1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Security-Enhanced Linux (SELinux) security module 4 * 5 * This file contains the SELinux hook function implementations. 6 * 7 * Authors: Stephen Smalley, <stephen.smalley.work@gmail.com> 8 * Chris Vance, <cvance@nai.com> 9 * Wayne Salamon, <wsalamon@nai.com> 10 * James Morris <jmorris@redhat.com> 11 * 12 * Copyright (C) 2001,2002 Networks Associates Technology, Inc. 13 * Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com> 14 * Eric Paris <eparis@redhat.com> 15 * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc. 16 * <dgoeddel@trustedcs.com> 17 * Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P. 18 * Paul Moore <paul@paul-moore.com> 19 * Copyright (C) 2007 Hitachi Software Engineering Co., Ltd. 20 * Yuichi Nakamura <ynakam@hitachisoft.jp> 21 * Copyright (C) 2016 Mellanox Technologies 22 */ 23 24 #include <linux/init.h> 25 #include <linux/kd.h> 26 #include <linux/kernel.h> 27 #include <linux/kernel_read_file.h> 28 #include <linux/errno.h> 29 #include <linux/sched/signal.h> 30 #include <linux/sched/task.h> 31 #include <linux/lsm_hooks.h> 32 #include <linux/xattr.h> 33 #include <linux/capability.h> 34 #include <linux/unistd.h> 35 #include <linux/mm.h> 36 #include <linux/mman.h> 37 #include <linux/slab.h> 38 #include <linux/pagemap.h> 39 #include <linux/proc_fs.h> 40 #include <linux/swap.h> 41 #include <linux/spinlock.h> 42 #include <linux/syscalls.h> 43 #include <linux/dcache.h> 44 #include <linux/file.h> 45 #include <linux/fdtable.h> 46 #include <linux/namei.h> 47 #include <linux/mount.h> 48 #include <linux/fs_context.h> 49 #include <linux/fs_parser.h> 50 #include <linux/netfilter_ipv4.h> 51 #include <linux/netfilter_ipv6.h> 52 #include <linux/tty.h> 53 #include <net/icmp.h> 54 #include <net/ip.h> /* for local_port_range[] */ 55 #include <net/tcp.h> /* struct or_callable used in sock_rcv_skb */ 56 #include <net/inet_connection_sock.h> 57 #include <net/net_namespace.h> 58 #include <net/netlabel.h> 59 #include <linux/uaccess.h> 60 #include <asm/ioctls.h> 61 #include <linux/atomic.h> 62 #include <linux/bitops.h> 63 #include <linux/interrupt.h> 64 #include <linux/netdevice.h> /* for network interface checks */ 65 #include <net/netlink.h> 66 #include <linux/tcp.h> 67 #include <linux/udp.h> 68 #include <linux/dccp.h> 69 #include <linux/sctp.h> 70 #include <net/sctp/structs.h> 71 #include <linux/quota.h> 72 #include <linux/un.h> /* for Unix socket types */ 73 #include <net/af_unix.h> /* for Unix socket types */ 74 #include <linux/parser.h> 75 #include <linux/nfs_mount.h> 76 #include <net/ipv6.h> 77 #include <linux/hugetlb.h> 78 #include <linux/personality.h> 79 #include <linux/audit.h> 80 #include <linux/string.h> 81 #include <linux/mutex.h> 82 #include <linux/posix-timers.h> 83 #include <linux/syslog.h> 84 #include <linux/user_namespace.h> 85 #include <linux/export.h> 86 #include <linux/msg.h> 87 #include <linux/shm.h> 88 #include <uapi/linux/shm.h> 89 #include <linux/bpf.h> 90 #include <linux/kernfs.h> 91 #include <linux/stringhash.h> /* for hashlen_string() */ 92 #include <uapi/linux/mount.h> 93 #include <linux/fsnotify.h> 94 #include <linux/fanotify.h> 95 #include <linux/io_uring/cmd.h> 96 #include <uapi/linux/lsm.h> 97 98 #include "avc.h" 99 #include "objsec.h" 100 #include "netif.h" 101 #include "netnode.h" 102 #include "netport.h" 103 #include "ibpkey.h" 104 #include "xfrm.h" 105 #include "netlabel.h" 106 #include "audit.h" 107 #include "avc_ss.h" 108 109 #define SELINUX_INODE_INIT_XATTRS 1 110 111 struct selinux_state selinux_state; 112 113 /* SECMARK reference count */ 114 static atomic_t selinux_secmark_refcount = ATOMIC_INIT(0); 115 116 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP 117 static int selinux_enforcing_boot __initdata; 118 119 static int __init enforcing_setup(char *str) 120 { 121 unsigned long enforcing; 122 if (!kstrtoul(str, 0, &enforcing)) 123 selinux_enforcing_boot = enforcing ? 1 : 0; 124 return 1; 125 } 126 __setup("enforcing=", enforcing_setup); 127 #else 128 #define selinux_enforcing_boot 1 129 #endif 130 131 int selinux_enabled_boot __initdata = 1; 132 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM 133 static int __init selinux_enabled_setup(char *str) 134 { 135 unsigned long enabled; 136 if (!kstrtoul(str, 0, &enabled)) 137 selinux_enabled_boot = enabled ? 1 : 0; 138 return 1; 139 } 140 __setup("selinux=", selinux_enabled_setup); 141 #endif 142 143 static int __init checkreqprot_setup(char *str) 144 { 145 unsigned long checkreqprot; 146 147 if (!kstrtoul(str, 0, &checkreqprot)) { 148 if (checkreqprot) 149 pr_err("SELinux: checkreqprot set to 1 via kernel parameter. This is no longer supported.\n"); 150 } 151 return 1; 152 } 153 __setup("checkreqprot=", checkreqprot_setup); 154 155 /** 156 * selinux_secmark_enabled - Check to see if SECMARK is currently enabled 157 * 158 * Description: 159 * This function checks the SECMARK reference counter to see if any SECMARK 160 * targets are currently configured, if the reference counter is greater than 161 * zero SECMARK is considered to be enabled. Returns true (1) if SECMARK is 162 * enabled, false (0) if SECMARK is disabled. If the always_check_network 163 * policy capability is enabled, SECMARK is always considered enabled. 164 * 165 */ 166 static int selinux_secmark_enabled(void) 167 { 168 return (selinux_policycap_alwaysnetwork() || 169 atomic_read(&selinux_secmark_refcount)); 170 } 171 172 /** 173 * selinux_peerlbl_enabled - Check to see if peer labeling is currently enabled 174 * 175 * Description: 176 * This function checks if NetLabel or labeled IPSEC is enabled. Returns true 177 * (1) if any are enabled or false (0) if neither are enabled. If the 178 * always_check_network policy capability is enabled, peer labeling 179 * is always considered enabled. 180 * 181 */ 182 static int selinux_peerlbl_enabled(void) 183 { 184 return (selinux_policycap_alwaysnetwork() || 185 netlbl_enabled() || selinux_xfrm_enabled()); 186 } 187 188 static int selinux_netcache_avc_callback(u32 event) 189 { 190 if (event == AVC_CALLBACK_RESET) { 191 sel_netif_flush(); 192 sel_netnode_flush(); 193 sel_netport_flush(); 194 synchronize_net(); 195 } 196 return 0; 197 } 198 199 static int selinux_lsm_notifier_avc_callback(u32 event) 200 { 201 if (event == AVC_CALLBACK_RESET) { 202 sel_ib_pkey_flush(); 203 call_blocking_lsm_notifier(LSM_POLICY_CHANGE, NULL); 204 } 205 206 return 0; 207 } 208 209 /* 210 * initialise the security for the init task 211 */ 212 static void cred_init_security(void) 213 { 214 struct task_security_struct *tsec; 215 216 tsec = selinux_cred(unrcu_pointer(current->real_cred)); 217 tsec->osid = tsec->sid = SECINITSID_KERNEL; 218 } 219 220 /* 221 * get the security ID of a set of credentials 222 */ 223 static inline u32 cred_sid(const struct cred *cred) 224 { 225 const struct task_security_struct *tsec; 226 227 tsec = selinux_cred(cred); 228 return tsec->sid; 229 } 230 231 static void __ad_net_init(struct common_audit_data *ad, 232 struct lsm_network_audit *net, 233 int ifindex, struct sock *sk, u16 family) 234 { 235 ad->type = LSM_AUDIT_DATA_NET; 236 ad->u.net = net; 237 net->netif = ifindex; 238 net->sk = sk; 239 net->family = family; 240 } 241 242 static void ad_net_init_from_sk(struct common_audit_data *ad, 243 struct lsm_network_audit *net, 244 struct sock *sk) 245 { 246 __ad_net_init(ad, net, 0, sk, 0); 247 } 248 249 static void ad_net_init_from_iif(struct common_audit_data *ad, 250 struct lsm_network_audit *net, 251 int ifindex, u16 family) 252 { 253 __ad_net_init(ad, net, ifindex, NULL, family); 254 } 255 256 /* 257 * get the objective security ID of a task 258 */ 259 static inline u32 task_sid_obj(const struct task_struct *task) 260 { 261 u32 sid; 262 263 rcu_read_lock(); 264 sid = cred_sid(__task_cred(task)); 265 rcu_read_unlock(); 266 return sid; 267 } 268 269 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry); 270 271 /* 272 * Try reloading inode security labels that have been marked as invalid. The 273 * @may_sleep parameter indicates when sleeping and thus reloading labels is 274 * allowed; when set to false, returns -ECHILD when the label is 275 * invalid. The @dentry parameter should be set to a dentry of the inode. 276 */ 277 static int __inode_security_revalidate(struct inode *inode, 278 struct dentry *dentry, 279 bool may_sleep) 280 { 281 struct inode_security_struct *isec = selinux_inode(inode); 282 283 might_sleep_if(may_sleep); 284 285 if (selinux_initialized() && 286 isec->initialized != LABEL_INITIALIZED) { 287 if (!may_sleep) 288 return -ECHILD; 289 290 /* 291 * Try reloading the inode security label. This will fail if 292 * @opt_dentry is NULL and no dentry for this inode can be 293 * found; in that case, continue using the old label. 294 */ 295 inode_doinit_with_dentry(inode, dentry); 296 } 297 return 0; 298 } 299 300 static struct inode_security_struct *inode_security_novalidate(struct inode *inode) 301 { 302 return selinux_inode(inode); 303 } 304 305 static struct inode_security_struct *inode_security_rcu(struct inode *inode, bool rcu) 306 { 307 int error; 308 309 error = __inode_security_revalidate(inode, NULL, !rcu); 310 if (error) 311 return ERR_PTR(error); 312 return selinux_inode(inode); 313 } 314 315 /* 316 * Get the security label of an inode. 317 */ 318 static struct inode_security_struct *inode_security(struct inode *inode) 319 { 320 __inode_security_revalidate(inode, NULL, true); 321 return selinux_inode(inode); 322 } 323 324 static struct inode_security_struct *backing_inode_security_novalidate(struct dentry *dentry) 325 { 326 struct inode *inode = d_backing_inode(dentry); 327 328 return selinux_inode(inode); 329 } 330 331 /* 332 * Get the security label of a dentry's backing inode. 333 */ 334 static struct inode_security_struct *backing_inode_security(struct dentry *dentry) 335 { 336 struct inode *inode = d_backing_inode(dentry); 337 338 __inode_security_revalidate(inode, dentry, true); 339 return selinux_inode(inode); 340 } 341 342 static void inode_free_security(struct inode *inode) 343 { 344 struct inode_security_struct *isec = selinux_inode(inode); 345 struct superblock_security_struct *sbsec; 346 347 if (!isec) 348 return; 349 sbsec = selinux_superblock(inode->i_sb); 350 /* 351 * As not all inode security structures are in a list, we check for 352 * empty list outside of the lock to make sure that we won't waste 353 * time taking a lock doing nothing. 354 * 355 * The list_del_init() function can be safely called more than once. 356 * It should not be possible for this function to be called with 357 * concurrent list_add(), but for better safety against future changes 358 * in the code, we use list_empty_careful() here. 359 */ 360 if (!list_empty_careful(&isec->list)) { 361 spin_lock(&sbsec->isec_lock); 362 list_del_init(&isec->list); 363 spin_unlock(&sbsec->isec_lock); 364 } 365 } 366 367 struct selinux_mnt_opts { 368 u32 fscontext_sid; 369 u32 context_sid; 370 u32 rootcontext_sid; 371 u32 defcontext_sid; 372 }; 373 374 static void selinux_free_mnt_opts(void *mnt_opts) 375 { 376 kfree(mnt_opts); 377 } 378 379 enum { 380 Opt_error = -1, 381 Opt_context = 0, 382 Opt_defcontext = 1, 383 Opt_fscontext = 2, 384 Opt_rootcontext = 3, 385 Opt_seclabel = 4, 386 }; 387 388 #define A(s, has_arg) {#s, sizeof(#s) - 1, Opt_##s, has_arg} 389 static const struct { 390 const char *name; 391 int len; 392 int opt; 393 bool has_arg; 394 } tokens[] = { 395 A(context, true), 396 A(fscontext, true), 397 A(defcontext, true), 398 A(rootcontext, true), 399 A(seclabel, false), 400 }; 401 #undef A 402 403 static int match_opt_prefix(char *s, int l, char **arg) 404 { 405 int i; 406 407 for (i = 0; i < ARRAY_SIZE(tokens); i++) { 408 size_t len = tokens[i].len; 409 if (len > l || memcmp(s, tokens[i].name, len)) 410 continue; 411 if (tokens[i].has_arg) { 412 if (len == l || s[len] != '=') 413 continue; 414 *arg = s + len + 1; 415 } else if (len != l) 416 continue; 417 return tokens[i].opt; 418 } 419 return Opt_error; 420 } 421 422 #define SEL_MOUNT_FAIL_MSG "SELinux: duplicate or incompatible mount options\n" 423 424 static int may_context_mount_sb_relabel(u32 sid, 425 struct superblock_security_struct *sbsec, 426 const struct cred *cred) 427 { 428 const struct task_security_struct *tsec = selinux_cred(cred); 429 int rc; 430 431 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM, 432 FILESYSTEM__RELABELFROM, NULL); 433 if (rc) 434 return rc; 435 436 rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM, 437 FILESYSTEM__RELABELTO, NULL); 438 return rc; 439 } 440 441 static int may_context_mount_inode_relabel(u32 sid, 442 struct superblock_security_struct *sbsec, 443 const struct cred *cred) 444 { 445 const struct task_security_struct *tsec = selinux_cred(cred); 446 int rc; 447 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM, 448 FILESYSTEM__RELABELFROM, NULL); 449 if (rc) 450 return rc; 451 452 rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, 453 FILESYSTEM__ASSOCIATE, NULL); 454 return rc; 455 } 456 457 static int selinux_is_genfs_special_handling(struct super_block *sb) 458 { 459 /* Special handling. Genfs but also in-core setxattr handler */ 460 return !strcmp(sb->s_type->name, "sysfs") || 461 !strcmp(sb->s_type->name, "pstore") || 462 !strcmp(sb->s_type->name, "debugfs") || 463 !strcmp(sb->s_type->name, "tracefs") || 464 !strcmp(sb->s_type->name, "rootfs") || 465 (selinux_policycap_cgroupseclabel() && 466 (!strcmp(sb->s_type->name, "cgroup") || 467 !strcmp(sb->s_type->name, "cgroup2"))); 468 } 469 470 static int selinux_is_sblabel_mnt(struct super_block *sb) 471 { 472 struct superblock_security_struct *sbsec = selinux_superblock(sb); 473 474 /* 475 * IMPORTANT: Double-check logic in this function when adding a new 476 * SECURITY_FS_USE_* definition! 477 */ 478 BUILD_BUG_ON(SECURITY_FS_USE_MAX != 7); 479 480 switch (sbsec->behavior) { 481 case SECURITY_FS_USE_XATTR: 482 case SECURITY_FS_USE_TRANS: 483 case SECURITY_FS_USE_TASK: 484 case SECURITY_FS_USE_NATIVE: 485 return 1; 486 487 case SECURITY_FS_USE_GENFS: 488 return selinux_is_genfs_special_handling(sb); 489 490 /* Never allow relabeling on context mounts */ 491 case SECURITY_FS_USE_MNTPOINT: 492 case SECURITY_FS_USE_NONE: 493 default: 494 return 0; 495 } 496 } 497 498 static int sb_check_xattr_support(struct super_block *sb) 499 { 500 struct superblock_security_struct *sbsec = selinux_superblock(sb); 501 struct dentry *root = sb->s_root; 502 struct inode *root_inode = d_backing_inode(root); 503 u32 sid; 504 int rc; 505 506 /* 507 * Make sure that the xattr handler exists and that no 508 * error other than -ENODATA is returned by getxattr on 509 * the root directory. -ENODATA is ok, as this may be 510 * the first boot of the SELinux kernel before we have 511 * assigned xattr values to the filesystem. 512 */ 513 if (!(root_inode->i_opflags & IOP_XATTR)) { 514 pr_warn("SELinux: (dev %s, type %s) has no xattr support\n", 515 sb->s_id, sb->s_type->name); 516 goto fallback; 517 } 518 519 rc = __vfs_getxattr(root, root_inode, XATTR_NAME_SELINUX, NULL, 0); 520 if (rc < 0 && rc != -ENODATA) { 521 if (rc == -EOPNOTSUPP) { 522 pr_warn("SELinux: (dev %s, type %s) has no security xattr handler\n", 523 sb->s_id, sb->s_type->name); 524 goto fallback; 525 } else { 526 pr_warn("SELinux: (dev %s, type %s) getxattr errno %d\n", 527 sb->s_id, sb->s_type->name, -rc); 528 return rc; 529 } 530 } 531 return 0; 532 533 fallback: 534 /* No xattr support - try to fallback to genfs if possible. */ 535 rc = security_genfs_sid(sb->s_type->name, "/", 536 SECCLASS_DIR, &sid); 537 if (rc) 538 return -EOPNOTSUPP; 539 540 pr_warn("SELinux: (dev %s, type %s) falling back to genfs\n", 541 sb->s_id, sb->s_type->name); 542 sbsec->behavior = SECURITY_FS_USE_GENFS; 543 sbsec->sid = sid; 544 return 0; 545 } 546 547 static int sb_finish_set_opts(struct super_block *sb) 548 { 549 struct superblock_security_struct *sbsec = selinux_superblock(sb); 550 struct dentry *root = sb->s_root; 551 struct inode *root_inode = d_backing_inode(root); 552 int rc = 0; 553 554 if (sbsec->behavior == SECURITY_FS_USE_XATTR) { 555 rc = sb_check_xattr_support(sb); 556 if (rc) 557 return rc; 558 } 559 560 sbsec->flags |= SE_SBINITIALIZED; 561 562 /* 563 * Explicitly set or clear SBLABEL_MNT. It's not sufficient to simply 564 * leave the flag untouched because sb_clone_mnt_opts might be handing 565 * us a superblock that needs the flag to be cleared. 566 */ 567 if (selinux_is_sblabel_mnt(sb)) 568 sbsec->flags |= SBLABEL_MNT; 569 else 570 sbsec->flags &= ~SBLABEL_MNT; 571 572 /* Initialize the root inode. */ 573 rc = inode_doinit_with_dentry(root_inode, root); 574 575 /* Initialize any other inodes associated with the superblock, e.g. 576 inodes created prior to initial policy load or inodes created 577 during get_sb by a pseudo filesystem that directly 578 populates itself. */ 579 spin_lock(&sbsec->isec_lock); 580 while (!list_empty(&sbsec->isec_head)) { 581 struct inode_security_struct *isec = 582 list_first_entry(&sbsec->isec_head, 583 struct inode_security_struct, list); 584 struct inode *inode = isec->inode; 585 list_del_init(&isec->list); 586 spin_unlock(&sbsec->isec_lock); 587 inode = igrab(inode); 588 if (inode) { 589 if (!IS_PRIVATE(inode)) 590 inode_doinit_with_dentry(inode, NULL); 591 iput(inode); 592 } 593 spin_lock(&sbsec->isec_lock); 594 } 595 spin_unlock(&sbsec->isec_lock); 596 return rc; 597 } 598 599 static int bad_option(struct superblock_security_struct *sbsec, char flag, 600 u32 old_sid, u32 new_sid) 601 { 602 char mnt_flags = sbsec->flags & SE_MNTMASK; 603 604 /* check if the old mount command had the same options */ 605 if (sbsec->flags & SE_SBINITIALIZED) 606 if (!(sbsec->flags & flag) || 607 (old_sid != new_sid)) 608 return 1; 609 610 /* check if we were passed the same options twice, 611 * aka someone passed context=a,context=b 612 */ 613 if (!(sbsec->flags & SE_SBINITIALIZED)) 614 if (mnt_flags & flag) 615 return 1; 616 return 0; 617 } 618 619 /* 620 * Allow filesystems with binary mount data to explicitly set mount point 621 * labeling information. 622 */ 623 static int selinux_set_mnt_opts(struct super_block *sb, 624 void *mnt_opts, 625 unsigned long kern_flags, 626 unsigned long *set_kern_flags) 627 { 628 const struct cred *cred = current_cred(); 629 struct superblock_security_struct *sbsec = selinux_superblock(sb); 630 struct dentry *root = sb->s_root; 631 struct selinux_mnt_opts *opts = mnt_opts; 632 struct inode_security_struct *root_isec; 633 u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0; 634 u32 defcontext_sid = 0; 635 int rc = 0; 636 637 /* 638 * Specifying internal flags without providing a place to 639 * place the results is not allowed 640 */ 641 if (kern_flags && !set_kern_flags) 642 return -EINVAL; 643 644 mutex_lock(&sbsec->lock); 645 646 if (!selinux_initialized()) { 647 if (!opts) { 648 /* Defer initialization until selinux_complete_init, 649 after the initial policy is loaded and the security 650 server is ready to handle calls. */ 651 if (kern_flags & SECURITY_LSM_NATIVE_LABELS) { 652 sbsec->flags |= SE_SBNATIVE; 653 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS; 654 } 655 goto out; 656 } 657 rc = -EINVAL; 658 pr_warn("SELinux: Unable to set superblock options " 659 "before the security server is initialized\n"); 660 goto out; 661 } 662 663 /* 664 * Binary mount data FS will come through this function twice. Once 665 * from an explicit call and once from the generic calls from the vfs. 666 * Since the generic VFS calls will not contain any security mount data 667 * we need to skip the double mount verification. 668 * 669 * This does open a hole in which we will not notice if the first 670 * mount using this sb set explicit options and a second mount using 671 * this sb does not set any security options. (The first options 672 * will be used for both mounts) 673 */ 674 if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA) 675 && !opts) 676 goto out; 677 678 root_isec = backing_inode_security_novalidate(root); 679 680 /* 681 * parse the mount options, check if they are valid sids. 682 * also check if someone is trying to mount the same sb more 683 * than once with different security options. 684 */ 685 if (opts) { 686 if (opts->fscontext_sid) { 687 fscontext_sid = opts->fscontext_sid; 688 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, 689 fscontext_sid)) 690 goto out_double_mount; 691 sbsec->flags |= FSCONTEXT_MNT; 692 } 693 if (opts->context_sid) { 694 context_sid = opts->context_sid; 695 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, 696 context_sid)) 697 goto out_double_mount; 698 sbsec->flags |= CONTEXT_MNT; 699 } 700 if (opts->rootcontext_sid) { 701 rootcontext_sid = opts->rootcontext_sid; 702 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, 703 rootcontext_sid)) 704 goto out_double_mount; 705 sbsec->flags |= ROOTCONTEXT_MNT; 706 } 707 if (opts->defcontext_sid) { 708 defcontext_sid = opts->defcontext_sid; 709 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, 710 defcontext_sid)) 711 goto out_double_mount; 712 sbsec->flags |= DEFCONTEXT_MNT; 713 } 714 } 715 716 if (sbsec->flags & SE_SBINITIALIZED) { 717 /* previously mounted with options, but not on this attempt? */ 718 if ((sbsec->flags & SE_MNTMASK) && !opts) 719 goto out_double_mount; 720 rc = 0; 721 goto out; 722 } 723 724 if (strcmp(sb->s_type->name, "proc") == 0) 725 sbsec->flags |= SE_SBPROC | SE_SBGENFS; 726 727 if (!strcmp(sb->s_type->name, "debugfs") || 728 !strcmp(sb->s_type->name, "tracefs") || 729 !strcmp(sb->s_type->name, "binder") || 730 !strcmp(sb->s_type->name, "bpf") || 731 !strcmp(sb->s_type->name, "pstore") || 732 !strcmp(sb->s_type->name, "securityfs")) 733 sbsec->flags |= SE_SBGENFS; 734 735 if (!strcmp(sb->s_type->name, "sysfs") || 736 !strcmp(sb->s_type->name, "cgroup") || 737 !strcmp(sb->s_type->name, "cgroup2")) 738 sbsec->flags |= SE_SBGENFS | SE_SBGENFS_XATTR; 739 740 if (!sbsec->behavior) { 741 /* 742 * Determine the labeling behavior to use for this 743 * filesystem type. 744 */ 745 rc = security_fs_use(sb); 746 if (rc) { 747 pr_warn("%s: security_fs_use(%s) returned %d\n", 748 __func__, sb->s_type->name, rc); 749 goto out; 750 } 751 } 752 753 /* 754 * If this is a user namespace mount and the filesystem type is not 755 * explicitly whitelisted, then no contexts are allowed on the command 756 * line and security labels must be ignored. 757 */ 758 if (sb->s_user_ns != &init_user_ns && 759 strcmp(sb->s_type->name, "tmpfs") && 760 strcmp(sb->s_type->name, "ramfs") && 761 strcmp(sb->s_type->name, "devpts") && 762 strcmp(sb->s_type->name, "overlay")) { 763 if (context_sid || fscontext_sid || rootcontext_sid || 764 defcontext_sid) { 765 rc = -EACCES; 766 goto out; 767 } 768 if (sbsec->behavior == SECURITY_FS_USE_XATTR) { 769 sbsec->behavior = SECURITY_FS_USE_MNTPOINT; 770 rc = security_transition_sid(current_sid(), 771 current_sid(), 772 SECCLASS_FILE, NULL, 773 &sbsec->mntpoint_sid); 774 if (rc) 775 goto out; 776 } 777 goto out_set_opts; 778 } 779 780 /* sets the context of the superblock for the fs being mounted. */ 781 if (fscontext_sid) { 782 rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred); 783 if (rc) 784 goto out; 785 786 sbsec->sid = fscontext_sid; 787 } 788 789 /* 790 * Switch to using mount point labeling behavior. 791 * sets the label used on all file below the mountpoint, and will set 792 * the superblock context if not already set. 793 */ 794 if (sbsec->flags & SE_SBNATIVE) { 795 /* 796 * This means we are initializing a superblock that has been 797 * mounted before the SELinux was initialized and the 798 * filesystem requested native labeling. We had already 799 * returned SECURITY_LSM_NATIVE_LABELS in *set_kern_flags 800 * in the original mount attempt, so now we just need to set 801 * the SECURITY_FS_USE_NATIVE behavior. 802 */ 803 sbsec->behavior = SECURITY_FS_USE_NATIVE; 804 } else if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !context_sid) { 805 sbsec->behavior = SECURITY_FS_USE_NATIVE; 806 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS; 807 } 808 809 if (context_sid) { 810 if (!fscontext_sid) { 811 rc = may_context_mount_sb_relabel(context_sid, sbsec, 812 cred); 813 if (rc) 814 goto out; 815 sbsec->sid = context_sid; 816 } else { 817 rc = may_context_mount_inode_relabel(context_sid, sbsec, 818 cred); 819 if (rc) 820 goto out; 821 } 822 if (!rootcontext_sid) 823 rootcontext_sid = context_sid; 824 825 sbsec->mntpoint_sid = context_sid; 826 sbsec->behavior = SECURITY_FS_USE_MNTPOINT; 827 } 828 829 if (rootcontext_sid) { 830 rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec, 831 cred); 832 if (rc) 833 goto out; 834 835 root_isec->sid = rootcontext_sid; 836 root_isec->initialized = LABEL_INITIALIZED; 837 } 838 839 if (defcontext_sid) { 840 if (sbsec->behavior != SECURITY_FS_USE_XATTR && 841 sbsec->behavior != SECURITY_FS_USE_NATIVE) { 842 rc = -EINVAL; 843 pr_warn("SELinux: defcontext option is " 844 "invalid for this filesystem type\n"); 845 goto out; 846 } 847 848 if (defcontext_sid != sbsec->def_sid) { 849 rc = may_context_mount_inode_relabel(defcontext_sid, 850 sbsec, cred); 851 if (rc) 852 goto out; 853 } 854 855 sbsec->def_sid = defcontext_sid; 856 } 857 858 out_set_opts: 859 rc = sb_finish_set_opts(sb); 860 out: 861 mutex_unlock(&sbsec->lock); 862 return rc; 863 out_double_mount: 864 rc = -EINVAL; 865 pr_warn("SELinux: mount invalid. Same superblock, different " 866 "security settings for (dev %s, type %s)\n", sb->s_id, 867 sb->s_type->name); 868 goto out; 869 } 870 871 static int selinux_cmp_sb_context(const struct super_block *oldsb, 872 const struct super_block *newsb) 873 { 874 struct superblock_security_struct *old = selinux_superblock(oldsb); 875 struct superblock_security_struct *new = selinux_superblock(newsb); 876 char oldflags = old->flags & SE_MNTMASK; 877 char newflags = new->flags & SE_MNTMASK; 878 879 if (oldflags != newflags) 880 goto mismatch; 881 if ((oldflags & FSCONTEXT_MNT) && old->sid != new->sid) 882 goto mismatch; 883 if ((oldflags & CONTEXT_MNT) && old->mntpoint_sid != new->mntpoint_sid) 884 goto mismatch; 885 if ((oldflags & DEFCONTEXT_MNT) && old->def_sid != new->def_sid) 886 goto mismatch; 887 if (oldflags & ROOTCONTEXT_MNT) { 888 struct inode_security_struct *oldroot = backing_inode_security(oldsb->s_root); 889 struct inode_security_struct *newroot = backing_inode_security(newsb->s_root); 890 if (oldroot->sid != newroot->sid) 891 goto mismatch; 892 } 893 return 0; 894 mismatch: 895 pr_warn("SELinux: mount invalid. Same superblock, " 896 "different security settings for (dev %s, " 897 "type %s)\n", newsb->s_id, newsb->s_type->name); 898 return -EBUSY; 899 } 900 901 static int selinux_sb_clone_mnt_opts(const struct super_block *oldsb, 902 struct super_block *newsb, 903 unsigned long kern_flags, 904 unsigned long *set_kern_flags) 905 { 906 int rc = 0; 907 const struct superblock_security_struct *oldsbsec = 908 selinux_superblock(oldsb); 909 struct superblock_security_struct *newsbsec = selinux_superblock(newsb); 910 911 int set_fscontext = (oldsbsec->flags & FSCONTEXT_MNT); 912 int set_context = (oldsbsec->flags & CONTEXT_MNT); 913 int set_rootcontext = (oldsbsec->flags & ROOTCONTEXT_MNT); 914 915 /* 916 * Specifying internal flags without providing a place to 917 * place the results is not allowed. 