xref: /linux/security/selinux/hooks.c (revision 2a52ca7c98960aafb0eca9ef96b2d0c932171357)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  Security-Enhanced Linux (SELinux) security module
4  *
5  *  This file contains the SELinux hook function implementations.
6  *
7  *  Authors:  Stephen Smalley, <stephen.smalley.work@gmail.com>
8  *	      Chris Vance, <cvance@nai.com>
9  *	      Wayne Salamon, <wsalamon@nai.com>
10  *	      James Morris <jmorris@redhat.com>
11  *
12  *  Copyright (C) 2001,2002 Networks Associates Technology, Inc.
13  *  Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
14  *					   Eric Paris <eparis@redhat.com>
15  *  Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
16  *			    <dgoeddel@trustedcs.com>
17  *  Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P.
18  *	Paul Moore <paul@paul-moore.com>
19  *  Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
20  *		       Yuichi Nakamura <ynakam@hitachisoft.jp>
21  *  Copyright (C) 2016 Mellanox Technologies
22  */
23 
24 #include <linux/init.h>
25 #include <linux/kd.h>
26 #include <linux/kernel.h>
27 #include <linux/kernel_read_file.h>
28 #include <linux/errno.h>
29 #include <linux/sched/signal.h>
30 #include <linux/sched/task.h>
31 #include <linux/lsm_hooks.h>
32 #include <linux/xattr.h>
33 #include <linux/capability.h>
34 #include <linux/unistd.h>
35 #include <linux/mm.h>
36 #include <linux/mman.h>
37 #include <linux/slab.h>
38 #include <linux/pagemap.h>
39 #include <linux/proc_fs.h>
40 #include <linux/swap.h>
41 #include <linux/spinlock.h>
42 #include <linux/syscalls.h>
43 #include <linux/dcache.h>
44 #include <linux/file.h>
45 #include <linux/fdtable.h>
46 #include <linux/namei.h>
47 #include <linux/mount.h>
48 #include <linux/fs_context.h>
49 #include <linux/fs_parser.h>
50 #include <linux/netfilter_ipv4.h>
51 #include <linux/netfilter_ipv6.h>
52 #include <linux/tty.h>
53 #include <net/icmp.h>
54 #include <net/ip.h>		/* for local_port_range[] */
55 #include <net/tcp.h>		/* struct or_callable used in sock_rcv_skb */
56 #include <net/inet_connection_sock.h>
57 #include <net/net_namespace.h>
58 #include <net/netlabel.h>
59 #include <linux/uaccess.h>
60 #include <asm/ioctls.h>
61 #include <linux/atomic.h>
62 #include <linux/bitops.h>
63 #include <linux/interrupt.h>
64 #include <linux/netdevice.h>	/* for network interface checks */
65 #include <net/netlink.h>
66 #include <linux/tcp.h>
67 #include <linux/udp.h>
68 #include <linux/dccp.h>
69 #include <linux/sctp.h>
70 #include <net/sctp/structs.h>
71 #include <linux/quota.h>
72 #include <linux/un.h>		/* for Unix socket types */
73 #include <net/af_unix.h>	/* for Unix socket types */
74 #include <linux/parser.h>
75 #include <linux/nfs_mount.h>
76 #include <net/ipv6.h>
77 #include <linux/hugetlb.h>
78 #include <linux/personality.h>
79 #include <linux/audit.h>
80 #include <linux/string.h>
81 #include <linux/mutex.h>
82 #include <linux/posix-timers.h>
83 #include <linux/syslog.h>
84 #include <linux/user_namespace.h>
85 #include <linux/export.h>
86 #include <linux/msg.h>
87 #include <linux/shm.h>
88 #include <uapi/linux/shm.h>
89 #include <linux/bpf.h>
90 #include <linux/kernfs.h>
91 #include <linux/stringhash.h>	/* for hashlen_string() */
92 #include <uapi/linux/mount.h>
93 #include <linux/fsnotify.h>
94 #include <linux/fanotify.h>
95 #include <linux/io_uring/cmd.h>
96 #include <uapi/linux/lsm.h>
97 
98 #include "avc.h"
99 #include "objsec.h"
100 #include "netif.h"
101 #include "netnode.h"
102 #include "netport.h"
103 #include "ibpkey.h"
104 #include "xfrm.h"
105 #include "netlabel.h"
106 #include "audit.h"
107 #include "avc_ss.h"
108 
109 #define SELINUX_INODE_INIT_XATTRS 1
110 
111 struct selinux_state selinux_state;
112 
113 /* SECMARK reference count */
114 static atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
115 
116 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP
117 static int selinux_enforcing_boot __initdata;
118 
119 static int __init enforcing_setup(char *str)
120 {
121 	unsigned long enforcing;
122 	if (!kstrtoul(str, 0, &enforcing))
123 		selinux_enforcing_boot = enforcing ? 1 : 0;
124 	return 1;
125 }
126 __setup("enforcing=", enforcing_setup);
127 #else
128 #define selinux_enforcing_boot 1
129 #endif
130 
131 int selinux_enabled_boot __initdata = 1;
132 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
133 static int __init selinux_enabled_setup(char *str)
134 {
135 	unsigned long enabled;
136 	if (!kstrtoul(str, 0, &enabled))
137 		selinux_enabled_boot = enabled ? 1 : 0;
138 	return 1;
139 }
140 __setup("selinux=", selinux_enabled_setup);
141 #endif
142 
143 static int __init checkreqprot_setup(char *str)
144 {
145 	unsigned long checkreqprot;
146 
147 	if (!kstrtoul(str, 0, &checkreqprot)) {
148 		if (checkreqprot)
149 			pr_err("SELinux: checkreqprot set to 1 via kernel parameter.  This is no longer supported.\n");
150 	}
151 	return 1;
152 }
153 __setup("checkreqprot=", checkreqprot_setup);
154 
155 /**
156  * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
157  *
158  * Description:
159  * This function checks the SECMARK reference counter to see if any SECMARK
160  * targets are currently configured, if the reference counter is greater than
161  * zero SECMARK is considered to be enabled.  Returns true (1) if SECMARK is
162  * enabled, false (0) if SECMARK is disabled.  If the always_check_network
163  * policy capability is enabled, SECMARK is always considered enabled.
164  *
165  */
166 static int selinux_secmark_enabled(void)
167 {
168 	return (selinux_policycap_alwaysnetwork() ||
169 		atomic_read(&selinux_secmark_refcount));
170 }
171 
172 /**
173  * selinux_peerlbl_enabled - Check to see if peer labeling is currently enabled
174  *
175  * Description:
176  * This function checks if NetLabel or labeled IPSEC is enabled.  Returns true
177  * (1) if any are enabled or false (0) if neither are enabled.  If the
178  * always_check_network policy capability is enabled, peer labeling
179  * is always considered enabled.
180  *
181  */
182 static int selinux_peerlbl_enabled(void)
183 {
184 	return (selinux_policycap_alwaysnetwork() ||
185 		netlbl_enabled() || selinux_xfrm_enabled());
186 }
187 
188 static int selinux_netcache_avc_callback(u32 event)
189 {
190 	if (event == AVC_CALLBACK_RESET) {
191 		sel_netif_flush();
192 		sel_netnode_flush();
193 		sel_netport_flush();
194 		synchronize_net();
195 	}
196 	return 0;
197 }
198 
199 static int selinux_lsm_notifier_avc_callback(u32 event)
200 {
201 	if (event == AVC_CALLBACK_RESET) {
202 		sel_ib_pkey_flush();
203 		call_blocking_lsm_notifier(LSM_POLICY_CHANGE, NULL);
204 	}
205 
206 	return 0;
207 }
208 
209 /*
210  * initialise the security for the init task
211  */
212 static void cred_init_security(void)
213 {
214 	struct task_security_struct *tsec;
215 
216 	tsec = selinux_cred(unrcu_pointer(current->real_cred));
217 	tsec->osid = tsec->sid = SECINITSID_KERNEL;
218 }
219 
220 /*
221  * get the security ID of a set of credentials
222  */
223 static inline u32 cred_sid(const struct cred *cred)
224 {
225 	const struct task_security_struct *tsec;
226 
227 	tsec = selinux_cred(cred);
228 	return tsec->sid;
229 }
230 
231 static void __ad_net_init(struct common_audit_data *ad,
232 			  struct lsm_network_audit *net,
233 			  int ifindex, struct sock *sk, u16 family)
234 {
235 	ad->type = LSM_AUDIT_DATA_NET;
236 	ad->u.net = net;
237 	net->netif = ifindex;
238 	net->sk = sk;
239 	net->family = family;
240 }
241 
242 static void ad_net_init_from_sk(struct common_audit_data *ad,
243 				struct lsm_network_audit *net,
244 				struct sock *sk)
245 {
246 	__ad_net_init(ad, net, 0, sk, 0);
247 }
248 
249 static void ad_net_init_from_iif(struct common_audit_data *ad,
250 				 struct lsm_network_audit *net,
251 				 int ifindex, u16 family)
252 {
253 	__ad_net_init(ad, net, ifindex, NULL, family);
254 }
255 
256 /*
257  * get the objective security ID of a task
258  */
259 static inline u32 task_sid_obj(const struct task_struct *task)
260 {
261 	u32 sid;
262 
263 	rcu_read_lock();
264 	sid = cred_sid(__task_cred(task));
265 	rcu_read_unlock();
266 	return sid;
267 }
268 
269 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
270 
271 /*
272  * Try reloading inode security labels that have been marked as invalid.  The
273  * @may_sleep parameter indicates when sleeping and thus reloading labels is
274  * allowed; when set to false, returns -ECHILD when the label is
275  * invalid.  The @dentry parameter should be set to a dentry of the inode.
276  */
277 static int __inode_security_revalidate(struct inode *inode,
278 				       struct dentry *dentry,
279 				       bool may_sleep)
280 {
281 	struct inode_security_struct *isec = selinux_inode(inode);
282 
283 	might_sleep_if(may_sleep);
284 
285 	if (selinux_initialized() &&
286 	    isec->initialized != LABEL_INITIALIZED) {
287 		if (!may_sleep)
288 			return -ECHILD;
289 
290 		/*
291 		 * Try reloading the inode security label.  This will fail if
292 		 * @opt_dentry is NULL and no dentry for this inode can be
293 		 * found; in that case, continue using the old label.
294 		 */
295 		inode_doinit_with_dentry(inode, dentry);
296 	}
297 	return 0;
298 }
299 
300 static struct inode_security_struct *inode_security_novalidate(struct inode *inode)
301 {
302 	return selinux_inode(inode);
303 }
304 
305 static struct inode_security_struct *inode_security_rcu(struct inode *inode, bool rcu)
306 {
307 	int error;
308 
309 	error = __inode_security_revalidate(inode, NULL, !rcu);
310 	if (error)
311 		return ERR_PTR(error);
312 	return selinux_inode(inode);
313 }
314 
315 /*
316  * Get the security label of an inode.
317  */
318 static struct inode_security_struct *inode_security(struct inode *inode)
319 {
320 	__inode_security_revalidate(inode, NULL, true);
321 	return selinux_inode(inode);
322 }
323 
324 static struct inode_security_struct *backing_inode_security_novalidate(struct dentry *dentry)
325 {
326 	struct inode *inode = d_backing_inode(dentry);
327 
328 	return selinux_inode(inode);
329 }
330 
331 /*
332  * Get the security label of a dentry's backing inode.
333  */
334 static struct inode_security_struct *backing_inode_security(struct dentry *dentry)
335 {
336 	struct inode *inode = d_backing_inode(dentry);
337 
338 	__inode_security_revalidate(inode, dentry, true);
339 	return selinux_inode(inode);
340 }
341 
342 static void inode_free_security(struct inode *inode)
343 {
344 	struct inode_security_struct *isec = selinux_inode(inode);
345 	struct superblock_security_struct *sbsec;
346 
347 	if (!isec)
348 		return;
349 	sbsec = selinux_superblock(inode->i_sb);
350 	/*
351 	 * As not all inode security structures are in a list, we check for
352 	 * empty list outside of the lock to make sure that we won't waste
353 	 * time taking a lock doing nothing.
354 	 *
355 	 * The list_del_init() function can be safely called more than once.
356 	 * It should not be possible for this function to be called with
357 	 * concurrent list_add(), but for better safety against future changes
358 	 * in the code, we use list_empty_careful() here.
359 	 */
360 	if (!list_empty_careful(&isec->list)) {
361 		spin_lock(&sbsec->isec_lock);
362 		list_del_init(&isec->list);
363 		spin_unlock(&sbsec->isec_lock);
364 	}
365 }
366 
367 struct selinux_mnt_opts {
368 	u32 fscontext_sid;
369 	u32 context_sid;
370 	u32 rootcontext_sid;
371 	u32 defcontext_sid;
372 };
373 
374 static void selinux_free_mnt_opts(void *mnt_opts)
375 {
376 	kfree(mnt_opts);
377 }
378 
379 enum {
380 	Opt_error = -1,
381 	Opt_context = 0,
382 	Opt_defcontext = 1,
383 	Opt_fscontext = 2,
384 	Opt_rootcontext = 3,
385 	Opt_seclabel = 4,
386 };
387 
388 #define A(s, has_arg) {#s, sizeof(#s) - 1, Opt_##s, has_arg}
389 static const struct {
390 	const char *name;
391 	int len;
392 	int opt;
393 	bool has_arg;
394 } tokens[] = {
395 	A(context, true),
396 	A(fscontext, true),
397 	A(defcontext, true),
398 	A(rootcontext, true),
399 	A(seclabel, false),
400 };
401 #undef A
402 
403 static int match_opt_prefix(char *s, int l, char **arg)
404 {
405 	int i;
406 
407 	for (i = 0; i < ARRAY_SIZE(tokens); i++) {
408 		size_t len = tokens[i].len;
409 		if (len > l || memcmp(s, tokens[i].name, len))
410 			continue;
411 		if (tokens[i].has_arg) {
412 			if (len == l || s[len] != '=')
413 				continue;
414 			*arg = s + len + 1;
415 		} else if (len != l)
416 			continue;
417 		return tokens[i].opt;
418 	}
419 	return Opt_error;
420 }
421 
422 #define SEL_MOUNT_FAIL_MSG "SELinux:  duplicate or incompatible mount options\n"
423 
424 static int may_context_mount_sb_relabel(u32 sid,
425 			struct superblock_security_struct *sbsec,
426 			const struct cred *cred)
427 {
428 	const struct task_security_struct *tsec = selinux_cred(cred);
429 	int rc;
430 
431 	rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
432 			  FILESYSTEM__RELABELFROM, NULL);
433 	if (rc)
434 		return rc;
435 
436 	rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
437 			  FILESYSTEM__RELABELTO, NULL);
438 	return rc;
439 }
440 
441 static int may_context_mount_inode_relabel(u32 sid,
442 			struct superblock_security_struct *sbsec,
443 			const struct cred *cred)
444 {
445 	const struct task_security_struct *tsec = selinux_cred(cred);
446 	int rc;
447 	rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
448 			  FILESYSTEM__RELABELFROM, NULL);
449 	if (rc)
450 		return rc;
451 
452 	rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
453 			  FILESYSTEM__ASSOCIATE, NULL);
454 	return rc;
455 }
456 
457 static int selinux_is_genfs_special_handling(struct super_block *sb)
458 {
459 	/* Special handling. Genfs but also in-core setxattr handler */
460 	return	!strcmp(sb->s_type->name, "sysfs") ||
461 		!strcmp(sb->s_type->name, "pstore") ||
462 		!strcmp(sb->s_type->name, "debugfs") ||
463 		!strcmp(sb->s_type->name, "tracefs") ||
464 		!strcmp(sb->s_type->name, "rootfs") ||
465 		(selinux_policycap_cgroupseclabel() &&
466 		 (!strcmp(sb->s_type->name, "cgroup") ||
467 		  !strcmp(sb->s_type->name, "cgroup2")));
468 }
469 
470 static int selinux_is_sblabel_mnt(struct super_block *sb)
471 {
472 	struct superblock_security_struct *sbsec = selinux_superblock(sb);
473 
474 	/*
475 	 * IMPORTANT: Double-check logic in this function when adding a new
476 	 * SECURITY_FS_USE_* definition!
477 	 */
478 	BUILD_BUG_ON(SECURITY_FS_USE_MAX != 7);
479 
480 	switch (sbsec->behavior) {
481 	case SECURITY_FS_USE_XATTR:
482 	case SECURITY_FS_USE_TRANS:
483 	case SECURITY_FS_USE_TASK:
484 	case SECURITY_FS_USE_NATIVE:
485 		return 1;
486 
487 	case SECURITY_FS_USE_GENFS:
488 		return selinux_is_genfs_special_handling(sb);
489 
490 	/* Never allow relabeling on context mounts */
491 	case SECURITY_FS_USE_MNTPOINT:
492 	case SECURITY_FS_USE_NONE:
493 	default:
494 		return 0;
495 	}
496 }
497 
498 static int sb_check_xattr_support(struct super_block *sb)
499 {
500 	struct superblock_security_struct *sbsec = selinux_superblock(sb);
501 	struct dentry *root = sb->s_root;
502 	struct inode *root_inode = d_backing_inode(root);
503 	u32 sid;
504 	int rc;
505 
506 	/*
507 	 * Make sure that the xattr handler exists and that no
508 	 * error other than -ENODATA is returned by getxattr on
509 	 * the root directory.  -ENODATA is ok, as this may be
510 	 * the first boot of the SELinux kernel before we have
511 	 * assigned xattr values to the filesystem.
512 	 */
513 	if (!(root_inode->i_opflags & IOP_XATTR)) {
514 		pr_warn("SELinux: (dev %s, type %s) has no xattr support\n",
515 			sb->s_id, sb->s_type->name);
516 		goto fallback;
517 	}
518 
519 	rc = __vfs_getxattr(root, root_inode, XATTR_NAME_SELINUX, NULL, 0);
520 	if (rc < 0 && rc != -ENODATA) {
521 		if (rc == -EOPNOTSUPP) {
522 			pr_warn("SELinux: (dev %s, type %s) has no security xattr handler\n",
523 				sb->s_id, sb->s_type->name);
524 			goto fallback;
525 		} else {
526 			pr_warn("SELinux: (dev %s, type %s) getxattr errno %d\n",
527 				sb->s_id, sb->s_type->name, -rc);
528 			return rc;
529 		}
530 	}
531 	return 0;
532 
533 fallback:
534 	/* No xattr support - try to fallback to genfs if possible. */
535 	rc = security_genfs_sid(sb->s_type->name, "/",
536 				SECCLASS_DIR, &sid);
537 	if (rc)
538 		return -EOPNOTSUPP;
539 
540 	pr_warn("SELinux: (dev %s, type %s) falling back to genfs\n",
541 		sb->s_id, sb->s_type->name);
542 	sbsec->behavior = SECURITY_FS_USE_GENFS;
543 	sbsec->sid = sid;
544 	return 0;
545 }
546 
547 static int sb_finish_set_opts(struct super_block *sb)
548 {
549 	struct superblock_security_struct *sbsec = selinux_superblock(sb);
550 	struct dentry *root = sb->s_root;
551 	struct inode *root_inode = d_backing_inode(root);
552 	int rc = 0;
553 
554 	if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
555 		rc = sb_check_xattr_support(sb);
556 		if (rc)
557 			return rc;
558 	}
559 
560 	sbsec->flags |= SE_SBINITIALIZED;
561 
562 	/*
563 	 * Explicitly set or clear SBLABEL_MNT.  It's not sufficient to simply
564 	 * leave the flag untouched because sb_clone_mnt_opts might be handing
565 	 * us a superblock that needs the flag to be cleared.
566 	 */
567 	if (selinux_is_sblabel_mnt(sb))
568 		sbsec->flags |= SBLABEL_MNT;
569 	else
570 		sbsec->flags &= ~SBLABEL_MNT;
571 
572 	/* Initialize the root inode. */
573 	rc = inode_doinit_with_dentry(root_inode, root);
574 
575 	/* Initialize any other inodes associated with the superblock, e.g.
576 	   inodes created prior to initial policy load or inodes created
577 	   during get_sb by a pseudo filesystem that directly
578 	   populates itself. */
579 	spin_lock(&sbsec->isec_lock);
580 	while (!list_empty(&sbsec->isec_head)) {
581 		struct inode_security_struct *isec =
582 				list_first_entry(&sbsec->isec_head,
583 					   struct inode_security_struct, list);
584 		struct inode *inode = isec->inode;
585 		list_del_init(&isec->list);
586 		spin_unlock(&sbsec->isec_lock);
587 		inode = igrab(inode);
588 		if (inode) {
589 			if (!IS_PRIVATE(inode))
590 				inode_doinit_with_dentry(inode, NULL);
591 			iput(inode);
592 		}
593 		spin_lock(&sbsec->isec_lock);
594 	}
595 	spin_unlock(&sbsec->isec_lock);
596 	return rc;
597 }
598 
599 static int bad_option(struct superblock_security_struct *sbsec, char flag,
600 		      u32 old_sid, u32 new_sid)
601 {
602 	char mnt_flags = sbsec->flags & SE_MNTMASK;
603 
604 	/* check if the old mount command had the same options */
605 	if (sbsec->flags & SE_SBINITIALIZED)
606 		if (!(sbsec->flags & flag) ||
607 		    (old_sid != new_sid))
608 			return 1;
609 
610 	/* check if we were passed the same options twice,
611 	 * aka someone passed context=a,context=b
612 	 */
613 	if (!(sbsec->flags & SE_SBINITIALIZED))
614 		if (mnt_flags & flag)
615 			return 1;
616 	return 0;
617 }
618 
619 /*
620  * Allow filesystems with binary mount data to explicitly set mount point
621  * labeling information.
622  */
623 static int selinux_set_mnt_opts(struct super_block *sb,
624 				void *mnt_opts,
625 				unsigned long kern_flags,
626 				unsigned long *set_kern_flags)
627 {
628 	const struct cred *cred = current_cred();
629 	struct superblock_security_struct *sbsec = selinux_superblock(sb);
630 	struct dentry *root = sb->s_root;
631 	struct selinux_mnt_opts *opts = mnt_opts;
632 	struct inode_security_struct *root_isec;
633 	u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
634 	u32 defcontext_sid = 0;
635 	int rc = 0;
636 
637 	/*
638 	 * Specifying internal flags without providing a place to
639 	 * place the results is not allowed
640 	 */
641 	if (kern_flags && !set_kern_flags)
642 		return -EINVAL;
643 
644 	mutex_lock(&sbsec->lock);
645 
646 	if (!selinux_initialized()) {
647 		if (!opts) {
648 			/* Defer initialization until selinux_complete_init,
649 			   after the initial policy is loaded and the security
650 			   server is ready to handle calls. */
651 			if (kern_flags & SECURITY_LSM_NATIVE_LABELS) {
652 				sbsec->flags |= SE_SBNATIVE;
653 				*set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
654 			}
655 			goto out;
656 		}
657 		rc = -EINVAL;
658 		pr_warn("SELinux: Unable to set superblock options "
659 			"before the security server is initialized\n");
660 		goto out;
661 	}
662 
663 	/*
664 	 * Binary mount data FS will come through this function twice.  Once
665 	 * from an explicit call and once from the generic calls from the vfs.
666 	 * Since the generic VFS calls will not contain any security mount data
667 	 * we need to skip the double mount verification.
668 	 *
669 	 * This does open a hole in which we will not notice if the first
670 	 * mount using this sb set explicit options and a second mount using
671 	 * this sb does not set any security options.  (The first options
672 	 * will be used for both mounts)
673 	 */
674 	if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
675 	    && !opts)
676 		goto out;
677 
678 	root_isec = backing_inode_security_novalidate(root);
679 
680 	/*
681 	 * parse the mount options, check if they are valid sids.
682 	 * also check if someone is trying to mount the same sb more
683 	 * than once with different security options.
684 	 */
685 	if (opts) {
686 		if (opts->fscontext_sid) {
687 			fscontext_sid = opts->fscontext_sid;
688 			if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
689 					fscontext_sid))
690 				goto out_double_mount;
691 			sbsec->flags |= FSCONTEXT_MNT;
692 		}
693 		if (opts->context_sid) {
694 			context_sid = opts->context_sid;
695 			if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
696 					context_sid))
697 				goto out_double_mount;
698 			sbsec->flags |= CONTEXT_MNT;
699 		}
700 		if (opts->rootcontext_sid) {
701 			rootcontext_sid = opts->rootcontext_sid;
702 			if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
703 					rootcontext_sid))
704 				goto out_double_mount;
705 			sbsec->flags |= ROOTCONTEXT_MNT;
706 		}
707 		if (opts->defcontext_sid) {
708 			defcontext_sid = opts->defcontext_sid;
709 			if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
710 					defcontext_sid))
711 				goto out_double_mount;
712 			sbsec->flags |= DEFCONTEXT_MNT;
713 		}
714 	}
715 
716 	if (sbsec->flags & SE_SBINITIALIZED) {
717 		/* previously mounted with options, but not on this attempt? */
718 		if ((sbsec->flags & SE_MNTMASK) && !opts)
719 			goto out_double_mount;
720 		rc = 0;
721 		goto out;
722 	}
723 
724 	if (strcmp(sb->s_type->name, "proc") == 0)
725 		sbsec->flags |= SE_SBPROC | SE_SBGENFS;
726 
727 	if (!strcmp(sb->s_type->name, "debugfs") ||
728 	    !strcmp(sb->s_type->name, "tracefs") ||
729 	    !strcmp(sb->s_type->name, "binder") ||
730 	    !strcmp(sb->s_type->name, "bpf") ||
731 	    !strcmp(sb->s_type->name, "pstore") ||
732 	    !strcmp(sb->s_type->name, "securityfs"))
733 		sbsec->flags |= SE_SBGENFS;
734 
735 	if (!strcmp(sb->s_type->name, "sysfs") ||
736 	    !strcmp(sb->s_type->name, "cgroup") ||
737 	    !strcmp(sb->s_type->name, "cgroup2"))
738 		sbsec->flags |= SE_SBGENFS | SE_SBGENFS_XATTR;
739 
740 	if (!sbsec->behavior) {
741 		/*
742 		 * Determine the labeling behavior to use for this
743 		 * filesystem type.
744 		 */
745 		rc = security_fs_use(sb);
746 		if (rc) {
747 			pr_warn("%s: security_fs_use(%s) returned %d\n",
748 					__func__, sb->s_type->name, rc);
749 			goto out;
750 		}
751 	}
752 
753 	/*
754 	 * If this is a user namespace mount and the filesystem type is not
755 	 * explicitly whitelisted, then no contexts are allowed on the command
756 	 * line and security labels must be ignored.
757 	 */
758 	if (sb->s_user_ns != &init_user_ns &&
759 	    strcmp(sb->s_type->name, "tmpfs") &&
760 	    strcmp(sb->s_type->name, "ramfs") &&
761 	    strcmp(sb->s_type->name, "devpts") &&
762 	    strcmp(sb->s_type->name, "overlay")) {
763 		if (context_sid || fscontext_sid || rootcontext_sid ||
764 		    defcontext_sid) {
765 			rc = -EACCES;
766 			goto out;
767 		}
768 		if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
769 			sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
770 			rc = security_transition_sid(current_sid(),
771 						     current_sid(),
772 						     SECCLASS_FILE, NULL,
773 						     &sbsec->mntpoint_sid);
774 			if (rc)
775 				goto out;
776 		}
777 		goto out_set_opts;
778 	}
779 
780 	/* sets the context of the superblock for the fs being mounted. */
781 	if (fscontext_sid) {
782 		rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
783 		if (rc)
784 			goto out;
785 
786 		sbsec->sid = fscontext_sid;
787 	}
788 
789 	/*
790 	 * Switch to using mount point labeling behavior.
791 	 * sets the label used on all file below the mountpoint, and will set
792 	 * the superblock context if not already set.
793 	 */
794 	if (sbsec->flags & SE_SBNATIVE) {
795 		/*
796 		 * This means we are initializing a superblock that has been
797 		 * mounted before the SELinux was initialized and the
798 		 * filesystem requested native labeling. We had already
799 		 * returned SECURITY_LSM_NATIVE_LABELS in *set_kern_flags
800 		 * in the original mount attempt, so now we just need to set
801 		 * the SECURITY_FS_USE_NATIVE behavior.
802 		 */
803 		sbsec->behavior = SECURITY_FS_USE_NATIVE;
804 	} else if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !context_sid) {
805 		sbsec->behavior = SECURITY_FS_USE_NATIVE;
806 		*set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
807 	}
808 
809 	if (context_sid) {
810 		if (!fscontext_sid) {
811 			rc = may_context_mount_sb_relabel(context_sid, sbsec,
812 							  cred);
813 			if (rc)
814 				goto out;
815 			sbsec->sid = context_sid;
816 		} else {
817 			rc = may_context_mount_inode_relabel(context_sid, sbsec,
818 							     cred);
819 			if (rc)
820 				goto out;
821 		}
822 		if (!rootcontext_sid)
823 			rootcontext_sid = context_sid;
824 
825 		sbsec->mntpoint_sid = context_sid;
826 		sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
827 	}
828 
829 	if (rootcontext_sid) {
830 		rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
831 						     cred);
832 		if (rc)
833 			goto out;
834 
835 		root_isec->sid = rootcontext_sid;
836 		root_isec->initialized = LABEL_INITIALIZED;
837 	}
838 
839 	if (defcontext_sid) {
840 		if (sbsec->behavior != SECURITY_FS_USE_XATTR &&
841 			sbsec->behavior != SECURITY_FS_USE_NATIVE) {
842 			rc = -EINVAL;
843 			pr_warn("SELinux: defcontext option is "
844 			       "invalid for this filesystem type\n");
845 			goto out;
846 		}
847 
848 		if (defcontext_sid != sbsec->def_sid) {
849 			rc = may_context_mount_inode_relabel(defcontext_sid,
850 							     sbsec, cred);
851 			if (rc)
852 				goto out;
853 		}
854 
855 		sbsec->def_sid = defcontext_sid;
856 	}
857 
858 out_set_opts:
859 	rc = sb_finish_set_opts(sb);
860 out:
861 	mutex_unlock(&sbsec->lock);
862 	return rc;
863 out_double_mount:
864 	rc = -EINVAL;
865 	pr_warn("SELinux: mount invalid.  Same superblock, different "
866 	       "security settings for (dev %s, type %s)\n", sb->s_id,
867 	       sb->s_type->name);
868 	goto out;
869 }
870 
871 static int selinux_cmp_sb_context(const struct super_block *oldsb,
872 				    const struct super_block *newsb)
873 {
874 	struct superblock_security_struct *old = selinux_superblock(oldsb);
875 	struct superblock_security_struct *new = selinux_superblock(newsb);
876 	char oldflags = old->flags & SE_MNTMASK;
877 	char newflags = new->flags & SE_MNTMASK;
878 
879 	if (oldflags != newflags)
880 		goto mismatch;
881 	if ((oldflags & FSCONTEXT_MNT) && old->sid != new->sid)
882 		goto mismatch;
883 	if ((oldflags & CONTEXT_MNT) && old->mntpoint_sid != new->mntpoint_sid)
884 		goto mismatch;
885 	if ((oldflags & DEFCONTEXT_MNT) && old->def_sid != new->def_sid)
886 		goto mismatch;
887 	if (oldflags & ROOTCONTEXT_MNT) {
888 		struct inode_security_struct *oldroot = backing_inode_security(oldsb->s_root);
889 		struct inode_security_struct *newroot = backing_inode_security(newsb->s_root);
890 		if (oldroot->sid != newroot->sid)
891 			goto mismatch;
892 	}
893 	return 0;
894 mismatch:
895 	pr_warn("SELinux: mount invalid.  Same superblock, "
896 			    "different security settings for (dev %s, "
897 			    "type %s)\n", newsb->s_id, newsb->s_type->name);
898 	return -EBUSY;
899 }
900 
901 static int selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
902 					struct super_block *newsb,
903 					unsigned long kern_flags,
904 					unsigned long *set_kern_flags)
905 {
906 	int rc = 0;
907 	const struct superblock_security_struct *oldsbsec =
908 						selinux_superblock(oldsb);
909 	struct superblock_security_struct *newsbsec = selinux_superblock(newsb);
910 
911 	int set_fscontext =	(oldsbsec->flags & FSCONTEXT_MNT);
912 	int set_context =	(oldsbsec->flags & CONTEXT_MNT);
913 	int set_rootcontext =	(oldsbsec->flags & ROOTCONTEXT_MNT);
914 
915 	/*
916 	 * Specifying internal flags without providing a place to
917 	 * place the results is not allowed.
918 	 */
919 	if (kern_flags && !set_kern_flags)
920 		return -EINVAL;
921 
922 	mutex_lock(&newsbsec->lock);
923 
924 	/*
925 	 * if the parent was able to be mounted it clearly had no special lsm
926 	 * mount options.  thus we can safely deal with this superblock later
927 	 */
928 	if (!selinux_initialized()) {
929 		if (kern_flags & SECURITY_LSM_NATIVE_LABELS) {
930 			newsbsec->flags |= SE_SBNATIVE;
931 			*set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
932 		}
933 		goto out;
934 	}
935 
936 	/* how can we clone if the old one wasn't set up?? */
937 	BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
938 
939 	/* if fs is reusing a sb, make sure that the contexts match */
940 	if (newsbsec->flags & SE_SBINITIALIZED) {
941 		mutex_unlock(&newsbsec->lock);
942 		if ((kern_flags & SECURITY_LSM_NATIVE_LABELS) && !set_context)
943 			*set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
944 		return selinux_cmp_sb_context(oldsb, newsb);
945 	}
946 
947 	newsbsec->flags = oldsbsec->flags;
948 
949 	newsbsec->sid = oldsbsec->sid;
950 	newsbsec->def_sid = oldsbsec->def_sid;
951 	newsbsec->behavior = oldsbsec->behavior;
952 
953 	if (newsbsec->behavior == SECURITY_FS_USE_NATIVE &&
954 		!(kern_flags & SECURITY_LSM_NATIVE_LABELS) && !set_context) {
955 		rc = security_fs_use(newsb);
956 		if (rc)
957 			goto out;
958 	}
959 
960 	if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !set_context) {
961 		newsbsec->behavior = SECURITY_FS_USE_NATIVE;
962 		*set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
963 	}
964 
965 	if (set_context) {
966 		u32 sid = oldsbsec->mntpoint_sid;
967 
968 		if (!set_fscontext)
969 			newsbsec->sid = sid;
970 		if (!set_rootcontext) {
971 			struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
972 			newisec->sid = sid;
973 		}
974 		newsbsec->mntpoint_sid = sid;
975 	}
976 	if (set_rootcontext) {
977 		const struct inode_security_struct *oldisec = backing_inode_security(oldsb->s_root);
978 		struct inode_security_struct *newisec = backing_inode_security(newsb->s_root);
979 
980 		newisec->sid = oldisec->sid;
981 	}
982 
983 	sb_finish_set_opts(newsb);
984 out:
985 	mutex_unlock(&newsbsec->lock);
986 	return rc;
987 }
988 
989 /*
990  * NOTE: the caller is responsible for freeing the memory even if on error.
