1 /* 2 * NSA Security-Enhanced Linux (SELinux) security module 3 * 4 * This file contains the SELinux hook function implementations. 5 * 6 * Authors: Stephen Smalley, <sds@epoch.ncsc.mil> 7 * Chris Vance, <cvance@nai.com> 8 * Wayne Salamon, <wsalamon@nai.com> 9 * James Morris <jmorris@redhat.com> 10 * 11 * Copyright (C) 2001,2002 Networks Associates Technology, Inc. 12 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com> 13 * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc. 14 * <dgoeddel@trustedcs.com> 15 * Copyright (C) 2006 Hewlett-Packard Development Company, L.P. 16 * Paul Moore, <paul.moore@hp.com> 17 * 18 * This program is free software; you can redistribute it and/or modify 19 * it under the terms of the GNU General Public License version 2, 20 * as published by the Free Software Foundation. 21 */ 22 23 #include <linux/module.h> 24 #include <linux/init.h> 25 #include <linux/kernel.h> 26 #include <linux/ptrace.h> 27 #include <linux/errno.h> 28 #include <linux/sched.h> 29 #include <linux/security.h> 30 #include <linux/xattr.h> 31 #include <linux/capability.h> 32 #include <linux/unistd.h> 33 #include <linux/mm.h> 34 #include <linux/mman.h> 35 #include <linux/slab.h> 36 #include <linux/pagemap.h> 37 #include <linux/swap.h> 38 #include <linux/spinlock.h> 39 #include <linux/syscalls.h> 40 #include <linux/file.h> 41 #include <linux/namei.h> 42 #include <linux/mount.h> 43 #include <linux/ext2_fs.h> 44 #include <linux/proc_fs.h> 45 #include <linux/kd.h> 46 #include <linux/netfilter_ipv4.h> 47 #include <linux/netfilter_ipv6.h> 48 #include <linux/tty.h> 49 #include <net/icmp.h> 50 #include <net/ip.h> /* for local_port_range[] */ 51 #include <net/tcp.h> /* struct or_callable used in sock_rcv_skb */ 52 #include <asm/uaccess.h> 53 #include <asm/ioctls.h> 54 #include <linux/bitops.h> 55 #include <linux/interrupt.h> 56 #include <linux/netdevice.h> /* for network interface checks */ 57 #include <linux/netlink.h> 58 #include <linux/tcp.h> 59 #include <linux/udp.h> 60 #include <linux/dccp.h> 61 #include <linux/quota.h> 62 #include <linux/un.h> /* for Unix socket types */ 63 #include <net/af_unix.h> /* for Unix socket types */ 64 #include <linux/parser.h> 65 #include <linux/nfs_mount.h> 66 #include <net/ipv6.h> 67 #include <linux/hugetlb.h> 68 #include <linux/personality.h> 69 #include <linux/sysctl.h> 70 #include <linux/audit.h> 71 #include <linux/string.h> 72 #include <linux/selinux.h> 73 #include <linux/mutex.h> 74 75 #include "avc.h" 76 #include "objsec.h" 77 #include "netif.h" 78 #include "xfrm.h" 79 #include "netlabel.h" 80 81 #define XATTR_SELINUX_SUFFIX "selinux" 82 #define XATTR_NAME_SELINUX XATTR_SECURITY_PREFIX XATTR_SELINUX_SUFFIX 83 84 extern unsigned int policydb_loaded_version; 85 extern int selinux_nlmsg_lookup(u16 sclass, u16 nlmsg_type, u32 *perm); 86 extern int selinux_compat_net; 87 88 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP 89 int selinux_enforcing = 0; 90 91 static int __init enforcing_setup(char *str) 92 { 93 selinux_enforcing = simple_strtol(str,NULL,0); 94 return 1; 95 } 96 __setup("enforcing=", enforcing_setup); 97 #endif 98 99 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM 100 int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE; 101 102 static int __init selinux_enabled_setup(char *str) 103 { 104 selinux_enabled = simple_strtol(str, NULL, 0); 105 return 1; 106 } 107 __setup("selinux=", selinux_enabled_setup); 108 #else 109 int selinux_enabled = 1; 110 #endif 111 112 /* Original (dummy) security module. */ 113 static struct security_operations *original_ops = NULL; 114 115 /* Minimal support for a secondary security module, 116 just to allow the use of the dummy or capability modules. 117 The owlsm module can alternatively be used as a secondary 118 module as long as CONFIG_OWLSM_FD is not enabled. */ 119 static struct security_operations *secondary_ops = NULL; 120 121 /* Lists of inode and superblock security structures initialized 122 before the policy was loaded. */ 123 static LIST_HEAD(superblock_security_head); 124 static DEFINE_SPINLOCK(sb_security_lock); 125 126 static struct kmem_cache *sel_inode_cache; 127 128 /* Return security context for a given sid or just the context 129 length if the buffer is null or length is 0 */ 130 static int selinux_getsecurity(u32 sid, void *buffer, size_t size) 131 { 132 char *context; 133 unsigned len; 134 int rc; 135 136 rc = security_sid_to_context(sid, &context, &len); 137 if (rc) 138 return rc; 139 140 if (!buffer || !size) 141 goto getsecurity_exit; 142 143 if (size < len) { 144 len = -ERANGE; 145 goto getsecurity_exit; 146 } 147 memcpy(buffer, context, len); 148 149 getsecurity_exit: 150 kfree(context); 151 return len; 152 } 153 154 /* Allocate and free functions for each kind of security blob. */ 155 156 static int task_alloc_security(struct task_struct *task) 157 { 158 struct task_security_struct *tsec; 159 160 tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL); 161 if (!tsec) 162 return -ENOMEM; 163 164 tsec->task = task; 165 tsec->osid = tsec->sid = tsec->ptrace_sid = SECINITSID_UNLABELED; 166 task->security = tsec; 167 168 return 0; 169 } 170 171 static void task_free_security(struct task_struct *task) 172 { 173 struct task_security_struct *tsec = task->security; 174 task->security = NULL; 175 kfree(tsec); 176 } 177 178 static int inode_alloc_security(struct inode *inode) 179 { 180 struct task_security_struct *tsec = current->security; 181 struct inode_security_struct *isec; 182 183 isec = kmem_cache_zalloc(sel_inode_cache, GFP_KERNEL); 184 if (!isec) 185 return -ENOMEM; 186 187 mutex_init(&isec->lock); 188 INIT_LIST_HEAD(&isec->list); 189 isec->inode = inode; 190 isec->sid = SECINITSID_UNLABELED; 191 isec->sclass = SECCLASS_FILE; 192 isec->task_sid = tsec->sid; 193 inode->i_security = isec; 194 195 return 0; 196 } 197 198 static void inode_free_security(struct inode *inode) 199 { 200 struct inode_security_struct *isec = inode->i_security; 201 struct superblock_security_struct *sbsec = inode->i_sb->s_security; 202 203 spin_lock(&sbsec->isec_lock); 204 if (!list_empty(&isec->list)) 205 list_del_init(&isec->list); 206 spin_unlock(&sbsec->isec_lock); 207 208 inode->i_security = NULL; 209 kmem_cache_free(sel_inode_cache, isec); 210 } 211 212 static int file_alloc_security(struct file *file) 213 { 214 struct task_security_struct *tsec = current->security; 215 struct file_security_struct *fsec; 216 217 fsec = kzalloc(sizeof(struct file_security_struct), GFP_KERNEL); 218 if (!fsec) 219 return -ENOMEM; 220 221 fsec->file = file; 222 fsec->sid = tsec->sid; 223 fsec->fown_sid = tsec->sid; 224 file->f_security = fsec; 225 226 return 0; 227 } 228 229 static void file_free_security(struct file *file) 230 { 231 struct file_security_struct *fsec = file->f_security; 232 file->f_security = NULL; 233 kfree(fsec); 234 } 235 236 static int superblock_alloc_security(struct super_block *sb) 237 { 238 struct superblock_security_struct *sbsec; 239 240 sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL); 241 if (!sbsec) 242 return -ENOMEM; 243 244 mutex_init(&sbsec->lock); 245 INIT_LIST_HEAD(&sbsec->list); 246 INIT_LIST_HEAD(&sbsec->isec_head); 247 spin_lock_init(&sbsec->isec_lock); 248 sbsec->sb = sb; 249 sbsec->sid = SECINITSID_UNLABELED; 250 sbsec->def_sid = SECINITSID_FILE; 251 sbsec->mntpoint_sid = SECINITSID_UNLABELED; 252 sb->s_security = sbsec; 253 254 return 0; 255 } 256 257 static void superblock_free_security(struct super_block *sb) 258 { 259 struct superblock_security_struct *sbsec = sb->s_security; 260 261 spin_lock(&sb_security_lock); 262 if (!list_empty(&sbsec->list)) 263 list_del_init(&sbsec->list); 264 spin_unlock(&sb_security_lock); 265 266 sb->s_security = NULL; 267 kfree(sbsec); 268 } 269 270 static int sk_alloc_security(struct sock *sk, int family, gfp_t priority) 271 { 272 struct sk_security_struct *ssec; 273 274 ssec = kzalloc(sizeof(*ssec), priority); 275 if (!ssec) 276 return -ENOMEM; 277 278 ssec->sk = sk; 279 ssec->peer_sid = SECINITSID_UNLABELED; 280 ssec->sid = SECINITSID_UNLABELED; 281 sk->sk_security = ssec; 282 283 selinux_netlbl_sk_security_init(ssec, family); 284 285 return 0; 286 } 287 288 static void sk_free_security(struct sock *sk) 289 { 290 struct sk_security_struct *ssec = sk->sk_security; 291 292 sk->sk_security = NULL; 293 kfree(ssec); 294 } 295 296 /* The security server must be initialized before 297 any labeling or access decisions can be provided. */ 298 extern int ss_initialized; 299 300 /* The file system's label must be initialized prior to use. */ 301 302 static char *labeling_behaviors[6] = { 303 "uses xattr", 304 "uses transition SIDs", 305 "uses task SIDs", 306 "uses genfs_contexts", 307 "not configured for labeling", 308 "uses mountpoint labeling", 309 }; 310 311 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry); 312 313 static inline int inode_doinit(struct inode *inode) 314 { 315 return inode_doinit_with_dentry(inode, NULL); 316 } 317 318 enum { 319 Opt_error = -1, 320 Opt_context = 1, 321 Opt_fscontext = 2, 322 Opt_defcontext = 4, 323 Opt_rootcontext = 8, 324 }; 325 326 static match_table_t tokens = { 327 {Opt_context, "context=%s"}, 328 {Opt_fscontext, "fscontext=%s"}, 329 {Opt_defcontext, "defcontext=%s"}, 330 {Opt_rootcontext, "rootcontext=%s"}, 331 {Opt_error, NULL}, 332 }; 333 334 #define SEL_MOUNT_FAIL_MSG "SELinux: duplicate or incompatible mount options\n" 335 336 static int may_context_mount_sb_relabel(u32 sid, 337 struct superblock_security_struct *sbsec, 338 struct task_security_struct *tsec) 339 { 340 int rc; 341 342 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM, 343 FILESYSTEM__RELABELFROM, NULL); 344 if (rc) 345 return rc; 346 347 rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM, 348 FILESYSTEM__RELABELTO, NULL); 349 return rc; 350 } 351 352 static int may_context_mount_inode_relabel(u32 sid, 353 struct superblock_security_struct *sbsec, 354 struct task_security_struct *tsec) 355 { 356 int rc; 357 rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM, 358 FILESYSTEM__RELABELFROM, NULL); 359 if (rc) 360 return rc; 361 362 rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, 363 FILESYSTEM__ASSOCIATE, NULL); 364 return rc; 365 } 366 367 static int try_context_mount(struct super_block *sb, void *data) 368 { 369 char *context = NULL, *defcontext = NULL; 370 char *fscontext = NULL, *rootcontext = NULL; 371 const char *name; 372 u32 sid; 373 int alloc = 0, rc = 0, seen = 0; 374 struct task_security_struct *tsec = current->security; 375 struct superblock_security_struct *sbsec = sb->s_security; 376 377 if (!data) 378 goto out; 379 380 name = sb->s_type->name; 381 382 if (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA) { 383 384 /* NFS we understand. */ 385 if (!strcmp(name, "nfs")) { 386 struct nfs_mount_data *d = data; 387 388 if (d->version < NFS_MOUNT_VERSION) 389 goto out; 390 391 if (d->context[0]) { 392 context = d->context; 393 seen |= Opt_context; 394 } 395 } else 396 goto out; 397 398 } else { 399 /* Standard string-based options. */ 400 char *p, *options = data; 401 402 while ((p = strsep(&options, "|")) != NULL) { 403 int token; 404 substring_t args[MAX_OPT_ARGS]; 405 406 if (!*p) 407 continue; 408 409 token = match_token(p, tokens, args); 410 411 switch (token) { 412 case Opt_context: 413 if (seen & (Opt_context|Opt_defcontext)) { 414 rc = -EINVAL; 415 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG); 416 goto out_free; 417 } 418 context = match_strdup(&args[0]); 419 if (!context) { 420 rc = -ENOMEM; 421 goto out_free; 422 } 423 if (!alloc) 424 alloc = 1; 425 seen |= Opt_context; 426 break; 427 428 case Opt_fscontext: 429 if (seen & Opt_fscontext) { 430 rc = -EINVAL; 431 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG); 432 goto out_free; 433 } 434 fscontext = match_strdup(&args[0]); 435 if (!fscontext) { 436 rc = -ENOMEM; 437 goto out_free; 438 } 439 if (!alloc) 440 alloc = 1; 441 seen |= Opt_fscontext; 442 break; 443 444 case Opt_rootcontext: 445 if (seen & Opt_rootcontext) { 446 rc = -EINVAL; 447 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG); 448 goto out_free; 449 } 450 rootcontext = match_strdup(&args[0]); 451 if (!rootcontext) { 452 rc = -ENOMEM; 453 goto out_free; 454 } 455 if (!alloc) 456 alloc = 1; 457 seen |= Opt_rootcontext; 458 break; 459 460 case Opt_defcontext: 461 if (sbsec->behavior != SECURITY_FS_USE_XATTR) { 462 rc = -EINVAL; 463 printk(KERN_WARNING "SELinux: " 464 "defcontext option is invalid " 465 "for this filesystem type\n"); 466 goto out_free; 467 } 468 if (seen & (Opt_context|Opt_defcontext)) { 469 rc = -EINVAL; 470 printk(KERN_WARNING SEL_MOUNT_FAIL_MSG); 471 goto out_free; 472 } 473 defcontext = match_strdup(&args[0]); 474 if (!defcontext) { 475 rc = -ENOMEM; 476 goto out_free; 477 } 478 if (!alloc) 479 alloc = 1; 480 seen |= Opt_defcontext; 481 break; 482 483 default: 484 rc = -EINVAL; 485 printk(KERN_WARNING "SELinux: unknown mount " 486 "option\n"); 487 goto out_free; 488 489 } 490 } 491 } 492 493 if (!seen) 494 goto out; 495 496 /* sets the context of the superblock for the fs being mounted. */ 497 if (fscontext) { 498 rc = security_context_to_sid(fscontext, strlen(fscontext), &sid); 499 if (rc) { 500 printk(KERN_WARNING "SELinux: security_context_to_sid" 501 "(%s) failed for (dev %s, type %s) errno=%d\n", 502 fscontext, sb->s_id, name, rc); 503 goto out_free; 504 } 505 506 rc = may_context_mount_sb_relabel(sid, sbsec, tsec); 507 if (rc) 508 goto out_free; 509 510 sbsec->sid = sid; 511 } 512 513 /* 514 * Switch to using mount point labeling behavior. 515 * sets the label used on all file below the mountpoint, and will set 516 * the superblock context if not already set. 517 */ 518 if (context) { 519 rc = security_context_to_sid(context, strlen(context), &sid); 520 if (rc) { 521 printk(KERN_WARNING "SELinux: security_context_to_sid" 522 "(%s) failed for (dev %s, type %s) errno=%d\n", 523 context, sb->s_id, name, rc); 524 goto out_free; 525 } 526 527 if (!fscontext) { 528 rc = may_context_mount_sb_relabel(sid, sbsec, tsec); 529 if (rc) 530 goto out_free; 531 sbsec->sid = sid; 532 } else { 533 rc = may_context_mount_inode_relabel(sid, sbsec, tsec); 534 if (rc) 535 goto out_free; 536 } 537 sbsec->mntpoint_sid = sid; 538 539 sbsec->behavior = SECURITY_FS_USE_MNTPOINT; 540 } 541 542 if (rootcontext) { 543 struct inode *inode = sb->s_root->d_inode; 544 struct inode_security_struct *isec = inode->i_security; 545 rc = security_context_to_sid(rootcontext, strlen(rootcontext), &sid); 546 if (rc) { 547 printk(KERN_WARNING "SELinux: security_context_to_sid" 548 "(%s) failed for (dev %s, type %s) errno=%d\n", 549 rootcontext, sb->s_id, name, rc); 550 goto out_free; 551 } 552 553 rc = may_context_mount_inode_relabel(sid, sbsec, tsec); 554 if (rc) 555 goto out_free; 556 557 isec->sid = sid; 558 isec->initialized = 1; 559 } 560 561 if (defcontext) { 562 rc = security_context_to_sid(defcontext, strlen(defcontext), &sid); 563 if (rc) { 564 printk(KERN_WARNING "SELinux: security_context_to_sid" 565 "(%s) failed for (dev %s, type %s) errno=%d\n", 566 defcontext, sb->s_id, name, rc); 567 goto out_free; 568 } 569 570 if (sid == sbsec->def_sid) 571 goto out_free; 572 573 rc = may_context_mount_inode_relabel(sid, sbsec, tsec); 574 if (rc) 575 goto out_free; 576 577 sbsec->def_sid = sid; 578 } 579 580 out_free: 581 if (alloc) { 582 kfree(context); 583 kfree(defcontext); 584 kfree(fscontext); 585 kfree(rootcontext); 586 } 587 out: 588 return rc; 589 } 590 591 static int superblock_doinit(struct super_block *sb, void *data) 592 { 593 struct superblock_security_struct *sbsec = sb->s_security; 594 struct dentry *root = sb->s_root; 595 struct inode *inode = root->d_inode; 596 int rc = 0; 597 598 mutex_lock(&sbsec->lock); 599 if (sbsec->initialized) 600 goto out; 601 602 if (!ss_initialized) { 603 /* Defer initialization until selinux_complete_init, 604 after the initial policy is loaded and the security 605 server is ready to handle calls. */ 606 spin_lock(&sb_security_lock); 607 if (list_empty(&sbsec->list)) 608 list_add(&sbsec->list, &superblock_security_head); 609 spin_unlock(&sb_security_lock); 610 goto out; 611 } 612 613 /* Determine the labeling behavior to use for this filesystem type. */ 614 rc = security_fs_use(sb->s_type->name, &sbsec->behavior, &sbsec->sid); 615 if (rc) { 616 printk(KERN_WARNING "%s: security_fs_use(%s) returned %d\n", 617 __FUNCTION__, sb->s_type->name, rc); 618 goto out; 619 } 620 621 rc = try_context_mount(sb, data); 622 if (rc) 623 goto out; 624 625 if (sbsec->behavior == SECURITY_FS_USE_XATTR) { 626 /* Make sure that the xattr handler exists and that no 627 error other than -ENODATA is returned by getxattr on 628 the root directory. -ENODATA is ok, as this may be 629 the first boot of the SELinux kernel before we have 630 assigned xattr values to the filesystem. */ 631 if (!inode->i_op->getxattr) { 632 printk(KERN_WARNING "SELinux: (dev %s, type %s) has no " 633 "xattr support\n", sb->s_id, sb->s_type->name); 634 rc = -EOPNOTSUPP; 635 goto out; 636 } 637 rc = inode->i_op->getxattr(root, XATTR_NAME_SELINUX, NULL, 0); 638 if (rc < 0 && rc != -ENODATA) { 639 if (rc == -EOPNOTSUPP) 640 printk(KERN_WARNING "SELinux: (dev %s, type " 