xref: /linux/security/selinux/hooks.c (revision 148f9bb87745ed45f7a11b2cbd3bc0f017d5d257)
1 /*
2  *  NSA Security-Enhanced Linux (SELinux) security module
3  *
4  *  This file contains the SELinux hook function implementations.
5  *
6  *  Authors:  Stephen Smalley, <sds@epoch.ncsc.mil>
7  *	      Chris Vance, <cvance@nai.com>
8  *	      Wayne Salamon, <wsalamon@nai.com>
9  *	      James Morris <jmorris@redhat.com>
10  *
11  *  Copyright (C) 2001,2002 Networks Associates Technology, Inc.
12  *  Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
13  *					   Eric Paris <eparis@redhat.com>
14  *  Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
15  *			    <dgoeddel@trustedcs.com>
16  *  Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P.
17  *	Paul Moore <paul@paul-moore.com>
18  *  Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
19  *		       Yuichi Nakamura <ynakam@hitachisoft.jp>
20  *
21  *	This program is free software; you can redistribute it and/or modify
22  *	it under the terms of the GNU General Public License version 2,
23  *	as published by the Free Software Foundation.
24  */
25 
26 #include <linux/init.h>
27 #include <linux/kd.h>
28 #include <linux/kernel.h>
29 #include <linux/tracehook.h>
30 #include <linux/errno.h>
31 #include <linux/sched.h>
32 #include <linux/security.h>
33 #include <linux/xattr.h>
34 #include <linux/capability.h>
35 #include <linux/unistd.h>
36 #include <linux/mm.h>
37 #include <linux/mman.h>
38 #include <linux/slab.h>
39 #include <linux/pagemap.h>
40 #include <linux/proc_fs.h>
41 #include <linux/swap.h>
42 #include <linux/spinlock.h>
43 #include <linux/syscalls.h>
44 #include <linux/dcache.h>
45 #include <linux/file.h>
46 #include <linux/fdtable.h>
47 #include <linux/namei.h>
48 #include <linux/mount.h>
49 #include <linux/netfilter_ipv4.h>
50 #include <linux/netfilter_ipv6.h>
51 #include <linux/tty.h>
52 #include <net/icmp.h>
53 #include <net/ip.h>		/* for local_port_range[] */
54 #include <net/sock.h>
55 #include <net/tcp.h>		/* struct or_callable used in sock_rcv_skb */
56 #include <net/net_namespace.h>
57 #include <net/netlabel.h>
58 #include <linux/uaccess.h>
59 #include <asm/ioctls.h>
60 #include <linux/atomic.h>
61 #include <linux/bitops.h>
62 #include <linux/interrupt.h>
63 #include <linux/netdevice.h>	/* for network interface checks */
64 #include <net/netlink.h>
65 #include <linux/tcp.h>
66 #include <linux/udp.h>
67 #include <linux/dccp.h>
68 #include <linux/quota.h>
69 #include <linux/un.h>		/* for Unix socket types */
70 #include <net/af_unix.h>	/* for Unix socket types */
71 #include <linux/parser.h>
72 #include <linux/nfs_mount.h>
73 #include <net/ipv6.h>
74 #include <linux/hugetlb.h>
75 #include <linux/personality.h>
76 #include <linux/audit.h>
77 #include <linux/string.h>
78 #include <linux/selinux.h>
79 #include <linux/mutex.h>
80 #include <linux/posix-timers.h>
81 #include <linux/syslog.h>
82 #include <linux/user_namespace.h>
83 #include <linux/export.h>
84 #include <linux/security.h>
85 #include <linux/msg.h>
86 #include <linux/shm.h>
87 
88 #include "avc.h"
89 #include "objsec.h"
90 #include "netif.h"
91 #include "netnode.h"
92 #include "netport.h"
93 #include "xfrm.h"
94 #include "netlabel.h"
95 #include "audit.h"
96 #include "avc_ss.h"
97 
98 #define NUM_SEL_MNT_OPTS 5
99 
100 extern struct security_operations *security_ops;
101 
102 /* SECMARK reference count */
103 static atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
104 
105 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP
106 int selinux_enforcing;
107 
108 static int __init enforcing_setup(char *str)
109 {
110 	unsigned long enforcing;
111 	if (!strict_strtoul(str, 0, &enforcing))
112 		selinux_enforcing = enforcing ? 1 : 0;
113 	return 1;
114 }
115 __setup("enforcing=", enforcing_setup);
116 #endif
117 
118 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
119 int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE;
120 
121 static int __init selinux_enabled_setup(char *str)
122 {
123 	unsigned long enabled;
124 	if (!strict_strtoul(str, 0, &enabled))
125 		selinux_enabled = enabled ? 1 : 0;
126 	return 1;
127 }
128 __setup("selinux=", selinux_enabled_setup);
129 #else
130 int selinux_enabled = 1;
131 #endif
132 
133 static struct kmem_cache *sel_inode_cache;
134 
135 /**
136  * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
137  *
138  * Description:
139  * This function checks the SECMARK reference counter to see if any SECMARK
140  * targets are currently configured, if the reference counter is greater than
141  * zero SECMARK is considered to be enabled.  Returns true (1) if SECMARK is
142  * enabled, false (0) if SECMARK is disabled.
143  *
144  */
145 static int selinux_secmark_enabled(void)
146 {
147 	return (atomic_read(&selinux_secmark_refcount) > 0);
148 }
149 
150 /*
151  * initialise the security for the init task
152  */
153 static void cred_init_security(void)
154 {
155 	struct cred *cred = (struct cred *) current->real_cred;
156 	struct task_security_struct *tsec;
157 
158 	tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL);
159 	if (!tsec)
160 		panic("SELinux:  Failed to initialize initial task.\n");
161 
162 	tsec->osid = tsec->sid = SECINITSID_KERNEL;
163 	cred->security = tsec;
164 }
165 
166 /*
167  * get the security ID of a set of credentials
168  */
169 static inline u32 cred_sid(const struct cred *cred)
170 {
171 	const struct task_security_struct *tsec;
172 
173 	tsec = cred->security;
174 	return tsec->sid;
175 }
176 
177 /*
178  * get the objective security ID of a task
179  */
180 static inline u32 task_sid(const struct task_struct *task)
181 {
182 	u32 sid;
183 
184 	rcu_read_lock();
185 	sid = cred_sid(__task_cred(task));
186 	rcu_read_unlock();
187 	return sid;
188 }
189 
190 /*
191  * get the subjective security ID of the current task
192  */
193 static inline u32 current_sid(void)
194 {
195 	const struct task_security_struct *tsec = current_security();
196 
197 	return tsec->sid;
198 }
199 
200 /* Allocate and free functions for each kind of security blob. */
201 
202 static int inode_alloc_security(struct inode *inode)
203 {
204 	struct inode_security_struct *isec;
205 	u32 sid = current_sid();
206 
207 	isec = kmem_cache_zalloc(sel_inode_cache, GFP_NOFS);
208 	if (!isec)
209 		return -ENOMEM;
210 
211 	mutex_init(&isec->lock);
212 	INIT_LIST_HEAD(&isec->list);
213 	isec->inode = inode;
214 	isec->sid = SECINITSID_UNLABELED;
215 	isec->sclass = SECCLASS_FILE;
216 	isec->task_sid = sid;
217 	inode->i_security = isec;
218 
219 	return 0;
220 }
221 
222 static void inode_free_security(struct inode *inode)
223 {
224 	struct inode_security_struct *isec = inode->i_security;
225 	struct superblock_security_struct *sbsec = inode->i_sb->s_security;
226 
227 	spin_lock(&sbsec->isec_lock);
228 	if (!list_empty(&isec->list))
229 		list_del_init(&isec->list);
230 	spin_unlock(&sbsec->isec_lock);
231 
232 	inode->i_security = NULL;
233 	kmem_cache_free(sel_inode_cache, isec);
234 }
235 
236 static int file_alloc_security(struct file *file)
237 {
238 	struct file_security_struct *fsec;
239 	u32 sid = current_sid();
240 
241 	fsec = kzalloc(sizeof(struct file_security_struct), GFP_KERNEL);
242 	if (!fsec)
243 		return -ENOMEM;
244 
245 	fsec->sid = sid;
246 	fsec->fown_sid = sid;
247 	file->f_security = fsec;
248 
249 	return 0;
250 }
251 
252 static void file_free_security(struct file *file)
253 {
254 	struct file_security_struct *fsec = file->f_security;
255 	file->f_security = NULL;
256 	kfree(fsec);
257 }
258 
259 static int superblock_alloc_security(struct super_block *sb)
260 {
261 	struct superblock_security_struct *sbsec;
262 
263 	sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
264 	if (!sbsec)
265 		return -ENOMEM;
266 
267 	mutex_init(&sbsec->lock);
268 	INIT_LIST_HEAD(&sbsec->isec_head);
269 	spin_lock_init(&sbsec->isec_lock);
270 	sbsec->sb = sb;
271 	sbsec->sid = SECINITSID_UNLABELED;
272 	sbsec->def_sid = SECINITSID_FILE;
273 	sbsec->mntpoint_sid = SECINITSID_UNLABELED;
274 	sb->s_security = sbsec;
275 
276 	return 0;
277 }
278 
279 static void superblock_free_security(struct super_block *sb)
280 {
281 	struct superblock_security_struct *sbsec = sb->s_security;
282 	sb->s_security = NULL;
283 	kfree(sbsec);
284 }
285 
286 /* The file system's label must be initialized prior to use. */
287 
288 static const char *labeling_behaviors[7] = {
289 	"uses xattr",
290 	"uses transition SIDs",
291 	"uses task SIDs",
292 	"uses genfs_contexts",
293 	"not configured for labeling",
294 	"uses mountpoint labeling",
295 	"uses native labeling",
296 };
297 
298 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
299 
300 static inline int inode_doinit(struct inode *inode)
301 {
302 	return inode_doinit_with_dentry(inode, NULL);
303 }
304 
305 enum {
306 	Opt_error = -1,
307 	Opt_context = 1,
308 	Opt_fscontext = 2,
309 	Opt_defcontext = 3,
310 	Opt_rootcontext = 4,
311 	Opt_labelsupport = 5,
312 };
313 
314 static const match_table_t tokens = {
315 	{Opt_context, CONTEXT_STR "%s"},
316 	{Opt_fscontext, FSCONTEXT_STR "%s"},
317 	{Opt_defcontext, DEFCONTEXT_STR "%s"},
318 	{Opt_rootcontext, ROOTCONTEXT_STR "%s"},
319 	{Opt_labelsupport, LABELSUPP_STR},
320 	{Opt_error, NULL},
321 };
322 
323 #define SEL_MOUNT_FAIL_MSG "SELinux:  duplicate or incompatible mount options\n"
324 
325 static int may_context_mount_sb_relabel(u32 sid,
326 			struct superblock_security_struct *sbsec,
327 			const struct cred *cred)
328 {
329 	const struct task_security_struct *tsec = cred->security;
330 	int rc;
331 
332 	rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
333 			  FILESYSTEM__RELABELFROM, NULL);
334 	if (rc)
335 		return rc;
336 
337 	rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
338 			  FILESYSTEM__RELABELTO, NULL);
339 	return rc;
340 }
341 
342 static int may_context_mount_inode_relabel(u32 sid,
343 			struct superblock_security_struct *sbsec,
344 			const struct cred *cred)
345 {
346 	const struct task_security_struct *tsec = cred->security;
347 	int rc;
348 	rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
349 			  FILESYSTEM__RELABELFROM, NULL);
350 	if (rc)
351 		return rc;
352 
353 	rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
354 			  FILESYSTEM__ASSOCIATE, NULL);
355 	return rc;
356 }
357 
358 static int sb_finish_set_opts(struct super_block *sb)
359 {
360 	struct superblock_security_struct *sbsec = sb->s_security;
361 	struct dentry *root = sb->s_root;
362 	struct inode *root_inode = root->d_inode;
363 	int rc = 0;
364 
365 	if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
366 		/* Make sure that the xattr handler exists and that no
367 		   error other than -ENODATA is returned by getxattr on
368 		   the root directory.  -ENODATA is ok, as this may be
369 		   the first boot of the SELinux kernel before we have
370 		   assigned xattr values to the filesystem. */
371 		if (!root_inode->i_op->getxattr) {
372 			printk(KERN_WARNING "SELinux: (dev %s, type %s) has no "
373 			       "xattr support\n", sb->s_id, sb->s_type->name);
374 			rc = -EOPNOTSUPP;
375 			goto out;
376 		}
377 		rc = root_inode->i_op->getxattr(root, XATTR_NAME_SELINUX, NULL, 0);
378 		if (rc < 0 && rc != -ENODATA) {
379 			if (rc == -EOPNOTSUPP)
380 				printk(KERN_WARNING "SELinux: (dev %s, type "
381 				       "%s) has no security xattr handler\n",
382 				       sb->s_id, sb->s_type->name);
383 			else
384 				printk(KERN_WARNING "SELinux: (dev %s, type "
385 				       "%s) getxattr errno %d\n", sb->s_id,
386 				       sb->s_type->name, -rc);
387 			goto out;
388 		}
389 	}
390 
391 	sbsec->flags |= (SE_SBINITIALIZED | SE_SBLABELSUPP);
392 
393 	if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
394 		printk(KERN_ERR "SELinux: initialized (dev %s, type %s), unknown behavior\n",
395 		       sb->s_id, sb->s_type->name);
396 	else
397 		printk(KERN_DEBUG "SELinux: initialized (dev %s, type %s), %s\n",
398 		       sb->s_id, sb->s_type->name,
399 		       labeling_behaviors[sbsec->behavior-1]);
400 
401 	if (sbsec->behavior == SECURITY_FS_USE_GENFS ||
402 	    sbsec->behavior == SECURITY_FS_USE_MNTPOINT ||
403 	    sbsec->behavior == SECURITY_FS_USE_NONE ||
404 	    sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
405 		sbsec->flags &= ~SE_SBLABELSUPP;
406 
407 	/* Special handling for sysfs. Is genfs but also has setxattr handler*/
408 	if (strncmp(sb->s_type->name, "sysfs", sizeof("sysfs")) == 0)
409 		sbsec->flags |= SE_SBLABELSUPP;
410 
411 	/* Initialize the root inode. */
412 	rc = inode_doinit_with_dentry(root_inode, root);
413 
414 	/* Initialize any other inodes associated with the superblock, e.g.
415 	   inodes created prior to initial policy load or inodes created
416 	   during get_sb by a pseudo filesystem that directly
417 	   populates itself. */
418 	spin_lock(&sbsec->isec_lock);
419 next_inode:
420 	if (!list_empty(&sbsec->isec_head)) {
421 		struct inode_security_struct *isec =
422 				list_entry(sbsec->isec_head.next,
423 					   struct inode_security_struct, list);
424 		struct inode *inode = isec->inode;
425 		spin_unlock(&sbsec->isec_lock);
426 		inode = igrab(inode);
427 		if (inode) {
428 			if (!IS_PRIVATE(inode))
429 				inode_doinit(inode);
430 			iput(inode);
431 		}
432 		spin_lock(&sbsec->isec_lock);
433 		list_del_init(&isec->list);
434 		goto next_inode;
435 	}
436 	spin_unlock(&sbsec->isec_lock);
437 out:
438 	return rc;
439 }
440 
441 /*
442  * This function should allow an FS to ask what it's mount security
443  * options were so it can use those later for submounts, displaying
444  * mount options, or whatever.
