xref: /linux/security/selinux/hooks.c (revision 2c373e75155bcc9c81060cdc07ee1b59e113bd2b)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Security-Enhanced Linux (SELinux) security module
4  *
5  *  This file contains the SELinux hook function implementations.
6  *
7  *  Authors:  Stephen Smalley, <stephen.smalley.work@gmail.com>
8  *	      Chris Vance, <cvance@nai.com>
9  *	      Wayne Salamon, <wsalamon@nai.com>
10  *	      James Morris <jmorris@redhat.com>
11  *
12  *  Copyright (C) 2001,2002 Networks Associates Technology, Inc.
13  *  Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
14  *					   Eric Paris <eparis@redhat.com>
15  *  Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
16  *			    <dgoeddel@trustedcs.com>
17  *  Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P.
18  *	Paul Moore <paul@paul-moore.com>
19  *  Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
20  *		       Yuichi Nakamura <ynakam@hitachisoft.jp>
21  *  Copyright (C) 2016 Mellanox Technologies
22  */
23 
24 #include <linux/init.h>
25 #include <linux/kd.h>
26 #include <linux/kernel.h>
27 #include <linux/kernel_read_file.h>
28 #include <linux/errno.h>
29 #include <linux/sched/signal.h>
30 #include <linux/sched/task.h>
31 #include <linux/lsm_hooks.h>
32 #include <linux/xattr.h>
33 #include <linux/capability.h>
34 #include <linux/unistd.h>
35 #include <linux/mm.h>
36 #include <linux/mman.h>
37 #include <linux/slab.h>
38 #include <linux/pagemap.h>
39 #include <linux/proc_fs.h>
40 #include <linux/swap.h>
41 #include <linux/spinlock.h>
42 #include <linux/syscalls.h>
43 #include <linux/dcache.h>
44 #include <linux/file.h>
45 #include <linux/fdtable.h>
46 #include <linux/namei.h>
47 #include <linux/mount.h>
48 #include <linux/fs_context.h>
49 #include <linux/fs_parser.h>
50 #include <linux/netfilter_ipv4.h>
51 #include <linux/netfilter_ipv6.h>
52 #include <linux/tty.h>
53 #include <net/icmp.h>
54 #include <net/ip.h>		/* for local_port_range[] */
55 #include <net/tcp.h>		/* struct or_callable used in sock_rcv_skb */
56 #include <net/inet_connection_sock.h>
57 #include <net/net_namespace.h>
58 #include <net/netlabel.h>
59 #include <linux/uaccess.h>
60 #include <asm/ioctls.h>
61 #include <linux/atomic.h>
62 #include <linux/bitops.h>
63 #include <linux/interrupt.h>
64 #include <linux/netdevice.h>	/* for network interface checks */
65 #include <net/netlink.h>
66 #include <linux/tcp.h>
67 #include <linux/udp.h>
68 #include <linux/dccp.h>
69 #include <linux/sctp.h>
70 #include <net/sctp/structs.h>
71 #include <linux/quota.h>
72 #include <linux/un.h>		/* for Unix socket types */
73 #include <net/af_unix.h>	/* for Unix socket types */
74 #include <linux/parser.h>
75 #include <linux/nfs_mount.h>
76 #include <net/ipv6.h>
77 #include <linux/hugetlb.h>
78 #include <linux/personality.h>
79 #include <linux/audit.h>
80 #include <linux/string.h>
81 #include <linux/mutex.h>
82 #include <linux/posix-timers.h>
83 #include <linux/syslog.h>
84 #include <linux/user_namespace.h>
85 #include <linux/export.h>
86 #include <linux/msg.h>
87 #include <linux/shm.h>
88 #include <uapi/linux/shm.h>
89 #include <linux/bpf.h>
90 #include <linux/kernfs.h>
91 #include <linux/stringhash.h>	/* for hashlen_string() */
92 #include <uapi/linux/mount.h>
93 #include <linux/fsnotify.h>
94 #include <linux/fanotify.h>
95 #include <linux/io_uring/cmd.h>
96 #include <uapi/linux/lsm.h>
97 
98 #include "avc.h"
99 #include "objsec.h"
100 #include "netif.h"
101 #include "netnode.h"
102 #include "netport.h"
103 #include "ibpkey.h"
104 #include "xfrm.h"
105 #include "netlabel.h"
106 #include "audit.h"
107 #include "avc_ss.h"
108 
109 #define SELINUX_INODE_INIT_XATTRS 1
110 
111 struct selinux_state selinux_state;
112 
113 /* SECMARK reference count */
114 static atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
115 
116 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP
117 static int selinux_enforcing_boot __initdata;
118 
119 static int __init enforcing_setup(char *str)
120 {
121 	unsigned long enforcing;
122 	if (!kstrtoul(str, 0, &enforcing))
123 		selinux_enforcing_boot = enforcing ? 1 : 0;
124 	return 1;
125 }
126 __setup("enforcing=", enforcing_setup);
127 #else
128 #define selinux_enforcing_boot 1
129 #endif
130 
131 int selinux_enabled_boot __initdata = 1;
132 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
133 static int __init selinux_enabled_setup(char *str)
134 {
135 	unsigned long enabled;
136 	if (!kstrtoul(str, 0, &enabled))
137 		selinux_enabled_boot = enabled ? 1 : 0;
138 	return 1;
139 }
140 __setup("selinux=", selinux_enabled_setup);
141 #endif
142 
143 static int __init checkreqprot_setup(char *str)
144 {
145 	unsigned long checkreqprot;
146 
147 	if (!kstrtoul(str, 0, &checkreqprot)) {
148 		if (checkreqprot)
149 			pr_err("SELinux: checkreqprot set to 1 via kernel parameter.  This is no longer supported.\n");
150 	}
151 	return 1;
152 }
153 __setup("checkreqprot=", checkreqprot_setup);
154 
155 /**
156  * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
157  *
158  * Description:
159  * This function checks the SECMARK reference counter to see if any SECMARK
160  * targets are currently configured, if the reference counter is greater than
161  * zero SECMARK is considered to be enabled.  Returns true (1) if SECMARK is
162  * enabled, false (0) if SECMARK is disabled.  If the always_check_network
163  * policy capability is enabled, SECMARK is always considered enabled.
164  *
165  */
166 static int selinux_secmark_enabled(void)
167 {
168 	return (selinux_policycap_alwaysnetwork() ||
169 		atomic_read(&selinux_secmark_refcount));
170 }
171 
172 /**
173  * selinux_peerlbl_enabled - Check to see if peer labeling is currently enabled
174  *
175  * Description:
176  * This function checks if NetLabel or labeled IPSEC is enabled.  Returns true
177  * (1) if any are enabled or false (0) if neither are enabled.  If the
178  * always_check_network policy capability is enabled, peer labeling
179  * is always considered enabled.
180  *
181  */
182 static int selinux_peerlbl_enabled(void)
183 {
184 	return (selinux_policycap_alwaysnetwork() ||
185 		netlbl_enabled() || selinux_xfrm_enabled());
186 }
187 
188 static int selinux_netcache_avc_callback(u32 event)
189 {
190 	if (event == AVC_CALLBACK_RESET) {
191 		sel_netif_flush();
192 		sel_netnode_flush();
193 		sel_netport_flush();
194 		synchronize_net();
195 	}
196 	return 0;
197 }
198 
199 static int selinux_lsm_notifier_avc_callback(u32 event)
200 {
201 	if (event == AVC_CALLBACK_RESET) {
202 		sel_ib_pkey_flush();
203 		call_blocking_lsm_notifier(LSM_POLICY_CHANGE, NULL);
204 	}
205 
206 	return 0;
207 }
208 
209 /*
210  * initialise the security for the init task
211  */
212 static void cred_init_security(void)
213 {
214 	struct task_security_struct *tsec;
215 
216 	tsec = selinux_cred(unrcu_pointer(current->real_cred));
217 	tsec->osid = tsec->sid = SECINITSID_KERNEL;
218 }
219 
220 /*
221  * get the security ID of a set of credentials
222  */
223 static inline u32 cred_sid(const struct cred *cred)
224 {
225 	const struct task_security_struct *tsec;
226 
227 	tsec = selinux_cred(cred);
228 	return tsec->sid;
229 }
230 
231 static void __ad_net_init(struct common_audit_data *ad,
232 			  struct lsm_network_audit *net,
233 			  int ifindex, struct sock *sk, u16 family)
234 {
235 	ad->type = LSM_AUDIT_DATA_NET;
236 	ad->u.net = net;
237 	net->netif = ifindex;
238 	net->sk = sk;
239 	net->family = family;
240 }
241 
242 static void ad_net_init_from_sk(struct common_audit_data *ad,
243 				struct lsm_network_audit *net,
244 				struct sock *sk)
245 {
246 	__ad_net_init(ad, net, 0, sk, 0);
247 }
248 
249 static void ad_net_init_from_iif(struct common_audit_data *ad,
250 				 struct lsm_network_audit *net,
251 				 int ifindex, u16 family)
252 {
253 	__ad_net_init(ad, net, ifindex, NULL, family);
254 }
255 
256 /*
257  * get the objective security ID of a task
258  */
259 static inline u32 task_sid_obj(const struct task_struct *task)
260 {
261 	u32 sid;
262 
263 	rcu_read_lock();
264 	sid = cred_sid(__task_cred(task));
265 	rcu_read_unlock();
266 	return sid;
267 }
268 
269 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
270 
271 /*
272  * Try reloading inode security labels that have been marked as invalid.  The
273  * @may_sleep parameter indicates when sleeping and thus reloading labels is
274  * allowed; when set to false, returns -ECHILD when the label is
275  * invalid.  The @dentry parameter should be set to a dentry of the inode.
276  */
277 static int __inode_security_revalidate(struct inode *inode,
278 				       struct dentry *dentry,
279 				       bool may_sleep)
280 {
281 	struct inode_security_struct *isec = selinux_inode(inode);
282 
283 	might_sleep_if(may_sleep);
284 
285 	if (selinux_initialized() &&
286 	    isec->initialized != LABEL_INITIALIZED) {
287 		if (!may_sleep)
288 			return -ECHILD;
289 
290 		/*
291 		 * Try reloading the inode security label.  This will fail if
292 		 * @opt_dentry is NULL and no dentry for this inode can be
293 		 * found; in that case, continue using the old label.
294 		 */
295 		inode_doinit_with_dentry(inode, dentry);
296 	}
297 	return 0;
298 }
299 
300 static struct inode_security_struct *inode_security_novalidate(struct inode *inode)
301 {
302 	return selinux_inode(inode);
303 }
304 
305 static struct inode_security_struct *inode_security_rcu(struct inode *inode, bool rcu)
306 {
307 	int error;
308 
309 	error = __inode_security_revalidate(inode, NULL, !rcu);
310 	if (error)
311 		return ERR_PTR(error);
312 	return selinux_inode(inode);
313 }
314 
315 /*
316  * Get the security label of an inode.
317  */
318 static struct inode_security_struct *inode_security(struct inode *inode)
319 {
320 	__inode_security_revalidate(inode, NULL, true);
321 	return selinux_inode(inode);
322 }
323 
324 static struct inode_security_struct *backing_inode_security_novalidate(struct dentry *dentry)
325 {
326 	struct inode *inode = d_backing_inode(dentry);
327 
328 	return selinux_inode(inode);
329 }
330 
331 /*
332  * Get the security label of a dentry's backing inode.
333  */
334 static struct inode_security_struct *backing_inode_security(struct dentry *dentry)
335 {
336 	struct inode *inode = d_backing_inode(dentry);
337 
338 	__inode_security_revalidate(inode, dentry, true);
339 	return selinux_inode(inode);
340 }
341 
342 static void inode_free_security(struct inode *inode)
343 {
344 	struct inode_security_struct *isec = selinux_inode(inode);
345 	struct superblock_security_struct *sbsec;
346 
347 	if (!isec)
348 		return;
349 	sbsec = selinux_superblock(inode->i_sb);
350 	/*
351 	 * As not all inode security structures are in a list, we check for
352 	 * empty list outside of the lock to make sure that we won't waste
353 	 * time taking a lock doing nothing.
354 	 *
355 	 * The list_del_init() function can be safely called more than once.
356 	 * It should not be possible for this function to be called with
357 	 * concurrent list_add(), but for better safety against future changes
358 	 * in the code, we use list_empty_careful() here.
359 	 */
360 	if (!list_empty_careful(&isec->list)) {
361 		spin_lock(&sbsec->isec_lock);
362 		list_del_init(&isec->list);
363 		spin_unlock(&sbsec->isec_lock);
364 	}
365 }
366 
367 struct selinux_mnt_opts {
368 	u32 fscontext_sid;
369 	u32 context_sid;
370 	u32 rootcontext_sid;
371 	u32 defcontext_sid;
372 };
373 
374 static void selinux_free_mnt_opts(void *mnt_opts)
375 {
376 	kfree(mnt_opts);
377 }
378 
379 enum {
380 	Opt_error = -1,
381 	Opt_context = 0,
382 	Opt_defcontext = 1,
383 	Opt_fscontext = 2,
384 	Opt_rootcontext = 3,
385 	Opt_seclabel = 4,
386 };
387 
388 #define A(s, has_arg) {#s, sizeof(#s) - 1, Opt_##s, has_arg}
389 static const struct {
390 	const char *name;
391 	int len;
392 	int opt;
393 	bool has_arg;
394 } tokens[] = {
395 	A(context, true),
396 	A(fscontext, true),
397 	A(defcontext, true),
398 	A(rootcontext, true),
399 	A(seclabel, false),
400 };
401 #undef A
402 
403 static int match_opt_prefix(char *s, int l, char **arg)
404 {
405 	int i;
406 
407 	for (i = 0; i < ARRAY_SIZE(tokens); i++) {
408 		size_t len = tokens[i].len;
409 		if (len > l || memcmp(s, tokens[i].name, len))
410 			continue;
411 		if (tokens[i].has_arg) {
412 			if (len == l || s[len] != '=')
413 				continue;
414 			*arg = s + len + 1;
415 		} else if (len != l)
416 			continue;
417 		return tokens[i].opt;
418 	}
419 	return Opt_error;
420 }
421 
422 #define SEL_MOUNT_FAIL_MSG "SELinux:  duplicate or incompatible mount options\n"
423 
424 static int may_context_mount_sb_relabel(u32 sid,
425 			struct superblock_security_struct *sbsec,
426 			const struct cred *cred)
427 {
428 	const struct task_security_struct *tsec = selinux_cred(cred);
429 	int rc;
430 
431 	rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
432 			  FILESYSTEM__RELABELFROM, NULL);
433 	if (rc)
434 		return rc;
435 
436 	rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
437 			  FILESYSTEM__RELABELTO, NULL);
438 	return rc;
439 }
440 
441 static int may_context_mount_inode_relabel(u32 sid,
442 			struct superblock_security_struct *sbsec,
443 			const struct cred *cred)
444 {
445 	const struct task_security_struct *tsec = selinux_cred(cred);
446 	int rc;
447 	rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
448 			  FILESYSTEM__RELABELFROM, NULL);
449 	if (rc)
450 		return rc;
451 
452 	rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
453 			  FILESYSTEM__ASSOCIATE, NULL);
454 	return rc;
455 }
456 
457 static int selinux_is_genfs_special_handling(struct super_block *sb)
458 {
459 	/* Special handling. Genfs but also in-core setxattr handler */
460 	return	!strcmp(sb->s_type->name, "sysfs") ||
461 		!strcmp(sb->s_type->name, "pstore") ||
462 		!strcmp(sb->s_type->name, "debugfs") ||
463 		!strcmp(sb->s_type->name, "tracefs") ||
464 		!strcmp(sb->s_type->name, "rootfs") ||
465 		(selinux_policycap_cgroupseclabel() &&
466 		 (!strcmp(sb->s_type->name, "cgroup") ||
467 		  !strcmp(sb->s_type->name, "cgroup2")));
468 }
469 
470 static int selinux_is_sblabel_mnt(struct super_block *sb)
471 {
472 	struct superblock_security_struct *sbsec = selinux_superblock(sb);
473 
474 	/*
475 	 * IMPORTANT: Double-check logic in this function when adding a new
476 	 * SECURITY_FS_USE_* definition!
477 	 */
478 	BUILD_BUG_ON(SECURITY_FS_USE_MAX != 7);
479 
480 	switch (sbsec->behavior) {
481 	case SECURITY_FS_USE_XATTR:
482 	case SECURITY_FS_USE_TRANS:
483 	case SECURITY_FS_USE_TASK:
484 	case SECURITY_FS_USE_NATIVE:
485 		return 1;
486 
487 	case SECURITY_FS_USE_GENFS:
488 		return selinux_is_genfs_special_handling(sb);
489 
490 	/* Never allow relabeling on context mounts */
491 	case SECURITY_FS_USE_MNTPOINT:
492 	case SECURITY_FS_USE_NONE:
493 	default:
494 		return 0;
495 	}
496 }
497 
498 static int sb_check_xattr_support(struct super_block *sb)
499 {
500 	struct superblock_security_struct *sbsec = selinux_superblock(sb);
501 	struct dentry *root = sb->s_root;
502 	struct inode *root_inode = d_backing_inode(root);
503 	u32 sid;
504 	int rc;
505 
506 	/*
507 	 * Make sure that the xattr handler exists and that no
508 	 * error other than -ENODATA is returned by getxattr on
509 	 * the root directory.  -ENODATA is ok, as this may be
510 	 * the first boot of the SELinux kernel before we have
511 	 * assigned xattr values to the filesystem.
512 	 */
513 	if (!(root_inode->i_opflags & IOP_XATTR)) {
514 		pr_warn("SELinux: (dev %s, type %s) has no xattr support\n",
515 			sb->s_id, sb->s_type->name);
516 		goto fallback;
517 	}
518 
519 	rc = __vfs_getxattr(root, root_inode, XATTR_NAME_SELINUX, NULL, 0);
520 	if (rc < 0 && rc != -ENODATA) {
521 		if (rc == -EOPNOTSUPP) {
522 			pr_warn("SELinux: (dev %s, type %s) has no security xattr handler\n",
523 				sb->s_id, sb->s_type->name);
524 			goto fallback;
525 		} else {
526 			pr_warn("SELinux: (dev %s, type %s) getxattr errno %d\n",
527 				sb->s_id, sb->s_type->name, -rc);
528 			return rc;
529 		}
530 	}
531 	return 0;
532 
533 fallback:
534 	/* No xattr support - try to fallback to genfs if possible. */
535 	rc = security_genfs_sid(sb->s_type->name, "/",
536 				SECCLASS_DIR, &sid);
537 	if (rc)
538 		return -EOPNOTSUPP;
539 
540 	pr_warn("SELinux: (dev %s, type %s) falling back to genfs\n",
541 		sb->s_id, sb->s_type->name);
542 	sbsec->behavior = SECURITY_FS_USE_GENFS;
543 	sbsec->sid = sid;
544 	return 0;
545 }
546 
547 static int sb_finish_set_opts(struct super_block *sb)
548 {
549 	struct superblock_security_struct *sbsec = selinux_superblock(sb);
550 	struct dentry *root = sb->s_root;
551 	struct inode *root_inode = d_backing_inode(root);
552 	int rc = 0;
553 
554 	if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
555 		rc = sb_check_xattr_support(sb);
556 		if (rc)
557 			return rc;
558 	}
559 
560 	sbsec->flags |= SE_SBINITIALIZED;
561 
562 	/*
563 	 * Explicitly set or clear SBLABEL_MNT.  It's not sufficient to simply
564 	 * leave the flag untouched because sb_clone_mnt_opts might be handing
565 	 * us a superblock that needs the flag to be cleared.
566 	 */
567 	if (selinux_is_sblabel_mnt(sb))
568 		sbsec->flags |= SBLABEL_MNT;
569 	else
570 		sbsec->flags &= ~SBLABEL_MNT;
571 
572 	/* Initialize the root inode. */
573 	rc = inode_doinit_with_dentry(root_inode, root);
574 
575 	/* Initialize any other inodes associated with the superblock, e.g.
576 	   inodes created prior to initial policy load or inodes created
577 	   during get_sb by a pseudo filesystem that directly
578 	   populates itself. */
579 	spin_lock(&sbsec->isec_lock);
580 	while (!list_empty(&sbsec->isec_head)) {
581 		struct inode_security_struct *isec =
582 				list_first_entry(&sbsec->isec_head,
583 					   struct inode_security_struct, list);
584 		struct inode *inode = isec->inode;
585 		list_del_init(&isec->list);
586 		spin_unlock(&sbsec->isec_lock);
587 		inode = igrab(inode);
588 		if (inode) {
589 			if (!IS_PRIVATE(inode))
590 				inode_doinit_with_dentry(inode, NULL);
591 			iput(inode);
592 		}
593 		spin_lock(&sbsec->isec_lock);
594 	}
595 	spin_unlock(&sbsec->isec_lock);
596 	return rc;
597 }
598 
599 static int bad_option(struct superblock_security_struct *sbsec, char flag,
600 		      u32 old_sid, u32 new_sid)
601 {
602 	char mnt_flags = sbsec->flags & SE_MNTMASK;
603 
604 	/* check if the old mount command had the same options */
605 	if (sbsec->flags & SE_SBINITIALIZED)
606 		if (!(sbsec->flags & flag) ||
607 		    (old_sid != new_sid))
608 			return 1;
609 
610 	/* check if we were passed the same options twice,
611 	 * aka someone passed context=a,context=b
612 	 */
613 	if (!(sbsec->flags & SE_SBINITIALIZED))
614 		if (mnt_flags & flag)
615 			return 1;
616 	return 0;
617 }
618 
619 /*
620  * Allow filesystems with binary mount data to explicitly set mount point
621  * labeling information.
622  */
623 static int selinux_set_mnt_opts(struct super_block *sb,
624 				void *mnt_opts,
625 				unsigned long kern_flags,
626 				unsigned long *set_kern_flags)
627 {
628 	const struct cred *cred = current_cred();
629 	struct superblock_security_struct *sbsec = selinux_superblock(sb);
630 	struct dentry *root = sb->s_root;
631 	struct selinux_mnt_opts *opts = mnt_opts;
632 	struct inode_security_struct *root_isec;
633 	u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
634 	u32 defcontext_sid = 0;
635 	int rc = 0;
636 
637 	/*
638 	 * Specifying internal flags without providing a place to
639 	 * place the results is not allowed
640 	 */
641 	if (kern_flags && !set_kern_flags)
642 		return -EINVAL;
643 
644 	mutex_lock(&sbsec->lock);
645 
646 	if (!selinux_initialized()) {
647 		if (!opts) {
648 			/* Defer initialization until selinux_complete_init,
649 			   after the initial policy is loaded and the security
650 			   server is ready to handle calls. */
651 			if (kern_flags & SECURITY_LSM_NATIVE_LABELS) {
652 				sbsec->flags |= SE_SBNATIVE;
653 				*set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
654 			}
655 			goto out;
656 		}
657 		rc = -EINVAL;
658 		pr_warn("SELinux: Unable to set superblock options "
659 			"before the security server is initialized\n");
660 		goto out;
661 	}
662 
663 	/*
664 	 * Binary mount data FS will come through this function twice.  Once
665 	 * from an explicit call and once from the generic calls from the vfs.
666 	 * Since the generic VFS calls will not contain any security mount data
667 	 * we need to skip the double mount verification.
668 	 *
669 	 * This does open a hole in which we will not notice if the first
670 	 * mount using this sb set explicit options and a second mount using
671 	 * this sb does not set any security options.  (The first options
672 	 * will be used for both mounts)
673 	 */
674 	if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
675 	    && !opts)
676 		goto out;
677 
678 	root_isec = backing_inode_security_novalidate(root);
679 
680 	/*
681 	 * parse the mount options, check if they are valid sids.
682 	 * also check if someone is trying to mount the same sb more
683 	 * than once with different security options.
684 	 */
685 	if (opts) {
686 		if (opts->fscontext_sid) {
687 			fscontext_sid = opts->fscontext_sid;
688 			if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
689 					fscontext_sid))
690 				goto out_double_mount;
691 			sbsec->flags |= FSCONTEXT_MNT;
692 		}
693 		if (opts->context_sid) {
694 			context_sid = opts->context_sid;
695 			if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
696 					context_sid))
697 				goto out_double_mount;
698 			sbsec->flags |= CONTEXT_MNT;
699 		}
700 		if (opts->rootcontext_sid) {
701 			rootcontext_sid = opts->rootcontext_sid;
702 			if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
703 					rootcontext_sid))
704 				goto out_double_mount;
705 			sbsec->flags |= ROOTCONTEXT_MNT;
706 		}
707 		if (opts->defcontext_sid) {
708 			defcontext_sid = opts->defcontext_sid;
709 			if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
710 					defcontext_sid))
711 				goto out_double_mount;
712 			sbsec->flags |= DEFCONTEXT_MNT;
713 		}
714 	}
715 
716 	if (sbsec->flags & SE_SBINITIALIZED) {
717 		/* previously mounted with options, but not on this attempt? */
718 		if ((sbsec->flags & SE_MNTMASK) && !opts)
719 			goto out_double_mount;
720 		rc = 0;
721 		goto out;
722 	}
723 
724 	if (strcmp(sb->s_type->name, "proc") == 0)
725 		sbsec->flags |= SE_SBPROC | SE_SBGENFS;
726 
727 	if (!strcmp(sb->s_type->name, "debugfs") ||
728 	    !strcmp(sb->s_type->name, "tracefs") ||
729 	    !strcmp(sb->s_type->name, "binder") ||
730 	    !strcmp(sb->s_type->name, "bpf") ||
731 	    !strcmp(sb->s_type->name, "pstore") ||
732 	    !strcmp(sb->s_type->name, "securityfs"))
733 		sbsec->flags |= SE_SBGENFS;
734 
735 	if (!strcmp(sb->s_type->name, "sysfs") ||
736 	    !strcmp(sb->s_type->name, "cgroup") ||
737 	    !strcmp(sb->s_type->name, "cgroup2"))
738 		sbsec->flags |= SE_SBGENFS | SE_SBGENFS_XATTR;
739 
740 	if (!sbsec->behavior) {
741 		/*
742 		 * Determine the labeling behavior to use for this
743 		 * filesystem type.
744 		 */
745 		rc = security_fs_use(sb);
746 		if (rc) {
747 			pr_warn("%s: security_fs_use(%s) returned %d\n",
748 					__func__, sb->s_type->name, rc);
749 			goto out;
750 		}
751 	}
752 
753 	/*
754 	 * If this is a user namespace mount and the filesystem type is not
755 	 * explicitly whitelisted, then no contexts are allowed on the command
756 	 * line and security labels must be ignored.
757 	 */
758 	if (sb->s_user_ns != &init_user_ns &&
759 	    strcmp(sb->s_type->name, "tmpfs") &&
760 	    strcmp(sb->s_type->name, "ramfs") &&
761 	    strcmp(sb->s_type->name, "devpts") &&
762 	    strcmp(sb->s_type->name, "overlay")) {
763 		if (context_sid || fscontext_sid || rootcontext_sid ||
764 		    defcontext_sid) {
765 			rc = -EACCES;
766 			goto out;
767 		}
768 		if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
769 			sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
770 			rc = security_transition_sid(current_sid(),
771 						     current_sid(),
772 						     SECCLASS_FILE, NULL,
773 						     &sbsec->mntpoint_sid);
774 			if (rc)
775 				goto out;
776 		}
777 		goto out_set_opts;
778 	}
779 
780 	/* sets the context of the superblock for the fs being mounted. */
781 	if (fscontext_sid) {
782 		rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
783 		if (rc)
784 			goto out;
785 
786 		sbsec->sid = fscontext_sid;
787 	}
788 
789 	/*
790 	 * Switch to using mount point labeling behavior.
791 	 * sets the label used on all file below the mountpoint, and will set
792 	 * the superblock context if not already set.
793 	 */
794 	if (sbsec->flags & SE_SBNATIVE) {
795 		/*
796 		 * This means we are initializing a superblock that has been
797 		 * mounted before the SELinux was initialized and the
798 		 * filesystem requested native labeling. We had already
799 		 * returned SECURITY_LSM_NATIVE_LABELS in *set_kern_flags
800 		 * in the original mount attempt, so now we just need to set
801 		 * the SECURITY_FS_USE_NATIVE behavior.
802 		 */
803 		sbsec->behavior = SECURITY_FS_USE_NATIVE;
804 	} else if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !context_sid) {
805 		sbsec->behavior = SECURITY_FS_USE_NATIVE;
806 		*set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
807 	}
808 
809 	if (context_sid) {
810 		if (!fscontext_sid) {
811 			rc = may_context_mount_sb_relabel(context_sid, sbsec,
812 							  cred);
813 			if (rc)
814 				goto out;
815 			sbsec->sid = context_sid;
816 		} else {
817 			rc = may_context_mount_inode_relabel(context_sid, sbsec,
818 							     cred);
819 			if (rc)
820 				goto out;
821 		}
822 		if (!rootcontext_sid)
823 			rootcontext_sid = context_sid;
824 
825 		sbsec->mntpoint_sid = context_sid;
826 		sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
827 	}
828 
829 	if (rootcontext_sid) {
830 		rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
831 						     cred);
832 		if (rc)
833 			goto out;
834 
835 		root_isec->sid = rootcontext_sid;
836 		root_isec->initialized = LABEL_INITIALIZED;
837 	}
838 
839 	if (defcontext_sid) {
840 		if (sbsec->behavior != SECURITY_FS_USE_XATTR &&
841 			sbsec->behavior != SECURITY_FS_USE_NATIVE) {
842 			rc = -EINVAL;
843 			pr_warn("SELinux: defcontext option is "
844 			       "invalid for this filesystem type\n");
845 			goto out;
846 		}
847 
848 		if (defcontext_sid != sbsec->def_sid) {
849 			rc = may_context_mount_inode_relabel(defcontext_sid,
850 							     sbsec, cred);
851 			if (rc)
852 				goto out;
853 		}
854 
855 		sbsec->def_sid = defcontext_sid;
856 	}
857 
858 out_set_opts:
859 	rc = sb_finish_set_opts(sb);
860 out:
861 	mutex_unlock(&sbsec->lock);
862 	return rc;
863 out_double_mount:
864 	rc = -EINVAL;
865 	pr_warn("SELinux: mount invalid.  Same superblock, different "
866 	       "security settings for (dev %s, type %s)\n", sb->s_id,
867 	       sb->s_type->name);
868 	goto out;
869 }
870 
871 static int selinux_cmp_sb_context(const struct super_block *oldsb,
872 				    const struct super_block *newsb)
873 {
874 	struct superblock_security_struct *old = selinux_superblock(oldsb);
875 	struct superblock_security_struct *new = selinux_superblock(newsb);
876 	char oldflags = old->flags & SE_MNTMASK;
877 	char newflags = new->flags & SE_MNTMASK;
878 
879 	if (oldflags != newflags)
880 		goto mismatch;
881 	if ((oldflags & FSCONTEXT_MNT) && old->sid != new->sid)
882 		goto mismatch;
883 	if ((oldflags & CONTEXT_MNT) && old->mntpoint_sid != new->mntpoint_sid)
884 		goto mismatch;
885 	if ((oldflags & DEFCONTEXT_MNT) && old->def_sid != new->def_sid)
886 		goto mismatch;
887 	if (oldflags & ROOTCONTEXT_MNT) {
888 		struct inode_security_struct *oldroot = backing_inode_security(oldsb->s_root);
889 		struct inode_security_struct *newroot = backing_inode_security(newsb->s_root);
890 		if (oldroot->sid != newroot->sid)
891 			goto mismatch;
892 	}
893 	return 0;
894 mismatch:
895 	pr_warn("SELinux: mount invalid.  Same superblock, "
896 			    "different security settings for (dev %s, "
897 			    "type %s)\n", newsb->s_id, newsb->s_type->name);
898 	return -EBUSY;
899 }
900 
901 static int selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
902 					struct super_block *newsb,
903 					unsigned long kern_flags,
904 					unsigned long *set_kern_flags)
905 {
906 	int rc = 0;
907 	const struct superblock_security_struct *oldsbsec =
908 						selinux_superblock(oldsb);
909 	struct superblock_security_struct *newsbsec = selinux_superblock(newsb);
910 
911 	int set_fscontext =	(oldsbsec->flags & FSCONTEXT_MNT);
912 	int set_context =	(oldsbsec->flags & CONTEXT_MNT);
913 	int set_rootcontext =	(oldsbsec->flags & ROOTCONTEXT_MNT);
914 
915 	/*
916 	 * Specifying internal flags without providing a place to
917 	 * place the results is not allowed.
918 	 */
919 	if (kern_flags && !set_kern_flags)
920 		return -EINVAL;
921 
922 	mutex_lock(&newsbsec->lock);
923 
924 	/*
925 	 * if the parent was able to be mounted it clearly had no special lsm
926 	 * mount options.  thus we can safely deal with this superblock later
927 	 */
928 	if (!selinux_initialized()) {
929 		if (kern_flags & SECURITY_LSM_NATIVE_LABELS) {
930 			newsbsec->flags |= SE_SBNATIVE;
931 			*set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
932 		}
933 		goto out;
934 	}
935 
936 	/* how can we clone if the old one wasn't set up?? */
937 	BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
938 
939 	/* if fs is reusing a sb, make sure that the contexts match */
940 	if (newsbsec->flags & SE_SBINITIALIZED) {
941 		mutex_unlock(&newsbsec->lock);
942 		if ((kern_flags & SECURITY_LSM_NATIVE_LABELS) && !set_context)
943 			*set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
944 		return selinux_cmp_sb_context(oldsb, newsb);
945 	}
946 
947 	newsbsec->flags = oldsbsec->flags;
948 
949 	newsbsec->sid = oldsbsec->sid;
950 	newsbsec->def_sid = oldsbsec->def_sid;
951 	newsbsec->behavior = oldsbsec->behavior;
952 
953 	if (newsbsec->behavior == SECURITY_FS_USE_NATIVE &&
954 		!(kern_flags & SECURITY_LSM_NATIVE_LABELS) && !set_context) {
955 		rc = security_fs_use(newsb);
956 		if (rc)
957 			goto out;
958 	}
959 
960 	if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !set_context) {
961 		newsbsec->behavior = SECURITY_FS_USE_NATIVE;
962 		*set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
963 	}
964 
965 	if (set_context) {
966 		u32 sid = oldsbsec->mntpoint_sid;
967 
968 		if (!set_fscontext)
969 			newsbsec->sid = sid;
970 		if (!set_rootcontext) {
971 			struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
972 			newisec->sid = sid;
973 		}
974 		newsbsec->mntpoint_sid = sid;
975 	}
976 	if (set_rootcontext) {
977 		const struct inode_security_struct *oldisec = backing_inode_security(oldsb->s_root);
978 		struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
979 
980 		newisec->sid = oldisec->sid;
981 	}
982 
983 	sb_finish_set_opts(newsb);
984 out:
985 	mutex_unlock(&newsbsec->lock);
986 	return rc;
987 }
988 
989 /*
990  * NOTE: the caller is responsible for freeing the memory even if on error.