991  */
992 static int selinux_add_opt(int token, const char *s, void **mnt_opts)
993 {
994 	struct selinux_mnt_opts *opts = *mnt_opts;
995 	u32 *dst_sid;
996 	int rc;
997 
998 	if (token == Opt_seclabel)
999 		/* eaten and completely ignored */
1000 		return 0;
1001 	if (!s)
1002 		return -EINVAL;
1003 
1004 	if (!selinux_initialized()) {
1005 		pr_warn("SELinux: Unable to set superblock options before the security server is initialized\n");
1006 		return -EINVAL;
1007 	}
1008 
1009 	if (!opts) {
1010 		opts = kzalloc(sizeof(*opts), GFP_KERNEL);
1011 		if (!opts)
1012 			return -ENOMEM;
1013 		*mnt_opts = opts;
1014 	}
1015 
1016 	switch (token) {
1017 	case Opt_context:
1018 		if (opts->context_sid || opts->defcontext_sid)
1019 			goto err;
1020 		dst_sid = &opts->context_sid;
1021 		break;
1022 	case Opt_fscontext:
1023 		if (opts->fscontext_sid)
1024 			goto err;
1025 		dst_sid = &opts->fscontext_sid;
1026 		break;
1027 	case Opt_rootcontext:
1028 		if (opts->rootcontext_sid)
1029 			goto err;
1030 		dst_sid = &opts->rootcontext_sid;
1031 		break;
1032 	case Opt_defcontext:
1033 		if (opts->context_sid || opts->defcontext_sid)
1034 			goto err;
1035 		dst_sid = &opts->defcontext_sid;
1036 		break;
1037 	default:
1038 		WARN_ON(1);
1039 		return -EINVAL;
1040 	}
1041 	rc = security_context_str_to_sid(s, dst_sid, GFP_KERNEL);
1042 	if (rc)
1043 		pr_warn("SELinux: security_context_str_to_sid (%s) failed with errno=%d\n",
1044 			s, rc);
1045 	return rc;
1046 
1047 err:
1048 	pr_warn(SEL_MOUNT_FAIL_MSG);
1049 	return -EINVAL;
1050 }
1051 
1052 static int show_sid(struct seq_file *m, u32 sid)
1053 {
1054 	char *context = NULL;
1055 	u32 len;
1056 	int rc;
1057 
1058 	rc = security_sid_to_context(sid, &context, &len);
1059 	if (!rc) {
1060 		bool has_comma = strchr(context, ',');
1061 
1062 		seq_putc(m, '=');
1063 		if (has_comma)
1064 			seq_putc(m, '\"');
1065 		seq_escape(m, context, "\"\n\\");
1066 		if (has_comma)
1067 			seq_putc(m, '\"');
1068 	}
1069 	kfree(context);
1070 	return rc;
1071 }
1072 
1073 static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1074 {
1075 	struct superblock_security_struct *sbsec = selinux_superblock(sb);
1076 	int rc;
1077 
1078 	if (!(sbsec->flags & SE_SBINITIALIZED))
1079 		return 0;
1080 
1081 	if (!selinux_initialized())
1082 		return 0;
1083 
1084 	if (sbsec->flags & FSCONTEXT_MNT) {
1085 		seq_putc(m, ',');
1086 		seq_puts(m, FSCONTEXT_STR);
1087 		rc = show_sid(m, sbsec->sid);
1088 		if (rc)
1089 			return rc;
1090 	}
1091 	if (sbsec->flags & CONTEXT_MNT) {
1092 		seq_putc(m, ',');
1093 		seq_puts(m, CONTEXT_STR);
1094 		rc = show_sid(m, sbsec->mntpoint_sid);
1095 		if (rc)
1096 			return rc;
1097 	}
1098 	if (sbsec->flags & DEFCONTEXT_MNT) {
1099 		seq_putc(m, ',');
1100 		seq_puts(m, DEFCONTEXT_STR);
1101 		rc = show_sid(m, sbsec->def_sid);
1102 		if (rc)
1103 			return rc;
1104 	}
1105 	if (sbsec->flags & ROOTCONTEXT_MNT) {
1106 		struct dentry *root = sb->s_root;
1107 		struct inode_security_struct *isec = backing_inode_security(root);
1108 		seq_putc(m, ',');
1109 		seq_puts(m, ROOTCONTEXT_STR);
1110 		rc = show_sid(m, isec->sid);
1111 		if (rc)
1112 			return rc;
1113 	}
1114 	if (sbsec->flags & SBLABEL_MNT) {
1115 		seq_putc(m, ',');
1116 		seq_puts(m, SECLABEL_STR);
1117 	}
1118 	return 0;
1119 }
1120 
1121 static inline u16 inode_mode_to_security_class(umode_t mode)
1122 {
1123 	switch (mode & S_IFMT) {
1124 	case S_IFSOCK:
1125 		return SECCLASS_SOCK_FILE;
1126 	case S_IFLNK:
1127 		return SECCLASS_LNK_FILE;
1128 	case S_IFREG:
1129 		return SECCLASS_FILE;
1130 	case S_IFBLK:
1131 		return SECCLASS_BLK_FILE;
1132 	case S_IFDIR:
1133 		return SECCLASS_DIR;
1134 	case S_IFCHR:
1135 		return SECCLASS_CHR_FILE;
1136 	case S_IFIFO:
1137 		return SECCLASS_FIFO_FILE;
1138 
1139 	}
1140 
1141 	return SECCLASS_FILE;
1142 }
1143 
1144 static inline int default_protocol_stream(int protocol)
1145 {
1146 	return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP ||
1147 		protocol == IPPROTO_MPTCP);
1148 }
1149 
1150 static inline int default_protocol_dgram(int protocol)
1151 {
1152 	return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1153 }
1154 
1155 static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1156 {
1157 	bool extsockclass = selinux_policycap_extsockclass();
1158 
1159 	switch (family) {
1160 	case PF_UNIX:
1161 		switch (type) {
1162 		case SOCK_STREAM:
1163 		case SOCK_SEQPACKET:
1164 			return SECCLASS_UNIX_STREAM_SOCKET;
1165 		case SOCK_DGRAM:
1166 		case SOCK_RAW:
1167 			return SECCLASS_UNIX_DGRAM_SOCKET;
1168 		}
1169 		break;
1170 	case PF_INET:
1171 	case PF_INET6:
1172 		switch (type) {
1173 		case SOCK_STREAM:
1174 		case SOCK_SEQPACKET:
1175 			if (default_protocol_stream(protocol))
1176 				return SECCLASS_TCP_SOCKET;
1177 			else if (extsockclass && protocol == IPPROTO_SCTP)
1178 				return SECCLASS_SCTP_SOCKET;
1179 			else
1180 				return SECCLASS_RAWIP_SOCKET;
1181 		case SOCK_DGRAM:
1182 			if (default_protocol_dgram(protocol))
1183 				return SECCLASS_UDP_SOCKET;
1184 			else if (extsockclass && (protocol == IPPROTO_ICMP ||
1185 						  protocol == IPPROTO_ICMPV6))
1186 				return SECCLASS_ICMP_SOCKET;
1187 			else
1188 				return SECCLASS_RAWIP_SOCKET;
1189 		case SOCK_DCCP:
1190 			return SECCLASS_DCCP_SOCKET;
1191 		default:
1192 			return SECCLASS_RAWIP_SOCKET;
1193 		}
1194 		break;
1195 	case PF_NETLINK:
1196 		switch (protocol) {
1197 		case NETLINK_ROUTE:
1198 			return SECCLASS_NETLINK_ROUTE_SOCKET;
1199 		case NETLINK_SOCK_DIAG:
1200 			return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1201 		case NETLINK_NFLOG:
1202 			return SECCLASS_NETLINK_NFLOG_SOCKET;
1203 		case NETLINK_XFRM:
1204 			return SECCLASS_NETLINK_XFRM_SOCKET;
1205 		case NETLINK_SELINUX:
1206 			return SECCLASS_NETLINK_SELINUX_SOCKET;
1207 		case NETLINK_ISCSI:
1208 			return SECCLASS_NETLINK_ISCSI_SOCKET;
1209 		case NETLINK_AUDIT:
1210 			return SECCLASS_NETLINK_AUDIT_SOCKET;
1211 		case NETLINK_FIB_LOOKUP:
1212 			return SECCLASS_NETLINK_FIB_LOOKUP_SOCKET;
1213 		case NETLINK_CONNECTOR:
1214 			return SECCLASS_NETLINK_CONNECTOR_SOCKET;
1215 		case NETLINK_NETFILTER:
1216 			return SECCLASS_NETLINK_NETFILTER_SOCKET;
1217 		case NETLINK_DNRTMSG:
1218 			return SECCLASS_NETLINK_DNRT_SOCKET;
1219 		case NETLINK_KOBJECT_UEVENT:
1220 			return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1221 		case NETLINK_GENERIC:
1222 			return SECCLASS_NETLINK_GENERIC_SOCKET;
1223 		case NETLINK_SCSITRANSPORT:
1224 			return SECCLASS_NETLINK_SCSITRANSPORT_SOCKET;
1225 		case NETLINK_RDMA:
1226 			return SECCLASS_NETLINK_RDMA_SOCKET;
1227 		case NETLINK_CRYPTO:
1228 			return SECCLASS_NETLINK_CRYPTO_SOCKET;
1229 		default:
1230 			return SECCLASS_NETLINK_SOCKET;
1231 		}
1232 	case PF_PACKET:
1233 		return SECCLASS_PACKET_SOCKET;
1234 	case PF_KEY:
1235 		return SECCLASS_KEY_SOCKET;
1236 	case PF_APPLETALK:
1237 		return SECCLASS_APPLETALK_SOCKET;
1238 	}
1239 
1240 	if (extsockclass) {
1241 		switch (family) {
1242 		case PF_AX25:
1243 			return SECCLASS_AX25_SOCKET;
1244 		case PF_IPX:
1245 			return SECCLASS_IPX_SOCKET;
1246 		case PF_NETROM:
1247 			return SECCLASS_NETROM_SOCKET;
1248 		case PF_ATMPVC:
1249 			return SECCLASS_ATMPVC_SOCKET;
1250 		case PF_X25:
1251 			return SECCLASS_X25_SOCKET;
1252 		case PF_ROSE:
1253 			return SECCLASS_ROSE_SOCKET;
1254 		case PF_DECnet:
1255 			return SECCLASS_DECNET_SOCKET;
1256 		case PF_ATMSVC:
1257 			return SECCLASS_ATMSVC_SOCKET;
1258 		case PF_RDS:
1259 			return SECCLASS_RDS_SOCKET;
1260 		case PF_IRDA:
1261 			return SECCLASS_IRDA_SOCKET;
1262 		case PF_PPPOX:
1263 			return SECCLASS_PPPOX_SOCKET;
1264 		case PF_LLC:
1265 			return SECCLASS_LLC_SOCKET;
1266 		case PF_CAN:
1267 			return SECCLASS_CAN_SOCKET;
1268 		case PF_TIPC:
1269 			return SECCLASS_TIPC_SOCKET;
1270 		case PF_BLUETOOTH:
1271 			return SECCLASS_BLUETOOTH_SOCKET;
1272 		case PF_IUCV:
1273 			return SECCLASS_IUCV_SOCKET;
1274 		case PF_RXRPC:
1275 			return SECCLASS_RXRPC_SOCKET;
1276 		case PF_ISDN:
1277 			return SECCLASS_ISDN_SOCKET;
1278 		case PF_PHONET:
1279 			return SECCLASS_PHONET_SOCKET;
1280 		case PF_IEEE802154:
1281 			return SECCLASS_IEEE802154_SOCKET;
1282 		case PF_CAIF:
1283 			return SECCLASS_CAIF_SOCKET;
1284 		case PF_ALG:
1285 			return SECCLASS_ALG_SOCKET;
1286 		case PF_NFC:
1287 			return SECCLASS_NFC_SOCKET;
1288 		case PF_VSOCK:
1289 			return SECCLASS_VSOCK_SOCKET;
1290 		case PF_KCM:
1291 			return SECCLASS_KCM_SOCKET;
1292 		case PF_QIPCRTR:
1293 			return SECCLASS_QIPCRTR_SOCKET;
1294 		case PF_SMC:
1295 			return SECCLASS_SMC_SOCKET;
1296 		case PF_XDP:
1297 			return SECCLASS_XDP_SOCKET;
1298 		case PF_MCTP:
1299 			return SECCLASS_MCTP_SOCKET;
1300 #if PF_MAX > 46
1301 #error New address family defined, please update this function.
1302 #endif
1303 		}
1304 	}
1305 
1306 	return SECCLASS_SOCKET;
1307 }
1308 
1309 static int selinux_genfs_get_sid(struct dentry *dentry,
1310 				 u16 tclass,
1311 				 u16 flags,
1312 				 u32 *sid)
1313 {
1314 	int rc;
1315 	struct super_block *sb = dentry->d_sb;
1316 	char *buffer, *path;
1317 
1318 	buffer = (char *)__get_free_page(GFP_KERNEL);
1319 	if (!buffer)
1320 		return -ENOMEM;
1321 
1322 	path = dentry_path_raw(dentry, buffer, PAGE_SIZE);
1323 	if (IS_ERR(path))
1324 		rc = PTR_ERR(path);
1325 	else {
1326 		if (flags & SE_SBPROC) {
1327 			/* each process gets a /proc/PID/ entry. Strip off the
1328 			 * PID part to get a valid selinux labeling.
1329 			 * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */
1330 			while (path[1] >= '0' && path[1] <= '9') {
1331 				path[1] = '/';
1332 				path++;
1333 			}
1334 		}
1335 		rc = security_genfs_sid(sb->s_type->name,
1336 					path, tclass, sid);
1337 		if (rc == -ENOENT) {
1338 			/* No match in policy, mark as unlabeled. */
1339 			*sid = SECINITSID_UNLABELED;
1340 			rc = 0;
1341 		}
1342 	}
1343 	free_page((unsigned long)buffer);
1344 	return rc;
1345 }
1346 
1347 static int inode_doinit_use_xattr(struct inode *inode, struct dentry *dentry,
1348 				  u32 def_sid, u32 *sid)
1349 {
1350 #define INITCONTEXTLEN 255
1351 	char *context;
1352 	unsigned int len;
1353 	int rc;
1354 
1355 	len = INITCONTEXTLEN;
1356 	context = kmalloc(len + 1, GFP_NOFS);
1357 	if (!context)
1358 		return -ENOMEM;
1359 
1360 	context[len] = '\0';
1361 	rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, context, len);
1362 	if (rc == -ERANGE) {
1363 		kfree(context);
1364 
1365 		/* Need a larger buffer.  Query for the right size. */
1366 		rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, NULL, 0);
1367 		if (rc < 0)
1368 			return rc;
1369 
1370 		len = rc;
1371 		context = kmalloc(len + 1, GFP_NOFS);
1372 		if (!context)
1373 			return -ENOMEM;
1374 
1375 		context[len] = '\0';
1376 		rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX,
1377 				    context, len);
1378 	}
1379 	if (rc < 0) {
1380 		kfree(context);
1381 		if (rc != -ENODATA) {
1382 			pr_warn("SELinux: %s:  getxattr returned %d for dev=%s ino=%ld\n",
1383 				__func__, -rc, inode->i_sb->s_id, inode->i_ino);
1384 			return rc;
1385 		}
1386 		*sid = def_sid;
1387 		return 0;
1388 	}
1389 
1390 	rc = security_context_to_sid_default(context, rc, sid,
1391 					     def_sid, GFP_NOFS);
1392 	if (rc) {
1393 		char *dev = inode->i_sb->s_id;
1394 		unsigned long ino = inode->i_ino;
1395 
1396 		if (rc == -EINVAL) {
1397 			pr_notice_ratelimited("SELinux: inode=%lu on dev=%s was found to have an invalid context=%s.  This indicates you may need to relabel the inode or the filesystem in question.\n",
1398 					      ino, dev, context);
1399 		} else {
1400 			pr_warn("SELinux: %s:  context_to_sid(%s) returned %d for dev=%s ino=%ld\n",
1401 				__func__, context, -rc, dev, ino);
1402 		}
1403 	}
1404 	kfree(context);
1405 	return 0;
1406 }
1407 
1408 /* The inode's security attributes must be initialized before first use. */
1409 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1410 {
1411 	struct superblock_security_struct *sbsec = NULL;
1412 	struct inode_security_struct *isec = selinux_inode(inode);
1413 	u32 task_sid, sid = 0;
1414 	u16 sclass;
1415 	struct dentry *dentry;
1416 	int rc = 0;
1417 
1418 	if (isec->initialized == LABEL_INITIALIZED)
1419 		return 0;
1420 
1421 	spin_lock(&isec->lock);
1422 	if (isec->initialized == LABEL_INITIALIZED)
1423 		goto out_unlock;
1424 
1425 	if (isec->sclass == SECCLASS_FILE)
1426 		isec->sclass = inode_mode_to_security_class(inode->i_mode);
1427 
1428 	sbsec = selinux_superblock(inode->i_sb);
1429 	if (!(sbsec->flags & SE_SBINITIALIZED)) {
1430 		/* Defer initialization until selinux_complete_init,
1431 		   after the initial policy is loaded and the security
1432 		   server is ready to handle calls. */
1433 		spin_lock(&sbsec->isec_lock);
1434 		if (list_empty(&isec->list))
1435 			list_add(&isec->list, &sbsec->isec_head);
1436 		spin_unlock(&sbsec->isec_lock);
1437 		goto out_unlock;
1438 	}
1439 
1440 	sclass = isec->sclass;
1441 	task_sid = isec->task_sid;
1442 	sid = isec->sid;
1443 	isec->initialized = LABEL_PENDING;
1444 	spin_unlock(&isec->lock);
1445 
1446 	switch (sbsec->behavior) {
1447 	/*
1448 	 * In case of SECURITY_FS_USE_NATIVE we need to re-fetch the labels
1449 	 * via xattr when called from delayed_superblock_init().
1450 	 */
1451 	case SECURITY_FS_USE_NATIVE:
1452 	case SECURITY_FS_USE_XATTR:
1453 		if (!(inode->i_opflags & IOP_XATTR)) {
1454 			sid = sbsec->def_sid;
1455 			break;
1456 		}
1457 		/* Need a dentry, since the xattr API requires one.
1458 		   Life would be simpler if we could just pass the inode. */
1459 		if (opt_dentry) {
1460 			/* Called from d_instantiate or d_splice_alias. */
1461 			dentry = dget(opt_dentry);
1462 		} else {
1463 			/*
1464 			 * Called from selinux_complete_init, try to find a dentry.
1465 			 * Some filesystems really want a connected one, so try
1466 			 * that first.  We could split SECURITY_FS_USE_XATTR in
1467 			 * two, depending upon that...
1468 			 */
1469 			dentry = d_find_alias(inode);
1470 			if (!dentry)
1471 				dentry = d_find_any_alias(inode);
1472 		}
1473 		if (!dentry) {
1474 			/*
1475 			 * this is can be hit on boot when a file is accessed
1476 			 * before the policy is loaded.  When we load policy we
1477 			 * may find inodes that have no dentry on the
1478 			 * sbsec->isec_head list.  No reason to complain as these
1479 			 * will get fixed up the next time we go through
1480 			 * inode_doinit with a dentry, before these inodes could
1481 			 * be used again by userspace.
1482 			 */
1483 			goto out_invalid;
1484 		}
1485 
1486 		rc = inode_doinit_use_xattr(inode, dentry, sbsec->def_sid,
1487 					    &sid);
1488 		dput(dentry);
1489 		if (rc)
1490 			goto out;
1491 		break;
1492 	case SECURITY_FS_USE_TASK:
1493 		sid = task_sid;
1494 		break;
1495 	case SECURITY_FS_USE_TRANS:
1496 		/* Default to the fs SID. */
1497 		sid = sbsec->sid;
1498 
1499 		/* Try to obtain a transition SID. */
1500 		rc = security_transition_sid(task_sid, sid,
1501 					     sclass, NULL, &sid);
1502 		if (rc)
1503 			goto out;
1504 		break;
1505 	case SECURITY_FS_USE_MNTPOINT:
1506 		sid = sbsec->mntpoint_sid;
1507 		break;
1508 	default:
1509 		/* Default to the fs superblock SID. */
1510 		sid = sbsec->sid;
1511 
1512 		if ((sbsec->flags & SE_SBGENFS) &&
1513 		     (!S_ISLNK(inode->i_mode) ||
1514 		      selinux_policycap_genfs_seclabel_symlinks())) {
1515 			/* We must have a dentry to determine the label on
1516 			 * procfs inodes */
1517 			if (opt_dentry) {
1518 				/* Called from d_instantiate or
1519 				 * d_splice_alias. */
1520 				dentry = dget(opt_dentry);
1521 			} else {
1522 				/* Called from selinux_complete_init, try to
1523 				 * find a dentry.  Some filesystems really want
1524 				 * a connected one, so try that first.
1525 				 */
1526 				dentry = d_find_alias(inode);
1527 				if (!dentry)
1528 					dentry = d_find_any_alias(inode);
1529 			}
1530 			/*
1531 			 * This can be hit on boot when a file is accessed
1532 			 * before the policy is loaded.  When we load policy we
1533 			 * may find inodes that have no dentry on the
1534 			 * sbsec->isec_head list.  No reason to complain as
1535 			 * these will get fixed up the next time we go through
1536 			 * inode_doinit() with a dentry, before these inodes
1537 			 * could be used again by userspace.
1538 			 */
1539 			if (!dentry)
1540 				goto out_invalid;
1541 			rc = selinux_genfs_get_sid(dentry, sclass,
1542 						   sbsec->flags, &sid);
1543 			if (rc) {
1544 				dput(dentry);
1545 				goto out;
1546 			}
1547 
1548 			if ((sbsec->flags & SE_SBGENFS_XATTR) &&
1549 			    (inode->i_opflags & IOP_XATTR)) {
1550 				rc = inode_doinit_use_xattr(inode, dentry,
1551 							    sid, &sid);
1552 				if (rc) {
1553 					dput(dentry);
1554 					goto out;
1555 				}
1556 			}
1557 			dput(dentry);
1558 		}
1559 		break;
1560 	}
1561 
1562 out:
1563 	spin_lock(&isec->lock);
1564 	if (isec->initialized == LABEL_PENDING) {
1565 		if (rc) {
1566 			isec->initialized = LABEL_INVALID;
1567 			goto out_unlock;
1568 		}
1569 		isec->initialized = LABEL_INITIALIZED;
1570 		isec->sid = sid;
1571 	}
1572 
1573 out_unlock:
1574 	spin_unlock(&isec->lock);
1575 	return rc;
1576 
1577 out_invalid:
1578 	spin_lock(&isec->lock);
1579 	if (isec->initialized == LABEL_PENDING) {
1580 		isec->initialized = LABEL_INVALID;
1581 		isec->sid = sid;
1582 	}
1583 	spin_unlock(&isec->lock);
1584 	return 0;
1585 }
1586 
1587 /* Convert a Linux signal to an access vector. */
1588 static inline u32 signal_to_av(int sig)
1589 {
1590 	u32 perm = 0;
1591 
1592 	switch (sig) {
1593 	case SIGCHLD:
1594 		/* Commonly granted from child to parent. */
1595 		perm = PROCESS__SIGCHLD;
1596 		break;
1597 	case SIGKILL:
1598 		/* Cannot be caught or ignored */
1599 		perm = PROCESS__SIGKILL;
1600 		break;
1601 	case SIGSTOP:
1602 		/* Cannot be caught or ignored */
1603 		perm = PROCESS__SIGSTOP;
1604 		break;
1605 	default:
1606 		/* All other signals. */
1607 		perm = PROCESS__SIGNAL;
1608 		break;
1609 	}
1610 
1611 	return perm;
1612 }
1613 
1614 #if CAP_LAST_CAP > 63
1615 #error Fix SELinux to handle capabilities > 63.
1616 #endif
1617 
1618 /* Check whether a task is allowed to use a capability. */
1619 static int cred_has_capability(const struct cred *cred,
1620 			       int cap, unsigned int opts, bool initns)
1621 {
1622 	struct common_audit_data ad;
1623 	struct av_decision avd;
1624 	u16 sclass;
1625 	u32 sid = cred_sid(cred);
1626 	u32 av = CAP_TO_MASK(cap);
1627 	int rc;
1628 
1629 	ad.type = LSM_AUDIT_DATA_CAP;
1630 	ad.u.cap = cap;
1631 
1632 	switch (CAP_TO_INDEX(cap)) {
1633 	case 0:
1634 		sclass = initns ? SECCLASS_CAPABILITY : SECCLASS_CAP_USERNS;
1635 		break;
1636 	case 1:
1637 		sclass = initns ? SECCLASS_CAPABILITY2 : SECCLASS_CAP2_USERNS;
1638 		break;
1639 	default:
1640 		pr_err("SELinux:  out of range capability %d\n", cap);
1641 		BUG();
1642 		return -EINVAL;
1643 	}
1644 
1645 	rc = avc_has_perm_noaudit(sid, sid, sclass, av, 0, &avd);
1646 	if (!(opts & CAP_OPT_NOAUDIT)) {
1647 		int rc2 = avc_audit(sid, sid, sclass, av, &avd, rc, &ad);
1648 		if (rc2)
1649 			return rc2;
1650 	}
1651 	return rc;
1652 }
1653 
1654 /* Check whether a task has a particular permission to an inode.
1655    The 'adp' parameter is optional and allows other audit
1656    data to be passed (e.g. the dentry). */
1657 static int inode_has_perm(const struct cred *cred,
1658 			  struct inode *inode,
1659 			  u32 perms,
1660 			  struct common_audit_data *adp)
1661 {
1662 	struct inode_security_struct *isec;
1663 	u32 sid;
1664 
1665 	if (unlikely(IS_PRIVATE(inode)))
1666 		return 0;
1667 
1668 	sid = cred_sid(cred);
1669 	isec = selinux_inode(inode);
1670 
1671 	return avc_has_perm(sid, isec->sid, isec->sclass, perms, adp);
1672 }
1673 
1674 /* Same as inode_has_perm, but pass explicit audit data containing
1675    the dentry to help the auditing code to more easily generate the
1676    pathname if needed. */
1677 static inline int dentry_has_perm(const struct cred *cred,
1678 				  struct dentry *dentry,
1679 				  u32 av)
1680 {
1681 	struct inode *inode = d_backing_inode(dentry);
1682 	struct common_audit_data ad;
1683 
1684 	ad.type = LSM_AUDIT_DATA_DENTRY;
1685 	ad.u.dentry = dentry;
1686 	__inode_security_revalidate(inode, dentry, true);
1687 	return inode_has_perm(cred, inode, av, &ad);
1688 }
1689 
1690 /* Same as inode_has_perm, but pass explicit audit data containing
1691    the path to help the auditing code to more easily generate the
1692    pathname if needed. */
1693 static inline int path_has_perm(const struct cred *cred,
1694 				const struct path *path,
1695 				u32 av)
1696 {
1697 	struct inode *inode = d_backing_inode(path->dentry);
1698 	struct common_audit_data ad;
1699 
1700 	ad.type = LSM_AUDIT_DATA_PATH;
1701 	ad.u.path = *path;
1702 	__inode_security_revalidate(inode, path->dentry, true);
1703 	return inode_has_perm(cred, inode, av, &ad);
1704 }
1705 
1706 /* Same as path_has_perm, but uses the inode from the file struct. */
1707 static inline int file_path_has_perm(const struct cred *cred,
1708 				     struct file *file,
1709 				     u32 av)
1710 {
1711 	struct common_audit_data ad;
1712 
1713 	ad.type = LSM_AUDIT_DATA_FILE;
1714 	ad.u.file = file;
1715 	return inode_has_perm(cred, file_inode(file), av, &ad);
1716 }
1717 
1718 #ifdef CONFIG_BPF_SYSCALL
1719 static int bpf_fd_pass(const struct file *file, u32 sid);
1720 #endif
1721 
1722 /* Check whether a task can use an open file descriptor to
1723    access an inode in a given way.  Check access to the
1724    descriptor itself, and then use dentry_has_perm to
1725    check a particular permission to the file.
1726    Access to the descriptor is implicitly granted if it
1727    has the same SID as the process.  If av is zero, then
1728    access to the file is not checked, e.g. for cases
1729    where only the descriptor is affected like seek. */
1730 static int file_has_perm(const struct cred *cred,
1731 			 struct file *file,
1732 			 u32 av)
1733 {
1734 	struct file_security_struct *fsec = selinux_file(file);
1735 	struct inode *inode = file_inode(file);
1736 	struct common_audit_data ad;
1737 	u32 sid = cred_sid(cred);
1738 	int rc;
1739 
1740 	ad.type = LSM_AUDIT_DATA_FILE;
1741 	ad.u.file = file;
1742 
1743 	if (sid != fsec->sid) {
1744 		rc = avc_has_perm(sid, fsec->sid,
1745 				  SECCLASS_FD,
1746 				  FD__USE,
1747 				  &ad);
1748 		if (rc)
1749 			goto out;
1750 	}
1751 
1752 #ifdef CONFIG_BPF_SYSCALL
1753 	rc = bpf_fd_pass(file, cred_sid(cred));
1754 	if (rc)
1755 		return rc;
1756 #endif
1757 
1758 	/* av is zero if only checking access to the descriptor. */
1759 	rc = 0;
1760 	if (av)
1761 		rc = inode_has_perm(cred, inode, av, &ad);
1762 
1763 out:
1764 	return rc;
1765 }
1766 
1767 /*
1768  * Determine the label for an inode that might be unioned.
1769  */
1770 static int
1771 selinux_determine_inode_label(const struct task_security_struct *tsec,
1772 				 struct inode *dir,
1773 				 const struct qstr *name, u16 tclass,
1774 				 u32 *_new_isid)
1775 {
1776 	const struct superblock_security_struct *sbsec =
1777 						selinux_superblock(dir->i_sb);
1778 
1779 	if ((sbsec->flags & SE_SBINITIALIZED) &&
1780 	    (sbsec->behavior == SECURITY_FS_USE_MNTPOINT)) {
1781 		*_new_isid = sbsec->mntpoint_sid;
1782 	} else if ((sbsec->flags & SBLABEL_MNT) &&
1783 		   tsec->create_sid) {
1784 		*_new_isid = tsec->create_sid;
1785 	} else {
1786 		const struct inode_security_struct *dsec = inode_security(dir);
1787 		return security_transition_sid(tsec->sid,
1788 					       dsec->sid, tclass,
1789 					       name, _new_isid);
1790 	}
1791 
1792 	return 0;
1793 }
1794 
1795 /* Check whether a task can create a file. */
1796 static int may_create(struct inode *dir,
1797 		      struct dentry *dentry,
1798 		      u16 tclass)
1799 {
1800 	const struct task_security_struct *tsec = selinux_cred(current_cred());
1801 	struct inode_security_struct *dsec;
1802 	struct superblock_security_struct *sbsec;
1803 	u32 sid, newsid;
1804 	struct common_audit_data ad;
1805 	int rc;
1806 
1807 	dsec = inode_security(dir);
1808 	sbsec = selinux_superblock(dir->i_sb);
1809 
1810 	sid = tsec->sid;
1811 
1812 	ad.type = LSM_AUDIT_DATA_DENTRY;
1813 	ad.u.dentry = dentry;
1814 
1815 	rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR,
1816 			  DIR__ADD_NAME | DIR__SEARCH,
1817 			  &ad);
1818 	if (rc)
1819 		return rc;
1820 
1821 	rc = selinux_determine_inode_label(tsec, dir, &dentry->d_name, tclass,
1822 					   &newsid);
1823 	if (rc)
1824 		return rc;
1825 
1826 	rc = avc_has_perm(sid, newsid, tclass, FILE__CREATE, &ad);
1827 	if (rc)
1828 		return rc;
1829 
1830 	return avc_has_perm(newsid, sbsec->sid,
1831 			    SECCLASS_FILESYSTEM,
1832 			    FILESYSTEM__ASSOCIATE, &ad);
1833 }
1834 
1835 #define MAY_LINK	0
1836 #define MAY_UNLINK	1
1837 #define MAY_RMDIR	2
1838 
1839 /* Check whether a task can link, unlink, or rmdir a file/directory. */
1840 static int may_link(struct inode *dir,
1841 		    struct dentry *dentry,
1842 		    int kind)
1843 
1844 {
1845 	struct inode_security_struct *dsec, *isec;
1846 	struct common_audit_data ad;
1847 	u32 sid = current_sid();
1848 	u32 av;
1849 	int rc;
1850 
1851 	dsec = inode_security(dir);
1852 	isec = backing_inode_security(dentry);
1853 
1854 	ad.type = LSM_AUDIT_DATA_DENTRY;
1855 	ad.u.dentry = dentry;
1856 
1857 	av = DIR__SEARCH;
1858 	av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1859 	rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, av, &ad);
1860 	if (rc)
1861 		return rc;
1862 
1863 	switch (kind) {
1864 	case MAY_LINK:
1865 		av = FILE__LINK;
1866 		break;
1867 	case MAY_UNLINK:
1868 		av = FILE__UNLINK;
1869 		break;
1870 	case MAY_RMDIR:
1871 		av = DIR__RMDIR;
1872 		break;
1873 	default:
1874 		pr_warn("SELinux: %s:  unrecognized kind %d\n",
1875 			__func__, kind);
1876 		return 0;
1877 	}
1878 
1879 	rc = avc_has_perm(sid, isec->sid, isec->sclass, av, &ad);
1880 	return rc;
1881 }
1882 
1883 static inline int may_rename(struct inode *old_dir,
1884 			     struct dentry *old_dentry,
1885 			     struct inode *new_dir,
1886 			     struct dentry *new_dentry)
1887 {
1888 	struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1889 	struct common_audit_data ad;
1890 	u32 sid = current_sid();
1891 	u32 av;
1892 	int old_is_dir, new_is_dir;
1893 	int rc;
1894 
1895 	old_dsec = inode_security(old_dir);
1896 	old_isec = backing_inode_security(old_dentry);
1897 	old_is_dir = d_is_dir(old_dentry);
1898 	new_dsec = inode_security(new_dir);
1899 
1900 	ad.type = LSM_AUDIT_DATA_DENTRY;
1901 
1902 	ad.u.dentry = old_dentry;
1903 	rc = avc_has_perm(sid, old_dsec->sid, SECCLASS_DIR,
1904 			  DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1905 	if (rc)
1906 		return rc;
1907 	rc = avc_has_perm(sid, old_isec->sid,
1908 			  old_isec->sclass, FILE__RENAME, &ad);
1909 	if (rc)
1910 		return rc;
1911 	if (old_is_dir && new_dir != old_dir) {
1912 		rc = avc_has_perm(sid, old_isec->sid,
1913 				  old_isec->sclass, DIR__REPARENT, &ad);
1914 		if (rc)
1915 			return rc;
1916 	}
1917 
1918 	ad.u.dentry = new_dentry;
1919 	av = DIR__ADD_NAME | DIR__SEARCH;
1920 	if (d_is_positive(new_dentry))
1921 		av |= DIR__REMOVE_NAME;
1922 	rc = avc_has_perm(sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1923 	if (rc)
1924 		return rc;
1925 	if (d_is_positive(new_dentry)) {
1926 		new_isec = backing_inode_security(new_dentry);
1927 		new_is_dir = d_is_dir(new_dentry);
1928 		rc = avc_has_perm(sid, new_isec->sid,
1929 				  new_isec->sclass,
1930 				  (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1931 		if (rc)
1932 			return rc;
1933 	}
1934 
1935 	return 0;
1936 }
1937 
1938 /* Check whether a task can perform a filesystem operation. */
1939 static int superblock_has_perm(const struct cred *cred,
1940 			       const struct super_block *sb,
1941 			       u32 perms,
1942 			       struct common_audit_data *ad)
1943 {
1944 	struct superblock_security_struct *sbsec;
1945 	u32 sid = cred_sid(cred);
1946 
1947 	sbsec = selinux_superblock(sb);
1948 	return avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
1949 }
1950 
1951 /* Convert a Linux mode and permission mask to an access vector. */
1952 static inline u32 file_mask_to_av(int mode, int mask)
1953 {
1954 	u32 av = 0;
1955 
1956 	if (!S_ISDIR(mode)) {
1957 		if (mask & MAY_EXEC)
1958 			av |= FILE__EXECUTE;
1959 		if (mask & MAY_READ)
1960 			av |= FILE__READ;
1961 
1962 		if (mask & MAY_APPEND)
1963 			av |= FILE__APPEND;
1964 		else if (mask & MAY_WRITE)
1965 			av |= FILE__WRITE;
1966 
1967 	} else {
1968 		if (mask & MAY_EXEC)
1969 			av |= DIR__SEARCH;
1970 		if (mask & MAY_WRITE)
1971 			av |= DIR__WRITE;
1972 		if (mask & MAY_READ)
1973 			av |= DIR__READ;
1974 	}
1975 
1976 	return av;
1977 }
1978 
1979 /* Convert a Linux file to an access vector. */
1980 static inline u32 file_to_av(const struct file *file)
1981 {
1982 	u32 av = 0;
1983 
1984 	if (file->f_mode & FMODE_READ)
1985 		av |= FILE__READ;
1986 	if (file->f_mode & FMODE_WRITE) {
1987 		if (file->f_flags & O_APPEND)
1988 			av |= FILE__APPEND;
1989 		else
1990 			av |= FILE__WRITE;
1991 	}
1992 	if (!av) {
1993 		/*
1994 		 * Special file opened with flags 3 for ioctl-only use.
