1 /* 2 * NSA Security-Enhanced Linux (SELinux) security module 3 * 4 * This file contains the SELinux hook function implementations. 5 * 6 * Authors: Stephen Smalley, <sds@epoch.ncsc.mil> 7 * Chris Vance, <cvance@nai.com> 8 * Wayne Salamon, <wsalamon@nai.com> 9 * James Morris <jmorris@redhat.com> 10 * 11 * Copyright (C) 2001,2002 Networks Associates Technology, Inc. 12 * Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com> 13 * Eric Paris <eparis@redhat.com> 14 * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc. 15 * <dgoeddel@trustedcs.com> 16 * Copyright (C) 2006, 2007 Hewlett-Packard Development Company, L.P. 17 * Paul Moore <paul.moore@hp.com> 18 * Copyright (C) 2007 Hitachi Software Engineering Co., Ltd. 19 * Yuichi Nakamura <ynakam@hitachisoft.jp> 20 * 21 * This program is free software; you can redistribute it and/or modify 22 * it under the terms of the GNU General Public License version 2, 23 * as published by the Free Software Foundation. 24 */ 25 26 #include <linux/init.h> 27 #include <linux/kernel.h> 28 #include <linux/tracehook.h> 29 #include <linux/errno.h> 30 #include <linux/sched.h> 31 #include <linux/security.h> 32 #include <linux/xattr.h> 33 #include <linux/capability.h> 34 #include <linux/unistd.h> 35 #include <linux/mm.h> 36 #include <linux/mman.h> 37 #include <linux/slab.h> 38 #include <linux/pagemap.h> 39 #include <linux/swap.h> 40 #include <linux/spinlock.h> 41 #include <linux/syscalls.h> 42 #include <linux/file.h> 43 #include <linux/fdtable.h> 44 #include <linux/namei.h> 45 #include <linux/mount.h> 46 #include <linux/proc_fs.h> 47 #include <linux/netfilter_ipv4.h> 48 #include <linux/netfilter_ipv6.h> 49 #include <linux/tty.h> 50 #include <net/icmp.h> 51 #include <net/ip.h> /* for local_port_range[] */ 52 #include <net/tcp.h> /* struct or_callable used in sock_rcv_skb */ 53 #include <net/net_namespace.h> 54 #include <net/netlabel.h> 55 #include <linux/uaccess.h> 56 #include <asm/ioctls.h> 57 #include <asm/atomic.h> 58 #include <linux/bitops.h> 59 #include <linux/interrupt.h> 60 #include <linux/netdevice.h> /* for network interface checks */ 61 #include <linux/netlink.h> 62 #include <linux/tcp.h> 63 #include <linux/udp.h> 64 #include <linux/dccp.h> 65 #include <linux/quota.h> 66 #include <linux/un.h> /* for Unix socket types */ 67 #include <net/af_unix.h> /* for Unix socket types */ 68 #include <linux/parser.h> 69 #include <linux/nfs_mount.h> 70 #include <net/ipv6.h> 71 #include <linux/hugetlb.h> 72 #include <linux/personality.h> 73 #include <linux/sysctl.h> 74 #include <linux/audit.h> 75 #include <linux/string.h> 76 #include <linux/selinux.h> 77 #include <linux/mutex.h> 78 #include <linux/posix-timers.h> 79 80 #include "avc.h" 81 #include "objsec.h" 82 #include "netif.h" 83 #include "netnode.h" 84 #include "netport.h" 85 #include "xfrm.h" 86 #include "netlabel.h" 87 #include "audit.h" 88 89 #define XATTR_SELINUX_SUFFIX "selinux" 90 #define XATTR_NAME_SELINUX XATTR_SECURITY_PREFIX XATTR_SELINUX_SUFFIX 91 92 #define NUM_SEL_MNT_OPTS 4 93 94 extern unsigned int policydb_loaded_version; 95 extern int selinux_nlmsg_lookup(u16 sclass, u16 nlmsg_type, u32 *perm); 96 extern int selinux_compat_net; 97 extern struct security_operations *security_ops; 98 99 /* SECMARK reference count */ 100 atomic_t selinux_secmark_refcount = ATOMIC_INIT(0); 101 102 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP 103 int selinux_enforcing; 104 105 static int __init enforcing_setup(char *str) 106 { 107 unsigned long enforcing; 108 if (!strict_strtoul(str, 0, &enforcing)) 109 selinux_enforcing = enforcing ? 1 : 0; 110 return 1; 111 } 112 __setup("enforcing=", enforcing_setup); 113 #endif 114 115 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM 116 int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE; 117 118 static int __init selinux_enabled_setup(char *str) 119 { 120 unsigned long enabled; 121 if (!strict_strtoul(str, 0, &enabled)) 122 selinux_enabled = enabled ? 1 : 0; 123 return 1; 124 } 125 __setup("selinux=", selinux_enabled_setup); 126 #else 127 int selinux_enabled = 1; 128 #endif 129 130 131 /* 132 * Minimal support for a secondary security module, 133 * just to allow the use of the capability module. 134 */ 135 static struct security_operations *secondary_ops; 136 137 /* Lists of inode and superblock security structures initialized 138 before the policy was loaded. */ 139 static LIST_HEAD(superblock_security_head); 140 static DEFINE_SPINLOCK(sb_security_lock); 141 142 static struct kmem_cache *sel_inode_cache; 143 144 /** 145 * selinux_secmark_enabled - Check to see if SECMARK is currently enabled 146 * 147 * Description: 148 * This function checks the SECMARK reference counter to see if any SECMARK 149 * targets are currently configured, if the reference counter is greater than 150 * zero SECMARK is considered to be enabled. Returns true (1) if SECMARK is 151 * enabled, false (0) if SECMARK is disabled. 152 * 153 */ 154 static int selinux_secmark_enabled(void) 155 { 156 return (atomic_read(&selinux_secmark_refcount) > 0); 157 } 158 159 /* Allocate and free functions for each kind of security blob. */ 160 161 static int task_alloc_security(struct task_struct *task) 162 { 163 struct task_security_struct *tsec; 164 165 tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL); 166 if (!tsec) 167 return -ENOMEM; 168 169 tsec->osid = tsec->sid = SECINITSID_UNLABELED; 170 task->security = tsec; 171 172 return 0; 173 } 174 175 static void task_free_security(struct task_struct *task) 176 { 177 struct task_security_struct *tsec = task->security; 178 task->security = NULL; 179 kfree(tsec); 180 } 181 182 static int inode_alloc_security(struct inode *inode) 183 { 184 struct task_security_struct *tsec = current->security; 185 struct inode_security_struct *isec; 186 187 isec = kmem_cache_zalloc(sel_inode_cache, GFP_NOFS); 188 if (!isec) 189 return -ENOMEM; 190 191 mutex_init(&isec->lock); 192 INIT_LIST_HEAD(&isec->list); 193 isec->inode = inode; 194 isec->sid = SECINITSID_UNLABELED; 195 isec->sclass = SECCLASS_FILE; 196 isec->task_sid = tsec->sid; 197 inode->i_security = isec; 198 199 return 0; 200 } 201 202 static void inode_free_security(struct inode *inode) 203 { 204 struct inode_security_struct *isec = inode->i_security; 205 struct superblock_security_struct *sbsec = inode->i_sb->s_security; 206 207 spin_lock(&sbsec->isec_lock); 208 if (!list_empty(&isec->list)) 209 list_del_init(&isec->list); 210 spin_unlock(&sbsec->isec_lock); 211 212 inode->i_security = NULL; 213 kmem_cache_free(sel_inode_cache, isec); 214 } 215 216 static int file_alloc_security(struct file *file) 217 { 218 struct task_security_struct *tsec = current->security; 219 struct file_security_struct *fsec; 220 221 fsec = kzalloc(sizeof(struct file_security_struct), GFP_KERNEL); 222 if (!fsec) 223 return -ENOMEM; 224 225 fsec->sid = tsec->sid; 226 fsec->fown_sid = tsec->sid; 227 file->f_security = fsec; 228 229 return 0; 230 } 231 232 static void file_free_security(struct file *file) 233 { 234 struct file_security_struct *fsec = file->f_security; 235 file->f_security = NULL; 236 kfree(fsec); 237 } 238 239 static int superblock_alloc_security(struct super_block *sb) 240 { 241 struct superblock_security_struct *sbsec; 242 243 sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL); 244 if (!sbsec) 245 return -ENOMEM; 246 247 mutex_init(&sbsec->lock); 248 INIT_LIST_HEAD(&sbsec->list); 249 INIT_LIST_HEAD(&sbsec->isec_head); 250 spin_lock_init(&sbsec->isec_lock); 251 sbsec->sb = sb; 252 sbsec->sid = SECINITSID_UNLABELED; 253 sbsec->def_sid = SECINITSID_FILE; 254 sbsec->mntpoint_sid = SECINITSID_UNLABELED; 255 sb->s_security = sbsec; 256 257 return 0; 258 } 259 260 static void superblock_free_security(struct super_block *sb) 261 { 262 struct superblock_security_struct *sbsec = sb->s_security; 263 264 spin_lock(&sb_security_lock); 265 if (!list_empty(&sbsec->list)) 266 list_del_init(&sbsec->list); 267 spin_unlock(&sb_security_lock); 268 269 sb->s_security = NULL; 270 kfree(sbsec); 271 } 272 273 static int sk_alloc_security(struct sock *sk, int family, gfp_t priority) 274 { 275 struct sk_security_struct *ssec; 276 277 ssec = kzalloc(sizeof(*ssec), priority); 278 if (!ssec) 279 return -ENOMEM; 280 281 ssec->peer_sid = SECINITSID_UNLABELED; 282 ssec->sid = SECINITSID_UNLABELED; 283 sk->sk_security = ssec; 284 285 selinux_netlbl_sk_security_reset(ssec, family); 286 287 return 0; 288 } 289 290 static void sk_free_security(struct sock *sk) 291 { 292 struct sk_security_struct *ssec = sk->sk_security; 293 294 sk->sk_security = NULL; 295 selinux_netlbl_sk_security_free(ssec); 296 kfree(ssec); 297 } 298 299 /* The security server must be initialized before 300 any labeling or access decisions can be provided. */ 301 extern int ss_initialized; 302 303 /* The file system's label must be initialized prior to use. */ 304 305 static char *labeling_behaviors[6] = { 306 "uses xattr", 307 "uses transition SIDs", 308 "uses task SIDs", 309 "uses genfs_contexts", 310 "not configured for labeling", 311 "uses mountpoint labeling", 312 }; 313 314 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry); 315 316 static inline int inode_doinit(struct inode *inode) 317 { 318 return inode_doinit_with_dentry(inode, NULL); 319 } 320 321 enum { 322 Opt_error = -1, 323 Opt_context = 1, 324 Opt_fscontext = 2, 325 Opt_defcontext = 3, 326 Opt_rootcontext = 4, 327 }; 328 329 static const match_table_t tokens = { 330 {Opt_context, CONTEXT_STR "%s"}, 331 {Opt_fscontext, FSCONTEXT_STR "%s"}, 332 {Opt_defcontext, DEFCONTEXT_STR "%s"}, 333 {Opt_rootcontext, ROOTCONTEXT_STR "%s"}, 334 {Opt_error, NULL}, 335 }; 336 337 #define SEL_MOUNT_FAIL_MSG "SELinux: duplicate or incompatible mount options\n" 338 339 static int may_context_mount_sb_relabel(u32 sid, 340 struct superblock_security_struct *sbsec, 341 struct task_security_struct *tsec) 342 { 343 int rc; 344 345 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM, 346 FILESYSTEM__RELABELFROM, NULL); 347 if (rc) 348 return rc; 349 350 rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM, 351 FILESYSTEM__RELABELTO, NULL); 352 return rc; 353 } 354 355 static int may_context_mount_inode_relabel(u32 sid, 356 struct superblock_security_struct *sbsec, 357 struct task_security_struct *tsec) 358 { 359 int rc; 360 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM, 361 FILESYSTEM__RELABELFROM, NULL); 362 if (rc) 363 return rc; 364 365 rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, 366 FILESYSTEM__ASSOCIATE, NULL); 367 return rc; 368 } 369 370 static int sb_finish_set_opts(struct super_block *sb) 371 { 372 struct superblock_security_struct *sbsec = sb->s_security; 373 struct dentry *root = sb->s_root; 374 struct inode *root_inode = root->d_inode; 375 int rc = 0; 376 377 if (sbsec->behavior == SECURITY_FS_USE_XATTR) { 378 /* Make sure that the xattr handler exists and that no 379 error other than -ENODATA is returned by getxattr on 380 the root directory. -ENODATA is ok, as this may be 381 the first boot of the SELinux kernel before we have 382 assigned xattr values to the filesystem. */ 383 if (!root_inode->i_op->getxattr) { 384 printk(KERN_WARNING "SELinux: (dev %s, type %s) has no " 385 "xattr support\n", sb->s_id, sb->s_type->name); 386 rc = -EOPNOTSUPP; 387 goto out; 388 } 389 rc = root_inode->i_op->getxattr(root, XATTR_NAME_SELINUX, NULL, 0); 390 if (rc < 0 && rc != -ENODATA) { 391 if (rc == -EOPNOTSUPP) 392 printk(KERN_WARNING "SELinux: (dev %s, type " 393 "%s) has no security xattr handler\n", 394 sb->s_id, sb->s_type->name); 395 else 396 printk(KERN_WARNING "SELinux: (dev %s, type " 397 "%s) getxattr errno %d\n", sb->s_id, 398 sb->s_type->name, -rc); 399 goto out; 400 } 401 } 402 403 sbsec->initialized = 1; 404 405 if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors)) 406 printk(KERN_ERR "SELinux: initialized (dev %s, type %s), unknown behavior\n", 407 sb->s_id, sb->s_type->name); 408 else 409 printk(KERN_DEBUG "SELinux: initialized (dev %s, type %s), %s\n", 410 sb->s_id, sb->s_type->name, 411 labeling_behaviors[sbsec->behavior-1]); 412 413 /* Initialize the root inode. */ 414 rc = inode_doinit_with_dentry(root_inode, root); 415 416 /* Initialize any other inodes associated with the superblock, e.g. 417 inodes created prior to initial policy load or inodes created 418 during get_sb by a pseudo filesystem that directly 419 populates itself. */ 420 spin_lock(&sbsec->isec_lock); 421 next_inode: 422 if (!list_empty(&sbsec->isec_head)) { 423 struct inode_security_struct *isec = 424 list_entry(sbsec->isec_head.next, 425 struct inode_security_struct, list); 426 struct inode *inode = isec->inode; 427 spin_unlock(&sbsec->isec_lock); 428 inode = igrab(inode); 429 if (inode) { 430 if (!IS_PRIVATE(inode)) 431 inode_doinit(inode); 432 iput(inode); 433 } 434 spin_lock(&sbsec->isec_lock); 435 list_del_init(&isec->list); 436 goto next_inode; 437 } 438 spin_unlock(&sbsec->isec_lock); 439 out: 440 return rc; 441 } 442 443 /* 444 * This function should allow an FS to ask what it's mount security 445 * options were so it can use those later for submounts, displaying 446 * mount options, or whatever. 447 */ 448 static int selinux_get_mnt_opts(const struct super_block *sb, 449 struct security_mnt_opts *opts) 450 { 451 int rc = 0, i; 452 struct superblock_security_struct *sbsec = sb->s_security; 453 char *context = NULL; 454 u32 len; 455 char tmp; 456 457 security_init_mnt_opts(opts); 458 459 if (!sbsec->initialized) 460 return -EINVAL; 461 462 if (!ss_initialized) 463 return -EINVAL; 464 465 /* 466 * if we ever use sbsec flags for anything other than tracking mount 467 * settings this is going to need a mask 468 */ 469 tmp = sbsec->flags; 470 /* count the number of mount options for this sb */ 471 for (i = 0; i < 8; i++) { 472 if (tmp & 0x01) 473 opts->num_mnt_opts++; 474 tmp >>= 1; 475 } 476 477 opts->mnt_opts = kcalloc(opts->num_mnt_opts, sizeof(char *), GFP_ATOMIC); 478 if (!opts->mnt_opts) { 479 rc = -ENOMEM; 480 goto out_free; 481 } 482 483 opts->mnt_opts_flags = kcalloc(opts->num_mnt_opts, sizeof(int), GFP_ATOMIC); 484 if (!opts->mnt_opts_flags) { 485 rc = -ENOMEM; 486 goto out_free; 487 } 488 489 i = 0; 490 if (sbsec->flags & FSCONTEXT_MNT) { 491 rc = security_sid_to_context(sbsec->sid, &context, &len); 492 if (rc) 493 goto out_free; 494 opts->mnt_opts[i] = context; 495 opts->mnt_opts_flags[i++] = FSCONTEXT_MNT; 496 } 497 if (sbsec->flags & CONTEXT_MNT) { 498 rc = security_sid_to_context(sbsec->mntpoint_sid, &context, &len); 499 if (rc) 500 goto out_free; 501 opts->mnt_opts[i] = context; 502 opts->mnt_opts_flags[i++] = CONTEXT_MNT; 503 } 504 if (sbsec->flags & DEFCONTEXT_MNT) { 505 rc = security_sid_to_context(sbsec->def_sid, &context, &len); 506 if (rc) 507 goto out_free; 508 opts->mnt_opts[i] = context; 509 opts->mnt_opts_flags[i++] = DEFCONTEXT_MNT; 510 } 511 if (sbsec->flags & ROOTCONTEXT_MNT) { 512 struct inode *root = sbsec->sb->s_root->d_inode; 513 struct inode_security_struct *isec = root->i_security; 514 515 rc = security_sid_to_context(isec->sid, &context, &len); 516 if (rc) 517 goto out_free; 518 opts->mnt_opts[i] = context; 519 opts->mnt_opts_flags[i++] = ROOTCONTEXT_MNT; 520 } 521 522 BUG_ON(i != opts->num_mnt_opts); 523 524 return 0; 525 526 out_free: 527 security_free_mnt_opts(opts); 528 return rc; 529 } 530 531 static int bad_option(struct superblock_security_struct *sbsec, char flag, 532 u32 old_sid, u32 new_sid) 533 { 534 /* check if the old mount command had the same options */ 535 if (sbsec->initialized) 536 if (!(sbsec->flags & flag) || 537 (old_sid != new_sid)) 538 return 1; 539 540 /* check if we were passed the same options twice, 541 * aka someone passed context=a,context=b 542 */ 543 if (!sbsec->initialized) 544 if (sbsec->flags & flag) 545 return 1; 546 return 0; 547 } 548 549 /* 550 * Allow filesystems with binary mount data to explicitly set mount point 551 * labeling information. 552 */ 553 static int selinux_set_mnt_opts(struct super_block *sb, 554 struct security_mnt_opts *opts) 555 { 556 int rc = 0, i; 557 struct task_security_struct *tsec = current->security; 558 struct superblock_security_struct *sbsec = sb->s_security; 559 const char *name = sb->s_type->name; 560 struct inode *inode = sbsec->sb->s_root->d_inode; 561 struct inode_security_struct *root_isec = inode->i_security; 562 u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0; 563 u32 defcontext_sid = 0; 564 char **mount_options = opts->mnt_opts; 565 int *flags = opts->mnt_opts_flags; 566 int num_opts = opts->num_mnt_opts; 567 568 mutex_lock(&sbsec->lock); 569 570 if (!ss_initialized) { 571 if (!num_opts) { 572 /* Defer initialization until selinux_complete_init, 573 after the initial policy is loaded and the security 574 server is ready to handle calls. */ 575 spin_lock(&sb_security_lock); 576 if (list_empty(&sbsec->list)) 577 list_add(&sbsec->list, &superblock_security_head); 578 spin_unlock(&sb_security_lock); 579 goto out; 580 } 581 rc = -EINVAL; 582 printk(KERN_WARNING "SELinux: Unable to set superblock options " 583 "before the security server is initialized\n"); 584 goto out; 585 } 586 587 /* 588 * Binary mount data FS will come through this function twice. Once 589 * from an explicit call and once from the generic calls from the vfs. 590 * Since the generic VFS calls will not contain any security mount data 591 * we need to skip the double mount verification. 592 * 593 * This does open a hole in which we will not notice if the first 594 * mount using this sb set explict options and a second mount using 595 * this sb does not set any security options. (The first options 596 * will be used for both mounts) 597 */ 598 if (sbsec->initialized && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA) 599 && (num_opts == 0)) 600 goto out; 601 602 /* 603 * parse the mount options, check if they are valid sids. 604 * also check if someone is trying to mount the same sb more 605 * than once with different security options. 606 */ 607 for (i = 0; i < num_opts; i++) { 608 u32 sid; 609 rc = security_context_to_sid(mount_options[i], 610 strlen(mount_options[i]), &sid); 611 if (rc) { 612 printk(KERN_WARNING "SELinux: security_context_to_sid" 613 "(%s) failed for (dev %s, type %s) errno=%d\n", 614 mount_options[i], sb->s_id, name, rc); 615 goto out; 616 } 617 switch (flags[i]) { 618 case FSCONTEXT_MNT: 619 fscontext_sid = sid; 620 621 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, 622 fscontext_sid)) 623 goto out_double_mount; 624 625 sbsec->flags |= FSCONTEXT_MNT; 626 break; 627 case CONTEXT_MNT: 628 context_sid = sid; 629 630 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, 631 context_sid)) 632 goto out_double_mount; 633 634 sbsec->flags |= CONTEXT_MNT; 635 break; 636 case ROOTCONTEXT_MNT: 637 rootcontext_sid = sid; 638 639 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, 640 rootcontext_sid)) 641 goto out_double_mount; 642 643 sbsec->flags |= ROOTCONTEXT_MNT; 644 645 break; 646 case DEFCONTEXT_MNT: 647 defcontext_sid = sid; 648 649 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, 650 defcontext_sid)) 651 goto out_double_mount; 652 653 sbsec->flags |= DEFCONTEXT_MNT; 654 655 break; 656 default: 657 rc = -EINVAL; 658 goto out; 659 } 660 } 661 662 if (sbsec->initialized) { 663 /* previously mounted with options, but not on this attempt? */ 664 if (sbsec->flags && !num_opts) 665 goto out_double_mount; 666 rc = 0; 667 goto out; 668 } 669 670 if (strcmp(sb->s_type->name, "proc") == 0) 671 sbsec->proc = 1; 672 673 /* Determine the labeling behavior to use for this filesystem type. */ 674 rc = security_fs_use(sb->s_type->name, &sbsec->behavior, &sbsec->sid); 675 if (rc) { 676 printk(KERN_WARNING "%s: security_fs_use(%s) returned %d\n", 677 __func__, sb->s_type->name, rc); 678 goto out; 679 } 680 681 /* sets the context of the superblock for the fs being mounted. */ 682 if (fscontext_sid) { 683 684 rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, tsec); 685 if (rc) 686 goto out; 687 688 sbsec->sid = fscontext_sid; 689 } 690 691 /* 692 * Switch to using mount point labeling behavior. 