991  */
992 static int selinux_add_opt(int token, const char *s, void **mnt_opts)
993 {
994 	struct selinux_mnt_opts *opts = *mnt_opts;
995 	u32 *dst_sid;
996 	int rc;
997 
998 	if (token == Opt_seclabel)
999 		/* eaten and completely ignored */
1000 		return 0;
1001 	if (!s)
1002 		return -EINVAL;
1003 
1004 	if (!selinux_initialized()) {
1005 		pr_warn("SELinux: Unable to set superblock options before the security server is initialized\n");
1006 		return -EINVAL;
1007 	}
1008 
1009 	if (!opts) {
1010 		opts = kzalloc(sizeof(*opts), GFP_KERNEL);
1011 		if (!opts)
1012 			return -ENOMEM;
1013 		*mnt_opts = opts;
1014 	}
1015 
1016 	switch (token) {
1017 	case Opt_context:
1018 		if (opts->context_sid || opts->defcontext_sid)
1019 			goto err;
1020 		dst_sid = &opts->context_sid;
1021 		break;
1022 	case Opt_fscontext:
1023 		if (opts->fscontext_sid)
1024 			goto err;
1025 		dst_sid = &opts->fscontext_sid;
1026 		break;
1027 	case Opt_rootcontext:
1028 		if (opts->rootcontext_sid)
1029 			goto err;
1030 		dst_sid = &opts->rootcontext_sid;
1031 		break;
1032 	case Opt_defcontext:
1033 		if (opts->context_sid || opts->defcontext_sid)
1034 			goto err;
1035 		dst_sid = &opts->defcontext_sid;
1036 		break;
1037 	default:
1038 		WARN_ON(1);
1039 		return -EINVAL;
1040 	}
1041 	rc = security_context_str_to_sid(s, dst_sid, GFP_KERNEL);
1042 	if (rc)
1043 		pr_warn("SELinux: security_context_str_to_sid (%s) failed with errno=%d\n",
1044 			s, rc);
1045 	return rc;
1046 
1047 err:
1048 	pr_warn(SEL_MOUNT_FAIL_MSG);
1049 	return -EINVAL;
1050 }
1051 
1052 static int show_sid(struct seq_file *m, u32 sid)
1053 {
1054 	char *context = NULL;
1055 	u32 len;
1056 	int rc;
1057 
1058 	rc = security_sid_to_context(sid, &context, &len);
1059 	if (!rc) {
1060 		bool has_comma = strchr(context, ',');
1061 
1062 		seq_putc(m, '=');
1063 		if (has_comma)
1064 			seq_putc(m, '\"');
1065 		seq_escape(m, context, "\"\n\\");
1066 		if (has_comma)
1067 			seq_putc(m, '\"');
1068 	}
1069 	kfree(context);
1070 	return rc;
1071 }
1072 
1073 static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1074 {
1075 	struct superblock_security_struct *sbsec = selinux_superblock(sb);
1076 	int rc;
1077 
1078 	if (!(sbsec->flags & SE_SBINITIALIZED))
1079 		return 0;
1080 
1081 	if (!selinux_initialized())
1082 		return 0;
1083 
1084 	if (sbsec->flags & FSCONTEXT_MNT) {
1085 		seq_putc(m, ',');
1086 		seq_puts(m, FSCONTEXT_STR);
1087 		rc = show_sid(m, sbsec->sid);
1088 		if (rc)
1089 			return rc;
1090 	}
1091 	if (sbsec->flags & CONTEXT_MNT) {
1092 		seq_putc(m, ',');
1093 		seq_puts(m, CONTEXT_STR);
1094 		rc = show_sid(m, sbsec->mntpoint_sid);
1095 		if (rc)
1096 			return rc;
1097 	}
1098 	if (sbsec->flags & DEFCONTEXT_MNT) {
1099 		seq_putc(m, ',');
1100 		seq_puts(m, DEFCONTEXT_STR);
1101 		rc = show_sid(m, sbsec->def_sid);
1102 		if (rc)
1103 			return rc;
1104 	}
1105 	if (sbsec->flags & ROOTCONTEXT_MNT) {
1106 		struct dentry *root = sb->s_root;
1107 		struct inode_security_struct *isec = backing_inode_security(root);
1108 		seq_putc(m, ',');
1109 		seq_puts(m, ROOTCONTEXT_STR);
1110 		rc = show_sid(m, isec->sid);
1111 		if (rc)
1112 			return rc;
1113 	}
1114 	if (sbsec->flags & SBLABEL_MNT) {
1115 		seq_putc(m, ',');
1116 		seq_puts(m, SECLABEL_STR);
1117 	}
1118 	return 0;
1119 }
1120 
1121 static inline u16 inode_mode_to_security_class(umode_t mode)
1122 {
1123 	switch (mode & S_IFMT) {
1124 	case S_IFSOCK:
1125 		return SECCLASS_SOCK_FILE;
1126 	case S_IFLNK:
1127 		return SECCLASS_LNK_FILE;
1128 	case S_IFREG:
1129 		return SECCLASS_FILE;
1130 	case S_IFBLK:
1131 		return SECCLASS_BLK_FILE;
1132 	case S_IFDIR:
1133 		return SECCLASS_DIR;
1134 	case S_IFCHR:
1135 		return SECCLASS_CHR_FILE;
1136 	case S_IFIFO:
1137 		return SECCLASS_FIFO_FILE;
1138 
1139 	}
1140 
1141 	return SECCLASS_FILE;
1142 }
1143 
1144 static inline int default_protocol_stream(int protocol)
1145 {
1146 	return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP ||
1147 		protocol == IPPROTO_MPTCP);
1148 }
1149 
1150 static inline int default_protocol_dgram(int protocol)
1151 {
1152 	return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1153 }
1154 
1155 static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1156 {
1157 	bool extsockclass = selinux_policycap_extsockclass();
1158 
1159 	switch (family) {
1160 	case PF_UNIX:
1161 		switch (type) {
1162 		case SOCK_STREAM:
1163 		case SOCK_SEQPACKET:
1164 			return SECCLASS_UNIX_STREAM_SOCKET;
1165 		case SOCK_DGRAM:
1166 		case SOCK_RAW:
1167 			return SECCLASS_UNIX_DGRAM_SOCKET;
1168 		}
1169 		break;
1170 	case PF_INET:
1171 	case PF_INET6:
1172 		switch (type) {
1173 		case SOCK_STREAM:
1174 		case SOCK_SEQPACKET:
1175 			if (default_protocol_stream(protocol))
1176 				return SECCLASS_TCP_SOCKET;
1177 			else if (extsockclass && protocol == IPPROTO_SCTP)
1178 				return SECCLASS_SCTP_SOCKET;
1179 			else
1180 				return SECCLASS_RAWIP_SOCKET;
1181 		case SOCK_DGRAM:
1182 			if (default_protocol_dgram(protocol))
1183 				return SECCLASS_UDP_SOCKET;
1184 			else if (extsockclass && (protocol == IPPROTO_ICMP ||
1185 						  protocol == IPPROTO_ICMPV6))
1186 				return SECCLASS_ICMP_SOCKET;
1187 			else
1188 				return SECCLASS_RAWIP_SOCKET;
1189 		case SOCK_DCCP:
1190 			return SECCLASS_DCCP_SOCKET;
1191 		default:
1192 			return SECCLASS_RAWIP_SOCKET;
1193 		}
1194 		break;
1195 	case PF_NETLINK:
1196 		switch (protocol) {
1197 		case NETLINK_ROUTE:
1198 			return SECCLASS_NETLINK_ROUTE_SOCKET;
1199 		case NETLINK_SOCK_DIAG:
1200 			return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1201 		case NETLINK_NFLOG:
1202 			return SECCLASS_NETLINK_NFLOG_SOCKET;
1203 		case NETLINK_XFRM:
1204 			return SECCLASS_NETLINK_XFRM_SOCKET;
1205 		case NETLINK_SELINUX:
1206 			return SECCLASS_NETLINK_SELINUX_SOCKET;
1207 		case NETLINK_ISCSI:
1208 			return SECCLASS_NETLINK_ISCSI_SOCKET;
1209 		case NETLINK_AUDIT:
1210 			return SECCLASS_NETLINK_AUDIT_SOCKET;
1211 		case NETLINK_FIB_LOOKUP:
1212 			return SECCLASS_NETLINK_FIB_LOOKUP_SOCKET;
1213 		case NETLINK_CONNECTOR:
1214 			return SECCLASS_NETLINK_CONNECTOR_SOCKET;
1215 		case NETLINK_NETFILTER:
1216 			return SECCLASS_NETLINK_NETFILTER_SOCKET;
1217 		case NETLINK_DNRTMSG:
1218 			return SECCLASS_NETLINK_DNRT_SOCKET;
1219 		case NETLINK_KOBJECT_UEVENT:
1220 			return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1221 		case NETLINK_GENERIC:
1222 			return SECCLASS_NETLINK_GENERIC_SOCKET;
1223 		case NETLINK_SCSITRANSPORT:
1224 			return SECCLASS_NETLINK_SCSITRANSPORT_SOCKET;
1225 		case NETLINK_RDMA:
1226 			return SECCLASS_NETLINK_RDMA_SOCKET;
1227 		case NETLINK_CRYPTO:
1228 			return SECCLASS_NETLINK_CRYPTO_SOCKET;
1229 		default:
1230 			return SECCLASS_NETLINK_SOCKET;
1231 		}
1232 	case PF_PACKET:
1233 		return SECCLASS_PACKET_SOCKET;
1234 	case PF_KEY:
1235 		return SECCLASS_KEY_SOCKET;
1236 	case PF_APPLETALK:
1237 		return SECCLASS_APPLETALK_SOCKET;
1238 	}
1239 
1240 	if (extsockclass) {
1241 		switch (family) {
1242 		case PF_AX25:
1243 			return SECCLASS_AX25_SOCKET;
1244 		case PF_IPX:
1245 			return SECCLASS_IPX_SOCKET;
1246 		case PF_NETROM:
1247 			return SECCLASS_NETROM_SOCKET;
1248 		case PF_ATMPVC:
1249 			return SECCLASS_ATMPVC_SOCKET;
1250 		case PF_X25:
1251 			return SECCLASS_X25_SOCKET;
1252 		case PF_ROSE:
1253 			return SECCLASS_ROSE_SOCKET;
1254 		case PF_DECnet:
1255 			return SECCLASS_DECNET_SOCKET;
1256 		case PF_ATMSVC:
1257 			return SECCLASS_ATMSVC_SOCKET;
1258 		case PF_RDS:
1259 			return SECCLASS_RDS_SOCKET;
1260 		case PF_IRDA:
1261 			return SECCLASS_IRDA_SOCKET;
1262 		case PF_PPPOX:
1263 			return SECCLASS_PPPOX_SOCKET;
1264 		case PF_LLC:
1265 			return SECCLASS_LLC_SOCKET;
1266 		case PF_CAN:
1267 			return SECCLASS_CAN_SOCKET;
1268 		case PF_TIPC:
1269 			return SECCLASS_TIPC_SOCKET;
1270 		case PF_BLUETOOTH:
1271 			return SECCLASS_BLUETOOTH_SOCKET;
1272 		case PF_IUCV:
1273 			return SECCLASS_IUCV_SOCKET;
1274 		case PF_RXRPC:
1275 			return SECCLASS_RXRPC_SOCKET;
1276 		case PF_ISDN:
1277 			return SECCLASS_ISDN_SOCKET;
1278 		case PF_PHONET:
1279 			return SECCLASS_PHONET_SOCKET;
1280 		case PF_IEEE802154:
1281 			return SECCLASS_IEEE802154_SOCKET;
1282 		case PF_CAIF:
1283 			return SECCLASS_CAIF_SOCKET;
1284 		case PF_ALG:
1285 			return SECCLASS_ALG_SOCKET;
1286 		case PF_NFC:
1287 			return SECCLASS_NFC_SOCKET;
1288 		case PF_VSOCK:
1289 			return SECCLASS_VSOCK_SOCKET;
1290 		case PF_KCM:
1291 			return SECCLASS_KCM_SOCKET;
1292 		case PF_QIPCRTR:
1293 			return SECCLASS_QIPCRTR_SOCKET;
1294 		case PF_SMC:
1295 			return SECCLASS_SMC_SOCKET;
1296 		case PF_XDP:
1297 			return SECCLASS_XDP_SOCKET;
1298 		case PF_MCTP:
1299 			return SECCLASS_MCTP_SOCKET;
1300 #if PF_MAX > 46
1301 #error New address family defined, please update this function.
1302 #endif
1303 		}
1304 	}
1305 
1306 	return SECCLASS_SOCKET;
1307 }
1308 
1309 static int selinux_genfs_get_sid(struct dentry *dentry,
1310 				 u16 tclass,
1311 				 u16 flags,
1312 				 u32 *sid)
1313 {
1314 	int rc;
1315 	struct super_block *sb = dentry->d_sb;
1316 	char *buffer, *path;
1317 
1318 	buffer = (char *)__get_free_page(GFP_KERNEL);
1319 	if (!buffer)
1320 		return -ENOMEM;
1321 
1322 	path = dentry_path_raw(dentry, buffer, PAGE_SIZE);
1323 	if (IS_ERR(path))
1324 		rc = PTR_ERR(path);
1325 	else {
1326 		if (flags & SE_SBPROC) {
1327 			/* each process gets a /proc/PID/ entry. Strip off the
1328 			 * PID part to get a valid selinux labeling.
1329 			 * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */
1330 			while (path[1] >= '0' && path[1] <= '9') {
1331 				path[1] = '/';
1332 				path++;
1333 			}
1334 		}
1335 		rc = security_genfs_sid(sb->s_type->name,
1336 					path, tclass, sid);
1337 		if (rc == -ENOENT) {
1338 			/* No match in policy, mark as unlabeled. */
1339 			*sid = SECINITSID_UNLABELED;
1340 			rc = 0;
1341 		}
1342 	}
1343 	free_page((unsigned long)buffer);
1344 	return rc;
1345 }
1346 
1347 static int inode_doinit_use_xattr(struct inode *inode, struct dentry *dentry,
1348 				  u32 def_sid, u32 *sid)
1349 {
1350 #define INITCONTEXTLEN 255
1351 	char *context;
1352 	unsigned int len;
1353 	int rc;
1354 
1355 	len = INITCONTEXTLEN;
1356 	context = kmalloc(len + 1, GFP_NOFS);
1357 	if (!context)
1358 		return -ENOMEM;
1359 
1360 	context[len] = '\0';
1361 	rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, context, len);
1362 	if (rc == -ERANGE) {
1363 		kfree(context);
1364 
1365 		/* Need a larger buffer.  Query for the right size. */
1366 		rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, NULL, 0);
1367 		if (rc < 0)
1368 			return rc;
1369 
1370 		len = rc;
1371 		context = kmalloc(len + 1, GFP_NOFS);
1372 		if (!context)
1373 			return -ENOMEM;
1374 
1375 		context[len] = '\0';
1376 		rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX,
1377 				    context, len);
1378 	}
1379 	if (rc < 0) {
1380 		kfree(context);
1381 		if (rc != -ENODATA) {
1382 			pr_warn("SELinux: %s:  getxattr returned %d for dev=%s ino=%ld\n",
1383 				__func__, -rc, inode->i_sb->s_id, inode->i_ino);
1384 			return rc;
1385 		}
1386 		*sid = def_sid;
1387 		return 0;
1388 	}
1389 
1390 	rc = security_context_to_sid_default(context, rc, sid,
1391 					     def_sid, GFP_NOFS);
1392 	if (rc) {
1393 		char *dev = inode->i_sb->s_id;
1394 		unsigned long ino = inode->i_ino;
1395 
1396 		if (rc == -EINVAL) {
1397 			pr_notice_ratelimited("SELinux: inode=%lu on dev=%s was found to have an invalid context=%s.  This indicates you may need to relabel the inode or the filesystem in question.\n",
1398 					      ino, dev, context);
1399 		} else {
1400 			pr_warn("SELinux: %s:  context_to_sid(%s) returned %d for dev=%s ino=%ld\n",
1401 				__func__, context, -rc, dev, ino);
1402 		}
1403 	}
1404 	kfree(context);
1405 	return 0;
1406 }
1407 
1408 /* The inode's security attributes must be initialized before first use. */
1409 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1410 {
1411 	struct superblock_security_struct *sbsec = NULL;
1412 	struct inode_security_struct *isec = selinux_inode(inode);
1413 	u32 task_sid, sid = 0;
1414 	u16 sclass;
1415 	struct dentry *dentry;
1416 	int rc = 0;
1417 
1418 	if (isec->initialized == LABEL_INITIALIZED)
1419 		return 0;
1420 
1421 	spin_lock(&isec->lock);
1422 	if (isec->initialized == LABEL_INITIALIZED)
1423 		goto out_unlock;
1424 
1425 	if (isec->sclass == SECCLASS_FILE)
1426 		isec->sclass = inode_mode_to_security_class(inode->i_mode);
1427 
1428 	sbsec = selinux_superblock(inode->i_sb);
1429 	if (!(sbsec->flags & SE_SBINITIALIZED)) {
1430 		/* Defer initialization until selinux_complete_init,
1431 		   after the initial policy is loaded and the security
1432 		   server is ready to handle calls. */
1433 		spin_lock(&sbsec->isec_lock);
1434 		if (list_empty(&isec->list))
1435 			list_add(&isec->list, &sbsec->isec_head);
1436 		spin_unlock(&sbsec->isec_lock);
1437 		goto out_unlock;
1438 	}
1439 
1440 	sclass = isec->sclass;
1441 	task_sid = isec->task_sid;
1442 	sid = isec->sid;
1443 	isec->initialized = LABEL_PENDING;
1444 	spin_unlock(&isec->lock);
1445 
1446 	switch (sbsec->behavior) {
1447 	/*
1448 	 * In case of SECURITY_FS_USE_NATIVE we need to re-fetch the labels
1449 	 * via xattr when called from delayed_superblock_init().
1450 	 */
1451 	case SECURITY_FS_USE_NATIVE:
1452 	case SECURITY_FS_USE_XATTR:
1453 		if (!(inode->i_opflags & IOP_XATTR)) {
1454 			sid = sbsec->def_sid;
1455 			break;
1456 		}
1457 		/* Need a dentry, since the xattr API requires one.
1458 		   Life would be simpler if we could just pass the inode. */
1459 		if (opt_dentry) {
1460 			/* Called from d_instantiate or d_splice_alias. */
1461 			dentry = dget(opt_dentry);
1462 		} else {
1463 			/*
1464 			 * Called from selinux_complete_init, try to find a dentry.
1465 			 * Some filesystems really want a connected one, so try
1466 			 * that first.  We could split SECURITY_FS_USE_XATTR in
1467 			 * two, depending upon that...
1468 			 */
1469 			dentry = d_find_alias(inode);
1470 			if (!dentry)
1471 				dentry = d_find_any_alias(inode);
1472 		}
1473 		if (!dentry) {
1474 			/*
1475 			 * this is can be hit on boot when a file is accessed
1476 			 * before the policy is loaded.  When we load policy we
1477 			 * may find inodes that have no dentry on the
1478 			 * sbsec->isec_head list.  No reason to complain as these
1479 			 * will get fixed up the next time we go through
1480 			 * inode_doinit with a dentry, before these inodes could
1481 			 * be used again by userspace.
1482 			 */
1483 			goto out_invalid;
1484 		}
1485 
1486 		rc = inode_doinit_use_xattr(inode, dentry, sbsec->def_sid,
1487 					    &sid);
1488 		dput(dentry);
1489 		if (rc)
1490 			goto out;
1491 		break;
1492 	case SECURITY_FS_USE_TASK:
1493 		sid = task_sid;
1494 		break;
1495 	case SECURITY_FS_USE_TRANS:
1496 		/* Default to the fs SID. */
1497 		sid = sbsec->sid;
1498 
1499 		/* Try to obtain a transition SID. */
1500 		rc = security_transition_sid(task_sid, sid,
1501 					     sclass, NULL, &sid);
1502 		if (rc)
1503 			goto out;
1504 		break;
1505 	case SECURITY_FS_USE_MNTPOINT:
1506 		sid = sbsec->mntpoint_sid;
1507 		break;
1508 	default:
1509 		/* Default to the fs superblock SID. */
1510 		sid = sbsec->sid;
1511 
1512 		if ((sbsec->flags & SE_SBGENFS) &&
1513 		     (!S_ISLNK(inode->i_mode) ||
1514 		      selinux_policycap_genfs_seclabel_symlinks())) {
1515 			/* We must have a dentry to determine the label on
1516 			 * procfs inodes */
1517 			if (opt_dentry) {
1518 				/* Called from d_instantiate or
1519 				 * d_splice_alias. */
1520 				dentry = dget(opt_dentry);
1521 			} else {
1522 				/* Called from selinux_complete_init, try to
1523 				 * find a dentry.  Some filesystems really want
1524 				 * a connected one, so try that first.
1525 				 */
1526 				dentry = d_find_alias(inode);
1527 				if (!dentry)
1528 					dentry = d_find_any_alias(inode);
1529 			}
1530 			/*
1531 			 * This can be hit on boot when a file is accessed
1532 			 * before the policy is loaded.  When we load policy we
1533 			 * may find inodes that have no dentry on the
1534 			 * sbsec->isec_head list.  No reason to complain as
1535 			 * these will get fixed up the next time we go through
1536 			 * inode_doinit() with a dentry, before these inodes
1537 			 * could be used again by userspace.
1538 			 */
1539 			if (!dentry)
1540 				goto out_invalid;
1541 			rc = selinux_genfs_get_sid(dentry, sclass,
1542 						   sbsec->flags, &sid);
1543 			if (rc) {
1544 				dput(dentry);
1545 				goto out;
1546 			}
1547 
1548 			if ((sbsec->flags & SE_SBGENFS_XATTR) &&
1549 			    (inode->i_opflags & IOP_XATTR)) {
1550 				rc = inode_doinit_use_xattr(inode, dentry,
1551 							    sid, &sid);
1552 				if (rc) {
1553 					dput(dentry);
1554 					goto out;
1555 				}
1556 			}
1557 			dput(dentry);
1558 		}
1559 		break;
1560 	}
1561 
1562 out:
1563 	spin_lock(&isec->lock);
1564 	if (isec->initialized == LABEL_PENDING) {
1565 		if (rc) {
1566 			isec->initialized = LABEL_INVALID;
1567 			goto out_unlock;
1568 		}
1569 		isec->initialized = LABEL_INITIALIZED;
1570 		isec->sid = sid;
1571 	}
1572 
1573 out_unlock:
1574 	spin_unlock(&isec->lock);
1575 	return rc;
1576 
1577 out_invalid:
1578 	spin_lock(&isec->lock);
1579 	if (isec->initialized == LABEL_PENDING) {
1580 		isec->initialized = LABEL_INVALID;
1581 		isec->sid = sid;
1582 	}
1583 	spin_unlock(&isec->lock);
1584 	return 0;
1585 }
1586 
1587 /* Convert a Linux signal to an access vector. */
1588 static inline u32 signal_to_av(int sig)
1589 {
1590 	u32 perm = 0;
1591 
1592 	switch (sig) {
1593 	case SIGCHLD:
1594 		/* Commonly granted from child to parent. */
1595 		perm = PROCESS__SIGCHLD;
1596 		break;
1597 	case SIGKILL:
1598 		/* Cannot be caught or ignored */
1599 		perm = PROCESS__SIGKILL;
1600 		break;
1601 	case SIGSTOP:
1602 		/* Cannot be caught or ignored */
1603 		perm = PROCESS__SIGSTOP;
1604 		break;
1605 	default:
1606 		/* All other signals. */
1607 		perm = PROCESS__SIGNAL;
1608 		break;
1609 	}
1610 
1611 	return perm;
1612 }
1613 
1614 #if CAP_LAST_CAP > 63
1615 #error Fix SELinux to handle capabilities > 63.
1616 #endif
1617 
1618 /* Check whether a task is allowed to use a capability. */
1619 static int cred_has_capability(const struct cred *cred,
1620 			       int cap, unsigned int opts, bool initns)
1621 {
1622 	struct common_audit_data ad;
1623 	struct av_decision avd;
1624 	u16 sclass;
1625 	u32 sid = cred_sid(cred);
1626 	u32 av = CAP_TO_MASK(cap);
1627 	int rc;
1628 
1629 	ad.type = LSM_AUDIT_DATA_CAP;
1630 	ad.u.cap = cap;
1631 
1632 	switch (CAP_TO_INDEX(cap)) {
1633 	case 0:
1634 		sclass = initns ? SECCLASS_CAPABILITY : SECCLASS_CAP_USERNS;
1635 		break;
1636 	case 1:
1637 		sclass = initns ? SECCLASS_CAPABILITY2 : SECCLASS_CAP2_USERNS;
1638 		break;
1639 	default:
1640 		pr_err("SELinux:  out of range capability %d\n", cap);
1641 		BUG();
1642 		return -EINVAL;
1643 	}
1644 
1645 	rc = avc_has_perm_noaudit(sid, sid, sclass, av, 0, &avd);
1646 	if (!(opts & CAP_OPT_NOAUDIT)) {
1647 		int rc2 = avc_audit(sid, sid, sclass, av, &avd, rc, &ad);
1648 		if (rc2)
1649 			return rc2;
1650 	}
1651 	return rc;
1652 }
1653 
1654 /* Check whether a task has a particular permission to an inode.
1655    The 'adp' parameter is optional and allows other audit
1656    data to be passed (e.g. the dentry). */
1657 static int inode_has_perm(const struct cred *cred,
1658 			  struct inode *inode,
1659 			  u32 perms,
1660 			  struct common_audit_data *adp)
1661 {
1662 	struct inode_security_struct *isec;
1663 	u32 sid;
1664 
1665 	if (unlikely(IS_PRIVATE(inode)))
1666 		return 0;
1667 
1668 	sid = cred_sid(cred);
1669 	isec = selinux_inode(inode);
1670 
1671 	return avc_has_perm(sid, isec->sid, isec->sclass, perms, adp);
1672 }
1673 
1674 /* Same as inode_has_perm, but pass explicit audit data containing
1675    the dentry to help the auditing code to more easily generate the
1676    pathname if needed. */
1677 static inline int dentry_has_perm(const struct cred *cred,
1678 				  struct dentry *dentry,
1679 				  u32 av)
1680 {
1681 	struct inode *inode = d_backing_inode(dentry);
1682 	struct common_audit_data ad;
1683 
1684 	ad.type = LSM_AUDIT_DATA_DENTRY;
1685 	ad.u.dentry = dentry;
1686 	__inode_security_revalidate(inode, dentry, true);
1687 	return inode_has_perm(cred, inode, av, &ad);
1688 }
1689 
1690 /* Same as inode_has_perm, but pass explicit audit data containing
1691    the path to help the auditing code to more easily generate the
1692    pathname if needed. */
1693 static inline int path_has_perm(const struct cred *cred,
1694 				const struct path *path,
1695 				u32 av)
1696 {
1697 	struct inode *inode = d_backing_inode(path->dentry);
1698 	struct common_audit_data ad;
1699 
1700 	ad.type = LSM_AUDIT_DATA_PATH;
1701 	ad.u.path = *path;
1702 	__inode_security_revalidate(inode, path->dentry, true);
1703 	return inode_has_perm(cred, inode, av, &ad);
1704 }
1705 
1706 /* Same as path_has_perm, but uses the inode from the file struct. */
1707 static inline int file_path_has_perm(const struct cred *cred,
1708 				     struct file *file,
1709 				     u32 av)
1710 {
1711 	struct common_audit_data ad;
1712 
1713 	ad.type = LSM_AUDIT_DATA_FILE;
1714 	ad.u.file = file;
1715 	return inode_has_perm(cred, file_inode(file), av, &ad);
1716 }
1717 
1718 #ifdef CONFIG_BPF_SYSCALL
1719 static int bpf_fd_pass(const struct file *file, u32 sid);
1720 #endif
1721 
1722 /* Check whether a task can use an open file descriptor to
1723    access an inode in a given way.  Check access to the
1724    descriptor itself, and then use dentry_has_perm to
1725    check a particular permission to the file.
1726    Access to the descriptor is implicitly granted if it
1727    has the same SID as the process.  If av is zero, then
1728    access to the file is not checked, e.g. for cases
1729    where only the descriptor is affected like seek. */
1730 static int file_has_perm(const struct cred *cred,
1731 			 struct file *file,
1732 			 u32 av)
1733 {
1734 	struct file_security_struct *fsec = selinux_file(file);
1735 	struct inode *inode = file_inode(file);
1736 	struct common_audit_data ad;
1737 	u32 sid = cred_sid(cred);
1738 	int rc;
1739 
1740 	ad.type = LSM_AUDIT_DATA_FILE;
1741 	ad.u.file = file;
1742 
1743 	if (sid != fsec->sid) {
1744 		rc = avc_has_perm(sid, fsec->sid,
1745 				  SECCLASS_FD,
1746 				  FD__USE,
1747 				  &ad);
1748 		if (rc)
1749 			goto out;
1750 	}
1751 
1752 #ifdef CONFIG_BPF_SYSCALL
1753 	rc = bpf_fd_pass(file, cred_sid(cred));
1754 	if (rc)
1755 		return rc;
1756 #endif
1757 
1758 	/* av is zero if only checking access to the descriptor. */
1759 	rc = 0;
1760 	if (av)
1761 		rc = inode_has_perm(cred, inode, av, &ad);
1762 
1763 out:
1764 	return rc;
1765 }
1766 
1767 /*
1768  * Determine the label for an inode that might be unioned.
1769  */
1770 static int
1771 selinux_determine_inode_label(const struct task_security_struct *tsec,
1772 				 struct inode *dir,
1773 				 const struct qstr *name, u16 tclass,
1774 				 u32 *_new_isid)
1775 {
1776 	const struct superblock_security_struct *sbsec =
1777 						selinux_superblock(dir->i_sb);
1778 
1779 	if ((sbsec->flags & SE_SBINITIALIZED) &&
1780 	    (sbsec->behavior == SECURITY_FS_USE_MNTPOINT)) {
1781 		*_new_isid = sbsec->mntpoint_sid;
1782 	} else if ((sbsec->flags & SBLABEL_MNT) &&
1783 		   tsec->create_sid) {
1784 		*_new_isid = tsec->create_sid;
1785 	} else {
1786 		const struct inode_security_struct *dsec = inode_security(dir);
1787 		return security_transition_sid(tsec->sid,
1788 					       dsec->sid, tclass,
1789 					       name, _new_isid);
1790 	}
1791 
1792 	return 0;
1793 }
1794 
1795 /* Check whether a task can create a file. */
1796 static int may_create(struct inode *dir,
1797 		      struct dentry *dentry,
1798 		      u16 tclass)
1799 {
1800 	const struct task_security_struct *tsec = selinux_cred(current_cred());
1801 	struct inode_security_struct *dsec;
1802 	struct superblock_security_struct *sbsec;
1803 	u32 sid, newsid;
1804 	struct common_audit_data ad;
1805 	int rc;
1806 
1807 	dsec = inode_security(dir);
1808 	sbsec = selinux_superblock(dir->i_sb);
1809 
1810 	sid = tsec->sid;
1811 
1812 	ad.type = LSM_AUDIT_DATA_DENTRY;
1813 	ad.u.dentry = dentry;
1814 
1815 	rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR,
1816 			  DIR__ADD_NAME | DIR__SEARCH,
1817 			  &ad);
1818 	if (rc)
1819 		return rc;
1820 
1821 	rc = selinux_determine_inode_label(tsec, dir, &dentry->d_name, tclass,
1822 					   &newsid);
1823 	if (rc)
1824 		return rc;
1825 
1826 	rc = avc_has_perm(sid, newsid, tclass, FILE__CREATE, &ad);
1827 	if (rc)
1828 		return rc;
1829 
1830 	return avc_has_perm(newsid, sbsec->sid,
1831 			    SECCLASS_FILESYSTEM,
1832 			    FILESYSTEM__ASSOCIATE, &ad);
1833 }
1834 
1835 #define MAY_LINK	0
1836 #define MAY_UNLINK	1
1837 #define MAY_RMDIR	2
1838 
1839 /* Check whether a task can link, unlink, or rmdir a file/directory. */
1840 static int may_link(struct inode *dir,
1841 		    struct dentry *dentry,
1842 		    int kind)
1843 
1844 {
1845 	struct inode_security_struct *dsec, *isec;
1846 	struct common_audit_data ad;
1847 	u32 sid = current_sid();
1848 	u32 av;
1849 	int rc;
1850 
1851 	dsec = inode_security(dir);
1852 	isec = backing_inode_security(dentry);
1853 
1854 	ad.type = LSM_AUDIT_DATA_DENTRY;
1855 	ad.u.dentry = dentry;
1856 
1857 	av = DIR__SEARCH;
1858 	av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1859 	rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, av, &ad);
1860 	if (rc)
1861 		return rc;
1862 
1863 	switch (kind) {
1864 	case MAY_LINK:
1865 		av = FILE__LINK;
1866 		break;
1867 	case MAY_UNLINK:
1868 		av = FILE__UNLINK;
1869 		break;
1870 	case MAY_RMDIR:
1871 		av = DIR__RMDIR;
1872 		break;
1873 	default:
1874 		pr_warn("SELinux: %s:  unrecognized kind %d\n",
1875 			__func__, kind);
1876 		return 0;
1877 	}
1878 
1879 	rc = avc_has_perm(sid, isec->sid, isec->sclass, av, &ad);
1880 	return rc;
1881 }
1882 
1883 static inline int may_rename(struct inode *old_dir,
1884 			     struct dentry *old_dentry,
1885 			     struct inode *new_dir,
1886 			     struct dentry *new_dentry)
1887 {
1888 	struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1889 	struct common_audit_data ad;
1890 	u32 sid = current_sid();
1891 	u32 av;
1892 	int old_is_dir, new_is_dir;
1893 	int rc;
1894 
1895 	old_dsec = inode_security(old_dir);
1896 	old_isec = backing_inode_security(old_dentry);
1897 	old_is_dir = d_is_dir(old_dentry);
1898 	new_dsec = inode_security(new_dir);
1899 
1900 	ad.type = LSM_AUDIT_DATA_DENTRY;
1901 
1902 	ad.u.dentry = old_dentry;
1903 	rc = avc_has_perm(sid, old_dsec->sid, SECCLASS_DIR,
1904 			  DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1905 	if (rc)
1906 		return rc;
1907 	rc = avc_has_perm(sid, old_isec->sid,
1908 			  old_isec->sclass, FILE__RENAME, &ad);
1909 	if (rc)
1910 		return rc;
1911 	if (old_is_dir && new_dir != old_dir) {
1912 		rc = avc_has_perm(sid, old_isec->sid,
1913 				  old_isec->sclass, DIR__REPARENT, &ad);
1914 		if (rc)
1915 			return rc;
1916 	}
1917 
1918 	ad.u.dentry = new_dentry;
1919 	av = DIR__ADD_NAME | DIR__SEARCH;
1920 	if (d_is_positive(new_dentry))
1921 		av |= DIR__REMOVE_NAME;
1922 	rc = avc_has_perm(sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1923 	if (rc)
1924 		return rc;
1925 	if (d_is_positive(new_dentry)) {
1926 		new_isec = backing_inode_security(new_dentry);
1927 		new_is_dir = d_is_dir(new_dentry);
1928 		rc = avc_has_perm(sid, new_isec->sid,
1929 				  new_isec->sclass,
1930 				  (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1931 		if (rc)
1932 			return rc;
1933 	}
1934 
1935 	return 0;
1936 }
1937 
1938 /* Check whether a task can perform a filesystem operation. */
1939 static int superblock_has_perm(const struct cred *cred,
1940 			       const struct super_block *sb,
1941 			       u32 perms,
1942 			       struct common_audit_data *ad)
1943 {
1944 	struct superblock_security_struct *sbsec;
1945 	u32 sid = cred_sid(cred);
1946 
1947 	sbsec = selinux_superblock(sb);
1948 	return avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
1949 }
1950 
1951 /* Convert a Linux mode and permission mask to an access vector. */
1952 static inline u32 file_mask_to_av(int mode, int mask)
1953 {
1954 	u32 av = 0;
1955 
1956 	if (!S_ISDIR(mode)) {
1957 		if (mask & MAY_EXEC)
1958 			av |= FILE__EXECUTE;
1959 		if (mask & MAY_READ)
1960 			av |= FILE__READ;
1961 
1962 		if (mask & MAY_APPEND)
1963 			av |= FILE__APPEND;
1964 		else if (mask & MAY_WRITE)
1965 			av |= FILE__WRITE;
1966 
1967 	} else {
1968 		if (mask & MAY_EXEC)
1969 			av |= DIR__SEARCH;
1970 		if (mask & MAY_WRITE)
1971 			av |= DIR__WRITE;
1972 		if (mask & MAY_READ)
1973 			av |= DIR__READ;
1974 	}
1975 
1976 	return av;
1977 }
1978 
1979 /* Convert a Linux file to an access vector. */
1980 static inline u32 file_to_av(const struct file *file)
1981 {
1982 	u32 av = 0;
1983 
1984 	if (file->f_mode & FMODE_READ)
1985 		av |= FILE__READ;
1986 	if (file->f_mode & FMODE_WRITE) {
1987 		if (file->f_flags & O_APPEND)
1988 			av |= FILE__APPEND;
1989 		else
1990 			av |= FILE__WRITE;
1991 	}
1992 	if (!av) {
1993 		/*
1994 		 * Special file opened with flags 3 for ioctl-only use.