918 */ 919 if (kern_flags && !set_kern_flags) 920 return -EINVAL; 921 922 mutex_lock(&newsbsec->lock); 923 924 /* 925 * if the parent was able to be mounted it clearly had no special lsm 926 * mount options. thus we can safely deal with this superblock later 927 */ 928 if (!selinux_initialized()) { 929 if (kern_flags & SECURITY_LSM_NATIVE_LABELS) { 930 newsbsec->flags |= SE_SBNATIVE; 931 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS; 932 } 933 goto out; 934 } 935 936 /* how can we clone if the old one wasn't set up?? */ 937 BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED)); 938 939 /* if fs is reusing a sb, make sure that the contexts match */ 940 if (newsbsec->flags & SE_SBINITIALIZED) { 941 mutex_unlock(&newsbsec->lock); 942 if ((kern_flags & SECURITY_LSM_NATIVE_LABELS) && !set_context) 943 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS; 944 return selinux_cmp_sb_context(oldsb, newsb); 945 } 946 947 newsbsec->flags = oldsbsec->flags; 948 949 newsbsec->sid = oldsbsec->sid; 950 newsbsec->def_sid = oldsbsec->def_sid; 951 newsbsec->behavior = oldsbsec->behavior; 952 953 if (newsbsec->behavior == SECURITY_FS_USE_NATIVE && 954 !(kern_flags & SECURITY_LSM_NATIVE_LABELS) && !set_context) { 955 rc = security_fs_use(newsb); 956 if (rc) 957 goto out; 958 } 959 960 if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !set_context) { 961 newsbsec->behavior = SECURITY_FS_USE_NATIVE; 962 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS; 963 } 964 965 if (set_context) { 966 u32 sid = oldsbsec->mntpoint_sid; 967 968 if (!set_fscontext) 969 newsbsec->sid = sid; 970 if (!set_rootcontext) { 971 struct inode_security_struct *newisec = backing_inode_security(newsb->s_root); 972 newisec->sid = sid; 973 } 974 newsbsec->mntpoint_sid = sid; 975 } 976 if (set_rootcontext) { 977 const struct inode_security_struct *oldisec = backing_inode_security(oldsb->s_root); 978 struct inode_security_struct *newisec = backing_inode_security(newsb->s_root); 979 980 newisec->sid = oldisec->sid; 981 } 982 983 sb_finish_set_opts(newsb); 984 out: 985 mutex_unlock(&newsbsec->lock); 986 return rc; 987 } 988 989 /* 990 * NOTE: the caller is responsible for freeing the memory even if on error. 991 */ 992 static int selinux_add_opt(int token, const char *s, void **mnt_opts) 993 { 994 struct selinux_mnt_opts *opts = *mnt_opts; 995 u32 *dst_sid; 996 int rc; 997 998 if (token == Opt_seclabel) 999 /* eaten and completely ignored */ 1000 return 0; 1001 if (!s) 1002 return -EINVAL; 1003 1004 if (!selinux_initialized()) { 1005 pr_warn("SELinux: Unable to set superblock options before the security server is initialized\n"); 1006 return -EINVAL; 1007 } 1008 1009 if (!opts) { 1010 opts = kzalloc(sizeof(*opts), GFP_KERNEL); 1011 if (!opts) 1012 return -ENOMEM; 1013 *mnt_opts = opts; 1014 } 1015 1016 switch (token) { 1017 case Opt_context: 1018 if (opts->context_sid || opts->defcontext_sid) 1019 goto err; 1020 dst_sid = &opts->context_sid; 1021 break; 1022 case Opt_fscontext: 1023 if (opts->fscontext_sid) 1024 goto err; 1025 dst_sid = &opts->fscontext_sid; 1026 break; 1027 case Opt_rootcontext: 1028 if (opts->rootcontext_sid) 1029 goto err; 1030 dst_sid = &opts->rootcontext_sid; 1031 break; 1032 case Opt_defcontext: 1033 if (opts->context_sid || opts->defcontext_sid) 1034 goto err; 1035 dst_sid = &opts->defcontext_sid; 1036 break; 1037 default: 1038 WARN_ON(1); 1039 return -EINVAL; 1040 } 1041 rc = security_context_str_to_sid(s, dst_sid, GFP_KERNEL); 1042 if (rc) 1043 pr_warn("SELinux: security_context_str_to_sid (%s) failed with errno=%d\n", 1044 s, rc); 1045 return rc; 1046 1047 err: 1048 pr_warn(SEL_MOUNT_FAIL_MSG); 1049 return -EINVAL; 1050 } 1051 1052 static int show_sid(struct seq_file *m, u32 sid) 1053 { 1054 char *context = NULL; 1055 u32 len; 1056 int rc; 1057 1058 rc = security_sid_to_context(sid, &context, &len); 1059 if (!rc) { 1060 bool has_comma = strchr(context, ','); 1061 1062 seq_putc(m, '='); 1063 if (has_comma) 1064 seq_putc(m, '\"'); 1065 seq_escape(m, context, "\"\n\\"); 1066 if (has_comma) 1067 seq_putc(m, '\"'); 1068 } 1069 kfree(context); 1070 return rc; 1071 } 1072 1073 static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb) 1074 { 1075 struct superblock_security_struct *sbsec = selinux_superblock(sb); 1076 int rc; 1077 1078 if (!(sbsec->flags & SE_SBINITIALIZED)) 1079 return 0; 1080 1081 if (!selinux_initialized()) 1082 return 0; 1083 1084 if (sbsec->flags & FSCONTEXT_MNT) { 1085 seq_putc(m, ','); 1086 seq_puts(m, FSCONTEXT_STR); 1087 rc = show_sid(m, sbsec->sid); 1088 if (rc) 1089 return rc; 1090 } 1091 if (sbsec->flags & CONTEXT_MNT) { 1092 seq_putc(m, ','); 1093 seq_puts(m, CONTEXT_STR); 1094 rc = show_sid(m, sbsec->mntpoint_sid); 1095 if (rc) 1096 return rc; 1097 } 1098 if (sbsec->flags & DEFCONTEXT_MNT) { 1099 seq_putc(m, ','); 1100 seq_puts(m, DEFCONTEXT_STR); 1101 rc = show_sid(m, sbsec->def_sid); 1102 if (rc) 1103 return rc; 1104 } 1105 if (sbsec->flags & ROOTCONTEXT_MNT) { 1106 struct dentry *root = sb->s_root; 1107 struct inode_security_struct *isec = backing_inode_security(root); 1108 seq_putc(m, ','); 1109 seq_puts(m, ROOTCONTEXT_STR); 1110 rc = show_sid(m, isec->sid); 1111 if (rc) 1112 return rc; 1113 } 1114 if (sbsec->flags & SBLABEL_MNT) { 1115 seq_putc(m, ','); 1116 seq_puts(m, SECLABEL_STR); 1117 } 1118 return 0; 1119 } 1120 1121 static inline u16 inode_mode_to_security_class(umode_t mode) 1122 { 1123 switch (mode & S_IFMT) { 1124 case S_IFSOCK: 1125 return SECCLASS_SOCK_FILE; 1126 case S_IFLNK: 1127 return SECCLASS_LNK_FILE; 1128 case S_IFREG: 1129 return SECCLASS_FILE; 1130 case S_IFBLK: 1131 return SECCLASS_BLK_FILE; 1132 case S_IFDIR: 1133 return SECCLASS_DIR; 1134 case S_IFCHR: 1135 return SECCLASS_CHR_FILE; 1136 case S_IFIFO: 1137 return SECCLASS_FIFO_FILE; 1138 1139 } 1140 1141 return SECCLASS_FILE; 1142 } 1143 1144 static inline int default_protocol_stream(int protocol) 1145 { 1146 return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP || 1147 protocol == IPPROTO_MPTCP); 1148 } 1149 1150 static inline int default_protocol_dgram(int protocol) 1151 { 1152 return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP); 1153 } 1154 1155 static inline u16 socket_type_to_security_class(int family, int type, int protocol) 1156 { 1157 bool extsockclass = selinux_policycap_extsockclass(); 1158 1159 switch (family) { 1160 case PF_UNIX: 1161 switch (type) { 1162 case SOCK_STREAM: 1163 case SOCK_SEQPACKET: 1164 return SECCLASS_UNIX_STREAM_SOCKET; 1165 case SOCK_DGRAM: 1166 case SOCK_RAW: 1167 return SECCLASS_UNIX_DGRAM_SOCKET; 1168 } 1169 break; 1170 case PF_INET: 1171 case PF_INET6: 1172 switch (type) { 1173 case SOCK_STREAM: 1174 case SOCK_SEQPACKET: 1175 if (default_protocol_stream(protocol)) 1176 return SECCLASS_TCP_SOCKET; 1177 else if (extsockclass && protocol == IPPROTO_SCTP) 1178 return SECCLASS_SCTP_SOCKET; 1179 else 1180 return SECCLASS_RAWIP_SOCKET; 1181 case SOCK_DGRAM: 1182 if (default_protocol_dgram(protocol)) 1183 return SECCLASS_UDP_SOCKET; 1184 else if (extsockclass && (protocol == IPPROTO_ICMP || 1185 protocol == IPPROTO_ICMPV6)) 1186 return SECCLASS_ICMP_SOCKET; 1187 else 1188 return SECCLASS_RAWIP_SOCKET; 1189 case SOCK_DCCP: 1190 return SECCLASS_DCCP_SOCKET; 1191 default: 1192 return SECCLASS_RAWIP_SOCKET; 1193 } 1194 break; 1195 case PF_NETLINK: 1196 switch (protocol) { 1197 case NETLINK_ROUTE: 1198 return SECCLASS_NETLINK_ROUTE_SOCKET; 1199 case NETLINK_SOCK_DIAG: 1200 return SECCLASS_NETLINK_TCPDIAG_SOCKET; 1201 case NETLINK_NFLOG: 1202 return SECCLASS_NETLINK_NFLOG_SOCKET; 1203 case NETLINK_XFRM: 1204 return SECCLASS_NETLINK_XFRM_SOCKET; 1205 case NETLINK_SELINUX: 1206 return SECCLASS_NETLINK_SELINUX_SOCKET; 1207 case NETLINK_ISCSI: 1208 return SECCLASS_NETLINK_ISCSI_SOCKET; 1209 case NETLINK_AUDIT: 1210 return SECCLASS_NETLINK_AUDIT_SOCKET; 1211 case NETLINK_FIB_LOOKUP: 1212 return SECCLASS_NETLINK_FIB_LOOKUP_SOCKET; 1213 case NETLINK_CONNECTOR: 1214 return SECCLASS_NETLINK_CONNECTOR_SOCKET; 1215 case NETLINK_NETFILTER: 1216 return SECCLASS_NETLINK_NETFILTER_SOCKET; 1217 case NETLINK_DNRTMSG: 1218 return SECCLASS_NETLINK_DNRT_SOCKET; 1219 case NETLINK_KOBJECT_UEVENT: 1220 return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET; 1221 case NETLINK_GENERIC: 1222 return SECCLASS_NETLINK_GENERIC_SOCKET; 1223 case NETLINK_SCSITRANSPORT: 1224 return SECCLASS_NETLINK_SCSITRANSPORT_SOCKET; 1225 case NETLINK_RDMA: 1226 return SECCLASS_NETLINK_RDMA_SOCKET; 1227 case NETLINK_CRYPTO: 1228 return SECCLASS_NETLINK_CRYPTO_SOCKET; 1229 default: 1230 return SECCLASS_NETLINK_SOCKET; 1231 } 1232 case PF_PACKET: 1233 return SECCLASS_PACKET_SOCKET; 1234 case PF_KEY: 1235 return SECCLASS_KEY_SOCKET; 1236 case PF_APPLETALK: 1237 return SECCLASS_APPLETALK_SOCKET; 1238 } 1239 1240 if (extsockclass) { 1241 switch (family) { 1242 case PF_AX25: 1243 return SECCLASS_AX25_SOCKET; 1244 case PF_IPX: 1245 return SECCLASS_IPX_SOCKET; 1246 case PF_NETROM: 1247 return SECCLASS_NETROM_SOCKET; 1248 case PF_ATMPVC: 1249 return SECCLASS_ATMPVC_SOCKET; 1250 case PF_X25: 1251 return SECCLASS_X25_SOCKET; 1252 case PF_ROSE: 1253 return SECCLASS_ROSE_SOCKET; 1254 case PF_DECnet: 1255 return SECCLASS_DECNET_SOCKET; 1256 case PF_ATMSVC: 1257 return SECCLASS_ATMSVC_SOCKET; 1258 case PF_RDS: 1259 return SECCLASS_RDS_SOCKET; 1260 case PF_IRDA: 1261 return SECCLASS_IRDA_SOCKET; 1262 case PF_PPPOX: 1263 return SECCLASS_PPPOX_SOCKET; 1264 case PF_LLC: 1265 return SECCLASS_LLC_SOCKET; 1266 case PF_CAN: 1267 return SECCLASS_CAN_SOCKET; 1268 case PF_TIPC: 1269 return SECCLASS_TIPC_SOCKET; 1270 case PF_BLUETOOTH: 1271 return SECCLASS_BLUETOOTH_SOCKET; 1272 case PF_IUCV: 1273 return SECCLASS_IUCV_SOCKET; 1274 case PF_RXRPC: 1275 return SECCLASS_RXRPC_SOCKET; 1276 case PF_ISDN: 1277 return SECCLASS_ISDN_SOCKET; 1278 case PF_PHONET: 1279 return SECCLASS_PHONET_SOCKET; 1280 case PF_IEEE802154: 1281 return SECCLASS_IEEE802154_SOCKET; 1282 case PF_CAIF: 1283 return SECCLASS_CAIF_SOCKET; 1284 case PF_ALG: 1285 return SECCLASS_ALG_SOCKET; 1286 case PF_NFC: 1287 return SECCLASS_NFC_SOCKET; 1288 case PF_VSOCK: 1289 return SECCLASS_VSOCK_SOCKET; 1290 case PF_KCM: 1291 return SECCLASS_KCM_SOCKET; 1292 case PF_QIPCRTR: 1293 return SECCLASS_QIPCRTR_SOCKET; 1294 case PF_SMC: 1295 return SECCLASS_SMC_SOCKET; 1296 case PF_XDP: 1297 return SECCLASS_XDP_SOCKET; 1298 case PF_MCTP: 1299 return SECCLASS_MCTP_SOCKET; 1300 #if PF_MAX > 46 1301 #error New address family defined, please update this function. 1302 #endif 1303 } 1304 } 1305 1306 return SECCLASS_SOCKET; 1307 } 1308 1309 static int selinux_genfs_get_sid(struct dentry *dentry, 1310 u16 tclass, 1311 u16 flags, 1312 u32 *sid) 1313 { 1314 int rc; 1315 struct super_block *sb = dentry->d_sb; 1316 char *buffer, *path; 1317 1318 buffer = (char *)__get_free_page(GFP_KERNEL); 1319 if (!buffer) 1320 return -ENOMEM; 1321 1322 path = dentry_path_raw(dentry, buffer, PAGE_SIZE); 1323 if (IS_ERR(path)) 1324 rc = PTR_ERR(path); 1325 else { 1326 if (flags & SE_SBPROC) { 1327 /* each process gets a /proc/PID/ entry. Strip off the 1328 * PID part to get a valid selinux labeling. 1329 * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */ 1330 while (path[1] >= '0' && path[1] <= '9') { 1331 path[1] = '/'; 1332 path++; 1333 } 1334 } 1335 rc = security_genfs_sid(sb->s_type->name, 1336 path, tclass, sid); 1337 if (rc == -ENOENT) { 1338 /* No match in policy, mark as unlabeled. */ 1339 *sid = SECINITSID_UNLABELED; 1340 rc = 0; 1341 } 1342 } 1343 free_page((unsigned long)buffer); 1344 return rc; 1345 } 1346 1347 static int inode_doinit_use_xattr(struct inode *inode, struct dentry *dentry, 1348 u32 def_sid, u32 *sid) 1349 { 1350 #define INITCONTEXTLEN 255 1351 char *context; 1352 unsigned int len; 1353 int rc; 1354 1355 len = INITCONTEXTLEN; 1356 context = kmalloc(len + 1, GFP_NOFS); 1357 if (!context) 1358 return -ENOMEM; 1359 1360 context[len] = '\0'; 1361 rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, context, len); 1362 if (rc == -ERANGE) { 1363 kfree(context); 1364 1365 /* Need a larger buffer. Query for the right size. */ 1366 rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, NULL, 0); 1367 if (rc < 0) 1368 return rc; 1369 1370 len = rc; 1371 context = kmalloc(len + 1, GFP_NOFS); 1372 if (!context) 1373 return -ENOMEM; 1374 1375 context[len] = '\0'; 1376 rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, 1377 context, len); 1378 } 1379 if (rc < 0) { 1380 kfree(context); 1381 if (rc != -ENODATA) { 1382 pr_warn("SELinux: %s: getxattr returned %d for dev=%s ino=%ld\n", 1383 __func__, -rc, inode->i_sb->s_id, inode->i_ino); 1384 return rc; 1385 } 1386 *sid = def_sid; 1387 return 0; 1388 } 1389 1390 rc = security_context_to_sid_default(context, rc, sid, 1391 def_sid, GFP_NOFS); 1392 if (rc) { 1393 char *dev = inode->i_sb->s_id; 1394 unsigned long ino = inode->i_ino; 1395 1396 if (rc == -EINVAL) { 1397 pr_notice_ratelimited("SELinux: inode=%lu on dev=%s was found to have an invalid context=%s. This indicates you may need to relabel the inode or the filesystem in question.\n", 1398 ino, dev, context); 1399 } else { 1400 pr_warn("SELinux: %s: context_to_sid(%s) returned %d for dev=%s ino=%ld\n", 1401 __func__, context, -rc, dev, ino); 1402 } 1403 } 1404 kfree(context); 1405 return 0; 1406 } 1407 1408 /* The inode's security attributes must be initialized before first use. */ 1409 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry) 1410 { 1411 struct superblock_security_struct *sbsec = NULL; 1412 struct inode_security_struct *isec = selinux_inode(inode); 1413 u32 task_sid, sid = 0; 1414 u16 sclass; 1415 struct dentry *dentry; 1416 int rc = 0; 1417 1418 if (isec->initialized == LABEL_INITIALIZED) 1419 return 0; 1420 1421 spin_lock(&isec->lock); 1422 if (isec->initialized == LABEL_INITIALIZED) 1423 goto out_unlock; 1424 1425 if (isec->sclass == SECCLASS_FILE) 1426 isec->sclass = inode_mode_to_security_class(inode->i_mode); 1427 1428 sbsec = selinux_superblock(inode->i_sb); 1429 if (!(sbsec->flags & SE_SBINITIALIZED)) { 1430 /* Defer initialization until selinux_complete_init, 1431 after the initial policy is loaded and the security 1432 server is ready to handle calls. */ 1433 spin_lock(&sbsec->isec_lock); 1434 if (list_empty(&isec->list)) 1435 list_add(&isec->list, &sbsec->isec_head); 1436 spin_unlock(&sbsec->isec_lock); 1437 goto out_unlock; 1438 } 1439 1440 sclass = isec->sclass; 1441 task_sid = isec->task_sid; 1442 sid = isec->sid; 1443 isec->initialized = LABEL_PENDING; 1444 spin_unlock(&isec->lock); 1445 1446 switch (sbsec->behavior) { 1447 /* 1448 * In case of SECURITY_FS_USE_NATIVE we need to re-fetch the labels 1449 * via xattr when called from delayed_superblock_init(). 1450 */ 1451 case SECURITY_FS_USE_NATIVE: 1452 case SECURITY_FS_USE_XATTR: 1453 if (!(inode->i_opflags & IOP_XATTR)) { 1454 sid = sbsec->def_sid; 1455 break; 1456 } 1457 /* Need a dentry, since the xattr API requires one. 1458 Life would be simpler if we could just pass the inode. */ 1459 if (opt_dentry) { 1460 /* Called from d_instantiate or d_splice_alias. */ 1461 dentry = dget(opt_dentry); 1462 } else { 1463 /* 1464 * Called from selinux_complete_init, try to find a dentry. 1465 * Some filesystems really want a connected one, so try 1466 * that first. We could split SECURITY_FS_USE_XATTR in 1467 * two, depending upon that... 1468 */ 1469 dentry = d_find_alias(inode); 1470 if (!dentry) 1471 dentry = d_find_any_alias(inode); 1472 } 1473 if (!dentry) { 1474 /* 1475 * this is can be hit on boot when a file is accessed 1476 * before the policy is loaded. When we load policy we 1477 * may find inodes that have no dentry on the 1478 * sbsec->isec_head list. No reason to complain as these 1479 * will get fixed up the next time we go through 1480 * inode_doinit with a dentry, before these inodes could 1481 * be used again by userspace. 1482 */ 1483 goto out_invalid; 1484 } 1485 1486 rc = inode_doinit_use_xattr(inode, dentry, sbsec->def_sid, 1487 &sid); 1488 dput(dentry); 1489 if (rc) 1490 goto out; 1491 break; 1492 case SECURITY_FS_USE_TASK: 1493 sid = task_sid; 1494 break; 1495 case SECURITY_FS_USE_TRANS: 1496 /* Default to the fs SID. */ 1497 sid = sbsec->sid; 1498 1499 /* Try to obtain a transition SID. */ 1500 rc = security_transition_sid(task_sid, sid, 1501 sclass, NULL, &sid); 1502 if (rc) 1503 goto out; 1504 break; 1505 case SECURITY_FS_USE_MNTPOINT: 1506 sid = sbsec->mntpoint_sid; 1507 break; 1508 default: 1509 /* Default to the fs superblock SID. */ 1510 sid = sbsec->sid; 1511 1512 if ((sbsec->flags & SE_SBGENFS) && 1513 (!S_ISLNK(inode->i_mode) || 1514 selinux_policycap_genfs_seclabel_symlinks())) { 1515 /* We must have a dentry to determine the label on 1516 * procfs inodes */ 1517 if (opt_dentry) { 1518 /* Called from d_instantiate or 1519 * d_splice_alias. */ 1520 dentry = dget(opt_dentry); 1521 } else { 1522 /* Called from selinux_complete_init, try to 1523 * find a dentry. Some filesystems really want 1524 * a connected one, so try that first. 1525 */ 1526 dentry = d_find_alias(inode); 1527 if (!dentry) 1528 dentry = d_find_any_alias(inode); 1529 } 1530 /* 1531 * This can be hit on boot when a file is accessed 1532 * before the policy is loaded. When we load policy we 1533 * may find inodes that have no dentry on the 1534 * sbsec->isec_head list. No reason to complain as 1535 * these will get fixed up the next time we go through 1536 * inode_doinit() with a dentry, before these inodes 1537 * could be used again by userspace. 1538 */ 1539 if (!dentry) 1540 goto out_invalid; 1541 rc = selinux_genfs_get_sid(dentry, sclass, 1542 sbsec->flags, &sid); 1543 if (rc) { 1544 dput(dentry); 1545 goto out; 1546 } 1547 1548 if ((sbsec->flags & SE_SBGENFS_XATTR) && 1549 (inode->i_opflags & IOP_XATTR)) { 1550 rc = inode_doinit_use_xattr(inode, dentry, 1551 sid, &sid); 1552 if (rc) { 1553 dput(dentry); 1554 goto out; 1555 } 1556 } 1557 dput(dentry); 1558 } 1559 break; 1560 } 1561 1562 out: 1563 spin_lock(&isec->lock); 1564 if (isec->initialized == LABEL_PENDING) { 1565 if (rc) { 1566 isec->initialized = LABEL_INVALID; 1567 goto out_unlock; 1568 } 1569 isec->initialized = LABEL_INITIALIZED; 1570 isec->sid = sid; 1571 } 1572 1573 out_unlock: 1574 spin_unlock(&isec->lock); 1575 return rc; 1576 1577 out_invalid: 1578 spin_lock(&isec->lock); 1579 if (isec->initialized == LABEL_PENDING) { 1580 isec->initialized = LABEL_INVALID; 1581 isec->sid = sid; 1582 } 1583 spin_unlock(&isec->lock); 1584 return 0; 1585 } 1586 1587 /* Convert a Linux signal to an access vector. */ 1588 static inline u32 signal_to_av(int sig) 1589 { 1590 u32 perm = 0; 1591 1592 switch (sig) { 1593 case SIGCHLD: 1594 /* Commonly granted from child to parent. */ 1595 perm = PROCESS__SIGCHLD; 1596 break; 1597 case SIGKILL: 1598 /* Cannot be caught or ignored */ 1599 perm = PROCESS__SIGKILL; 1600 break; 1601 case SIGSTOP: 1602 /* Cannot be caught or ignored */ 1603 perm = PROCESS__SIGSTOP; 1604 break; 1605 default: 1606 /* All other signals. */ 1607 perm = PROCESS__SIGNAL; 1608 break; 1609 } 1610 1611 return perm; 1612 } 1613 1614 #if CAP_LAST_CAP > 63 1615 #error Fix SELinux to handle capabilities > 63. 1616 #endif 1617 1618 /* Check whether a task is allowed to use a capability. */ 1619 static int cred_has_capability(const struct cred *cred, 1620 int cap, unsigned int opts, bool initns) 1621 { 1622 struct common_audit_data ad; 1623 struct av_decision avd; 1624 u16 sclass; 1625 u32 sid = cred_sid(cred); 1626 u32 av = CAP_TO_MASK(cap); 1627 int rc; 1628 1629 ad.type = LSM_AUDIT_DATA_CAP; 1630 ad.u.cap = cap; 1631 1632 switch (CAP_TO_INDEX(cap)) { 1633 case 0: 1634 sclass = initns ? SECCLASS_CAPABILITY : SECCLASS_CAP_USERNS; 1635 break; 1636 case 1: 1637 sclass = initns ? SECCLASS_CAPABILITY2 : SECCLASS_CAP2_USERNS; 1638 break; 1639 default: 1640 pr_err("SELinux: out of range capability %d\n", cap); 1641 BUG(); 1642 return -EINVAL; 1643 } 1644 1645 rc = avc_has_perm_noaudit(sid, sid, sclass, av, 0, &avd); 1646 if (!(opts & CAP_OPT_NOAUDIT)) { 1647 int rc2 = avc_audit(sid, sid, sclass, av, &avd, rc, &ad); 1648 if (rc2) 1649 return rc2; 1650 } 1651 return rc; 1652 } 1653 1654 /* Check whether a task has a particular permission to an inode. 1655 The 'adp' parameter is optional and allows other audit 1656 data to be passed (e.g. the dentry). */ 1657 static int inode_has_perm(const struct cred *cred, 1658 struct inode *inode, 1659 u32 perms, 1660 struct common_audit_data *adp) 1661 { 1662 struct inode_security_struct *isec; 1663 u32 sid; 1664 1665 if (unlikely(IS_PRIVATE(inode))) 1666 return 0; 1667 1668 sid = cred_sid(cred); 1669 isec = selinux_inode(inode); 1670 1671 return avc_has_perm(sid, isec->sid, isec->sclass, perms, adp); 1672 } 1673 1674 /* Same as inode_has_perm, but pass explicit audit data containing 1675 the dentry to help the auditing code to more easily generate the 1676 pathname if needed. */ 1677 static inline int dentry_has_perm(const struct cred *cred, 1678 struct dentry *dentry, 1679 u32 av) 1680 { 1681 struct inode *inode = d_backing_inode(dentry); 1682 struct common_audit_data ad; 1683 1684 ad.type = LSM_AUDIT_DATA_DENTRY; 1685 ad.u.dentry = dentry; 1686 __inode_security_revalidate(inode, dentry, true); 1687 return inode_has_perm(cred, inode, av, &ad); 1688 } 1689 1690 /* Same as inode_has_perm, but pass explicit audit data containing 1691 the path to help the auditing code to more easily generate the 1692 pathname if needed. */ 1693 static inline int path_has_perm(const struct cred *cred, 1694 const struct path *path, 1695 u32 av) 1696 { 1697 struct inode *inode = d_backing_inode(path->dentry); 1698 struct common_audit_data ad; 1699 1700 ad.type = LSM_AUDIT_DATA_PATH; 1701 ad.u.path = *path; 1702 __inode_security_revalidate(inode, path->dentry, true); 1703 return inode_has_perm(cred, inode, av, &ad); 1704 } 1705 1706 /* Same as path_has_perm, but uses the inode from the file struct. */ 1707 static inline int file_path_has_perm(const struct cred *cred, 1708 struct file *file, 1709 u32 av) 1710 { 1711 struct common_audit_data ad; 1712 1713 ad.type = LSM_AUDIT_DATA_FILE; 1714 ad.u.file = file; 1715 return inode_has_perm(cred, file_inode(file), av, &ad); 1716 } 1717 1718 #ifdef CONFIG_BPF_SYSCALL 1719 static int bpf_fd_pass(const struct file *file, u32 sid); 1720 #endif 1721 1722 /* Check whether a task can use an open file descriptor to 1723 access an inode in a given way. Check access to the 1724 descriptor itself, and then use dentry_has_perm to 1725 check a particular permission to the file. 1726 Access to the descriptor is implicitly granted if it 1727 has the same SID as the process. If av is zero, then 1728 access to the file is not checked, e.g. for cases 1729 where only the descriptor is affected like seek. */ 1730 static int file_has_perm(const struct cred *cred, 1731 struct file *file, 1732 u32 av) 1733 { 1734 struct file_security_struct *fsec = selinux_file(file); 1735 struct inode *inode = file_inode(file); 1736 struct common_audit_data ad; 1737 u32 sid = cred_sid(cred); 1738 int rc; 1739 1740 ad.type = LSM_AUDIT_DATA_FILE; 1741 ad.u.file = file; 1742 1743 if (sid != fsec->sid) { 1744 rc = avc_has_perm(sid, fsec->sid, 1745 SECCLASS_FD, 1746 FD__USE, 1747 &ad); 1748 if (rc) 1749 goto out; 1750 } 1751 1752 #ifdef CONFIG_BPF_SYSCALL 1753 rc = bpf_fd_pass(file, cred_sid(cred)); 1754 if (rc) 1755 return rc; 1756 #endif 1757 1758 /* av is zero if only checking access to the descriptor. */ 1759 rc = 0; 1760 if (av) 1761 rc = inode_has_perm(cred, inode, av, &ad); 1762 1763 out: 1764 return rc; 1765 } 1766 1767 /* 1768 * Determine the label for an inode that might be unioned. 1769 */ 1770 static int 1771 selinux_determine_inode_label(const struct task_security_struct *tsec, 1772 struct inode *dir, 1773 const struct qstr *name, u16 tclass, 1774 u32 *_new_isid) 1775 { 1776 const struct superblock_security_struct *sbsec = 1777 selinux_superblock(dir->i_sb); 1778 1779 if ((sbsec->flags & SE_SBINITIALIZED) && 1780 (sbsec->behavior == SECURITY_FS_USE_MNTPOINT)) { 1781 *_new_isid = sbsec->mntpoint_sid; 1782 } else if ((sbsec->flags & SBLABEL_MNT) && 1783 tsec->create_sid) { 1784 *_new_isid = tsec->create_sid; 1785 } else { 1786 const struct inode_security_struct *dsec = inode_security(dir); 1787 return security_transition_sid(tsec->sid, 1788 dsec->sid, tclass, 1789 name, _new_isid); 1790 } 1791 1792 return 0; 1793 } 1794 1795 /* Check whether a task can create a file. */ 1796 static int may_create(struct inode *dir, 1797 struct dentry *dentry, 1798 u16 tclass) 1799 { 1800 const struct task_security_struct *tsec = selinux_cred(current_cred()); 1801 struct inode_security_struct *dsec; 1802 struct superblock_security_struct *sbsec; 1803 u32 sid, newsid; 1804 struct common_audit_data ad; 1805 int rc; 1806 1807 dsec = inode_security(dir); 1808 sbsec = selinux_superblock(dir->i_sb); 1809 1810 sid = tsec->sid; 1811 1812 ad.type = LSM_AUDIT_DATA_DENTRY; 1813 ad.u.dentry = dentry; 1814 1815 rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, 1816 DIR__ADD_NAME | DIR__SEARCH, 1817 &ad); 1818 if (rc) 1819 return rc; 1820 1821 rc = selinux_determine_inode_label(tsec, dir, &dentry->d_name, tclass, 1822 &newsid); 1823 if (rc) 1824 return rc; 1825 1826 rc = avc_has_perm(sid, newsid, tclass, FILE__CREATE, &ad); 1827 if (rc) 1828 return rc; 1829 1830 return avc_has_perm(newsid, sbsec->sid, 1831 SECCLASS_FILESYSTEM, 1832 FILESYSTEM__ASSOCIATE, &ad); 1833 } 1834 1835 #define MAY_LINK 0 1836 #define MAY_UNLINK 1 1837 #define MAY_RMDIR 2 1838 1839 /* Check whether a task can link, unlink, or rmdir a file/directory. */ 1840 static int may_link(struct inode *dir, 1841 struct dentry *dentry, 1842 int kind) 1843 1844 { 1845 struct inode_security_struct *dsec, *isec; 1846 struct common_audit_data ad; 1847 u32 sid = current_sid(); 1848 u32 av; 1849 int rc; 1850 1851 dsec = inode_security(dir); 1852 isec = backing_inode_security(dentry); 1853 1854 ad.type = LSM_AUDIT_DATA_DENTRY; 1855 ad.u.dentry = dentry; 1856 1857 av = DIR__SEARCH; 1858 av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME); 1859 rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, av, &ad); 1860 if (rc) 1861 return rc; 1862 1863 switch (kind) { 1864 case MAY_LINK: 1865 av = FILE__LINK; 1866 break; 1867 case MAY_UNLINK: 1868 av = FILE__UNLINK; 1869 break; 1870 case MAY_RMDIR: 1871 av = DIR__RMDIR; 1872 break; 1873 default: 1874 pr_warn("SELinux: %s: unrecognized kind %d\n", 1875 __func__, kind); 1876 return 0; 1877 } 1878 1879 rc = avc_has_perm(sid, isec->sid, isec->sclass, av, &ad); 1880 return rc; 1881 } 1882 1883 static inline int may_rename(struct inode *old_dir, 1884 struct dentry *old_dentry, 1885 struct inode *new_dir, 1886 struct dentry *new_dentry) 1887 { 1888 struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec; 1889 struct common_audit_data ad; 1890 u32 sid = current_sid(); 1891 u32 av; 1892 int old_is_dir, new_is_dir; 1893 int rc; 1894 1895 old_dsec = inode_security(old_dir); 1896 old_isec = backing_inode_security(old_dentry); 1897 old_is_dir = d_is_dir(old_dentry); 1898 new_dsec = inode_security(new_dir); 1899 1900 ad.type = LSM_AUDIT_DATA_DENTRY; 1901 1902 ad.u.dentry = old_dentry; 1903 rc = avc_has_perm(sid, old_dsec->sid, SECCLASS_DIR, 1904 DIR__REMOVE_NAME | DIR__SEARCH, &ad); 1905 if (rc) 1906 return rc; 1907 rc = avc_has_perm(sid, old_isec->sid, 1908 old_isec->sclass, FILE__RENAME, &ad); 1909 if (rc) 1910 return rc; 1911 if (old_is_dir && new_dir != old_dir) { 1912 rc = avc_has_perm(sid, old_isec->sid, 1913 old_isec->sclass, DIR__REPARENT, &ad); 1914 if (rc) 1915 return rc; 1916 } 1917 1918 ad.u.dentry = new_dentry; 1919 av = DIR__ADD_NAME | DIR__SEARCH; 1920 if (d_is_positive(new_dentry)) 1921 av |= DIR__REMOVE_NAME; 1922 rc = avc_has_perm(sid, new_dsec->sid, SECCLASS_DIR, av, &ad); 1923 if (rc) 1924 return rc; 1925 if (d_is_positive(new_dentry)) { 1926 new_isec = backing_inode_security(new_dentry); 1927 new_is_dir = d_is_dir(new_dentry); 1928 rc = avc_has_perm(sid, new_isec->sid, 1929 new_isec->sclass, 1930 (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad); 1931 if (rc) 1932 return rc; 1933 } 1934 1935 return 0; 1936 } 1937 1938 /* Check whether a task can perform a filesystem operation. */ 1939 static int superblock_has_perm(const struct cred *cred, 1940 const struct super_block *sb, 1941 u32 perms, 1942 struct common_audit_data *ad) 1943 { 1944 struct superblock_security_struct *sbsec; 1945 u32 sid = cred_sid(cred); 1946 1947 sbsec = selinux_superblock(sb); 1948 return avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad); 1949 } 1950 1951 /* Convert a Linux mode and permission mask to an access vector. */ 1952 static inline u32 file_mask_to_av(int mode, int mask) 1953 { 1954 u32 av = 0; 1955 1956 if (!S_ISDIR(mode)) { 1957 if (mask & MAY_EXEC) 1958 av |= FILE__EXECUTE; 1959 if (mask & MAY_READ) 1960 av |= FILE__READ; 1961 1962 if (mask & MAY_APPEND) 1963 av |= FILE__APPEND; 1964 else if (mask & MAY_WRITE) 1965 av |= FILE__WRITE; 1966 1967 } else { 1968 if (mask & MAY_EXEC) 1969 av |= DIR__SEARCH; 1970 if (mask & MAY_WRITE) 1971 av |= DIR__WRITE; 1972 if (mask & MAY_READ) 1973 av |= DIR__READ; 1974 } 1975 1976 return av; 1977 } 1978 1979 /* Convert a Linux file to an access vector. */ 1980 static inline u32 file_to_av(const struct file *file) 1981 { 1982 u32 av = 0; 1983 1984 if (file->f_mode & FMODE_READ) 1985 av |= FILE__READ; 1986 if (file->f_mode & FMODE_WRITE) { 1987 if (file->f_flags & O_APPEND) 1988 av |= FILE__APPEND; 1989 else 1990 av |= FILE__WRITE; 1991 } 1992 if (!av) { 1993 /* 1994 * Special file opened with flags 3 for ioctl-only use. 1995 */ 1996 av = FILE__IOCTL; 1997 } 1998 1999 return av; 2000 } 2001 2002 /* 2003 * Convert a file to an access vector and include the correct 2004 * open permission. 