693 * sets the label used on all file below the mountpoint, and will set 694 * the superblock context if not already set. 695 */ 696 if (context_sid) { 697 if (!fscontext_sid) { 698 rc = may_context_mount_sb_relabel(context_sid, sbsec, tsec); 699 if (rc) 700 goto out; 701 sbsec->sid = context_sid; 702 } else { 703 rc = may_context_mount_inode_relabel(context_sid, sbsec, tsec); 704 if (rc) 705 goto out; 706 } 707 if (!rootcontext_sid) 708 rootcontext_sid = context_sid; 709 710 sbsec->mntpoint_sid = context_sid; 711 sbsec->behavior = SECURITY_FS_USE_MNTPOINT; 712 } 713 714 if (rootcontext_sid) { 715 rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec, tsec); 716 if (rc) 717 goto out; 718 719 root_isec->sid = rootcontext_sid; 720 root_isec->initialized = 1; 721 } 722 723 if (defcontext_sid) { 724 if (sbsec->behavior != SECURITY_FS_USE_XATTR) { 725 rc = -EINVAL; 726 printk(KERN_WARNING "SELinux: defcontext option is " 727 "invalid for this filesystem type\n"); 728 goto out; 729 } 730 731 if (defcontext_sid != sbsec->def_sid) { 732 rc = may_context_mount_inode_relabel(defcontext_sid, 733 sbsec, tsec); 734 if (rc) 735 goto out; 736 } 737 738 sbsec->def_sid = defcontext_sid; 739 } 740 741 rc = sb_finish_set_opts(sb); 742 out: 743 mutex_unlock(&sbsec->lock); 744 return rc; 745 out_double_mount: 746 rc = -EINVAL; 747 printk(KERN_WARNING "SELinux: mount invalid. Same superblock, different " 748 "security settings for (dev %s, type %s)\n", sb->s_id, name); 749 goto out; 750 } 751 752 static void selinux_sb_clone_mnt_opts(const struct super_block *oldsb, 753 struct super_block *newsb) 754 { 755 const struct superblock_security_struct *oldsbsec = oldsb->s_security; 756 struct superblock_security_struct *newsbsec = newsb->s_security; 757 758 int set_fscontext = (oldsbsec->flags & FSCONTEXT_MNT); 759 int set_context = (oldsbsec->flags & CONTEXT_MNT); 760 int set_rootcontext = (oldsbsec->flags & ROOTCONTEXT_MNT); 761 762 /* 763 * if the parent was able to be mounted it clearly had no special lsm 764 * mount options. thus we can safely put this sb on the list and deal 765 * with it later 766 */ 767 if (!ss_initialized) { 768 spin_lock(&sb_security_lock); 769 if (list_empty(&newsbsec->list)) 770 list_add(&newsbsec->list, &superblock_security_head); 771 spin_unlock(&sb_security_lock); 772 return; 773 } 774 775 /* how can we clone if the old one wasn't set up?? */ 776 BUG_ON(!oldsbsec->initialized); 777 778 /* if fs is reusing a sb, just let its options stand... */ 779 if (newsbsec->initialized) 780 return; 781 782 mutex_lock(&newsbsec->lock); 783 784 newsbsec->flags = oldsbsec->flags; 785 786 newsbsec->sid = oldsbsec->sid; 787 newsbsec->def_sid = oldsbsec->def_sid; 788 newsbsec->behavior = oldsbsec->behavior; 789 790 if (set_context) { 791 u32 sid = oldsbsec->mntpoint_sid; 792 793 if (!set_fscontext) 794 newsbsec->sid = sid; 795 if (!set_rootcontext) { 796 struct inode *newinode = newsb->s_root->d_inode; 797 struct inode_security_struct *newisec = newinode->i_security; 798 newisec->sid = sid; 799 } 800 newsbsec->mntpoint_sid = sid; 801 } 802 if (set_rootcontext) { 803 const struct inode *oldinode = oldsb->s_root->d_inode; 804 const struct inode_security_struct *oldisec = oldinode->i_security; 805 struct inode *newinode = newsb->s_root->d_inode; 806 struct inode_security_struct *newisec = newinode->i_security; 807 808 newisec->sid = oldisec->sid; 809 } 810 811 sb_finish_set_opts(newsb); 812 mutex_unlock(&newsbsec->lock); 813 } 814 815 static int selinux_parse_opts_str(char *options, 816 struct security_mnt_opts *opts) 817 { 818 char *p; 819 char *context = NULL, *defcontext = NULL; 820 char *fscontext = NULL, *rootcontext = NULL; 821 int rc, num_mnt_opts = 0; 822 823 opts->num_mnt_opts = 0; 824 825 /* Standard string-based options. */ 826 while ((p = strsep(&options, "|")) != NULL) { 827 int token; 828 substring_t args[MAX_OPT_ARGS]; 829 830 if (!*p) 831 continue; 832 833 token = match_token(p, tokens, args); 834 835 switch (token) { 836 case Opt_context: 837 if (context || defcontext) { 838 rc = -EINVAL; 839 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG); 840 goto out_err; 841 } 842 context = match_strdup(&args[0]); 843 if (!context) { 844 rc = -ENOMEM; 845 goto out_err; 846 } 847 break; 848 849 case Opt_fscontext: 850 if (fscontext) { 851 rc = -EINVAL; 852 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG); 853 goto out_err; 854 } 855 fscontext = match_strdup(&args[0]); 856 if (!fscontext) { 857 rc = -ENOMEM; 858 goto out_err; 859 } 860 break; 861 862 case Opt_rootcontext: 863 if (rootcontext) { 864 rc = -EINVAL; 865 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG); 866 goto out_err; 867 } 868 rootcontext = match_strdup(&args[0]); 869 if (!rootcontext) { 870 rc = -ENOMEM; 871 goto out_err; 872 } 873 break; 874 875 case Opt_defcontext: 876 if (context || defcontext) { 877 rc = -EINVAL; 878 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG); 879 goto out_err; 880 } 881 defcontext = match_strdup(&args[0]); 882 if (!defcontext) { 883 rc = -ENOMEM; 884 goto out_err; 885 } 886 break; 887 888 default: 889 rc = -EINVAL; 890 printk(KERN_WARNING "SELinux: unknown mount option\n"); 891 goto out_err; 892 893 } 894 } 895 896 rc = -ENOMEM; 897 opts->mnt_opts = kcalloc(NUM_SEL_MNT_OPTS, sizeof(char *), GFP_ATOMIC); 898 if (!opts->mnt_opts) 899 goto out_err; 900 901 opts->mnt_opts_flags = kcalloc(NUM_SEL_MNT_OPTS, sizeof(int), GFP_ATOMIC); 902 if (!opts->mnt_opts_flags) { 903 kfree(opts->mnt_opts); 904 goto out_err; 905 } 906 907 if (fscontext) { 908 opts->mnt_opts[num_mnt_opts] = fscontext; 909 opts->mnt_opts_flags[num_mnt_opts++] = FSCONTEXT_MNT; 910 } 911 if (context) { 912 opts->mnt_opts[num_mnt_opts] = context; 913 opts->mnt_opts_flags[num_mnt_opts++] = CONTEXT_MNT; 914 } 915 if (rootcontext) { 916 opts->mnt_opts[num_mnt_opts] = rootcontext; 917 opts->mnt_opts_flags[num_mnt_opts++] = ROOTCONTEXT_MNT; 918 } 919 if (defcontext) { 920 opts->mnt_opts[num_mnt_opts] = defcontext; 921 opts->mnt_opts_flags[num_mnt_opts++] = DEFCONTEXT_MNT; 922 } 923 924 opts->num_mnt_opts = num_mnt_opts; 925 return 0; 926 927 out_err: 928 kfree(context); 929 kfree(defcontext); 930 kfree(fscontext); 931 kfree(rootcontext); 932 return rc; 933 } 934 /* 935 * string mount options parsing and call set the sbsec 936 */ 937 static int superblock_doinit(struct super_block *sb, void *data) 938 { 939 int rc = 0; 940 char *options = data; 941 struct security_mnt_opts opts; 942 943 security_init_mnt_opts(&opts); 944 945 if (!data) 946 goto out; 947 948 BUG_ON(sb->s_type->fs_flags & FS_BINARY_MOUNTDATA); 949 950 rc = selinux_parse_opts_str(options, &opts); 951 if (rc) 952 goto out_err; 953 954 out: 955 rc = selinux_set_mnt_opts(sb, &opts); 956 957 out_err: 958 security_free_mnt_opts(&opts); 959 return rc; 960 } 961 962 static void selinux_write_opts(struct seq_file *m, 963 struct security_mnt_opts *opts) 964 { 965 int i; 966 char *prefix; 967 968 for (i = 0; i < opts->num_mnt_opts; i++) { 969 char *has_comma = strchr(opts->mnt_opts[i], ','); 970 971 switch (opts->mnt_opts_flags[i]) { 972 case CONTEXT_MNT: 973 prefix = CONTEXT_STR; 974 break; 975 case FSCONTEXT_MNT: 976 prefix = FSCONTEXT_STR; 977 break; 978 case ROOTCONTEXT_MNT: 979 prefix = ROOTCONTEXT_STR; 980 break; 981 case DEFCONTEXT_MNT: 982 prefix = DEFCONTEXT_STR; 983 break; 984 default: 985 BUG(); 986 }; 987 /* we need a comma before each option */ 988 seq_putc(m, ','); 989 seq_puts(m, prefix); 990 if (has_comma) 991 seq_putc(m, '\"'); 992 seq_puts(m, opts->mnt_opts[i]); 993 if (has_comma) 994 seq_putc(m, '\"'); 995 } 996 } 997 998 static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb) 999 { 1000 struct security_mnt_opts opts; 1001 int rc; 1002 1003 rc = selinux_get_mnt_opts(sb, &opts); 1004 if (rc) { 1005 /* before policy load we may get EINVAL, don't show anything */ 1006 if (rc == -EINVAL) 1007 rc = 0; 1008 return rc; 1009 } 1010 1011 selinux_write_opts(m, &opts); 1012 1013 security_free_mnt_opts(&opts); 1014 1015 return rc; 1016 } 1017 1018 static inline u16 inode_mode_to_security_class(umode_t mode) 1019 { 1020 switch (mode & S_IFMT) { 1021 case S_IFSOCK: 1022 return SECCLASS_SOCK_FILE; 1023 case S_IFLNK: 1024 return SECCLASS_LNK_FILE; 1025 case S_IFREG: 1026 return SECCLASS_FILE; 1027 case S_IFBLK: 1028 return SECCLASS_BLK_FILE; 1029 case S_IFDIR: 1030 return SECCLASS_DIR; 1031 case S_IFCHR: 1032 return SECCLASS_CHR_FILE; 1033 case S_IFIFO: 1034 return SECCLASS_FIFO_FILE; 1035 1036 } 1037 1038 return SECCLASS_FILE; 1039 } 1040 1041 static inline int default_protocol_stream(int protocol) 1042 { 1043 return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP); 1044 } 1045 1046 static inline int default_protocol_dgram(int protocol) 1047 { 1048 return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP); 1049 } 1050 1051 static inline u16 socket_type_to_security_class(int family, int type, int protocol) 1052 { 1053 switch (family) { 1054 case PF_UNIX: 1055 switch (type) { 1056 case SOCK_STREAM: 1057 case SOCK_SEQPACKET: 1058 return SECCLASS_UNIX_STREAM_SOCKET; 1059 case SOCK_DGRAM: 1060 return SECCLASS_UNIX_DGRAM_SOCKET; 1061 } 1062 break; 1063 case PF_INET: 1064 case PF_INET6: 1065 switch (type) { 1066 case SOCK_STREAM: 1067 if (default_protocol_stream(protocol)) 1068 return SECCLASS_TCP_SOCKET; 1069 else 1070 return SECCLASS_RAWIP_SOCKET; 1071 case SOCK_DGRAM: 1072 if (default_protocol_dgram(protocol)) 1073 return SECCLASS_UDP_SOCKET; 1074 else 1075 return SECCLASS_RAWIP_SOCKET; 1076 case SOCK_DCCP: 1077 return SECCLASS_DCCP_SOCKET; 1078 default: 1079 return SECCLASS_RAWIP_SOCKET; 1080 } 1081 break; 1082 case PF_NETLINK: 1083 switch (protocol) { 1084 case NETLINK_ROUTE: 1085 return SECCLASS_NETLINK_ROUTE_SOCKET; 1086 case NETLINK_FIREWALL: 1087 return SECCLASS_NETLINK_FIREWALL_SOCKET; 1088 case NETLINK_INET_DIAG: 1089 return SECCLASS_NETLINK_TCPDIAG_SOCKET; 1090 case NETLINK_NFLOG: 1091 return SECCLASS_NETLINK_NFLOG_SOCKET; 1092 case NETLINK_XFRM: 1093 return SECCLASS_NETLINK_XFRM_SOCKET; 1094 case NETLINK_SELINUX: 1095 return SECCLASS_NETLINK_SELINUX_SOCKET; 1096 case NETLINK_AUDIT: 1097 return SECCLASS_NETLINK_AUDIT_SOCKET; 1098 case NETLINK_IP6_FW: 1099 return SECCLASS_NETLINK_IP6FW_SOCKET; 1100 case NETLINK_DNRTMSG: 1101 return SECCLASS_NETLINK_DNRT_SOCKET; 1102 case NETLINK_KOBJECT_UEVENT: 1103 return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET; 1104 default: 1105 return SECCLASS_NETLINK_SOCKET; 1106 } 1107 case PF_PACKET: 1108 return SECCLASS_PACKET_SOCKET; 1109 case PF_KEY: 1110 return SECCLASS_KEY_SOCKET; 1111 case PF_APPLETALK: 1112 return SECCLASS_APPLETALK_SOCKET; 1113 } 1114 1115 return SECCLASS_SOCKET; 1116 } 1117 1118 #ifdef CONFIG_PROC_FS 1119 static int selinux_proc_get_sid(struct proc_dir_entry *de, 1120 u16 tclass, 1121 u32 *sid) 1122 { 1123 int buflen, rc; 1124 char *buffer, *path, *end; 1125 1126 buffer = (char *)__get_free_page(GFP_KERNEL); 1127 if (!buffer) 1128 return -ENOMEM; 1129 1130 buflen = PAGE_SIZE; 1131 end = buffer+buflen; 1132 *--end = '\0'; 1133 buflen--; 1134 path = end-1; 1135 *path = '/'; 1136 while (de && de != de->parent) { 1137 buflen -= de->namelen + 1; 1138 if (buflen < 0) 1139 break; 1140 end -= de->namelen; 1141 memcpy(end, de->name, de->namelen); 1142 *--end = '/'; 1143 path = end; 1144 de = de->parent; 1145 } 1146 rc = security_genfs_sid("proc", path, tclass, sid); 1147 free_page((unsigned long)buffer); 1148 return rc; 1149 } 1150 #else 1151 static int selinux_proc_get_sid(struct proc_dir_entry *de, 1152 u16 tclass, 1153 u32 *sid) 1154 { 1155 return -EINVAL; 1156 } 1157 #endif 1158 1159 /* The inode's security attributes must be initialized before first use. */ 1160 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry) 1161 { 1162 struct superblock_security_struct *sbsec = NULL; 1163 struct inode_security_struct *isec = inode->i_security; 1164 u32 sid; 1165 struct dentry *dentry; 1166 #define INITCONTEXTLEN 255 1167 char *context = NULL; 1168 unsigned len = 0; 1169 int rc = 0; 1170 1171 if (isec->initialized) 1172 goto out; 1173 1174 mutex_lock(&isec->lock); 1175 if (isec->initialized) 1176 goto out_unlock; 1177 1178 sbsec = inode->i_sb->s_security; 1179 if (!sbsec->initialized) { 1180 /* Defer initialization until selinux_complete_init, 1181 after the initial policy is loaded and the security 1182 server is ready to handle calls. */ 1183 spin_lock(&sbsec->isec_lock); 1184 if (list_empty(&isec->list)) 1185 list_add(&isec->list, &sbsec->isec_head); 1186 spin_unlock(&sbsec->isec_lock); 1187 goto out_unlock; 1188 } 1189 1190 switch (sbsec->behavior) { 1191 case SECURITY_FS_USE_XATTR: 1192 if (!inode->i_op->getxattr) { 1193 isec->sid = sbsec->def_sid; 1194 break; 1195 } 1196 1197 /* Need a dentry, since the xattr API requires one. 1198 Life would be simpler if we could just pass the inode. */ 1199 if (opt_dentry) { 1200 /* Called from d_instantiate or d_splice_alias. */ 1201 dentry = dget(opt_dentry); 1202 } else { 1203 /* Called from selinux_complete_init, try to find a dentry. */ 1204 dentry = d_find_alias(inode); 1205 } 1206 if (!dentry) { 1207 printk(KERN_WARNING "SELinux: %s: no dentry for dev=%s " 1208 "ino=%ld\n", __func__, inode->i_sb->s_id, 1209 inode->i_ino); 1210 goto out_unlock; 1211 } 1212 1213 len = INITCONTEXTLEN; 1214 context = kmalloc(len, GFP_NOFS); 1215 if (!context) { 1216 rc = -ENOMEM; 1217 dput(dentry); 1218 goto out_unlock; 1219 } 1220 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX, 1221 context, len); 1222 if (rc == -ERANGE) { 1223 /* Need a larger buffer. Query for the right size. */ 1224 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX, 1225 NULL, 0); 1226 if (rc < 0) { 1227 dput(dentry); 1228 goto out_unlock; 1229 } 1230 kfree(context); 1231 len = rc; 1232 context = kmalloc(len, GFP_NOFS); 1233 if (!context) { 1234 rc = -ENOMEM; 1235 dput(dentry); 1236 goto out_unlock; 1237 } 1238 rc = inode->i_op->getxattr(dentry, 1239 XATTR_NAME_SELINUX, 1240 context, len); 1241 } 1242 dput(dentry); 1243 if (rc < 0) { 1244 if (rc != -ENODATA) { 1245 printk(KERN_WARNING "SELinux: %s: getxattr returned " 1246 "%d for dev=%s ino=%ld\n", __func__, 1247 -rc, inode->i_sb->s_id, inode->i_ino); 1248 kfree(context); 1249 goto out_unlock; 1250 } 1251 /* Map ENODATA to the default file SID */ 1252 sid = sbsec->def_sid; 1253 rc = 0; 1254 } else { 1255 rc = security_context_to_sid_default(context, rc, &sid, 1256 sbsec->def_sid, 1257 GFP_NOFS); 1258 if (rc) { 1259 printk(KERN_WARNING "SELinux: %s: context_to_sid(%s) " 1260 "returned %d for dev=%s ino=%ld\n", 1261 __func__, context, -rc, 1262 inode->i_sb->s_id, inode->i_ino); 1263 kfree(context); 1264 /* Leave with the unlabeled SID */ 1265 rc = 0; 1266 break; 1267 } 1268 } 1269 kfree(context); 1270 isec->sid = sid; 1271 break; 1272 case SECURITY_FS_USE_TASK: 1273 isec->sid = isec->task_sid; 1274 break; 1275 case SECURITY_FS_USE_TRANS: 1276 /* Default to the fs SID. */ 1277 isec->sid = sbsec->sid; 1278 1279 /* Try to obtain a transition SID. */ 1280 isec->sclass = inode_mode_to_security_class(inode->i_mode); 1281 rc = security_transition_sid(isec->task_sid, 1282 sbsec->sid, 1283 isec->sclass, 1284 &sid); 1285 if (rc) 1286 goto out_unlock; 1287 isec->sid = sid; 1288 break; 1289 case SECURITY_FS_USE_MNTPOINT: 1290 isec->sid = sbsec->mntpoint_sid; 1291 break; 1292 default: 1293 /* Default to the fs superblock SID. */ 1294 isec->sid = sbsec->sid; 1295 1296 if (sbsec->proc && !S_ISLNK(inode->i_mode)) { 1297 struct proc_inode *proci = PROC_I(inode); 1298 if (proci->pde) { 1299 isec->sclass = inode_mode_to_security_class(inode->i_mode); 1300 rc = selinux_proc_get_sid(proci->pde, 1301 isec->sclass, 1302 &sid); 1303 if (rc) 1304 goto out_unlock; 1305 isec->sid = sid; 1306 } 1307 } 1308 break; 1309 } 1310 1311 isec->initialized = 1; 1312 1313 out_unlock: 1314 mutex_unlock(&isec->lock); 1315 out: 1316 if (isec->sclass == SECCLASS_FILE) 1317 isec->sclass = inode_mode_to_security_class(inode->i_mode); 1318 return rc; 1319 } 1320 1321 /* Convert a Linux signal to an access vector. */ 1322 static inline u32 signal_to_av(int sig) 1323 { 1324 u32 perm = 0; 1325 1326 switch (sig) { 1327 case SIGCHLD: 1328 /* Commonly granted from child to parent. */ 1329 perm = PROCESS__SIGCHLD; 1330 break; 1331 case SIGKILL: 1332 /* Cannot be caught or ignored */ 1333 perm = PROCESS__SIGKILL; 1334 break; 1335 case SIGSTOP: 1336 /* Cannot be caught or ignored */ 1337 perm = PROCESS__SIGSTOP; 1338 break; 1339 default: 1340 /* All other signals. */ 1341 perm = PROCESS__SIGNAL; 1342 break; 1343 } 1344 1345 return perm; 1346 } 1347 1348 /* Check permission betweeen a pair of tasks, e.g. signal checks, 1349 fork check, ptrace check, etc. */ 1350 static int task_has_perm(struct task_struct *tsk1, 1351 struct task_struct *tsk2, 1352 u32 perms) 1353 { 1354 struct task_security_struct *tsec1, *tsec2; 1355 1356 tsec1 = tsk1->security; 1357 tsec2 = tsk2->security; 1358 return avc_has_perm(tsec1->sid, tsec2->sid, 1359 SECCLASS_PROCESS, perms, NULL); 1360 } 1361 1362 #if CAP_LAST_CAP > 63 1363 #error Fix SELinux to handle capabilities > 63. 1364 #endif 1365 1366 /* Check whether a task is allowed to use a capability. */ 1367 static int task_has_capability(struct task_struct *tsk, 1368 int cap) 1369 { 1370 struct task_security_struct *tsec; 1371 struct avc_audit_data ad; 1372 u16 sclass; 1373 u32 av = CAP_TO_MASK(cap); 1374 1375 tsec = tsk->security; 1376 1377 AVC_AUDIT_DATA_INIT(&ad, CAP); 1378 ad.tsk = tsk; 1379 ad.u.cap = cap; 1380 1381 switch (CAP_TO_INDEX(cap)) { 1382 case 0: 1383 sclass = SECCLASS_CAPABILITY; 1384 break; 1385 case 1: 1386 sclass = SECCLASS_CAPABILITY2; 1387 break; 1388 default: 1389 printk(KERN_ERR 1390 "SELinux: out of range capability %d\n", cap); 1391 BUG(); 1392 } 1393 return avc_has_perm(tsec->sid, tsec->sid, sclass, av, &ad); 1394 } 1395 1396 /* Check whether a task is allowed to use a system operation. */ 1397 static int task_has_system(struct task_struct *tsk, 1398 u32 perms) 1399 { 1400 struct task_security_struct *tsec; 1401 1402 tsec = tsk->security; 1403 1404 return avc_has_perm(tsec->sid, SECINITSID_KERNEL, 1405 SECCLASS_SYSTEM, perms, NULL); 1406 } 1407 1408 /* Check whether a task has a particular permission to an inode. 