1995 		 */
1996 		av = FILE__IOCTL;
1997 	}
1998 
1999 	return av;
2000 }
2001 
2002 /*
2003  * Convert a file to an access vector and include the correct
2004  * open permission.
2005  */
2006 static inline u32 open_file_to_av(struct file *file)
2007 {
2008 	u32 av = file_to_av(file);
2009 	struct inode *inode = file_inode(file);
2010 
2011 	if (selinux_policycap_openperm() &&
2012 	    inode->i_sb->s_magic != SOCKFS_MAGIC)
2013 		av |= FILE__OPEN;
2014 
2015 	return av;
2016 }
2017 
2018 /* Hook functions begin here. */
2019 
2020 static int selinux_binder_set_context_mgr(const struct cred *mgr)
2021 {
2022 	return avc_has_perm(current_sid(), cred_sid(mgr), SECCLASS_BINDER,
2023 			    BINDER__SET_CONTEXT_MGR, NULL);
2024 }
2025 
2026 static int selinux_binder_transaction(const struct cred *from,
2027 				      const struct cred *to)
2028 {
2029 	u32 mysid = current_sid();
2030 	u32 fromsid = cred_sid(from);
2031 	u32 tosid = cred_sid(to);
2032 	int rc;
2033 
2034 	if (mysid != fromsid) {
2035 		rc = avc_has_perm(mysid, fromsid, SECCLASS_BINDER,
2036 				  BINDER__IMPERSONATE, NULL);
2037 		if (rc)
2038 			return rc;
2039 	}
2040 
2041 	return avc_has_perm(fromsid, tosid,
2042 			    SECCLASS_BINDER, BINDER__CALL, NULL);
2043 }
2044 
2045 static int selinux_binder_transfer_binder(const struct cred *from,
2046 					  const struct cred *to)
2047 {
2048 	return avc_has_perm(cred_sid(from), cred_sid(to),
2049 			    SECCLASS_BINDER, BINDER__TRANSFER,
2050 			    NULL);
2051 }
2052 
2053 static int selinux_binder_transfer_file(const struct cred *from,
2054 					const struct cred *to,
2055 					const struct file *file)
2056 {
2057 	u32 sid = cred_sid(to);
2058 	struct file_security_struct *fsec = selinux_file(file);
2059 	struct dentry *dentry = file->f_path.dentry;
2060 	struct inode_security_struct *isec;
2061 	struct common_audit_data ad;
2062 	int rc;
2063 
2064 	ad.type = LSM_AUDIT_DATA_PATH;
2065 	ad.u.path = file->f_path;
2066 
2067 	if (sid != fsec->sid) {
2068 		rc = avc_has_perm(sid, fsec->sid,
2069 				  SECCLASS_FD,
2070 				  FD__USE,
2071 				  &ad);
2072 		if (rc)
2073 			return rc;
2074 	}
2075 
2076 #ifdef CONFIG_BPF_SYSCALL
2077 	rc = bpf_fd_pass(file, sid);
2078 	if (rc)
2079 		return rc;
2080 #endif
2081 
2082 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2083 		return 0;
2084 
2085 	isec = backing_inode_security(dentry);
2086 	return avc_has_perm(sid, isec->sid, isec->sclass, file_to_av(file),
2087 			    &ad);
2088 }
2089 
2090 static int selinux_ptrace_access_check(struct task_struct *child,
2091 				       unsigned int mode)
2092 {
2093 	u32 sid = current_sid();
2094 	u32 csid = task_sid_obj(child);
2095 
2096 	if (mode & PTRACE_MODE_READ)
2097 		return avc_has_perm(sid, csid, SECCLASS_FILE, FILE__READ,
2098 				NULL);
2099 
2100 	return avc_has_perm(sid, csid, SECCLASS_PROCESS, PROCESS__PTRACE,
2101 			NULL);
2102 }
2103 
2104 static int selinux_ptrace_traceme(struct task_struct *parent)
2105 {
2106 	return avc_has_perm(task_sid_obj(parent), task_sid_obj(current),
2107 			    SECCLASS_PROCESS, PROCESS__PTRACE, NULL);
2108 }
2109 
2110 static int selinux_capget(const struct task_struct *target, kernel_cap_t *effective,
2111 			  kernel_cap_t *inheritable, kernel_cap_t *permitted)
2112 {
2113 	return avc_has_perm(current_sid(), task_sid_obj(target),
2114 			SECCLASS_PROCESS, PROCESS__GETCAP, NULL);
2115 }
2116 
2117 static int selinux_capset(struct cred *new, const struct cred *old,
2118 			  const kernel_cap_t *effective,
2119 			  const kernel_cap_t *inheritable,
2120 			  const kernel_cap_t *permitted)
2121 {
2122 	return avc_has_perm(cred_sid(old), cred_sid(new), SECCLASS_PROCESS,
2123 			    PROCESS__SETCAP, NULL);
2124 }
2125 
2126 /*
2127  * (This comment used to live with the selinux_task_setuid hook,
2128  * which was removed).
2129  *
2130  * Since setuid only affects the current process, and since the SELinux
2131  * controls are not based on the Linux identity attributes, SELinux does not
2132  * need to control this operation.  However, SELinux does control the use of
2133  * the CAP_SETUID and CAP_SETGID capabilities using the capable hook.
2134  */
2135 
2136 static int selinux_capable(const struct cred *cred, struct user_namespace *ns,
2137 			   int cap, unsigned int opts)
2138 {
2139 	return cred_has_capability(cred, cap, opts, ns == &init_user_ns);
2140 }
2141 
2142 static int selinux_quotactl(int cmds, int type, int id, const struct super_block *sb)
2143 {
2144 	const struct cred *cred = current_cred();
2145 	int rc = 0;
2146 
2147 	if (!sb)
2148 		return 0;
2149 
2150 	switch (cmds) {
2151 	case Q_SYNC:
2152 	case Q_QUOTAON:
2153 	case Q_QUOTAOFF:
2154 	case Q_SETINFO:
2155 	case Q_SETQUOTA:
2156 	case Q_XQUOTAOFF:
2157 	case Q_XQUOTAON:
2158 	case Q_XSETQLIM:
2159 		rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
2160 		break;
2161 	case Q_GETFMT:
2162 	case Q_GETINFO:
2163 	case Q_GETQUOTA:
2164 	case Q_XGETQUOTA:
2165 	case Q_XGETQSTAT:
2166 	case Q_XGETQSTATV:
2167 	case Q_XGETNEXTQUOTA:
2168 		rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
2169 		break;
2170 	default:
2171 		rc = 0;  /* let the kernel handle invalid cmds */
2172 		break;
2173 	}
2174 	return rc;
2175 }
2176 
2177 static int selinux_quota_on(struct dentry *dentry)
2178 {
2179 	const struct cred *cred = current_cred();
2180 
2181 	return dentry_has_perm(cred, dentry, FILE__QUOTAON);
2182 }
2183 
2184 static int selinux_syslog(int type)
2185 {
2186 	switch (type) {
2187 	case SYSLOG_ACTION_READ_ALL:	/* Read last kernel messages */
2188 	case SYSLOG_ACTION_SIZE_BUFFER:	/* Return size of the log buffer */
2189 		return avc_has_perm(current_sid(), SECINITSID_KERNEL,
2190 				    SECCLASS_SYSTEM, SYSTEM__SYSLOG_READ, NULL);
2191 	case SYSLOG_ACTION_CONSOLE_OFF:	/* Disable logging to console */
2192 	case SYSLOG_ACTION_CONSOLE_ON:	/* Enable logging to console */
2193 	/* Set level of messages printed to console */
2194 	case SYSLOG_ACTION_CONSOLE_LEVEL:
2195 		return avc_has_perm(current_sid(), SECINITSID_KERNEL,
2196 				    SECCLASS_SYSTEM, SYSTEM__SYSLOG_CONSOLE,
2197 				    NULL);
2198 	}
2199 	/* All other syslog types */
2200 	return avc_has_perm(current_sid(), SECINITSID_KERNEL,
2201 			    SECCLASS_SYSTEM, SYSTEM__SYSLOG_MOD, NULL);
2202 }
2203 
2204 /*
2205  * Check that a process has enough memory to allocate a new virtual
2206  * mapping. 0 means there is enough memory for the allocation to
2207  * succeed and -ENOMEM implies there is not.
2208  *
2209  * Do not audit the selinux permission check, as this is applied to all
2210  * processes that allocate mappings.
2211  */
2212 static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
2213 {
2214 	int rc, cap_sys_admin = 0;
2215 
2216 	rc = cred_has_capability(current_cred(), CAP_SYS_ADMIN,
2217 				 CAP_OPT_NOAUDIT, true);
2218 	if (rc == 0)
2219 		cap_sys_admin = 1;
2220 
2221 	return cap_sys_admin;
2222 }
2223 
2224 /* binprm security operations */
2225 
2226 static u32 ptrace_parent_sid(void)
2227 {
2228 	u32 sid = 0;
2229 	struct task_struct *tracer;
2230 
2231 	rcu_read_lock();
2232 	tracer = ptrace_parent(current);
2233 	if (tracer)
2234 		sid = task_sid_obj(tracer);
2235 	rcu_read_unlock();
2236 
2237 	return sid;
2238 }
2239 
2240 static int check_nnp_nosuid(const struct linux_binprm *bprm,
2241 			    const struct task_security_struct *old_tsec,
2242 			    const struct task_security_struct *new_tsec)
2243 {
2244 	int nnp = (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS);
2245 	int nosuid = !mnt_may_suid(bprm->file->f_path.mnt);
2246 	int rc;
2247 	u32 av;
2248 
2249 	if (!nnp && !nosuid)
2250 		return 0; /* neither NNP nor nosuid */
2251 
2252 	if (new_tsec->sid == old_tsec->sid)
2253 		return 0; /* No change in credentials */
2254 
2255 	/*
2256 	 * If the policy enables the nnp_nosuid_transition policy capability,
2257 	 * then we permit transitions under NNP or nosuid if the
2258 	 * policy allows the corresponding permission between
2259 	 * the old and new contexts.
2260 	 */
2261 	if (selinux_policycap_nnp_nosuid_transition()) {
2262 		av = 0;
2263 		if (nnp)
2264 			av |= PROCESS2__NNP_TRANSITION;
2265 		if (nosuid)
2266 			av |= PROCESS2__NOSUID_TRANSITION;
2267 		rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2268 				  SECCLASS_PROCESS2, av, NULL);
2269 		if (!rc)
2270 			return 0;
2271 	}
2272 
2273 	/*
2274 	 * We also permit NNP or nosuid transitions to bounded SIDs,
2275 	 * i.e. SIDs that are guaranteed to only be allowed a subset
2276 	 * of the permissions of the current SID.
2277 	 */
2278 	rc = security_bounded_transition(old_tsec->sid,
2279 					 new_tsec->sid);
2280 	if (!rc)
2281 		return 0;
2282 
2283 	/*
2284 	 * On failure, preserve the errno values for NNP vs nosuid.
2285 	 * NNP:  Operation not permitted for caller.
2286 	 * nosuid:  Permission denied to file.
2287 	 */
2288 	if (nnp)
2289 		return -EPERM;
2290 	return -EACCES;
2291 }
2292 
2293 static int selinux_bprm_creds_for_exec(struct linux_binprm *bprm)
2294 {
2295 	const struct task_security_struct *old_tsec;
2296 	struct task_security_struct *new_tsec;
2297 	struct inode_security_struct *isec;
2298 	struct common_audit_data ad;
2299 	struct inode *inode = file_inode(bprm->file);
2300 	int rc;
2301 
2302 	/* SELinux context only depends on initial program or script and not
2303 	 * the script interpreter */
2304 
2305 	old_tsec = selinux_cred(current_cred());
2306 	new_tsec = selinux_cred(bprm->cred);
2307 	isec = inode_security(inode);
2308 
2309 	/* Default to the current task SID. */
2310 	new_tsec->sid = old_tsec->sid;
2311 	new_tsec->osid = old_tsec->sid;
2312 
2313 	/* Reset fs, key, and sock SIDs on execve. */
2314 	new_tsec->create_sid = 0;
2315 	new_tsec->keycreate_sid = 0;
2316 	new_tsec->sockcreate_sid = 0;
2317 
2318 	/*
2319 	 * Before policy is loaded, label any task outside kernel space
2320 	 * as SECINITSID_INIT, so that any userspace tasks surviving from
2321 	 * early boot end up with a label different from SECINITSID_KERNEL
2322 	 * (if the policy chooses to set SECINITSID_INIT != SECINITSID_KERNEL).
2323 	 */
2324 	if (!selinux_initialized()) {
2325 		new_tsec->sid = SECINITSID_INIT;
2326 		/* also clear the exec_sid just in case */
2327 		new_tsec->exec_sid = 0;
2328 		return 0;
2329 	}
2330 
2331 	if (old_tsec->exec_sid) {
2332 		new_tsec->sid = old_tsec->exec_sid;
2333 		/* Reset exec SID on execve. */
2334 		new_tsec->exec_sid = 0;
2335 
2336 		/* Fail on NNP or nosuid if not an allowed transition. */
2337 		rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2338 		if (rc)
2339 			return rc;
2340 	} else {
2341 		/* Check for a default transition on this program. */
2342 		rc = security_transition_sid(old_tsec->sid,
2343 					     isec->sid, SECCLASS_PROCESS, NULL,
2344 					     &new_tsec->sid);
2345 		if (rc)
2346 			return rc;
2347 
2348 		/*
2349 		 * Fallback to old SID on NNP or nosuid if not an allowed
2350 		 * transition.
2351 		 */
2352 		rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2353 		if (rc)
2354 			new_tsec->sid = old_tsec->sid;
2355 	}
2356 
2357 	ad.type = LSM_AUDIT_DATA_FILE;
2358 	ad.u.file = bprm->file;
2359 
2360 	if (new_tsec->sid == old_tsec->sid) {
2361 		rc = avc_has_perm(old_tsec->sid, isec->sid,
2362 				  SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2363 		if (rc)
2364 			return rc;
2365 	} else {
2366 		/* Check permissions for the transition. */
2367 		rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2368 				  SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2369 		if (rc)
2370 			return rc;
2371 
2372 		rc = avc_has_perm(new_tsec->sid, isec->sid,
2373 				  SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2374 		if (rc)
2375 			return rc;
2376 
2377 		/* Check for shared state */
2378 		if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2379 			rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2380 					  SECCLASS_PROCESS, PROCESS__SHARE,
2381 					  NULL);
2382 			if (rc)
2383 				return -EPERM;
2384 		}
2385 
2386 		/* Make sure that anyone attempting to ptrace over a task that
2387 		 * changes its SID has the appropriate permit */
2388 		if (bprm->unsafe & LSM_UNSAFE_PTRACE) {
2389 			u32 ptsid = ptrace_parent_sid();
2390 			if (ptsid != 0) {
2391 				rc = avc_has_perm(ptsid, new_tsec->sid,
2392 						  SECCLASS_PROCESS,
2393 						  PROCESS__PTRACE, NULL);
2394 				if (rc)
2395 					return -EPERM;
2396 			}
2397 		}
2398 
2399 		/* Clear any possibly unsafe personality bits on exec: */
2400 		bprm->per_clear |= PER_CLEAR_ON_SETID;
2401 
2402 		/* Enable secure mode for SIDs transitions unless
2403 		   the noatsecure permission is granted between
2404 		   the two SIDs, i.e. ahp returns 0. */
2405 		rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2406 				  SECCLASS_PROCESS, PROCESS__NOATSECURE,
2407 				  NULL);
2408 		bprm->secureexec |= !!rc;
2409 	}
2410 
2411 	return 0;
2412 }
2413 
2414 static int match_file(const void *p, struct file *file, unsigned fd)
2415 {
2416 	return file_has_perm(p, file, file_to_av(file)) ? fd + 1 : 0;
2417 }
2418 
2419 /* Derived from fs/exec.c:flush_old_files. */
2420 static inline void flush_unauthorized_files(const struct cred *cred,
2421 					    struct files_struct *files)
2422 {
2423 	struct file *file, *devnull = NULL;
2424 	struct tty_struct *tty;
2425 	int drop_tty = 0;
2426 	unsigned n;
2427 
2428 	tty = get_current_tty();
2429 	if (tty) {
2430 		spin_lock(&tty->files_lock);
2431 		if (!list_empty(&tty->tty_files)) {
2432 			struct tty_file_private *file_priv;
2433 
2434 			/* Revalidate access to controlling tty.
2435 			   Use file_path_has_perm on the tty path directly
2436 			   rather than using file_has_perm, as this particular
2437 			   open file may belong to another process and we are
2438 			   only interested in the inode-based check here. */
2439 			file_priv = list_first_entry(&tty->tty_files,
2440 						struct tty_file_private, list);
2441 			file = file_priv->file;
2442 			if (file_path_has_perm(cred, file, FILE__READ | FILE__WRITE))
2443 				drop_tty = 1;
2444 		}
2445 		spin_unlock(&tty->files_lock);
2446 		tty_kref_put(tty);
2447 	}
2448 	/* Reset controlling tty. */
2449 	if (drop_tty)
2450 		no_tty();
2451 
2452 	/* Revalidate access to inherited open files. */
2453 	n = iterate_fd(files, 0, match_file, cred);
2454 	if (!n) /* none found? */
2455 		return;
2456 
2457 	devnull = dentry_open(&selinux_null, O_RDWR, cred);
2458 	if (IS_ERR(devnull))
2459 		devnull = NULL;
2460 	/* replace all the matching ones with this */
2461 	do {
2462 		replace_fd(n - 1, devnull, 0);
2463 	} while ((n = iterate_fd(files, n, match_file, cred)) != 0);
2464 	if (devnull)
2465 		fput(devnull);
2466 }
2467 
2468 /*
2469  * Prepare a process for imminent new credential changes due to exec
2470  */
2471 static void selinux_bprm_committing_creds(const struct linux_binprm *bprm)
2472 {
2473 	struct task_security_struct *new_tsec;
2474 	struct rlimit *rlim, *initrlim;
2475 	int rc, i;
2476 
2477 	new_tsec = selinux_cred(bprm->cred);
2478 	if (new_tsec->sid == new_tsec->osid)
2479 		return;
2480 
2481 	/* Close files for which the new task SID is not authorized. */
2482 	flush_unauthorized_files(bprm->cred, current->files);
2483 
2484 	/* Always clear parent death signal on SID transitions. */
2485 	current->pdeath_signal = 0;
2486 
2487 	/* Check whether the new SID can inherit resource limits from the old
2488 	 * SID.  If not, reset all soft limits to the lower of the current
2489 	 * task's hard limit and the init task's soft limit.
2490 	 *
2491 	 * Note that the setting of hard limits (even to lower them) can be
2492 	 * controlled by the setrlimit check.  The inclusion of the init task's
2493 	 * soft limit into the computation is to avoid resetting soft limits
2494 	 * higher than the default soft limit for cases where the default is
2495 	 * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2496 	 */
2497 	rc = avc_has_perm(new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
2498 			  PROCESS__RLIMITINH, NULL);
2499 	if (rc) {
2500 		/* protect against do_prlimit() */
2501 		task_lock(current);
2502 		for (i = 0; i < RLIM_NLIMITS; i++) {
2503 			rlim = current->signal->rlim + i;
2504 			initrlim = init_task.signal->rlim + i;
2505 			rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2506 		}
2507 		task_unlock(current);
2508 		if (IS_ENABLED(CONFIG_POSIX_TIMERS))
2509 			update_rlimit_cpu(current, rlimit(RLIMIT_CPU));
2510 	}
2511 }
2512 
2513 /*
2514  * Clean up the process immediately after the installation of new credentials
2515  * due to exec
2516  */
2517 static void selinux_bprm_committed_creds(const struct linux_binprm *bprm)
2518 {
2519 	const struct task_security_struct *tsec = selinux_cred(current_cred());
2520 	u32 osid, sid;
2521 	int rc;
2522 
2523 	osid = tsec->osid;
2524 	sid = tsec->sid;
2525 
2526 	if (sid == osid)
2527 		return;
2528 
2529 	/* Check whether the new SID can inherit signal state from the old SID.
2530 	 * If not, clear itimers to avoid subsequent signal generation and
2531 	 * flush and unblock signals.
2532 	 *
2533 	 * This must occur _after_ the task SID has been updated so that any
2534 	 * kill done after the flush will be checked against the new SID.
2535 	 */
2536 	rc = avc_has_perm(osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
2537 	if (rc) {
2538 		clear_itimer();
2539 
2540 		spin_lock_irq(&unrcu_pointer(current->sighand)->siglock);
2541 		if (!fatal_signal_pending(current)) {
2542 			flush_sigqueue(&current->pending);
2543 			flush_sigqueue(&current->signal->shared_pending);
2544 			flush_signal_handlers(current, 1);
2545 			sigemptyset(&current->blocked);
2546 			recalc_sigpending();
2547 		}
2548 		spin_unlock_irq(&unrcu_pointer(current->sighand)->siglock);
2549 	}
2550 
2551 	/* Wake up the parent if it is waiting so that it can recheck
2552 	 * wait permission to the new task SID. */
2553 	read_lock(&tasklist_lock);
2554 	__wake_up_parent(current, unrcu_pointer(current->real_parent));
2555 	read_unlock(&tasklist_lock);
2556 }
2557 
2558 /* superblock security operations */
2559 
2560 static int selinux_sb_alloc_security(struct super_block *sb)
2561 {
2562 	struct superblock_security_struct *sbsec = selinux_superblock(sb);
2563 
2564 	mutex_init(&sbsec->lock);
2565 	INIT_LIST_HEAD(&sbsec->isec_head);
2566 	spin_lock_init(&sbsec->isec_lock);
2567 	sbsec->sid = SECINITSID_UNLABELED;
2568 	sbsec->def_sid = SECINITSID_FILE;
2569 	sbsec->mntpoint_sid = SECINITSID_UNLABELED;
2570 
2571 	return 0;
2572 }
2573 
2574 static inline int opt_len(const char *s)
2575 {
2576 	bool open_quote = false;
2577 	int len;
2578 	char c;
2579 
2580 	for (len = 0; (c = s[len]) != '\0'; len++) {
2581 		if (c == '"')
2582 			open_quote = !open_quote;
2583 		if (c == ',' && !open_quote)
2584 			break;
2585 	}
2586 	return len;
2587 }
2588 
2589 static int selinux_sb_eat_lsm_opts(char *options, void **mnt_opts)
2590 {
2591 	char *from = options;
2592 	char *to = options;
2593 	bool first = true;
2594 	int rc;
2595 
2596 	while (1) {
2597 		int len = opt_len(from);
2598 		int token;
2599 		char *arg = NULL;
2600 
2601 		token = match_opt_prefix(from, len, &arg);
2602 
2603 		if (token != Opt_error) {
2604 			char *p, *q;
2605 
2606 			/* strip quotes */
2607 			if (arg) {
2608 				for (p = q = arg; p < from + len; p++) {
2609 					char c = *p;
2610 					if (c != '"')
2611 						*q++ = c;
2612 				}
2613 				arg = kmemdup_nul(arg, q - arg, GFP_KERNEL);
2614 				if (!arg) {
2615 					rc = -ENOMEM;
2616 					goto free_opt;
2617 				}
2618 			}
2619 			rc = selinux_add_opt(token, arg, mnt_opts);
2620 			kfree(arg);
2621 			arg = NULL;
2622 			if (unlikely(rc)) {
2623 				goto free_opt;
2624 			}
2625 		} else {
2626 			if (!first) {	// copy with preceding comma
2627 				from--;
2628 				len++;
2629 			}
2630 			if (to != from)
2631 				memmove(to, from, len);
2632 			to += len;
2633 			first = false;
2634 		}
2635 		if (!from[len])
2636 			break;
2637 		from += len + 1;
2638 	}
2639 	*to = '\0';
2640 	return 0;
2641 
2642 free_opt:
2643 	if (*mnt_opts) {
2644 		selinux_free_mnt_opts(*mnt_opts);
2645 		*mnt_opts = NULL;
2646 	}
2647 	return rc;
2648 }
2649 
2650 static int selinux_sb_mnt_opts_compat(struct super_block *sb, void *mnt_opts)
2651 {
2652 	struct selinux_mnt_opts *opts = mnt_opts;
2653 	struct superblock_security_struct *sbsec = selinux_superblock(sb);
2654 
2655 	/*
2656 	 * Superblock not initialized (i.e. no options) - reject if any
2657 	 * options specified, otherwise accept.
2658 	 */
2659 	if (!(sbsec->flags & SE_SBINITIALIZED))
2660 		return opts ? 1 : 0;
2661 
2662 	/*
2663 	 * Superblock initialized and no options specified - reject if
2664 	 * superblock has any options set, otherwise accept.
2665 	 */
2666 	if (!opts)
2667 		return (sbsec->flags & SE_MNTMASK) ? 1 : 0;
2668 
2669 	if (opts->fscontext_sid) {
2670 		if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
2671 			       opts->fscontext_sid))
2672 			return 1;
2673 	}
2674 	if (opts->context_sid) {
2675 		if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
2676 			       opts->context_sid))
2677 			return 1;
2678 	}
2679 	if (opts->rootcontext_sid) {
2680 		struct inode_security_struct *root_isec;
2681 
2682 		root_isec = backing_inode_security(sb->s_root);
2683 		if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
2684 			       opts->rootcontext_sid))
2685 			return 1;
2686 	}
2687 	if (opts->defcontext_sid) {
2688 		if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
2689 			       opts->defcontext_sid))
2690 			return 1;
2691 	}
2692 	return 0;
2693 }
2694 
2695 static int selinux_sb_remount(struct super_block *sb, void *mnt_opts)
2696 {
2697 	struct selinux_mnt_opts *opts = mnt_opts;
2698 	struct superblock_security_struct *sbsec = selinux_superblock(sb);
2699 
2700 	if (!(sbsec->flags & SE_SBINITIALIZED))
2701 		return 0;
2702 
2703 	if (!opts)
2704 		return 0;
2705 
2706 	if (opts->fscontext_sid) {
2707 		if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
2708 			       opts->fscontext_sid))
2709 			goto out_bad_option;
2710 	}
2711 	if (opts->context_sid) {
2712 		if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
2713 			       opts->context_sid))
2714 			goto out_bad_option;
2715 	}
2716 	if (opts->rootcontext_sid) {
2717 		struct inode_security_struct *root_isec;
2718 		root_isec = backing_inode_security(sb->s_root);
2719 		if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
2720 			       opts->rootcontext_sid))
2721 			goto out_bad_option;
2722 	}
2723 	if (opts->defcontext_sid) {
2724 		if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
2725 			       opts->defcontext_sid))
2726 			goto out_bad_option;
2727 	}
2728 	return 0;
2729 
2730 out_bad_option:
2731 	pr_warn("SELinux: unable to change security options "
2732 	       "during remount (dev %s, type=%s)\n", sb->s_id,
2733 	       sb->s_type->name);
2734 	return -EINVAL;
2735 }
2736 
2737 static int selinux_sb_kern_mount(const struct super_block *sb)
2738 {
2739 	const struct cred *cred = current_cred();
2740 	struct common_audit_data ad;
2741 
2742 	ad.type = LSM_AUDIT_DATA_DENTRY;
2743 	ad.u.dentry = sb->s_root;
2744 	return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2745 }
2746 
2747 static int selinux_sb_statfs(struct dentry *dentry)
2748 {
2749 	const struct cred *cred = current_cred();
2750 	struct common_audit_data ad;
2751 
2752 	ad.type = LSM_AUDIT_DATA_DENTRY;
2753 	ad.u.dentry = dentry->d_sb->s_root;
2754 	return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2755 }
2756 
2757 static int selinux_mount(const char *dev_name,
2758 			 const struct path *path,
2759 			 const char *type,
2760 			 unsigned long flags,
2761 			 void *data)
2762 {
2763 	const struct cred *cred = current_cred();
2764 
2765 	if (flags & MS_REMOUNT)
2766 		return superblock_has_perm(cred, path->dentry->d_sb,
2767 					   FILESYSTEM__REMOUNT, NULL);
2768 	else
2769 		return path_has_perm(cred, path, FILE__MOUNTON);
2770 }
2771 
2772 static int selinux_move_mount(const struct path *from_path,
2773 			      const struct path *to_path)
2774 {
2775 	const struct cred *cred = current_cred();
2776 
2777 	return path_has_perm(cred, to_path, FILE__MOUNTON);
2778 }
2779 
2780 static int selinux_umount(struct vfsmount *mnt, int flags)
2781 {
2782 	const struct cred *cred = current_cred();
2783 
2784 	return superblock_has_perm(cred, mnt->mnt_sb,
2785 				   FILESYSTEM__UNMOUNT, NULL);
2786 }
2787 
2788 static int selinux_fs_context_submount(struct fs_context *fc,
2789 				   struct super_block *reference)
2790 {
2791 	const struct superblock_security_struct *sbsec = selinux_superblock(reference);
2792 	struct selinux_mnt_opts *opts;
2793 
2794 	/*
2795 	 * Ensure that fc->security remains NULL when no options are set
2796 	 * as expected by selinux_set_mnt_opts().
2797 	 */
2798 	if (!(sbsec->flags & (FSCONTEXT_MNT|CONTEXT_MNT|DEFCONTEXT_MNT)))
2799 		return 0;
2800 
2801 	opts = kzalloc(sizeof(*opts), GFP_KERNEL);
2802 	if (!opts)
2803 		return -ENOMEM;
2804 
2805 	if (sbsec->flags & FSCONTEXT_MNT)
2806 		opts->fscontext_sid = sbsec->sid;
2807 	if (sbsec->flags & CONTEXT_MNT)
2808 		opts->context_sid = sbsec->mntpoint_sid;
2809 	if (sbsec->flags & DEFCONTEXT_MNT)
2810 		opts->defcontext_sid = sbsec->def_sid;
2811 	fc->security = opts;
2812 	return 0;
2813 }
2814 
2815 static int selinux_fs_context_dup(struct fs_context *fc,
2816 				  struct fs_context *src_fc)
2817 {
2818 	const struct selinux_mnt_opts *src = src_fc->security;
2819 
2820 	if (!src)
2821 		return 0;
2822 
2823 	fc->security = kmemdup(src, sizeof(*src), GFP_KERNEL);
2824 	return fc->security ? 0 : -ENOMEM;
2825 }
2826 
2827 static const struct fs_parameter_spec selinux_fs_parameters[] = {
2828 	fsparam_string(CONTEXT_STR,	Opt_context),
2829 	fsparam_string(DEFCONTEXT_STR,	Opt_defcontext),
2830 	fsparam_string(FSCONTEXT_STR,	Opt_fscontext),
2831 	fsparam_string(ROOTCONTEXT_STR,	Opt_rootcontext),
2832 	fsparam_flag  (SECLABEL_STR,	Opt_seclabel),
2833 	{}
2834 };
2835 
2836 static int selinux_fs_context_parse_param(struct fs_context *fc,
2837 					  struct fs_parameter *param)
2838 {
2839 	struct fs_parse_result result;
2840 	int opt;
2841 
2842 	opt = fs_parse(fc, selinux_fs_parameters, param, &result);
2843 	if (opt < 0)
2844 		return opt;
2845 
2846 	return selinux_add_opt(opt, param->string, &fc->security);
2847 }
2848 
2849 /* inode security operations */
2850 
2851 static int selinux_inode_alloc_security(struct inode *inode)
2852 {
2853 	struct inode_security_struct *isec = selinux_inode(inode);
2854 	u32 sid = current_sid();
2855 
2856 	spin_lock_init(&isec->lock);
2857 	INIT_LIST_HEAD(&isec->list);
2858 	isec->inode = inode;
2859 	isec->sid = SECINITSID_UNLABELED;
2860 	isec->sclass = SECCLASS_FILE;
2861 	isec->task_sid = sid;
2862 	isec->initialized = LABEL_INVALID;
2863 
2864 	return 0;
2865 }
2866 
2867 static void selinux_inode_free_security(struct inode *inode)
2868 {
2869 	inode_free_security(inode);
2870 }
2871 
2872 static int selinux_dentry_init_security(struct dentry *dentry, int mode,
2873 					const struct qstr *name,
2874 					const char **xattr_name, void **ctx,
2875 					u32 *ctxlen)
2876 {
2877 	u32 newsid;
2878 	int rc;
2879 
2880 	rc = selinux_determine_inode_label(selinux_cred(current_cred()),
2881 					   d_inode(dentry->d_parent), name,
2882 					   inode_mode_to_security_class(mode),
2883 					   &newsid);
2884 	if (rc)
2885 		return rc;
2886 
2887 	if (xattr_name)
2888 		*xattr_name = XATTR_NAME_SELINUX;
2889 
2890 	return security_sid_to_context(newsid, (char **)ctx,
2891 				       ctxlen);
2892 }
2893 
2894 static int selinux_dentry_create_files_as(struct dentry *dentry, int mode,
2895 					  struct qstr *name,
2896 					  const struct cred *old,
2897 					  struct cred *new)
2898 {
2899 	u32 newsid;
2900 	int rc;
2901 	struct task_security_struct *tsec;
2902 
2903 	rc = selinux_determine_inode_label(selinux_cred(old),
2904 					   d_inode(dentry->d_parent), name,
2905 					   inode_mode_to_security_class(mode),
2906 					   &newsid);
2907 	if (rc)
2908 		return rc;
2909 
2910 	tsec = selinux_cred(new);
2911 	tsec->create_sid = newsid;
2912 	return 0;
2913 }
2914 
2915 static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2916 				       const struct qstr *qstr,
2917 				       struct xattr *xattrs, int *xattr_count)
2918 {
2919 	const struct task_security_struct *tsec = selinux_cred(current_cred());
2920 	struct superblock_security_struct *sbsec;
2921 	struct xattr *xattr = lsm_get_xattr_slot(xattrs, xattr_count);
2922 	u32 newsid, clen;
2923 	int rc;
2924 	char *context;
2925 
2926 	sbsec = selinux_superblock(dir->i_sb);
2927 
2928 	newsid = tsec->create_sid;
2929 
2930 	rc = selinux_determine_inode_label(tsec, dir, qstr,
2931 		inode_mode_to_security_class(inode->i_mode),
2932 		&newsid);
2933 	if (rc)
2934 		return rc;
2935 
2936 	/* Possibly defer initialization to selinux_complete_init. */
2937 	if (sbsec->flags & SE_SBINITIALIZED) {
2938 		struct inode_security_struct *isec = selinux_inode(inode);
2939 		isec->sclass = inode_mode_to_security_class(inode->i_mode);
2940 		isec->sid = newsid;
2941 		isec->initialized = LABEL_INITIALIZED;
2942 	}
2943 
2944 	if (!selinux_initialized() ||
2945 	    !(sbsec->flags & SBLABEL_MNT))
2946 		return -EOPNOTSUPP;
2947 
2948 	if (xattr) {
2949 		rc = security_sid_to_context_force(newsid,
2950 						   &context, &clen);
2951 		if (rc)
2952 			return rc;
2953 		xattr->value = context;
2954 		xattr->value_len = clen;
2955 		xattr->name = XATTR_SELINUX_SUFFIX;
2956 	}
2957 
2958 	return 0;
2959 }
2960 
2961 static int selinux_inode_init_security_anon(struct inode *inode,
2962 					    const struct qstr *name,
2963 					    const struct inode *context_inode)
2964 {
2965 	const struct task_security_struct *tsec = selinux_cred(current_cred());
2966 	struct common_audit_data ad;
2967 	struct inode_security_struct *isec;
2968 	int rc;
2969 
2970 	if (unlikely(!selinux_initialized()))
2971 		return 0;
2972 
2973 	isec = selinux_inode(inode);
2974 
2975 	/*
2976 	 * We only get here once per ephemeral inode.  The inode has
2977 	 * been initialized via inode_alloc_security but is otherwise
2978 	 * untouched.