641 "%s) has no security xattr handler\n", 642 sb->s_id, sb->s_type->name); 643 else 644 printk(KERN_WARNING "SELinux: (dev %s, type " 645 "%s) getxattr errno %d\n", sb->s_id, 646 sb->s_type->name, -rc); 647 goto out; 648 } 649 } 650 651 if (strcmp(sb->s_type->name, "proc") == 0) 652 sbsec->proc = 1; 653 654 sbsec->initialized = 1; 655 656 if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors)) { 657 printk(KERN_ERR "SELinux: initialized (dev %s, type %s), unknown behavior\n", 658 sb->s_id, sb->s_type->name); 659 } 660 else { 661 printk(KERN_DEBUG "SELinux: initialized (dev %s, type %s), %s\n", 662 sb->s_id, sb->s_type->name, 663 labeling_behaviors[sbsec->behavior-1]); 664 } 665 666 /* Initialize the root inode. */ 667 rc = inode_doinit_with_dentry(sb->s_root->d_inode, sb->s_root); 668 669 /* Initialize any other inodes associated with the superblock, e.g. 670 inodes created prior to initial policy load or inodes created 671 during get_sb by a pseudo filesystem that directly 672 populates itself. */ 673 spin_lock(&sbsec->isec_lock); 674 next_inode: 675 if (!list_empty(&sbsec->isec_head)) { 676 struct inode_security_struct *isec = 677 list_entry(sbsec->isec_head.next, 678 struct inode_security_struct, list); 679 struct inode *inode = isec->inode; 680 spin_unlock(&sbsec->isec_lock); 681 inode = igrab(inode); 682 if (inode) { 683 if (!IS_PRIVATE (inode)) 684 inode_doinit(inode); 685 iput(inode); 686 } 687 spin_lock(&sbsec->isec_lock); 688 list_del_init(&isec->list); 689 goto next_inode; 690 } 691 spin_unlock(&sbsec->isec_lock); 692 out: 693 mutex_unlock(&sbsec->lock); 694 return rc; 695 } 696 697 static inline u16 inode_mode_to_security_class(umode_t mode) 698 { 699 switch (mode & S_IFMT) { 700 case S_IFSOCK: 701 return SECCLASS_SOCK_FILE; 702 case S_IFLNK: 703 return SECCLASS_LNK_FILE; 704 case S_IFREG: 705 return SECCLASS_FILE; 706 case S_IFBLK: 707 return SECCLASS_BLK_FILE; 708 case S_IFDIR: 709 return SECCLASS_DIR; 710 case S_IFCHR: 711 return SECCLASS_CHR_FILE; 712 case S_IFIFO: 713 return SECCLASS_FIFO_FILE; 714 715 } 716 717 return SECCLASS_FILE; 718 } 719 720 static inline int default_protocol_stream(int protocol) 721 { 722 return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP); 723 } 724 725 static inline int default_protocol_dgram(int protocol) 726 { 727 return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP); 728 } 729 730 static inline u16 socket_type_to_security_class(int family, int type, int protocol) 731 { 732 switch (family) { 733 case PF_UNIX: 734 switch (type) { 735 case SOCK_STREAM: 736 case SOCK_SEQPACKET: 737 return SECCLASS_UNIX_STREAM_SOCKET; 738 case SOCK_DGRAM: 739 return SECCLASS_UNIX_DGRAM_SOCKET; 740 } 741 break; 742 case PF_INET: 743 case PF_INET6: 744 switch (type) { 745 case SOCK_STREAM: 746 if (default_protocol_stream(protocol)) 747 return SECCLASS_TCP_SOCKET; 748 else 749 return SECCLASS_RAWIP_SOCKET; 750 case SOCK_DGRAM: 751 if (default_protocol_dgram(protocol)) 752 return SECCLASS_UDP_SOCKET; 753 else 754 return SECCLASS_RAWIP_SOCKET; 755 case SOCK_DCCP: 756 return SECCLASS_DCCP_SOCKET; 757 default: 758 return SECCLASS_RAWIP_SOCKET; 759 } 760 break; 761 case PF_NETLINK: 762 switch (protocol) { 763 case NETLINK_ROUTE: 764 return SECCLASS_NETLINK_ROUTE_SOCKET; 765 case NETLINK_FIREWALL: 766 return SECCLASS_NETLINK_FIREWALL_SOCKET; 767 case NETLINK_INET_DIAG: 768 return SECCLASS_NETLINK_TCPDIAG_SOCKET; 769 case NETLINK_NFLOG: 770 return SECCLASS_NETLINK_NFLOG_SOCKET; 771 case NETLINK_XFRM: 772 return SECCLASS_NETLINK_XFRM_SOCKET; 773 case NETLINK_SELINUX: 774 return SECCLASS_NETLINK_SELINUX_SOCKET; 775 case NETLINK_AUDIT: 776 return SECCLASS_NETLINK_AUDIT_SOCKET; 777 case NETLINK_IP6_FW: 778 return SECCLASS_NETLINK_IP6FW_SOCKET; 779 case NETLINK_DNRTMSG: 780 return SECCLASS_NETLINK_DNRT_SOCKET; 781 case NETLINK_KOBJECT_UEVENT: 782 return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET; 783 default: 784 return SECCLASS_NETLINK_SOCKET; 785 } 786 case PF_PACKET: 787 return SECCLASS_PACKET_SOCKET; 788 case PF_KEY: 789 return SECCLASS_KEY_SOCKET; 790 case PF_APPLETALK: 791 return SECCLASS_APPLETALK_SOCKET; 792 } 793 794 return SECCLASS_SOCKET; 795 } 796 797 #ifdef CONFIG_PROC_FS 798 static int selinux_proc_get_sid(struct proc_dir_entry *de, 799 u16 tclass, 800 u32 *sid) 801 { 802 int buflen, rc; 803 char *buffer, *path, *end; 804 805 buffer = (char*)__get_free_page(GFP_KERNEL); 806 if (!buffer) 807 return -ENOMEM; 808 809 buflen = PAGE_SIZE; 810 end = buffer+buflen; 811 *--end = '\0'; 812 buflen--; 813 path = end-1; 814 *path = '/'; 815 while (de && de != de->parent) { 816 buflen -= de->namelen + 1; 817 if (buflen < 0) 818 break; 819 end -= de->namelen; 820 memcpy(end, de->name, de->namelen); 821 *--end = '/'; 822 path = end; 823 de = de->parent; 824 } 825 rc = security_genfs_sid("proc", path, tclass, sid); 826 free_page((unsigned long)buffer); 827 return rc; 828 } 829 #else 830 static int selinux_proc_get_sid(struct proc_dir_entry *de, 831 u16 tclass, 832 u32 *sid) 833 { 834 return -EINVAL; 835 } 836 #endif 837 838 /* The inode's security attributes must be initialized before first use. */ 839 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry) 840 { 841 struct superblock_security_struct *sbsec = NULL; 842 struct inode_security_struct *isec = inode->i_security; 843 u32 sid; 844 struct dentry *dentry; 845 #define INITCONTEXTLEN 255 846 char *context = NULL; 847 unsigned len = 0; 848 int rc = 0; 849 850 if (isec->initialized) 851 goto out; 852 853 mutex_lock(&isec->lock); 854 if (isec->initialized) 855 goto out_unlock; 856 857 sbsec = inode->i_sb->s_security; 858 if (!sbsec->initialized) { 859 /* Defer initialization until selinux_complete_init, 860 after the initial policy is loaded and the security 861 server is ready to handle calls. */ 862 spin_lock(&sbsec->isec_lock); 863 if (list_empty(&isec->list)) 864 list_add(&isec->list, &sbsec->isec_head); 865 spin_unlock(&sbsec->isec_lock); 866 goto out_unlock; 867 } 868 869 switch (sbsec->behavior) { 870 case SECURITY_FS_USE_XATTR: 871 if (!inode->i_op->getxattr) { 872 isec->sid = sbsec->def_sid; 873 break; 874 } 875 876 /* Need a dentry, since the xattr API requires one. 877 Life would be simpler if we could just pass the inode. */ 878 if (opt_dentry) { 879 /* Called from d_instantiate or d_splice_alias. */ 880 dentry = dget(opt_dentry); 881 } else { 882 /* Called from selinux_complete_init, try to find a dentry. */ 883 dentry = d_find_alias(inode); 884 } 885 if (!dentry) { 886 printk(KERN_WARNING "%s: no dentry for dev=%s " 887 "ino=%ld\n", __FUNCTION__, inode->i_sb->s_id, 888 inode->i_ino); 889 goto out_unlock; 890 } 891 892 len = INITCONTEXTLEN; 893 context = kmalloc(len, GFP_KERNEL); 894 if (!context) { 895 rc = -ENOMEM; 896 dput(dentry); 897 goto out_unlock; 898 } 899 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX, 900 context, len); 901 if (rc == -ERANGE) { 902 /* Need a larger buffer. Query for the right size. */ 903 rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX, 904 NULL, 0); 905 if (rc < 0) { 906 dput(dentry); 907 goto out_unlock; 908 } 909 kfree(context); 910 len = rc; 911 context = kmalloc(len, GFP_KERNEL); 912 if (!context) { 913 rc = -ENOMEM; 914 dput(dentry); 915 goto out_unlock; 916 } 917 rc = inode->i_op->getxattr(dentry, 918 XATTR_NAME_SELINUX, 919 context, len); 920 } 921 dput(dentry); 922 if (rc < 0) { 923 if (rc != -ENODATA) { 924 printk(KERN_WARNING "%s: getxattr returned " 925 "%d for dev=%s ino=%ld\n", __FUNCTION__, 926 -rc, inode->i_sb->s_id, inode->i_ino); 927 kfree(context); 928 goto out_unlock; 929 } 930 /* Map ENODATA to the default file SID */ 931 sid = sbsec->def_sid; 932 rc = 0; 933 } else { 934 rc = security_context_to_sid_default(context, rc, &sid, 935 sbsec->def_sid); 936 if (rc) { 937 printk(KERN_WARNING "%s: context_to_sid(%s) " 938 "returned %d for dev=%s ino=%ld\n", 939 __FUNCTION__, context, -rc, 940 inode->i_sb->s_id, inode->i_ino); 941 kfree(context); 942 /* Leave with the unlabeled SID */ 943 rc = 0; 944 break; 945 } 946 } 947 kfree(context); 948 isec->sid = sid; 949 break; 950 case SECURITY_FS_USE_TASK: 951 isec->sid = isec->task_sid; 952 break; 953 case SECURITY_FS_USE_TRANS: 954 /* Default to the fs SID. */ 955 isec->sid = sbsec->sid; 956 957 /* Try to obtain a transition SID. */ 958 isec->sclass = inode_mode_to_security_class(inode->i_mode); 959 rc = security_transition_sid(isec->task_sid, 960 sbsec->sid, 961 isec->sclass, 962 &sid); 963 if (rc) 964 goto out_unlock; 965 isec->sid = sid; 966 break; 967 case SECURITY_FS_USE_MNTPOINT: 968 isec->sid = sbsec->mntpoint_sid; 969 break; 970 default: 971 /* Default to the fs superblock SID. */ 972 isec->sid = sbsec->sid; 973 974 if (sbsec->proc) { 975 struct proc_inode *proci = PROC_I(inode); 976 if (proci->pde) { 977 isec->sclass = inode_mode_to_security_class(inode->i_mode); 978 rc = selinux_proc_get_sid(proci->pde, 979 isec->sclass, 980 &sid); 981 if (rc) 982 goto out_unlock; 983 isec->sid = sid; 984 } 985 } 986 break; 987 } 988 989 isec->initialized = 1; 990 991 out_unlock: 992 mutex_unlock(&isec->lock); 993 out: 994 if (isec->sclass == SECCLASS_FILE) 995 isec->sclass = inode_mode_to_security_class(inode->i_mode); 996 return rc; 997 } 998 999 /* Convert a Linux signal to an access vector. */ 1000 static inline u32 signal_to_av(int sig) 1001 { 1002 u32 perm = 0; 1003 1004 switch (sig) { 1005 case SIGCHLD: 1006 /* Commonly granted from child to parent. */ 1007 perm = PROCESS__SIGCHLD; 1008 break; 1009 case SIGKILL: 1010 /* Cannot be caught or ignored */ 1011 perm = PROCESS__SIGKILL; 1012 break; 1013 case SIGSTOP: 1014 /* Cannot be caught or ignored */ 1015 perm = PROCESS__SIGSTOP; 1016 break; 1017 default: 1018 /* All other signals. */ 1019 perm = PROCESS__SIGNAL; 1020 break; 1021 } 1022 1023 return perm; 1024 } 1025 1026 /* Check permission betweeen a pair of tasks, e.g. signal checks, 1027 fork check, ptrace check, etc. */ 1028 static int task_has_perm(struct task_struct *tsk1, 1029 struct task_struct *tsk2, 1030 u32 perms) 1031 { 1032 struct task_security_struct *tsec1, *tsec2; 1033 1034 tsec1 = tsk1->security; 1035 tsec2 = tsk2->security; 1036 return avc_has_perm(tsec1->sid, tsec2->sid, 1037 SECCLASS_PROCESS, perms, NULL); 1038 } 1039 1040 /* Check whether a task is allowed to use a capability. */ 1041 static int task_has_capability(struct task_struct *tsk, 1042 int cap) 1043 { 1044 struct task_security_struct *tsec; 1045 struct avc_audit_data ad; 1046 1047 tsec = tsk->security; 1048 1049 AVC_AUDIT_DATA_INIT(&ad,CAP); 1050 ad.tsk = tsk; 1051 ad.u.cap = cap; 1052 1053 return avc_has_perm(tsec->sid, tsec->sid, 1054 SECCLASS_CAPABILITY, CAP_TO_MASK(cap), &ad); 1055 } 1056 1057 /* Check whether a task is allowed to use a system operation. */ 1058 static int task_has_system(struct task_struct *tsk, 1059 u32 perms) 1060 { 1061 struct task_security_struct *tsec; 1062 1063 tsec = tsk->security; 1064 1065 return avc_has_perm(tsec->sid, SECINITSID_KERNEL, 1066 SECCLASS_SYSTEM, perms, NULL); 1067 } 1068 1069 /* Check whether a task has a particular permission to an inode. 1070 The 'adp' parameter is optional and allows other audit 1071 data to be passed (e.g. the dentry). */ 1072 static int inode_has_perm(struct task_struct *tsk, 1073 struct inode *inode, 1074 u32 perms, 1075 struct avc_audit_data *adp) 1076 { 1077 struct task_security_struct *tsec; 1078 struct inode_security_struct *isec; 1079 struct avc_audit_data ad; 1080 1081 if (unlikely (IS_PRIVATE (inode))) 1082 return 0; 1083 1084 tsec = tsk->security; 1085 isec = inode->i_security; 1086 1087 if (!adp) { 1088 adp = &ad; 1089 AVC_AUDIT_DATA_INIT(&ad, FS); 1090 ad.u.fs.inode = inode; 1091 } 1092 1093 return avc_has_perm(tsec->sid, isec->sid, isec->sclass, perms, adp); 1094 } 1095 1096 /* Same as inode_has_perm, but pass explicit audit data containing 1097 the dentry to help the auditing code to more easily generate the 1098 pathname if needed. */ 1099 static inline int dentry_has_perm(struct task_struct *tsk, 1100 struct vfsmount *mnt, 1101 struct dentry *dentry, 1102 u32 av) 1103 { 1104 struct inode *inode = dentry->d_inode; 1105 struct avc_audit_data ad; 1106 AVC_AUDIT_DATA_INIT(&ad,FS); 1107 ad.u.fs.mnt = mnt; 1108 ad.u.fs.dentry = dentry; 1109 return inode_has_perm(tsk, inode, av, &ad); 1110 } 1111 1112 /* Check whether a task can use an open file descriptor to 1113 access an inode in a given way. Check access to the 1114 descriptor itself, and then use dentry_has_perm to 1115 check a particular permission to the file. 1116 Access to the descriptor is implicitly granted if it 1117 has the same SID as the process. If av is zero, then 1118 access to the file is not checked, e.g. for cases 1119 where only the descriptor is affected like seek. */ 1120 static int file_has_perm(struct task_struct *tsk, 1121 struct file *file, 1122 u32 av) 1123 { 1124 struct task_security_struct *tsec = tsk->security; 1125 struct file_security_struct *fsec = file->f_security; 1126 struct vfsmount *mnt = file->f_path.mnt; 1127 struct dentry *dentry = file->f_path.dentry; 1128 struct inode *inode = dentry->d_inode; 1129 struct avc_audit_data ad; 1130 int rc; 1131 1132 AVC_AUDIT_DATA_INIT(&ad, FS); 1133 ad.u.fs.mnt = mnt; 1134 ad.u.fs.dentry = dentry; 1135 1136 if (tsec->sid != fsec->sid) { 1137 rc = avc_has_perm(tsec->sid, fsec->sid, 1138 SECCLASS_FD, 1139 FD__USE, 1140 &ad); 1141 if (rc) 1142 return rc; 1143 } 1144 1145 /* av is zero if only checking access to the descriptor. */ 1146 if (av) 1147 return inode_has_perm(tsk, inode, av, &ad); 1148 1149 return 0; 1150 } 1151 1152 /* Check whether a task can create a file. */ 1153 static int may_create(struct inode *dir, 1154 struct dentry *dentry, 1155 u16 tclass) 1156 { 1157 struct task_security_struct *tsec; 1158 struct inode_security_struct *dsec; 1159 struct superblock_security_struct *sbsec; 1160 u32 newsid; 1161 struct avc_audit_data ad; 1162 int rc; 1163 1164 tsec = current->security; 1165 dsec = dir->i_security; 1166 sbsec = dir->i_sb->s_security; 1167 1168 AVC_AUDIT_DATA_INIT(&ad, FS); 1169 ad.u.fs.dentry = dentry; 1170 1171 rc = avc_has_perm(tsec->sid, dsec->sid, SECCLASS_DIR, 1172 DIR__ADD_NAME | DIR__SEARCH, 1173 &ad); 1174 if (rc) 1175 return rc; 1176 1177 if (tsec->create_sid && sbsec->behavior != SECURITY_FS_USE_MNTPOINT) { 1178 newsid = tsec->create_sid; 1179 } else { 1180 rc = security_transition_sid(tsec->sid, dsec->sid, tclass, 1181 &newsid); 1182 if (rc) 1183 return rc; 1184 } 1185 1186 rc = avc_has_perm(tsec->sid, newsid, tclass, FILE__CREATE, &ad); 1187 if (rc) 1188 return rc; 1189 1190 return avc_has_perm(newsid, sbsec->sid, 1191 SECCLASS_FILESYSTEM, 1192 FILESYSTEM__ASSOCIATE, &ad); 1193 } 1194 1195 /* Check whether a task can create a key. */ 1196 static int may_create_key(u32 ksid, 1197 struct task_struct *ctx) 1198 { 1199 struct task_security_struct *tsec; 1200 1201 tsec = ctx->security; 1202 1203 return avc_has_perm(tsec->sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL); 1204 } 1205 1206 #define MAY_LINK 0 1207 #define MAY_UNLINK 1 1208 #define MAY_RMDIR 2 1209 1210 /* Check whether a task can link, unlink, or rmdir a file/directory. */ 1211 static int may_link(struct inode *dir, 1212 struct dentry *dentry, 1213 int kind) 1214 1215 { 1216 struct task_security_struct *tsec; 1217 struct inode_security_struct *dsec, *isec; 1218 struct avc_audit_data ad; 1219 u32 av; 1220 int rc; 1221 1222 tsec = current->security; 1223 dsec = dir->i_security; 1224 isec = dentry->d_inode->i_security; 1225 1226 AVC_AUDIT_DATA_INIT(&ad, FS); 1227 ad.u.fs.dentry = dentry; 1228 1229 av = DIR__SEARCH; 1230 av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME); 1231 rc = avc_has_perm(tsec->sid, dsec->sid, SECCLASS_DIR, av, &ad); 1232 if (rc) 1233 return rc; 1234 1235 switch (kind) { 1236 case MAY_LINK: 1237 av = FILE__LINK; 1238 break; 1239 case MAY_UNLINK: 1240 av = FILE__UNLINK; 1241 break; 1242 case MAY_RMDIR: 1243 av = DIR__RMDIR; 1244 break; 1245 default: 1246 printk(KERN_WARNING "may_link: unrecognized kind %d\n", kind); 1247 return 0; 1248 } 1249 1250 rc = avc_has_perm(tsec->sid, isec->sid, isec->sclass, av, &ad); 1251 return rc; 1252 } 1253 1254 static inline int may_rename(struct inode *old_dir, 1255 struct dentry *old_dentry, 1256 struct inode *new_dir, 1257 struct dentry *new_dentry) 1258 { 1259 struct task_security_struct *tsec; 1260 struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec; 1261 struct avc_audit_data ad; 1262 u32 av; 1263 int old_is_dir, new_is_dir; 1264 int rc; 1265 1266 tsec = current->security; 1267 old_dsec = old_dir->i_security; 1268 old_isec = old_dentry->d_inode->i_security; 1269 old_is_dir = S_ISDIR(old_dentry->d_inode->i_mode); 1270 new_dsec = new_dir->i_security; 1271 1272 AVC_AUDIT_DATA_INIT(&ad, FS); 1273 1274 ad.u.fs.dentry = old_dentry; 1275 rc = avc_has_perm(tsec->sid, old_dsec->sid, SECCLASS_DIR, 1276 DIR__REMOVE_NAME | DIR__SEARCH, &ad); 1277 if (rc) 1278 return rc; 1279 rc = avc_has_perm(tsec->sid, old_isec->sid, 1280 old_isec->sclass, FILE__RENAME, &ad); 1281 if (rc) 1282 return rc; 1283 if (old_is_dir && new_dir != old_dir) { 1284 rc = avc_has_perm(tsec->sid, old_isec->sid, 1285 old_isec->sclass, DIR__REPARENT, &ad); 1286 if (rc) 1287 return rc; 1288 } 1289 1290 ad.u.fs.dentry = new_dentry; 1291 av = DIR__ADD_NAME | DIR__SEARCH; 1292 if (new_dentry->d_inode) 1293 av |= DIR__REMOVE_NAME; 1294 rc = avc_has_perm(tsec->sid, new_dsec->sid, SECCLASS_DIR, av, &ad); 1295 if (rc) 1296 return rc; 1297 if (new_dentry->d_inode) { 1298 new_isec = new_dentry->d_inode->i_security; 1299 new_is_dir = S_ISDIR(new_dentry->d_inode->i_mode); 1300 rc = avc_has_perm(tsec->sid, new_isec->sid, 1301 new_isec->sclass, 1302 (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad); 1303 if (rc) 1304 return rc; 1305 } 1306 1307 return 0; 1308 } 1309 1310 /* Check whether a task can perform a filesystem operation. */ 1311 static int superblock_has_perm(struct task_struct *tsk, 1312 struct super_block *sb, 1313 u32 perms, 1314 struct avc_audit_data *ad) 1315 { 1316 struct task_security_struct *tsec; 1317 struct superblock_security_struct *sbsec; 1318 1319 tsec = tsk->security; 1320 sbsec = sb->s_security; 1321 return avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM, 1322 perms, ad); 1323 } 1324 1325 /* Convert a Linux mode and permission mask to an access vector. */ 1326 static inline u32 file_mask_to_av(int mode, int mask) 1327 { 1328 u32 av = 0; 1329 1330 if ((mode & S_IFMT) != S_IFDIR) { 1331 if (mask & MAY_EXEC) 1332 av |= FILE__EXECUTE; 1333 if (mask & MAY_READ) 1334 av |= FILE__READ; 1335 1336 if (mask & MAY_APPEND) 1337 av |= FILE__APPEND; 1338 else if (mask & MAY_WRITE) 1339 av |= FILE__WRITE; 1340 1341 } else { 1342 if (mask & MAY_EXEC) 1343 av |= DIR__SEARCH; 1344 if (mask & MAY_WRITE) 1345 av |= DIR__WRITE; 1346 if (mask & MAY_READ) 1347 av |= DIR__READ; 1348 } 1349 1350 return av; 1351 } 1352 1353 /* Convert a Linux file to an access vector. */ 1354 static inline u32 file_to_av(struct file *file) 1355 { 1356 u32 av = 0; 1357 1358 if (file->f_mode & FMODE_READ) 1359 av |= FILE__READ; 1360 if (file->f_mode & FMODE_WRITE) { 1361 if (file->f_flags & O_APPEND) 1362 av |= FILE__APPEND; 1363 else 1364 av |= FILE__WRITE; 1365 } 1366 1367 return av; 1368 } 1369 1370 /* Hook functions begin here. */ 1371 1372 static int selinux_ptrace(struct task_struct *parent, struct task_struct *child) 1373 { 1374 struct task_security_struct *psec = parent->security; 1375 struct task_security_struct *csec = child->security; 1376 int rc; 1377 1378 rc = secondary_ops->ptrace(parent,child); 1379 if (rc) 1380 return rc; 1381 1382 rc = task_has_perm(parent, child, PROCESS__PTRACE); 1383 /* Save the SID of the tracing process for later use in apply_creds. */ 1384 if (!