2005 */ 2006 static inline u32 open_file_to_av(struct file *file) 2007 { 2008 u32 av = file_to_av(file); 2009 struct inode *inode = file_inode(file); 2010 2011 if (selinux_policycap_openperm() && 2012 inode->i_sb->s_magic != SOCKFS_MAGIC) 2013 av |= FILE__OPEN; 2014 2015 return av; 2016 } 2017 2018 /* Hook functions begin here. */ 2019 2020 static int selinux_binder_set_context_mgr(const struct cred *mgr) 2021 { 2022 return avc_has_perm(current_sid(), cred_sid(mgr), SECCLASS_BINDER, 2023 BINDER__SET_CONTEXT_MGR, NULL); 2024 } 2025 2026 static int selinux_binder_transaction(const struct cred *from, 2027 const struct cred *to) 2028 { 2029 u32 mysid = current_sid(); 2030 u32 fromsid = cred_sid(from); 2031 u32 tosid = cred_sid(to); 2032 int rc; 2033 2034 if (mysid != fromsid) { 2035 rc = avc_has_perm(mysid, fromsid, SECCLASS_BINDER, 2036 BINDER__IMPERSONATE, NULL); 2037 if (rc) 2038 return rc; 2039 } 2040 2041 return avc_has_perm(fromsid, tosid, 2042 SECCLASS_BINDER, BINDER__CALL, NULL); 2043 } 2044 2045 static int selinux_binder_transfer_binder(const struct cred *from, 2046 const struct cred *to) 2047 { 2048 return avc_has_perm(cred_sid(from), cred_sid(to), 2049 SECCLASS_BINDER, BINDER__TRANSFER, 2050 NULL); 2051 } 2052 2053 static int selinux_binder_transfer_file(const struct cred *from, 2054 const struct cred *to, 2055 const struct file *file) 2056 { 2057 u32 sid = cred_sid(to); 2058 struct file_security_struct *fsec = selinux_file(file); 2059 struct dentry *dentry = file->f_path.dentry; 2060 struct inode_security_struct *isec; 2061 struct common_audit_data ad; 2062 int rc; 2063 2064 ad.type = LSM_AUDIT_DATA_PATH; 2065 ad.u.path = file->f_path; 2066 2067 if (sid != fsec->sid) { 2068 rc = avc_has_perm(sid, fsec->sid, 2069 SECCLASS_FD, 2070 FD__USE, 2071 &ad); 2072 if (rc) 2073 return rc; 2074 } 2075 2076 #ifdef CONFIG_BPF_SYSCALL 2077 rc = bpf_fd_pass(file, sid); 2078 if (rc) 2079 return rc; 2080 #endif 2081 2082 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2083 return 0; 2084 2085 isec = backing_inode_security(dentry); 2086 return avc_has_perm(sid, isec->sid, isec->sclass, file_to_av(file), 2087 &ad); 2088 } 2089 2090 static int selinux_ptrace_access_check(struct task_struct *child, 2091 unsigned int mode) 2092 { 2093 u32 sid = current_sid(); 2094 u32 csid = task_sid_obj(child); 2095 2096 if (mode & PTRACE_MODE_READ) 2097 return avc_has_perm(sid, csid, SECCLASS_FILE, FILE__READ, 2098 NULL); 2099 2100 return avc_has_perm(sid, csid, SECCLASS_PROCESS, PROCESS__PTRACE, 2101 NULL); 2102 } 2103 2104 static int selinux_ptrace_traceme(struct task_struct *parent) 2105 { 2106 return avc_has_perm(task_sid_obj(parent), task_sid_obj(current), 2107 SECCLASS_PROCESS, PROCESS__PTRACE, NULL); 2108 } 2109 2110 static int selinux_capget(const struct task_struct *target, kernel_cap_t *effective, 2111 kernel_cap_t *inheritable, kernel_cap_t *permitted) 2112 { 2113 return avc_has_perm(current_sid(), task_sid_obj(target), 2114 SECCLASS_PROCESS, PROCESS__GETCAP, NULL); 2115 } 2116 2117 static int selinux_capset(struct cred *new, const struct cred *old, 2118 const kernel_cap_t *effective, 2119 const kernel_cap_t *inheritable, 2120 const kernel_cap_t *permitted) 2121 { 2122 return avc_has_perm(cred_sid(old), cred_sid(new), SECCLASS_PROCESS, 2123 PROCESS__SETCAP, NULL); 2124 } 2125 2126 /* 2127 * (This comment used to live with the selinux_task_setuid hook, 2128 * which was removed). 2129 * 2130 * Since setuid only affects the current process, and since the SELinux 2131 * controls are not based on the Linux identity attributes, SELinux does not 2132 * need to control this operation. However, SELinux does control the use of 2133 * the CAP_SETUID and CAP_SETGID capabilities using the capable hook. 2134 */ 2135 2136 static int selinux_capable(const struct cred *cred, struct user_namespace *ns, 2137 int cap, unsigned int opts) 2138 { 2139 return cred_has_capability(cred, cap, opts, ns == &init_user_ns); 2140 } 2141 2142 static int selinux_quotactl(int cmds, int type, int id, const struct super_block *sb) 2143 { 2144 const struct cred *cred = current_cred(); 2145 int rc = 0; 2146 2147 if (!sb) 2148 return 0; 2149 2150 switch (cmds) { 2151 case Q_SYNC: 2152 case Q_QUOTAON: 2153 case Q_QUOTAOFF: 2154 case Q_SETINFO: 2155 case Q_SETQUOTA: 2156 case Q_XQUOTAOFF: 2157 case Q_XQUOTAON: 2158 case Q_XSETQLIM: 2159 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL); 2160 break; 2161 case Q_GETFMT: 2162 case Q_GETINFO: 2163 case Q_GETQUOTA: 2164 case Q_XGETQUOTA: 2165 case Q_XGETQSTAT: 2166 case Q_XGETQSTATV: 2167 case Q_XGETNEXTQUOTA: 2168 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL); 2169 break; 2170 default: 2171 rc = 0; /* let the kernel handle invalid cmds */ 2172 break; 2173 } 2174 return rc; 2175 } 2176 2177 static int selinux_quota_on(struct dentry *dentry) 2178 { 2179 const struct cred *cred = current_cred(); 2180 2181 return dentry_has_perm(cred, dentry, FILE__QUOTAON); 2182 } 2183 2184 static int selinux_syslog(int type) 2185 { 2186 switch (type) { 2187 case SYSLOG_ACTION_READ_ALL: /* Read last kernel messages */ 2188 case SYSLOG_ACTION_SIZE_BUFFER: /* Return size of the log buffer */ 2189 return avc_has_perm(current_sid(), SECINITSID_KERNEL, 2190 SECCLASS_SYSTEM, SYSTEM__SYSLOG_READ, NULL); 2191 case SYSLOG_ACTION_CONSOLE_OFF: /* Disable logging to console */ 2192 case SYSLOG_ACTION_CONSOLE_ON: /* Enable logging to console */ 2193 /* Set level of messages printed to console */ 2194 case SYSLOG_ACTION_CONSOLE_LEVEL: 2195 return avc_has_perm(current_sid(), SECINITSID_KERNEL, 2196 SECCLASS_SYSTEM, SYSTEM__SYSLOG_CONSOLE, 2197 NULL); 2198 } 2199 /* All other syslog types */ 2200 return avc_has_perm(current_sid(), SECINITSID_KERNEL, 2201 SECCLASS_SYSTEM, SYSTEM__SYSLOG_MOD, NULL); 2202 } 2203 2204 /* 2205 * Check that a process has enough memory to allocate a new virtual 2206 * mapping. 0 means there is enough memory for the allocation to 2207 * succeed and -ENOMEM implies there is not. 2208 * 2209 * Do not audit the selinux permission check, as this is applied to all 2210 * processes that allocate mappings. 2211 */ 2212 static int selinux_vm_enough_memory(struct mm_struct *mm, long pages) 2213 { 2214 int rc, cap_sys_admin = 0; 2215 2216 rc = cred_has_capability(current_cred(), CAP_SYS_ADMIN, 2217 CAP_OPT_NOAUDIT, true); 2218 if (rc == 0) 2219 cap_sys_admin = 1; 2220 2221 return cap_sys_admin; 2222 } 2223 2224 /* binprm security operations */ 2225 2226 static u32 ptrace_parent_sid(void) 2227 { 2228 u32 sid = 0; 2229 struct task_struct *tracer; 2230 2231 rcu_read_lock(); 2232 tracer = ptrace_parent(current); 2233 if (tracer) 2234 sid = task_sid_obj(tracer); 2235 rcu_read_unlock(); 2236 2237 return sid; 2238 } 2239 2240 static int check_nnp_nosuid(const struct linux_binprm *bprm, 2241 const struct task_security_struct *old_tsec, 2242 const struct task_security_struct *new_tsec) 2243 { 2244 int nnp = (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS); 2245 int nosuid = !mnt_may_suid(bprm->file->f_path.mnt); 2246 int rc; 2247 u32 av; 2248 2249 if (!nnp && !nosuid) 2250 return 0; /* neither NNP nor nosuid */ 2251 2252 if (new_tsec->sid == old_tsec->sid) 2253 return 0; /* No change in credentials */ 2254 2255 /* 2256 * If the policy enables the nnp_nosuid_transition policy capability, 2257 * then we permit transitions under NNP or nosuid if the 2258 * policy allows the corresponding permission between 2259 * the old and new contexts. 2260 */ 2261 if (selinux_policycap_nnp_nosuid_transition()) { 2262 av = 0; 2263 if (nnp) 2264 av |= PROCESS2__NNP_TRANSITION; 2265 if (nosuid) 2266 av |= PROCESS2__NOSUID_TRANSITION; 2267 rc = avc_has_perm(old_tsec->sid, new_tsec->sid, 2268 SECCLASS_PROCESS2, av, NULL); 2269 if (!rc) 2270 return 0; 2271 } 2272 2273 /* 2274 * We also permit NNP or nosuid transitions to bounded SIDs, 2275 * i.e. SIDs that are guaranteed to only be allowed a subset 2276 * of the permissions of the current SID. 2277 */ 2278 rc = security_bounded_transition(old_tsec->sid, 2279 new_tsec->sid); 2280 if (!rc) 2281 return 0; 2282 2283 /* 2284 * On failure, preserve the errno values for NNP vs nosuid. 2285 * NNP: Operation not permitted for caller. 2286 * nosuid: Permission denied to file. 2287 */ 2288 if (nnp) 2289 return -EPERM; 2290 return -EACCES; 2291 } 2292 2293 static int selinux_bprm_creds_for_exec(struct linux_binprm *bprm) 2294 { 2295 const struct task_security_struct *old_tsec; 2296 struct task_security_struct *new_tsec; 2297 struct inode_security_struct *isec; 2298 struct common_audit_data ad; 2299 struct inode *inode = file_inode(bprm->file); 2300 int rc; 2301 2302 /* SELinux context only depends on initial program or script and not 2303 * the script interpreter */ 2304 2305 old_tsec = selinux_cred(current_cred()); 2306 new_tsec = selinux_cred(bprm->cred); 2307 isec = inode_security(inode); 2308 2309 /* Default to the current task SID. */ 2310 new_tsec->sid = old_tsec->sid; 2311 new_tsec->osid = old_tsec->sid; 2312 2313 /* Reset fs, key, and sock SIDs on execve. */ 2314 new_tsec->create_sid = 0; 2315 new_tsec->keycreate_sid = 0; 2316 new_tsec->sockcreate_sid = 0; 2317 2318 /* 2319 * Before policy is loaded, label any task outside kernel space 2320 * as SECINITSID_INIT, so that any userspace tasks surviving from 2321 * early boot end up with a label different from SECINITSID_KERNEL 2322 * (if the policy chooses to set SECINITSID_INIT != SECINITSID_KERNEL). 2323 */ 2324 if (!selinux_initialized()) { 2325 new_tsec->sid = SECINITSID_INIT; 2326 /* also clear the exec_sid just in case */ 2327 new_tsec->exec_sid = 0; 2328 return 0; 2329 } 2330 2331 if (old_tsec->exec_sid) { 2332 new_tsec->sid = old_tsec->exec_sid; 2333 /* Reset exec SID on execve. */ 2334 new_tsec->exec_sid = 0; 2335 2336 /* Fail on NNP or nosuid if not an allowed transition. */ 2337 rc = check_nnp_nosuid(bprm, old_tsec, new_tsec); 2338 if (rc) 2339 return rc; 2340 } else { 2341 /* Check for a default transition on this program. */ 2342 rc = security_transition_sid(old_tsec->sid, 2343 isec->sid, SECCLASS_PROCESS, NULL, 2344 &new_tsec->sid); 2345 if (rc) 2346 return rc; 2347 2348 /* 2349 * Fallback to old SID on NNP or nosuid if not an allowed 2350 * transition. 2351 */ 2352 rc = check_nnp_nosuid(bprm, old_tsec, new_tsec); 2353 if (rc) 2354 new_tsec->sid = old_tsec->sid; 2355 } 2356 2357 ad.type = LSM_AUDIT_DATA_FILE; 2358 ad.u.file = bprm->file; 2359 2360 if (new_tsec->sid == old_tsec->sid) { 2361 rc = avc_has_perm(old_tsec->sid, isec->sid, 2362 SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad); 2363 if (rc) 2364 return rc; 2365 } else { 2366 /* Check permissions for the transition. */ 2367 rc = avc_has_perm(old_tsec->sid, new_tsec->sid, 2368 SECCLASS_PROCESS, PROCESS__TRANSITION, &ad); 2369 if (rc) 2370 return rc; 2371 2372 rc = avc_has_perm(new_tsec->sid, isec->sid, 2373 SECCLASS_FILE, FILE__ENTRYPOINT, &ad); 2374 if (rc) 2375 return rc; 2376 2377 /* Check for shared state */ 2378 if (bprm->unsafe & LSM_UNSAFE_SHARE) { 2379 rc = avc_has_perm(old_tsec->sid, new_tsec->sid, 2380 SECCLASS_PROCESS, PROCESS__SHARE, 2381 NULL); 2382 if (rc) 2383 return -EPERM; 2384 } 2385 2386 /* Make sure that anyone attempting to ptrace over a task that 2387 * changes its SID has the appropriate permit */ 2388 if (bprm->unsafe & LSM_UNSAFE_PTRACE) { 2389 u32 ptsid = ptrace_parent_sid(); 2390 if (ptsid != 0) { 2391 rc = avc_has_perm(ptsid, new_tsec->sid, 2392 SECCLASS_PROCESS, 2393 PROCESS__PTRACE, NULL); 2394 if (rc) 2395 return -EPERM; 2396 } 2397 } 2398 2399 /* Clear any possibly unsafe personality bits on exec: */ 2400 bprm->per_clear |= PER_CLEAR_ON_SETID; 2401 2402 /* Enable secure mode for SIDs transitions unless 2403 the noatsecure permission is granted between 2404 the two SIDs, i.e. ahp returns 0. */ 2405 rc = avc_has_perm(old_tsec->sid, new_tsec->sid, 2406 SECCLASS_PROCESS, PROCESS__NOATSECURE, 2407 NULL); 2408 bprm->secureexec |= !!rc; 2409 } 2410 2411 return 0; 2412 } 2413 2414 static int match_file(const void *p, struct file *file, unsigned fd) 2415 { 2416 return file_has_perm(p, file, file_to_av(file)) ? fd + 1 : 0; 2417 } 2418 2419 /* Derived from fs/exec.c:flush_old_files. */ 2420 static inline void flush_unauthorized_files(const struct cred *cred, 2421 struct files_struct *files) 2422 { 2423 struct file *file, *devnull = NULL; 2424 struct tty_struct *tty; 2425 int drop_tty = 0; 2426 unsigned n; 2427 2428 tty = get_current_tty(); 2429 if (tty) { 2430 spin_lock(&tty->files_lock); 2431 if (!list_empty(&tty->tty_files)) { 2432 struct tty_file_private *file_priv; 2433 2434 /* Revalidate access to controlling tty. 2435 Use file_path_has_perm on the tty path directly 2436 rather than using file_has_perm, as this particular 2437 open file may belong to another process and we are 2438 only interested in the inode-based check here. */ 2439 file_priv = list_first_entry(&tty->tty_files, 2440 struct tty_file_private, list); 2441 file = file_priv->file; 2442 if (file_path_has_perm(cred, file, FILE__READ | FILE__WRITE)) 2443 drop_tty = 1; 2444 } 2445 spin_unlock(&tty->files_lock); 2446 tty_kref_put(tty); 2447 } 2448 /* Reset controlling tty. */ 2449 if (drop_tty) 2450 no_tty(); 2451 2452 /* Revalidate access to inherited open files. */ 2453 n = iterate_fd(files, 0, match_file, cred); 2454 if (!n) /* none found? */ 2455 return; 2456 2457 devnull = dentry_open(&selinux_null, O_RDWR, cred); 2458 if (IS_ERR(devnull)) 2459 devnull = NULL; 2460 /* replace all the matching ones with this */ 2461 do { 2462 replace_fd(n - 1, devnull, 0); 2463 } while ((n = iterate_fd(files, n, match_file, cred)) != 0); 2464 if (devnull) 2465 fput(devnull); 2466 } 2467 2468 /* 2469 * Prepare a process for imminent new credential changes due to exec 2470 */ 2471 static void selinux_bprm_committing_creds(const struct linux_binprm *bprm) 2472 { 2473 struct task_security_struct *new_tsec; 2474 struct rlimit *rlim, *initrlim; 2475 int rc, i; 2476 2477 new_tsec = selinux_cred(bprm->cred); 2478 if (new_tsec->sid == new_tsec->osid) 2479 return; 2480 2481 /* Close files for which the new task SID is not authorized. */ 2482 flush_unauthorized_files(bprm->cred, current->files); 2483 2484 /* Always clear parent death signal on SID transitions. */ 2485 current->pdeath_signal = 0; 2486 2487 /* Check whether the new SID can inherit resource limits from the old 2488 * SID. If not, reset all soft limits to the lower of the current 2489 * task's hard limit and the init task's soft limit. 2490 * 2491 * Note that the setting of hard limits (even to lower them) can be 2492 * controlled by the setrlimit check. The inclusion of the init task's 2493 * soft limit into the computation is to avoid resetting soft limits 2494 * higher than the default soft limit for cases where the default is 2495 * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK. 2496 */ 2497 rc = avc_has_perm(new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS, 2498 PROCESS__RLIMITINH, NULL); 2499 if (rc) { 2500 /* protect against do_prlimit() */ 2501 task_lock(current); 2502 for (i = 0; i < RLIM_NLIMITS; i++) { 2503 rlim = current->signal->rlim + i; 2504 initrlim = init_task.signal->rlim + i; 2505 rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur); 2506 } 2507 task_unlock(current); 2508 if (IS_ENABLED(CONFIG_POSIX_TIMERS)) 2509 update_rlimit_cpu(current, rlimit(RLIMIT_CPU)); 2510 } 2511 } 2512 2513 /* 2514 * Clean up the process immediately after the installation of new credentials 2515 * due to exec 2516 */ 2517 static void selinux_bprm_committed_creds(const struct linux_binprm *bprm) 2518 { 2519 const struct task_security_struct *tsec = selinux_cred(current_cred()); 2520 u32 osid, sid; 2521 int rc; 2522 2523 osid = tsec->osid; 2524 sid = tsec->sid; 2525 2526 if (sid == osid) 2527 return; 2528 2529 /* Check whether the new SID can inherit signal state from the old SID. 2530 * If not, clear itimers to avoid subsequent signal generation and 2531 * flush and unblock signals. 2532 * 2533 * This must occur _after_ the task SID has been updated so that any 2534 * kill done after the flush will be checked against the new SID. 2535 */ 2536 rc = avc_has_perm(osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL); 2537 if (rc) { 2538 clear_itimer(); 2539 2540 spin_lock_irq(&unrcu_pointer(current->sighand)->siglock); 2541 if (!fatal_signal_pending(current)) { 2542 flush_sigqueue(¤t->pending); 2543 flush_sigqueue(¤t->signal->shared_pending); 2544 flush_signal_handlers(current, 1); 2545 sigemptyset(¤t->blocked); 2546 recalc_sigpending(); 2547 } 2548 spin_unlock_irq(&unrcu_pointer(current->sighand)->siglock); 2549 } 2550 2551 /* Wake up the parent if it is waiting so that it can recheck 2552 * wait permission to the new task SID. */ 2553 read_lock(&tasklist_lock); 2554 __wake_up_parent(current, unrcu_pointer(current->real_parent)); 2555 read_unlock(&tasklist_lock); 2556 } 2557 2558 /* superblock security operations */ 2559 2560 static int selinux_sb_alloc_security(struct super_block *sb) 2561 { 2562 struct superblock_security_struct *sbsec = selinux_superblock(sb); 2563 2564 mutex_init(&sbsec->lock); 2565 INIT_LIST_HEAD(&sbsec->isec_head); 2566 spin_lock_init(&sbsec->isec_lock); 2567 sbsec->sid = SECINITSID_UNLABELED; 2568 sbsec->def_sid = SECINITSID_FILE; 2569 sbsec->mntpoint_sid = SECINITSID_UNLABELED; 2570 2571 return 0; 2572 } 2573 2574 static inline int opt_len(const char *s) 2575 { 2576 bool open_quote = false; 2577 int len; 2578 char c; 2579 2580 for (len = 0; (c = s[len]) != '\0'; len++) { 2581 if (c == '"') 2582 open_quote = !open_quote; 2583 if (c == ',' && !open_quote) 2584 break; 2585 } 2586 return len; 2587 } 2588 2589 static int selinux_sb_eat_lsm_opts(char *options, void **mnt_opts) 2590 { 2591 char *from = options; 2592 char *to = options; 2593 bool first = true; 2594 int rc; 2595 2596 while (1) { 2597 int len = opt_len(from); 2598 int token; 2599 char *arg = NULL; 2600 2601 token = match_opt_prefix(from, len, &arg); 2602 2603 if (token != Opt_error) { 2604 char *p, *q; 2605 2606 /* strip quotes */ 2607 if (arg) { 2608 for (p = q = arg; p < from + len; p++) { 2609 char c = *p; 2610 if (c != '"') 2611 *q++ = c; 2612 } 2613 arg = kmemdup_nul(arg, q - arg, GFP_KERNEL); 2614 if (!arg) { 2615 rc = -ENOMEM; 2616 goto free_opt; 2617 } 2618 } 2619 rc = selinux_add_opt(token, arg, mnt_opts); 2620 kfree(arg); 2621 arg = NULL; 2622 if (unlikely(rc)) { 2623 goto free_opt; 2624 } 2625 } else { 2626 if (!first) { // copy with preceding comma 2627 from--; 2628 len++; 2629 } 2630 if (to != from) 2631 memmove(to, from, len); 2632 to += len; 2633 first = false; 2634 } 2635 if (!from[len]) 2636 break; 2637 from += len + 1; 2638 } 2639 *to = '\0'; 2640 return 0; 2641 2642 free_opt: 2643 if (*mnt_opts) { 2644 selinux_free_mnt_opts(*mnt_opts); 2645 *mnt_opts = NULL; 2646 } 2647 return rc; 2648 } 2649 2650 static int selinux_sb_mnt_opts_compat(struct super_block *sb, void *mnt_opts) 2651 { 2652 struct selinux_mnt_opts *opts = mnt_opts; 2653 struct superblock_security_struct *sbsec = selinux_superblock(sb); 2654 2655 /* 2656 * Superblock not initialized (i.e. no options) - reject if any 2657 * options specified, otherwise accept. 2658 */ 2659 if (!(sbsec->flags & SE_SBINITIALIZED)) 2660 return opts ? 1 : 0; 2661 2662 /* 2663 * Superblock initialized and no options specified - reject if 2664 * superblock has any options set, otherwise accept. 2665 */ 2666 if (!opts) 2667 return (sbsec->flags & SE_MNTMASK) ? 1 : 0; 2668 2669 if (opts->fscontext_sid) { 2670 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, 2671 opts->fscontext_sid)) 2672 return 1; 2673 } 2674 if (opts->context_sid) { 2675 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, 2676 opts->context_sid)) 2677 return 1; 2678 } 2679 if (opts->rootcontext_sid) { 2680 struct inode_security_struct *root_isec; 2681 2682 root_isec = backing_inode_security(sb->s_root); 2683 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, 2684 opts->rootcontext_sid)) 2685 return 1; 2686 } 2687 if (opts->defcontext_sid) { 2688 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, 2689 opts->defcontext_sid)) 2690 return 1; 2691 } 2692 return 0; 2693 } 2694 2695 static int selinux_sb_remount(struct super_block *sb, void *mnt_opts) 2696 { 2697 struct selinux_mnt_opts *opts = mnt_opts; 2698 struct superblock_security_struct *sbsec = selinux_superblock(sb); 2699 2700 if (!(sbsec->flags & SE_SBINITIALIZED)) 2701 return 0; 2702 2703 if (!opts) 2704 return 0; 2705 2706 if (opts->fscontext_sid) { 2707 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, 2708 opts->fscontext_sid)) 2709 goto out_bad_option; 2710 } 2711 if (opts->context_sid) { 2712 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, 2713 opts->context_sid)) 2714 goto out_bad_option; 2715 } 2716 if (opts->rootcontext_sid) { 2717 struct inode_security_struct *root_isec; 2718 root_isec = backing_inode_security(sb->s_root); 2719 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, 2720 opts->rootcontext_sid)) 2721 goto out_bad_option; 2722 } 2723 if (opts->defcontext_sid) { 2724 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, 2725 opts->defcontext_sid)) 2726 goto out_bad_option; 2727 } 2728 return 0; 2729 2730 out_bad_option: 2731 pr_warn("SELinux: unable to change security options " 2732 "during remount (dev %s, type=%s)\n", sb->s_id, 2733 sb->s_type->name); 2734 return -EINVAL; 2735 } 2736 2737 static int selinux_sb_kern_mount(const struct super_block *sb) 2738 { 2739 const struct cred *cred = current_cred(); 2740 struct common_audit_data ad; 2741 2742 ad.type = LSM_AUDIT_DATA_DENTRY; 2743 ad.u.dentry = sb->s_root; 2744 return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad); 2745 } 2746 2747 static int selinux_sb_statfs(struct dentry *dentry) 2748 { 2749 const struct cred *cred = current_cred(); 2750 struct common_audit_data ad; 2751 2752 ad.type = LSM_AUDIT_DATA_DENTRY; 2753 ad.u.dentry = dentry->d_sb->s_root; 2754 return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad); 2755 } 2756 2757 static int selinux_mount(const char *dev_name, 2758 const struct path *path, 2759 const char *type, 2760 unsigned long flags, 2761 void *data) 2762 { 2763 const struct cred *cred = current_cred(); 2764 2765 if (flags & MS_REMOUNT) 2766 return superblock_has_perm(cred, path->dentry->d_sb, 2767 FILESYSTEM__REMOUNT, NULL); 2768 else 2769 return path_has_perm(cred, path, FILE__MOUNTON); 2770 } 2771 2772 static int selinux_move_mount(const struct path *from_path, 2773 const struct path *to_path) 2774 { 2775 const struct cred *cred = current_cred(); 2776 2777 return path_has_perm(cred, to_path, FILE__MOUNTON); 2778 } 2779 2780 static int selinux_umount(struct vfsmount *mnt, int flags) 2781 { 2782 const struct cred *cred = current_cred(); 2783 2784 return superblock_has_perm(cred, mnt->mnt_sb, 2785 FILESYSTEM__UNMOUNT, NULL); 2786 } 2787 2788 static int selinux_fs_context_submount(struct fs_context *fc, 2789 struct super_block *reference) 2790 { 2791 const struct superblock_security_struct *sbsec = selinux_superblock(reference); 2792 struct selinux_mnt_opts *opts; 2793 2794 /* 2795 * Ensure that fc->security remains NULL when no options are set 2796 * as expected by selinux_set_mnt_opts(). 2797 */ 2798 if (!(sbsec->flags & (FSCONTEXT_MNT|CONTEXT_MNT|DEFCONTEXT_MNT))) 2799 return 0; 2800 2801 opts = kzalloc(sizeof(*opts), GFP_KERNEL); 2802 if (!opts) 2803 return -ENOMEM; 2804 2805 if (sbsec->flags & FSCONTEXT_MNT) 2806 opts->fscontext_sid = sbsec->sid; 2807 if (sbsec->flags & CONTEXT_MNT) 2808 opts->context_sid = sbsec->mntpoint_sid; 2809 if (sbsec->flags & DEFCONTEXT_MNT) 2810 opts->defcontext_sid = sbsec->def_sid; 2811 fc->security = opts; 2812 return 0; 2813 } 2814 2815 static int selinux_fs_context_dup(struct fs_context *fc, 2816 struct fs_context *src_fc) 2817 { 2818 const struct selinux_mnt_opts *src = src_fc->security; 2819 2820 if (!src) 2821 return 0; 2822 2823 fc->security = kmemdup(src, sizeof(*src), GFP_KERNEL); 2824 return fc->security ? 