2979 	 */
2980 
2981 	if (context_inode) {
2982 		struct inode_security_struct *context_isec =
2983 			selinux_inode(context_inode);
2984 		if (context_isec->initialized != LABEL_INITIALIZED) {
2985 			pr_err("SELinux:  context_inode is not initialized\n");
2986 			return -EACCES;
2987 		}
2988 
2989 		isec->sclass = context_isec->sclass;
2990 		isec->sid = context_isec->sid;
2991 	} else {
2992 		isec->sclass = SECCLASS_ANON_INODE;
2993 		rc = security_transition_sid(
2994 			tsec->sid, tsec->sid,
2995 			isec->sclass, name, &isec->sid);
2996 		if (rc)
2997 			return rc;
2998 	}
2999 
3000 	isec->initialized = LABEL_INITIALIZED;
3001 	/*
3002 	 * Now that we've initialized security, check whether we're
3003 	 * allowed to actually create this type of anonymous inode.
3004 	 */
3005 
3006 	ad.type = LSM_AUDIT_DATA_ANONINODE;
3007 	ad.u.anonclass = name ? (const char *)name->name : "?";
3008 
3009 	return avc_has_perm(tsec->sid,
3010 			    isec->sid,
3011 			    isec->sclass,
3012 			    FILE__CREATE,
3013 			    &ad);
3014 }
3015 
3016 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
3017 {
3018 	return may_create(dir, dentry, SECCLASS_FILE);
3019 }
3020 
3021 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
3022 {
3023 	return may_link(dir, old_dentry, MAY_LINK);
3024 }
3025 
3026 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
3027 {
3028 	return may_link(dir, dentry, MAY_UNLINK);
3029 }
3030 
3031 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
3032 {
3033 	return may_create(dir, dentry, SECCLASS_LNK_FILE);
3034 }
3035 
3036 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mask)
3037 {
3038 	return may_create(dir, dentry, SECCLASS_DIR);
3039 }
3040 
3041 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
3042 {
3043 	return may_link(dir, dentry, MAY_RMDIR);
3044 }
3045 
3046 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3047 {
3048 	return may_create(dir, dentry, inode_mode_to_security_class(mode));
3049 }
3050 
3051 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
3052 				struct inode *new_inode, struct dentry *new_dentry)
3053 {
3054 	return may_rename(old_inode, old_dentry, new_inode, new_dentry);
3055 }
3056 
3057 static int selinux_inode_readlink(struct dentry *dentry)
3058 {
3059 	const struct cred *cred = current_cred();
3060 
3061 	return dentry_has_perm(cred, dentry, FILE__READ);
3062 }
3063 
3064 static int selinux_inode_follow_link(struct dentry *dentry, struct inode *inode,
3065 				     bool rcu)
3066 {
3067 	const struct cred *cred = current_cred();
3068 	struct common_audit_data ad;
3069 	struct inode_security_struct *isec;
3070 	u32 sid;
3071 
3072 	ad.type = LSM_AUDIT_DATA_DENTRY;
3073 	ad.u.dentry = dentry;
3074 	sid = cred_sid(cred);
3075 	isec = inode_security_rcu(inode, rcu);
3076 	if (IS_ERR(isec))
3077 		return PTR_ERR(isec);
3078 
3079 	return avc_has_perm(sid, isec->sid, isec->sclass, FILE__READ, &ad);
3080 }
3081 
3082 static noinline int audit_inode_permission(struct inode *inode,
3083 					   u32 perms, u32 audited, u32 denied,
3084 					   int result)
3085 {
3086 	struct common_audit_data ad;
3087 	struct inode_security_struct *isec = selinux_inode(inode);
3088 
3089 	ad.type = LSM_AUDIT_DATA_INODE;
3090 	ad.u.inode = inode;
3091 
3092 	return slow_avc_audit(current_sid(), isec->sid, isec->sclass, perms,
3093 			    audited, denied, result, &ad);
3094 }
3095 
3096 static int selinux_inode_permission(struct inode *inode, int mask)
3097 {
3098 	const struct cred *cred = current_cred();
3099 	u32 perms;
3100 	bool from_access;
3101 	bool no_block = mask & MAY_NOT_BLOCK;
3102 	struct inode_security_struct *isec;
3103 	u32 sid;
3104 	struct av_decision avd;
3105 	int rc, rc2;
3106 	u32 audited, denied;
3107 
3108 	from_access = mask & MAY_ACCESS;
3109 	mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND);
3110 
3111 	/* No permission to check.  Existence test. */
3112 	if (!mask)
3113 		return 0;
3114 
3115 	if (unlikely(IS_PRIVATE(inode)))
3116 		return 0;
3117 
3118 	perms = file_mask_to_av(inode->i_mode, mask);
3119 
3120 	sid = cred_sid(cred);
3121 	isec = inode_security_rcu(inode, no_block);
3122 	if (IS_ERR(isec))
3123 		return PTR_ERR(isec);
3124 
3125 	rc = avc_has_perm_noaudit(sid, isec->sid, isec->sclass, perms, 0,
3126 				  &avd);
3127 	audited = avc_audit_required(perms, &avd, rc,
3128 				     from_access ? FILE__AUDIT_ACCESS : 0,
3129 				     &denied);
3130 	if (likely(!audited))
3131 		return rc;
3132 
3133 	rc2 = audit_inode_permission(inode, perms, audited, denied, rc);
3134 	if (rc2)
3135 		return rc2;
3136 	return rc;
3137 }
3138 
3139 static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
3140 {
3141 	const struct cred *cred = current_cred();
3142 	struct inode *inode = d_backing_inode(dentry);
3143 	unsigned int ia_valid = iattr->ia_valid;
3144 	__u32 av = FILE__WRITE;
3145 
3146 	/* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */
3147 	if (ia_valid & ATTR_FORCE) {
3148 		ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE |
3149 			      ATTR_FORCE);
3150 		if (!ia_valid)
3151 			return 0;
3152 	}
3153 
3154 	if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
3155 			ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET))
3156 		return dentry_has_perm(cred, dentry, FILE__SETATTR);
3157 
3158 	if (selinux_policycap_openperm() &&
3159 	    inode->i_sb->s_magic != SOCKFS_MAGIC &&
3160 	    (ia_valid & ATTR_SIZE) &&
3161 	    !(ia_valid & ATTR_FILE))
3162 		av |= FILE__OPEN;
3163 
3164 	return dentry_has_perm(cred, dentry, av);
3165 }
3166 
3167 static int selinux_inode_getattr(const struct path *path)
3168 {
3169 	return path_has_perm(current_cred(), path, FILE__GETATTR);
3170 }
3171 
3172 static bool has_cap_mac_admin(bool audit)
3173 {
3174 	const struct cred *cred = current_cred();
3175 	unsigned int opts = audit ? CAP_OPT_NONE : CAP_OPT_NOAUDIT;
3176 
3177 	if (cap_capable(cred, &init_user_ns, CAP_MAC_ADMIN, opts))
3178 		return false;
3179 	if (cred_has_capability(cred, CAP_MAC_ADMIN, opts, true))
3180 		return false;
3181 	return true;
3182 }
3183 
3184 static int selinux_inode_setxattr(struct mnt_idmap *idmap,
3185 				  struct dentry *dentry, const char *name,
3186 				  const void *value, size_t size, int flags)
3187 {
3188 	struct inode *inode = d_backing_inode(dentry);
3189 	struct inode_security_struct *isec;
3190 	struct superblock_security_struct *sbsec;
3191 	struct common_audit_data ad;
3192 	u32 newsid, sid = current_sid();
3193 	int rc = 0;
3194 
3195 	if (strcmp(name, XATTR_NAME_SELINUX)) {
3196 		rc = cap_inode_setxattr(dentry, name, value, size, flags);
3197 		if (rc)
3198 			return rc;
3199 
3200 		/* Not an attribute we recognize, so just check the
3201 		   ordinary setattr permission. */
3202 		return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3203 	}
3204 
3205 	if (!selinux_initialized())
3206 		return (inode_owner_or_capable(idmap, inode) ? 0 : -EPERM);
3207 
3208 	sbsec = selinux_superblock(inode->i_sb);
3209 	if (!(sbsec->flags & SBLABEL_MNT))
3210 		return -EOPNOTSUPP;
3211 
3212 	if (!inode_owner_or_capable(idmap, inode))
3213 		return -EPERM;
3214 
3215 	ad.type = LSM_AUDIT_DATA_DENTRY;
3216 	ad.u.dentry = dentry;
3217 
3218 	isec = backing_inode_security(dentry);
3219 	rc = avc_has_perm(sid, isec->sid, isec->sclass,
3220 			  FILE__RELABELFROM, &ad);
3221 	if (rc)
3222 		return rc;
3223 
3224 	rc = security_context_to_sid(value, size, &newsid,
3225 				     GFP_KERNEL);
3226 	if (rc == -EINVAL) {
3227 		if (!has_cap_mac_admin(true)) {
3228 			struct audit_buffer *ab;
3229 			size_t audit_size;
3230 
3231 			/* We strip a nul only if it is at the end, otherwise the
3232 			 * context contains a nul and we should audit that */
3233 			if (value) {
3234 				const char *str = value;
3235 
3236 				if (str[size - 1] == '\0')
3237 					audit_size = size - 1;
3238 				else
3239 					audit_size = size;
3240 			} else {
3241 				audit_size = 0;
3242 			}
3243 			ab = audit_log_start(audit_context(),
3244 					     GFP_ATOMIC, AUDIT_SELINUX_ERR);
3245 			if (!ab)
3246 				return rc;
3247 			audit_log_format(ab, "op=setxattr invalid_context=");
3248 			audit_log_n_untrustedstring(ab, value, audit_size);
3249 			audit_log_end(ab);
3250 
3251 			return rc;
3252 		}
3253 		rc = security_context_to_sid_force(value,
3254 						   size, &newsid);
3255 	}
3256 	if (rc)
3257 		return rc;
3258 
3259 	rc = avc_has_perm(sid, newsid, isec->sclass,
3260 			  FILE__RELABELTO, &ad);
3261 	if (rc)
3262 		return rc;
3263 
3264 	rc = security_validate_transition(isec->sid, newsid,
3265 					  sid, isec->sclass);
3266 	if (rc)
3267 		return rc;
3268 
3269 	return avc_has_perm(newsid,
3270 			    sbsec->sid,
3271 			    SECCLASS_FILESYSTEM,
3272 			    FILESYSTEM__ASSOCIATE,
3273 			    &ad);
3274 }
3275 
3276 static int selinux_inode_set_acl(struct mnt_idmap *idmap,
3277 				 struct dentry *dentry, const char *acl_name,
3278 				 struct posix_acl *kacl)
3279 {
3280 	return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3281 }
3282 
3283 static int selinux_inode_get_acl(struct mnt_idmap *idmap,
3284 				 struct dentry *dentry, const char *acl_name)
3285 {
3286 	return dentry_has_perm(current_cred(), dentry, FILE__GETATTR);
3287 }
3288 
3289 static int selinux_inode_remove_acl(struct mnt_idmap *idmap,
3290 				    struct dentry *dentry, const char *acl_name)
3291 {
3292 	return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3293 }
3294 
3295 static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
3296 					const void *value, size_t size,
3297 					int flags)
3298 {
3299 	struct inode *inode = d_backing_inode(dentry);
3300 	struct inode_security_struct *isec;
3301 	u32 newsid;
3302 	int rc;
3303 
3304 	if (strcmp(name, XATTR_NAME_SELINUX)) {
3305 		/* Not an attribute we recognize, so nothing to do. */
3306 		return;
3307 	}
3308 
3309 	if (!selinux_initialized()) {
3310 		/* If we haven't even been initialized, then we can't validate
3311 		 * against a policy, so leave the label as invalid. It may
3312 		 * resolve to a valid label on the next revalidation try if
3313 		 * we've since initialized.
3314 		 */
3315 		return;
3316 	}
3317 
3318 	rc = security_context_to_sid_force(value, size,
3319 					   &newsid);
3320 	if (rc) {
3321 		pr_err("SELinux:  unable to map context to SID"
3322 		       "for (%s, %lu), rc=%d\n",
3323 		       inode->i_sb->s_id, inode->i_ino, -rc);
3324 		return;
3325 	}
3326 
3327 	isec = backing_inode_security(dentry);
3328 	spin_lock(&isec->lock);
3329 	isec->sclass = inode_mode_to_security_class(inode->i_mode);
3330 	isec->sid = newsid;
3331 	isec->initialized = LABEL_INITIALIZED;
3332 	spin_unlock(&isec->lock);
3333 }
3334 
3335 static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
3336 {
3337 	const struct cred *cred = current_cred();
3338 
3339 	return dentry_has_perm(cred, dentry, FILE__GETATTR);
3340 }
3341 
3342 static int selinux_inode_listxattr(struct dentry *dentry)
3343 {
3344 	const struct cred *cred = current_cred();
3345 
3346 	return dentry_has_perm(cred, dentry, FILE__GETATTR);
3347 }
3348 
3349 static int selinux_inode_removexattr(struct mnt_idmap *idmap,
3350 				     struct dentry *dentry, const char *name)
3351 {
3352 	if (strcmp(name, XATTR_NAME_SELINUX)) {
3353 		int rc = cap_inode_removexattr(idmap, dentry, name);
3354 		if (rc)
3355 			return rc;
3356 
3357 		/* Not an attribute we recognize, so just check the
3358 		   ordinary setattr permission. */
3359 		return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3360 	}
3361 
3362 	if (!selinux_initialized())
3363 		return 0;
3364 
3365 	/* No one is allowed to remove a SELinux security label.
3366 	   You can change the label, but all data must be labeled. */
3367 	return -EACCES;
3368 }
3369 
3370 static int selinux_path_notify(const struct path *path, u64 mask,
3371 						unsigned int obj_type)
3372 {
3373 	int ret;
3374 	u32 perm;
3375 
3376 	struct common_audit_data ad;
3377 
3378 	ad.type = LSM_AUDIT_DATA_PATH;
3379 	ad.u.path = *path;
3380 
3381 	/*
3382 	 * Set permission needed based on the type of mark being set.
3383 	 * Performs an additional check for sb watches.
3384 	 */
3385 	switch (obj_type) {
3386 	case FSNOTIFY_OBJ_TYPE_VFSMOUNT:
3387 		perm = FILE__WATCH_MOUNT;
3388 		break;
3389 	case FSNOTIFY_OBJ_TYPE_SB:
3390 		perm = FILE__WATCH_SB;
3391 		ret = superblock_has_perm(current_cred(), path->dentry->d_sb,
3392 						FILESYSTEM__WATCH, &ad);
3393 		if (ret)
3394 			return ret;
3395 		break;
3396 	case FSNOTIFY_OBJ_TYPE_INODE:
3397 		perm = FILE__WATCH;
3398 		break;
3399 	default:
3400 		return -EINVAL;
3401 	}
3402 
3403 	/* blocking watches require the file:watch_with_perm permission */
3404 	if (mask & (ALL_FSNOTIFY_PERM_EVENTS))
3405 		perm |= FILE__WATCH_WITH_PERM;
3406 
3407 	/* watches on read-like events need the file:watch_reads permission */
3408 	if (mask & (FS_ACCESS | FS_ACCESS_PERM | FS_CLOSE_NOWRITE))
3409 		perm |= FILE__WATCH_READS;
3410 
3411 	return path_has_perm(current_cred(), path, perm);
3412 }
3413 
3414 /*
3415  * Copy the inode security context value to the user.
3416  *
3417  * Permission check is handled by selinux_inode_getxattr hook.
3418  */
3419 static int selinux_inode_getsecurity(struct mnt_idmap *idmap,
3420 				     struct inode *inode, const char *name,
3421 				     void **buffer, bool alloc)
3422 {
3423 	u32 size;
3424 	int error;
3425 	char *context = NULL;
3426 	struct inode_security_struct *isec;
3427 
3428 	/*
3429 	 * If we're not initialized yet, then we can't validate contexts, so
3430 	 * just let vfs_getxattr fall back to using the on-disk xattr.
3431 	 */
3432 	if (!selinux_initialized() ||
3433 	    strcmp(name, XATTR_SELINUX_SUFFIX))
3434 		return -EOPNOTSUPP;
3435 
3436 	/*
3437 	 * If the caller has CAP_MAC_ADMIN, then get the raw context
3438 	 * value even if it is not defined by current policy; otherwise,
3439 	 * use the in-core value under current policy.
3440 	 * Use the non-auditing forms of the permission checks since
3441 	 * getxattr may be called by unprivileged processes commonly
3442 	 * and lack of permission just means that we fall back to the
3443 	 * in-core context value, not a denial.
3444 	 */
3445 	isec = inode_security(inode);
3446 	if (has_cap_mac_admin(false))
3447 		error = security_sid_to_context_force(isec->sid, &context,
3448 						      &size);
3449 	else
3450 		error = security_sid_to_context(isec->sid,
3451 						&context, &size);
3452 	if (error)
3453 		return error;
3454 	error = size;
3455 	if (alloc) {
3456 		*buffer = context;
3457 		goto out_nofree;
3458 	}
3459 	kfree(context);
3460 out_nofree:
3461 	return error;
3462 }
3463 
3464 static int selinux_inode_setsecurity(struct inode *inode, const char *name,
3465 				     const void *value, size_t size, int flags)
3466 {
3467 	struct inode_security_struct *isec = inode_security_novalidate(inode);
3468 	struct superblock_security_struct *sbsec;
3469 	u32 newsid;
3470 	int rc;
3471 
3472 	if (strcmp(name, XATTR_SELINUX_SUFFIX))
3473 		return -EOPNOTSUPP;
3474 
3475 	sbsec = selinux_superblock(inode->i_sb);
3476 	if (!(sbsec->flags & SBLABEL_MNT))
3477 		return -EOPNOTSUPP;
3478 
3479 	if (!value || !size)
3480 		return -EACCES;
3481 
3482 	rc = security_context_to_sid(value, size, &newsid,
3483 				     GFP_KERNEL);
3484 	if (rc)
3485 		return rc;
3486 
3487 	spin_lock(&isec->lock);
3488 	isec->sclass = inode_mode_to_security_class(inode->i_mode);
3489 	isec->sid = newsid;
3490 	isec->initialized = LABEL_INITIALIZED;
3491 	spin_unlock(&isec->lock);
3492 	return 0;
3493 }
3494 
3495 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
3496 {
3497 	const int len = sizeof(XATTR_NAME_SELINUX);
3498 
3499 	if (!selinux_initialized())
3500 		return 0;
3501 
3502 	if (buffer && len <= buffer_size)
3503 		memcpy(buffer, XATTR_NAME_SELINUX, len);
3504 	return len;
3505 }
3506 
3507 static void selinux_inode_getsecid(struct inode *inode, u32 *secid)
3508 {
3509 	struct inode_security_struct *isec = inode_security_novalidate(inode);
3510 	*secid = isec->sid;
3511 }
3512 
3513 static int selinux_inode_copy_up(struct dentry *src, struct cred **new)
3514 {
3515 	u32 sid;
3516 	struct task_security_struct *tsec;
3517 	struct cred *new_creds = *new;
3518 
3519 	if (new_creds == NULL) {
3520 		new_creds = prepare_creds();
3521 		if (!new_creds)
3522 			return -ENOMEM;
3523 	}
3524 
3525 	tsec = selinux_cred(new_creds);
3526 	/* Get label from overlay inode and set it in create_sid */
3527 	selinux_inode_getsecid(d_inode(src), &sid);
3528 	tsec->create_sid = sid;
3529 	*new = new_creds;
3530 	return 0;
3531 }
3532 
3533 static int selinux_inode_copy_up_xattr(const char *name)
3534 {
3535 	/* The copy_up hook above sets the initial context on an inode, but we
3536 	 * don't then want to overwrite it by blindly copying all the lower
3537 	 * xattrs up.  Instead, we have to filter out SELinux-related xattrs.
3538 	 */
3539 	if (strcmp(name, XATTR_NAME_SELINUX) == 0)
3540 		return 1; /* Discard */
3541 	/*
3542 	 * Any other attribute apart from SELINUX is not claimed, supported
3543 	 * by selinux.
3544 	 */
3545 	return -EOPNOTSUPP;
3546 }
3547 
3548 /* kernfs node operations */
3549 
3550 static int selinux_kernfs_init_security(struct kernfs_node *kn_dir,
3551 					struct kernfs_node *kn)
3552 {
3553 	const struct task_security_struct *tsec = selinux_cred(current_cred());
3554 	u32 parent_sid, newsid, clen;
3555 	int rc;
3556 	char *context;
3557 
3558 	rc = kernfs_xattr_get(kn_dir, XATTR_NAME_SELINUX, NULL, 0);
3559 	if (rc == -ENODATA)
3560 		return 0;
3561 	else if (rc < 0)
3562 		return rc;
3563 
3564 	clen = (u32)rc;
3565 	context = kmalloc(clen, GFP_KERNEL);
3566 	if (!context)
3567 		return -ENOMEM;
3568 
3569 	rc = kernfs_xattr_get(kn_dir, XATTR_NAME_SELINUX, context, clen);
3570 	if (rc < 0) {
3571 		kfree(context);
3572 		return rc;
3573 	}
3574 
3575 	rc = security_context_to_sid(context, clen, &parent_sid,
3576 				     GFP_KERNEL);
3577 	kfree(context);
3578 	if (rc)
3579 		return rc;
3580 
3581 	if (tsec->create_sid) {
3582 		newsid = tsec->create_sid;
3583 	} else {
3584 		u16 secclass = inode_mode_to_security_class(kn->mode);
3585 		struct qstr q;
3586 
3587 		q.name = kn->name;
3588 		q.hash_len = hashlen_string(kn_dir, kn->name);
3589 
3590 		rc = security_transition_sid(tsec->sid,
3591 					     parent_sid, secclass, &q,
3592 					     &newsid);
3593 		if (rc)
3594 			return rc;
3595 	}
3596 
3597 	rc = security_sid_to_context_force(newsid,
3598 					   &context, &clen);
3599 	if (rc)
3600 		return rc;
3601 
3602 	rc = kernfs_xattr_set(kn, XATTR_NAME_SELINUX, context, clen,
3603 			      XATTR_CREATE);
3604 	kfree(context);
3605 	return rc;
3606 }
3607 
3608 
3609 /* file security operations */
3610 
3611 static int selinux_revalidate_file_permission(struct file *file, int mask)
3612 {
3613 	const struct cred *cred = current_cred();
3614 	struct inode *inode = file_inode(file);
3615 
3616 	/* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
3617 	if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
3618 		mask |= MAY_APPEND;
3619 
3620 	return file_has_perm(cred, file,
3621 			     file_mask_to_av(inode->i_mode, mask));
3622 }
3623 
3624 static int selinux_file_permission(struct file *file, int mask)
3625 {
3626 	struct inode *inode = file_inode(file);
3627 	struct file_security_struct *fsec = selinux_file(file);
3628 	struct inode_security_struct *isec;
3629 	u32 sid = current_sid();
3630 
3631 	if (!mask)
3632 		/* No permission to check.  Existence test. */
3633 		return 0;
3634 
3635 	isec = inode_security(inode);
3636 	if (sid == fsec->sid && fsec->isid == isec->sid &&
3637 	    fsec->pseqno == avc_policy_seqno())
3638 		/* No change since file_open check. */
3639 		return 0;
3640 
3641 	return selinux_revalidate_file_permission(file, mask);
3642 }
3643 
3644 static int selinux_file_alloc_security(struct file *file)
3645 {
3646 	struct file_security_struct *fsec = selinux_file(file);
3647 	u32 sid = current_sid();
3648 
3649 	fsec->sid = sid;
3650 	fsec->fown_sid = sid;
3651 
3652 	return 0;
3653 }
3654 
3655 /*
3656  * Check whether a task has the ioctl permission and cmd
3657  * operation to an inode.
3658  */
3659 static int ioctl_has_perm(const struct cred *cred, struct file *file,
3660 		u32 requested, u16 cmd)
3661 {
3662 	struct common_audit_data ad;
3663 	struct file_security_struct *fsec = selinux_file(file);
3664 	struct inode *inode = file_inode(file);
3665 	struct inode_security_struct *isec;
3666 	struct lsm_ioctlop_audit ioctl;
3667 	u32 ssid = cred_sid(cred);
3668 	int rc;
3669 	u8 driver = cmd >> 8;
3670 	u8 xperm = cmd & 0xff;
3671 
3672 	ad.type = LSM_AUDIT_DATA_IOCTL_OP;
3673 	ad.u.op = &ioctl;
3674 	ad.u.op->cmd = cmd;
3675 	ad.u.op->path = file->f_path;
3676 
3677 	if (ssid != fsec->sid) {
3678 		rc = avc_has_perm(ssid, fsec->sid,
3679 				SECCLASS_FD,
3680 				FD__USE,
3681 				&ad);
3682 		if (rc)
3683 			goto out;
3684 	}
3685 
3686 	if (unlikely(IS_PRIVATE(inode)))
3687 		return 0;
3688 
3689 	isec = inode_security(inode);
3690 	rc = avc_has_extended_perms(ssid, isec->sid, isec->sclass,
3691 				    requested, driver, xperm, &ad);
3692 out:
3693 	return rc;
3694 }
3695 
3696 static int selinux_file_ioctl(struct file *file, unsigned int cmd,
3697 			      unsigned long arg)
3698 {
3699 	const struct cred *cred = current_cred();
3700 	int error = 0;
3701 
3702 	switch (cmd) {
3703 	case FIONREAD:
3704 	case FIBMAP:
3705 	case FIGETBSZ:
3706 	case FS_IOC_GETFLAGS:
3707 	case FS_IOC_GETVERSION:
3708 		error = file_has_perm(cred, file, FILE__GETATTR);
3709 		break;
3710 
3711 	case FS_IOC_SETFLAGS:
3712 	case FS_IOC_SETVERSION:
3713 		error = file_has_perm(cred, file, FILE__SETATTR);
3714 		break;
3715 
3716 	/* sys_ioctl() checks */
3717 	case FIONBIO:
3718 	case FIOASYNC:
3719 		error = file_has_perm(cred, file, 0);
3720 		break;
3721 
3722 	case KDSKBENT:
3723 	case KDSKBSENT:
3724 		error = cred_has_capability(cred, CAP_SYS_TTY_CONFIG,
3725 					    CAP_OPT_NONE, true);
3726 		break;
3727 
3728 	case FIOCLEX:
3729 	case FIONCLEX:
3730 		if (!selinux_policycap_ioctl_skip_cloexec())
3731 			error = ioctl_has_perm(cred, file, FILE__IOCTL, (u16) cmd);
3732 		break;
3733 
3734 	/* default case assumes that the command will go
3735 	 * to the file's ioctl() function.
3736 	 */
3737 	default:
3738 		error = ioctl_has_perm(cred, file, FILE__IOCTL, (u16) cmd);
3739 	}
3740 	return error;
3741 }
3742 
3743 static int selinux_file_ioctl_compat(struct file *file, unsigned int cmd,
3744 			      unsigned long arg)
3745 {
3746 	/*
3747 	 * If we are in a 64-bit kernel running 32-bit userspace, we need to
3748 	 * make sure we don't compare 32-bit flags to 64-bit flags.
3749 	 */
3750 	switch (cmd) {
3751 	case FS_IOC32_GETFLAGS:
3752 		cmd = FS_IOC_GETFLAGS;
3753 		break;
3754 	case FS_IOC32_SETFLAGS:
3755 		cmd = FS_IOC_SETFLAGS;
3756 		break;
3757 	case FS_IOC32_GETVERSION:
3758 		cmd = FS_IOC_GETVERSION;
3759 		break;
3760 	case FS_IOC32_SETVERSION:
3761 		cmd = FS_IOC_SETVERSION;
3762 		break;
3763 	default:
3764 		break;
3765 	}
3766 
3767 	return selinux_file_ioctl(file, cmd, arg);
3768 }
3769 
3770 static int default_noexec __ro_after_init;
3771 
3772 static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
3773 {
3774 	const struct cred *cred = current_cred();
3775 	u32 sid = cred_sid(cred);
3776 	int rc = 0;
3777 
3778 	if (default_noexec &&
3779 	    (prot & PROT_EXEC) && (!file || IS_PRIVATE(file_inode(file)) ||
3780 				   (!shared && (prot & PROT_WRITE)))) {
3781 		/*
3782 		 * We are making executable an anonymous mapping or a
3783 		 * private file mapping that will also be writable.
3784 		 * This has an additional check.
3785 		 */
3786 		rc = avc_has_perm(sid, sid, SECCLASS_PROCESS,
3787 				  PROCESS__EXECMEM, NULL);
3788 		if (rc)
3789 			goto error;
3790 	}
3791 
3792 	if (file) {
3793 		/* read access is always possible with a mapping */
3794 		u32 av = FILE__READ;
3795 
3796 		/* write access only matters if the mapping is shared */
3797 		if (shared && (prot & PROT_WRITE))
3798 			av |= FILE__WRITE;
3799 
3800 		if (prot & PROT_EXEC)
3801 			av |= FILE__EXECUTE;
3802 
3803 		return file_has_perm(cred, file, av);
3804 	}
3805 
3806 error:
3807 	return rc;
3808 }
3809 
3810 static int selinux_mmap_addr(unsigned long addr)
3811 {
3812 	int rc = 0;
3813 
3814 	if (addr < CONFIG_LSM_MMAP_MIN_ADDR) {
3815 		u32 sid = current_sid();
3816 		rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT,
3817 				  MEMPROTECT__MMAP_ZERO, NULL);
3818 	}
3819 
3820 	return rc;
3821 }
3822 
3823 static int selinux_mmap_file(struct file *file,
3824 			     unsigned long reqprot __always_unused,
3825 			     unsigned long prot, unsigned long flags)
3826 {
3827 	struct common_audit_data ad;
3828 	int rc;
3829 
3830 	if (file) {
3831 		ad.type = LSM_AUDIT_DATA_FILE;
3832 		ad.u.file = file;
3833 		rc = inode_has_perm(current_cred(), file_inode(file),
3834 				    FILE__MAP, &ad);
3835 		if (rc)
3836 			return rc;
3837 	}
3838 
3839 	return file_map_prot_check(file, prot,
3840 				   (flags & MAP_TYPE) == MAP_SHARED);
3841 }
3842 
3843 static int selinux_file_mprotect(struct vm_area_struct *vma,
3844 				 unsigned long reqprot __always_unused,
3845 				 unsigned long prot)
3846 {
3847 	const struct cred *cred = current_cred();
3848 	u32 sid = cred_sid(cred);
3849 
3850 	if (default_noexec &&
3851 	    (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3852 		int rc = 0;
3853 		if (vma_is_initial_heap(vma)) {
3854 			rc = avc_has_perm(sid, sid, SECCLASS_PROCESS,
3855 					  PROCESS__EXECHEAP, NULL);
3856 		} else if (!vma->vm_file && (vma_is_initial_stack(vma) ||
3857 			    vma_is_stack_for_current(vma))) {
3858 			rc = avc_has_perm(sid, sid, SECCLASS_PROCESS,
3859 					  PROCESS__EXECSTACK, NULL);
3860 		} else if (vma->vm_file && vma->anon_vma) {
3861 			/*
3862 			 * We are making executable a file mapping that has
3863 			 * had some COW done. Since pages might have been
3864 			 * written, check ability to execute the possibly
3865 			 * modified content.  This typically should only
3866 			 * occur for text relocations.