1995 		 */
1996 		av = FILE__IOCTL;
1997 	}
1998 
1999 	return av;
2000 }
2001 
2002 /*
2003  * Convert a file to an access vector and include the correct
2004  * open permission.
2005  */
2006 static inline u32 open_file_to_av(struct file *file)
2007 {
2008 	u32 av = file_to_av(file);
2009 	struct inode *inode = file_inode(file);
2010 
2011 	if (selinux_policycap_openperm() &&
2012 	    inode->i_sb->s_magic != SOCKFS_MAGIC)
2013 		av |= FILE__OPEN;
2014 
2015 	return av;
2016 }
2017 
2018 /* Hook functions begin here. */
2019 
2020 static int selinux_binder_set_context_mgr(const struct cred *mgr)
2021 {
2022 	return avc_has_perm(current_sid(), cred_sid(mgr), SECCLASS_BINDER,
2023 			    BINDER__SET_CONTEXT_MGR, NULL);
2024 }
2025 
2026 static int selinux_binder_transaction(const struct cred *from,
2027 				      const struct cred *to)
2028 {
2029 	u32 mysid = current_sid();
2030 	u32 fromsid = cred_sid(from);
2031 	u32 tosid = cred_sid(to);
2032 	int rc;
2033 
2034 	if (mysid != fromsid) {
2035 		rc = avc_has_perm(mysid, fromsid, SECCLASS_BINDER,
2036 				  BINDER__IMPERSONATE, NULL);
2037 		if (rc)
2038 			return rc;
2039 	}
2040 
2041 	return avc_has_perm(fromsid, tosid,
2042 			    SECCLASS_BINDER, BINDER__CALL, NULL);
2043 }
2044 
2045 static int selinux_binder_transfer_binder(const struct cred *from,
2046 					  const struct cred *to)
2047 {
2048 	return avc_has_perm(cred_sid(from), cred_sid(to),
2049 			    SECCLASS_BINDER, BINDER__TRANSFER,
2050 			    NULL);
2051 }
2052 
2053 static int selinux_binder_transfer_file(const struct cred *from,
2054 					const struct cred *to,
2055 					const struct file *file)
2056 {
2057 	u32 sid = cred_sid(to);
2058 	struct file_security_struct *fsec = selinux_file(file);
2059 	struct dentry *dentry = file->f_path.dentry;
2060 	struct inode_security_struct *isec;
2061 	struct common_audit_data ad;
2062 	int rc;
2063 
2064 	ad.type = LSM_AUDIT_DATA_PATH;
2065 	ad.u.path = file->f_path;
2066 
2067 	if (sid != fsec->sid) {
2068 		rc = avc_has_perm(sid, fsec->sid,
2069 				  SECCLASS_FD,
2070 				  FD__USE,
2071 				  &ad);
2072 		if (rc)
2073 			return rc;
2074 	}
2075 
2076 #ifdef CONFIG_BPF_SYSCALL
2077 	rc = bpf_fd_pass(file, sid);
2078 	if (rc)
2079 		return rc;
2080 #endif
2081 
2082 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2083 		return 0;
2084 
2085 	isec = backing_inode_security(dentry);
2086 	return avc_has_perm(sid, isec->sid, isec->sclass, file_to_av(file),
2087 			    &ad);
2088 }
2089 
2090 static int selinux_ptrace_access_check(struct task_struct *child,
2091 				       unsigned int mode)
2092 {
2093 	u32 sid = current_sid();
2094 	u32 csid = task_sid_obj(child);
2095 
2096 	if (mode & PTRACE_MODE_READ)
2097 		return avc_has_perm(sid, csid, SECCLASS_FILE, FILE__READ,
2098 				NULL);
2099 
2100 	return avc_has_perm(sid, csid, SECCLASS_PROCESS, PROCESS__PTRACE,
2101 			NULL);
2102 }
2103 
2104 static int selinux_ptrace_traceme(struct task_struct *parent)
2105 {
2106 	return avc_has_perm(task_sid_obj(parent), task_sid_obj(current),
2107 			    SECCLASS_PROCESS, PROCESS__PTRACE, NULL);
2108 }
2109 
2110 static int selinux_capget(const struct task_struct *target, kernel_cap_t *effective,
2111 			  kernel_cap_t *inheritable, kernel_cap_t *permitted)
2112 {
2113 	return avc_has_perm(current_sid(), task_sid_obj(target),
2114 			SECCLASS_PROCESS, PROCESS__GETCAP, NULL);
2115 }
2116 
2117 static int selinux_capset(struct cred *new, const struct cred *old,
2118 			  const kernel_cap_t *effective,
2119 			  const kernel_cap_t *inheritable,
2120 			  const kernel_cap_t *permitted)
2121 {
2122 	return avc_has_perm(cred_sid(old), cred_sid(new), SECCLASS_PROCESS,
2123 			    PROCESS__SETCAP, NULL);
2124 }
2125 
2126 /*
2127  * (This comment used to live with the selinux_task_setuid hook,
2128  * which was removed).
2129  *
2130  * Since setuid only affects the current process, and since the SELinux
2131  * controls are not based on the Linux identity attributes, SELinux does not
2132  * need to control this operation.  However, SELinux does control the use of
2133  * the CAP_SETUID and CAP_SETGID capabilities using the capable hook.
2134  */
2135 
2136 static int selinux_capable(const struct cred *cred, struct user_namespace *ns,
2137 			   int cap, unsigned int opts)
2138 {
2139 	return cred_has_capability(cred, cap, opts, ns == &init_user_ns);
2140 }
2141 
2142 static int selinux_quotactl(int cmds, int type, int id, const struct super_block *sb)
2143 {
2144 	const struct cred *cred = current_cred();
2145 	int rc = 0;
2146 
2147 	if (!sb)
2148 		return 0;
2149 
2150 	switch (cmds) {
2151 	case Q_SYNC:
2152 	case Q_QUOTAON:
2153 	case Q_QUOTAOFF:
2154 	case Q_SETINFO:
2155 	case Q_SETQUOTA:
2156 	case Q_XQUOTAOFF:
2157 	case Q_XQUOTAON:
2158 	case Q_XSETQLIM:
2159 		rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
2160 		break;
2161 	case Q_GETFMT:
2162 	case Q_GETINFO:
2163 	case Q_GETQUOTA:
2164 	case Q_XGETQUOTA:
2165 	case Q_XGETQSTAT:
2166 	case Q_XGETQSTATV:
2167 	case Q_XGETNEXTQUOTA:
2168 		rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
2169 		break;
2170 	default:
2171 		rc = 0;  /* let the kernel handle invalid cmds */
2172 		break;
2173 	}
2174 	return rc;
2175 }
2176 
2177 static int selinux_quota_on(struct dentry *dentry)
2178 {
2179 	const struct cred *cred = current_cred();
2180 
2181 	return dentry_has_perm(cred, dentry, FILE__QUOTAON);
2182 }
2183 
2184 static int selinux_syslog(int type)
2185 {
2186 	switch (type) {
2187 	case SYSLOG_ACTION_READ_ALL:	/* Read last kernel messages */
2188 	case SYSLOG_ACTION_SIZE_BUFFER:	/* Return size of the log buffer */
2189 		return avc_has_perm(current_sid(), SECINITSID_KERNEL,
2190 				    SECCLASS_SYSTEM, SYSTEM__SYSLOG_READ, NULL);
2191 	case SYSLOG_ACTION_CONSOLE_OFF:	/* Disable logging to console */
2192 	case SYSLOG_ACTION_CONSOLE_ON:	/* Enable logging to console */
2193 	/* Set level of messages printed to console */
2194 	case SYSLOG_ACTION_CONSOLE_LEVEL:
2195 		return avc_has_perm(current_sid(), SECINITSID_KERNEL,
2196 				    SECCLASS_SYSTEM, SYSTEM__SYSLOG_CONSOLE,
2197 				    NULL);
2198 	}
2199 	/* All other syslog types */
2200 	return avc_has_perm(current_sid(), SECINITSID_KERNEL,
2201 			    SECCLASS_SYSTEM, SYSTEM__SYSLOG_MOD, NULL);
2202 }
2203 
2204 /*
2205  * Check that a process has enough memory to allocate a new virtual
2206  * mapping. 0 means there is enough memory for the allocation to
2207  * succeed and -ENOMEM implies there is not.
2208  *
2209  * Do not audit the selinux permission check, as this is applied to all
2210  * processes that allocate mappings.
2211  */
2212 static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
2213 {
2214 	int rc, cap_sys_admin = 0;
2215 
2216 	rc = cred_has_capability(current_cred(), CAP_SYS_ADMIN,
2217 				 CAP_OPT_NOAUDIT, true);
2218 	if (rc == 0)
2219 		cap_sys_admin = 1;
2220 
2221 	return cap_sys_admin;
2222 }
2223 
2224 /* binprm security operations */
2225 
2226 static u32 ptrace_parent_sid(void)
2227 {
2228 	u32 sid = 0;
2229 	struct task_struct *tracer;
2230 
2231 	rcu_read_lock();
2232 	tracer = ptrace_parent(current);
2233 	if (tracer)
2234 		sid = task_sid_obj(tracer);
2235 	rcu_read_unlock();
2236 
2237 	return sid;
2238 }
2239 
2240 static int check_nnp_nosuid(const struct linux_binprm *bprm,
2241 			    const struct task_security_struct *old_tsec,
2242 			    const struct task_security_struct *new_tsec)
2243 {
2244 	int nnp = (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS);
2245 	int nosuid = !mnt_may_suid(bprm->file->f_path.mnt);
2246 	int rc;
2247 	u32 av;
2248 
2249 	if (!nnp && !nosuid)
2250 		return 0; /* neither NNP nor nosuid */
2251 
2252 	if (new_tsec->sid == old_tsec->sid)
2253 		return 0; /* No change in credentials */
2254 
2255 	/*
2256 	 * If the policy enables the nnp_nosuid_transition policy capability,
2257 	 * then we permit transitions under NNP or nosuid if the
2258 	 * policy allows the corresponding permission between
2259 	 * the old and new contexts.
2260 	 */
2261 	if (selinux_policycap_nnp_nosuid_transition()) {
2262 		av = 0;
2263 		if (nnp)
2264 			av |= PROCESS2__NNP_TRANSITION;
2265 		if (nosuid)
2266 			av |= PROCESS2__NOSUID_TRANSITION;
2267 		rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2268 				  SECCLASS_PROCESS2, av, NULL);
2269 		if (!rc)
2270 			return 0;
2271 	}
2272 
2273 	/*
2274 	 * We also permit NNP or nosuid transitions to bounded SIDs,
2275 	 * i.e. SIDs that are guaranteed to only be allowed a subset
2276 	 * of the permissions of the current SID.
2277 	 */
2278 	rc = security_bounded_transition(old_tsec->sid,
2279 					 new_tsec->sid);
2280 	if (!rc)
2281 		return 0;
2282 
2283 	/*
2284 	 * On failure, preserve the errno values for NNP vs nosuid.
2285 	 * NNP:  Operation not permitted for caller.
2286 	 * nosuid:  Permission denied to file.
2287 	 */
2288 	if (nnp)
2289 		return -EPERM;
2290 	return -EACCES;
2291 }
2292 
2293 static int selinux_bprm_creds_for_exec(struct linux_binprm *bprm)
2294 {
2295 	const struct task_security_struct *old_tsec;
2296 	struct task_security_struct *new_tsec;
2297 	struct inode_security_struct *isec;
2298 	struct common_audit_data ad;
2299 	struct inode *inode = file_inode(bprm->file);
2300 	int rc;
2301 
2302 	/* SELinux context only depends on initial program or script and not
2303 	 * the script interpreter */
2304 
2305 	old_tsec = selinux_cred(current_cred());
2306 	new_tsec = selinux_cred(bprm->cred);
2307 	isec = inode_security(inode);
2308 
2309 	/* Default to the current task SID. */
2310 	new_tsec->sid = old_tsec->sid;
2311 	new_tsec->osid = old_tsec->sid;
2312 
2313 	/* Reset fs, key, and sock SIDs on execve. */
2314 	new_tsec->create_sid = 0;
2315 	new_tsec->keycreate_sid = 0;
2316 	new_tsec->sockcreate_sid = 0;
2317 
2318 	/*
2319 	 * Before policy is loaded, label any task outside kernel space
2320 	 * as SECINITSID_INIT, so that any userspace tasks surviving from
2321 	 * early boot end up with a label different from SECINITSID_KERNEL
2322 	 * (if the policy chooses to set SECINITSID_INIT != SECINITSID_KERNEL).
2323 	 */
2324 	if (!selinux_initialized()) {
2325 		new_tsec->sid = SECINITSID_INIT;
2326 		/* also clear the exec_sid just in case */
2327 		new_tsec->exec_sid = 0;
2328 		return 0;
2329 	}
2330 
2331 	if (old_tsec->exec_sid) {
2332 		new_tsec->sid = old_tsec->exec_sid;
2333 		/* Reset exec SID on execve. */
2334 		new_tsec->exec_sid = 0;
2335 
2336 		/* Fail on NNP or nosuid if not an allowed transition. */
2337 		rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2338 		if (rc)
2339 			return rc;
2340 	} else {
2341 		/* Check for a default transition on this program. */
2342 		rc = security_transition_sid(old_tsec->sid,
2343 					     isec->sid, SECCLASS_PROCESS, NULL,
2344 					     &new_tsec->sid);
2345 		if (rc)
2346 			return rc;
2347 
2348 		/*
2349 		 * Fallback to old SID on NNP or nosuid if not an allowed
2350 		 * transition.
2351 		 */
2352 		rc = check_nnp_nosuid(bprm, old_tsec, new_tsec);
2353 		if (rc)
2354 			new_tsec->sid = old_tsec->sid;
2355 	}
2356 
2357 	ad.type = LSM_AUDIT_DATA_FILE;
2358 	ad.u.file = bprm->file;
2359 
2360 	if (new_tsec->sid == old_tsec->sid) {
2361 		rc = avc_has_perm(old_tsec->sid, isec->sid,
2362 				  SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2363 		if (rc)
2364 			return rc;
2365 	} else {
2366 		/* Check permissions for the transition. */
2367 		rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2368 				  SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2369 		if (rc)
2370 			return rc;
2371 
2372 		rc = avc_has_perm(new_tsec->sid, isec->sid,
2373 				  SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2374 		if (rc)
2375 			return rc;
2376 
2377 		/* Check for shared state */
2378 		if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2379 			rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2380 					  SECCLASS_PROCESS, PROCESS__SHARE,
2381 					  NULL);
2382 			if (rc)
2383 				return -EPERM;
2384 		}
2385 
2386 		/* Make sure that anyone attempting to ptrace over a task that
2387 		 * changes its SID has the appropriate permit */
2388 		if (bprm->unsafe & LSM_UNSAFE_PTRACE) {
2389 			u32 ptsid = ptrace_parent_sid();
2390 			if (ptsid != 0) {
2391 				rc = avc_has_perm(ptsid, new_tsec->sid,
2392 						  SECCLASS_PROCESS,
2393 						  PROCESS__PTRACE, NULL);
2394 				if (rc)
2395 					return -EPERM;
2396 			}
2397 		}
2398 
2399 		/* Clear any possibly unsafe personality bits on exec: */
2400 		bprm->per_clear |= PER_CLEAR_ON_SETID;
2401 
2402 		/* Enable secure mode for SIDs transitions unless
2403 		   the noatsecure permission is granted between
2404 		   the two SIDs, i.e. ahp returns 0. */
2405 		rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2406 				  SECCLASS_PROCESS, PROCESS__NOATSECURE,
2407 				  NULL);
2408 		bprm->secureexec |= !!rc;
2409 	}
2410 
2411 	return 0;
2412 }
2413 
2414 static int match_file(const void *p, struct file *file, unsigned fd)
2415 {
2416 	return file_has_perm(p, file, file_to_av(file)) ? fd + 1 : 0;
2417 }
2418 
2419 /* Derived from fs/exec.c:flush_old_files. */
2420 static inline void flush_unauthorized_files(const struct cred *cred,
2421 					    struct files_struct *files)
2422 {
2423 	struct file *file, *devnull = NULL;
2424 	struct tty_struct *tty;
2425 	int drop_tty = 0;
2426 	unsigned n;
2427 
2428 	tty = get_current_tty();
2429 	if (tty) {
2430 		spin_lock(&tty->files_lock);
2431 		if (!list_empty(&tty->tty_files)) {
2432 			struct tty_file_private *file_priv;
2433 
2434 			/* Revalidate access to controlling tty.
2435 			   Use file_path_has_perm on the tty path directly
2436 			   rather than using file_has_perm, as this particular
2437 			   open file may belong to another process and we are
2438 			   only interested in the inode-based check here. */
2439 			file_priv = list_first_entry(&tty->tty_files,
2440 						struct tty_file_private, list);
2441 			file = file_priv->file;
2442 			if (file_path_has_perm(cred, file, FILE__READ | FILE__WRITE))
2443 				drop_tty = 1;
2444 		}
2445 		spin_unlock(&tty->files_lock);
2446 		tty_kref_put(tty);
2447 	}
2448 	/* Reset controlling tty. */
2449 	if (drop_tty)
2450 		no_tty();
2451 
2452 	/* Revalidate access to inherited open files. */
2453 	n = iterate_fd(files, 0, match_file, cred);
2454 	if (!n) /* none found? */
2455 		return;
2456 
2457 	devnull = dentry_open(&selinux_null, O_RDWR, cred);
2458 	if (IS_ERR(devnull))
2459 		devnull = NULL;
2460 	/* replace all the matching ones with this */
2461 	do {
2462 		replace_fd(n - 1, devnull, 0);
2463 	} while ((n = iterate_fd(files, n, match_file, cred)) != 0);
2464 	if (devnull)
2465 		fput(devnull);
2466 }
2467 
2468 /*
2469  * Prepare a process for imminent new credential changes due to exec
2470  */
2471 static void selinux_bprm_committing_creds(const struct linux_binprm *bprm)
2472 {
2473 	struct task_security_struct *new_tsec;
2474 	struct rlimit *rlim, *initrlim;
2475 	int rc, i;
2476 
2477 	new_tsec = selinux_cred(bprm->cred);
2478 	if (new_tsec->sid == new_tsec->osid)
2479 		return;
2480 
2481 	/* Close files for which the new task SID is not authorized. */
2482 	flush_unauthorized_files(bprm->cred, current->files);
2483 
2484 	/* Always clear parent death signal on SID transitions. */
2485 	current->pdeath_signal = 0;
2486 
2487 	/* Check whether the new SID can inherit resource limits from the old
2488 	 * SID.  If not, reset all soft limits to the lower of the current
2489 	 * task's hard limit and the init task's soft limit.
2490 	 *
2491 	 * Note that the setting of hard limits (even to lower them) can be
2492 	 * controlled by the setrlimit check.  The inclusion of the init task's
2493 	 * soft limit into the computation is to avoid resetting soft limits
2494 	 * higher than the default soft limit for cases where the default is
2495 	 * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2496 	 */
2497 	rc = avc_has_perm(new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
2498 			  PROCESS__RLIMITINH, NULL);
2499 	if (rc) {
2500 		/* protect against do_prlimit() */
2501 		task_lock(current);
2502 		for (i = 0; i < RLIM_NLIMITS; i++) {
2503 			rlim = current->signal->rlim + i;
2504 			initrlim = init_task.signal->rlim + i;
2505 			rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2506 		}
2507 		task_unlock(current);
2508 		if (IS_ENABLED(CONFIG_POSIX_TIMERS))
2509 			update_rlimit_cpu(current, rlimit(RLIMIT_CPU));
2510 	}
2511 }
2512 
2513 /*
2514  * Clean up the process immediately after the installation of new credentials
2515  * due to exec
2516  */
2517 static void selinux_bprm_committed_creds(const struct linux_binprm *bprm)
2518 {
2519 	const struct task_security_struct *tsec = selinux_cred(current_cred());
2520 	u32 osid, sid;
2521 	int rc;
2522 
2523 	osid = tsec->osid;
2524 	sid = tsec->sid;
2525 
2526 	if (sid == osid)
2527 		return;
2528 
2529 	/* Check whether the new SID can inherit signal state from the old SID.
2530 	 * If not, clear itimers to avoid subsequent signal generation and
2531 	 * flush and unblock signals.
2532 	 *
2533 	 * This must occur _after_ the task SID has been updated so that any
2534 	 * kill done after the flush will be checked against the new SID.
2535 	 */
2536 	rc = avc_has_perm(osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
2537 	if (rc) {
2538 		clear_itimer();
2539 
2540 		spin_lock_irq(&unrcu_pointer(current->sighand)->siglock);
2541 		if (!fatal_signal_pending(current)) {
2542 			flush_sigqueue(&current->pending);
2543 			flush_sigqueue(&current->signal->shared_pending);
2544 			flush_signal_handlers(current, 1);
2545 			sigemptyset(&current->blocked);
2546 			recalc_sigpending();
2547 		}
2548 		spin_unlock_irq(&unrcu_pointer(current->sighand)->siglock);
2549 	}
2550 
2551 	/* Wake up the parent if it is waiting so that it can recheck
2552 	 * wait permission to the new task SID. */
2553 	read_lock(&tasklist_lock);
2554 	__wake_up_parent(current, unrcu_pointer(current->real_parent));
2555 	read_unlock(&tasklist_lock);
2556 }
2557 
2558 /* superblock security operations */
2559 
2560 static int selinux_sb_alloc_security(struct super_block *sb)
2561 {
2562 	struct superblock_security_struct *sbsec = selinux_superblock(sb);
2563 
2564 	mutex_init(&sbsec->lock);
2565 	INIT_LIST_HEAD(&sbsec->isec_head);
2566 	spin_lock_init(&sbsec->isec_lock);
2567 	sbsec->sid = SECINITSID_UNLABELED;
2568 	sbsec->def_sid = SECINITSID_FILE;
2569 	sbsec->mntpoint_sid = SECINITSID_UNLABELED;
2570 
2571 	return 0;
2572 }
2573 
2574 static inline int opt_len(const char *s)
2575 {
2576 	bool open_quote = false;
2577 	int len;
2578 	char c;
2579 
2580 	for (len = 0; (c = s[len]) != '\0'; len++) {
2581 		if (c == '"')
2582 			open_quote = !open_quote;
2583 		if (c == ',' && !open_quote)
2584 			break;
2585 	}
2586 	return len;
2587 }
2588 
2589 static int selinux_sb_eat_lsm_opts(char *options, void **mnt_opts)
2590 {
2591 	char *from = options;
2592 	char *to = options;
2593 	bool first = true;
2594 	int rc;
2595 
2596 	while (1) {
2597 		int len = opt_len(from);
2598 		int token;
2599 		char *arg = NULL;
2600 
2601 		token = match_opt_prefix(from, len, &arg);
2602 
2603 		if (token != Opt_error) {
2604 			char *p, *q;
2605 
2606 			/* strip quotes */
2607 			if (arg) {
2608 				for (p = q = arg; p < from + len; p++) {
2609 					char c = *p;
2610 					if (c != '"')
2611 						*q++ = c;
2612 				}
2613 				arg = kmemdup_nul(arg, q - arg, GFP_KERNEL);
2614 				if (!arg) {
2615 					rc = -ENOMEM;
2616 					goto free_opt;
2617 				}
2618 			}
2619 			rc = selinux_add_opt(token, arg, mnt_opts);
2620 			kfree(arg);
2621 			arg = NULL;
2622 			if (unlikely(rc)) {
2623 				goto free_opt;
2624 			}
2625 		} else {
2626 			if (!first) {	// copy with preceding comma
2627 				from--;
2628 				len++;
2629 			}
2630 			if (to != from)
2631 				memmove(to, from, len);
2632 			to += len;
2633 			first = false;
2634 		}
2635 		if (!from[len])
2636 			break;
2637 		from += len + 1;
2638 	}
2639 	*to = '\0';
2640 	return 0;
2641 
2642 free_opt:
2643 	if (*mnt_opts) {
2644 		selinux_free_mnt_opts(*mnt_opts);
2645 		*mnt_opts = NULL;
2646 	}
2647 	return rc;
2648 }
2649 
2650 static int selinux_sb_mnt_opts_compat(struct super_block *sb, void *mnt_opts)
2651 {
2652 	struct selinux_mnt_opts *opts = mnt_opts;
2653 	struct superblock_security_struct *sbsec = selinux_superblock(sb);
2654 
2655 	/*
2656 	 * Superblock not initialized (i.e. no options) - reject if any
2657 	 * options specified, otherwise accept.
2658 	 */
2659 	if (!(sbsec->flags & SE_SBINITIALIZED))
2660 		return opts ? 1 : 0;
2661 
2662 	/*
2663 	 * Superblock initialized and no options specified - reject if
2664 	 * superblock has any options set, otherwise accept.
2665 	 */
2666 	if (!opts)
2667 		return (sbsec->flags & SE_MNTMASK) ? 1 : 0;
2668 
2669 	if (opts->fscontext_sid) {
2670 		if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
2671 			       opts->fscontext_sid))
2672 			return 1;
2673 	}
2674 	if (opts->context_sid) {
2675 		if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
2676 			       opts->context_sid))
2677 			return 1;
2678 	}
2679 	if (opts->rootcontext_sid) {
2680 		struct inode_security_struct *root_isec;
2681 
2682 		root_isec = backing_inode_security(sb->s_root);
2683 		if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
2684 			       opts->rootcontext_sid))
2685 			return 1;
2686 	}
2687 	if (opts->defcontext_sid) {
2688 		if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
2689 			       opts->defcontext_sid))
2690 			return 1;
2691 	}
2692 	return 0;
2693 }
2694 
2695 static int selinux_sb_remount(struct super_block *sb, void *mnt_opts)
2696 {
2697 	struct selinux_mnt_opts *opts = mnt_opts;
2698 	struct superblock_security_struct *sbsec = selinux_superblock(sb);
2699 
2700 	if (!(sbsec->flags & SE_SBINITIALIZED))
2701 		return 0;
2702 
2703 	if (!opts)
2704 		return 0;
2705 
2706 	if (opts->fscontext_sid) {
2707 		if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
2708 			       opts->fscontext_sid))
2709 			goto out_bad_option;
2710 	}
2711 	if (opts->context_sid) {
2712 		if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
2713 			       opts->context_sid))
2714 			goto out_bad_option;
2715 	}
2716 	if (opts->rootcontext_sid) {
2717 		struct inode_security_struct *root_isec;
2718 		root_isec = backing_inode_security(sb->s_root);
2719 		if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
2720 			       opts->rootcontext_sid))
2721 			goto out_bad_option;
2722 	}
2723 	if (opts->defcontext_sid) {
2724 		if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
2725 			       opts->defcontext_sid))
2726 			goto out_bad_option;
2727 	}
2728 	return 0;
2729 
2730 out_bad_option:
2731 	pr_warn("SELinux: unable to change security options "
2732 	       "during remount (dev %s, type=%s)\n", sb->s_id,
2733 	       sb->s_type->name);
2734 	return -EINVAL;
2735 }
2736 
2737 static int selinux_sb_kern_mount(const struct super_block *sb)
2738 {
2739 	const struct cred *cred = current_cred();
2740 	struct common_audit_data ad;
2741 
2742 	ad.type = LSM_AUDIT_DATA_DENTRY;
2743 	ad.u.dentry = sb->s_root;
2744 	return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2745 }
2746 
2747 static int selinux_sb_statfs(struct dentry *dentry)
2748 {
2749 	const struct cred *cred = current_cred();
2750 	struct common_audit_data ad;
2751 
2752 	ad.type = LSM_AUDIT_DATA_DENTRY;
2753 	ad.u.dentry = dentry->d_sb->s_root;
2754 	return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2755 }
2756 
2757 static int selinux_mount(const char *dev_name,
2758 			 const struct path *path,
2759 			 const char *type,
2760 			 unsigned long flags,
2761 			 void *data)
2762 {
2763 	const struct cred *cred = current_cred();
2764 
2765 	if (flags & MS_REMOUNT)
2766 		return superblock_has_perm(cred, path->dentry->d_sb,
2767 					   FILESYSTEM__REMOUNT, NULL);
2768 	else
2769 		return path_has_perm(cred, path, FILE__MOUNTON);
2770 }
2771 
2772 static int selinux_move_mount(const struct path *from_path,
2773 			      const struct path *to_path)
2774 {
2775 	const struct cred *cred = current_cred();
2776 
2777 	return path_has_perm(cred, to_path, FILE__MOUNTON);
2778 }
2779 
2780 static int selinux_umount(struct vfsmount *mnt, int flags)
2781 {
2782 	const struct cred *cred = current_cred();
2783 
2784 	return superblock_has_perm(cred, mnt->mnt_sb,
2785 				   FILESYSTEM__UNMOUNT, NULL);
2786 }
2787 
2788 static int selinux_fs_context_submount(struct fs_context *fc,
2789 				   struct super_block *reference)
2790 {
2791 	const struct superblock_security_struct *sbsec = selinux_superblock(reference);
2792 	struct selinux_mnt_opts *opts;
2793 
2794 	/*
2795 	 * Ensure that fc->security remains NULL when no options are set
2796 	 * as expected by selinux_set_mnt_opts().
2797 	 */
2798 	if (!(sbsec->flags & (FSCONTEXT_MNT|CONTEXT_MNT|DEFCONTEXT_MNT)))
2799 		return 0;
2800 
2801 	opts = kzalloc(sizeof(*opts), GFP_KERNEL);
2802 	if (!opts)
2803 		return -ENOMEM;
2804 
2805 	if (sbsec->flags & FSCONTEXT_MNT)
2806 		opts->fscontext_sid = sbsec->sid;
2807 	if (sbsec->flags & CONTEXT_MNT)
2808 		opts->context_sid = sbsec->mntpoint_sid;
2809 	if (sbsec->flags & DEFCONTEXT_MNT)
2810 		opts->defcontext_sid = sbsec->def_sid;
2811 	fc->security = opts;
2812 	return 0;
2813 }
2814 
2815 static int selinux_fs_context_dup(struct fs_context *fc,
2816 				  struct fs_context *src_fc)
2817 {
2818 	const struct selinux_mnt_opts *src = src_fc->security;
2819 
2820 	if (!src)
2821 		return 0;
2822 
2823 	fc->security = kmemdup(src, sizeof(*src), GFP_KERNEL);
2824 	return fc->security ? 0 : -ENOMEM;
2825 }
2826 
2827 static const struct fs_parameter_spec selinux_fs_parameters[] = {
2828 	fsparam_string(CONTEXT_STR,	Opt_context),
2829 	fsparam_string(DEFCONTEXT_STR,	Opt_defcontext),
2830 	fsparam_string(FSCONTEXT_STR,	Opt_fscontext),
2831 	fsparam_string(ROOTCONTEXT_STR,	Opt_rootcontext),
2832 	fsparam_flag  (SECLABEL_STR,	Opt_seclabel),
2833 	{}
2834 };
2835 
2836 static int selinux_fs_context_parse_param(struct fs_context *fc,
2837 					  struct fs_parameter *param)
2838 {
2839 	struct fs_parse_result result;
2840 	int opt;
2841 
2842 	opt = fs_parse(fc, selinux_fs_parameters, param, &result);
2843 	if (opt < 0)
2844 		return opt;
2845 
2846 	return selinux_add_opt(opt, param->string, &fc->security);
2847 }
2848 
2849 /* inode security operations */
2850 
2851 static int selinux_inode_alloc_security(struct inode *inode)
2852 {
2853 	struct inode_security_struct *isec = selinux_inode(inode);
2854 	u32 sid = current_sid();
2855 
2856 	spin_lock_init(&isec->lock);
2857 	INIT_LIST_HEAD(&isec->list);
2858 	isec->inode = inode;
2859 	isec->sid = SECINITSID_UNLABELED;
2860 	isec->sclass = SECCLASS_FILE;
2861 	isec->task_sid = sid;
2862 	isec->initialized = LABEL_INVALID;
2863 
2864 	return 0;
2865 }
2866 
2867 static void selinux_inode_free_security(struct inode *inode)
2868 {
2869 	inode_free_security(inode);
2870 }
2871 
2872 static int selinux_dentry_init_security(struct dentry *dentry, int mode,
2873 					const struct qstr *name,
2874 					const char **xattr_name, void **ctx,
2875 					u32 *ctxlen)
2876 {
2877 	u32 newsid;
2878 	int rc;
2879 
2880 	rc = selinux_determine_inode_label(selinux_cred(current_cred()),
2881 					   d_inode(dentry->d_parent), name,
2882 					   inode_mode_to_security_class(mode),
2883 					   &newsid);
2884 	if (rc)
2885 		return rc;
2886 
2887 	if (xattr_name)
2888 		*xattr_name = XATTR_NAME_SELINUX;
2889 
2890 	return security_sid_to_context(newsid, (char **)ctx,
2891 				       ctxlen);
2892 }
2893 
2894 static int selinux_dentry_create_files_as(struct dentry *dentry, int mode,
2895 					  struct qstr *name,
2896 					  const struct cred *old,
2897 					  struct cred *new)
2898 {
2899 	u32 newsid;
2900 	int rc;
2901 	struct task_security_struct *tsec;
2902 
2903 	rc = selinux_determine_inode_label(selinux_cred(old),
2904 					   d_inode(dentry->d_parent), name,
2905 					   inode_mode_to_security_class(mode),
2906 					   &newsid);
2907 	if (rc)
2908 		return rc;
2909 
2910 	tsec = selinux_cred(new);
2911 	tsec->create_sid = newsid;
2912 	return 0;
2913 }
2914 
2915 static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2916 				       const struct qstr *qstr,
2917 				       struct xattr *xattrs, int *xattr_count)
2918 {
2919 	const struct task_security_struct *tsec = selinux_cred(current_cred());
2920 	struct superblock_security_struct *sbsec;
2921 	struct xattr *xattr = lsm_get_xattr_slot(xattrs, xattr_count);
2922 	u32 newsid, clen;
2923 	u16 newsclass;
2924 	int rc;
2925 	char *context;
2926 
2927 	sbsec = selinux_superblock(dir->i_sb);
2928 
2929 	newsid = tsec->create_sid;
2930 	newsclass = inode_mode_to_security_class(inode->i_mode);
2931 	rc = selinux_determine_inode_label(tsec, dir, qstr, newsclass, &newsid);
2932 	if (rc)
2933 		return rc;
2934 
2935 	/* Possibly defer initialization to selinux_complete_init. */
2936 	if (sbsec->flags & SE_SBINITIALIZED) {
2937 		struct inode_security_struct *isec = selinux_inode(inode);
2938 		isec->sclass = newsclass;
2939 		isec->sid = newsid;
2940 		isec->initialized = LABEL_INITIALIZED;
2941 	}
2942 
2943 	if (!selinux_initialized() ||
2944 	    !(sbsec->flags & SBLABEL_MNT))
2945 		return -EOPNOTSUPP;
2946 
2947 	if (xattr) {
2948 		rc = security_sid_to_context_force(newsid,
2949 						   &context, &clen);
2950 		if (rc)
2951 			return rc;
2952 		xattr->value = context;
2953 		xattr->value_len = clen;
2954 		xattr->name = XATTR_SELINUX_SUFFIX;
2955 	}
2956 
2957 	return 0;
2958 }
2959 
2960 static int selinux_inode_init_security_anon(struct inode *inode,
2961 					    const struct qstr *name,
2962 					    const struct inode *context_inode)
2963 {
2964 	u32 sid = current_sid();
2965 	struct common_audit_data ad;
2966 	struct inode_security_struct *isec;
2967 	int rc;
2968 
2969 	if (unlikely(!selinux_initialized()))
2970 		return 0;
2971 
2972 	isec = selinux_inode(inode);
2973 
2974 	/*
2975 	 * We only get here once per ephemeral inode.  The inode has
2976 	 * been initialized via inode_alloc_security but is otherwise
2977 	 * untouched.
