock and 5738 * not the parent socket. unfortunately, we can't 5739 * lookup the request_sock yet as it isn't queued on 5740 * the parent socket until after the SYN-ACK is sent. 5741 * the "solution" is to simply pass the packet as-is 5742 * as any IP option based labeling should be copied 5743 * from the initial connection request (in the IP 5744 * layer). it is far from ideal, but until we get a 5745 * security label in the packet itself this is the 5746 * best we can do. */ 5747 return NF_ACCEPT; 5748 5749 /* standard practice, label using the parent socket */ 5750 sksec = sk->sk_security; 5751 sid = sksec->sid; 5752 } else 5753 sid = SECINITSID_KERNEL; 5754 if (selinux_netlbl_skbuff_setsid(skb, state->pf, sid) != 0) 5755 return NF_DROP; 5756 5757 return NF_ACCEPT; 5758 } 5759 5760 5761 static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb, 5762 const struct nf_hook_state *state) 5763 { 5764 struct sock *sk; 5765 struct sk_security_struct *sksec; 5766 struct common_audit_data ad; 5767 struct lsm_network_audit net; 5768 u8 proto = 0; 5769 5770 sk = skb_to_full_sk(skb); 5771 if (sk == NULL) 5772 return NF_ACCEPT; 5773 sksec = sk->sk_security; 5774 5775 ad_net_init_from_iif(&ad, &net, state->out->ifindex, state->pf); 5776 if (selinux_parse_skb(skb, &ad, NULL, 0, &proto)) 5777 return NF_DROP; 5778 5779 if (selinux_secmark_enabled()) 5780 if (avc_has_perm(sksec->sid, skb->secmark, 5781 SECCLASS_PACKET, PACKET__SEND, &ad)) 5782 return NF_DROP_ERR(-ECONNREFUSED); 5783 5784 if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto)) 5785 return NF_DROP_ERR(-ECONNREFUSED); 5786 5787 return NF_ACCEPT; 5788 } 5789 5790 static unsigned int selinux_ip_postroute(void *priv, 5791 struct sk_buff *skb, 5792 const struct nf_hook_state *state) 5793 { 5794 u16 family; 5795 u32 secmark_perm; 5796 u32 peer_sid; 5797 int ifindex; 5798 struct sock *sk; 5799 struct common_audit_data ad; 5800 struct lsm_network_audit net; 5801 char *addrp; 5802 int secmark_active, peerlbl_active; 5803 5804 /* If any sort of compatibility mode is enabled then handoff processing 5805 * to the selinux_ip_postroute_compat() function to deal with the 5806 * special handling. We do this in an attempt to keep this function 5807 * as fast and as clean as possible. */ 5808 if (!selinux_policycap_netpeer()) 5809 return selinux_ip_postroute_compat(skb, state); 5810 5811 secmark_active = selinux_secmark_enabled(); 5812 peerlbl_active = selinux_peerlbl_enabled(); 5813 if (!secmark_active && !peerlbl_active) 5814 return NF_ACCEPT; 5815 5816 sk = skb_to_full_sk(skb); 5817 5818 #ifdef CONFIG_XFRM 5819 /* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec 5820 * packet transformation so allow the packet to pass without any checks 5821 * since we'll have another chance to perform access control checks 5822 * when the packet is on it's final way out. 5823 * NOTE: there appear to be some IPv6 multicast cases where skb->dst 5824 * is NULL, in this case go ahead and apply access control. 5825 * NOTE: if this is a local socket (skb->sk != NULL) that is in the 5826 * TCP listening state we cannot wait until the XFRM processing 5827 * is done as we will miss out on the SA label if we do; 5828 * unfortunately, this means more work, but it is only once per 5829 * connection. */ 5830 if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL && 5831 !(sk && sk_listener(sk))) 5832 return NF_ACCEPT; 5833 #endif 5834 5835 family = state->pf; 5836 if (sk == NULL) { 5837 /* Without an associated socket the packet is either coming 5838 * from the kernel or it is being forwarded; check the packet 5839 * to determine which and if the packet is being forwarded 5840 * query the packet directly to determine the security label. */ 5841 if (skb->skb_iif) { 5842 secmark_perm = PACKET__FORWARD_OUT; 5843 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid)) 5844 return NF_DROP; 5845 } else { 5846 secmark_perm = PACKET__SEND; 5847 peer_sid = SECINITSID_KERNEL; 5848 } 5849 } else if (sk_listener(sk)) { 5850 /* Locally generated packet but the associated socket is in the 5851 * listening state which means this is a SYN-ACK packet. In 5852 * this particular case the correct security label is assigned 5853 * to the connection/request_sock but unfortunately we can't 5854 * query the request_sock as it isn't queued on the parent 5855 * socket until after the SYN-ACK packet is sent; the only 5856 * viable choice is to regenerate the label like we do in 5857 * selinux_inet_conn_request(). See also selinux_ip_output() 5858 * for similar problems. */ 5859 u32 skb_sid; 5860 struct sk_security_struct *sksec; 5861 5862 sksec = sk->sk_security; 5863 if (selinux_skb_peerlbl_sid(skb, family, &skb_sid)) 5864 return NF_DROP; 5865 /* At this point, if the returned skb peerlbl is SECSID_NULL 5866 * and the packet has been through at least one XFRM 5867 * transformation then we must be dealing with the "final" 5868 * form of labeled IPsec packet; since we've already applied 5869 * all of our access controls on this packet we can safely 5870 * pass the packet. */ 5871 if (skb_sid == SECSID_NULL) { 5872 switch (family) { 5873 case PF_INET: 5874 if (IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED) 5875 return NF_ACCEPT; 5876 break; 5877 case PF_INET6: 5878 if (IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED) 5879 return NF_ACCEPT; 5880 break; 5881 default: 5882 return NF_DROP_ERR(-ECONNREFUSED); 5883 } 5884 } 5885 if (selinux_conn_sid(sksec->sid, skb_sid, &peer_sid)) 5886 return NF_DROP; 5887 secmark_perm = PACKET__SEND; 5888 } else { 5889 /* Locally generated packet, fetch the security label from the 5890 * associated socket. */ 5891 struct sk_security_struct *sksec = sk->sk_security; 5892 peer_sid = sksec->sid; 5893 secmark_perm = PACKET__SEND; 5894 } 5895 5896 ifindex = state->out->ifindex; 5897 ad_net_init_from_iif(&ad, &net, ifindex, family); 5898 if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL)) 5899 return NF_DROP; 5900 5901 if (secmark_active) 5902 if (avc_has_perm(peer_sid, skb->secmark, 5903 SECCLASS_PACKET, secmark_perm, &ad)) 5904 return NF_DROP_ERR(-ECONNREFUSED); 5905 5906 if (peerlbl_active) { 5907 u32 if_sid; 5908 u32 node_sid; 5909 5910 if (sel_netif_sid(state->net, ifindex, &if_sid)) 5911 return NF_DROP; 5912 if (avc_has_perm(peer_sid, if_sid, 5913 SECCLASS_NETIF, NETIF__EGRESS, &ad)) 5914 return NF_DROP_ERR(-ECONNREFUSED); 5915 5916 if (sel_netnode_sid(addrp, family, &node_sid)) 5917 return NF_DROP; 5918 if (avc_has_perm(peer_sid, node_sid, 5919 SECCLASS_NODE, NODE__SENDTO, &ad)) 5920 return NF_DROP_ERR(-ECONNREFUSED); 5921 } 5922 5923 return NF_ACCEPT; 5924 } 5925 #endif /* CONFIG_NETFILTER */ 5926 5927 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb) 5928 { 5929 int rc = 0; 5930 unsigned int msg_len; 5931 unsigned int data_len = skb->len; 5932 unsigned char *data = skb->data; 5933 struct nlmsghdr *nlh; 5934 struct sk_security_struct *sksec = sk->sk_security; 5935 u16 sclass = sksec->sclass; 5936 u32 perm; 5937 5938 while (data_len >= nlmsg_total_size(0)) { 5939 nlh = (struct nlmsghdr *)data; 5940 5941 /* NOTE: the nlmsg_len field isn't reliably set by some netlink 5942 * users which means