445  */
446 static int selinux_get_mnt_opts(const struct super_block *sb,
447 				struct security_mnt_opts *opts)
448 {
449 	int rc = 0, i;
450 	struct superblock_security_struct *sbsec = sb->s_security;
451 	char *context = NULL;
452 	u32 len;
453 	char tmp;
454 
455 	security_init_mnt_opts(opts);
456 
457 	if (!(sbsec->flags & SE_SBINITIALIZED))
458 		return -EINVAL;
459 
460 	if (!ss_initialized)
461 		return -EINVAL;
462 
463 	tmp = sbsec->flags & SE_MNTMASK;
464 	/* count the number of mount options for this sb */
465 	for (i = 0; i < 8; i++) {
466 		if (tmp & 0x01)
467 			opts->num_mnt_opts++;
468 		tmp >>= 1;
469 	}
470 	/* Check if the Label support flag is set */
471 	if (sbsec->flags & SE_SBLABELSUPP)
472 		opts->num_mnt_opts++;
473 
474 	opts->mnt_opts = kcalloc(opts->num_mnt_opts, sizeof(char *), GFP_ATOMIC);
475 	if (!opts->mnt_opts) {
476 		rc = -ENOMEM;
477 		goto out_free;
478 	}
479 
480 	opts->mnt_opts_flags = kcalloc(opts->num_mnt_opts, sizeof(int), GFP_ATOMIC);
481 	if (!opts->mnt_opts_flags) {
482 		rc = -ENOMEM;
483 		goto out_free;
484 	}
485 
486 	i = 0;
487 	if (sbsec->flags & FSCONTEXT_MNT) {
488 		rc = security_sid_to_context(sbsec->sid, &context, &len);
489 		if (rc)
490 			goto out_free;
491 		opts->mnt_opts[i] = context;
492 		opts->mnt_opts_flags[i++] = FSCONTEXT_MNT;
493 	}
494 	if (sbsec->flags & CONTEXT_MNT) {
495 		rc = security_sid_to_context(sbsec->mntpoint_sid, &context, &len);
496 		if (rc)
497 			goto out_free;
498 		opts->mnt_opts[i] = context;
499 		opts->mnt_opts_flags[i++] = CONTEXT_MNT;
500 	}
501 	if (sbsec->flags & DEFCONTEXT_MNT) {
502 		rc = security_sid_to_context(sbsec->def_sid, &context, &len);
503 		if (rc)
504 			goto out_free;
505 		opts->mnt_opts[i] = context;
506 		opts->mnt_opts_flags[i++] = DEFCONTEXT_MNT;
507 	}
508 	if (sbsec->flags & ROOTCONTEXT_MNT) {
509 		struct inode *root = sbsec->sb->s_root->d_inode;
510 		struct inode_security_struct *isec = root->i_security;
511 
512 		rc = security_sid_to_context(isec->sid, &context, &len);
513 		if (rc)
514 			goto out_free;
515 		opts->mnt_opts[i] = context;
516 		opts->mnt_opts_flags[i++] = ROOTCONTEXT_MNT;
517 	}
518 	if (sbsec->flags & SE_SBLABELSUPP) {
519 		opts->mnt_opts[i] = NULL;
520 		opts->mnt_opts_flags[i++] = SE_SBLABELSUPP;
521 	}
522 
523 	BUG_ON(i != opts->num_mnt_opts);
524 
525 	return 0;
526 
527 out_free:
528 	security_free_mnt_opts(opts);
529 	return rc;
530 }
531 
532 static int bad_option(struct superblock_security_struct *sbsec, char flag,
533 		      u32 old_sid, u32 new_sid)
534 {
535 	char mnt_flags = sbsec->flags & SE_MNTMASK;
536 
537 	/* check if the old mount command had the same options */
538 	if (sbsec->flags & SE_SBINITIALIZED)
539 		if (!(sbsec->flags & flag) ||
540 		    (old_sid != new_sid))
541 			return 1;
542 
543 	/* check if we were passed the same options twice,
544 	 * aka someone passed context=a,context=b
545 	 */
546 	if (!(sbsec->flags & SE_SBINITIALIZED))
547 		if (mnt_flags & flag)
548 			return 1;
549 	return 0;
550 }
551 
552 /*
553  * Allow filesystems with binary mount data to explicitly set mount point
554  * labeling information.
555  */
556 static int selinux_set_mnt_opts(struct super_block *sb,
557 				struct security_mnt_opts *opts,
558 				unsigned long kern_flags,
559 				unsigned long *set_kern_flags)
560 {
561 	const struct cred *cred = current_cred();
562 	int rc = 0, i;
563 	struct superblock_security_struct *sbsec = sb->s_security;
564 	const char *name = sb->s_type->name;
565 	struct inode *inode = sbsec->sb->s_root->d_inode;
566 	struct inode_security_struct *root_isec = inode->i_security;
567 	u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
568 	u32 defcontext_sid = 0;
569 	char **mount_options = opts->mnt_opts;
570 	int *flags = opts->mnt_opts_flags;
571 	int num_opts = opts->num_mnt_opts;
572 
573 	mutex_lock(&sbsec->lock);
574 
575 	if (!ss_initialized) {
576 		if (!num_opts) {
577 			/* Defer initialization until selinux_complete_init,
578 			   after the initial policy is loaded and the security
579 			   server is ready to handle calls. */
580 			goto out;
581 		}
582 		rc = -EINVAL;
583 		printk(KERN_WARNING "SELinux: Unable to set superblock options "
584 			"before the security server is initialized\n");
585 		goto out;
586 	}
587 	if (kern_flags && !set_kern_flags) {
588 		/* Specifying internal flags without providing a place to
589 		 * place the results is not allowed */
590 		rc = -EINVAL;
591 		goto out;
592 	}
593 
594 	/*
595 	 * Binary mount data FS will come through this function twice.  Once
596 	 * from an explicit call and once from the generic calls from the vfs.
597 	 * Since the generic VFS calls will not contain any security mount data
598 	 * we need to skip the double mount verification.
599 	 *
600 	 * This does open a hole in which we will not notice if the first
601 	 * mount using this sb set explict options and a second mount using
602 	 * this sb does not set any security options.  (The first options
603 	 * will be used for both mounts)
604 	 */
605 	if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
606 	    && (num_opts == 0))
607 		goto out;
608 
609 	/*
610 	 * parse the mount options, check if they are valid sids.
611 	 * also check if someone is trying to mount the same sb more
612 	 * than once with different security options.
613 	 */
614 	for (i = 0; i < num_opts; i++) {
615 		u32 sid;
616 
617 		if (flags[i] == SE_SBLABELSUPP)
618 			continue;
619 		rc = security_context_to_sid(mount_options[i],
620 					     strlen(mount_options[i]), &sid);
621 		if (rc) {
622 			printk(KERN_WARNING "SELinux: security_context_to_sid"
623 			       "(%s) failed for (dev %s, type %s) errno=%d\n",
624 			       mount_options[i], sb->s_id, name, rc);
625 			goto out;
626 		}
627 		switch (flags[i]) {
628 		case FSCONTEXT_MNT:
629 			fscontext_sid = sid;
630 
631 			if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
632 					fscontext_sid))
633 				goto out_double_mount;
634 
635 			sbsec->flags |= FSCONTEXT_MNT;
636 			break;
637 		case CONTEXT_MNT:
638 			context_sid = sid;
639 
640 			if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
641 					context_sid))
642 				goto out_double_mount;
643 
644 			sbsec->flags |= CONTEXT_MNT;
645 			break;
646 		case ROOTCONTEXT_MNT:
647 			rootcontext_sid = sid;
648 
649 			if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
650 					rootcontext_sid))
651 				goto out_double_mount;
652 
653 			sbsec->flags |= ROOTCONTEXT_MNT;
654 
655 			break;
656 		case DEFCONTEXT_MNT:
657 			defcontext_sid = sid;
658 
659 			if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
660 					defcontext_sid))
661 				goto out_double_mount;
662 
663 			sbsec->flags |= DEFCONTEXT_MNT;
664 
665 			break;
666 		default:
667 			rc = -EINVAL;
668 			goto out;
669 		}
670 	}
671 
672 	if (sbsec->flags & SE_SBINITIALIZED) {
673 		/* previously mounted with options, but not on this attempt? */
674 		if ((sbsec->flags & SE_MNTMASK) && !num_opts)
675 			goto out_double_mount;
676 		rc = 0;
677 		goto out;
678 	}
679 
680 	if (strcmp(sb->s_type->name, "proc") == 0)
681 		sbsec->flags |= SE_SBPROC;
682 
683 	if (!sbsec->behavior) {
684 		/*
685 		 * Determine the labeling behavior to use for this
686 		 * filesystem type.
687 		 */
688 		rc = security_fs_use((sbsec->flags & SE_SBPROC) ?
689 					"proc" : sb->s_type->name,
690 					&sbsec->behavior, &sbsec->sid);
691 		if (rc) {
692 			printk(KERN_WARNING
693 				"%s: security_fs_use(%s) returned %d\n",
694 					__func__, sb->s_type->name, rc);
695 			goto out;
696 		}
697 	}
698 	/* sets the context of the superblock for the fs being mounted. */
699 	if (fscontext_sid) {
700 		rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
701 		if (rc)
702 			goto out;
703 
704 		sbsec->sid = fscontext_sid;
705 	}
706 
707 	/*
708 	 * Switch to using mount point labeling behavior.
709 	 * sets the label used on all file below the mountpoint, and will set
710 	 * the superblock context if not already set.
711 	 */
712 	if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !context_sid) {
713 		sbsec->behavior = SECURITY_FS_USE_NATIVE;
714 		*set_kern_flags |= SECURITY_LSM_NATIVE_LABELS;
715 	}
716 
717 	if (context_sid) {
718 		if (!fscontext_sid) {
719 			rc = may_context_mount_sb_relabel(context_sid, sbsec,
720 							  cred);
721 			if (rc)
722 				goto out;
723 			sbsec->sid = context_sid;
724 		} else {
725 			rc = may_context_mount_inode_relabel(context_sid, sbsec,
726 							     cred);
727 			if (rc)
728 				goto out;
729 		}
730 		if (!rootcontext_sid)
731 			rootcontext_sid = context_sid;
732 
733 		sbsec->mntpoint_sid = context_sid;
734 		sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
735 	}
736 
737 	if (rootcontext_sid) {
738 		rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
739 						     cred);
740 		if (rc)
741 			goto out;
742 
743 		root_isec->sid = rootcontext_sid;
744 		root_isec->initialized = 1;
745 	}
746 
747 	if (defcontext_sid) {
748 		if (sbsec->behavior != SECURITY_FS_USE_XATTR &&
749 			sbsec->behavior != SECURITY_FS_USE_NATIVE) {
750 			rc = -EINVAL;
751 			printk(KERN_WARNING "SELinux: defcontext option is "
752 			       "invalid for this filesystem type\n");
753 			goto out;
754 		}
755 
756 		if (defcontext_sid != sbsec->def_sid) {
757 			rc = may_context_mount_inode_relabel(defcontext_sid,
758 							     sbsec, cred);
759 			if (rc)
760 				goto out;
761 		}
762 
763 		sbsec->def_sid = defcontext_sid;
764 	}
765 
766 	rc = sb_finish_set_opts(sb);
767 out:
768 	mutex_unlock(&sbsec->lock);
769 	return rc;
770 out_double_mount:
771 	rc = -EINVAL;
772 	printk(KERN_WARNING "SELinux: mount invalid.  Same superblock, different "
773 	       "security settings for (dev %s, type %s)\n", sb->s_id, name);
774 	goto out;
775 }
776 
777 static int selinux_cmp_sb_context(const struct super_block *oldsb,
778 				    const struct super_block *newsb)
779 {
780 	struct superblock_security_struct *old = oldsb->s_security;
781 	struct superblock_security_struct *new = newsb->s_security;
782 	char oldflags = old->flags & SE_MNTMASK;
783 	char newflags = new->flags & SE_MNTMASK;
784 
785 	if (oldflags != newflags)
786 		goto mismatch;
787 	if ((oldflags & FSCONTEXT_MNT) && old->sid != new->sid)
788 		goto mismatch;
789 	if ((oldflags & CONTEXT_MNT) && old->mntpoint_sid != new->mntpoint_sid)
790 		goto mismatch;
791 	if ((oldflags & DEFCONTEXT_MNT) && old->def_sid != new->def_sid)
792 		goto mismatch;
793 	if (oldflags & ROOTCONTEXT_MNT) {
794 		struct inode_security_struct *oldroot = oldsb->s_root->d_inode->i_security;
795 		struct inode_security_struct *newroot = newsb->s_root->d_inode->i_security;
796 		if (oldroot->sid != newroot->sid)
797 			goto mismatch;
798 	}
799 	return 0;
800 mismatch:
801 	printk(KERN_WARNING "SELinux: mount invalid.  Same superblock, "
802 			    "different security settings for (dev %s, "
803 			    "type %s)\n", newsb->s_id, newsb->s_type->name);
804 	return -EBUSY;
805 }
806 
807 static int selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
808 					struct super_block *newsb)
809 {
810 	const struct superblock_security_struct *oldsbsec = oldsb->s_security;
811 	struct superblock_security_struct *newsbsec = newsb->s_security;
812 
813 	int set_fscontext =	(oldsbsec->flags & FSCONTEXT_MNT);
814 	int set_context =	(oldsbsec->flags & CONTEXT_MNT);
815 	int set_rootcontext =	(oldsbsec->flags & ROOTCONTEXT_MNT);
816 
817 	/*
818 	 * if the parent was able to be mounted it clearly had no special lsm
819 	 * mount options.  thus we can safely deal with this superblock later
820 	 */
821 	if (!ss_initialized)
822 		return 0;
823 
824 	/* how can we clone if the old one wasn't set up?? */
825 	BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
826 
827 	/* if fs is reusing a sb, make sure that the contexts match */
828 	if (newsbsec->flags & SE_SBINITIALIZED)
829 		return selinux_cmp_sb_context(oldsb, newsb);
830 
831 	mutex_lock(&newsbsec->lock);
832 
833 	newsbsec->flags = oldsbsec->flags;
834 
835 	newsbsec->sid = oldsbsec->sid;
836 	newsbsec->def_sid = oldsbsec->def_sid;
837 	newsbsec->behavior = oldsbsec->behavior;
838 
839 	if (set_context) {
840 		u32 sid = oldsbsec->mntpoint_sid;
841 
842 		if (!set_fscontext)
843 			newsbsec->sid = sid;
844 		if (!set_rootcontext) {
845 			struct inode *newinode = newsb->s_root->d_inode;
846 			struct inode_security_struct *newisec = newinode->i_security;
847 			newisec->sid = sid;
848 		}
849 		newsbsec->mntpoint_sid = sid;
850 	}
851 	if (set_rootcontext) {
852 		const struct inode *oldinode = oldsb->s_root->d_inode;
853 		const struct inode_security_struct *oldisec = oldinode->i_security;
854 		struct inode *newinode = newsb->s_root->d_inode;
855 		struct inode_security_struct *newisec = newinode->i_security;
856 
857 		newisec->sid = oldisec->sid;
858 	}
859 
860 	sb_finish_set_opts(newsb);
861 	mutex_unlock(&newsbsec->lock);
862 	return 0;
863 }
864 
865 static int selinux_parse_opts_str(char *options,
866 				  struct security_mnt_opts *opts)
867 {
868 	char *p;
869 	char *context = NULL, *defcontext = NULL;
870 	char *fscontext = NULL, *rootcontext = NULL;
871 	int rc, num_mnt_opts = 0;
872 
873 	opts->num_mnt_opts = 0;
874 
875 	/* Standard string-based options. */
876 	while ((p = strsep(&options, "|")) != NULL) {
877 		int token;
878 		substring_t args[MAX_OPT_ARGS];
879 
880 		if (!*p)
881 			continue;
882 
883 		token = match_token(p, tokens, args);
884 
885 		switch (token) {
886 		case Opt_context:
887 			if (context || defcontext) {
888 				rc = -EINVAL;
889 				printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
890 				goto out_err;
891 			}
892 			context = match_strdup(&args[0]);
893 			if (!context) {
894 				rc = -ENOMEM;
895 				goto out_err;
896 			}
897 			break;
898 
899 		case Opt_fscontext:
900 			if (fscontext) {
901 				rc = -EINVAL;
902 				printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
903 				goto out_err;
904 			}
905 			fscontext = match_strdup(&args[0]);
906 			if (!fscontext) {
907 				rc = -ENOMEM;
908 				goto out_err;
909 			}
910 			break;
911 
912 		case Opt_rootcontext:
913 			if (rootcontext) {
914 				rc = -EINVAL;
915 				printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
916 				goto out_err;
917 			}
918 			rootcontext = match_strdup(&args[0]);
919 			if (!rootcontext) {
920 				rc = -ENOMEM;
921 				goto out_err;
922 			}
923 			break;
924 
925 		case Opt_defcontext:
926 			if (context || defcontext) {
927 				rc = -EINVAL;
928 				printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
929 				goto out_err;
930 			}
931 			defcontext = match_strdup(&args[0]);
932 			if (!defcontext) {
933 				rc = -ENOMEM;
934 				goto out_err;
935 			}
936 			break;
937 		case Opt_labelsupport:
938 			break;
939 		default:
940 			rc = -EINVAL;
941 			printk(KERN_WARNING "SELinux:  unknown mount option\n");
942 			goto out_err;
943 
944 		}
945 	}
946 
947 	rc = -ENOMEM;
948 	opts->mnt_opts = kcalloc(NUM_SEL_MNT_OPTS, sizeof(char *), GFP_ATOMIC);
949 	if (!opts->mnt_opts)
950 		goto out_err;
951 
952 	opts->mnt_opts_flags = kcalloc(NUM_SEL_MNT_OPTS, sizeof(int), GFP_ATOMIC);
953 	if (!opts->mnt_opts_flags) {
954 		kfree(opts->mnt_opts);
955 		goto out_err;
956 	}
957 
958 	if (fscontext) {
959 		opts->mnt_opts[num_mnt_opts] = fscontext;
960 		opts->mnt_opts_flags[num_mnt_opts++] = FSCONTEXT_MNT;
961 	}
962 	if (context) {
963 		opts->mnt_opts[num_mnt_opts] = context;
964 		opts->mnt_opts_flags[num_mnt_opts++] = CONTEXT_MNT;
965 	}
966 	if (rootcontext) {
967 		opts->mnt_opts[num_mnt_opts] = rootcontext;
968 		opts->mnt_opts_flags[num_mnt_opts++] = ROOTCONTEXT_MNT;
969 	}
970 	if (defcontext) {
971 		opts->mnt_opts[num_mnt_opts] = defcontext;
972 		opts->mnt_opts_flags[num_mnt_opts++] = DEFCONTEXT_MNT;
973 	}
974 
975 	opts->num_mnt_opts = num_mnt_opts;
976 	return 0;
977 
978 out_err:
979 	kfree(context);
980 	kfree(defcontext);
981 	kfree(fscontext);
982 	kfree(rootcontext);
983 	return rc;
984 }
985 /*
986  * string mount options parsing and call set the sbsec
987  */
988 static int superblock_doinit(struct super_block *sb, void *data)
989 {
990 	int rc = 0;
991 	char *options = data;
992 	struct security_mnt_opts opts;
993 
994 	security_init_mnt_opts(&opts);
995 
996 	if (!data)
997 		goto out;
998 
999 	BUG_ON(sb->s_type->fs_flags & FS_BINARY_MOUNTDATA);
1000 
1001 	rc = selinux_parse_opts_str(options, &opts);
1002 	if (rc)
1003 		goto out_err;
1004 
1005 out:
1006 	rc = selinux_set_mnt_opts(sb, &opts, 0, NULL);
1007 
1008 out_err:
1009 	security_free_mnt_opts(&opts);
1010 	return rc;
1011 }
1012 
1013 static void selinux_write_opts(struct seq_file *m,
1014 			       struct security_mnt_opts *opts)
1015 {
1016 	int i;
1017 	char *prefix;
1018 
1019 	for (i = 0; i < opts->num_mnt_opts; i++) {
1020 		char *has_comma;
1021 
1022 		if (opts->mnt_opts[i])
1023 			has_comma = strchr(opts->mnt_opts[i], ',');
1024 		else
1025 			has_comma = NULL;
1026 
1027 		switch (opts->mnt_opts_flags[i]) {
1028 		case CONTEXT_MNT:
1029 			prefix = CONTEXT_STR;
1030 			break;
1031 		case FSCONTEXT_MNT:
1032 			prefix = FSCONTEXT_STR;
1033 			break;
1034 		case ROOTCONTEXT_MNT:
1035 			prefix = ROOTCONTEXT_STR;
1036 			break;
1037 		case DEFCONTEXT_MNT:
1038 			prefix = DEFCONTEXT_STR;
1039 			break;
1040 		case SE_SBLABELSUPP:
1041 			seq_putc(m, ',');
1042 			seq_puts(m, LABELSUPP_STR);
1043 			continue;
1044 		default:
1045 			BUG();
1046 			return;
1047 		};
1048 		/* we need a comma before each option */
1049 		seq_putc(m, ',');
1050 		seq_puts(m, prefix);
1051 		if (has_comma)
1052 			seq_putc(m, '\"');
1053 		seq_puts(m, opts->mnt_opts[i]);
1054 		if (has_comma)
1055 			seq_putc(m, '\"');
1056 	}
1057 }
1058 
1059 static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1060 {
1061 	struct security_mnt_opts opts;
1062 	int rc;
1063 
1064 	rc = selinux_get_mnt_opts(sb, &opts);
1065 	if (rc) {
1066 		/* before policy load we may get EINVAL, don't show anything */
1067 		if (rc == -EINVAL)
1068 			rc = 0;
1069 		return rc;
1070 	}
1071 
1072 	selinux_write_opts(m, &opts);
1073 
1074 	security_free_mnt_opts(&opts);
1075 
1076 	return rc;
1077 }
1078 
1079 static inline u16 inode_mode_to_security_class(umode_t mode)
1080 {
1081 	switch (mode & S_IFMT) {
1082 	case S_IFSOCK:
1083 		return SECCLASS_SOCK_FILE;
1084 	case S_IFLNK:
1085 		return SECCLASS_LNK_FILE;
1086 	case S_IFREG:
1087 		return SECCLASS_FILE;
1088 	case S_IFBLK:
1089 		return SECCLASS_BLK_FILE;
1090 	case S_IFDIR:
1091 		return SECCLASS_DIR;
1092 	case S_IFCHR:
1093 		return SECCLASS_CHR_FILE;
1094 	case S_IFIFO:
1095 		return SECCLASS_FIFO_FILE;
1096 
1097 	}
1098 
1099 	return SECCLASS_FILE;
1100 }
1101 
1102 static inline int default_protocol_stream(int protocol)
1103 {
1104 	return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
1105 }
1106 
1107 static inline int default_protocol_dgram(int protocol)
1108 {
1109 	return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1110 }
1111 
1112 static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1113 {
1114 	switch (family) {
1115 	case PF_UNIX:
1116 		switch (type) {
1117 		case SOCK_STREAM:
1118 		case SOCK_SEQPACKET:
1119 			return SECCLASS_UNIX_STREAM_SOCKET;
1120 		case SOCK_DGRAM:
1121 			return SECCLASS_UNIX_DGRAM_SOCKET;
1122 		}
1123 		break;
1124 	case PF_INET:
1125 	case PF_INET6:
1126 		switch (type) {
1127 		case SOCK_STREAM:
1128 			if (default_protocol_stream(protocol))
1129 				return SECCLASS_TCP_SOCKET;
1130 			else
1131 				return SECCLASS_RAWIP_SOCKET;
1132 		case SOCK_DGRAM:
1133 			if (default_protocol_dgram(protocol))
1134 				return SECCLASS_UDP_SOCKET;
1135 			else
1136 				return SECCLASS_RAWIP_SOCKET;
1137 		case SOCK_DCCP:
1138 			return SECCLASS_DCCP_SOCKET;
1139 		default:
1140 			return SECCLASS_RAWIP_SOCKET;
1141 		}
1142 		break;
1143 	case PF_NETLINK:
1144 		switch (protocol) {
1145 		case NETLINK_ROUTE:
1146 			return SECCLASS_NETLINK_ROUTE_SOCKET;
1147 		case NETLINK_FIREWALL:
1148 			return SECCLASS_NETLINK_FIREWALL_SOCKET;
1149 		case NETLINK_SOCK_DIAG:
1150 			return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1151 		case NETLINK_NFLOG:
1152 			return SECCLASS_NETLINK_NFLOG_SOCKET;
1153 		case NETLINK_XFRM:
1154 			return SECCLASS_NETLINK_XFRM_SOCKET;
1155 		case NETLINK_SELINUX:
1156 			return SECCLASS_NETLINK_SELINUX_SOCKET;
1157 		case NETLINK_AUDIT:
1158 			return SECCLASS_NETLINK_AUDIT_SOCKET;
1159 		case NETLINK_IP6_FW:
1160 			return SECCLASS_NETLINK_IP6FW_SOCKET;
1161 		case NETLINK_DNRTMSG:
1162 			return SECCLASS_NETLINK_DNRT_SOCKET;
1163 		case NETLINK_KOBJECT_UEVENT:
1164 			return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1165 		default:
1166 			return SECCLASS_NETLINK_SOCKET;
1167 		}
1168 	case PF_PACKET:
1169 		return SECCLASS_PACKET_SOCKET;
1170 	case PF_KEY:
1171 		return SECCLASS_KEY_SOCKET;
1172 	case PF_APPLETALK:
1173 		return SECCLASS_APPLETALK_SOCKET;
1174 	}
1175 
1176 	return SECCLASS_SOCKET;
1177 }
1178 
1179 #ifdef CONFIG_PROC_FS
1180 static int selinux_proc_get_sid(struct dentry *dentry,
1181 				u16 tclass,
1182 				u32 *sid)
1183 {
1184 	int rc;
1185 	char *buffer, *path;
1186 
1187 	buffer = (char *)__get_free_page(GFP_KERNEL);
1188 	if (!buffer)
1189 		return -ENOMEM;
1190 
1191 	path = dentry_path_raw(dentry, buffer, PAGE_SIZE);
1192 	if (IS_ERR(path))
1193 		rc = PTR_ERR(path);
1194 	else {
1195 		/* each process gets a /proc/PID/ entry. Strip off the
1196 		 * PID part to get a valid selinux labeling.
1197 		 * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */
1198 		while (path[1] >= '0' && path[1] <= '9') {
1199 			path[1] = '/';
1200 			path++;
1201 		}
1202 		rc = security_genfs_sid("proc", path, tclass, sid);
1203 	}
1204 	free_page((unsigned long)buffer);
1205 	return rc;
1206 }
1207 #else
1208 static int selinux_proc_get_sid(struct dentry *dentry,
1209 				u16 tclass,
1210 				u32 *sid)
1211 {
1212 	return -EINVAL;
1213 }
1214 #endif
1215 
1216 /* The inode's security attributes must be initialized before first use. */
1217 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1218 {
1219 	struct superblock_security_struct *sbsec = NULL;
1220 	struct inode_security_struct *isec = inode->i_security;
1221 	u32 sid;
1222 	struct dentry *dentry;
1223 #define INITCONTEXTLEN 255
1224 	char *context = NULL;
1225 	unsigned len = 0;
1226 	int rc = 0;
1227 
1228 	if (isec->initialized)
1229 		goto out;
1230 
1231 	mutex_lock(&isec->lock);
1232 	if (isec->initialized)
1233 		goto out_unlock;
1234 
1235 	sbsec = inode->i_sb->s_security;
1236 	if (!(sbsec->flags & SE_SBINITIALIZED)) {
1237 		/* Defer initialization until selinux_complete_init,
1238 		   after the initial policy is loaded and the security
1239 		   server is ready to handle calls. */
1240 		spin_lock(&sbsec->isec_lock);
1241 		if (list_empty(&isec->list))
1242 			list_add(&isec->list, &sbsec->isec_head);
1243 		spin_unlock(&sbsec->isec_lock);
1244 		goto out_unlock;
1245 	}
1246 
1247 	switch (sbsec->behavior) {
1248 	case SECURITY_FS_USE_NATIVE:
1249 		break;
1250 	case SECURITY_FS_USE_XATTR:
1251 		if (!inode->i_op->getxattr) {
1252 			isec->sid = sbsec->def_sid;
1253 			break;
1254 		}
1255 
1256 		/* Need a dentry, since the xattr API requires one.
1257 		   Life would be simpler if we could just pass the inode. */
1258 		if (opt_dentry) {
1259 			/* Called from d_instantiate or d_splice_alias. */
1260 			dentry = dget(opt_dentry);
1261 		} else {
1262 			/* Called from selinux_complete_init, try to find a dentry. */
1263 			dentry = d_find_alias(inode);
1264 		}
1265 		if (!dentry) {
1266 			/*
1267 			 * this is can be hit on boot when a file is accessed
1268 			 * before the policy is loaded.  When we load policy we
1269 			 * may find inodes that have no dentry on the
1270 			 * sbsec->isec_head list.  No reason to complain as these
1271 			 * will get fixed up the next time we go through
1272 			 * inode_doinit with a dentry, before these inodes could
1273 			 * be used again by userspace.
1274 			 */
1275 			goto out_unlock;
1276 		}
1277 
1278 		len = INITCONTEXTLEN;
1279 		context = kmalloc(len+1, GFP_NOFS);
1280 		if (!context) {
1281 			rc = -ENOMEM;
1282 			dput(dentry);
1283 			goto out_unlock;
1284 		}
1285 		context[len] = '\0';
1286 		rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1287 					   context, len);
1288 		if (rc == -ERANGE) {
1289 			kfree(context);
1290 
1291 			/* Need a larger buffer.  Query for the right size. */
1292 			rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1293 						   NULL, 0);
1294 			if (rc < 0) {
1295 				dput(dentry);
1296 				goto out_unlock;
1297 			}
1298 			len = rc;
1299 			context = kmalloc(len+1, GFP_NOFS);
1300 			if (!context) {
1301 				rc = -ENOMEM;
1302 				dput(dentry);
1303 				goto out_unlock;
1304 			}
1305 			context[len] = '\0';
1306 			rc = inode->i_op->getxattr(dentry,
1307 						   XATTR_NAME_SELINUX,
1308 						   context, len);
1309 		}
1310 		dput(dentry);
1311 		if (rc < 0) {
1312 			if (rc != -ENODATA) {
1313 				printk(KERN_WARNING "SELinux: %s:  getxattr returned "
1314 				       "%d for dev=%s ino=%ld\n", __func__,
1315 				       -rc, inode->i_sb->s_id, inode->i_ino);
1316 				kfree(context);
1317 				goto out_unlock;
1318 			}
1319 			/* Map ENODATA to the default file SID */
1320 			sid = sbsec->def_sid;
1321 			rc = 0;
1322 		} else {
1323 			rc = security_context_to_sid_default(context, rc, &sid,
1324 							     sbsec->def_sid,
1325 							     GFP_NOFS);
1326 			if (rc) {
1327 				char *dev = inode->i_sb->s_id;
1328 				unsigned long ino = inode->i_ino;
1329 
1330 				if (rc == -EINVAL) {
1331 					if (printk_ratelimit())
1332 						printk(KERN_NOTICE "SELinux: inode=%lu on dev=%s was found to have an invalid "
1333 							"context=%s.  This indicates you may need to relabel the inode or the "
1334 							"filesystem in question.\n", ino, dev, context);
1335 				} else {
1336 					printk(KERN_WARNING "SELinux: %s:  context_to_sid(%s) "
1337 					       "returned %d for dev=%s ino=%ld\n",
1338 					       __func__, context, -rc, dev, ino);
1339 				}
1340 				kfree(context);
1341 				/* Leave with the unlabeled SID */
1342 				rc = 0;
1343 				break;
1344 			}
1345 		}
1346 		kfree(context);
1347 		isec->sid = sid;
1348 		break;
1349 	case SECURITY_FS_USE_TASK:
1350 		isec->sid = isec->task_sid;
1351 		break;
1352 	case SECURITY_FS_USE_TRANS:
1353 		/* Default to the fs SID. */
1354 		isec->sid = sbsec->sid;
1355 
1356 		/* Try to obtain a transition SID. */
1357 		isec->sclass = inode_mode_to_security_class(inode->i_mode);
1358 		rc = security_transition_sid(isec->task_sid, sbsec->sid,
1359 					     isec->sclass, NULL, &sid);
1360 		if (rc)
1361 			goto out_unlock;
1362 		isec->sid = sid;
1363 		break;
1364 	case SECURITY_FS_USE_MNTPOINT:
1365 		isec->sid = sbsec->mntpoint_sid;
1366 		break;
1367 	default:
1368 		/* Default to the fs superblock SID. */
1369 		isec->sid = sbsec->sid;
1370 
1371 		if ((sbsec->flags & SE_SBPROC) && !S_ISLNK(inode->i_mode)) {
1372 			if (opt_dentry) {
1373 				isec->sclass = inode_mode_to_security_class(inode->i_mode);
1374 				rc = selinux_proc_get_sid(opt_dentry,
1375 							  isec->sclass,
1376 							  &sid);
1377 				if (rc)
1378 					goto out_unlock;
1379 				isec->sid = sid;
1380 			}
1381 		}
1382 		break;
1383 	}
1384 
1385 	isec->initialized = 1;
1386 
1387 out_unlock:
1388 	mutex_unlock(&isec->lock);
1389 out:
1390 	if (isec->sclass == SECCLASS_FILE)
1391 		isec->sclass = inode_mode_to_security_class(inode->i_mode);
1392 	return rc;
1393 }
1394 
1395 /* Convert a Linux signal to an access vector. */
1396 static inline u32 signal_to_av(int sig)
1397 {
1398 	u32 perm = 0;
1399 
1400 	switch (sig) {
1401 	case SIGCHLD:
1402 		/* Commonly granted from child to parent. */
1403 		perm = PROCESS__SIGCHLD;
1404 		break;
1405 	case SIGKILL:
1406 		/* Cannot be caught or ignored */
1407 		perm = PROCESS__SIGKILL;
1408 		break;
1409 	case SIGSTOP:
1410 		/* Cannot be caught or ignored */
1411 		perm = PROCESS__SIGSTOP;
1412 		break;
1413 	default:
1414 		/* All other signals. */
1415 		perm = PROCESS__SIGNAL;
1416 		break;
1417 	}
1418 
1419 	return perm;
1420 }
1421 
1422 /*
1423  * Check permission between a pair of credentials
1424  * fork check, ptrace check, etc.