2978 	 */
2979 
2980 	if (context_inode) {
2981 		struct inode_security_struct *context_isec =
2982 			selinux_inode(context_inode);
2983 		if (context_isec->initialized != LABEL_INITIALIZED) {
2984 			pr_err("SELinux:  context_inode is not initialized\n");
2985 			return -EACCES;
2986 		}
2987 
2988 		isec->sclass = context_isec->sclass;
2989 		isec->sid = context_isec->sid;
2990 	} else {
2991 		isec->sclass = SECCLASS_ANON_INODE;
2992 		rc = security_transition_sid(
2993 			sid, sid,
2994 			isec->sclass, name, &isec->sid);
2995 		if (rc)
2996 			return rc;
2997 	}
2998 
2999 	isec->initialized = LABEL_INITIALIZED;
3000 	/*
3001 	 * Now that we've initialized security, check whether we're
3002 	 * allowed to actually create this type of anonymous inode.
3003 	 */
3004 
3005 	ad.type = LSM_AUDIT_DATA_ANONINODE;
3006 	ad.u.anonclass = name ? (const char *)name->name : "?";
3007 
3008 	return avc_has_perm(sid,
3009 			    isec->sid,
3010 			    isec->sclass,
3011 			    FILE__CREATE,
3012 			    &ad);
3013 }
3014 
3015 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
3016 {
3017 	return may_create(dir, dentry, SECCLASS_FILE);
3018 }
3019 
3020 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
3021 {
3022 	return may_link(dir, old_dentry, MAY_LINK);
3023 }
3024 
3025 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
3026 {
3027 	return may_link(dir, dentry, MAY_UNLINK);
3028 }
3029 
3030 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
3031 {
3032 	return may_create(dir, dentry, SECCLASS_LNK_FILE);
3033 }
3034 
3035 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mask)
3036 {
3037 	return may_create(dir, dentry, SECCLASS_DIR);
3038 }
3039 
3040 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
3041 {
3042 	return may_link(dir, dentry, MAY_RMDIR);
3043 }
3044 
3045 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
3046 {
3047 	return may_create(dir, dentry, inode_mode_to_security_class(mode));
3048 }
3049 
3050 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
3051 				struct inode *new_inode, struct dentry *new_dentry)
3052 {
3053 	return may_rename(old_inode, old_dentry, new_inode, new_dentry);
3054 }
3055 
3056 static int selinux_inode_readlink(struct dentry *dentry)
3057 {
3058 	const struct cred *cred = current_cred();
3059 
3060 	return dentry_has_perm(cred, dentry, FILE__READ);
3061 }
3062 
3063 static int selinux_inode_follow_link(struct dentry *dentry, struct inode *inode,
3064 				     bool rcu)
3065 {
3066 	struct common_audit_data ad;
3067 	struct inode_security_struct *isec;
3068 	u32 sid = current_sid();
3069 
3070 	ad.type = LSM_AUDIT_DATA_DENTRY;
3071 	ad.u.dentry = dentry;
3072 	isec = inode_security_rcu(inode, rcu);
3073 	if (IS_ERR(isec))
3074 		return PTR_ERR(isec);
3075 
3076 	return avc_has_perm(sid, isec->sid, isec->sclass, FILE__READ, &ad);
3077 }
3078 
3079 static noinline int audit_inode_permission(struct inode *inode,
3080 					   u32 perms, u32 audited, u32 denied,
3081 					   int result)
3082 {
3083 	struct common_audit_data ad;
3084 	struct inode_security_struct *isec = selinux_inode(inode);
3085 
3086 	ad.type = LSM_AUDIT_DATA_INODE;
3087 	ad.u.inode = inode;
3088 
3089 	return slow_avc_audit(current_sid(), isec->sid, isec->sclass, perms,
3090 			    audited, denied, result, &ad);
3091 }
3092 
3093 static int selinux_inode_permission(struct inode *inode, int mask)
3094 {
3095 	u32 perms;
3096 	bool from_access;
3097 	bool no_block = mask & MAY_NOT_BLOCK;
3098 	struct inode_security_struct *isec;
3099 	u32 sid = current_sid();
3100 	struct av_decision avd;
3101 	int rc, rc2;
3102 	u32 audited, denied;
3103 
3104 	from_access = mask & MAY_ACCESS;
3105 	mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND);
3106 
3107 	/* No permission to check.  Existence test. */
3108 	if (!mask)
3109 		return 0;
3110 
3111 	if (unlikely(IS_PRIVATE(inode)))
3112 		return 0;
3113 
3114 	perms = file_mask_to_av(inode->i_mode, mask);
3115 
3116 	isec = inode_security_rcu(inode, no_block);
3117 	if (IS_ERR(isec))
3118 		return PTR_ERR(isec);
3119 
3120 	rc = avc_has_perm_noaudit(sid, isec->sid, isec->sclass, perms, 0,
3121 				  &avd);
3122 	audited = avc_audit_required(perms, &avd, rc,
3123 				     from_access ? FILE__AUDIT_ACCESS : 0,
3124 				     &denied);
3125 	if (likely(!audited))
3126 		return rc;
3127 
3128 	rc2 = audit_inode_permission(inode, perms, audited, denied, rc);
3129 	if (rc2)
3130 		return rc2;
3131 	return rc;
3132 }
3133 
3134 static int selinux_inode_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
3135 				 struct iattr *iattr)
3136 {
3137 	const struct cred *cred = current_cred();
3138 	struct inode *inode = d_backing_inode(dentry);
3139 	unsigned int ia_valid = iattr->ia_valid;
3140 	__u32 av = FILE__WRITE;
3141 
3142 	/* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */
3143 	if (ia_valid & ATTR_FORCE) {
3144 		ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE |
3145 			      ATTR_FORCE);
3146 		if (!ia_valid)
3147 			return 0;
3148 	}
3149 
3150 	if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
3151 			ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET))
3152 		return dentry_has_perm(cred, dentry, FILE__SETATTR);
3153 
3154 	if (selinux_policycap_openperm() &&
3155 	    inode->i_sb->s_magic != SOCKFS_MAGIC &&
3156 	    (ia_valid & ATTR_SIZE) &&
3157 	    !(ia_valid & ATTR_FILE))
3158 		av |= FILE__OPEN;
3159 
3160 	return dentry_has_perm(cred, dentry, av);
3161 }
3162 
3163 static int selinux_inode_getattr(const struct path *path)
3164 {
3165 	return path_has_perm(current_cred(), path, FILE__GETATTR);
3166 }
3167 
3168 static bool has_cap_mac_admin(bool audit)
3169 {
3170 	const struct cred *cred = current_cred();
3171 	unsigned int opts = audit ? CAP_OPT_NONE : CAP_OPT_NOAUDIT;
3172 
3173 	if (cap_capable(cred, &init_user_ns, CAP_MAC_ADMIN, opts))
3174 		return false;
3175 	if (cred_has_capability(cred, CAP_MAC_ADMIN, opts, true))
3176 		return false;
3177 	return true;
3178 }
3179 
3180 static int selinux_inode_setxattr(struct mnt_idmap *idmap,
3181 				  struct dentry *dentry, const char *name,
3182 				  const void *value, size_t size, int flags)
3183 {
3184 	struct inode *inode = d_backing_inode(dentry);
3185 	struct inode_security_struct *isec;
3186 	struct superblock_security_struct *sbsec;
3187 	struct common_audit_data ad;
3188 	u32 newsid, sid = current_sid();
3189 	int rc = 0;
3190 
3191 	if (strcmp(name, XATTR_NAME_SELINUX)) {
3192 		rc = cap_inode_setxattr(dentry, name, value, size, flags);
3193 		if (rc)
3194 			return rc;
3195 
3196 		/* Not an attribute we recognize, so just check the
3197 		   ordinary setattr permission. */
3198 		return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3199 	}
3200 
3201 	if (!selinux_initialized())
3202 		return (inode_owner_or_capable(idmap, inode) ? 0 : -EPERM);
3203 
3204 	sbsec = selinux_superblock(inode->i_sb);
3205 	if (!(sbsec->flags & SBLABEL_MNT))
3206 		return -EOPNOTSUPP;
3207 
3208 	if (!inode_owner_or_capable(idmap, inode))
3209 		return -EPERM;
3210 
3211 	ad.type = LSM_AUDIT_DATA_DENTRY;
3212 	ad.u.dentry = dentry;
3213 
3214 	isec = backing_inode_security(dentry);
3215 	rc = avc_has_perm(sid, isec->sid, isec->sclass,
3216 			  FILE__RELABELFROM, &ad);
3217 	if (rc)
3218 		return rc;
3219 
3220 	rc = security_context_to_sid(value, size, &newsid,
3221 				     GFP_KERNEL);
3222 	if (rc == -EINVAL) {
3223 		if (!has_cap_mac_admin(true)) {
3224 			struct audit_buffer *ab;
3225 			size_t audit_size;
3226 
3227 			/* We strip a nul only if it is at the end, otherwise the
3228 			 * context contains a nul and we should audit that */
3229 			if (value) {
3230 				const char *str = value;
3231 
3232 				if (str[size - 1] == '\0')
3233 					audit_size = size - 1;
3234 				else
3235 					audit_size = size;
3236 			} else {
3237 				audit_size = 0;
3238 			}
3239 			ab = audit_log_start(audit_context(),
3240 					     GFP_ATOMIC, AUDIT_SELINUX_ERR);
3241 			if (!ab)
3242 				return rc;
3243 			audit_log_format(ab, "op=setxattr invalid_context=");
3244 			audit_log_n_untrustedstring(ab, value, audit_size);
3245 			audit_log_end(ab);
3246 
3247 			return rc;
3248 		}
3249 		rc = security_context_to_sid_force(value,
3250 						   size, &newsid);
3251 	}
3252 	if (rc)
3253 		return rc;
3254 
3255 	rc = avc_has_perm(sid, newsid, isec->sclass,
3256 			  FILE__RELABELTO, &ad);
3257 	if (rc)
3258 		return rc;
3259 
3260 	rc = security_validate_transition(isec->sid, newsid,
3261 					  sid, isec->sclass);
3262 	if (rc)
3263 		return rc;
3264 
3265 	return avc_has_perm(newsid,
3266 			    sbsec->sid,
3267 			    SECCLASS_FILESYSTEM,
3268 			    FILESYSTEM__ASSOCIATE,
3269 			    &ad);
3270 }
3271 
3272 static int selinux_inode_set_acl(struct mnt_idmap *idmap,
3273 				 struct dentry *dentry, const char *acl_name,
3274 				 struct posix_acl *kacl)
3275 {
3276 	return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3277 }
3278 
3279 static int selinux_inode_get_acl(struct mnt_idmap *idmap,
3280 				 struct dentry *dentry, const char *acl_name)
3281 {
3282 	return dentry_has_perm(current_cred(), dentry, FILE__GETATTR);
3283 }
3284 
3285 static int selinux_inode_remove_acl(struct mnt_idmap *idmap,
3286 				    struct dentry *dentry, const char *acl_name)
3287 {
3288 	return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3289 }
3290 
3291 static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
3292 					const void *value, size_t size,
3293 					int flags)
3294 {
3295 	struct inode *inode = d_backing_inode(dentry);
3296 	struct inode_security_struct *isec;
3297 	u32 newsid;
3298 	int rc;
3299 
3300 	if (strcmp(name, XATTR_NAME_SELINUX)) {
3301 		/* Not an attribute we recognize, so nothing to do. */
3302 		return;
3303 	}
3304 
3305 	if (!selinux_initialized()) {
3306 		/* If we haven't even been initialized, then we can't validate
3307 		 * against a policy, so leave the label as invalid. It may
3308 		 * resolve to a valid label on the next revalidation try if
3309 		 * we've since initialized.
3310 		 */
3311 		return;
3312 	}
3313 
3314 	rc = security_context_to_sid_force(value, size,
3315 					   &newsid);
3316 	if (rc) {
3317 		pr_err("SELinux:  unable to map context to SID"
3318 		       "for (%s, %lu), rc=%d\n",
3319 		       inode->i_sb->s_id, inode->i_ino, -rc);
3320 		return;
3321 	}
3322 
3323 	isec = backing_inode_security(dentry);
3324 	spin_lock(&isec->lock);
3325 	isec->sclass = inode_mode_to_security_class(inode->i_mode);
3326 	isec->sid = newsid;
3327 	isec->initialized = LABEL_INITIALIZED;
3328 	spin_unlock(&isec->lock);
3329 }
3330 
3331 static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
3332 {
3333 	const struct cred *cred = current_cred();
3334 
3335 	return dentry_has_perm(cred, dentry, FILE__GETATTR);
3336 }
3337 
3338 static int selinux_inode_listxattr(struct dentry *dentry)
3339 {
3340 	const struct cred *cred = current_cred();
3341 
3342 	return dentry_has_perm(cred, dentry, FILE__GETATTR);
3343 }
3344 
3345 static int selinux_inode_removexattr(struct mnt_idmap *idmap,
3346 				     struct dentry *dentry, const char *name)
3347 {
3348 	if (strcmp(name, XATTR_NAME_SELINUX)) {
3349 		int rc = cap_inode_removexattr(idmap, dentry, name);
3350 		if (rc)
3351 			return rc;
3352 
3353 		/* Not an attribute we recognize, so just check the
3354 		   ordinary setattr permission. */
3355 		return dentry_has_perm(current_cred(), dentry, FILE__SETATTR);
3356 	}
3357 
3358 	if (!selinux_initialized())
3359 		return 0;
3360 
3361 	/* No one is allowed to remove a SELinux security label.
3362 	   You can change the label, but all data must be labeled. */
3363 	return -EACCES;
3364 }
3365 
3366 static int selinux_path_notify(const struct path *path, u64 mask,
3367 						unsigned int obj_type)
3368 {
3369 	int ret;
3370 	u32 perm;
3371 
3372 	struct common_audit_data ad;
3373 
3374 	ad.type = LSM_AUDIT_DATA_PATH;
3375 	ad.u.path = *path;
3376 
3377 	/*
3378 	 * Set permission needed based on the type of mark being set.
3379 	 * Performs an additional check for sb watches.
3380 	 */
3381 	switch (obj_type) {
3382 	case FSNOTIFY_OBJ_TYPE_VFSMOUNT:
3383 		perm = FILE__WATCH_MOUNT;
3384 		break;
3385 	case FSNOTIFY_OBJ_TYPE_SB:
3386 		perm = FILE__WATCH_SB;
3387 		ret = superblock_has_perm(current_cred(), path->dentry->d_sb,
3388 						FILESYSTEM__WATCH, &ad);
3389 		if (ret)
3390 			return ret;
3391 		break;
3392 	case FSNOTIFY_OBJ_TYPE_INODE:
3393 		perm = FILE__WATCH;
3394 		break;
3395 	default:
3396 		return -EINVAL;
3397 	}
3398 
3399 	/* blocking watches require the file:watch_with_perm permission */
3400 	if (mask & (ALL_FSNOTIFY_PERM_EVENTS))
3401 		perm |= FILE__WATCH_WITH_PERM;
3402 
3403 	/* watches on read-like events need the file:watch_reads permission */
3404 	if (mask & (FS_ACCESS | FS_ACCESS_PERM | FS_CLOSE_NOWRITE))
3405 		perm |= FILE__WATCH_READS;
3406 
3407 	return path_has_perm(current_cred(), path, perm);
3408 }
3409 
3410 /*
3411  * Copy the inode security context value to the user.
3412  *
3413  * Permission check is handled by selinux_inode_getxattr hook.
3414  */
3415 static int selinux_inode_getsecurity(struct mnt_idmap *idmap,
3416 				     struct inode *inode, const char *name,
3417 				     void **buffer, bool alloc)
3418 {
3419 	u32 size;
3420 	int error;
3421 	char *context = NULL;
3422 	struct inode_security_struct *isec;
3423 
3424 	/*
3425 	 * If we're not initialized yet, then we can't validate contexts, so
3426 	 * just let vfs_getxattr fall back to using the on-disk xattr.
3427 	 */
3428 	if (!selinux_initialized() ||
3429 	    strcmp(name, XATTR_SELINUX_SUFFIX))
3430 		return -EOPNOTSUPP;
3431 
3432 	/*
3433 	 * If the caller has CAP_MAC_ADMIN, then get the raw context
3434 	 * value even if it is not defined by current policy; otherwise,
3435 	 * use the in-core value under current policy.
3436 	 * Use the non-auditing forms of the permission checks since
3437 	 * getxattr may be called by unprivileged processes commonly
3438 	 * and lack of permission just means that we fall back to the
3439 	 * in-core context value, not a denial.
3440 	 */
3441 	isec = inode_security(inode);
3442 	if (has_cap_mac_admin(false))
3443 		error = security_sid_to_context_force(isec->sid, &context,
3444 						      &size);
3445 	else
3446 		error = security_sid_to_context(isec->sid,
3447 						&context, &size);
3448 	if (error)
3449 		return error;
3450 	error = size;
3451 	if (alloc) {
3452 		*buffer = context;
3453 		goto out_nofree;
3454 	}
3455 	kfree(context);
3456 out_nofree:
3457 	return error;
3458 }
3459 
3460 static int selinux_inode_setsecurity(struct inode *inode, const char *name,
3461 				     const void *value, size_t size, int flags)
3462 {
3463 	struct inode_security_struct *isec = inode_security_novalidate(inode);
3464 	struct superblock_security_struct *sbsec;
3465 	u32 newsid;
3466 	int rc;
3467 
3468 	if (strcmp(name, XATTR_SELINUX_SUFFIX))
3469 		return -EOPNOTSUPP;
3470 
3471 	sbsec = selinux_superblock(inode->i_sb);
3472 	if (!(sbsec->flags & SBLABEL_MNT))
3473 		return -EOPNOTSUPP;
3474 
3475 	if (!value || !size)
3476 		return -EACCES;
3477 
3478 	rc = security_context_to_sid(value, size, &newsid,
3479 				     GFP_KERNEL);
3480 	if (rc)
3481 		return rc;
3482 
3483 	spin_lock(&isec->lock);
3484 	isec->sclass = inode_mode_to_security_class(inode->i_mode);
3485 	isec->sid = newsid;
3486 	isec->initialized = LABEL_INITIALIZED;
3487 	spin_unlock(&isec->lock);
3488 	return 0;
3489 }
3490 
3491 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
3492 {
3493 	const int len = sizeof(XATTR_NAME_SELINUX);
3494 
3495 	if (!selinux_initialized())
3496 		return 0;
3497 
3498 	if (buffer && len <= buffer_size)
3499 		memcpy(buffer, XATTR_NAME_SELINUX, len);
3500 	return len;
3501 }
3502 
3503 static void selinux_inode_getsecid(struct inode *inode, u32 *secid)
3504 {
3505 	struct inode_security_struct *isec = inode_security_novalidate(inode);
3506 	*secid = isec->sid;
3507 }
3508 
3509 static int selinux_inode_copy_up(struct dentry *src, struct cred **new)
3510 {
3511 	u32 sid;
3512 	struct task_security_struct *tsec;
3513 	struct cred *new_creds = *new;
3514 
3515 	if (new_creds == NULL) {
3516 		new_creds = prepare_creds();
3517 		if (!new_creds)
3518 			return -ENOMEM;
3519 	}
3520 
3521 	tsec = selinux_cred(new_creds);
3522 	/* Get label from overlay inode and set it in create_sid */
3523 	selinux_inode_getsecid(d_inode(src), &sid);
3524 	tsec->create_sid = sid;
3525 	*new = new_creds;
3526 	return 0;
3527 }
3528 
3529 static int selinux_inode_copy_up_xattr(struct dentry *dentry, const char *name)
3530 {
3531 	/* The copy_up hook above sets the initial context on an inode, but we
3532 	 * don't then want to overwrite it by blindly copying all the lower
3533 	 * xattrs up.  Instead, filter out SELinux-related xattrs following
3534 	 * policy load.
3535 	 */
3536 	if (selinux_initialized() && strcmp(name, XATTR_NAME_SELINUX) == 0)
3537 		return 1; /* Discard */
3538 	/*
3539 	 * Any other attribute apart from SELINUX is not claimed, supported
3540 	 * by selinux.
3541 	 */
3542 	return -EOPNOTSUPP;
3543 }
3544 
3545 /* kernfs node operations */
3546 
3547 static int selinux_kernfs_init_security(struct kernfs_node *kn_dir,
3548 					struct kernfs_node *kn)
3549 {
3550 	const struct task_security_struct *tsec = selinux_cred(current_cred());
3551 	u32 parent_sid, newsid, clen;
3552 	int rc;
3553 	char *context;
3554 
3555 	rc = kernfs_xattr_get(kn_dir, XATTR_NAME_SELINUX, NULL, 0);
3556 	if (rc == -ENODATA)
3557 		return 0;
3558 	else if (rc < 0)
3559 		return rc;
3560 
3561 	clen = (u32)rc;
3562 	context = kmalloc(clen, GFP_KERNEL);
3563 	if (!context)
3564 		return -ENOMEM;
3565 
3566 	rc = kernfs_xattr_get(kn_dir, XATTR_NAME_SELINUX, context, clen);
3567 	if (rc < 0) {
3568 		kfree(context);
3569 		return rc;
3570 	}
3571 
3572 	rc = security_context_to_sid(context, clen, &parent_sid,
3573 				     GFP_KERNEL);
3574 	kfree(context);
3575 	if (rc)
3576 		return rc;
3577 
3578 	if (tsec->create_sid) {
3579 		newsid = tsec->create_sid;
3580 	} else {
3581 		u16 secclass = inode_mode_to_security_class(kn->mode);
3582 		struct qstr q;
3583 
3584 		q.name = kn->name;
3585 		q.hash_len = hashlen_string(kn_dir, kn->name);
3586 
3587 		rc = security_transition_sid(tsec->sid,
3588 					     parent_sid, secclass, &q,
3589 					     &newsid);
3590 		if (rc)
3591 			return rc;
3592 	}
3593 
3594 	rc = security_sid_to_context_force(newsid,
3595 					   &context, &clen);
3596 	if (rc)
3597 		return rc;
3598 
3599 	rc = kernfs_xattr_set(kn, XATTR_NAME_SELINUX, context, clen,
3600 			      XATTR_CREATE);
3601 	kfree(context);
3602 	return rc;
3603 }
3604 
3605 
3606 /* file security operations */
3607 
3608 static int selinux_revalidate_file_permission(struct file *file, int mask)
3609 {
3610 	const struct cred *cred = current_cred();
3611 	struct inode *inode = file_inode(file);
3612 
3613 	/* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
3614 	if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
3615 		mask |= MAY_APPEND;
3616 
3617 	return file_has_perm(cred, file,
3618 			     file_mask_to_av(inode->i_mode, mask));
3619 }
3620 
3621 static int selinux_file_permission(struct file *file, int mask)
3622 {
3623 	struct inode *inode = file_inode(file);
3624 	struct file_security_struct *fsec = selinux_file(file);
3625 	struct inode_security_struct *isec;
3626 	u32 sid = current_sid();
3627 
3628 	if (!mask)
3629 		/* No permission to check.  Existence test. */
3630 		return 0;
3631 
3632 	isec = inode_security(inode);
3633 	if (sid == fsec->sid && fsec->isid == isec->sid &&
3634 	    fsec->pseqno == avc_policy_seqno())
3635 		/* No change since file_open check. */
3636 		return 0;
3637 
3638 	return selinux_revalidate_file_permission(file, mask);
3639 }
3640 
3641 static int selinux_file_alloc_security(struct file *file)
3642 {
3643 	struct file_security_struct *fsec = selinux_file(file);
3644 	u32 sid = current_sid();
3645 
3646 	fsec->sid = sid;
3647 	fsec->fown_sid = sid;
3648 
3649 	return 0;
3650 }
3651 
3652 /*
3653  * Check whether a task has the ioctl permission and cmd
3654  * operation to an inode.
3655  */
3656 static int ioctl_has_perm(const struct cred *cred, struct file *file,
3657 		u32 requested, u16 cmd)
3658 {
3659 	struct common_audit_data ad;
3660 	struct file_security_struct *fsec = selinux_file(file);
3661 	struct inode *inode = file_inode(file);
3662 	struct inode_security_struct *isec;
3663 	struct lsm_ioctlop_audit ioctl;
3664 	u32 ssid = cred_sid(cred);
3665 	int rc;
3666 	u8 driver = cmd >> 8;
3667 	u8 xperm = cmd & 0xff;
3668 
3669 	ad.type = LSM_AUDIT_DATA_IOCTL_OP;
3670 	ad.u.op = &ioctl;
3671 	ad.u.op->cmd = cmd;
3672 	ad.u.op->path = file->f_path;
3673 
3674 	if (ssid != fsec->sid) {
3675 		rc = avc_has_perm(ssid, fsec->sid,
3676 				SECCLASS_FD,
3677 				FD__USE,
3678 				&ad);
3679 		if (rc)
3680 			goto out;
3681 	}
3682 
3683 	if (unlikely(IS_PRIVATE(inode)))
3684 		return 0;
3685 
3686 	isec = inode_security(inode);
3687 	rc = avc_has_extended_perms(ssid, isec->sid, isec->sclass,
3688 				    requested, driver, xperm, &ad);
3689 out:
3690 	return rc;
3691 }
3692 
3693 static int selinux_file_ioctl(struct file *file, unsigned int cmd,
3694 			      unsigned long arg)
3695 {
3696 	const struct cred *cred = current_cred();
3697 	int error = 0;
3698 
3699 	switch (cmd) {
3700 	case FIONREAD:
3701 	case FIBMAP:
3702 	case FIGETBSZ:
3703 	case FS_IOC_GETFLAGS:
3704 	case FS_IOC_GETVERSION:
3705 		error = file_has_perm(cred, file, FILE__GETATTR);
3706 		break;
3707 
3708 	case FS_IOC_SETFLAGS:
3709 	case FS_IOC_SETVERSION:
3710 		error = file_has_perm(cred, file, FILE__SETATTR);
3711 		break;
3712 
3713 	/* sys_ioctl() checks */
3714 	case FIONBIO:
3715 	case FIOASYNC:
3716 		error = file_has_perm(cred, file, 0);
3717 		break;
3718 
3719 	case KDSKBENT:
3720 	case KDSKBSENT:
3721 		error = cred_has_capability(cred, CAP_SYS_TTY_CONFIG,
3722 					    CAP_OPT_NONE, true);
3723 		break;
3724 
3725 	case FIOCLEX:
3726 	case FIONCLEX:
3727 		if (!selinux_policycap_ioctl_skip_cloexec())
3728 			error = ioctl_has_perm(cred, file, FILE__IOCTL, (u16) cmd);
3729 		break;
3730 
3731 	/* default case assumes that the command will go
3732 	 * to the file's ioctl() function.
3733 	 */
3734 	default:
3735 		error = ioctl_has_perm(cred, file, FILE__IOCTL, (u16) cmd);
3736 	}
3737 	return error;
3738 }
3739 
3740 static int selinux_file_ioctl_compat(struct file *file, unsigned int cmd,
3741 			      unsigned long arg)
3742 {
3743 	/*
3744 	 * If we are in a 64-bit kernel running 32-bit userspace, we need to
3745 	 * make sure we don't compare 32-bit flags to 64-bit flags.
3746 	 */
3747 	switch (cmd) {
3748 	case FS_IOC32_GETFLAGS:
3749 		cmd = FS_IOC_GETFLAGS;
3750 		break;
3751 	case FS_IOC32_SETFLAGS:
3752 		cmd = FS_IOC_SETFLAGS;
3753 		break;
3754 	case FS_IOC32_GETVERSION:
3755 		cmd = FS_IOC_GETVERSION;
3756 		break;
3757 	case FS_IOC32_SETVERSION:
3758 		cmd = FS_IOC_SETVERSION;
3759 		break;
3760 	default:
3761 		break;
3762 	}
3763 
3764 	return selinux_file_ioctl(file, cmd, arg);
3765 }
3766 
3767 static int default_noexec __ro_after_init;
3768 
3769 static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
3770 {
3771 	const struct cred *cred = current_cred();
3772 	u32 sid = cred_sid(cred);
3773 	int rc = 0;
3774 
3775 	if (default_noexec &&
3776 	    (prot & PROT_EXEC) && (!file || IS_PRIVATE(file_inode(file)) ||
3777 				   (!shared && (prot & PROT_WRITE)))) {
3778 		/*
3779 		 * We are making executable an anonymous mapping or a
3780 		 * private file mapping that will also be writable.
3781 		 * This has an additional check.
3782 		 */
3783 		rc = avc_has_perm(sid, sid, SECCLASS_PROCESS,
3784 				  PROCESS__EXECMEM, NULL);
3785 		if (rc)
3786 			goto error;
3787 	}
3788 
3789 	if (file) {
3790 		/* read access is always possible with a mapping */
3791 		u32 av = FILE__READ;
3792 
3793 		/* write access only matters if the mapping is shared */
3794 		if (shared && (prot & PROT_WRITE))
3795 			av |= FILE__WRITE;
3796 
3797 		if (prot & PROT_EXEC)
3798 			av |= FILE__EXECUTE;
3799 
3800 		return file_has_perm(cred, file, av);
3801 	}
3802 
3803 error:
3804 	return rc;
3805 }
3806 
3807 static int selinux_mmap_addr(unsigned long addr)
3808 {
3809 	int rc = 0;
3810 
3811 	if (addr < CONFIG_LSM_MMAP_MIN_ADDR) {
3812 		u32 sid = current_sid();
3813 		rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT,
3814 				  MEMPROTECT__MMAP_ZERO, NULL);
3815 	}
3816 
3817 	return rc;
3818 }
3819 
3820 static int selinux_mmap_file(struct file *file,
3821 			     unsigned long reqprot __always_unused,
3822 			     unsigned long prot, unsigned long flags)
3823 {
3824 	struct common_audit_data ad;
3825 	int rc;
3826 
3827 	if (file) {
3828 		ad.type = LSM_AUDIT_DATA_FILE;
3829 		ad.u.file = file;
3830 		rc = inode_has_perm(current_cred(), file_inode(file),
3831 				    FILE__MAP, &ad);
3832 		if (rc)
3833 			return rc;
3834 	}
3835 
3836 	return file_map_prot_check(file, prot,
3837 				   (flags & MAP_TYPE) == MAP_SHARED);
3838 }
3839 
3840 static int selinux_file_mprotect(struct vm_area_struct *vma,
3841 				 unsigned long reqprot __always_unused,
3842 				 unsigned long prot)
3843 {
3844 	const struct cred *cred = current_cred();
3845 	u32 sid = cred_sid(cred);
3846 
3847 	if (default_noexec &&
3848 	    (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3849 		int rc = 0;
3850 		if (vma_is_initial_heap(vma)) {
3851 			rc = avc_has_perm(sid, sid, SECCLASS_PROCESS,
3852 					  PROCESS__EXECHEAP, NULL);
3853 		} else if (!vma->vm_file && (vma_is_initial_stack(vma) ||
3854 			    vma_is_stack_for_current(vma))) {
3855 			rc = avc_has_perm(sid, sid, SECCLASS_PROCESS,
3856 					  PROCESS__EXECSTACK, NULL);
3857 		} else if (vma->vm_file && vma->anon_vma) {
3858 			/*
3859 			 * We are making executable a file mapping that has
3860 			 * had some COW done. Since pages might have been
3861 			 * written, check ability to execute the possibly
3862 			 * modified content.  This typically should only
3863 			 * occur for text relocations.
3864 			 */
3865 			rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3866 		}
3867 		if (rc)
3868 			return rc;
3869 	}
3870 
3871 	return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3872 }
3873 
3874 static int selinux_file_lock(struct file *file, unsigned int cmd)
3875 {
3876 	const struct cred *cred = current_cred();
3877 
3878 	return file_has_perm(cred, file, FILE__LOCK);
3879 }
3880 
3881 static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3882 			      unsigned long arg)
3883 {
3884 	const struct cred *cred = current_cred();
3885 	int err = 0;
3886 
3887 	switch (cmd) {
3888 	case F_SETFL:
3889 		if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3890 			err = file_has_perm(cred, file, FILE__WRITE);
3891 			break;
3892 		}
3893 		fallthrough;
3894 	case F_SETOWN:
3895 	case F_SETSIG:
3896 	case F_GETFL:
3897 	case F_GETOWN:
3898 	case F_GETSIG:
3899 	case F_GETOWNER_UIDS:
3900 		/* Just check FD__USE permission */
3901 		err = file_has_perm(cred, file, 0);
3902 		break;
3903 	case F_GETLK:
3904 	case F_SETLK:
3905 	case F_SETLKW:
3906 	case F_OFD_GETLK:
3907 	case F_OFD_SETLK:
3908 	case F_OFD_SETLKW:
3909 #if BITS_PER_LONG == 32
3910 	case F_GETLK64:
3911 	case F_SETLK64:
3912 	case F_SETLKW64:
3913 #endif
3914 		err = file_has_perm(cred, file, FILE__LOCK);
3915 		break;
3916 	}
3917 
3918 	return err;
3919 }
3920 
3921 static void selinux_file_set_fowner(struct file *file)
3922 {
3923 	struct file_security_struct *fsec;
3924 
3925 	fsec = selinux_file(file);
3926 	fsec->fown_sid = current_sid();
3927 }
3928 
3929 static int selinux_file_send_sigiotask(struct task_struct *tsk,
3930 				       struct fown_struct *fown, int signum)
3931 {
3932 	struct file *file;
3933 	u32 sid = task_sid_obj(tsk);
3934 	u32 perm;
3935 	struct file_security_struct *fsec;
3936 
3937 	/* struct fown_struct is never outside the context of a struct file */
3938 	file = container_of(fown, struct file, f_owner);
3939 
3940 	fsec = selinux_file(file);
3941 
3942 	if (!signum)
3943 		perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3944 	else
3945 		perm = signal_to_av(signum);
3946 
3947 	return avc_has_perm(fsec->fown_sid, sid,
3948 			    SECCLASS_PROCESS, perm, NULL);
3949 }
3950 
3951 static int selinux_file_receive(struct file *file)
3952 {
3953 	const struct cred *cred = current_cred();
3954 
3955 	return file_has_perm(cred, file, file_to_av(file));
3956 }
3957 
3958 static int selinux_file_open(struct file *file)
3959 {
3960 	struct file_security_struct *fsec;
3961 	struct inode_security_struct *isec;
3962 
3963 	fsec = selinux_file(file);
3964 	isec = inode_security(file_inode(file));
3965 	/*
3966 	 * Save inode label and policy sequence number
3967 	 * at open-time so that selinux_file_permission
3968 	 * can determine whether revalidation is necessary.