3867 			 */
3868 			rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3869 		}
3870 		if (rc)
3871 			return rc;
3872 	}
3873 
3874 	return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3875 }
3876 
3877 static int selinux_file_lock(struct file *file, unsigned int cmd)
3878 {
3879 	const struct cred *cred = current_cred();
3880 
3881 	return file_has_perm(cred, file, FILE__LOCK);
3882 }
3883 
3884 static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3885 			      unsigned long arg)
3886 {
3887 	const struct cred *cred = current_cred();
3888 	int err = 0;
3889 
3890 	switch (cmd) {
3891 	case F_SETFL:
3892 		if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3893 			err = file_has_perm(cred, file, FILE__WRITE);
3894 			break;
3895 		}
3896 		fallthrough;
3897 	case F_SETOWN:
3898 	case F_SETSIG:
3899 	case F_GETFL:
3900 	case F_GETOWN:
3901 	case F_GETSIG:
3902 	case F_GETOWNER_UIDS:
3903 		/* Just check FD__USE permission */
3904 		err = file_has_perm(cred, file, 0);
3905 		break;
3906 	case F_GETLK:
3907 	case F_SETLK:
3908 	case F_SETLKW:
3909 	case F_OFD_GETLK:
3910 	case F_OFD_SETLK:
3911 	case F_OFD_SETLKW:
3912 #if BITS_PER_LONG == 32
3913 	case F_GETLK64:
3914 	case F_SETLK64:
3915 	case F_SETLKW64:
3916 #endif
3917 		err = file_has_perm(cred, file, FILE__LOCK);
3918 		break;
3919 	}
3920 
3921 	return err;
3922 }
3923 
3924 static void selinux_file_set_fowner(struct file *file)
3925 {
3926 	struct file_security_struct *fsec;
3927 
3928 	fsec = selinux_file(file);
3929 	fsec->fown_sid = current_sid();
3930 }
3931 
3932 static int selinux_file_send_sigiotask(struct task_struct *tsk,
3933 				       struct fown_struct *fown, int signum)
3934 {
3935 	struct file *file;
3936 	u32 sid = task_sid_obj(tsk);
3937 	u32 perm;
3938 	struct file_security_struct *fsec;
3939 
3940 	/* struct fown_struct is never outside the context of a struct file */
3941 	file = container_of(fown, struct file, f_owner);
3942 
3943 	fsec = selinux_file(file);
3944 
3945 	if (!signum)
3946 		perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3947 	else
3948 		perm = signal_to_av(signum);
3949 
3950 	return avc_has_perm(fsec->fown_sid, sid,
3951 			    SECCLASS_PROCESS, perm, NULL);
3952 }
3953 
3954 static int selinux_file_receive(struct file *file)
3955 {
3956 	const struct cred *cred = current_cred();
3957 
3958 	return file_has_perm(cred, file, file_to_av(file));
3959 }
3960 
3961 static int selinux_file_open(struct file *file)
3962 {
3963 	struct file_security_struct *fsec;
3964 	struct inode_security_struct *isec;
3965 
3966 	fsec = selinux_file(file);
3967 	isec = inode_security(file_inode(file));
3968 	/*
3969 	 * Save inode label and policy sequence number
3970 	 * at open-time so that selinux_file_permission
3971 	 * can determine whether revalidation is necessary.
3972 	 * Task label is already saved in the file security
3973 	 * struct as its SID.
3974 	 */
3975 	fsec->isid = isec->sid;
3976 	fsec->pseqno = avc_policy_seqno();
3977 	/*
3978 	 * Since the inode label or policy seqno may have changed
3979 	 * between the selinux_inode_permission check and the saving
3980 	 * of state above, recheck that access is still permitted.
3981 	 * Otherwise, access might never be revalidated against the
3982 	 * new inode label or new policy.
3983 	 * This check is not redundant - do not remove.
3984 	 */
3985 	return file_path_has_perm(file->f_cred, file, open_file_to_av(file));
3986 }
3987 
3988 /* task security operations */
3989 
3990 static int selinux_task_alloc(struct task_struct *task,
3991 			      unsigned long clone_flags)
3992 {
3993 	u32 sid = current_sid();
3994 
3995 	return avc_has_perm(sid, sid, SECCLASS_PROCESS, PROCESS__FORK, NULL);
3996 }
3997 
3998 /*
3999  * prepare a new set of credentials for modification
4000  */
4001 static int selinux_cred_prepare(struct cred *new, const struct cred *old,
4002 				gfp_t gfp)
4003 {
4004 	const struct task_security_struct *old_tsec = selinux_cred(old);
4005 	struct task_security_struct *tsec = selinux_cred(new);
4006 
4007 	*tsec = *old_tsec;
4008 	return 0;
4009 }
4010 
4011 /*
4012  * transfer the SELinux data to a blank set of creds
4013  */
4014 static void selinux_cred_transfer(struct cred *new, const struct cred *old)
4015 {
4016 	const struct task_security_struct *old_tsec = selinux_cred(old);
4017 	struct task_security_struct *tsec = selinux_cred(new);
4018 
4019 	*tsec = *old_tsec;
4020 }
4021 
4022 static void selinux_cred_getsecid(const struct cred *c, u32 *secid)
4023 {
4024 	*secid = cred_sid(c);
4025 }
4026 
4027 /*
4028  * set the security data for a kernel service
4029  * - all the creation contexts are set to unlabelled
4030  */
4031 static int selinux_kernel_act_as(struct cred *new, u32 secid)
4032 {
4033 	struct task_security_struct *tsec = selinux_cred(new);
4034 	u32 sid = current_sid();
4035 	int ret;
4036 
4037 	ret = avc_has_perm(sid, secid,
4038 			   SECCLASS_KERNEL_SERVICE,
4039 			   KERNEL_SERVICE__USE_AS_OVERRIDE,
4040 			   NULL);
4041 	if (ret == 0) {
4042 		tsec->sid = secid;
4043 		tsec->create_sid = 0;
4044 		tsec->keycreate_sid = 0;
4045 		tsec->sockcreate_sid = 0;
4046 	}
4047 	return ret;
4048 }
4049 
4050 /*
4051  * set the file creation context in a security record to the same as the
4052  * objective context of the specified inode
4053  */
4054 static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
4055 {
4056 	struct inode_security_struct *isec = inode_security(inode);
4057 	struct task_security_struct *tsec = selinux_cred(new);
4058 	u32 sid = current_sid();
4059 	int ret;
4060 
4061 	ret = avc_has_perm(sid, isec->sid,
4062 			   SECCLASS_KERNEL_SERVICE,
4063 			   KERNEL_SERVICE__CREATE_FILES_AS,
4064 			   NULL);
4065 
4066 	if (ret == 0)
4067 		tsec->create_sid = isec->sid;
4068 	return ret;
4069 }
4070 
4071 static int selinux_kernel_module_request(char *kmod_name)
4072 {
4073 	struct common_audit_data ad;
4074 
4075 	ad.type = LSM_AUDIT_DATA_KMOD;
4076 	ad.u.kmod_name = kmod_name;
4077 
4078 	return avc_has_perm(current_sid(), SECINITSID_KERNEL, SECCLASS_SYSTEM,
4079 			    SYSTEM__MODULE_REQUEST, &ad);
4080 }
4081 
4082 static int selinux_kernel_module_from_file(struct file *file)
4083 {
4084 	struct common_audit_data ad;
4085 	struct inode_security_struct *isec;
4086 	struct file_security_struct *fsec;
4087 	u32 sid = current_sid();
4088 	int rc;
4089 
4090 	/* init_module */
4091 	if (file == NULL)
4092 		return avc_has_perm(sid, sid, SECCLASS_SYSTEM,
4093 					SYSTEM__MODULE_LOAD, NULL);
4094 
4095 	/* finit_module */
4096 
4097 	ad.type = LSM_AUDIT_DATA_FILE;
4098 	ad.u.file = file;
4099 
4100 	fsec = selinux_file(file);
4101 	if (sid != fsec->sid) {
4102 		rc = avc_has_perm(sid, fsec->sid, SECCLASS_FD, FD__USE, &ad);
4103 		if (rc)
4104 			return rc;
4105 	}
4106 
4107 	isec = inode_security(file_inode(file));
4108 	return avc_has_perm(sid, isec->sid, SECCLASS_SYSTEM,
4109 				SYSTEM__MODULE_LOAD, &ad);
4110 }
4111 
4112 static int selinux_kernel_read_file(struct file *file,
4113 				    enum kernel_read_file_id id,
4114 				    bool contents)
4115 {
4116 	int rc = 0;
4117 
4118 	switch (id) {
4119 	case READING_MODULE:
4120 		rc = selinux_kernel_module_from_file(contents ? file : NULL);
4121 		break;
4122 	default:
4123 		break;
4124 	}
4125 
4126 	return rc;
4127 }
4128 
4129 static int selinux_kernel_load_data(enum kernel_load_data_id id, bool contents)
4130 {
4131 	int rc = 0;
4132 
4133 	switch (id) {
4134 	case LOADING_MODULE:
4135 		rc = selinux_kernel_module_from_file(NULL);
4136 		break;
4137 	default:
4138 		break;
4139 	}
4140 
4141 	return rc;
4142 }
4143 
4144 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
4145 {
4146 	return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4147 			    PROCESS__SETPGID, NULL);
4148 }
4149 
4150 static int selinux_task_getpgid(struct task_struct *p)
4151 {
4152 	return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4153 			    PROCESS__GETPGID, NULL);
4154 }
4155 
4156 static int selinux_task_getsid(struct task_struct *p)
4157 {
4158 	return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4159 			    PROCESS__GETSESSION, NULL);
4160 }
4161 
4162 static void selinux_current_getsecid_subj(u32 *secid)
4163 {
4164 	*secid = current_sid();
4165 }
4166 
4167 static void selinux_task_getsecid_obj(struct task_struct *p, u32 *secid)
4168 {
4169 	*secid = task_sid_obj(p);
4170 }
4171 
4172 static int selinux_task_setnice(struct task_struct *p, int nice)
4173 {
4174 	return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4175 			    PROCESS__SETSCHED, NULL);
4176 }
4177 
4178 static int selinux_task_setioprio(struct task_struct *p, int ioprio)
4179 {
4180 	return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4181 			    PROCESS__SETSCHED, NULL);
4182 }
4183 
4184 static int selinux_task_getioprio(struct task_struct *p)
4185 {
4186 	return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4187 			    PROCESS__GETSCHED, NULL);
4188 }
4189 
4190 static int selinux_task_prlimit(const struct cred *cred, const struct cred *tcred,
4191 				unsigned int flags)
4192 {
4193 	u32 av = 0;
4194 
4195 	if (!flags)
4196 		return 0;
4197 	if (flags & LSM_PRLIMIT_WRITE)
4198 		av |= PROCESS__SETRLIMIT;
4199 	if (flags & LSM_PRLIMIT_READ)
4200 		av |= PROCESS__GETRLIMIT;
4201 	return avc_has_perm(cred_sid(cred), cred_sid(tcred),
4202 			    SECCLASS_PROCESS, av, NULL);
4203 }
4204 
4205 static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource,
4206 		struct rlimit *new_rlim)
4207 {
4208 	struct rlimit *old_rlim = p->signal->rlim + resource;
4209 
4210 	/* Control the ability to change the hard limit (whether
4211 	   lowering or raising it), so that the hard limit can
4212 	   later be used as a safe reset point for the soft limit
4213 	   upon context transitions.  See selinux_bprm_committing_creds. */
4214 	if (old_rlim->rlim_max != new_rlim->rlim_max)
4215 		return avc_has_perm(current_sid(), task_sid_obj(p),
4216 				    SECCLASS_PROCESS, PROCESS__SETRLIMIT, NULL);
4217 
4218 	return 0;
4219 }
4220 
4221 static int selinux_task_setscheduler(struct task_struct *p)
4222 {
4223 	return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4224 			    PROCESS__SETSCHED, NULL);
4225 }
4226 
4227 static int selinux_task_getscheduler(struct task_struct *p)
4228 {
4229 	return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4230 			    PROCESS__GETSCHED, NULL);
4231 }
4232 
4233 static int selinux_task_movememory(struct task_struct *p)
4234 {
4235 	return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4236 			    PROCESS__SETSCHED, NULL);
4237 }
4238 
4239 static int selinux_task_kill(struct task_struct *p, struct kernel_siginfo *info,
4240 				int sig, const struct cred *cred)
4241 {
4242 	u32 secid;
4243 	u32 perm;
4244 
4245 	if (!sig)
4246 		perm = PROCESS__SIGNULL; /* null signal; existence test */
4247 	else
4248 		perm = signal_to_av(sig);
4249 	if (!cred)
4250 		secid = current_sid();
4251 	else
4252 		secid = cred_sid(cred);
4253 	return avc_has_perm(secid, task_sid_obj(p), SECCLASS_PROCESS, perm, NULL);
4254 }
4255 
4256 static void selinux_task_to_inode(struct task_struct *p,
4257 				  struct inode *inode)
4258 {
4259 	struct inode_security_struct *isec = selinux_inode(inode);
4260 	u32 sid = task_sid_obj(p);
4261 
4262 	spin_lock(&isec->lock);
4263 	isec->sclass = inode_mode_to_security_class(inode->i_mode);
4264 	isec->sid = sid;
4265 	isec->initialized = LABEL_INITIALIZED;
4266 	spin_unlock(&isec->lock);
4267 }
4268 
4269 static int selinux_userns_create(const struct cred *cred)
4270 {
4271 	u32 sid = current_sid();
4272 
4273 	return avc_has_perm(sid, sid, SECCLASS_USER_NAMESPACE,
4274 			USER_NAMESPACE__CREATE, NULL);
4275 }
4276 
4277 /* Returns error only if unable to parse addresses */
4278 static int selinux_parse_skb_ipv4(struct sk_buff *skb,
4279 			struct common_audit_data *ad, u8 *proto)
4280 {
4281 	int offset, ihlen, ret = -EINVAL;
4282 	struct iphdr _iph, *ih;
4283 
4284 	offset = skb_network_offset(skb);
4285 	ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
4286 	if (ih == NULL)
4287 		goto out;
4288 
4289 	ihlen = ih->ihl * 4;
4290 	if (ihlen < sizeof(_iph))
4291 		goto out;
4292 
4293 	ad->u.net->v4info.saddr = ih->saddr;
4294 	ad->u.net->v4info.daddr = ih->daddr;
4295 	ret = 0;
4296 
4297 	if (proto)
4298 		*proto = ih->protocol;
4299 
4300 	switch (ih->protocol) {
4301 	case IPPROTO_TCP: {
4302 		struct tcphdr _tcph, *th;
4303 
4304 		if (ntohs(ih->frag_off) & IP_OFFSET)
4305 			break;
4306 
4307 		offset += ihlen;
4308 		th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
4309 		if (th == NULL)
4310 			break;
4311 
4312 		ad->u.net->sport = th->source;
4313 		ad->u.net->dport = th->dest;
4314 		break;
4315 	}
4316 
4317 	case IPPROTO_UDP: {
4318 		struct udphdr _udph, *uh;
4319 
4320 		if (ntohs(ih->frag_off) & IP_OFFSET)
4321 			break;
4322 
4323 		offset += ihlen;
4324 		uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
4325 		if (uh == NULL)
4326 			break;
4327 
4328 		ad->u.net->sport = uh->source;
4329 		ad->u.net->dport = uh->dest;
4330 		break;
4331 	}
4332 
4333 	case IPPROTO_DCCP: {
4334 		struct dccp_hdr _dccph, *dh;
4335 
4336 		if (ntohs(ih->frag_off) & IP_OFFSET)
4337 			break;
4338 
4339 		offset += ihlen;
4340 		dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
4341 		if (dh == NULL)
4342 			break;
4343 
4344 		ad->u.net->sport = dh->dccph_sport;
4345 		ad->u.net->dport = dh->dccph_dport;
4346 		break;
4347 	}
4348 
4349 #if IS_ENABLED(CONFIG_IP_SCTP)
4350 	case IPPROTO_SCTP: {
4351 		struct sctphdr _sctph, *sh;
4352 
4353 		if (ntohs(ih->frag_off) & IP_OFFSET)
4354 			break;
4355 
4356 		offset += ihlen;
4357 		sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph);
4358 		if (sh == NULL)
4359 			break;
4360 
4361 		ad->u.net->sport = sh->source;
4362 		ad->u.net->dport = sh->dest;
4363 		break;
4364 	}
4365 #endif
4366 	default:
4367 		break;
4368 	}
4369 out:
4370 	return ret;
4371 }
4372 
4373 #if IS_ENABLED(CONFIG_IPV6)
4374 
4375 /* Returns error only if unable to parse addresses */
4376 static int selinux_parse_skb_ipv6(struct sk_buff *skb,
4377 			struct common_audit_data *ad, u8 *proto)
4378 {
4379 	u8 nexthdr;
4380 	int ret = -EINVAL, offset;
4381 	struct ipv6hdr _ipv6h, *ip6;
4382 	__be16 frag_off;
4383 
4384 	offset = skb_network_offset(skb);
4385 	ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
4386 	if (ip6 == NULL)
4387 		goto out;
4388 
4389 	ad->u.net->v6info.saddr = ip6->saddr;
4390 	ad->u.net->v6info.daddr = ip6->daddr;
4391 	ret = 0;
4392 
4393 	nexthdr = ip6->nexthdr;
4394 	offset += sizeof(_ipv6h);
4395 	offset = ipv6_skip_exthdr(skb, offset, &nexthdr, &frag_off);
4396 	if (offset < 0)
4397 		goto out;
4398 
4399 	if (proto)
4400 		*proto = nexthdr;
4401 
4402 	switch (nexthdr) {
4403 	case IPPROTO_TCP: {
4404 		struct tcphdr _tcph, *th;
4405 
4406 		th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
4407 		if (th == NULL)
4408 			break;
4409 
4410 		ad->u.net->sport = th->source;
4411 		ad->u.net->dport = th->dest;
4412 		break;
4413 	}
4414 
4415 	case IPPROTO_UDP: {
4416 		struct udphdr _udph, *uh;
4417 
4418 		uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
4419 		if (uh == NULL)
4420 			break;
4421 
4422 		ad->u.net->sport = uh->source;
4423 		ad->u.net->dport = uh->dest;
4424 		break;
4425 	}
4426 
4427 	case IPPROTO_DCCP: {
4428 		struct dccp_hdr _dccph, *dh;
4429 
4430 		dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
4431 		if (dh == NULL)
4432 			break;
4433 
4434 		ad->u.net->sport = dh->dccph_sport;
4435 		ad->u.net->dport = dh->dccph_dport;
4436 		break;
4437 	}
4438 
4439 #if IS_ENABLED(CONFIG_IP_SCTP)
4440 	case IPPROTO_SCTP: {
4441 		struct sctphdr _sctph, *sh;
4442 
4443 		sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph);
4444 		if (sh == NULL)
4445 			break;
4446 
4447 		ad->u.net->sport = sh->source;
4448 		ad->u.net->dport = sh->dest;
4449 		break;
4450 	}
4451 #endif
4452 	/* includes fragments */
4453 	default:
4454 		break;
4455 	}
4456 out:
4457 	return ret;
4458 }
4459 
4460 #endif /* IPV6 */
4461 
4462 static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad,
4463 			     char **_addrp, int src, u8 *proto)
4464 {
4465 	char *addrp;
4466 	int ret;
4467 
4468 	switch (ad->u.net->family) {
4469 	case PF_INET:
4470 		ret = selinux_parse_skb_ipv4(skb, ad, proto);
4471 		if (ret)
4472 			goto parse_error;
4473 		addrp = (char *)(src ? &ad->u.net->v4info.saddr :
4474 				       &ad->u.net->v4info.daddr);
4475 		goto okay;
4476 
4477 #if IS_ENABLED(CONFIG_IPV6)
4478 	case PF_INET6:
4479 		ret = selinux_parse_skb_ipv6(skb, ad, proto);
4480 		if (ret)
4481 			goto parse_error;
4482 		addrp = (char *)(src ? &ad->u.net->v6info.saddr :
4483 				       &ad->u.net->v6info.daddr);
4484 		goto okay;
4485 #endif	/* IPV6 */
4486 	default:
4487 		addrp = NULL;
4488 		goto okay;
4489 	}
4490 
4491 parse_error:
4492 	pr_warn(
4493 	       "SELinux: failure in selinux_parse_skb(),"
4494 	       " unable to parse packet\n");
4495 	return ret;
4496 
4497 okay:
4498 	if (_addrp)
4499 		*_addrp = addrp;
4500 	return 0;
4501 }
4502 
4503 /**
4504  * selinux_skb_peerlbl_sid - Determine the peer label of a packet
4505  * @skb: the packet
4506  * @family: protocol family
4507  * @sid: the packet's peer label SID
4508  *
4509  * Description:
4510  * Check the various different forms of network peer labeling and determine
4511  * the peer label/SID for the packet; most of the magic actually occurs in
4512  * the security server function security_net_peersid_cmp().  The function
4513  * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
4514  * or -EACCES if @sid is invalid due to inconsistencies with the different
4515  * peer labels.
4516  *
4517  */
4518 static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
4519 {
4520 	int err;
4521 	u32 xfrm_sid;
4522 	u32 nlbl_sid;
4523 	u32 nlbl_type;
4524 
4525 	err = selinux_xfrm_skb_sid(skb, &xfrm_sid);
4526 	if (unlikely(err))
4527 		return -EACCES;
4528 	err = selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
4529 	if (unlikely(err))
4530 		return -EACCES;
4531 
4532 	err = security_net_peersid_resolve(nlbl_sid,
4533 					   nlbl_type, xfrm_sid, sid);
4534 	if (unlikely(err)) {
4535 		pr_warn(
4536 		       "SELinux: failure in selinux_skb_peerlbl_sid(),"
4537 		       " unable to determine packet's peer label\n");
4538 		return -EACCES;
4539 	}
4540 
4541 	return 0;
4542 }
4543 
4544 /**
4545  * selinux_conn_sid - Determine the child socket label for a connection
4546  * @sk_sid: the parent socket's SID
4547  * @skb_sid: the packet's SID
4548  * @conn_sid: the resulting connection SID
4549  *
4550  * If @skb_sid is valid then the user:role:type information from @sk_sid is
4551  * combined with the MLS information from @skb_sid in order to create
4552  * @conn_sid.  If @skb_sid is not valid then @conn_sid is simply a copy
4553  * of @sk_sid.  Returns zero on success, negative values on failure.
4554  *
4555  */
4556 static int selinux_conn_sid(u32 sk_sid, u32 skb_sid, u32 *conn_sid)
4557 {
4558 	int err = 0;
4559 
4560 	if (skb_sid != SECSID_NULL)
4561 		err = security_sid_mls_copy(sk_sid, skb_sid,
4562 					    conn_sid);
4563 	else
4564 		*conn_sid = sk_sid;
4565 
4566 	return err;
4567 }
4568 
4569 /* socket security operations */
4570 
4571 static int socket_sockcreate_sid(const struct task_security_struct *tsec,
4572 				 u16 secclass, u32 *socksid)
4573 {
4574 	if (tsec->sockcreate_sid > SECSID_NULL) {
4575 		*socksid = tsec->sockcreate_sid;
4576 		return 0;
4577 	}
4578 
4579 	return security_transition_sid(tsec->sid, tsec->sid,
4580 				       secclass, NULL, socksid);
4581 }
4582 
4583 static int sock_has_perm(struct sock *sk, u32 perms)
4584 {
4585 	struct sk_security_struct *sksec = sk->sk_security;
4586 	struct common_audit_data ad;
4587 	struct lsm_network_audit net;
4588 
4589 	if (sksec->sid == SECINITSID_KERNEL)
4590 		return 0;
4591 
4592 	/*
4593 	 * Before POLICYDB_CAP_USERSPACE_INITIAL_CONTEXT, sockets that
4594 	 * inherited the kernel context from early boot used to be skipped
4595 	 * here, so preserve that behavior unless the capability is set.
4596 	 *
4597 	 * By setting the capability the policy signals that it is ready
4598 	 * for this quirk to be fixed. Note that sockets created by a kernel
4599 	 * thread or a usermode helper executed without a transition will
4600 	 * still be skipped in this check regardless of the policycap
4601 	 * setting.
4602 	 */
4603 	if (!selinux_policycap_userspace_initial_context() &&
4604 	    sksec->sid == SECINITSID_INIT)
4605 		return 0;
4606 
4607 	ad_net_init_from_sk(&ad, &net, sk);
4608 
4609 	return avc_has_perm(current_sid(), sksec->sid, sksec->sclass, perms,
4610 			    &ad);
4611 }
4612 
4613 static int selinux_socket_create(int family, int type,
4614 				 int protocol, int kern)
4615 {
4616 	const struct task_security_struct *tsec = selinux_cred(current_cred());
4617 	u32 newsid;
4618 	u16 secclass;
4619 	int rc;
4620 
4621 	if (kern)
4622 		return 0;
4623 
4624 	secclass = socket_type_to_security_class(family, type, protocol);
4625 	rc = socket_sockcreate_sid(tsec, secclass, &newsid);
4626 	if (rc)
4627 		return rc;
4628 
4629 	return avc_has_perm(tsec->sid, newsid, secclass, SOCKET__CREATE, NULL);
4630 }
4631 
4632 static int selinux_socket_post_create(struct socket *sock, int family,
4633 				      int type, int protocol, int kern)
4634 {
4635 	const struct task_security_struct *tsec = selinux_cred(current_cred());
4636 	struct inode_security_struct *isec = inode_security_novalidate(SOCK_INODE(sock));
4637 	struct sk_security_struct *sksec;
4638 	u16 sclass = socket_type_to_security_class(family, type, protocol);
4639 	u32 sid = SECINITSID_KERNEL;
4640 	int err = 0;
4641 
4642 	if (!kern) {
4643 		err = socket_sockcreate_sid(tsec, sclass, &sid);
4644 		if (err)
4645 			return err;
4646 	}
4647 
4648 	isec->sclass = sclass;
4649 	isec->sid = sid;
4650 	isec->initialized = LABEL_INITIALIZED;
4651 
4652 	if (sock->sk) {
4653 		sksec = sock->sk->sk_security;
4654 		sksec->sclass = sclass;
4655 		sksec->sid = sid;
4656 		/* Allows detection of the first association on this socket */
4657 		if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4658 			sksec->sctp_assoc_state = SCTP_ASSOC_UNSET;
4659 
4660 		err = selinux_netlbl_socket_post_create(sock->sk, family);
4661 	}
4662 
4663 	return err;
4664 }
4665 
4666 static int selinux_socket_socketpair(struct socket *socka,
4667 				     struct socket *sockb)
4668 {
4669 	struct sk_security_struct *sksec_a = socka->sk->sk_security;
4670 	struct sk_security_struct *sksec_b = sockb->sk->sk_security;
4671 
4672 	sksec_a->peer_sid = sksec_b->sid;
4673 	sksec_b->peer_sid = sksec_a->sid;
4674 
4675 	return 0;
4676 }
4677 
4678 /* Range of port numbers used to automatically bind.
4679    Need to determine whether we should perform a name_bind
4680    permission check between the socket and the port number. */
4681 
4682 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
4683 {
4684 	struct sock *sk = sock->sk;
4685 	struct sk_security_struct *sksec = sk->sk_security;
4686 	u16 family;
4687 	int err;
4688 
4689 	err = sock_has_perm(sk, SOCKET__BIND);
4690 	if (err)
4691 		goto out;
4692 
4693 	/* If PF_INET or PF_INET6, check name_bind permission for the port. */
4694 	family = sk->sk_family;
4695 	if (family == PF_INET || family == PF_INET6) {
4696 		char *addrp;
4697 		struct common_audit_data ad;
4698 		struct lsm_network_audit net = {0,};
4699 		struct sockaddr_in *addr4 = NULL;
4700 		struct sockaddr_in6 *addr6 = NULL;
4701 		u16 family_sa;
4702 		unsigned short snum;
4703 		u32 sid, node_perm;
4704 
4705 		/*
4706 		 * sctp_bindx(3) calls via selinux_sctp_bind_connect()
4707 		 * that validates multiple binding addresses. Because of this
4708 		 * need to check address->sa_family as it is possible to have
4709 		 * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET.
4710 		 */
4711 		if (addrlen < offsetofend(struct sockaddr, sa_family))
4712 			return -EINVAL;
4713 		family_sa = address->sa_family;
4714 		switch (family_sa) {
4715 		case AF_UNSPEC:
4716 		case AF_INET:
4717 			if (addrlen < sizeof(struct sockaddr_in))
4718 				return -EINVAL;
4719 			addr4 = (struct sockaddr_in *)address;
4720 			if (family_sa == AF_UNSPEC) {
4721 				if (family == PF_INET6) {
4722 					/* Length check from inet6_bind_sk() */
4723 					if (addrlen < SIN6_LEN_RFC2133)
4724 						return -EINVAL;
4725 					/* Family check from __inet6_bind() */
4726 					goto err_af;
4727 				}
4728 				/* see __inet_bind(), we only want to allow
4729 				 * AF_UNSPEC if the address is INADDR_ANY
4730 				 */
4731 				if (addr4->sin_addr.s_addr != htonl(INADDR_ANY))
4732 					goto err_af;
4733 				family_sa = AF_INET;
4734 			}
4735 			snum = ntohs(addr4->sin_port);
4736 			addrp = (char *)&addr4->sin_addr.s_addr;
4737 			break;
4738 		case AF_INET6:
4739 			if (addrlen < SIN6_LEN_RFC2133)
4740 				return -EINVAL;
4741 			addr6 = (struct sockaddr_in6 *)address;
4742 			snum = ntohs(addr6->sin6_port);
4743 			addrp = (char *)&addr6->sin6_addr.s6_addr;
4744 			break;
4745 		default:
4746 			goto err_af;
4747 		}
4748 
4749 		ad.type = LSM_AUDIT_DATA_NET;
4750 		ad.u.net = &net;
4751 		ad.u.net->sport = htons(snum);
4752 		ad.u.net->family = family_sa;
4753 
4754 		if (snum) {
4755 			int low, high;
4756 
4757 			inet_get_local_port_range(sock_net(sk), &low, &high);
4758 
4759 			if (inet_port_requires_bind_service(sock_net(sk), snum) ||
4760 			    snum < low || snum > high) {
4761 				err = sel_netport_sid(sk->sk_protocol,
4762 						      snum, &sid);
4763 				if (err)
4764 					goto out;
4765 				err = avc_has_perm(sksec->sid, sid,
4766 						   sksec->sclass,
4767 						   SOCKET__NAME_BIND, &ad);
4768 				if (err)
4769 					goto out;
4770 			}
4771 		}
4772 
4773 		switch (sksec->sclass) {
4774 		case SECCLASS_TCP_SOCKET:
4775 			node_perm = TCP_SOCKET__NODE_BIND;
4776 			break;
4777 
4778 		case SECCLASS_UDP_SOCKET:
4779 			node_perm = UDP_SOCKET__NODE_BIND;
4780 			break;
4781 
4782 		case SECCLASS_DCCP_SOCKET:
4783 			node_perm = DCCP_SOCKET__NODE_BIND;
4784 			break;
4785 
4786 		case SECCLASS_SCTP_SOCKET:
4787 			node_perm = SCTP_SOCKET__NODE_BIND;
4788 			break;
4789 
4790 		default:
4791 			node_perm = RAWIP_SOCKET__NODE_BIND;
4792 			break;
4793 		}
4794 
4795 		err = sel_netnode_sid(addrp, family_sa, &sid);
4796 		if (err)
4797 			goto out;
4798 
4799 		if (family_sa == AF_INET)
4800 			ad.u.net->v4info.saddr = addr4->sin_addr.s_addr;
4801 		else
4802 			ad.u.net->v6info.saddr = addr6->sin6_addr;
4803 
4804 		err = avc_has_perm(sksec->sid, sid,
4805 				   sksec->sclass, node_perm, &ad);
4806 		if (err)
4807 			goto out;
4808 	}
4809 out:
4810 	return err;
4811 err_af:
4812 	/* Note that SCTP services expect -EINVAL, others -EAFNOSUPPORT. */
4813 	if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4814 		return -EINVAL;
4815 	return -EAFNOSUPPORT;
4816 }
4817 
4818 /* This supports connect(2) and SCTP connect services such as sctp_connectx(3)
4819  * and sctp_sendmsg(3) as described in Documentation/security/SCTP.rst
4820  */
4821 static int selinux_socket_connect_helper(struct socket *sock,
4822 					 struct sockaddr *address, int addrlen)
4823 {
4824 	struct sock *sk = sock->sk;
4825 	struct sk_security_struct *sksec = sk->sk_security;
4826 	int err;
4827 
4828 	err = sock_has_perm(sk, SOCKET__CONNECT);
4829 	if (err)
4830 		return err;
4831 	if (addrlen < offsetofend(struct sockaddr, sa_family))
4832 		return -EINVAL;
4833 
4834 	/* connect(AF_UNSPEC) has special handling, as it is a documented
4835 	 * way to disconnect the socket
4836 	 */
4837 	if (address->sa_family == AF_UNSPEC)
4838 		return 0;
4839 
4840 	/*
4841 	 * If a TCP, DCCP or SCTP socket, check name_connect permission
4842 	 * for the port.
4843 	 */
4844 	if (sksec->sclass == SECCLASS_TCP_SOCKET ||
4845 	    sksec->sclass == SECCLASS_DCCP_SOCKET ||
4846 	    sksec->sclass == SECCLASS_SCTP_SOCKET) {
4847 		struct common_audit_data ad;
4848 		struct lsm_network_audit net = {0,};
4849 		struct sockaddr_in *addr4 = NULL;
4850 		struct sockaddr_in6 *addr6 = NULL;
4851 		unsigned short snum;
4852 		u32 sid, perm;
4853 
4854 		/* sctp_connectx(3) calls via selinux_sctp_bind_connect()
4855 		 * that validates multiple connect addresses. Because of this
4856 		 * need to check address->sa_family as it is possible to have
4857 		 * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET.
4858 		 */
4859 		switch (address->sa_family) {
4860 		case AF_INET:
4861 			addr4 = (struct sockaddr_in *)address;
4862 			if (addrlen < sizeof(struct sockaddr_in))
4863 				return -EINVAL;
4864 			snum = ntohs(addr4->sin_port);
4865 			break;
4866 		case AF_INET6:
4867 			addr6 = (struct sockaddr_in6 *)address;
4868 			if (addrlen < SIN6_LEN_RFC2133)
4869 				return -EINVAL;
4870 			snum = ntohs(addr6->sin6_port);
4871 			break;
4872 		default:
4873 			/* Note that SCTP services expect -EINVAL, whereas
4874 			 * others expect -EAFNOSUPPORT.