1425  */
1426 static int cred_has_perm(const struct cred *actor,
1427 			 const struct cred *target,
1428 			 u32 perms)
1429 {
1430 	u32 asid = cred_sid(actor), tsid = cred_sid(target);
1431 
1432 	return avc_has_perm(asid, tsid, SECCLASS_PROCESS, perms, NULL);
1433 }
1434 
1435 /*
1436  * Check permission between a pair of tasks, e.g. signal checks,
1437  * fork check, ptrace check, etc.
1438  * tsk1 is the actor and tsk2 is the target
1439  * - this uses the default subjective creds of tsk1
1440  */
1441 static int task_has_perm(const struct task_struct *tsk1,
1442 			 const struct task_struct *tsk2,
1443 			 u32 perms)
1444 {
1445 	const struct task_security_struct *__tsec1, *__tsec2;
1446 	u32 sid1, sid2;
1447 
1448 	rcu_read_lock();
1449 	__tsec1 = __task_cred(tsk1)->security;	sid1 = __tsec1->sid;
1450 	__tsec2 = __task_cred(tsk2)->security;	sid2 = __tsec2->sid;
1451 	rcu_read_unlock();
1452 	return avc_has_perm(sid1, sid2, SECCLASS_PROCESS, perms, NULL);
1453 }
1454 
1455 /*
1456  * Check permission between current and another task, e.g. signal checks,
1457  * fork check, ptrace check, etc.
1458  * current is the actor and tsk2 is the target
1459  * - this uses current's subjective creds
1460  */
1461 static int current_has_perm(const struct task_struct *tsk,
1462 			    u32 perms)
1463 {
1464 	u32 sid, tsid;
1465 
1466 	sid = current_sid();
1467 	tsid = task_sid(tsk);
1468 	return avc_has_perm(sid, tsid, SECCLASS_PROCESS, perms, NULL);
1469 }
1470 
1471 #if CAP_LAST_CAP > 63
1472 #error Fix SELinux to handle capabilities > 63.
1473 #endif
1474 
1475 /* Check whether a task is allowed to use a capability. */
1476 static int cred_has_capability(const struct cred *cred,
1477 			       int cap, int audit)
1478 {
1479 	struct common_audit_data ad;
1480 	struct av_decision avd;
1481 	u16 sclass;
1482 	u32 sid = cred_sid(cred);
1483 	u32 av = CAP_TO_MASK(cap);
1484 	int rc;
1485 
1486 	ad.type = LSM_AUDIT_DATA_CAP;
1487 	ad.u.cap = cap;
1488 
1489 	switch (CAP_TO_INDEX(cap)) {
1490 	case 0:
1491 		sclass = SECCLASS_CAPABILITY;
1492 		break;
1493 	case 1:
1494 		sclass = SECCLASS_CAPABILITY2;
1495 		break;
1496 	default:
1497 		printk(KERN_ERR
1498 		       "SELinux:  out of range capability %d\n", cap);
1499 		BUG();
1500 		return -EINVAL;
1501 	}
1502 
1503 	rc = avc_has_perm_noaudit(sid, sid, sclass, av, 0, &avd);
1504 	if (audit == SECURITY_CAP_AUDIT) {
1505 		int rc2 = avc_audit(sid, sid, sclass, av, &avd, rc, &ad, 0);
1506 		if (rc2)
1507 			return rc2;
1508 	}
1509 	return rc;
1510 }
1511 
1512 /* Check whether a task is allowed to use a system operation. */
1513 static int task_has_system(struct task_struct *tsk,
1514 			   u32 perms)
1515 {
1516 	u32 sid = task_sid(tsk);
1517 
1518 	return avc_has_perm(sid, SECINITSID_KERNEL,
1519 			    SECCLASS_SYSTEM, perms, NULL);
1520 }
1521 
1522 /* Check whether a task has a particular permission to an inode.
1523    The 'adp' parameter is optional and allows other audit
1524    data to be passed (e.g. the dentry). */
1525 static int inode_has_perm(const struct cred *cred,
1526 			  struct inode *inode,
1527 			  u32 perms,
1528 			  struct common_audit_data *adp,
1529 			  unsigned flags)
1530 {
1531 	struct inode_security_struct *isec;
1532 	u32 sid;
1533 
1534 	validate_creds(cred);
1535 
1536 	if (unlikely(IS_PRIVATE(inode)))
1537 		return 0;
1538 
1539 	sid = cred_sid(cred);
1540 	isec = inode->i_security;
1541 
1542 	return avc_has_perm_flags(sid, isec->sid, isec->sclass, perms, adp, flags);
1543 }
1544 
1545 /* Same as inode_has_perm, but pass explicit audit data containing
1546    the dentry to help the auditing code to more easily generate the
1547    pathname if needed. */
1548 static inline int dentry_has_perm(const struct cred *cred,
1549 				  struct dentry *dentry,
1550 				  u32 av)
1551 {
1552 	struct inode *inode = dentry->d_inode;
1553 	struct common_audit_data ad;
1554 
1555 	ad.type = LSM_AUDIT_DATA_DENTRY;
1556 	ad.u.dentry = dentry;
1557 	return inode_has_perm(cred, inode, av, &ad, 0);
1558 }
1559 
1560 /* Same as inode_has_perm, but pass explicit audit data containing
1561    the path to help the auditing code to more easily generate the
1562    pathname if needed. */
1563 static inline int path_has_perm(const struct cred *cred,
1564 				struct path *path,
1565 				u32 av)
1566 {
1567 	struct inode *inode = path->dentry->d_inode;
1568 	struct common_audit_data ad;
1569 
1570 	ad.type = LSM_AUDIT_DATA_PATH;
1571 	ad.u.path = *path;
1572 	return inode_has_perm(cred, inode, av, &ad, 0);
1573 }
1574 
1575 /* Same as path_has_perm, but uses the inode from the file struct. */
1576 static inline int file_path_has_perm(const struct cred *cred,
1577 				     struct file *file,
1578 				     u32 av)
1579 {
1580 	struct common_audit_data ad;
1581 
1582 	ad.type = LSM_AUDIT_DATA_PATH;
1583 	ad.u.path = file->f_path;
1584 	return inode_has_perm(cred, file_inode(file), av, &ad, 0);
1585 }
1586 
1587 /* Check whether a task can use an open file descriptor to
1588    access an inode in a given way.  Check access to the
1589    descriptor itself, and then use dentry_has_perm to
1590    check a particular permission to the file.
1591    Access to the descriptor is implicitly granted if it
1592    has the same SID as the process.  If av is zero, then
1593    access to the file is not checked, e.g. for cases
1594    where only the descriptor is affected like seek. */
1595 static int file_has_perm(const struct cred *cred,
1596 			 struct file *file,
1597 			 u32 av)
1598 {
1599 	struct file_security_struct *fsec = file->f_security;
1600 	struct inode *inode = file_inode(file);
1601 	struct common_audit_data ad;
1602 	u32 sid = cred_sid(cred);
1603 	int rc;
1604 
1605 	ad.type = LSM_AUDIT_DATA_PATH;
1606 	ad.u.path = file->f_path;
1607 
1608 	if (sid != fsec->sid) {
1609 		rc = avc_has_perm(sid, fsec->sid,
1610 				  SECCLASS_FD,
1611 				  FD__USE,
1612 				  &ad);
1613 		if (rc)
1614 			goto out;
1615 	}
1616 
1617 	/* av is zero if only checking access to the descriptor. */
1618 	rc = 0;
1619 	if (av)
1620 		rc = inode_has_perm(cred, inode, av, &ad, 0);
1621 
1622 out:
1623 	return rc;
1624 }
1625 
1626 /* Check whether a task can create a file. */
1627 static int may_create(struct inode *dir,
1628 		      struct dentry *dentry,
1629 		      u16 tclass)
1630 {
1631 	const struct task_security_struct *tsec = current_security();
1632 	struct inode_security_struct *dsec;
1633 	struct superblock_security_struct *sbsec;
1634 	u32 sid, newsid;
1635 	struct common_audit_data ad;
1636 	int rc;
1637 
1638 	dsec = dir->i_security;
1639 	sbsec = dir->i_sb->s_security;
1640 
1641 	sid = tsec->sid;
1642 	newsid = tsec->create_sid;
1643 
1644 	ad.type = LSM_AUDIT_DATA_DENTRY;
1645 	ad.u.dentry = dentry;
1646 
1647 	rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR,
1648 			  DIR__ADD_NAME | DIR__SEARCH,
1649 			  &ad);
1650 	if (rc)
1651 		return rc;
1652 
1653 	if (!newsid || !(sbsec->flags & SE_SBLABELSUPP)) {
1654 		rc = security_transition_sid(sid, dsec->sid, tclass,
1655 					     &dentry->d_name, &newsid);
1656 		if (rc)
1657 			return rc;
1658 	}
1659 
1660 	rc = avc_has_perm(sid, newsid, tclass, FILE__CREATE, &ad);
1661 	if (rc)
1662 		return rc;
1663 
1664 	return avc_has_perm(newsid, sbsec->sid,
1665 			    SECCLASS_FILESYSTEM,
1666 			    FILESYSTEM__ASSOCIATE, &ad);
1667 }
1668 
1669 /* Check whether a task can create a key. */
1670 static int may_create_key(u32 ksid,
1671 			  struct task_struct *ctx)
1672 {
1673 	u32 sid = task_sid(ctx);
1674 
1675 	return avc_has_perm(sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL);
1676 }
1677 
1678 #define MAY_LINK	0
1679 #define MAY_UNLINK	1
1680 #define MAY_RMDIR	2
1681 
1682 /* Check whether a task can link, unlink, or rmdir a file/directory. */
1683 static int may_link(struct inode *dir,
1684 		    struct dentry *dentry,
1685 		    int kind)
1686 
1687 {
1688 	struct inode_security_struct *dsec, *isec;
1689 	struct common_audit_data ad;
1690 	u32 sid = current_sid();
1691 	u32 av;
1692 	int rc;
1693 
1694 	dsec = dir->i_security;
1695 	isec = dentry->d_inode->i_security;
1696 
1697 	ad.type = LSM_AUDIT_DATA_DENTRY;
1698 	ad.u.dentry = dentry;
1699 
1700 	av = DIR__SEARCH;
1701 	av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1702 	rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, av, &ad);
1703 	if (rc)
1704 		return rc;
1705 
1706 	switch (kind) {
1707 	case MAY_LINK:
1708 		av = FILE__LINK;
1709 		break;
1710 	case MAY_UNLINK:
1711 		av = FILE__UNLINK;
1712 		break;
1713 	case MAY_RMDIR:
1714 		av = DIR__RMDIR;
1715 		break;
1716 	default:
1717 		printk(KERN_WARNING "SELinux: %s:  unrecognized kind %d\n",
1718 			__func__, kind);
1719 		return 0;
1720 	}
1721 
1722 	rc = avc_has_perm(sid, isec->sid, isec->sclass, av, &ad);
1723 	return rc;
1724 }
1725 
1726 static inline int may_rename(struct inode *old_dir,
1727 			     struct dentry *old_dentry,
1728 			     struct inode *new_dir,
1729 			     struct dentry *new_dentry)
1730 {
1731 	struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1732 	struct common_audit_data ad;
1733 	u32 sid = current_sid();
1734 	u32 av;
1735 	int old_is_dir, new_is_dir;
1736 	int rc;
1737 
1738 	old_dsec = old_dir->i_security;
1739 	old_isec = old_dentry->d_inode->i_security;
1740 	old_is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
1741 	new_dsec = new_dir->i_security;
1742 
1743 	ad.type = LSM_AUDIT_DATA_DENTRY;
1744 
1745 	ad.u.dentry = old_dentry;
1746 	rc = avc_has_perm(sid, old_dsec->sid, SECCLASS_DIR,
1747 			  DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1748 	if (rc)
1749 		return rc;
1750 	rc = avc_has_perm(sid, old_isec->sid,
1751 			  old_isec->sclass, FILE__RENAME, &ad);
1752 	if (rc)
1753 		return rc;
1754 	if (old_is_dir && new_dir != old_dir) {
1755 		rc = avc_has_perm(sid, old_isec->sid,
1756 				  old_isec->sclass, DIR__REPARENT, &ad);
1757 		if (rc)
1758 			return rc;
1759 	}
1760 
1761 	ad.u.dentry = new_dentry;
1762 	av = DIR__ADD_NAME | DIR__SEARCH;
1763 	if (new_dentry->d_inode)
1764 		av |= DIR__REMOVE_NAME;
1765 	rc = avc_has_perm(sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1766 	if (rc)
1767 		return rc;
1768 	if (new_dentry->d_inode) {
1769 		new_isec = new_dentry->d_inode->i_security;
1770 		new_is_dir = S_ISDIR(new_dentry->d_inode->i_mode);
1771 		rc = avc_has_perm(sid, new_isec->sid,
1772 				  new_isec->sclass,
1773 				  (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1774 		if (rc)
1775 			return rc;
1776 	}
1777 
1778 	return 0;
1779 }
1780 
1781 /* Check whether a task can perform a filesystem operation. */
1782 static int superblock_has_perm(const struct cred *cred,
1783 			       struct super_block *sb,
1784 			       u32 perms,
1785 			       struct common_audit_data *ad)
1786 {
1787 	struct superblock_security_struct *sbsec;
1788 	u32 sid = cred_sid(cred);
1789 
1790 	sbsec = sb->s_security;
1791 	return avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
1792 }
1793 
1794 /* Convert a Linux mode and permission mask to an access vector. */
1795 static inline u32 file_mask_to_av(int mode, int mask)
1796 {
1797 	u32 av = 0;
1798 
1799 	if (!S_ISDIR(mode)) {
1800 		if (mask & MAY_EXEC)
1801 			av |= FILE__EXECUTE;
1802 		if (mask & MAY_READ)
1803 			av |= FILE__READ;
1804 
1805 		if (mask & MAY_APPEND)
1806 			av |= FILE__APPEND;
1807 		else if (mask & MAY_WRITE)
1808 			av |= FILE__WRITE;
1809 
1810 	} else {
1811 		if (mask & MAY_EXEC)
1812 			av |= DIR__SEARCH;
1813 		if (mask & MAY_WRITE)
1814 			av |= DIR__WRITE;
1815 		if (mask & MAY_READ)
1816 			av |= DIR__READ;
1817 	}
1818 
1819 	return av;
1820 }
1821 
1822 /* Convert a Linux file to an access vector. */
1823 static inline u32 file_to_av(struct file *file)
1824 {
1825 	u32 av = 0;
1826 
1827 	if (file->f_mode & FMODE_READ)
1828 		av |= FILE__READ;
1829 	if (file->f_mode & FMODE_WRITE) {
1830 		if (file->f_flags & O_APPEND)
1831 			av |= FILE__APPEND;
1832 		else
1833 			av |= FILE__WRITE;
1834 	}
1835 	if (!av) {
1836 		/*
1837 		 * Special file opened with flags 3 for ioctl-only use.