3969 	 * Task label is already saved in the file security
3970 	 * struct as its SID.
3971 	 */
3972 	fsec->isid = isec->sid;
3973 	fsec->pseqno = avc_policy_seqno();
3974 	/*
3975 	 * Since the inode label or policy seqno may have changed
3976 	 * between the selinux_inode_permission check and the saving
3977 	 * of state above, recheck that access is still permitted.
3978 	 * Otherwise, access might never be revalidated against the
3979 	 * new inode label or new policy.
3980 	 * This check is not redundant - do not remove.
3981 	 */
3982 	return file_path_has_perm(file->f_cred, file, open_file_to_av(file));
3983 }
3984 
3985 /* task security operations */
3986 
3987 static int selinux_task_alloc(struct task_struct *task,
3988 			      unsigned long clone_flags)
3989 {
3990 	u32 sid = current_sid();
3991 
3992 	return avc_has_perm(sid, sid, SECCLASS_PROCESS, PROCESS__FORK, NULL);
3993 }
3994 
3995 /*
3996  * prepare a new set of credentials for modification
3997  */
3998 static int selinux_cred_prepare(struct cred *new, const struct cred *old,
3999 				gfp_t gfp)
4000 {
4001 	const struct task_security_struct *old_tsec = selinux_cred(old);
4002 	struct task_security_struct *tsec = selinux_cred(new);
4003 
4004 	*tsec = *old_tsec;
4005 	return 0;
4006 }
4007 
4008 /*
4009  * transfer the SELinux data to a blank set of creds
4010  */
4011 static void selinux_cred_transfer(struct cred *new, const struct cred *old)
4012 {
4013 	const struct task_security_struct *old_tsec = selinux_cred(old);
4014 	struct task_security_struct *tsec = selinux_cred(new);
4015 
4016 	*tsec = *old_tsec;
4017 }
4018 
4019 static void selinux_cred_getsecid(const struct cred *c, u32 *secid)
4020 {
4021 	*secid = cred_sid(c);
4022 }
4023 
4024 /*
4025  * set the security data for a kernel service
4026  * - all the creation contexts are set to unlabelled
4027  */
4028 static int selinux_kernel_act_as(struct cred *new, u32 secid)
4029 {
4030 	struct task_security_struct *tsec = selinux_cred(new);
4031 	u32 sid = current_sid();
4032 	int ret;
4033 
4034 	ret = avc_has_perm(sid, secid,
4035 			   SECCLASS_KERNEL_SERVICE,
4036 			   KERNEL_SERVICE__USE_AS_OVERRIDE,
4037 			   NULL);
4038 	if (ret == 0) {
4039 		tsec->sid = secid;
4040 		tsec->create_sid = 0;
4041 		tsec->keycreate_sid = 0;
4042 		tsec->sockcreate_sid = 0;
4043 	}
4044 	return ret;
4045 }
4046 
4047 /*
4048  * set the file creation context in a security record to the same as the
4049  * objective context of the specified inode
4050  */
4051 static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
4052 {
4053 	struct inode_security_struct *isec = inode_security(inode);
4054 	struct task_security_struct *tsec = selinux_cred(new);
4055 	u32 sid = current_sid();
4056 	int ret;
4057 
4058 	ret = avc_has_perm(sid, isec->sid,
4059 			   SECCLASS_KERNEL_SERVICE,
4060 			   KERNEL_SERVICE__CREATE_FILES_AS,
4061 			   NULL);
4062 
4063 	if (ret == 0)
4064 		tsec->create_sid = isec->sid;
4065 	return ret;
4066 }
4067 
4068 static int selinux_kernel_module_request(char *kmod_name)
4069 {
4070 	struct common_audit_data ad;
4071 
4072 	ad.type = LSM_AUDIT_DATA_KMOD;
4073 	ad.u.kmod_name = kmod_name;
4074 
4075 	return avc_has_perm(current_sid(), SECINITSID_KERNEL, SECCLASS_SYSTEM,
4076 			    SYSTEM__MODULE_REQUEST, &ad);
4077 }
4078 
4079 static int selinux_kernel_module_from_file(struct file *file)
4080 {
4081 	struct common_audit_data ad;
4082 	struct inode_security_struct *isec;
4083 	struct file_security_struct *fsec;
4084 	u32 sid = current_sid();
4085 	int rc;
4086 
4087 	/* init_module */
4088 	if (file == NULL)
4089 		return avc_has_perm(sid, sid, SECCLASS_SYSTEM,
4090 					SYSTEM__MODULE_LOAD, NULL);
4091 
4092 	/* finit_module */
4093 
4094 	ad.type = LSM_AUDIT_DATA_FILE;
4095 	ad.u.file = file;
4096 
4097 	fsec = selinux_file(file);
4098 	if (sid != fsec->sid) {
4099 		rc = avc_has_perm(sid, fsec->sid, SECCLASS_FD, FD__USE, &ad);
4100 		if (rc)
4101 			return rc;
4102 	}
4103 
4104 	isec = inode_security(file_inode(file));
4105 	return avc_has_perm(sid, isec->sid, SECCLASS_SYSTEM,
4106 				SYSTEM__MODULE_LOAD, &ad);
4107 }
4108 
4109 static int selinux_kernel_read_file(struct file *file,
4110 				    enum kernel_read_file_id id,
4111 				    bool contents)
4112 {
4113 	int rc = 0;
4114 
4115 	switch (id) {
4116 	case READING_MODULE:
4117 		rc = selinux_kernel_module_from_file(contents ? file : NULL);
4118 		break;
4119 	default:
4120 		break;
4121 	}
4122 
4123 	return rc;
4124 }
4125 
4126 static int selinux_kernel_load_data(enum kernel_load_data_id id, bool contents)
4127 {
4128 	int rc = 0;
4129 
4130 	switch (id) {
4131 	case LOADING_MODULE:
4132 		rc = selinux_kernel_module_from_file(NULL);
4133 		break;
4134 	default:
4135 		break;
4136 	}
4137 
4138 	return rc;
4139 }
4140 
4141 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
4142 {
4143 	return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4144 			    PROCESS__SETPGID, NULL);
4145 }
4146 
4147 static int selinux_task_getpgid(struct task_struct *p)
4148 {
4149 	return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4150 			    PROCESS__GETPGID, NULL);
4151 }
4152 
4153 static int selinux_task_getsid(struct task_struct *p)
4154 {
4155 	return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4156 			    PROCESS__GETSESSION, NULL);
4157 }
4158 
4159 static void selinux_current_getsecid_subj(u32 *secid)
4160 {
4161 	*secid = current_sid();
4162 }
4163 
4164 static void selinux_task_getsecid_obj(struct task_struct *p, u32 *secid)
4165 {
4166 	*secid = task_sid_obj(p);
4167 }
4168 
4169 static int selinux_task_setnice(struct task_struct *p, int nice)
4170 {
4171 	return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4172 			    PROCESS__SETSCHED, NULL);
4173 }
4174 
4175 static int selinux_task_setioprio(struct task_struct *p, int ioprio)
4176 {
4177 	return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4178 			    PROCESS__SETSCHED, NULL);
4179 }
4180 
4181 static int selinux_task_getioprio(struct task_struct *p)
4182 {
4183 	return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4184 			    PROCESS__GETSCHED, NULL);
4185 }
4186 
4187 static int selinux_task_prlimit(const struct cred *cred, const struct cred *tcred,
4188 				unsigned int flags)
4189 {
4190 	u32 av = 0;
4191 
4192 	if (!flags)
4193 		return 0;
4194 	if (flags & LSM_PRLIMIT_WRITE)
4195 		av |= PROCESS__SETRLIMIT;
4196 	if (flags & LSM_PRLIMIT_READ)
4197 		av |= PROCESS__GETRLIMIT;
4198 	return avc_has_perm(cred_sid(cred), cred_sid(tcred),
4199 			    SECCLASS_PROCESS, av, NULL);
4200 }
4201 
4202 static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource,
4203 		struct rlimit *new_rlim)
4204 {
4205 	struct rlimit *old_rlim = p->signal->rlim + resource;
4206 
4207 	/* Control the ability to change the hard limit (whether
4208 	   lowering or raising it), so that the hard limit can
4209 	   later be used as a safe reset point for the soft limit
4210 	   upon context transitions.  See selinux_bprm_committing_creds. */
4211 	if (old_rlim->rlim_max != new_rlim->rlim_max)
4212 		return avc_has_perm(current_sid(), task_sid_obj(p),
4213 				    SECCLASS_PROCESS, PROCESS__SETRLIMIT, NULL);
4214 
4215 	return 0;
4216 }
4217 
4218 static int selinux_task_setscheduler(struct task_struct *p)
4219 {
4220 	return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4221 			    PROCESS__SETSCHED, NULL);
4222 }
4223 
4224 static int selinux_task_getscheduler(struct task_struct *p)
4225 {
4226 	return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4227 			    PROCESS__GETSCHED, NULL);
4228 }
4229 
4230 static int selinux_task_movememory(struct task_struct *p)
4231 {
4232 	return avc_has_perm(current_sid(), task_sid_obj(p), SECCLASS_PROCESS,
4233 			    PROCESS__SETSCHED, NULL);
4234 }
4235 
4236 static int selinux_task_kill(struct task_struct *p, struct kernel_siginfo *info,
4237 				int sig, const struct cred *cred)
4238 {
4239 	u32 secid;
4240 	u32 perm;
4241 
4242 	if (!sig)
4243 		perm = PROCESS__SIGNULL; /* null signal; existence test */
4244 	else
4245 		perm = signal_to_av(sig);
4246 	if (!cred)
4247 		secid = current_sid();
4248 	else
4249 		secid = cred_sid(cred);
4250 	return avc_has_perm(secid, task_sid_obj(p), SECCLASS_PROCESS, perm, NULL);
4251 }
4252 
4253 static void selinux_task_to_inode(struct task_struct *p,
4254 				  struct inode *inode)
4255 {
4256 	struct inode_security_struct *isec = selinux_inode(inode);
4257 	u32 sid = task_sid_obj(p);
4258 
4259 	spin_lock(&isec->lock);
4260 	isec->sclass = inode_mode_to_security_class(inode->i_mode);
4261 	isec->sid = sid;
4262 	isec->initialized = LABEL_INITIALIZED;
4263 	spin_unlock(&isec->lock);
4264 }
4265 
4266 static int selinux_userns_create(const struct cred *cred)
4267 {
4268 	u32 sid = current_sid();
4269 
4270 	return avc_has_perm(sid, sid, SECCLASS_USER_NAMESPACE,
4271 			USER_NAMESPACE__CREATE, NULL);
4272 }
4273 
4274 /* Returns error only if unable to parse addresses */
4275 static int selinux_parse_skb_ipv4(struct sk_buff *skb,
4276 			struct common_audit_data *ad, u8 *proto)
4277 {
4278 	int offset, ihlen, ret = -EINVAL;
4279 	struct iphdr _iph, *ih;
4280 
4281 	offset = skb_network_offset(skb);
4282 	ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
4283 	if (ih == NULL)
4284 		goto out;
4285 
4286 	ihlen = ih->ihl * 4;
4287 	if (ihlen < sizeof(_iph))
4288 		goto out;
4289 
4290 	ad->u.net->v4info.saddr = ih->saddr;
4291 	ad->u.net->v4info.daddr = ih->daddr;
4292 	ret = 0;
4293 
4294 	if (proto)
4295 		*proto = ih->protocol;
4296 
4297 	switch (ih->protocol) {
4298 	case IPPROTO_TCP: {
4299 		struct tcphdr _tcph, *th;
4300 
4301 		if (ntohs(ih->frag_off) & IP_OFFSET)
4302 			break;
4303 
4304 		offset += ihlen;
4305 		th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
4306 		if (th == NULL)
4307 			break;
4308 
4309 		ad->u.net->sport = th->source;
4310 		ad->u.net->dport = th->dest;
4311 		break;
4312 	}
4313 
4314 	case IPPROTO_UDP: {
4315 		struct udphdr _udph, *uh;
4316 
4317 		if (ntohs(ih->frag_off) & IP_OFFSET)
4318 			break;
4319 
4320 		offset += ihlen;
4321 		uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
4322 		if (uh == NULL)
4323 			break;
4324 
4325 		ad->u.net->sport = uh->source;
4326 		ad->u.net->dport = uh->dest;
4327 		break;
4328 	}
4329 
4330 	case IPPROTO_DCCP: {
4331 		struct dccp_hdr _dccph, *dh;
4332 
4333 		if (ntohs(ih->frag_off) & IP_OFFSET)
4334 			break;
4335 
4336 		offset += ihlen;
4337 		dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
4338 		if (dh == NULL)
4339 			break;
4340 
4341 		ad->u.net->sport = dh->dccph_sport;
4342 		ad->u.net->dport = dh->dccph_dport;
4343 		break;
4344 	}
4345 
4346 #if IS_ENABLED(CONFIG_IP_SCTP)
4347 	case IPPROTO_SCTP: {
4348 		struct sctphdr _sctph, *sh;
4349 
4350 		if (ntohs(ih->frag_off) & IP_OFFSET)
4351 			break;
4352 
4353 		offset += ihlen;
4354 		sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph);
4355 		if (sh == NULL)
4356 			break;
4357 
4358 		ad->u.net->sport = sh->source;
4359 		ad->u.net->dport = sh->dest;
4360 		break;
4361 	}
4362 #endif
4363 	default:
4364 		break;
4365 	}
4366 out:
4367 	return ret;
4368 }
4369 
4370 #if IS_ENABLED(CONFIG_IPV6)
4371 
4372 /* Returns error only if unable to parse addresses */
4373 static int selinux_parse_skb_ipv6(struct sk_buff *skb,
4374 			struct common_audit_data *ad, u8 *proto)
4375 {
4376 	u8 nexthdr;
4377 	int ret = -EINVAL, offset;
4378 	struct ipv6hdr _ipv6h, *ip6;
4379 	__be16 frag_off;
4380 
4381 	offset = skb_network_offset(skb);
4382 	ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
4383 	if (ip6 == NULL)
4384 		goto out;
4385 
4386 	ad->u.net->v6info.saddr = ip6->saddr;
4387 	ad->u.net->v6info.daddr = ip6->daddr;
4388 	ret = 0;
4389 
4390 	nexthdr = ip6->nexthdr;
4391 	offset += sizeof(_ipv6h);
4392 	offset = ipv6_skip_exthdr(skb, offset, &nexthdr, &frag_off);
4393 	if (offset < 0)
4394 		goto out;
4395 
4396 	if (proto)
4397 		*proto = nexthdr;
4398 
4399 	switch (nexthdr) {
4400 	case IPPROTO_TCP: {
4401 		struct tcphdr _tcph, *th;
4402 
4403 		th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
4404 		if (th == NULL)
4405 			break;
4406 
4407 		ad->u.net->sport = th->source;
4408 		ad->u.net->dport = th->dest;
4409 		break;
4410 	}
4411 
4412 	case IPPROTO_UDP: {
4413 		struct udphdr _udph, *uh;
4414 
4415 		uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
4416 		if (uh == NULL)
4417 			break;
4418 
4419 		ad->u.net->sport = uh->source;
4420 		ad->u.net->dport = uh->dest;
4421 		break;
4422 	}
4423 
4424 	case IPPROTO_DCCP: {
4425 		struct dccp_hdr _dccph, *dh;
4426 
4427 		dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
4428 		if (dh == NULL)
4429 			break;
4430 
4431 		ad->u.net->sport = dh->dccph_sport;
4432 		ad->u.net->dport = dh->dccph_dport;
4433 		break;
4434 	}
4435 
4436 #if IS_ENABLED(CONFIG_IP_SCTP)
4437 	case IPPROTO_SCTP: {
4438 		struct sctphdr _sctph, *sh;
4439 
4440 		sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph);
4441 		if (sh == NULL)
4442 			break;
4443 
4444 		ad->u.net->sport = sh->source;
4445 		ad->u.net->dport = sh->dest;
4446 		break;
4447 	}
4448 #endif
4449 	/* includes fragments */
4450 	default:
4451 		break;
4452 	}
4453 out:
4454 	return ret;
4455 }
4456 
4457 #endif /* IPV6 */
4458 
4459 static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad,
4460 			     char **_addrp, int src, u8 *proto)
4461 {
4462 	char *addrp;
4463 	int ret;
4464 
4465 	switch (ad->u.net->family) {
4466 	case PF_INET:
4467 		ret = selinux_parse_skb_ipv4(skb, ad, proto);
4468 		if (ret)
4469 			goto parse_error;
4470 		addrp = (char *)(src ? &ad->u.net->v4info.saddr :
4471 				       &ad->u.net->v4info.daddr);
4472 		goto okay;
4473 
4474 #if IS_ENABLED(CONFIG_IPV6)
4475 	case PF_INET6:
4476 		ret = selinux_parse_skb_ipv6(skb, ad, proto);
4477 		if (ret)
4478 			goto parse_error;
4479 		addrp = (char *)(src ? &ad->u.net->v6info.saddr :
4480 				       &ad->u.net->v6info.daddr);
4481 		goto okay;
4482 #endif	/* IPV6 */
4483 	default:
4484 		addrp = NULL;
4485 		goto okay;
4486 	}
4487 
4488 parse_error:
4489 	pr_warn(
4490 	       "SELinux: failure in selinux_parse_skb(),"
4491 	       " unable to parse packet\n");
4492 	return ret;
4493 
4494 okay:
4495 	if (_addrp)
4496 		*_addrp = addrp;
4497 	return 0;
4498 }
4499 
4500 /**
4501  * selinux_skb_peerlbl_sid - Determine the peer label of a packet
4502  * @skb: the packet
4503  * @family: protocol family
4504  * @sid: the packet's peer label SID
4505  *
4506  * Description:
4507  * Check the various different forms of network peer labeling and determine
4508  * the peer label/SID for the packet; most of the magic actually occurs in
4509  * the security server function security_net_peersid_cmp().  The function
4510  * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
4511  * or -EACCES if @sid is invalid due to inconsistencies with the different
4512  * peer labels.
4513  *
4514  */
4515 static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
4516 {
4517 	int err;
4518 	u32 xfrm_sid;
4519 	u32 nlbl_sid;
4520 	u32 nlbl_type;
4521 
4522 	err = selinux_xfrm_skb_sid(skb, &xfrm_sid);
4523 	if (unlikely(err))
4524 		return -EACCES;
4525 	err = selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
4526 	if (unlikely(err))
4527 		return -EACCES;
4528 
4529 	err = security_net_peersid_resolve(nlbl_sid,
4530 					   nlbl_type, xfrm_sid, sid);
4531 	if (unlikely(err)) {
4532 		pr_warn(
4533 		       "SELinux: failure in selinux_skb_peerlbl_sid(),"
4534 		       " unable to determine packet's peer label\n");
4535 		return -EACCES;
4536 	}
4537 
4538 	return 0;
4539 }
4540 
4541 /**
4542  * selinux_conn_sid - Determine the child socket label for a connection
4543  * @sk_sid: the parent socket's SID
4544  * @skb_sid: the packet's SID
4545  * @conn_sid: the resulting connection SID
4546  *
4547  * If @skb_sid is valid then the user:role:type information from @sk_sid is
4548  * combined with the MLS information from @skb_sid in order to create
4549  * @conn_sid.  If @skb_sid is not valid then @conn_sid is simply a copy
4550  * of @sk_sid.  Returns zero on success, negative values on failure.
4551  *
4552  */
4553 static int selinux_conn_sid(u32 sk_sid, u32 skb_sid, u32 *conn_sid)
4554 {
4555 	int err = 0;
4556 
4557 	if (skb_sid != SECSID_NULL)
4558 		err = security_sid_mls_copy(sk_sid, skb_sid,
4559 					    conn_sid);
4560 	else
4561 		*conn_sid = sk_sid;
4562 
4563 	return err;
4564 }
4565 
4566 /* socket security operations */
4567 
4568 static int socket_sockcreate_sid(const struct task_security_struct *tsec,
4569 				 u16 secclass, u32 *socksid)
4570 {
4571 	if (tsec->sockcreate_sid > SECSID_NULL) {
4572 		*socksid = tsec->sockcreate_sid;
4573 		return 0;
4574 	}
4575 
4576 	return security_transition_sid(tsec->sid, tsec->sid,
4577 				       secclass, NULL, socksid);
4578 }
4579 
4580 static int sock_has_perm(struct sock *sk, u32 perms)
4581 {
4582 	struct sk_security_struct *sksec = sk->sk_security;
4583 	struct common_audit_data ad;
4584 	struct lsm_network_audit net;
4585 
4586 	if (sksec->sid == SECINITSID_KERNEL)
4587 		return 0;
4588 
4589 	/*
4590 	 * Before POLICYDB_CAP_USERSPACE_INITIAL_CONTEXT, sockets that
4591 	 * inherited the kernel context from early boot used to be skipped
4592 	 * here, so preserve that behavior unless the capability is set.
4593 	 *
4594 	 * By setting the capability the policy signals that it is ready
4595 	 * for this quirk to be fixed. Note that sockets created by a kernel
4596 	 * thread or a usermode helper executed without a transition will
4597 	 * still be skipped in this check regardless of the policycap
4598 	 * setting.
4599 	 */
4600 	if (!selinux_policycap_userspace_initial_context() &&
4601 	    sksec->sid == SECINITSID_INIT)
4602 		return 0;
4603 
4604 	ad_net_init_from_sk(&ad, &net, sk);
4605 
4606 	return avc_has_perm(current_sid(), sksec->sid, sksec->sclass, perms,
4607 			    &ad);
4608 }
4609 
4610 static int selinux_socket_create(int family, int type,
4611 				 int protocol, int kern)
4612 {
4613 	const struct task_security_struct *tsec = selinux_cred(current_cred());
4614 	u32 newsid;
4615 	u16 secclass;
4616 	int rc;
4617 
4618 	if (kern)
4619 		return 0;
4620 
4621 	secclass = socket_type_to_security_class(family, type, protocol);
4622 	rc = socket_sockcreate_sid(tsec, secclass, &newsid);
4623 	if (rc)
4624 		return rc;
4625 
4626 	return avc_has_perm(tsec->sid, newsid, secclass, SOCKET__CREATE, NULL);
4627 }
4628 
4629 static int selinux_socket_post_create(struct socket *sock, int family,
4630 				      int type, int protocol, int kern)
4631 {
4632 	const struct task_security_struct *tsec = selinux_cred(current_cred());
4633 	struct inode_security_struct *isec = inode_security_novalidate(SOCK_INODE(sock));
4634 	struct sk_security_struct *sksec;
4635 	u16 sclass = socket_type_to_security_class(family, type, protocol);
4636 	u32 sid = SECINITSID_KERNEL;
4637 	int err = 0;
4638 
4639 	if (!kern) {
4640 		err = socket_sockcreate_sid(tsec, sclass, &sid);
4641 		if (err)
4642 			return err;
4643 	}
4644 
4645 	isec->sclass = sclass;
4646 	isec->sid = sid;
4647 	isec->initialized = LABEL_INITIALIZED;
4648 
4649 	if (sock->sk) {
4650 		sksec = sock->sk->sk_security;
4651 		sksec->sclass = sclass;
4652 		sksec->sid = sid;
4653 		/* Allows detection of the first association on this socket */
4654 		if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4655 			sksec->sctp_assoc_state = SCTP_ASSOC_UNSET;
4656 
4657 		err = selinux_netlbl_socket_post_create(sock->sk, family);
4658 	}
4659 
4660 	return err;
4661 }
4662 
4663 static int selinux_socket_socketpair(struct socket *socka,
4664 				     struct socket *sockb)
4665 {
4666 	struct sk_security_struct *sksec_a = socka->sk->sk_security;
4667 	struct sk_security_struct *sksec_b = sockb->sk->sk_security;
4668 
4669 	sksec_a->peer_sid = sksec_b->sid;
4670 	sksec_b->peer_sid = sksec_a->sid;
4671 
4672 	return 0;
4673 }
4674 
4675 /* Range of port numbers used to automatically bind.
4676    Need to determine whether we should perform a name_bind
4677    permission check between the socket and the port number. */
4678 
4679 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
4680 {
4681 	struct sock *sk = sock->sk;
4682 	struct sk_security_struct *sksec = sk->sk_security;
4683 	u16 family;
4684 	int err;
4685 
4686 	err = sock_has_perm(sk, SOCKET__BIND);
4687 	if (err)
4688 		goto out;
4689 
4690 	/* If PF_INET or PF_INET6, check name_bind permission for the port. */
4691 	family = sk->sk_family;
4692 	if (family == PF_INET || family == PF_INET6) {
4693 		char *addrp;
4694 		struct common_audit_data ad;
4695 		struct lsm_network_audit net = {0,};
4696 		struct sockaddr_in *addr4 = NULL;
4697 		struct sockaddr_in6 *addr6 = NULL;
4698 		u16 family_sa;
4699 		unsigned short snum;
4700 		u32 sid, node_perm;
4701 
4702 		/*
4703 		 * sctp_bindx(3) calls via selinux_sctp_bind_connect()
4704 		 * that validates multiple binding addresses. Because of this
4705 		 * need to check address->sa_family as it is possible to have
4706 		 * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET.
4707 		 */
4708 		if (addrlen < offsetofend(struct sockaddr, sa_family))
4709 			return -EINVAL;
4710 		family_sa = address->sa_family;
4711 		switch (family_sa) {
4712 		case AF_UNSPEC:
4713 		case AF_INET:
4714 			if (addrlen < sizeof(struct sockaddr_in))
4715 				return -EINVAL;
4716 			addr4 = (struct sockaddr_in *)address;
4717 			if (family_sa == AF_UNSPEC) {
4718 				if (family == PF_INET6) {
4719 					/* Length check from inet6_bind_sk() */
4720 					if (addrlen < SIN6_LEN_RFC2133)
4721 						return -EINVAL;
4722 					/* Family check from __inet6_bind() */
4723 					goto err_af;
4724 				}
4725 				/* see __inet_bind(), we only want to allow
4726 				 * AF_UNSPEC if the address is INADDR_ANY
4727 				 */
4728 				if (addr4->sin_addr.s_addr != htonl(INADDR_ANY))
4729 					goto err_af;
4730 				family_sa = AF_INET;
4731 			}
4732 			snum = ntohs(addr4->sin_port);
4733 			addrp = (char *)&addr4->sin_addr.s_addr;
4734 			break;
4735 		case AF_INET6:
4736 			if (addrlen < SIN6_LEN_RFC2133)
4737 				return -EINVAL;
4738 			addr6 = (struct sockaddr_in6 *)address;
4739 			snum = ntohs(addr6->sin6_port);
4740 			addrp = (char *)&addr6->sin6_addr.s6_addr;
4741 			break;
4742 		default:
4743 			goto err_af;
4744 		}
4745 
4746 		ad.type = LSM_AUDIT_DATA_NET;
4747 		ad.u.net = &net;
4748 		ad.u.net->sport = htons(snum);
4749 		ad.u.net->family = family_sa;
4750 
4751 		if (snum) {
4752 			int low, high;
4753 
4754 			inet_get_local_port_range(sock_net(sk), &low, &high);
4755 
4756 			if (inet_port_requires_bind_service(sock_net(sk), snum) ||
4757 			    snum < low || snum > high) {
4758 				err = sel_netport_sid(sk->sk_protocol,
4759 						      snum, &sid);
4760 				if (err)
4761 					goto out;
4762 				err = avc_has_perm(sksec->sid, sid,
4763 						   sksec->sclass,
4764 						   SOCKET__NAME_BIND, &ad);
4765 				if (err)
4766 					goto out;
4767 			}
4768 		}
4769 
4770 		switch (sksec->sclass) {
4771 		case SECCLASS_TCP_SOCKET:
4772 			node_perm = TCP_SOCKET__NODE_BIND;
4773 			break;
4774 
4775 		case SECCLASS_UDP_SOCKET:
4776 			node_perm = UDP_SOCKET__NODE_BIND;
4777 			break;
4778 
4779 		case SECCLASS_DCCP_SOCKET:
4780 			node_perm = DCCP_SOCKET__NODE_BIND;
4781 			break;
4782 
4783 		case SECCLASS_SCTP_SOCKET:
4784 			node_perm = SCTP_SOCKET__NODE_BIND;
4785 			break;
4786 
4787 		default:
4788 			node_perm = RAWIP_SOCKET__NODE_BIND;
4789 			break;
4790 		}
4791 
4792 		err = sel_netnode_sid(addrp, family_sa, &sid);
4793 		if (err)
4794 			goto out;
4795 
4796 		if (family_sa == AF_INET)
4797 			ad.u.net->v4info.saddr = addr4->sin_addr.s_addr;
4798 		else
4799 			ad.u.net->v6info.saddr = addr6->sin6_addr;
4800 
4801 		err = avc_has_perm(sksec->sid, sid,
4802 				   sksec->sclass, node_perm, &ad);
4803 		if (err)
4804 			goto out;
4805 	}
4806 out:
4807 	return err;
4808 err_af:
4809 	/* Note that SCTP services expect -EINVAL, others -EAFNOSUPPORT. */
4810 	if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4811 		return -EINVAL;
4812 	return -EAFNOSUPPORT;
4813 }
4814 
4815 /* This supports connect(2) and SCTP connect services such as sctp_connectx(3)
4816  * and sctp_sendmsg(3) as described in Documentation/security/SCTP.rst
4817  */
4818 static int selinux_socket_connect_helper(struct socket *sock,
4819 					 struct sockaddr *address, int addrlen)
4820 {
4821 	struct sock *sk = sock->sk;
4822 	struct sk_security_struct *sksec = sk->sk_security;
4823 	int err;
4824 
4825 	err = sock_has_perm(sk, SOCKET__CONNECT);
4826 	if (err)
4827 		return err;
4828 	if (addrlen < offsetofend(struct sockaddr, sa_family))
4829 		return -EINVAL;
4830 
4831 	/* connect(AF_UNSPEC) has special handling, as it is a documented
4832 	 * way to disconnect the socket
4833 	 */
4834 	if (address->sa_family == AF_UNSPEC)
4835 		return 0;
4836 
4837 	/*
4838 	 * If a TCP, DCCP or SCTP socket, check name_connect permission
4839 	 * for the port.
4840 	 */
4841 	if (sksec->sclass == SECCLASS_TCP_SOCKET ||
4842 	    sksec->sclass == SECCLASS_DCCP_SOCKET ||
4843 	    sksec->sclass == SECCLASS_SCTP_SOCKET) {
4844 		struct common_audit_data ad;
4845 		struct lsm_network_audit net = {0,};
4846 		struct sockaddr_in *addr4 = NULL;
4847 		struct sockaddr_in6 *addr6 = NULL;
4848 		unsigned short snum;
4849 		u32 sid, perm;
4850 
4851 		/* sctp_connectx(3) calls via selinux_sctp_bind_connect()
4852 		 * that validates multiple connect addresses. Because of this
4853 		 * need to check address->sa_family as it is possible to have
4854 		 * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET.
4855 		 */
4856 		switch (address->sa_family) {
4857 		case AF_INET:
4858 			addr4 = (struct sockaddr_in *)address;
4859 			if (addrlen < sizeof(struct sockaddr_in))
4860 				return -EINVAL;
4861 			snum = ntohs(addr4->sin_port);
4862 			break;
4863 		case AF_INET6:
4864 			addr6 = (struct sockaddr_in6 *)address;
4865 			if (addrlen < SIN6_LEN_RFC2133)
4866 				return -EINVAL;
4867 			snum = ntohs(addr6->sin6_port);
4868 			break;
4869 		default:
4870 			/* Note that SCTP services expect -EINVAL, whereas
4871 			 * others expect -EAFNOSUPPORT.