0 : -ENOMEM; 2825 } 2826 2827 static const struct fs_parameter_spec selinux_fs_parameters[] = { 2828 fsparam_string(CONTEXT_STR, Opt_context), 2829 fsparam_string(DEFCONTEXT_STR, Opt_defcontext), 2830 fsparam_string(FSCONTEXT_STR, Opt_fscontext), 2831 fsparam_string(ROOTCONTEXT_STR, Opt_rootcontext), 2832 fsparam_flag (SECLABEL_STR, Opt_seclabel), 2833 {} 2834 }; 2835 2836 static int selinux_fs_context_parse_param(struct fs_context *fc, 2837 struct fs_parameter *param) 2838 { 2839 struct fs_parse_result result; 2840 int opt; 2841 2842 opt = fs_parse(fc, selinux_fs_parameters, param, &result); 2843 if (opt < 0) 2844 return opt; 2845 2846 return selinux_add_opt(opt, param->string, &fc->security); 2847 } 2848 2849 /* inode security operations */ 2850 2851 static int selinux_inode_alloc_security(struct inode *inode) 2852 { 2853 struct inode_security_struct *isec = selinux_inode(inode); 2854 u32 sid = current_sid(); 2855 2856 spin_lock_init(&isec->lock); 2857 INIT_LIST_HEAD(&isec->list); 2858 isec->inode = inode; 2859 isec->sid = SECINITSID_UNLABELED; 2860 isec->sclass = SECCLASS_FILE; 2861 isec->task_sid = sid; 2862 isec->initialized = LABEL_INVALID; 2863 2864 return 0; 2865 } 2866 2867 static void selinux_inode_free_security(struct inode *inode) 2868 { 2869 inode_free_security(inode); 2870 } 2871 2872 static int selinux_dentry_init_security(struct dentry *dentry, int mode, 2873 const struct qstr *name, 2874 const char **xattr_name, void **ctx, 2875 u32 *ctxlen) 2876 { 2877 u32 newsid; 2878 int rc; 2879 2880 rc = selinux_determine_inode_label(selinux_cred(current_cred()), 2881 d_inode(dentry->d_parent), name, 2882 inode_mode_to_security_class(mode), 2883 &newsid); 2884 if (rc) 2885 return rc; 2886 2887 if (xattr_name) 2888 *xattr_name = XATTR_NAME_SELINUX; 2889 2890 return security_sid_to_context(newsid, (char **)ctx, 2891 ctxlen); 2892 } 2893 2894 static int selinux_dentry_create_files_as(struct dentry *dentry, int mode, 2895 struct qstr *name, 2896 const struct cred *old, 2897 struct cred *new) 2898 { 2899 u32 newsid; 2900 int rc; 2901 struct task_security_struct *tsec; 2902 2903 rc = selinux_determine_inode_label(selinux_cred(old), 2904 d_inode(dentry->d_parent), name, 2905 inode_mode_to_security_class(mode), 2906 &newsid); 2907 if (rc) 2908 return rc; 2909 2910 tsec = selinux_cred(new); 2911 tsec->create_sid = newsid; 2912 return 0; 2913 } 2914 2915 static int selinux_inode_init_security(struct inode *inode, struct inode *dir, 2916 const struct qstr *qstr, 2917 struct xattr *xattrs, int *xattr_count) 2918 { 2919 const struct task_security_struct *tsec = selinux_cred(current_cred()); 2920 struct superblock_security_struct *sbsec; 2921 struct xattr *xattr = lsm_get_xattr_slot(xattrs, xattr_count); 2922 u32 newsid, clen; 2923 int rc; 2924 char *context; 2925 2926 sbsec = selinux_superblock(dir->i_sb); 2927 2928 newsid = tsec->create_sid; 2929 2930 rc = selinux_determine_inode_label(tsec, dir, qstr, 2931 inode_mode_to_security_class(inode->i_mode), 2932 &newsid); 2933 if (rc) 2934 return rc; 2935 2936 /* Possibly defer initialization to selinux_complete_init. */ 2937 if (sbsec->flags & SE_SBINITIALIZED) { 2938 struct inode_security_struct *isec = selinux_inode(inode); 2939 isec->sclass = inode_mode_to_security_class(inode->i_mode); 2940 isec->sid = newsid; 2941 isec->initialized = LABEL_INITIALIZED; 2942 } 2943 2944 if (!selinux_initialized() || 2945 !(sbsec->flags & SBLABEL_MNT)) 2946 return -EOPNOTSUPP; 2947 2948 if (xattr) { 2949 rc = security_sid_to_context_force(newsid, 2950 &context, &clen); 2951 if (rc) 2952 return rc; 2953 xattr->value = context; 2954 xattr->value_len = clen; 2955 xattr->name = XATTR_SELINUX_SUFFIX; 2956 } 2957 2958 return 0; 2959 } 2960 2961 static int selinux_inode_init_security_anon(struct inode *inode, 2962 const struct qstr *name, 2963 const struct inode *context_inode) 2964 { 2965 const struct task_security_struct *tsec = selinux_cred(current_cred()); 2966 struct common_audit_data ad; 2967 struct inode_security_struct *isec; 2968 int rc; 2969 2970 if (unlikely(!selinux_initialized())) 2971 return 0; 2972 2973 isec = selinux_inode(inode); 2974 2975 /* 2976 * We only get here once per ephemeral inode. The inode has 2977 * been initialized via inode_alloc_security but is otherwise 2978 * untouched. 2979 */ 2980 2981 if (context_inode) { 2982 struct inode_security_struct *context_isec = 2983 selinux_inode(context_inode); 2984 if (context_isec->initialized != LABEL_INITIALIZED) { 2985 pr_err("SELinux: context_inode is not initialized\n"); 2986 return -EACCES; 2987 } 2988 2989 isec->sclass = context_isec->sclass; 2990 isec->sid = context_isec->sid; 2991 } else { 2992 isec->sclass = SECCLASS_ANON_INODE; 2993 rc = security_transition_sid( 2994 tsec->sid, tsec->sid, 2995 isec->sclass, name, &isec->sid); 2996 if (rc) 2997 return rc; 2998 } 2999 3000 isec->initialized = LABEL_INITIALIZED; 3001 /* 3002 * Now that we've initialized security, check whether we're 3003 * allowed to actually create this type of anonymous inode. 3004 */ 3005 3006 ad.type = LSM_AUDIT_DATA_ANONINODE; 3007 ad.u.anonclass = name ? (const char *)name->name : "?"; 3008 3009 return avc_has_perm(tsec->sid, 3010 isec->sid, 3011 isec->sclass, 3012 FILE__CREATE, 3013 &ad); 3014 } 3015 3016 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode) 3017 { 3018 return may_create(dir, dentry, SECCLASS_FILE); 3019 } 3020 3021 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry) 3022 { 3023 return may_link(dir, old_dentry, MAY_LINK); 3024 } 3025 3026 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry) 3027 { 3028 return may_link(dir, dentry, MAY_UNLINK); 3029 } 3030 3031 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name) 3032 { 3033 return may_create(dir, dentry, SECCLASS_LNK_FILE); 3034 } 3035 3036 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mask) 3037 { 3038 return may_create(dir, dentry, SECCLASS_DIR); 3039 } 3040 3041 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry) 3042 { 3043 return may_link(dir, dentry, MAY_RMDIR); 3044 } 3045 3046 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) 3047 { 3048 return may_create(dir, dentry, inode_mode_to_security_class(mode)); 3049 } 3050 3051 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry, 3052 struct inode *new_inode, struct dentry *new_dentry) 3053 { 3054 return may_rename(old_inode, old_dentry, new_inode, new_dentry); 3055 } 3056 3057 static int selinux_inode_readlink(struct dentry *dentry) 3058 { 3059 const struct cred *cred = current_cred(); 3060 3061 return dentry_has_perm(cred, dentry, FILE__READ); 3062 } 3063 3064 static int selinux_inode_follow_link(struct dentry *dentry, struct inode *inode, 3065 bool rcu) 3066 { 3067 const struct cred *cred = current_cred(); 3068 struct common_audit_data ad; 3069 struct inode_security_struct *isec; 3070 u32 sid; 3071 3072 ad.type = LSM_AUDIT_DATA_DENTRY; 3073 ad.u.dentry = dentry; 3074 sid = cred_sid(cred); 3075 isec = inode_security_rcu(inode, rcu); 3076 if (IS_ERR(isec)) 3077 return PTR_ERR(isec); 3078 3079 return avc_has_perm(sid, isec->sid, isec->sclass, FILE__READ, &ad); 3080 } 3081 3082 static noinline int audit_inode_permission(struct inode *inode, 3083 u32 perms, u32 audited, u32 denied, 3084 int result) 3085 { 3086 struct common_audit_data ad; 3087 struct inode_security_struct *isec = selinux_inode(inode); 3088 3089 ad.type = LSM_AUDIT_DATA_INODE; 3090 ad.u.inode = inode; 3091 3092 return slow_avc_audit(current_sid(), isec->sid, isec->sclass, perms, 3093 audited, denied, result, &ad); 3094 } 3095 3096 static int selinux_inode_permission(struct inode *inode, int mask) 3097 { 3098 const struct cred *cred = current_cred(); 3099 u32 perms; 3100 bool from_access; 3101 bool no_block = mask & MAY_NOT_BLOCK; 3102 struct inode_security_struct *isec; 3103 u32 sid; 3104 struct av_decision avd; 3105 int rc, rc2; 3106 u32 audited, denied; 3107 3108 from_access = mask & MAY_ACCESS; 3109 mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND); 3110 3111 /* No permission to check. Existence test. */ 3112 if (!mask) 3113 return 0; 3114 3115 if (unlikely(IS_PRIVATE(inode))) 3116 return 0; 3117 3118 perms = file_mask_to_av(inode->i_mode, mask); 3119 3120 sid = cred_sid(cred); 3121 isec = inode_security_rcu(inode, no_block); 3122 if (IS_ERR(isec)) 3123 return PTR_ERR(isec); 3124 3125 rc = avc_has_perm_noaudit(sid, isec->sid, isec->sclass, perms, 0, 3126 &avd); 3127 audited = avc_audit_required(perms, &avd, rc, 3128 from_access ? FILE__AUDIT_ACCESS : 0, 3129 &denied); 3130 if (likely(!audited)) 3131 return rc; 3132 3133 rc2 = audit_inode_permission(inode, perms, audited, denied, rc); 3134 if (rc2) 3135 return rc2; 3136 return rc; 3137 } 3138 3139 static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr) 3140 { 3141 const struct cred *cred = current_cred(); 3142 struct inode *inode = d_backing_inode(dentry); 3143 unsigned int ia_valid = iattr->ia_valid; 3144 __u32 av = FILE__WRITE; 3145 3146 /* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */ 3147 if (ia_valid & ATTR_FORCE) { 3148 ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE | 3149 ATTR_FORCE); 3150 if (!ia_valid) 3151 return 0; 3152 } 3153 3154 if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID | 3155 ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET)) 3156 return dentry_has_perm(cred, dentry, FILE__SETATTR); 3157 3158 if (selinux_policycap_openperm() && 3159 inode->i_sb->s_magic != SOCKFS_MAGIC && 3160 (ia_valid & ATTR_SIZE) && 3161 !(ia_valid & ATTR_FILE)) 3162 av |= FILE__OPEN; 3163 3164 return dentry_has_perm(cred, dentry, av); 3165 } 3166 3167 static int selinux_inode_getattr(const struct path *path) 3168 { 3169 return path_has_perm(current_cred(), path, FILE__GETATTR); 3170 } 3171 3172 static bool has_cap_mac_admin(bool audit) 3173 { 3174 const struct cred *cred = current_cred(); 3175 unsigned int opts = audit ? CAP_OPT_NONE : CAP_OPT_NOAUDIT; 3176 3177 if (cap_capable(cred, &init_user_ns, CAP_MAC_ADMIN, opts)) 3178 return false; 3179 if (cred_has_capability(cred, CAP_MAC_ADMIN, opts, true)) 3180 return false; 3181 return true; 3182 } 3183 3184 static int selinux_inode_setxattr(struct mnt_idmap *idmap, 3185 struct dentry *dentry, const char *name, 3186 const void *value, size_t size, int flags) 3187 { 3188 struct inode *inode = d_backing_inode(dentry); 3189 struct inode_security_struct *isec; 3190 struct superblock_security_struct *sbsec; 3191 struct common_audit_data ad; 3192 u32 newsid, sid = current_sid(); 3193 int rc = 0; 3194 3195 if (strcmp(name, XATTR_NAME_SELINUX)) { 3196 rc = cap_inode_setxattr(dentry, name, value, size, flags); 3197 if (rc) 3198 return rc; 3199 3200 /* Not an attribute we recognize, so just check the 3201 ordinary setattr permission. */ 3202 return dentry_has_perm(current_cred(), dentry, FILE__SETATTR); 3203 } 3204 3205 if (!selinux_initialized()) 3206 return (inode_owner_or_capable(idmap, inode) ? 0 : -EPERM); 3207 3208 sbsec = selinux_superblock(inode->i_sb); 3209 if (!(sbsec->flags & SBLABEL_MNT)) 3210 return -EOPNOTSUPP; 3211 3212 if (!inode_owner_or_capable(idmap, inode)) 3213 return -EPERM; 3214 3215 ad.type = LSM_AUDIT_DATA_DENTRY; 3216 ad.u.dentry = dentry; 3217 3218 isec = backing_inode_security(dentry); 3219 rc = avc_has_perm(sid, isec->sid, isec->sclass, 3220 FILE__RELABELFROM, &ad); 3221 if (rc) 3222 return rc; 3223 3224 rc = security_context_to_sid(value, size, &newsid, 3225 GFP_KERNEL); 3226 if (rc == -EINVAL) { 3227 if (!has_cap_mac_admin(true)) { 3228 struct audit_buffer *ab; 3229 size_t audit_size; 3230 3231 /* We strip a nul only if it is at the end, otherwise the 3232 * context contains a nul and we should audit that */ 3233 if (value) { 3234 const char *str = value; 3235 3236 if (str[size - 1] == '\0') 3237 audit_size = size - 1; 3238 else 3239 audit_size = size; 3240 } else { 3241 audit_size = 0; 3242 } 3243 ab = audit_log_start(audit_context(), 3244 GFP_ATOMIC, AUDIT_SELINUX_ERR); 3245 if (!ab) 3246 return rc; 3247 audit_log_format(ab, "op=setxattr invalid_context="); 3248 audit_log_n_untrustedstring(ab, value, audit_size); 3249 audit_log_end(ab); 3250 3251 return rc; 3252 } 3253 rc = security_context_to_sid_force(value, 3254 size, &newsid); 3255 } 3256 if (rc) 3257 return rc; 3258 3259 rc = avc_has_perm(sid, newsid, isec->sclass, 3260 FILE__RELABELTO, &ad); 3261 if (rc) 3262 return rc; 3263 3264 rc = security_validate_transition(isec->sid, newsid, 3265 sid, isec->sclass); 3266 if (rc) 3267 return rc; 3268 3269 return avc_has_perm(newsid, 3270 sbsec->sid, 3271 SECCLASS_FILESYSTEM, 3272 FILESYSTEM__ASSOCIATE, 3273 &ad); 3274 } 3275 3276 static int selinux_inode_set_acl(struct mnt_idmap *idmap, 3277 struct dentry *dentry, const char *acl_name, 3278 struct posix_acl *kacl) 3279 { 3280 return dentry_has_perm(current_cred(), dentry, FILE__SETATTR); 3281 } 3282 3283 static int selinux_inode_get_acl(struct mnt_idmap *idmap, 3284 struct dentry *dentry, const char *acl_name) 3285 { 3286 return dentry_has_perm(current_cred(), dentry, FILE__GETATTR); 3287 } 3288 3289 static int selinux_inode_remove_acl(struct mnt_idmap *idmap, 3290 struct dentry *dentry, const char *acl_name) 3291 { 3292 return dentry_has_perm(current_cred(), dentry, FILE__SETATTR); 3293 } 3294 3295 static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name, 3296 const void *value, size_t size, 3297 int flags) 3298 { 3299 struct inode *inode = d_backing_inode(dentry); 3300 struct inode_security_struct *isec; 3301 u32 newsid; 3302 int rc; 3303 3304 if (strcmp(name, XATTR_NAME_SELINUX)) { 3305 /* Not an attribute we recognize, so nothing to do. */ 3306 return; 3307 } 3308 3309 if (!selinux_initialized()) { 3310 /* If we haven't even been initialized, then we can't validate 3311 * against a policy, so leave the label as invalid. It may 3312 * resolve to a valid label on the next revalidation try if 3313 * we've since initialized. 3314 */ 3315 return; 3316 } 3317 3318 rc = security_context_to_sid_force(value, size, 3319 &newsid); 3320 if (rc) { 3321 pr_err("SELinux: unable to map context to SID" 3322 "for (%s, %lu), rc=%d\n", 3323 inode->i_sb->s_id, inode->i_ino, -rc); 3324 return; 3325 } 3326 3327 isec = backing_inode_security(dentry); 3328 spin_lock(&isec->lock); 3329 isec->sclass = inode_mode_to_security_class(inode->i_mode); 3330 isec->sid = newsid; 3331 isec->initialized = LABEL_INITIALIZED; 3332 spin_unlock(&isec->lock); 3333 } 3334 3335 static int selinux_inode_getxattr(struct dentry *dentry, const char *name) 3336 { 3337 const struct cred *cred = current_cred(); 3338 3339 return dentry_has_perm(cred, dentry, FILE__GETATTR); 3340 } 3341 3342 static int selinux_inode_listxattr(struct dentry *dentry) 3343 { 3344 const struct cred *cred = current_cred(); 3345 3346 return dentry_has_perm(cred, dentry, FILE__GETATTR); 3347 } 3348 3349 static int selinux_inode_removexattr(struct mnt_idmap *idmap, 3350 struct dentry *dentry, const char *name) 3351 { 3352 if (strcmp(name, XATTR_NAME_SELINUX)) { 3353 int rc = cap_inode_removexattr(idmap, dentry, name); 3354 if (rc) 3355 return rc; 3356 3357 /* Not an attribute we recognize, so just check the 3358 ordinary setattr permission. */ 3359 return dentry_has_perm(current_cred(), dentry, FILE__SETATTR); 3360 } 3361 3362 if (!selinux_initialized()) 3363 return 0; 3364 3365 /* No one is allowed to remove a SELinux security label. 3366 You can change the label, but all data must be labeled. */ 3367 return -EACCES; 3368 } 3369 3370 static int selinux_path_notify(const struct path *path, u64 mask, 3371 unsigned int obj_type) 3372 { 3373 int ret; 3374 u32 perm; 3375 3376 struct common_audit_data ad; 3377 3378 ad.type = LSM_AUDIT_DATA_PATH; 3379 ad.u.path = *path; 3380 3381 /* 3382 * Set permission needed based on the type of mark being set. 3383 * Performs an additional check for sb watches. 3384 */ 3385 switch (obj_type) { 3386 case FSNOTIFY_OBJ_TYPE_VFSMOUNT: 3387 perm = FILE__WATCH_MOUNT; 3388 break; 3389 case FSNOTIFY_OBJ_TYPE_SB: 3390 perm = FILE__WATCH_SB; 3391 ret = superblock_has_perm(current_cred(), path->dentry->d_sb, 3392 FILESYSTEM__WATCH, &ad); 3393 if (ret) 3394 return ret; 3395 break; 3396 case FSNOTIFY_OBJ_TYPE_INODE: 3397 perm = FILE__WATCH; 3398 break; 3399 default: 3400 return -EINVAL; 3401 } 3402 3403 /* blocking watches require the file:watch_with_perm permission */ 3404 if (mask & (ALL_FSNOTIFY_PERM_EVENTS)) 3405 perm |= FILE__WATCH_WITH_PERM; 3406 3407 /* watches on read-like events need the file:watch_reads permission */ 3408 if (mask & (FS_ACCESS | FS_ACCESS_PERM | FS_CLOSE_NOWRITE)) 3409 perm |= FILE__WATCH_READS; 3410 3411 return path_has_perm(current_cred(), path, perm); 3412 } 3413 3414 /* 3415 * Copy the inode security context value to the user. 3416 * 3417 * Permission check is handled by selinux_inode_getxattr hook. 3418 */ 3419 static int selinux_inode_getsecurity(struct mnt_idmap *idmap, 3420 struct inode *inode, const char *name, 3421 void **buffer, bool alloc) 3422 { 3423 u32 size; 3424 int error; 3425 char *context = NULL; 3426 struct inode_security_struct *isec; 3427 3428 /* 3429 * If we're not initialized yet, then we can't validate contexts, so 3430 * just let vfs_getxattr fall back to using the on-disk xattr. 3431 */ 3432 if (!selinux_initialized() || 3433 strcmp(name, XATTR_SELINUX_SUFFIX)) 3434 return -EOPNOTSUPP; 3435 3436 /* 3437 * If the caller has CAP_MAC_ADMIN, then get the raw context 3438 * value even if it is not defined by current policy; otherwise, 3439 * use the in-core value under current policy. 3440 * Use the non-auditing forms of the permission checks since 3441 * getxattr may be called by unprivileged processes commonly 3442 * and lack of permission just means that we fall back to the 3443 * in-core context value, not a denial. 3444 */ 3445 isec = inode_security(inode); 3446 if (has_cap_mac_admin(false)) 3447 error = security_sid_to_context_force(isec->sid, &context, 3448 &size); 3449 else 3450 error = security_sid_to_context(isec->sid, 3451 &context, &size); 3452 if (error) 3453 return error; 3454 error = size; 3455 if (alloc) { 3456 *buffer = context; 3457 goto out_nofree; 3458 } 3459 kfree(context); 3460 out_nofree: 3461 return error; 3462 } 3463 3464 static int selinux_inode_setsecurity(struct inode *inode, const char *name, 3465 const void *value, size_t size, int flags) 3466 { 3467 struct inode_security_struct *isec = inode_security_novalidate(inode); 3468 struct superblock_security_struct *sbsec; 3469 u32 newsid; 3470 int rc; 3471 3472 if (strcmp(name, XATTR_SELINUX_SUFFIX)) 3473 return -EOPNOTSUPP; 3474 3475 sbsec = selinux_superblock(inode->i_sb); 3476 if (!(sbsec->flags & SBLABEL_MNT)) 3477 return -EOPNOTSUPP; 3478 3479 if (!value || !size) 3480 return -EACCES; 3481 3482 rc = security_context_to_sid(value, size, &newsid, 3483 GFP_KERNEL); 3484 if (rc) 3485 return rc; 3486 3487 spin_lock(&isec->lock); 3488 isec->sclass = inode_mode_to_security_class(inode->i_mode); 3489 isec->sid = newsid; 3490 isec->initialized = LABEL_INITIALIZED; 3491 spin_unlock(&isec->lock); 3492 return 0; 3493 } 3494 3495 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size) 3496 { 3497 const int len = sizeof(XATTR_NAME_SELINUX); 3498 3499 if (!selinux_initialized()) 3500 return 0; 3501 3502 if (buffer && len <= buffer_size) 3503 memcpy(buffer, XATTR_NAME_SELINUX, len); 3504 return len; 3505 } 3506 3507 static void selinux_inode_getsecid(struct inode *inode, u32 *secid) 3508 { 3509 struct inode_security_struct *isec = inode_security_novalidate(inode); 3510 *secid = isec->sid; 3511 } 3512 3513 static int selinux_inode_copy_up(struct dentry *src, struct cred **new) 3514 { 3515 u32 sid; 3516 struct task_security_struct *tsec; 3517 struct cred *new_creds = *new; 3518 3519 if (new_creds == NULL) { 3520 new_creds = prepare_creds(); 3521 if (!new_creds) 3522 return -ENOMEM; 3523 } 3524 3525 tsec = selinux_cred(new_creds); 3526 /* Get label from overlay inode and set it in create_sid */ 3527 selinux_inode_getsecid(d_inode(src), &sid); 3528 tsec->create_sid = sid; 3529 *new = new_creds; 3530 return 0; 3531 } 3532 3533 static int selinux_inode_copy_up_xattr(const char *name) 3534 { 3535 /* The copy_up hook above sets the initial context on an inode, but we 3536 * don't then want to overwrite it by blindly copying all the lower 3537 * xattrs up. Instead, we have to filter out SELinux-related xattrs. 3538 */ 3539 if (strcmp(name, XATTR_NAME_SELINUX) == 0) 3540 return 1; /* Discard */ 3541 /* 3542 * Any other attribute apart from SELINUX is not claimed, supported 3543 * by selinux. 3544 */ 3545 return -EOPNOTSUPP; 3546 } 3547 3548 /* kernfs node operations */ 3549 3550 static int selinux_kernfs_init_security(struct kernfs_node *kn_dir, 3551 struct kernfs_node *kn) 3552 { 3553 const struct task_security_struct *tsec = selinux_cred(current_cred()); 3554 u32 parent_sid, newsid, clen; 3555 int rc; 3556 char *context; 3557 3558 rc = kernfs_xattr_get(kn_dir, XATTR_NAME_SELINUX, NULL, 0); 3559 if (rc == -ENODATA) 3560 return 0; 3561 else if (rc < 0) 3562 return rc; 3563 3564 clen = (u32)rc; 3565 context = kmalloc(clen, GFP_KERNEL); 3566 if (!context) 3567 return -ENOMEM; 3568 3569 rc = kernfs_xattr_get(kn_dir, XATTR_NAME_SELINUX, context, clen); 3570 if (rc < 0) { 3571 kfree(context); 3572 return rc; 3573 } 3574 3575 rc = security_context_to_sid(context, clen, &parent_sid, 3576 GFP_KERNEL); 3577 kfree(context); 3578 if (rc) 3579 return rc; 3580 3581 if (tsec->create_sid) { 3582 newsid = tsec->create_sid; 3583 } else { 3584 u16 secclass = inode_mode_to_security_class(kn->mode); 3585 struct qstr q; 3586 3587 q.name = kn->name; 3588 q.hash_len = hashlen_string(kn_dir, kn->name); 3589 3590 rc = security_transition_sid(tsec->sid, 3591 parent_sid, secclass, &q, 3592 &newsid); 3593 if (rc) 3594 return rc; 3595 } 3596 3597 rc = security_sid_to_context_force(newsid, 3598 &context, &clen); 3599 if (rc) 3600 return rc; 3601 3602 rc = kernfs_xattr_set(kn, XATTR_NAME_SELINUX, context, clen, 3603 XATTR_CREATE); 3604 kfree(context); 3605 return rc; 3606 } 3607 3608 3609 /* file security operations */ 3610 3611 static int selinux_revalidate_file_permission(struct file *file, int mask) 3612 { 3613 const struct cred *cred = current_cred(); 3614 struct inode *inode = file_inode(file); 3615 3616 /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */ 3617 if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE)) 3618 mask |= MAY_APPEND; 3619 3620 return file_has_perm(cred, file, 3621 file_mask_to_av(inode->i_mode, mask)); 3622 } 3623 3624 static int selinux_file_permission(struct file *file, int mask) 3625 { 3626 struct inode *inode = file_inode(file); 3627 struct file_security_struct *fsec = selinux_file(file); 3628 struct inode_security_struct *isec; 3629 u32 sid = current_sid(); 3630 3631 if (!mask) 3632 /* No permission to check. Existence test. */ 3633 return 0; 3634 3635 isec = inode_security(inode); 3636 if (sid == fsec->sid && fsec->isid == isec->sid && 3637 fsec->pseqno == avc_policy_seqno()) 3638 /* No change since file_open check. */ 3639 return 0; 3640 3641 return selinux_revalidate_file_permission(file, mask); 3642 } 3643 3644 static int selinux_file_alloc_security(struct file *file) 3645 { 3646 struct file_security_struct *fsec = selinux_file(file); 3647 u32 sid = current_sid(); 3648 3649 fsec->sid = sid; 3650 fsec->fown_sid = sid; 3651 3652 return 0; 3653 } 3654 3655 /* 3656 * Check whether a task has the ioctl permission and cmd 3657 * operation to an inode. 3658 */ 3659 static int ioctl_has_perm(const struct cred *cred, struct file *file, 3660 u32 requested, u16 cmd) 3661 { 3662 struct common_audit_data ad; 3663 struct file_security_struct *fsec = selinux_file(file); 3664 struct inode *inode = file_inode(file); 3665 struct inode_security_struct *isec; 3666 struct lsm_ioctlop_audit ioctl; 3667 u32 ssid = cred_sid(cred); 3668 int rc; 3669 u8 driver = cmd >> 8; 3670 u8 xperm = cmd & 0xff; 3671 3672 ad.type = LSM_AUDIT_DATA_IOCTL_OP; 3673 ad.u.op = &ioctl; 3674 ad.u.op->cmd = cmd; 3675 ad.u.op->path = file->f_path; 3676 3677 if (ssid != fsec->sid) { 3678 rc = avc_has_perm(ssid, fsec->sid, 3679 SECCLASS_FD, 3680 FD__USE, 3681 &ad); 3682 if (rc) 3683 goto out; 3684 } 3685 3686 if (unlikely(IS_PRIVATE(inode))) 3687 return 0; 3688 3689 isec = inode_security(inode); 3690 rc = avc_has_extended_perms(ssid, isec->sid, isec->sclass, 3691 requested, driver, xperm, &ad); 3692 out: 3693 return rc; 3694 } 3695 3696 static int selinux_file_ioctl(struct file *file, unsigned int cmd, 3697 unsigned long arg) 3698 { 3699 const struct cred *cred = current_cred(); 3700 int error = 0; 3701 3702 switch (cmd) { 3703 case FIONREAD: 3704 case FIBMAP: 3705 case FIGETBSZ: 3706 case FS_IOC_GETFLAGS: 3707 case FS_IOC_GETVERSION: 3708 error = file_has_perm(cred, file, FILE__GETATTR); 3709 break; 3710 3711 case FS_IOC_SETFLAGS: 3712 case FS_IOC_SETVERSION: 3713 error = file_has_perm(cred, file, FILE__SETATTR); 3714 break; 3715 3716 /* sys_ioctl() checks */ 3717 case FIONBIO: 3718 case FIOASYNC: 3719 error = file_has_perm(cred, file, 0); 3720 break; 3721 3722 case KDSKBENT: 3723 case KDSKBSENT: 3724 error = cred_has_capability(cred, CAP_SYS_TTY_CONFIG, 3725 CAP_OPT_NONE, true); 3726 break; 3727 3728 case FIOCLEX: 3729 case FIONCLEX: 3730 if (!selinux_policycap_ioctl_skip_cloexec()) 3731 error = ioctl_has_perm(cred, file, FILE__IOCTL, (u16) cmd); 3732 break; 3733 3734 /* default case assumes that the command will go 3735 * to the file's ioctl() function. 3736 */ 3737 default: 3738 error = ioctl_has_perm(cred, file, FILE__IOCTL, (u16) cmd); 3739 } 3740 return error; 3741 } 3742 3743 static int selinux_file_ioctl_compat(struct file *file, unsigned int cmd, 3744 unsigned long arg) 3745 { 3746 /* 3747 * If we are in a 64-bit kernel running 32-bit userspace, we need to 3748 * make sure we don't compare 32-bit flags to 64-bit flags. 3749 */ 3750 switch (cmd) { 3751 case FS_IOC32_GETFLAGS: 3752 cmd = FS_IOC_GETFLAGS; 3753 break; 3754 case FS_IOC32_SETFLAGS: 3755 cmd = FS_IOC_SETFLAGS; 3756 break; 3757 case FS_IOC32_GETVERSION: 3758 cmd = FS_IOC_GETVERSION; 3759 break; 3760 case FS_IOC32_SETVERSION: 3761 cmd = FS_IOC_SETVERSION; 3762 break; 3763 default: 3764 break; 3765 } 3766 3767 return selinux_file_ioctl(file, cmd, arg); 3768 } 3769 3770 static int default_noexec __ro_after_init; 3771 3772 static int file_map_prot_check(struct file *file, unsigned long prot, int shared) 3773 { 3774 const struct cred *cred = current_cred(); 3775 u32 sid = cred_sid(cred); 3776 int rc = 0; 3777 3778 if (default_noexec && 3779 (prot & PROT_EXEC) && (!file || IS_PRIVATE(file_inode(file)) || 3780 (!shared && (prot & PROT_WRITE)))) { 3781 /* 3782 * We are making executable an anonymous mapping or a 3783 * private file mapping that will also be writable. 3784 * This has an additional check. 3785 */ 3786 rc = avc_has_perm(sid, sid, SECCLASS_PROCESS, 3787 PROCESS__EXECMEM, NULL); 3788 if (rc) 3789 goto error; 3790 } 3791 3792 if (file) { 3793 /* read access is always possible with a mapping */ 3794 u32 av = FILE__READ; 3795 3796 /* write access only matters if the mapping is shared */ 3797 if (shared && (prot & PROT_WRITE)) 3798 av |= FILE__WRITE; 3799 3800 if (prot & PROT_EXEC) 3801 av |= FILE__EXECUTE; 3802 3803 return file_has_perm(cred, file, av); 3804 } 3805 3806 error: 3807 return rc; 3808 } 3809 3810 static int selinux_mmap_addr(unsigned long addr) 3811 { 3812 int rc = 0; 3813 3814 if (addr < CONFIG_LSM_MMAP_MIN_ADDR) { 3815 u32 sid = current_sid(); 3816 rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT, 3817 MEMPROTECT__MMAP_ZERO, NULL); 3818 } 3819 3820 return rc; 3821 } 3822 3823 static int selinux_mmap_file(struct file *file, 3824 unsigned long reqprot __always_unused, 3825 unsigned long prot, unsigned long flags) 3826 { 3827 struct common_audit_data ad; 3828 int rc; 3829 3830 if (file) { 3831 ad.type = LSM_AUDIT_DATA_FILE; 3832 ad.u.file = file; 3833 rc = inode_has_perm(current_cred(), file_inode(file), 3834 FILE__MAP, &ad); 3835 if (rc) 3836 return rc; 3837 } 3838 3839 return file_map_prot_check(file, prot, 3840 (flags & MAP_TYPE) == MAP_SHARED); 3841 } 3842 3843 static int selinux_file_mprotect(struct vm_area_struct *vma, 3844 unsigned long reqprot __always_unused, 3845 unsigned long prot) 3846 { 3847 const struct cred *cred = current_cred(); 3848 u32 sid = cred_sid(cred); 3849 3850 if (default_noexec && 3851 (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) { 3852 int rc = 0; 3853 if (vma_is_initial_heap(vma)) { 3854 rc = avc_has_perm(sid, sid, SECCLASS_PROCESS, 3855 PROCESS__EXECHEAP, NULL); 3856 } else if (!vma->vm_file && (vma_is_initial_stack(vma) || 3857 vma_is_stack_for_current(vma))) { 3858 rc = avc_has_perm(sid, sid, SECCLASS_PROCESS, 3859 PROCESS__EXECSTACK, NULL); 3860 } else if (vma->vm_file && vma->anon_vma) { 3861 /* 3862 * We are making executable a file mapping that has 3863 * had some COW done. Since pages might have been 3864 * written, check ability to execute the possibly 3865 * modified content. This typically should only 3866 * occur for text relocations. 