1838 		 */
1839 		av = FILE__IOCTL;
1840 	}
1841 
1842 	return av;
1843 }
1844 
1845 /*
1846  * Convert a file to an access vector and include the correct open
1847  * open permission.
1848  */
1849 static inline u32 open_file_to_av(struct file *file)
1850 {
1851 	u32 av = file_to_av(file);
1852 
1853 	if (selinux_policycap_openperm)
1854 		av |= FILE__OPEN;
1855 
1856 	return av;
1857 }
1858 
1859 /* Hook functions begin here. */
1860 
1861 static int selinux_ptrace_access_check(struct task_struct *child,
1862 				     unsigned int mode)
1863 {
1864 	int rc;
1865 
1866 	rc = cap_ptrace_access_check(child, mode);
1867 	if (rc)
1868 		return rc;
1869 
1870 	if (mode & PTRACE_MODE_READ) {
1871 		u32 sid = current_sid();
1872 		u32 csid = task_sid(child);
1873 		return avc_has_perm(sid, csid, SECCLASS_FILE, FILE__READ, NULL);
1874 	}
1875 
1876 	return current_has_perm(child, PROCESS__PTRACE);
1877 }
1878 
1879 static int selinux_ptrace_traceme(struct task_struct *parent)
1880 {
1881 	int rc;
1882 
1883 	rc = cap_ptrace_traceme(parent);
1884 	if (rc)
1885 		return rc;
1886 
1887 	return task_has_perm(parent, current, PROCESS__PTRACE);
1888 }
1889 
1890 static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
1891 			  kernel_cap_t *inheritable, kernel_cap_t *permitted)
1892 {
1893 	int error;
1894 
1895 	error = current_has_perm(target, PROCESS__GETCAP);
1896 	if (error)
1897 		return error;
1898 
1899 	return cap_capget(target, effective, inheritable, permitted);
1900 }
1901 
1902 static int selinux_capset(struct cred *new, const struct cred *old,
1903 			  const kernel_cap_t *effective,
1904 			  const kernel_cap_t *inheritable,
1905 			  const kernel_cap_t *permitted)
1906 {
1907 	int error;
1908 
1909 	error = cap_capset(new, old,
1910 				      effective, inheritable, permitted);
1911 	if (error)
1912 		return error;
1913 
1914 	return cred_has_perm(old, new, PROCESS__SETCAP);
1915 }
1916 
1917 /*
1918  * (This comment used to live with the selinux_task_setuid hook,
1919  * which was removed).
1920  *
1921  * Since setuid only affects the current process, and since the SELinux
1922  * controls are not based on the Linux identity attributes, SELinux does not
1923  * need to control this operation.  However, SELinux does control the use of
1924  * the CAP_SETUID and CAP_SETGID capabilities using the capable hook.
1925  */
1926 
1927 static int selinux_capable(const struct cred *cred, struct user_namespace *ns,
1928 			   int cap, int audit)
1929 {
1930 	int rc;
1931 
1932 	rc = cap_capable(cred, ns, cap, audit);
1933 	if (rc)
1934 		return rc;
1935 
1936 	return cred_has_capability(cred, cap, audit);
1937 }
1938 
1939 static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
1940 {
1941 	const struct cred *cred = current_cred();
1942 	int rc = 0;
1943 
1944 	if (!sb)
1945 		return 0;
1946 
1947 	switch (cmds) {
1948 	case Q_SYNC:
1949 	case Q_QUOTAON:
1950 	case Q_QUOTAOFF:
1951 	case Q_SETINFO:
1952 	case Q_SETQUOTA:
1953 		rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
1954 		break;
1955 	case Q_GETFMT:
1956 	case Q_GETINFO:
1957 	case Q_GETQUOTA:
1958 		rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
1959 		break;
1960 	default:
1961 		rc = 0;  /* let the kernel handle invalid cmds */
1962 		break;
1963 	}
1964 	return rc;
1965 }
1966 
1967 static int selinux_quota_on(struct dentry *dentry)
1968 {
1969 	const struct cred *cred = current_cred();
1970 
1971 	return dentry_has_perm(cred, dentry, FILE__QUOTAON);
1972 }
1973 
1974 static int selinux_syslog(int type)
1975 {
1976 	int rc;
1977 
1978 	switch (type) {
1979 	case SYSLOG_ACTION_READ_ALL:	/* Read last kernel messages */
1980 	case SYSLOG_ACTION_SIZE_BUFFER:	/* Return size of the log buffer */
1981 		rc = task_has_system(current, SYSTEM__SYSLOG_READ);
1982 		break;
1983 	case SYSLOG_ACTION_CONSOLE_OFF:	/* Disable logging to console */
1984 	case SYSLOG_ACTION_CONSOLE_ON:	/* Enable logging to console */
1985 	/* Set level of messages printed to console */
1986 	case SYSLOG_ACTION_CONSOLE_LEVEL:
1987 		rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE);
1988 		break;
1989 	case SYSLOG_ACTION_CLOSE:	/* Close log */
1990 	case SYSLOG_ACTION_OPEN:	/* Open log */
1991 	case SYSLOG_ACTION_READ:	/* Read from log */
1992 	case SYSLOG_ACTION_READ_CLEAR:	/* Read/clear last kernel messages */
1993 	case SYSLOG_ACTION_CLEAR:	/* Clear ring buffer */
1994 	default:
1995 		rc = task_has_system(current, SYSTEM__SYSLOG_MOD);
1996 		break;
1997 	}
1998 	return rc;
1999 }
2000 
2001 /*
2002  * Check that a process has enough memory to allocate a new virtual
2003  * mapping. 0 means there is enough memory for the allocation to
2004  * succeed and -ENOMEM implies there is not.
2005  *
2006  * Do not audit the selinux permission check, as this is applied to all
2007  * processes that allocate mappings.
2008  */
2009 static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
2010 {
2011 	int rc, cap_sys_admin = 0;
2012 
2013 	rc = selinux_capable(current_cred(), &init_user_ns, CAP_SYS_ADMIN,
2014 			     SECURITY_CAP_NOAUDIT);
2015 	if (rc == 0)
2016 		cap_sys_admin = 1;
2017 
2018 	return __vm_enough_memory(mm, pages, cap_sys_admin);
2019 }
2020 
2021 /* binprm security operations */
2022 
2023 static int selinux_bprm_set_creds(struct linux_binprm *bprm)
2024 {
2025 	const struct task_security_struct *old_tsec;
2026 	struct task_security_struct *new_tsec;
2027 	struct inode_security_struct *isec;
2028 	struct common_audit_data ad;
2029 	struct inode *inode = file_inode(bprm->file);
2030 	int rc;
2031 
2032 	rc = cap_bprm_set_creds(bprm);
2033 	if (rc)
2034 		return rc;
2035 
2036 	/* SELinux context only depends on initial program or script and not
2037 	 * the script interpreter */
2038 	if (bprm->cred_prepared)
2039 		return 0;
2040 
2041 	old_tsec = current_security();
2042 	new_tsec = bprm->cred->security;
2043 	isec = inode->i_security;
2044 
2045 	/* Default to the current task SID. */
2046 	new_tsec->sid = old_tsec->sid;
2047 	new_tsec->osid = old_tsec->sid;
2048 
2049 	/* Reset fs, key, and sock SIDs on execve. */
2050 	new_tsec->create_sid = 0;
2051 	new_tsec->keycreate_sid = 0;
2052 	new_tsec->sockcreate_sid = 0;
2053 
2054 	if (old_tsec->exec_sid) {
2055 		new_tsec->sid = old_tsec->exec_sid;
2056 		/* Reset exec SID on execve. */
2057 		new_tsec->exec_sid = 0;
2058 
2059 		/*
2060 		 * Minimize confusion: if no_new_privs and a transition is
2061 		 * explicitly requested, then fail the exec.
2062 		 */
2063 		if (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS)
2064 			return -EPERM;
2065 	} else {
2066 		/* Check for a default transition on this program. */
2067 		rc = security_transition_sid(old_tsec->sid, isec->sid,
2068 					     SECCLASS_PROCESS, NULL,
2069 					     &new_tsec->sid);
2070 		if (rc)
2071 			return rc;
2072 	}
2073 
2074 	ad.type = LSM_AUDIT_DATA_PATH;
2075 	ad.u.path = bprm->file->f_path;
2076 
2077 	if ((bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID) ||
2078 	    (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS))
2079 		new_tsec->sid = old_tsec->sid;
2080 
2081 	if (new_tsec->sid == old_tsec->sid) {
2082 		rc = avc_has_perm(old_tsec->sid, isec->sid,
2083 				  SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2084 		if (rc)
2085 			return rc;
2086 	} else {
2087 		/* Check permissions for the transition. */
2088 		rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2089 				  SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2090 		if (rc)
2091 			return rc;
2092 
2093 		rc = avc_has_perm(new_tsec->sid, isec->sid,
2094 				  SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2095 		if (rc)
2096 			return rc;
2097 
2098 		/* Check for shared state */
2099 		if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2100 			rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2101 					  SECCLASS_PROCESS, PROCESS__SHARE,
2102 					  NULL);
2103 			if (rc)
2104 				return -EPERM;
2105 		}
2106 
2107 		/* Make sure that anyone attempting to ptrace over a task that
2108 		 * changes its SID has the appropriate permit */
2109 		if (bprm->unsafe &
2110 		    (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) {
2111 			struct task_struct *tracer;
2112 			struct task_security_struct *sec;
2113 			u32 ptsid = 0;
2114 
2115 			rcu_read_lock();
2116 			tracer = ptrace_parent(current);
2117 			if (likely(tracer != NULL)) {
2118 				sec = __task_cred(tracer)->security;
2119 				ptsid = sec->sid;
2120 			}
2121 			rcu_read_unlock();
2122 
2123 			if (ptsid != 0) {
2124 				rc = avc_has_perm(ptsid, new_tsec->sid,
2125 						  SECCLASS_PROCESS,
2126 						  PROCESS__PTRACE, NULL);
2127 				if (rc)
2128 					return -EPERM;
2129 			}
2130 		}
2131 
2132 		/* Clear any possibly unsafe personality bits on exec: */
2133 		bprm->per_clear |= PER_CLEAR_ON_SETID;
2134 	}
2135 
2136 	return 0;
2137 }
2138 
2139 static int selinux_bprm_secureexec(struct linux_binprm *bprm)
2140 {
2141 	const struct task_security_struct *tsec = current_security();
2142 	u32 sid, osid;
2143 	int atsecure = 0;
2144 
2145 	sid = tsec->sid;
2146 	osid = tsec->osid;
2147 
2148 	if (osid != sid) {
2149 		/* Enable secure mode for SIDs transitions unless
2150 		   the noatsecure permission is granted between
2151 		   the two SIDs, i.e. ahp returns 0. */
2152 		atsecure = avc_has_perm(osid, sid,
2153 					SECCLASS_PROCESS,
2154 					PROCESS__NOATSECURE, NULL);
2155 	}
2156 
2157 	return (atsecure || cap_bprm_secureexec(bprm));
2158 }
2159 
2160 static int match_file(const void *p, struct file *file, unsigned fd)
2161 {
2162 	return file_has_perm(p, file, file_to_av(file)) ? fd + 1 : 0;
2163 }
2164 
2165 /* Derived from fs/exec.c:flush_old_files. */
2166 static inline void flush_unauthorized_files(const struct cred *cred,
2167 					    struct files_struct *files)
2168 {
2169 	struct file *file, *devnull = NULL;
2170 	struct tty_struct *tty;
2171 	int drop_tty = 0;
2172 	unsigned n;
2173 
2174 	tty = get_current_tty();
2175 	if (tty) {
2176 		spin_lock(&tty_files_lock);
2177 		if (!list_empty(&tty->tty_files)) {
2178 			struct tty_file_private *file_priv;
2179 
2180 			/* Revalidate access to controlling tty.
2181 			   Use file_path_has_perm on the tty path directly
2182 			   rather than using file_has_perm, as this particular
2183 			   open file may belong to another process and we are
2184 			   only interested in the inode-based check here. */
2185 			file_priv = list_first_entry(&tty->tty_files,
2186 						struct tty_file_private, list);
2187 			file = file_priv->file;
2188 			if (file_path_has_perm(cred, file, FILE__READ | FILE__WRITE))
2189 				drop_tty = 1;
2190 		}
2191 		spin_unlock(&tty_files_lock);
2192 		tty_kref_put(tty);
2193 	}
2194 	/* Reset controlling tty. */
2195 	if (drop_tty)
2196 		no_tty();
2197 
2198 	/* Revalidate access to inherited open files. */
2199 	n = iterate_fd(files, 0, match_file, cred);
2200 	if (!n) /* none found? */
2201 		return;
2202 
2203 	devnull = dentry_open(&selinux_null, O_RDWR, cred);
2204 	if (IS_ERR(devnull))
2205 		devnull = NULL;
2206 	/* replace all the matching ones with this */
2207 	do {
2208 		replace_fd(n - 1, devnull, 0);
2209 	} while ((n = iterate_fd(files, n, match_file, cred)) != 0);
2210 	if (devnull)
2211 		fput(devnull);
2212 }
2213 
2214 /*
2215  * Prepare a process for imminent new credential changes due to exec
2216  */
2217 static void selinux_bprm_committing_creds(struct linux_binprm *bprm)
2218 {
2219 	struct task_security_struct *new_tsec;
2220 	struct rlimit *rlim, *initrlim;
2221 	int rc, i;
2222 
2223 	new_tsec = bprm->cred->security;
2224 	if (new_tsec->sid == new_tsec->osid)
2225 		return;
2226 
2227 	/* Close files for which the new task SID is not authorized. */
2228 	flush_unauthorized_files(bprm->cred, current->files);
2229 
2230 	/* Always clear parent death signal on SID transitions. */
2231 	current->pdeath_signal = 0;
2232 
2233 	/* Check whether the new SID can inherit resource limits from the old
2234 	 * SID.  If not, reset all soft limits to the lower of the current
2235 	 * task's hard limit and the init task's soft limit.