4875 			 */
4876 			if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4877 				return -EINVAL;
4878 			else
4879 				return -EAFNOSUPPORT;
4880 		}
4881 
4882 		err = sel_netport_sid(sk->sk_protocol, snum, &sid);
4883 		if (err)
4884 			return err;
4885 
4886 		switch (sksec->sclass) {
4887 		case SECCLASS_TCP_SOCKET:
4888 			perm = TCP_SOCKET__NAME_CONNECT;
4889 			break;
4890 		case SECCLASS_DCCP_SOCKET:
4891 			perm = DCCP_SOCKET__NAME_CONNECT;
4892 			break;
4893 		case SECCLASS_SCTP_SOCKET:
4894 			perm = SCTP_SOCKET__NAME_CONNECT;
4895 			break;
4896 		}
4897 
4898 		ad.type = LSM_AUDIT_DATA_NET;
4899 		ad.u.net = &net;
4900 		ad.u.net->dport = htons(snum);
4901 		ad.u.net->family = address->sa_family;
4902 		err = avc_has_perm(sksec->sid, sid, sksec->sclass, perm, &ad);
4903 		if (err)
4904 			return err;
4905 	}
4906 
4907 	return 0;
4908 }
4909 
4910 /* Supports connect(2), see comments in selinux_socket_connect_helper() */
4911 static int selinux_socket_connect(struct socket *sock,
4912 				  struct sockaddr *address, int addrlen)
4913 {
4914 	int err;
4915 	struct sock *sk = sock->sk;
4916 
4917 	err = selinux_socket_connect_helper(sock, address, addrlen);
4918 	if (err)
4919 		return err;
4920 
4921 	return selinux_netlbl_socket_connect(sk, address);
4922 }
4923 
4924 static int selinux_socket_listen(struct socket *sock, int backlog)
4925 {
4926 	return sock_has_perm(sock->sk, SOCKET__LISTEN);
4927 }
4928 
4929 static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
4930 {
4931 	int err;
4932 	struct inode_security_struct *isec;
4933 	struct inode_security_struct *newisec;
4934 	u16 sclass;
4935 	u32 sid;
4936 
4937 	err = sock_has_perm(sock->sk, SOCKET__ACCEPT);
4938 	if (err)
4939 		return err;
4940 
4941 	isec = inode_security_novalidate(SOCK_INODE(sock));
4942 	spin_lock(&isec->lock);
4943 	sclass = isec->sclass;
4944 	sid = isec->sid;
4945 	spin_unlock(&isec->lock);
4946 
4947 	newisec = inode_security_novalidate(SOCK_INODE(newsock));
4948 	newisec->sclass = sclass;
4949 	newisec->sid = sid;
4950 	newisec->initialized = LABEL_INITIALIZED;
4951 
4952 	return 0;
4953 }
4954 
4955 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
4956 				  int size)
4957 {
4958 	return sock_has_perm(sock->sk, SOCKET__WRITE);
4959 }
4960 
4961 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
4962 				  int size, int flags)
4963 {
4964 	return sock_has_perm(sock->sk, SOCKET__READ);
4965 }
4966 
4967 static int selinux_socket_getsockname(struct socket *sock)
4968 {
4969 	return sock_has_perm(sock->sk, SOCKET__GETATTR);
4970 }
4971 
4972 static int selinux_socket_getpeername(struct socket *sock)
4973 {
4974 	return sock_has_perm(sock->sk, SOCKET__GETATTR);
4975 }
4976 
4977 static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
4978 {
4979 	int err;
4980 
4981 	err = sock_has_perm(sock->sk, SOCKET__SETOPT);
4982 	if (err)
4983 		return err;
4984 
4985 	return selinux_netlbl_socket_setsockopt(sock, level, optname);
4986 }
4987 
4988 static int selinux_socket_getsockopt(struct socket *sock, int level,
4989 				     int optname)
4990 {
4991 	return sock_has_perm(sock->sk, SOCKET__GETOPT);
4992 }
4993 
4994 static int selinux_socket_shutdown(struct socket *sock, int how)
4995 {
4996 	return sock_has_perm(sock->sk, SOCKET__SHUTDOWN);
4997 }
4998 
4999 static int selinux_socket_unix_stream_connect(struct sock *sock,
5000 					      struct sock *other,
5001 					      struct sock *newsk)
5002 {
5003 	struct sk_security_struct *sksec_sock = sock->sk_security;
5004 	struct sk_security_struct *sksec_other = other->sk_security;
5005 	struct sk_security_struct *sksec_new = newsk->sk_security;
5006 	struct common_audit_data ad;
5007 	struct lsm_network_audit net;
5008 	int err;
5009 
5010 	ad_net_init_from_sk(&ad, &net, other);
5011 
5012 	err = avc_has_perm(sksec_sock->sid, sksec_other->sid,
5013 			   sksec_other->sclass,
5014 			   UNIX_STREAM_SOCKET__CONNECTTO, &ad);
5015 	if (err)
5016 		return err;
5017 
5018 	/* server child socket */
5019 	sksec_new->peer_sid = sksec_sock->sid;
5020 	err = security_sid_mls_copy(sksec_other->sid,
5021 				    sksec_sock->sid, &sksec_new->sid);
5022 	if (err)
5023 		return err;
5024 
5025 	/* connecting socket */
5026 	sksec_sock->peer_sid = sksec_new->sid;
5027 
5028 	return 0;
5029 }
5030 
5031 static int selinux_socket_unix_may_send(struct socket *sock,
5032 					struct socket *other)
5033 {
5034 	struct sk_security_struct *ssec = sock->sk->sk_security;
5035 	struct sk_security_struct *osec = other->sk->sk_security;
5036 	struct common_audit_data ad;
5037 	struct lsm_network_audit net;
5038 
5039 	ad_net_init_from_sk(&ad, &net, other->sk);
5040 
5041 	return avc_has_perm(ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO,
5042 			    &ad);
5043 }
5044 
5045 static int selinux_inet_sys_rcv_skb(struct net *ns, int ifindex,
5046 				    char *addrp, u16 family, u32 peer_sid,
5047 				    struct common_audit_data *ad)
5048 {
5049 	int err;
5050 	u32 if_sid;
5051 	u32 node_sid;
5052 
5053 	err = sel_netif_sid(ns, ifindex, &if_sid);
5054 	if (err)
5055 		return err;
5056 	err = avc_has_perm(peer_sid, if_sid,
5057 			   SECCLASS_NETIF, NETIF__INGRESS, ad);
5058 	if (err)
5059 		return err;
5060 
5061 	err = sel_netnode_sid(addrp, family, &node_sid);
5062 	if (err)
5063 		return err;
5064 	return avc_has_perm(peer_sid, node_sid,
5065 			    SECCLASS_NODE, NODE__RECVFROM, ad);
5066 }
5067 
5068 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
5069 				       u16 family)
5070 {
5071 	int err = 0;
5072 	struct sk_security_struct *sksec = sk->sk_security;
5073 	u32 sk_sid = sksec->sid;
5074 	struct common_audit_data ad;
5075 	struct lsm_network_audit net;
5076 	char *addrp;
5077 
5078 	ad_net_init_from_iif(&ad, &net, skb->skb_iif, family);
5079 	err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
5080 	if (err)
5081 		return err;
5082 
5083 	if (selinux_secmark_enabled()) {
5084 		err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
5085 				   PACKET__RECV, &ad);
5086 		if (err)
5087 			return err;
5088 	}
5089 
5090 	err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
5091 	if (err)
5092 		return err;
5093 	err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
5094 
5095 	return err;
5096 }
5097 
5098 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
5099 {
5100 	int err, peerlbl_active, secmark_active;
5101 	struct sk_security_struct *sksec = sk->sk_security;
5102 	u16 family = sk->sk_family;
5103 	u32 sk_sid = sksec->sid;
5104 	struct common_audit_data ad;
5105 	struct lsm_network_audit net;
5106 	char *addrp;
5107 
5108 	if (family != PF_INET && family != PF_INET6)
5109 		return 0;
5110 
5111 	/* Handle mapped IPv4 packets arriving via IPv6 sockets */
5112 	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
5113 		family = PF_INET;
5114 
5115 	/* If any sort of compatibility mode is enabled then handoff processing
5116 	 * to the selinux_sock_rcv_skb_compat() function to deal with the
5117 	 * special handling.  We do this in an attempt to keep this function
5118 	 * as fast and as clean as possible. */
5119 	if (!selinux_policycap_netpeer())
5120 		return selinux_sock_rcv_skb_compat(sk, skb, family);
5121 
5122 	secmark_active = selinux_secmark_enabled();
5123 	peerlbl_active = selinux_peerlbl_enabled();
5124 	if (!secmark_active && !peerlbl_active)
5125 		return 0;
5126 
5127 	ad_net_init_from_iif(&ad, &net, skb->skb_iif, family);
5128 	err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
5129 	if (err)
5130 		return err;
5131 
5132 	if (peerlbl_active) {
5133 		u32 peer_sid;
5134 
5135 		err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
5136 		if (err)
5137 			return err;
5138 		err = selinux_inet_sys_rcv_skb(sock_net(sk), skb->skb_iif,
5139 					       addrp, family, peer_sid, &ad);
5140 		if (err) {
5141 			selinux_netlbl_err(skb, family, err, 0);
5142 			return err;
5143 		}
5144 		err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER,
5145 				   PEER__RECV, &ad);
5146 		if (err) {
5147 			selinux_netlbl_err(skb, family, err, 0);
5148 			return err;
5149 		}
5150 	}
5151 
5152 	if (secmark_active) {
5153 		err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
5154 				   PACKET__RECV, &ad);
5155 		if (err)
5156 			return err;
5157 	}
5158 
5159 	return err;
5160 }
5161 
5162 static int selinux_socket_getpeersec_stream(struct socket *sock,
5163 					    sockptr_t optval, sockptr_t optlen,
5164 					    unsigned int len)
5165 {
5166 	int err = 0;
5167 	char *scontext = NULL;
5168 	u32 scontext_len;
5169 	struct sk_security_struct *sksec = sock->sk->sk_security;
5170 	u32 peer_sid = SECSID_NULL;
5171 
5172 	if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
5173 	    sksec->sclass == SECCLASS_TCP_SOCKET ||
5174 	    sksec->sclass == SECCLASS_SCTP_SOCKET)
5175 		peer_sid = sksec->peer_sid;
5176 	if (peer_sid == SECSID_NULL)
5177 		return -ENOPROTOOPT;
5178 
5179 	err = security_sid_to_context(peer_sid, &scontext,
5180 				      &scontext_len);
5181 	if (err)
5182 		return err;
5183 	if (scontext_len > len) {
5184 		err = -ERANGE;
5185 		goto out_len;
5186 	}
5187 
5188 	if (copy_to_sockptr(optval, scontext, scontext_len))
5189 		err = -EFAULT;
5190 out_len:
5191 	if (copy_to_sockptr(optlen, &scontext_len, sizeof(scontext_len)))
5192 		err = -EFAULT;
5193 	kfree(scontext);
5194 	return err;
5195 }
5196 
5197 static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
5198 {
5199 	u32 peer_secid = SECSID_NULL;
5200 	u16 family;
5201 	struct inode_security_struct *isec;
5202 
5203 	if (skb && skb->protocol == htons(ETH_P_IP))
5204 		family = PF_INET;
5205 	else if (skb && skb->protocol == htons(ETH_P_IPV6))
5206 		family = PF_INET6;
5207 	else if (sock)
5208 		family = sock->sk->sk_family;
5209 	else
5210 		goto out;
5211 
5212 	if (sock && family == PF_UNIX) {
5213 		isec = inode_security_novalidate(SOCK_INODE(sock));
5214 		peer_secid = isec->sid;
5215 	} else if (skb)
5216 		selinux_skb_peerlbl_sid(skb, family, &peer_secid);
5217 
5218 out:
5219 	*secid = peer_secid;
5220 	if (peer_secid == SECSID_NULL)
5221 		return -EINVAL;
5222 	return 0;
5223 }
5224 
5225 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
5226 {
5227 	struct sk_security_struct *sksec;
5228 
5229 	sksec = kzalloc(sizeof(*sksec), priority);
5230 	if (!sksec)
5231 		return -ENOMEM;
5232 
5233 	sksec->peer_sid = SECINITSID_UNLABELED;
5234 	sksec->sid = SECINITSID_UNLABELED;
5235 	sksec->sclass = SECCLASS_SOCKET;
5236 	selinux_netlbl_sk_security_reset(sksec);
5237 	sk->sk_security = sksec;
5238 
5239 	return 0;
5240 }
5241 
5242 static void selinux_sk_free_security(struct sock *sk)
5243 {
5244 	struct sk_security_struct *sksec = sk->sk_security;
5245 
5246 	sk->sk_security = NULL;
5247 	selinux_netlbl_sk_security_free(sksec);
5248 	kfree(sksec);
5249 }
5250 
5251 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
5252 {
5253 	struct sk_security_struct *sksec = sk->sk_security;
5254 	struct sk_security_struct *newsksec = newsk->sk_security;
5255 
5256 	newsksec->sid = sksec->sid;
5257 	newsksec->peer_sid = sksec->peer_sid;
5258 	newsksec->sclass = sksec->sclass;
5259 
5260 	selinux_netlbl_sk_security_reset(newsksec);
5261 }
5262 
5263 static void selinux_sk_getsecid(const struct sock *sk, u32 *secid)
5264 {
5265 	if (!sk)
5266 		*secid = SECINITSID_ANY_SOCKET;
5267 	else {
5268 		const struct sk_security_struct *sksec = sk->sk_security;
5269 
5270 		*secid = sksec->sid;
5271 	}
5272 }
5273 
5274 static void selinux_sock_graft(struct sock *sk, struct socket *parent)
5275 {
5276 	struct inode_security_struct *isec =
5277 		inode_security_novalidate(SOCK_INODE(parent));
5278 	struct sk_security_struct *sksec = sk->sk_security;
5279 
5280 	if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
5281 	    sk->sk_family == PF_UNIX)
5282 		isec->sid = sksec->sid;
5283 	sksec->sclass = isec->sclass;
5284 }
5285 
5286 /*
5287  * Determines peer_secid for the asoc and updates socket's peer label
5288  * if it's the first association on the socket.
5289  */
5290 static int selinux_sctp_process_new_assoc(struct sctp_association *asoc,
5291 					  struct sk_buff *skb)
5292 {
5293 	struct sock *sk = asoc->base.sk;
5294 	u16 family = sk->sk_family;
5295 	struct sk_security_struct *sksec = sk->sk_security;
5296 	struct common_audit_data ad;
5297 	struct lsm_network_audit net;
5298 	int err;
5299 
5300 	/* handle mapped IPv4 packets arriving via IPv6 sockets */
5301 	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
5302 		family = PF_INET;
5303 
5304 	if (selinux_peerlbl_enabled()) {
5305 		asoc->peer_secid = SECSID_NULL;
5306 
5307 		/* This will return peer_sid = SECSID_NULL if there are
5308 		 * no peer labels, see security_net_peersid_resolve().
5309 		 */
5310 		err = selinux_skb_peerlbl_sid(skb, family, &asoc->peer_secid);
5311 		if (err)
5312 			return err;
5313 
5314 		if (asoc->peer_secid == SECSID_NULL)
5315 			asoc->peer_secid = SECINITSID_UNLABELED;
5316 	} else {
5317 		asoc->peer_secid = SECINITSID_UNLABELED;
5318 	}
5319 
5320 	if (sksec->sctp_assoc_state == SCTP_ASSOC_UNSET) {
5321 		sksec->sctp_assoc_state = SCTP_ASSOC_SET;
5322 
5323 		/* Here as first association on socket. As the peer SID
5324 		 * was allowed by peer recv (and the netif/node checks),
5325 		 * then it is approved by policy and used as the primary
5326 		 * peer SID for getpeercon(3).
5327 		 */
5328 		sksec->peer_sid = asoc->peer_secid;
5329 	} else if (sksec->peer_sid != asoc->peer_secid) {
5330 		/* Other association peer SIDs are checked to enforce
5331 		 * consistency among the peer SIDs.
5332 		 */
5333 		ad_net_init_from_sk(&ad, &net, asoc->base.sk);
5334 		err = avc_has_perm(sksec->peer_sid, asoc->peer_secid,
5335 				   sksec->sclass, SCTP_SOCKET__ASSOCIATION,
5336 				   &ad);
5337 		if (err)
5338 			return err;
5339 	}
5340 	return 0;
5341 }
5342 
5343 /* Called whenever SCTP receives an INIT or COOKIE ECHO chunk. This
5344  * happens on an incoming connect(2), sctp_connectx(3) or
5345  * sctp_sendmsg(3) (with no association already present).
5346  */
5347 static int selinux_sctp_assoc_request(struct sctp_association *asoc,
5348 				      struct sk_buff *skb)
5349 {
5350 	struct sk_security_struct *sksec = asoc->base.sk->sk_security;
5351 	u32 conn_sid;
5352 	int err;
5353 
5354 	if (!selinux_policycap_extsockclass())
5355 		return 0;
5356 
5357 	err = selinux_sctp_process_new_assoc(asoc, skb);
5358 	if (err)
5359 		return err;
5360 
5361 	/* Compute the MLS component for the connection and store
5362 	 * the information in asoc. This will be used by SCTP TCP type
5363 	 * sockets and peeled off connections as they cause a new
5364 	 * socket to be generated. selinux_sctp_sk_clone() will then
5365 	 * plug this into the new socket.
5366 	 */
5367 	err = selinux_conn_sid(sksec->sid, asoc->peer_secid, &conn_sid);
5368 	if (err)
5369 		return err;
5370 
5371 	asoc->secid = conn_sid;
5372 
5373 	/* Set any NetLabel labels including CIPSO/CALIPSO options. */
5374 	return selinux_netlbl_sctp_assoc_request(asoc, skb);
5375 }
5376 
5377 /* Called when SCTP receives a COOKIE ACK chunk as the final
5378  * response to an association request (initited by us).
5379  */
5380 static int selinux_sctp_assoc_established(struct sctp_association *asoc,
5381 					  struct sk_buff *skb)
5382 {
5383 	struct sk_security_struct *sksec = asoc->base.sk->sk_security;
5384 
5385 	if (!selinux_policycap_extsockclass())
5386 		return 0;
5387 
5388 	/* Inherit secid from the parent socket - this will be picked up
5389 	 * by selinux_sctp_sk_clone() if the association gets peeled off
5390 	 * into a new socket.
5391 	 */
5392 	asoc->secid = sksec->sid;
5393 
5394 	return selinux_sctp_process_new_assoc(asoc, skb);
5395 }
5396 
5397 /* Check if sctp IPv4/IPv6 addresses are valid for binding or connecting
5398  * based on their @optname.
5399  */
5400 static int selinux_sctp_bind_connect(struct sock *sk, int optname,
5401 				     struct sockaddr *address,
5402 				     int addrlen)
5403 {
5404 	int len, err = 0, walk_size = 0;
5405 	void *addr_buf;
5406 	struct sockaddr *addr;
5407 	struct socket *sock;
5408 
5409 	if (!selinux_policycap_extsockclass())
5410 		return 0;
5411 
5412 	/* Process one or more addresses that may be IPv4 or IPv6 */
5413 	sock = sk->sk_socket;
5414 	addr_buf = address;
5415 
5416 	while (walk_size < addrlen) {
5417 		if (walk_size + sizeof(sa_family_t) > addrlen)
5418 			return -EINVAL;
5419 
5420 		addr = addr_buf;
5421 		switch (addr->sa_family) {
5422 		case AF_UNSPEC:
5423 		case AF_INET:
5424 			len = sizeof(struct sockaddr_in);
5425 			break;
5426 		case AF_INET6:
5427 			len = sizeof(struct sockaddr_in6);
5428 			break;
5429 		default:
5430 			return -EINVAL;
5431 		}
5432 
5433 		if (walk_size + len > addrlen)
5434 			return -EINVAL;
5435 
5436 		err = -EINVAL;
5437 		switch (optname) {
5438 		/* Bind checks */
5439 		case SCTP_PRIMARY_ADDR:
5440 		case SCTP_SET_PEER_PRIMARY_ADDR:
5441 		case SCTP_SOCKOPT_BINDX_ADD:
5442 			err = selinux_socket_bind(sock, addr, len);
5443 			break;
5444 		/* Connect checks */
5445 		case SCTP_SOCKOPT_CONNECTX:
5446 		case SCTP_PARAM_SET_PRIMARY:
5447 		case SCTP_PARAM_ADD_IP:
5448 		case SCTP_SENDMSG_CONNECT:
5449 			err = selinux_socket_connect_helper(sock, addr, len);
5450 			if (err)
5451 				return err;
5452 
5453 			/* As selinux_sctp_bind_connect() is called by the
5454 			 * SCTP protocol layer, the socket is already locked,
5455 			 * therefore selinux_netlbl_socket_connect_locked()
5456 			 * is called here. The situations handled are:
5457 			 * sctp_connectx(3), sctp_sendmsg(3), sendmsg(2),
5458 			 * whenever a new IP address is added or when a new
5459 			 * primary address is selected.
5460 			 * Note that an SCTP connect(2) call happens before
5461 			 * the SCTP protocol layer and is handled via
5462 			 * selinux_socket_connect().
5463 			 */
5464 			err = selinux_netlbl_socket_connect_locked(sk, addr);
5465 			break;
5466 		}
5467 
5468 		if (err)
5469 			return err;
5470 
5471 		addr_buf += len;
5472 		walk_size += len;
5473 	}
5474 
5475 	return 0;
5476 }
5477 
5478 /* Called whenever a new socket is created by accept(2) or sctp_peeloff(3). */
5479 static void selinux_sctp_sk_clone(struct sctp_association *asoc, struct sock *sk,
5480 				  struct sock *newsk)
5481 {
5482 	struct sk_security_struct *sksec = sk->sk_security;
5483 	struct sk_security_struct *newsksec = newsk->sk_security;
5484 
5485 	/* If policy does not support SECCLASS_SCTP_SOCKET then call
5486 	 * the non-sctp clone version.
5487 	 */
5488 	if (!selinux_policycap_extsockclass())
5489 		return selinux_sk_clone_security(sk, newsk);
5490 
5491 	newsksec->sid = asoc->secid;
5492 	newsksec->peer_sid = asoc->peer_secid;
5493 	newsksec->sclass = sksec->sclass;
5494 	selinux_netlbl_sctp_sk_clone(sk, newsk);
5495 }
5496 
5497 static int selinux_mptcp_add_subflow(struct sock *sk, struct sock *ssk)
5498 {
5499 	struct sk_security_struct *ssksec = ssk->sk_security;
5500 	struct sk_security_struct *sksec = sk->sk_security;
5501 
5502 	ssksec->sclass = sksec->sclass;
5503 	ssksec->sid = sksec->sid;
5504 
5505 	/* replace the existing subflow label deleting the existing one
5506 	 * and re-recreating a new label using the updated context
5507 	 */
5508 	selinux_netlbl_sk_security_free(ssksec);
5509 	return selinux_netlbl_socket_post_create(ssk, ssk->sk_family);
5510 }
5511 
5512 static int selinux_inet_conn_request(const struct sock *sk, struct sk_buff *skb,
5513 				     struct request_sock *req)
5514 {
5515 	struct sk_security_struct *sksec = sk->sk_security;
5516 	int err;
5517 	u16 family = req->rsk_ops->family;
5518 	u32 connsid;
5519 	u32 peersid;
5520 
5521 	err = selinux_skb_peerlbl_sid(skb, family, &peersid);
5522 	if (err)
5523 		return err;
5524 	err = selinux_conn_sid(sksec->sid, peersid, &connsid);
5525 	if (err)
5526 		return err;
5527 	req->secid = connsid;
5528 	req->peer_secid = peersid;
5529 
5530 	return selinux_netlbl_inet_conn_request(req, family);
5531 }
5532 
5533 static void selinux_inet_csk_clone(struct sock *newsk,
5534 				   const struct request_sock *req)
5535 {
5536 	struct sk_security_struct *newsksec = newsk->sk_security;
5537 
5538 	newsksec->sid = req->secid;
5539 	newsksec->peer_sid = req->peer_secid;
5540 	/* NOTE: Ideally, we should also get the isec->sid for the
5541 	   new socket in sync, but we don't have the isec available yet.
5542 	   So we will wait until sock_graft to do it, by which
5543 	   time it will have been created and available. */
5544 
5545 	/* We don't need to take any sort of lock here as we are the only
5546 	 * thread with access to newsksec */
5547 	selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family);
5548 }
5549 
5550 static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
5551 {
5552 	u16 family = sk->sk_family;
5553 	struct sk_security_struct *sksec = sk->sk_security;
5554 
5555 	/* handle mapped IPv4 packets arriving via IPv6 sockets */
5556 	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
5557 		family = PF_INET;
5558 
5559 	selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
5560 }
5561 
5562 static int selinux_secmark_relabel_packet(u32 sid)
5563 {
5564 	const struct task_security_struct *tsec;
5565 	u32 tsid;
5566 
5567 	tsec = selinux_cred(current_cred());
5568 	tsid = tsec->sid;
5569 
5570 	return avc_has_perm(tsid, sid, SECCLASS_PACKET, PACKET__RELABELTO,
5571 			    NULL);
5572 }
5573 
5574 static void selinux_secmark_refcount_inc(void)
5575 {
5576 	atomic_inc(&selinux_secmark_refcount);
5577 }
5578 
5579 static void selinux_secmark_refcount_dec(void)
5580 {
5581 	atomic_dec(&selinux_secmark_refcount);
5582 }
5583 
5584 static void selinux_req_classify_flow(const struct request_sock *req,
5585 				      struct flowi_common *flic)
5586 {
5587 	flic->flowic_secid = req->secid;
5588 }
5589 
5590 static int selinux_tun_dev_alloc_security(void **security)
5591 {
5592 	struct tun_security_struct *tunsec;
5593 
5594 	tunsec = kzalloc(sizeof(*tunsec), GFP_KERNEL);
5595 	if (!tunsec)
5596 		return -ENOMEM;
5597 	tunsec->sid = current_sid();
5598 
5599 	*security = tunsec;
5600 	return 0;
5601 }
5602 
5603 static void selinux_tun_dev_free_security(void *security)
5604 {
5605 	kfree(security);
5606 }
5607 
5608 static int selinux_tun_dev_create(void)
5609 {
5610 	u32 sid = current_sid();
5611 
5612 	/* we aren't taking into account the "sockcreate" SID since the socket
5613 	 * that is being created here is not a socket in the traditional sense,
5614 	 * instead it is a private sock, accessible only to the kernel, and
5615 	 * representing a wide range of network traffic spanning multiple
5616 	 * connections unlike traditional sockets - check the TUN driver to
5617 	 * get a better understanding of why this socket is special */
5618 
5619 	return avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE,
5620 			    NULL);
5621 }
5622 
5623 static int selinux_tun_dev_attach_queue(void *security)
5624 {
5625 	struct tun_security_struct *tunsec = security;
5626 
5627 	return avc_has_perm(current_sid(), tunsec->sid, SECCLASS_TUN_SOCKET,
5628 			    TUN_SOCKET__ATTACH_QUEUE, NULL);
5629 }
5630 
5631 static int selinux_tun_dev_attach(struct sock *sk, void *security)
5632 {
5633 	struct tun_security_struct *tunsec = security;
5634 	struct sk_security_struct *sksec = sk->sk_security;
5635 
5636 	/* we don't currently perform any NetLabel based labeling here and it
5637 	 * isn't clear that we would want to do so anyway; while we could apply
5638 	 * labeling without the support of the TUN user the resulting labeled
5639 	 * traffic from the other end of the connection would almost certainly
5640 	 * cause confusion to the TUN user that had no idea network labeling
5641 	 * protocols were being used */
5642 
5643 	sksec->sid = tunsec->sid;
5644 	sksec->sclass = SECCLASS_TUN_SOCKET;
5645 
5646 	return 0;
5647 }
5648 
5649 static int selinux_tun_dev_open(void *security)
5650 {
5651 	struct tun_security_struct *tunsec = security;
5652 	u32 sid = current_sid();
5653 	int err;
5654 
5655 	err = avc_has_perm(sid, tunsec->sid, SECCLASS_TUN_SOCKET,
5656 			   TUN_SOCKET__RELABELFROM, NULL);
5657 	if (err)
5658 		return err;
5659 	err = avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET,
5660 			   TUN_SOCKET__RELABELTO, NULL);
5661 	if (err)
5662 		return err;
5663 	tunsec->sid = sid;
5664 
5665 	return 0;
5666 }
5667 
5668 #ifdef CONFIG_NETFILTER
5669 
5670 static unsigned int selinux_ip_forward(void *priv, struct sk_buff *skb,
5671 				       const struct nf_hook_state *state)
5672 {
5673 	int ifindex;
5674 	u16 family;
5675 	char *addrp;
5676 	u32 peer_sid;
5677 	struct common_audit_data ad;
5678 	struct lsm_network_audit net;
5679 	int secmark_active, peerlbl_active;
5680 
5681 	if (!selinux_policycap_netpeer())
5682 		return NF_ACCEPT;
5683 
5684 	secmark_active = selinux_secmark_enabled();
5685 	peerlbl_active = selinux_peerlbl_enabled();
5686 	if (!secmark_active && !peerlbl_active)
5687 		return NF_ACCEPT;
5688 
5689 	family = state->pf;
5690 	if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
5691 		return NF_DROP;
5692 
5693 	ifindex = state->in->ifindex;
5694 	ad_net_init_from_iif(&ad, &net, ifindex, family);
5695 	if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
5696 		return NF_DROP;
5697 
5698 	if (peerlbl_active) {
5699 		int err;
5700 
5701 		err = selinux_inet_sys_rcv_skb(state->net, ifindex,
5702 					       addrp, family, peer_sid, &ad);
5703 		if (err) {
5704 			selinux_netlbl_err(skb, family, err, 1);
5705 			return NF_DROP;
5706 		}
5707 	}
5708 
5709 	if (secmark_active)
5710 		if (avc_has_perm(peer_sid, skb->secmark,
5711 				 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
5712 			return NF_DROP;
5713 
5714 	if (netlbl_enabled())
5715 		/* we do this in the FORWARD path and not the POST_ROUTING
5716 		 * path because we want to make sure we apply the necessary
5717 		 * labeling before IPsec is applied so we can leverage AH
5718 		 * protection */
5719 		if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
5720 			return NF_DROP;
5721 
5722 	return NF_ACCEPT;
5723 }
5724 
5725 static unsigned int selinux_ip_output(void *priv, struct sk_buff *skb,
5726 				      const struct nf_hook_state *state)
5727 {
5728 	struct sock *sk;
5729 	u32 sid;
5730 
5731 	if (!netlbl_enabled())
5732 		return NF_ACCEPT;
5733 
5734 	/* we do this in the LOCAL_OUT path and not the POST_ROUTING path
5735 	 * because we want to make sure we apply the necessary labeling
5736 	 * before IPsec is applied so we can leverage AH protection */
5737 	sk = skb->sk;
5738 	if (sk) {
5739 		struct sk_security_struct *sksec;
5740 
5741 		if (sk_listener(sk))
5742 			/* if the socket is the listening state then this
5743 			 * packet is a SYN-ACK packet which means it needs to
5744 			 * be labeled based on the connection/request_sock and
5745 			 * not the parent socket.  unfortunately, we can't
5746 			 * lookup the request_sock yet as it isn't queued on
5747 			 * the parent socket until after the SYN-ACK is sent.
5748 			 * the "solution" is to simply pass the packet as-is
5749 			 * as any IP option based labeling should be copied
5750 			 * from the initial connection request (in the IP
5751 			 * layer).  it is far from ideal, but until we get a
5752 			 * security label in the packet itself this is the
5753 			 * best we can do. */
5754 			return NF_ACCEPT;
5755 
5756 		/* standard practice, label using the parent socket */
5757 		sksec = sk->sk_security;
5758 		sid = sksec->sid;
5759 	} else
5760 		sid = SECINITSID_KERNEL;
5761 	if (selinux_netlbl_skbuff_setsid(skb, state->pf, sid) != 0)
5762 		return NF_DROP;
5763 
5764 	return NF_ACCEPT;
5765 }
5766 
5767 
5768 static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
5769 					const struct nf_hook_state *state)
5770 {
5771 	struct sock *sk;
5772 	struct sk_security_struct *sksec;
5773 	struct common_audit_data ad;
5774 	struct lsm_network_audit net;
5775 	u8 proto = 0;
5776 
5777 	sk = skb_to_full_sk(skb);
5778 	if (sk == NULL)
5779 		return NF_ACCEPT;
5780 	sksec = sk->sk_security;
5781 
5782 	ad_net_init_from_iif(&ad, &net, state->out->ifindex, state->pf);
5783 	if (selinux_parse_skb(skb, &ad, NULL, 0, &proto))
5784 		return NF_DROP;
5785 
5786 	if (selinux_secmark_enabled())
5787 		if (avc_has_perm(sksec->sid, skb->secmark,
5788 				 SECCLASS_PACKET, PACKET__SEND, &ad))
5789 			return NF_DROP_ERR(-ECONNREFUSED);
5790 
5791 	if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
5792 		return NF_DROP_ERR(-ECONNREFUSED);
5793 
5794 	return NF_ACCEPT;
5795 }
5796 
5797 static unsigned int selinux_ip_postroute(void *priv,
5798 					 struct sk_buff *skb,
5799 					 const struct nf_hook_state *state)
5800 {
5801 	u16 family;
5802 	u32 secmark_perm;
5803 	u32 peer_sid;
5804 	int ifindex;
5805 	struct sock *sk;
5806 	struct common_audit_data ad;
5807 	struct lsm_network_audit net;
5808 	char *addrp;
5809 	int secmark_active, peerlbl_active;
5810 
5811 	/* If any sort of compatibility mode is enabled then handoff processing
5812 	 * to the selinux_ip_postroute_compat() function to deal with the
5813 	 * special handling.  We do this in an attempt to keep this function
5814 	 * as fast and as clean as possible. */
5815 	if (!selinux_policycap_netpeer())
5816 		return selinux_ip_postroute_compat(skb, state);
5817 
5818 	secmark_active = selinux_secmark_enabled();
5819 	peerlbl_active = selinux_peerlbl_enabled();
5820 	if (!secmark_active && !peerlbl_active)
5821 		return NF_ACCEPT;
5822 
5823 	sk = skb_to_full_sk(skb);
5824 
5825 #ifdef CONFIG_XFRM
5826 	/* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
5827 	 * packet transformation so allow the packet to pass without any checks
5828 	 * since we'll have another chance to perform access control checks
5829 	 * when the packet is on it's final way out.
5830 	 * NOTE: there appear to be some IPv6 multicast cases where skb->dst
5831 	 *       is NULL, in this case go ahead and apply access control.