1409 The 'adp' parameter is optional and allows other audit 1410 data to be passed (e.g. the dentry). */ 1411 static int inode_has_perm(struct task_struct *tsk, 1412 struct inode *inode, 1413 u32 perms, 1414 struct avc_audit_data *adp) 1415 { 1416 struct task_security_struct *tsec; 1417 struct inode_security_struct *isec; 1418 struct avc_audit_data ad; 1419 1420 if (unlikely(IS_PRIVATE(inode))) 1421 return 0; 1422 1423 tsec = tsk->security; 1424 isec = inode->i_security; 1425 1426 if (!adp) { 1427 adp = &ad; 1428 AVC_AUDIT_DATA_INIT(&ad, FS); 1429 ad.u.fs.inode = inode; 1430 } 1431 1432 return avc_has_perm(tsec->sid, isec->sid, isec->sclass, perms, adp); 1433 } 1434 1435 /* Same as inode_has_perm, but pass explicit audit data containing 1436 the dentry to help the auditing code to more easily generate the 1437 pathname if needed. */ 1438 static inline int dentry_has_perm(struct task_struct *tsk, 1439 struct vfsmount *mnt, 1440 struct dentry *dentry, 1441 u32 av) 1442 { 1443 struct inode *inode = dentry->d_inode; 1444 struct avc_audit_data ad; 1445 AVC_AUDIT_DATA_INIT(&ad, FS); 1446 ad.u.fs.path.mnt = mnt; 1447 ad.u.fs.path.dentry = dentry; 1448 return inode_has_perm(tsk, inode, av, &ad); 1449 } 1450 1451 /* Check whether a task can use an open file descriptor to 1452 access an inode in a given way. Check access to the 1453 descriptor itself, and then use dentry_has_perm to 1454 check a particular permission to the file. 1455 Access to the descriptor is implicitly granted if it 1456 has the same SID as the process. If av is zero, then 1457 access to the file is not checked, e.g. for cases 1458 where only the descriptor is affected like seek. */ 1459 static int file_has_perm(struct task_struct *tsk, 1460 struct file *file, 1461 u32 av) 1462 { 1463 struct task_security_struct *tsec = tsk->security; 1464 struct file_security_struct *fsec = file->f_security; 1465 struct inode *inode = file->f_path.dentry->d_inode; 1466 struct avc_audit_data ad; 1467 int rc; 1468 1469 AVC_AUDIT_DATA_INIT(&ad, FS); 1470 ad.u.fs.path = file->f_path; 1471 1472 if (tsec->sid != fsec->sid) { 1473 rc = avc_has_perm(tsec->sid, fsec->sid, 1474 SECCLASS_FD, 1475 FD__USE, 1476 &ad); 1477 if (rc) 1478 return rc; 1479 } 1480 1481 /* av is zero if only checking access to the descriptor. */ 1482 if (av) 1483 return inode_has_perm(tsk, inode, av, &ad); 1484 1485 return 0; 1486 } 1487 1488 /* Check whether a task can create a file. */ 1489 static int may_create(struct inode *dir, 1490 struct dentry *dentry, 1491 u16 tclass) 1492 { 1493 struct task_security_struct *tsec; 1494 struct inode_security_struct *dsec; 1495 struct superblock_security_struct *sbsec; 1496 u32 newsid; 1497 struct avc_audit_data ad; 1498 int rc; 1499 1500 tsec = current->security; 1501 dsec = dir->i_security; 1502 sbsec = dir->i_sb->s_security; 1503 1504 AVC_AUDIT_DATA_INIT(&ad, FS); 1505 ad.u.fs.path.dentry = dentry; 1506 1507 rc = avc_has_perm(tsec->sid, dsec->sid, SECCLASS_DIR, 1508 DIR__ADD_NAME | DIR__SEARCH, 1509 &ad); 1510 if (rc) 1511 return rc; 1512 1513 if (tsec->create_sid && sbsec->behavior != SECURITY_FS_USE_MNTPOINT) { 1514 newsid = tsec->create_sid; 1515 } else { 1516 rc = security_transition_sid(tsec->sid, dsec->sid, tclass, 1517 &newsid); 1518 if (rc) 1519 return rc; 1520 } 1521 1522 rc = avc_has_perm(tsec->sid, newsid, tclass, FILE__CREATE, &ad); 1523 if (rc) 1524 return rc; 1525 1526 return avc_has_perm(newsid, sbsec->sid, 1527 SECCLASS_FILESYSTEM, 1528 FILESYSTEM__ASSOCIATE, &ad); 1529 } 1530 1531 /* Check whether a task can create a key. */ 1532 static int may_create_key(u32 ksid, 1533 struct task_struct *ctx) 1534 { 1535 struct task_security_struct *tsec; 1536 1537 tsec = ctx->security; 1538 1539 return avc_has_perm(tsec->sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL); 1540 } 1541 1542 #define MAY_LINK 0 1543 #define MAY_UNLINK 1 1544 #define MAY_RMDIR 2 1545 1546 /* Check whether a task can link, unlink, or rmdir a file/directory. */ 1547 static int may_link(struct inode *dir, 1548 struct dentry *dentry, 1549 int kind) 1550 1551 { 1552 struct task_security_struct *tsec; 1553 struct inode_security_struct *dsec, *isec; 1554 struct avc_audit_data ad; 1555 u32 av; 1556 int rc; 1557 1558 tsec = current->security; 1559 dsec = dir->i_security; 1560 isec = dentry->d_inode->i_security; 1561 1562 AVC_AUDIT_DATA_INIT(&ad, FS); 1563 ad.u.fs.path.dentry = dentry; 1564 1565 av = DIR__SEARCH; 1566 av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME); 1567 rc = avc_has_perm(tsec->sid, dsec->sid, SECCLASS_DIR, av, &ad); 1568 if (rc) 1569 return rc; 1570 1571 switch (kind) { 1572 case MAY_LINK: 1573 av = FILE__LINK; 1574 break; 1575 case MAY_UNLINK: 1576 av = FILE__UNLINK; 1577 break; 1578 case MAY_RMDIR: 1579 av = DIR__RMDIR; 1580 break; 1581 default: 1582 printk(KERN_WARNING "SELinux: %s: unrecognized kind %d\n", 1583 __func__, kind); 1584 return 0; 1585 } 1586 1587 rc = avc_has_perm(tsec->sid, isec->sid, isec->sclass, av, &ad); 1588 return rc; 1589 } 1590 1591 static inline int may_rename(struct inode *old_dir, 1592 struct dentry *old_dentry, 1593 struct inode *new_dir, 1594 struct dentry *new_dentry) 1595 { 1596 struct task_security_struct *tsec; 1597 struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec; 1598 struct avc_audit_data ad; 1599 u32 av; 1600 int old_is_dir, new_is_dir; 1601 int rc; 1602 1603 tsec = current->security; 1604 old_dsec = old_dir->i_security; 1605 old_isec = old_dentry->d_inode->i_security; 1606 old_is_dir = S_ISDIR(old_dentry->d_inode->i_mode); 1607 new_dsec = new_dir->i_security; 1608 1609 AVC_AUDIT_DATA_INIT(&ad, FS); 1610 1611 ad.u.fs.path.dentry = old_dentry; 1612 rc = avc_has_perm(tsec->sid, old_dsec->sid, SECCLASS_DIR, 1613 DIR__REMOVE_NAME | DIR__SEARCH, &ad); 1614 if (rc) 1615 return rc; 1616 rc = avc_has_perm(tsec->sid, old_isec->sid, 1617 old_isec->sclass, FILE__RENAME, &ad); 1618 if (rc) 1619 return rc; 1620 if (old_is_dir && new_dir != old_dir) { 1621 rc = avc_has_perm(tsec->sid, old_isec->sid, 1622 old_isec->sclass, DIR__REPARENT, &ad); 1623 if (rc) 1624 return rc; 1625 } 1626 1627 ad.u.fs.path.dentry = new_dentry; 1628 av = DIR__ADD_NAME | DIR__SEARCH; 1629 if (new_dentry->d_inode) 1630 av |= DIR__REMOVE_NAME; 1631 rc = avc_has_perm(tsec->sid, new_dsec->sid, SECCLASS_DIR, av, &ad); 1632 if (rc) 1633 return rc; 1634 if (new_dentry->d_inode) { 1635 new_isec = new_dentry->d_inode->i_security; 1636 new_is_dir = S_ISDIR(new_dentry->d_inode->i_mode); 1637 rc = avc_has_perm(tsec->sid, new_isec->sid, 1638 new_isec->sclass, 1639 (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad); 1640 if (rc) 1641 return rc; 1642 } 1643 1644 return 0; 1645 } 1646 1647 /* Check whether a task can perform a filesystem operation. */ 1648 static int superblock_has_perm(struct task_struct *tsk, 1649 struct super_block *sb, 1650 u32 perms, 1651 struct avc_audit_data *ad) 1652 { 1653 struct task_security_struct *tsec; 1654 struct superblock_security_struct *sbsec; 1655 1656 tsec = tsk->security; 1657 sbsec = sb->s_security; 1658 return avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM, 1659 perms, ad); 1660 } 1661 1662 /* Convert a Linux mode and permission mask to an access vector. */ 1663 static inline u32 file_mask_to_av(int mode, int mask) 1664 { 1665 u32 av = 0; 1666 1667 if ((mode & S_IFMT) != S_IFDIR) { 1668 if (mask & MAY_EXEC) 1669 av |= FILE__EXECUTE; 1670 if (mask & MAY_READ) 1671 av |= FILE__READ; 1672 1673 if (mask & MAY_APPEND) 1674 av |= FILE__APPEND; 1675 else if (mask & MAY_WRITE) 1676 av |= FILE__WRITE; 1677 1678 } else { 1679 if (mask & MAY_EXEC) 1680 av |= DIR__SEARCH; 1681 if (mask & MAY_WRITE) 1682 av |= DIR__WRITE; 1683 if (mask & MAY_READ) 1684 av |= DIR__READ; 1685 } 1686 1687 return av; 1688 } 1689 1690 /* 1691 * Convert a file mask to an access vector and include the correct open 1692 * open permission. 1693 */ 1694 static inline u32 open_file_mask_to_av(int mode, int mask) 1695 { 1696 u32 av = file_mask_to_av(mode, mask); 1697 1698 if (selinux_policycap_openperm) { 1699 /* 1700 * lnk files and socks do not really have an 'open' 1701 */ 1702 if (S_ISREG(mode)) 1703 av |= FILE__OPEN; 1704 else if (S_ISCHR(mode)) 1705 av |= CHR_FILE__OPEN; 1706 else if (S_ISBLK(mode)) 1707 av |= BLK_FILE__OPEN; 1708 else if (S_ISFIFO(mode)) 1709 av |= FIFO_FILE__OPEN; 1710 else if (S_ISDIR(mode)) 1711 av |= DIR__OPEN; 1712 else 1713 printk(KERN_ERR "SELinux: WARNING: inside %s with " 1714 "unknown mode:%x\n", __func__, mode); 1715 } 1716 return av; 1717 } 1718 1719 /* Convert a Linux file to an access vector. */ 1720 static inline u32 file_to_av(struct file *file) 1721 { 1722 u32 av = 0; 1723 1724 if (file->f_mode & FMODE_READ) 1725 av |= FILE__READ; 1726 if (file->f_mode & FMODE_WRITE) { 1727 if (file->f_flags & O_APPEND) 1728 av |= FILE__APPEND; 1729 else 1730 av |= FILE__WRITE; 1731 } 1732 if (!av) { 1733 /* 1734 * Special file opened with flags 3 for ioctl-only use. 1735 */ 1736 av = FILE__IOCTL; 1737 } 1738 1739 return av; 1740 } 1741 1742 /* Hook functions begin here. */ 1743 1744 static int selinux_ptrace_may_access(struct task_struct *child, 1745 unsigned int mode) 1746 { 1747 int rc; 1748 1749 rc = secondary_ops->ptrace_may_access(child, mode); 1750 if (rc) 1751 return rc; 1752 1753 if (mode == PTRACE_MODE_READ) { 1754 struct task_security_struct *tsec = current->security; 1755 struct task_security_struct *csec = child->security; 1756 return avc_has_perm(tsec->sid, csec->sid, 1757 SECCLASS_FILE, FILE__READ, NULL); 1758 } 1759 1760 return task_has_perm(current, child, PROCESS__PTRACE); 1761 } 1762 1763 static int selinux_ptrace_traceme(struct task_struct *parent) 1764 { 1765 int rc; 1766 1767 rc = secondary_ops->ptrace_traceme(parent); 1768 if (rc) 1769 return rc; 1770 1771 return task_has_perm(parent, current, PROCESS__PTRACE); 1772 } 1773 1774 static int selinux_capget(struct task_struct *target, kernel_cap_t *effective, 1775 kernel_cap_t *inheritable, kernel_cap_t *permitted) 1776 { 1777 int error; 1778 1779 error = task_has_perm(current, target, PROCESS__GETCAP); 1780 if (error) 1781 return error; 1782 1783 return secondary_ops->capget(target, effective, inheritable, permitted); 1784 } 1785 1786 static int selinux_capset_check(struct task_struct *target, kernel_cap_t *effective, 1787 kernel_cap_t *inheritable, kernel_cap_t *permitted) 1788 { 1789 int error; 1790 1791 error = secondary_ops->capset_check(target, effective, inheritable, permitted); 1792 if (error) 1793 return error; 1794 1795 return task_has_perm(current, target, PROCESS__SETCAP); 1796 } 1797 1798 static void selinux_capset_set(struct task_struct *target, kernel_cap_t *effective, 1799 kernel_cap_t *inheritable, kernel_cap_t *permitted) 1800 { 1801 secondary_ops->capset_set(target, effective, inheritable, permitted); 1802 } 1803 1804 static int selinux_capable(struct task_struct *tsk, int cap) 1805 { 1806 int rc; 1807 1808 rc = secondary_ops->capable(tsk, cap); 1809 if (rc) 1810 return rc; 1811 1812 return task_has_capability(tsk, cap); 1813 } 1814 1815 static int selinux_sysctl_get_sid(ctl_table *table, u16 tclass, u32 *sid) 1816 { 1817 int buflen, rc; 1818 char *buffer, *path, *end; 1819 1820 rc = -ENOMEM; 1821 buffer = (char *)__get_free_page(GFP_KERNEL); 1822 if (!buffer) 1823 goto out; 1824 1825 buflen = PAGE_SIZE; 1826 end = buffer+buflen; 1827 *--end = '\0'; 1828 buflen--; 1829 path = end-1; 1830 *path = '/'; 1831 while (table) { 1832 const char *name = table->procname; 1833 size_t namelen = strlen(name); 1834 buflen -= namelen + 1; 1835 if (buflen < 0) 1836 goto out_free; 1837 end -= namelen; 1838 memcpy(end, name, namelen); 1839 *--end = '/'; 1840 path = end; 1841 table = table->parent; 1842 } 1843 buflen -= 4; 1844 if (buflen < 0) 1845 goto out_free; 1846 end -= 4; 1847 memcpy(end, "/sys", 4); 1848 path = end; 1849 rc = security_genfs_sid("proc", path, tclass, sid); 1850 out_free: 1851 free_page((unsigned long)buffer); 1852 out: 1853 return rc; 1854 } 1855 1856 static int selinux_sysctl(ctl_table *table, int op) 1857 { 1858 int error = 0; 1859 u32 av; 1860 struct task_security_struct *tsec; 1861 u32 tsid; 1862 int rc; 1863 1864 rc = secondary_ops->sysctl(table, op); 1865 if (rc) 1866 return rc; 1867 1868 tsec = current->security; 1869 1870 rc = selinux_sysctl_get_sid(table, (op == 0001) ? 1871 SECCLASS_DIR : SECCLASS_FILE, &tsid); 1872 if (rc) { 1873 /* Default to the well-defined sysctl SID. */ 1874 tsid = SECINITSID_SYSCTL; 1875 } 1876 1877 /* The op values are "defined" in sysctl.c, thereby creating 1878 * a bad coupling between this module and sysctl.c */ 1879 if (op == 001) { 1880 error = avc_has_perm(tsec->sid, tsid, 1881 SECCLASS_DIR, DIR__SEARCH, NULL); 1882 } else { 1883 av = 0; 1884 if (op & 004) 1885 av |= FILE__READ; 1886 if (op & 002) 1887 av |= FILE__WRITE; 1888 if (av) 1889 error = avc_has_perm(tsec->sid, tsid, 1890 SECCLASS_FILE, av, NULL); 1891 } 1892 1893 return error; 1894 } 1895 1896 static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb) 1897 { 1898 int rc = 0; 1899 1900 if (!sb) 1901 return 0; 1902 1903 switch (cmds) { 1904 case Q_SYNC: 1905 case Q_QUOTAON: 1906 case Q_QUOTAOFF: 1907 case Q_SETINFO: 1908 case Q_SETQUOTA: 1909 rc = superblock_has_perm(current, sb, FILESYSTEM__QUOTAMOD, 1910 NULL); 1911 break; 1912 case Q_GETFMT: 1913 case Q_GETINFO: 1914 case Q_GETQUOTA: 1915 rc = superblock_has_perm(current, sb, FILESYSTEM__QUOTAGET, 1916 NULL); 1917 break; 1918 default: 1919 rc = 0; /* let the kernel handle invalid cmds */ 1920 break; 1921 } 1922 return rc; 1923 } 1924 1925 static int selinux_quota_on(struct dentry *dentry) 1926 { 1927 return dentry_has_perm(current, NULL, dentry, FILE__QUOTAON); 1928 } 1929 1930 static int selinux_syslog(int type) 1931 { 1932 int rc; 1933 1934 rc = secondary_ops->syslog(type); 1935 if (rc) 1936 return rc; 1937 1938 switch (type) { 1939 case 3: /* Read last kernel messages */ 1940 case 10: /* Return size of the log buffer */ 1941 rc = task_has_system(current, SYSTEM__SYSLOG_READ); 1942 break; 1943 case 6: /* Disable logging to console */ 1944 case 7: /* Enable logging to console */ 1945 case 8: /* Set level of messages printed to console */ 1946 rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE); 1947 break; 1948 case 0: /* Close log */ 1949 case 1: /* Open log */ 1950 case 2: /* Read from log */ 1951 case 4: /* Read/clear last kernel messages */ 1952 case 5: /* Clear ring buffer */ 1953 default: 1954 rc = task_has_system(current, SYSTEM__SYSLOG_MOD); 1955 break; 1956 } 1957 return rc; 1958 } 1959 1960 /* 1961 * Check that a process has enough memory to allocate a new virtual 1962 * mapping. 0 means there is enough memory for the allocation to 1963 * succeed and -ENOMEM implies there is not. 1964 * 1965 * Note that secondary_ops->capable and task_has_perm_noaudit return 0 1966 * if the capability is granted, but __vm_enough_memory requires 1 if 1967 * the capability is granted. 1968 * 1969 * Do not audit the selinux permission check, as this is applied to all 1970 * processes that allocate mappings. 1971 */ 1972 static int selinux_vm_enough_memory(struct mm_struct *mm, long pages) 1973 { 1974 int rc, cap_sys_admin = 0; 1975 struct task_security_struct *tsec = current->security; 1976 1977 rc = secondary_ops->capable(current, CAP_SYS_ADMIN); 1978 if (rc == 0) 1979 rc = avc_has_perm_noaudit(tsec->sid, tsec->sid, 1980 SECCLASS_CAPABILITY, 1981 CAP_TO_MASK(CAP_SYS_ADMIN), 1982 0, 1983 NULL); 1984 1985 if (rc == 0) 1986 cap_sys_admin = 1; 1987 1988 return __vm_enough_memory(mm, pages, cap_sys_admin); 1989 } 1990 1991 /* binprm security operations */ 1992 1993 static int selinux_bprm_alloc_security(struct linux_binprm *bprm) 1994 { 1995 struct bprm_security_struct *bsec; 1996 1997 bsec = kzalloc(sizeof(struct bprm_security_struct), GFP_KERNEL); 1998 if (!bsec) 1999 return -ENOMEM; 2000 2001 bsec->sid = SECINITSID_UNLABELED; 2002 bsec->set = 0; 2003 2004 bprm->security = bsec; 2005 return 0; 2006 } 2007 2008 static int selinux_bprm_set_security(struct linux_binprm *bprm) 2009 { 2010 struct task_security_struct *tsec; 2011 struct inode *inode = bprm->file->f_path.dentry->d_inode; 2012 struct inode_security_struct *isec; 2013 struct bprm_security_struct *bsec; 2014 u32 newsid; 2015 struct avc_audit_data ad; 2016 int rc; 2017 2018 rc = secondary_ops->bprm_set_security(bprm); 2019 if (rc) 2020 return rc; 2021 2022 bsec = bprm->security; 2023 2024 if (bsec->set) 2025 return 0; 2026 2027 tsec = current->security; 2028 isec = inode->i_security; 2029 2030 /* Default to the current task SID. */ 2031 bsec->sid = tsec->sid; 2032 2033 /* Reset fs, key, and sock SIDs on execve. */ 2034 tsec->create_sid = 0; 2035 tsec->keycreate_sid = 0; 2036 tsec->sockcreate_sid = 0; 2037 2038 if (tsec->exec_sid) { 2039 newsid = tsec->exec_sid; 2040 /* Reset exec SID on execve. */ 2041 tsec->exec_sid = 0; 2042 } else { 2043 /* Check for a default transition on this program. */ 2044 rc = security_transition_sid(tsec->sid, isec->sid, 2045 SECCLASS_PROCESS, &newsid); 2046 if (rc) 2047 return rc; 2048 } 2049 2050 AVC_AUDIT_DATA_INIT(&ad, FS); 2051 ad.u.fs.path = bprm->file->f_path; 2052 2053 if (bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID) 2054 newsid = tsec->sid; 2055 2056 if (tsec->sid == newsid) { 2057 rc = avc_has_perm(tsec->sid, isec->sid, 2058 SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad); 2059 if (rc) 2060 return rc; 2061 } else { 2062 /* Check permissions for the transition. */ 2063 rc = avc_has_perm(tsec->sid, newsid, 2064 SECCLASS_PROCESS, PROCESS__TRANSITION, &ad); 2065 if (rc) 2066 return rc; 2067 2068 rc = avc_has_perm(newsid, isec->sid, 2069 SECCLASS_FILE, FILE__ENTRYPOINT, &ad); 2070 if (rc) 2071 return rc; 2072 2073 /* Clear any possibly unsafe personality bits on exec: */ 2074 current->personality &= ~PER_CLEAR_ON_SETID; 2075 2076 /* Set the security field to the new SID. */ 2077 bsec->sid = newsid; 2078 } 2079 2080 bsec->set = 1; 2081 return 0; 2082 } 2083 2084 static int selinux_bprm_check_security(struct linux_binprm *bprm) 2085 { 2086 return secondary_ops->bprm_check_security(bprm); 2087 } 2088 2089 2090 static int selinux_bprm_secureexec(struct linux_binprm *bprm) 2091 { 2092 struct task_security_struct *tsec = current->security; 2093 int atsecure = 0; 2094 2095 if (tsec->osid != tsec->sid) { 2096 /* Enable secure mode for SIDs transitions unless 2097 the noatsecure permission is granted between 2098 the two SIDs, i.e. ahp returns 0. */ 2099 atsecure = avc_has_perm(tsec->osid, tsec->sid, 2100 SECCLASS_PROCESS, 2101 PROCESS__NOATSECURE, NULL); 2102 } 2103 2104 return (atsecure || secondary_ops->bprm_secureexec(bprm)); 2105 } 2106 2107 static void selinux_bprm_free_security(struct linux_binprm *bprm) 2108 { 2109 kfree(bprm->security); 2110 bprm->security = NULL; 2111 } 2112 2113 extern struct vfsmount *selinuxfs_mount; 2114 extern struct dentry *selinux_null; 2115 2116 /* Derived from fs/exec.c:flush_old_files. */ 2117 static inline void flush_unauthorized_files(struct files_struct *files) 2118 { 2119 struct avc_audit_data ad; 2120 struct file *file, *devnull = NULL; 2121 struct tty_struct *tty; 2122 struct fdtable *fdt; 2123 long j = -1; 2124 int drop_tty = 0; 2125 2126 tty = get_current_tty(); 2127 if (tty) { 2128 file_list_lock(); 2129 if (!list_empty(&tty->tty_files)) { 2130 struct inode *inode; 2131 2132 /* Revalidate access to controlling tty. 2133 Use inode_has_perm on the tty inode directly rather 2134 than using file_has_perm, as this particular open 2135 file may belong to another process and we are only 2136 interested in the inode-based check here. */ 2137 file = list_first_entry(&tty->tty_files, struct file, f_u.fu_list); 2138 inode = file->f_path.dentry->d_inode; 2139 if (inode_has_perm(current, inode, 2140 FILE__READ | FILE__WRITE, NULL)) { 2141 drop_tty = 1; 2142 } 2143 } 2144 file_list_unlock(); 2145 tty_kref_put(tty); 2146 } 2147 /* Reset controlling tty. */ 2148 if (drop_tty) 2149 no_tty(); 2150 2151 /* Revalidate access to inherited open files. */ 2152 2153 AVC_AUDIT_DATA_INIT(&ad, FS); 2154 2155 spin_lock(&files->file_lock); 2156 for (;;) { 2157 unsigned long set, i; 2158 int fd; 2159 2160 j++; 2161 i = j * __NFDBITS; 2162 fdt = files_fdtable(files); 2163 if (i >= fdt->max_fds) 2164 break; 2165 set = fdt->open_fds->fds_bits[j]; 2166 if (!set) 2167 continue; 2168 spin_unlock(&files->file_lock); 2169 for ( ; set ; i++, set >>= 1) { 2170 if (set & 1) { 2171 file = fget(i); 2172 if (!file) 2173 continue; 2174 if (file_has_perm(current, 2175 file, 2176 file_to_av(file))) { 2177 sys_close(i); 2178 fd = get_unused_fd(); 2179 if (fd != i) { 2180 if (fd >= 0) 2181 put_unused_fd(fd); 2182 fput(file); 2183 continue; 2184 } 2185 if (devnull) { 2186 get_file(devnull); 2187 } else { 2188 devnull = dentry_open(dget(selinux_null), mntget(selinuxfs_mount), O_RDWR); 2189 if (IS_ERR(devnull)) { 2190 devnull = NULL; 2191 put_unused_fd(fd); 2192 fput(file); 2193 continue; 2194 } 2195 } 2196 fd_install(fd, devnull); 2197 } 2198 fput(file); 2199 } 2200 } 2201 spin_lock(&files->file_lock); 2202 2203 } 2204 spin_unlock(&files->file_lock); 2205 } 2206 2207 static void selinux_bprm_apply_creds(struct linux_binprm *bprm, int unsafe) 2208 { 2209 struct task_security_struct *tsec; 2210 struct bprm_security_struct *bsec; 2211 u32 sid; 2212 int rc; 2213 2214 secondary_ops->bprm_apply_creds(bprm, unsafe); 2215 2216 tsec = current->security; 2217 2218 bsec = bprm->security; 2219 sid = bsec->sid; 2220 2221 tsec->osid = tsec->sid; 2222 bsec->unsafe = 0; 2223 if (tsec->sid != sid) { 2224 /* Check for shared state. If not ok, leave SID 2225 unchanged and kill. */ 2226 if (unsafe & LSM_UNSAFE_SHARE) { 2227 rc = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS, 2228 PROCESS__SHARE, NULL); 2229 if (rc) { 2230 bsec->unsafe = 1; 2231 return; 2232 } 2233 } 2234 2235 /* Check for ptracing, and update the task SID if ok. 2236 Otherwise, leave SID unchanged and kill. */ 2237 if (unsafe & (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) { 2238 struct task_struct *tracer; 2239 struct task_security_struct *sec; 2240 u32 ptsid = 0; 2241 2242 rcu_read_lock(); 2243 tracer = tracehook_tracer_task(current); 2244 if (likely(tracer != NULL)) { 2245 sec = tracer->security; 2246 ptsid = sec->sid; 2247 } 2248 rcu_read_unlock(); 2249 2250 if (ptsid != 0) { 2251 rc = avc_has_perm(ptsid, sid, SECCLASS_PROCESS, 2252 PROCESS__PTRACE, NULL); 2253 if (rc) { 2254 bsec->unsafe = 1; 2255 return; 2256 } 2257 } 2258 } 2259 tsec->sid = sid; 2260 } 2261 } 2262 2263 /* 2264 * called after apply_creds without the task lock held 2265 */ 2266 static void selinux_bprm_post_apply_creds(struct linux_binprm *bprm) 2267 { 2268 struct task_security_struct *tsec; 2269 struct rlimit *rlim, *initrlim; 2270 struct itimerval itimer; 2271 struct bprm_security_struct *bsec; 2272 int rc, i; 2273 2274 tsec = current->security; 2275 bsec = bprm->security; 2276 2277 if (bsec->unsafe) { 2278 force_sig_specific(SIGKILL, current); 2279 return; 2280 } 2281 if (tsec->osid == tsec->sid) 2282 return; 2283 2284 /* Close files for which the new task SID is not authorized. */ 2285 flush_unauthorized_files(current->files); 2286 2287 /* Check whether the new SID can inherit signal state 2288 from the old SID. If not, clear itimers to avoid 2289 subsequent signal generation and flush and unblock 2290 signals. This must occur _after_ the task SID has 2291 been updated so that any kill done after the flush 2292 will be checked against the new SID. */ 2293 rc = avc_has_perm(tsec->osid, tsec->sid, SECCLASS_PROCESS, 2294 PROCESS__SIGINH, NULL); 2295 if (rc) { 2296 memset(&itimer, 0, sizeof itimer); 2297 for (i = 0; i < 3; i++) 2298 do_setitimer(i, &itimer, NULL); 2299 flush_signals(current); 2300 spin_lock_irq(¤t->sighand->siglock); 2301 flush_signal_handlers(current, 1); 2302 sigemptyset(¤t->blocked); 2303 recalc_sigpending(); 2304 spin_unlock_irq(¤t->sighand->siglock); 2305 } 2306 2307 /* Always clear parent death signal on SID transitions. */ 2308 current->pdeath_signal = 0; 2309 2310 /* Check whether the new SID can inherit resource limits 2311 from the old SID. If not, reset all soft limits to 2312 the lower of the current task's hard limit and the init 2313 task's soft limit. Note that the setting of hard limits 2314 (even to lower them) can be controlled by the setrlimit 2315 check. The inclusion of the init task's soft limit into 2316 the computation is to avoid resetting soft limits higher 2317 than the default soft limit for cases where the default 2318 is lower than the hard limit, e.g. RLIMIT_CORE or 2319 RLIMIT_STACK.