(child->ptrace & PT_PTRACED) && !rc) 1385 csec->ptrace_sid = psec->sid; 1386 return rc; 1387 } 1388 1389 static int selinux_capget(struct task_struct *target, kernel_cap_t *effective, 1390 kernel_cap_t *inheritable, kernel_cap_t *permitted) 1391 { 1392 int error; 1393 1394 error = task_has_perm(current, target, PROCESS__GETCAP); 1395 if (error) 1396 return error; 1397 1398 return secondary_ops->capget(target, effective, inheritable, permitted); 1399 } 1400 1401 static int selinux_capset_check(struct task_struct *target, kernel_cap_t *effective, 1402 kernel_cap_t *inheritable, kernel_cap_t *permitted) 1403 { 1404 int error; 1405 1406 error = secondary_ops->capset_check(target, effective, inheritable, permitted); 1407 if (error) 1408 return error; 1409 1410 return task_has_perm(current, target, PROCESS__SETCAP); 1411 } 1412 1413 static void selinux_capset_set(struct task_struct *target, kernel_cap_t *effective, 1414 kernel_cap_t *inheritable, kernel_cap_t *permitted) 1415 { 1416 secondary_ops->capset_set(target, effective, inheritable, permitted); 1417 } 1418 1419 static int selinux_capable(struct task_struct *tsk, int cap) 1420 { 1421 int rc; 1422 1423 rc = secondary_ops->capable(tsk, cap); 1424 if (rc) 1425 return rc; 1426 1427 return task_has_capability(tsk,cap); 1428 } 1429 1430 static int selinux_sysctl_get_sid(ctl_table *table, u16 tclass, u32 *sid) 1431 { 1432 int buflen, rc; 1433 char *buffer, *path, *end; 1434 1435 rc = -ENOMEM; 1436 buffer = (char*)__get_free_page(GFP_KERNEL); 1437 if (!buffer) 1438 goto out; 1439 1440 buflen = PAGE_SIZE; 1441 end = buffer+buflen; 1442 *--end = '\0'; 1443 buflen--; 1444 path = end-1; 1445 *path = '/'; 1446 while (table) { 1447 const char *name = table->procname; 1448 size_t namelen = strlen(name); 1449 buflen -= namelen + 1; 1450 if (buflen < 0) 1451 goto out_free; 1452 end -= namelen; 1453 memcpy(end, name, namelen); 1454 *--end = '/'; 1455 path = end; 1456 table = table->parent; 1457 } 1458 buflen -= 4; 1459 if (buflen < 0) 1460 goto out_free; 1461 end -= 4; 1462 memcpy(end, "/sys", 4); 1463 path = end; 1464 rc = security_genfs_sid("proc", path, tclass, sid); 1465 out_free: 1466 free_page((unsigned long)buffer); 1467 out: 1468 return rc; 1469 } 1470 1471 static int selinux_sysctl(ctl_table *table, int op) 1472 { 1473 int error = 0; 1474 u32 av; 1475 struct task_security_struct *tsec; 1476 u32 tsid; 1477 int rc; 1478 1479 rc = secondary_ops->sysctl(table, op); 1480 if (rc) 1481 return rc; 1482 1483 tsec = current->security; 1484 1485 rc = selinux_sysctl_get_sid(table, (op == 0001) ? 1486 SECCLASS_DIR : SECCLASS_FILE, &tsid); 1487 if (rc) { 1488 /* Default to the well-defined sysctl SID. */ 1489 tsid = SECINITSID_SYSCTL; 1490 } 1491 1492 /* The op values are "defined" in sysctl.c, thereby creating 1493 * a bad coupling between this module and sysctl.c */ 1494 if(op == 001) { 1495 error = avc_has_perm(tsec->sid, tsid, 1496 SECCLASS_DIR, DIR__SEARCH, NULL); 1497 } else { 1498 av = 0; 1499 if (op & 004) 1500 av |= FILE__READ; 1501 if (op & 002) 1502 av |= FILE__WRITE; 1503 if (av) 1504 error = avc_has_perm(tsec->sid, tsid, 1505 SECCLASS_FILE, av, NULL); 1506 } 1507 1508 return error; 1509 } 1510 1511 static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb) 1512 { 1513 int rc = 0; 1514 1515 if (!sb) 1516 return 0; 1517 1518 switch (cmds) { 1519 case Q_SYNC: 1520 case Q_QUOTAON: 1521 case Q_QUOTAOFF: 1522 case Q_SETINFO: 1523 case Q_SETQUOTA: 1524 rc = superblock_has_perm(current, 1525 sb, 1526 FILESYSTEM__QUOTAMOD, NULL); 1527 break; 1528 case Q_GETFMT: 1529 case Q_GETINFO: 1530 case Q_GETQUOTA: 1531 rc = superblock_has_perm(current, 1532 sb, 1533 FILESYSTEM__QUOTAGET, NULL); 1534 break; 1535 default: 1536 rc = 0; /* let the kernel handle invalid cmds */ 1537 break; 1538 } 1539 return rc; 1540 } 1541 1542 static int selinux_quota_on(struct dentry *dentry) 1543 { 1544 return dentry_has_perm(current, NULL, dentry, FILE__QUOTAON); 1545 } 1546 1547 static int selinux_syslog(int type) 1548 { 1549 int rc; 1550 1551 rc = secondary_ops->syslog(type); 1552 if (rc) 1553 return rc; 1554 1555 switch (type) { 1556 case 3: /* Read last kernel messages */ 1557 case 10: /* Return size of the log buffer */ 1558 rc = task_has_system(current, SYSTEM__SYSLOG_READ); 1559 break; 1560 case 6: /* Disable logging to console */ 1561 case 7: /* Enable logging to console */ 1562 case 8: /* Set level of messages printed to console */ 1563 rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE); 1564 break; 1565 case 0: /* Close log */ 1566 case 1: /* Open log */ 1567 case 2: /* Read from log */ 1568 case 4: /* Read/clear last kernel messages */ 1569 case 5: /* Clear ring buffer */ 1570 default: 1571 rc = task_has_system(current, SYSTEM__SYSLOG_MOD); 1572 break; 1573 } 1574 return rc; 1575 } 1576 1577 /* 1578 * Check that a process has enough memory to allocate a new virtual 1579 * mapping. 0 means there is enough memory for the allocation to 1580 * succeed and -ENOMEM implies there is not. 1581 * 1582 * Note that secondary_ops->capable and task_has_perm_noaudit return 0 1583 * if the capability is granted, but __vm_enough_memory requires 1 if 1584 * the capability is granted. 1585 * 1586 * Do not audit the selinux permission check, as this is applied to all 1587 * processes that allocate mappings. 1588 */ 1589 static int selinux_vm_enough_memory(struct mm_struct *mm, long pages) 1590 { 1591 int rc, cap_sys_admin = 0; 1592 struct task_security_struct *tsec = current->security; 1593 1594 rc = secondary_ops->capable(current, CAP_SYS_ADMIN); 1595 if (rc == 0) 1596 rc = avc_has_perm_noaudit(tsec->sid, tsec->sid, 1597 SECCLASS_CAPABILITY, 1598 CAP_TO_MASK(CAP_SYS_ADMIN), 1599 0, 1600 NULL); 1601 1602 if (rc == 0) 1603 cap_sys_admin = 1; 1604 1605 return __vm_enough_memory(mm, pages, cap_sys_admin); 1606 } 1607 1608 /* binprm security operations */ 1609 1610 static int selinux_bprm_alloc_security(struct linux_binprm *bprm) 1611 { 1612 struct bprm_security_struct *bsec; 1613 1614 bsec = kzalloc(sizeof(struct bprm_security_struct), GFP_KERNEL); 1615 if (!bsec) 1616 return -ENOMEM; 1617 1618 bsec->bprm = bprm; 1619 bsec->sid = SECINITSID_UNLABELED; 1620 bsec->set = 0; 1621 1622 bprm->security = bsec; 1623 return 0; 1624 } 1625 1626 static int selinux_bprm_set_security(struct linux_binprm *bprm) 1627 { 1628 struct task_security_struct *tsec; 1629 struct inode *inode = bprm->file->f_path.dentry->d_inode; 1630 struct inode_security_struct *isec; 1631 struct bprm_security_struct *bsec; 1632 u32 newsid; 1633 struct avc_audit_data ad; 1634 int rc; 1635 1636 rc = secondary_ops->bprm_set_security(bprm); 1637 if (rc) 1638 return rc; 1639 1640 bsec = bprm->security; 1641 1642 if (bsec->set) 1643 return 0; 1644 1645 tsec = current->security; 1646 isec = inode->i_security; 1647 1648 /* Default to the current task SID. */ 1649 bsec->sid = tsec->sid; 1650 1651 /* Reset fs, key, and sock SIDs on execve. */ 1652 tsec->create_sid = 0; 1653 tsec->keycreate_sid = 0; 1654 tsec->sockcreate_sid = 0; 1655 1656 if (tsec->exec_sid) { 1657 newsid = tsec->exec_sid; 1658 /* Reset exec SID on execve. */ 1659 tsec->exec_sid = 0; 1660 } else { 1661 /* Check for a default transition on this program. */ 1662 rc = security_transition_sid(tsec->sid, isec->sid, 1663 SECCLASS_PROCESS, &newsid); 1664 if (rc) 1665 return rc; 1666 } 1667 1668 AVC_AUDIT_DATA_INIT(&ad, FS); 1669 ad.u.fs.mnt = bprm->file->f_path.mnt; 1670 ad.u.fs.dentry = bprm->file->f_path.dentry; 1671 1672 if (bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID) 1673 newsid = tsec->sid; 1674 1675 if (tsec->sid == newsid) { 1676 rc = avc_has_perm(tsec->sid, isec->sid, 1677 SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad); 1678 if (rc) 1679 return rc; 1680 } else { 1681 /* Check permissions for the transition. */ 1682 rc = avc_has_perm(tsec->sid, newsid, 1683 SECCLASS_PROCESS, PROCESS__TRANSITION, &ad); 1684 if (rc) 1685 return rc; 1686 1687 rc = avc_has_perm(newsid, isec->sid, 1688 SECCLASS_FILE, FILE__ENTRYPOINT, &ad); 1689 if (rc) 1690 return rc; 1691 1692 /* Clear any possibly unsafe personality bits on exec: */ 1693 current->personality &= ~PER_CLEAR_ON_SETID; 1694 1695 /* Set the security field to the new SID. */ 1696 bsec->sid = newsid; 1697 } 1698 1699 bsec->set = 1; 1700 return 0; 1701 } 1702 1703 static int selinux_bprm_check_security (struct linux_binprm *bprm) 1704 { 1705 return secondary_ops->bprm_check_security(bprm); 1706 } 1707 1708 1709 static int selinux_bprm_secureexec (struct linux_binprm *bprm) 1710 { 1711 struct task_security_struct *tsec = current->security; 1712 int atsecure = 0; 1713 1714 if (tsec->osid != tsec->sid) { 1715 /* Enable secure mode for SIDs transitions unless 1716 the noatsecure permission is granted between 1717 the two SIDs, i.e. ahp returns 0. */ 1718 atsecure = avc_has_perm(tsec->osid, tsec->sid, 1719 SECCLASS_PROCESS, 1720 PROCESS__NOATSECURE, NULL); 1721 } 1722 1723 return (atsecure || secondary_ops->bprm_secureexec(bprm)); 1724 } 1725 1726 static void selinux_bprm_free_security(struct linux_binprm *bprm) 1727 { 1728 kfree(bprm->security); 1729 bprm->security = NULL; 1730 } 1731 1732 extern struct vfsmount *selinuxfs_mount; 1733 extern struct dentry *selinux_null; 1734 1735 /* Derived from fs/exec.c:flush_old_files. */ 1736 static inline void flush_unauthorized_files(struct files_struct * files) 1737 { 1738 struct avc_audit_data ad; 1739 struct file *file, *devnull = NULL; 1740 struct tty_struct *tty; 1741 struct fdtable *fdt; 1742 long j = -1; 1743 int drop_tty = 0; 1744 1745 mutex_lock(&tty_mutex); 1746 tty = get_current_tty(); 1747 if (tty) { 1748 file_list_lock(); 1749 file = list_entry(tty->tty_files.next, typeof(*file), f_u.fu_list); 1750 if (file) { 1751 /* Revalidate access to controlling tty. 1752 Use inode_has_perm on the tty inode directly rather 1753 than using file_has_perm, as this particular open 1754 file may belong to another process and we are only 1755 interested in the inode-based check here. */ 1756 struct inode *inode = file->f_path.dentry->d_inode; 1757 if (inode_has_perm(current, inode, 1758 FILE__READ | FILE__WRITE, NULL)) { 1759 drop_tty = 1; 1760 } 1761 } 1762 file_list_unlock(); 1763 } 1764 mutex_unlock(&tty_mutex); 1765 /* Reset controlling tty. */ 1766 if (drop_tty) 1767 no_tty(); 1768 1769 /* Revalidate access to inherited open files. */ 1770 1771 AVC_AUDIT_DATA_INIT(&ad,FS); 1772 1773 spin_lock(&files->file_lock); 1774 for (;;) { 1775 unsigned long set, i; 1776 int fd; 1777 1778 j++; 1779 i = j * __NFDBITS; 1780 fdt = files_fdtable(files); 1781 if (i >= fdt->max_fds) 1782 break; 1783 set = fdt->open_fds->fds_bits[j]; 1784 if (!set) 1785 continue; 1786 spin_unlock(&files->file_lock); 1787 for ( ; set ; i++,set >>= 1) { 1788 if (set & 1) { 1789 file = fget(i); 1790 if (!file) 1791 continue; 1792 if (file_has_perm(current, 1793 file, 1794 file_to_av(file))) { 1795 sys_close(i); 1796 fd = get_unused_fd(); 1797 if (fd != i) { 1798 if (fd >= 0) 1799 put_unused_fd(fd); 1800 fput(file); 1801 continue; 1802 } 1803 if (devnull) { 1804 get_file(devnull); 1805 } else { 1806 devnull = dentry_open(dget(selinux_null), mntget(selinuxfs_mount), O_RDWR); 1807 if (IS_ERR(devnull)) { 1808 devnull = NULL; 1809 put_unused_fd(fd); 1810 fput(file); 1811 continue; 1812 } 1813 } 1814 fd_install(fd, devnull); 1815 } 1816 fput(file); 1817 } 1818 } 1819 spin_lock(&files->file_lock); 1820 1821 } 1822 spin_unlock(&files->file_lock); 1823 } 1824 1825 static void selinux_bprm_apply_creds(struct linux_binprm *bprm, int unsafe) 1826 { 1827 struct task_security_struct *tsec; 1828 struct bprm_security_struct *bsec; 1829 u32 sid; 1830 int rc; 1831 1832 secondary_ops->bprm_apply_creds(bprm, unsafe); 1833 1834 tsec = current->security; 1835 1836 bsec = bprm->security; 1837 sid = bsec->sid; 1838 1839 tsec->osid = tsec->sid; 1840 bsec->unsafe = 0; 1841 if (tsec->sid != sid) { 1842 /* Check for shared state. If not ok, leave SID 1843 unchanged and kill. */ 1844 if (unsafe & LSM_UNSAFE_SHARE) { 1845 rc = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS, 1846 PROCESS__SHARE, NULL); 1847 if (rc) { 1848 bsec->unsafe = 1; 1849 return; 1850 } 1851 } 1852 1853 /* Check for ptracing, and update the task SID if ok. 1854 Otherwise, leave SID unchanged and kill. */ 1855 if (unsafe & (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) { 1856 rc = avc_has_perm(tsec->ptrace_sid, sid, 1857 SECCLASS_PROCESS, PROCESS__PTRACE, 1858 NULL); 1859 if (rc) { 1860 bsec->unsafe = 1; 1861 return; 1862 } 1863 } 1864 tsec->sid = sid; 1865 } 1866 } 1867 1868 /* 1869 * called after apply_creds without the task lock held 1870 */ 1871 static void selinux_bprm_post_apply_creds(struct linux_binprm *bprm) 1872 { 1873 struct task_security_struct *tsec; 1874 struct rlimit *rlim, *initrlim; 1875 struct itimerval itimer; 1876 struct bprm_security_struct *bsec; 1877 int rc, i; 1878 1879 tsec = current->security; 1880 bsec = bprm->security; 1881 1882 if (bsec->unsafe) { 1883 force_sig_specific(SIGKILL, current); 1884 return; 1885 } 1886 if (tsec->osid == tsec->sid) 1887 return; 1888 1889 /* Close files for which the new task SID is not authorized. */ 1890 flush_unauthorized_files(current->files); 1891 1892 /* Check whether the new SID can inherit signal state 1893 from the old SID. If not, clear itimers to avoid 1894 subsequent signal generation and flush and unblock 1895 signals. This must occur _after_ the task SID has 1896 been updated so that any kill done after the flush 1897 will be checked against the new SID. */ 1898 rc = avc_has_perm(tsec->osid, tsec->sid, SECCLASS_PROCESS, 1899 PROCESS__SIGINH, NULL); 1900 if (rc) { 1901 memset(&itimer, 0, sizeof itimer); 1902 for (i = 0; i < 3; i++) 1903 do_setitimer(i, &itimer, NULL); 1904 flush_signals(current); 1905 spin_lock_irq(¤t->sighand->siglock); 1906 flush_signal_handlers(current, 1); 1907 sigemptyset(¤t->blocked); 1908 recalc_sigpending(); 1909 spin_unlock_irq(¤t->sighand->siglock); 1910 } 1911 1912 /* Always clear parent death signal on SID transitions. */ 1913 current->pdeath_signal = 0; 1914 1915 /* Check whether the new SID can inherit resource limits 1916 from the old SID. If not, reset all soft limits to 1917 the lower of the current task's hard limit and the init 1918 task's soft limit. Note that the setting of hard limits 1919 (even to lower them) can be controlled by the setrlimit 1920 check. The inclusion of the init task's soft limit into 1921 the computation is to avoid resetting soft limits higher 1922 than the default soft limit for cases where the default 1923 is lower than the hard limit, e.g. RLIMIT_CORE or 1924 RLIMIT_STACK.