2236 	 *
2237 	 * Note that the setting of hard limits (even to lower them) can be
2238 	 * controlled by the setrlimit check.  The inclusion of the init task's
2239 	 * soft limit into the computation is to avoid resetting soft limits
2240 	 * higher than the default soft limit for cases where the default is
2241 	 * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2242 	 */
2243 	rc = avc_has_perm(new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
2244 			  PROCESS__RLIMITINH, NULL);
2245 	if (rc) {
2246 		/* protect against do_prlimit() */
2247 		task_lock(current);
2248 		for (i = 0; i < RLIM_NLIMITS; i++) {
2249 			rlim = current->signal->rlim + i;
2250 			initrlim = init_task.signal->rlim + i;
2251 			rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2252 		}
2253 		task_unlock(current);
2254 		update_rlimit_cpu(current, rlimit(RLIMIT_CPU));
2255 	}
2256 }
2257 
2258 /*
2259  * Clean up the process immediately after the installation of new credentials
2260  * due to exec
2261  */
2262 static void selinux_bprm_committed_creds(struct linux_binprm *bprm)
2263 {
2264 	const struct task_security_struct *tsec = current_security();
2265 	struct itimerval itimer;
2266 	u32 osid, sid;
2267 	int rc, i;
2268 
2269 	osid = tsec->osid;
2270 	sid = tsec->sid;
2271 
2272 	if (sid == osid)
2273 		return;
2274 
2275 	/* Check whether the new SID can inherit signal state from the old SID.
2276 	 * If not, clear itimers to avoid subsequent signal generation and
2277 	 * flush and unblock signals.
2278 	 *
2279 	 * This must occur _after_ the task SID has been updated so that any
2280 	 * kill done after the flush will be checked against the new SID.
2281 	 */
2282 	rc = avc_has_perm(osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
2283 	if (rc) {
2284 		memset(&itimer, 0, sizeof itimer);
2285 		for (i = 0; i < 3; i++)
2286 			do_setitimer(i, &itimer, NULL);
2287 		spin_lock_irq(&current->sighand->siglock);
2288 		if (!(current->signal->flags & SIGNAL_GROUP_EXIT)) {
2289 			__flush_signals(current);
2290 			flush_signal_handlers(current, 1);
2291 			sigemptyset(&current->blocked);
2292 		}
2293 		spin_unlock_irq(&current->sighand->siglock);
2294 	}
2295 
2296 	/* Wake up the parent if it is waiting so that it can recheck
2297 	 * wait permission to the new task SID. */
2298 	read_lock(&tasklist_lock);
2299 	__wake_up_parent(current, current->real_parent);
2300 	read_unlock(&tasklist_lock);
2301 }
2302 
2303 /* superblock security operations */
2304 
2305 static int selinux_sb_alloc_security(struct super_block *sb)
2306 {
2307 	return superblock_alloc_security(sb);
2308 }
2309 
2310 static void selinux_sb_free_security(struct super_block *sb)
2311 {
2312 	superblock_free_security(sb);
2313 }
2314 
2315 static inline int match_prefix(char *prefix, int plen, char *option, int olen)
2316 {
2317 	if (plen > olen)
2318 		return 0;
2319 
2320 	return !memcmp(prefix, option, plen);
2321 }
2322 
2323 static inline int selinux_option(char *option, int len)
2324 {
2325 	return (match_prefix(CONTEXT_STR, sizeof(CONTEXT_STR)-1, option, len) ||
2326 		match_prefix(FSCONTEXT_STR, sizeof(FSCONTEXT_STR)-1, option, len) ||
2327 		match_prefix(DEFCONTEXT_STR, sizeof(DEFCONTEXT_STR)-1, option, len) ||
2328 		match_prefix(ROOTCONTEXT_STR, sizeof(ROOTCONTEXT_STR)-1, option, len) ||
2329 		match_prefix(LABELSUPP_STR, sizeof(LABELSUPP_STR)-1, option, len));
2330 }
2331 
2332 static inline void take_option(char **to, char *from, int *first, int len)
2333 {
2334 	if (!*first) {
2335 		**to = ',';
2336 		*to += 1;
2337 	} else
2338 		*first = 0;
2339 	memcpy(*to, from, len);
2340 	*to += len;
2341 }
2342 
2343 static inline void take_selinux_option(char **to, char *from, int *first,
2344 				       int len)
2345 {
2346 	int current_size = 0;
2347 
2348 	if (!*first) {
2349 		**to = '|';
2350 		*to += 1;
2351 	} else
2352 		*first = 0;
2353 
2354 	while (current_size < len) {
2355 		if (*from != '"') {
2356 			**to = *from;
2357 			*to += 1;
2358 		}
2359 		from += 1;
2360 		current_size += 1;
2361 	}
2362 }
2363 
2364 static int selinux_sb_copy_data(char *orig, char *copy)
2365 {
2366 	int fnosec, fsec, rc = 0;
2367 	char *in_save, *in_curr, *in_end;
2368 	char *sec_curr, *nosec_save, *nosec;
2369 	int open_quote = 0;
2370 
2371 	in_curr = orig;
2372 	sec_curr = copy;
2373 
2374 	nosec = (char *)get_zeroed_page(GFP_KERNEL);
2375 	if (!nosec) {
2376 		rc = -ENOMEM;
2377 		goto out;
2378 	}
2379 
2380 	nosec_save = nosec;
2381 	fnosec = fsec = 1;
2382 	in_save = in_end = orig;
2383 
2384 	do {
2385 		if (*in_end == '"')
2386 			open_quote = !open_quote;
2387 		if ((*in_end == ',' && open_quote == 0) ||
2388 				*in_end == '\0') {
2389 			int len = in_end - in_curr;
2390 
2391 			if (selinux_option(in_curr, len))
2392 				take_selinux_option(&sec_curr, in_curr, &fsec, len);
2393 			else
2394 				take_option(&nosec, in_curr, &fnosec, len);
2395 
2396 			in_curr = in_end + 1;
2397 		}
2398 	} while (*in_end++);
2399 
2400 	strcpy(in_save, nosec_save);
2401 	free_page((unsigned long)nosec_save);
2402 out:
2403 	return rc;
2404 }
2405 
2406 static int selinux_sb_remount(struct super_block *sb, void *data)
2407 {
2408 	int rc, i, *flags;
2409 	struct security_mnt_opts opts;
2410 	char *secdata, **mount_options;
2411 	struct superblock_security_struct *sbsec = sb->s_security;
2412 
2413 	if (!(sbsec->flags & SE_SBINITIALIZED))
2414 		return 0;
2415 
2416 	if (!data)
2417 		return 0;
2418 
2419 	if (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
2420 		return 0;
2421 
2422 	security_init_mnt_opts(&opts);
2423 	secdata = alloc_secdata();
2424 	if (!secdata)
2425 		return -ENOMEM;
2426 	rc = selinux_sb_copy_data(data, secdata);
2427 	if (rc)
2428 		goto out_free_secdata;
2429 
2430 	rc = selinux_parse_opts_str(secdata, &opts);
2431 	if (rc)
2432 		goto out_free_secdata;
2433 
2434 	mount_options = opts.mnt_opts;
2435 	flags = opts.mnt_opts_flags;
2436 
2437 	for (i = 0; i < opts.num_mnt_opts; i++) {
2438 		u32 sid;
2439 		size_t len;
2440 
2441 		if (flags[i] == SE_SBLABELSUPP)
2442 			continue;
2443 		len = strlen(mount_options[i]);
2444 		rc = security_context_to_sid(mount_options[i], len, &sid);
2445 		if (rc) {
2446 			printk(KERN_WARNING "SELinux: security_context_to_sid"
2447 			       "(%s) failed for (dev %s, type %s) errno=%d\n",
2448 			       mount_options[i], sb->s_id, sb->s_type->name, rc);
2449 			goto out_free_opts;
2450 		}
2451 		rc = -EINVAL;
2452 		switch (flags[i]) {
2453 		case FSCONTEXT_MNT:
2454 			if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, sid))
2455 				goto out_bad_option;
2456 			break;
2457 		case CONTEXT_MNT:
2458 			if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, sid))
2459 				goto out_bad_option;
2460 			break;
2461 		case ROOTCONTEXT_MNT: {
2462 			struct inode_security_struct *root_isec;
2463 			root_isec = sb->s_root->d_inode->i_security;
2464 
2465 			if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, sid))
2466 				goto out_bad_option;
2467 			break;
2468 		}
2469 		case DEFCONTEXT_MNT:
2470 			if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, sid))
2471 				goto out_bad_option;
2472 			break;
2473 		default:
2474 			goto out_free_opts;
2475 		}
2476 	}
2477 
2478 	rc = 0;
2479 out_free_opts:
2480 	security_free_mnt_opts(&opts);
2481 out_free_secdata:
2482 	free_secdata(secdata);
2483 	return rc;
2484 out_bad_option:
2485 	printk(KERN_WARNING "SELinux: unable to change security options "
2486 	       "during remount (dev %s, type=%s)\n", sb->s_id,
2487 	       sb->s_type->name);
2488 	goto out_free_opts;
2489 }
2490 
2491 static int selinux_sb_kern_mount(struct super_block *sb, int flags, void *data)
2492 {
2493 	const struct cred *cred = current_cred();
2494 	struct common_audit_data ad;
2495 	int rc;
2496 
2497 	rc = superblock_doinit(sb, data);
2498 	if (rc)
2499 		return rc;
2500 
2501 	/* Allow all mounts performed by the kernel */
2502 	if (flags & MS_KERNMOUNT)
2503 		return 0;
2504 
2505 	ad.type = LSM_AUDIT_DATA_DENTRY;
2506 	ad.u.dentry = sb->s_root;
2507 	return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2508 }
2509 
2510 static int selinux_sb_statfs(struct dentry *dentry)
2511 {
2512 	const struct cred *cred = current_cred();
2513 	struct common_audit_data ad;
2514 
2515 	ad.type = LSM_AUDIT_DATA_DENTRY;
2516 	ad.u.dentry = dentry->d_sb->s_root;
2517 	return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2518 }
2519 
2520 static int selinux_mount(const char *dev_name,
2521 			 struct path *path,
2522 			 const char *type,
2523 			 unsigned long flags,
2524 			 void *data)
2525 {
2526 	const struct cred *cred = current_cred();
2527 
2528 	if (flags & MS_REMOUNT)
2529 		return superblock_has_perm(cred, path->dentry->d_sb,
2530 					   FILESYSTEM__REMOUNT, NULL);
2531 	else
2532 		return path_has_perm(cred, path, FILE__MOUNTON);
2533 }
2534 
2535 static int selinux_umount(struct vfsmount *mnt, int flags)
2536 {
2537 	const struct cred *cred = current_cred();
2538 
2539 	return superblock_has_perm(cred, mnt->mnt_sb,
2540 				   FILESYSTEM__UNMOUNT, NULL);
2541 }
2542 
2543 /* inode security operations */
2544 
2545 static int selinux_inode_alloc_security(struct inode *inode)
2546 {
2547 	return inode_alloc_security(inode);
2548 }
2549 
2550 static void selinux_inode_free_security(struct inode *inode)
2551 {
2552 	inode_free_security(inode);
2553 }
2554 
2555 static int selinux_dentry_init_security(struct dentry *dentry, int mode,
2556 					struct qstr *name, void **ctx,
2557 					u32 *ctxlen)
2558 {
2559 	const struct cred *cred = current_cred();
2560 	struct task_security_struct *tsec;
2561 	struct inode_security_struct *dsec;
2562 	struct superblock_security_struct *sbsec;
2563 	struct inode *dir = dentry->d_parent->d_inode;
2564 	u32 newsid;
2565 	int rc;
2566 
2567 	tsec = cred->security;
2568 	dsec = dir->i_security;
2569 	sbsec = dir->i_sb->s_security;
2570 
2571 	if (tsec->create_sid && sbsec->behavior != SECURITY_FS_USE_MNTPOINT) {
2572 		newsid = tsec->create_sid;
2573 	} else {
2574 		rc = security_transition_sid(tsec->sid, dsec->sid,
2575 					     inode_mode_to_security_class(mode),
2576 					     name,
2577 					     &newsid);
2578 		if (rc) {
2579 			printk(KERN_WARNING
2580 				"%s: security_transition_sid failed, rc=%d\n",
2581 			       __func__, -rc);
2582 			return rc;
2583 		}
2584 	}
2585 
2586 	return security_sid_to_context(newsid, (char **)ctx, ctxlen);
2587 }
2588 
2589 static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2590 				       const struct qstr *qstr, char **name,
2591 				       void **value, size_t *len)
2592 {
2593 	const struct task_security_struct *tsec = current_security();
2594 	struct inode_security_struct *dsec;
2595 	struct superblock_security_struct *sbsec;
2596 	u32 sid, newsid, clen;
2597 	int rc;
2598 	char *namep = NULL, *context;
2599 
2600 	dsec = dir->i_security;
2601 	sbsec = dir->i_sb->s_security;
2602 
2603 	sid = tsec->sid;
2604 	newsid = tsec->create_sid;
2605 
2606 	if ((sbsec->flags & SE_SBINITIALIZED) &&
2607 	    (sbsec->behavior == SECURITY_FS_USE_MNTPOINT))
2608 		newsid = sbsec->mntpoint_sid;
2609 	else if (!newsid || !(sbsec->flags & SE_SBLABELSUPP)) {
2610 		rc = security_transition_sid(sid, dsec->sid,
2611 					     inode_mode_to_security_class(inode->i_mode),
2612 					     qstr, &newsid);
2613 		if (rc) {
2614 			printk(KERN_WARNING "%s:  "
2615 			       "security_transition_sid failed, rc=%d (dev=%s "
2616 			       "ino=%ld)\n",
2617 			       __func__,
2618 			       -rc, inode->i_sb->s_id, inode->i_ino);
2619 			return rc;
2620 		}
2621 	}
2622 
2623 	/* Possibly defer initialization to selinux_complete_init. */
2624 	if (sbsec->flags & SE_SBINITIALIZED) {
2625 		struct inode_security_struct *isec = inode->i_security;
2626 		isec->sclass = inode_mode_to_security_class(inode->i_mode);
2627 		isec->sid = newsid;
2628 		isec->initialized = 1;
2629 	}
2630 
2631 	if (!ss_initialized || !(sbsec->flags & SE_SBLABELSUPP))
2632 		return -EOPNOTSUPP;
2633 
2634 	if (name) {
2635 		namep = kstrdup(XATTR_SELINUX_SUFFIX, GFP_NOFS);
2636 		if (!namep)
2637 			return -ENOMEM;
2638 		*name = namep;
2639 	}
2640 
2641 	if (value && len) {
2642 		rc = security_sid_to_context_force(newsid, &context, &clen);
2643 		if (rc) {
2644 			kfree(namep);
2645 			return rc;
2646 		}
2647 		*value = context;
2648 		*len = clen;
2649 	}
2650 
2651 	return 0;
2652 }
2653 
2654 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
2655 {
2656 	return may_create(dir, dentry, SECCLASS_FILE);
2657 }
2658 
2659 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2660 {
2661 	return may_link(dir, old_dentry, MAY_LINK);
2662 }
2663 
2664 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2665 {
2666 	return may_link(dir, dentry, MAY_UNLINK);
2667 }
2668 
2669 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2670 {
2671 	return may_create(dir, dentry, SECCLASS_LNK_FILE);
2672 }
2673 
2674 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mask)
2675 {
2676 	return may_create(dir, dentry, SECCLASS_DIR);
2677 }
2678 
2679 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2680 {
2681 	return may_link(dir, dentry, MAY_RMDIR);
2682 }
2683 
2684 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2685 {
2686 	return may_create(dir, dentry, inode_mode_to_security_class(mode));
2687 }
2688 
2689 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
2690 				struct inode *new_inode, struct dentry *new_dentry)
2691 {
2692 	return may_rename(old_inode, old_dentry, new_inode, new_dentry);
2693 }
2694 
2695 static int selinux_inode_readlink(struct dentry *dentry)
2696 {
2697 	const struct cred *cred = current_cred();
2698 
2699 	return dentry_has_perm(cred, dentry, FILE__READ);
2700 }
2701 
2702 static int selinux_inode_follow_link(struct dentry *dentry, struct nameidata *nameidata)
2703 {
2704 	const struct cred *cred = current_cred();
2705 
2706 	return dentry_has_perm(cred, dentry, FILE__READ);
2707 }
2708 
2709 static noinline int audit_inode_permission(struct inode *inode,
2710 					   u32 perms, u32 audited, u32 denied,
2711 					   unsigned flags)
2712 {
2713 	struct common_audit_data ad;
2714 	struct inode_security_struct *isec = inode->i_security;
2715 	int rc;
2716 
2717 	ad.type = LSM_AUDIT_DATA_INODE;
2718 	ad.u.inode = inode;
2719 
2720 	rc = slow_avc_audit(current_sid(), isec->sid, isec->sclass, perms,
2721 			    audited, denied, &ad, flags);
2722 	if (rc)
2723 		return rc;
2724 	return 0;
2725 }
2726 
2727 static int selinux_inode_permission(struct inode *inode, int mask)
2728 {
2729 	const struct cred *cred = current_cred();
2730 	u32 perms;
2731 	bool from_access;
2732 	unsigned flags = mask & MAY_NOT_BLOCK;
2733 	struct inode_security_struct *isec;
2734 	u32 sid;
2735 	struct av_decision avd;
2736 	int rc, rc2;
2737 	u32 audited, denied;
2738 
2739 	from_access = mask & MAY_ACCESS;
2740 	mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND);
2741 
2742 	/* No permission to check.  Existence test. */
2743 	if (!mask)
2744 		return 0;
2745 
2746 	validate_creds(cred);
2747 
2748 	if (unlikely(IS_PRIVATE(inode)))
2749 		return 0;
2750 
2751 	perms = file_mask_to_av(inode->i_mode, mask);
2752 
2753 	sid = cred_sid(cred);
2754 	isec = inode->i_security;
2755 
2756 	rc = avc_has_perm_noaudit(sid, isec->sid, isec->sclass, perms, 0, &avd);
2757 	audited = avc_audit_required(perms, &avd, rc,
2758 				     from_access ? FILE__AUDIT_ACCESS : 0,
2759 				     &denied);
2760 	if (likely(!audited))
2761 		return rc;
2762 
2763 	rc2 = audit_inode_permission(inode, perms, audited, denied, flags);
2764 	if (rc2)
2765 		return rc2;
2766 	return rc;
2767 }
2768 
2769 static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
2770 {
2771 	const struct cred *cred = current_cred();
2772 	unsigned int ia_valid = iattr->ia_valid;
2773 	__u32 av = FILE__WRITE;
2774 
2775 	/* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */
2776 	if (ia_valid & ATTR_FORCE) {
2777 		ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE |
2778 			      ATTR_FORCE);
2779 		if (!ia_valid)
2780 			return 0;
2781 	}
2782 
2783 	if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
2784 			ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET))
2785 		return dentry_has_perm(cred, dentry, FILE__SETATTR);
2786 
2787 	if (selinux_policycap_openperm && (ia_valid & ATTR_SIZE))
2788 		av |= FILE__OPEN;
2789 
2790 	return dentry_has_perm(cred, dentry, av);
2791 }
2792 
2793 static int selinux_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
2794 {
2795 	const struct cred *cred = current_cred();
2796 	struct path path;
2797 
2798 	path.dentry = dentry;
2799 	path.mnt = mnt;
2800 
2801 	return path_has_perm(cred, &path, FILE__GETATTR);
2802 }
2803 
2804 static int selinux_inode_setotherxattr(struct dentry *dentry, const char *name)
2805 {
2806 	const struct cred *cred = current_cred();
2807 
2808 	if (!strncmp(name, XATTR_SECURITY_PREFIX,
2809 		     sizeof XATTR_SECURITY_PREFIX - 1)) {
2810 		if (!strcmp(name, XATTR_NAME_CAPS)) {
2811 			if (!capable(CAP_SETFCAP))
2812 				return -EPERM;
2813 		} else if (!capable(CAP_SYS_ADMIN)) {
2814 			/* A different attribute in the security namespace.