4872 			 */
4873 			if (sksec->sclass == SECCLASS_SCTP_SOCKET)
4874 				return -EINVAL;
4875 			else
4876 				return -EAFNOSUPPORT;
4877 		}
4878 
4879 		err = sel_netport_sid(sk->sk_protocol, snum, &sid);
4880 		if (err)
4881 			return err;
4882 
4883 		switch (sksec->sclass) {
4884 		case SECCLASS_TCP_SOCKET:
4885 			perm = TCP_SOCKET__NAME_CONNECT;
4886 			break;
4887 		case SECCLASS_DCCP_SOCKET:
4888 			perm = DCCP_SOCKET__NAME_CONNECT;
4889 			break;
4890 		case SECCLASS_SCTP_SOCKET:
4891 			perm = SCTP_SOCKET__NAME_CONNECT;
4892 			break;
4893 		}
4894 
4895 		ad.type = LSM_AUDIT_DATA_NET;
4896 		ad.u.net = &net;
4897 		ad.u.net->dport = htons(snum);
4898 		ad.u.net->family = address->sa_family;
4899 		err = avc_has_perm(sksec->sid, sid, sksec->sclass, perm, &ad);
4900 		if (err)
4901 			return err;
4902 	}
4903 
4904 	return 0;
4905 }
4906 
4907 /* Supports connect(2), see comments in selinux_socket_connect_helper() */
4908 static int selinux_socket_connect(struct socket *sock,
4909 				  struct sockaddr *address, int addrlen)
4910 {
4911 	int err;
4912 	struct sock *sk = sock->sk;
4913 
4914 	err = selinux_socket_connect_helper(sock, address, addrlen);
4915 	if (err)
4916 		return err;
4917 
4918 	return selinux_netlbl_socket_connect(sk, address);
4919 }
4920 
4921 static int selinux_socket_listen(struct socket *sock, int backlog)
4922 {
4923 	return sock_has_perm(sock->sk, SOCKET__LISTEN);
4924 }
4925 
4926 static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
4927 {
4928 	int err;
4929 	struct inode_security_struct *isec;
4930 	struct inode_security_struct *newisec;
4931 	u16 sclass;
4932 	u32 sid;
4933 
4934 	err = sock_has_perm(sock->sk, SOCKET__ACCEPT);
4935 	if (err)
4936 		return err;
4937 
4938 	isec = inode_security_novalidate(SOCK_INODE(sock));
4939 	spin_lock(&isec->lock);
4940 	sclass = isec->sclass;
4941 	sid = isec->sid;
4942 	spin_unlock(&isec->lock);
4943 
4944 	newisec = inode_security_novalidate(SOCK_INODE(newsock));
4945 	newisec->sclass = sclass;
4946 	newisec->sid = sid;
4947 	newisec->initialized = LABEL_INITIALIZED;
4948 
4949 	return 0;
4950 }
4951 
4952 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
4953 				  int size)
4954 {
4955 	return sock_has_perm(sock->sk, SOCKET__WRITE);
4956 }
4957 
4958 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
4959 				  int size, int flags)
4960 {
4961 	return sock_has_perm(sock->sk, SOCKET__READ);
4962 }
4963 
4964 static int selinux_socket_getsockname(struct socket *sock)
4965 {
4966 	return sock_has_perm(sock->sk, SOCKET__GETATTR);
4967 }
4968 
4969 static int selinux_socket_getpeername(struct socket *sock)
4970 {
4971 	return sock_has_perm(sock->sk, SOCKET__GETATTR);
4972 }
4973 
4974 static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
4975 {
4976 	int err;
4977 
4978 	err = sock_has_perm(sock->sk, SOCKET__SETOPT);
4979 	if (err)
4980 		return err;
4981 
4982 	return selinux_netlbl_socket_setsockopt(sock, level, optname);
4983 }
4984 
4985 static int selinux_socket_getsockopt(struct socket *sock, int level,
4986 				     int optname)
4987 {
4988 	return sock_has_perm(sock->sk, SOCKET__GETOPT);
4989 }
4990 
4991 static int selinux_socket_shutdown(struct socket *sock, int how)
4992 {
4993 	return sock_has_perm(sock->sk, SOCKET__SHUTDOWN);
4994 }
4995 
4996 static int selinux_socket_unix_stream_connect(struct sock *sock,
4997 					      struct sock *other,
4998 					      struct sock *newsk)
4999 {
5000 	struct sk_security_struct *sksec_sock = sock->sk_security;
5001 	struct sk_security_struct *sksec_other = other->sk_security;
5002 	struct sk_security_struct *sksec_new = newsk->sk_security;
5003 	struct common_audit_data ad;
5004 	struct lsm_network_audit net;
5005 	int err;
5006 
5007 	ad_net_init_from_sk(&ad, &net, other);
5008 
5009 	err = avc_has_perm(sksec_sock->sid, sksec_other->sid,
5010 			   sksec_other->sclass,
5011 			   UNIX_STREAM_SOCKET__CONNECTTO, &ad);
5012 	if (err)
5013 		return err;
5014 
5015 	/* server child socket */
5016 	sksec_new->peer_sid = sksec_sock->sid;
5017 	err = security_sid_mls_copy(sksec_other->sid,
5018 				    sksec_sock->sid, &sksec_new->sid);
5019 	if (err)
5020 		return err;
5021 
5022 	/* connecting socket */
5023 	sksec_sock->peer_sid = sksec_new->sid;
5024 
5025 	return 0;
5026 }
5027 
5028 static int selinux_socket_unix_may_send(struct socket *sock,
5029 					struct socket *other)
5030 {
5031 	struct sk_security_struct *ssec = sock->sk->sk_security;
5032 	struct sk_security_struct *osec = other->sk->sk_security;
5033 	struct common_audit_data ad;
5034 	struct lsm_network_audit net;
5035 
5036 	ad_net_init_from_sk(&ad, &net, other->sk);
5037 
5038 	return avc_has_perm(ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO,
5039 			    &ad);
5040 }
5041 
5042 static int selinux_inet_sys_rcv_skb(struct net *ns, int ifindex,
5043 				    char *addrp, u16 family, u32 peer_sid,
5044 				    struct common_audit_data *ad)
5045 {
5046 	int err;
5047 	u32 if_sid;
5048 	u32 node_sid;
5049 
5050 	err = sel_netif_sid(ns, ifindex, &if_sid);
5051 	if (err)
5052 		return err;
5053 	err = avc_has_perm(peer_sid, if_sid,
5054 			   SECCLASS_NETIF, NETIF__INGRESS, ad);
5055 	if (err)
5056 		return err;
5057 
5058 	err = sel_netnode_sid(addrp, family, &node_sid);
5059 	if (err)
5060 		return err;
5061 	return avc_has_perm(peer_sid, node_sid,
5062 			    SECCLASS_NODE, NODE__RECVFROM, ad);
5063 }
5064 
5065 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
5066 				       u16 family)
5067 {
5068 	int err = 0;
5069 	struct sk_security_struct *sksec = sk->sk_security;
5070 	u32 sk_sid = sksec->sid;
5071 	struct common_audit_data ad;
5072 	struct lsm_network_audit net;
5073 	char *addrp;
5074 
5075 	ad_net_init_from_iif(&ad, &net, skb->skb_iif, family);
5076 	err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
5077 	if (err)
5078 		return err;
5079 
5080 	if (selinux_secmark_enabled()) {
5081 		err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
5082 				   PACKET__RECV, &ad);
5083 		if (err)
5084 			return err;
5085 	}
5086 
5087 	err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
5088 	if (err)
5089 		return err;
5090 	err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
5091 
5092 	return err;
5093 }
5094 
5095 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
5096 {
5097 	int err, peerlbl_active, secmark_active;
5098 	struct sk_security_struct *sksec = sk->sk_security;
5099 	u16 family = sk->sk_family;
5100 	u32 sk_sid = sksec->sid;
5101 	struct common_audit_data ad;
5102 	struct lsm_network_audit net;
5103 	char *addrp;
5104 
5105 	if (family != PF_INET && family != PF_INET6)
5106 		return 0;
5107 
5108 	/* Handle mapped IPv4 packets arriving via IPv6 sockets */
5109 	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
5110 		family = PF_INET;
5111 
5112 	/* If any sort of compatibility mode is enabled then handoff processing
5113 	 * to the selinux_sock_rcv_skb_compat() function to deal with the
5114 	 * special handling.  We do this in an attempt to keep this function
5115 	 * as fast and as clean as possible. */
5116 	if (!selinux_policycap_netpeer())
5117 		return selinux_sock_rcv_skb_compat(sk, skb, family);
5118 
5119 	secmark_active = selinux_secmark_enabled();
5120 	peerlbl_active = selinux_peerlbl_enabled();
5121 	if (!secmark_active && !peerlbl_active)
5122 		return 0;
5123 
5124 	ad_net_init_from_iif(&ad, &net, skb->skb_iif, family);
5125 	err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
5126 	if (err)
5127 		return err;
5128 
5129 	if (peerlbl_active) {
5130 		u32 peer_sid;
5131 
5132 		err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
5133 		if (err)
5134 			return err;
5135 		err = selinux_inet_sys_rcv_skb(sock_net(sk), skb->skb_iif,
5136 					       addrp, family, peer_sid, &ad);
5137 		if (err) {
5138 			selinux_netlbl_err(skb, family, err, 0);
5139 			return err;
5140 		}
5141 		err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER,
5142 				   PEER__RECV, &ad);
5143 		if (err) {
5144 			selinux_netlbl_err(skb, family, err, 0);
5145 			return err;
5146 		}
5147 	}
5148 
5149 	if (secmark_active) {
5150 		err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
5151 				   PACKET__RECV, &ad);
5152 		if (err)
5153 			return err;
5154 	}
5155 
5156 	return err;
5157 }
5158 
5159 static int selinux_socket_getpeersec_stream(struct socket *sock,
5160 					    sockptr_t optval, sockptr_t optlen,
5161 					    unsigned int len)
5162 {
5163 	int err = 0;
5164 	char *scontext = NULL;
5165 	u32 scontext_len;
5166 	struct sk_security_struct *sksec = sock->sk->sk_security;
5167 	u32 peer_sid = SECSID_NULL;
5168 
5169 	if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
5170 	    sksec->sclass == SECCLASS_TCP_SOCKET ||
5171 	    sksec->sclass == SECCLASS_SCTP_SOCKET)
5172 		peer_sid = sksec->peer_sid;
5173 	if (peer_sid == SECSID_NULL)
5174 		return -ENOPROTOOPT;
5175 
5176 	err = security_sid_to_context(peer_sid, &scontext,
5177 				      &scontext_len);
5178 	if (err)
5179 		return err;
5180 	if (scontext_len > len) {
5181 		err = -ERANGE;
5182 		goto out_len;
5183 	}
5184 
5185 	if (copy_to_sockptr(optval, scontext, scontext_len))
5186 		err = -EFAULT;
5187 out_len:
5188 	if (copy_to_sockptr(optlen, &scontext_len, sizeof(scontext_len)))
5189 		err = -EFAULT;
5190 	kfree(scontext);
5191 	return err;
5192 }
5193 
5194 static int selinux_socket_getpeersec_dgram(struct socket *sock,
5195 					   struct sk_buff *skb, u32 *secid)
5196 {
5197 	u32 peer_secid = SECSID_NULL;
5198 	u16 family;
5199 
5200 	if (skb && skb->protocol == htons(ETH_P_IP))
5201 		family = PF_INET;
5202 	else if (skb && skb->protocol == htons(ETH_P_IPV6))
5203 		family = PF_INET6;
5204 	else if (sock)
5205 		family = sock->sk->sk_family;
5206 	else {
5207 		*secid = SECSID_NULL;
5208 		return -EINVAL;
5209 	}
5210 
5211 	if (sock && family == PF_UNIX) {
5212 		struct inode_security_struct *isec;
5213 		isec = inode_security_novalidate(SOCK_INODE(sock));
5214 		peer_secid = isec->sid;
5215 	} else if (skb)
5216 		selinux_skb_peerlbl_sid(skb, family, &peer_secid);
5217 
5218 	*secid = peer_secid;
5219 	if (peer_secid == SECSID_NULL)
5220 		return -ENOPROTOOPT;
5221 	return 0;
5222 }
5223 
5224 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
5225 {
5226 	struct sk_security_struct *sksec;
5227 
5228 	sksec = kzalloc(sizeof(*sksec), priority);
5229 	if (!sksec)
5230 		return -ENOMEM;
5231 
5232 	sksec->peer_sid = SECINITSID_UNLABELED;
5233 	sksec->sid = SECINITSID_UNLABELED;
5234 	sksec->sclass = SECCLASS_SOCKET;
5235 	selinux_netlbl_sk_security_reset(sksec);
5236 	sk->sk_security = sksec;
5237 
5238 	return 0;
5239 }
5240 
5241 static void selinux_sk_free_security(struct sock *sk)
5242 {
5243 	struct sk_security_struct *sksec = sk->sk_security;
5244 
5245 	sk->sk_security = NULL;
5246 	selinux_netlbl_sk_security_free(sksec);
5247 	kfree(sksec);
5248 }
5249 
5250 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
5251 {
5252 	struct sk_security_struct *sksec = sk->sk_security;
5253 	struct sk_security_struct *newsksec = newsk->sk_security;
5254 
5255 	newsksec->sid = sksec->sid;
5256 	newsksec->peer_sid = sksec->peer_sid;
5257 	newsksec->sclass = sksec->sclass;
5258 
5259 	selinux_netlbl_sk_security_reset(newsksec);
5260 }
5261 
5262 static void selinux_sk_getsecid(const struct sock *sk, u32 *secid)
5263 {
5264 	if (!sk)
5265 		*secid = SECINITSID_ANY_SOCKET;
5266 	else {
5267 		const struct sk_security_struct *sksec = sk->sk_security;
5268 
5269 		*secid = sksec->sid;
5270 	}
5271 }
5272 
5273 static void selinux_sock_graft(struct sock *sk, struct socket *parent)
5274 {
5275 	struct inode_security_struct *isec =
5276 		inode_security_novalidate(SOCK_INODE(parent));
5277 	struct sk_security_struct *sksec = sk->sk_security;
5278 
5279 	if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
5280 	    sk->sk_family == PF_UNIX)
5281 		isec->sid = sksec->sid;
5282 	sksec->sclass = isec->sclass;
5283 }
5284 
5285 /*
5286  * Determines peer_secid for the asoc and updates socket's peer label
5287  * if it's the first association on the socket.
5288  */
5289 static int selinux_sctp_process_new_assoc(struct sctp_association *asoc,
5290 					  struct sk_buff *skb)
5291 {
5292 	struct sock *sk = asoc->base.sk;
5293 	u16 family = sk->sk_family;
5294 	struct sk_security_struct *sksec = sk->sk_security;
5295 	struct common_audit_data ad;
5296 	struct lsm_network_audit net;
5297 	int err;
5298 
5299 	/* handle mapped IPv4 packets arriving via IPv6 sockets */
5300 	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
5301 		family = PF_INET;
5302 
5303 	if (selinux_peerlbl_enabled()) {
5304 		asoc->peer_secid = SECSID_NULL;
5305 
5306 		/* This will return peer_sid = SECSID_NULL if there are
5307 		 * no peer labels, see security_net_peersid_resolve().
5308 		 */
5309 		err = selinux_skb_peerlbl_sid(skb, family, &asoc->peer_secid);
5310 		if (err)
5311 			return err;
5312 
5313 		if (asoc->peer_secid == SECSID_NULL)
5314 			asoc->peer_secid = SECINITSID_UNLABELED;
5315 	} else {
5316 		asoc->peer_secid = SECINITSID_UNLABELED;
5317 	}
5318 
5319 	if (sksec->sctp_assoc_state == SCTP_ASSOC_UNSET) {
5320 		sksec->sctp_assoc_state = SCTP_ASSOC_SET;
5321 
5322 		/* Here as first association on socket. As the peer SID
5323 		 * was allowed by peer recv (and the netif/node checks),
5324 		 * then it is approved by policy and used as the primary
5325 		 * peer SID for getpeercon(3).
5326 		 */
5327 		sksec->peer_sid = asoc->peer_secid;
5328 	} else if (sksec->peer_sid != asoc->peer_secid) {
5329 		/* Other association peer SIDs are checked to enforce
5330 		 * consistency among the peer SIDs.
5331 		 */
5332 		ad_net_init_from_sk(&ad, &net, asoc->base.sk);
5333 		err = avc_has_perm(sksec->peer_sid, asoc->peer_secid,
5334 				   sksec->sclass, SCTP_SOCKET__ASSOCIATION,
5335 				   &ad);
5336 		if (err)
5337 			return err;
5338 	}
5339 	return 0;
5340 }
5341 
5342 /* Called whenever SCTP receives an INIT or COOKIE ECHO chunk. This
5343  * happens on an incoming connect(2), sctp_connectx(3) or
5344  * sctp_sendmsg(3) (with no association already present).
5345  */
5346 static int selinux_sctp_assoc_request(struct sctp_association *asoc,
5347 				      struct sk_buff *skb)
5348 {
5349 	struct sk_security_struct *sksec = asoc->base.sk->sk_security;
5350 	u32 conn_sid;
5351 	int err;
5352 
5353 	if (!selinux_policycap_extsockclass())
5354 		return 0;
5355 
5356 	err = selinux_sctp_process_new_assoc(asoc, skb);
5357 	if (err)
5358 		return err;
5359 
5360 	/* Compute the MLS component for the connection and store
5361 	 * the information in asoc. This will be used by SCTP TCP type
5362 	 * sockets and peeled off connections as they cause a new
5363 	 * socket to be generated. selinux_sctp_sk_clone() will then
5364 	 * plug this into the new socket.
5365 	 */
5366 	err = selinux_conn_sid(sksec->sid, asoc->peer_secid, &conn_sid);
5367 	if (err)
5368 		return err;
5369 
5370 	asoc->secid = conn_sid;
5371 
5372 	/* Set any NetLabel labels including CIPSO/CALIPSO options. */
5373 	return selinux_netlbl_sctp_assoc_request(asoc, skb);
5374 }
5375 
5376 /* Called when SCTP receives a COOKIE ACK chunk as the final
5377  * response to an association request (initited by us).
5378  */
5379 static int selinux_sctp_assoc_established(struct sctp_association *asoc,
5380 					  struct sk_buff *skb)
5381 {
5382 	struct sk_security_struct *sksec = asoc->base.sk->sk_security;
5383 
5384 	if (!selinux_policycap_extsockclass())
5385 		return 0;
5386 
5387 	/* Inherit secid from the parent socket - this will be picked up
5388 	 * by selinux_sctp_sk_clone() if the association gets peeled off
5389 	 * into a new socket.
5390 	 */
5391 	asoc->secid = sksec->sid;
5392 
5393 	return selinux_sctp_process_new_assoc(asoc, skb);
5394 }
5395 
5396 /* Check if sctp IPv4/IPv6 addresses are valid for binding or connecting
5397  * based on their @optname.
5398  */
5399 static int selinux_sctp_bind_connect(struct sock *sk, int optname,
5400 				     struct sockaddr *address,
5401 				     int addrlen)
5402 {
5403 	int len, err = 0, walk_size = 0;
5404 	void *addr_buf;
5405 	struct sockaddr *addr;
5406 	struct socket *sock;
5407 
5408 	if (!selinux_policycap_extsockclass())
5409 		return 0;
5410 
5411 	/* Process one or more addresses that may be IPv4 or IPv6 */
5412 	sock = sk->sk_socket;
5413 	addr_buf = address;
5414 
5415 	while (walk_size < addrlen) {
5416 		if (walk_size + sizeof(sa_family_t) > addrlen)
5417 			return -EINVAL;
5418 
5419 		addr = addr_buf;
5420 		switch (addr->sa_family) {
5421 		case AF_UNSPEC:
5422 		case AF_INET:
5423 			len = sizeof(struct sockaddr_in);
5424 			break;
5425 		case AF_INET6:
5426 			len = sizeof(struct sockaddr_in6);
5427 			break;
5428 		default:
5429 			return -EINVAL;
5430 		}
5431 
5432 		if (walk_size + len > addrlen)
5433 			return -EINVAL;
5434 
5435 		err = -EINVAL;
5436 		switch (optname) {
5437 		/* Bind checks */
5438 		case SCTP_PRIMARY_ADDR:
5439 		case SCTP_SET_PEER_PRIMARY_ADDR:
5440 		case SCTP_SOCKOPT_BINDX_ADD:
5441 			err = selinux_socket_bind(sock, addr, len);
5442 			break;
5443 		/* Connect checks */
5444 		case SCTP_SOCKOPT_CONNECTX:
5445 		case SCTP_PARAM_SET_PRIMARY:
5446 		case SCTP_PARAM_ADD_IP:
5447 		case SCTP_SENDMSG_CONNECT:
5448 			err = selinux_socket_connect_helper(sock, addr, len);
5449 			if (err)
5450 				return err;
5451 
5452 			/* As selinux_sctp_bind_connect() is called by the
5453 			 * SCTP protocol layer, the socket is already locked,
5454 			 * therefore selinux_netlbl_socket_connect_locked()
5455 			 * is called here. The situations handled are:
5456 			 * sctp_connectx(3), sctp_sendmsg(3), sendmsg(2),
5457 			 * whenever a new IP address is added or when a new
5458 			 * primary address is selected.
5459 			 * Note that an SCTP connect(2) call happens before
5460 			 * the SCTP protocol layer and is handled via
5461 			 * selinux_socket_connect().
5462 			 */
5463 			err = selinux_netlbl_socket_connect_locked(sk, addr);
5464 			break;
5465 		}
5466 
5467 		if (err)
5468 			return err;
5469 
5470 		addr_buf += len;
5471 		walk_size += len;
5472 	}
5473 
5474 	return 0;
5475 }
5476 
5477 /* Called whenever a new socket is created by accept(2) or sctp_peeloff(3). */
5478 static void selinux_sctp_sk_clone(struct sctp_association *asoc, struct sock *sk,
5479 				  struct sock *newsk)
5480 {
5481 	struct sk_security_struct *sksec = sk->sk_security;
5482 	struct sk_security_struct *newsksec = newsk->sk_security;
5483 
5484 	/* If policy does not support SECCLASS_SCTP_SOCKET then call
5485 	 * the non-sctp clone version.
5486 	 */
5487 	if (!selinux_policycap_extsockclass())
5488 		return selinux_sk_clone_security(sk, newsk);
5489 
5490 	newsksec->sid = asoc->secid;
5491 	newsksec->peer_sid = asoc->peer_secid;
5492 	newsksec->sclass = sksec->sclass;
5493 	selinux_netlbl_sctp_sk_clone(sk, newsk);
5494 }
5495 
5496 static int selinux_mptcp_add_subflow(struct sock *sk, struct sock *ssk)
5497 {
5498 	struct sk_security_struct *ssksec = ssk->sk_security;
5499 	struct sk_security_struct *sksec = sk->sk_security;
5500 
5501 	ssksec->sclass = sksec->sclass;
5502 	ssksec->sid = sksec->sid;
5503 
5504 	/* replace the existing subflow label deleting the existing one
5505 	 * and re-recreating a new label using the updated context
5506 	 */
5507 	selinux_netlbl_sk_security_free(ssksec);
5508 	return selinux_netlbl_socket_post_create(ssk, ssk->sk_family);
5509 }
5510 
5511 static int selinux_inet_conn_request(const struct sock *sk, struct sk_buff *skb,
5512 				     struct request_sock *req)
5513 {
5514 	struct sk_security_struct *sksec = sk->sk_security;
5515 	int err;
5516 	u16 family = req->rsk_ops->family;
5517 	u32 connsid;
5518 	u32 peersid;
5519 
5520 	err = selinux_skb_peerlbl_sid(skb, family, &peersid);
5521 	if (err)
5522 		return err;
5523 	err = selinux_conn_sid(sksec->sid, peersid, &connsid);
5524 	if (err)
5525 		return err;
5526 	req->secid = connsid;
5527 	req->peer_secid = peersid;
5528 
5529 	return selinux_netlbl_inet_conn_request(req, family);
5530 }
5531 
5532 static void selinux_inet_csk_clone(struct sock *newsk,
5533 				   const struct request_sock *req)
5534 {
5535 	struct sk_security_struct *newsksec = newsk->sk_security;
5536 
5537 	newsksec->sid = req->secid;
5538 	newsksec->peer_sid = req->peer_secid;
5539 	/* NOTE: Ideally, we should also get the isec->sid for the
5540 	   new socket in sync, but we don't have the isec available yet.
5541 	   So we will wait until sock_graft to do it, by which
5542 	   time it will have been created and available. */
5543 
5544 	/* We don't need to take any sort of lock here as we are the only
5545 	 * thread with access to newsksec */
5546 	selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family);
5547 }
5548 
5549 static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
5550 {
5551 	u16 family = sk->sk_family;
5552 	struct sk_security_struct *sksec = sk->sk_security;
5553 
5554 	/* handle mapped IPv4 packets arriving via IPv6 sockets */
5555 	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
5556 		family = PF_INET;
5557 
5558 	selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
5559 }
5560 
5561 static int selinux_secmark_relabel_packet(u32 sid)
5562 {
5563 	return avc_has_perm(current_sid(), sid, SECCLASS_PACKET, PACKET__RELABELTO,
5564 			    NULL);
5565 }
5566 
5567 static void selinux_secmark_refcount_inc(void)
5568 {
5569 	atomic_inc(&selinux_secmark_refcount);
5570 }
5571 
5572 static void selinux_secmark_refcount_dec(void)
5573 {
5574 	atomic_dec(&selinux_secmark_refcount);
5575 }
5576 
5577 static void selinux_req_classify_flow(const struct request_sock *req,
5578 				      struct flowi_common *flic)
5579 {
5580 	flic->flowic_secid = req->secid;
5581 }
5582 
5583 static int selinux_tun_dev_alloc_security(void **security)
5584 {
5585 	struct tun_security_struct *tunsec;
5586 
5587 	tunsec = kzalloc(sizeof(*tunsec), GFP_KERNEL);
5588 	if (!tunsec)
5589 		return -ENOMEM;
5590 	tunsec->sid = current_sid();
5591 
5592 	*security = tunsec;
5593 	return 0;
5594 }
5595 
5596 static void selinux_tun_dev_free_security(void *security)
5597 {
5598 	kfree(security);
5599 }
5600 
5601 static int selinux_tun_dev_create(void)
5602 {
5603 	u32 sid = current_sid();
5604 
5605 	/* we aren't taking into account the "sockcreate" SID since the socket
5606 	 * that is being created here is not a socket in the traditional sense,
5607 	 * instead it is a private sock, accessible only to the kernel, and
5608 	 * representing a wide range of network traffic spanning multiple
5609 	 * connections unlike traditional sockets - check the TUN driver to
5610 	 * get a better understanding of why this socket is special */
5611 
5612 	return avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE,
5613 			    NULL);
5614 }
5615 
5616 static int selinux_tun_dev_attach_queue(void *security)
5617 {
5618 	struct tun_security_struct *tunsec = security;
5619 
5620 	return avc_has_perm(current_sid(), tunsec->sid, SECCLASS_TUN_SOCKET,
5621 			    TUN_SOCKET__ATTACH_QUEUE, NULL);
5622 }
5623 
5624 static int selinux_tun_dev_attach(struct sock *sk, void *security)
5625 {
5626 	struct tun_security_struct *tunsec = security;
5627 	struct sk_security_struct *sksec = sk->sk_security;
5628 
5629 	/* we don't currently perform any NetLabel based labeling here and it
5630 	 * isn't clear that we would want to do so anyway; while we could apply
5631 	 * labeling without the support of the TUN user the resulting labeled
5632 	 * traffic from the other end of the connection would almost certainly
5633 	 * cause confusion to the TUN user that had no idea network labeling
5634 	 * protocols were being used */
5635 
5636 	sksec->sid = tunsec->sid;
5637 	sksec->sclass = SECCLASS_TUN_SOCKET;
5638 
5639 	return 0;
5640 }
5641 
5642 static int selinux_tun_dev_open(void *security)
5643 {
5644 	struct tun_security_struct *tunsec = security;
5645 	u32 sid = current_sid();
5646 	int err;
5647 
5648 	err = avc_has_perm(sid, tunsec->sid, SECCLASS_TUN_SOCKET,
5649 			   TUN_SOCKET__RELABELFROM, NULL);
5650 	if (err)
5651 		return err;
5652 	err = avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET,
5653 			   TUN_SOCKET__RELABELTO, NULL);
5654 	if (err)
5655 		return err;
5656 	tunsec->sid = sid;
5657 
5658 	return 0;
5659 }
5660 
5661 #ifdef CONFIG_NETFILTER
5662 
5663 static unsigned int selinux_ip_forward(void *priv, struct sk_buff *skb,
5664 				       const struct nf_hook_state *state)
5665 {
5666 	int ifindex;
5667 	u16 family;
5668 	char *addrp;
5669 	u32 peer_sid;
5670 	struct common_audit_data ad;
5671 	struct lsm_network_audit net;
5672 	int secmark_active, peerlbl_active;
5673 
5674 	if (!selinux_policycap_netpeer())
5675 		return NF_ACCEPT;
5676 
5677 	secmark_active = selinux_secmark_enabled();
5678 	peerlbl_active = selinux_peerlbl_enabled();
5679 	if (!secmark_active && !peerlbl_active)
5680 		return NF_ACCEPT;
5681 
5682 	family = state->pf;
5683 	if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
5684 		return NF_DROP;
5685 
5686 	ifindex = state->in->ifindex;
5687 	ad_net_init_from_iif(&ad, &net, ifindex, family);
5688 	if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
5689 		return NF_DROP;
5690 
5691 	if (peerlbl_active) {
5692 		int err;
5693 
5694 		err = selinux_inet_sys_rcv_skb(state->net, ifindex,
5695 					       addrp, family, peer_sid, &ad);
5696 		if (err) {
5697 			selinux_netlbl_err(skb, family, err, 1);
5698 			return NF_DROP;
5699 		}
5700 	}
5701 
5702 	if (secmark_active)
5703 		if (avc_has_perm(peer_sid, skb->secmark,
5704 				 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
5705 			return NF_DROP;
5706 
5707 	if (netlbl_enabled())
5708 		/* we do this in the FORWARD path and not the POST_ROUTING
5709 		 * path because we want to make sure we apply the necessary
5710 		 * labeling before IPsec is applied so we can leverage AH
5711 		 * protection */
5712 		if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
5713 			return NF_DROP;
5714 
5715 	return NF_ACCEPT;
5716 }
5717 
5718 static unsigned int selinux_ip_output(void *priv, struct sk_buff *skb,
5719 				      const struct nf_hook_state *state)
5720 {
5721 	struct sock *sk;
5722 	u32 sid;
5723 
5724 	if (!netlbl_enabled())
5725 		return NF_ACCEPT;
5726 
5727 	/* we do this in the LOCAL_OUT path and not the POST_ROUTING path
5728 	 * because we want to make sure we apply the necessary labeling
5729 	 * before IPsec is applied so we can leverage AH protection */
5730 	sk = skb->sk;
5731 	if (sk) {
5732 		struct sk_security_struct *sksec;
5733 
5734 		if (sk_listener(sk))
5735 			/* if the socket is the listening state then this
5736 			 * packet is a SYN-ACK packet which means it needs to
5737 			 * be labeled based on the connection/request_sock and
5738 			 * not the parent socket.  unfortunately, we can't
5739 			 * lookup the request_sock yet as it isn't queued on
5740 			 * the parent socket until after the SYN-ACK is sent.
5741 			 * the "solution" is to simply pass the packet as-is
5742 			 * as any IP option based labeling should be copied
5743 			 * from the initial connection request (in the IP
5744 			 * layer).  it is far from ideal, but until we get a
5745 			 * security label in the packet itself this is the
5746 			 * best we can do. */
5747 			return NF_ACCEPT;
5748 
5749 		/* standard practice, label using the parent socket */
5750 		sksec = sk->sk_security;
5751 		sid = sksec->sid;
5752 	} else
5753 		sid = SECINITSID_KERNEL;
5754 	if (selinux_netlbl_skbuff_setsid(skb, state->pf, sid) != 0)
5755 		return NF_DROP;
5756 
5757 	return NF_ACCEPT;
5758 }
5759 
5760 
5761 static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
5762 					const struct nf_hook_state *state)
5763 {
5764 	struct sock *sk;
5765 	struct sk_security_struct *sksec;
5766 	struct common_audit_data ad;
5767 	struct lsm_network_audit net;
5768 	u8 proto = 0;
5769 
5770 	sk = skb_to_full_sk(skb);
5771 	if (sk == NULL)
5772 		return NF_ACCEPT;
5773 	sksec = sk->sk_security;
5774 
5775 	ad_net_init_from_iif(&ad, &net, state->out->ifindex, state->pf);
5776 	if (selinux_parse_skb(skb, &ad, NULL, 0, &proto))
5777 		return NF_DROP;
5778 
5779 	if (selinux_secmark_enabled())
5780 		if (avc_has_perm(sksec->sid, skb->secmark,
5781 				 SECCLASS_PACKET, PACKET__SEND, &ad))
5782 			return NF_DROP_ERR(-ECONNREFUSED);
5783 
5784 	if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
5785 		return NF_DROP_ERR(-ECONNREFUSED);
5786 
5787 	return NF_ACCEPT;
5788 }
5789 
5790 static unsigned int selinux_ip_postroute(void *priv,
5791 					 struct sk_buff *skb,
5792 					 const struct nf_hook_state *state)
5793 {
5794 	u16 family;
5795 	u32 secmark_perm;
5796 	u32 peer_sid;
5797 	int ifindex;
5798 	struct sock *sk;
5799 	struct common_audit_data ad;
5800 	struct lsm_network_audit net;
5801 	char *addrp;
5802 	int secmark_active, peerlbl_active;
5803 
5804 	/* If any sort of compatibility mode is enabled then handoff processing
5805 	 * to the selinux_ip_postroute_compat() function to deal with the
5806 	 * special handling.  We do this in an attempt to keep this function
5807 	 * as fast and as clean as possible. */
5808 	if (!selinux_policycap_netpeer())
5809 		return selinux_ip_postroute_compat(skb, state);
5810 
5811 	secmark_active = selinux_secmark_enabled();
5812 	peerlbl_active = selinux_peerlbl_enabled();
5813 	if (!secmark_active && !peerlbl_active)
5814 		return NF_ACCEPT;
5815 
5816 	sk = skb_to_full_sk(skb);
5817 
5818 #ifdef CONFIG_XFRM
5819 	/* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
5820 	 * packet transformation so allow the packet to pass without any checks
5821 	 * since we'll have another chance to perform access control checks
5822 	 * when the packet is on it's final way out.
5823 	 * NOTE: there appear to be some IPv6 multicast cases where skb->dst
5824 	 *       is NULL, in this case go ahead and apply access control.