*/ 1925 rc = avc_has_perm(tsec->osid, tsec->sid, SECCLASS_PROCESS, 1926 PROCESS__RLIMITINH, NULL); 1927 if (rc) { 1928 for (i = 0; i < RLIM_NLIMITS; i++) { 1929 rlim = current->signal->rlim + i; 1930 initrlim = init_task.signal->rlim+i; 1931 rlim->rlim_cur = min(rlim->rlim_max,initrlim->rlim_cur); 1932 } 1933 if (current->signal->rlim[RLIMIT_CPU].rlim_cur != RLIM_INFINITY) { 1934 /* 1935 * This will cause RLIMIT_CPU calculations 1936 * to be refigured. 1937 */ 1938 current->it_prof_expires = jiffies_to_cputime(1); 1939 } 1940 } 1941 1942 /* Wake up the parent if it is waiting so that it can 1943 recheck wait permission to the new task SID. */ 1944 wake_up_interruptible(¤t->parent->signal->wait_chldexit); 1945 } 1946 1947 /* superblock security operations */ 1948 1949 static int selinux_sb_alloc_security(struct super_block *sb) 1950 { 1951 return superblock_alloc_security(sb); 1952 } 1953 1954 static void selinux_sb_free_security(struct super_block *sb) 1955 { 1956 superblock_free_security(sb); 1957 } 1958 1959 static inline int match_prefix(char *prefix, int plen, char *option, int olen) 1960 { 1961 if (plen > olen) 1962 return 0; 1963 1964 return !memcmp(prefix, option, plen); 1965 } 1966 1967 static inline int selinux_option(char *option, int len) 1968 { 1969 return (match_prefix("context=", sizeof("context=")-1, option, len) || 1970 match_prefix("fscontext=", sizeof("fscontext=")-1, option, len) || 1971 match_prefix("defcontext=", sizeof("defcontext=")-1, option, len) || 1972 match_prefix("rootcontext=", sizeof("rootcontext=")-1, option, len)); 1973 } 1974 1975 static inline void take_option(char **to, char *from, int *first, int len) 1976 { 1977 if (!*first) { 1978 **to = ','; 1979 *to += 1; 1980 } else 1981 *first = 0; 1982 memcpy(*to, from, len); 1983 *to += len; 1984 } 1985 1986 static inline void take_selinux_option(char **to, char *from, int *first, 1987 int len) 1988 { 1989 int current_size = 0; 1990 1991 if (!*first) { 1992 **to = '|'; 1993 *to += 1; 1994 } 1995 else 1996 *first = 0; 1997 1998 while (current_size < len) { 1999 if (*from != '"') { 2000 **to = *from; 2001 *to += 1; 2002 } 2003 from += 1; 2004 current_size += 1; 2005 } 2006 } 2007 2008 static int selinux_sb_copy_data(struct file_system_type *type, void *orig, void *copy) 2009 { 2010 int fnosec, fsec, rc = 0; 2011 char *in_save, *in_curr, *in_end; 2012 char *sec_curr, *nosec_save, *nosec; 2013 int open_quote = 0; 2014 2015 in_curr = orig; 2016 sec_curr = copy; 2017 2018 /* Binary mount data: just copy */ 2019 if (type->fs_flags & FS_BINARY_MOUNTDATA) { 2020 copy_page(sec_curr, in_curr); 2021 goto out; 2022 } 2023 2024 nosec = (char *)get_zeroed_page(GFP_KERNEL); 2025 if (!nosec) { 2026 rc = -ENOMEM; 2027 goto out; 2028 } 2029 2030 nosec_save = nosec; 2031 fnosec = fsec = 1; 2032 in_save = in_end = orig; 2033 2034 do { 2035 if (*in_end == '"') 2036 open_quote = !open_quote; 2037 if ((*in_end == ',' && open_quote == 0) || 2038 *in_end == '\0') { 2039 int len = in_end - in_curr; 2040 2041 if (selinux_option(in_curr, len)) 2042 take_selinux_option(&sec_curr, in_curr, &fsec, len); 2043 else 2044 take_option(&nosec, in_curr, &fnosec, len); 2045 2046 in_curr = in_end + 1; 2047 } 2048 } while (*in_end++); 2049 2050 strcpy(in_save, nosec_save); 2051 free_page((unsigned long)nosec_save); 2052 out: 2053 return rc; 2054 } 2055 2056 static int selinux_sb_kern_mount(struct super_block *sb, void *data) 2057 { 2058 struct avc_audit_data ad; 2059 int rc; 2060 2061 rc = superblock_doinit(sb, data); 2062 if (rc) 2063 return rc; 2064 2065 AVC_AUDIT_DATA_INIT(&ad,FS); 2066 ad.u.fs.dentry = sb->s_root; 2067 return superblock_has_perm(current, sb, FILESYSTEM__MOUNT, &ad); 2068 } 2069 2070 static int selinux_sb_statfs(struct dentry *dentry) 2071 { 2072 struct avc_audit_data ad; 2073 2074 AVC_AUDIT_DATA_INIT(&ad,FS); 2075 ad.u.fs.dentry = dentry->d_sb->s_root; 2076 return superblock_has_perm(current, dentry->d_sb, FILESYSTEM__GETATTR, &ad); 2077 } 2078 2079 static int selinux_mount(char * dev_name, 2080 struct nameidata *nd, 2081 char * type, 2082 unsigned long flags, 2083 void * data) 2084 { 2085 int rc; 2086 2087 rc = secondary_ops->sb_mount(dev_name, nd, type, flags, data); 2088 if (rc) 2089 return rc; 2090 2091 if (flags & MS_REMOUNT) 2092 return superblock_has_perm(current, nd->mnt->mnt_sb, 2093 FILESYSTEM__REMOUNT, NULL); 2094 else 2095 return dentry_has_perm(current, nd->mnt, nd->dentry, 2096 FILE__MOUNTON); 2097 } 2098 2099 static int selinux_umount(struct vfsmount *mnt, int flags) 2100 { 2101 int rc; 2102 2103 rc = secondary_ops->sb_umount(mnt, flags); 2104 if (rc) 2105 return rc; 2106 2107 return superblock_has_perm(current,mnt->mnt_sb, 2108 FILESYSTEM__UNMOUNT,NULL); 2109 } 2110 2111 /* inode security operations */ 2112 2113 static int selinux_inode_alloc_security(struct inode *inode) 2114 { 2115 return inode_alloc_security(inode); 2116 } 2117 2118 static void selinux_inode_free_security(struct inode *inode) 2119 { 2120 inode_free_security(inode); 2121 } 2122 2123 static int selinux_inode_init_security(struct inode *inode, struct inode *dir, 2124 char **name, void **value, 2125 size_t *len) 2126 { 2127 struct task_security_struct *tsec; 2128 struct inode_security_struct *dsec; 2129 struct superblock_security_struct *sbsec; 2130 u32 newsid, clen; 2131 int rc; 2132 char *namep = NULL, *context; 2133 2134 tsec = current->security; 2135 dsec = dir->i_security; 2136 sbsec = dir->i_sb->s_security; 2137 2138 if (tsec->create_sid && sbsec->behavior != SECURITY_FS_USE_MNTPOINT) { 2139 newsid = tsec->create_sid; 2140 } else { 2141 rc = security_transition_sid(tsec->sid, dsec->sid, 2142 inode_mode_to_security_class(inode->i_mode), 2143 &newsid); 2144 if (rc) { 2145 printk(KERN_WARNING "%s: " 2146 "security_transition_sid failed, rc=%d (dev=%s " 2147 "ino=%ld)\n", 2148 __FUNCTION__, 2149 -rc, inode->i_sb->s_id, inode->i_ino); 2150 return rc; 2151 } 2152 } 2153 2154 /* Possibly defer initialization to selinux_complete_init. */ 2155 if (sbsec->initialized) { 2156 struct inode_security_struct *isec = inode->i_security; 2157 isec->sclass = inode_mode_to_security_class(inode->i_mode); 2158 isec->sid = newsid; 2159 isec->initialized = 1; 2160 } 2161 2162 if (!ss_initialized || sbsec->behavior == SECURITY_FS_USE_MNTPOINT) 2163 return -EOPNOTSUPP; 2164 2165 if (name) { 2166 namep = kstrdup(XATTR_SELINUX_SUFFIX, GFP_KERNEL); 2167 if (!namep) 2168 return -ENOMEM; 2169 *name = namep; 2170 } 2171 2172 if (value && len) { 2173 rc = security_sid_to_context(newsid, &context, &clen); 2174 if (rc) { 2175 kfree(namep); 2176 return rc; 2177 } 2178 *value = context; 2179 *len = clen; 2180 } 2181 2182 return 0; 2183 } 2184 2185 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, int mask) 2186 { 2187 return may_create(dir, dentry, SECCLASS_FILE); 2188 } 2189 2190 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry) 2191 { 2192 int rc; 2193 2194 rc = secondary_ops->inode_link(old_dentry,dir,new_dentry); 2195 if (rc) 2196 return rc; 2197 return may_link(dir, old_dentry, MAY_LINK); 2198 } 2199 2200 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry) 2201 { 2202 int rc; 2203 2204 rc = secondary_ops->inode_unlink(dir, dentry); 2205 if (rc) 2206 return rc; 2207 return may_link(dir, dentry, MAY_UNLINK); 2208 } 2209 2210 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name) 2211 { 2212 return may_create(dir, dentry, SECCLASS_LNK_FILE); 2213 } 2214 2215 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, int mask) 2216 { 2217 return may_create(dir, dentry, SECCLASS_DIR); 2218 } 2219 2220 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry) 2221 { 2222 return may_link(dir, dentry, MAY_RMDIR); 2223 } 2224 2225 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev) 2226 { 2227 int rc; 2228 2229 rc = secondary_ops->inode_mknod(dir, dentry, mode, dev); 2230 if (rc) 2231 return rc; 2232 2233 return may_create(dir, dentry, inode_mode_to_security_class(mode)); 2234 } 2235 2236 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry, 2237 struct inode *new_inode, struct dentry *new_dentry) 2238 { 2239 return may_rename(old_inode, old_dentry, new_inode, new_dentry); 2240 } 2241 2242 static int selinux_inode_readlink(struct dentry *dentry) 2243 { 2244 return dentry_has_perm(current, NULL, dentry, FILE__READ); 2245 } 2246 2247 static int selinux_inode_follow_link(struct dentry *dentry, struct nameidata *nameidata) 2248 { 2249 int rc; 2250 2251 rc = secondary_ops->inode_follow_link(dentry,nameidata); 2252 if (rc) 2253 return rc; 2254 return dentry_has_perm(current, NULL, dentry, FILE__READ); 2255 } 2256 2257 static int selinux_inode_permission(struct inode *inode, int mask, 2258 struct nameidata *nd) 2259 { 2260 int rc; 2261 2262 rc = secondary_ops->inode_permission(inode, mask, nd); 2263 if (rc) 2264 return rc; 2265 2266 if (!mask) { 2267 /* No permission to check. Existence test. */ 2268 return 0; 2269 } 2270 2271 return inode_has_perm(current, inode, 2272 file_mask_to_av(inode->i_mode, mask), NULL); 2273 } 2274 2275 static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr) 2276 { 2277 int rc; 2278 2279 rc = secondary_ops->inode_setattr(dentry, iattr); 2280 if (rc) 2281 return rc; 2282 2283 if (iattr->ia_valid & ATTR_FORCE) 2284 return 0; 2285 2286 if (iattr->ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID | 2287 ATTR_ATIME_SET | ATTR_MTIME_SET)) 2288 return dentry_has_perm(current, NULL, dentry, FILE__SETATTR); 2289 2290 return dentry_has_perm(current, NULL, dentry, FILE__WRITE); 2291 } 2292 2293 static int selinux_inode_getattr(struct vfsmount *mnt, struct dentry *dentry) 2294 { 2295 return dentry_has_perm(current, mnt, dentry, FILE__GETATTR); 2296 } 2297 2298 static int selinux_inode_setxattr(struct dentry *dentry, char *name, void *value, size_t size, int flags) 2299 { 2300 struct task_security_struct *tsec = current->security; 2301 struct inode *inode = dentry->d_inode; 2302 struct inode_security_struct *isec = inode->i_security; 2303 struct superblock_security_struct *sbsec; 2304 struct avc_audit_data ad; 2305 u32 newsid; 2306 int rc = 0; 2307 2308 if (strcmp(name, XATTR_NAME_SELINUX)) { 2309 if (!strncmp(name, XATTR_SECURITY_PREFIX, 2310 sizeof XATTR_SECURITY_PREFIX - 1) && 2311 !capable(CAP_SYS_ADMIN)) { 2312 /* A different attribute in the security namespace. 2313 Restrict to administrator. */ 2314 return -EPERM; 2315 } 2316 2317 /* Not an attribute we recognize, so just check the 2318 ordinary setattr permission. */ 2319 return dentry_has_perm(current, NULL, dentry, FILE__SETATTR); 2320 } 2321 2322 sbsec = inode->i_sb->s_security; 2323 if (sbsec->behavior == SECURITY_FS_USE_MNTPOINT) 2324 return -EOPNOTSUPP; 2325 2326 if (!is_owner_or_cap(inode)) 2327 return -EPERM; 2328 2329 AVC_AUDIT_DATA_INIT(&ad,FS); 2330 ad.u.fs.dentry = dentry; 2331 2332 rc = avc_has_perm(tsec->sid, isec->sid, isec->sclass, 2333 FILE__RELABELFROM, &ad); 2334 if (rc) 2335 return rc; 2336 2337 rc = security_context_to_sid(value, size, &newsid); 2338 if (rc) 2339 return rc; 2340 2341 rc = avc_has_perm(tsec->sid, newsid, isec->sclass, 2342 FILE__RELABELTO, &ad); 2343 if (rc) 2344 return rc; 2345 2346 rc = security_validate_transition(isec->sid, newsid, tsec->sid, 2347 isec->sclass); 2348 if (rc) 2349 return rc; 2350 2351 return avc_has_perm(newsid, 2352 sbsec->sid, 2353 SECCLASS_FILESYSTEM, 2354 FILESYSTEM__ASSOCIATE, 2355 &ad); 2356 } 2357 2358 static void selinux_inode_post_setxattr(struct dentry *dentry, char *name, 2359 void *value, size_t size, int flags) 2360 { 2361 struct inode *inode = dentry->d_inode; 2362 struct inode_security_struct *isec = inode->i_security; 2363 u32 newsid; 2364 int rc; 2365 2366 if (strcmp(name, XATTR_NAME_SELINUX)) { 2367 /* Not an attribute we recognize, so nothing to do. */ 2368 return; 2369 } 2370 2371 rc = security_context_to_sid(value, size, &newsid); 2372 if (rc) { 2373 printk(KERN_WARNING "%s: unable to obtain SID for context " 2374 "%s, rc=%d\n", __FUNCTION__, (char*)value, -rc); 2375 return; 2376 } 2377 2378 isec->sid = newsid; 2379 return; 2380 } 2381 2382 static int selinux_inode_getxattr (struct dentry *dentry, char *name) 2383 { 2384 return dentry_has_perm(current, NULL, dentry, FILE__GETATTR); 2385 } 2386 2387 static int selinux_inode_listxattr (struct dentry *dentry) 2388 { 2389 return dentry_has_perm(current, NULL, dentry, FILE__GETATTR); 2390 } 2391 2392 static int selinux_inode_removexattr (struct dentry *dentry, char *name) 2393 { 2394 if (strcmp(name, XATTR_NAME_SELINUX)) { 2395 if (!strncmp(name, XATTR_SECURITY_PREFIX, 2396 sizeof XATTR_SECURITY_PREFIX - 1) && 2397 !capable(CAP_SYS_ADMIN)) { 2398 /* A different attribute in the security namespace. 2399 Restrict to administrator. */ 2400 return -EPERM; 2401 } 2402 2403 /* Not an attribute we recognize, so just check the 2404 ordinary setattr permission. Might want a separate 2405 permission for removexattr. */ 2406 return dentry_has_perm(current, NULL, dentry, FILE__SETATTR); 2407 } 2408 2409 /* No one is allowed to remove a SELinux security label. 2410 You can change the label, but all data must be labeled. */ 2411 return -EACCES; 2412 } 2413 2414 static const char *selinux_inode_xattr_getsuffix(void) 2415 { 2416 return XATTR_SELINUX_SUFFIX; 2417 } 2418 2419 /* 2420 * Copy the in-core inode security context value to the user. If the 2421 * getxattr() prior to this succeeded, check to see if we need to 2422 * canonicalize the value to be finally returned to the user. 2423 * 2424 * Permission check is handled by selinux_inode_getxattr hook. 2425 */ 2426 static int selinux_inode_getsecurity(const struct inode *inode, const char *name, void *buffer, size_t size, int err) 2427 { 2428 struct inode_security_struct *isec = inode->i_security; 2429 2430 if (strcmp(name, XATTR_SELINUX_SUFFIX)) 2431 return -EOPNOTSUPP; 2432 2433 return selinux_getsecurity(isec->sid, buffer, size); 2434 } 2435 2436 static int selinux_inode_setsecurity(struct inode *inode, const char *name, 2437 const void *value, size_t size, int flags) 2438 { 2439 struct inode_security_struct *isec = inode->i_security; 2440 u32 newsid; 2441 int rc; 2442 2443 if (strcmp(name, XATTR_SELINUX_SUFFIX)) 2444 return -EOPNOTSUPP; 2445 2446 if (!value || !size) 2447 return -EACCES; 2448 2449 rc = security_context_to_sid((void*)value, size, &newsid); 2450 if (rc) 2451 return rc; 2452 2453 isec->sid = newsid; 2454 return 0; 2455 } 2456 2457 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size) 2458 { 2459 const int len = sizeof(XATTR_NAME_SELINUX); 2460 if (buffer && len <= buffer_size) 2461 memcpy(buffer, XATTR_NAME_SELINUX, len); 2462 return len; 2463 } 2464 2465 /* file security operations */ 2466 2467 static int selinux_file_permission(struct file *file, int mask) 2468 { 2469 int rc; 2470 struct inode *inode = file->f_path.dentry->d_inode; 2471 2472 if (!mask) { 2473 /* No permission to check. Existence test. */ 2474 return 0; 2475 } 2476 2477 /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */ 2478 if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE)) 2479 mask |= MAY_APPEND; 2480 2481 rc = file_has_perm(current, file, 2482 file_mask_to_av(inode->i_mode, mask)); 2483 if (rc) 2484 return rc; 2485 2486 return selinux_netlbl_inode_permission(inode, mask); 2487 } 2488 2489 static int selinux_file_alloc_security(struct file *file) 2490 { 2491 return file_alloc_security(file); 2492 } 2493 2494 static void selinux_file_free_security(struct file *file) 2495 { 2496 file_free_security(file); 2497 } 2498 2499 static int selinux_file_ioctl(struct file *file, unsigned int cmd, 2500 unsigned long arg) 2501 { 2502 int error = 0; 2503 2504 switch (cmd) { 2505 case FIONREAD: 2506 /* fall through */ 2507 case FIBMAP: 2508 /* fall through */ 2509 case FIGETBSZ: 2510 /* fall through */ 2511 case EXT2_IOC_GETFLAGS: 2512 /* fall through */ 2513 case EXT2_IOC_GETVERSION: 2514 error = file_has_perm(current, file, FILE__GETATTR); 2515 break; 2516 2517 case EXT2_IOC_SETFLAGS: 2518 /* fall through */ 2519 case EXT2_IOC_SETVERSION: 2520 error = file_has_perm(current, file, FILE__SETATTR); 2521 break; 2522 2523 /* sys_ioctl() checks */ 2524 case FIONBIO: 2525 /* fall through */ 2526 case FIOASYNC: 2527 error = file_has_perm(current, file, 0); 2528 break; 2529 2530 case KDSKBENT: 2531 case KDSKBSENT: 2532 error = task_has_capability(current,CAP_SYS_TTY_CONFIG); 2533 break; 2534 2535 /* default case assumes that the command will go 2536 * to the file's ioctl() function. 2537 */ 2538 default: 2539 error = file_has_perm(current, file, FILE__IOCTL); 2540 2541 } 2542 return error; 2543 } 2544 2545 static int file_map_prot_check(struct file *file, unsigned long prot, int shared) 2546 { 2547 #ifndef CONFIG_PPC32 2548 if ((prot & PROT_EXEC) && (!file || (!shared && (prot & PROT_WRITE)))) { 2549 /* 2550 * We are making executable an anonymous mapping or a 2551 * private file mapping that will also be writable. 2552 * This has an additional check. 