*/ 2320 rc = avc_has_perm(tsec->osid, tsec->sid, SECCLASS_PROCESS, 2321 PROCESS__RLIMITINH, NULL); 2322 if (rc) { 2323 for (i = 0; i < RLIM_NLIMITS; i++) { 2324 rlim = current->signal->rlim + i; 2325 initrlim = init_task.signal->rlim+i; 2326 rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur); 2327 } 2328 update_rlimit_cpu(rlim->rlim_cur); 2329 } 2330 2331 /* Wake up the parent if it is waiting so that it can 2332 recheck wait permission to the new task SID. */ 2333 wake_up_interruptible(¤t->parent->signal->wait_chldexit); 2334 } 2335 2336 /* superblock security operations */ 2337 2338 static int selinux_sb_alloc_security(struct super_block *sb) 2339 { 2340 return superblock_alloc_security(sb); 2341 } 2342 2343 static void selinux_sb_free_security(struct super_block *sb) 2344 { 2345 superblock_free_security(sb); 2346 } 2347 2348 static inline int match_prefix(char *prefix, int plen, char *option, int olen) 2349 { 2350 if (plen > olen) 2351 return 0; 2352 2353 return !memcmp(prefix, option, plen); 2354 } 2355 2356 static inline int selinux_option(char *option, int len) 2357 { 2358 return (match_prefix(CONTEXT_STR, sizeof(CONTEXT_STR)-1, option, len) || 2359 match_prefix(FSCONTEXT_STR, sizeof(FSCONTEXT_STR)-1, option, len) || 2360 match_prefix(DEFCONTEXT_STR, sizeof(DEFCONTEXT_STR)-1, option, len) || 2361 match_prefix(ROOTCONTEXT_STR, sizeof(ROOTCONTEXT_STR)-1, option, len)); 2362 } 2363 2364 static inline void take_option(char **to, char *from, int *first, int len) 2365 { 2366 if (!*first) { 2367 **to = ','; 2368 *to += 1; 2369 } else 2370 *first = 0; 2371 memcpy(*to, from, len); 2372 *to += len; 2373 } 2374 2375 static inline void take_selinux_option(char **to, char *from, int *first, 2376 int len) 2377 { 2378 int current_size = 0; 2379 2380 if (!*first) { 2381 **to = '|'; 2382 *to += 1; 2383 } else 2384 *first = 0; 2385 2386 while (current_size < len) { 2387 if (*from != '"') { 2388 **to = *from; 2389 *to += 1; 2390 } 2391 from += 1; 2392 current_size += 1; 2393 } 2394 } 2395 2396 static int selinux_sb_copy_data(char *orig, char *copy) 2397 { 2398 int fnosec, fsec, rc = 0; 2399 char *in_save, *in_curr, *in_end; 2400 char *sec_curr, *nosec_save, *nosec; 2401 int open_quote = 0; 2402 2403 in_curr = orig; 2404 sec_curr = copy; 2405 2406 nosec = (char *)get_zeroed_page(GFP_KERNEL); 2407 if (!nosec) { 2408 rc = -ENOMEM; 2409 goto out; 2410 } 2411 2412 nosec_save = nosec; 2413 fnosec = fsec = 1; 2414 in_save = in_end = orig; 2415 2416 do { 2417 if (*in_end == '"') 2418 open_quote = !open_quote; 2419 if ((*in_end == ',' && open_quote == 0) || 2420 *in_end == '\0') { 2421 int len = in_end - in_curr; 2422 2423 if (selinux_option(in_curr, len)) 2424 take_selinux_option(&sec_curr, in_curr, &fsec, len); 2425 else 2426 take_option(&nosec, in_curr, &fnosec, len); 2427 2428 in_curr = in_end + 1; 2429 } 2430 } while (*in_end++); 2431 2432 strcpy(in_save, nosec_save); 2433 free_page((unsigned long)nosec_save); 2434 out: 2435 return rc; 2436 } 2437 2438 static int selinux_sb_kern_mount(struct super_block *sb, void *data) 2439 { 2440 struct avc_audit_data ad; 2441 int rc; 2442 2443 rc = superblock_doinit(sb, data); 2444 if (rc) 2445 return rc; 2446 2447 AVC_AUDIT_DATA_INIT(&ad, FS); 2448 ad.u.fs.path.dentry = sb->s_root; 2449 return superblock_has_perm(current, sb, FILESYSTEM__MOUNT, &ad); 2450 } 2451 2452 static int selinux_sb_statfs(struct dentry *dentry) 2453 { 2454 struct avc_audit_data ad; 2455 2456 AVC_AUDIT_DATA_INIT(&ad, FS); 2457 ad.u.fs.path.dentry = dentry->d_sb->s_root; 2458 return superblock_has_perm(current, dentry->d_sb, FILESYSTEM__GETATTR, &ad); 2459 } 2460 2461 static int selinux_mount(char *dev_name, 2462 struct path *path, 2463 char *type, 2464 unsigned long flags, 2465 void *data) 2466 { 2467 int rc; 2468 2469 rc = secondary_ops->sb_mount(dev_name, path, type, flags, data); 2470 if (rc) 2471 return rc; 2472 2473 if (flags & MS_REMOUNT) 2474 return superblock_has_perm(current, path->mnt->mnt_sb, 2475 FILESYSTEM__REMOUNT, NULL); 2476 else 2477 return dentry_has_perm(current, path->mnt, path->dentry, 2478 FILE__MOUNTON); 2479 } 2480 2481 static int selinux_umount(struct vfsmount *mnt, int flags) 2482 { 2483 int rc; 2484 2485 rc = secondary_ops->sb_umount(mnt, flags); 2486 if (rc) 2487 return rc; 2488 2489 return superblock_has_perm(current, mnt->mnt_sb, 2490 FILESYSTEM__UNMOUNT, NULL); 2491 } 2492 2493 /* inode security operations */ 2494 2495 static int selinux_inode_alloc_security(struct inode *inode) 2496 { 2497 return inode_alloc_security(inode); 2498 } 2499 2500 static void selinux_inode_free_security(struct inode *inode) 2501 { 2502 inode_free_security(inode); 2503 } 2504 2505 static int selinux_inode_init_security(struct inode *inode, struct inode *dir, 2506 char **name, void **value, 2507 size_t *len) 2508 { 2509 struct task_security_struct *tsec; 2510 struct inode_security_struct *dsec; 2511 struct superblock_security_struct *sbsec; 2512 u32 newsid, clen; 2513 int rc; 2514 char *namep = NULL, *context; 2515 2516 tsec = current->security; 2517 dsec = dir->i_security; 2518 sbsec = dir->i_sb->s_security; 2519 2520 if (tsec->create_sid && sbsec->behavior != SECURITY_FS_USE_MNTPOINT) { 2521 newsid = tsec->create_sid; 2522 } else { 2523 rc = security_transition_sid(tsec->sid, dsec->sid, 2524 inode_mode_to_security_class(inode->i_mode), 2525 &newsid); 2526 if (rc) { 2527 printk(KERN_WARNING "%s: " 2528 "security_transition_sid failed, rc=%d (dev=%s " 2529 "ino=%ld)\n", 2530 __func__, 2531 -rc, inode->i_sb->s_id, inode->i_ino); 2532 return rc; 2533 } 2534 } 2535 2536 /* Possibly defer initialization to selinux_complete_init. */ 2537 if (sbsec->initialized) { 2538 struct inode_security_struct *isec = inode->i_security; 2539 isec->sclass = inode_mode_to_security_class(inode->i_mode); 2540 isec->sid = newsid; 2541 isec->initialized = 1; 2542 } 2543 2544 if (!ss_initialized || sbsec->behavior == SECURITY_FS_USE_MNTPOINT) 2545 return -EOPNOTSUPP; 2546 2547 if (name) { 2548 namep = kstrdup(XATTR_SELINUX_SUFFIX, GFP_NOFS); 2549 if (!namep) 2550 return -ENOMEM; 2551 *name = namep; 2552 } 2553 2554 if (value && len) { 2555 rc = security_sid_to_context_force(newsid, &context, &clen); 2556 if (rc) { 2557 kfree(namep); 2558 return rc; 2559 } 2560 *value = context; 2561 *len = clen; 2562 } 2563 2564 return 0; 2565 } 2566 2567 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, int mask) 2568 { 2569 return may_create(dir, dentry, SECCLASS_FILE); 2570 } 2571 2572 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry) 2573 { 2574 int rc; 2575 2576 rc = secondary_ops->inode_link(old_dentry, dir, new_dentry); 2577 if (rc) 2578 return rc; 2579 return may_link(dir, old_dentry, MAY_LINK); 2580 } 2581 2582 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry) 2583 { 2584 int rc; 2585 2586 rc = secondary_ops->inode_unlink(dir, dentry); 2587 if (rc) 2588 return rc; 2589 return may_link(dir, dentry, MAY_UNLINK); 2590 } 2591 2592 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name) 2593 { 2594 return may_create(dir, dentry, SECCLASS_LNK_FILE); 2595 } 2596 2597 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, int mask) 2598 { 2599 return may_create(dir, dentry, SECCLASS_DIR); 2600 } 2601 2602 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry) 2603 { 2604 return may_link(dir, dentry, MAY_RMDIR); 2605 } 2606 2607 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev) 2608 { 2609 int rc; 2610 2611 rc = secondary_ops->inode_mknod(dir, dentry, mode, dev); 2612 if (rc) 2613 return rc; 2614 2615 return may_create(dir, dentry, inode_mode_to_security_class(mode)); 2616 } 2617 2618 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry, 2619 struct inode *new_inode, struct dentry *new_dentry) 2620 { 2621 return may_rename(old_inode, old_dentry, new_inode, new_dentry); 2622 } 2623 2624 static int selinux_inode_readlink(struct dentry *dentry) 2625 { 2626 return dentry_has_perm(current, NULL, dentry, FILE__READ); 2627 } 2628 2629 static int selinux_inode_follow_link(struct dentry *dentry, struct nameidata *nameidata) 2630 { 2631 int rc; 2632 2633 rc = secondary_ops->inode_follow_link(dentry, nameidata); 2634 if (rc) 2635 return rc; 2636 return dentry_has_perm(current, NULL, dentry, FILE__READ); 2637 } 2638 2639 static int selinux_inode_permission(struct inode *inode, int mask) 2640 { 2641 int rc; 2642 2643 rc = secondary_ops->inode_permission(inode, mask); 2644 if (rc) 2645 return rc; 2646 2647 if (!mask) { 2648 /* No permission to check. Existence test. */ 2649 return 0; 2650 } 2651 2652 return inode_has_perm(current, inode, 2653 open_file_mask_to_av(inode->i_mode, mask), NULL); 2654 } 2655 2656 static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr) 2657 { 2658 int rc; 2659 2660 rc = secondary_ops->inode_setattr(dentry, iattr); 2661 if (rc) 2662 return rc; 2663 2664 if (iattr->ia_valid & ATTR_FORCE) 2665 return 0; 2666 2667 if (iattr->ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID | 2668 ATTR_ATIME_SET | ATTR_MTIME_SET)) 2669 return dentry_has_perm(current, NULL, dentry, FILE__SETATTR); 2670 2671 return dentry_has_perm(current, NULL, dentry, FILE__WRITE); 2672 } 2673 2674 static int selinux_inode_getattr(struct vfsmount *mnt, struct dentry *dentry) 2675 { 2676 return dentry_has_perm(current, mnt, dentry, FILE__GETATTR); 2677 } 2678 2679 static int selinux_inode_setotherxattr(struct dentry *dentry, const char *name) 2680 { 2681 if (!strncmp(name, XATTR_SECURITY_PREFIX, 2682 sizeof XATTR_SECURITY_PREFIX - 1)) { 2683 if (!strcmp(name, XATTR_NAME_CAPS)) { 2684 if (!capable(CAP_SETFCAP)) 2685 return -EPERM; 2686 } else if (!capable(CAP_SYS_ADMIN)) { 2687 /* A different attribute in the security namespace. 2688 Restrict to administrator. */ 2689 return -EPERM; 2690 } 2691 } 2692 2693 /* Not an attribute we recognize, so just check the 2694 ordinary setattr permission. */ 2695 return dentry_has_perm(current, NULL, dentry, FILE__SETATTR); 2696 } 2697 2698 static int selinux_inode_setxattr(struct dentry *dentry, const char *name, 2699 const void *value, size_t size, int flags) 2700 { 2701 struct task_security_struct *tsec = current->security; 2702 struct inode *inode = dentry->d_inode; 2703 struct inode_security_struct *isec = inode->i_security; 2704 struct superblock_security_struct *sbsec; 2705 struct avc_audit_data ad; 2706 u32 newsid; 2707 int rc = 0; 2708 2709 if (strcmp(name, XATTR_NAME_SELINUX)) 2710 return selinux_inode_setotherxattr(dentry, name); 2711 2712 sbsec = inode->i_sb->s_security; 2713 if (sbsec->behavior == SECURITY_FS_USE_MNTPOINT) 2714 return -EOPNOTSUPP; 2715 2716 if (!is_owner_or_cap(inode)) 2717 return -EPERM; 2718 2719 AVC_AUDIT_DATA_INIT(&ad, FS); 2720 ad.u.fs.path.dentry = dentry; 2721 2722 rc = avc_has_perm(tsec->sid, isec->sid, isec->sclass, 2723 FILE__RELABELFROM, &ad); 2724 if (rc) 2725 return rc; 2726 2727 rc = security_context_to_sid(value, size, &newsid); 2728 if (rc == -EINVAL) { 2729 if (!capable(CAP_MAC_ADMIN)) 2730 return rc; 2731 rc = security_context_to_sid_force(value, size, &newsid); 2732 } 2733 if (rc) 2734 return rc; 2735 2736 rc = avc_has_perm(tsec->sid, newsid, isec->sclass, 2737 FILE__RELABELTO, &ad); 2738 if (rc) 2739 return rc; 2740 2741 rc = security_validate_transition(isec->sid, newsid, tsec->sid, 2742 isec->sclass); 2743 if (rc) 2744 return rc; 2745 2746 return avc_has_perm(newsid, 2747 sbsec->sid, 2748 SECCLASS_FILESYSTEM, 2749 FILESYSTEM__ASSOCIATE, 2750 &ad); 2751 } 2752 2753 static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name, 2754 const void *value, size_t size, 2755 int flags) 2756 { 2757 struct inode *inode = dentry->d_inode; 2758 struct inode_security_struct *isec = inode->i_security; 2759 u32 newsid; 2760 int rc; 2761 2762 if (strcmp(name, XATTR_NAME_SELINUX)) { 2763 /* Not an attribute we recognize, so nothing to do. */ 2764 return; 2765 } 2766 2767 rc = security_context_to_sid_force(value, size, &newsid); 2768 if (rc) { 2769 printk(KERN_ERR "SELinux: unable to map context to SID" 2770 "for (%s, %lu), rc=%d\n", 2771 inode->i_sb->s_id, inode->i_ino, -rc); 2772 return; 2773 } 2774 2775 isec->sid = newsid; 2776 return; 2777 } 2778 2779 static int selinux_inode_getxattr(struct dentry *dentry, const char *name) 2780 { 2781 return dentry_has_perm(current, NULL, dentry, FILE__GETATTR); 2782 } 2783 2784 static int selinux_inode_listxattr(struct dentry *dentry) 2785 { 2786 return dentry_has_perm(current, NULL, dentry, FILE__GETATTR); 2787 } 2788 2789 static int selinux_inode_removexattr(struct dentry *dentry, const char *name) 2790 { 2791 if (strcmp(name, XATTR_NAME_SELINUX)) 2792 return selinux_inode_setotherxattr(dentry, name); 2793 2794 /* No one is allowed to remove a SELinux security label. 2795 You can change the label, but all data must be labeled. */ 2796 return -EACCES; 2797 } 2798 2799 /* 2800 * Copy the inode security context value to the user. 2801 * 2802 * Permission check is handled by selinux_inode_getxattr hook. 2803 */ 2804 static int selinux_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc) 2805 { 2806 u32 size; 2807 int error; 2808 char *context = NULL; 2809 struct task_security_struct *tsec = current->security; 2810 struct inode_security_struct *isec = inode->i_security; 2811 2812 if (strcmp(name, XATTR_SELINUX_SUFFIX)) 2813 return -EOPNOTSUPP; 2814 2815 /* 2816 * If the caller has CAP_MAC_ADMIN, then get the raw context 2817 * value even if it is not defined by current policy; otherwise, 2818 * use the in-core value under current policy. 2819 * Use the non-auditing forms of the permission checks since 2820 * getxattr may be called by unprivileged processes commonly 2821 * and lack of permission just means that we fall back to the 2822 * in-core context value, not a denial. 2823 */ 2824 error = secondary_ops->capable(current, CAP_MAC_ADMIN); 2825 if (!error) 2826 error = avc_has_perm_noaudit(tsec->sid, tsec->sid, 2827 SECCLASS_CAPABILITY2, 2828 CAPABILITY2__MAC_ADMIN, 2829 0, 2830 NULL); 2831 if (!error) 2832 error = security_sid_to_context_force(isec->sid, &context, 2833 &size); 2834 else 2835 error = security_sid_to_context(isec->sid, &context, &size); 2836 if (error) 2837 return error; 2838 error = size; 2839 if (alloc) { 2840 *buffer = context; 2841 goto out_nofree; 2842 } 2843 kfree(context); 2844 out_nofree: 2845 return error; 2846 } 2847 2848 static int selinux_inode_setsecurity(struct inode *inode, const char *name, 2849 const void *value, size_t size, int flags) 2850 { 2851 struct inode_security_struct *isec = inode->i_security; 2852 u32 newsid; 2853 int rc; 2854 2855 if (strcmp(name, XATTR_SELINUX_SUFFIX)) 2856 return -EOPNOTSUPP; 2857 2858 if (!value || !size) 2859 return -EACCES; 2860 2861 rc = security_context_to_sid((void *)value, size, &newsid); 2862 if (rc) 2863 return rc; 2864 2865 isec->sid = newsid; 2866 return 0; 2867 } 2868 2869 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size) 2870 { 2871 const int len = sizeof(XATTR_NAME_SELINUX); 2872 if (buffer && len <= buffer_size) 2873 memcpy(buffer, XATTR_NAME_SELINUX, len); 2874 return len; 2875 } 2876 2877 static int selinux_inode_need_killpriv(struct dentry *dentry) 2878 { 2879 return secondary_ops->inode_need_killpriv(dentry); 2880 } 2881 2882 static int selinux_inode_killpriv(struct dentry *dentry) 2883 { 2884 return secondary_ops->inode_killpriv(dentry); 2885 } 2886 2887 static void selinux_inode_getsecid(const struct inode *inode, u32 *secid) 2888 { 2889 struct inode_security_struct *isec = inode->i_security; 2890 *secid = isec->sid; 2891 } 2892 2893 /* file security operations */ 2894 2895 static int selinux_revalidate_file_permission(struct file *file, int mask) 2896 { 2897 int rc; 2898 struct inode *inode = file->f_path.dentry->d_inode; 2899 2900 if (!mask) { 2901 /* No permission to check. Existence test. */ 2902 return 0; 2903 } 2904 2905 /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */ 2906 if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE)) 2907 mask |= MAY_APPEND; 2908 2909 rc = file_has_perm(current, file, 2910 file_mask_to_av(inode->i_mode, mask)); 2911 if (rc) 2912 return rc; 2913 2914 return selinux_netlbl_inode_permission(inode, mask); 2915 } 2916 2917 static int selinux_file_permission(struct file *file, int mask) 2918 { 2919 struct inode *inode = file->f_path.dentry->d_inode; 2920 struct task_security_struct *tsec = current->security; 2921 struct file_security_struct *fsec = file->f_security; 2922 struct inode_security_struct *isec = inode->i_security; 2923 2924 if (!mask) { 2925 /* No permission to check. Existence test. */ 2926 return 0; 2927 } 2928 2929 if (tsec->sid == fsec->sid && fsec->isid == isec->sid 2930 && fsec->pseqno == avc_policy_seqno()) 2931 return selinux_netlbl_inode_permission(inode, mask); 2932 2933 return selinux_revalidate_file_permission(file, mask); 2934 } 2935 2936 static int selinux_file_alloc_security(struct file *file) 2937 { 2938 return file_alloc_security(file); 2939 } 2940 2941 static void selinux_file_free_security(struct file *file) 2942 { 2943 file_free_security(file); 2944 } 2945 2946 static int selinux_file_ioctl(struct file *file, unsigned int cmd, 2947 unsigned long arg) 2948 { 2949 u32 av = 0; 2950 2951 if (_IOC_DIR(cmd) & _IOC_WRITE) 2952 av |= FILE__WRITE; 2953 if (_IOC_DIR(cmd) & _IOC_READ) 2954 av |= FILE__READ; 2955 if (!av) 2956 av = FILE__IOCTL; 2957 2958 return file_has_perm(current, file, av); 2959 } 2960 2961 static int file_map_prot_check(struct file *file, unsigned long prot, int shared) 2962 { 2963 #ifndef CONFIG_PPC32 2964 if ((prot & PROT_EXEC) && (!file || (!shared && (prot & PROT_WRITE)))) { 2965 /* 2966 * We are making executable an anonymous mapping or a 2967 * private file mapping that will also be writable. 2968 * This has an additional check. 