3867 */ 3868 rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD); 3869 } 3870 if (rc) 3871 return rc; 3872 } 3873 3874 return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED); 3875 } 3876 3877 static int selinux_file_lock(struct file *file, unsigned int cmd) 3878 { 3879 const struct cred *cred = current_cred(); 3880 3881 return file_has_perm(cred, file, FILE__LOCK); 3882 } 3883 3884 static int selinux_file_fcntl(struct file *file, unsigned int cmd, 3885 unsigned long arg) 3886 { 3887 const struct cred *cred = current_cred(); 3888 int err = 0; 3889 3890 switch (cmd) { 3891 case F_SETFL: 3892 if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) { 3893 err = file_has_perm(cred, file, FILE__WRITE); 3894 break; 3895 } 3896 fallthrough; 3897 case F_SETOWN: 3898 case F_SETSIG: 3899 case F_GETFL: 3900 case F_GETOWN: 3901 case F_GETSIG: 3902 case F_GETOWNER_UIDS: 3903 /* Just check FD__USE permission */ 3904 err = file_has_perm(cred, file, 0); 3905 break; 3906 case F_GETLK: 3907 case F_SETLK: 3908 case F_SETLKW: 3909 case F_OFD_GETLK: 3910 case F_OFD_SETLK: 3911 case F_OFD_SETLKW: 3912 #if BITS_PER_LONG == 32 3913 case F_GETLK64: 3914 case F_SETLK64: 3915 case F_SETLKW64: 3916 #endif 3917 err = file_has_perm(cred, file, FILE__LOCK); 3918 break; 3919 } 3920 3921 return err; 3922 } 3923 3924 static void selinux_file_set_fowner(struct file *file) 3925 { 3926 struct file_security_struct *fsec; 3927 3928 fsec = selinux_file(file); 3929 fsec->fown_sid = current_sid(); 3930 } 3931 3932 static int selinux_file_send_sigiotask(struct task_struct *tsk, 3933 struct fown_struct *fown, int signum) 3934 { 3935 struct file *file; 3936 u32 sid = task_sid_obj(tsk); 3937 u32 perm; 3938 struct file_security_struct *fsec; 3939 3940 /* struct fown_struct is never outside the context of a struct file */ 3941 file = container_of(fown, struct file, f_owner); 3942 3943 fsec = selinux_file(file); 3944 3945 if (!signum) 3946 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */ 3947 else 3948 perm = signal_to_av(signum); 3949 3950 return avc_has_perm(fsec->fown_sid, sid, 3951 SECCLASS_PROCESS, perm, NULL); 3952 } 3953 3954 static int selinux_file_receive(struct file *file) 3955 { 3956 const struct cred *cred = current_cred(); 3957 3958 return file_has_perm(cred, file, file_to_av(file)); 3959 } 3960 3961 static int selinux_file_open(struct file *file) 3962 { 3963 struct file_security_struct *fsec; 3964 struct inode_security_struct *isec; 3965 3966 fsec = selinux_file(file); 3967 isec = inode_security(file_inode(file)); 3968 /* 3969 * Save inode label and policy sequence number 3970 * at open-time so that selinux_file_permission 3971 * can determine whether revalidation is necessary. 3972 * Task label is already saved in the file security 3973 * struct as its SID. 3974 */ 3975 fsec->isid = isec->sid; 3976 fsec->pseqno = avc_policy_seqno(); 3977 /* 3978 * Since the inode label or policy seqno may have changed 3979 * between the selinux_inode_permission check and the saving 3980 * of state above, recheck that access is still permitted. 3981 * Otherwise, access might never be revalidated against the 3982 * new inode label or new policy. 3983 * This check is not redundant - do not remove. 3984 */ 3985 return file_path_has_perm(file->f_cred, file, open_file_to_av(file)); 3986 } 3987 3988 /* task security operations */ 3989 3990 static int selinux_task_alloc(struct task_struct *task, 3991 unsigned long clone_flags) 3992 { 3993 u32 sid = current_sid(); 3994 3995 return avc_has_perm(sid, sid, SECCLASS_PROCESS, PROCESS__FORK, NULL); 3996 } 3997 3998 /* 3999 * prepare a new set of credentials for modification 4000 */ 4001 static int selinux_cred_prepare(struct cred *new, const struct cred *old, 4002 gfp_t gfp) 4003 { 4004 const struct task_security_struct *old_tsec = selinux_cred(old); 4005 struct task_security_struct *tsec = selinux_cred(new); 4006 4007 *tsec = *old_tsec; 4008 return 0; 4009 } 4010 4011 /* 4012 * transfer the SELinux data to a blank set of creds 4013 */ 4014 static void selinux_cred_transfer(struct cred *new, const struct cred *old) 4015 { 4016 const struct task_security_struct *old_tsec = selinux_cred(old); 4017 struct task_security_struct *tsec = selinux_cred(new); 4018 4019 *tsec = *old_tsec; 4020 } 4021 4022 static void selinux_cred_getsecid(const struct cred *c, u32 *secid) 4023 { 4024 *secid = cred_sid(c); 4025 } 4026 4027 /* 4028 * set the security data for a kernel service 4029 * - all the creation contexts are set to unlabelled 4030 */ 4031 static int selinux_kernel_act_as(struct cred *new, u32 secid) 4032 { 4033 struct task_security_struct *tsec = selinux_cred(new); 4034 u32 sid = current_sid(); 4035 int ret; 4036 4037 ret = avc_has_perm(sid, secid, 4038 SECCLASS_KERNEL_SERVICE, 4039 KERNEL_SERVICE__USE_AS_OVERRIDE, 4040 NULL); 4041 if (ret == 0) { 4042 tsec->sid = secid; 4043 tsec->create_sid = 0; 4044 tsec->keycreate_sid = 0; 4045 tsec->sockcreate_sid = 0; 4046 } 4047 return ret; 4048 } 4049 4050 /* 4051 * set the file creation context in a security record to the same as the 4052 * objective context of the specified inode 4053 */ 4054 static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode) 4055 { 4056 struct inode_security_struct *isec = inode_security(inode); 4057 struct task_security_struct *tsec = selinux_cred(new); 4058 u32 sid = current_sid(); 4059 int ret; 4060 4061 ret = avc_has_perm(sid, isec->sid, 4062 SECCLASS_KERNEL_SERVICE, 4063 KERNEL_SERVICE__CREATE_FILES_AS, 4064 NULL); 4065 4066 if (ret == 0) 4067 tsec->create_sid = isec->sid; 4068 return ret; 4069 } 4070 4071 static int selinux_kernel_module_request(char *kmod_name) 4072 { 4073 struct common_audit_data ad; 4074 4075 ad.type = LSM_AUDIT_DATA_KMOD; 4076 ad.u.kmod_name = kmod_name; 4077 4078 return avc_has_perm(current_sid(), SECINITSID_KERNEL, SECCLASS_SYSTEM, 4079 SYSTEM__MODULE_REQUEST, &ad); 4080 } 4081 4082 static int selinux_kernel_module_from_file(struct file *file) 4083 { 4084 struct common_audit_data ad; 4085 struct inode_security_struct *isec; 4086 struct file_security_struct *fsec; 4087 u32 sid = current_sid(); 4088 int rc; 4089 4090 /* init_module */ 4091 if (file == NULL) 4092 return avc_has_perm(sid, sid, SECCLASS_SYSTEM, 4093 SYSTEM__MODULE_LOAD, NULL); 4094 4095 /* finit_module */ 4096 4097 ad.type = LSM_AUDIT_DATA_FILE; 4098 ad.u.file = file; 4099 4100 fsec = selinux_file(file); 4101 if (sid != fsec->sid) { 4102 rc = avc_has_perm(sid, fsec->sid, SECCLASS_FD, FD__USE, &ad); 4103 if (rc) 4104 return rc; 4105 } 4106 4107 isec = inode_security(file_inode(file)); 4108 return avc_has_perm(sid, isec->sid, SECCLASS_SYSTEM, 4109 SYSTEM__MODULE_LOAD, &ad); 4110 } 4111 4112 static int selinux_kernel_read_file(struct file *file, 4113 enum kernel_read_file_id id, 4114 bool contents) 4115 { 4116 int rc = 0; 4117 4118 switch (id) { 4119 case READING_MODULE: 4120 rc = selinux_kernel_module_from_file(contents ? file : NULL); 4121 break; 4122 default: 4123 break; 4124 } 4125 4126 return rc; 4127 } 4128 4129 static int selinux_kernel_load_data(enum kernel_load_data_id id, bool contents) 4130 { 4131 int rc = 0; 4132 4133 switch (id) { 4134 case LOADING_MODULE: 4135 rc = selinux_kernel_module_from_file(NULL); 4136 break; 4137 default: 4138 break; 4139 } 4140 4141 return rc; 4142 } 4143 4144 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid) 4145 { 4146 return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS, 4147 PROCESS__SETPGID, NULL); 4148 } 4149 4150 static int selinux_task_getpgid(struct task_struct *p) 4151 { 4152 return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS, 4153 PROCESS__GETPGID, NULL); 4154 } 4155 4156 static int selinux_task_getsid(struct task_struct *p) 4157 { 4158 return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS, 4159 PROCESS__GETSESSION, NULL); 4160 } 4161 4162 static void selinux_current_getsecid_subj(u32 *secid) 4163 { 4164 *secid = current_sid(); 4165 } 4166 4167 static void selinux_task_getsecid_obj(struct task_struct *p, u32 *secid) 4168 { 4169 *secid = task_sid_obj(p); 4170 } 4171 4172 static int selinux_task_setnice(struct task_struct *p, int nice) 4173 { 4174 return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS, 4175 PROCESS__SETSCHED, NULL); 4176 } 4177 4178 static int selinux_task_setioprio(struct task_struct *p, int ioprio) 4179 { 4180 return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS, 4181 PROCESS__SETSCHED, NULL); 4182 } 4183 4184 static int selinux_task_getioprio(struct task_struct *p) 4185 { 4186 return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS, 4187 PROCESS__GETSCHED, NULL); 4188 } 4189 4190 static int selinux_task_prlimit(const struct cred *cred, const struct cred *tcred, 4191 unsigned int flags) 4192 { 4193 u32 av = 0; 4194 4195 if (!flags) 4196 return 0; 4197 if (flags & LSM_PRLIMIT_WRITE) 4198 av |= PROCESS__SETRLIMIT; 4199 if (flags & LSM_PRLIMIT_READ) 4200 av |= PROCESS__GETRLIMIT; 4201 return avc_has_perm(cred_sid(cred), cred_sid(tcred), 4202 SECCLASS_PROCESS, av, NULL); 4203 } 4204 4205 static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource, 4206 struct rlimit *new_rlim) 4207 { 4208 struct rlimit *old_rlim = p->signal->rlim + resource; 4209 4210 /* Control the ability to change the hard limit (whether 4211 lowering or raising it), so that the hard limit can 4212 later be used as a safe reset point for the soft limit 4213 upon context transitions. See selinux_bprm_committing_creds. */ 4214 if (old_rlim->rlim_max != new_rlim->rlim_max) 4215 return avc_has_perm(current_sid(), task_sid_obj(p), 4216 SECCLASS_PROCESS, PROCESS__SETRLIMIT, NULL); 4217 4218 return 0; 4219 } 4220 4221 static int selinux_task_setscheduler(struct task_struct *p) 4222 { 4223 return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS, 4224 PROCESS__SETSCHED, NULL); 4225 } 4226 4227 static int selinux_task_getscheduler(struct task_struct *p) 4228 { 4229 return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS, 4230 PROCESS__GETSCHED, NULL); 4231 } 4232 4233 static int selinux_task_movememory(struct task_struct *p) 4234 { 4235 return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS, 4236 PROCESS__SETSCHED, NULL); 4237 } 4238 4239 static int selinux_task_kill(struct task_struct *p, struct kernel_siginfo *info, 4240 int sig, const struct cred *cred) 4241 { 4242 u32 secid; 4243 u32 perm; 4244 4245 if (!sig) 4246 perm = PROCESS__SIGNULL; /* null signal; existence test */ 4247 else 4248 perm = signal_to_av(sig); 4249 if (!cred) 4250 secid = current_sid(); 4251 else 4252 secid = cred_sid(cred); 4253 return avc_has_perm(secid, task_sid_obj(p), SECCLASS_PROCESS, perm, NULL); 4254 } 4255 4256 static void selinux_task_to_inode(struct task_struct *p, 4257 struct inode *inode) 4258 { 4259 struct inode_security_struct *isec = selinux_inode(inode); 4260 u32 sid = task_sid_obj(p); 4261 4262 spin_lock(&isec->lock); 4263 isec->sclass = inode_mode_to_security_class(inode->i_mode); 4264 isec->sid = sid; 4265 isec->initialized = LABEL_INITIALIZED; 4266 spin_unlock(&isec->lock); 4267 } 4268 4269 static int selinux_userns_create(const struct cred *cred) 4270 { 4271 u32 sid = current_sid(); 4272 4273 return avc_has_perm(sid, sid, SECCLASS_USER_NAMESPACE, 4274 USER_NAMESPACE__CREATE, NULL); 4275 } 4276 4277 /* Returns error only if unable to parse addresses */ 4278 static int selinux_parse_skb_ipv4(struct sk_buff *skb, 4279 struct common_audit_data *ad, u8 *proto) 4280 { 4281 int offset, ihlen, ret = -EINVAL; 4282 struct iphdr _iph, *ih; 4283 4284 offset = skb_network_offset(skb); 4285 ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph); 4286 if (ih == NULL) 4287 goto out; 4288 4289 ihlen = ih->ihl * 4; 4290 if (ihlen < sizeof(_iph)) 4291 goto out; 4292 4293 ad->u.net->v4info.saddr = ih->saddr; 4294 ad->u.net->v4info.daddr = ih->daddr; 4295 ret = 0; 4296 4297 if (proto) 4298 *proto = ih->protocol; 4299 4300 switch (ih->protocol) { 4301 case IPPROTO_TCP: { 4302 struct tcphdr _tcph, *th; 4303 4304 if (ntohs(ih->frag_off) & IP_OFFSET) 4305 break; 4306 4307 offset += ihlen; 4308 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph); 4309 if (th == NULL) 4310 break; 4311 4312 ad->u.net->sport = th->source; 4313 ad->u.net->dport = th->dest; 4314 break; 4315 } 4316 4317 case IPPROTO_UDP: { 4318 struct udphdr _udph, *uh; 4319 4320 if (ntohs(ih->frag_off) & IP_OFFSET) 4321 break; 4322 4323 offset += ihlen; 4324 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph); 4325 if (uh == NULL) 4326 break; 4327 4328 ad->u.net->sport = uh->source; 4329 ad->u.net->dport = uh->dest; 4330 break; 4331 } 4332 4333 case IPPROTO_DCCP: { 4334 struct dccp_hdr _dccph, *dh; 4335 4336 if (ntohs(ih->frag_off) & IP_OFFSET) 4337 break; 4338 4339 offset += ihlen; 4340 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph); 4341 if (dh == NULL) 4342 break; 4343 4344 ad->u.net->sport = dh->dccph_sport; 4345 ad->u.net->dport = dh->dccph_dport; 4346 break; 4347 } 4348 4349 #if IS_ENABLED(CONFIG_IP_SCTP) 4350 case IPPROTO_SCTP: { 4351 struct sctphdr _sctph, *sh; 4352 4353 if (ntohs(ih->frag_off) & IP_OFFSET) 4354 break; 4355 4356 offset += ihlen; 4357 sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph); 4358 if (sh == NULL) 4359 break; 4360 4361 ad->u.net->sport = sh->source; 4362 ad->u.net->dport = sh->dest; 4363 break; 4364 } 4365 #endif 4366 default: 4367 break; 4368 } 4369 out: 4370 return ret; 4371 } 4372 4373 #if IS_ENABLED(CONFIG_IPV6) 4374 4375 /* Returns error only if unable to parse addresses */ 4376 static int selinux_parse_skb_ipv6(struct sk_buff *skb, 4377 struct common_audit_data *ad, u8 *proto) 4378 { 4379 u8 nexthdr; 4380 int ret = -EINVAL, offset; 4381 struct ipv6hdr _ipv6h, *ip6; 4382 __be16 frag_off; 4383 4384 offset = skb_network_offset(skb); 4385 ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h); 4386 if (ip6 == NULL) 4387 goto out; 4388 4389 ad->u.net->v6info.saddr = ip6->saddr; 4390 ad->u.net->v6info.daddr = ip6->daddr; 4391 ret = 0; 4392 4393 nexthdr = ip6->nexthdr; 4394 offset += sizeof(_ipv6h); 4395 offset = ipv6_skip_exthdr(skb, offset, &nexthdr, &frag_off); 4396 if (offset < 0) 4397 goto out; 4398 4399 if (proto) 4400 *proto = nexthdr; 4401 4402 switch (nexthdr) { 4403 case IPPROTO_TCP: { 4404 struct tcphdr _tcph, *th; 4405 4406 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph); 4407 if (th == NULL) 4408 break; 4409 4410 ad->u.net->sport = th->source; 4411 ad->u.net->dport = th->dest; 4412 break; 4413 } 4414 4415 case IPPROTO_UDP: { 4416 struct udphdr _udph, *uh; 4417 4418 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph); 4419 if (uh == NULL) 4420 break; 4421 4422 ad->u.net->sport = uh->source; 4423 ad->u.net->dport = uh->dest; 4424 break; 4425 } 4426 4427 case IPPROTO_DCCP: { 4428 struct dccp_hdr _dccph, *dh; 4429 4430 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph); 4431 if (dh == NULL) 4432 break; 4433 4434 ad->u.net->sport = dh->dccph_sport; 4435 ad->u.net->dport = dh->dccph_dport; 4436 break; 4437 } 4438 4439 #if IS_ENABLED(CONFIG_IP_SCTP) 4440 case IPPROTO_SCTP: { 4441 struct sctphdr _sctph, *sh; 4442 4443 sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph); 4444 if (sh == NULL) 4445 break; 4446 4447 ad->u.net->sport = sh->source; 4448 ad->u.net->dport = sh->dest; 4449 break; 4450 } 4451 #endif 4452 /* includes fragments */ 4453 default: 4454 break; 4455 } 4456 out: 4457 return ret; 4458 } 4459 4460 #endif /* IPV6 */ 4461 4462 static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad, 4463 char **_addrp, int src, u8 *proto) 4464 { 4465 char *addrp; 4466 int ret; 4467 4468 switch (ad->u.net->family) { 4469 case PF_INET: 4470 ret = selinux_parse_skb_ipv4(skb, ad, proto); 4471 if (ret) 4472 goto parse_error; 4473 addrp = (char *)(src ? &ad->u.net->v4info.saddr : 4474 &ad->u.net->v4info.daddr); 4475 goto okay; 4476 4477 #if IS_ENABLED(CONFIG_IPV6) 4478 case PF_INET6: 4479 ret = selinux_parse_skb_ipv6(skb, ad, proto); 4480 if (ret) 4481 goto parse_error; 4482 addrp = (char *)(src ? &ad->u.net->v6info.saddr : 4483 &ad->u.net->v6info.daddr); 4484 goto okay; 4485 #endif /* IPV6 */ 4486 default: 4487 addrp = NULL; 4488 goto okay; 4489 } 4490 4491 parse_error: 4492 pr_warn( 4493 "SELinux: failure in selinux_parse_skb()," 4494 " unable to parse packet\n"); 4495 return ret; 4496 4497 okay: 4498 if (_addrp) 4499 *_addrp = addrp; 4500 return 0; 4501 } 4502 4503 /** 4504 * selinux_skb_peerlbl_sid - Determine the peer label of a packet 4505 * @skb: the packet 4506 * @family: protocol family 4507 * @sid: the packet's peer label SID 4508 * 4509 * Description: 4510 * Check the various different forms of network peer labeling and determine 4511 * the peer label/SID for the packet; most of the magic actually occurs in 4512 * the security server function security_net_peersid_cmp(). The function 4513 * returns zero if the value in @sid is valid (although it may be SECSID_NULL) 4514 * or -EACCES if @sid is invalid due to inconsistencies with the different 4515 * peer labels. 4516 * 4517 */ 4518 static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid) 4519 { 4520 int err; 4521 u32 xfrm_sid; 4522 u32 nlbl_sid; 4523 u32 nlbl_type; 4524 4525 err = selinux_xfrm_skb_sid(skb, &xfrm_sid); 4526 if (unlikely(err)) 4527 return -EACCES; 4528 err = selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid); 4529 if (unlikely(err)) 4530 return -EACCES; 4531 4532 err = security_net_peersid_resolve(nlbl_sid, 4533 nlbl_type, xfrm_sid, sid); 4534 if (unlikely(err)) { 4535 pr_warn( 4536 "SELinux: failure in selinux_skb_peerlbl_sid()," 4537 " unable to determine packet's peer label\n"); 4538 return -EACCES; 4539 } 4540 4541 return 0; 4542 } 4543 4544 /** 4545 * selinux_conn_sid - Determine the child socket label for a connection 4546 * @sk_sid: the parent socket's SID 4547 * @skb_sid: the packet's SID 4548 * @conn_sid: the resulting connection SID 4549 * 4550 * If @skb_sid is valid then the user:role:type information from @sk_sid is 4551 * combined with the MLS information from @skb_sid in order to create 4552 * @conn_sid. If @skb_sid is not valid then @conn_sid is simply a copy 4553 * of @sk_sid. Returns zero on success, negative values on failure. 4554 * 4555 */ 4556 static int selinux_conn_sid(u32 sk_sid, u32 skb_sid, u32 *conn_sid) 4557 { 4558 int err = 0; 4559 4560 if (skb_sid != SECSID_NULL) 4561 err = security_sid_mls_copy(sk_sid, skb_sid, 4562 conn_sid); 4563 else 4564 *conn_sid = sk_sid; 4565 4566 return err; 4567 } 4568 4569 /* socket security operations */ 4570 4571 static int socket_sockcreate_sid(const struct task_security_struct *tsec, 4572 u16 secclass, u32 *socksid) 4573 { 4574 if (tsec->sockcreate_sid > SECSID_NULL) { 4575 *socksid = tsec->sockcreate_sid; 4576 return 0; 4577 } 4578 4579 return security_transition_sid(tsec->sid, tsec->sid, 4580 secclass, NULL, socksid); 4581 } 4582 4583 static int sock_has_perm(struct sock *sk, u32 perms) 4584 { 4585 struct sk_security_struct *sksec = sk->sk_security; 4586 struct common_audit_data ad; 4587 struct lsm_network_audit net; 4588 4589 if (sksec->sid == SECINITSID_KERNEL) 4590 return 0; 4591 4592 /* 4593 * Before POLICYDB_CAP_USERSPACE_INITIAL_CONTEXT, sockets that 4594 * inherited the kernel context from early boot used to be skipped 4595 * here, so preserve that behavior unless the capability is set. 4596 * 4597 * By setting the capability the policy signals that it is ready 4598 * for this quirk to be fixed. Note that sockets created by a kernel 4599 * thread or a usermode helper executed without a transition will 4600 * still be skipped in this check regardless of the policycap 4601 * setting. 4602 */ 4603 if (!selinux_policycap_userspace_initial_context() && 4604 sksec->sid == SECINITSID_INIT) 4605 return 0; 4606 4607 ad_net_init_from_sk(&ad, &net, sk); 4608 4609 return avc_has_perm(current_sid(), sksec->sid, sksec->sclass, perms, 4610 &ad); 4611 } 4612 4613 static int selinux_socket_create(int family, int type, 4614 int protocol, int kern) 4615 { 4616 const struct task_security_struct *tsec = selinux_cred(current_cred()); 4617 u32 newsid; 4618 u16 secclass; 4619 int rc; 4620 4621 if (kern) 4622 return 0; 4623 4624 secclass = socket_type_to_security_class(family, type, protocol); 4625 rc = socket_sockcreate_sid(tsec, secclass, &newsid); 4626 if (rc) 4627 return rc; 4628 4629 return avc_has_perm(tsec->sid, newsid, secclass, SOCKET__CREATE, NULL); 4630 } 4631 4632 static int selinux_socket_post_create(struct socket *sock, int family, 4633 int type, int protocol, int kern) 4634 { 4635 const struct task_security_struct *tsec = selinux_cred(current_cred()); 4636 struct inode_security_struct *isec = inode_security_novalidate(SOCK_INODE(sock)); 4637 struct sk_security_struct *sksec; 4638 u16 sclass = socket_type_to_security_class(family, type, protocol); 4639 u32 sid = SECINITSID_KERNEL; 4640 int err = 0; 4641 4642 if (!kern) { 4643 err = socket_sockcreate_sid(tsec, sclass, &sid); 4644 if (err) 4645 return err; 4646 } 4647 4648 isec->sclass = sclass; 4649 isec->sid = sid; 4650 isec->initialized = LABEL_INITIALIZED; 4651 4652 if (sock->sk) { 4653 sksec = sock->sk->sk_security; 4654 sksec->sclass = sclass; 4655 sksec->sid = sid; 4656 /* Allows detection of the first association on this socket */ 4657 if (sksec->sclass == SECCLASS_SCTP_SOCKET) 4658 sksec->sctp_assoc_state = SCTP_ASSOC_UNSET; 4659 4660 err = selinux_netlbl_socket_post_create(sock->sk, family); 4661 } 4662 4663 return err; 4664 } 4665 4666 static int selinux_socket_socketpair(struct socket *socka, 4667 struct socket *sockb) 4668 { 4669 struct sk_security_struct *sksec_a = socka->sk->sk_security; 4670 struct sk_security_struct *sksec_b = sockb->sk->sk_security; 4671 4672 sksec_a->peer_sid = sksec_b->sid; 4673 sksec_b->peer_sid = sksec_a->sid; 4674 4675 return 0; 4676 } 4677 4678 /* Range of port numbers used to automatically bind. 4679 Need to determine whether we should perform a name_bind 4680 permission check between the socket and the port number. */ 4681 4682 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen) 4683 { 4684 struct sock *sk = sock->sk; 4685 struct sk_security_struct *sksec = sk->sk_security; 4686 u16 family; 4687 int err; 4688 4689 err = sock_has_perm(sk, SOCKET__BIND); 4690 if (err) 4691 goto out; 4692 4693 /* If PF_INET or PF_INET6, check name_bind permission for the port. */ 4694 family = sk->sk_family; 4695 if (family == PF_INET || family == PF_INET6) { 4696 char *addrp; 4697 struct common_audit_data ad; 4698 struct lsm_network_audit net = {0,}; 4699 struct sockaddr_in *addr4 = NULL; 4700 struct sockaddr_in6 *addr6 = NULL; 4701 u16 family_sa; 4702 unsigned short snum; 4703 u32 sid, node_perm; 4704 4705 /* 4706 * sctp_bindx(3) calls via selinux_sctp_bind_connect() 4707 * that validates multiple binding addresses. Because of this 4708 * need to check address->sa_family as it is possible to have 4709 * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET. 4710 */ 4711 if (addrlen < offsetofend(struct sockaddr, sa_family)) 4712 return -EINVAL; 4713 family_sa = address->sa_family; 4714 switch (family_sa) { 4715 case AF_UNSPEC: 4716 case AF_INET: 4717 if (addrlen < sizeof(struct sockaddr_in)) 4718 return -EINVAL; 4719 addr4 = (struct sockaddr_in *)address; 4720 if (family_sa == AF_UNSPEC) { 4721 if (family == PF_INET6) { 4722 /* Length check from inet6_bind_sk() */ 4723 if (addrlen < SIN6_LEN_RFC2133) 4724 return -EINVAL; 4725 /* Family check from __inet6_bind() */ 4726 goto err_af; 4727 } 4728 /* see __inet_bind(), we only want to allow 4729 * AF_UNSPEC if the address is INADDR_ANY 4730 */ 4731 if (addr4->sin_addr.s_addr != htonl(INADDR_ANY)) 4732 goto err_af; 4733 family_sa = AF_INET; 4734 } 4735 snum = ntohs(addr4->sin_port); 4736 addrp = (char *)&addr4->sin_addr.s_addr; 4737 break; 4738 case AF_INET6: 4739 if (addrlen < SIN6_LEN_RFC2133) 4740 return -EINVAL; 4741 addr6 = (struct sockaddr_in6 *)address; 4742 snum = ntohs(addr6->sin6_port); 4743 addrp = (char *)&addr6->sin6_addr.s6_addr; 4744 break; 4745 default: 4746 goto err_af; 4747 } 4748 4749 ad.type = LSM_AUDIT_DATA_NET; 4750 ad.u.net = &net; 4751 ad.u.net->sport = htons(snum); 4752 ad.u.net->family = family_sa; 4753 4754 if (snum) { 4755 int low, high; 4756 4757 inet_get_local_port_range(sock_net(sk), &low, &high); 4758 4759 if (inet_port_requires_bind_service(sock_net(sk), snum) || 4760 snum < low || snum > high) { 4761 err = sel_netport_sid(sk->sk_protocol, 4762 snum, &sid); 4763 if (err) 4764 goto out; 4765 err = avc_has_perm(sksec->sid, sid, 4766 sksec->sclass, 4767 SOCKET__NAME_BIND, &ad); 4768 if (err) 4769 goto out; 4770 } 4771 } 4772 4773 switch (sksec->sclass) { 4774 case SECCLASS_TCP_SOCKET: 4775 node_perm = TCP_SOCKET__NODE_BIND; 4776 break; 4777 4778 case SECCLASS_UDP_SOCKET: 4779 node_perm = UDP_SOCKET__NODE_BIND; 4780 break; 4781 4782 case SECCLASS_DCCP_SOCKET: 4783 node_perm = DCCP_SOCKET__NODE_BIND; 4784 break; 4785 4786 case SECCLASS_SCTP_SOCKET: 4787 node_perm = SCTP_SOCKET__NODE_BIND; 4788 break; 4789 4790 default: 4791 node_perm = RAWIP_SOCKET__NODE_BIND; 4792 break; 4793 } 4794 4795 err = sel_netnode_sid(addrp, family_sa, &sid); 4796 if (err) 4797 goto out; 4798 4799 if (family_sa == AF_INET) 4800 ad.u.net->v4info.saddr = addr4->sin_addr.s_addr; 4801 else 4802 ad.u.net->v6info.saddr = addr6->sin6_addr; 4803 4804 err = avc_has_perm(sksec->sid, sid, 4805 sksec->sclass, node_perm, &ad); 4806 if (err) 4807 goto out; 4808 } 4809 out: 4810 return err; 4811 err_af: 4812 /* Note that SCTP services expect -EINVAL, others -EAFNOSUPPORT. */ 4813 if (sksec->sclass == SECCLASS_SCTP_SOCKET) 4814 return -EINVAL; 4815 return -EAFNOSUPPORT; 4816 } 4817 4818 /* This supports connect(2) and SCTP connect services such as sctp_connectx(3) 4819 * and sctp_sendmsg(3) as described in Documentation/security/SCTP.rst 4820 */ 4821 static int selinux_socket_connect_helper(struct socket *sock, 4822 struct sockaddr *address, int addrlen) 4823 { 4824 struct sock *sk = sock->sk; 4825 struct sk_security_struct *sksec = sk->sk_security; 4826 int err; 4827 4828 err = sock_has_perm(sk, SOCKET__CONNECT); 4829 if (err) 4830 return err; 4831 if (addrlen < offsetofend(struct sockaddr, sa_family)) 4832 return -EINVAL; 4833 4834 /* connect(AF_UNSPEC) has special handling, as it is a documented 4835 * way to disconnect the socket 4836 */ 4837 if (address->sa_family == AF_UNSPEC) 4838 return 0; 4839 4840 /* 4841 * If a TCP, DCCP or SCTP socket, check name_connect permission 4842 * for the port. 4843 */ 4844 if (sksec->sclass == SECCLASS_TCP_SOCKET || 4845 sksec->sclass == SECCLASS_DCCP_SOCKET || 4846 sksec->sclass == SECCLASS_SCTP_SOCKET) { 4847 struct common_audit_data ad; 4848 struct lsm_network_audit net = {0,}; 4849 struct sockaddr_in *addr4 = NULL; 4850 struct sockaddr_in6 *addr6 = NULL; 4851 unsigned short snum; 4852 u32 sid, perm; 4853 4854 /* sctp_connectx(3) calls via selinux_sctp_bind_connect() 4855 * that validates multiple connect addresses. Because of this 4856 * need to check address->sa_family as it is possible to have 4857 * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET. 4858 */ 4859 switch (address->sa_family) { 4860 case AF_INET: 4861 addr4 = (struct sockaddr_in *)address; 4862 if (addrlen < sizeof(struct sockaddr_in)) 4863 return -EINVAL; 4864 snum = ntohs(addr4->sin_port); 4865 break; 4866 case AF_INET6: 4867 addr6 = (struct sockaddr_in6 *)address; 4868 if (addrlen < SIN6_LEN_RFC2133) 4869 return -EINVAL; 4870 snum = ntohs(addr6->sin6_port); 4871 break; 4872 default: 4873 /* Note that SCTP services expect -EINVAL, whereas 4874 * others expect -EAFNOSUPPORT. 