2553 */ 2554 int rc = task_has_perm(current, current, PROCESS__EXECMEM); 2555 if (rc) 2556 return rc; 2557 } 2558 #endif 2559 2560 if (file) { 2561 /* read access is always possible with a mapping */ 2562 u32 av = FILE__READ; 2563 2564 /* write access only matters if the mapping is shared */ 2565 if (shared && (prot & PROT_WRITE)) 2566 av |= FILE__WRITE; 2567 2568 if (prot & PROT_EXEC) 2569 av |= FILE__EXECUTE; 2570 2571 return file_has_perm(current, file, av); 2572 } 2573 return 0; 2574 } 2575 2576 static int selinux_file_mmap(struct file *file, unsigned long reqprot, 2577 unsigned long prot, unsigned long flags, 2578 unsigned long addr, unsigned long addr_only) 2579 { 2580 int rc = 0; 2581 u32 sid = ((struct task_security_struct*)(current->security))->sid; 2582 2583 if (addr < mmap_min_addr) 2584 rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT, 2585 MEMPROTECT__MMAP_ZERO, NULL); 2586 if (rc || addr_only) 2587 return rc; 2588 2589 if (selinux_checkreqprot) 2590 prot = reqprot; 2591 2592 return file_map_prot_check(file, prot, 2593 (flags & MAP_TYPE) == MAP_SHARED); 2594 } 2595 2596 static int selinux_file_mprotect(struct vm_area_struct *vma, 2597 unsigned long reqprot, 2598 unsigned long prot) 2599 { 2600 int rc; 2601 2602 rc = secondary_ops->file_mprotect(vma, reqprot, prot); 2603 if (rc) 2604 return rc; 2605 2606 if (selinux_checkreqprot) 2607 prot = reqprot; 2608 2609 #ifndef CONFIG_PPC32 2610 if ((prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) { 2611 rc = 0; 2612 if (vma->vm_start >= vma->vm_mm->start_brk && 2613 vma->vm_end <= vma->vm_mm->brk) { 2614 rc = task_has_perm(current, current, 2615 PROCESS__EXECHEAP); 2616 } else if (!vma->vm_file && 2617 vma->vm_start <= vma->vm_mm->start_stack && 2618 vma->vm_end >= vma->vm_mm->start_stack) { 2619 rc = task_has_perm(current, current, PROCESS__EXECSTACK); 2620 } else if (vma->vm_file && vma->anon_vma) { 2621 /* 2622 * We are making executable a file mapping that has 2623 * had some COW done. Since pages might have been 2624 * written, check ability to execute the possibly 2625 * modified content. This typically should only 2626 * occur for text relocations. 2627 */ 2628 rc = file_has_perm(current, vma->vm_file, 2629 FILE__EXECMOD); 2630 } 2631 if (rc) 2632 return rc; 2633 } 2634 #endif 2635 2636 return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED); 2637 } 2638 2639 static int selinux_file_lock(struct file *file, unsigned int cmd) 2640 { 2641 return file_has_perm(current, file, FILE__LOCK); 2642 } 2643 2644 static int selinux_file_fcntl(struct file *file, unsigned int cmd, 2645 unsigned long arg) 2646 { 2647 int err = 0; 2648 2649 switch (cmd) { 2650 case F_SETFL: 2651 if (!file->f_path.dentry || !file->f_path.dentry->d_inode) { 2652 err = -EINVAL; 2653 break; 2654 } 2655 2656 if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) { 2657 err = file_has_perm(current, file,FILE__WRITE); 2658 break; 2659 } 2660 /* fall through */ 2661 case F_SETOWN: 2662 case F_SETSIG: 2663 case F_GETFL: 2664 case F_GETOWN: 2665 case F_GETSIG: 2666 /* Just check FD__USE permission */ 2667 err = file_has_perm(current, file, 0); 2668 break; 2669 case F_GETLK: 2670 case F_SETLK: 2671 case F_SETLKW: 2672 #if BITS_PER_LONG == 32 2673 case F_GETLK64: 2674 case F_SETLK64: 2675 case F_SETLKW64: 2676 #endif 2677 if (!file->f_path.dentry || !file->f_path.dentry->d_inode) { 2678 err = -EINVAL; 2679 break; 2680 } 2681 err = file_has_perm(current, file, FILE__LOCK); 2682 break; 2683 } 2684 2685 return err; 2686 } 2687 2688 static int selinux_file_set_fowner(struct file *file) 2689 { 2690 struct task_security_struct *tsec; 2691 struct file_security_struct *fsec; 2692 2693 tsec = current->security; 2694 fsec = file->f_security; 2695 fsec->fown_sid = tsec->sid; 2696 2697 return 0; 2698 } 2699 2700 static int selinux_file_send_sigiotask(struct task_struct *tsk, 2701 struct fown_struct *fown, int signum) 2702 { 2703 struct file *file; 2704 u32 perm; 2705 struct task_security_struct *tsec; 2706 struct file_security_struct *fsec; 2707 2708 /* struct fown_struct is never outside the context of a struct file */ 2709 file = container_of(fown, struct file, f_owner); 2710 2711 tsec = tsk->security; 2712 fsec = file->f_security; 2713 2714 if (!signum) 2715 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */ 2716 else 2717 perm = signal_to_av(signum); 2718 2719 return avc_has_perm(fsec->fown_sid, tsec->sid, 2720 SECCLASS_PROCESS, perm, NULL); 2721 } 2722 2723 static int selinux_file_receive(struct file *file) 2724 { 2725 return file_has_perm(current, file, file_to_av(file)); 2726 } 2727 2728 /* task security operations */ 2729 2730 static int selinux_task_create(unsigned long clone_flags) 2731 { 2732 int rc; 2733 2734 rc = secondary_ops->task_create(clone_flags); 2735 if (rc) 2736 return rc; 2737 2738 return task_has_perm(current, current, PROCESS__FORK); 2739 } 2740 2741 static int selinux_task_alloc_security(struct task_struct *tsk) 2742 { 2743 struct task_security_struct *tsec1, *tsec2; 2744 int rc; 2745 2746 tsec1 = current->security; 2747 2748 rc = task_alloc_security(tsk); 2749 if (rc) 2750 return rc; 2751 tsec2 = tsk->security; 2752 2753 tsec2->osid = tsec1->osid; 2754 tsec2->sid = tsec1->sid; 2755 2756 /* Retain the exec, fs, key, and sock SIDs across fork */ 2757 tsec2->exec_sid = tsec1->exec_sid; 2758 tsec2->create_sid = tsec1->create_sid; 2759 tsec2->keycreate_sid = tsec1->keycreate_sid; 2760 tsec2->sockcreate_sid = tsec1->sockcreate_sid; 2761 2762 /* Retain ptracer SID across fork, if any. 2763 This will be reset by the ptrace hook upon any 2764 subsequent ptrace_attach operations. */ 2765 tsec2->ptrace_sid = tsec1->ptrace_sid; 2766 2767 return 0; 2768 } 2769 2770 static void selinux_task_free_security(struct task_struct *tsk) 2771 { 2772 task_free_security(tsk); 2773 } 2774 2775 static int selinux_task_setuid(uid_t id0, uid_t id1, uid_t id2, int flags) 2776 { 2777 /* Since setuid only affects the current process, and 2778 since the SELinux controls are not based on the Linux 2779 identity attributes, SELinux does not need to control 2780 this operation. However, SELinux does control the use 2781 of the CAP_SETUID and CAP_SETGID capabilities using the 2782 capable hook. */ 2783 return 0; 2784 } 2785 2786 static int selinux_task_post_setuid(uid_t id0, uid_t id1, uid_t id2, int flags) 2787 { 2788 return secondary_ops->task_post_setuid(id0,id1,id2,flags); 2789 } 2790 2791 static int selinux_task_setgid(gid_t id0, gid_t id1, gid_t id2, int flags) 2792 { 2793 /* See the comment for setuid above. */ 2794 return 0; 2795 } 2796 2797 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid) 2798 { 2799 return task_has_perm(current, p, PROCESS__SETPGID); 2800 } 2801 2802 static int selinux_task_getpgid(struct task_struct *p) 2803 { 2804 return task_has_perm(current, p, PROCESS__GETPGID); 2805 } 2806 2807 static int selinux_task_getsid(struct task_struct *p) 2808 { 2809 return task_has_perm(current, p, PROCESS__GETSESSION); 2810 } 2811 2812 static void selinux_task_getsecid(struct task_struct *p, u32 *secid) 2813 { 2814 selinux_get_task_sid(p, secid); 2815 } 2816 2817 static int selinux_task_setgroups(struct group_info *group_info) 2818 { 2819 /* See the comment for setuid above. */ 2820 return 0; 2821 } 2822 2823 static int selinux_task_setnice(struct task_struct *p, int nice) 2824 { 2825 int rc; 2826 2827 rc = secondary_ops->task_setnice(p, nice); 2828 if (rc) 2829 return rc; 2830 2831 return task_has_perm(current,p, PROCESS__SETSCHED); 2832 } 2833 2834 static int selinux_task_setioprio(struct task_struct *p, int ioprio) 2835 { 2836 return task_has_perm(current, p, PROCESS__SETSCHED); 2837 } 2838 2839 static int selinux_task_getioprio(struct task_struct *p) 2840 { 2841 return task_has_perm(current, p, PROCESS__GETSCHED); 2842 } 2843 2844 static int selinux_task_setrlimit(unsigned int resource, struct rlimit *new_rlim) 2845 { 2846 struct rlimit *old_rlim = current->signal->rlim + resource; 2847 int rc; 2848 2849 rc = secondary_ops->task_setrlimit(resource, new_rlim); 2850 if (rc) 2851 return rc; 2852 2853 /* Control the ability to change the hard limit (whether 2854 lowering or raising it), so that the hard limit can 2855 later be used as a safe reset point for the soft limit 2856 upon context transitions. See selinux_bprm_apply_creds. */ 2857 if (old_rlim->rlim_max != new_rlim->rlim_max) 2858 return task_has_perm(current, current, PROCESS__SETRLIMIT); 2859 2860 return 0; 2861 } 2862 2863 static int selinux_task_setscheduler(struct task_struct *p, int policy, struct sched_param *lp) 2864 { 2865 return task_has_perm(current, p, PROCESS__SETSCHED); 2866 } 2867 2868 static int selinux_task_getscheduler(struct task_struct *p) 2869 { 2870 return task_has_perm(current, p, PROCESS__GETSCHED); 2871 } 2872 2873 static int selinux_task_movememory(struct task_struct *p) 2874 { 2875 return task_has_perm(current, p, PROCESS__SETSCHED); 2876 } 2877 2878 static int selinux_task_kill(struct task_struct *p, struct siginfo *info, 2879 int sig, u32 secid) 2880 { 2881 u32 perm; 2882 int rc; 2883 struct task_security_struct *tsec; 2884 2885 rc = secondary_ops->task_kill(p, info, sig, secid); 2886 if (rc) 2887 return rc; 2888 2889 if (info != SEND_SIG_NOINFO && (is_si_special(info) || SI_FROMKERNEL(info))) 2890 return 0; 2891 2892 if (!sig) 2893 perm = PROCESS__SIGNULL; /* null signal; existence test */ 2894 else 2895 perm = signal_to_av(sig); 2896 tsec = p->security; 2897 if (secid) 2898 rc = avc_has_perm(secid, tsec->sid, SECCLASS_PROCESS, perm, NULL); 2899 else 2900 rc = task_has_perm(current, p, perm); 2901 return rc; 2902 } 2903 2904 static int selinux_task_prctl(int option, 2905 unsigned long arg2, 2906 unsigned long arg3, 2907 unsigned long arg4, 2908 unsigned long arg5) 2909 { 2910 /* The current prctl operations do not appear to require 2911 any SELinux controls since they merely observe or modify 2912 the state of the current process. */ 2913 return 0; 2914 } 2915 2916 static int selinux_task_wait(struct task_struct *p) 2917 { 2918 u32 perm; 2919 2920 perm = signal_to_av(p->exit_signal); 2921 2922 return task_has_perm(p, current, perm); 2923 } 2924 2925 static void selinux_task_reparent_to_init(struct task_struct *p) 2926 { 2927 struct task_security_struct *tsec; 2928 2929 secondary_ops->task_reparent_to_init(p); 2930 2931 tsec = p->security; 2932 tsec->osid = tsec->sid; 2933 tsec->sid = SECINITSID_KERNEL; 2934 return; 2935 } 2936 2937 static void selinux_task_to_inode(struct task_struct *p, 2938 struct inode *inode) 2939 { 2940 struct task_security_struct *tsec = p->security; 2941 struct inode_security_struct *isec = inode->i_security; 2942 2943 isec->sid = tsec->sid; 2944 isec->initialized = 1; 2945 return; 2946 } 2947 2948 /* Returns error only if unable to parse addresses */ 2949 static int selinux_parse_skb_ipv4(struct sk_buff *skb, 2950 struct avc_audit_data *ad, u8 *proto) 2951 { 2952 int offset, ihlen, ret = -EINVAL; 2953 struct iphdr _iph, *ih; 2954 2955 offset = skb_network_offset(skb); 2956 ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph); 2957 if (ih == NULL) 2958 goto out; 2959 2960 ihlen = ih->ihl * 4; 2961 if (ihlen < sizeof(_iph)) 2962 goto out; 2963 2964 ad->u.net.v4info.saddr = ih->saddr; 2965 ad->u.net.v4info.daddr = ih->daddr; 2966 ret = 0; 2967 2968 if (proto) 2969 *proto = ih->protocol; 2970 2971 switch (ih->protocol) { 2972 case IPPROTO_TCP: { 2973 struct tcphdr _tcph, *th; 2974 2975 if (ntohs(ih->frag_off) & IP_OFFSET) 2976 break; 2977 2978 offset += ihlen; 2979 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph); 2980 if (th == NULL) 2981 break; 2982 2983 ad->u.net.sport = th->source; 2984 ad->u.net.dport = th->dest; 2985 break; 2986 } 2987 2988 case IPPROTO_UDP: { 2989 struct udphdr _udph, *uh; 2990 2991 if (ntohs(ih->frag_off) & IP_OFFSET) 2992 break; 2993 2994 offset += ihlen; 2995 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph); 2996 if (uh == NULL) 2997 break; 2998 2999 ad->u.net.sport = uh->source; 3000 ad->u.net.dport = uh->dest; 3001 break; 3002 } 3003 3004 case IPPROTO_DCCP: { 3005 struct dccp_hdr _dccph, *dh; 3006 3007 if (ntohs(ih->frag_off) & IP_OFFSET) 3008 break; 3009 3010 offset += ihlen; 3011 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph); 3012 if (dh == NULL) 3013 break; 3014 3015 ad->u.net.sport = dh->dccph_sport; 3016 ad->u.net.dport = dh->dccph_dport; 3017 break; 3018 } 3019 3020 default: 3021 break; 3022 } 3023 out: 3024 return ret; 3025 } 3026 3027 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 3028 3029 /* Returns error only if unable to parse addresses */ 3030 static int selinux_parse_skb_ipv6(struct sk_buff *skb, 3031 struct avc_audit_data *ad, u8 *proto) 3032 { 3033 u8 nexthdr; 3034 int ret = -EINVAL, offset; 3035 struct ipv6hdr _ipv6h, *ip6; 3036 3037 offset = skb_network_offset(skb); 3038 ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h); 3039 if (ip6 == NULL) 3040 goto out; 3041 3042 ipv6_addr_copy(&ad->u.net.v6info.saddr, &ip6->saddr); 3043 ipv6_addr_copy(&ad->u.net.v6info.daddr, &ip6->daddr); 3044 ret = 0; 3045 3046 nexthdr = ip6->nexthdr; 3047 offset += sizeof(_ipv6h); 3048 offset = ipv6_skip_exthdr(skb, offset, &nexthdr); 3049 if (offset < 0) 3050 goto out; 3051 3052 if (proto) 3053 *proto = nexthdr; 3054 3055 switch (nexthdr) { 3056 case IPPROTO_TCP: { 3057 struct tcphdr _tcph, *th; 3058 3059 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph); 3060 if (th == NULL) 3061 break; 3062 3063 ad->u.net.sport = th->source; 3064 ad->u.net.dport = th->dest; 3065 break; 3066 } 3067 3068 case IPPROTO_UDP: { 3069 struct udphdr _udph, *uh; 3070 3071 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph); 3072 if (uh == NULL) 3073 break; 3074 3075 ad->u.net.sport = uh->source; 3076 ad->u.net.dport = uh->dest; 3077 break; 3078 } 3079 3080 case IPPROTO_DCCP: { 3081 struct dccp_hdr _dccph, *dh; 3082 3083 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph); 3084 if (dh == NULL) 3085 break; 3086 3087 ad->u.net.sport = dh->dccph_sport; 3088 ad->u.net.dport = dh->dccph_dport; 3089 break; 3090 } 3091 3092 /* includes fragments */ 3093 default: 3094 break; 3095 } 3096 out: 3097 return ret; 3098 } 3099 3100 #endif /* IPV6 */ 3101 3102 static int selinux_parse_skb(struct sk_buff *skb, struct avc_audit_data *ad, 3103 char **addrp, int *len, int src, u8 *proto) 3104 { 3105 int ret = 0; 3106 3107 switch (ad->u.net.family) { 3108 case PF_INET: 3109 ret = selinux_parse_skb_ipv4(skb, ad, proto); 3110 if (ret || !addrp) 3111 break; 3112 *len = 4; 3113 *addrp = (char *)(src ? &ad->u.net.v4info.saddr : 3114 &ad->u.net.v4info.daddr); 3115 break; 3116 3117 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 3118 case PF_INET6: 3119 ret = selinux_parse_skb_ipv6(skb, ad, proto); 3120 if (ret || !addrp) 3121 break; 3122 *len = 16; 3123 *addrp = (char *)(src ? &ad->u.net.v6info.saddr : 3124 &ad->u.net.v6info.daddr); 3125 break; 3126 #endif /* IPV6 */ 3127 default: 3128 break; 3129 } 3130 3131 return ret; 3132 } 3133 3134 /** 3135 * selinux_skb_extlbl_sid - Determine the external label of a packet 3136 * @skb: the packet 3137 * @sid: the packet's SID 3138 * 3139 * Description: 3140 * Check the various different forms of external packet labeling and determine 3141 * the external SID for the packet. If only one form of external labeling is 3142 * present then it is used, if both labeled IPsec and NetLabel labels are 3143 * present then the SELinux type information is taken from the labeled IPsec 3144 * SA and the MLS sensitivity label information is taken from the NetLabel 3145 * security attributes. This bit of "magic" is done in the call to 3146 * selinux_netlbl_skbuff_getsid(). 3147 * 3148 */ 3149 static void selinux_skb_extlbl_sid(struct sk_buff *skb, u32 *sid) 3150 { 3151 u32 xfrm_sid; 3152 u32 nlbl_sid; 3153 3154 selinux_skb_xfrm_sid(skb, &xfrm_sid); 3155 if (selinux_netlbl_skbuff_getsid(skb, 3156 (xfrm_sid == SECSID_NULL ? 