2969 */ 2970 int rc = task_has_perm(current, current, PROCESS__EXECMEM); 2971 if (rc) 2972 return rc; 2973 } 2974 #endif 2975 2976 if (file) { 2977 /* read access is always possible with a mapping */ 2978 u32 av = FILE__READ; 2979 2980 /* write access only matters if the mapping is shared */ 2981 if (shared && (prot & PROT_WRITE)) 2982 av |= FILE__WRITE; 2983 2984 if (prot & PROT_EXEC) 2985 av |= FILE__EXECUTE; 2986 2987 return file_has_perm(current, file, av); 2988 } 2989 return 0; 2990 } 2991 2992 static int selinux_file_mmap(struct file *file, unsigned long reqprot, 2993 unsigned long prot, unsigned long flags, 2994 unsigned long addr, unsigned long addr_only) 2995 { 2996 int rc = 0; 2997 u32 sid = ((struct task_security_struct *)(current->security))->sid; 2998 2999 if (addr < mmap_min_addr) 3000 rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT, 3001 MEMPROTECT__MMAP_ZERO, NULL); 3002 if (rc || addr_only) 3003 return rc; 3004 3005 if (selinux_checkreqprot) 3006 prot = reqprot; 3007 3008 return file_map_prot_check(file, prot, 3009 (flags & MAP_TYPE) == MAP_SHARED); 3010 } 3011 3012 static int selinux_file_mprotect(struct vm_area_struct *vma, 3013 unsigned long reqprot, 3014 unsigned long prot) 3015 { 3016 int rc; 3017 3018 rc = secondary_ops->file_mprotect(vma, reqprot, prot); 3019 if (rc) 3020 return rc; 3021 3022 if (selinux_checkreqprot) 3023 prot = reqprot; 3024 3025 #ifndef CONFIG_PPC32 3026 if ((prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) { 3027 rc = 0; 3028 if (vma->vm_start >= vma->vm_mm->start_brk && 3029 vma->vm_end <= vma->vm_mm->brk) { 3030 rc = task_has_perm(current, current, 3031 PROCESS__EXECHEAP); 3032 } else if (!vma->vm_file && 3033 vma->vm_start <= vma->vm_mm->start_stack && 3034 vma->vm_end >= vma->vm_mm->start_stack) { 3035 rc = task_has_perm(current, current, PROCESS__EXECSTACK); 3036 } else if (vma->vm_file && vma->anon_vma) { 3037 /* 3038 * We are making executable a file mapping that has 3039 * had some COW done. Since pages might have been 3040 * written, check ability to execute the possibly 3041 * modified content. This typically should only 3042 * occur for text relocations. 3043 */ 3044 rc = file_has_perm(current, vma->vm_file, 3045 FILE__EXECMOD); 3046 } 3047 if (rc) 3048 return rc; 3049 } 3050 #endif 3051 3052 return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED); 3053 } 3054 3055 static int selinux_file_lock(struct file *file, unsigned int cmd) 3056 { 3057 return file_has_perm(current, file, FILE__LOCK); 3058 } 3059 3060 static int selinux_file_fcntl(struct file *file, unsigned int cmd, 3061 unsigned long arg) 3062 { 3063 int err = 0; 3064 3065 switch (cmd) { 3066 case F_SETFL: 3067 if (!file->f_path.dentry || !file->f_path.dentry->d_inode) { 3068 err = -EINVAL; 3069 break; 3070 } 3071 3072 if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) { 3073 err = file_has_perm(current, file, FILE__WRITE); 3074 break; 3075 } 3076 /* fall through */ 3077 case F_SETOWN: 3078 case F_SETSIG: 3079 case F_GETFL: 3080 case F_GETOWN: 3081 case F_GETSIG: 3082 /* Just check FD__USE permission */ 3083 err = file_has_perm(current, file, 0); 3084 break; 3085 case F_GETLK: 3086 case F_SETLK: 3087 case F_SETLKW: 3088 #if BITS_PER_LONG == 32 3089 case F_GETLK64: 3090 case F_SETLK64: 3091 case F_SETLKW64: 3092 #endif 3093 if (!file->f_path.dentry || !file->f_path.dentry->d_inode) { 3094 err = -EINVAL; 3095 break; 3096 } 3097 err = file_has_perm(current, file, FILE__LOCK); 3098 break; 3099 } 3100 3101 return err; 3102 } 3103 3104 static int selinux_file_set_fowner(struct file *file) 3105 { 3106 struct task_security_struct *tsec; 3107 struct file_security_struct *fsec; 3108 3109 tsec = current->security; 3110 fsec = file->f_security; 3111 fsec->fown_sid = tsec->sid; 3112 3113 return 0; 3114 } 3115 3116 static int selinux_file_send_sigiotask(struct task_struct *tsk, 3117 struct fown_struct *fown, int signum) 3118 { 3119 struct file *file; 3120 u32 perm; 3121 struct task_security_struct *tsec; 3122 struct file_security_struct *fsec; 3123 3124 /* struct fown_struct is never outside the context of a struct file */ 3125 file = container_of(fown, struct file, f_owner); 3126 3127 tsec = tsk->security; 3128 fsec = file->f_security; 3129 3130 if (!signum) 3131 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */ 3132 else 3133 perm = signal_to_av(signum); 3134 3135 return avc_has_perm(fsec->fown_sid, tsec->sid, 3136 SECCLASS_PROCESS, perm, NULL); 3137 } 3138 3139 static int selinux_file_receive(struct file *file) 3140 { 3141 return file_has_perm(current, file, file_to_av(file)); 3142 } 3143 3144 static int selinux_dentry_open(struct file *file) 3145 { 3146 struct file_security_struct *fsec; 3147 struct inode *inode; 3148 struct inode_security_struct *isec; 3149 inode = file->f_path.dentry->d_inode; 3150 fsec = file->f_security; 3151 isec = inode->i_security; 3152 /* 3153 * Save inode label and policy sequence number 3154 * at open-time so that selinux_file_permission 3155 * can determine whether revalidation is necessary. 3156 * Task label is already saved in the file security 3157 * struct as its SID. 3158 */ 3159 fsec->isid = isec->sid; 3160 fsec->pseqno = avc_policy_seqno(); 3161 /* 3162 * Since the inode label or policy seqno may have changed 3163 * between the selinux_inode_permission check and the saving 3164 * of state above, recheck that access is still permitted. 3165 * Otherwise, access might never be revalidated against the 3166 * new inode label or new policy. 3167 * This check is not redundant - do not remove. 3168 */ 3169 return inode_has_perm(current, inode, file_to_av(file), NULL); 3170 } 3171 3172 /* task security operations */ 3173 3174 static int selinux_task_create(unsigned long clone_flags) 3175 { 3176 int rc; 3177 3178 rc = secondary_ops->task_create(clone_flags); 3179 if (rc) 3180 return rc; 3181 3182 return task_has_perm(current, current, PROCESS__FORK); 3183 } 3184 3185 static int selinux_task_alloc_security(struct task_struct *tsk) 3186 { 3187 struct task_security_struct *tsec1, *tsec2; 3188 int rc; 3189 3190 tsec1 = current->security; 3191 3192 rc = task_alloc_security(tsk); 3193 if (rc) 3194 return rc; 3195 tsec2 = tsk->security; 3196 3197 tsec2->osid = tsec1->osid; 3198 tsec2->sid = tsec1->sid; 3199 3200 /* Retain the exec, fs, key, and sock SIDs across fork */ 3201 tsec2->exec_sid = tsec1->exec_sid; 3202 tsec2->create_sid = tsec1->create_sid; 3203 tsec2->keycreate_sid = tsec1->keycreate_sid; 3204 tsec2->sockcreate_sid = tsec1->sockcreate_sid; 3205 3206 return 0; 3207 } 3208 3209 static void selinux_task_free_security(struct task_struct *tsk) 3210 { 3211 task_free_security(tsk); 3212 } 3213 3214 static int selinux_task_setuid(uid_t id0, uid_t id1, uid_t id2, int flags) 3215 { 3216 /* Since setuid only affects the current process, and 3217 since the SELinux controls are not based on the Linux 3218 identity attributes, SELinux does not need to control 3219 this operation. However, SELinux does control the use 3220 of the CAP_SETUID and CAP_SETGID capabilities using the 3221 capable hook. */ 3222 return 0; 3223 } 3224 3225 static int selinux_task_post_setuid(uid_t id0, uid_t id1, uid_t id2, int flags) 3226 { 3227 return secondary_ops->task_post_setuid(id0, id1, id2, flags); 3228 } 3229 3230 static int selinux_task_setgid(gid_t id0, gid_t id1, gid_t id2, int flags) 3231 { 3232 /* See the comment for setuid above. */ 3233 return 0; 3234 } 3235 3236 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid) 3237 { 3238 return task_has_perm(current, p, PROCESS__SETPGID); 3239 } 3240 3241 static int selinux_task_getpgid(struct task_struct *p) 3242 { 3243 return task_has_perm(current, p, PROCESS__GETPGID); 3244 } 3245 3246 static int selinux_task_getsid(struct task_struct *p) 3247 { 3248 return task_has_perm(current, p, PROCESS__GETSESSION); 3249 } 3250 3251 static void selinux_task_getsecid(struct task_struct *p, u32 *secid) 3252 { 3253 struct task_security_struct *tsec = p->security; 3254 *secid = tsec->sid; 3255 } 3256 3257 static int selinux_task_setgroups(struct group_info *group_info) 3258 { 3259 /* See the comment for setuid above. */ 3260 return 0; 3261 } 3262 3263 static int selinux_task_setnice(struct task_struct *p, int nice) 3264 { 3265 int rc; 3266 3267 rc = secondary_ops->task_setnice(p, nice); 3268 if (rc) 3269 return rc; 3270 3271 return task_has_perm(current, p, PROCESS__SETSCHED); 3272 } 3273 3274 static int selinux_task_setioprio(struct task_struct *p, int ioprio) 3275 { 3276 int rc; 3277 3278 rc = secondary_ops->task_setioprio(p, ioprio); 3279 if (rc) 3280 return rc; 3281 3282 return task_has_perm(current, p, PROCESS__SETSCHED); 3283 } 3284 3285 static int selinux_task_getioprio(struct task_struct *p) 3286 { 3287 return task_has_perm(current, p, PROCESS__GETSCHED); 3288 } 3289 3290 static int selinux_task_setrlimit(unsigned int resource, struct rlimit *new_rlim) 3291 { 3292 struct rlimit *old_rlim = current->signal->rlim + resource; 3293 int rc; 3294 3295 rc = secondary_ops->task_setrlimit(resource, new_rlim); 3296 if (rc) 3297 return rc; 3298 3299 /* Control the ability to change the hard limit (whether 3300 lowering or raising it), so that the hard limit can 3301 later be used as a safe reset point for the soft limit 3302 upon context transitions. See selinux_bprm_apply_creds. */ 3303 if (old_rlim->rlim_max != new_rlim->rlim_max) 3304 return task_has_perm(current, current, PROCESS__SETRLIMIT); 3305 3306 return 0; 3307 } 3308 3309 static int selinux_task_setscheduler(struct task_struct *p, int policy, struct sched_param *lp) 3310 { 3311 int rc; 3312 3313 rc = secondary_ops->task_setscheduler(p, policy, lp); 3314 if (rc) 3315 return rc; 3316 3317 return task_has_perm(current, p, PROCESS__SETSCHED); 3318 } 3319 3320 static int selinux_task_getscheduler(struct task_struct *p) 3321 { 3322 return task_has_perm(current, p, PROCESS__GETSCHED); 3323 } 3324 3325 static int selinux_task_movememory(struct task_struct *p) 3326 { 3327 return task_has_perm(current, p, PROCESS__SETSCHED); 3328 } 3329 3330 static int selinux_task_kill(struct task_struct *p, struct siginfo *info, 3331 int sig, u32 secid) 3332 { 3333 u32 perm; 3334 int rc; 3335 struct task_security_struct *tsec; 3336 3337 rc = secondary_ops->task_kill(p, info, sig, secid); 3338 if (rc) 3339 return rc; 3340 3341 if (!sig) 3342 perm = PROCESS__SIGNULL; /* null signal; existence test */ 3343 else 3344 perm = signal_to_av(sig); 3345 tsec = p->security; 3346 if (secid) 3347 rc = avc_has_perm(secid, tsec->sid, SECCLASS_PROCESS, perm, NULL); 3348 else 3349 rc = task_has_perm(current, p, perm); 3350 return rc; 3351 } 3352 3353 static int selinux_task_prctl(int option, 3354 unsigned long arg2, 3355 unsigned long arg3, 3356 unsigned long arg4, 3357 unsigned long arg5, 3358 long *rc_p) 3359 { 3360 /* The current prctl operations do not appear to require 3361 any SELinux controls since they merely observe or modify 3362 the state of the current process. */ 3363 return secondary_ops->task_prctl(option, arg2, arg3, arg4, arg5, rc_p); 3364 } 3365 3366 static int selinux_task_wait(struct task_struct *p) 3367 { 3368 return task_has_perm(p, current, PROCESS__SIGCHLD); 3369 } 3370 3371 static void selinux_task_reparent_to_init(struct task_struct *p) 3372 { 3373 struct task_security_struct *tsec; 3374 3375 secondary_ops->task_reparent_to_init(p); 3376 3377 tsec = p->security; 3378 tsec->osid = tsec->sid; 3379 tsec->sid = SECINITSID_KERNEL; 3380 return; 3381 } 3382 3383 static void selinux_task_to_inode(struct task_struct *p, 3384 struct inode *inode) 3385 { 3386 struct task_security_struct *tsec = p->security; 3387 struct inode_security_struct *isec = inode->i_security; 3388 3389 isec->sid = tsec->sid; 3390 isec->initialized = 1; 3391 return; 3392 } 3393 3394 /* Returns error only if unable to parse addresses */ 3395 static int selinux_parse_skb_ipv4(struct sk_buff *skb, 3396 struct avc_audit_data *ad, u8 *proto) 3397 { 3398 int offset, ihlen, ret = -EINVAL; 3399 struct iphdr _iph, *ih; 3400 3401 offset = skb_network_offset(skb); 3402 ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph); 3403 if (ih == NULL) 3404 goto out; 3405 3406 ihlen = ih->ihl * 4; 3407 if (ihlen < sizeof(_iph)) 3408 goto out; 3409 3410 ad->u.net.v4info.saddr = ih->saddr; 3411 ad->u.net.v4info.daddr = ih->daddr; 3412 ret = 0; 3413 3414 if (proto) 3415 *proto = ih->protocol; 3416 3417 switch (ih->protocol) { 3418 case IPPROTO_TCP: { 3419 struct tcphdr _tcph, *th; 3420 3421 if (ntohs(ih->frag_off) & IP_OFFSET) 3422 break; 3423 3424 offset += ihlen; 3425 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph); 3426 if (th == NULL) 3427 break; 3428 3429 ad->u.net.sport = th->source; 3430 ad->u.net.dport = th->dest; 3431 break; 3432 } 3433 3434 case IPPROTO_UDP: { 3435 struct udphdr _udph, *uh; 3436 3437 if (ntohs(ih->frag_off) & IP_OFFSET) 3438 break; 3439 3440 offset += ihlen; 3441 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph); 3442 if (uh == NULL) 3443 break; 3444 3445 ad->u.net.sport = uh->source; 3446 ad->u.net.dport = uh->dest; 3447 break; 3448 } 3449 3450 case IPPROTO_DCCP: { 3451 struct dccp_hdr _dccph, *dh; 3452 3453 if (ntohs(ih->frag_off) & IP_OFFSET) 3454 break; 3455 3456 offset += ihlen; 3457 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph); 3458 if (dh == NULL) 3459 break; 3460 3461 ad->u.net.sport = dh->dccph_sport; 3462 ad->u.net.dport = dh->dccph_dport; 3463 break; 3464 } 3465 3466 default: 3467 break; 3468 } 3469 out: 3470 return ret; 3471 } 3472 3473 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 3474 3475 /* Returns error only if unable to parse addresses */ 3476 static int selinux_parse_skb_ipv6(struct sk_buff *skb, 3477 struct avc_audit_data *ad, u8 *proto) 3478 { 3479 u8 nexthdr; 3480 int ret = -EINVAL, offset; 3481 struct ipv6hdr _ipv6h, *ip6; 3482 3483 offset = skb_network_offset(skb); 3484 ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h); 3485 if (ip6 == NULL) 3486 goto out; 3487 3488 ipv6_addr_copy(&ad->u.net.v6info.saddr, &ip6->saddr); 3489 ipv6_addr_copy(&ad->u.net.v6info.daddr, &ip6->daddr); 3490 ret = 0; 3491 3492 nexthdr = ip6->nexthdr; 3493 offset += sizeof(_ipv6h); 3494 offset = ipv6_skip_exthdr(skb, offset, &nexthdr); 3495 if (offset < 0) 3496 goto out; 3497 3498 if (proto) 3499 *proto = nexthdr; 3500 3501 switch (nexthdr) { 3502 case IPPROTO_TCP: { 3503 struct tcphdr _tcph, *th; 3504 3505 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph); 3506 if (th == NULL) 3507 break; 3508 3509 ad->u.net.sport = th->source; 3510 ad->u.net.dport = th->dest; 3511 break; 3512 } 3513 3514 case IPPROTO_UDP: { 3515 struct udphdr _udph, *uh; 3516 3517 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph); 3518 if (uh == NULL) 3519 break; 3520 3521 ad->u.net.sport = uh->source; 3522 ad->u.net.dport = uh->dest; 3523 break; 3524 } 3525 3526 case IPPROTO_DCCP: { 3527 struct dccp_hdr _dccph, *dh; 3528 3529 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph); 3530 if (dh == NULL) 3531 break; 3532 3533 ad->u.net.sport = dh->dccph_sport; 3534 ad->u.net.dport = dh->dccph_dport; 3535 break; 3536 } 3537 3538 /* includes fragments */ 3539 default: 3540 break; 3541 } 3542 out: 3543 return ret; 3544 } 3545 3546 #endif /* IPV6 */ 3547 3548 static int selinux_parse_skb(struct sk_buff *skb, struct avc_audit_data *ad, 3549 char **_addrp, int src, u8 *proto) 3550 { 3551 char *addrp; 3552 int ret; 3553 3554 switch (ad->u.net.family) { 3555 case PF_INET: 3556 ret = selinux_parse_skb_ipv4(skb, ad, proto); 3557 if (ret) 3558 goto parse_error; 3559 addrp = (char *)(src ? &ad->u.net.v4info.saddr : 3560 &ad->u.net.v4info.daddr); 3561 goto okay; 3562 3563 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 3564 case PF_INET6: 3565 ret = selinux_parse_skb_ipv6(skb, ad, proto); 3566 if (ret) 3567 goto parse_error; 3568 addrp = (char *)(src ? &ad->u.net.v6info.saddr : 3569 &ad->u.net.v6info.daddr); 3570 goto okay; 3571 #endif /* IPV6 */ 3572 default: 3573 addrp = NULL; 3574 goto okay; 3575 } 3576 3577 parse_error: 3578 printk(KERN_WARNING 3579 "SELinux: failure in selinux_parse_skb()," 3580 " unable to parse packet\n"); 3581 return ret; 3582 3583 okay: 3584 if (_addrp) 3585 *_addrp = addrp; 3586 return 0; 3587 } 3588 3589 /** 3590 * selinux_skb_peerlbl_sid - Determine the peer label of a packet 3591 * @skb: the packet 3592 * @family: protocol family 3593 * @sid: the packet's peer label SID 3594 * 3595 * Description: 3596 * Check the various different forms of network peer labeling and determine 3597 * the peer label/SID for the packet; most of the magic actually occurs in 3598 * the security server function security_net_peersid_cmp(). The function 3599 * returns zero if the value in @sid is valid (although it may be SECSID_NULL) 3600 * or -EACCES if @sid is invalid due to inconsistencies with the different 3601 * peer labels. 3602 * 3603 */ 3604 static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid) 3605 { 3606 int err; 3607 u32 xfrm_sid; 3608 u32 nlbl_sid; 3609 u32 nlbl_type; 3610 3611 selinux_skb_xfrm_sid(skb, &xfrm_sid); 3612 selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid); 3613 3614 err = security_net_peersid_resolve(nlbl_sid, nlbl_type, xfrm_sid, sid); 3615 if (unlikely(err)) { 3616 printk(KERN_WARNING 3617 "SELinux: failure in selinux_skb_peerlbl_sid()," 3618 " unable to determine packet's peer label\n"); 3619 return -EACCES; 3620 } 3621 3622 return 0; 3623 } 3624 3625 /* socket security operations */ 3626 static int socket_has_perm(struct task_struct *task, struct socket *sock, 3627 u32 perms) 3628 { 3629 struct inode_security_struct *isec; 3630 struct task_security_struct *tsec; 3631 struct avc_audit_data ad; 3632 int err = 0; 3633 3634 tsec = task->security; 3635 isec = SOCK_INODE(sock)->i_security; 3636 3637 if (isec->sid == SECINITSID_KERNEL) 3638 goto out; 3639 3640 AVC_AUDIT_DATA_INIT(&ad, NET); 3641 ad.u.net.sk = sock->sk; 3642 err = avc_has_perm(tsec->sid, isec->sid, isec->sclass, perms, &ad); 3643 3644 out: 3645 return err; 3646 } 3647 3648 static int selinux_socket_create(int family, int type, 3649 int protocol, int kern) 3650 { 3651 int err = 0; 3652 struct task_security_struct *tsec; 3653 u32 newsid; 3654 3655 if (kern) 3656 goto out; 3657 3658 tsec = current->security; 3659 newsid = tsec->sockcreate_sid ? : tsec->sid; 3660 err = avc_has_perm(tsec->sid, newsid, 3661 socket_type_to_security_class(family, type, 3662 protocol), SOCKET__CREATE, NULL); 3663 3664 out: 3665 return err; 3666 } 3667 3668 static int selinux_socket_post_create(struct socket *sock, int family, 3669 int type, int protocol, int kern) 3670 { 3671 int err = 0; 3672 struct inode_security_struct *isec; 3673 struct task_security_struct *tsec; 3674 struct sk_security_struct *sksec; 3675 u32 newsid; 3676 3677 isec = SOCK_INODE(sock)->i_security; 3678 3679 tsec = current->security; 3680 newsid = tsec->sockcreate_sid ? : tsec->sid; 3681 isec->sclass = socket_type_to_security_class(family, type, protocol); 3682 isec->sid = kern ? SECINITSID_KERNEL : newsid; 3683 isec->initialized = 1; 3684 3685 if (sock->sk) { 3686 sksec = sock->sk->sk_security; 3687 sksec->sid = isec->sid; 3688 sksec->sclass = isec->sclass; 3689 err = selinux_netlbl_socket_post_create(sock); 3690 } 3691 3692 return err; 3693 } 3694 3695 /* Range of port numbers used to automatically bind. 3696 Need to determine whether we should perform a name_bind 3697 permission check between the socket and the port number. */ 3698 3699 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen) 3700 { 3701 u16 family; 3702 int err; 3703 3704 err = socket_has_perm(current, sock, SOCKET__BIND); 3705 if (err) 3706 goto out; 3707 3708 /* 3709 * If PF_INET or PF_INET6, check name_bind permission for the port. 3710 * Multiple address binding for SCTP is not supported yet: we just 3711 * check the first address now. 3712 */ 3713 family = sock->sk->sk_family; 3714 if (family == PF_INET || family == PF_INET6) { 3715 char *addrp; 3716 struct inode_security_struct *isec; 3717 struct task_security_struct *tsec; 3718 struct avc_audit_data ad; 3719 struct sockaddr_in *addr4 = NULL; 3720 struct sockaddr_in6 *addr6 = NULL; 3721 unsigned short snum; 3722 struct sock *sk = sock->sk; 3723 u32 sid, node_perm; 3724 3725 tsec = current->security; 3726 isec = SOCK_INODE(sock)->i_security; 3727 3728 if (family == PF_INET) { 3729 addr4 = (struct sockaddr_in *)address; 3730 snum = ntohs(addr4->sin_port); 3731 addrp = (char *)&addr4->sin_addr.s_addr; 3732 } else { 3733 addr6 = (struct sockaddr_in6 *)address; 3734 snum = ntohs(addr6->sin6_port); 3735 addrp = (char *)&addr6->sin6_addr.s6_addr; 3736 } 3737 3738 if (snum) { 3739 int low, high; 3740 3741 inet_get_local_port_range(&low, &high); 3742 3743 if (snum < max(PROT_SOCK, low) || snum > high) { 3744 err = sel_netport_sid(sk->sk_protocol, 3745 snum, &sid); 3746 if (err) 3747 goto out; 3748 AVC_AUDIT_DATA_INIT(&ad, NET); 3749 ad.u.net.sport = htons(snum); 3750 ad.u.net.family = family; 3751 err = avc_has_perm(isec->sid, sid, 3752 isec->sclass, 3753 SOCKET__NAME_BIND, &ad); 3754 if (err) 3755 goto out; 3756 } 3757 } 3758 3759 switch (isec->sclass) { 3760 case SECCLASS_TCP_SOCKET: 3761 node_perm = TCP_SOCKET__NODE_BIND; 3762 break; 3763 3764 case SECCLASS_UDP_SOCKET: 3765 node_perm = UDP_SOCKET__NODE_BIND; 3766 break; 3767 3768 case SECCLASS_DCCP_SOCKET: 3769 node_perm = DCCP_SOCKET__NODE_BIND; 3770 break; 3771 3772 default: 3773 node_perm = RAWIP_SOCKET__NODE_BIND; 3774 break; 3775 } 3776 3777 err = sel_netnode_sid(addrp, family, &sid); 3778 if (err) 3779 goto out; 3780 3781 AVC_AUDIT_DATA_INIT(&ad, NET); 3782 ad.u.net.sport = htons(snum); 3783 ad.u.net.family = family; 3784 3785 if (family == PF_INET) 3786 ad.u.net.v4info.saddr = addr4->sin_addr.s_addr; 3787 else 3788 ipv6_addr_copy(&ad.u.net.v6info.saddr, &addr6->sin6_addr); 3789 3790 err = avc_has_perm(isec->sid, sid, 3791 isec->sclass, node_perm, &ad); 3792 if (err) 3793 goto out; 3794 } 3795 out: 3796 return err; 3797 } 3798 3799 static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen) 3800 { 3801 struct sock *sk = sock->sk; 3802 struct inode_security_struct *isec; 3803 int err; 3804 3805 err = socket_has_perm(current, sock, SOCKET__CONNECT); 3806 if (err) 3807 return err; 3808 3809 /* 3810 * If a TCP or DCCP socket, check name_connect permission for the port. 3811 */ 3812 isec = SOCK_INODE(sock)->i_security; 3813 if (isec->sclass == SECCLASS_TCP_SOCKET || 3814 isec->sclass == SECCLASS_DCCP_SOCKET) { 3815 struct avc_audit_data ad; 3816 struct sockaddr_in *addr4 = NULL; 3817 struct sockaddr_in6 *addr6 = NULL; 3818 unsigned short snum; 3819 u32 sid, perm; 3820 3821 if (sk->sk_family == PF_INET) { 3822 addr4 = (struct sockaddr_in *)address; 3823 if (addrlen < sizeof(struct sockaddr_in)) 3824 return -EINVAL; 3825 snum = ntohs(addr4->sin_port); 3826 } else { 3827 addr6 = (struct sockaddr_in6 *)address; 3828 if (addrlen < SIN6_LEN_RFC2133) 3829 return -EINVAL; 3830 snum = ntohs(addr6->sin6_port); 3831 } 3832 3833 err = sel_netport_sid(sk->sk_protocol, snum, &sid); 3834 if (err) 3835 goto out; 3836 3837 perm = (isec->sclass == SECCLASS_TCP_SOCKET) ? 