4875 */ 4876 if (sksec->sclass == SECCLASS_SCTP_SOCKET) 4877 return -EINVAL; 4878 else 4879 return -EAFNOSUPPORT; 4880 } 4881 4882 err = sel_netport_sid(sk->sk_protocol, snum, &sid); 4883 if (err) 4884 return err; 4885 4886 switch (sksec->sclass) { 4887 case SECCLASS_TCP_SOCKET: 4888 perm = TCP_SOCKET__NAME_CONNECT; 4889 break; 4890 case SECCLASS_DCCP_SOCKET: 4891 perm = DCCP_SOCKET__NAME_CONNECT; 4892 break; 4893 case SECCLASS_SCTP_SOCKET: 4894 perm = SCTP_SOCKET__NAME_CONNECT; 4895 break; 4896 } 4897 4898 ad.type = LSM_AUDIT_DATA_NET; 4899 ad.u.net = &net; 4900 ad.u.net->dport = htons(snum); 4901 ad.u.net->family = address->sa_family; 4902 err = avc_has_perm(sksec->sid, sid, sksec->sclass, perm, &ad); 4903 if (err) 4904 return err; 4905 } 4906 4907 return 0; 4908 } 4909 4910 /* Supports connect(2), see comments in selinux_socket_connect_helper() */ 4911 static int selinux_socket_connect(struct socket *sock, 4912 struct sockaddr *address, int addrlen) 4913 { 4914 int err; 4915 struct sock *sk = sock->sk; 4916 4917 err = selinux_socket_connect_helper(sock, address, addrlen); 4918 if (err) 4919 return err; 4920 4921 return selinux_netlbl_socket_connect(sk, address); 4922 } 4923 4924 static int selinux_socket_listen(struct socket *sock, int backlog) 4925 { 4926 return sock_has_perm(sock->sk, SOCKET__LISTEN); 4927 } 4928 4929 static int selinux_socket_accept(struct socket *sock, struct socket *newsock) 4930 { 4931 int err; 4932 struct inode_security_struct *isec; 4933 struct inode_security_struct *newisec; 4934 u16 sclass; 4935 u32 sid; 4936 4937 err = sock_has_perm(sock->sk, SOCKET__ACCEPT); 4938 if (err) 4939 return err; 4940 4941 isec = inode_security_novalidate(SOCK_INODE(sock)); 4942 spin_lock(&isec->lock); 4943 sclass = isec->sclass; 4944 sid = isec->sid; 4945 spin_unlock(&isec->lock); 4946 4947 newisec = inode_security_novalidate(SOCK_INODE(newsock)); 4948 newisec->sclass = sclass; 4949 newisec->sid = sid; 4950 newisec->initialized = LABEL_INITIALIZED; 4951 4952 return 0; 4953 } 4954 4955 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg, 4956 int size) 4957 { 4958 return sock_has_perm(sock->sk, SOCKET__WRITE); 4959 } 4960 4961 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg, 4962 int size, int flags) 4963 { 4964 return sock_has_perm(sock->sk, SOCKET__READ); 4965 } 4966 4967 static int selinux_socket_getsockname(struct socket *sock) 4968 { 4969 return sock_has_perm(sock->sk, SOCKET__GETATTR); 4970 } 4971 4972 static int selinux_socket_getpeername(struct socket *sock) 4973 { 4974 return sock_has_perm(sock->sk, SOCKET__GETATTR); 4975 } 4976 4977 static int selinux_socket_setsockopt(struct socket *sock, int level, int optname) 4978 { 4979 int err; 4980 4981 err = sock_has_perm(sock->sk, SOCKET__SETOPT); 4982 if (err) 4983 return err; 4984 4985 return selinux_netlbl_socket_setsockopt(sock, level, optname); 4986 } 4987 4988 static int selinux_socket_getsockopt(struct socket *sock, int level, 4989 int optname) 4990 { 4991 return sock_has_perm(sock->sk, SOCKET__GETOPT); 4992 } 4993 4994 static int selinux_socket_shutdown(struct socket *sock, int how) 4995 { 4996 return sock_has_perm(sock->sk, SOCKET__SHUTDOWN); 4997 } 4998 4999 static int selinux_socket_unix_stream_connect(struct sock *sock, 5000 struct sock *other, 5001 struct sock *newsk) 5002 { 5003 struct sk_security_struct *sksec_sock = sock->sk_security; 5004 struct sk_security_struct *sksec_other = other->sk_security; 5005 struct sk_security_struct *sksec_new = newsk->sk_security; 5006 struct common_audit_data ad; 5007 struct lsm_network_audit net; 5008 int err; 5009 5010 ad_net_init_from_sk(&ad, &net, other); 5011 5012 err = avc_has_perm(sksec_sock->sid, sksec_other->sid, 5013 sksec_other->sclass, 5014 UNIX_STREAM_SOCKET__CONNECTTO, &ad); 5015 if (err) 5016 return err; 5017 5018 /* server child socket */ 5019 sksec_new->peer_sid = sksec_sock->sid; 5020 err = security_sid_mls_copy(sksec_other->sid, 5021 sksec_sock->sid, &sksec_new->sid); 5022 if (err) 5023 return err; 5024 5025 /* connecting socket */ 5026 sksec_sock->peer_sid = sksec_new->sid; 5027 5028 return 0; 5029 } 5030 5031 static int selinux_socket_unix_may_send(struct socket *sock, 5032 struct socket *other) 5033 { 5034 struct sk_security_struct *ssec = sock->sk->sk_security; 5035 struct sk_security_struct *osec = other->sk->sk_security; 5036 struct common_audit_data ad; 5037 struct lsm_network_audit net; 5038 5039 ad_net_init_from_sk(&ad, &net, other->sk); 5040 5041 return avc_has_perm(ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO, 5042 &ad); 5043 } 5044 5045 static int selinux_inet_sys_rcv_skb(struct net *ns, int ifindex, 5046 char *addrp, u16 family, u32 peer_sid, 5047 struct common_audit_data *ad) 5048 { 5049 int err; 5050 u32 if_sid; 5051 u32 node_sid; 5052 5053 err = sel_netif_sid(ns, ifindex, &if_sid); 5054 if (err) 5055 return err; 5056 err = avc_has_perm(peer_sid, if_sid, 5057 SECCLASS_NETIF, NETIF__INGRESS, ad); 5058 if (err) 5059 return err; 5060 5061 err = sel_netnode_sid(addrp, family, &node_sid); 5062 if (err) 5063 return err; 5064 return avc_has_perm(peer_sid, node_sid, 5065 SECCLASS_NODE, NODE__RECVFROM, ad); 5066 } 5067 5068 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb, 5069 u16 family) 5070 { 5071 int err = 0; 5072 struct sk_security_struct *sksec = sk->sk_security; 5073 u32 sk_sid = sksec->sid; 5074 struct common_audit_data ad; 5075 struct lsm_network_audit net; 5076 char *addrp; 5077 5078 ad_net_init_from_iif(&ad, &net, skb->skb_iif, family); 5079 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL); 5080 if (err) 5081 return err; 5082 5083 if (selinux_secmark_enabled()) { 5084 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET, 5085 PACKET__RECV, &ad); 5086 if (err) 5087 return err; 5088 } 5089 5090 err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad); 5091 if (err) 5092 return err; 5093 err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad); 5094 5095 return err; 5096 } 5097 5098 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb) 5099 { 5100 int err, peerlbl_active, secmark_active; 5101 struct sk_security_struct *sksec = sk->sk_security; 5102 u16 family = sk->sk_family; 5103 u32 sk_sid = sksec->sid; 5104 struct common_audit_data ad; 5105 struct lsm_network_audit net; 5106 char *addrp; 5107 5108 if (family != PF_INET && family != PF_INET6) 5109 return 0; 5110 5111 /* Handle mapped IPv4 packets arriving via IPv6 sockets */ 5112 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP)) 5113 family = PF_INET; 5114 5115 /* If any sort of compatibility mode is enabled then handoff processing 5116 * to the selinux_sock_rcv_skb_compat() function to deal with the 5117 * special handling. We do this in an attempt to keep this function 5118 * as fast and as clean as possible. */ 5119 if (!selinux_policycap_netpeer()) 5120 return selinux_sock_rcv_skb_compat(sk, skb, family); 5121 5122 secmark_active = selinux_secmark_enabled(); 5123 peerlbl_active = selinux_peerlbl_enabled(); 5124 if (!secmark_active && !peerlbl_active) 5125 return 0; 5126 5127 ad_net_init_from_iif(&ad, &net, skb->skb_iif, family); 5128 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL); 5129 if (err) 5130 return err; 5131 5132 if (peerlbl_active) { 5133 u32 peer_sid; 5134 5135 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid); 5136 if (err) 5137 return err; 5138 err = selinux_inet_sys_rcv_skb(sock_net(sk), skb->skb_iif, 5139 addrp, family, peer_sid, &ad); 5140 if (err) { 5141 selinux_netlbl_err(skb, family, err, 0); 5142 return err; 5143 } 5144 err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER, 5145 PEER__RECV, &ad); 5146 if (err) { 5147 selinux_netlbl_err(skb, family, err, 0); 5148 return err; 5149 } 5150 } 5151 5152 if (secmark_active) { 5153 err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET, 5154 PACKET__RECV, &ad); 5155 if (err) 5156 return err; 5157 } 5158 5159 return err; 5160 } 5161 5162 static int selinux_socket_getpeersec_stream(struct socket *sock, 5163 sockptr_t optval, sockptr_t optlen, 5164 unsigned int len) 5165 { 5166 int err = 0; 5167 char *scontext = NULL; 5168 u32 scontext_len; 5169 struct sk_security_struct *sksec = sock->sk->sk_security; 5170 u32 peer_sid = SECSID_NULL; 5171 5172 if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET || 5173 sksec->sclass == SECCLASS_TCP_SOCKET || 5174 sksec->sclass == SECCLASS_SCTP_SOCKET) 5175 peer_sid = sksec->peer_sid; 5176 if (peer_sid == SECSID_NULL) 5177 return -ENOPROTOOPT; 5178 5179 err = security_sid_to_context(peer_sid, &scontext, 5180 &scontext_len); 5181 if (err) 5182 return err; 5183 if (scontext_len > len) { 5184 err = -ERANGE; 5185 goto out_len; 5186 } 5187 5188 if (copy_to_sockptr(optval, scontext, scontext_len)) 5189 err = -EFAULT; 5190 out_len: 5191 if (copy_to_sockptr(optlen, &scontext_len, sizeof(scontext_len))) 5192 err = -EFAULT; 5193 kfree(scontext); 5194 return err; 5195 } 5196 5197 static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid) 5198 { 5199 u32 peer_secid = SECSID_NULL; 5200 u16 family; 5201 struct inode_security_struct *isec; 5202 5203 if (skb && skb->protocol == htons(ETH_P_IP)) 5204 family = PF_INET; 5205 else if (skb && skb->protocol == htons(ETH_P_IPV6)) 5206 family = PF_INET6; 5207 else if (sock) 5208 family = sock->sk->sk_family; 5209 else 5210 goto out; 5211 5212 if (sock && family == PF_UNIX) { 5213 isec = inode_security_novalidate(SOCK_INODE(sock)); 5214 peer_secid = isec->sid; 5215 } else if (skb) 5216 selinux_skb_peerlbl_sid(skb, family, &peer_secid); 5217 5218 out: 5219 *secid = peer_secid; 5220 if (peer_secid == SECSID_NULL) 5221 return -EINVAL; 5222 return 0; 5223 } 5224 5225 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority) 5226 { 5227 struct sk_security_struct *sksec; 5228 5229 sksec = kzalloc(sizeof(*sksec), priority); 5230 if (!sksec) 5231 return -ENOMEM; 5232 5233 sksec->peer_sid = SECINITSID_UNLABELED; 5234 sksec->sid = SECINITSID_UNLABELED; 5235 sksec->sclass = SECCLASS_SOCKET; 5236 selinux_netlbl_sk_security_reset(sksec); 5237 sk->sk_security = sksec; 5238 5239 return 0; 5240 } 5241 5242 static void selinux_sk_free_security(struct sock *sk) 5243 { 5244 struct sk_security_struct *sksec = sk->sk_security; 5245 5246 sk->sk_security = NULL; 5247 selinux_netlbl_sk_security_free(sksec); 5248 kfree(sksec); 5249 } 5250 5251 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk) 5252 { 5253 struct sk_security_struct *sksec = sk->sk_security; 5254 struct sk_security_struct *newsksec = newsk->sk_security; 5255 5256 newsksec->sid = sksec->sid; 5257 newsksec->peer_sid = sksec->peer_sid; 5258 newsksec->sclass = sksec->sclass; 5259 5260 selinux_netlbl_sk_security_reset(newsksec); 5261 } 5262 5263 static void selinux_sk_getsecid(const struct sock *sk, u32 *secid) 5264 { 5265 if (!sk) 5266 *secid = SECINITSID_ANY_SOCKET; 5267 else { 5268 const struct sk_security_struct *sksec = sk->sk_security; 5269 5270 *secid = sksec->sid; 5271 } 5272 } 5273 5274 static void selinux_sock_graft(struct sock *sk, struct socket *parent) 5275 { 5276 struct inode_security_struct *isec = 5277 inode_security_novalidate(SOCK_INODE(parent)); 5278 struct sk_security_struct *sksec = sk->sk_security; 5279 5280 if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 || 5281 sk->sk_family == PF_UNIX) 5282 isec->sid = sksec->sid; 5283 sksec->sclass = isec->sclass; 5284 } 5285 5286 /* 5287 * Determines peer_secid for the asoc and updates socket's peer label 5288 * if it's the first association on the socket. 5289 */ 5290 static int selinux_sctp_process_new_assoc(struct sctp_association *asoc, 5291 struct sk_buff *skb) 5292 { 5293 struct sock *sk = asoc->base.sk; 5294 u16 family = sk->sk_family; 5295 struct sk_security_struct *sksec = sk->sk_security; 5296 struct common_audit_data ad; 5297 struct lsm_network_audit net; 5298 int err; 5299 5300 /* handle mapped IPv4 packets arriving via IPv6 sockets */ 5301 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP)) 5302 family = PF_INET; 5303 5304 if (selinux_peerlbl_enabled()) { 5305 asoc->peer_secid = SECSID_NULL; 5306 5307 /* This will return peer_sid = SECSID_NULL if there are 5308 * no peer labels, see security_net_peersid_resolve(). 5309 */ 5310 err = selinux_skb_peerlbl_sid(skb, family, &asoc->peer_secid); 5311 if (err) 5312 return err; 5313 5314 if (asoc->peer_secid == SECSID_NULL) 5315 asoc->peer_secid = SECINITSID_UNLABELED; 5316 } else { 5317 asoc->peer_secid = SECINITSID_UNLABELED; 5318 } 5319 5320 if (sksec->sctp_assoc_state == SCTP_ASSOC_UNSET) { 5321 sksec->sctp_assoc_state = SCTP_ASSOC_SET; 5322 5323 /* Here as first association on socket. As the peer SID 5324 * was allowed by peer recv (and the netif/node checks), 5325 * then it is approved by policy and used as the primary 5326 * peer SID for getpeercon(3). 5327 */ 5328 sksec->peer_sid = asoc->peer_secid; 5329 } else if (sksec->peer_sid != asoc->peer_secid) { 5330 /* Other association peer SIDs are checked to enforce 5331 * consistency among the peer SIDs. 5332 */ 5333 ad_net_init_from_sk(&ad, &net, asoc->base.sk); 5334 err = avc_has_perm(sksec->peer_sid, asoc->peer_secid, 5335 sksec->sclass, SCTP_SOCKET__ASSOCIATION, 5336 &ad); 5337 if (err) 5338 return err; 5339 } 5340 return 0; 5341 } 5342 5343 /* Called whenever SCTP receives an INIT or COOKIE ECHO chunk. This 5344 * happens on an incoming connect(2), sctp_connectx(3) or 5345 * sctp_sendmsg(3) (with no association already present). 5346 */ 5347 static int selinux_sctp_assoc_request(struct sctp_association *asoc, 5348 struct sk_buff *skb) 5349 { 5350 struct sk_security_struct *sksec = asoc->base.sk->sk_security; 5351 u32 conn_sid; 5352 int err; 5353 5354 if (!selinux_policycap_extsockclass()) 5355 return 0; 5356 5357 err = selinux_sctp_process_new_assoc(asoc, skb); 5358 if (err) 5359 return err; 5360 5361 /* Compute the MLS component for the connection and store 5362 * the information in asoc. This will be used by SCTP TCP type 5363 * sockets and peeled off connections as they cause a new 5364 * socket to be generated. selinux_sctp_sk_clone() will then 5365 * plug this into the new socket. 5366 */ 5367 err = selinux_conn_sid(sksec->sid, asoc->peer_secid, &conn_sid); 5368 if (err) 5369 return err; 5370 5371 asoc->secid = conn_sid; 5372 5373 /* Set any NetLabel labels including CIPSO/CALIPSO options. */ 5374 return selinux_netlbl_sctp_assoc_request(asoc, skb); 5375 } 5376 5377 /* Called when SCTP receives a COOKIE ACK chunk as the final 5378 * response to an association request (initited by us). 5379 */ 5380 static int selinux_sctp_assoc_established(struct sctp_association *asoc, 5381 struct sk_buff *skb) 5382 { 5383 struct sk_security_struct *sksec = asoc->base.sk->sk_security; 5384 5385 if (!selinux_policycap_extsockclass()) 5386 return 0; 5387 5388 /* Inherit secid from the parent socket - this will be picked up 5389 * by selinux_sctp_sk_clone() if the association gets peeled off 5390 * into a new socket. 5391 */ 5392 asoc->secid = sksec->sid; 5393 5394 return selinux_sctp_process_new_assoc(asoc, skb); 5395 } 5396 5397 /* Check if sctp IPv4/IPv6 addresses are valid for binding or connecting 5398 * based on their @optname. 5399 */ 5400 static int selinux_sctp_bind_connect(struct sock *sk, int optname, 5401 struct sockaddr *address, 5402 int addrlen) 5403 { 5404 int len, err = 0, walk_size = 0; 5405 void *addr_buf; 5406 struct sockaddr *addr; 5407 struct socket *sock; 5408 5409 if (!selinux_policycap_extsockclass()) 5410 return 0; 5411 5412 /* Process one or more addresses that may be IPv4 or IPv6 */ 5413 sock = sk->sk_socket; 5414 addr_buf = address; 5415 5416 while (walk_size < addrlen) { 5417 if (walk_size + sizeof(sa_family_t) > addrlen) 5418 return -EINVAL; 5419 5420 addr = addr_buf; 5421 switch (addr->sa_family) { 5422 case AF_UNSPEC: 5423 case AF_INET: 5424 len = sizeof(struct sockaddr_in); 5425 break; 5426 case AF_INET6: 5427 len = sizeof(struct sockaddr_in6); 5428 break; 5429 default: 5430 return -EINVAL; 5431 } 5432 5433 if (walk_size + len > addrlen) 5434 return -EINVAL; 5435 5436 err = -EINVAL; 5437 switch (optname) { 5438 /* Bind checks */ 5439 case SCTP_PRIMARY_ADDR: 5440 case SCTP_SET_PEER_PRIMARY_ADDR: 5441 case SCTP_SOCKOPT_BINDX_ADD: 5442 err = selinux_socket_bind(sock, addr, len); 5443 break; 5444 /* Connect checks */ 5445 case SCTP_SOCKOPT_CONNECTX: 5446 case SCTP_PARAM_SET_PRIMARY: 5447 case SCTP_PARAM_ADD_IP: 5448 case SCTP_SENDMSG_CONNECT: 5449 err = selinux_socket_connect_helper(sock, addr, len); 5450 if (err) 5451 return err; 5452 5453 /* As selinux_sctp_bind_connect() is called by the 5454 * SCTP protocol layer, the socket is already locked, 5455 * therefore selinux_netlbl_socket_connect_locked() 5456 * is called here. The situations handled are: 5457 * sctp_connectx(3), sctp_sendmsg(3), sendmsg(2), 5458 * whenever a new IP address is added or when a new 5459 * primary address is selected. 5460 * Note that an SCTP connect(2) call happens before 5461 * the SCTP protocol layer and is handled via 5462 * selinux_socket_connect(). 5463 */ 5464 err = selinux_netlbl_socket_connect_locked(sk, addr); 5465 break; 5466 } 5467 5468 if (err) 5469 return err; 5470 5471 addr_buf += len; 5472 walk_size += len; 5473 } 5474 5475 return 0; 5476 } 5477 5478 /* Called whenever a new socket is created by accept(2) or sctp_peeloff(3). */ 5479 static void selinux_sctp_sk_clone(struct sctp_association *asoc, struct sock *sk, 5480 struct sock *newsk) 5481 { 5482 struct sk_security_struct *sksec = sk->sk_security; 5483 struct sk_security_struct *newsksec = newsk->sk_security; 5484 5485 /* If policy does not support SECCLASS_SCTP_SOCKET then call 5486 * the non-sctp clone version. 5487 */ 5488 if (!selinux_policycap_extsockclass()) 5489 return selinux_sk_clone_security(sk, newsk); 5490 5491 newsksec->sid = asoc->secid; 5492 newsksec->peer_sid = asoc->peer_secid; 5493 newsksec->sclass = sksec->sclass; 5494 selinux_netlbl_sctp_sk_clone(sk, newsk); 5495 } 5496 5497 static int selinux_mptcp_add_subflow(struct sock *sk, struct sock *ssk) 5498 { 5499 struct sk_security_struct *ssksec = ssk->sk_security; 5500 struct sk_security_struct *sksec = sk->sk_security; 5501 5502 ssksec->sclass = sksec->sclass; 5503 ssksec->sid = sksec->sid; 5504 5505 /* replace the existing subflow label deleting the existing one 5506 * and re-recreating a new label using the updated context 5507 */ 5508 selinux_netlbl_sk_security_free(ssksec); 5509 return selinux_netlbl_socket_post_create(ssk, ssk->sk_family); 5510 } 5511 5512 static int selinux_inet_conn_request(const struct sock *sk, struct sk_buff *skb, 5513 struct request_sock *req) 5514 { 5515 struct sk_security_struct *sksec = sk->sk_security; 5516 int err; 5517 u16 family = req->rsk_ops->family; 5518 u32 connsid; 5519 u32 peersid; 5520 5521 err = selinux_skb_peerlbl_sid(skb, family, &peersid); 5522 if (err) 5523 return err; 5524 err = selinux_conn_sid(sksec->sid, peersid, &connsid); 5525 if (err) 5526 return err; 5527 req->secid = connsid; 5528 req->peer_secid = peersid; 5529 5530 return selinux_netlbl_inet_conn_request(req, family); 5531 } 5532 5533 static void selinux_inet_csk_clone(struct sock *newsk, 5534 const struct request_sock *req) 5535 { 5536 struct sk_security_struct *newsksec = newsk->sk_security; 5537 5538 newsksec->sid = req->secid; 5539 newsksec->peer_sid = req->peer_secid; 5540 /* NOTE: Ideally, we should also get the isec->sid for the 5541 new socket in sync, but we don't have the isec available yet. 5542 So we will wait until sock_graft to do it, by which 5543 time it will have been created and available. */ 5544 5545 /* We don't need to take any sort of lock here as we are the only 5546 * thread with access to newsksec */ 5547 selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family); 5548 } 5549 5550 static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb) 5551 { 5552 u16 family = sk->sk_family; 5553 struct sk_security_struct *sksec = sk->sk_security; 5554 5555 /* handle mapped IPv4 packets arriving via IPv6 sockets */ 5556 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP)) 5557 family = PF_INET; 5558 5559 selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid); 5560 } 5561 5562 static int selinux_secmark_relabel_packet(u32 sid) 5563 { 5564 const struct task_security_struct *tsec; 5565 u32 tsid; 5566 5567 tsec = selinux_cred(current_cred()); 5568 tsid = tsec->sid; 5569 5570 return avc_has_perm(tsid, sid, SECCLASS_PACKET, PACKET__RELABELTO, 5571 NULL); 5572 } 5573 5574 static void selinux_secmark_refcount_inc(void) 5575 { 5576 atomic_inc(&selinux_secmark_refcount); 5577 } 5578 5579 static void selinux_secmark_refcount_dec(void) 5580 { 5581 atomic_dec(&selinux_secmark_refcount); 5582 } 5583 5584 static void selinux_req_classify_flow(const struct request_sock *req, 5585 struct flowi_common *flic) 5586 { 5587 flic->flowic_secid = req->secid; 5588 } 5589 5590 static int selinux_tun_dev_alloc_security(void **security) 5591 { 5592 struct tun_security_struct *tunsec; 5593 5594 tunsec = kzalloc(sizeof(*tunsec), GFP_KERNEL); 5595 if (!tunsec) 5596 return -ENOMEM; 5597 tunsec->sid = current_sid(); 5598 5599 *security = tunsec; 5600 return 0; 5601 } 5602 5603 static void selinux_tun_dev_free_security(void *security) 5604 { 5605 kfree(security); 5606 } 5607 5608 static int selinux_tun_dev_create(void) 5609 { 5610 u32 sid = current_sid(); 5611 5612 /* we aren't taking into account the "sockcreate" SID since the socket 5613 * that is being created here is not a socket in the traditional sense, 5614 * instead it is a private sock, accessible only to the kernel, and 5615 * representing a wide range of network traffic spanning multiple 5616 * connections unlike traditional sockets - check the TUN driver to 5617 * get a better understanding of why this socket is special */ 5618 5619 return avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE, 5620 NULL); 5621 } 5622 5623 static int selinux_tun_dev_attach_queue(void *security) 5624 { 5625 struct tun_security_struct *tunsec = security; 5626 5627 return avc_has_perm(current_sid(), tunsec->sid, SECCLASS_TUN_SOCKET, 5628 TUN_SOCKET__ATTACH_QUEUE, NULL); 5629 } 5630 5631 static int selinux_tun_dev_attach(struct sock *sk, void *security) 5632 { 5633 struct tun_security_struct *tunsec = security; 5634 struct sk_security_struct *sksec = sk->sk_security; 5635 5636 /* we don't currently perform any NetLabel based labeling here and it 5637 * isn't clear that we would want to do so anyway; while we could apply 5638 * labeling without the support of the TUN user the resulting labeled 5639 * traffic from the other end of the connection would almost certainly 5640 * cause confusion to the TUN user that had no idea network labeling 5641 * protocols were being used */ 5642 5643 sksec->sid = tunsec->sid; 5644 sksec->sclass = SECCLASS_TUN_SOCKET; 5645 5646 return 0; 5647 } 5648 5649 static int selinux_tun_dev_open(void *security) 5650 { 5651 struct tun_security_struct *tunsec = security; 5652 u32 sid = current_sid(); 5653 int err; 5654 5655 err = avc_has_perm(sid, tunsec->sid, SECCLASS_TUN_SOCKET, 5656 TUN_SOCKET__RELABELFROM, NULL); 5657 if (err) 5658 return err; 5659 err = avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET, 5660 TUN_SOCKET__RELABELTO, NULL); 5661 if (err) 5662 return err; 5663 tunsec->sid = sid; 5664 5665 return 0; 5666 } 5667 5668 #ifdef CONFIG_NETFILTER 5669 5670 static unsigned int selinux_ip_forward(void *priv, struct sk_buff *skb, 5671 const struct nf_hook_state *state) 5672 { 5673 int ifindex; 5674 u16 family; 5675 char *addrp; 5676 u32 peer_sid; 5677 struct common_audit_data ad; 5678 struct lsm_network_audit net; 5679 int secmark_active, peerlbl_active; 5680 5681 if (!selinux_policycap_netpeer()) 5682 return NF_ACCEPT; 5683 5684 secmark_active = selinux_secmark_enabled(); 5685 peerlbl_active = selinux_peerlbl_enabled(); 5686 if (!secmark_active && !peerlbl_active) 5687 return NF_ACCEPT; 5688 5689 family = state->pf; 5690 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0) 5691 return NF_DROP; 5692 5693 ifindex = state->in->ifindex; 5694 ad_net_init_from_iif(&ad, &net, ifindex, family); 5695 if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0) 5696 return NF_DROP; 5697 5698 if (peerlbl_active) { 5699 int err; 5700 5701 err = selinux_inet_sys_rcv_skb(state->net, ifindex, 5702 addrp, family, peer_sid, &ad); 5703 if (err) { 5704 selinux_netlbl_err(skb, family, err, 1); 5705 return NF_DROP; 5706 } 5707 } 5708 5709 if (secmark_active) 5710 if (avc_has_perm(peer_sid, skb->secmark, 5711 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad)) 5712 return NF_DROP; 5713 5714 if (netlbl_enabled()) 5715 /* we do this in the FORWARD path and not the POST_ROUTING 5716 * path because we want to make sure we apply the necessary 5717 * labeling before IPsec is applied so we can leverage AH 5718 * protection */ 5719 if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0) 5720 return NF_DROP; 5721 5722 return NF_ACCEPT; 5723 } 5724 5725 static unsigned int selinux_ip_output(void *priv, struct sk_buff *skb, 5726 const struct nf_hook_state *state) 5727 { 5728 struct sock *sk; 5729 u32 sid; 5730 5731 if (!netlbl_enabled()) 5732 return NF_ACCEPT; 5733 5734 /* we do this in the LOCAL_OUT path and not the POST_ROUTING path 5735 * because we want to make sure we apply the necessary labeling 5736 * before IPsec is applied so we can leverage AH protection */ 5737 sk = skb->sk; 5738 if (sk) { 5739 struct sk_security_struct *sksec; 5740 5741 if (sk_listener(sk)) 5742 /* if the socket is the listening state then this 5743 * packet is a SYN-ACK packet which means it needs to 5744 * be labeled based on the connection/request_sock and 5745 * not the parent socket. unfortunately, we can't 5746 * lookup the request_sock yet as it isn't queued on 5747 * the parent socket until after the SYN-ACK is sent. 5748 * the "solution" is to simply pass the packet as-is 5749 * as any IP option based labeling should be copied 5750 * from the initial connection request (in the IP 5751 * layer). it is far from ideal, but until we get a 5752 * security label in the packet itself this is the 5753 * best we can do. */ 5754 return NF_ACCEPT; 5755 5756 /* standard practice, label using the parent socket */ 5757 sksec = sk->sk_security; 5758 sid = sksec->sid; 5759 } else 5760 sid = SECINITSID_KERNEL; 5761 if (selinux_netlbl_skbuff_setsid(skb, state->pf, sid) != 0) 5762 return NF_DROP; 5763 5764 return NF_ACCEPT; 5765 } 5766 5767 5768 static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb, 5769 const struct nf_hook_state *state) 5770 { 5771 struct sock *sk; 5772 struct sk_security_struct *sksec; 5773 struct common_audit_data ad; 5774 struct lsm_network_audit net; 5775 u8 proto = 0; 5776 5777 sk = skb_to_full_sk(skb); 5778 if (sk == NULL) 5779 return NF_ACCEPT; 5780 sksec = sk->sk_security; 5781 5782 ad_net_init_from_iif(&ad, &net, state->out->ifindex, state->pf); 5783 if (selinux_parse_skb(skb, &ad, NULL, 0, &proto)) 5784 return NF_DROP; 5785 5786 if (selinux_secmark_enabled()) 5787 if (avc_has_perm(sksec->sid, skb->secmark, 5788 SECCLASS_PACKET, PACKET__SEND, &ad)) 5789 return NF_DROP_ERR(-ECONNREFUSED); 5790 5791 if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto)) 5792 return NF_DROP_ERR(-ECONNREFUSED); 5793 5794 return NF_ACCEPT; 5795 } 5796 5797 static unsigned int selinux_ip_postroute(void *priv, 5798 struct sk_buff *skb, 5799 const struct nf_hook_state *state) 5800 { 5801 u16 family; 5802 u32 secmark_perm; 5803 u32 peer_sid; 5804 int ifindex; 5805 struct sock *sk; 5806 struct common_audit_data ad; 5807 struct lsm_network_audit net; 5808 char *addrp; 5809 int secmark_active, peerlbl_active; 5810 5811 /* If any sort of compatibility mode is enabled then handoff processing 5812 * to the selinux_ip_postroute_compat() function to deal with the 5813 * special handling. We do this in an attempt to keep this function 5814 * as fast and as clean as possible. */ 5815 if (!selinux_policycap_netpeer()) 5816 return selinux_ip_postroute_compat(skb, state); 5817 5818 secmark_active = selinux_secmark_enabled(); 5819 peerlbl_active = selinux_peerlbl_enabled(); 5820 if (!secmark_active && !peerlbl_active) 5821 return NF_ACCEPT; 5822 5823 sk = skb_to_full_sk(skb); 5824 5825 #ifdef CONFIG_XFRM 5826 /* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec 5827 * packet transformation so allow the packet to pass without any checks 5828 * since we'll have another chance to perform access control checks 5829 * when the packet is on it's final way out. 5830 * NOTE: there appear to be some IPv6 multicast cases where skb->dst 5831 * is NULL, in this case go ahead and apply access control. 