2815 			   Restrict to administrator. */
2816 			return -EPERM;
2817 		}
2818 	}
2819 
2820 	/* Not an attribute we recognize, so just check the
2821 	   ordinary setattr permission. */
2822 	return dentry_has_perm(cred, dentry, FILE__SETATTR);
2823 }
2824 
2825 static int selinux_inode_setxattr(struct dentry *dentry, const char *name,
2826 				  const void *value, size_t size, int flags)
2827 {
2828 	struct inode *inode = dentry->d_inode;
2829 	struct inode_security_struct *isec = inode->i_security;
2830 	struct superblock_security_struct *sbsec;
2831 	struct common_audit_data ad;
2832 	u32 newsid, sid = current_sid();
2833 	int rc = 0;
2834 
2835 	if (strcmp(name, XATTR_NAME_SELINUX))
2836 		return selinux_inode_setotherxattr(dentry, name);
2837 
2838 	sbsec = inode->i_sb->s_security;
2839 	if (!(sbsec->flags & SE_SBLABELSUPP))
2840 		return -EOPNOTSUPP;
2841 
2842 	if (!inode_owner_or_capable(inode))
2843 		return -EPERM;
2844 
2845 	ad.type = LSM_AUDIT_DATA_DENTRY;
2846 	ad.u.dentry = dentry;
2847 
2848 	rc = avc_has_perm(sid, isec->sid, isec->sclass,
2849 			  FILE__RELABELFROM, &ad);
2850 	if (rc)
2851 		return rc;
2852 
2853 	rc = security_context_to_sid(value, size, &newsid);
2854 	if (rc == -EINVAL) {
2855 		if (!capable(CAP_MAC_ADMIN)) {
2856 			struct audit_buffer *ab;
2857 			size_t audit_size;
2858 			const char *str;
2859 
2860 			/* We strip a nul only if it is at the end, otherwise the
2861 			 * context contains a nul and we should audit that */
2862 			if (value) {
2863 				str = value;
2864 				if (str[size - 1] == '\0')
2865 					audit_size = size - 1;
2866 				else
2867 					audit_size = size;
2868 			} else {
2869 				str = "";
2870 				audit_size = 0;
2871 			}
2872 			ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR);
2873 			audit_log_format(ab, "op=setxattr invalid_context=");
2874 			audit_log_n_untrustedstring(ab, value, audit_size);
2875 			audit_log_end(ab);
2876 
2877 			return rc;
2878 		}
2879 		rc = security_context_to_sid_force(value, size, &newsid);
2880 	}
2881 	if (rc)
2882 		return rc;
2883 
2884 	rc = avc_has_perm(sid, newsid, isec->sclass,
2885 			  FILE__RELABELTO, &ad);
2886 	if (rc)
2887 		return rc;
2888 
2889 	rc = security_validate_transition(isec->sid, newsid, sid,
2890 					  isec->sclass);
2891 	if (rc)
2892 		return rc;
2893 
2894 	return avc_has_perm(newsid,
2895 			    sbsec->sid,
2896 			    SECCLASS_FILESYSTEM,
2897 			    FILESYSTEM__ASSOCIATE,
2898 			    &ad);
2899 }
2900 
2901 static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
2902 					const void *value, size_t size,
2903 					int flags)
2904 {
2905 	struct inode *inode = dentry->d_inode;
2906 	struct inode_security_struct *isec = inode->i_security;
2907 	u32 newsid;
2908 	int rc;
2909 
2910 	if (strcmp(name, XATTR_NAME_SELINUX)) {
2911 		/* Not an attribute we recognize, so nothing to do. */
2912 		return;
2913 	}
2914 
2915 	rc = security_context_to_sid_force(value, size, &newsid);
2916 	if (rc) {
2917 		printk(KERN_ERR "SELinux:  unable to map context to SID"
2918 		       "for (%s, %lu), rc=%d\n",
2919 		       inode->i_sb->s_id, inode->i_ino, -rc);
2920 		return;
2921 	}
2922 
2923 	isec->sclass = inode_mode_to_security_class(inode->i_mode);
2924 	isec->sid = newsid;
2925 	isec->initialized = 1;
2926 
2927 	return;
2928 }
2929 
2930 static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
2931 {
2932 	const struct cred *cred = current_cred();
2933 
2934 	return dentry_has_perm(cred, dentry, FILE__GETATTR);
2935 }
2936 
2937 static int selinux_inode_listxattr(struct dentry *dentry)
2938 {
2939 	const struct cred *cred = current_cred();
2940 
2941 	return dentry_has_perm(cred, dentry, FILE__GETATTR);
2942 }
2943 
2944 static int selinux_inode_removexattr(struct dentry *dentry, const char *name)
2945 {
2946 	if (strcmp(name, XATTR_NAME_SELINUX))
2947 		return selinux_inode_setotherxattr(dentry, name);
2948 
2949 	/* No one is allowed to remove a SELinux security label.
2950 	   You can change the label, but all data must be labeled. */
2951 	return -EACCES;
2952 }
2953 
2954 /*
2955  * Copy the inode security context value to the user.
2956  *
2957  * Permission check is handled by selinux_inode_getxattr hook.
2958  */
2959 static int selinux_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
2960 {
2961 	u32 size;
2962 	int error;
2963 	char *context = NULL;
2964 	struct inode_security_struct *isec = inode->i_security;
2965 
2966 	if (strcmp(name, XATTR_SELINUX_SUFFIX))
2967 		return -EOPNOTSUPP;
2968 
2969 	/*
2970 	 * If the caller has CAP_MAC_ADMIN, then get the raw context
2971 	 * value even if it is not defined by current policy; otherwise,
2972 	 * use the in-core value under current policy.
2973 	 * Use the non-auditing forms of the permission checks since
2974 	 * getxattr may be called by unprivileged processes commonly
2975 	 * and lack of permission just means that we fall back to the
2976 	 * in-core context value, not a denial.
2977 	 */
2978 	error = selinux_capable(current_cred(), &init_user_ns, CAP_MAC_ADMIN,
2979 				SECURITY_CAP_NOAUDIT);
2980 	if (!error)
2981 		error = security_sid_to_context_force(isec->sid, &context,
2982 						      &size);
2983 	else
2984 		error = security_sid_to_context(isec->sid, &context, &size);
2985 	if (error)
2986 		return error;
2987 	error = size;
2988 	if (alloc) {
2989 		*buffer = context;
2990 		goto out_nofree;
2991 	}
2992 	kfree(context);
2993 out_nofree:
2994 	return error;
2995 }
2996 
2997 static int selinux_inode_setsecurity(struct inode *inode, const char *name,
2998 				     const void *value, size_t size, int flags)
2999 {
3000 	struct inode_security_struct *isec = inode->i_security;
3001 	u32 newsid;
3002 	int rc;
3003 
3004 	if (strcmp(name, XATTR_SELINUX_SUFFIX))
3005 		return -EOPNOTSUPP;
3006 
3007 	if (!value || !size)
3008 		return -EACCES;
3009 
3010 	rc = security_context_to_sid((void *)value, size, &newsid);
3011 	if (rc)
3012 		return rc;
3013 
3014 	isec->sclass = inode_mode_to_security_class(inode->i_mode);
3015 	isec->sid = newsid;
3016 	isec->initialized = 1;
3017 	return 0;
3018 }
3019 
3020 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
3021 {
3022 	const int len = sizeof(XATTR_NAME_SELINUX);
3023 	if (buffer && len <= buffer_size)
3024 		memcpy(buffer, XATTR_NAME_SELINUX, len);
3025 	return len;
3026 }
3027 
3028 static void selinux_inode_getsecid(const struct inode *inode, u32 *secid)
3029 {
3030 	struct inode_security_struct *isec = inode->i_security;
3031 	*secid = isec->sid;
3032 }
3033 
3034 /* file security operations */
3035 
3036 static int selinux_revalidate_file_permission(struct file *file, int mask)
3037 {
3038 	const struct cred *cred = current_cred();
3039 	struct inode *inode = file_inode(file);
3040 
3041 	/* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
3042 	if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
3043 		mask |= MAY_APPEND;
3044 
3045 	return file_has_perm(cred, file,
3046 			     file_mask_to_av(inode->i_mode, mask));
3047 }
3048 
3049 static int selinux_file_permission(struct file *file, int mask)
3050 {
3051 	struct inode *inode = file_inode(file);
3052 	struct file_security_struct *fsec = file->f_security;
3053 	struct inode_security_struct *isec = inode->i_security;
3054 	u32 sid = current_sid();
3055 
3056 	if (!mask)
3057 		/* No permission to check.  Existence test. */
3058 		return 0;
3059 
3060 	if (sid == fsec->sid && fsec->isid == isec->sid &&
3061 	    fsec->pseqno == avc_policy_seqno())
3062 		/* No change since file_open check. */
3063 		return 0;
3064 
3065 	return selinux_revalidate_file_permission(file, mask);
3066 }
3067 
3068 static int selinux_file_alloc_security(struct file *file)
3069 {
3070 	return file_alloc_security(file);
3071 }
3072 
3073 static void selinux_file_free_security(struct file *file)
3074 {
3075 	file_free_security(file);
3076 }
3077 
3078 static int selinux_file_ioctl(struct file *file, unsigned int cmd,
3079 			      unsigned long arg)
3080 {
3081 	const struct cred *cred = current_cred();
3082 	int error = 0;
3083 
3084 	switch (cmd) {
3085 	case FIONREAD:
3086 	/* fall through */
3087 	case FIBMAP:
3088 	/* fall through */
3089 	case FIGETBSZ:
3090 	/* fall through */
3091 	case FS_IOC_GETFLAGS:
3092 	/* fall through */
3093 	case FS_IOC_GETVERSION:
3094 		error = file_has_perm(cred, file, FILE__GETATTR);
3095 		break;
3096 
3097 	case FS_IOC_SETFLAGS:
3098 	/* fall through */
3099 	case FS_IOC_SETVERSION:
3100 		error = file_has_perm(cred, file, FILE__SETATTR);
3101 		break;
3102 
3103 	/* sys_ioctl() checks */
3104 	case FIONBIO:
3105 	/* fall through */
3106 	case FIOASYNC:
3107 		error = file_has_perm(cred, file, 0);
3108 		break;
3109 
3110 	case KDSKBENT:
3111 	case KDSKBSENT:
3112 		error = cred_has_capability(cred, CAP_SYS_TTY_CONFIG,
3113 					    SECURITY_CAP_AUDIT);
3114 		break;
3115 
3116 	/* default case assumes that the command will go
3117 	 * to the file's ioctl() function.
3118 	 */
3119 	default:
3120 		error = file_has_perm(cred, file, FILE__IOCTL);
3121 	}
3122 	return error;
3123 }
3124 
3125 static int default_noexec;
3126 
3127 static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
3128 {
3129 	const struct cred *cred = current_cred();
3130 	int rc = 0;
3131 
3132 	if (default_noexec &&
3133 	    (prot & PROT_EXEC) && (!file || (!shared && (prot & PROT_WRITE)))) {
3134 		/*
3135 		 * We are making executable an anonymous mapping or a
3136 		 * private file mapping that will also be writable.
3137 		 * This has an additional check.
3138 		 */
3139 		rc = cred_has_perm(cred, cred, PROCESS__EXECMEM);
3140 		if (rc)
3141 			goto error;
3142 	}
3143 
3144 	if (file) {
3145 		/* read access is always possible with a mapping */
3146 		u32 av = FILE__READ;
3147 
3148 		/* write access only matters if the mapping is shared */
3149 		if (shared && (prot & PROT_WRITE))
3150 			av |= FILE__WRITE;
3151 
3152 		if (prot & PROT_EXEC)
3153 			av |= FILE__EXECUTE;
3154 
3155 		return file_has_perm(cred, file, av);
3156 	}
3157 
3158 error:
3159 	return rc;
3160 }
3161 
3162 static int selinux_mmap_addr(unsigned long addr)
3163 {
3164 	int rc = 0;
3165 	u32 sid = current_sid();
3166 
3167 	/*
3168 	 * notice that we are intentionally putting the SELinux check before
3169 	 * the secondary cap_file_mmap check.  This is such a likely attempt
3170 	 * at bad behaviour/exploit that we always want to get the AVC, even
3171 	 * if DAC would have also denied the operation.