we can't reject skb's with bogus 5943 * length fields; our solution is to follow what 5944 * netlink_rcv_skb() does and simply skip processing at 5945 * messages with length fields that are clearly junk 5946 */ 5947 if (nlh->nlmsg_len < NLMSG_HDRLEN || nlh->nlmsg_len > data_len) 5948 return 0; 5949 5950 rc = selinux_nlmsg_lookup(sclass, nlh->nlmsg_type, &perm); 5951 if (rc == 0) { 5952 rc = sock_has_perm(sk, perm); 5953 if (rc) 5954 return rc; 5955 } else if (rc == -EINVAL) { 5956 /* -EINVAL is a missing msg/perm mapping */ 5957 pr_warn_ratelimited("SELinux: unrecognized netlink" 5958 " message: protocol=%hu nlmsg_type=%hu sclass=%s" 5959 " pid=%d comm=%s\n", 5960 sk->sk_protocol, nlh->nlmsg_type, 5961 secclass_map[sclass - 1].name, 5962 task_pid_nr(current), current->comm); 5963 if (enforcing_enabled() && 5964 !security_get_allow_unknown()) 5965 return rc; 5966 rc = 0; 5967 } else if (rc == -ENOENT) { 5968 /* -ENOENT is a missing socket/class mapping, ignore */ 5969 rc = 0; 5970 } else { 5971 return rc; 5972 } 5973 5974 /* move to the next message after applying netlink padding */ 5975 msg_len = NLMSG_ALIGN(nlh->nlmsg_len); 5976 if (msg_len >= data_len) 5977 return 0; 5978 data_len -= msg_len; 5979 data += msg_len; 5980 } 5981 5982 return rc; 5983 } 5984 5985 static void ipc_init_security(struct ipc_security_struct *isec, u16 sclass) 5986 { 5987 isec->sclass = sclass; 5988 isec->sid = current_sid(); 5989 } 5990 5991 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms, 5992 u32 perms) 5993 { 5994 struct ipc_security_struct *isec; 5995 struct common_audit_data ad; 5996 u32 sid = current_sid(); 5997 5998 isec = selinux_ipc(ipc_perms); 5999 6000 ad.type = LSM_AUDIT_DATA_IPC; 6001 ad.u.ipc_id = ipc_perms->key; 6002 6003 return avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad); 6004 } 6005 6006 static int selinux_msg_msg_alloc_security(struct msg_msg *msg) 6007 { 6008 struct msg_security_struct *msec; 6009 6010 msec = selinux_msg_msg(msg); 6011 msec->sid = SECINITSID_UNLABELED; 6012 6013 return 0; 6014 } 6015 6016 /* message queue security operations */ 6017 static int selinux_msg_queue_alloc_security(struct kern_ipc_perm *msq) 6018 { 6019 struct ipc_security_struct *isec; 6020 struct common_audit_data ad; 6021 u32 sid = current_sid(); 6022 6023 isec = selinux_ipc(msq); 6024 ipc_init_security(isec, SECCLASS_MSGQ); 6025 6026 ad.type = LSM_AUDIT_DATA_IPC; 6027 ad.u.ipc_id = msq->key; 6028 6029 return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ, 6030 MSGQ__CREATE, &ad); 6031 } 6032 6033 static int selinux_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg) 6034 { 6035 struct ipc_security_struct *isec; 6036 struct common_audit_data ad; 6037 u32 sid = current_sid(); 6038 6039 isec = selinux_ipc(msq); 6040 6041 ad.type = LSM_AUDIT_DATA_IPC; 6042 ad.u.ipc_id = msq->key; 6043 6044 return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ, 6045 MSGQ__ASSOCIATE, &ad); 6046 } 6047 6048 static int selinux_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd) 6049 { 6050 u32 perms; 6051 6052 switch (cmd) { 6053 case IPC_INFO: 6054 case MSG_INFO: 6055 /* No specific object, just general system-wide information. */ 6056 return avc_has_perm(current_sid(), SECINITSID_KERNEL, 6057 SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL); 6058 case IPC_STAT: 6059 case MSG_STAT: 6060 case MSG_STAT_ANY: 6061 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE; 6062 break; 6063 case IPC_SET: 6064 perms = MSGQ__SETATTR; 6065 break; 6066 case IPC_RMID: 6067 perms = MSGQ__DESTROY; 6068 break; 6069 default: 6070 return 0; 6071 } 6072 6073 return ipc_has_perm(msq, perms); 6074 } 6075 6076 static int selinux_msg_queue_msgsnd(struct kern_ipc_perm *msq, struct msg_msg *msg, int msqflg) 6077 { 6078 struct ipc_security_struct *isec; 6079 struct msg_security_struct *msec; 6080 struct common_audit_data ad; 6081 u32 sid = current_sid(); 6082 int rc; 6083 6084 isec = selinux_ipc(msq); 6085 msec = selinux_msg_msg(msg); 6086 6087 /* 6088 * First time through, need to assign label to the message 6089 */ 6090 if (msec->sid == SECINITSID_UNLABELED) { 6091 /* 6092 * Compute new sid based on current process and 6093 * message queue this message will be stored in 6094 */ 6095 rc = security_transition_sid(sid, isec->sid, 6096 SECCLASS_MSG, NULL, &msec->sid); 6097 if (rc) 6098 return rc; 6099 } 6100 6101 ad.type = LSM_AUDIT_DATA_IPC; 6102 ad.u.ipc_id = msq->key; 6103 6104 /* Can this process write to the queue? */ 6105 rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ, 6106 MSGQ__WRITE, &ad); 6107 if (!rc) 6108 /* Can this process send the message */ 6109 rc = avc_has_perm(sid, msec->sid, SECCLASS_MSG, 6110 MSG__SEND, &ad); 6111 if (!rc) 6112 /* Can the message be put in the queue? */ 6113 rc = avc_has_perm(msec->sid, isec->sid, SECCLASS_MSGQ, 6114 MSGQ__ENQUEUE, &ad); 6115 6116 return rc; 6117 } 6118 6119 static int selinux_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg, 6120 struct task_struct *target, 6121 long type, int mode) 6122 { 6123 struct ipc_security_struct *isec; 6124 struct msg_security_struct *msec; 6125 struct common_audit_data ad; 6126 u32 sid = task_sid_obj(target); 6127 int rc; 6128 6129 isec = selinux_ipc(msq); 6130 msec = selinux_msg_msg(msg); 6131 6132 ad.type = LSM_AUDIT_DATA_IPC; 6133 ad.u.ipc_id = msq->key; 6134 6135 rc = avc_has_perm(sid, isec->sid, 6136 SECCLASS_MSGQ, MSGQ__READ, &ad); 6137 if (!rc) 6138 rc = avc_has_perm(sid, msec->sid, 6139 SECCLASS_MSG, MSG__RECEIVE, &ad); 6140 return rc; 6141 } 6142 6143 /* Shared Memory security operations */ 6144 static int selinux_shm_alloc_security(struct kern_ipc_perm *shp) 6145 { 6146 struct ipc_security_struct *isec; 6147 struct common_audit_data ad; 6148 u32 sid = current_sid(); 6149 6150 isec = selinux_ipc(shp); 6151 ipc_init_security(isec, SECCLASS_SHM); 6152 6153 ad.type = LSM_AUDIT_DATA_IPC; 6154 ad.u.ipc_id = shp->key; 6155 6156 return avc_has_perm(sid, isec->sid, SECCLASS_SHM, 6157 SHM__CREATE, &ad); 6158 } 6159 6160 static int selinux_shm_associate(struct kern_ipc_perm *shp, int shmflg) 6161 { 6162 struct ipc_security_struct *isec; 6163 struct common_audit_data ad; 6164 u32 sid = current_sid(); 6165 6166 isec = selinux_ipc(shp); 6167 6168 ad.type = LSM_AUDIT_DATA_IPC; 6169 ad.u.ipc_id = shp->key; 6170 6171 return avc_has_perm(sid, isec->sid, SECCLASS_SHM, 6172 SHM__ASSOCIATE, &ad); 6173 } 6174 6175 /* Note, at this point, shp is locked down */ 6176 static int selinux_shm_shmctl(struct kern_ipc_perm *shp, int cmd) 6177 { 6178 u32 perms; 6179 6180 switch (cmd) { 6181 case IPC_INFO: 6182 case SHM_INFO: 6183 /* No specific object, just general system-wide information. */ 6184 return avc_has_perm(current_sid(), SECINITSID_KERNEL, 6185 SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL); 6186 case IPC_STAT: 6187 case SHM_STAT: 6188 case SHM_STAT_ANY: 6189 perms = SHM__GETATTR | SHM__ASSOCIATE; 6190 break; 6191 case IPC_SET: 6192 perms = SHM__SETATTR; 6193 break; 6194 case SHM_LOCK: 6195 case SHM_UNLOCK: 6196 perms = SHM__LOCK; 6197 break; 6198 case IPC_RMID: 6199 perms = SHM__DESTROY; 6200 break; 6201 default: 6202 return 0; 6203 } 6204 6205 return ipc_has_perm(shp, perms); 