5832 * NOTE: if this is a local socket (skb->sk != NULL) that is in the 5833 * TCP listening state we cannot wait until the XFRM processing 5834 * is done as we will miss out on the SA label if we do; 5835 * unfortunately, this means more work, but it is only once per 5836 * connection. */ 5837 if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL && 5838 !(sk && sk_listener(sk))) 5839 return NF_ACCEPT; 5840 #endif 5841 5842 family = state->pf; 5843 if (sk == NULL) { 5844 /* Without an associated socket the packet is either coming 5845 * from the kernel or it is being forwarded; check the packet 5846 * to determine which and if the packet is being forwarded 5847 * query the packet directly to determine the security label. */ 5848 if (skb->skb_iif) { 5849 secmark_perm = PACKET__FORWARD_OUT; 5850 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid)) 5851 return NF_DROP; 5852 } else { 5853 secmark_perm = PACKET__SEND; 5854 peer_sid = SECINITSID_KERNEL; 5855 } 5856 } else if (sk_listener(sk)) { 5857 /* Locally generated packet but the associated socket is in the 5858 * listening state which means this is a SYN-ACK packet. In 5859 * this particular case the correct security label is assigned 5860 * to the connection/request_sock but unfortunately we can't 5861 * query the request_sock as it isn't queued on the parent 5862 * socket until after the SYN-ACK packet is sent; the only 5863 * viable choice is to regenerate the label like we do in 5864 * selinux_inet_conn_request(). See also selinux_ip_output() 5865 * for similar problems. */ 5866 u32 skb_sid; 5867 struct sk_security_struct *sksec; 5868 5869 sksec = sk->sk_security; 5870 if (selinux_skb_peerlbl_sid(skb, family, &skb_sid)) 5871 return NF_DROP; 5872 /* At this point, if the returned skb peerlbl is SECSID_NULL 5873 * and the packet has been through at least one XFRM 5874 * transformation then we must be dealing with the "final" 5875 * form of labeled IPsec packet; since we've already applied 5876 * all of our access controls on this packet we can safely 5877 * pass the packet. */ 5878 if (skb_sid == SECSID_NULL) { 5879 switch (family) { 5880 case PF_INET: 5881 if (IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED) 5882 return NF_ACCEPT; 5883 break; 5884 case PF_INET6: 5885 if (IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED) 5886 return NF_ACCEPT; 5887 break; 5888 default: 5889 return NF_DROP_ERR(-ECONNREFUSED); 5890 } 5891 } 5892 if (selinux_conn_sid(sksec->sid, skb_sid, &peer_sid)) 5893 return NF_DROP; 5894 secmark_perm = PACKET__SEND; 5895 } else { 5896 /* Locally generated packet, fetch the security label from the 5897 * associated socket. */ 5898 struct sk_security_struct *sksec = sk->sk_security; 5899 peer_sid = sksec->sid; 5900 secmark_perm = PACKET__SEND; 5901 } 5902 5903 ifindex = state->out->ifindex; 5904 ad_net_init_from_iif(&ad, &net, ifindex, family); 5905 if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL)) 5906 return NF_DROP; 5907 5908 if (secmark_active) 5909 if (avc_has_perm(peer_sid, skb->secmark, 5910 SECCLASS_PACKET, secmark_perm, &ad)) 5911 return NF_DROP_ERR(-ECONNREFUSED); 5912 5913 if (peerlbl_active) { 5914 u32 if_sid; 5915 u32 node_sid; 5916 5917 if (sel_netif_sid(state->net, ifindex, &if_sid)) 5918 return NF_DROP; 5919 if (avc_has_perm(peer_sid, if_sid, 5920 SECCLASS_NETIF, NETIF__EGRESS, &ad)) 5921 return NF_DROP_ERR(-ECONNREFUSED); 5922 5923 if (sel_netnode_sid(addrp, family, &node_sid)) 5924 return NF_DROP; 5925 if (avc_has_perm(peer_sid, node_sid, 5926 SECCLASS_NODE, NODE__SENDTO, &ad)) 5927 return NF_DROP_ERR(-ECONNREFUSED); 5928 } 5929 5930 return NF_ACCEPT; 5931 } 5932 #endif /* CONFIG_NETFILTER */ 5933 5934 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb) 5935 { 5936 int rc = 0; 5937 unsigned int msg_len; 5938 unsigned int data_len = skb->len; 5939 unsigned char *data = skb->data; 5940 struct nlmsghdr *nlh; 5941 struct sk_security_struct *sksec = sk->sk_security; 5942 u16 sclass = sksec->sclass; 5943 u32 perm; 5944 5945 while (data_len >= nlmsg_total_size(0)) { 5946 nlh = (struct nlmsghdr *)data; 5947 5948 /* NOTE: the nlmsg_len field isn't reliably set by some netlink 5949 * users which means we can't reject skb's with bogus 5950 * length fields; our solution is to follow what 5951 * netlink_rcv_skb() does and simply skip processing at 5952 * messages with length fields that are clearly junk 5953 */ 5954 if (nlh->nlmsg_len < NLMSG_HDRLEN || nlh->nlmsg_len > data_len) 5955 return 0; 5956 5957 rc = selinux_nlmsg_lookup(sclass, nlh->nlmsg_type, &perm); 5958 if (rc == 0) { 5959 rc = sock_has_perm(sk, perm); 5960 if (rc) 5961 return rc; 5962 } else if (rc == -EINVAL) { 5963 /* -EINVAL is a missing msg/perm mapping */ 5964 pr_warn_ratelimited("SELinux: unrecognized netlink" 5965 " message: protocol=%hu nlmsg_type=%hu sclass=%s" 5966 " pid=%d comm=%s\n", 5967 sk->sk_protocol, nlh->nlmsg_type, 5968 secclass_map[sclass - 1].name, 5969 task_pid_nr(current), current->comm); 5970 if (enforcing_enabled() && 5971 !security_get_allow_unknown()) 5972 return rc; 5973 rc = 0; 5974 } else if (rc == -ENOENT) { 5975 /* -ENOENT is a missing socket/class mapping, ignore */ 5976 rc = 0; 5977 } else { 5978 return rc; 5979 } 5980 5981 /* move to the next message after applying netlink padding */ 5982 msg_len = NLMSG_ALIGN(nlh->nlmsg_len); 5983 if (msg_len >= data_len) 5984 return 0; 5985 data_len -= msg_len; 5986 data += msg_len; 5987 } 5988 5989 return rc; 5990 } 5991 5992 static void ipc_init_security(struct ipc_security_struct *isec, u16 sclass) 5993 { 5994 isec->sclass = sclass; 5995 isec->sid = current_sid(); 5996 } 5997 5998 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms, 5999 u32 perms) 6000 { 6001 struct ipc_security_struct *isec; 6002 struct common_audit_data ad; 6003 u32 sid = current_sid(); 6004 6005 isec = selinux_ipc(ipc_perms); 6006 6007 ad.type = LSM_AUDIT_DATA_IPC; 6008 ad.u.ipc_id = ipc_perms->key; 6009 6010 return avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad); 6011 } 6012 6013 static int selinux_msg_msg_alloc_security(struct msg_msg *msg) 6014 { 6015 struct msg_security_struct *msec; 6016 6017 msec = selinux_msg_msg(msg); 6018 msec->sid = SECINITSID_UNLABELED; 6019 6020 return 0; 6021 } 6022 6023 /* message queue security operations */ 6024 static int selinux_msg_queue_alloc_security(struct kern_ipc_perm *msq) 6025 { 6026 struct ipc_security_struct *isec; 6027 struct common_audit_data ad; 6028 u32 sid = current_sid(); 6029 6030 isec = selinux_ipc(msq); 6031 ipc_init_security(isec, SECCLASS_MSGQ); 6032 6033 ad.type = LSM_AUDIT_DATA_IPC; 6034 ad.u.ipc_id = msq->key; 6035 6036 return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ, 6037 MSGQ__CREATE, &ad); 6038 } 6039 6040 static int selinux_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg) 6041 { 6042 struct ipc_security_struct *isec; 6043 struct common_audit_data ad; 6044 u32 sid = current_sid(); 6045 6046 isec = selinux_ipc(msq); 6047 6048 ad.type = LSM_AUDIT_DATA_IPC; 6049 ad.u.ipc_id = msq->key; 6050 6051 return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ, 6052 MSGQ__ASSOCIATE, &ad); 6053 } 6054 6055 static int selinux_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd) 6056 { 6057 u32 perms; 6058 6059 switch (cmd) { 6060 case IPC_INFO: 6061 case MSG_INFO: 6062 /* No specific object, just general system-wide information. */ 6063 return avc_has_perm(current_sid(), SECINITSID_KERNEL, 6064 SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL); 6065 case IPC_STAT: 6066 case MSG_STAT: 6067 case MSG_STAT_ANY: 6068 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE; 6069 break; 6070 case IPC_SET: 6071 perms = MSGQ__SETATTR; 6072 break; 6073 case IPC_RMID: 6074 perms = MSGQ__DESTROY; 6075 break; 6076 default: 6077 return 0; 6078 } 6079 6080 return ipc_has_perm(msq, perms); 6081 } 6082 6083 static int selinux_msg_queue_msgsnd(struct kern_ipc_perm *msq, struct msg_msg *msg, int msqflg) 6084 { 6085 struct ipc_security_struct *isec; 6086 struct msg_security_struct *msec; 6087 struct common_audit_data ad; 6088 u32 sid = current_sid(); 6089 int rc; 6090 6091 isec = selinux_ipc(msq); 6092 msec = selinux_msg_msg(msg); 6093 6094 /* 6095 * First time through, need to assign label to the message 6096 */ 6097 if (msec->sid == SECINITSID_UNLABELED) { 6098 /* 6099 * Compute new sid based on current process and 6100 * message queue this message will be stored in 6101 */ 6102 rc = security_transition_sid(sid, isec->sid, 6103 SECCLASS_MSG, NULL, &msec->sid); 6104 if (rc) 6105 return rc; 6106 } 6107 6108 ad.type = LSM_AUDIT_DATA_IPC; 6109 ad.u.ipc_id = msq->key; 6110 6111 /* Can this process write to the queue? */ 6112 rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ, 6113 MSGQ__WRITE, &ad); 6114 if (!rc) 6115 /* Can this process send the message */ 6116 rc = avc_has_perm(sid, msec->sid, SECCLASS_MSG, 6117 MSG__SEND, &ad); 6118 if (!rc) 6119 /* Can the message be put in the queue? */ 6120 rc = avc_has_perm(msec->sid, isec->sid, SECCLASS_MSGQ, 6121 MSGQ__ENQUEUE, &ad); 6122 6123 return rc; 6124 } 6125 6126 static int selinux_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg, 6127 struct task_struct *target, 6128 long type, int mode) 6129 { 6130 struct ipc_security_struct *isec; 6131 struct msg_security_struct *msec; 6132 struct common_audit_data ad; 6133 u32 sid = task_sid_obj(target); 6134 int rc; 6135 6136 isec = selinux_ipc(msq); 6137 msec = selinux_msg_msg(msg); 6138 6139 ad.type = LSM_AUDIT_DATA_IPC; 6140 ad.u.ipc_id = msq->key; 6141 6142 rc = avc_has_perm(sid, isec->sid, 6143 SECCLASS_MSGQ, MSGQ__READ, &ad); 6144 if (!rc) 6145 rc = avc_has_perm(sid, msec->sid, 6146 SECCLASS_MSG, MSG__RECEIVE, &ad); 6147 return rc; 6148 } 6149 6150 /* Shared Memory security operations */ 6151 static int selinux_shm_alloc_security(struct kern_ipc_perm *shp) 6152 { 6153 struct ipc_security_struct *isec; 6154 struct common_audit_data ad; 6155 u32 sid = current_sid(); 6156 6157 isec = selinux_ipc(shp); 6158 ipc_init_security(isec, SECCLASS_SHM); 6159 6160 ad.type = LSM_AUDIT_DATA_IPC; 6161 ad.u.ipc_id = shp->key; 6162 6163 return avc_has_perm(sid, isec->sid, SECCLASS_SHM, 6164 SHM__CREATE, &ad); 6165 } 6166 6167 static int selinux_shm_associate(struct kern_ipc_perm *shp, int shmflg) 6168 { 6169 struct ipc_security_struct *isec; 6170 struct common_audit_data ad; 6171 u32 sid = current_sid(); 6172 6173 isec = selinux_ipc(shp); 6174 6175 ad.type = LSM_AUDIT_DATA_IPC; 6176 ad.u.ipc_id = shp->key; 6177 6178 return avc_has_perm(sid, isec->sid, SECCLASS_SHM, 6179 SHM__ASSOCIATE, &ad); 6180 } 6181 6182 /* Note, at this point, shp is locked down */ 6183 static int selinux_shm_shmctl(struct kern_ipc_perm *shp, int cmd) 6184 { 6185 u32 perms; 6186 6187 switch (cmd) { 6188 case IPC_INFO: 6189 case SHM_INFO: 6190 /* No specific object, just general system-wide information. */ 6191 return avc_has_perm(current_sid(), SECINITSID_KERNEL, 6192 SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL); 6193 case IPC_STAT: 6194 case SHM_STAT: 6195 case SHM_STAT_ANY: 6196 perms = SHM__GETATTR | SHM__ASSOCIATE; 6197 break; 6198 case IPC_SET: 6199 perms = SHM__SETATTR; 6200 break; 6201 case SHM_LOCK: 6202 case SHM_UNLOCK: 6203 perms = SHM__LOCK; 6204 break; 6205 case IPC_RMID: 6206 perms = SHM__DESTROY; 6207 break; 6208 default: 6209 return 0; 6210 } 6211 6212 return ipc_has_perm(shp, perms); 6213 } 6214 6215 static int selinux_shm_shmat(struct kern_ipc_perm *shp, 6216 char __user *shmaddr, int shmflg) 6217 { 6218 u32 perms; 6219 6220 if (shmflg & SHM_RDONLY) 6221 perms = SHM__READ; 6222 else 6223 perms = SHM__READ | SHM__WRITE; 6224 6225 return ipc_has_perm(shp, perms); 6226 } 6227 6228 /* Semaphore security operations */ 6229 static int selinux_sem_alloc_security(struct kern_ipc_perm *sma) 6230 { 6231 struct ipc_security_struct *isec; 6232 struct common_audit_data ad; 6233 u32 sid = current_sid(); 6234 6235 isec = selinux_ipc(sma); 6236 ipc_init_security(isec, SECCLASS_SEM); 6237 6238 ad.type = LSM_AUDIT_DATA_IPC; 6239 ad.u.ipc_id = sma->key; 6240 6241 return avc_has_perm(sid, isec->sid, SECCLASS_SEM, 6242 SEM__CREATE, &ad); 6243 } 6244 6245 static int selinux_sem_associate(struct kern_ipc_perm *sma, int semflg) 6246 { 6247 struct ipc_security_struct *isec; 6248 struct common_audit_data ad; 6249 u32 sid = current_sid(); 6250 6251 isec = selinux_ipc(sma); 6252 6253 ad.type = LSM_AUDIT_DATA_IPC; 6254 ad.u.ipc_id = sma->key; 6255 6256 return avc_has_perm(sid, isec->sid, SECCLASS_SEM, 6257 SEM__ASSOCIATE, &ad); 6258 } 6259 6260 /* Note, at this point, sma is locked down */ 6261 static int selinux_sem_semctl(struct kern_ipc_perm *sma, int cmd) 6262 { 6263 int err; 6264 u32 perms; 6265 6266 switch (cmd) { 6267 case IPC_INFO: 6268 case SEM_INFO: 6269 /* No specific object, just general system-wide information. */ 6270 return avc_has_perm(current_sid(), SECINITSID_KERNEL, 6271 SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL); 6272 case GETPID: 6273 case GETNCNT: 6274 case GETZCNT: 6275 perms = SEM__GETATTR; 6276 break; 6277 case GETVAL: 6278 case GETALL: 6279 perms = SEM__READ; 6280 break; 6281 case SETVAL: 6282 case SETALL: 6283 perms = SEM__WRITE; 6284 break; 6285 case IPC_RMID: 6286 perms = SEM__DESTROY; 6287 break; 6288 case IPC_SET: 6289 perms = SEM__SETATTR; 6290 break; 6291 case IPC_STAT: 6292 case SEM_STAT: 6293 case SEM_STAT_ANY: 6294 perms = SEM__GETATTR | SEM__ASSOCIATE; 6295 break; 6296 default: 6297 return 0; 6298 } 6299 6300 err = ipc_has_perm(sma, perms); 6301 return err; 6302 } 6303 6304 static int selinux_sem_semop(struct kern_ipc_perm *sma, 6305 struct sembuf *sops, unsigned nsops, int alter) 6306 { 6307 u32 perms; 6308 6309 if (alter) 6310 perms = SEM__READ | SEM__WRITE; 6311 else 6312 perms = SEM__READ; 6313 6314 return ipc_has_perm(sma, perms); 6315 } 6316 6317 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag) 6318 { 6319 u32 av = 0; 6320 6321 av = 0; 6322 if (flag & S_IRUGO) 6323 av |= IPC__UNIX_READ; 6324 if (flag & S_IWUGO) 6325 av |= IPC__UNIX_WRITE; 6326 6327 if (av == 0) 6328 return 0; 6329 6330 return ipc_has_perm(ipcp, av); 6331 } 6332 6333 static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid) 6334 { 6335 struct ipc_security_struct *isec = selinux_ipc(ipcp); 6336 *secid = isec->sid; 6337 } 6338 6339 static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode) 6340 { 6341 if (inode) 6342 inode_doinit_with_dentry(inode, dentry); 6343 } 6344 6345 static int selinux_lsm_getattr(unsigned int attr, struct task_struct *p, 6346 char **value) 6347 { 6348 const struct task_security_struct *__tsec; 6349 u32 sid; 6350 int error; 6351 unsigned len; 6352 6353 rcu_read_lock(); 6354 __tsec = selinux_cred(__task_cred(p)); 6355 6356 if (current != p) { 6357 error = avc_has_perm(current_sid(), __tsec->sid, 6358 SECCLASS_PROCESS, PROCESS__GETATTR, NULL); 6359 if (error) 6360 goto bad; 6361 } 6362 6363 switch (attr) { 6364 case LSM_ATTR_CURRENT: 6365 sid = __tsec->sid; 6366 break; 6367 case LSM_ATTR_PREV: 6368 sid = __tsec->osid; 6369 break; 6370 case LSM_ATTR_EXEC: 6371 sid = __tsec->exec_sid; 6372 break; 6373 case LSM_ATTR_FSCREATE: 6374 sid = __tsec->create_sid; 6375 break; 6376 case LSM_ATTR_KEYCREATE: 6377 sid = __tsec->keycreate_sid; 6378 break; 6379 case LSM_ATTR_SOCKCREATE: 6380 sid = __tsec->sockcreate_sid; 6381 break; 6382 default: 6383 error = -EOPNOTSUPP; 6384 goto bad; 6385 } 6386 rcu_read_unlock(); 6387 6388 if (!sid) 6389 return 0; 6390 6391 error = security_sid_to_context(sid, value, &len); 6392 if (error) 6393 return error; 6394 return len; 6395 6396 bad: 6397 rcu_read_unlock(); 6398 return error; 6399 } 6400 6401 static int selinux_lsm_setattr(u64 attr, void *value, size_t size) 6402 { 6403 struct task_security_struct *tsec; 6404 struct cred *new; 6405 u32 mysid = current_sid(), sid = 0, ptsid; 6406 int error; 6407 char *str = value; 6408 6409 /* 6410 * Basic control over ability to set these attributes at all. 6411 */ 6412 switch (attr) { 6413 case LSM_ATTR_EXEC: 6414 error = avc_has_perm(mysid, mysid, SECCLASS_PROCESS, 6415 PROCESS__SETEXEC, NULL); 6416 break; 6417 case LSM_ATTR_FSCREATE: 6418 error = avc_has_perm(mysid, mysid, SECCLASS_PROCESS, 6419 PROCESS__SETFSCREATE, NULL); 6420 break; 6421 case LSM_ATTR_KEYCREATE: 6422 error = avc_has_perm(mysid, mysid, SECCLASS_PROCESS, 6423 PROCESS__SETKEYCREATE, NULL); 6424 break; 6425 case LSM_ATTR_SOCKCREATE: 6426 error = avc_has_perm(mysid, mysid, SECCLASS_PROCESS, 6427 PROCESS__SETSOCKCREATE, NULL); 6428 break; 6429 case LSM_ATTR_CURRENT: 6430 error = avc_has_perm(mysid, mysid, SECCLASS_PROCESS, 6431 PROCESS__SETCURRENT, NULL); 6432 break; 6433 default: 6434 error = -EOPNOTSUPP; 6435 break; 6436 } 6437 if (error) 6438 return error; 6439 6440 /* Obtain a SID for the context, if one was specified. */ 6441 if (size && str[0] && str[0] != '\n') { 6442 if (str[size-1] == '\n') { 6443 str[size-1] = 0; 6444 size--; 6445 } 6446 error = security_context_to_sid(value, size, 6447 &sid, GFP_KERNEL); 6448 if (error == -EINVAL && attr == LSM_ATTR_FSCREATE) { 6449 if (!has_cap_mac_admin(true)) { 6450 struct audit_buffer *ab; 6451 size_t audit_size; 6452 6453 /* We strip a nul only if it is at the end, 6454 * otherwise the context contains a nul and 6455 * we should audit that */ 6456 if (str[size - 1] == '\0') 6457 audit_size = size - 1; 6458 else 6459 audit_size = size; 6460 ab = audit_log_start(audit_context(), 6461 GFP_ATOMIC, 6462 AUDIT_SELINUX_ERR); 6463 if (!ab) 6464 return error; 6465 audit_log_format(ab, "op=fscreate invalid_context="); 6466 audit_log_n_untrustedstring(ab, value, 6467 audit_size); 6468 audit_log_end(ab); 6469 6470 return error; 6471 } 6472 error = security_context_to_sid_force(value, size, 6473 &sid); 6474 } 6475 if (error) 6476 return error; 6477 } 6478 6479 new = prepare_creds(); 6480 if (!new) 6481 return -ENOMEM; 6482 6483 /* Permission checking based on the specified context is 6484 performed during the actual operation (execve, 6485 open/mkdir/...), when we know the full context of the 6486 operation. See selinux_bprm_creds_for_exec for the execve 6487 checks and may_create for the file creation checks. The 6488 operation will then fail if the context is not permitted. */ 6489 tsec = selinux_cred(new); 6490 if (attr == LSM_ATTR_EXEC) { 6491 tsec->exec_sid = sid; 6492 } else if (attr == LSM_ATTR_FSCREATE) { 6493 tsec->create_sid = sid; 6494 } else if (attr == LSM_ATTR_KEYCREATE) { 6495 if (sid) { 6496 error = avc_has_perm(mysid, sid, 6497 SECCLASS_KEY, KEY__CREATE, NULL); 6498 if (error) 6499 goto abort_change; 6500 } 6501 tsec->keycreate_sid = sid; 6502 } else if (attr == LSM_ATTR_SOCKCREATE) { 6503 tsec->sockcreate_sid = sid; 6504 } else if (attr == LSM_ATTR_CURRENT) { 6505 error = -EINVAL; 6506 if (sid == 0) 6507 goto abort_change; 6508 6509 if (!current_is_single_threaded()) { 6510 error = security_bounded_transition(tsec->sid, sid); 6511 if (error) 6512 goto abort_change; 6513 } 6514 6515 /* Check permissions for the transition. */ 6516 error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS, 6517 PROCESS__DYNTRANSITION, NULL); 6518 if (error) 6519 goto abort_change; 6520 6521 /* Check for ptracing, and update the task SID if ok. 6522 Otherwise, leave SID unchanged and fail. */ 6523 ptsid = ptrace_parent_sid(); 6524 if (ptsid != 0) { 6525 error = avc_has_perm(ptsid, sid, SECCLASS_PROCESS, 6526 PROCESS__PTRACE, NULL); 6527 if (error) 6528 goto abort_change; 6529 } 6530 6531 tsec->sid = sid; 6532 } else { 6533 error = -EINVAL; 6534 goto abort_change; 6535 } 6536 6537 commit_creds(new); 6538 return size; 6539 6540 abort_change: 6541 abort_creds(new); 6542 return error; 6543 } 6544 6545 /** 6546 * selinux_getselfattr - Get SELinux current task attributes 6547 * @attr: the requested attribute 6548 * @ctx: buffer to receive the result 6549 * @size: buffer size (input), buffer size used (output) 6550 * @flags: unused 6551 * 6552 * Fill the passed user space @ctx with the details of the requested 6553 * attribute. 6554 * 6555 * Returns the number of attributes on success, an error code otherwise. 6556 * There will only ever be one attribute. 6557 */ 6558 static int selinux_getselfattr(unsigned int attr, struct lsm_ctx __user *ctx, 6559 size_t *size, u32 flags) 6560 { 6561 int rc; 6562 char *val; 6563 int val_len; 6564 6565 val_len = selinux_lsm_getattr(attr, current, &val); 6566 if (val_len < 0) 6567 return val_len; 6568 rc = lsm_fill_user_ctx(ctx, size, val, val_len, LSM_ID_SELINUX, 0); 6569 kfree(val); 6570 return (!rc ? 1 : rc); 6571 } 6572 6573 static int selinux_setselfattr(unsigned int attr, struct lsm_ctx *ctx, 6574 size_t size, u32 flags) 6575 { 6576 int rc; 6577 6578 rc = selinux_lsm_setattr(attr, ctx->ctx, ctx->ctx_len); 6579 if (rc > 0) 6580 return 0; 6581 return rc; 6582 } 6583 6584 static int selinux_getprocattr(struct task_struct *p, 6585 const char *name, char **value) 6586 { 6587 unsigned int attr = lsm_name_to_attr(name); 6588 int rc; 6589 6590 if (attr) { 6591 rc = selinux_lsm_getattr(attr, p, value); 6592 if (rc != -EOPNOTSUPP) 6593 return rc; 6594 } 6595 6596 return -EINVAL; 6597 } 6598 6599 static int selinux_setprocattr(const char *name, void *value, size_t size) 6600 { 6601 int attr = lsm_name_to_attr(name); 6602 6603 if (attr) 6604 return selinux_lsm_setattr(attr, value, size); 6605 return -EINVAL; 6606 } 6607 6608 static int selinux_ismaclabel(const char *name) 6609 { 6610 return (strcmp(name, XATTR_SELINUX_SUFFIX) == 0); 6611 } 6612 6613 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen) 6614 { 6615 return security_sid_to_context(secid, 6616 secdata, seclen); 6617 } 6618 6619 static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid) 6620 { 6621 return security_context_to_sid(secdata, seclen, 6622 secid, GFP_KERNEL); 6623 } 6624 6625 static void selinux_release_secctx(char *secdata, u32 seclen) 6626 { 6627 kfree(secdata); 6628 } 6629 6630 static void selinux_inode_invalidate_secctx(struct inode *inode) 6631 { 6632 struct inode_security_struct *isec = selinux_inode(inode); 6633 6634 spin_lock(&isec->lock); 6635 isec->initialized = LABEL_INVALID; 6636 spin_unlock(&isec->lock); 6637 } 6638 6639 /* 6640 * called with inode->i_mutex locked 6641 */ 6642 static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen) 6643 { 6644 int rc = selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX, 6645 ctx, ctxlen, 0); 6646 /* Do not return error when suppressing label (SBLABEL_MNT not set). */ 6647 return rc == -EOPNOTSUPP ? 0 : rc; 6648 } 6649 6650 /* 6651 * called with inode->i_mutex locked 6652 */ 6653 static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen) 6654 { 6655 return __vfs_setxattr_noperm(&nop_mnt_idmap, dentry, XATTR_NAME_SELINUX, 6656 ctx, ctxlen, 0); 6657 } 6658 6659 static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen) 6660 { 6661 int len = 0; 6662 len = selinux_inode_getsecurity(&nop_mnt_idmap, inode, 6663 XATTR_SELINUX_SUFFIX, ctx, true); 6664 if (len < 0) 6665 return len; 6666 *ctxlen = len; 6667 return 0; 6668 } 6669 #ifdef CONFIG_KEYS 6670 6671 static int selinux_key_alloc(struct key *k, const struct cred *cred, 6672 unsigned long flags) 6673 { 6674 const struct task_security_struct *tsec; 6675 struct key_security_struct *ksec; 6676 6677 ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL); 6678 if (!ksec) 6679 return -ENOMEM; 6680 6681 tsec = selinux_cred(cred); 6682 if (tsec->keycreate_sid) 6683 ksec->sid = tsec->keycreate_sid; 6684 else 6685 ksec->sid = tsec->sid; 6686 6687 k->security = ksec; 6688 return 0; 6689 } 6690 6691 static void selinux_key_free(struct key *k) 6692 { 6693 struct key_security_struct *ksec = k->security; 6694 6695 k->security = NULL; 6696 kfree(ksec); 6697 } 6698 6699 static int selinux_key_permission(key_ref_t key_ref, 6700 const struct cred *cred, 6701 enum key_need_perm need_perm) 6702 { 6703 struct key *key; 6704 struct key_security_struct *ksec; 6705 u32 perm, sid; 6706 6707 switch (need_perm) { 6708 case KEY_NEED_VIEW: 6709 perm = KEY__VIEW; 6710 break; 6711 case KEY_NEED_READ: 6712 perm = KEY__READ; 6713 break; 6714 case KEY_NEED_WRITE: 6715 perm = KEY__WRITE; 6716 break; 6717 case KEY_NEED_SEARCH: 6718 perm = KEY__SEARCH; 6719 break; 6720 case KEY_NEED_LINK: 6721 perm = KEY__LINK; 6722 break; 6723 case KEY_NEED_SETATTR: 6724 perm = KEY__SETATTR; 6725 break; 6726 case KEY_NEED_UNLINK: 6727 case KEY_SYSADMIN_OVERRIDE: 6728 case KEY_AUTHTOKEN_OVERRIDE: 6729 case KEY_DEFER_PERM_CHECK: 6730 return 0; 6731 default: 6732 WARN_ON(1); 6733 return -EPERM; 6734 6735 } 6736 6737 sid = cred_sid(cred); 6738 key = key_ref_to_ptr(key_ref); 6739 ksec = key->security; 6740 6741 return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, perm, NULL); 6742 } 6743 6744 static int selinux_key_getsecurity(struct key *key, char **_buffer) 6745 { 6746 struct key_security_struct *ksec = key->security; 6747 char *context = NULL; 6748 unsigned len; 6749 int rc; 6750 6751 rc = security_sid_to_context(ksec->sid, 6752 &context, &len); 6753 if (!rc) 6754 rc = len; 6755 *_buffer = context; 6756 return rc; 6757 } 6758 6759 #ifdef CONFIG_KEY_NOTIFICATIONS 6760 static int selinux_watch_key(struct key *key) 6761 { 6762 struct key_security_struct *ksec = key->security; 6763 u32 sid = current_sid(); 6764 6765 return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, KEY__VIEW, NULL); 6766 } 6767 #endif 6768 #endif 6769 6770 #ifdef CONFIG_SECURITY_INFINIBAND 6771 static int selinux_ib_pkey_access(void *ib_sec, u64 subnet_prefix, u16 pkey_val) 6772 { 6773 struct common_audit_data ad; 6774 int err; 6775 u32 sid = 0; 6776 struct ib_security_struct *sec = ib_sec; 6777 struct lsm_ibpkey_audit ibpkey; 6778 6779 err = sel_ib_pkey_sid(subnet_prefix, pkey_val, &sid); 6780 if (err) 6781 return err; 6782 6783 ad.type = LSM_AUDIT_DATA_IBPKEY; 6784 ibpkey.subnet_prefix = subnet_prefix; 6785 ibpkey.pkey = pkey_val; 6786 ad.u.ibpkey = &ibpkey; 6787 return avc_has_perm(sec->sid, sid, 6788 SECCLASS_INFINIBAND_PKEY, 6789 INFINIBAND_PKEY__ACCESS, &ad); 6790 } 6791 6792 static int selinux_ib_endport_manage_subnet(void *ib_sec, const char *dev_name, 6793 u8 port_num) 6794 { 6795 struct common_audit_data ad; 6796 int err; 6797 u32 sid = 0; 6798 struct ib_security_struct *sec = ib_sec; 6799 struct lsm_ibendport_audit ibendport; 6800 6801 err = security_ib_endport_sid(dev_name, port_num, 6802 &sid); 6803 6804 if (err) 6805 return err; 6806 6807 ad.type = LSM_AUDIT_DATA_IBENDPORT; 6808 ibendport.dev_name = dev_name; 6809 ibendport.port = port_num; 6810 ad.u.ibendport = &ibendport; 6811 return avc_has_perm(sec->sid, sid, 6812 SECCLASS_INFINIBAND_ENDPORT, 6813 INFINIBAND_ENDPORT__MANAGE_SUBNET, &ad); 6814 } 6815 6816 static int selinux_ib_alloc_security(void **ib_sec) 6817 { 6818 struct ib_security_struct *sec; 6819 6820 sec = kzalloc(sizeof(*sec), GFP_KERNEL); 6821 if (!sec) 6822 return -ENOMEM; 6823 sec->sid = current_sid(); 6824 6825 *ib_sec = sec; 6826 return 0; 6827 } 6828 6829 static void selinux_ib_free_security(void *ib_sec) 6830 { 6831 kfree(ib_sec); 6832 } 6833 #endif 6834 6835 #ifdef CONFIG_BPF_SYSCALL 6836 static int selinux_bpf(int cmd, union bpf_attr *attr, 6837 unsigned int size) 6838 { 6839 u32 sid = current_sid(); 6840 int ret; 6841 6842 switch (cmd) { 6843 case BPF_MAP_CREATE: 6844 ret = avc_has_perm(sid, sid, SECCLASS_BPF, BPF__MAP_CREATE, 6845 NULL); 6846 break; 6847 case BPF_PROG_LOAD: 6848 ret = avc_has_perm(sid, sid, SECCLASS_BPF, BPF__PROG_LOAD, 6849 NULL); 6850 break; 6851 default: 6852 ret = 0; 6853 break; 6854 } 6855 6856 return ret; 6857 } 6858 6859 static u32 bpf_map_fmode_to_av(fmode_t fmode) 6860 { 6861 u32 av = 0; 6862 6863 if (fmode & FMODE_READ) 6864 av |= BPF__MAP_READ; 6865 if (fmode & FMODE_WRITE) 6866 av |= BPF__MAP_WRITE; 6867 return av; 6868 } 6869 6870 /* This function will check the file pass through unix socket or binder to see 6871 * if it is a bpf related object. And apply corresponding checks on the bpf 6872 * object based on the type. The bpf maps and programs, not like other files and 6873 * socket, are using a shared anonymous inode inside the kernel as their inode. 