3157 SECINITSID_NETMSG : xfrm_sid), 3158 &nlbl_sid) != 0) 3159 nlbl_sid = SECSID_NULL; 3160 *sid = (nlbl_sid == SECSID_NULL ? xfrm_sid : nlbl_sid); 3161 } 3162 3163 /* socket security operations */ 3164 static int socket_has_perm(struct task_struct *task, struct socket *sock, 3165 u32 perms) 3166 { 3167 struct inode_security_struct *isec; 3168 struct task_security_struct *tsec; 3169 struct avc_audit_data ad; 3170 int err = 0; 3171 3172 tsec = task->security; 3173 isec = SOCK_INODE(sock)->i_security; 3174 3175 if (isec->sid == SECINITSID_KERNEL) 3176 goto out; 3177 3178 AVC_AUDIT_DATA_INIT(&ad,NET); 3179 ad.u.net.sk = sock->sk; 3180 err = avc_has_perm(tsec->sid, isec->sid, isec->sclass, perms, &ad); 3181 3182 out: 3183 return err; 3184 } 3185 3186 static int selinux_socket_create(int family, int type, 3187 int protocol, int kern) 3188 { 3189 int err = 0; 3190 struct task_security_struct *tsec; 3191 u32 newsid; 3192 3193 if (kern) 3194 goto out; 3195 3196 tsec = current->security; 3197 newsid = tsec->sockcreate_sid ? : tsec->sid; 3198 err = avc_has_perm(tsec->sid, newsid, 3199 socket_type_to_security_class(family, type, 3200 protocol), SOCKET__CREATE, NULL); 3201 3202 out: 3203 return err; 3204 } 3205 3206 static int selinux_socket_post_create(struct socket *sock, int family, 3207 int type, int protocol, int kern) 3208 { 3209 int err = 0; 3210 struct inode_security_struct *isec; 3211 struct task_security_struct *tsec; 3212 struct sk_security_struct *sksec; 3213 u32 newsid; 3214 3215 isec = SOCK_INODE(sock)->i_security; 3216 3217 tsec = current->security; 3218 newsid = tsec->sockcreate_sid ? : tsec->sid; 3219 isec->sclass = socket_type_to_security_class(family, type, protocol); 3220 isec->sid = kern ? SECINITSID_KERNEL : newsid; 3221 isec->initialized = 1; 3222 3223 if (sock->sk) { 3224 sksec = sock->sk->sk_security; 3225 sksec->sid = isec->sid; 3226 err = selinux_netlbl_socket_post_create(sock); 3227 } 3228 3229 return err; 3230 } 3231 3232 /* Range of port numbers used to automatically bind. 3233 Need to determine whether we should perform a name_bind 3234 permission check between the socket and the port number. */ 3235 3236 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen) 3237 { 3238 u16 family; 3239 int err; 3240 3241 err = socket_has_perm(current, sock, SOCKET__BIND); 3242 if (err) 3243 goto out; 3244 3245 /* 3246 * If PF_INET or PF_INET6, check name_bind permission for the port. 3247 * Multiple address binding for SCTP is not supported yet: we just 3248 * check the first address now. 3249 */ 3250 family = sock->sk->sk_family; 3251 if (family == PF_INET || family == PF_INET6) { 3252 char *addrp; 3253 struct inode_security_struct *isec; 3254 struct task_security_struct *tsec; 3255 struct avc_audit_data ad; 3256 struct sockaddr_in *addr4 = NULL; 3257 struct sockaddr_in6 *addr6 = NULL; 3258 unsigned short snum; 3259 struct sock *sk = sock->sk; 3260 u32 sid, node_perm, addrlen; 3261 3262 tsec = current->security; 3263 isec = SOCK_INODE(sock)->i_security; 3264 3265 if (family == PF_INET) { 3266 addr4 = (struct sockaddr_in *)address; 3267 snum = ntohs(addr4->sin_port); 3268 addrlen = sizeof(addr4->sin_addr.s_addr); 3269 addrp = (char *)&addr4->sin_addr.s_addr; 3270 } else { 3271 addr6 = (struct sockaddr_in6 *)address; 3272 snum = ntohs(addr6->sin6_port); 3273 addrlen = sizeof(addr6->sin6_addr.s6_addr); 3274 addrp = (char *)&addr6->sin6_addr.s6_addr; 3275 } 3276 3277 if (snum) { 3278 int low, high; 3279 3280 inet_get_local_port_range(&low, &high); 3281 3282 if (snum < max(PROT_SOCK, low) || snum > high) { 3283 err = security_port_sid(sk->sk_family, 3284 sk->sk_type, 3285 sk->sk_protocol, snum, 3286 &sid); 3287 if (err) 3288 goto out; 3289 AVC_AUDIT_DATA_INIT(&ad,NET); 3290 ad.u.net.sport = htons(snum); 3291 ad.u.net.family = family; 3292 err = avc_has_perm(isec->sid, sid, 3293 isec->sclass, 3294 SOCKET__NAME_BIND, &ad); 3295 if (err) 3296 goto out; 3297 } 3298 } 3299 3300 switch(isec->sclass) { 3301 case SECCLASS_TCP_SOCKET: 3302 node_perm = TCP_SOCKET__NODE_BIND; 3303 break; 3304 3305 case SECCLASS_UDP_SOCKET: 3306 node_perm = UDP_SOCKET__NODE_BIND; 3307 break; 3308 3309 case SECCLASS_DCCP_SOCKET: 3310 node_perm = DCCP_SOCKET__NODE_BIND; 3311 break; 3312 3313 default: 3314 node_perm = RAWIP_SOCKET__NODE_BIND; 3315 break; 3316 } 3317 3318 err = security_node_sid(family, addrp, addrlen, &sid); 3319 if (err) 3320 goto out; 3321 3322 AVC_AUDIT_DATA_INIT(&ad,NET); 3323 ad.u.net.sport = htons(snum); 3324 ad.u.net.family = family; 3325 3326 if (family == PF_INET) 3327 ad.u.net.v4info.saddr = addr4->sin_addr.s_addr; 3328 else 3329 ipv6_addr_copy(&ad.u.net.v6info.saddr, &addr6->sin6_addr); 3330 3331 err = avc_has_perm(isec->sid, sid, 3332 isec->sclass, node_perm, &ad); 3333 if (err) 3334 goto out; 3335 } 3336 out: 3337 return err; 3338 } 3339 3340 static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen) 3341 { 3342 struct inode_security_struct *isec; 3343 int err; 3344 3345 err = socket_has_perm(current, sock, SOCKET__CONNECT); 3346 if (err) 3347 return err; 3348 3349 /* 3350 * If a TCP or DCCP socket, check name_connect permission for the port. 3351 */ 3352 isec = SOCK_INODE(sock)->i_security; 3353 if (isec->sclass == SECCLASS_TCP_SOCKET || 3354 isec->sclass == SECCLASS_DCCP_SOCKET) { 3355 struct sock *sk = sock->sk; 3356 struct avc_audit_data ad; 3357 struct sockaddr_in *addr4 = NULL; 3358 struct sockaddr_in6 *addr6 = NULL; 3359 unsigned short snum; 3360 u32 sid, perm; 3361 3362 if (sk->sk_family == PF_INET) { 3363 addr4 = (struct sockaddr_in *)address; 3364 if (addrlen < sizeof(struct sockaddr_in)) 3365 return -EINVAL; 3366 snum = ntohs(addr4->sin_port); 3367 } else { 3368 addr6 = (struct sockaddr_in6 *)address; 3369 if (addrlen < SIN6_LEN_RFC2133) 3370 return -EINVAL; 3371 snum = ntohs(addr6->sin6_port); 3372 } 3373 3374 err = security_port_sid(sk->sk_family, sk->sk_type, 3375 sk->sk_protocol, snum, &sid); 3376 if (err) 3377 goto out; 3378 3379 perm = (isec->sclass == SECCLASS_TCP_SOCKET) ? 3380 TCP_SOCKET__NAME_CONNECT : DCCP_SOCKET__NAME_CONNECT; 3381 3382 AVC_AUDIT_DATA_INIT(&ad,NET); 3383 ad.u.net.dport = htons(snum); 3384 ad.u.net.family = sk->sk_family; 3385 err = avc_has_perm(isec->sid, sid, isec->sclass, perm, &ad); 3386 if (err) 3387 goto out; 3388 } 3389 3390 out: 3391 return err; 3392 } 3393 3394 static int selinux_socket_listen(struct socket *sock, int backlog) 3395 { 3396 return socket_has_perm(current, sock, SOCKET__LISTEN); 3397 } 3398 3399 static int selinux_socket_accept(struct socket *sock, struct socket *newsock) 3400 { 3401 int err; 3402 struct inode_security_struct *isec; 3403 struct inode_security_struct *newisec; 3404 3405 err = socket_has_perm(current, sock, SOCKET__ACCEPT); 3406 if (err) 3407 return err; 3408 3409 newisec = SOCK_INODE(newsock)->i_security; 3410 3411 isec = SOCK_INODE(sock)->i_security; 3412 newisec->sclass = isec->sclass; 3413 newisec->sid = isec->sid; 3414 newisec->initialized = 1; 3415 3416 return 0; 3417 } 3418 3419 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg, 3420 int size) 3421 { 3422 int rc; 3423 3424 rc = socket_has_perm(current, sock, SOCKET__WRITE); 3425 if (rc) 3426 return rc; 3427 3428 return selinux_netlbl_inode_permission(SOCK_INODE(sock), MAY_WRITE); 3429 } 3430 3431 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg, 3432 int size, int flags) 3433 { 3434 return socket_has_perm(current, sock, SOCKET__READ); 3435 } 3436 3437 static int selinux_socket_getsockname(struct socket *sock) 3438 { 3439 return socket_has_perm(current, sock, SOCKET__GETATTR); 3440 } 3441 3442 static int selinux_socket_getpeername(struct socket *sock) 3443 { 3444 return socket_has_perm(current, sock, SOCKET__GETATTR); 3445 } 3446 3447 static int selinux_socket_setsockopt(struct socket *sock,int level,int optname) 3448 { 3449 int err; 3450 3451 err = socket_has_perm(current, sock, SOCKET__SETOPT); 3452 if (err) 3453 return err; 3454 3455 return selinux_netlbl_socket_setsockopt(sock, level, optname); 3456 } 3457 3458 static int selinux_socket_getsockopt(struct socket *sock, int level, 3459 int optname) 3460 { 3461 return socket_has_perm(current, sock, SOCKET__GETOPT); 3462 } 3463 3464 static int selinux_socket_shutdown(struct socket *sock, int how) 3465 { 3466 return socket_has_perm(current, sock, SOCKET__SHUTDOWN); 3467 } 3468 3469 static int selinux_socket_unix_stream_connect(struct socket *sock, 3470 struct socket *other, 3471 struct sock *newsk) 3472 { 3473 struct sk_security_struct *ssec; 3474 struct inode_security_struct *isec; 3475 struct inode_security_struct *other_isec; 3476 struct avc_audit_data ad; 3477 int err; 3478 3479 err = secondary_ops->unix_stream_connect(sock, other, newsk); 3480 if (err) 3481 return err; 3482 3483 isec = SOCK_INODE(sock)->i_security; 3484 other_isec = SOCK_INODE(other)->i_security; 3485 3486 AVC_AUDIT_DATA_INIT(&ad,NET); 3487 ad.u.net.sk = other->sk; 3488 3489 err = avc_has_perm(isec->sid, other_isec->sid, 3490 isec->sclass, 3491 UNIX_STREAM_SOCKET__CONNECTTO, &ad); 3492 if (err) 3493 return err; 3494 3495 /* connecting socket */ 3496 ssec = sock->sk->sk_security; 3497 ssec->peer_sid = other_isec->sid; 3498 3499 /* server child socket */ 3500 ssec = newsk->sk_security; 3501 ssec->peer_sid = isec->sid; 3502 err = security_sid_mls_copy(other_isec->sid, ssec->peer_sid, &ssec->sid); 3503 3504 return err; 3505 } 3506 3507 static int selinux_socket_unix_may_send(struct socket *sock, 3508 struct socket *other) 3509 { 3510 struct inode_security_struct *isec; 3511 struct inode_security_struct *other_isec; 3512 struct avc_audit_data ad; 3513 int err; 3514 3515 isec = SOCK_INODE(sock)->i_security; 3516 other_isec = SOCK_INODE(other)->i_security; 3517 3518 AVC_AUDIT_DATA_INIT(&ad,NET); 3519 ad.u.net.sk = other->sk; 3520 3521 err = avc_has_perm(isec->sid, other_isec->sid, 3522 isec->sclass, SOCKET__SENDTO, &ad); 3523 if (err) 3524 return err; 3525 3526 return 0; 3527 } 3528 3529 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb, 3530 struct avc_audit_data *ad, u16 family, char *addrp, int len) 3531 { 3532 int err = 0; 3533 u32 netif_perm, node_perm, node_sid, if_sid, recv_perm = 0; 3534 struct socket *sock; 3535 u16 sock_class = 0; 3536 u32 sock_sid = 0; 3537 3538 read_lock_bh(&sk->sk_callback_lock); 3539 sock = sk->sk_socket; 3540 if (sock) { 3541 struct inode *inode; 3542 inode = SOCK_INODE(sock); 3543 if (inode) { 3544 struct inode_security_struct *isec; 3545 isec = inode->i_security; 3546 sock_sid = isec->sid; 3547 sock_class = isec->sclass; 3548 } 3549 } 3550 read_unlock_bh(&sk->sk_callback_lock); 3551 if (!sock_sid) 3552 goto out; 3553 3554 if (!skb->dev) 3555 goto out; 3556 3557 err = sel_netif_sids(skb->dev, &if_sid, NULL); 3558 if (err) 3559 goto out; 3560 3561 switch (sock_class) { 3562 case SECCLASS_UDP_SOCKET: 3563 netif_perm = NETIF__UDP_RECV; 3564 node_perm = NODE__UDP_RECV; 3565 recv_perm = UDP_SOCKET__RECV_MSG; 3566 break; 3567 3568 case SECCLASS_TCP_SOCKET: 3569 netif_perm = NETIF__TCP_RECV; 3570 node_perm = NODE__TCP_RECV; 3571 recv_perm = TCP_SOCKET__RECV_MSG; 3572 break; 3573 3574 case SECCLASS_DCCP_SOCKET: 3575 netif_perm = NETIF__DCCP_RECV; 3576 node_perm = NODE__DCCP_RECV; 3577 recv_perm = DCCP_SOCKET__RECV_MSG; 3578 break; 3579 3580 default: 3581 netif_perm = NETIF__RAWIP_RECV; 3582 node_perm = NODE__RAWIP_RECV; 3583 break; 3584 } 3585 3586 err = avc_has_perm(sock_sid, if_sid, SECCLASS_NETIF, netif_perm, ad); 3587 if (err) 3588 goto out; 3589 3590 err = security_node_sid(family, addrp, len, &node_sid); 3591 if (err) 3592 goto out; 3593 3594 err = avc_has_perm(sock_sid, node_sid, SECCLASS_NODE, node_perm, ad); 3595 if (err) 3596 goto out; 3597 3598 if (recv_perm) { 3599 u32 port_sid; 3600 3601 err = security_port_sid(sk->sk_family, sk->sk_type, 3602 sk->sk_protocol, ntohs(ad->u.net.sport), 3603 &port_sid); 3604 if (err) 3605 goto out; 3606 3607 err = avc_has_perm(sock_sid, port_sid, 3608 sock_class, recv_perm, ad); 3609 } 3610 3611 out: 3612 return err; 3613 } 3614 3615 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb) 3616 { 3617 u16 family; 3618 char *addrp; 3619 int len, err = 0; 3620 struct avc_audit_data ad; 3621 struct sk_security_struct *sksec = sk->sk_security; 3622 3623 family = sk->sk_family; 3624 if (family != PF_INET && family != PF_INET6) 3625 goto out; 3626 3627 /* Handle mapped IPv4 packets arriving via IPv6 sockets */ 3628 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP)) 3629 family = PF_INET; 3630 3631 AVC_AUDIT_DATA_INIT(&ad, NET); 3632 ad.u.net.netif = skb->dev ? skb->dev->name : "[unknown]"; 3633 ad.u.net.family = family; 3634 3635 err = selinux_parse_skb(skb, &ad, &addrp, &len, 1, NULL); 3636 if (err) 3637 goto out; 3638 3639 if (selinux_compat_net) 3640 err = selinux_sock_rcv_skb_compat(sk, skb, &ad, family, 3641 addrp, len); 3642 else 3643 err = avc_has_perm(sksec->sid, skb->secmark, SECCLASS_PACKET, 3644 PACKET__RECV, &ad); 3645 if (err) 3646 goto out; 3647 3648 err = selinux_netlbl_sock_rcv_skb(sksec, skb, &ad); 3649 if (err) 3650 goto out; 3651 3652 err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad); 3653 out: 3654 return err; 3655 } 3656 3657 static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval, 3658 int __user *optlen, unsigned len) 3659 { 3660 int err = 0; 3661 char *scontext; 3662 u32 scontext_len; 3663 struct sk_security_struct *ssec; 3664 struct inode_security_struct *isec; 3665 u32 peer_sid = SECSID_NULL; 3666 3667 isec = SOCK_INODE(sock)->i_security; 3668 3669 if (isec->sclass == SECCLASS_UNIX_STREAM_SOCKET || 3670 isec->sclass == SECCLASS_TCP_SOCKET) { 3671 ssec = sock->sk->sk_security; 3672 peer_sid = ssec->peer_sid; 3673 } 3674 if (peer_sid == SECSID_NULL) { 3675 err = -ENOPROTOOPT; 3676 goto out; 3677 } 3678 3679 err = security_sid_to_context(peer_sid, &scontext, &scontext_len); 3680 3681 if (err) 3682 goto out; 3683 3684 if (scontext_len > len) { 3685 err = -ERANGE; 3686 goto out_len; 3687 } 3688 3689 if (copy_to_user(optval, scontext, scontext_len)) 3690 err = -EFAULT; 3691 3692 out_len: 3693 if (put_user(scontext_len, optlen)) 3694 err = -EFAULT; 3695 3696 kfree(scontext); 3697 out: 3698 return err; 3699 } 3700 3701 static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid) 3702 { 3703 u32 peer_secid = SECSID_NULL; 3704 int err = 0; 3705 3706 if (sock && sock->sk->sk_family == PF_UNIX) 3707 selinux_get_inode_sid(SOCK_INODE(sock), &peer_secid); 3708 else if (skb) 3709 selinux_skb_extlbl_sid(skb, &peer_secid); 3710 3711 if (peer_secid == SECSID_NULL) 3712 err = -EINVAL; 3713 *secid = peer_secid; 3714 3715 return err; 3716 } 3717 3718 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority) 3719 { 3720 return sk_alloc_security(sk, family, priority); 3721 } 3722 3723 static void selinux_sk_free_security(struct sock *sk) 3724 { 3725 sk_free_security(sk); 3726 } 3727 3728 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk) 3729 { 3730 struct sk_security_struct *ssec = sk->sk_security; 3731 struct sk_security_struct *newssec = newsk->sk_security; 3732 3733 newssec->sid = ssec->sid; 3734 newssec->peer_sid = ssec->peer_sid; 3735 3736 selinux_netlbl_sk_security_clone(ssec, newssec); 3737 } 3738 3739 static void selinux_sk_getsecid(struct sock *sk, u32 *secid) 3740 { 3741 if (!sk) 3742 *secid = SECINITSID_ANY_SOCKET; 3743 else { 3744 struct sk_security_struct *sksec = sk->sk_security; 3745 3746 *secid = sksec->sid; 3747 } 3748 } 3749 3750 static void selinux_sock_graft(struct sock* sk, struct socket *parent) 3751 { 3752 struct inode_security_struct *isec = SOCK_INODE(parent)->i_security; 3753 struct sk_security_struct *sksec = sk->sk_security; 3754 3755 if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 || 3756 sk->sk_family == PF_UNIX) 3757 isec->sid = sksec->sid; 3758 3759 selinux_netlbl_sock_graft(sk, parent); 3760 } 3761 3762 static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb, 3763 struct request_sock *req) 3764 { 3765 struct sk_security_struct *sksec = sk->sk_security; 3766 int err; 3767 u32 newsid; 3768 u32 peersid; 3769 3770 selinux_skb_extlbl_sid(skb, &peersid); 3771 if (peersid == SECSID_NULL) { 3772 req->secid = sksec->sid; 3773 req->peer_secid = SECSID_NULL; 3774 return 0; 3775 } 3776 3777 err = security_sid_mls_copy(sksec->sid, peersid, &newsid); 3778 if (err) 3779 return err; 3780 3781 req->secid = newsid; 3782 req->peer_secid = peersid; 3783 return 0; 3784 } 3785 3786 static void selinux_inet_csk_clone(struct sock *newsk, 3787 const struct request_sock *req) 3788 { 3789 struct sk_security_struct *newsksec = newsk->sk_security; 3790 3791 newsksec->sid = req->secid; 3792 newsksec->peer_sid = req->peer_secid; 3793 /* NOTE: Ideally, we should also get the isec->sid for the 3794 new socket in sync, but we don't have the isec available yet. 3795 So we will wait until sock_graft to do it, by which 3796 time it will have been created and available. */ 3797 3798 /* We don't need to take any sort of lock here as we are the only 3799 * thread with access to newsksec */ 3800 selinux_netlbl_sk_security_reset(newsksec, req->rsk_ops->family); 3801 } 3802 3803 static void selinux_inet_conn_established(struct sock *sk, 3804 struct sk_buff *skb) 3805 { 3806 struct sk_security_struct *sksec = sk->sk_security; 3807 3808 selinux_skb_extlbl_sid(skb, &sksec->peer_sid); 3809 } 3810 3811 static void selinux_req_classify_flow(const struct request_sock *req, 3812 struct flowi *fl) 3813 { 3814 fl->secid = req->secid; 3815 } 3816 3817 static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb) 3818 { 3819 int err = 0; 3820 u32 perm; 3821 struct nlmsghdr *nlh; 3822 struct socket *sock = sk->sk_socket; 3823 struct inode_security_struct *isec = SOCK_INODE(sock)->i_security; 3824 3825 if (skb->len < NLMSG_SPACE(0)) { 3826 err = -EINVAL; 3827 goto out; 3828 } 3829 nlh = nlmsg_hdr(skb); 3830 3831 err = selinux_nlmsg_lookup(isec->sclass, nlh->nlmsg_type, &perm); 3832 if (err) { 3833 if (err == -EINVAL) { 3834 audit_log(current->audit_context, GFP_KERNEL, AUDIT_SELINUX_ERR, 3835 "SELinux: unrecognized netlink message" 3836 " type=%hu for sclass=%hu\n", 3837 nlh->nlmsg_type, isec->sclass); 3838 if (!selinux_enforcing) 3839 err = 0; 3840 } 3841 3842 /* Ignore */ 3843 if (err == -ENOENT) 3844 err = 0; 3845 goto out; 3846 } 3847 3848 err = socket_has_perm(current, sock, perm); 3849 out: 3850 return err; 3851 } 3852 3853 #ifdef CONFIG_NETFILTER 3854 3855 static int selinux_ip_postroute_last_compat(struct sock *sk, struct net_device *dev, 3856 struct avc_audit_data *ad, 3857 u16 family, char *addrp, int len) 3858 { 3859 int err = 0; 3860 u32 netif_perm, node_perm, node_sid, if_sid, send_perm = 0; 3861 struct socket *sock; 3862 struct inode *inode; 3863 struct inode_security_struct *isec; 3864 3865 sock = sk->sk_socket; 3866 if (!sock) 3867 goto out; 3868 3869 inode = SOCK_INODE(sock); 3870 if (!inode) 3871 goto out; 3872 3873 isec = inode->i_security; 3874 3875 err = sel_netif_sids(dev, &if_sid, NULL); 3876 if (err) 3877 goto out; 3878 3879 switch (isec->sclass) { 3880 case SECCLASS_UDP_SOCKET: 3881 netif_perm = NETIF__UDP_SEND; 3882 node_perm = NODE__UDP_SEND; 3883 send_perm = UDP_SOCKET__SEND_MSG; 3884 break; 3885 3886 case SECCLASS_TCP_SOCKET: 3887 netif_perm = NETIF__TCP_SEND; 3888 node_perm = NODE__TCP_SEND; 3889 send_perm = TCP_SOCKET__SEND_MSG; 3890 break; 3891 3892 case SECCLASS_DCCP_SOCKET: 3893 netif_perm = NETIF__DCCP_SEND; 3894 node_perm = NODE__DCCP_SEND; 3895 send_perm = DCCP_SOCKET__SEND_MSG; 3896 break; 3897 3898 default: 3899 netif_perm = NETIF__RAWIP_SEND; 3900 node_perm = NODE__RAWIP_SEND; 3901 break; 3902 } 3903 3904 err = avc_has_perm(isec->sid, if_sid, SECCLASS_NETIF, netif_perm, ad); 3905 if (err) 3906 goto out; 3907 3908 err = security_node_sid(family, addrp, len, &node_sid); 3909 if (err) 3910 goto out; 3911 3912 err = avc_has_perm(isec->sid, node_sid, SECCLASS_NODE, node_perm, ad); 3913 if (err) 3914 goto out; 3915 3916 if (send_perm) { 3917 u32 port_sid; 3918 3919 err = security_port_sid(sk->sk_family, 3920 sk->sk_type, 3921 sk->sk_protocol, 3922 ntohs(ad->u.net.dport), 3923 &port_sid); 3924 if (err) 3925 goto out; 3926 3927 err = avc_has_perm(isec->sid, port_sid, isec->sclass, 3928 send_perm, ad); 3929 } 3930 out: 3931 return err; 3932 } 3933 3934 static unsigned int selinux_ip_postroute_last(unsigned int hooknum, 3935 struct sk_buff *skb, 3936 const struct net_device *in, 3937 const struct net_device *out, 3938 int (*okfn)(struct sk_buff *), 3939 u16 family) 3940 { 3941 char *addrp; 3942 int len, err = 0; 3943 struct sock *sk; 3944 struct avc_audit_data ad; 3945 struct net_device *dev = (struct net_device *)out; 3946 struct sk_security_struct *sksec; 3947 u8 proto; 3948 3949 sk = skb->sk; 3950 if (!sk) 3951 goto out; 3952 3953 sksec = sk->sk_security; 3954 3955 AVC_AUDIT_DATA_INIT(&ad, NET); 3956 ad.u.net.netif = dev->name; 3957 ad.u.net.family = family; 3958 3959 err = selinux_parse_skb(skb, &ad, &addrp, &len, 0, &proto); 3960 if (err) 3961 goto out; 3962 3963 if (selinux_compat_net) 3964 err = selinux_ip_postroute_last_compat(sk, dev, &ad, 3965 family, addrp, len); 3966 else 3967 err = avc_has_perm(sksec->sid, skb->secmark, SECCLASS_PACKET, 3968 PACKET__SEND, &ad); 3969 3970 if (err) 3971 goto out; 3972 3973 err = selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto); 3974 out: 3975 return err ? NF_DROP : NF_ACCEPT; 3976 } 3977 3978 static unsigned int selinux_ipv4_postroute_last(unsigned int hooknum, 3979 struct sk_buff *skb, 3980 const struct net_device *in, 3981 const struct net_device *out, 3982 int (*okfn)(struct sk_buff *)) 3983 { 3984 return selinux_ip_postroute_last(hooknum, skb, in, out, okfn, PF_INET); 3985 } 3986 3987 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 3988 3989 static unsigned int selinux_ipv6_postroute_last(unsigned int hooknum, 3990 struct sk_buff *skb, 3991 const struct net_device *in, 3992 const struct net_device *out, 3993 int (*okfn)(struct sk_buff *)) 3994 { 3995 return selinux_ip_postroute_last(hooknum, skb, in, out, okfn, PF_INET6); 3996 } 3997 3998 #endif /* IPV6 */ 3999 4000 #endif /* CONFIG_NETFILTER */ 4001 4002 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb) 4003 { 4004 int err; 4005 4006 err = secondary_ops->netlink_send(sk, skb); 4007 if (err) 4008 return err; 4009 4010 if (policydb_loaded_version >= POLICYDB_VERSION_NLCLASS) 4011 err = selinux_nlmsg_perm(sk, skb); 4012 4013 return err; 4014 } 4015 4016 static int selinux_netlink_recv(struct sk_buff *skb, int capability) 4017 { 4018 int err; 4019 struct avc_audit_data ad; 4020 4021 err = secondary_ops->netlink_recv(skb, capability); 4022 if (err) 4023 return err; 4024 4025 AVC_AUDIT_DATA_INIT(&ad, CAP); 4026 ad.u.cap = capability; 4027 4028 return avc_has_perm(NETLINK_CB(skb).sid, NETLINK_CB(skb).sid, 4029 SECCLASS_CAPABILITY, CAP_TO_MASK(capability), &ad); 4030 } 4031 4032 static int ipc_alloc_security(struct task_struct *task, 4033 struct kern_ipc_perm *perm, 4034 u16 sclass) 4035 { 4036 struct task_security_struct *tsec = task->security; 4037 struct ipc_security_struct *isec; 4038 4039 isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL); 4040 if (!isec) 4041 return -ENOMEM; 4042 4043 isec->sclass = sclass; 4044 isec->ipc_perm = perm; 4045 isec->sid = tsec->sid; 4046 perm->security = isec; 4047 4048 return 0; 4049 } 4050 4051 static void ipc_free_security(struct kern_ipc_perm *perm) 4052 { 4053 struct ipc_security_struct *isec = perm->security; 4054 perm->security = NULL; 4055 kfree(isec); 4056 } 4057 4058 static int msg_msg_alloc_security(struct msg_msg *msg) 4059 { 4060 struct msg_security_struct *msec; 4061 4062 msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL); 4063 if (!msec) 4064 return -ENOMEM; 4065 4066 msec->msg = msg; 4067 msec->sid = SECINITSID_UNLABELED; 4068 msg->security = msec; 4069 4070 return 0; 4071 } 4072 4073 static void msg_msg_free_security(struct msg_msg *msg) 4074 { 4075 struct msg_security_struct *msec = msg->security; 4076 4077 msg->security = NULL; 4078 kfree(msec); 4079 } 4080 4081 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms, 4082 u32 perms) 4083 { 4084 struct task_security_struct *tsec; 4085 struct ipc_security_struct *isec; 4086 struct avc_audit_data ad; 4087 4088 tsec = current->security; 4089 isec = ipc_perms->security; 4090 4091 AVC_AUDIT_DATA_INIT(&ad, IPC); 4092 ad.u.ipc_id = ipc_perms->key; 4093 4094 return avc_has_perm(tsec->sid, isec->sid, isec->sclass, perms, &ad); 4095 } 4096 4097 static int selinux_msg_msg_alloc_security(struct msg_msg *msg) 4098 { 4099 return msg_msg_alloc_security(msg); 4100 } 4101 4102 static void selinux_msg_msg_free_security(struct msg_msg *msg) 4103 { 4104 msg_msg_free_security(msg); 4105 } 4106 4107 /* message queue security operations */ 4108 static int selinux_msg_queue_alloc_security(struct msg_queue *msq) 4109 { 4110 struct task_security_struct *tsec; 4111 struct ipc_security_struct *isec; 4112 struct avc_audit_data ad; 4113 int rc; 4114 4115 rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ); 4116 if (rc) 4117 return rc; 4118 4119 tsec = current->security; 4120 isec = msq->q_perm.security; 4121 4122 AVC_AUDIT_DATA_INIT(&ad, IPC); 4123 ad.u.ipc_id = msq->q_perm.key; 4124 4125 rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_MSGQ, 4126 MSGQ__CREATE, &ad); 4127 if (rc) { 4128 ipc_free_security(&msq->q_perm); 4129 return rc; 4130 } 4131 return 0; 4132 } 4133 4134 static void selinux_msg_queue_free_security(struct msg_queue *msq) 4135 { 4136 ipc_free_security(&msq->q_perm); 4137 } 4138 4139 static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg) 4140 { 4141 struct task_security_struct *tsec; 4142 struct ipc_security_struct *isec; 4143 struct avc_audit_data ad; 4144 4145 tsec = current->security; 4146 isec = msq->q_perm.security; 4147 4148 AVC_AUDIT_DATA_INIT(&ad, IPC); 4149 ad.u.ipc_id = msq->q_perm.key; 4150 4151 return avc_has_perm(tsec->sid, isec->sid, SECCLASS_MSGQ, 4152 MSGQ__ASSOCIATE, &ad); 4153 } 4154 4155 static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd) 4156 { 4157 int err; 4158 int perms; 4159 4160 switch(cmd) { 4161 case IPC_INFO: 4162 case MSG_INFO: 4163 /* No specific object, just general system-wide information. */ 4164 return task_has_system(current, SYSTEM__IPC_INFO); 4165 case IPC_STAT: 4166 case MSG_STAT: 4167 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE; 4168 break; 4169 case IPC_SET: 4170 perms = MSGQ__SETATTR; 4171 break; 4172 case IPC_RMID: 4173 perms = MSGQ__DESTROY; 4174 break; 4175 default: 4176 return 0; 4177 } 4178 4179 err = ipc_has_perm(&msq->q_perm, perms); 4180 return err; 4181 } 4182 4183 static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg) 4184 { 4185 struct task_security_struct *tsec; 4186 struct ipc_security_struct *isec; 4187 struct msg_security_struct *msec; 4188 struct avc_audit_data ad; 4189 int rc; 4190 4191 tsec = current->security; 4192 isec = msq->q_perm.security; 4193 msec = msg->security; 4194 4195 /* 4196 * First time through, need to assign label to the message 4197 */ 4198 if (msec->sid == SECINITSID_UNLABELED) { 4199 /* 4200 * Compute new sid based on current process and 4201 * message queue this message will be stored in 4202 */ 4203 rc = security_transition_sid(tsec->sid, 4204 isec->sid, 4205 SECCLASS_MSG, 4206 &msec->sid); 4207 if (rc) 4208 return rc; 4209 } 4210 4211 AVC_AUDIT_DATA_INIT(&ad, IPC); 4212 ad.u.ipc_id = msq->q_perm.key; 4213 4214 /* Can this process write to the queue? */ 4215 rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_MSGQ, 4216 MSGQ__WRITE, &ad); 4217 if (!rc) 4218 /* Can this process send the message */ 4219 rc = avc_has_perm(tsec->sid, msec->sid, 4220 SECCLASS_MSG, MSG__SEND, &ad); 4221 if (!rc) 4222 /* Can the message be put in the queue? */ 4223 rc = avc_has_perm(msec->sid, isec->sid, 4224 SECCLASS_MSGQ, MSGQ__ENQUEUE, &ad); 4225 4226 return rc; 4227 } 4228 4229 static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg, 4230 struct task_struct *target, 4231 long type, int mode) 4232 { 4233 struct task_security_struct *tsec; 4234 struct ipc_security_struct *isec; 4235 struct msg_security_struct *msec; 4236 struct avc_audit_data ad; 4237 int rc; 4238 4239 tsec = target->security; 4240 isec = msq->q_perm.security; 4241 msec = msg->security; 4242 4243 AVC_AUDIT_DATA_INIT(&ad, IPC); 4244 ad.u.ipc_id = msq->q_perm.key; 4245 4246 rc = avc_has_perm(tsec->sid, isec->sid, 4247 SECCLASS_MSGQ, MSGQ__READ, &ad); 4248 if (!rc) 4249 rc = avc_has_perm(tsec->sid, msec->sid, 4250 SECCLASS_MSG, MSG__RECEIVE, &ad); 4251 return rc; 4252 } 4253 4254 /* Shared Memory security operations */ 4255 static int selinux_shm_alloc_security(struct shmid_kernel *shp) 4256 { 4257 struct task_security_struct *tsec; 4258 struct ipc_security_struct *isec; 4259 struct avc_audit_data ad; 4260 int rc; 4261 4262 rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM); 4263 if (rc) 4264 return rc; 4265 4266 tsec = current->security; 4267 isec = shp->shm_perm.security; 4268 4269 AVC_AUDIT_DATA_INIT(&ad, IPC); 4270 ad.u.ipc_id = shp->shm_perm.key; 4271 4272 rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_SHM, 4273 SHM__CREATE, &ad); 4274 if (rc) { 4275 ipc_free_security(&shp->shm_perm); 4276 return rc; 4277 } 4278 return 0; 4279 } 4280 4281 static void selinux_shm_free_security(struct shmid_kernel *shp) 4282 { 4283 ipc_free_security(&shp->shm_perm); 4284 } 4285 4286 static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg) 4287 { 4288 struct task_security_struct *tsec; 4289 struct ipc_security_struct *isec; 4290 struct avc_audit_data ad; 4291 4292 tsec = current->security; 4293 isec = shp->shm_perm.security; 4294 4295 AVC_AUDIT_DATA_INIT(&ad, IPC); 4296 ad.u.ipc_id = shp->shm_perm.key; 4297 4298 return avc_has_perm(tsec->sid, isec->sid, SECCLASS_SHM, 4299 SHM__ASSOCIATE, &ad); 4300 } 4301 4302 /* Note, at this point, shp is locked down */ 4303 static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd) 4304 { 4305 int perms; 4306 int err; 4307 4308 switch(cmd) { 4309 case IPC_INFO: 4310 case SHM_INFO: 4311 /* No specific object, just general system-wide information. */ 4312 return task_has_system(current, SYSTEM__IPC_INFO); 4313 case IPC_STAT: 4314 case SHM_STAT: 4315 perms = SHM__GETATTR | SHM__ASSOCIATE; 4316 break; 4317 case IPC_SET: 4318 perms = SHM__SETATTR; 4319 break; 4320 case SHM_LOCK: 4321 case SHM_UNLOCK: 4322 perms = SHM__LOCK; 4323 break; 4324 case IPC_RMID: 4325 perms = SHM__DESTROY; 4326 break; 4327 default: 4328 return 0; 4329 } 4330 4331 err = ipc_has_perm(&shp->shm_perm, perms); 4332 return err; 4333 } 4334 4335 static int selinux_shm_shmat(struct shmid_kernel *shp, 4336 char __user *shmaddr, int shmflg) 4337 { 4338 u32 perms; 4339 int rc; 4340 4341 rc = secondary_ops->shm_shmat(shp, shmaddr, shmflg); 4342 if (rc) 4343 return rc; 4344 4345 if (shmflg & SHM_RDONLY) 4346 perms = SHM__READ; 4347 else 4348 perms = SHM__READ | SHM__WRITE; 4349 4350 return ipc_has_perm(&shp->shm_perm, perms); 4351 } 4352 4353 /* Semaphore security operations */ 4354 static int selinux_sem_alloc_security(struct sem_array *sma) 4355 { 4356 struct task_security_struct *tsec; 4357 struct ipc_security_struct *isec; 4358 struct avc_audit_data ad; 4359 int rc; 4360 4361 rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM); 4362 if (rc) 4363 return rc; 4364 4365 tsec = current->security; 4366 isec = sma->sem_perm.security; 4367 4368 AVC_AUDIT_DATA_INIT(&ad, IPC); 4369 ad.u.ipc_id = sma->sem_perm.key; 4370 4371 rc = avc_has_perm(tsec->sid, isec->sid, SECCLASS_SEM, 4372 SEM__CREATE, &ad); 4373 if (rc) { 4374 ipc_free_security(&sma->sem_perm); 4375 return rc; 4376 } 4377 return 0; 4378 } 4379 4380 static void selinux_sem_free_security(struct sem_array *sma) 4381 { 4382 ipc_free_security(&sma->sem_perm); 4383 } 4384 4385 static int selinux_sem_associate(struct sem_array *sma, int semflg) 4386 { 4387 struct task_security_struct *tsec; 4388 struct ipc_security_struct *isec; 4389 struct avc_audit_data ad; 4390 4391 tsec = current->security; 4392 isec = sma->sem_perm.security; 4393 4394 AVC_AUDIT_DATA_INIT(&ad, IPC); 4395 ad.u.ipc_id = sma->sem_perm.key; 4396 4397 return avc_has_perm(tsec->sid, isec->sid, SECCLASS_SEM, 4398 SEM__ASSOCIATE, &ad); 4399 } 4400 4401 /* Note, at this point, sma is locked down */ 4402 static int selinux_sem_semctl(struct sem_array *sma, int cmd) 4403 { 4404 int err; 4405 u32 perms; 4406 4407 switch(cmd) { 4408 case IPC_INFO: 4409 case SEM_INFO: 4410 /* No specific object, just general system-wide information. */ 4411 return task_has_system(current, SYSTEM__IPC_INFO); 4412 case GETPID: 4413 case GETNCNT: 4414 case GETZCNT: 4415 perms = SEM__GETATTR; 4416 break; 4417 case GETVAL: 4418 case GETALL: 4419 perms = SEM__READ; 4420 break; 4421 case SETVAL: 4422 case SETALL: 4423 perms = SEM__WRITE; 4424 break; 4425 case IPC_RMID: 4426 perms = SEM__DESTROY; 4427 break; 4428 case IPC_SET: 4429 perms = SEM__SETATTR; 4430 break; 4431 case IPC_STAT: 4432 case SEM_STAT: 4433 perms = SEM__GETATTR | SEM__ASSOCIATE; 4434 break; 4435 default: 4436 return 0; 4437 } 4438 4439 err = ipc_has_perm(&sma->sem_perm, perms); 4440 return err; 4441 } 4442 4443 static int selinux_sem_semop(struct sem_array *sma, 4444 struct sembuf *sops, unsigned nsops, int alter) 4445 { 4446 u32 perms; 4447 4448 if (alter) 4449 perms = SEM__READ | SEM__WRITE; 4450 else 4451 perms = SEM__READ; 4452 4453 return ipc_has_perm(&sma->sem_perm, perms); 4454 } 4455 4456 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag) 4457 { 4458 u32 av = 0; 4459 4460 av = 0; 4461 if (flag & S_IRUGO) 4462 av |= IPC__UNIX_READ; 4463 if (flag & S_IWUGO) 4464 av |= IPC__UNIX_WRITE; 4465 4466 if (av == 0) 4467 return 0; 4468 4469 return ipc_has_perm(ipcp, av); 4470 } 4471 4472 /* module stacking operations */ 4473 static int selinux_register_security (const char *name, struct security_operations *ops) 4474 { 4475 if (secondary_ops != original_ops) { 4476 printk(KERN_ERR "%s: There is already a secondary security " 4477 "module registered.\n", __FUNCTION__); 4478 return -EINVAL; 4479 } 4480 4481 secondary_ops = ops; 4482 4483 printk(KERN_INFO "%s: Registering secondary module %s\n", 4484 __FUNCTION__, 4485 name); 4486 4487 return 0; 4488 } 4489 4490 static int selinux_unregister_security (const char *name, struct security_operations *ops) 4491 { 4492 if (ops != secondary_ops) { 4493 printk(KERN_ERR "%s: trying to unregister a security module " 4494 "that is not registered.\n", __FUNCTION__); 4495 return -EINVAL; 4496 } 4497 4498 secondary_ops = original_ops; 4499 4500 return 0; 4501 } 4502 4503 static void selinux_d_instantiate (struct dentry *dentry, struct inode *inode) 4504 { 4505 if (inode) 4506 inode_doinit_with_dentry(inode, dentry); 4507 } 4508 4509 static int selinux_getprocattr(struct task_struct *p, 4510 char *name, char **value) 4511 { 4512 struct task_security_struct *tsec; 4513 u32 sid; 4514 int error; 4515 unsigned len; 4516 4517 if (current != p) { 4518 error = task_has_perm(current, p, PROCESS__GETATTR); 4519 if (error) 4520 return error; 4521 } 4522 4523 tsec = p->security; 4524 4525 if (!strcmp(name, "current")) 4526 sid = tsec->sid; 4527 else if (!strcmp(name, "prev")) 4528 sid = tsec->osid; 4529 else if (!strcmp(name, "exec")) 4530 sid = tsec->exec_sid; 4531 else if (!strcmp(name, "fscreate")) 4532 sid = tsec->create_sid; 4533 else if (!strcmp(name, "keycreate")) 4534 sid = tsec->keycreate_sid; 4535 else if (!strcmp(name, "sockcreate")) 4536 sid = tsec->sockcreate_sid; 4537 else 4538 return -EINVAL; 4539 4540 if (!sid) 4541 return 0; 4542 4543 error = security_sid_to_context(sid, value, &len); 4544 if (error) 4545 return error; 4546 return len; 4547 } 4548 4549 static int selinux_setprocattr(struct task_struct *p, 4550 char *name, void *value, size_t size) 4551 { 4552 struct task_security_struct *tsec; 4553 u32 sid = 0; 4554 int error; 4555 char *str = value; 4556 4557 if (current != p) { 4558 /* SELinux only allows a process to change its own 4559 security attributes. */ 4560 return -EACCES; 4561 } 4562 4563 /* 4564 * Basic control over ability to set these attributes at all. 4565 * current == p, but we'll pass them separately in case the 4566 * above restriction is ever removed. 