5832 	 * NOTE: if this is a local socket (skb->sk != NULL) that is in the
5833 	 *       TCP listening state we cannot wait until the XFRM processing
5834 	 *       is done as we will miss out on the SA label if we do;
5835 	 *       unfortunately, this means more work, but it is only once per
5836 	 *       connection. */
5837 	if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL &&
5838 	    !(sk && sk_listener(sk)))
5839 		return NF_ACCEPT;
5840 #endif
5841 
5842 	family = state->pf;
5843 	if (sk == NULL) {
5844 		/* Without an associated socket the packet is either coming
5845 		 * from the kernel or it is being forwarded; check the packet
5846 		 * to determine which and if the packet is being forwarded
5847 		 * query the packet directly to determine the security label. */
5848 		if (skb->skb_iif) {
5849 			secmark_perm = PACKET__FORWARD_OUT;
5850 			if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
5851 				return NF_DROP;
5852 		} else {
5853 			secmark_perm = PACKET__SEND;
5854 			peer_sid = SECINITSID_KERNEL;
5855 		}
5856 	} else if (sk_listener(sk)) {
5857 		/* Locally generated packet but the associated socket is in the
5858 		 * listening state which means this is a SYN-ACK packet.  In
5859 		 * this particular case the correct security label is assigned
5860 		 * to the connection/request_sock but unfortunately we can't
5861 		 * query the request_sock as it isn't queued on the parent
5862 		 * socket until after the SYN-ACK packet is sent; the only
5863 		 * viable choice is to regenerate the label like we do in
5864 		 * selinux_inet_conn_request().  See also selinux_ip_output()
5865 		 * for similar problems. */
5866 		u32 skb_sid;
5867 		struct sk_security_struct *sksec;
5868 
5869 		sksec = sk->sk_security;
5870 		if (selinux_skb_peerlbl_sid(skb, family, &skb_sid))
5871 			return NF_DROP;
5872 		/* At this point, if the returned skb peerlbl is SECSID_NULL
5873 		 * and the packet has been through at least one XFRM
5874 		 * transformation then we must be dealing with the "final"
5875 		 * form of labeled IPsec packet; since we've already applied
5876 		 * all of our access controls on this packet we can safely
5877 		 * pass the packet. */
5878 		if (skb_sid == SECSID_NULL) {
5879 			switch (family) {
5880 			case PF_INET:
5881 				if (IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED)
5882 					return NF_ACCEPT;
5883 				break;
5884 			case PF_INET6:
5885 				if (IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED)
5886 					return NF_ACCEPT;
5887 				break;
5888 			default:
5889 				return NF_DROP_ERR(-ECONNREFUSED);
5890 			}
5891 		}
5892 		if (selinux_conn_sid(sksec->sid, skb_sid, &peer_sid))
5893 			return NF_DROP;
5894 		secmark_perm = PACKET__SEND;
5895 	} else {
5896 		/* Locally generated packet, fetch the security label from the
5897 		 * associated socket. */
5898 		struct sk_security_struct *sksec = sk->sk_security;
5899 		peer_sid = sksec->sid;
5900 		secmark_perm = PACKET__SEND;
5901 	}
5902 
5903 	ifindex = state->out->ifindex;
5904 	ad_net_init_from_iif(&ad, &net, ifindex, family);
5905 	if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
5906 		return NF_DROP;
5907 
5908 	if (secmark_active)
5909 		if (avc_has_perm(peer_sid, skb->secmark,
5910 				 SECCLASS_PACKET, secmark_perm, &ad))
5911 			return NF_DROP_ERR(-ECONNREFUSED);
5912 
5913 	if (peerlbl_active) {
5914 		u32 if_sid;
5915 		u32 node_sid;
5916 
5917 		if (sel_netif_sid(state->net, ifindex, &if_sid))
5918 			return NF_DROP;
5919 		if (avc_has_perm(peer_sid, if_sid,
5920 				 SECCLASS_NETIF, NETIF__EGRESS, &ad))
5921 			return NF_DROP_ERR(-ECONNREFUSED);
5922 
5923 		if (sel_netnode_sid(addrp, family, &node_sid))
5924 			return NF_DROP;
5925 		if (avc_has_perm(peer_sid, node_sid,
5926 				 SECCLASS_NODE, NODE__SENDTO, &ad))
5927 			return NF_DROP_ERR(-ECONNREFUSED);
5928 	}
5929 
5930 	return NF_ACCEPT;
5931 }
5932 #endif	/* CONFIG_NETFILTER */
5933 
5934 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
5935 {
5936 	int rc = 0;
5937 	unsigned int msg_len;
5938 	unsigned int data_len = skb->len;
5939 	unsigned char *data = skb->data;
5940 	struct nlmsghdr *nlh;
5941 	struct sk_security_struct *sksec = sk->sk_security;
5942 	u16 sclass = sksec->sclass;
5943 	u32 perm;
5944 
5945 	while (data_len >= nlmsg_total_size(0)) {
5946 		nlh = (struct nlmsghdr *)data;
5947 
5948 		/* NOTE: the nlmsg_len field isn't reliably set by some netlink
5949 		 *       users which means we can't reject skb's with bogus
5950 		 *       length fields; our solution is to follow what
5951 		 *       netlink_rcv_skb() does and simply skip processing at
5952 		 *       messages with length fields that are clearly junk
5953 		 */
5954 		if (nlh->nlmsg_len < NLMSG_HDRLEN || nlh->nlmsg_len > data_len)
5955 			return 0;
5956 
5957 		rc = selinux_nlmsg_lookup(sclass, nlh->nlmsg_type, &perm);
5958 		if (rc == 0) {
5959 			rc = sock_has_perm(sk, perm);
5960 			if (rc)
5961 				return rc;
5962 		} else if (rc == -EINVAL) {
5963 			/* -EINVAL is a missing msg/perm mapping */
5964 			pr_warn_ratelimited("SELinux: unrecognized netlink"
5965 				" message: protocol=%hu nlmsg_type=%hu sclass=%s"
5966 				" pid=%d comm=%s\n",
5967 				sk->sk_protocol, nlh->nlmsg_type,
5968 				secclass_map[sclass - 1].name,
5969 				task_pid_nr(current), current->comm);
5970 			if (enforcing_enabled() &&
5971 			    !security_get_allow_unknown())
5972 				return rc;
5973 			rc = 0;
5974 		} else if (rc == -ENOENT) {
5975 			/* -ENOENT is a missing socket/class mapping, ignore */
5976 			rc = 0;
5977 		} else {
5978 			return rc;
5979 		}
5980 
5981 		/* move to the next message after applying netlink padding */
5982 		msg_len = NLMSG_ALIGN(nlh->nlmsg_len);
5983 		if (msg_len >= data_len)
5984 			return 0;
5985 		data_len -= msg_len;
5986 		data += msg_len;
5987 	}
5988 
5989 	return rc;
5990 }
5991 
5992 static void ipc_init_security(struct ipc_security_struct *isec, u16 sclass)
5993 {
5994 	isec->sclass = sclass;
5995 	isec->sid = current_sid();
5996 }
5997 
5998 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
5999 			u32 perms)
6000 {
6001 	struct ipc_security_struct *isec;
6002 	struct common_audit_data ad;
6003 	u32 sid = current_sid();
6004 
6005 	isec = selinux_ipc(ipc_perms);
6006 
6007 	ad.type = LSM_AUDIT_DATA_IPC;
6008 	ad.u.ipc_id = ipc_perms->key;
6009 
6010 	return avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad);
6011 }
6012 
6013 static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
6014 {
6015 	struct msg_security_struct *msec;
6016 
6017 	msec = selinux_msg_msg(msg);
6018 	msec->sid = SECINITSID_UNLABELED;
6019 
6020 	return 0;
6021 }
6022 
6023 /* message queue security operations */
6024 static int selinux_msg_queue_alloc_security(struct kern_ipc_perm *msq)
6025 {
6026 	struct ipc_security_struct *isec;
6027 	struct common_audit_data ad;
6028 	u32 sid = current_sid();
6029 
6030 	isec = selinux_ipc(msq);
6031 	ipc_init_security(isec, SECCLASS_MSGQ);
6032 
6033 	ad.type = LSM_AUDIT_DATA_IPC;
6034 	ad.u.ipc_id = msq->key;
6035 
6036 	return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
6037 			    MSGQ__CREATE, &ad);
6038 }
6039 
6040 static int selinux_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
6041 {
6042 	struct ipc_security_struct *isec;
6043 	struct common_audit_data ad;
6044 	u32 sid = current_sid();
6045 
6046 	isec = selinux_ipc(msq);
6047 
6048 	ad.type = LSM_AUDIT_DATA_IPC;
6049 	ad.u.ipc_id = msq->key;
6050 
6051 	return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
6052 			    MSGQ__ASSOCIATE, &ad);
6053 }
6054 
6055 static int selinux_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
6056 {
6057 	u32 perms;
6058 
6059 	switch (cmd) {
6060 	case IPC_INFO:
6061 	case MSG_INFO:
6062 		/* No specific object, just general system-wide information. */
6063 		return avc_has_perm(current_sid(), SECINITSID_KERNEL,
6064 				    SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6065 	case IPC_STAT:
6066 	case MSG_STAT:
6067 	case MSG_STAT_ANY:
6068 		perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
6069 		break;
6070 	case IPC_SET:
6071 		perms = MSGQ__SETATTR;
6072 		break;
6073 	case IPC_RMID:
6074 		perms = MSGQ__DESTROY;
6075 		break;
6076 	default:
6077 		return 0;
6078 	}
6079 
6080 	return ipc_has_perm(msq, perms);
6081 }
6082 
6083 static int selinux_msg_queue_msgsnd(struct kern_ipc_perm *msq, struct msg_msg *msg, int msqflg)
6084 {
6085 	struct ipc_security_struct *isec;
6086 	struct msg_security_struct *msec;
6087 	struct common_audit_data ad;
6088 	u32 sid = current_sid();
6089 	int rc;
6090 
6091 	isec = selinux_ipc(msq);
6092 	msec = selinux_msg_msg(msg);
6093 
6094 	/*
6095 	 * First time through, need to assign label to the message
6096 	 */
6097 	if (msec->sid == SECINITSID_UNLABELED) {
6098 		/*
6099 		 * Compute new sid based on current process and
6100 		 * message queue this message will be stored in
6101 		 */
6102 		rc = security_transition_sid(sid, isec->sid,
6103 					     SECCLASS_MSG, NULL, &msec->sid);
6104 		if (rc)
6105 			return rc;
6106 	}
6107 
6108 	ad.type = LSM_AUDIT_DATA_IPC;
6109 	ad.u.ipc_id = msq->key;
6110 
6111 	/* Can this process write to the queue? */
6112 	rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
6113 			  MSGQ__WRITE, &ad);
6114 	if (!rc)
6115 		/* Can this process send the message */
6116 		rc = avc_has_perm(sid, msec->sid, SECCLASS_MSG,
6117 				  MSG__SEND, &ad);
6118 	if (!rc)
6119 		/* Can the message be put in the queue? */
6120 		rc = avc_has_perm(msec->sid, isec->sid, SECCLASS_MSGQ,
6121 				  MSGQ__ENQUEUE, &ad);
6122 
6123 	return rc;
6124 }
6125 
6126 static int selinux_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
6127 				    struct task_struct *target,
6128 				    long type, int mode)
6129 {
6130 	struct ipc_security_struct *isec;
6131 	struct msg_security_struct *msec;
6132 	struct common_audit_data ad;
6133 	u32 sid = task_sid_obj(target);
6134 	int rc;
6135 
6136 	isec = selinux_ipc(msq);
6137 	msec = selinux_msg_msg(msg);
6138 
6139 	ad.type = LSM_AUDIT_DATA_IPC;
6140 	ad.u.ipc_id = msq->key;
6141 
6142 	rc = avc_has_perm(sid, isec->sid,
6143 			  SECCLASS_MSGQ, MSGQ__READ, &ad);
6144 	if (!rc)
6145 		rc = avc_has_perm(sid, msec->sid,
6146 				  SECCLASS_MSG, MSG__RECEIVE, &ad);
6147 	return rc;
6148 }
6149 
6150 /* Shared Memory security operations */
6151 static int selinux_shm_alloc_security(struct kern_ipc_perm *shp)
6152 {
6153 	struct ipc_security_struct *isec;
6154 	struct common_audit_data ad;
6155 	u32 sid = current_sid();
6156 
6157 	isec = selinux_ipc(shp);
6158 	ipc_init_security(isec, SECCLASS_SHM);
6159 
6160 	ad.type = LSM_AUDIT_DATA_IPC;
6161 	ad.u.ipc_id = shp->key;
6162 
6163 	return avc_has_perm(sid, isec->sid, SECCLASS_SHM,
6164 			    SHM__CREATE, &ad);
6165 }
6166 
6167 static int selinux_shm_associate(struct kern_ipc_perm *shp, int shmflg)
6168 {
6169 	struct ipc_security_struct *isec;
6170 	struct common_audit_data ad;
6171 	u32 sid = current_sid();
6172 
6173 	isec = selinux_ipc(shp);
6174 
6175 	ad.type = LSM_AUDIT_DATA_IPC;
6176 	ad.u.ipc_id = shp->key;
6177 
6178 	return avc_has_perm(sid, isec->sid, SECCLASS_SHM,
6179 			    SHM__ASSOCIATE, &ad);
6180 }
6181 
6182 /* Note, at this point, shp is locked down */
6183 static int selinux_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
6184 {
6185 	u32 perms;
6186 
6187 	switch (cmd) {
6188 	case IPC_INFO:
6189 	case SHM_INFO:
6190 		/* No specific object, just general system-wide information. */
6191 		return avc_has_perm(current_sid(), SECINITSID_KERNEL,
6192 				    SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6193 	case IPC_STAT:
6194 	case SHM_STAT:
6195 	case SHM_STAT_ANY:
6196 		perms = SHM__GETATTR | SHM__ASSOCIATE;
6197 		break;
6198 	case IPC_SET:
6199 		perms = SHM__SETATTR;
6200 		break;
6201 	case SHM_LOCK:
6202 	case SHM_UNLOCK:
6203 		perms = SHM__LOCK;
6204 		break;
6205 	case IPC_RMID:
6206 		perms = SHM__DESTROY;
6207 		break;
6208 	default:
6209 		return 0;
6210 	}
6211 
6212 	return ipc_has_perm(shp, perms);
6213 }
6214 
6215 static int selinux_shm_shmat(struct kern_ipc_perm *shp,
6216 			     char __user *shmaddr, int shmflg)
6217 {
6218 	u32 perms;
6219 
6220 	if (shmflg & SHM_RDONLY)
6221 		perms = SHM__READ;
6222 	else
6223 		perms = SHM__READ | SHM__WRITE;
6224 
6225 	return ipc_has_perm(shp, perms);
6226 }
6227 
6228 /* Semaphore security operations */
6229 static int selinux_sem_alloc_security(struct kern_ipc_perm *sma)
6230 {
6231 	struct ipc_security_struct *isec;
6232 	struct common_audit_data ad;
6233 	u32 sid = current_sid();
6234 
6235 	isec = selinux_ipc(sma);
6236 	ipc_init_security(isec, SECCLASS_SEM);
6237 
6238 	ad.type = LSM_AUDIT_DATA_IPC;
6239 	ad.u.ipc_id = sma->key;
6240 
6241 	return avc_has_perm(sid, isec->sid, SECCLASS_SEM,
6242 			    SEM__CREATE, &ad);
6243 }
6244 
6245 static int selinux_sem_associate(struct kern_ipc_perm *sma, int semflg)
6246 {
6247 	struct ipc_security_struct *isec;
6248 	struct common_audit_data ad;
6249 	u32 sid = current_sid();
6250 
6251 	isec = selinux_ipc(sma);
6252 
6253 	ad.type = LSM_AUDIT_DATA_IPC;
6254 	ad.u.ipc_id = sma->key;
6255 
6256 	return avc_has_perm(sid, isec->sid, SECCLASS_SEM,
6257 			    SEM__ASSOCIATE, &ad);
6258 }
6259 
6260 /* Note, at this point, sma is locked down */
6261 static int selinux_sem_semctl(struct kern_ipc_perm *sma, int cmd)
6262 {
6263 	int err;
6264 	u32 perms;
6265 
6266 	switch (cmd) {
6267 	case IPC_INFO:
6268 	case SEM_INFO:
6269 		/* No specific object, just general system-wide information. */
6270 		return avc_has_perm(current_sid(), SECINITSID_KERNEL,
6271 				    SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6272 	case GETPID:
6273 	case GETNCNT:
6274 	case GETZCNT:
6275 		perms = SEM__GETATTR;
6276 		break;
6277 	case GETVAL:
6278 	case GETALL:
6279 		perms = SEM__READ;
6280 		break;
6281 	case SETVAL:
6282 	case SETALL:
6283 		perms = SEM__WRITE;
6284 		break;
6285 	case IPC_RMID:
6286 		perms = SEM__DESTROY;
6287 		break;
6288 	case IPC_SET:
6289 		perms = SEM__SETATTR;
6290 		break;
6291 	case IPC_STAT:
6292 	case SEM_STAT:
6293 	case SEM_STAT_ANY:
6294 		perms = SEM__GETATTR | SEM__ASSOCIATE;
6295 		break;
6296 	default:
6297 		return 0;
6298 	}
6299 
6300 	err = ipc_has_perm(sma, perms);
6301 	return err;
6302 }
6303 
6304 static int selinux_sem_semop(struct kern_ipc_perm *sma,
6305 			     struct sembuf *sops, unsigned nsops, int alter)
6306 {
6307 	u32 perms;
6308 
6309 	if (alter)
6310 		perms = SEM__READ | SEM__WRITE;
6311 	else
6312 		perms = SEM__READ;
6313 
6314 	return ipc_has_perm(sma, perms);
6315 }
6316 
6317 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
6318 {
6319 	u32 av = 0;
6320 
6321 	av = 0;
6322 	if (flag & S_IRUGO)
6323 		av |= IPC__UNIX_READ;
6324 	if (flag & S_IWUGO)
6325 		av |= IPC__UNIX_WRITE;
6326 
6327 	if (av == 0)
6328 		return 0;
6329 
6330 	return ipc_has_perm(ipcp, av);
6331 }
6332 
6333 static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
6334 {
6335 	struct ipc_security_struct *isec = selinux_ipc(ipcp);
6336 	*secid = isec->sid;
6337 }
6338 
6339 static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
6340 {
6341 	if (inode)
6342 		inode_doinit_with_dentry(inode, dentry);
6343 }
6344 
6345 static int selinux_lsm_getattr(unsigned int attr, struct task_struct *p,
6346 			       char **value)
6347 {
6348 	const struct task_security_struct *__tsec;
6349 	u32 sid;
6350 	int error;
6351 	unsigned len;
6352 
6353 	rcu_read_lock();
6354 	__tsec = selinux_cred(__task_cred(p));
6355 
6356 	if (current != p) {
6357 		error = avc_has_perm(current_sid(), __tsec->sid,
6358 				     SECCLASS_PROCESS, PROCESS__GETATTR, NULL);
6359 		if (error)
6360 			goto bad;
6361 	}
6362 
6363 	switch (attr) {
6364 	case LSM_ATTR_CURRENT:
6365 		sid = __tsec->sid;
6366 		break;
6367 	case LSM_ATTR_PREV:
6368 		sid = __tsec->osid;
6369 		break;
6370 	case LSM_ATTR_EXEC:
6371 		sid = __tsec->exec_sid;
6372 		break;
6373 	case LSM_ATTR_FSCREATE:
6374 		sid = __tsec->create_sid;
6375 		break;
6376 	case LSM_ATTR_KEYCREATE:
6377 		sid = __tsec->keycreate_sid;
6378 		break;
6379 	case LSM_ATTR_SOCKCREATE:
6380 		sid = __tsec->sockcreate_sid;
6381 		break;
6382 	default:
6383 		error = -EOPNOTSUPP;
6384 		goto bad;
6385 	}
6386 	rcu_read_unlock();
6387 
6388 	if (!sid)
6389 		return 0;
6390 
6391 	error = security_sid_to_context(sid, value, &len);
6392 	if (error)
6393 		return error;
6394 	return len;
6395 
6396 bad:
6397 	rcu_read_unlock();
6398 	return error;
6399 }
6400 
6401 static int selinux_lsm_setattr(u64 attr, void *value, size_t size)
6402 {
6403 	struct task_security_struct *tsec;
6404 	struct cred *new;
6405 	u32 mysid = current_sid(), sid = 0, ptsid;
6406 	int error;
6407 	char *str = value;
6408 
6409 	/*
6410 	 * Basic control over ability to set these attributes at all.
6411 	 */
6412 	switch (attr) {
6413 	case LSM_ATTR_EXEC:
6414 		error = avc_has_perm(mysid, mysid, SECCLASS_PROCESS,
6415 				     PROCESS__SETEXEC, NULL);
6416 		break;
6417 	case LSM_ATTR_FSCREATE:
6418 		error = avc_has_perm(mysid, mysid, SECCLASS_PROCESS,
6419 				     PROCESS__SETFSCREATE, NULL);
6420 		break;
6421 	case LSM_ATTR_KEYCREATE:
6422 		error = avc_has_perm(mysid, mysid, SECCLASS_PROCESS,
6423 				     PROCESS__SETKEYCREATE, NULL);
6424 		break;
6425 	case LSM_ATTR_SOCKCREATE:
6426 		error = avc_has_perm(mysid, mysid, SECCLASS_PROCESS,
6427 				     PROCESS__SETSOCKCREATE, NULL);
6428 		break;
6429 	case LSM_ATTR_CURRENT:
6430 		error = avc_has_perm(mysid, mysid, SECCLASS_PROCESS,
6431 				     PROCESS__SETCURRENT, NULL);
6432 		break;
6433 	default:
6434 		error = -EOPNOTSUPP;
6435 		break;
6436 	}
6437 	if (error)
6438 		return error;
6439 
6440 	/* Obtain a SID for the context, if one was specified. */
6441 	if (size && str[0] && str[0] != '\n') {
6442 		if (str[size-1] == '\n') {
6443 			str[size-1] = 0;
6444 			size--;
6445 		}
6446 		error = security_context_to_sid(value, size,
6447 						&sid, GFP_KERNEL);
6448 		if (error == -EINVAL && attr == LSM_ATTR_FSCREATE) {
6449 			if (!has_cap_mac_admin(true)) {
6450 				struct audit_buffer *ab;
6451 				size_t audit_size;
6452 
6453 				/* We strip a nul only if it is at the end,
6454 				 * otherwise the context contains a nul and
6455 				 * we should audit that */
6456 				if (str[size - 1] == '\0')
6457 					audit_size = size - 1;
6458 				else
6459 					audit_size = size;
6460 				ab = audit_log_start(audit_context(),
6461 						     GFP_ATOMIC,
6462 						     AUDIT_SELINUX_ERR);
6463 				if (!ab)
6464 					return error;
6465 				audit_log_format(ab, "op=fscreate invalid_context=");
6466 				audit_log_n_untrustedstring(ab, value,
6467 							    audit_size);
6468 				audit_log_end(ab);
6469 
6470 				return error;
6471 			}
6472 			error = security_context_to_sid_force(value, size,
6473 							&sid);
6474 		}
6475 		if (error)
6476 			return error;
6477 	}
6478 
6479 	new = prepare_creds();
6480 	if (!new)
6481 		return -ENOMEM;
6482 
6483 	/* Permission checking based on the specified context is
6484 	   performed during the actual operation (execve,
6485 	   open/mkdir/...), when we know the full context of the
6486 	   operation.  See selinux_bprm_creds_for_exec for the execve
6487 	   checks and may_create for the file creation checks. The
6488 	   operation will then fail if the context is not permitted. */
6489 	tsec = selinux_cred(new);
6490 	if (attr == LSM_ATTR_EXEC) {
6491 		tsec->exec_sid = sid;
6492 	} else if (attr == LSM_ATTR_FSCREATE) {
6493 		tsec->create_sid = sid;
6494 	} else if (attr == LSM_ATTR_KEYCREATE) {
6495 		if (sid) {
6496 			error = avc_has_perm(mysid, sid,
6497 					     SECCLASS_KEY, KEY__CREATE, NULL);
6498 			if (error)
6499 				goto abort_change;
6500 		}
6501 		tsec->keycreate_sid = sid;
6502 	} else if (attr == LSM_ATTR_SOCKCREATE) {
6503 		tsec->sockcreate_sid = sid;
6504 	} else if (attr == LSM_ATTR_CURRENT) {
6505 		error = -EINVAL;
6506 		if (sid == 0)
6507 			goto abort_change;
6508 
6509 		if (!current_is_single_threaded()) {
6510 			error = security_bounded_transition(tsec->sid, sid);
6511 			if (error)
6512 				goto abort_change;
6513 		}
6514 
6515 		/* Check permissions for the transition. */
6516 		error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
6517 				     PROCESS__DYNTRANSITION, NULL);
6518 		if (error)
6519 			goto abort_change;
6520 
6521 		/* Check for ptracing, and update the task SID if ok.
6522 		   Otherwise, leave SID unchanged and fail. */
6523 		ptsid = ptrace_parent_sid();
6524 		if (ptsid != 0) {
6525 			error = avc_has_perm(ptsid, sid, SECCLASS_PROCESS,
6526 					     PROCESS__PTRACE, NULL);
6527 			if (error)
6528 				goto abort_change;
6529 		}
6530 
6531 		tsec->sid = sid;
6532 	} else {
6533 		error = -EINVAL;
6534 		goto abort_change;
6535 	}
6536 
6537 	commit_creds(new);
6538 	return size;
6539 
6540 abort_change:
6541 	abort_creds(new);
6542 	return error;
6543 }
6544 
6545 /**
6546  * selinux_getselfattr - Get SELinux current task attributes
6547  * @attr: the requested attribute
6548  * @ctx: buffer to receive the result
6549  * @size: buffer size (input), buffer size used (output)
6550  * @flags: unused
6551  *
6552  * Fill the passed user space @ctx with the details of the requested
6553  * attribute.
6554  *
6555  * Returns the number of attributes on success, an error code otherwise.
6556  * There will only ever be one attribute.
6557  */
6558 static int selinux_getselfattr(unsigned int attr, struct lsm_ctx __user *ctx,
6559 			       size_t *size, u32 flags)
6560 {
6561 	int rc;
6562 	char *val;
6563 	int val_len;
6564 
6565 	val_len = selinux_lsm_getattr(attr, current, &val);
6566 	if (val_len < 0)
6567 		return val_len;
6568 	rc = lsm_fill_user_ctx(ctx, size, val, val_len, LSM_ID_SELINUX, 0);
6569 	kfree(val);
6570 	return (!rc ? 1 : rc);
6571 }
6572 
6573 static int selinux_setselfattr(unsigned int attr, struct lsm_ctx *ctx,
6574 			       size_t size, u32 flags)
6575 {
6576 	int rc;
6577 
6578 	rc = selinux_lsm_setattr(attr, ctx->ctx, ctx->ctx_len);
6579 	if (rc > 0)
6580 		return 0;
6581 	return rc;
6582 }
6583 
6584 static int selinux_getprocattr(struct task_struct *p,
6585 			       const char *name, char **value)
6586 {
6587 	unsigned int attr = lsm_name_to_attr(name);
6588 	int rc;
6589 
6590 	if (attr) {
6591 		rc = selinux_lsm_getattr(attr, p, value);
6592 		if (rc != -EOPNOTSUPP)
6593 			return rc;
6594 	}
6595 
6596 	return -EINVAL;
6597 }
6598 
6599 static int selinux_setprocattr(const char *name, void *value, size_t size)
6600 {
6601 	int attr = lsm_name_to_attr(name);
6602 
6603 	if (attr)
6604 		return selinux_lsm_setattr(attr, value, size);
6605 	return -EINVAL;
6606 }
6607 
6608 static int selinux_ismaclabel(const char *name)
6609 {
6610 	return (strcmp(name, XATTR_SELINUX_SUFFIX) == 0);
6611 }
6612 
6613 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
6614 {
6615 	return security_sid_to_context(secid,
6616 				       secdata, seclen);
6617 }
6618 
6619 static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
6620 {
6621 	return security_context_to_sid(secdata, seclen,
6622 				       secid, GFP_KERNEL);
6623 }
6624 
6625 static void selinux_release_secctx(char *secdata, u32 seclen)
6626 {
6627 	kfree(secdata);
6628 }
6629 
6630 static void selinux_inode_invalidate_secctx(struct inode *inode)
6631 {
6632 	struct inode_security_struct *isec = selinux_inode(inode);
6633 
6634 	spin_lock(&isec->lock);
6635 	isec->initialized = LABEL_INVALID;
6636 	spin_unlock(&isec->lock);
6637 }
6638 
6639 /*
6640  *	called with inode->i_mutex locked
6641  */
6642 static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
6643 {
6644 	int rc = selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX,
6645 					   ctx, ctxlen, 0);
6646 	/* Do not return error when suppressing label (SBLABEL_MNT not set). */
6647 	return rc == -EOPNOTSUPP ? 0 : rc;
6648 }
6649 
6650 /*
6651  *	called with inode->i_mutex locked
6652  */
6653 static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
6654 {
6655 	return __vfs_setxattr_noperm(&nop_mnt_idmap, dentry, XATTR_NAME_SELINUX,
6656 				     ctx, ctxlen, 0);
6657 }
6658 
6659 static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
6660 {
6661 	int len = 0;
6662 	len = selinux_inode_getsecurity(&nop_mnt_idmap, inode,
6663 					XATTR_SELINUX_SUFFIX, ctx, true);
6664 	if (len < 0)
6665 		return len;
6666 	*ctxlen = len;
6667 	return 0;
6668 }
6669 #ifdef CONFIG_KEYS
6670 
6671 static int selinux_key_alloc(struct key *k, const struct cred *cred,
6672 			     unsigned long flags)
6673 {
6674 	const struct task_security_struct *tsec;
6675 	struct key_security_struct *ksec;
6676 
6677 	ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
6678 	if (!ksec)
6679 		return -ENOMEM;
6680 
6681 	tsec = selinux_cred(cred);
6682 	if (tsec->keycreate_sid)
6683 		ksec->sid = tsec->keycreate_sid;
6684 	else
6685 		ksec->sid = tsec->sid;
6686 
6687 	k->security = ksec;
6688 	return 0;
6689 }
6690 
6691 static void selinux_key_free(struct key *k)
6692 {
6693 	struct key_security_struct *ksec = k->security;
6694 
6695 	k->security = NULL;
6696 	kfree(ksec);
6697 }
6698 
6699 static int selinux_key_permission(key_ref_t key_ref,
6700 				  const struct cred *cred,
6701 				  enum key_need_perm need_perm)
6702 {
6703 	struct key *key;
6704 	struct key_security_struct *ksec;
6705 	u32 perm, sid;
6706 
6707 	switch (need_perm) {
6708 	case KEY_NEED_VIEW:
6709 		perm = KEY__VIEW;
6710 		break;
6711 	case KEY_NEED_READ:
6712 		perm = KEY__READ;
6713 		break;
6714 	case KEY_NEED_WRITE:
6715 		perm = KEY__WRITE;
6716 		break;
6717 	case KEY_NEED_SEARCH:
6718 		perm = KEY__SEARCH;
6719 		break;
6720 	case KEY_NEED_LINK:
6721 		perm = KEY__LINK;
6722 		break;
6723 	case KEY_NEED_SETATTR:
6724 		perm = KEY__SETATTR;
6725 		break;
6726 	case KEY_NEED_UNLINK:
6727 	case KEY_SYSADMIN_OVERRIDE:
6728 	case KEY_AUTHTOKEN_OVERRIDE:
6729 	case KEY_DEFER_PERM_CHECK:
6730 		return 0;
6731 	default:
6732 		WARN_ON(1);
6733 		return -EPERM;
6734 
6735 	}
6736 
6737 	sid = cred_sid(cred);
6738 	key = key_ref_to_ptr(key_ref);
6739 	ksec = key->security;
6740 
6741 	return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, perm, NULL);
6742 }
6743 
6744 static int selinux_key_getsecurity(struct key *key, char **_buffer)
6745 {
6746 	struct key_security_struct *ksec = key->security;
6747 	char *context = NULL;
6748 	unsigned len;
6749 	int rc;
6750 
6751 	rc = security_sid_to_context(ksec->sid,
6752 				     &context, &len);
6753 	if (!rc)
6754 		rc = len;
6755 	*_buffer = context;
6756 	return rc;
6757 }
6758 
6759 #ifdef CONFIG_KEY_NOTIFICATIONS
6760 static int selinux_watch_key(struct key *key)
6761 {
6762 	struct key_security_struct *ksec = key->security;
6763 	u32 sid = current_sid();
6764 
6765 	return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, KEY__VIEW, NULL);
6766 }
6767 #endif
6768 #endif
6769 
6770 #ifdef CONFIG_SECURITY_INFINIBAND
6771 static int selinux_ib_pkey_access(void *ib_sec, u64 subnet_prefix, u16 pkey_val)
6772 {
6773 	struct common_audit_data ad;
6774 	int err;
6775 	u32 sid = 0;
6776 	struct ib_security_struct *sec = ib_sec;
6777 	struct lsm_ibpkey_audit ibpkey;
6778 
6779 	err = sel_ib_pkey_sid(subnet_prefix, pkey_val, &sid);
6780 	if (err)
6781 		return err;
6782 
6783 	ad.type = LSM_AUDIT_DATA_IBPKEY;
6784 	ibpkey.subnet_prefix = subnet_prefix;
6785 	ibpkey.pkey = pkey_val;
6786 	ad.u.ibpkey = &ibpkey;
6787 	return avc_has_perm(sec->sid, sid,
6788 			    SECCLASS_INFINIBAND_PKEY,
6789 			    INFINIBAND_PKEY__ACCESS, &ad);
6790 }
6791 
6792 static int selinux_ib_endport_manage_subnet(void *ib_sec, const char *dev_name,
6793 					    u8 port_num)
6794 {
6795 	struct common_audit_data ad;
6796 	int err;
6797 	u32 sid = 0;
6798 	struct ib_security_struct *sec = ib_sec;
6799 	struct lsm_ibendport_audit ibendport;
6800 
6801 	err = security_ib_endport_sid(dev_name, port_num,
6802 				      &sid);
6803 
6804 	if (err)
6805 		return err;
6806 
6807 	ad.type = LSM_AUDIT_DATA_IBENDPORT;
6808 	ibendport.dev_name = dev_name;
6809 	ibendport.port = port_num;
6810 	ad.u.ibendport = &ibendport;
6811 	return avc_has_perm(sec->sid, sid,
6812 			    SECCLASS_INFINIBAND_ENDPORT,
6813 			    INFINIBAND_ENDPORT__MANAGE_SUBNET, &ad);
6814 }
6815 
6816 static int selinux_ib_alloc_security(void **ib_sec)
6817 {
6818 	struct ib_security_struct *sec;
6819 
6820 	sec = kzalloc(sizeof(*sec), GFP_KERNEL);
6821 	if (!sec)
6822 		return -ENOMEM;
6823 	sec->sid = current_sid();
6824 
6825 	*ib_sec = sec;
6826 	return 0;
6827 }
6828 
6829 static void selinux_ib_free_security(void *ib_sec)
6830 {
6831 	kfree(ib_sec);
6832 }
6833 #endif
6834 
6835 #ifdef CONFIG_BPF_SYSCALL
6836 static int selinux_bpf(int cmd, union bpf_attr *attr,
6837 				     unsigned int size)
6838 {
6839 	u32 sid = current_sid();
6840 	int ret;
6841 
6842 	switch (cmd) {
6843 	case BPF_MAP_CREATE:
6844 		ret = avc_has_perm(sid, sid, SECCLASS_BPF, BPF__MAP_CREATE,
6845 				   NULL);
6846 		break;
6847 	case BPF_PROG_LOAD:
6848 		ret = avc_has_perm(sid, sid, SECCLASS_BPF, BPF__PROG_LOAD,
6849 				   NULL);
6850 		break;
6851 	default:
6852 		ret = 0;
6853 		break;
6854 	}
6855 
6856 	return ret;
6857 }
6858 
6859 static u32 bpf_map_fmode_to_av(fmode_t fmode)
6860 {
6861 	u32 av = 0;
6862 
6863 	if (fmode & FMODE_READ)
6864 		av |= BPF__MAP_READ;
6865 	if (fmode & FMODE_WRITE)
6866 		av |= BPF__MAP_WRITE;
6867 	return av;
6868 }
6869 
6870 /* This function will check the file pass through unix socket or binder to see
6871  * if it is a bpf related object. And apply corresponding checks on the bpf
6872  * object based on the type. The bpf maps and programs, not like other files and
6873  * socket, are using a shared anonymous inode inside the kernel as their inode.
6874  * So checking that inode cannot identify if the process have privilege to
6875  * access the bpf object and that's why we have to add this additional check in
6876  * selinux_file_receive and selinux_binder_transfer_files.