3838 TCP_SOCKET__NAME_CONNECT : DCCP_SOCKET__NAME_CONNECT; 3839 3840 AVC_AUDIT_DATA_INIT(&ad, NET); 3841 ad.u.net.dport = htons(snum); 3842 ad.u.net.family = sk->sk_family; 3843 err = avc_has_perm(isec->sid, sid, isec->sclass, perm, &ad); 3844 if (err) 3845 goto out; 3846 } 3847 3848 err = selinux_netlbl_socket_connect(sk, address); 3849 3850 out: 3851 return err; 3852 } 3853 3854 static int selinux_socket_listen(struct socket *sock, int backlog) 3855 { 3856 return socket_has_perm(current, sock, SOCKET__LISTEN); 3857 } 3858 3859 static int selinux_socket_accept(struct socket *sock, struct socket *newsock) 3860 { 3861 int err; 3862 struct inode_security_struct *isec; 3863 struct inode_security_struct *newisec; 3864 3865 err = socket_has_perm(current, sock, SOCKET__ACCEPT); 3866 if (err) 3867 return err; 3868 3869 newisec = SOCK_INODE(newsock)->i_security; 3870 3871 isec = SOCK_INODE(sock)->i_security; 3872 newisec->sclass = isec->sclass; 3873 newisec->sid = isec->sid; 3874 newisec->initialized = 1; 3875 3876 return 0; 3877 } 3878 3879 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg, 3880 int size) 3881 { 3882 int rc; 3883 3884 rc = socket_has_perm(current, sock, SOCKET__WRITE); 3885 if (rc) 3886 return rc; 3887 3888 return selinux_netlbl_inode_permission(SOCK_INODE(sock), MAY_WRITE); 3889 } 3890 3891 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg, 3892 int size, int flags) 3893 { 3894 return socket_has_perm(current, sock, SOCKET__READ); 3895 } 3896 3897 static int selinux_socket_getsockname(struct socket *sock) 3898 { 3899 return socket_has_perm(current, sock, SOCKET__GETATTR); 3900 } 3901 3902 static int selinux_socket_getpeername(struct socket *sock) 3903 { 3904 return socket_has_perm(current, sock, SOCKET__GETATTR); 3905 } 3906 3907 static int selinux_socket_setsockopt(struct socket *sock, int level, int optname) 3908 { 3909 int err; 3910 3911 err = socket_has_perm(current, sock, SOCKET__SETOPT); 3912 if (err) 3913 return err; 3914 3915 return selinux_netlbl_socket_setsockopt(sock, level, optname); 3916 } 3917 3918 static int selinux_socket_getsockopt(struct socket *sock, int level, 3919 int optname) 3920 { 3921 return socket_has_perm(current, sock, SOCKET__GETOPT); 3922 } 3923 3924 static int selinux_socket_shutdown(struct socket *sock, int how) 3925 { 3926 return socket_has_perm(current, sock, SOCKET__SHUTDOWN); 3927 } 3928 3929 static int selinux_socket_unix_stream_connect(struct socket *sock, 3930 struct socket *other, 3931 struct sock *newsk) 3932 { 3933 struct sk_security_struct *ssec; 3934 struct inode_security_struct *isec; 3935 struct inode_security_struct *other_isec; 3936 struct avc_audit_data ad; 3937 int err; 3938 3939 err = secondary_ops->unix_stream_connect(sock, other, newsk); 3940 if (err) 3941 return err; 3942 3943 isec = SOCK_INODE(sock)->i_security; 3944 other_isec = SOCK_INODE(other)->i_security; 3945 3946 AVC_AUDIT_DATA_INIT(&ad, NET); 3947 ad.u.net.sk = other->sk; 3948 3949 err = avc_has_perm(isec->sid, other_isec->sid, 3950 isec->sclass, 3951 UNIX_STREAM_SOCKET__CONNECTTO, &ad); 3952 if (err) 3953 return err; 3954 3955 /* connecting socket */ 3956 ssec = sock->sk->sk_security; 3957 ssec->peer_sid = other_isec->sid; 3958 3959 /* server child socket */ 3960 ssec = newsk->sk_security; 3961 ssec->peer_sid = isec->sid; 3962 err = security_sid_mls_copy(other_isec->sid, ssec->peer_sid, &ssec->sid); 3963 3964 return err; 3965 } 3966 3967 static int selinux_socket_unix_may_send(struct socket *sock, 3968 struct socket *other) 3969 { 3970 struct inode_security_struct *isec; 3971 struct inode_security_struct *other_isec; 3972 struct avc_audit_data ad; 3973 int err; 3974 3975 isec = SOCK_INODE(sock)->i_security; 3976 other_isec = SOCK_INODE(other)->i_security; 3977 3978 AVC_AUDIT_DATA_INIT(&ad, NET); 3979 ad.u.net.sk = other->sk; 3980 3981 err = avc_has_perm(isec->sid, other_isec->sid, 3982 isec->sclass, SOCKET__SENDTO, &ad); 3983 if (err) 3984 return err; 3985 3986 return 0; 3987 } 3988 3989 static int selinux_inet_sys_rcv_skb(int ifindex, char *addrp, u16 family, 3990 u32 peer_sid, 3991 struct avc_audit_data *ad) 3992 { 3993 int err; 3994 u32 if_sid; 3995 u32 node_sid; 3996 3997 err = sel_netif_sid(ifindex, &if_sid); 3998 if (err) 3999 return err; 4000 err = avc_has_perm(peer_sid, if_sid, 4001 SECCLASS_NETIF, NETIF__INGRESS, ad); 4002 if (err) 4003 return err; 4004 4005 err = sel_netnode_sid(addrp, family, &node_sid); 4006 if (err) 4007 return err; 4008 return avc_has_perm(peer_sid, node_sid, 4009 SECCLASS_NODE, NODE__RECVFROM, ad); 4010 } 4011 4012 static int selinux_sock_rcv_skb_iptables_compat(struct sock *sk, 4013 struct sk_buff *skb, 4014 struct avc_audit_data *ad, 4015 u16 family, 4016 char *addrp) 4017 { 4018 int err; 4019 struct sk_security_struct *sksec = sk->sk_security; 4020 u16 sk_class; 4021 u32 netif_perm, node_perm, recv_perm; 4022 u32 port_sid, node_sid, if_sid, sk_sid; 4023 4024 sk_sid = sksec->sid; 4025 sk_class = sksec->sclass; 4026 4027 switch (sk_class) { 4028 case SECCLASS_UDP_SOCKET: 4029 netif_perm = NETIF__UDP_RECV; 4030 node_perm = NODE__UDP_RECV; 4031 recv_perm = UDP_SOCKET__RECV_MSG; 4032 break; 4033 case SECCLASS_TCP_SOCKET: 4034 netif_perm = NETIF__TCP_RECV; 4035 node_perm = NODE__TCP_RECV; 4036 recv_perm = TCP_SOCKET__RECV_MSG; 4037 break; 4038 case SECCLASS_DCCP_SOCKET: 4039 netif_perm = NETIF__DCCP_RECV; 4040 node_perm = NODE__DCCP_RECV; 4041 recv_perm = DCCP_SOCKET__RECV_MSG; 4042 break; 4043 default: 4044 netif_perm = NETIF__RAWIP_RECV; 4045 node_perm = NODE__RAWIP_RECV; 4046 recv_perm = 0; 4047 break; 4048 } 4049 4050 err = sel_netif_sid(skb->iif, &if_sid); 4051 if (err) 4052 return err; 4053 err = avc_has_perm(sk_sid, if_sid, SECCLASS_NETIF, netif_perm, ad); 4054 if (err) 4055 return err; 4056 4057 err = sel_netnode_sid(addrp, family, &node_sid); 4058 if (err) 4059 return err; 4060 err = avc_has_perm(sk_sid, node_sid, SECCLASS_NODE, node_perm, ad); 4061 if (err) 4062 return err; 4063 4064 if (!recv_perm) 4065 return 0; 4066 err = sel_netport_sid(sk->sk_protocol, 4067 ntohs(ad->u.net.sport), &port_sid); 4068 if (unlikely(err)) { 4069 printk(KERN_WARNING 4070 "SELinux: failure in" 4071 " selinux_sock_rcv_skb_iptables_compat()," 4072 " network port label not found\n"); 4073 return err; 4074 } 4075 return avc_has_perm(sk_sid, port_sid, sk_class, recv_perm, ad); 4076 } 4077 4078 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb, 4079 u16 family) 4080 { 4081 int err; 4082 struct sk_security_struct *sksec = sk->sk_security; 4083 u32 peer_sid; 4084 u32 sk_sid = sksec->sid; 4085 struct avc_audit_data ad; 4086 char *addrp; 4087 4088 AVC_AUDIT_DATA_INIT(&ad, NET); 4089 ad.u.net.netif = skb->iif; 4090 ad.u.net.family = family; 4091 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL); 4092 if (err) 4093 return err; 4094 4095 if (selinux_compat_net) 4096 err = selinux_sock_rcv_skb_iptables_compat(sk, skb, &ad, 4097 family, addrp); 4098 else 4099 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET, 4100 PACKET__RECV, &ad); 4101 if (err) 4102 return err; 4103 4104 if (selinux_policycap_netpeer) { 4105 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid); 4106 if (err) 4107 return err; 4108 err = avc_has_perm(sk_sid, peer_sid, 4109 SECCLASS_PEER, PEER__RECV, &ad); 4110 if (err) 4111 selinux_netlbl_err(skb, err, 0); 4112 } else { 4113 err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad); 4114 if (err) 4115 return err; 4116 err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad); 4117 } 4118 4119 return err; 4120 } 4121 4122 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb) 4123 { 4124 int err; 4125 struct sk_security_struct *sksec = sk->sk_security; 4126 u16 family = sk->sk_family; 4127 u32 sk_sid = sksec->sid; 4128 struct avc_audit_data ad; 4129 char *addrp; 4130 u8 secmark_active; 4131 u8 peerlbl_active; 4132 4133 if (family != PF_INET && family != PF_INET6) 4134 return 0; 4135 4136 /* Handle mapped IPv4 packets arriving via IPv6 sockets */ 4137 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP)) 4138 family = PF_INET; 4139 4140 /* If any sort of compatibility mode is enabled then handoff processing 4141 * to the selinux_sock_rcv_skb_compat() function to deal with the 4142 * special handling. We do this in an attempt to keep this function 4143 * as fast and as clean as possible. */ 4144 if (selinux_compat_net || !selinux_policycap_netpeer) 4145 return selinux_sock_rcv_skb_compat(sk, skb, family); 4146 4147 secmark_active = selinux_secmark_enabled(); 4148 peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled(); 4149 if (!secmark_active && !peerlbl_active) 4150 return 0; 4151 4152 AVC_AUDIT_DATA_INIT(&ad, NET); 4153 ad.u.net.netif = skb->iif; 4154 ad.u.net.family = family; 4155 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL); 4156 if (err) 4157 return err; 4158 4159 if (peerlbl_active) { 4160 u32 peer_sid; 4161 4162 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid); 4163 if (err) 4164 return err; 4165 err = selinux_inet_sys_rcv_skb(skb->iif, addrp, family, 4166 peer_sid, &ad); 4167 if (err) { 4168 selinux_netlbl_err(skb, err, 0); 4169 return err; 4170 } 4171 err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER, 4172 PEER__RECV, &ad); 4173 if (err) 4174 selinux_netlbl_err(skb, err, 0); 4175 } 4176 4177 if (secmark_active) { 4178 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET, 4179 PACKET__RECV, &ad); 4180 if (err) 4181 return err; 4182 } 4183 4184 return err; 4185 } 4186 4187 static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval, 4188 int __user *optlen, unsigned len) 4189 { 4190 int err = 0; 4191 char *scontext; 4192 u32 scontext_len; 4193 struct sk_security_struct *ssec; 4194 struct inode_security_struct *isec; 4195 u32 peer_sid = SECSID_NULL; 4196 4197 isec = SOCK_INODE(sock)->i_security; 4198 4199 if (isec->sclass == SECCLASS_UNIX_STREAM_SOCKET || 4200 isec->sclass == SECCLASS_TCP_SOCKET) { 4201 ssec = sock->sk->sk_security; 4202 peer_sid = ssec->peer_sid; 4203 } 4204 if (peer_sid == SECSID_NULL) { 4205 err = -ENOPROTOOPT; 4206 goto out; 4207 } 4208 4209 err = security_sid_to_context(peer_sid, &scontext, &scontext_len); 4210 4211 if (err) 4212 goto out; 4213 4214 if (scontext_len > len) { 4215 err = -ERANGE; 4216 goto out_len; 4217 } 4218 4219 if (copy_to_user(optval, scontext, scontext_len)) 4220 err = -EFAULT; 4221 4222 out_len: 4223 if (put_user(scontext_len, optlen)) 4224 err = -EFAULT; 4225 4226 kfree(scontext); 4227 out: 4228 return err; 4229 } 4230 4231 static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid) 4232 { 4233 u32 peer_secid = SECSID_NULL; 4234 u16 family; 4235 4236 if (skb && skb->protocol == htons(ETH_P_IP)) 4237 family = PF_INET; 4238 else if (skb && skb->protocol == htons(ETH_P_IPV6)) 4239 family = PF_INET6; 4240 else if (sock) 4241 family = sock->sk->sk_family; 4242 else 4243 goto out; 4244 4245 if (sock && family == PF_UNIX) 4246 selinux_inode_getsecid(SOCK_INODE(sock), &peer_secid); 4247 else if (skb) 4248 selinux_skb_peerlbl_sid(skb, family, &peer_secid); 4249 4250 out: 4251 *secid = peer_secid; 4252 if (peer_secid == SECSID_NULL) 4253 return -EINVAL; 4254 return 0; 4255 } 4256 4257 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority) 4258 { 4259 return sk_alloc_security(sk, family, priority); 4260 } 4261 4262 static void selinux_sk_free_security(struct sock *sk) 4263 { 4264 sk_free_security(sk); 4265 } 4266 4267 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk) 4268 { 4269 struct sk_security_struct *ssec = sk->sk_security; 4270 struct sk_security_struct *newssec = newsk->sk_security; 4271 4272 newssec->sid = ssec->sid; 4273 newssec->peer_sid = ssec->peer_sid; 4274 newssec->sclass = ssec->sclass; 4275 4276 selinux_netlbl_sk_security_reset(newssec, newsk->sk_family); 4277 } 4278 4279 static void selinux_sk_getsecid(struct sock *sk, u32 *secid) 4280 { 4281 if (!sk) 4282 *secid = SECINITSID_ANY_SOCKET; 4283 else { 4284 struct sk_security_struct *sksec = sk->sk_security; 4285 4286 *secid = sksec->sid; 4287 } 4288 } 4289 4290 static void selinux_sock_graft(struct sock *sk, struct socket *parent) 4291 { 4292 struct inode_security_struct *isec = SOCK_INODE(parent)->i_security; 4293 struct sk_security_struct *sksec = sk->sk_security; 4294 4295 if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 || 4296 sk->sk_family == PF_UNIX) 4297 isec->sid = sksec->sid; 4298 sksec->sclass = isec->sclass; 4299 } 4300 4301 static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb, 4302 struct request_sock *req) 4303 { 4304 struct sk_security_struct *sksec = sk->sk_security; 4305 int err; 4306 u16 family = sk->sk_family; 4307 u32 newsid; 4308 u32 peersid; 4309 4310 /* handle mapped IPv4 packets arriving via IPv6 sockets */ 4311 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP)) 4312 family = PF_INET; 4313 4314 err = selinux_skb_peerlbl_sid(skb, family, &peersid); 4315 if (err) 4316 return err; 4317 if (peersid == SECSID_NULL) { 4318 req->secid = sksec->sid; 4319 req->peer_secid = SECSID_NULL; 4320 return 0; 4321 } 4322 4323 err = security_sid_mls_copy(sksec->sid, peersid, &newsid); 4324 if (err) 4325 return err; 4326 4327 req->secid = newsid; 4328 req->peer_secid = peersid; 4329 return 0; 4330 } 4331 4332 static void selinux_inet_csk_clone(struct sock *newsk, 4333 const struct request_sock *req) 4334 { 4335 struct sk_security_struct *newsksec = newsk->sk_security; 4336 4337 newsksec->sid = req->secid; 4338 newsksec->peer_sid = req->peer_secid; 4339 /* NOTE: Ideally, we should also get the isec->sid for the 4340 new socket in sync, but we don't have the isec available yet. 4341 So we will wait until sock_graft to do it, by which 4342 time it will have been created and available. */ 4343 4344 /* We don't need to take any sort of lock here as we are the only 4345 * thread with access to newsksec */ 4346 selinux_netlbl_sk_security_reset(newsksec, req->rsk_ops->family); 4347 } 4348 4349 static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb) 4350 { 4351 u16 family = sk->sk_family; 4352 struct sk_security_struct *sksec = sk->sk_security; 4353 4354 /* handle mapped IPv4 packets arriving via IPv6 sockets */ 4355 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP)) 4356 family = PF_INET; 4357 4358 selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid); 4359 4360 selinux_netlbl_inet_conn_established(sk, family); 4361 } 4362 4363 static void selinux_req_classify_flow(const struct request_sock *req, 4364 struct flowi *fl) 4365 { 4366 fl->secid = req->secid; 4367 } 4368 4369 static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb) 4370 { 4371 int err = 0; 4372 u32 perm; 4373 struct nlmsghdr *nlh; 4374 struct socket *sock = sk->sk_socket; 4375 struct inode_security_struct *isec = SOCK_INODE(sock)->i_security; 4376 4377 if (skb->len < NLMSG_SPACE(0)) { 4378 err = -EINVAL; 4379 goto out; 4380 } 4381 nlh = nlmsg_hdr(skb); 4382 4383 err = selinux_nlmsg_lookup(isec->sclass, nlh->nlmsg_type, &perm); 4384 if (err) { 4385 if (err == -EINVAL) { 4386 audit_log(current->audit_context, GFP_KERNEL, AUDIT_SELINUX_ERR, 4387 "SELinux: unrecognized netlink message" 4388 " type=%hu for sclass=%hu\n", 4389 nlh->nlmsg_type, isec->sclass); 4390 if (!selinux_enforcing) 4391 err = 0; 4392 } 4393 4394 /* Ignore */ 4395 if (err == -ENOENT) 4396 err = 0; 4397 goto out; 4398 } 4399 4400 err = socket_has_perm(current, sock, perm); 4401 out: 4402 return err; 4403 } 4404 4405 #ifdef CONFIG_NETFILTER 4406 4407 static unsigned int selinux_ip_forward(struct sk_buff *skb, int ifindex, 4408 u16 family) 4409 { 4410 int err; 4411 char *addrp; 4412 u32 peer_sid; 4413 struct avc_audit_data ad; 4414 u8 secmark_active; 4415 u8 netlbl_active; 4416 u8 peerlbl_active; 4417 4418 if (!selinux_policycap_netpeer) 4419 return NF_ACCEPT; 4420 4421 secmark_active = selinux_secmark_enabled(); 4422 netlbl_active = netlbl_enabled(); 4423 peerlbl_active = netlbl_active || selinux_xfrm_enabled(); 4424 if (!secmark_active && !peerlbl_active) 4425 return NF_ACCEPT; 4426 4427 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0) 4428 return NF_DROP; 4429 4430 AVC_AUDIT_DATA_INIT(&ad, NET); 4431 ad.u.net.netif = ifindex; 4432 ad.u.net.family = family; 4433 if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0) 4434 return NF_DROP; 4435 4436 if (peerlbl_active) { 4437 err = selinux_inet_sys_rcv_skb(ifindex, addrp, family, 4438 peer_sid, &ad); 4439 if (err) { 4440 selinux_netlbl_err(skb, err, 1); 4441 return NF_DROP; 4442 } 4443 } 4444 4445 if (secmark_active) 4446 if (avc_has_perm(peer_sid, skb->secmark, 4447 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad)) 4448 return NF_DROP; 4449 4450 if (netlbl_active) 4451 /* we do this in the FORWARD path and not the POST_ROUTING 4452 * path because we want to make sure we apply the necessary 4453 * labeling before IPsec is applied so we can leverage AH 4454 * protection */ 4455 if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0) 4456 return NF_DROP; 4457 4458 return NF_ACCEPT; 4459 } 4460 4461 static unsigned int selinux_ipv4_forward(unsigned int hooknum, 4462 struct sk_buff *skb, 4463 const struct net_device *in, 4464 const struct net_device *out, 4465 int (*okfn)(struct sk_buff *)) 4466 { 4467 return selinux_ip_forward(skb, in->ifindex, PF_INET); 4468 } 4469 4470 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 4471 static unsigned int selinux_ipv6_forward(unsigned int hooknum, 4472 struct sk_buff *skb, 4473 const struct net_device *in, 4474 const struct net_device *out, 4475 int (*okfn)(struct sk_buff *)) 