5825 	 * NOTE: if this is a local socket (skb->sk != NULL) that is in the
5826 	 *       TCP listening state we cannot wait until the XFRM processing
5827 	 *       is done as we will miss out on the SA label if we do;
5828 	 *       unfortunately, this means more work, but it is only once per
5829 	 *       connection. */
5830 	if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL &&
5831 	    !(sk && sk_listener(sk)))
5832 		return NF_ACCEPT;
5833 #endif
5834 
5835 	family = state->pf;
5836 	if (sk == NULL) {
5837 		/* Without an associated socket the packet is either coming
5838 		 * from the kernel or it is being forwarded; check the packet
5839 		 * to determine which and if the packet is being forwarded
5840 		 * query the packet directly to determine the security label. */
5841 		if (skb->skb_iif) {
5842 			secmark_perm = PACKET__FORWARD_OUT;
5843 			if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
5844 				return NF_DROP;
5845 		} else {
5846 			secmark_perm = PACKET__SEND;
5847 			peer_sid = SECINITSID_KERNEL;
5848 		}
5849 	} else if (sk_listener(sk)) {
5850 		/* Locally generated packet but the associated socket is in the
5851 		 * listening state which means this is a SYN-ACK packet.  In
5852 		 * this particular case the correct security label is assigned
5853 		 * to the connection/request_sock but unfortunately we can't
5854 		 * query the request_sock as it isn't queued on the parent
5855 		 * socket until after the SYN-ACK packet is sent; the only
5856 		 * viable choice is to regenerate the label like we do in
5857 		 * selinux_inet_conn_request().  See also selinux_ip_output()
5858 		 * for similar problems. */
5859 		u32 skb_sid;
5860 		struct sk_security_struct *sksec;
5861 
5862 		sksec = sk->sk_security;
5863 		if (selinux_skb_peerlbl_sid(skb, family, &skb_sid))
5864 			return NF_DROP;
5865 		/* At this point, if the returned skb peerlbl is SECSID_NULL
5866 		 * and the packet has been through at least one XFRM
5867 		 * transformation then we must be dealing with the "final"
5868 		 * form of labeled IPsec packet; since we've already applied
5869 		 * all of our access controls on this packet we can safely
5870 		 * pass the packet. */
5871 		if (skb_sid == SECSID_NULL) {
5872 			switch (family) {
5873 			case PF_INET:
5874 				if (IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED)
5875 					return NF_ACCEPT;
5876 				break;
5877 			case PF_INET6:
5878 				if (IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED)
5879 					return NF_ACCEPT;
5880 				break;
5881 			default:
5882 				return NF_DROP_ERR(-ECONNREFUSED);
5883 			}
5884 		}
5885 		if (selinux_conn_sid(sksec->sid, skb_sid, &peer_sid))
5886 			return NF_DROP;
5887 		secmark_perm = PACKET__SEND;
5888 	} else {
5889 		/* Locally generated packet, fetch the security label from the
5890 		 * associated socket. */
5891 		struct sk_security_struct *sksec = sk->sk_security;
5892 		peer_sid = sksec->sid;
5893 		secmark_perm = PACKET__SEND;
5894 	}
5895 
5896 	ifindex = state->out->ifindex;
5897 	ad_net_init_from_iif(&ad, &net, ifindex, family);
5898 	if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
5899 		return NF_DROP;
5900 
5901 	if (secmark_active)
5902 		if (avc_has_perm(peer_sid, skb->secmark,
5903 				 SECCLASS_PACKET, secmark_perm, &ad))
5904 			return NF_DROP_ERR(-ECONNREFUSED);
5905 
5906 	if (peerlbl_active) {
5907 		u32 if_sid;
5908 		u32 node_sid;
5909 
5910 		if (sel_netif_sid(state->net, ifindex, &if_sid))
5911 			return NF_DROP;
5912 		if (avc_has_perm(peer_sid, if_sid,
5913 				 SECCLASS_NETIF, NETIF__EGRESS, &ad))
5914 			return NF_DROP_ERR(-ECONNREFUSED);
5915 
5916 		if (sel_netnode_sid(addrp, family, &node_sid))
5917 			return NF_DROP;
5918 		if (avc_has_perm(peer_sid, node_sid,
5919 				 SECCLASS_NODE, NODE__SENDTO, &ad))
5920 			return NF_DROP_ERR(-ECONNREFUSED);
5921 	}
5922 
5923 	return NF_ACCEPT;
5924 }
5925 #endif	/* CONFIG_NETFILTER */
5926 
5927 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
5928 {
5929 	int rc = 0;
5930 	unsigned int msg_len;
5931 	unsigned int data_len = skb->len;
5932 	unsigned char *data = skb->data;
5933 	struct nlmsghdr *nlh;
5934 	struct sk_security_struct *sksec = sk->sk_security;
5935 	u16 sclass = sksec->sclass;
5936 	u32 perm;
5937 
5938 	while (data_len >= nlmsg_total_size(0)) {
5939 		nlh = (struct nlmsghdr *)data;
5940 
5941 		/* NOTE: the nlmsg_len field isn't reliably set by some netlink
5942 		 *       users which means we can't reject skb's with bogus
5943 		 *       length fields; our solution is to follow what
5944 		 *       netlink_rcv_skb() does and simply skip processing at
5945 		 *       messages with length fields that are clearly junk
5946 		 */
5947 		if (nlh->nlmsg_len < NLMSG_HDRLEN || nlh->nlmsg_len > data_len)
5948 			return 0;
5949 
5950 		rc = selinux_nlmsg_lookup(sclass, nlh->nlmsg_type, &perm);
5951 		if (rc == 0) {
5952 			rc = sock_has_perm(sk, perm);
5953 			if (rc)
5954 				return rc;
5955 		} else if (rc == -EINVAL) {
5956 			/* -EINVAL is a missing msg/perm mapping */
5957 			pr_warn_ratelimited("SELinux: unrecognized netlink"
5958 				" message: protocol=%hu nlmsg_type=%hu sclass=%s"
5959 				" pid=%d comm=%s\n",
5960 				sk->sk_protocol, nlh->nlmsg_type,
5961 				secclass_map[sclass - 1].name,
5962 				task_pid_nr(current), current->comm);
5963 			if (enforcing_enabled() &&
5964 			    !security_get_allow_unknown())
5965 				return rc;
5966 			rc = 0;
5967 		} else if (rc == -ENOENT) {
5968 			/* -ENOENT is a missing socket/class mapping, ignore */
5969 			rc = 0;
5970 		} else {
5971 			return rc;
5972 		}
5973 
5974 		/* move to the next message after applying netlink padding */
5975 		msg_len = NLMSG_ALIGN(nlh->nlmsg_len);
5976 		if (msg_len >= data_len)
5977 			return 0;
5978 		data_len -= msg_len;
5979 		data += msg_len;
5980 	}
5981 
5982 	return rc;
5983 }
5984 
5985 static void ipc_init_security(struct ipc_security_struct *isec, u16 sclass)
5986 {
5987 	isec->sclass = sclass;
5988 	isec->sid = current_sid();
5989 }
5990 
5991 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
5992 			u32 perms)
5993 {
5994 	struct ipc_security_struct *isec;
5995 	struct common_audit_data ad;
5996 	u32 sid = current_sid();
5997 
5998 	isec = selinux_ipc(ipc_perms);
5999 
6000 	ad.type = LSM_AUDIT_DATA_IPC;
6001 	ad.u.ipc_id = ipc_perms->key;
6002 
6003 	return avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad);
6004 }
6005 
6006 static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
6007 {
6008 	struct msg_security_struct *msec;
6009 
6010 	msec = selinux_msg_msg(msg);
6011 	msec->sid = SECINITSID_UNLABELED;
6012 
6013 	return 0;
6014 }
6015 
6016 /* message queue security operations */
6017 static int selinux_msg_queue_alloc_security(struct kern_ipc_perm *msq)
6018 {
6019 	struct ipc_security_struct *isec;
6020 	struct common_audit_data ad;
6021 	u32 sid = current_sid();
6022 
6023 	isec = selinux_ipc(msq);
6024 	ipc_init_security(isec, SECCLASS_MSGQ);
6025 
6026 	ad.type = LSM_AUDIT_DATA_IPC;
6027 	ad.u.ipc_id = msq->key;
6028 
6029 	return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
6030 			    MSGQ__CREATE, &ad);
6031 }
6032 
6033 static int selinux_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
6034 {
6035 	struct ipc_security_struct *isec;
6036 	struct common_audit_data ad;
6037 	u32 sid = current_sid();
6038 
6039 	isec = selinux_ipc(msq);
6040 
6041 	ad.type = LSM_AUDIT_DATA_IPC;
6042 	ad.u.ipc_id = msq->key;
6043 
6044 	return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
6045 			    MSGQ__ASSOCIATE, &ad);
6046 }
6047 
6048 static int selinux_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
6049 {
6050 	u32 perms;
6051 
6052 	switch (cmd) {
6053 	case IPC_INFO:
6054 	case MSG_INFO:
6055 		/* No specific object, just general system-wide information. */
6056 		return avc_has_perm(current_sid(), SECINITSID_KERNEL,
6057 				    SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6058 	case IPC_STAT:
6059 	case MSG_STAT:
6060 	case MSG_STAT_ANY:
6061 		perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
6062 		break;
6063 	case IPC_SET:
6064 		perms = MSGQ__SETATTR;
6065 		break;
6066 	case IPC_RMID:
6067 		perms = MSGQ__DESTROY;
6068 		break;
6069 	default:
6070 		return 0;
6071 	}
6072 
6073 	return ipc_has_perm(msq, perms);
6074 }
6075 
6076 static int selinux_msg_queue_msgsnd(struct kern_ipc_perm *msq, struct msg_msg *msg, int msqflg)
6077 {
6078 	struct ipc_security_struct *isec;
6079 	struct msg_security_struct *msec;
6080 	struct common_audit_data ad;
6081 	u32 sid = current_sid();
6082 	int rc;
6083 
6084 	isec = selinux_ipc(msq);
6085 	msec = selinux_msg_msg(msg);
6086 
6087 	/*
6088 	 * First time through, need to assign label to the message
6089 	 */
6090 	if (msec->sid == SECINITSID_UNLABELED) {
6091 		/*
6092 		 * Compute new sid based on current process and
6093 		 * message queue this message will be stored in
6094 		 */
6095 		rc = security_transition_sid(sid, isec->sid,
6096 					     SECCLASS_MSG, NULL, &msec->sid);
6097 		if (rc)
6098 			return rc;
6099 	}
6100 
6101 	ad.type = LSM_AUDIT_DATA_IPC;
6102 	ad.u.ipc_id = msq->key;
6103 
6104 	/* Can this process write to the queue? */
6105 	rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
6106 			  MSGQ__WRITE, &ad);
6107 	if (!rc)
6108 		/* Can this process send the message */
6109 		rc = avc_has_perm(sid, msec->sid, SECCLASS_MSG,
6110 				  MSG__SEND, &ad);
6111 	if (!rc)
6112 		/* Can the message be put in the queue? */
6113 		rc = avc_has_perm(msec->sid, isec->sid, SECCLASS_MSGQ,
6114 				  MSGQ__ENQUEUE, &ad);
6115 
6116 	return rc;
6117 }
6118 
6119 static int selinux_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
6120 				    struct task_struct *target,
6121 				    long type, int mode)
6122 {
6123 	struct ipc_security_struct *isec;
6124 	struct msg_security_struct *msec;
6125 	struct common_audit_data ad;
6126 	u32 sid = task_sid_obj(target);
6127 	int rc;
6128 
6129 	isec = selinux_ipc(msq);
6130 	msec = selinux_msg_msg(msg);
6131 
6132 	ad.type = LSM_AUDIT_DATA_IPC;
6133 	ad.u.ipc_id = msq->key;
6134 
6135 	rc = avc_has_perm(sid, isec->sid,
6136 			  SECCLASS_MSGQ, MSGQ__READ, &ad);
6137 	if (!rc)
6138 		rc = avc_has_perm(sid, msec->sid,
6139 				  SECCLASS_MSG, MSG__RECEIVE, &ad);
6140 	return rc;
6141 }
6142 
6143 /* Shared Memory security operations */
6144 static int selinux_shm_alloc_security(struct kern_ipc_perm *shp)
6145 {
6146 	struct ipc_security_struct *isec;
6147 	struct common_audit_data ad;
6148 	u32 sid = current_sid();
6149 
6150 	isec = selinux_ipc(shp);
6151 	ipc_init_security(isec, SECCLASS_SHM);
6152 
6153 	ad.type = LSM_AUDIT_DATA_IPC;
6154 	ad.u.ipc_id = shp->key;
6155 
6156 	return avc_has_perm(sid, isec->sid, SECCLASS_SHM,
6157 			    SHM__CREATE, &ad);
6158 }
6159 
6160 static int selinux_shm_associate(struct kern_ipc_perm *shp, int shmflg)
6161 {
6162 	struct ipc_security_struct *isec;
6163 	struct common_audit_data ad;
6164 	u32 sid = current_sid();
6165 
6166 	isec = selinux_ipc(shp);
6167 
6168 	ad.type = LSM_AUDIT_DATA_IPC;
6169 	ad.u.ipc_id = shp->key;
6170 
6171 	return avc_has_perm(sid, isec->sid, SECCLASS_SHM,
6172 			    SHM__ASSOCIATE, &ad);
6173 }
6174 
6175 /* Note, at this point, shp is locked down */
6176 static int selinux_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
6177 {
6178 	u32 perms;
6179 
6180 	switch (cmd) {
6181 	case IPC_INFO:
6182 	case SHM_INFO:
6183 		/* No specific object, just general system-wide information. */
6184 		return avc_has_perm(current_sid(), SECINITSID_KERNEL,
6185 				    SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6186 	case IPC_STAT:
6187 	case SHM_STAT:
6188 	case SHM_STAT_ANY:
6189 		perms = SHM__GETATTR | SHM__ASSOCIATE;
6190 		break;
6191 	case IPC_SET:
6192 		perms = SHM__SETATTR;
6193 		break;
6194 	case SHM_LOCK:
6195 	case SHM_UNLOCK:
6196 		perms = SHM__LOCK;
6197 		break;
6198 	case IPC_RMID:
6199 		perms = SHM__DESTROY;
6200 		break;
6201 	default:
6202 		return 0;
6203 	}
6204 
6205 	return ipc_has_perm(shp, perms);
6206 }
6207 
6208 static int selinux_shm_shmat(struct kern_ipc_perm *shp,
6209 			     char __user *shmaddr, int shmflg)
6210 {
6211 	u32 perms;
6212 
6213 	if (shmflg & SHM_RDONLY)
6214 		perms = SHM__READ;
6215 	else
6216 		perms = SHM__READ | SHM__WRITE;
6217 
6218 	return ipc_has_perm(shp, perms);
6219 }
6220 
6221 /* Semaphore security operations */
6222 static int selinux_sem_alloc_security(struct kern_ipc_perm *sma)
6223 {
6224 	struct ipc_security_struct *isec;
6225 	struct common_audit_data ad;
6226 	u32 sid = current_sid();
6227 
6228 	isec = selinux_ipc(sma);
6229 	ipc_init_security(isec, SECCLASS_SEM);
6230 
6231 	ad.type = LSM_AUDIT_DATA_IPC;
6232 	ad.u.ipc_id = sma->key;
6233 
6234 	return avc_has_perm(sid, isec->sid, SECCLASS_SEM,
6235 			    SEM__CREATE, &ad);
6236 }
6237 
6238 static int selinux_sem_associate(struct kern_ipc_perm *sma, int semflg)
6239 {
6240 	struct ipc_security_struct *isec;
6241 	struct common_audit_data ad;
6242 	u32 sid = current_sid();
6243 
6244 	isec = selinux_ipc(sma);
6245 
6246 	ad.type = LSM_AUDIT_DATA_IPC;
6247 	ad.u.ipc_id = sma->key;
6248 
6249 	return avc_has_perm(sid, isec->sid, SECCLASS_SEM,
6250 			    SEM__ASSOCIATE, &ad);
6251 }
6252 
6253 /* Note, at this point, sma is locked down */
6254 static int selinux_sem_semctl(struct kern_ipc_perm *sma, int cmd)
6255 {
6256 	int err;
6257 	u32 perms;
6258 
6259 	switch (cmd) {
6260 	case IPC_INFO:
6261 	case SEM_INFO:
6262 		/* No specific object, just general system-wide information. */
6263 		return avc_has_perm(current_sid(), SECINITSID_KERNEL,
6264 				    SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL);
6265 	case GETPID:
6266 	case GETNCNT:
6267 	case GETZCNT:
6268 		perms = SEM__GETATTR;
6269 		break;
6270 	case GETVAL:
6271 	case GETALL:
6272 		perms = SEM__READ;
6273 		break;
6274 	case SETVAL:
6275 	case SETALL:
6276 		perms = SEM__WRITE;
6277 		break;
6278 	case IPC_RMID:
6279 		perms = SEM__DESTROY;
6280 		break;
6281 	case IPC_SET:
6282 		perms = SEM__SETATTR;
6283 		break;
6284 	case IPC_STAT:
6285 	case SEM_STAT:
6286 	case SEM_STAT_ANY:
6287 		perms = SEM__GETATTR | SEM__ASSOCIATE;
6288 		break;
6289 	default:
6290 		return 0;
6291 	}
6292 
6293 	err = ipc_has_perm(sma, perms);
6294 	return err;
6295 }
6296 
6297 static int selinux_sem_semop(struct kern_ipc_perm *sma,
6298 			     struct sembuf *sops, unsigned nsops, int alter)
6299 {
6300 	u32 perms;
6301 
6302 	if (alter)
6303 		perms = SEM__READ | SEM__WRITE;
6304 	else
6305 		perms = SEM__READ;
6306 
6307 	return ipc_has_perm(sma, perms);
6308 }
6309 
6310 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
6311 {
6312 	u32 av = 0;
6313 
6314 	av = 0;
6315 	if (flag & S_IRUGO)
6316 		av |= IPC__UNIX_READ;
6317 	if (flag & S_IWUGO)
6318 		av |= IPC__UNIX_WRITE;
6319 
6320 	if (av == 0)
6321 		return 0;
6322 
6323 	return ipc_has_perm(ipcp, av);
6324 }
6325 
6326 static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
6327 {
6328 	struct ipc_security_struct *isec = selinux_ipc(ipcp);
6329 	*secid = isec->sid;
6330 }
6331 
6332 static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
6333 {
6334 	if (inode)
6335 		inode_doinit_with_dentry(inode, dentry);
6336 }
6337 
6338 static int selinux_lsm_getattr(unsigned int attr, struct task_struct *p,
6339 			       char **value)
6340 {
6341 	const struct task_security_struct *tsec;
6342 	int error;
6343 	u32 sid;
6344 	u32 len;
6345 
6346 	rcu_read_lock();
6347 	tsec = selinux_cred(__task_cred(p));
6348 	if (p != current) {
6349 		error = avc_has_perm(current_sid(), tsec->sid,
6350 				     SECCLASS_PROCESS, PROCESS__GETATTR, NULL);
6351 		if (error)
6352 			goto err_unlock;
6353 	}
6354 	switch (attr) {
6355 	case LSM_ATTR_CURRENT:
6356 		sid = tsec->sid;
6357 		break;
6358 	case LSM_ATTR_PREV:
6359 		sid = tsec->osid;
6360 		break;
6361 	case LSM_ATTR_EXEC:
6362 		sid = tsec->exec_sid;
6363 		break;
6364 	case LSM_ATTR_FSCREATE:
6365 		sid = tsec->create_sid;
6366 		break;
6367 	case LSM_ATTR_KEYCREATE:
6368 		sid = tsec->keycreate_sid;
6369 		break;
6370 	case LSM_ATTR_SOCKCREATE:
6371 		sid = tsec->sockcreate_sid;
6372 		break;
6373 	default:
6374 		error = -EOPNOTSUPP;
6375 		goto err_unlock;
6376 	}
6377 	rcu_read_unlock();
6378 
6379 	if (sid == SECSID_NULL) {
6380 		*value = NULL;
6381 		return 0;
6382 	}
6383 
6384 	error = security_sid_to_context(sid, value, &len);
6385 	if (error)
6386 		return error;
6387 	return len;
6388 
6389 err_unlock:
6390 	rcu_read_unlock();
6391 	return error;
6392 }
6393 
6394 static int selinux_lsm_setattr(u64 attr, void *value, size_t size)
6395 {
6396 	struct task_security_struct *tsec;
6397 	struct cred *new;
6398 	u32 mysid = current_sid(), sid = 0, ptsid;
6399 	int error;
6400 	char *str = value;
6401 
6402 	/*
6403 	 * Basic control over ability to set these attributes at all.
6404 	 */
6405 	switch (attr) {
6406 	case LSM_ATTR_EXEC:
6407 		error = avc_has_perm(mysid, mysid, SECCLASS_PROCESS,
6408 				     PROCESS__SETEXEC, NULL);
6409 		break;
6410 	case LSM_ATTR_FSCREATE:
6411 		error = avc_has_perm(mysid, mysid, SECCLASS_PROCESS,
6412 				     PROCESS__SETFSCREATE, NULL);
6413 		break;
6414 	case LSM_ATTR_KEYCREATE:
6415 		error = avc_has_perm(mysid, mysid, SECCLASS_PROCESS,
6416 				     PROCESS__SETKEYCREATE, NULL);
6417 		break;
6418 	case LSM_ATTR_SOCKCREATE:
6419 		error = avc_has_perm(mysid, mysid, SECCLASS_PROCESS,
6420 				     PROCESS__SETSOCKCREATE, NULL);
6421 		break;
6422 	case LSM_ATTR_CURRENT:
6423 		error = avc_has_perm(mysid, mysid, SECCLASS_PROCESS,
6424 				     PROCESS__SETCURRENT, NULL);
6425 		break;
6426 	default:
6427 		error = -EOPNOTSUPP;
6428 		break;
6429 	}
6430 	if (error)
6431 		return error;
6432 
6433 	/* Obtain a SID for the context, if one was specified. */
6434 	if (size && str[0] && str[0] != '\n') {
6435 		if (str[size-1] == '\n') {
6436 			str[size-1] = 0;
6437 			size--;
6438 		}
6439 		error = security_context_to_sid(value, size,
6440 						&sid, GFP_KERNEL);
6441 		if (error == -EINVAL && attr == LSM_ATTR_FSCREATE) {
6442 			if (!has_cap_mac_admin(true)) {
6443 				struct audit_buffer *ab;
6444 				size_t audit_size;
6445 
6446 				/* We strip a nul only if it is at the end,
6447 				 * otherwise the context contains a nul and
6448 				 * we should audit that */
6449 				if (str[size - 1] == '\0')
6450 					audit_size = size - 1;
6451 				else
6452 					audit_size = size;
6453 				ab = audit_log_start(audit_context(),
6454 						     GFP_ATOMIC,
6455 						     AUDIT_SELINUX_ERR);
6456 				if (!ab)
6457 					return error;
6458 				audit_log_format(ab, "op=fscreate invalid_context=");
6459 				audit_log_n_untrustedstring(ab, value,
6460 							    audit_size);
6461 				audit_log_end(ab);
6462 
6463 				return error;
6464 			}
6465 			error = security_context_to_sid_force(value, size,
6466 							&sid);
6467 		}
6468 		if (error)
6469 			return error;
6470 	}
6471 
6472 	new = prepare_creds();
6473 	if (!new)
6474 		return -ENOMEM;
6475 
6476 	/* Permission checking based on the specified context is
6477 	   performed during the actual operation (execve,
6478 	   open/mkdir/...), when we know the full context of the
6479 	   operation.  See selinux_bprm_creds_for_exec for the execve
6480 	   checks and may_create for the file creation checks. The
6481 	   operation will then fail if the context is not permitted. */
6482 	tsec = selinux_cred(new);
6483 	if (attr == LSM_ATTR_EXEC) {
6484 		tsec->exec_sid = sid;
6485 	} else if (attr == LSM_ATTR_FSCREATE) {
6486 		tsec->create_sid = sid;
6487 	} else if (attr == LSM_ATTR_KEYCREATE) {
6488 		if (sid) {
6489 			error = avc_has_perm(mysid, sid,
6490 					     SECCLASS_KEY, KEY__CREATE, NULL);
6491 			if (error)
6492 				goto abort_change;
6493 		}
6494 		tsec->keycreate_sid = sid;
6495 	} else if (attr == LSM_ATTR_SOCKCREATE) {
6496 		tsec->sockcreate_sid = sid;
6497 	} else if (attr == LSM_ATTR_CURRENT) {
6498 		error = -EINVAL;
6499 		if (sid == 0)
6500 			goto abort_change;
6501 
6502 		if (!current_is_single_threaded()) {
6503 			error = security_bounded_transition(tsec->sid, sid);
6504 			if (error)
6505 				goto abort_change;
6506 		}
6507 
6508 		/* Check permissions for the transition. */
6509 		error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
6510 				     PROCESS__DYNTRANSITION, NULL);
6511 		if (error)
6512 			goto abort_change;
6513 
6514 		/* Check for ptracing, and update the task SID if ok.
6515 		   Otherwise, leave SID unchanged and fail. */
6516 		ptsid = ptrace_parent_sid();
6517 		if (ptsid != 0) {
6518 			error = avc_has_perm(ptsid, sid, SECCLASS_PROCESS,
6519 					     PROCESS__PTRACE, NULL);
6520 			if (error)
6521 				goto abort_change;
6522 		}
6523 
6524 		tsec->sid = sid;
6525 	} else {
6526 		error = -EINVAL;
6527 		goto abort_change;
6528 	}
6529 
6530 	commit_creds(new);
6531 	return size;
6532 
6533 abort_change:
6534 	abort_creds(new);
6535 	return error;
6536 }
6537 
6538 /**
6539  * selinux_getselfattr - Get SELinux current task attributes
6540  * @attr: the requested attribute
6541  * @ctx: buffer to receive the result
6542  * @size: buffer size (input), buffer size used (output)
6543  * @flags: unused
6544  *
6545  * Fill the passed user space @ctx with the details of the requested
6546  * attribute.
6547  *
6548  * Returns the number of attributes on success, an error code otherwise.
6549  * There will only ever be one attribute.
6550  */
6551 static int selinux_getselfattr(unsigned int attr, struct lsm_ctx __user *ctx,
6552 			       u32 *size, u32 flags)
6553 {
6554 	int rc;
6555 	char *val = NULL;
6556 	int val_len;
6557 
6558 	val_len = selinux_lsm_getattr(attr, current, &val);
6559 	if (val_len < 0)
6560 		return val_len;
6561 	rc = lsm_fill_user_ctx(ctx, size, val, val_len, LSM_ID_SELINUX, 0);
6562 	kfree(val);
6563 	return (!rc ? 1 : rc);
6564 }
6565 
6566 static int selinux_setselfattr(unsigned int attr, struct lsm_ctx *ctx,
6567 			       u32 size, u32 flags)
6568 {
6569 	int rc;
6570 
6571 	rc = selinux_lsm_setattr(attr, ctx->ctx, ctx->ctx_len);
6572 	if (rc > 0)
6573 		return 0;
6574 	return rc;
6575 }
6576 
6577 static int selinux_getprocattr(struct task_struct *p,
6578 			       const char *name, char **value)
6579 {
6580 	unsigned int attr = lsm_name_to_attr(name);
6581 	int rc;
6582 
6583 	if (attr) {
6584 		rc = selinux_lsm_getattr(attr, p, value);
6585 		if (rc != -EOPNOTSUPP)
6586 			return rc;
6587 	}
6588 
6589 	return -EINVAL;
6590 }
6591 
6592 static int selinux_setprocattr(const char *name, void *value, size_t size)
6593 {
6594 	int attr = lsm_name_to_attr(name);
6595 
6596 	if (attr)
6597 		return selinux_lsm_setattr(attr, value, size);
6598 	return -EINVAL;
6599 }
6600 
6601 static int selinux_ismaclabel(const char *name)
6602 {
6603 	return (strcmp(name, XATTR_SELINUX_SUFFIX) == 0);
6604 }
6605 
6606 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
6607 {
6608 	return security_sid_to_context(secid,
6609 				       secdata, seclen);
6610 }
6611 
6612 static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
6613 {
6614 	return security_context_to_sid(secdata, seclen,
6615 				       secid, GFP_KERNEL);
6616 }
6617 
6618 static void selinux_release_secctx(char *secdata, u32 seclen)
6619 {
6620 	kfree(secdata);
6621 }
6622 
6623 static void selinux_inode_invalidate_secctx(struct inode *inode)
6624 {
6625 	struct inode_security_struct *isec = selinux_inode(inode);
6626 
6627 	spin_lock(&isec->lock);
6628 	isec->initialized = LABEL_INVALID;
6629 	spin_unlock(&isec->lock);
6630 }
6631 
6632 /*
6633  *	called with inode->i_mutex locked
6634  */
6635 static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
6636 {
6637 	int rc = selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX,
6638 					   ctx, ctxlen, 0);
6639 	/* Do not return error when suppressing label (SBLABEL_MNT not set). */
6640 	return rc == -EOPNOTSUPP ? 0 : rc;
6641 }
6642 
6643 /*
6644  *	called with inode->i_mutex locked
6645  */
6646 static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
6647 {
6648 	return __vfs_setxattr_noperm(&nop_mnt_idmap, dentry, XATTR_NAME_SELINUX,
6649 				     ctx, ctxlen, 0);
6650 }
6651 
6652 static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
6653 {
6654 	int len = 0;
6655 	len = selinux_inode_getsecurity(&nop_mnt_idmap, inode,
6656 					XATTR_SELINUX_SUFFIX, ctx, true);
6657 	if (len < 0)
6658 		return len;
6659 	*ctxlen = len;
6660 	return 0;
6661 }
6662 #ifdef CONFIG_KEYS
6663 
6664 static int selinux_key_alloc(struct key *k, const struct cred *cred,
6665 			     unsigned long flags)
6666 {
6667 	const struct task_security_struct *tsec;
6668 	struct key_security_struct *ksec;
6669 
6670 	ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
6671 	if (!ksec)
6672 		return -ENOMEM;
6673 
6674 	tsec = selinux_cred(cred);
6675 	if (tsec->keycreate_sid)
6676 		ksec->sid = tsec->keycreate_sid;
6677 	else
6678 		ksec->sid = tsec->sid;
6679 
6680 	k->security = ksec;
6681 	return 0;
6682 }
6683 
6684 static void selinux_key_free(struct key *k)
6685 {
6686 	struct key_security_struct *ksec = k->security;
6687 
6688 	k->security = NULL;
6689 	kfree(ksec);
6690 }
6691 
6692 static int selinux_key_permission(key_ref_t key_ref,
6693 				  const struct cred *cred,
6694 				  enum key_need_perm need_perm)
6695 {
6696 	struct key *key;
6697 	struct key_security_struct *ksec;
6698 	u32 perm, sid;
6699 
6700 	switch (need_perm) {
6701 	case KEY_NEED_VIEW:
6702 		perm = KEY__VIEW;
6703 		break;
6704 	case KEY_NEED_READ:
6705 		perm = KEY__READ;
6706 		break;
6707 	case KEY_NEED_WRITE:
6708 		perm = KEY__WRITE;
6709 		break;
6710 	case KEY_NEED_SEARCH:
6711 		perm = KEY__SEARCH;
6712 		break;
6713 	case KEY_NEED_LINK:
6714 		perm = KEY__LINK;
6715 		break;
6716 	case KEY_NEED_SETATTR:
6717 		perm = KEY__SETATTR;
6718 		break;
6719 	case KEY_NEED_UNLINK:
6720 	case KEY_SYSADMIN_OVERRIDE:
6721 	case KEY_AUTHTOKEN_OVERRIDE:
6722 	case KEY_DEFER_PERM_CHECK:
6723 		return 0;
6724 	default:
6725 		WARN_ON(1);
6726 		return -EPERM;
6727 
6728 	}
6729 
6730 	sid = cred_sid(cred);
6731 	key = key_ref_to_ptr(key_ref);
6732 	ksec = key->security;
6733 
6734 	return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, perm, NULL);
6735 }
6736 
6737 static int selinux_key_getsecurity(struct key *key, char **_buffer)
6738 {
6739 	struct key_security_struct *ksec = key->security;
6740 	char *context = NULL;
6741 	unsigned len;
6742 	int rc;
6743 
6744 	rc = security_sid_to_context(ksec->sid,
6745 				     &context, &len);
6746 	if (!rc)
6747 		rc = len;
6748 	*_buffer = context;
6749 	return rc;
6750 }
6751 
6752 #ifdef CONFIG_KEY_NOTIFICATIONS
6753 static int selinux_watch_key(struct key *key)
6754 {
6755 	struct key_security_struct *ksec = key->security;
6756 	u32 sid = current_sid();
6757 
6758 	return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, KEY__VIEW, NULL);
6759 }
6760 #endif
6761 #endif
6762 
6763 #ifdef CONFIG_SECURITY_INFINIBAND
6764 static int selinux_ib_pkey_access(void *ib_sec, u64 subnet_prefix, u16 pkey_val)
6765 {
6766 	struct common_audit_data ad;
6767 	int err;
6768 	u32 sid = 0;
6769 	struct ib_security_struct *sec = ib_sec;
6770 	struct lsm_ibpkey_audit ibpkey;
6771 
6772 	err = sel_ib_pkey_sid(subnet_prefix, pkey_val, &sid);
6773 	if (err)
6774 		return err;
6775 
6776 	ad.type = LSM_AUDIT_DATA_IBPKEY;
6777 	ibpkey.subnet_prefix = subnet_prefix;
6778 	ibpkey.pkey = pkey_val;
6779 	ad.u.ibpkey = &ibpkey;
6780 	return avc_has_perm(sec->sid, sid,
6781 			    SECCLASS_INFINIBAND_PKEY,
6782 			    INFINIBAND_PKEY__ACCESS, &ad);
6783 }
6784 
6785 static int selinux_ib_endport_manage_subnet(void *ib_sec, const char *dev_name,
6786 					    u8 port_num)
6787 {
6788 	struct common_audit_data ad;
6789 	int err;
6790 	u32 sid = 0;
6791 	struct ib_security_struct *sec = ib_sec;
6792 	struct lsm_ibendport_audit ibendport;
6793 
6794 	err = security_ib_endport_sid(dev_name, port_num,
6795 				      &sid);
6796 
6797 	if (err)
6798 		return err;
6799 
6800 	ad.type = LSM_AUDIT_DATA_IBENDPORT;
6801 	ibendport.dev_name = dev_name;
6802 	ibendport.port = port_num;
6803 	ad.u.ibendport = &ibendport;
6804 	return avc_has_perm(sec->sid, sid,
6805 			    SECCLASS_INFINIBAND_ENDPORT,
6806 			    INFINIBAND_ENDPORT__MANAGE_SUBNET, &ad);
6807 }
6808 
6809 static int selinux_ib_alloc_security(void **ib_sec)
6810 {
6811 	struct ib_security_struct *sec;
6812 
6813 	sec = kzalloc(sizeof(*sec), GFP_KERNEL);
6814 	if (!sec)
6815 		return -ENOMEM;
6816 	sec->sid = current_sid();
6817 
6818 	*ib_sec = sec;
6819 	return 0;
6820 }
6821 
6822 static void selinux_ib_free_security(void *ib_sec)
6823 {
6824 	kfree(ib_sec);
6825 }
6826 #endif
6827 
6828 #ifdef CONFIG_BPF_SYSCALL
6829 static int selinux_bpf(int cmd, union bpf_attr *attr,
6830 				     unsigned int size)
6831 {
6832 	u32 sid = current_sid();
6833 	int ret;
6834 
6835 	switch (cmd) {
6836 	case BPF_MAP_CREATE:
6837 		ret = avc_has_perm(sid, sid, SECCLASS_BPF, BPF__MAP_CREATE,
6838 				   NULL);
6839 		break;
6840 	case BPF_PROG_LOAD:
6841 		ret = avc_has_perm(sid, sid, SECCLASS_BPF, BPF__PROG_LOAD,
6842 				   NULL);
6843 		break;
6844 	default:
6845 		ret = 0;
6846 		break;
6847 	}
6848 
6849 	return ret;
6850 }
6851 
6852 static u32 bpf_map_fmode_to_av(fmode_t fmode)
6853 {
6854 	u32 av = 0;
6855 
6856 	if (fmode & FMODE_READ)
6857 		av |= BPF__MAP_READ;
6858 	if (fmode & FMODE_WRITE)
6859 		av |= BPF__MAP_WRITE;
6860 	return av;
6861 }
6862 
6863 /* This function will check the file pass through unix socket or binder to see
6864  * if it is a bpf related object. And apply corresponding checks on the bpf
6865  * object based on the type. The bpf maps and programs, not like other files and
6866  * socket, are using a shared anonymous inode inside the kernel as their inode.
6867  * So checking that inode cannot identify if the process have privilege to
6868  * access the bpf object and that's why we have to add this additional check in
6869  * selinux_file_receive and selinux_binder_transfer_files.