6877  */
6878 static int bpf_fd_pass(const struct file *file, u32 sid)
6879 {
6880 	struct bpf_security_struct *bpfsec;
6881 	struct bpf_prog *prog;
6882 	struct bpf_map *map;
6883 	int ret;
6884 
6885 	if (file->f_op == &bpf_map_fops) {
6886 		map = file->private_data;
6887 		bpfsec = map->security;
6888 		ret = avc_has_perm(sid, bpfsec->sid, SECCLASS_BPF,
6889 				   bpf_map_fmode_to_av(file->f_mode), NULL);
6890 		if (ret)
6891 			return ret;
6892 	} else if (file->f_op == &bpf_prog_fops) {
6893 		prog = file->private_data;
6894 		bpfsec = prog->aux->security;
6895 		ret = avc_has_perm(sid, bpfsec->sid, SECCLASS_BPF,
6896 				   BPF__PROG_RUN, NULL);
6897 		if (ret)
6898 			return ret;
6899 	}
6900 	return 0;
6901 }
6902 
6903 static int selinux_bpf_map(struct bpf_map *map, fmode_t fmode)
6904 {
6905 	u32 sid = current_sid();
6906 	struct bpf_security_struct *bpfsec;
6907 
6908 	bpfsec = map->security;
6909 	return avc_has_perm(sid, bpfsec->sid, SECCLASS_BPF,
6910 			    bpf_map_fmode_to_av(fmode), NULL);
6911 }
6912 
6913 static int selinux_bpf_prog(struct bpf_prog *prog)
6914 {
6915 	u32 sid = current_sid();
6916 	struct bpf_security_struct *bpfsec;
6917 
6918 	bpfsec = prog->aux->security;
6919 	return avc_has_perm(sid, bpfsec->sid, SECCLASS_BPF,
6920 			    BPF__PROG_RUN, NULL);
6921 }
6922 
6923 static int selinux_bpf_map_alloc(struct bpf_map *map)
6924 {
6925 	struct bpf_security_struct *bpfsec;
6926 
6927 	bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL);
6928 	if (!bpfsec)
6929 		return -ENOMEM;
6930 
6931 	bpfsec->sid = current_sid();
6932 	map->security = bpfsec;
6933 
6934 	return 0;
6935 }
6936 
6937 static void selinux_bpf_map_free(struct bpf_map *map)
6938 {
6939 	struct bpf_security_struct *bpfsec = map->security;
6940 
6941 	map->security = NULL;
6942 	kfree(bpfsec);
6943 }
6944 
6945 static int selinux_bpf_prog_alloc(struct bpf_prog_aux *aux)
6946 {
6947 	struct bpf_security_struct *bpfsec;
6948 
6949 	bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL);
6950 	if (!bpfsec)
6951 		return -ENOMEM;
6952 
6953 	bpfsec->sid = current_sid();
6954 	aux->security = bpfsec;
6955 
6956 	return 0;
6957 }
6958 
6959 static void selinux_bpf_prog_free(struct bpf_prog_aux *aux)
6960 {
6961 	struct bpf_security_struct *bpfsec = aux->security;
6962 
6963 	aux->security = NULL;
6964 	kfree(bpfsec);
6965 }
6966 #endif
6967 
6968 struct lsm_blob_sizes selinux_blob_sizes __ro_after_init = {
6969 	.lbs_cred = sizeof(struct task_security_struct),
6970 	.lbs_file = sizeof(struct file_security_struct),
6971 	.lbs_inode = sizeof(struct inode_security_struct),
6972 	.lbs_ipc = sizeof(struct ipc_security_struct),
6973 	.lbs_msg_msg = sizeof(struct msg_security_struct),
6974 	.lbs_superblock = sizeof(struct superblock_security_struct),
6975 	.lbs_xattr_count = SELINUX_INODE_INIT_XATTRS,
6976 };
6977 
6978 #ifdef CONFIG_PERF_EVENTS
6979 static int selinux_perf_event_open(struct perf_event_attr *attr, int type)
6980 {
6981 	u32 requested, sid = current_sid();
6982 
6983 	if (type == PERF_SECURITY_OPEN)
6984 		requested = PERF_EVENT__OPEN;
6985 	else if (type == PERF_SECURITY_CPU)
6986 		requested = PERF_EVENT__CPU;
6987 	else if (type == PERF_SECURITY_KERNEL)
6988 		requested = PERF_EVENT__KERNEL;
6989 	else if (type == PERF_SECURITY_TRACEPOINT)
6990 		requested = PERF_EVENT__TRACEPOINT;
6991 	else
6992 		return -EINVAL;
6993 
6994 	return avc_has_perm(sid, sid, SECCLASS_PERF_EVENT,
6995 			    requested, NULL);
6996 }
6997 
6998 static int selinux_perf_event_alloc(struct perf_event *event)
6999 {
7000 	struct perf_event_security_struct *perfsec;
7001 
7002 	perfsec = kzalloc(sizeof(*perfsec), GFP_KERNEL);
7003 	if (!perfsec)
7004 		return -ENOMEM;
7005 
7006 	perfsec->sid = current_sid();
7007 	event->security = perfsec;
7008 
7009 	return 0;
7010 }
7011 
7012 static void selinux_perf_event_free(struct perf_event *event)
7013 {
7014 	struct perf_event_security_struct *perfsec = event->security;
7015 
7016 	event->security = NULL;
7017 	kfree(perfsec);
7018 }
7019 
7020 static int selinux_perf_event_read(struct perf_event *event)
7021 {
7022 	struct perf_event_security_struct *perfsec = event->security;
7023 	u32 sid = current_sid();
7024 
7025 	return avc_has_perm(sid, perfsec->sid,
7026 			    SECCLASS_PERF_EVENT, PERF_EVENT__READ, NULL);
7027 }
7028 
7029 static int selinux_perf_event_write(struct perf_event *event)
7030 {
7031 	struct perf_event_security_struct *perfsec = event->security;
7032 	u32 sid = current_sid();
7033 
7034 	return avc_has_perm(sid, perfsec->sid,
7035 			    SECCLASS_PERF_EVENT, PERF_EVENT__WRITE, NULL);
7036 }
7037 #endif
7038 
7039 #ifdef CONFIG_IO_URING
7040 /**
7041  * selinux_uring_override_creds - check the requested cred override
7042  * @new: the target creds
7043  *
7044  * Check to see if the current task is allowed to override it's credentials
7045  * to service an io_uring operation.
7046  */
7047 static int selinux_uring_override_creds(const struct cred *new)
7048 {
7049 	return avc_has_perm(current_sid(), cred_sid(new),
7050 			    SECCLASS_IO_URING, IO_URING__OVERRIDE_CREDS, NULL);
7051 }
7052 
7053 /**
7054  * selinux_uring_sqpoll - check if a io_uring polling thread can be created
7055  *
7056  * Check to see if the current task is allowed to create a new io_uring
7057  * kernel polling thread.
7058  */
7059 static int selinux_uring_sqpoll(void)
7060 {
7061 	u32 sid = current_sid();
7062 
7063 	return avc_has_perm(sid, sid,
7064 			    SECCLASS_IO_URING, IO_URING__SQPOLL, NULL);
7065 }
7066 
7067 /**
7068  * selinux_uring_cmd - check if IORING_OP_URING_CMD is allowed
7069  * @ioucmd: the io_uring command structure
7070  *
7071  * Check to see if the current domain is allowed to execute an
7072  * IORING_OP_URING_CMD against the device/file specified in @ioucmd.
7073  *
7074  */
7075 static int selinux_uring_cmd(struct io_uring_cmd *ioucmd)
7076 {
7077 	struct file *file = ioucmd->file;
7078 	struct inode *inode = file_inode(file);
7079 	struct inode_security_struct *isec = selinux_inode(inode);
7080 	struct common_audit_data ad;
7081 
7082 	ad.type = LSM_AUDIT_DATA_FILE;
7083 	ad.u.file = file;
7084 
7085 	return avc_has_perm(current_sid(), isec->sid,
7086 			    SECCLASS_IO_URING, IO_URING__CMD, &ad);
7087 }
7088 #endif /* CONFIG_IO_URING */
7089 
7090 static const struct lsm_id selinux_lsmid = {
7091 	.name = "selinux",
7092 	.id = LSM_ID_SELINUX,
7093 };
7094 
7095 /*
7096  * IMPORTANT NOTE: When adding new hooks, please be careful to keep this order:
7097  * 1. any hooks that don't belong to (2.) or (3.) below,
7098  * 2. hooks that both access structures allocated by other hooks, and allocate
7099  *    structures that can be later accessed by other hooks (mostly "cloning"
7100  *    hooks),
7101  * 3. hooks that only allocate structures that can be later accessed by other
7102  *    hooks ("allocating" hooks).
7103  *
7104  * Please follow block comment delimiters in the list to keep this order.
7105  */
7106 static struct security_hook_list selinux_hooks[] __ro_after_init = {
7107 	LSM_HOOK_INIT(binder_set_context_mgr, selinux_binder_set_context_mgr),
7108 	LSM_HOOK_INIT(binder_transaction, selinux_binder_transaction),
7109 	LSM_HOOK_INIT(binder_transfer_binder, selinux_binder_transfer_binder),
7110 	LSM_HOOK_INIT(binder_transfer_file, selinux_binder_transfer_file),
7111 
7112 	LSM_HOOK_INIT(ptrace_access_check, selinux_ptrace_access_check),
7113 	LSM_HOOK_INIT(ptrace_traceme, selinux_ptrace_traceme),
7114 	LSM_HOOK_INIT(capget, selinux_capget),
7115 	LSM_HOOK_INIT(capset, selinux_capset),
7116 	LSM_HOOK_INIT(capable, selinux_capable),
7117 	LSM_HOOK_INIT(quotactl, selinux_quotactl),
7118 	LSM_HOOK_INIT(quota_on, selinux_quota_on),
7119 	LSM_HOOK_INIT(syslog, selinux_syslog),
7120 	LSM_HOOK_INIT(vm_enough_memory, selinux_vm_enough_memory),
7121 
7122 	LSM_HOOK_INIT(netlink_send, selinux_netlink_send),
7123 
7124 	LSM_HOOK_INIT(bprm_creds_for_exec, selinux_bprm_creds_for_exec),
7125 	LSM_HOOK_INIT(bprm_committing_creds, selinux_bprm_committing_creds),
7126 	LSM_HOOK_INIT(bprm_committed_creds, selinux_bprm_committed_creds),
7127 
7128 	LSM_HOOK_INIT(sb_free_mnt_opts, selinux_free_mnt_opts),
7129 	LSM_HOOK_INIT(sb_mnt_opts_compat, selinux_sb_mnt_opts_compat),
7130 	LSM_HOOK_INIT(sb_remount, selinux_sb_remount),
7131 	LSM_HOOK_INIT(sb_kern_mount, selinux_sb_kern_mount),
7132 	LSM_HOOK_INIT(sb_show_options, selinux_sb_show_options),
7133 	LSM_HOOK_INIT(sb_statfs, selinux_sb_statfs),
7134 	LSM_HOOK_INIT(sb_mount, selinux_mount),
7135 	LSM_HOOK_INIT(sb_umount, selinux_umount),
7136 	LSM_HOOK_INIT(sb_set_mnt_opts, selinux_set_mnt_opts),
7137 	LSM_HOOK_INIT(sb_clone_mnt_opts, selinux_sb_clone_mnt_opts),
7138 
7139 	LSM_HOOK_INIT(move_mount, selinux_move_mount),
7140 
7141 	LSM_HOOK_INIT(dentry_init_security, selinux_dentry_init_security),
7142 	LSM_HOOK_INIT(dentry_create_files_as, selinux_dentry_create_files_as),
7143 
7144 	LSM_HOOK_INIT(inode_free_security, selinux_inode_free_security),
7145 	LSM_HOOK_INIT(inode_init_security, selinux_inode_init_security),
7146 	LSM_HOOK_INIT(inode_init_security_anon, selinux_inode_init_security_anon),
7147 	LSM_HOOK_INIT(inode_create, selinux_inode_create),
7148 	LSM_HOOK_INIT(inode_link, selinux_inode_link),
7149 	LSM_HOOK_INIT(inode_unlink, selinux_inode_unlink),
7150 	LSM_HOOK_INIT(inode_symlink, selinux_inode_symlink),
7151 	LSM_HOOK_INIT(inode_mkdir, selinux_inode_mkdir),
7152 	LSM_HOOK_INIT(inode_rmdir, selinux_inode_rmdir),
7153 	LSM_HOOK_INIT(inode_mknod, selinux_inode_mknod),
7154 	LSM_HOOK_INIT(inode_rename, selinux_inode_rename),
7155 	LSM_HOOK_INIT(inode_readlink, selinux_inode_readlink),
7156 	LSM_HOOK_INIT(inode_follow_link, selinux_inode_follow_link),
7157 	LSM_HOOK_INIT(inode_permission, selinux_inode_permission),
7158 	LSM_HOOK_INIT(inode_setattr, selinux_inode_setattr),
7159 	LSM_HOOK_INIT(inode_getattr, selinux_inode_getattr),
7160 	LSM_HOOK_INIT(inode_setxattr, selinux_inode_setxattr),
7161 	LSM_HOOK_INIT(inode_post_setxattr, selinux_inode_post_setxattr),
7162 	LSM_HOOK_INIT(inode_getxattr, selinux_inode_getxattr),
7163 	LSM_HOOK_INIT(inode_listxattr, selinux_inode_listxattr),
7164 	LSM_HOOK_INIT(inode_removexattr, selinux_inode_removexattr),
7165 	LSM_HOOK_INIT(inode_set_acl, selinux_inode_set_acl),
7166 	LSM_HOOK_INIT(inode_get_acl, selinux_inode_get_acl),
7167 	LSM_HOOK_INIT(inode_remove_acl, selinux_inode_remove_acl),
7168 	LSM_HOOK_INIT(inode_getsecurity, selinux_inode_getsecurity),
7169 	LSM_HOOK_INIT(inode_setsecurity, selinux_inode_setsecurity),
7170 	LSM_HOOK_INIT(inode_listsecurity, selinux_inode_listsecurity),
7171 	LSM_HOOK_INIT(inode_getsecid, selinux_inode_getsecid),
7172 	LSM_HOOK_INIT(inode_copy_up, selinux_inode_copy_up),
7173 	LSM_HOOK_INIT(inode_copy_up_xattr, selinux_inode_copy_up_xattr),
7174 	LSM_HOOK_INIT(path_notify, selinux_path_notify),
7175 
7176 	LSM_HOOK_INIT(kernfs_init_security, selinux_kernfs_init_security),
7177 
7178 	LSM_HOOK_INIT(file_permission, selinux_file_permission),
7179 	LSM_HOOK_INIT(file_alloc_security, selinux_file_alloc_security),
7180 	LSM_HOOK_INIT(file_ioctl, selinux_file_ioctl),
7181 	LSM_HOOK_INIT(file_ioctl_compat, selinux_file_ioctl_compat),
7182 	LSM_HOOK_INIT(mmap_file, selinux_mmap_file),
7183 	LSM_HOOK_INIT(mmap_addr, selinux_mmap_addr),
7184 	LSM_HOOK_INIT(file_mprotect, selinux_file_mprotect),
7185 	LSM_HOOK_INIT(file_lock, selinux_file_lock),
7186 	LSM_HOOK_INIT(file_fcntl, selinux_file_fcntl),
7187 	LSM_HOOK_INIT(file_set_fowner, selinux_file_set_fowner),
7188 	LSM_HOOK_INIT(file_send_sigiotask, selinux_file_send_sigiotask),
7189 	LSM_HOOK_INIT(file_receive, selinux_file_receive),
7190 
7191 	LSM_HOOK_INIT(file_open, selinux_file_open),
7192 
7193 	LSM_HOOK_INIT(task_alloc, selinux_task_alloc),
7194 	LSM_HOOK_INIT(cred_prepare, selinux_cred_prepare),
7195 	LSM_HOOK_INIT(cred_transfer, selinux_cred_transfer),
7196 	LSM_HOOK_INIT(cred_getsecid, selinux_cred_getsecid),
7197 	LSM_HOOK_INIT(kernel_act_as, selinux_kernel_act_as),
7198 	LSM_HOOK_INIT(kernel_create_files_as, selinux_kernel_create_files_as),
7199 	LSM_HOOK_INIT(kernel_module_request, selinux_kernel_module_request),
7200 	LSM_HOOK_INIT(kernel_load_data, selinux_kernel_load_data),
7201 	LSM_HOOK_INIT(kernel_read_file, selinux_kernel_read_file),
7202 	LSM_HOOK_INIT(task_setpgid, selinux_task_setpgid),
7203 	LSM_HOOK_INIT(task_getpgid, selinux_task_getpgid),
7204 	LSM_HOOK_INIT(task_getsid, selinux_task_getsid),
7205 	LSM_HOOK_INIT(current_getsecid_subj, selinux_current_getsecid_subj),
7206 	LSM_HOOK_INIT(task_getsecid_obj, selinux_task_getsecid_obj),
7207 	LSM_HOOK_INIT(task_setnice, selinux_task_setnice),
7208 	LSM_HOOK_INIT(task_setioprio, selinux_task_setioprio),
7209 	LSM_HOOK_INIT(task_getioprio, selinux_task_getioprio),
7210 	LSM_HOOK_INIT(task_prlimit, selinux_task_prlimit),
7211 	LSM_HOOK_INIT(task_setrlimit, selinux_task_setrlimit),
7212 	LSM_HOOK_INIT(task_setscheduler, selinux_task_setscheduler),
7213 	LSM_HOOK_INIT(task_getscheduler, selinux_task_getscheduler),
7214 	LSM_HOOK_INIT(task_movememory, selinux_task_movememory),
7215 	LSM_HOOK_INIT(task_kill, selinux_task_kill),
7216 	LSM_HOOK_INIT(task_to_inode, selinux_task_to_inode),
7217 	LSM_HOOK_INIT(userns_create, selinux_userns_create),
7218 
7219 	LSM_HOOK_INIT(ipc_permission, selinux_ipc_permission),
7220 	LSM_HOOK_INIT(ipc_getsecid, selinux_ipc_getsecid),
7221 
7222 	LSM_HOOK_INIT(msg_queue_associate, selinux_msg_queue_associate),
7223 	LSM_HOOK_INIT(msg_queue_msgctl, selinux_msg_queue_msgctl),
7224 	LSM_HOOK_INIT(msg_queue_msgsnd, selinux_msg_queue_msgsnd),
7225 	LSM_HOOK_INIT(msg_queue_msgrcv, selinux_msg_queue_msgrcv),
7226 
7227 	LSM_HOOK_INIT(shm_associate, selinux_shm_associate),
7228 	LSM_HOOK_INIT(shm_shmctl, selinux_shm_shmctl),
7229 	LSM_HOOK_INIT(shm_shmat, selinux_shm_shmat),
7230 
7231 	LSM_HOOK_INIT(sem_associate, selinux_sem_associate),
7232 	LSM_HOOK_INIT(sem_semctl, selinux_sem_semctl),
7233 	LSM_HOOK_INIT(sem_semop, selinux_sem_semop),
7234 
7235 	LSM_HOOK_INIT(d_instantiate, selinux_d_instantiate),
7236 
7237 	LSM_HOOK_INIT(getselfattr, selinux_getselfattr),
7238 	LSM_HOOK_INIT(setselfattr, selinux_setselfattr),
7239 	LSM_HOOK_INIT(getprocattr, selinux_getprocattr),
7240 	LSM_HOOK_INIT(setprocattr, selinux_setprocattr),
7241 
7242 	LSM_HOOK_INIT(ismaclabel, selinux_ismaclabel),
7243 	LSM_HOOK_INIT(secctx_to_secid, selinux_secctx_to_secid),
7244 	LSM_HOOK_INIT(release_secctx, selinux_release_secctx),
7245 	LSM_HOOK_INIT(inode_invalidate_secctx, selinux_inode_invalidate_secctx),
7246 	LSM_HOOK_INIT(inode_notifysecctx, selinux_inode_notifysecctx),
7247 	LSM_HOOK_INIT(inode_setsecctx, selinux_inode_setsecctx),
7248 
7249 	LSM_HOOK_INIT(unix_stream_connect, selinux_socket_unix_stream_connect),
7250 	LSM_HOOK_INIT(unix_may_send, selinux_socket_unix_may_send),
7251 
7252 	LSM_HOOK_INIT(socket_create, selinux_socket_create),
7253 	LSM_HOOK_INIT(socket_post_create, selinux_socket_post_create),
7254 	LSM_HOOK_INIT(socket_socketpair, selinux_socket_socketpair),
7255 	LSM_HOOK_INIT(socket_bind, selinux_socket_bind),
7256 	LSM_HOOK_INIT(socket_connect, selinux_socket_connect),
7257 	LSM_HOOK_INIT(socket_listen, selinux_socket_listen),
7258 	LSM_HOOK_INIT(socket_accept, selinux_socket_accept),
7259 	LSM_HOOK_INIT(socket_sendmsg, selinux_socket_sendmsg),
7260 	LSM_HOOK_INIT(socket_recvmsg, selinux_socket_recvmsg),
7261 	LSM_HOOK_INIT(socket_getsockname, selinux_socket_getsockname),
7262 	LSM_HOOK_INIT(socket_getpeername, selinux_socket_getpeername),
7263 	LSM_HOOK_INIT(socket_getsockopt, selinux_socket_getsockopt),
7264 	LSM_HOOK_INIT(socket_setsockopt, selinux_socket_setsockopt),
7265 	LSM_HOOK_INIT(socket_shutdown, selinux_socket_shutdown),
7266 	LSM_HOOK_INIT(socket_sock_rcv_skb, selinux_socket_sock_rcv_skb),
7267 	LSM_HOOK_INIT(socket_getpeersec_stream,
7268 			selinux_socket_getpeersec_stream),
7269 	LSM_HOOK_INIT(socket_getpeersec_dgram, selinux_socket_getpeersec_dgram),
7270 	LSM_HOOK_INIT(sk_free_security, selinux_sk_free_security),
7271 	LSM_HOOK_INIT(sk_clone_security, selinux_sk_clone_security),
7272 	LSM_HOOK_INIT(sk_getsecid, selinux_sk_getsecid),
7273 	LSM_HOOK_INIT(sock_graft, selinux_sock_graft),
7274 	LSM_HOOK_INIT(sctp_assoc_request, selinux_sctp_assoc_request),
7275 	LSM_HOOK_INIT(sctp_sk_clone, selinux_sctp_sk_clone),
7276 	LSM_HOOK_INIT(sctp_bind_connect, selinux_sctp_bind_connect),
7277 	LSM_HOOK_INIT(sctp_assoc_established, selinux_sctp_assoc_established),
7278 	LSM_HOOK_INIT(mptcp_add_subflow, selinux_mptcp_add_subflow),
7279 	LSM_HOOK_INIT(inet_conn_request, selinux_inet_conn_request),
7280 	LSM_HOOK_INIT(inet_csk_clone, selinux_inet_csk_clone),
7281 	LSM_HOOK_INIT(inet_conn_established, selinux_inet_conn_established),
7282 	LSM_HOOK_INIT(secmark_relabel_packet, selinux_secmark_relabel_packet),
7283 	LSM_HOOK_INIT(secmark_refcount_inc, selinux_secmark_refcount_inc),
7284 	LSM_HOOK_INIT(secmark_refcount_dec, selinux_secmark_refcount_dec),
7285 	LSM_HOOK_INIT(req_classify_flow, selinux_req_classify_flow),
7286 	LSM_HOOK_INIT(tun_dev_free_security, selinux_tun_dev_free_security),
7287 	LSM_HOOK_INIT(tun_dev_create, selinux_tun_dev_create),
7288 	LSM_HOOK_INIT(tun_dev_attach_queue, selinux_tun_dev_attach_queue),
7289 	LSM_HOOK_INIT(tun_dev_attach, selinux_tun_dev_attach),
7290 	LSM_HOOK_INIT(tun_dev_open, selinux_tun_dev_open),
7291 #ifdef CONFIG_SECURITY_INFINIBAND
7292 	LSM_HOOK_INIT(ib_pkey_access, selinux_ib_pkey_access),
7293 	LSM_HOOK_INIT(ib_endport_manage_subnet,
7294 		      selinux_ib_endport_manage_subnet),
7295 	LSM_HOOK_INIT(ib_free_security, selinux_ib_free_security),
7296 #endif
7297 #ifdef CONFIG_SECURITY_NETWORK_XFRM
7298 	LSM_HOOK_INIT(xfrm_policy_free_security, selinux_xfrm_policy_free),
7299 	LSM_HOOK_INIT(xfrm_policy_delete_security, selinux_xfrm_policy_delete),
7300 	LSM_HOOK_INIT(xfrm_state_free_security, selinux_xfrm_state_free),
7301 	LSM_HOOK_INIT(xfrm_state_delete_security, selinux_xfrm_state_delete),
7302 	LSM_HOOK_INIT(xfrm_policy_lookup, selinux_xfrm_policy_lookup),
7303 	LSM_HOOK_INIT(xfrm_state_pol_flow_match,
7304 			selinux_xfrm_state_pol_flow_match),
7305 	LSM_HOOK_INIT(xfrm_decode_session, selinux_xfrm_decode_session),
7306 #endif
7307 
7308 #ifdef CONFIG_KEYS
7309 	LSM_HOOK_INIT(key_free, selinux_key_free),
7310 	LSM_HOOK_INIT(key_permission, selinux_key_permission),
7311 	LSM_HOOK_INIT(key_getsecurity, selinux_key_getsecurity),
7312 #ifdef CONFIG_KEY_NOTIFICATIONS
7313 	LSM_HOOK_INIT(watch_key, selinux_watch_key),
7314 #endif
7315 #endif
7316 
7317 #ifdef CONFIG_AUDIT
7318 	LSM_HOOK_INIT(audit_rule_known, selinux_audit_rule_known),
7319 	LSM_HOOK_INIT(audit_rule_match, selinux_audit_rule_match),
7320 	LSM_HOOK_INIT(audit_rule_free, selinux_audit_rule_free),
7321 #endif
7322 
7323 #ifdef CONFIG_BPF_SYSCALL
7324 	LSM_HOOK_INIT(bpf, selinux_bpf),
7325 	LSM_HOOK_INIT(bpf_map, selinux_bpf_map),
7326 	LSM_HOOK_INIT(bpf_prog, selinux_bpf_prog),
7327 	LSM_HOOK_INIT(bpf_map_free_security, selinux_bpf_map_free),
7328 	LSM_HOOK_INIT(bpf_prog_free_security, selinux_bpf_prog_free),
7329 #endif
7330 
7331 #ifdef CONFIG_PERF_EVENTS
7332 	LSM_HOOK_INIT(perf_event_open, selinux_perf_event_open),
7333 	LSM_HOOK_INIT(perf_event_free, selinux_perf_event_free),
7334 	LSM_HOOK_INIT(perf_event_read, selinux_perf_event_read),
7335 	LSM_HOOK_INIT(perf_event_write, selinux_perf_event_write),
7336 #endif
7337 
7338 #ifdef CONFIG_IO_URING
7339 	LSM_HOOK_INIT(uring_override_creds, selinux_uring_override_creds),
7340 	LSM_HOOK_INIT(uring_sqpoll, selinux_uring_sqpoll),
7341 	LSM_HOOK_INIT(uring_cmd, selinux_uring_cmd),
7342 #endif
7343 
7344 	/*
7345 	 * PUT "CLONING" (ACCESSING + ALLOCATING) HOOKS HERE
7346 	 */
7347 	LSM_HOOK_INIT(fs_context_submount, selinux_fs_context_submount),
7348 	LSM_HOOK_INIT(fs_context_dup, selinux_fs_context_dup),
7349 	LSM_HOOK_INIT(fs_context_parse_param, selinux_fs_context_parse_param),
7350 	LSM_HOOK_INIT(sb_eat_lsm_opts, selinux_sb_eat_lsm_opts),
7351 #ifdef CONFIG_SECURITY_NETWORK_XFRM
7352 	LSM_HOOK_INIT(xfrm_policy_clone_security, selinux_xfrm_policy_clone),
7353 #endif
7354 
7355 	/*
7356 	 * PUT "ALLOCATING" HOOKS HERE
7357 	 */
7358 	LSM_HOOK_INIT(msg_msg_alloc_security, selinux_msg_msg_alloc_security),
7359 	LSM_HOOK_INIT(msg_queue_alloc_security,
7360 		      selinux_msg_queue_alloc_security),
7361 	LSM_HOOK_INIT(shm_alloc_security, selinux_shm_alloc_security),
7362 	LSM_HOOK_INIT(sb_alloc_security, selinux_sb_alloc_security),
7363 	LSM_HOOK_INIT(inode_alloc_security, selinux_inode_alloc_security),
7364 	LSM_HOOK_INIT(sem_alloc_security, selinux_sem_alloc_security),
7365 	LSM_HOOK_INIT(secid_to_secctx, selinux_secid_to_secctx),
7366 	LSM_HOOK_INIT(inode_getsecctx, selinux_inode_getsecctx),
7367 	LSM_HOOK_INIT(sk_alloc_security, selinux_sk_alloc_security),
7368 	LSM_HOOK_INIT(tun_dev_alloc_security, selinux_tun_dev_alloc_security),
7369 #ifdef CONFIG_SECURITY_INFINIBAND
7370 	LSM_HOOK_INIT(ib_alloc_security, selinux_ib_alloc_security),
7371 #endif
7372 #ifdef CONFIG_SECURITY_NETWORK_XFRM
7373 	LSM_HOOK_INIT(xfrm_policy_alloc_security, selinux_xfrm_policy_alloc),
7374 	LSM_HOOK_INIT(xfrm_state_alloc, selinux_xfrm_state_alloc),
7375 	LSM_HOOK_INIT(xfrm_state_alloc_acquire,
7376 		      selinux_xfrm_state_alloc_acquire),
7377 #endif
7378 #ifdef CONFIG_KEYS
7379 	LSM_HOOK_INIT(key_alloc, selinux_key_alloc),
7380 #endif
7381 #ifdef CONFIG_AUDIT
7382 	LSM_HOOK_INIT(audit_rule_init, selinux_audit_rule_init),
7383 #endif
7384 #ifdef CONFIG_BPF_SYSCALL
7385 	LSM_HOOK_INIT(bpf_map_alloc_security, selinux_bpf_map_alloc),
7386 	LSM_HOOK_INIT(bpf_prog_alloc_security, selinux_bpf_prog_alloc),
7387 #endif
7388 #ifdef CONFIG_PERF_EVENTS
7389 	LSM_HOOK_INIT(perf_event_alloc, selinux_perf_event_alloc),
7390 #endif
7391 };
7392 
7393 static __init int selinux_init(void)
7394 {
7395 	pr_info("SELinux:  Initializing.\n");
7396 
7397 	memset(&selinux_state, 0, sizeof(selinux_state));
7398 	enforcing_set(selinux_enforcing_boot);
7399 	selinux_avc_init();
7400 	mutex_init(&selinux_state.status_lock);
7401 	mutex_init(&selinux_state.policy_mutex);
7402 
7403 	/* Set the security state for the initial task. */
7404 	cred_init_security();
7405 
7406 	default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC);
7407 	if (!default_noexec)
7408 		pr_notice("SELinux:  virtual memory is executable by default\n");
7409 
7410 	avc_init();
7411 
7412 	avtab_cache_init();
7413 
7414 	ebitmap_cache_init();
7415 
7416 	hashtab_cache_init();
7417 
7418 	security_add_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks),
7419 			   &selinux_lsmid);
7420 
7421 	if (avc_add_callback(selinux_netcache_avc_callback, AVC_CALLBACK_RESET))
7422 		panic("SELinux: Unable to register AVC netcache callback\n");
7423 
7424 	if (avc_add_callback(selinux_lsm_notifier_avc_callback, AVC_CALLBACK_RESET))
7425 		panic("SELinux: Unable to register AVC LSM notifier callback\n");
7426 
7427 	if (selinux_enforcing_boot)
7428 		pr_debug("SELinux:  Starting in enforcing mode\n");
7429 	else
7430 		pr_debug("SELinux:  Starting in permissive mode\n");
7431 
7432 	fs_validate_description("selinux", selinux_fs_parameters);
7433 
7434 	return 0;
7435 }
7436 
7437 static void delayed_superblock_init(struct super_block *sb, void *unused)
7438 {
7439 	selinux_set_mnt_opts(sb, NULL, 0, NULL);
7440 }
7441 
7442 void selinux_complete_init(void)
7443 {
7444 	pr_debug("SELinux:  Completing initialization.\n");
7445 
7446 	/* Set up any superblocks initialized prior to the policy load. */
7447 	pr_debug("SELinux:  Setting up existing superblocks.\n");
7448 	iterate_supers(delayed_superblock_init, NULL);
7449 }
7450 
7451 /* SELinux requires early initialization in order to label
7452    all processes and objects when they are created. */
7453 DEFINE_LSM(selinux) = {
7454 	.name = "selinux",
7455 	.flags = LSM_FLAG_LEGACY_MAJOR | LSM_FLAG_EXCLUSIVE,
7456 	.enabled = &selinux_enabled_boot,
7457 	.blobs = &selinux_blob_sizes,
7458 	.init = selinux_init,
7459 };
7460 
7461 #if defined(CONFIG_NETFILTER)
7462 static const struct nf_hook_ops selinux_nf_ops[] = {
7463 	{
7464 		.hook =		selinux_ip_postroute,
7465 		.pf =		NFPROTO_IPV4,
7466 		.hooknum =	NF_INET_POST_ROUTING,
7467 		.priority =	NF_IP_PRI_SELINUX_LAST,
7468 	},
7469 	{
7470 		.hook =		selinux_ip_forward,
7471 		.pf =		NFPROTO_IPV4,
7472 		.hooknum =	NF_INET_FORWARD,
7473 		.priority =	NF_IP_PRI_SELINUX_FIRST,
7474 	},
7475 	{
7476 		.hook =		selinux_ip_output,
7477 		.pf =		NFPROTO_IPV4,
7478 		.hooknum =	NF_INET_LOCAL_OUT,
7479 		.priority =	NF_IP_PRI_SELINUX_FIRST,
7480 	},
7481 #if IS_ENABLED(CONFIG_IPV6)
7482 	{
7483 		.hook =		selinux_ip_postroute,
7484 		.pf =		NFPROTO_IPV6,
7485 		.hooknum =	NF_INET_POST_ROUTING,
7486 		.priority =	NF_IP6_PRI_SELINUX_LAST,
7487 	},
7488 	{
7489 		.hook =		selinux_ip_forward,
7490 		.pf =		NFPROTO_IPV6,
7491 		.hooknum =	NF_INET_FORWARD,
7492 		.priority =	NF_IP6_PRI_SELINUX_FIRST,
7493 	},
7494 	{
7495 		.hook =		selinux_ip_output,
7496 		.pf =		NFPROTO_IPV6,
7497 		.hooknum =	NF_INET_LOCAL_OUT,
7498 		.priority =	NF_IP6_PRI_SELINUX_FIRST,
7499 	},
7500 #endif	/* IPV6 */
7501 };
7502 
7503 static int __net_init selinux_nf_register(struct net *net)
7504 {
7505 	return nf_register_net_hooks(net, selinux_nf_ops,
7506 				     ARRAY_SIZE(selinux_nf_ops));
7507 }
7508 
7509 static void __net_exit selinux_nf_unregister(struct net *net)
7510 {
7511 	nf_unregister_net_hooks(net, selinux_nf_ops,
7512 				ARRAY_SIZE(selinux_nf_ops));
7513 }
7514 
7515 static struct pernet_operations selinux_net_ops = {
7516 	.init = selinux_nf_register,
7517 	.exit = selinux_nf_unregister,
7518 };
7519 
7520 static int __init selinux_nf_ip_init(void)
7521 {
7522 	int err;
7523 
7524 	if (!selinux_enabled_boot)
7525 		return 0;
7526 
7527 	pr_debug("SELinux:  Registering netfilter hooks\n");
7528 
7529 	err = register_pernet_subsys(&selinux_net_ops);
7530 	if (err)
7531 		panic("SELinux: register_pernet_subsys: error %d\n", err);
7532 
7533 	return 0;
7534 }
7535 __initcall(selinux_nf_ip_init);
7536 #endif /* CONFIG_NETFILTER */
7537