6874 * So checking that inode cannot identify if the process have privilege to 6875 * access the bpf object and that's why we have to add this additional check in 6876 * selinux_file_receive and selinux_binder_transfer_files. 6877 */ 6878 static int bpf_fd_pass(const struct file *file, u32 sid) 6879 { 6880 struct bpf_security_struct *bpfsec; 6881 struct bpf_prog *prog; 6882 struct bpf_map *map; 6883 int ret; 6884 6885 if (file->f_op == &bpf_map_fops) { 6886 map = file->private_data; 6887 bpfsec = map->security; 6888 ret = avc_has_perm(sid, bpfsec->sid, SECCLASS_BPF, 6889 bpf_map_fmode_to_av(file->f_mode), NULL); 6890 if (ret) 6891 return ret; 6892 } else if (file->f_op == &bpf_prog_fops) { 6893 prog = file->private_data; 6894 bpfsec = prog->aux->security; 6895 ret = avc_has_perm(sid, bpfsec->sid, SECCLASS_BPF, 6896 BPF__PROG_RUN, NULL); 6897 if (ret) 6898 return ret; 6899 } 6900 return 0; 6901 } 6902 6903 static int selinux_bpf_map(struct bpf_map *map, fmode_t fmode) 6904 { 6905 u32 sid = current_sid(); 6906 struct bpf_security_struct *bpfsec; 6907 6908 bpfsec = map->security; 6909 return avc_has_perm(sid, bpfsec->sid, SECCLASS_BPF, 6910 bpf_map_fmode_to_av(fmode), NULL); 6911 } 6912 6913 static int selinux_bpf_prog(struct bpf_prog *prog) 6914 { 6915 u32 sid = current_sid(); 6916 struct bpf_security_struct *bpfsec; 6917 6918 bpfsec = prog->aux->security; 6919 return avc_has_perm(sid, bpfsec->sid, SECCLASS_BPF, 6920 BPF__PROG_RUN, NULL); 6921 } 6922 6923 static int selinux_bpf_map_alloc(struct bpf_map *map) 6924 { 6925 struct bpf_security_struct *bpfsec; 6926 6927 bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL); 6928 if (!bpfsec) 6929 return -ENOMEM; 6930 6931 bpfsec->sid = current_sid(); 6932 map->security = bpfsec; 6933 6934 return 0; 6935 } 6936 6937 static void selinux_bpf_map_free(struct bpf_map *map) 6938 { 6939 struct bpf_security_struct *bpfsec = map->security; 6940 6941 map->security = NULL; 6942 kfree(bpfsec); 6943 } 6944 6945 static int selinux_bpf_prog_alloc(struct bpf_prog_aux *aux) 6946 { 6947 struct bpf_security_struct *bpfsec; 6948 6949 bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL); 6950 if (!bpfsec) 6951 return -ENOMEM; 6952 6953 bpfsec->sid = current_sid(); 6954 aux->security = bpfsec; 6955 6956 return 0; 6957 } 6958 6959 static void selinux_bpf_prog_free(struct bpf_prog_aux *aux) 6960 { 6961 struct bpf_security_struct *bpfsec = aux->security; 6962 6963 aux->security = NULL; 6964 kfree(bpfsec); 6965 } 6966 #endif 6967 6968 struct lsm_blob_sizes selinux_blob_sizes __ro_after_init = { 6969 .lbs_cred = sizeof(struct task_security_struct), 6970 .lbs_file = sizeof(struct file_security_struct), 6971 .lbs_inode = sizeof(struct inode_security_struct), 6972 .lbs_ipc = sizeof(struct ipc_security_struct), 6973 .lbs_msg_msg = sizeof(struct msg_security_struct), 6974 .lbs_superblock = sizeof(struct superblock_security_struct), 6975 .lbs_xattr_count = SELINUX_INODE_INIT_XATTRS, 6976 }; 6977 6978 #ifdef CONFIG_PERF_EVENTS 6979 static int selinux_perf_event_open(struct perf_event_attr *attr, int type) 6980 { 6981 u32 requested, sid = current_sid(); 6982 6983 if (type == PERF_SECURITY_OPEN) 6984 requested = PERF_EVENT__OPEN; 6985 else if (type == PERF_SECURITY_CPU) 6986 requested = PERF_EVENT__CPU; 6987 else if (type == PERF_SECURITY_KERNEL) 6988 requested = PERF_EVENT__KERNEL; 6989 else if (type == PERF_SECURITY_TRACEPOINT) 6990 requested = PERF_EVENT__TRACEPOINT; 6991 else 6992 return -EINVAL; 6993 6994 return avc_has_perm(sid, sid, SECCLASS_PERF_EVENT, 6995 requested, NULL); 6996 } 6997 6998 static int selinux_perf_event_alloc(struct perf_event *event) 6999 { 7000 struct perf_event_security_struct *perfsec; 7001 7002 perfsec = kzalloc(sizeof(*perfsec), GFP_KERNEL); 7003 if (!perfsec) 7004 return -ENOMEM; 7005 7006 perfsec->sid = current_sid(); 7007 event->security = perfsec; 7008 7009 return 0; 7010 } 7011 7012 static void selinux_perf_event_free(struct perf_event *event) 7013 { 7014 struct perf_event_security_struct *perfsec = event->security; 7015 7016 event->security = NULL; 7017 kfree(perfsec); 7018 } 7019 7020 static int selinux_perf_event_read(struct perf_event *event) 7021 { 7022 struct perf_event_security_struct *perfsec = event->security; 7023 u32 sid = current_sid(); 7024 7025 return avc_has_perm(sid, perfsec->sid, 7026 SECCLASS_PERF_EVENT, PERF_EVENT__READ, NULL); 7027 } 7028 7029 static int selinux_perf_event_write(struct perf_event *event) 7030 { 7031 struct perf_event_security_struct *perfsec = event->security; 7032 u32 sid = current_sid(); 7033 7034 return avc_has_perm(sid, perfsec->sid, 7035 SECCLASS_PERF_EVENT, PERF_EVENT__WRITE, NULL); 7036 } 7037 #endif 7038 7039 #ifdef CONFIG_IO_URING 7040 /** 7041 * selinux_uring_override_creds - check the requested cred override 7042 * @new: the target creds 7043 * 7044 * Check to see if the current task is allowed to override it's credentials 7045 * to service an io_uring operation. 7046 */ 7047 static int selinux_uring_override_creds(const struct cred *new) 7048 { 7049 return avc_has_perm(current_sid(), cred_sid(new), 7050 SECCLASS_IO_URING, IO_URING__OVERRIDE_CREDS, NULL); 7051 } 7052 7053 /** 7054 * selinux_uring_sqpoll - check if a io_uring polling thread can be created 7055 * 7056 * Check to see if the current task is allowed to create a new io_uring 7057 * kernel polling thread. 7058 */ 7059 static int selinux_uring_sqpoll(void) 7060 { 7061 u32 sid = current_sid(); 7062 7063 return avc_has_perm(sid, sid, 7064 SECCLASS_IO_URING, IO_URING__SQPOLL, NULL); 7065 } 7066 7067 /** 7068 * selinux_uring_cmd - check if IORING_OP_URING_CMD is allowed 7069 * @ioucmd: the io_uring command structure 7070 * 7071 * Check to see if the current domain is allowed to execute an 7072 * IORING_OP_URING_CMD against the device/file specified in @ioucmd. 7073 * 7074 */ 7075 static int selinux_uring_cmd(struct io_uring_cmd *ioucmd) 7076 { 7077 struct file *file = ioucmd->file; 7078 struct inode *inode = file_inode(file); 7079 struct inode_security_struct *isec = selinux_inode(inode); 7080 struct common_audit_data ad; 7081 7082 ad.type = LSM_AUDIT_DATA_FILE; 7083 ad.u.file = file; 7084 7085 return avc_has_perm(current_sid(), isec->sid, 7086 SECCLASS_IO_URING, IO_URING__CMD, &ad); 7087 } 7088 #endif /* CONFIG_IO_URING */ 7089 7090 static const struct lsm_id selinux_lsmid = { 7091 .name = "selinux", 7092 .id = LSM_ID_SELINUX, 7093 }; 7094 7095 /* 7096 * IMPORTANT NOTE: When adding new hooks, please be careful to keep this order: 7097 * 1. any hooks that don't belong to (2.) or (3.) below, 7098 * 2. hooks that both access structures allocated by other hooks, and allocate 7099 * structures that can be later accessed by other hooks (mostly "cloning" 7100 * hooks), 7101 * 3. hooks that only allocate structures that can be later accessed by other 7102 * hooks ("allocating" hooks). 7103 * 7104 * Please follow block comment delimiters in the list to keep this order. 7105 */ 7106 static struct security_hook_list selinux_hooks[] __ro_after_init = { 7107 LSM_HOOK_INIT(binder_set_context_mgr, selinux_binder_set_context_mgr), 7108 LSM_HOOK_INIT(binder_transaction, selinux_binder_transaction), 7109 LSM_HOOK_INIT(binder_transfer_binder, selinux_binder_transfer_binder), 7110 LSM_HOOK_INIT(binder_transfer_file, selinux_binder_transfer_file), 7111 7112 LSM_HOOK_INIT(ptrace_access_check, selinux_ptrace_access_check), 7113 LSM_HOOK_INIT(ptrace_traceme, selinux_ptrace_traceme), 7114 LSM_HOOK_INIT(capget, selinux_capget), 7115 LSM_HOOK_INIT(capset, selinux_capset), 7116 LSM_HOOK_INIT(capable, selinux_capable), 7117 LSM_HOOK_INIT(quotactl, selinux_quotactl), 7118 LSM_HOOK_INIT(quota_on, selinux_quota_on), 7119 LSM_HOOK_INIT(syslog, selinux_syslog), 7120 LSM_HOOK_INIT(vm_enough_memory, selinux_vm_enough_memory), 7121 7122 LSM_HOOK_INIT(netlink_send, selinux_netlink_send), 7123 7124 LSM_HOOK_INIT(bprm_creds_for_exec, selinux_bprm_creds_for_exec), 7125 LSM_HOOK_INIT(bprm_committing_creds, selinux_bprm_committing_creds), 7126 LSM_HOOK_INIT(bprm_committed_creds, selinux_bprm_committed_creds), 7127 7128 LSM_HOOK_INIT(sb_free_mnt_opts, selinux_free_mnt_opts), 7129 LSM_HOOK_INIT(sb_mnt_opts_compat, selinux_sb_mnt_opts_compat), 7130 LSM_HOOK_INIT(sb_remount, selinux_sb_remount), 7131 LSM_HOOK_INIT(sb_kern_mount, selinux_sb_kern_mount), 7132 LSM_HOOK_INIT(sb_show_options, selinux_sb_show_options), 7133 LSM_HOOK_INIT(sb_statfs, selinux_sb_statfs), 7134 LSM_HOOK_INIT(sb_mount, selinux_mount), 7135 LSM_HOOK_INIT(sb_umount, selinux_umount), 7136 LSM_HOOK_INIT(sb_set_mnt_opts, selinux_set_mnt_opts), 7137 LSM_HOOK_INIT(sb_clone_mnt_opts, selinux_sb_clone_mnt_opts), 7138 7139 LSM_HOOK_INIT(move_mount, selinux_move_mount), 7140 7141 LSM_HOOK_INIT(dentry_init_security, selinux_dentry_init_security), 7142 LSM_HOOK_INIT(dentry_create_files_as, selinux_dentry_create_files_as), 7143 7144 LSM_HOOK_INIT(inode_free_security, selinux_inode_free_security), 7145 LSM_HOOK_INIT(inode_init_security, selinux_inode_init_security), 7146 LSM_HOOK_INIT(inode_init_security_anon, selinux_inode_init_security_anon), 7147 LSM_HOOK_INIT(inode_create, selinux_inode_create), 7148 LSM_HOOK_INIT(inode_link, selinux_inode_link), 7149 LSM_HOOK_INIT(inode_unlink, selinux_inode_unlink), 7150 LSM_HOOK_INIT(inode_symlink, selinux_inode_symlink), 7151 LSM_HOOK_INIT(inode_mkdir, selinux_inode_mkdir), 7152 LSM_HOOK_INIT(inode_rmdir, selinux_inode_rmdir), 7153 LSM_HOOK_INIT(inode_mknod, selinux_inode_mknod), 7154 LSM_HOOK_INIT(inode_rename, selinux_inode_rename), 7155 LSM_HOOK_INIT(inode_readlink, selinux_inode_readlink), 7156 LSM_HOOK_INIT(inode_follow_link, selinux_inode_follow_link), 7157 LSM_HOOK_INIT(inode_permission, selinux_inode_permission), 7158 LSM_HOOK_INIT(inode_setattr, selinux_inode_setattr), 7159 LSM_HOOK_INIT(inode_getattr, selinux_inode_getattr), 7160 LSM_HOOK_INIT(inode_setxattr, selinux_inode_setxattr), 7161 LSM_HOOK_INIT(inode_post_setxattr, selinux_inode_post_setxattr), 7162 LSM_HOOK_INIT(inode_getxattr, selinux_inode_getxattr), 7163 LSM_HOOK_INIT(inode_listxattr, selinux_inode_listxattr), 7164 LSM_HOOK_INIT(inode_removexattr, selinux_inode_removexattr), 7165 LSM_HOOK_INIT(inode_set_acl, selinux_inode_set_acl), 7166 LSM_HOOK_INIT(inode_get_acl, selinux_inode_get_acl), 7167 LSM_HOOK_INIT(inode_remove_acl, selinux_inode_remove_acl), 7168 LSM_HOOK_INIT(inode_getsecurity, selinux_inode_getsecurity), 7169 LSM_HOOK_INIT(inode_setsecurity, selinux_inode_setsecurity), 7170 LSM_HOOK_INIT(inode_listsecurity, selinux_inode_listsecurity), 7171 LSM_HOOK_INIT(inode_getsecid, selinux_inode_getsecid), 7172 LSM_HOOK_INIT(inode_copy_up, selinux_inode_copy_up), 7173 LSM_HOOK_INIT(inode_copy_up_xattr, selinux_inode_copy_up_xattr), 7174 LSM_HOOK_INIT(path_notify, selinux_path_notify), 7175 7176 LSM_HOOK_INIT(kernfs_init_security, selinux_kernfs_init_security), 7177 7178 LSM_HOOK_INIT(file_permission, selinux_file_permission), 7179 LSM_HOOK_INIT(file_alloc_security, selinux_file_alloc_security), 7180 LSM_HOOK_INIT(file_ioctl, selinux_file_ioctl), 7181 LSM_HOOK_INIT(file_ioctl_compat, selinux_file_ioctl_compat), 7182 LSM_HOOK_INIT(mmap_file, selinux_mmap_file), 7183 LSM_HOOK_INIT(mmap_addr, selinux_mmap_addr), 7184 LSM_HOOK_INIT(file_mprotect, selinux_file_mprotect), 7185 LSM_HOOK_INIT(file_lock, selinux_file_lock), 7186 LSM_HOOK_INIT(file_fcntl, selinux_file_fcntl), 7187 LSM_HOOK_INIT(file_set_fowner, selinux_file_set_fowner), 7188 LSM_HOOK_INIT(file_send_sigiotask, selinux_file_send_sigiotask), 7189 LSM_HOOK_INIT(file_receive, selinux_file_receive), 7190 7191 LSM_HOOK_INIT(file_open, selinux_file_open), 7192 7193 LSM_HOOK_INIT(task_alloc, selinux_task_alloc), 7194 LSM_HOOK_INIT(cred_prepare, selinux_cred_prepare), 7195 LSM_HOOK_INIT(cred_transfer, selinux_cred_transfer), 7196 LSM_HOOK_INIT(cred_getsecid, selinux_cred_getsecid), 7197 LSM_HOOK_INIT(kernel_act_as, selinux_kernel_act_as), 7198 LSM_HOOK_INIT(kernel_create_files_as, selinux_kernel_create_files_as), 7199 LSM_HOOK_INIT(kernel_module_request, selinux_kernel_module_request), 7200 LSM_HOOK_INIT(kernel_load_data, selinux_kernel_load_data), 7201 LSM_HOOK_INIT(kernel_read_file, selinux_kernel_read_file), 7202 LSM_HOOK_INIT(task_setpgid, selinux_task_setpgid), 7203 LSM_HOOK_INIT(task_getpgid, selinux_task_getpgid), 7204 LSM_HOOK_INIT(task_getsid, selinux_task_getsid), 7205 LSM_HOOK_INIT(current_getsecid_subj, selinux_current_getsecid_subj), 7206 LSM_HOOK_INIT(task_getsecid_obj, selinux_task_getsecid_obj), 7207 LSM_HOOK_INIT(task_setnice, selinux_task_setnice), 7208 LSM_HOOK_INIT(task_setioprio, selinux_task_setioprio), 7209 LSM_HOOK_INIT(task_getioprio, selinux_task_getioprio), 7210 LSM_HOOK_INIT(task_prlimit, selinux_task_prlimit), 7211 LSM_HOOK_INIT(task_setrlimit, selinux_task_setrlimit), 7212 LSM_HOOK_INIT(task_setscheduler, selinux_task_setscheduler), 7213 LSM_HOOK_INIT(task_getscheduler, selinux_task_getscheduler), 7214 LSM_HOOK_INIT(task_movememory, selinux_task_movememory), 7215 LSM_HOOK_INIT(task_kill, selinux_task_kill), 7216 LSM_HOOK_INIT(task_to_inode, selinux_task_to_inode), 7217 LSM_HOOK_INIT(userns_create, selinux_userns_create), 7218 7219 LSM_HOOK_INIT(ipc_permission, selinux_ipc_permission), 7220 LSM_HOOK_INIT(ipc_getsecid, selinux_ipc_getsecid), 7221 7222 LSM_HOOK_INIT(msg_queue_associate, selinux_msg_queue_associate), 7223 LSM_HOOK_INIT(msg_queue_msgctl, selinux_msg_queue_msgctl), 7224 LSM_HOOK_INIT(msg_queue_msgsnd, selinux_msg_queue_msgsnd), 7225 LSM_HOOK_INIT(msg_queue_msgrcv, selinux_msg_queue_msgrcv), 7226 7227 LSM_HOOK_INIT(shm_associate, selinux_shm_associate), 7228 LSM_HOOK_INIT(shm_shmctl, selinux_shm_shmctl), 7229 LSM_HOOK_INIT(shm_shmat, selinux_shm_shmat), 7230 7231 LSM_HOOK_INIT(sem_associate, selinux_sem_associate), 7232 LSM_HOOK_INIT(sem_semctl, selinux_sem_semctl), 7233 LSM_HOOK_INIT(sem_semop, selinux_sem_semop), 7234 7235 LSM_HOOK_INIT(d_instantiate, selinux_d_instantiate), 7236 7237 LSM_HOOK_INIT(getselfattr, selinux_getselfattr), 7238 LSM_HOOK_INIT(setselfattr, selinux_setselfattr), 7239 LSM_HOOK_INIT(getprocattr, selinux_getprocattr), 7240 LSM_HOOK_INIT(setprocattr, selinux_setprocattr), 7241 7242 LSM_HOOK_INIT(ismaclabel, selinux_ismaclabel), 7243 LSM_HOOK_INIT(secctx_to_secid, selinux_secctx_to_secid), 7244 LSM_HOOK_INIT(release_secctx, selinux_release_secctx), 7245 LSM_HOOK_INIT(inode_invalidate_secctx, selinux_inode_invalidate_secctx), 7246 LSM_HOOK_INIT(inode_notifysecctx, selinux_inode_notifysecctx), 7247 LSM_HOOK_INIT(inode_setsecctx, selinux_inode_setsecctx), 7248 7249 LSM_HOOK_INIT(unix_stream_connect, selinux_socket_unix_stream_connect), 7250 LSM_HOOK_INIT(unix_may_send, selinux_socket_unix_may_send), 7251 7252 LSM_HOOK_INIT(socket_create, selinux_socket_create), 7253 LSM_HOOK_INIT(socket_post_create, selinux_socket_post_create), 7254 LSM_HOOK_INIT(socket_socketpair, selinux_socket_socketpair), 7255 LSM_HOOK_INIT(socket_bind, selinux_socket_bind), 7256 LSM_HOOK_INIT(socket_connect, selinux_socket_connect), 7257 LSM_HOOK_INIT(socket_listen, selinux_socket_listen), 7258 LSM_HOOK_INIT(socket_accept, selinux_socket_accept), 7259 LSM_HOOK_INIT(socket_sendmsg, selinux_socket_sendmsg), 7260 LSM_HOOK_INIT(socket_recvmsg, selinux_socket_recvmsg), 7261 LSM_HOOK_INIT(socket_getsockname, selinux_socket_getsockname), 7262 LSM_HOOK_INIT(socket_getpeername, selinux_socket_getpeername), 7263 LSM_HOOK_INIT(socket_getsockopt, selinux_socket_getsockopt), 7264 LSM_HOOK_INIT(socket_setsockopt, selinux_socket_setsockopt), 7265 LSM_HOOK_INIT(socket_shutdown, selinux_socket_shutdown), 7266 LSM_HOOK_INIT(socket_sock_rcv_skb, selinux_socket_sock_rcv_skb), 7267 LSM_HOOK_INIT(socket_getpeersec_stream, 7268 selinux_socket_getpeersec_stream), 7269 LSM_HOOK_INIT(socket_getpeersec_dgram, selinux_socket_getpeersec_dgram), 7270 LSM_HOOK_INIT(sk_free_security, selinux_sk_free_security), 7271 LSM_HOOK_INIT(sk_clone_security, selinux_sk_clone_security), 7272 LSM_HOOK_INIT(sk_getsecid, selinux_sk_getsecid), 7273 LSM_HOOK_INIT(sock_graft, selinux_sock_graft), 7274 LSM_HOOK_INIT(sctp_assoc_request, selinux_sctp_assoc_request), 7275 LSM_HOOK_INIT(sctp_sk_clone, selinux_sctp_sk_clone), 7276 LSM_HOOK_INIT(sctp_bind_connect, selinux_sctp_bind_connect), 7277 LSM_HOOK_INIT(sctp_assoc_established, selinux_sctp_assoc_established), 7278 LSM_HOOK_INIT(mptcp_add_subflow, selinux_mptcp_add_subflow), 7279 LSM_HOOK_INIT(inet_conn_request, selinux_inet_conn_request), 7280 LSM_HOOK_INIT(inet_csk_clone, selinux_inet_csk_clone), 7281 LSM_HOOK_INIT(inet_conn_established, selinux_inet_conn_established), 7282 LSM_HOOK_INIT(secmark_relabel_packet, selinux_secmark_relabel_packet), 7283 LSM_HOOK_INIT(secmark_refcount_inc, selinux_secmark_refcount_inc), 7284 LSM_HOOK_INIT(secmark_refcount_dec, selinux_secmark_refcount_dec), 7285 LSM_HOOK_INIT(req_classify_flow, selinux_req_classify_flow), 7286 LSM_HOOK_INIT(tun_dev_free_security, selinux_tun_dev_free_security), 7287 LSM_HOOK_INIT(tun_dev_create, selinux_tun_dev_create), 7288 LSM_HOOK_INIT(tun_dev_attach_queue, selinux_tun_dev_attach_queue), 7289 LSM_HOOK_INIT(tun_dev_attach, selinux_tun_dev_attach), 7290 LSM_HOOK_INIT(tun_dev_open, selinux_tun_dev_open), 7291 #ifdef CONFIG_SECURITY_INFINIBAND 7292 LSM_HOOK_INIT(ib_pkey_access, selinux_ib_pkey_access), 7293 LSM_HOOK_INIT(ib_endport_manage_subnet, 7294 selinux_ib_endport_manage_subnet), 7295 LSM_HOOK_INIT(ib_free_security, selinux_ib_free_security), 7296 #endif 7297 #ifdef CONFIG_SECURITY_NETWORK_XFRM 7298 LSM_HOOK_INIT(xfrm_policy_free_security, selinux_xfrm_policy_free), 7299 LSM_HOOK_INIT(xfrm_policy_delete_security, selinux_xfrm_policy_delete), 7300 LSM_HOOK_INIT(xfrm_state_free_security, selinux_xfrm_state_free), 7301 LSM_HOOK_INIT(xfrm_state_delete_security, selinux_xfrm_state_delete), 7302 LSM_HOOK_INIT(xfrm_policy_lookup, selinux_xfrm_policy_lookup), 7303 LSM_HOOK_INIT(xfrm_state_pol_flow_match, 7304 selinux_xfrm_state_pol_flow_match), 7305 LSM_HOOK_INIT(xfrm_decode_session, selinux_xfrm_decode_session), 7306 #endif 7307 7308 #ifdef CONFIG_KEYS 7309 LSM_HOOK_INIT(key_free, selinux_key_free), 7310 LSM_HOOK_INIT(key_permission, selinux_key_permission), 7311 LSM_HOOK_INIT(key_getsecurity, selinux_key_getsecurity), 7312 #ifdef CONFIG_KEY_NOTIFICATIONS 7313 LSM_HOOK_INIT(watch_key, selinux_watch_key), 7314 #endif 7315 #endif 7316 7317 #ifdef CONFIG_AUDIT 7318 LSM_HOOK_INIT(audit_rule_known, selinux_audit_rule_known), 7319 LSM_HOOK_INIT(audit_rule_match, selinux_audit_rule_match), 7320 LSM_HOOK_INIT(audit_rule_free, selinux_audit_rule_free), 7321 #endif 7322 7323 #ifdef CONFIG_BPF_SYSCALL 7324 LSM_HOOK_INIT(bpf, selinux_bpf), 7325 LSM_HOOK_INIT(bpf_map, selinux_bpf_map), 7326 LSM_HOOK_INIT(bpf_prog, selinux_bpf_prog), 7327 LSM_HOOK_INIT(bpf_map_free_security, selinux_bpf_map_free), 7328 LSM_HOOK_INIT(bpf_prog_free_security, selinux_bpf_prog_free), 7329 #endif 7330 7331 #ifdef CONFIG_PERF_EVENTS 7332 LSM_HOOK_INIT(perf_event_open, selinux_perf_event_open), 7333 LSM_HOOK_INIT(perf_event_free, selinux_perf_event_free), 7334 LSM_HOOK_INIT(perf_event_read, selinux_perf_event_read), 7335 LSM_HOOK_INIT(perf_event_write, selinux_perf_event_write), 7336 #endif 7337 7338 #ifdef CONFIG_IO_URING 7339 LSM_HOOK_INIT(uring_override_creds, selinux_uring_override_creds), 7340 LSM_HOOK_INIT(uring_sqpoll, selinux_uring_sqpoll), 7341 LSM_HOOK_INIT(uring_cmd, selinux_uring_cmd), 7342 #endif 7343 7344 /* 7345 * PUT "CLONING" (ACCESSING + ALLOCATING) HOOKS HERE 7346 */ 7347 LSM_HOOK_INIT(fs_context_submount, selinux_fs_context_submount), 7348 LSM_HOOK_INIT(fs_context_dup, selinux_fs_context_dup), 7349 LSM_HOOK_INIT(fs_context_parse_param, selinux_fs_context_parse_param), 7350 LSM_HOOK_INIT(sb_eat_lsm_opts, selinux_sb_eat_lsm_opts), 7351 #ifdef CONFIG_SECURITY_NETWORK_XFRM 7352 LSM_HOOK_INIT(xfrm_policy_clone_security, selinux_xfrm_policy_clone), 7353 #endif 7354 7355 /* 7356 * PUT "ALLOCATING" HOOKS HERE 7357 */ 7358 LSM_HOOK_INIT(msg_msg_alloc_security, selinux_msg_msg_alloc_security), 7359 LSM_HOOK_INIT(msg_queue_alloc_security, 7360 selinux_msg_queue_alloc_security), 7361 LSM_HOOK_INIT(shm_alloc_security, selinux_shm_alloc_security), 7362 LSM_HOOK_INIT(sb_alloc_security, selinux_sb_alloc_security), 7363 LSM_HOOK_INIT(inode_alloc_security, selinux_inode_alloc_security), 7364 LSM_HOOK_INIT(sem_alloc_security, selinux_sem_alloc_security), 7365 LSM_HOOK_INIT(secid_to_secctx, selinux_secid_to_secctx), 7366 LSM_HOOK_INIT(inode_getsecctx, selinux_inode_getsecctx), 7367 LSM_HOOK_INIT(sk_alloc_security, selinux_sk_alloc_security), 7368 LSM_HOOK_INIT(tun_dev_alloc_security, selinux_tun_dev_alloc_security), 7369 #ifdef CONFIG_SECURITY_INFINIBAND 7370 LSM_HOOK_INIT(ib_alloc_security, selinux_ib_alloc_security), 7371 #endif 7372 #ifdef CONFIG_SECURITY_NETWORK_XFRM 7373 LSM_HOOK_INIT(xfrm_policy_alloc_security, selinux_xfrm_policy_alloc), 7374 LSM_HOOK_INIT(xfrm_state_alloc, selinux_xfrm_state_alloc), 7375 LSM_HOOK_INIT(xfrm_state_alloc_acquire, 7376 selinux_xfrm_state_alloc_acquire), 7377 #endif 7378 #ifdef CONFIG_KEYS 7379 LSM_HOOK_INIT(key_alloc, selinux_key_alloc), 7380 #endif 7381 #ifdef CONFIG_AUDIT 7382 LSM_HOOK_INIT(audit_rule_init, selinux_audit_rule_init), 7383 #endif 7384 #ifdef CONFIG_BPF_SYSCALL 7385 LSM_HOOK_INIT(bpf_map_alloc_security, selinux_bpf_map_alloc), 7386 LSM_HOOK_INIT(bpf_prog_alloc_security, selinux_bpf_prog_alloc), 7387 #endif 7388 #ifdef CONFIG_PERF_EVENTS 7389 LSM_HOOK_INIT(perf_event_alloc, selinux_perf_event_alloc), 7390 #endif 7391 }; 7392 7393 static __init int selinux_init(void) 7394 { 7395 pr_info("SELinux: Initializing.\n"); 7396 7397 memset(&selinux_state, 0, sizeof(selinux_state)); 7398 enforcing_set(selinux_enforcing_boot); 7399 selinux_avc_init(); 7400 mutex_init(&selinux_state.status_lock); 7401 mutex_init(&selinux_state.policy_mutex); 7402 7403 /* Set the security state for the initial task. */ 7404 cred_init_security(); 7405 7406 default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC); 7407 if (!default_noexec) 7408 pr_notice("SELinux: virtual memory is executable by default\n"); 7409 7410 avc_init(); 7411 7412 avtab_cache_init(); 7413 7414 ebitmap_cache_init(); 7415 7416 hashtab_cache_init(); 7417 7418 security_add_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks), 7419 &selinux_lsmid); 7420 7421 if (avc_add_callback(selinux_netcache_avc_callback, AVC_CALLBACK_RESET)) 7422 panic("SELinux: Unable to register AVC netcache callback\n"); 7423 7424 if (avc_add_callback(selinux_lsm_notifier_avc_callback, AVC_CALLBACK_RESET)) 7425 panic("SELinux: Unable to register AVC LSM notifier callback\n"); 7426 7427 if (selinux_enforcing_boot) 7428 pr_debug("SELinux: Starting in enforcing mode\n"); 7429 else 7430 pr_debug("SELinux: Starting in permissive mode\n"); 7431 7432 fs_validate_description("selinux", selinux_fs_parameters); 7433 7434 return 0; 7435 } 7436 7437 static void delayed_superblock_init(struct super_block *sb, void *unused) 7438 { 7439 selinux_set_mnt_opts(sb, NULL, 0, NULL); 7440 } 7441 7442 void selinux_complete_init(void) 7443 { 7444 pr_debug("SELinux: Completing initialization.\n"); 7445 7446 /* Set up any superblocks initialized prior to the policy load. */ 7447 pr_debug("SELinux: Setting up existing superblocks.\n"); 7448 iterate_supers(delayed_superblock_init, NULL); 7449 } 7450 7451 /* SELinux requires early initialization in order to label 7452 all processes and objects when they are created. */ 7453 DEFINE_LSM(selinux) = { 7454 .name = "selinux", 7455 .flags = LSM_FLAG_LEGACY_MAJOR | LSM_FLAG_EXCLUSIVE, 7456 .enabled = &selinux_enabled_boot, 7457 .blobs = &selinux_blob_sizes, 7458 .init = selinux_init, 7459 }; 7460 7461 #if defined(CONFIG_NETFILTER) 7462 static const struct nf_hook_ops selinux_nf_ops[] = { 7463 { 7464 .hook = selinux_ip_postroute, 7465 .pf = NFPROTO_IPV4, 7466 .hooknum = NF_INET_POST_ROUTING, 7467 .priority = NF_IP_PRI_SELINUX_LAST, 7468 }, 7469 { 7470 .hook = selinux_ip_forward, 7471 .pf = NFPROTO_IPV4, 7472 .hooknum = NF_INET_FORWARD, 7473 .priority = NF_IP_PRI_SELINUX_FIRST, 7474 }, 7475 { 7476 .hook = selinux_ip_output, 7477 .pf = NFPROTO_IPV4, 7478 .hooknum = NF_INET_LOCAL_OUT, 7479 .priority = NF_IP_PRI_SELINUX_FIRST, 7480 }, 7481 #if IS_ENABLED(CONFIG_IPV6) 7482 { 7483 .hook = selinux_ip_postroute, 7484 .pf = NFPROTO_IPV6, 7485 .hooknum = NF_INET_POST_ROUTING, 7486 .priority = NF_IP6_PRI_SELINUX_LAST, 7487 }, 7488 { 7489 .hook = selinux_ip_forward, 7490 .pf = NFPROTO_IPV6, 7491 .hooknum = NF_INET_FORWARD, 7492 .priority = NF_IP6_PRI_SELINUX_FIRST, 7493 }, 7494 { 7495 .hook = selinux_ip_output, 7496 .pf = NFPROTO_IPV6, 7497 .hooknum = NF_INET_LOCAL_OUT, 7498 .priority = NF_IP6_PRI_SELINUX_FIRST, 7499 }, 7500 #endif /* IPV6 */ 7501 }; 7502 7503 static int __net_init selinux_nf_register(struct net *net) 7504 { 7505 return nf_register_net_hooks(net, selinux_nf_ops, 7506 ARRAY_SIZE(selinux_nf_ops)); 7507 } 7508 7509 static void __net_exit selinux_nf_unregister(struct net *net) 7510 { 7511 nf_unregister_net_hooks(net, selinux_nf_ops, 7512 ARRAY_SIZE(selinux_nf_ops)); 7513 } 7514 7515 static struct pernet_operations selinux_net_ops = { 7516 .init = selinux_nf_register, 7517 .exit = selinux_nf_unregister, 7518 }; 7519 7520 static int __init selinux_nf_ip_init(void) 7521 { 7522 int err; 7523 7524 if (!selinux_enabled_boot) 7525 return 0; 7526 7527 pr_debug("SELinux: Registering netfilter hooks\n"); 7528 7529 err = register_pernet_subsys(&selinux_net_ops); 7530 if (err) 7531 panic("SELinux: register_pernet_subsys: error %d\n", err); 7532 7533 return 0; 7534 } 7535 __initcall(selinux_nf_ip_init); 7536 #endif /* CONFIG_NETFILTER */ 7537