6206 } 6207 6208 static int selinux_shm_shmat(struct kern_ipc_perm *shp, 6209 char __user *shmaddr, int shmflg) 6210 { 6211 u32 perms; 6212 6213 if (shmflg & SHM_RDONLY) 6214 perms = SHM__READ; 6215 else 6216 perms = SHM__READ | SHM__WRITE; 6217 6218 return ipc_has_perm(shp, perms); 6219 } 6220 6221 /* Semaphore security operations */ 6222 static int selinux_sem_alloc_security(struct kern_ipc_perm *sma) 6223 { 6224 struct ipc_security_struct *isec; 6225 struct common_audit_data ad; 6226 u32 sid = current_sid(); 6227 6228 isec = selinux_ipc(sma); 6229 ipc_init_security(isec, SECCLASS_SEM); 6230 6231 ad.type = LSM_AUDIT_DATA_IPC; 6232 ad.u.ipc_id = sma->key; 6233 6234 return avc_has_perm(sid, isec->sid, SECCLASS_SEM, 6235 SEM__CREATE, &ad); 6236 } 6237 6238 static int selinux_sem_associate(struct kern_ipc_perm *sma, int semflg) 6239 { 6240 struct ipc_security_struct *isec; 6241 struct common_audit_data ad; 6242 u32 sid = current_sid(); 6243 6244 isec = selinux_ipc(sma); 6245 6246 ad.type = LSM_AUDIT_DATA_IPC; 6247 ad.u.ipc_id = sma->key; 6248 6249 return avc_has_perm(sid, isec->sid, SECCLASS_SEM, 6250 SEM__ASSOCIATE, &ad); 6251 } 6252 6253 /* Note, at this point, sma is locked down */ 6254 static int selinux_sem_semctl(struct kern_ipc_perm *sma, int cmd) 6255 { 6256 int err; 6257 u32 perms; 6258 6259 switch (cmd) { 6260 case IPC_INFO: 6261 case SEM_INFO: 6262 /* No specific object, just general system-wide information. */ 6263 return avc_has_perm(current_sid(), SECINITSID_KERNEL, 6264 SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL); 6265 case GETPID: 6266 case GETNCNT: 6267 case GETZCNT: 6268 perms = SEM__GETATTR; 6269 break; 6270 case GETVAL: 6271 case GETALL: 6272 perms = SEM__READ; 6273 break; 6274 case SETVAL: 6275 case SETALL: 6276 perms = SEM__WRITE; 6277 break; 6278 case IPC_RMID: 6279 perms = SEM__DESTROY; 6280 break; 6281 case IPC_SET: 6282 perms = SEM__SETATTR; 6283 break; 6284 case IPC_STAT: 6285 case SEM_STAT: 6286 case SEM_STAT_ANY: 6287 perms = SEM__GETATTR | SEM__ASSOCIATE; 6288 break; 6289 default: 6290 return 0; 6291 } 6292 6293 err = ipc_has_perm(sma, perms); 6294 return err; 6295 } 6296 6297 static int selinux_sem_semop(struct kern_ipc_perm *sma, 6298 struct sembuf *sops, unsigned nsops, int alter) 6299 { 6300 u32 perms; 6301 6302 if (alter) 6303 perms = SEM__READ | SEM__WRITE; 6304 else 6305 perms = SEM__READ; 6306 6307 return ipc_has_perm(sma, perms); 6308 } 6309 6310 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag) 6311 { 6312 u32 av = 0; 6313 6314 av = 0; 6315 if (flag & S_IRUGO) 6316 av |= IPC__UNIX_READ; 6317 if (flag & S_IWUGO) 6318 av |= IPC__UNIX_WRITE; 6319 6320 if (av == 0) 6321 return 0; 6322 6323 return ipc_has_perm(ipcp, av); 6324 } 6325 6326 static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid) 6327 { 6328 struct ipc_security_struct *isec = selinux_ipc(ipcp); 6329 *secid = isec->sid; 6330 } 6331 6332 static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode) 6333 { 6334 if (inode) 6335 inode_doinit_with_dentry(inode, dentry); 6336 } 6337 6338 static int selinux_lsm_getattr(unsigned int attr, struct task_struct *p, 6339 char **value) 6340 { 6341 const struct task_security_struct *tsec; 6342 int error; 6343 u32 sid; 6344 u32 len; 6345 6346 rcu_read_lock(); 6347 tsec = selinux_cred(__task_cred(p)); 6348 if (p != current) { 6349 error = avc_has_perm(current_sid(), tsec->sid, 6350 SECCLASS_PROCESS, PROCESS__GETATTR, NULL); 6351 if (error) 6352 goto err_unlock; 6353 } 6354 switch (attr) { 6355 case LSM_ATTR_CURRENT: 6356 sid = tsec->sid; 6357 break; 6358 case LSM_ATTR_PREV: 6359 sid = tsec->osid; 6360 break; 6361 case LSM_ATTR_EXEC: 6362 sid = tsec->exec_sid; 6363 break; 6364 case LSM_ATTR_FSCREATE: 6365 sid = tsec->create_sid; 6366 break; 6367 case LSM_ATTR_KEYCREATE: 6368 sid = tsec->keycreate_sid; 6369 break; 6370 case LSM_ATTR_SOCKCREATE: 6371 sid = tsec->sockcreate_sid; 6372 break; 6373 default: 6374 error = -EOPNOTSUPP; 6375 goto err_unlock; 6376 } 6377 rcu_read_unlock(); 6378 6379 if (sid == SECSID_NULL) { 6380 *value = NULL; 6381 return 0; 6382 } 6383 6384 error = security_sid_to_context(sid, value, &len); 6385 if (error) 6386 return error; 6387 return len; 6388 6389 err_unlock: 6390 rcu_read_unlock(); 6391 return error; 6392 } 6393 6394 static int selinux_lsm_setattr(u64 attr, void *value, size_t size) 6395 { 6396 struct task_security_struct *tsec; 6397 struct cred *new; 6398 u32 mysid = current_sid(), sid = 0, ptsid; 6399 int error; 6400 char *str = value; 6401 6402 /* 6403 * Basic control over ability to set these attributes at all. 6404 */ 6405 switch (attr) { 6406 case LSM_ATTR_EXEC: 6407 error = avc_has_perm(mysid, mysid, SECCLASS_PROCESS, 6408 PROCESS__SETEXEC, NULL); 6409 break; 6410 case LSM_ATTR_FSCREATE: 6411 error = avc_has_perm(mysid, mysid, SECCLASS_PROCESS, 6412 PROCESS__SETFSCREATE, NULL); 6413 break; 6414 case LSM_ATTR_KEYCREATE: 6415 error = avc_has_perm(mysid, mysid, SECCLASS_PROCESS, 6416 PROCESS__SETKEYCREATE, NULL); 6417 break; 6418 case LSM_ATTR_SOCKCREATE: 6419 error = avc_has_perm(mysid, mysid, SECCLASS_PROCESS, 6420 PROCESS__SETSOCKCREATE, NULL); 6421 break; 6422 case LSM_ATTR_CURRENT: 6423 error = avc_has_perm(mysid, mysid, SECCLASS_PROCESS, 6424 PROCESS__SETCURRENT, NULL); 6425 break; 6426 default: 6427 error = -EOPNOTSUPP; 6428 break; 6429 } 6430 if (error) 6431 return error; 6432 6433 /* Obtain a SID for the context, if one was specified. */ 6434 if (size && str[0] && str[0] != '\n') { 6435 if (str[size-1] == '\n') { 6436 str[size-1] = 0; 6437 size--; 6438 } 6439 error = security_context_to_sid(value, size, 6440 &sid, GFP_KERNEL); 6441 if (error == -EINVAL && attr == LSM_ATTR_FSCREATE) { 6442 if (!has_cap_mac_admin(true)) { 6443 struct audit_buffer *ab; 6444 size_t audit_size; 6445 6446 /* We strip a nul only if it is at the end, 6447 * otherwise the context contains a nul and 6448 * we should audit that */ 6449 if (str[size - 1] == '\0') 6450 audit_size = size - 1; 6451 else 6452 audit_size = size; 6453 ab = audit_log_start(audit_context(), 6454 GFP_ATOMIC, 6455 AUDIT_SELINUX_ERR); 6456 if (!ab) 6457 return error; 6458 audit_log_format(ab, "op=fscreate invalid_context="); 6459 audit_log_n_untrustedstring(ab, value, 6460 audit_size); 6461 audit_log_end(ab); 6462 6463 return error; 6464 } 6465 error = security_context_to_sid_force(value, size, 6466 &sid); 6467 } 6468 if (error) 6469 return error; 6470 } 6471 6472 new = prepare_creds(); 6473 if (!new) 6474 return -ENOMEM; 6475 6476 /* Permission checking based on the specified context is 6477 performed during the actual operation (execve, 6478 open/mkdir/...), when we know the full context of the 6479 operation. See selinux_bprm_creds_for_exec for the execve 6480 checks and may_create for the file creation checks. The 6481 operation will then fail if the context is not permitted. */ 6482 tsec = selinux_cred(new); 6483 if (attr == LSM_ATTR_EXEC) { 6484 tsec->exec_sid = sid; 6485 } else if (attr == LSM_ATTR_FSCREATE) { 6486 tsec->create_sid = sid; 6487 } else if (attr == LSM_ATTR_KEYCREATE) { 6488 if (sid) { 6489 error = avc_has_perm(mysid, sid, 6490 SECCLASS_KEY, KEY__CREATE, NULL); 6491 if (error) 6492 