4567 */ 4568 if (!strcmp(name, "exec")) 4569 error = task_has_perm(current, p, PROCESS__SETEXEC); 4570 else if (!strcmp(name, "fscreate")) 4571 error = task_has_perm(current, p, PROCESS__SETFSCREATE); 4572 else if (!strcmp(name, "keycreate")) 4573 error = task_has_perm(current, p, PROCESS__SETKEYCREATE); 4574 else if (!strcmp(name, "sockcreate")) 4575 error = task_has_perm(current, p, PROCESS__SETSOCKCREATE); 4576 else if (!strcmp(name, "current")) 4577 error = task_has_perm(current, p, PROCESS__SETCURRENT); 4578 else 4579 error = -EINVAL; 4580 if (error) 4581 return error; 4582 4583 /* Obtain a SID for the context, if one was specified. */ 4584 if (size && str[1] && str[1] != '\n') { 4585 if (str[size-1] == '\n') { 4586 str[size-1] = 0; 4587 size--; 4588 } 4589 error = security_context_to_sid(value, size, &sid); 4590 if (error) 4591 return error; 4592 } 4593 4594 /* Permission checking based on the specified context is 4595 performed during the actual operation (execve, 4596 open/mkdir/...), when we know the full context of the 4597 operation. See selinux_bprm_set_security for the execve 4598 checks and may_create for the file creation checks. The 4599 operation will then fail if the context is not permitted. */ 4600 tsec = p->security; 4601 if (!strcmp(name, "exec")) 4602 tsec->exec_sid = sid; 4603 else if (!strcmp(name, "fscreate")) 4604 tsec->create_sid = sid; 4605 else if (!strcmp(name, "keycreate")) { 4606 error = may_create_key(sid, p); 4607 if (error) 4608 return error; 4609 tsec->keycreate_sid = sid; 4610 } else if (!strcmp(name, "sockcreate")) 4611 tsec->sockcreate_sid = sid; 4612 else if (!strcmp(name, "current")) { 4613 struct av_decision avd; 4614 4615 if (sid == 0) 4616 return -EINVAL; 4617 4618 /* Only allow single threaded processes to change context */ 4619 if (atomic_read(&p->mm->mm_users) != 1) { 4620 struct task_struct *g, *t; 4621 struct mm_struct *mm = p->mm; 4622 read_lock(&tasklist_lock); 4623 do_each_thread(g, t) 4624 if (t->mm == mm && t != p) { 4625 read_unlock(&tasklist_lock); 4626 return -EPERM; 4627 } 4628 while_each_thread(g, t); 4629 read_unlock(&tasklist_lock); 4630 } 4631 4632 /* Check permissions for the transition. */ 4633 error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS, 4634 PROCESS__DYNTRANSITION, NULL); 4635 if (error) 4636 return error; 4637 4638 /* Check for ptracing, and update the task SID if ok. 4639 Otherwise, leave SID unchanged and fail. */ 4640 task_lock(p); 4641 if (p->ptrace & PT_PTRACED) { 4642 error = avc_has_perm_noaudit(tsec->ptrace_sid, sid, 4643 SECCLASS_PROCESS, 4644 PROCESS__PTRACE, 0, &avd); 4645 if (!error) 4646 tsec->sid = sid; 4647 task_unlock(p); 4648 avc_audit(tsec->ptrace_sid, sid, SECCLASS_PROCESS, 4649 PROCESS__PTRACE, &avd, error, NULL); 4650 if (error) 4651 return error; 4652 } else { 4653 tsec->sid = sid; 4654 task_unlock(p); 4655 } 4656 } 4657 else 4658 return -EINVAL; 4659 4660 return size; 4661 } 4662 4663 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen) 4664 { 4665 return security_sid_to_context(secid, secdata, seclen); 4666 } 4667 4668 static void selinux_release_secctx(char *secdata, u32 seclen) 4669 { 4670 kfree(secdata); 4671 } 4672 4673 #ifdef CONFIG_KEYS 4674 4675 static int selinux_key_alloc(struct key *k, struct task_struct *tsk, 4676 unsigned long flags) 4677 { 4678 struct task_security_struct *tsec = tsk->security; 4679 struct key_security_struct *ksec; 4680 4681 ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL); 4682 if (!ksec) 4683 return -ENOMEM; 4684 4685 ksec->obj = k; 4686 if (tsec->keycreate_sid) 4687 ksec->sid = tsec->keycreate_sid; 4688 else 4689 ksec->sid = tsec->sid; 4690 k->security = ksec; 4691 4692 return 0; 4693 } 4694 4695 static void selinux_key_free(struct key *k) 4696 { 4697 struct key_security_struct *ksec = k->security; 4698 4699 k->security = NULL; 4700 kfree(ksec); 4701 } 4702 4703 static int selinux_key_permission(key_ref_t key_ref, 4704 struct task_struct *ctx, 4705 key_perm_t perm) 4706 { 4707 struct key *key; 4708 struct task_security_struct *tsec; 4709 struct key_security_struct *ksec; 4710 4711 key = key_ref_to_ptr(key_ref); 4712 4713 tsec = ctx->security; 4714 ksec = key->security; 4715 4716 /* if no specific permissions are requested, we skip the 4717 permission check. No serious, additional covert channels 4718 appear to be created. */ 4719 if (perm == 0) 4720 return 0; 4721 4722 return avc_has_perm(tsec->sid, ksec->sid, 4723 SECCLASS_KEY, perm, NULL); 4724 } 4725 4726 #endif 4727 4728 static struct security_operations selinux_ops = { 4729 .ptrace = selinux_ptrace, 4730 .capget = selinux_capget, 4731 .capset_check = selinux_capset_check, 4732 .capset_set = selinux_capset_set, 4733 .sysctl = selinux_sysctl, 4734 .capable = selinux_capable, 4735 .quotactl = selinux_quotactl, 4736 .quota_on = selinux_quota_on, 4737 .syslog = selinux_syslog, 4738 .vm_enough_memory = selinux_vm_enough_memory, 4739 4740 .netlink_send = selinux_netlink_send, 4741 .netlink_recv = selinux_netlink_recv, 4742 4743 .bprm_alloc_security = selinux_bprm_alloc_security, 4744 .bprm_free_security = selinux_bprm_free_security, 4745 .bprm_apply_creds = selinux_bprm_apply_creds, 4746 .bprm_post_apply_creds = selinux_bprm_post_apply_creds, 4747 .bprm_set_security = selinux_bprm_set_security, 4748 .bprm_check_security = selinux_bprm_check_security, 4749 .bprm_secureexec = selinux_bprm_secureexec, 4750 4751 .sb_alloc_security = selinux_sb_alloc_security, 4752 .sb_free_security = selinux_sb_free_security, 4753 .sb_copy_data = selinux_sb_copy_data, 4754 .sb_kern_mount = selinux_sb_kern_mount, 4755 .sb_statfs = selinux_sb_statfs, 4756 .sb_mount = selinux_mount, 4757 .sb_umount = selinux_umount, 4758 4759 .inode_alloc_security = selinux_inode_alloc_security, 4760 .inode_free_security = selinux_inode_free_security, 4761 .inode_init_security = selinux_inode_init_security, 4762 .inode_create = selinux_inode_create, 4763 .inode_link = selinux_inode_link, 4764 .inode_unlink = selinux_inode_unlink, 4765 .inode_symlink = selinux_inode_symlink, 4766 .inode_mkdir = selinux_inode_mkdir, 4767 .inode_rmdir = selinux_inode_rmdir, 4768 .inode_mknod = selinux_inode_mknod, 4769 .inode_rename = selinux_inode_rename, 4770 .inode_readlink = selinux_inode_readlink, 4771 .inode_follow_link = selinux_inode_follow_link, 4772 .inode_permission = selinux_inode_permission, 4773 .inode_setattr = selinux_inode_setattr, 4774 .inode_getattr = selinux_inode_getattr, 4775 .inode_setxattr = selinux_inode_setxattr, 4776 .inode_post_setxattr = selinux_inode_post_setxattr, 4777 .inode_getxattr = selinux_inode_getxattr, 4778 .inode_listxattr = selinux_inode_listxattr, 4779 .inode_removexattr = selinux_inode_removexattr, 4780 .inode_xattr_getsuffix = selinux_inode_xattr_getsuffix, 4781 .inode_getsecurity = selinux_inode_getsecurity, 4782 .inode_setsecurity = selinux_inode_setsecurity, 4783 .inode_listsecurity = selinux_inode_listsecurity, 4784 4785 .file_permission = selinux_file_permission, 4786 .file_alloc_security = selinux_file_alloc_security, 4787 .file_free_security = selinux_file_free_security, 4788 .file_ioctl = selinux_file_ioctl, 4789 .file_mmap = selinux_file_mmap, 4790 .file_mprotect = selinux_file_mprotect, 4791 .file_lock = selinux_file_lock, 4792 .file_fcntl = selinux_file_fcntl, 4793 .file_set_fowner = selinux_file_set_fowner, 4794 .file_send_sigiotask = selinux_file_send_sigiotask, 4795 .file_receive = selinux_file_receive, 4796 4797 .task_create = selinux_task_create, 4798 .task_alloc_security = selinux_task_alloc_security, 4799 .task_free_security = selinux_task_free_security, 4800 .task_setuid = selinux_task_setuid, 4801 .task_post_setuid = selinux_task_post_setuid, 4802 .task_setgid = selinux_task_setgid, 4803 .task_setpgid = selinux_task_setpgid, 4804 .task_getpgid = selinux_task_getpgid, 4805 .task_getsid = selinux_task_getsid, 4806 .task_getsecid = selinux_task_getsecid, 4807 .task_setgroups = selinux_task_setgroups, 4808 .task_setnice = selinux_task_setnice, 4809 .task_setioprio = selinux_task_setioprio, 4810 .task_getioprio = selinux_task_getioprio, 4811 .task_setrlimit = selinux_task_setrlimit, 4812 .task_setscheduler = selinux_task_setscheduler, 4813 .task_getscheduler = selinux_task_getscheduler, 4814 .task_movememory = selinux_task_movememory, 4815 .task_kill = selinux_task_kill, 4816 .task_wait = selinux_task_wait, 4817 .task_prctl = selinux_task_prctl, 4818 .task_reparent_to_init = selinux_task_reparent_to_init, 4819 .task_to_inode = selinux_task_to_inode, 4820 4821 .ipc_permission = selinux_ipc_permission, 4822 4823 .msg_msg_alloc_security = selinux_msg_msg_alloc_security, 4824 .msg_msg_free_security = selinux_msg_msg_free_security, 4825 4826 .msg_queue_alloc_security = selinux_msg_queue_alloc_security, 4827 .msg_queue_free_security = selinux_msg_queue_free_security, 4828 .msg_queue_associate = selinux_msg_queue_associate, 4829 .msg_queue_msgctl = selinux_msg_queue_msgctl, 4830 .msg_queue_msgsnd = selinux_msg_queue_msgsnd, 4831 .msg_queue_msgrcv = selinux_msg_queue_msgrcv, 4832 4833 .shm_alloc_security = selinux_shm_alloc_security, 4834 .shm_free_security = selinux_shm_free_security, 4835 .shm_associate = selinux_shm_associate, 4836 .shm_shmctl = selinux_shm_shmctl, 4837 .shm_shmat = selinux_shm_shmat, 4838 4839 .sem_alloc_security = selinux_sem_alloc_security, 4840 .sem_free_security = selinux_sem_free_security, 4841 .sem_associate = selinux_sem_associate, 4842 .sem_semctl = selinux_sem_semctl, 4843 .sem_semop = selinux_sem_semop, 4844 4845 .register_security = selinux_register_security, 4846 .unregister_security = selinux_unregister_security, 4847 4848 .d_instantiate = selinux_d_instantiate, 4849 4850 .getprocattr = selinux_getprocattr, 4851 .setprocattr = selinux_setprocattr, 4852 4853 .secid_to_secctx = selinux_secid_to_secctx, 4854 .release_secctx = selinux_release_secctx, 4855 4856 .unix_stream_connect = selinux_socket_unix_stream_connect, 4857 .unix_may_send = selinux_socket_unix_may_send, 4858 4859 .socket_create = selinux_socket_create, 4860 .socket_post_create = selinux_socket_post_create, 4861 .socket_bind = selinux_socket_bind, 4862 .socket_connect = selinux_socket_connect, 4863 .socket_listen = selinux_socket_listen, 4864 .socket_accept = selinux_socket_accept, 4865 .socket_sendmsg = selinux_socket_sendmsg, 4866 .socket_recvmsg = selinux_socket_recvmsg, 4867 .socket_getsockname = selinux_socket_getsockname, 4868 .socket_getpeername = selinux_socket_getpeername, 4869 .socket_getsockopt = selinux_socket_getsockopt, 4870 .socket_setsockopt = selinux_socket_setsockopt, 4871 .socket_shutdown = selinux_socket_shutdown, 4872 .socket_sock_rcv_skb = selinux_socket_sock_rcv_skb, 4873 .socket_getpeersec_stream = selinux_socket_getpeersec_stream, 4874 .socket_getpeersec_dgram = selinux_socket_getpeersec_dgram, 4875 .sk_alloc_security = selinux_sk_alloc_security, 4876 .sk_free_security = selinux_sk_free_security, 4877 .sk_clone_security = selinux_sk_clone_security, 4878 .sk_getsecid = selinux_sk_getsecid, 4879 .sock_graft = selinux_sock_graft, 4880 .inet_conn_request = selinux_inet_conn_request, 4881 .inet_csk_clone = selinux_inet_csk_clone, 4882 .inet_conn_established = selinux_inet_conn_established, 4883 .req_classify_flow = selinux_req_classify_flow, 4884 4885 #ifdef CONFIG_SECURITY_NETWORK_XFRM 4886 .xfrm_policy_alloc_security = selinux_xfrm_policy_alloc, 4887 .xfrm_policy_clone_security = selinux_xfrm_policy_clone, 4888 .xfrm_policy_free_security = selinux_xfrm_policy_free, 4889 .xfrm_policy_delete_security = selinux_xfrm_policy_delete, 4890 .xfrm_state_alloc_security = selinux_xfrm_state_alloc, 4891 .xfrm_state_free_security = selinux_xfrm_state_free, 4892 .xfrm_state_delete_security = selinux_xfrm_state_delete, 4893 .xfrm_policy_lookup = selinux_xfrm_policy_lookup, 4894 .xfrm_state_pol_flow_match = selinux_xfrm_state_pol_flow_match, 4895 .xfrm_decode_session = selinux_xfrm_decode_session, 4896 #endif 4897 4898 #ifdef CONFIG_KEYS 4899 .key_alloc = selinux_key_alloc, 4900 .key_free = selinux_key_free, 4901 .key_permission = selinux_key_permission, 4902 #endif 4903 }; 4904 4905 static __init int selinux_init(void) 4906 { 4907 struct task_security_struct *tsec; 4908 4909 if (!selinux_enabled) { 4910 printk(KERN_INFO "SELinux: Disabled at boot.\n"); 4911 return 0; 4912 } 4913 4914 printk(KERN_INFO "SELinux: Initializing.\n"); 4915 4916 /* Set the security state for the initial task. */ 4917 if (task_alloc_security(current)) 4918 panic("SELinux: Failed to initialize initial task.\n"); 4919 tsec = current->security; 4920 tsec->osid = tsec->sid = SECINITSID_KERNEL; 4921 4922 sel_inode_cache = kmem_cache_create("selinux_inode_security", 4923 sizeof(struct inode_security_struct), 4924 0, SLAB_PANIC, NULL); 4925 avc_init(); 4926 4927 original_ops = secondary_ops = security_ops; 4928 if (!secondary_ops) 4929 panic ("SELinux: No initial security operations\n"); 4930 if (register_security (&selinux_ops)) 4931 panic("SELinux: Unable to register with kernel.\n"); 4932 4933 if (selinux_enforcing) { 4934 printk(KERN_DEBUG "SELinux: Starting in enforcing mode\n"); 4935 } else { 4936 printk(KERN_DEBUG "SELinux: Starting in permissive mode\n"); 4937 } 4938 4939 #ifdef CONFIG_KEYS 4940 /* Add security information to initial keyrings */ 4941 selinux_key_alloc(&root_user_keyring, current, 4942 KEY_ALLOC_NOT_IN_QUOTA); 4943 selinux_key_alloc(&root_session_keyring, current, 4944 KEY_ALLOC_NOT_IN_QUOTA); 4945 #endif 4946 4947 return 0; 4948 } 4949 4950 void selinux_complete_init(void) 4951 { 4952 printk(KERN_DEBUG "SELinux: Completing initialization.\n"); 4953 4954 /* Set up any superblocks initialized prior to the policy load. */ 4955 printk(KERN_DEBUG "SELinux: Setting up existing superblocks.\n"); 4956 spin_lock(&sb_lock); 4957 spin_lock(&sb_security_lock); 4958 next_sb: 4959 if (!list_empty(&superblock_security_head)) { 4960 struct superblock_security_struct *sbsec = 4961 list_entry(superblock_security_head.next, 4962 struct superblock_security_struct, 4963 list); 4964 struct super_block *sb = sbsec->sb; 4965 sb->s_count++; 4966 spin_unlock(&sb_security_lock); 4967 spin_unlock(&sb_lock); 4968 down_read(&sb->s_umount); 4969 if (sb->s_root) 4970 superblock_doinit(sb, NULL); 4971 drop_super(sb); 4972 spin_lock(&sb_lock); 4973 spin_lock(&sb_security_lock); 4974 list_del_init(&sbsec->list); 4975 goto next_sb; 4976 } 4977 spin_unlock(&sb_security_lock); 4978 spin_unlock(&sb_lock); 4979 } 4980 4981 /* SELinux requires early initialization in order to label 4982 all processes and objects when they are created. */ 4983 security_initcall(selinux_init); 4984 4985 #if defined(CONFIG_NETFILTER) 4986 4987 static struct nf_hook_ops selinux_ipv4_op = { 4988 .hook = selinux_ipv4_postroute_last, 4989 .owner = THIS_MODULE, 4990 .pf = PF_INET, 4991 .hooknum = NF_IP_POST_ROUTING, 4992 .priority = NF_IP_PRI_SELINUX_LAST, 4993 }; 4994 4995 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 4996 4997 static struct nf_hook_ops selinux_ipv6_op = { 4998 .hook = selinux_ipv6_postroute_last, 4999 .owner = THIS_MODULE, 5000 .pf = PF_INET6, 5001 .hooknum = NF_IP6_POST_ROUTING, 5002 .priority = NF_IP6_PRI_SELINUX_LAST, 5003 }; 5004 5005 #endif /* IPV6 */ 5006 5007 static int __init selinux_nf_ip_init(void) 5008 { 5009 int err = 0; 5010 5011 if (!selinux_enabled) 5012 goto out; 5013 5014 printk(KERN_DEBUG "SELinux: Registering netfilter hooks\n"); 5015 5016 err = nf_register_hook(&selinux_ipv4_op); 5017 if (err) 5018 panic("SELinux: nf_register_hook for IPv4: error %d\n", err); 5019 5020 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 5021 5022 err = nf_register_hook(&selinux_ipv6_op); 5023 if (err) 5024 panic("SELinux: nf_register_hook for IPv6: error %d\n", err); 5025 5026 #endif /* IPV6 */ 5027 5028 out: 5029 return err; 5030 } 5031 5032 __initcall(selinux_nf_ip_init); 5033 5034 #ifdef CONFIG_SECURITY_SELINUX_DISABLE 5035 static void selinux_nf_ip_exit(void) 5036 { 5037 printk(KERN_DEBUG "SELinux: Unregistering netfilter hooks\n"); 5038 5039 nf_unregister_hook(&selinux_ipv4_op); 5040 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) 5041 nf_unregister_hook(&selinux_ipv6_op); 5042 #endif /* IPV6 */ 5043 } 5044 #endif 5045 5046 #else /* CONFIG_NETFILTER */ 5047 5048 #ifdef CONFIG_SECURITY_SELINUX_DISABLE 5049 #define selinux_nf_ip_exit() 5050 #endif 5051 5052 #endif /* CONFIG_NETFILTER */ 5053 5054 #ifdef CONFIG_SECURITY_SELINUX_DISABLE 5055 int selinux_disable(void) 5056 { 5057 extern void exit_sel_fs(void); 5058 static int selinux_disabled = 0; 5059 5060 if (ss_initialized) { 5061 /* Not permitted after initial policy load. */ 5062 return -EINVAL; 5063 } 5064 5065 if (selinux_disabled) { 5066 /* Only do this once. */ 5067 return -EINVAL; 5068 } 5069 5070 printk(KERN_INFO "SELinux: Disabled at runtime.\n"); 5071 5072 selinux_disabled = 1; 5073 selinux_enabled = 0; 5074 5075 /* Reset security_ops to the secondary module, dummy or capability. */ 5076 security_ops = secondary_ops; 5077 5078 /* Unregister netfilter hooks. */ 5079 selinux_nf_ip_exit(); 5080 5081 /* Unregister selinuxfs. */ 5082 exit_sel_fs(); 5083 5084 return 0; 5085 } 5086 #endif 5087 5088 5089