4476 { 4477 return selinux_ip_forward(skb, in->ifindex, PF_INET6); 4478 } 4479 #endif /* IPV6 */ 4480 4481 static unsigned int selinux_ip_output(struct sk_buff *skb, 4482 u16 family) 4483 { 4484 u32 sid; 4485 4486 if (!netlbl_enabled()) 4487 return NF_ACCEPT; 4488 4489 /* we do this in the LOCAL_OUT path and not the POST_ROUTING path 4490 * because we want to make sure we apply the necessary labeling 4491 * before IPsec is applied so we can leverage AH protection */ 4492 if (skb->sk) { 4493 struct sk_security_struct *sksec = skb->sk->sk_security; 4494 sid = sksec->sid; 4495 } else 4496 sid = SECINITSID_KERNEL; 4497 if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0) 4498 return NF_DROP; 4499 4500 return NF_ACCEPT; 4501 } 4502 4503 static unsigned int selinux_ipv4_output(unsigned int hooknum, 4504 struct sk_buff *skb, 4505 const struct net_device *in, 4506 const struct net_device *out, 4507 int (*okfn)(struct sk_buff *)) 4508 { 4509 return selinux_ip_output(skb, PF_INET); 4510 } 4511 4512 static int selinux_ip_postroute_iptables_compat(struct sock *sk, 4513 int ifindex, 4514 struct avc_audit_data *ad, 4515 u16 family, char *addrp) 4516 { 4517 int err; 4518 struct sk_security_struct *sksec = sk->sk_security; 4519 u16 sk_class; 4520 u32 netif_perm, node_perm, send_perm; 4521 u32 port_sid, node_sid, if_sid, sk_sid; 4522 4523 sk_sid = sksec->sid; 4524 sk_class = sksec->sclass; 4525 4526 switch (sk_class) { 4527 case SECCLASS_UDP_SOCKET: 4528 netif_perm = NETIF__UDP_SEND; 4529 node_perm = NODE__UDP_SEND; 4530 send_perm = UDP_SOCKET__SEND_MSG; 4531 break; 4532 case SECCLASS_TCP_SOCKET: 4533 netif_perm = NETIF__TCP_SEND; 4534 node_perm = NODE__TCP_SEND; 4535 send_perm = TCP_SOCKET__SEND_MSG; 4536 break; 4537 case SECCLASS_DCCP_SOCKET: 4538 netif_perm = NETIF__DCCP_SEND; 4539 node_perm = NODE__DCCP_SEND; 4540 send_perm = DCCP_SOCKET__SEND_MSG; 4541 break; 4542 default: 4543 netif_perm = NETIF__RAWIP_SEND; 4544 node_perm = NODE__RAWIP_SEND; 4545 send_perm = 0; 4546 break; 4547 } 4548 4549 err = sel_netif_sid(ifindex, &if_sid); 4550 if (err) 4551 return err; 4552 err = avc_has_perm(sk_sid, if_sid, SECCLASS_NETIF, netif_perm, ad); 4553 return err; 4554 4555 err = sel_netnode_sid(addrp, family, &node_sid); 4556 if (err) 4557 return err; 4558 err = avc_has_perm(sk_sid, node_sid, SECCLASS_NODE, node_perm, ad); 4559 if (err) 4560 return err; 4561 4562 if (send_perm != 0) 4563 return 0; 4564 4565 err = sel_netport_sid(sk->sk_protocol, 4566 ntohs(ad->u.net.dport), &port_sid); 4567 if (unlikely(err)) { 4568 printk(KERN_WARNING 4569 "SELinux: failure in" 4570 " selinux_ip_postroute_iptables_compat()," 4571 " network port label not found\n"); 4572 return err; 4573 } 4574 return avc_has_perm(sk_sid, port_sid, sk_class, send_perm, ad); 4575 } 4576 4577 static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb, 4578 int ifindex, 4579 u16 family) 4580 { 4581 struct sock *sk = skb->sk; 4582 struct sk_security_struct *sksec; 4583 struct avc_audit_data ad; 4584 char *addrp; 4585 u8 proto; 4586 4587 if (sk == NULL) 4588 return NF_ACCEPT; 4589 sksec = sk->sk_security; 4590 4591 AVC_AUDIT_DATA_INIT(&ad, NET); 4592 ad.u.net.netif = ifindex; 4593 ad.u.net.family = family; 4594 if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto)) 4595 return NF_DROP; 4596 4597 if (selinux_compat_net) { 4598 if (selinux_ip_postroute_iptables_compat(skb->sk, ifindex, 4599 &ad, family, addrp)) 4600 return NF_DROP; 4601 } else { 4602 if (avc_has_perm(sksec->sid, skb->secmark, 4603 SECCLASS_PACKET, PACKET__SEND, &ad)) 4604 return NF_DROP; 4605 } 4606 4607 if (selinux_policycap_netpeer) 4608 if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto)) 4609 return NF_DROP; 4610 4611 return NF_ACCEPT; 4612 } 4613 4614 static unsigned int selinux_ip_postroute(struct sk_buff *skb, int ifindex, 4615 u16 family) 4616 { 4617 u32 secmark_perm; 4618 u32 peer_sid; 4619 struct sock *sk; 4620 struct avc_audit_data ad; 4621 char *addrp; 4622 u8 secmark_active; 4623 u8 peerlbl_active; 4624 4625 /* If any sort of compatibility mode is enabled then handoff processing 4626 * to the selinux_ip_postroute_compat() function to deal with the 4627 * special handling. We do this in an attempt to keep this function 4628 * as fast and as clean as possible. */ 4629 if (selinux_compat_net || !selinux_policycap_netpeer) 4630 return selinux_ip_postroute_compat(skb, ifindex, family); 4631 4632 /* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec 4633 * packet transformation so allow the packet to pass without any checks 4634 * since we'll have another chance to perform access control checks 4635 * when the packet is on it's final way out. 4636 * NOTE: there appear to be some IPv6 multicast cases where skb->dst 4637 * is NULL, in this case go ahead and apply access control. */ 4638 if (skb->dst != NULL && skb->dst->xfrm != NULL) 4639 return NF_ACCEPT; 4640 4641 secmark_active = selinux_secmark_enabled(); 4642 peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled(); 4643 if (!secmark_active && !peerlbl_active) 4644 return NF_ACCEPT; 4645 4646 /* if the packet is being forwarded then get the peer label from the 4647 * packet itself; otherwise check to see if it is from a local 4648 * application or the kernel, if from an application get the peer label 4649 * from the sending socket, otherwise use the kernel's sid */ 4650 sk = skb->sk; 4651 if (sk == NULL) { 4652 switch (family) { 4653 case PF_INET: 4654 if (IPCB(skb)->flags & IPSKB_FORWARDED) 4655 secmark_perm = PACKET__FORWARD_OUT; 4656 else 4657 secmark_perm = PACKET__SEND; 4658 break; 4659 case PF_INET6: 4660 if (IP6CB(skb)->flags & IP6SKB_FORWARDED) 4661 secmark_perm = PACKET__FORWARD_OUT; 4662 else 4663 secmark_perm = PACKET__SEND; 4664 break; 4665 default: 4666 return NF_DROP; 4667 } 4668 if (secmark_perm == PACKET__FORWARD_OUT) { 4669 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid)) 4670 return NF_DROP; 4671 } else 4672 peer_sid = SECINITSID_KERNEL; 4673 } else { 4674 struct sk_security_struct *sksec = sk->sk_security; 4675 peer_sid = sksec->sid; 4676 secmark_perm = PACKET__SEND; 4677 } 4678 4679 AVC_AUDIT_DATA_INIT(&ad, NET); 4680 ad.u.net.netif = ifindex; 4681 ad.u.net.family = family; 4682 if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL)) 4683 return NF_DROP; 4684 4685 if (secmark_active) 4686 if (avc_has_perm(peer_sid, skb->secmark, 4687 SECCLASS_PACKET, secmark_perm, &ad)) 4688 return NF_DROP; 4689 4690 if (peerlbl_active) { 4691 u32 if_sid; 4692 u32 node_sid; 4693 4694 if (sel_netif_sid(ifindex, &if_sid)) 4695 return NF_DROP; 4696 if (avc_has_perm(peer_sid, if_sid, 4697 SECCLASS_NETIF, NETIF__EGRESS, &ad)) 4698 return NF_DROP; 4699 4700 if (sel_netnode_sid(addrp, family, &node_sid)) 4701 return NF_DROP; 4702 if (avc_has_perm(peer_sid, node_sid, 4703 SECCLASS_NODE, NODE__SENDTO, &ad)) 4704 return NF_DROP; 4705 } 4706 4707 return NF_ACCEPT; 4708 } 4709 4710 static unsigned int selinux_ipv4_postroute(unsigned int hooknum, 4711 struct sk_buff *skb, 4712 const struct net_device *in, 4713 const struct net_device *out, 4714 int (*okfn)(struct sk_buff *)) 4715 { 4716 return selinux_ip_postroute(skb, out->ifindex, PF_INET); 4717 } 4718 4719 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 4720 static unsigned int selinux_ipv6_postroute(unsigned int hooknum, 4721 struct sk_buff *skb, 4722 const struct net_device *in, 4723 const struct net_device *out, 4724 int (*okfn)(struct sk_buff *)) 4725 { 4726 return selinux_ip_postroute(skb, out->ifindex, PF_INET6); 4727 } 4728 #endif /* IPV6 */ 4729 4730 #endif /* CONFIG_NETFILTER */ 4731 4732 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb) 4733 { 4734 int err; 4735 4736 err = secondary_ops->netlink_send(sk, skb); 4737 if (err) 4738 return err; 4739 4740 if (policydb_loaded_version >= POLICYDB_VERSION_NLCLASS) 4741 err = selinux_nlmsg_perm(sk, skb); 4742 4743 return err; 4744 } 4745 4746 static int selinux_netlink_recv(struct sk_buff *skb, int capability) 4747 { 4748 int err; 4749 struct avc_audit_data ad; 4750 4751 err = secondary_ops->netlink_recv(skb, capability); 4752 if (err) 4753 return err; 4754 4755 AVC_AUDIT_DATA_INIT(&ad, CAP); 4756 ad.u.cap = capability; 4757 4758 return avc_has_perm(NETLINK_CB(skb).sid, NETLINK_CB(skb).sid, 4759 SECCLASS_CAPABILITY, CAP_TO_MASK(capability), &ad); 4760 } 4761 4762 static int ipc_alloc_security(struct task_struct *task, 4763 struct kern_ipc_perm *perm, 4764 u16 sclass) 4765 { 4766 struct task_security_struct *tsec = task->security; 4767 struct ipc_security_struct *isec; 4768 4769 isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL); 4770 if (!isec) 4771 return -ENOMEM; 4772 4773 isec->sclass = sclass; 4774 isec->sid = tsec->sid; 4775 perm->security = isec; 4776 4777 return 0; 4778 } 4779 4780 static void ipc_free_security(struct kern_ipc_perm *perm) 4781 { 4782 struct ipc_security_struct *isec = perm->security; 4783 perm->security = NULL; 4784 kfree(isec); 4785 } 4786 4787 static int msg_msg_alloc_security(struct msg_msg *msg) 4788 { 4789 struct msg_security_struct *msec; 4790 4791 msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL); 4792 if (!msec) 4793 return -ENOMEM; 4794 4795 msec->sid = SECINITSID_UNLABELED; 4796 msg->security = msec; 4797 4798 return 0; 4799 } 4800 4801 static void msg_msg_free_security(struct msg_msg *msg) 4802 { 4803 struct msg_security_struct *msec = msg->security; 4804 4805 msg->security = NULL; 4806 kfree(msec); 4807 } 4808 4809 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms, 4810 u32 perms) 4811 { 4812 struct task_security_struct *tsec; 4813 struct ipc_security_struct *isec; 4814 struct avc_audit_data ad; 4815 4816 tsec = current->security; 4817 isec = ipc_perms->security; 4818 4819 AVC_AUDIT_DATA_INIT(&ad, IPC); 4820 ad.u.ipc_id = ipc_perms->key; 4821 4822 return avc_has_perm(tsec->sid, isec->sid, isec->sclass, perms, &ad); 4823 } 4824 4825 static int selinux_msg_msg_alloc_security(struct msg_msg *msg) 4826 { 4827 return msg_msg_alloc_security(msg); 4828 } 4829 4830 static void selinux_msg_msg_free_security(struct msg_msg *msg) 4831 { 4832 msg_msg_free_security(msg); 4833 } 4834 4835 /* message queue security operations */ 4836 static int selinux_msg_queue_alloc_security(struct msg_queue *msq) 4837 { 4838 struct task_security_struct *tsec; 4839 struct ipc_security_struct *isec; 4840 struct avc_audit_data ad; 4841 int rc; 4842 4843 rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ); 4844 if (rc) 4845 return rc; 4846 4847 tsec = current->security; 4848 isec = msq->q_perm.security; 4849 4850 AVC_AUDIT_DATA_INIT(&ad, IPC); 4851 ad.u.ipc_id = msq->q_perm.key; 4852 4853 rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_MSGQ, 4854 MSGQ__CREATE, &ad); 4855 if (rc) { 4856 ipc_free_security(&msq->q_perm); 4857 return rc; 4858 } 4859 return 0; 4860 } 4861 4862 static void selinux_msg_queue_free_security(struct msg_queue *msq) 4863 { 4864 ipc_free_security(&msq->q_perm); 4865 } 4866 4867 static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg) 4868 { 4869 struct task_security_struct *tsec; 4870 struct ipc_security_struct *isec; 4871 struct avc_audit_data ad; 4872 4873 tsec = current->security; 4874 isec = msq->q_perm.security; 4875 4876 AVC_AUDIT_DATA_INIT(&ad, IPC); 4877 ad.u.ipc_id = msq->q_perm.key; 4878 4879 return avc_has_perm(tsec->sid, isec->sid, SECCLASS_MSGQ, 4880 MSGQ__ASSOCIATE, &ad); 4881 } 4882 4883 static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd) 4884 { 4885 int err; 4886 int perms; 4887 4888 switch (cmd) { 4889 case IPC_INFO: 4890 case MSG_INFO: 4891 /* No specific object, just general system-wide information. */ 4892 return task_has_system(current, SYSTEM__IPC_INFO); 4893 case IPC_STAT: 4894 case MSG_STAT: 4895 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE; 4896 break; 4897 case IPC_SET: 4898 perms = MSGQ__SETATTR; 4899 break; 4900 case IPC_RMID: 4901 perms = MSGQ__DESTROY; 4902 break; 4903 default: 4904 return 0; 4905 } 4906 4907 err = ipc_has_perm(&msq->q_perm, perms); 4908 return err; 4909 } 4910 4911 static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg) 4912 { 4913 struct task_security_struct *tsec; 4914 struct ipc_security_struct *isec; 4915 struct msg_security_struct *msec; 4916 struct avc_audit_data ad; 4917 int rc; 4918 4919 tsec = current->security; 4920 isec = msq->q_perm.security; 4921 msec = msg->security; 4922 4923 /* 4924 * First time through, need to assign label to the message 4925 */ 4926 if (msec->sid == SECINITSID_UNLABELED) { 4927 /* 4928 * Compute new sid based on current process and 4929 * message queue this message will be stored in 4930 */ 4931 rc = security_transition_sid(tsec->sid, 4932 isec->sid, 4933 SECCLASS_MSG, 4934 &msec->sid); 4935 if (rc) 4936 return rc; 4937 } 4938 4939 AVC_AUDIT_DATA_INIT(&ad, IPC); 4940 ad.u.ipc_id = msq->q_perm.key; 4941 4942 /* Can this process write to the queue? */ 4943 rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_MSGQ, 4944 MSGQ__WRITE, &ad); 4945 if (!rc) 4946 /* Can this process send the message */ 4947 rc = avc_has_perm(tsec->sid, msec->sid, 4948 SECCLASS_MSG, MSG__SEND, &ad); 4949 if (!rc) 4950 /* Can the message be put in the queue? */ 4951 rc = avc_has_perm(msec->sid, isec->sid, 4952 SECCLASS_MSGQ, MSGQ__ENQUEUE, &ad); 4953 4954 return rc; 4955 } 4956 4957 static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg, 4958 struct task_struct *target, 4959 long type, int mode) 4960 { 4961 struct task_security_struct *tsec; 4962 struct ipc_security_struct *isec; 4963 struct msg_security_struct *msec; 4964 struct avc_audit_data ad; 4965 int rc; 4966 4967 tsec = target->security; 4968 isec = msq->q_perm.security; 4969 msec = msg->security; 4970 4971 AVC_AUDIT_DATA_INIT(&ad, IPC); 4972 ad.u.ipc_id = msq->q_perm.key; 4973 4974 rc = avc_has_perm(tsec->sid, isec->sid, 4975 SECCLASS_MSGQ, MSGQ__READ, &ad); 4976 if (!rc) 4977 rc = avc_has_perm(tsec->sid, msec->sid, 4978 SECCLASS_MSG, MSG__RECEIVE, &ad); 4979 return rc; 4980 } 4981 4982 /* Shared Memory security operations */ 4983 static int selinux_shm_alloc_security(struct shmid_kernel *shp) 4984 { 4985 struct task_security_struct *tsec; 4986 struct ipc_security_struct *isec; 4987 struct avc_audit_data ad; 4988 int rc; 4989 4990 rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM); 4991 if (rc) 4992 return rc; 4993 4994 tsec = current->security; 4995 isec = shp->shm_perm.security; 4996 4997 AVC_AUDIT_DATA_INIT(&ad, IPC); 4998 ad.u.ipc_id = shp->shm_perm.key; 4999 5000 rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_SHM, 5001 SHM__CREATE, &ad); 5002 if (rc) { 5003 ipc_free_security(&shp->shm_perm); 5004 return rc; 5005 } 5006 return 0; 5007 } 5008 5009 static void selinux_shm_free_security(struct shmid_kernel *shp) 5010 { 5011 ipc_free_security(&shp->shm_perm); 5012 } 5013 5014 static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg) 5015 { 5016 struct task_security_struct *tsec; 5017 struct ipc_security_struct *isec; 5018 struct avc_audit_data ad; 5019 5020 tsec = current->security; 5021 isec = shp->shm_perm.security; 5022 5023 AVC_AUDIT_DATA_INIT(&ad, IPC); 5024 ad.u.ipc_id = shp->shm_perm.key; 5025 5026 return avc_has_perm(tsec->sid, isec->sid, SECCLASS_SHM, 5027 SHM__ASSOCIATE, &ad); 5028 } 5029 5030 /* Note, at this point, shp is locked down */ 5031 static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd) 5032 { 5033 int perms; 5034 int err; 5035 5036 switch (cmd) { 5037 case IPC_INFO: 5038 case SHM_INFO: 5039 /* No specific object, just general system-wide information. */ 5040 return task_has_system(current, SYSTEM__IPC_INFO); 5041 case IPC_STAT: 5042 case SHM_STAT: 5043 perms = SHM__GETATTR | SHM__ASSOCIATE; 5044 break; 5045 case IPC_SET: 5046 perms = SHM__SETATTR; 5047 break; 5048 case SHM_LOCK: 5049 case SHM_UNLOCK: 5050 perms = SHM__LOCK; 5051 break; 5052 case IPC_RMID: 5053 perms = SHM__DESTROY; 5054 break; 5055 default: 5056 return 0; 5057 } 5058 5059 err = ipc_has_perm(&shp->shm_perm, perms); 5060 return err; 5061 } 5062 5063 static int selinux_shm_shmat(struct shmid_kernel *shp, 5064 char __user *shmaddr, int shmflg) 5065 { 5066 u32 perms; 5067 int rc; 5068 5069 rc = secondary_ops->shm_shmat(shp, shmaddr, shmflg); 5070 if (rc) 5071 return rc; 5072 5073 if (shmflg & SHM_RDONLY) 5074 perms = SHM__READ; 5075 else 5076 perms = SHM__READ | SHM__WRITE; 5077 5078 return ipc_has_perm(&shp->shm_perm, perms); 5079 } 5080 5081 /* Semaphore security operations */ 5082 static int selinux_sem_alloc_security(struct sem_array *sma) 5083 { 5084 struct task_security_struct *tsec; 5085 struct ipc_security_struct *isec; 5086 struct avc_audit_data ad; 5087 int rc; 5088 5089 rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM); 5090 if (rc) 5091 return rc; 5092 5093 tsec = current->security; 5094 isec = sma->sem_perm.security; 5095 5096 AVC_AUDIT_DATA_INIT(&ad, IPC); 5097 ad.u.ipc_id = sma->sem_perm.key; 5098 5099 rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_SEM, 5100 SEM__CREATE, &ad); 5101 if (rc) { 5102 ipc_free_security(&sma->sem_perm); 5103 return rc; 5104 } 5105 return 0; 5106 } 5107 5108 static void selinux_sem_free_security(struct sem_array *sma) 5109 { 5110 ipc_free_security(&sma->sem_perm); 5111 } 5112 5113 static int selinux_sem_associate(struct sem_array *sma, int semflg) 5114 { 5115 struct task_security_struct *tsec; 5116 struct ipc_security_struct *isec; 5117 struct avc_audit_data ad; 5118 5119 tsec = current->security; 5120 isec = sma->sem_perm.security; 5121 5122 AVC_AUDIT_DATA_INIT(&ad, IPC); 5123 ad.u.ipc_id = sma->sem_perm.key; 5124 5125 return avc_has_perm(tsec->sid, isec->sid, SECCLASS_SEM, 5126 SEM__ASSOCIATE, &ad); 5127 } 5128 5129 /* Note, at this point, sma is locked down */ 5130 static int selinux_sem_semctl(struct sem_array *sma, int cmd) 5131 { 5132 int err; 5133 u32 perms; 5134 5135 switch (cmd) { 5136 case IPC_INFO: 5137 case SEM_INFO: 5138 /* No specific object, just general system-wide information. */ 5139 return task_has_system(current, SYSTEM__IPC_INFO); 5140 case GETPID: 5141 case GETNCNT: 5142 case GETZCNT: 5143 perms = SEM__GETATTR; 5144 break; 5145 case GETVAL: 5146 case GETALL: 5147 perms = SEM__READ; 5148 break; 5149 case SETVAL: 5150 case SETALL: 5151 perms = SEM__WRITE; 5152 break; 5153 case IPC_RMID: 5154 perms = SEM__DESTROY; 5155 break; 5156 case IPC_SET: 5157 perms = SEM__SETATTR; 5158 break; 5159 case IPC_STAT: 5160 case SEM_STAT: 5161 perms = SEM__GETATTR | SEM__ASSOCIATE; 5162 break; 5163 default: 5164 return 0; 5165 } 5166 5167 err = ipc_has_perm(&sma->sem_perm, perms); 5168 return err; 5169 } 5170 5171 static int selinux_sem_semop(struct sem_array *sma, 5172 struct sembuf *sops, unsigned nsops, int alter) 5173 { 5174 u32 perms; 5175 5176 if (alter) 5177 perms = SEM__READ | SEM__WRITE; 5178 else 5179 perms = SEM__READ; 5180 5181 return ipc_has_perm(&sma->sem_perm, perms); 5182 } 5183 5184 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag) 5185 { 5186 u32 av = 0; 5187 5188 av = 0; 5189 if (flag & S_IRUGO) 5190 av |= IPC__UNIX_READ; 5191 if (flag & S_IWUGO) 5192 av |= IPC__UNIX_WRITE; 5193 5194 if (av == 0) 5195 return 0; 5196 5197 return ipc_has_perm(ipcp, av); 5198 } 5199 5200 static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid) 5201 { 5202 struct ipc_security_struct *isec = ipcp->security; 5203 *secid = isec->sid; 5204 } 5205 5206 static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode) 5207 { 5208 if (inode) 5209 inode_doinit_with_dentry(inode, dentry); 5210 } 5211 5212 static int selinux_getprocattr(struct task_struct *p, 5213 char *name, char **value) 5214 { 5215 struct task_security_struct *tsec; 5216 u32 sid; 5217 int error; 5218 unsigned len; 5219 5220 if (current != p) { 5221 error = task_has_perm(current, p, PROCESS__GETATTR); 5222 if (error) 5223 return error; 5224 } 5225 5226 tsec = p->security; 5227 5228 if (!strcmp(name, "current")) 5229 sid = tsec->sid; 5230 else if (!strcmp(name, "prev")) 5231 sid = tsec->osid; 5232 else if (!strcmp(name, "exec")) 5233 sid = tsec->exec_sid; 5234 else if (!strcmp(name, "fscreate")) 5235 sid = tsec->create_sid; 5236 else if (!strcmp(name, "keycreate")) 5237 sid = tsec->keycreate_sid; 5238 else if (!strcmp(name, "sockcreate")) 5239 sid = tsec->sockcreate_sid; 5240 else 5241 return -EINVAL; 5242 5243 if (!sid) 5244 return 0; 5245 5246 error = security_sid_to_context(sid, value, &len); 5247 if (error) 5248 return error; 5249 return len; 5250 } 5251 5252 static int selinux_setprocattr(struct task_struct *p, 5253 char *name, void *value, size_t size) 5254 { 5255 struct task_security_struct *tsec; 5256 struct task_struct *tracer; 5257 u32 sid = 0; 5258 int error; 5259 char *str = value; 5260 5261 if (current != p) { 5262 /* SELinux only allows a process to change its own 5263 security attributes. */ 5264 return -EACCES; 5265 } 5266 5267 /* 5268 * Basic control over ability to set these attributes at all. 5269 * current == p, but we'll pass them separately in case the 5270 * above restriction is ever removed. 