goto abort_change; 6493 } 6494 tsec->keycreate_sid = sid; 6495 } else if (attr == LSM_ATTR_SOCKCREATE) { 6496 tsec->sockcreate_sid = sid; 6497 } else if (attr == LSM_ATTR_CURRENT) { 6498 error = -EINVAL; 6499 if (sid == 0) 6500 goto abort_change; 6501 6502 if (!current_is_single_threaded()) { 6503 error = security_bounded_transition(tsec->sid, sid); 6504 if (error) 6505 goto abort_change; 6506 } 6507 6508 /* Check permissions for the transition. */ 6509 error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS, 6510 PROCESS__DYNTRANSITION, NULL); 6511 if (error) 6512 goto abort_change; 6513 6514 /* Check for ptracing, and update the task SID if ok. 6515 Otherwise, leave SID unchanged and fail. */ 6516 ptsid = ptrace_parent_sid(); 6517 if (ptsid != 0) { 6518 error = avc_has_perm(ptsid, sid, SECCLASS_PROCESS, 6519 PROCESS__PTRACE, NULL); 6520 if (error) 6521 goto abort_change; 6522 } 6523 6524 tsec->sid = sid; 6525 } else { 6526 error = -EINVAL; 6527 goto abort_change; 6528 } 6529 6530 commit_creds(new); 6531 return size; 6532 6533 abort_change: 6534 abort_creds(new); 6535 return error; 6536 } 6537 6538 /** 6539 * selinux_getselfattr - Get SELinux current task attributes 6540 * @attr: the requested attribute 6541 * @ctx: buffer to receive the result 6542 * @size: buffer size (input), buffer size used (output) 6543 * @flags: unused 6544 * 6545 * Fill the passed user space @ctx with the details of the requested 6546 * attribute. 6547 * 6548 * Returns the number of attributes on success, an error code otherwise. 6549 * There will only ever be one attribute. 6550 */ 6551 static int selinux_getselfattr(unsigned int attr, struct lsm_ctx __user *ctx, 6552 u32 *size, u32 flags) 6553 { 6554 int rc; 6555 char *val = NULL; 6556 int val_len; 6557 6558 val_len = selinux_lsm_getattr(attr, current, &val); 6559 if (val_len < 0) 6560 return val_len; 6561 rc = lsm_fill_user_ctx(ctx, size, val, val_len, LSM_ID_SELINUX, 0); 6562 kfree(val); 6563 return (!rc ? 1 : rc); 6564 } 6565 6566 static int selinux_setselfattr(unsigned int attr, struct lsm_ctx *ctx, 6567 u32 size, u32 flags) 6568 { 6569 int rc; 6570 6571 rc = selinux_lsm_setattr(attr, ctx->ctx, ctx->ctx_len); 6572 if (rc > 0) 6573 return 0; 6574 return rc; 6575 } 6576 6577 static int selinux_getprocattr(struct task_struct *p, 6578 const char *name, char **value) 6579 { 6580 unsigned int attr = lsm_name_to_attr(name); 6581 int rc; 6582 6583 if (attr) { 6584 rc = selinux_lsm_getattr(attr, p, value); 6585 if (rc != -EOPNOTSUPP) 6586 return rc; 6587 } 6588 6589 return -EINVAL; 6590 } 6591 6592 static int selinux_setprocattr(const char *name, void *value, size_t size) 6593 { 6594 int attr = lsm_name_to_attr(name); 6595 6596 if (attr) 6597 return selinux_lsm_setattr(attr, value, size); 6598 return -EINVAL; 6599 } 6600 6601 static int selinux_ismaclabel(const char *name) 6602 { 6603 return (strcmp(name, XATTR_SELINUX_SUFFIX) == 0); 6604 } 6605 6606 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen) 6607 { 6608 return security_sid_to_context(secid, 6609 secdata, seclen); 6610 } 6611 6612 static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid) 6613 { 6614 return security_context_to_sid(secdata, seclen, 6615 secid, GFP_KERNEL); 6616 } 6617 6618 static void selinux_release_secctx(char *secdata, u32 seclen) 6619 { 6620 kfree(secdata); 6621 } 6622 6623 static void selinux_inode_invalidate_secctx(struct inode *inode) 6624 { 6625 struct inode_security_struct *isec = selinux_inode(inode); 6626 6627 spin_lock(&isec->lock); 6628 isec->initialized = LABEL_INVALID; 6629 spin_unlock(&isec->lock); 6630 } 6631 6632 /* 6633 * called with inode->i_mutex locked 6634 */ 6635 static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen) 6636 { 6637 int rc = selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX, 6638 ctx, ctxlen, 0); 6639 /* Do not return error when suppressing label (SBLABEL_MNT not set). */ 6640 return rc == -EOPNOTSUPP ? 0 : rc; 6641 } 6642 6643 /* 6644 * called with inode->i_mutex locked 6645 */ 6646 static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen) 6647 { 6648 return __vfs_setxattr_noperm(&nop_mnt_idmap, dentry, XATTR_NAME_SELINUX, 6649 ctx, ctxlen, 0); 6650 } 6651 6652 static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen) 6653 { 6654 int len = 0; 6655 len = selinux_inode_getsecurity(&nop_mnt_idmap, inode, 6656 XATTR_SELINUX_SUFFIX, ctx, true); 6657 if (len < 0) 6658 return len; 6659 *ctxlen = len; 6660 return 0; 6661 } 6662 #ifdef CONFIG_KEYS 6663 6664 static int selinux_key_alloc(struct key *k, const struct cred *cred, 6665 unsigned long flags) 6666 { 6667 const struct task_security_struct *tsec; 6668 struct key_security_struct *ksec; 6669 6670 ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL); 6671 if (!ksec) 6672 return -ENOMEM; 6673 6674 tsec = selinux_cred(cred); 6675 if (tsec->keycreate_sid) 6676 ksec->sid = tsec->keycreate_sid; 6677 else 6678 ksec->sid = tsec->sid; 6679 6680 k->security = ksec; 6681 return 0; 6682 } 6683 6684 static void selinux_key_free(struct key *k) 6685 { 6686 struct key_security_struct *ksec = k->security; 6687 6688 k->security = NULL; 6689 kfree(ksec); 6690 } 6691 6692 static int selinux_key_permission(key_ref_t key_ref, 6693 const struct cred *cred, 6694 enum key_need_perm need_perm) 6695 { 6696 struct key *key; 6697 struct key_security_struct *ksec; 6698 u32 perm, sid; 6699 6700 switch (need_perm) { 6701 case KEY_NEED_VIEW: 6702 perm = KEY__VIEW; 6703 break; 6704 case KEY_NEED_READ: 6705 perm = KEY__READ; 6706 break; 6707 case KEY_NEED_WRITE: 6708 perm = KEY__WRITE; 6709 break; 6710 case KEY_NEED_SEARCH: 6711 perm = KEY__SEARCH; 6712 break; 6713 case KEY_NEED_LINK: 6714 perm = KEY__LINK; 6715 break; 6716 case KEY_NEED_SETATTR: 6717 perm = KEY__SETATTR; 6718 break; 6719 case KEY_NEED_UNLINK: 6720 case KEY_SYSADMIN_OVERRIDE: 6721 case KEY_AUTHTOKEN_OVERRIDE: 6722 case KEY_DEFER_PERM_CHECK: 6723 return 0; 6724 default: 6725 WARN_ON(1); 6726 return -EPERM; 6727 6728 } 6729 6730 sid = cred_sid(cred); 6731 key = key_ref_to_ptr(key_ref); 6732 ksec = key->security; 6733 6734 return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, perm, NULL); 6735 } 6736 6737 static int selinux_key_getsecurity(struct key *key, char **_buffer) 6738 { 6739 struct key_security_struct *ksec = key->security; 6740 char *context = NULL; 6741 unsigned len; 6742 int rc; 6743 6744 rc = security_sid_to_context(ksec->sid, 6745 &context, &len); 6746 if (!rc) 6747 rc = len; 6748 *_buffer = context; 6749 return rc; 6750 } 6751 6752 #ifdef CONFIG_KEY_NOTIFICATIONS 6753 static int selinux_watch_key(struct key *key) 6754 { 6755 struct key_security_struct *ksec = key->security; 6756 u32 sid = current_sid(); 6757 6758 return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, KEY__VIEW, NULL); 6759 } 6760 #endif 6761 #endif 6762 6763 #ifdef CONFIG_SECURITY_INFINIBAND 6764 static int selinux_ib_pkey_access(void *ib_sec, u64 subnet_prefix, u16 pkey_val) 6765 { 6766 struct common_audit_data ad; 6767 int err; 6768 u32 sid = 0; 6769 struct ib_security_struct *sec = ib_sec; 6770 struct lsm_ibpkey_audit ibpkey; 6771 6772 err = sel_ib_pkey_sid(subnet_prefix, pkey_val, &sid); 6773 if (err) 6774 return err; 6775 6776 ad.type = LSM_AUDIT_DATA_IBPKEY; 6777 ibpkey.subnet_prefix = subnet_prefix; 6778 ibpkey.pkey = pkey_val; 6779 ad.u.ibpkey = &ibpkey; 6780 return avc_has_perm(sec->sid, sid, 6781 SECCLASS_INFINIBAND_PKEY, 6782 INFINIBAND_PKEY__ACCESS, &ad); 6783 } 6784 6785 static int selinux_ib_endport_manage_subnet(void *ib_sec, const char *dev_name, 6786 u8 port_num) 6787 { 6788 struct common_audit_data ad; 6789 int err; 6790 u32 sid = 0; 6791 struct ib_security_struct *sec = ib_sec; 6792 struct lsm_ibendport_audit ibendport; 6793 6794 err = security_ib_endport_sid(dev_name, port_num, 6795 &sid); 6796 6797 if (err) 6798 return err; 6799 6800 ad.type = LSM_AUDIT_DATA_IBENDPORT; 6801 ibendport.dev_name = dev_name; 6802 ibendport.port = port_num; 6803 ad.u.ibendport = &ibendport; 6804 return avc_has_perm(sec->sid, sid, 6805 SECCLASS_INFINIBAND_ENDPORT, 6806 INFINIBAND_ENDPORT__MANAGE_SUBNET, &ad); 6807 } 6808 6809 static int selinux_ib_alloc_security(void **ib_sec) 6810 { 6811 struct ib_security_struct *sec; 6812 6813 sec = kzalloc(sizeof(*sec), GFP_KERNEL); 6814 if (!sec) 6815 return -ENOMEM; 6816 sec->sid = current_sid(); 6817 6818 *ib_sec = sec; 6819 return 0; 6820 } 6821 6822 static void selinux_ib_free_security(void *ib_sec) 6823 { 6824 kfree(ib_sec); 6825 } 6826 #endif 6827 6828 #ifdef CONFIG_BPF_SYSCALL 6829 static int selinux_bpf(int cmd, union bpf_attr *attr, 6830 unsigned int size) 6831 { 6832 u32 sid = current_sid(); 6833 int ret; 6834 6835 switch (cmd) { 6836 case BPF_MAP_CREATE: 6837 ret = avc_has_perm(sid, sid, SECCLASS_BPF, BPF__MAP_CREATE, 6838 NULL); 6839 break; 6840 case BPF_PROG_LOAD: 6841 ret = avc_has_perm(sid, sid, SECCLASS_BPF, BPF__PROG_LOAD, 6842 NULL); 6843 break; 6844 default: 6845 ret = 0; 6846 break; 6847 } 6848 6849 return ret; 6850 } 6851 6852 static u32 bpf_map_fmode_to_av(fmode_t fmode) 6853 { 6854 u32 av = 0; 6855 6856 if (fmode & FMODE_READ) 6857 av |= BPF__MAP_READ; 6858 if (fmode & FMODE_WRITE) 6859 av |= BPF__MAP_WRITE; 6860 return av; 6861 } 6862 6863 /* This function will check the file pass through unix socket or binder to see 6864 * if it is a bpf related object. And apply corresponding checks on the bpf 6865 * object based on the type. The bpf maps and programs, not like other files and 6866 * socket, are using a shared anonymous inode inside the kernel as their inode. 6867 * So checking that inode cannot identify if the process have privilege to 6868 * access the bpf object and that's why we have to add this additional check in 6869 * selinux_file_receive and selinux_binder_transfer_files. 6870 */ 6871 static int bpf_fd_pass(const struct file *file, u32 sid) 6872 { 6873 struct bpf_security_struct *bpfsec; 6874 struct bpf_prog *prog; 6875 struct bpf_map *map; 6876 int ret; 6877 6878 if (file->f_op == &bpf_map_fops) { 6879 map = file->private_data; 6880 bpfsec = map->security; 6881 ret = avc_has_perm(sid, bpfsec->sid, SECCLASS_BPF, 6882 bpf_map_fmode_to_av(file->f_mode), NULL); 6883 if (ret) 6884 return ret; 6885 } else if (file->f_op == &bpf_prog_fops) { 6886 prog = file->private_data; 6887 bpfsec = prog->aux->security; 6888 ret = avc_has_perm(sid, bpfsec->sid, SECCLASS_BPF, 6889 BPF__PROG_RUN, NULL); 6890 if (ret) 6891 return ret; 6892 } 6893 return 0; 6894 } 6895 6896 static int selinux_bpf_map(struct bpf_map *map, fmode_t fmode) 6897 { 6898 u32 sid = current_sid(); 6899 struct bpf_security_struct *bpfsec; 6900 6901 bpfsec = map->security; 6902 return avc_has_perm(sid, bpfsec->sid, SECCLASS_BPF, 6903 bpf_map_fmode_to_av(fmode), NULL); 6904 } 6905 6906 static int selinux_bpf_prog(struct bpf_prog *prog) 6907 { 6908 u32 sid = current_sid(); 6909 struct bpf_security_struct *bpfsec; 6910 6911 bpfsec = prog->aux->security; 6912 return avc_has_perm(sid, bpfsec->sid, SECCLASS_BPF, 6913 BPF__PROG_RUN, NULL); 6914 } 6915 6916 static int selinux_bpf_map_create(struct bpf_map *map, union bpf_attr *attr, 6917 struct bpf_token *token) 6918 { 6919 struct bpf_security_struct *bpfsec; 6920 6921 bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL); 6922 if (!bpfsec) 6923 return -ENOMEM; 6924 6925 bpfsec->sid = current_sid(); 6926 map->security = bpfsec; 6927 6928 return 0; 6929 } 6930 6931 static void selinux_bpf_map_free(struct bpf_map *map) 6932 { 6933 struct bpf_security_struct *bpfsec = map->security; 6934 6935 map->security = NULL; 6936 kfree(bpfsec); 6937 } 6938 6939 static int selinux_bpf_prog_load(struct bpf_prog *prog, union bpf_attr *attr, 6940 struct bpf_token *token) 6941 { 6942 struct bpf_security_struct *bpfsec; 6943 6944 bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL); 6945 if (!bpfsec) 6946 return -ENOMEM; 6947 6948 bpfsec->sid = current_sid(); 6949 prog->aux->security = bpfsec; 6950 6951 return 0; 6952 } 6953 6954 static void selinux_bpf_prog_free(struct bpf_prog *prog) 6955 { 6956 struct bpf_security_struct *bpfsec = prog->aux->security; 6957 6958 prog->aux->security = NULL; 6959 kfree(bpfsec); 6960 } 6961 6962 static int selinux_bpf_token_create(struct bpf_token *token, union bpf_attr *attr, 6963 struct path *path) 6964 { 6965 struct bpf_security_struct *bpfsec; 6966 6967 bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL); 6968 if (!bpfsec) 6969 return -ENOMEM; 6970 6971 bpfsec->sid = current_sid(); 6972 token->security = bpfsec; 6973 6974 return 0; 6975 } 6976 6977 static void selinux_bpf_token_free(struct bpf_token *token) 6978 { 6979 struct bpf_security_struct *bpfsec = token->security; 6980 6981 token->security = NULL; 6982 kfree(bpfsec); 6983 } 6984 #endif 6985 6986 struct lsm_blob_sizes selinux_blob_sizes __ro_after_init = { 6987 .lbs_cred = sizeof(struct task_security_struct), 6988 .lbs_file = sizeof(struct file_security_struct), 6989 .lbs_inode = sizeof(struct inode_security_struct), 6990 .lbs_ipc = sizeof(struct ipc_security_struct), 6991 .lbs_msg_msg = sizeof(struct msg_security_struct), 6992 .lbs_superblock = sizeof(struct superblock_security_struct), 6993 .lbs_xattr_count = SELINUX_INODE_INIT_XATTRS, 6994 }; 6995 6996 #ifdef CONFIG_PERF_EVENTS 6997 static int selinux_perf_event_open(struct perf_event_attr *attr, int type) 6998 { 6999 u32 requested, sid = current_sid(); 7000 7001 if (type == PERF_SECURITY_OPEN) 7002 requested = PERF_EVENT__OPEN; 7003 else if (type == PERF_SECURITY_CPU) 7004 requested = PERF_EVENT__CPU; 7005 else if (type == PERF_SECURITY_KERNEL) 7006 requested = PERF_EVENT__KERNEL; 7007 else if (type == PERF_SECURITY_TRACEPOINT) 7008 requested = PERF_EVENT__TRACEPOINT; 7009 else 7010 return -EINVAL; 7011 7012 return avc_has_perm(sid, sid, SECCLASS_PERF_EVENT, 7013 requested, NULL); 7014 } 7015 7016 static int selinux_perf_event_alloc(struct perf_event *event) 7017 { 7018 struct perf_event_security_struct *perfsec; 7019 7020 perfsec = kzalloc(sizeof(*perfsec), GFP_KERNEL); 7021 if (!perfsec) 7022 return -ENOMEM; 7023 7024 perfsec->sid = current_sid(); 7025 event->security = perfsec; 7026 7027 return 0; 7028 } 7029 7030 static void selinux_perf_event_free(struct perf_event *event) 7031 { 7032 struct perf_event_security_struct *perfsec = event->security; 7033 7034 event->security = NULL; 7035 kfree(perfsec); 7036 } 7037 7038 static int selinux_perf_event_read(struct perf_event *event) 7039 { 7040 struct perf_event_security_struct *perfsec = event->security; 7041 u32 sid = current_sid(); 7042 7043 return avc_has_perm(sid, perfsec->sid, 7044 SECCLASS_PERF_EVENT, PERF_EVENT__READ, NULL); 7045 } 7046 7047 static int selinux_perf_event_write(struct perf_event *event) 7048 { 7049 struct perf_event_security_struct *perfsec = event->security; 7050 u32 sid = current_sid(); 7051 7052 return avc_has_perm(sid, perfsec->sid, 7053 SECCLASS_PERF_EVENT, PERF_EVENT__WRITE, NULL); 7054 } 7055 #endif 7056 7057 #ifdef CONFIG_IO_URING 7058 /** 7059 * selinux_uring_override_creds - check the requested cred override 7060 * @new: the target creds 7061 * 7062 * Check to see if the current task is allowed to override it's credentials 7063 * to service an io_uring operation. 