6870  */
6871 static int bpf_fd_pass(const struct file *file, u32 sid)
6872 {
6873 	struct bpf_security_struct *bpfsec;
6874 	struct bpf_prog *prog;
6875 	struct bpf_map *map;
6876 	int ret;
6877 
6878 	if (file->f_op == &bpf_map_fops) {
6879 		map = file->private_data;
6880 		bpfsec = map->security;
6881 		ret = avc_has_perm(sid, bpfsec->sid, SECCLASS_BPF,
6882 				   bpf_map_fmode_to_av(file->f_mode), NULL);
6883 		if (ret)
6884 			return ret;
6885 	} else if (file->f_op == &bpf_prog_fops) {
6886 		prog = file->private_data;
6887 		bpfsec = prog->aux->security;
6888 		ret = avc_has_perm(sid, bpfsec->sid, SECCLASS_BPF,
6889 				   BPF__PROG_RUN, NULL);
6890 		if (ret)
6891 			return ret;
6892 	}
6893 	return 0;
6894 }
6895 
6896 static int selinux_bpf_map(struct bpf_map *map, fmode_t fmode)
6897 {
6898 	u32 sid = current_sid();
6899 	struct bpf_security_struct *bpfsec;
6900 
6901 	bpfsec = map->security;
6902 	return avc_has_perm(sid, bpfsec->sid, SECCLASS_BPF,
6903 			    bpf_map_fmode_to_av(fmode), NULL);
6904 }
6905 
6906 static int selinux_bpf_prog(struct bpf_prog *prog)
6907 {
6908 	u32 sid = current_sid();
6909 	struct bpf_security_struct *bpfsec;
6910 
6911 	bpfsec = prog->aux->security;
6912 	return avc_has_perm(sid, bpfsec->sid, SECCLASS_BPF,
6913 			    BPF__PROG_RUN, NULL);
6914 }
6915 
6916 static int selinux_bpf_map_create(struct bpf_map *map, union bpf_attr *attr,
6917 				  struct bpf_token *token)
6918 {
6919 	struct bpf_security_struct *bpfsec;
6920 
6921 	bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL);
6922 	if (!bpfsec)
6923 		return -ENOMEM;
6924 
6925 	bpfsec->sid = current_sid();
6926 	map->security = bpfsec;
6927 
6928 	return 0;
6929 }
6930 
6931 static void selinux_bpf_map_free(struct bpf_map *map)
6932 {
6933 	struct bpf_security_struct *bpfsec = map->security;
6934 
6935 	map->security = NULL;
6936 	kfree(bpfsec);
6937 }
6938 
6939 static int selinux_bpf_prog_load(struct bpf_prog *prog, union bpf_attr *attr,
6940 				 struct bpf_token *token)
6941 {
6942 	struct bpf_security_struct *bpfsec;
6943 
6944 	bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL);
6945 	if (!bpfsec)
6946 		return -ENOMEM;
6947 
6948 	bpfsec->sid = current_sid();
6949 	prog->aux->security = bpfsec;
6950 
6951 	return 0;
6952 }
6953 
6954 static void selinux_bpf_prog_free(struct bpf_prog *prog)
6955 {
6956 	struct bpf_security_struct *bpfsec = prog->aux->security;
6957 
6958 	prog->aux->security = NULL;
6959 	kfree(bpfsec);
6960 }
6961 
6962 static int selinux_bpf_token_create(struct bpf_token *token, union bpf_attr *attr,
6963 				    struct path *path)
6964 {
6965 	struct bpf_security_struct *bpfsec;
6966 
6967 	bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL);
6968 	if (!bpfsec)
6969 		return -ENOMEM;
6970 
6971 	bpfsec->sid = current_sid();
6972 	token->security = bpfsec;
6973 
6974 	return 0;
6975 }
6976 
6977 static void selinux_bpf_token_free(struct bpf_token *token)
6978 {
6979 	struct bpf_security_struct *bpfsec = token->security;
6980 
6981 	token->security = NULL;
6982 	kfree(bpfsec);
6983 }
6984 #endif
6985 
6986 struct lsm_blob_sizes selinux_blob_sizes __ro_after_init = {
6987 	.lbs_cred = sizeof(struct task_security_struct),
6988 	.lbs_file = sizeof(struct file_security_struct),
6989 	.lbs_inode = sizeof(struct inode_security_struct),
6990 	.lbs_ipc = sizeof(struct ipc_security_struct),
6991 	.lbs_msg_msg = sizeof(struct msg_security_struct),
6992 	.lbs_superblock = sizeof(struct superblock_security_struct),
6993 	.lbs_xattr_count = SELINUX_INODE_INIT_XATTRS,
6994 };
6995 
6996 #ifdef CONFIG_PERF_EVENTS
6997 static int selinux_perf_event_open(struct perf_event_attr *attr, int type)
6998 {
6999 	u32 requested, sid = current_sid();
7000 
7001 	if (type == PERF_SECURITY_OPEN)
7002 		requested = PERF_EVENT__OPEN;
7003 	else if (type == PERF_SECURITY_CPU)
7004 		requested = PERF_EVENT__CPU;
7005 	else if (type == PERF_SECURITY_KERNEL)
7006 		requested = PERF_EVENT__KERNEL;
7007 	else if (type == PERF_SECURITY_TRACEPOINT)
7008 		requested = PERF_EVENT__TRACEPOINT;
7009 	else
7010 		return -EINVAL;
7011 
7012 	return avc_has_perm(sid, sid, SECCLASS_PERF_EVENT,
7013 			    requested, NULL);
7014 }
7015 
7016 static int selinux_perf_event_alloc(struct perf_event *event)
7017 {
7018 	struct perf_event_security_struct *perfsec;
7019 
7020 	perfsec = kzalloc(sizeof(*perfsec), GFP_KERNEL);
7021 	if (!perfsec)
7022 		return -ENOMEM;
7023 
7024 	perfsec->sid = current_sid();
7025 	event->security = perfsec;
7026 
7027 	return 0;
7028 }
7029 
7030 static void selinux_perf_event_free(struct perf_event *event)
7031 {
7032 	struct perf_event_security_struct *perfsec = event->security;
7033 
7034 	event->security = NULL;
7035 	kfree(perfsec);
7036 }
7037 
7038 static int selinux_perf_event_read(struct perf_event *event)
7039 {
7040 	struct perf_event_security_struct *perfsec = event->security;
7041 	u32 sid = current_sid();
7042 
7043 	return avc_has_perm(sid, perfsec->sid,
7044 			    SECCLASS_PERF_EVENT, PERF_EVENT__READ, NULL);
7045 }
7046 
7047 static int selinux_perf_event_write(struct perf_event *event)
7048 {
7049 	struct perf_event_security_struct *perfsec = event->security;
7050 	u32 sid = current_sid();
7051 
7052 	return avc_has_perm(sid, perfsec->sid,
7053 			    SECCLASS_PERF_EVENT, PERF_EVENT__WRITE, NULL);
7054 }
7055 #endif
7056 
7057 #ifdef CONFIG_IO_URING
7058 /**
7059  * selinux_uring_override_creds - check the requested cred override
7060  * @new: the target creds
7061  *
7062  * Check to see if the current task is allowed to override it's credentials
7063  * to service an io_uring operation.
7064  */
7065 static int selinux_uring_override_creds(const struct cred *new)
7066 {
7067 	return avc_has_perm(current_sid(), cred_sid(new),
7068 			    SECCLASS_IO_URING, IO_URING__OVERRIDE_CREDS, NULL);
7069 }
7070 
7071 /**
7072  * selinux_uring_sqpoll - check if a io_uring polling thread can be created
7073  *
7074  * Check to see if the current task is allowed to create a new io_uring
7075  * kernel polling thread.
7076  */
7077 static int selinux_uring_sqpoll(void)
7078 {
7079 	u32 sid = current_sid();
7080 
7081 	return avc_has_perm(sid, sid,
7082 			    SECCLASS_IO_URING, IO_URING__SQPOLL, NULL);
7083 }
7084 
7085 /**
7086  * selinux_uring_cmd - check if IORING_OP_URING_CMD is allowed
7087  * @ioucmd: the io_uring command structure
7088  *
7089  * Check to see if the current domain is allowed to execute an
7090  * IORING_OP_URING_CMD against the device/file specified in @ioucmd.
7091  *
7092  */
7093 static int selinux_uring_cmd(struct io_uring_cmd *ioucmd)
7094 {
7095 	struct file *file = ioucmd->file;
7096 	struct inode *inode = file_inode(file);
7097 	struct inode_security_struct *isec = selinux_inode(inode);
7098 	struct common_audit_data ad;
7099 
7100 	ad.type = LSM_AUDIT_DATA_FILE;
7101 	ad.u.file = file;
7102 
7103 	return avc_has_perm(current_sid(), isec->sid,
7104 			    SECCLASS_IO_URING, IO_URING__CMD, &ad);
7105 }
7106 #endif /* CONFIG_IO_URING */
7107 
7108 static const struct lsm_id selinux_lsmid = {
7109 	.name = "selinux",
7110 	.id = LSM_ID_SELINUX,
7111 };
7112 
7113 /*
7114  * IMPORTANT NOTE: When adding new hooks, please be careful to keep this order:
7115  * 1. any hooks that don't belong to (2.) or (3.) below,
7116  * 2. hooks that both access structures allocated by other hooks, and allocate
7117  *    structures that can be later accessed by other hooks (mostly "cloning"
7118  *    hooks),
7119  * 3. hooks that only allocate structures that can be later accessed by other
7120  *    hooks ("allocating" hooks).
7121  *
7122  * Please follow block comment delimiters in the list to keep this order.
7123  */
7124 static struct security_hook_list selinux_hooks[] __ro_after_init = {
7125 	LSM_HOOK_INIT(binder_set_context_mgr, selinux_binder_set_context_mgr),
7126 	LSM_HOOK_INIT(binder_transaction, selinux_binder_transaction),
7127 	LSM_HOOK_INIT(binder_transfer_binder, selinux_binder_transfer_binder),
7128 	LSM_HOOK_INIT(binder_transfer_file, selinux_binder_transfer_file),
7129 
7130 	LSM_HOOK_INIT(ptrace_access_check, selinux_ptrace_access_check),
7131 	LSM_HOOK_INIT(ptrace_traceme, selinux_ptrace_traceme),
7132 	LSM_HOOK_INIT(capget, selinux_capget),
7133 	LSM_HOOK_INIT(capset, selinux_capset),
7134 	LSM_HOOK_INIT(capable, selinux_capable),
7135 	LSM_HOOK_INIT(quotactl, selinux_quotactl),
7136 	LSM_HOOK_INIT(quota_on, selinux_quota_on),
7137 	LSM_HOOK_INIT(syslog, selinux_syslog),
7138 	LSM_HOOK_INIT(vm_enough_memory, selinux_vm_enough_memory),
7139 
7140 	LSM_HOOK_INIT(netlink_send, selinux_netlink_send),
7141 
7142 	LSM_HOOK_INIT(bprm_creds_for_exec, selinux_bprm_creds_for_exec),
7143 	LSM_HOOK_INIT(bprm_committing_creds, selinux_bprm_committing_creds),
7144 	LSM_HOOK_INIT(bprm_committed_creds, selinux_bprm_committed_creds),
7145 
7146 	LSM_HOOK_INIT(sb_free_mnt_opts, selinux_free_mnt_opts),
7147 	LSM_HOOK_INIT(sb_mnt_opts_compat, selinux_sb_mnt_opts_compat),
7148 	LSM_HOOK_INIT(sb_remount, selinux_sb_remount),
7149 	LSM_HOOK_INIT(sb_kern_mount, selinux_sb_kern_mount),
7150 	LSM_HOOK_INIT(sb_show_options, selinux_sb_show_options),
7151 	LSM_HOOK_INIT(sb_statfs, selinux_sb_statfs),
7152 	LSM_HOOK_INIT(sb_mount, selinux_mount),
7153 	LSM_HOOK_INIT(sb_umount, selinux_umount),
7154 	LSM_HOOK_INIT(sb_set_mnt_opts, selinux_set_mnt_opts),
7155 	LSM_HOOK_INIT(sb_clone_mnt_opts, selinux_sb_clone_mnt_opts),
7156 
7157 	LSM_HOOK_INIT(move_mount, selinux_move_mount),
7158 
7159 	LSM_HOOK_INIT(dentry_init_security, selinux_dentry_init_security),
7160 	LSM_HOOK_INIT(dentry_create_files_as, selinux_dentry_create_files_as),
7161 
7162 	LSM_HOOK_INIT(inode_free_security, selinux_inode_free_security),
7163 	LSM_HOOK_INIT(inode_init_security, selinux_inode_init_security),
7164 	LSM_HOOK_INIT(inode_init_security_anon, selinux_inode_init_security_anon),
7165 	LSM_HOOK_INIT(inode_create, selinux_inode_create),
7166 	LSM_HOOK_INIT(inode_link, selinux_inode_link),
7167 	LSM_HOOK_INIT(inode_unlink, selinux_inode_unlink),
7168 	LSM_HOOK_INIT(inode_symlink, selinux_inode_symlink),
7169 	LSM_HOOK_INIT(inode_mkdir, selinux_inode_mkdir),
7170 	LSM_HOOK_INIT(inode_rmdir, selinux_inode_rmdir),
7171 	LSM_HOOK_INIT(inode_mknod, selinux_inode_mknod),
7172 	LSM_HOOK_INIT(inode_rename, selinux_inode_rename),
7173 	LSM_HOOK_INIT(inode_readlink, selinux_inode_readlink),
7174 	LSM_HOOK_INIT(inode_follow_link, selinux_inode_follow_link),
7175 	LSM_HOOK_INIT(inode_permission, selinux_inode_permission),
7176 	LSM_HOOK_INIT(inode_setattr, selinux_inode_setattr),
7177 	LSM_HOOK_INIT(inode_getattr, selinux_inode_getattr),
7178 	LSM_HOOK_INIT(inode_setxattr, selinux_inode_setxattr),
7179 	LSM_HOOK_INIT(inode_post_setxattr, selinux_inode_post_setxattr),
7180 	LSM_HOOK_INIT(inode_getxattr, selinux_inode_getxattr),
7181 	LSM_HOOK_INIT(inode_listxattr, selinux_inode_listxattr),
7182 	LSM_HOOK_INIT(inode_removexattr, selinux_inode_removexattr),
7183 	LSM_HOOK_INIT(inode_set_acl, selinux_inode_set_acl),
7184 	LSM_HOOK_INIT(inode_get_acl, selinux_inode_get_acl),
7185 	LSM_HOOK_INIT(inode_remove_acl, selinux_inode_remove_acl),
7186 	LSM_HOOK_INIT(inode_getsecurity, selinux_inode_getsecurity),
7187 	LSM_HOOK_INIT(inode_setsecurity, selinux_inode_setsecurity),
7188 	LSM_HOOK_INIT(inode_listsecurity, selinux_inode_listsecurity),
7189 	LSM_HOOK_INIT(inode_getsecid, selinux_inode_getsecid),
7190 	LSM_HOOK_INIT(inode_copy_up, selinux_inode_copy_up),
7191 	LSM_HOOK_INIT(inode_copy_up_xattr, selinux_inode_copy_up_xattr),
7192 	LSM_HOOK_INIT(path_notify, selinux_path_notify),
7193 
7194 	LSM_HOOK_INIT(kernfs_init_security, selinux_kernfs_init_security),
7195 
7196 	LSM_HOOK_INIT(file_permission, selinux_file_permission),
7197 	LSM_HOOK_INIT(file_alloc_security, selinux_file_alloc_security),
7198 	LSM_HOOK_INIT(file_ioctl, selinux_file_ioctl),
7199 	LSM_HOOK_INIT(file_ioctl_compat, selinux_file_ioctl_compat),
7200 	LSM_HOOK_INIT(mmap_file, selinux_mmap_file),
7201 	LSM_HOOK_INIT(mmap_addr, selinux_mmap_addr),
7202 	LSM_HOOK_INIT(file_mprotect, selinux_file_mprotect),
7203 	LSM_HOOK_INIT(file_lock, selinux_file_lock),
7204 	LSM_HOOK_INIT(file_fcntl, selinux_file_fcntl),
7205 	LSM_HOOK_INIT(file_set_fowner, selinux_file_set_fowner),
7206 	LSM_HOOK_INIT(file_send_sigiotask, selinux_file_send_sigiotask),
7207 	LSM_HOOK_INIT(file_receive, selinux_file_receive),
7208 
7209 	LSM_HOOK_INIT(file_open, selinux_file_open),
7210 
7211 	LSM_HOOK_INIT(task_alloc, selinux_task_alloc),
7212 	LSM_HOOK_INIT(cred_prepare, selinux_cred_prepare),
7213 	LSM_HOOK_INIT(cred_transfer, selinux_cred_transfer),
7214 	LSM_HOOK_INIT(cred_getsecid, selinux_cred_getsecid),
7215 	LSM_HOOK_INIT(kernel_act_as, selinux_kernel_act_as),
7216 	LSM_HOOK_INIT(kernel_create_files_as, selinux_kernel_create_files_as),
7217 	LSM_HOOK_INIT(kernel_module_request, selinux_kernel_module_request),
7218 	LSM_HOOK_INIT(kernel_load_data, selinux_kernel_load_data),
7219 	LSM_HOOK_INIT(kernel_read_file, selinux_kernel_read_file),
7220 	LSM_HOOK_INIT(task_setpgid, selinux_task_setpgid),
7221 	LSM_HOOK_INIT(task_getpgid, selinux_task_getpgid),
7222 	LSM_HOOK_INIT(task_getsid, selinux_task_getsid),
7223 	LSM_HOOK_INIT(current_getsecid_subj, selinux_current_getsecid_subj),
7224 	LSM_HOOK_INIT(task_getsecid_obj, selinux_task_getsecid_obj),
7225 	LSM_HOOK_INIT(task_setnice, selinux_task_setnice),
7226 	LSM_HOOK_INIT(task_setioprio, selinux_task_setioprio),
7227 	LSM_HOOK_INIT(task_getioprio, selinux_task_getioprio),
7228 	LSM_HOOK_INIT(task_prlimit, selinux_task_prlimit),
7229 	LSM_HOOK_INIT(task_setrlimit, selinux_task_setrlimit),
7230 	LSM_HOOK_INIT(task_setscheduler, selinux_task_setscheduler),
7231 	LSM_HOOK_INIT(task_getscheduler, selinux_task_getscheduler),
7232 	LSM_HOOK_INIT(task_movememory, selinux_task_movememory),
7233 	LSM_HOOK_INIT(task_kill, selinux_task_kill),
7234 	LSM_HOOK_INIT(task_to_inode, selinux_task_to_inode),
7235 	LSM_HOOK_INIT(userns_create, selinux_userns_create),
7236 
7237 	LSM_HOOK_INIT(ipc_permission, selinux_ipc_permission),
7238 	LSM_HOOK_INIT(ipc_getsecid, selinux_ipc_getsecid),
7239 
7240 	LSM_HOOK_INIT(msg_queue_associate, selinux_msg_queue_associate),
7241 	LSM_HOOK_INIT(msg_queue_msgctl, selinux_msg_queue_msgctl),
7242 	LSM_HOOK_INIT(msg_queue_msgsnd, selinux_msg_queue_msgsnd),
7243 	LSM_HOOK_INIT(msg_queue_msgrcv, selinux_msg_queue_msgrcv),
7244 
7245 	LSM_HOOK_INIT(shm_associate, selinux_shm_associate),
7246 	LSM_HOOK_INIT(shm_shmctl, selinux_shm_shmctl),
7247 	LSM_HOOK_INIT(shm_shmat, selinux_shm_shmat),
7248 
7249 	LSM_HOOK_INIT(sem_associate, selinux_sem_associate),
7250 	LSM_HOOK_INIT(sem_semctl, selinux_sem_semctl),
7251 	LSM_HOOK_INIT(sem_semop, selinux_sem_semop),
7252 
7253 	LSM_HOOK_INIT(d_instantiate, selinux_d_instantiate),
7254 
7255 	LSM_HOOK_INIT(getselfattr, selinux_getselfattr),
7256 	LSM_HOOK_INIT(setselfattr, selinux_setselfattr),
7257 	LSM_HOOK_INIT(getprocattr, selinux_getprocattr),
7258 	LSM_HOOK_INIT(setprocattr, selinux_setprocattr),
7259 
7260 	LSM_HOOK_INIT(ismaclabel, selinux_ismaclabel),
7261 	LSM_HOOK_INIT(secctx_to_secid, selinux_secctx_to_secid),
7262 	LSM_HOOK_INIT(release_secctx, selinux_release_secctx),
7263 	LSM_HOOK_INIT(inode_invalidate_secctx, selinux_inode_invalidate_secctx),
7264 	LSM_HOOK_INIT(inode_notifysecctx, selinux_inode_notifysecctx),
7265 	LSM_HOOK_INIT(inode_setsecctx, selinux_inode_setsecctx),
7266 
7267 	LSM_HOOK_INIT(unix_stream_connect, selinux_socket_unix_stream_connect),
7268 	LSM_HOOK_INIT(unix_may_send, selinux_socket_unix_may_send),
7269 
7270 	LSM_HOOK_INIT(socket_create, selinux_socket_create),
7271 	LSM_HOOK_INIT(socket_post_create, selinux_socket_post_create),
7272 	LSM_HOOK_INIT(socket_socketpair, selinux_socket_socketpair),
7273 	LSM_HOOK_INIT(socket_bind, selinux_socket_bind),
7274 	LSM_HOOK_INIT(socket_connect, selinux_socket_connect),
7275 	LSM_HOOK_INIT(socket_listen, selinux_socket_listen),
7276 	LSM_HOOK_INIT(socket_accept, selinux_socket_accept),
7277 	LSM_HOOK_INIT(socket_sendmsg, selinux_socket_sendmsg),
7278 	LSM_HOOK_INIT(socket_recvmsg, selinux_socket_recvmsg),
7279 	LSM_HOOK_INIT(socket_getsockname, selinux_socket_getsockname),
7280 	LSM_HOOK_INIT(socket_getpeername, selinux_socket_getpeername),
7281 	LSM_HOOK_INIT(socket_getsockopt, selinux_socket_getsockopt),
7282 	LSM_HOOK_INIT(socket_setsockopt, selinux_socket_setsockopt),
7283 	LSM_HOOK_INIT(socket_shutdown, selinux_socket_shutdown),
7284 	LSM_HOOK_INIT(socket_sock_rcv_skb, selinux_socket_sock_rcv_skb),
7285 	LSM_HOOK_INIT(socket_getpeersec_stream,
7286 			selinux_socket_getpeersec_stream),
7287 	LSM_HOOK_INIT(socket_getpeersec_dgram, selinux_socket_getpeersec_dgram),
7288 	LSM_HOOK_INIT(sk_free_security, selinux_sk_free_security),
7289 	LSM_HOOK_INIT(sk_clone_security, selinux_sk_clone_security),
7290 	LSM_HOOK_INIT(sk_getsecid, selinux_sk_getsecid),
7291 	LSM_HOOK_INIT(sock_graft, selinux_sock_graft),
7292 	LSM_HOOK_INIT(sctp_assoc_request, selinux_sctp_assoc_request),
7293 	LSM_HOOK_INIT(sctp_sk_clone, selinux_sctp_sk_clone),
7294 	LSM_HOOK_INIT(sctp_bind_connect, selinux_sctp_bind_connect),
7295 	LSM_HOOK_INIT(sctp_assoc_established, selinux_sctp_assoc_established),
7296 	LSM_HOOK_INIT(mptcp_add_subflow, selinux_mptcp_add_subflow),
7297 	LSM_HOOK_INIT(inet_conn_request, selinux_inet_conn_request),
7298 	LSM_HOOK_INIT(inet_csk_clone, selinux_inet_csk_clone),
7299 	LSM_HOOK_INIT(inet_conn_established, selinux_inet_conn_established),
7300 	LSM_HOOK_INIT(secmark_relabel_packet, selinux_secmark_relabel_packet),
7301 	LSM_HOOK_INIT(secmark_refcount_inc, selinux_secmark_refcount_inc),
7302 	LSM_HOOK_INIT(secmark_refcount_dec, selinux_secmark_refcount_dec),
7303 	LSM_HOOK_INIT(req_classify_flow, selinux_req_classify_flow),
7304 	LSM_HOOK_INIT(tun_dev_free_security, selinux_tun_dev_free_security),
7305 	LSM_HOOK_INIT(tun_dev_create, selinux_tun_dev_create),
7306 	LSM_HOOK_INIT(tun_dev_attach_queue, selinux_tun_dev_attach_queue),
7307 	LSM_HOOK_INIT(tun_dev_attach, selinux_tun_dev_attach),
7308 	LSM_HOOK_INIT(tun_dev_open, selinux_tun_dev_open),
7309 #ifdef CONFIG_SECURITY_INFINIBAND
7310 	LSM_HOOK_INIT(ib_pkey_access, selinux_ib_pkey_access),
7311 	LSM_HOOK_INIT(ib_endport_manage_subnet,
7312 		      selinux_ib_endport_manage_subnet),
7313 	LSM_HOOK_INIT(ib_free_security, selinux_ib_free_security),
7314 #endif
7315 #ifdef CONFIG_SECURITY_NETWORK_XFRM
7316 	LSM_HOOK_INIT(xfrm_policy_free_security, selinux_xfrm_policy_free),
7317 	LSM_HOOK_INIT(xfrm_policy_delete_security, selinux_xfrm_policy_delete),
7318 	LSM_HOOK_INIT(xfrm_state_free_security, selinux_xfrm_state_free),
7319 	LSM_HOOK_INIT(xfrm_state_delete_security, selinux_xfrm_state_delete),
7320 	LSM_HOOK_INIT(xfrm_policy_lookup, selinux_xfrm_policy_lookup),
7321 	LSM_HOOK_INIT(xfrm_state_pol_flow_match,
7322 			selinux_xfrm_state_pol_flow_match),
7323 	LSM_HOOK_INIT(xfrm_decode_session, selinux_xfrm_decode_session),
7324 #endif
7325 
7326 #ifdef CONFIG_KEYS
7327 	LSM_HOOK_INIT(key_free, selinux_key_free),
7328 	LSM_HOOK_INIT(key_permission, selinux_key_permission),
7329 	LSM_HOOK_INIT(key_getsecurity, selinux_key_getsecurity),
7330 #ifdef CONFIG_KEY_NOTIFICATIONS
7331 	LSM_HOOK_INIT(watch_key, selinux_watch_key),
7332 #endif
7333 #endif
7334 
7335 #ifdef CONFIG_AUDIT
7336 	LSM_HOOK_INIT(audit_rule_known, selinux_audit_rule_known),
7337 	LSM_HOOK_INIT(audit_rule_match, selinux_audit_rule_match),
7338 	LSM_HOOK_INIT(audit_rule_free, selinux_audit_rule_free),
7339 #endif
7340 
7341 #ifdef CONFIG_BPF_SYSCALL
7342 	LSM_HOOK_INIT(bpf, selinux_bpf),
7343 	LSM_HOOK_INIT(bpf_map, selinux_bpf_map),
7344 	LSM_HOOK_INIT(bpf_prog, selinux_bpf_prog),
7345 	LSM_HOOK_INIT(bpf_map_free, selinux_bpf_map_free),
7346 	LSM_HOOK_INIT(bpf_prog_free, selinux_bpf_prog_free),
7347 	LSM_HOOK_INIT(bpf_token_free, selinux_bpf_token_free),
7348 #endif
7349 
7350 #ifdef CONFIG_PERF_EVENTS
7351 	LSM_HOOK_INIT(perf_event_open, selinux_perf_event_open),
7352 	LSM_HOOK_INIT(perf_event_free, selinux_perf_event_free),
7353 	LSM_HOOK_INIT(perf_event_read, selinux_perf_event_read),
7354 	LSM_HOOK_INIT(perf_event_write, selinux_perf_event_write),
7355 #endif
7356 
7357 #ifdef CONFIG_IO_URING
7358 	LSM_HOOK_INIT(uring_override_creds, selinux_uring_override_creds),
7359 	LSM_HOOK_INIT(uring_sqpoll, selinux_uring_sqpoll),
7360 	LSM_HOOK_INIT(uring_cmd, selinux_uring_cmd),
7361 #endif
7362 
7363 	/*
7364 	 * PUT "CLONING" (ACCESSING + ALLOCATING) HOOKS HERE
7365 	 */
7366 	LSM_HOOK_INIT(fs_context_submount, selinux_fs_context_submount),
7367 	LSM_HOOK_INIT(fs_context_dup, selinux_fs_context_dup),
7368 	LSM_HOOK_INIT(fs_context_parse_param, selinux_fs_context_parse_param),
7369 	LSM_HOOK_INIT(sb_eat_lsm_opts, selinux_sb_eat_lsm_opts),
7370 #ifdef CONFIG_SECURITY_NETWORK_XFRM
7371 	LSM_HOOK_INIT(xfrm_policy_clone_security, selinux_xfrm_policy_clone),
7372 #endif
7373 
7374 	/*
7375 	 * PUT "ALLOCATING" HOOKS HERE
7376 	 */
7377 	LSM_HOOK_INIT(msg_msg_alloc_security, selinux_msg_msg_alloc_security),
7378 	LSM_HOOK_INIT(msg_queue_alloc_security,
7379 		      selinux_msg_queue_alloc_security),
7380 	LSM_HOOK_INIT(shm_alloc_security, selinux_shm_alloc_security),
7381 	LSM_HOOK_INIT(sb_alloc_security, selinux_sb_alloc_security),
7382 	LSM_HOOK_INIT(inode_alloc_security, selinux_inode_alloc_security),
7383 	LSM_HOOK_INIT(sem_alloc_security, selinux_sem_alloc_security),
7384 	LSM_HOOK_INIT(secid_to_secctx, selinux_secid_to_secctx),
7385 	LSM_HOOK_INIT(inode_getsecctx, selinux_inode_getsecctx),
7386 	LSM_HOOK_INIT(sk_alloc_security, selinux_sk_alloc_security),
7387 	LSM_HOOK_INIT(tun_dev_alloc_security, selinux_tun_dev_alloc_security),
7388 #ifdef CONFIG_SECURITY_INFINIBAND
7389 	LSM_HOOK_INIT(ib_alloc_security, selinux_ib_alloc_security),
7390 #endif
7391 #ifdef CONFIG_SECURITY_NETWORK_XFRM
7392 	LSM_HOOK_INIT(xfrm_policy_alloc_security, selinux_xfrm_policy_alloc),
7393 	LSM_HOOK_INIT(xfrm_state_alloc, selinux_xfrm_state_alloc),
7394 	LSM_HOOK_INIT(xfrm_state_alloc_acquire,
7395 		      selinux_xfrm_state_alloc_acquire),
7396 #endif
7397 #ifdef CONFIG_KEYS
7398 	LSM_HOOK_INIT(key_alloc, selinux_key_alloc),
7399 #endif
7400 #ifdef CONFIG_AUDIT
7401 	LSM_HOOK_INIT(audit_rule_init, selinux_audit_rule_init),
7402 #endif
7403 #ifdef CONFIG_BPF_SYSCALL
7404 	LSM_HOOK_INIT(bpf_map_create, selinux_bpf_map_create),
7405 	LSM_HOOK_INIT(bpf_prog_load, selinux_bpf_prog_load),
7406 	LSM_HOOK_INIT(bpf_token_create, selinux_bpf_token_create),
7407 #endif
7408 #ifdef CONFIG_PERF_EVENTS
7409 	LSM_HOOK_INIT(perf_event_alloc, selinux_perf_event_alloc),
7410 #endif
7411 };
7412 
7413 static __init int selinux_init(void)
7414 {
7415 	pr_info("SELinux:  Initializing.\n");
7416 
7417 	memset(&selinux_state, 0, sizeof(selinux_state));
7418 	enforcing_set(selinux_enforcing_boot);
7419 	selinux_avc_init();
7420 	mutex_init(&selinux_state.status_lock);
7421 	mutex_init(&selinux_state.policy_mutex);
7422 
7423 	/* Set the security state for the initial task. */
7424 	cred_init_security();
7425 
7426 	default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC);
7427 	if (!default_noexec)
7428 		pr_notice("SELinux:  virtual memory is executable by default\n");
7429 
7430 	avc_init();
7431 
7432 	avtab_cache_init();
7433 
7434 	ebitmap_cache_init();
7435 
7436 	hashtab_cache_init();
7437 
7438 	security_add_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks),
7439 			   &selinux_lsmid);
7440 
7441 	if (avc_add_callback(selinux_netcache_avc_callback, AVC_CALLBACK_RESET))
7442 		panic("SELinux: Unable to register AVC netcache callback\n");
7443 
7444 	if (avc_add_callback(selinux_lsm_notifier_avc_callback, AVC_CALLBACK_RESET))
7445 		panic("SELinux: Unable to register AVC LSM notifier callback\n");
7446 
7447 	if (selinux_enforcing_boot)
7448 		pr_debug("SELinux:  Starting in enforcing mode\n");
7449 	else
7450 		pr_debug("SELinux:  Starting in permissive mode\n");
7451 
7452 	fs_validate_description("selinux", selinux_fs_parameters);
7453 
7454 	return 0;
7455 }
7456 
7457 static void delayed_superblock_init(struct super_block *sb, void *unused)
7458 {
7459 	selinux_set_mnt_opts(sb, NULL, 0, NULL);
7460 }
7461 
7462 void selinux_complete_init(void)
7463 {
7464 	pr_debug("SELinux:  Completing initialization.\n");
7465 
7466 	/* Set up any superblocks initialized prior to the policy load. */
7467 	pr_debug("SELinux:  Setting up existing superblocks.\n");
7468 	iterate_supers(delayed_superblock_init, NULL);
7469 }
7470 
7471 /* SELinux requires early initialization in order to label
7472    all processes and objects when they are created. */
7473 DEFINE_LSM(selinux) = {
7474 	.name = "selinux",
7475 	.flags = LSM_FLAG_LEGACY_MAJOR | LSM_FLAG_EXCLUSIVE,
7476 	.enabled = &selinux_enabled_boot,
7477 	.blobs = &selinux_blob_sizes,
7478 	.init = selinux_init,
7479 };
7480 
7481 #if defined(CONFIG_NETFILTER)
7482 static const struct nf_hook_ops selinux_nf_ops[] = {
7483 	{
7484 		.hook =		selinux_ip_postroute,
7485 		.pf =		NFPROTO_IPV4,
7486 		.hooknum =	NF_INET_POST_ROUTING,
7487 		.priority =	NF_IP_PRI_SELINUX_LAST,
7488 	},
7489 	{
7490 		.hook =		selinux_ip_forward,
7491 		.pf =		NFPROTO_IPV4,
7492 		.hooknum =	NF_INET_FORWARD,
7493 		.priority =	NF_IP_PRI_SELINUX_FIRST,
7494 	},
7495 	{
7496 		.hook =		selinux_ip_output,
7497 		.pf =		NFPROTO_IPV4,
7498 		.hooknum =	NF_INET_LOCAL_OUT,
7499 		.priority =	NF_IP_PRI_SELINUX_FIRST,
7500 	},
7501 #if IS_ENABLED(CONFIG_IPV6)
7502 	{
7503 		.hook =		selinux_ip_postroute,
7504 		.pf =		NFPROTO_IPV6,
7505 		.hooknum =	NF_INET_POST_ROUTING,
7506 		.priority =	NF_IP6_PRI_SELINUX_LAST,
7507 	},
7508 	{
7509 		.hook =		selinux_ip_forward,
7510 		.pf =		NFPROTO_IPV6,
7511 		.hooknum =	NF_INET_FORWARD,
7512 		.priority =	NF_IP6_PRI_SELINUX_FIRST,
7513 	},
7514 	{
7515 		.hook =		selinux_ip_output,
7516 		.pf =		NFPROTO_IPV6,
7517 		.hooknum =	NF_INET_LOCAL_OUT,
7518 		.priority =	NF_IP6_PRI_SELINUX_FIRST,
7519 	},
7520 #endif	/* IPV6 */
7521 };
7522 
7523 static int __net_init selinux_nf_register(struct net *net)
7524 {
7525 	return nf_register_net_hooks(net, selinux_nf_ops,
7526 				     ARRAY_SIZE(selinux_nf_ops));
7527 }
7528 
7529 static void __net_exit selinux_nf_unregister(struct net *net)
7530 {
7531 	nf_unregister_net_hooks(net, selinux_nf_ops,
7532 				ARRAY_SIZE(selinux_nf_ops));
7533 }
7534 
7535 static struct pernet_operations selinux_net_ops = {
7536 	.init = selinux_nf_register,
7537 	.exit = selinux_nf_unregister,
7538 };
7539 
7540 static int __init selinux_nf_ip_init(void)
7541 {
7542 	int err;
7543 
7544 	if (!selinux_enabled_boot)
7545 		return 0;
7546 
7547 	pr_debug("SELinux:  Registering netfilter hooks\n");
7548 
7549 	err = register_pernet_subsys(&selinux_net_ops);
7550 	if (err)
7551 		panic("SELinux: register_pernet_subsys: error %d\n", err);
7552 
7553 	return 0;
7554 }
7555 __initcall(selinux_nf_ip_init);
7556 #endif /* CONFIG_NETFILTER */
7557