5271 */ 5272 if (!strcmp(name, "exec")) 5273 error = task_has_perm(current, p, PROCESS__SETEXEC); 5274 else if (!strcmp(name, "fscreate")) 5275 error = task_has_perm(current, p, PROCESS__SETFSCREATE); 5276 else if (!strcmp(name, "keycreate")) 5277 error = task_has_perm(current, p, PROCESS__SETKEYCREATE); 5278 else if (!strcmp(name, "sockcreate")) 5279 error = task_has_perm(current, p, PROCESS__SETSOCKCREATE); 5280 else if (!strcmp(name, "current")) 5281 error = task_has_perm(current, p, PROCESS__SETCURRENT); 5282 else 5283 error = -EINVAL; 5284 if (error) 5285 return error; 5286 5287 /* Obtain a SID for the context, if one was specified. */ 5288 if (size && str[1] && str[1] != '\n') { 5289 if (str[size-1] == '\n') { 5290 str[size-1] = 0; 5291 size--; 5292 } 5293 error = security_context_to_sid(value, size, &sid); 5294 if (error == -EINVAL && !strcmp(name, "fscreate")) { 5295 if (!capable(CAP_MAC_ADMIN)) 5296 return error; 5297 error = security_context_to_sid_force(value, size, 5298 &sid); 5299 } 5300 if (error) 5301 return error; 5302 } 5303 5304 /* Permission checking based on the specified context is 5305 performed during the actual operation (execve, 5306 open/mkdir/...), when we know the full context of the 5307 operation. See selinux_bprm_set_security for the execve 5308 checks and may_create for the file creation checks. The 5309 operation will then fail if the context is not permitted. */ 5310 tsec = p->security; 5311 if (!strcmp(name, "exec")) 5312 tsec->exec_sid = sid; 5313 else if (!strcmp(name, "fscreate")) 5314 tsec->create_sid = sid; 5315 else if (!strcmp(name, "keycreate")) { 5316 error = may_create_key(sid, p); 5317 if (error) 5318 return error; 5319 tsec->keycreate_sid = sid; 5320 } else if (!strcmp(name, "sockcreate")) 5321 tsec->sockcreate_sid = sid; 5322 else if (!strcmp(name, "current")) { 5323 struct av_decision avd; 5324 5325 if (sid == 0) 5326 return -EINVAL; 5327 /* 5328 * SELinux allows to change context in the following case only. 5329 * - Single threaded processes. 5330 * - Multi threaded processes intend to change its context into 5331 * more restricted domain (defined by TYPEBOUNDS statement). 5332 */ 5333 if (atomic_read(&p->mm->mm_users) != 1) { 5334 struct task_struct *g, *t; 5335 struct mm_struct *mm = p->mm; 5336 read_lock(&tasklist_lock); 5337 do_each_thread(g, t) { 5338 if (t->mm == mm && t != p) { 5339 read_unlock(&tasklist_lock); 5340 error = security_bounded_transition(tsec->sid, sid); 5341 if (!error) 5342 goto boundary_ok; 5343 5344 return error; 5345 } 5346 } while_each_thread(g, t); 5347 read_unlock(&tasklist_lock); 5348 } 5349 boundary_ok: 5350 5351 /* Check permissions for the transition. */ 5352 error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS, 5353 PROCESS__DYNTRANSITION, NULL); 5354 if (error) 5355 return error; 5356 5357 /* Check for ptracing, and update the task SID if ok. 5358 Otherwise, leave SID unchanged and fail. */ 5359 task_lock(p); 5360 rcu_read_lock(); 5361 tracer = tracehook_tracer_task(p); 5362 if (tracer != NULL) { 5363 struct task_security_struct *ptsec = tracer->security; 5364 u32 ptsid = ptsec->sid; 5365 rcu_read_unlock(); 5366 error = avc_has_perm_noaudit(ptsid, sid, 5367 SECCLASS_PROCESS, 5368 PROCESS__PTRACE, 0, &avd); 5369 if (!error) 5370 tsec->sid = sid; 5371 task_unlock(p); 5372 avc_audit(ptsid, sid, SECCLASS_PROCESS, 5373 PROCESS__PTRACE, &avd, error, NULL); 5374 if (error) 5375 return error; 5376 } else { 5377 rcu_read_unlock(); 5378 tsec->sid = sid; 5379 task_unlock(p); 5380 } 5381 } else 5382 return -EINVAL; 5383 5384 return size; 5385 } 5386 5387 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen) 5388 { 5389 return security_sid_to_context(secid, secdata, seclen); 5390 } 5391 5392 static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid) 5393 { 5394 return security_context_to_sid(secdata, seclen, secid); 5395 } 5396 5397 static void selinux_release_secctx(char *secdata, u32 seclen) 5398 { 5399 kfree(secdata); 5400 } 5401 5402 #ifdef CONFIG_KEYS 5403 5404 static int selinux_key_alloc(struct key *k, struct task_struct *tsk, 5405 unsigned long flags) 5406 { 5407 struct task_security_struct *tsec = tsk->security; 5408 struct key_security_struct *ksec; 5409 5410 ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL); 5411 if (!ksec) 5412 return -ENOMEM; 5413 5414 if (tsec->keycreate_sid) 5415 ksec->sid = tsec->keycreate_sid; 5416 else 5417 ksec->sid = tsec->sid; 5418 k->security = ksec; 5419 5420 return 0; 5421 } 5422 5423 static void selinux_key_free(struct key *k) 5424 { 5425 struct key_security_struct *ksec = k->security; 5426 5427 k->security = NULL; 5428 kfree(ksec); 5429 } 5430 5431 static int selinux_key_permission(key_ref_t key_ref, 5432 struct task_struct *ctx, 5433 key_perm_t perm) 5434 { 5435 struct key *key; 5436 struct task_security_struct *tsec; 5437 struct key_security_struct *ksec; 5438 5439 key = key_ref_to_ptr(key_ref); 5440 5441 tsec = ctx->security; 5442 ksec = key->security; 5443 5444 /* if no specific permissions are requested, we skip the 5445 permission check. No serious, additional covert channels 5446 appear to be created. */ 5447 if (perm == 0) 5448 return 0; 5449 5450 return avc_has_perm(tsec->sid, ksec->sid, 5451 SECCLASS_KEY, perm, NULL); 5452 } 5453 5454 static int selinux_key_getsecurity(struct key *key, char **_buffer) 5455 { 5456 struct key_security_struct *ksec = key->security; 5457 char *context = NULL; 5458 unsigned len; 5459 int rc; 5460 5461 rc = security_sid_to_context(ksec->sid, &context, &len); 5462 if (!rc) 5463 rc = len; 5464 *_buffer = context; 5465 return rc; 5466 } 5467 5468 #endif 5469 5470 static struct security_operations selinux_ops = { 5471 .name = "selinux", 5472 5473 .ptrace_may_access = selinux_ptrace_may_access, 5474 .ptrace_traceme = selinux_ptrace_traceme, 5475 .capget = selinux_capget, 5476 .capset_check = selinux_capset_check, 5477 .capset_set = selinux_capset_set, 5478 .sysctl = selinux_sysctl, 5479 .capable = selinux_capable, 5480 .quotactl = selinux_quotactl, 5481 .quota_on = selinux_quota_on, 5482 .syslog = selinux_syslog, 5483 .vm_enough_memory = selinux_vm_enough_memory, 5484 5485 .netlink_send = selinux_netlink_send, 5486 .netlink_recv = selinux_netlink_recv, 5487 5488 .bprm_alloc_security = selinux_bprm_alloc_security, 5489 .bprm_free_security = selinux_bprm_free_security, 5490 .bprm_apply_creds = selinux_bprm_apply_creds, 5491 .bprm_post_apply_creds = selinux_bprm_post_apply_creds, 5492 .bprm_set_security = selinux_bprm_set_security, 5493 .bprm_check_security = selinux_bprm_check_security, 5494 .bprm_secureexec = selinux_bprm_secureexec, 5495 5496 .sb_alloc_security = selinux_sb_alloc_security, 5497 .sb_free_security = selinux_sb_free_security, 5498 .sb_copy_data = selinux_sb_copy_data, 5499 .sb_kern_mount = selinux_sb_kern_mount, 5500 .sb_show_options = selinux_sb_show_options, 5501 .sb_statfs = selinux_sb_statfs, 5502 .sb_mount = selinux_mount, 5503 .sb_umount = selinux_umount, 5504 .sb_set_mnt_opts = selinux_set_mnt_opts, 5505 .sb_clone_mnt_opts = selinux_sb_clone_mnt_opts, 5506 .sb_parse_opts_str = selinux_parse_opts_str, 5507 5508 5509 .inode_alloc_security = selinux_inode_alloc_security, 5510 .inode_free_security = selinux_inode_free_security, 5511 .inode_init_security = selinux_inode_init_security, 5512 .inode_create = selinux_inode_create, 5513 .inode_link = selinux_inode_link, 5514 .inode_unlink = selinux_inode_unlink, 5515 .inode_symlink = selinux_inode_symlink, 5516 .inode_mkdir = selinux_inode_mkdir, 5517 .inode_rmdir = selinux_inode_rmdir, 5518 .inode_mknod = selinux_inode_mknod, 5519 .inode_rename = selinux_inode_rename, 5520 .inode_readlink = selinux_inode_readlink, 5521 .inode_follow_link = selinux_inode_follow_link, 5522 .inode_permission = selinux_inode_permission, 5523 .inode_setattr = selinux_inode_setattr, 5524 .inode_getattr = selinux_inode_getattr, 5525 .inode_setxattr = selinux_inode_setxattr, 5526 .inode_post_setxattr = selinux_inode_post_setxattr, 5527 .inode_getxattr = selinux_inode_getxattr, 5528 .inode_listxattr = selinux_inode_listxattr, 5529 .inode_removexattr = selinux_inode_removexattr, 5530 .inode_getsecurity = selinux_inode_getsecurity, 5531 .inode_setsecurity = selinux_inode_setsecurity, 5532 .inode_listsecurity = selinux_inode_listsecurity, 5533 .inode_need_killpriv = selinux_inode_need_killpriv, 5534 .inode_killpriv = selinux_inode_killpriv, 5535 .inode_getsecid = selinux_inode_getsecid, 5536 5537 .file_permission = selinux_file_permission, 5538 .file_alloc_security = selinux_file_alloc_security, 5539 .file_free_security = selinux_file_free_security, 5540 .file_ioctl = selinux_file_ioctl, 5541 .file_mmap = selinux_file_mmap, 5542 .file_mprotect = selinux_file_mprotect, 5543 .file_lock = selinux_file_lock, 5544 .file_fcntl = selinux_file_fcntl, 5545 .file_set_fowner = selinux_file_set_fowner, 5546 .file_send_sigiotask = selinux_file_send_sigiotask, 5547 .file_receive = selinux_file_receive, 5548 5549 .dentry_open = selinux_dentry_open, 5550 5551 .task_create = selinux_task_create, 5552 .task_alloc_security = selinux_task_alloc_security, 5553 .task_free_security = selinux_task_free_security, 5554 .task_setuid = selinux_task_setuid, 5555 .task_post_setuid = selinux_task_post_setuid, 5556 .task_setgid = selinux_task_setgid, 5557 .task_setpgid = selinux_task_setpgid, 5558 .task_getpgid = selinux_task_getpgid, 5559 .task_getsid = selinux_task_getsid, 5560 .task_getsecid = selinux_task_getsecid, 5561 .task_setgroups = selinux_task_setgroups, 5562 .task_setnice = selinux_task_setnice, 5563 .task_setioprio = selinux_task_setioprio, 5564 .task_getioprio = selinux_task_getioprio, 5565 .task_setrlimit = selinux_task_setrlimit, 5566 .task_setscheduler = selinux_task_setscheduler, 5567 .task_getscheduler = selinux_task_getscheduler, 5568 .task_movememory = selinux_task_movememory, 5569 .task_kill = selinux_task_kill, 5570 .task_wait = selinux_task_wait, 5571 .task_prctl = selinux_task_prctl, 5572 .task_reparent_to_init = selinux_task_reparent_to_init, 5573 .task_to_inode = selinux_task_to_inode, 5574 5575 .ipc_permission = selinux_ipc_permission, 5576 .ipc_getsecid = selinux_ipc_getsecid, 5577 5578 .msg_msg_alloc_security = selinux_msg_msg_alloc_security, 5579 .msg_msg_free_security = selinux_msg_msg_free_security, 5580 5581 .msg_queue_alloc_security = selinux_msg_queue_alloc_security, 5582 .msg_queue_free_security = selinux_msg_queue_free_security, 5583 .msg_queue_associate = selinux_msg_queue_associate, 5584 .msg_queue_msgctl = selinux_msg_queue_msgctl, 5585 .msg_queue_msgsnd = selinux_msg_queue_msgsnd, 5586 .msg_queue_msgrcv = selinux_msg_queue_msgrcv, 5587 5588 .shm_alloc_security = selinux_shm_alloc_security, 5589 .shm_free_security = selinux_shm_free_security, 5590 .shm_associate = selinux_shm_associate, 5591 .shm_shmctl = selinux_shm_shmctl, 5592 .shm_shmat = selinux_shm_shmat, 5593 5594 .sem_alloc_security = selinux_sem_alloc_security, 5595 .sem_free_security = selinux_sem_free_security, 5596 .sem_associate = selinux_sem_associate, 5597 .sem_semctl = selinux_sem_semctl, 5598 .sem_semop = selinux_sem_semop, 5599 5600 .d_instantiate = selinux_d_instantiate, 5601 5602 .getprocattr = selinux_getprocattr, 5603 .setprocattr = selinux_setprocattr, 5604 5605 .secid_to_secctx = selinux_secid_to_secctx, 5606 .secctx_to_secid = selinux_secctx_to_secid, 5607 .release_secctx = selinux_release_secctx, 5608 5609 .unix_stream_connect = selinux_socket_unix_stream_connect, 5610 .unix_may_send = selinux_socket_unix_may_send, 5611 5612 .socket_create = selinux_socket_create, 5613 .socket_post_create = selinux_socket_post_create, 5614 .socket_bind = selinux_socket_bind, 5615 .socket_connect = selinux_socket_connect, 5616 .socket_listen = selinux_socket_listen, 5617 .socket_accept = selinux_socket_accept, 5618 .socket_sendmsg = selinux_socket_sendmsg, 5619 .socket_recvmsg = selinux_socket_recvmsg, 5620 .socket_getsockname = selinux_socket_getsockname, 5621 .socket_getpeername = selinux_socket_getpeername, 5622 .socket_getsockopt = selinux_socket_getsockopt, 5623 .socket_setsockopt = selinux_socket_setsockopt, 5624 .socket_shutdown = selinux_socket_shutdown, 5625 .socket_sock_rcv_skb = selinux_socket_sock_rcv_skb, 5626 .socket_getpeersec_stream = selinux_socket_getpeersec_stream, 5627 .socket_getpeersec_dgram = selinux_socket_getpeersec_dgram, 5628 .sk_alloc_security = selinux_sk_alloc_security, 5629 .sk_free_security = selinux_sk_free_security, 5630 .sk_clone_security = selinux_sk_clone_security, 5631 .sk_getsecid = selinux_sk_getsecid, 5632 .sock_graft = selinux_sock_graft, 5633 .inet_conn_request = selinux_inet_conn_request, 5634 .inet_csk_clone = selinux_inet_csk_clone, 5635 .inet_conn_established = selinux_inet_conn_established, 5636 .req_classify_flow = selinux_req_classify_flow, 5637 5638 #ifdef CONFIG_SECURITY_NETWORK_XFRM 5639 .xfrm_policy_alloc_security = selinux_xfrm_policy_alloc, 5640 .xfrm_policy_clone_security = selinux_xfrm_policy_clone, 5641 .xfrm_policy_free_security = selinux_xfrm_policy_free, 5642 .xfrm_policy_delete_security = selinux_xfrm_policy_delete, 5643 .xfrm_state_alloc_security = selinux_xfrm_state_alloc, 5644 .xfrm_state_free_security = selinux_xfrm_state_free, 5645 .xfrm_state_delete_security = selinux_xfrm_state_delete, 5646 .xfrm_policy_lookup = selinux_xfrm_policy_lookup, 5647 .xfrm_state_pol_flow_match = selinux_xfrm_state_pol_flow_match, 5648 .xfrm_decode_session = selinux_xfrm_decode_session, 5649 #endif 5650 5651 #ifdef CONFIG_KEYS 5652 .key_alloc = selinux_key_alloc, 5653 .key_free = selinux_key_free, 5654 .key_permission = selinux_key_permission, 5655 .key_getsecurity = selinux_key_getsecurity, 5656 #endif 5657 5658 #ifdef CONFIG_AUDIT 5659 .audit_rule_init = selinux_audit_rule_init, 5660 .audit_rule_known = selinux_audit_rule_known, 5661 .audit_rule_match = selinux_audit_rule_match, 5662 .audit_rule_free = selinux_audit_rule_free, 5663 #endif 5664 }; 5665 5666 static __init int selinux_init(void) 5667 { 5668 struct task_security_struct *tsec; 5669 5670 if (!security_module_enable(&selinux_ops)) { 5671 selinux_enabled = 0; 5672 return 0; 5673 } 5674 5675 if (!selinux_enabled) { 5676 printk(KERN_INFO "SELinux: Disabled at boot.\n"); 5677 return 0; 5678 } 5679 5680 printk(KERN_INFO "SELinux: Initializing.\n"); 5681 5682 /* Set the security state for the initial task. */ 5683 if (task_alloc_security(current)) 5684 panic("SELinux: Failed to initialize initial task.\n"); 5685 tsec = current->security; 5686 tsec->osid = tsec->sid = SECINITSID_KERNEL; 5687 5688 sel_inode_cache = kmem_cache_create("selinux_inode_security", 5689 sizeof(struct inode_security_struct), 5690 0, SLAB_PANIC, NULL); 5691 avc_init(); 5692 5693 secondary_ops = security_ops; 5694 if (!secondary_ops) 5695 panic("SELinux: No initial security operations\n"); 5696 if (register_security(&selinux_ops)) 5697 panic("SELinux: Unable to register with kernel.\n"); 5698 5699 if (selinux_enforcing) 5700 printk(KERN_DEBUG "SELinux: Starting in enforcing mode\n"); 5701 else 5702 printk(KERN_DEBUG "SELinux: Starting in permissive mode\n"); 5703 5704 return 0; 5705 } 5706 5707 void selinux_complete_init(void) 5708 { 5709 printk(KERN_DEBUG "SELinux: Completing initialization.\n"); 5710 5711 /* Set up any superblocks initialized prior to the policy load. */ 5712 printk(KERN_DEBUG "SELinux: Setting up existing superblocks.\n"); 5713 spin_lock(&sb_lock); 5714 spin_lock(&sb_security_lock); 5715 next_sb: 5716 if (!list_empty(&superblock_security_head)) { 5717 struct superblock_security_struct *sbsec = 5718 list_entry(superblock_security_head.next, 5719 struct superblock_security_struct, 5720 list); 5721 struct super_block *sb = sbsec->sb; 5722 sb->s_count++; 5723 spin_unlock(&sb_security_lock); 5724 spin_unlock(&sb_lock); 5725 down_read(&sb->s_umount); 5726 if (sb->s_root) 5727 superblock_doinit(sb, NULL); 5728 drop_super(sb); 5729 spin_lock(&sb_lock); 5730 spin_lock(&sb_security_lock); 5731 list_del_init(&sbsec->list); 5732 goto next_sb; 5733 } 5734 spin_unlock(&sb_security_lock); 5735 spin_unlock(&sb_lock); 5736 } 5737 5738 /* SELinux requires early initialization in order to label 5739 all processes and objects when they are created. */ 5740 security_initcall(selinux_init); 5741 5742 #if defined(CONFIG_NETFILTER) 5743 5744 static struct nf_hook_ops selinux_ipv4_ops[] = { 5745 { 5746 .hook = selinux_ipv4_postroute, 5747 .owner = THIS_MODULE, 5748 .pf = PF_INET, 5749 .hooknum = NF_INET_POST_ROUTING, 5750 .priority = NF_IP_PRI_SELINUX_LAST, 5751 }, 5752 { 5753 .hook = selinux_ipv4_forward, 5754 .owner = THIS_MODULE, 5755 .pf = PF_INET, 5756 .hooknum = NF_INET_FORWARD, 5757 .priority = NF_IP_PRI_SELINUX_FIRST, 5758 }, 5759 { 5760 .hook = selinux_ipv4_output, 5761 .owner = THIS_MODULE, 5762 .pf = PF_INET, 5763 .hooknum = NF_INET_LOCAL_OUT, 5764 .priority = NF_IP_PRI_SELINUX_FIRST, 5765 } 5766 }; 5767 5768 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 5769 5770 static struct nf_hook_ops selinux_ipv6_ops[] = { 5771 { 5772 .hook = selinux_ipv6_postroute, 5773 .owner = THIS_MODULE, 5774 .pf = PF_INET6, 5775 .hooknum = NF_INET_POST_ROUTING, 5776 .priority = NF_IP6_PRI_SELINUX_LAST, 5777 }, 5778 { 5779 .hook = selinux_ipv6_forward, 5780 .owner = THIS_MODULE, 5781 .pf = PF_INET6, 5782 .hooknum = NF_INET_FORWARD, 5783 .priority = NF_IP6_PRI_SELINUX_FIRST, 5784 } 5785 }; 5786 5787 #endif /* IPV6 */ 5788 5789 static int __init selinux_nf_ip_init(void) 5790 { 5791 int err = 0; 5792 5793 if (!selinux_enabled) 5794 goto out; 5795 5796 printk(KERN_DEBUG "SELinux: Registering netfilter hooks\n"); 5797 5798 err = nf_register_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops)); 5799 if (err) 5800 panic("SELinux: nf_register_hooks for IPv4: error %d\n", err); 5801 5802 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 5803 err = nf_register_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops)); 5804 if (err) 5805 panic("SELinux: nf_register_hooks for IPv6: error %d\n", err); 5806 #endif /* IPV6 */ 5807 5808 out: 5809 return err; 5810 } 5811 5812 __initcall(selinux_nf_ip_init); 5813 5814 #ifdef CONFIG_SECURITY_SELINUX_DISABLE 5815 static void selinux_nf_ip_exit(void) 5816 { 5817 printk(KERN_DEBUG "SELinux: Unregistering netfilter hooks\n"); 5818 5819 nf_unregister_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops)); 5820 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 5821 nf_unregister_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops)); 5822 #endif /* IPV6 */ 5823 } 5824 #endif 5825 5826 #else /* CONFIG_NETFILTER */ 5827 5828 #ifdef CONFIG_SECURITY_SELINUX_DISABLE 5829 #define selinux_nf_ip_exit() 5830 #endif 5831 5832 #endif /* CONFIG_NETFILTER */ 5833 5834 #ifdef CONFIG_SECURITY_SELINUX_DISABLE 5835 static int selinux_disabled; 5836 5837 int selinux_disable(void) 5838 { 5839 extern void exit_sel_fs(void); 5840 5841 if (ss_initialized) { 5842 /* Not permitted after initial policy load. */ 5843 return -EINVAL; 5844 } 5845 5846 if (selinux_disabled) { 5847 /* Only do this once. */ 5848 return -EINVAL; 5849 } 5850 5851 printk(KERN_INFO "SELinux: Disabled at runtime.\n"); 5852 5853 selinux_disabled = 1; 5854 selinux_enabled = 0; 5855 5856 /* Reset security_ops to the secondary module, dummy or capability. */ 5857 security_ops = secondary_ops; 5858 5859 /* Unregister netfilter hooks. */ 5860 selinux_nf_ip_exit(); 5861 5862 /* Unregister selinuxfs. */ 5863 exit_sel_fs(); 5864 5865 return 0; 5866 } 5867 #endif 5868