7064 */ 7065 static int selinux_uring_override_creds(const struct cred *new) 7066 { 7067 return avc_has_perm(current_sid(), cred_sid(new), 7068 SECCLASS_IO_URING, IO_URING__OVERRIDE_CREDS, NULL); 7069 } 7070 7071 /** 7072 * selinux_uring_sqpoll - check if a io_uring polling thread can be created 7073 * 7074 * Check to see if the current task is allowed to create a new io_uring 7075 * kernel polling thread. 7076 */ 7077 static int selinux_uring_sqpoll(void) 7078 { 7079 u32 sid = current_sid(); 7080 7081 return avc_has_perm(sid, sid, 7082 SECCLASS_IO_URING, IO_URING__SQPOLL, NULL); 7083 } 7084 7085 /** 7086 * selinux_uring_cmd - check if IORING_OP_URING_CMD is allowed 7087 * @ioucmd: the io_uring command structure 7088 * 7089 * Check to see if the current domain is allowed to execute an 7090 * IORING_OP_URING_CMD against the device/file specified in @ioucmd. 7091 * 7092 */ 7093 static int selinux_uring_cmd(struct io_uring_cmd *ioucmd) 7094 { 7095 struct file *file = ioucmd->file; 7096 struct inode *inode = file_inode(file); 7097 struct inode_security_struct *isec = selinux_inode(inode); 7098 struct common_audit_data ad; 7099 7100 ad.type = LSM_AUDIT_DATA_FILE; 7101 ad.u.file = file; 7102 7103 return avc_has_perm(current_sid(), isec->sid, 7104 SECCLASS_IO_URING, IO_URING__CMD, &ad); 7105 } 7106 #endif /* CONFIG_IO_URING */ 7107 7108 static const struct lsm_id selinux_lsmid = { 7109 .name = "selinux", 7110 .id = LSM_ID_SELINUX, 7111 }; 7112 7113 /* 7114 * IMPORTANT NOTE: When adding new hooks, please be careful to keep this order: 7115 * 1. any hooks that don't belong to (2.) or (3.) below, 7116 * 2. hooks that both access structures allocated by other hooks, and allocate 7117 * structures that can be later accessed by other hooks (mostly "cloning" 7118 * hooks), 7119 * 3. hooks that only allocate structures that can be later accessed by other 7120 * hooks ("allocating" hooks). 7121 * 7122 * Please follow block comment delimiters in the list to keep this order. 7123 */ 7124 static struct security_hook_list selinux_hooks[] __ro_after_init = { 7125 LSM_HOOK_INIT(binder_set_context_mgr, selinux_binder_set_context_mgr), 7126 LSM_HOOK_INIT(binder_transaction, selinux_binder_transaction), 7127 LSM_HOOK_INIT(binder_transfer_binder, selinux_binder_transfer_binder), 7128 LSM_HOOK_INIT(binder_transfer_file, selinux_binder_transfer_file), 7129 7130 LSM_HOOK_INIT(ptrace_access_check, selinux_ptrace_access_check), 7131 LSM_HOOK_INIT(ptrace_traceme, selinux_ptrace_traceme), 7132 LSM_HOOK_INIT(capget, selinux_capget), 7133 LSM_HOOK_INIT(capset, selinux_capset), 7134 LSM_HOOK_INIT(capable, selinux_capable), 7135 LSM_HOOK_INIT(quotactl, selinux_quotactl), 7136 LSM_HOOK_INIT(quota_on, selinux_quota_on), 7137 LSM_HOOK_INIT(syslog, selinux_syslog), 7138 LSM_HOOK_INIT(vm_enough_memory, selinux_vm_enough_memory), 7139 7140 LSM_HOOK_INIT(netlink_send, selinux_netlink_send), 7141 7142 LSM_HOOK_INIT(bprm_creds_for_exec, selinux_bprm_creds_for_exec), 7143 LSM_HOOK_INIT(bprm_committing_creds, selinux_bprm_committing_creds), 7144 LSM_HOOK_INIT(bprm_committed_creds, selinux_bprm_committed_creds), 7145 7146 LSM_HOOK_INIT(sb_free_mnt_opts, selinux_free_mnt_opts), 7147 LSM_HOOK_INIT(sb_mnt_opts_compat, selinux_sb_mnt_opts_compat), 7148 LSM_HOOK_INIT(sb_remount, selinux_sb_remount), 7149 LSM_HOOK_INIT(sb_kern_mount, selinux_sb_kern_mount), 7150 LSM_HOOK_INIT(sb_show_options, selinux_sb_show_options), 7151 LSM_HOOK_INIT(sb_statfs, selinux_sb_statfs), 7152 LSM_HOOK_INIT(sb_mount, selinux_mount), 7153 LSM_HOOK_INIT(sb_umount, selinux_umount), 7154 LSM_HOOK_INIT(sb_set_mnt_opts, selinux_set_mnt_opts), 7155 LSM_HOOK_INIT(sb_clone_mnt_opts, selinux_sb_clone_mnt_opts), 7156 7157 LSM_HOOK_INIT(move_mount, selinux_move_mount), 7158 7159 LSM_HOOK_INIT(dentry_init_security, selinux_dentry_init_security), 7160 LSM_HOOK_INIT(dentry_create_files_as, selinux_dentry_create_files_as), 7161 7162 LSM_HOOK_INIT(inode_free_security, selinux_inode_free_security), 7163 LSM_HOOK_INIT(inode_init_security, selinux_inode_init_security), 7164 LSM_HOOK_INIT(inode_init_security_anon, selinux_inode_init_security_anon), 7165 LSM_HOOK_INIT(inode_create, selinux_inode_create), 7166 LSM_HOOK_INIT(inode_link, selinux_inode_link), 7167 LSM_HOOK_INIT(inode_unlink, selinux_inode_unlink), 7168 LSM_HOOK_INIT(inode_symlink, selinux_inode_symlink), 7169 LSM_HOOK_INIT(inode_mkdir, selinux_inode_mkdir), 7170 LSM_HOOK_INIT(inode_rmdir, selinux_inode_rmdir), 7171 LSM_HOOK_INIT(inode_mknod, selinux_inode_mknod), 7172 LSM_HOOK_INIT(inode_rename, selinux_inode_rename), 7173 LSM_HOOK_INIT(inode_readlink, selinux_inode_readlink), 7174 LSM_HOOK_INIT(inode_follow_link, selinux_inode_follow_link), 7175 LSM_HOOK_INIT(inode_permission, selinux_inode_permission), 7176 LSM_HOOK_INIT(inode_setattr, selinux_inode_setattr), 7177 LSM_HOOK_INIT(inode_getattr, selinux_inode_getattr), 7178 LSM_HOOK_INIT(inode_setxattr, selinux_inode_setxattr), 7179 LSM_HOOK_INIT(inode_post_setxattr, selinux_inode_post_setxattr), 7180 LSM_HOOK_INIT(inode_getxattr, selinux_inode_getxattr), 7181 LSM_HOOK_INIT(inode_listxattr, selinux_inode_listxattr), 7182 LSM_HOOK_INIT(inode_removexattr, selinux_inode_removexattr), 7183 LSM_HOOK_INIT(inode_set_acl, selinux_inode_set_acl), 7184 LSM_HOOK_INIT(inode_get_acl, selinux_inode_get_acl), 7185 LSM_HOOK_INIT(inode_remove_acl, selinux_inode_remove_acl), 7186 LSM_HOOK_INIT(inode_getsecurity, selinux_inode_getsecurity), 7187 LSM_HOOK_INIT(inode_setsecurity, selinux_inode_setsecurity), 7188 LSM_HOOK_INIT(inode_listsecurity, selinux_inode_listsecurity), 7189 LSM_HOOK_INIT(inode_getsecid, selinux_inode_getsecid), 7190 LSM_HOOK_INIT(inode_copy_up, selinux_inode_copy_up), 7191 LSM_HOOK_INIT(inode_copy_up_xattr, selinux_inode_copy_up_xattr), 7192 LSM_HOOK_INIT(path_notify, selinux_path_notify), 7193 7194 LSM_HOOK_INIT(kernfs_init_security, selinux_kernfs_init_security), 7195 7196 LSM_HOOK_INIT(file_permission, selinux_file_permission), 7197 LSM_HOOK_INIT(file_alloc_security, selinux_file_alloc_security), 7198 LSM_HOOK_INIT(file_ioctl, selinux_file_ioctl), 7199 LSM_HOOK_INIT(file_ioctl_compat, selinux_file_ioctl_compat), 7200 LSM_HOOK_INIT(mmap_file, selinux_mmap_file), 7201 LSM_HOOK_INIT(mmap_addr, selinux_mmap_addr), 7202 LSM_HOOK_INIT(file_mprotect, selinux_file_mprotect), 7203 LSM_HOOK_INIT(file_lock, selinux_file_lock), 7204 LSM_HOOK_INIT(file_fcntl, selinux_file_fcntl), 7205 LSM_HOOK_INIT(file_set_fowner, selinux_file_set_fowner), 7206 LSM_HOOK_INIT(file_send_sigiotask, selinux_file_send_sigiotask), 7207 LSM_HOOK_INIT(file_receive, selinux_file_receive), 7208 7209 LSM_HOOK_INIT(file_open, selinux_file_open), 7210 7211 LSM_HOOK_INIT(task_alloc, selinux_task_alloc), 7212 LSM_HOOK_INIT(cred_prepare, selinux_cred_prepare), 7213 LSM_HOOK_INIT(cred_transfer, selinux_cred_transfer), 7214 LSM_HOOK_INIT(cred_getsecid, selinux_cred_getsecid), 7215 LSM_HOOK_INIT(kernel_act_as, selinux_kernel_act_as), 7216 LSM_HOOK_INIT(kernel_create_files_as, selinux_kernel_create_files_as), 7217 LSM_HOOK_INIT(kernel_module_request, selinux_kernel_module_request), 7218 LSM_HOOK_INIT(kernel_load_data, selinux_kernel_load_data), 7219 LSM_HOOK_INIT(kernel_read_file, selinux_kernel_read_file), 7220 LSM_HOOK_INIT(task_setpgid, selinux_task_setpgid), 7221 LSM_HOOK_INIT(task_getpgid, selinux_task_getpgid), 7222 LSM_HOOK_INIT(task_getsid, selinux_task_getsid), 7223 LSM_HOOK_INIT(current_getsecid_subj, selinux_current_getsecid_subj), 7224 LSM_HOOK_INIT(task_getsecid_obj, selinux_task_getsecid_obj), 7225 LSM_HOOK_INIT(task_setnice, selinux_task_setnice), 7226 LSM_HOOK_INIT(task_setioprio, selinux_task_setioprio), 7227 LSM_HOOK_INIT(task_getioprio, selinux_task_getioprio), 7228 LSM_HOOK_INIT(task_prlimit, selinux_task_prlimit), 7229 LSM_HOOK_INIT(task_setrlimit, selinux_task_setrlimit), 7230 LSM_HOOK_INIT(task_setscheduler, selinux_task_setscheduler), 7231 LSM_HOOK_INIT(task_getscheduler, selinux_task_getscheduler), 7232 LSM_HOOK_INIT(task_movememory, selinux_task_movememory), 7233 LSM_HOOK_INIT(task_kill, selinux_task_kill), 7234 LSM_HOOK_INIT(task_to_inode, selinux_task_to_inode), 7235 LSM_HOOK_INIT(userns_create, selinux_userns_create), 7236 7237 LSM_HOOK_INIT(ipc_permission, selinux_ipc_permission), 7238 LSM_HOOK_INIT(ipc_getsecid, selinux_ipc_getsecid), 7239 7240 LSM_HOOK_INIT(msg_queue_associate, selinux_msg_queue_associate), 7241 LSM_HOOK_INIT(msg_queue_msgctl, selinux_msg_queue_msgctl), 7242 LSM_HOOK_INIT(msg_queue_msgsnd, selinux_msg_queue_msgsnd), 7243 LSM_HOOK_INIT(msg_queue_msgrcv, selinux_msg_queue_msgrcv), 7244 7245 LSM_HOOK_INIT(shm_associate, selinux_shm_associate), 7246 LSM_HOOK_INIT(shm_shmctl, selinux_shm_shmctl), 7247 LSM_HOOK_INIT(shm_shmat, selinux_shm_shmat), 7248 7249 LSM_HOOK_INIT(sem_associate, selinux_sem_associate), 7250 LSM_HOOK_INIT(sem_semctl, selinux_sem_semctl), 7251 LSM_HOOK_INIT(sem_semop, selinux_sem_semop), 7252 7253 LSM_HOOK_INIT(d_instantiate, selinux_d_instantiate), 7254 7255 LSM_HOOK_INIT(getselfattr, selinux_getselfattr), 7256 LSM_HOOK_INIT(setselfattr, selinux_setselfattr), 7257 LSM_HOOK_INIT(getprocattr, selinux_getprocattr), 7258 LSM_HOOK_INIT(setprocattr, selinux_setprocattr), 7259 7260 LSM_HOOK_INIT(ismaclabel, selinux_ismaclabel), 7261 LSM_HOOK_INIT(secctx_to_secid, selinux_secctx_to_secid), 7262 LSM_HOOK_INIT(release_secctx, selinux_release_secctx), 7263 LSM_HOOK_INIT(inode_invalidate_secctx, selinux_inode_invalidate_secctx), 7264 LSM_HOOK_INIT(inode_notifysecctx, selinux_inode_notifysecctx), 7265 LSM_HOOK_INIT(inode_setsecctx, selinux_inode_setsecctx), 7266 7267 LSM_HOOK_INIT(unix_stream_connect, selinux_socket_unix_stream_connect), 7268 LSM_HOOK_INIT(unix_may_send, selinux_socket_unix_may_send), 7269 7270 LSM_HOOK_INIT(socket_create, selinux_socket_create), 7271 LSM_HOOK_INIT(socket_post_create, selinux_socket_post_create), 7272 LSM_HOOK_INIT(socket_socketpair, selinux_socket_socketpair), 7273 LSM_HOOK_INIT(socket_bind, selinux_socket_bind), 7274 LSM_HOOK_INIT(socket_connect, selinux_socket_connect), 7275 LSM_HOOK_INIT(socket_listen, selinux_socket_listen), 7276 LSM_HOOK_INIT(socket_accept, selinux_socket_accept), 7277 LSM_HOOK_INIT(socket_sendmsg, selinux_socket_sendmsg), 7278 LSM_HOOK_INIT(socket_recvmsg, selinux_socket_recvmsg), 7279 LSM_HOOK_INIT(socket_getsockname, selinux_socket_getsockname), 7280 LSM_HOOK_INIT(socket_getpeername, selinux_socket_getpeername), 7281 LSM_HOOK_INIT(socket_getsockopt, selinux_socket_getsockopt), 7282 LSM_HOOK_INIT(socket_setsockopt, selinux_socket_setsockopt), 7283 LSM_HOOK_INIT(socket_shutdown, selinux_socket_shutdown), 7284 LSM_HOOK_INIT(socket_sock_rcv_skb, selinux_socket_sock_rcv_skb), 7285 LSM_HOOK_INIT(socket_getpeersec_stream, 7286 selinux_socket_getpeersec_stream), 7287 LSM_HOOK_INIT(socket_getpeersec_dgram, selinux_socket_getpeersec_dgram), 7288 LSM_HOOK_INIT(sk_free_security, selinux_sk_free_security), 7289 LSM_HOOK_INIT(sk_clone_security, selinux_sk_clone_security), 7290 LSM_HOOK_INIT(sk_getsecid, selinux_sk_getsecid), 7291 LSM_HOOK_INIT(sock_graft, selinux_sock_graft), 7292 LSM_HOOK_INIT(sctp_assoc_request, selinux_sctp_assoc_request), 7293 LSM_HOOK_INIT(sctp_sk_clone, selinux_sctp_sk_clone), 7294 LSM_HOOK_INIT(sctp_bind_connect, selinux_sctp_bind_connect), 7295 LSM_HOOK_INIT(sctp_assoc_established, selinux_sctp_assoc_established), 7296 LSM_HOOK_INIT(mptcp_add_subflow, selinux_mptcp_add_subflow), 7297 LSM_HOOK_INIT(inet_conn_request, selinux_inet_conn_request), 7298 LSM_HOOK_INIT(inet_csk_clone, selinux_inet_csk_clone), 7299 LSM_HOOK_INIT(inet_conn_established, selinux_inet_conn_established), 7300 LSM_HOOK_INIT(secmark_relabel_packet, selinux_secmark_relabel_packet), 7301 LSM_HOOK_INIT(secmark_refcount_inc, selinux_secmark_refcount_inc), 7302 LSM_HOOK_INIT(secmark_refcount_dec, selinux_secmark_refcount_dec), 7303 LSM_HOOK_INIT(req_classify_flow, selinux_req_classify_flow), 7304 LSM_HOOK_INIT(tun_dev_free_security, selinux_tun_dev_free_security), 7305 LSM_HOOK_INIT(tun_dev_create, selinux_tun_dev_create), 7306 LSM_HOOK_INIT(tun_dev_attach_queue, selinux_tun_dev_attach_queue), 7307 LSM_HOOK_INIT(tun_dev_attach, selinux_tun_dev_attach), 7308 LSM_HOOK_INIT(tun_dev_open, selinux_tun_dev_open), 7309 #ifdef CONFIG_SECURITY_INFINIBAND 7310 LSM_HOOK_INIT(ib_pkey_access, selinux_ib_pkey_access), 7311 LSM_HOOK_INIT(ib_endport_manage_subnet, 7312 selinux_ib_endport_manage_subnet), 7313 LSM_HOOK_INIT(ib_free_security, selinux_ib_free_security), 7314 #endif 7315 #ifdef CONFIG_SECURITY_NETWORK_XFRM 7316 LSM_HOOK_INIT(xfrm_policy_free_security, selinux_xfrm_policy_free), 7317 LSM_HOOK_INIT(xfrm_policy_delete_security, selinux_xfrm_policy_delete), 7318 LSM_HOOK_INIT(xfrm_state_free_security, selinux_xfrm_state_free), 7319 LSM_HOOK_INIT(xfrm_state_delete_security, selinux_xfrm_state_delete), 7320 LSM_HOOK_INIT(xfrm_policy_lookup, selinux_xfrm_policy_lookup), 7321 LSM_HOOK_INIT(xfrm_state_pol_flow_match, 7322 selinux_xfrm_state_pol_flow_match), 7323 LSM_HOOK_INIT(xfrm_decode_session, selinux_xfrm_decode_session), 7324 #endif 7325 7326 #ifdef CONFIG_KEYS 7327 LSM_HOOK_INIT(key_free, selinux_key_free), 7328 LSM_HOOK_INIT(key_permission, selinux_key_permission), 7329 LSM_HOOK_INIT(key_getsecurity, selinux_key_getsecurity), 7330 #ifdef CONFIG_KEY_NOTIFICATIONS 7331 LSM_HOOK_INIT(watch_key, selinux_watch_key), 7332 #endif 7333 #endif 7334 7335 #ifdef CONFIG_AUDIT 7336 LSM_HOOK_INIT(audit_rule_known, selinux_audit_rule_known), 7337 LSM_HOOK_INIT(audit_rule_match, selinux_audit_rule_match), 7338 LSM_HOOK_INIT(audit_rule_free, selinux_audit_rule_free), 7339 #endif 7340 7341 #ifdef CONFIG_BPF_SYSCALL 7342 LSM_HOOK_INIT(bpf, selinux_bpf), 7343 LSM_HOOK_INIT(bpf_map, selinux_bpf_map), 7344 LSM_HOOK_INIT(bpf_prog, selinux_bpf_prog), 7345 LSM_HOOK_INIT(bpf_map_free, selinux_bpf_map_free), 7346 LSM_HOOK_INIT(bpf_prog_free, selinux_bpf_prog_free), 7347 LSM_HOOK_INIT(bpf_token_free, selinux_bpf_token_free), 7348 #endif 7349 7350 #ifdef CONFIG_PERF_EVENTS 7351 LSM_HOOK_INIT(perf_event_open, selinux_perf_event_open), 7352 LSM_HOOK_INIT(perf_event_free, selinux_perf_event_free), 7353 LSM_HOOK_INIT(perf_event_read, selinux_perf_event_read), 7354 LSM_HOOK_INIT(perf_event_write, selinux_perf_event_write), 7355 #endif 7356 7357 #ifdef CONFIG_IO_URING 7358 LSM_HOOK_INIT(uring_override_creds, selinux_uring_override_creds), 7359 LSM_HOOK_INIT(uring_sqpoll, selinux_uring_sqpoll), 7360 LSM_HOOK_INIT(uring_cmd, selinux_uring_cmd), 7361 #endif 7362 7363 /* 7364 * PUT "CLONING" (ACCESSING + ALLOCATING) HOOKS HERE 7365 */ 7366 LSM_HOOK_INIT(fs_context_submount, selinux_fs_context_submount), 7367 LSM_HOOK_INIT(fs_context_dup, selinux_fs_context_dup), 7368 LSM_HOOK_INIT(fs_context_parse_param, selinux_fs_context_parse_param), 7369 LSM_HOOK_INIT(sb_eat_lsm_opts, selinux_sb_eat_lsm_opts), 7370 #ifdef CONFIG_SECURITY_NETWORK_XFRM 7371 LSM_HOOK_INIT(xfrm_policy_clone_security, selinux_xfrm_policy_clone), 7372 #endif 7373 7374 /* 7375 * PUT "ALLOCATING" HOOKS HERE 7376 */ 7377 LSM_HOOK_INIT(msg_msg_alloc_security, selinux_msg_msg_alloc_security), 7378 LSM_HOOK_INIT(msg_queue_alloc_security, 7379 selinux_msg_queue_alloc_security), 7380 LSM_HOOK_INIT(shm_alloc_security, selinux_shm_alloc_security), 7381 LSM_HOOK_INIT(sb_alloc_security, selinux_sb_alloc_security), 7382 LSM_HOOK_INIT(inode_alloc_security, selinux_inode_alloc_security), 7383 LSM_HOOK_INIT(sem_alloc_security, selinux_sem_alloc_security), 7384 LSM_HOOK_INIT(secid_to_secctx, selinux_secid_to_secctx), 7385 LSM_HOOK_INIT(inode_getsecctx, selinux_inode_getsecctx), 7386 LSM_HOOK_INIT(sk_alloc_security, selinux_sk_alloc_security), 7387 LSM_HOOK_INIT(tun_dev_alloc_security, selinux_tun_dev_alloc_security), 7388 #ifdef CONFIG_SECURITY_INFINIBAND 7389 LSM_HOOK_INIT(ib_alloc_security, selinux_ib_alloc_security), 7390 #endif 7391 #ifdef CONFIG_SECURITY_NETWORK_XFRM 7392 LSM_HOOK_INIT(xfrm_policy_alloc_security, selinux_xfrm_policy_alloc), 7393 LSM_HOOK_INIT(xfrm_state_alloc, selinux_xfrm_state_alloc), 7394 LSM_HOOK_INIT(xfrm_state_alloc_acquire, 7395 selinux_xfrm_state_alloc_acquire), 7396 #endif 7397 #ifdef CONFIG_KEYS 7398 LSM_HOOK_INIT(key_alloc, selinux_key_alloc), 7399 #endif 7400 #ifdef CONFIG_AUDIT 7401 LSM_HOOK_INIT(audit_rule_init, selinux_audit_rule_init), 7402 #endif 7403 #ifdef CONFIG_BPF_SYSCALL 7404 LSM_HOOK_INIT(bpf_map_create, selinux_bpf_map_create), 7405 LSM_HOOK_INIT(bpf_prog_load, selinux_bpf_prog_load), 7406 LSM_HOOK_INIT(bpf_token_create, selinux_bpf_token_create), 7407 #endif 7408 #ifdef CONFIG_PERF_EVENTS 7409 LSM_HOOK_INIT(perf_event_alloc, selinux_perf_event_alloc), 7410 #endif 7411 }; 7412 7413 static __init int selinux_init(void) 7414 { 7415 pr_info("SELinux: Initializing.\n"); 7416 7417 memset(&selinux_state, 0, sizeof(selinux_state)); 7418 enforcing_set(selinux_enforcing_boot); 7419 selinux_avc_init(); 7420 mutex_init(&selinux_state.status_lock); 7421 mutex_init(&selinux_state.policy_mutex); 7422 7423 /* Set the security state for the initial task. */ 7424 cred_init_security(); 7425 7426 default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC); 7427 if (!default_noexec) 7428 pr_notice("SELinux: virtual memory is executable by default\n"); 7429 7430 avc_init(); 7431 7432 avtab_cache_init(); 7433 7434 ebitmap_cache_init(); 7435 7436 hashtab_cache_init(); 7437 7438 security_add_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks), 7439 &selinux_lsmid); 7440 7441 if (avc_add_callback(selinux_netcache_avc_callback, AVC_CALLBACK_RESET)) 7442 panic("SELinux: Unable to register AVC netcache callback\n"); 7443 7444 if (avc_add_callback(selinux_lsm_notifier_avc_callback, AVC_CALLBACK_RESET)) 7445 panic("SELinux: Unable to register AVC LSM notifier callback\n"); 7446 7447 if (selinux_enforcing_boot) 7448 pr_debug("SELinux: Starting in enforcing mode\n"); 7449 else 7450 pr_debug("SELinux: Starting in permissive mode\n"); 7451 7452 fs_validate_description("selinux", selinux_fs_parameters); 7453 7454 return 0; 7455 } 7456 7457 static void delayed_superblock_init(struct super_block *sb, void *unused) 7458 { 7459 selinux_set_mnt_opts(sb, NULL, 0, NULL); 7460 } 7461 7462 void selinux_complete_init(void) 7463 { 7464 pr_debug("SELinux: Completing initialization.\n"); 7465 7466 /* Set up any superblocks initialized prior to the policy load. */ 7467 pr_debug("SELinux: Setting up existing superblocks.\n"); 7468 iterate_supers(delayed_superblock_init, NULL); 7469 } 7470 7471 /* SELinux requires early initialization in order to label 7472 all processes and objects when they are created. */ 7473 DEFINE_LSM(selinux) = { 7474 .name = "selinux", 7475 .flags = LSM_FLAG_LEGACY_MAJOR | LSM_FLAG_EXCLUSIVE, 7476 .enabled = &selinux_enabled_boot, 7477 .blobs = &selinux_blob_sizes, 7478 .init = selinux_init, 7479 }; 7480 7481 #if defined(CONFIG_NETFILTER) 7482 static const struct nf_hook_ops selinux_nf_ops[] = { 7483 { 7484 .hook = selinux_ip_postroute, 7485 .pf = NFPROTO_IPV4, 7486 .hooknum = NF_INET_POST_ROUTING, 7487 .priority = NF_IP_PRI_SELINUX_LAST, 7488 }, 7489 { 7490 .hook = selinux_ip_forward, 7491 .pf = NFPROTO_IPV4, 7492 .hooknum = NF_INET_FORWARD, 7493 .priority = NF_IP_PRI_SELINUX_FIRST, 7494 }, 7495 { 7496 .hook = selinux_ip_output, 7497 .pf = NFPROTO_IPV4, 7498 .hooknum = NF_INET_LOCAL_OUT, 7499 .priority = NF_IP_PRI_SELINUX_FIRST, 7500 }, 7501 #if IS_ENABLED(CONFIG_IPV6) 7502 { 7503 .hook = selinux_ip_postroute, 7504 .pf = NFPROTO_IPV6, 7505 .hooknum = NF_INET_POST_ROUTING, 7506 .priority = NF_IP6_PRI_SELINUX_LAST, 7507 }, 7508 { 7509 .hook = selinux_ip_forward, 7510 .pf = NFPROTO_IPV6, 7511 .hooknum = NF_INET_FORWARD, 7512 .priority = NF_IP6_PRI_SELINUX_FIRST, 7513 }, 7514 { 7515 .hook = selinux_ip_output, 7516 .pf = NFPROTO_IPV6, 7517 .hooknum = NF_INET_LOCAL_OUT, 7518 .priority = NF_IP6_PRI_SELINUX_FIRST, 7519 }, 7520 #endif /* IPV6 */ 7521 }; 7522 7523 static int __net_init selinux_nf_register(struct net *net) 7524 { 7525 return nf_register_net_hooks(net, selinux_nf_ops, 7526 ARRAY_SIZE(selinux_nf_ops)); 7527 } 7528 7529 static void __net_exit selinux_nf_unregister(struct net *net) 7530 { 7531 nf_unregister_net_hooks(net, selinux_nf_ops, 7532 ARRAY_SIZE(selinux_nf_ops)); 7533 } 7534 7535 static struct pernet_operations selinux_net_ops = { 7536 .init = selinux_nf_register, 7537 .exit = selinux_nf_unregister, 7538 }; 7539 7540 static int __init selinux_nf_ip_init(void) 7541 { 7542 int err; 7543 7544 if (!selinux_enabled_boot) 7545 return 0; 7546 7547 pr_debug("SELinux: Registering netfilter hooks\n"); 7548 7549 err = register_pernet_subsys(&selinux_net_ops); 7550 if (err) 7551 panic("SELinux: register_pernet_subsys: error %d\n", err); 7552 7553 return 0; 7554 } 7555 __initcall(selinux_nf_ip_init); 7556 #endif /* CONFIG_NETFILTER */ 7557