3172 	 */
3173 	if (addr < CONFIG_LSM_MMAP_MIN_ADDR) {
3174 		rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT,
3175 				  MEMPROTECT__MMAP_ZERO, NULL);
3176 		if (rc)
3177 			return rc;
3178 	}
3179 
3180 	/* do DAC check on address space usage */
3181 	return cap_mmap_addr(addr);
3182 }
3183 
3184 static int selinux_mmap_file(struct file *file, unsigned long reqprot,
3185 			     unsigned long prot, unsigned long flags)
3186 {
3187 	if (selinux_checkreqprot)
3188 		prot = reqprot;
3189 
3190 	return file_map_prot_check(file, prot,
3191 				   (flags & MAP_TYPE) == MAP_SHARED);
3192 }
3193 
3194 static int selinux_file_mprotect(struct vm_area_struct *vma,
3195 				 unsigned long reqprot,
3196 				 unsigned long prot)
3197 {
3198 	const struct cred *cred = current_cred();
3199 
3200 	if (selinux_checkreqprot)
3201 		prot = reqprot;
3202 
3203 	if (default_noexec &&
3204 	    (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3205 		int rc = 0;
3206 		if (vma->vm_start >= vma->vm_mm->start_brk &&
3207 		    vma->vm_end <= vma->vm_mm->brk) {
3208 			rc = cred_has_perm(cred, cred, PROCESS__EXECHEAP);
3209 		} else if (!vma->vm_file &&
3210 			   vma->vm_start <= vma->vm_mm->start_stack &&
3211 			   vma->vm_end >= vma->vm_mm->start_stack) {
3212 			rc = current_has_perm(current, PROCESS__EXECSTACK);
3213 		} else if (vma->vm_file && vma->anon_vma) {
3214 			/*
3215 			 * We are making executable a file mapping that has
3216 			 * had some COW done. Since pages might have been
3217 			 * written, check ability to execute the possibly
3218 			 * modified content.  This typically should only
3219 			 * occur for text relocations.
3220 			 */
3221 			rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3222 		}
3223 		if (rc)
3224 			return rc;
3225 	}
3226 
3227 	return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3228 }
3229 
3230 static int selinux_file_lock(struct file *file, unsigned int cmd)
3231 {
3232 	const struct cred *cred = current_cred();
3233 
3234 	return file_has_perm(cred, file, FILE__LOCK);
3235 }
3236 
3237 static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3238 			      unsigned long arg)
3239 {
3240 	const struct cred *cred = current_cred();
3241 	int err = 0;
3242 
3243 	switch (cmd) {
3244 	case F_SETFL:
3245 		if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3246 			err = file_has_perm(cred, file, FILE__WRITE);
3247 			break;
3248 		}
3249 		/* fall through */
3250 	case F_SETOWN:
3251 	case F_SETSIG:
3252 	case F_GETFL:
3253 	case F_GETOWN:
3254 	case F_GETSIG:
3255 	case F_GETOWNER_UIDS:
3256 		/* Just check FD__USE permission */
3257 		err = file_has_perm(cred, file, 0);
3258 		break;
3259 	case F_GETLK:
3260 	case F_SETLK:
3261 	case F_SETLKW:
3262 #if BITS_PER_LONG == 32
3263 	case F_GETLK64:
3264 	case F_SETLK64:
3265 	case F_SETLKW64:
3266 #endif
3267 		err = file_has_perm(cred, file, FILE__LOCK);
3268 		break;
3269 	}
3270 
3271 	return err;
3272 }
3273 
3274 static int selinux_file_set_fowner(struct file *file)
3275 {
3276 	struct file_security_struct *fsec;
3277 
3278 	fsec = file->f_security;
3279 	fsec->fown_sid = current_sid();
3280 
3281 	return 0;
3282 }
3283 
3284 static int selinux_file_send_sigiotask(struct task_struct *tsk,
3285 				       struct fown_struct *fown, int signum)
3286 {
3287 	struct file *file;
3288 	u32 sid = task_sid(tsk);
3289 	u32 perm;
3290 	struct file_security_struct *fsec;
3291 
3292 	/* struct fown_struct is never outside the context of a struct file */
3293 	file = container_of(fown, struct file, f_owner);
3294 
3295 	fsec = file->f_security;
3296 
3297 	if (!signum)
3298 		perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3299 	else
3300 		perm = signal_to_av(signum);
3301 
3302 	return avc_has_perm(fsec->fown_sid, sid,
3303 			    SECCLASS_PROCESS, perm, NULL);
3304 }
3305 
3306 static int selinux_file_receive(struct file *file)
3307 {
3308 	const struct cred *cred = current_cred();
3309 
3310 	return file_has_perm(cred, file, file_to_av(file));
3311 }
3312 
3313 static int selinux_file_open(struct file *file, const struct cred *cred)
3314 {
3315 	struct file_security_struct *fsec;
3316 	struct inode_security_struct *isec;
3317 
3318 	fsec = file->f_security;
3319 	isec = file_inode(file)->i_security;
3320 	/*
3321 	 * Save inode label and policy sequence number
3322 	 * at open-time so that selinux_file_permission
3323 	 * can determine whether revalidation is necessary.
3324 	 * Task label is already saved in the file security
3325 	 * struct as its SID.
3326 	 */
3327 	fsec->isid = isec->sid;
3328 	fsec->pseqno = avc_policy_seqno();
3329 	/*
3330 	 * Since the inode label or policy seqno may have changed
3331 	 * between the selinux_inode_permission check and the saving
3332 	 * of state above, recheck that access is still permitted.
3333 	 * Otherwise, access might never be revalidated against the
3334 	 * new inode label or new policy.
3335 	 * This check is not redundant - do not remove.
3336 	 */
3337 	return file_path_has_perm(cred, file, open_file_to_av(file));
3338 }
3339 
3340 /* task security operations */
3341 
3342 static int selinux_task_create(unsigned long clone_flags)
3343 {
3344 	return current_has_perm(current, PROCESS__FORK);
3345 }
3346 
3347 /*
3348  * allocate the SELinux part of blank credentials
3349  */
3350 static int selinux_cred_alloc_blank(struct cred *cred, gfp_t gfp)
3351 {
3352 	struct task_security_struct *tsec;
3353 
3354 	tsec = kzalloc(sizeof(struct task_security_struct), gfp);
3355 	if (!tsec)
3356 		return -ENOMEM;
3357 
3358 	cred->security = tsec;
3359 	return 0;
3360 }
3361 
3362 /*
3363  * detach and free the LSM part of a set of credentials
3364  */
3365 static void selinux_cred_free(struct cred *cred)
3366 {
3367 	struct task_security_struct *tsec = cred->security;
3368 
3369 	/*
3370 	 * cred->security == NULL if security_cred_alloc_blank() or
3371 	 * security_prepare_creds() returned an error.
3372 	 */
3373 	BUG_ON(cred->security && (unsigned long) cred->security < PAGE_SIZE);
3374 	cred->security = (void *) 0x7UL;
3375 	kfree(tsec);
3376 }
3377 
3378 /*
3379  * prepare a new set of credentials for modification
3380  */
3381 static int selinux_cred_prepare(struct cred *new, const struct cred *old,
3382 				gfp_t gfp)
3383 {
3384 	const struct task_security_struct *old_tsec;
3385 	struct task_security_struct *tsec;
3386 
3387 	old_tsec = old->security;
3388 
3389 	tsec = kmemdup(old_tsec, sizeof(struct task_security_struct), gfp);
3390 	if (!tsec)
3391 		return -ENOMEM;
3392 
3393 	new->security = tsec;
3394 	return 0;
3395 }
3396 
3397 /*
3398  * transfer the SELinux data to a blank set of creds
3399  */
3400 static void selinux_cred_transfer(struct cred *new, const struct cred *old)
3401 {
3402 	const struct task_security_struct *old_tsec = old->security;
3403 	struct task_security_struct *tsec = new->security;
3404 
3405 	*tsec = *old_tsec;
3406 }
3407 
3408 /*
3409  * set the security data for a kernel service
3410  * - all the creation contexts are set to unlabelled
3411  */
3412 static int selinux_kernel_act_as(struct cred *new, u32 secid)
3413 {
3414 	struct task_security_struct *tsec = new->security;
3415 	u32 sid = current_sid();
3416 	int ret;
3417 
3418 	ret = avc_has_perm(sid, secid,
3419 			   SECCLASS_KERNEL_SERVICE,
3420 			   KERNEL_SERVICE__USE_AS_OVERRIDE,
3421 			   NULL);
3422 	if (ret == 0) {
3423 		tsec->sid = secid;
3424 		tsec->create_sid = 0;
3425 		tsec->keycreate_sid = 0;
3426 		tsec->sockcreate_sid = 0;
3427 	}
3428 	return ret;
3429 }
3430 
3431 /*
3432  * set the file creation context in a security record to the same as the
3433  * objective context of the specified inode
3434  */
3435 static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
3436 {
3437 	struct inode_security_struct *isec = inode->i_security;
3438 	struct task_security_struct *tsec = new->security;
3439 	u32 sid = current_sid();
3440 	int ret;
3441 
3442 	ret = avc_has_perm(sid, isec->sid,
3443 			   SECCLASS_KERNEL_SERVICE,
3444 			   KERNEL_SERVICE__CREATE_FILES_AS,
3445 			   NULL);
3446 
3447 	if (ret == 0)
3448 		tsec->create_sid = isec->sid;
3449 	return ret;
3450 }
3451 
3452 static int selinux_kernel_module_request(char *kmod_name)
3453 {
3454 	u32 sid;
3455 	struct common_audit_data ad;
3456 
3457 	sid = task_sid(current);
3458 
3459 	ad.type = LSM_AUDIT_DATA_KMOD;
3460 	ad.u.kmod_name = kmod_name;
3461 
3462 	return avc_has_perm(sid, SECINITSID_KERNEL, SECCLASS_SYSTEM,
3463 			    SYSTEM__MODULE_REQUEST, &ad);
3464 }
3465 
3466 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
3467 {
3468 	return current_has_perm(p, PROCESS__SETPGID);
3469 }
3470 
3471 static int selinux_task_getpgid(struct task_struct *p)
3472 {
3473 	return current_has_perm(p, PROCESS__GETPGID);
3474 }
3475 
3476 static int selinux_task_getsid(struct task_struct *p)
3477 {
3478 	return current_has_perm(p, PROCESS__GETSESSION);
3479 }
3480 
3481 static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
3482 {
3483 	*secid = task_sid(p);
3484 }
3485 
3486 static int selinux_task_setnice(struct task_struct *p, int nice)
3487 {
3488 	int rc;
3489 
3490 	rc = cap_task_setnice(p, nice);
3491 	if (rc)
3492 		return rc;
3493 
3494 	return current_has_perm(p, PROCESS__SETSCHED);
3495 }
3496 
3497 static int selinux_task_setioprio(struct task_struct *p, int ioprio)
3498 {
3499 	int rc;
3500 
3501 	rc = cap_task_setioprio(p, ioprio);
3502 	if (rc)
3503 		return rc;
3504 
3505 	return current_has_perm(p, PROCESS__SETSCHED);
3506 }
3507 
3508 static int selinux_task_getioprio(struct task_struct *p)
3509 {
3510 	return current_has_perm(p, PROCESS__GETSCHED);
3511 }
3512 
3513 static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource,
3514 		struct rlimit *new_rlim)
3515 {
3516 	struct rlimit *old_rlim = p->signal->rlim + resource;
3517 
3518 	/* Control the ability to change the hard limit (whether
3519 	   lowering or raising it), so that the hard limit can
3520 	   later be used as a safe reset point for the soft limit
3521 	   upon context transitions.  See selinux_bprm_committing_creds. */
3522 	if (old_rlim->rlim_max != new_rlim->rlim_max)
3523 		return current_has_perm(p, PROCESS__SETRLIMIT);
3524 
3525 	return 0;
3526 }
3527 
3528 static int selinux_task_setscheduler(struct task_struct *p)
3529 {
3530 	int rc;
3531 
3532 	rc = cap_task_setscheduler(p);
3533 	if (rc)
3534 		return rc;
3535 
3536 	return current_has_perm(p, PROCESS__SETSCHED);
3537 }
3538 
3539 static int selinux_task_getscheduler(struct task_struct *p)
3540 {
3541 	return current_has_perm(p, PROCESS__GETSCHED);
3542 }
3543 
3544 static int selinux_task_movememory(struct task_struct *p)
3545 {
3546 	return current_has_perm(p, PROCESS__SETSCHED);
3547 }
3548 
3549 static int selinux_task_kill(struct task_struct *p, struct siginfo *info,
3550 				int sig, u32 secid)
3551 {
3552 	u32 perm;
3553 	int rc;
3554 
3555 	if (!sig)
3556 		perm = PROCESS__SIGNULL; /* null signal; existence test */
3557 	else
3558 		perm = signal_to_av(sig);
3559 	if (secid)
3560 		rc = avc_has_perm(secid, task_sid(p),
3561 				  SECCLASS_PROCESS, perm, NULL);
3562 	else
3563 		rc = current_has_perm(p, perm);
3564 	return rc;
3565 }
3566 
3567 static int selinux_task_wait(struct task_struct *p)
3568 {
3569 	return task_has_perm(p, current, PROCESS__SIGCHLD);
3570 }
3571 
3572 static void selinux_task_to_inode(struct task_struct *p,
3573 				  struct inode *inode)
3574 {
3575 	struct inode_security_struct *isec = inode->i_security;
3576 	u32 sid = task_sid(p);
3577 
3578 	isec->sid = sid;
3579 	isec->initialized = 1;
3580 }
3581 
3582 /* Returns error only if unable to parse addresses */
3583 static int selinux_parse_skb_ipv4(struct sk_buff *skb,
3584 			struct common_audit_data *ad, u8 *proto)
3585 {
3586 	int offset, ihlen, ret = -EINVAL;
3587 	struct iphdr _iph, *ih;
3588 
3589 	offset = skb_network_offset(skb);
3590 	ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
3591 	if (ih == NULL)
3592 		goto out;
3593 
3594 	ihlen = ih->ihl * 4;
3595 	if (ihlen < sizeof(_iph))
3596 		goto out;
3597 
3598 	ad->u.net->v4info.saddr = ih->saddr;
3599 	ad->u.net->v4info.daddr = ih->daddr;
3600 	ret = 0;
3601 
3602 	if (proto)
3603 		*proto = ih->protocol;
3604 
3605 	switch (ih->protocol) {
3606 	case IPPROTO_TCP: {
3607 		struct tcphdr _tcph, *th;
3608 
3609 		if (ntohs(ih->frag_off) & IP_OFFSET)
3610 			break;
3611 
3612 		offset += ihlen;
3613 		th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3614 		if (th == NULL)
3615 			break;
3616 
3617 		ad->u.net->sport = th->source;
3618 		ad->u.net->dport = th->dest;
3619 		break;
3620 	}
3621 
3622 	case IPPROTO_UDP: {
3623 		struct udphdr _udph, *uh;
3624 
3625 		if (ntohs(ih->frag_off) & IP_OFFSET)
3626 			break;
3627 
3628 		offset += ihlen;
3629 		uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3630 		if (uh == NULL)
3631 			break;
3632 
3633 		ad->u.net->sport = uh->source;
3634 		ad->u.net->dport = uh->dest;
3635 		break;
3636 	}
3637 
3638 	case IPPROTO_DCCP: {
3639 		struct dccp_hdr _dccph, *dh;
3640 
3641 		if (ntohs(ih->frag_off) & IP_OFFSET)
3642 			break;
3643 
3644 		offset += ihlen;
3645 		dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3646 		if (dh == NULL)
3647 			break;
3648 
3649 		ad->u.net->sport = dh->dccph_sport;
3650 		ad->u.net->dport = dh->dccph_dport;
3651 		break;
3652 	}
3653 
3654 	default:
3655 		break;
3656 	}
3657 out:
3658 	return ret;
3659 }
3660 
3661 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3662 
3663 /* Returns error only if unable to parse addresses */
3664 static int selinux_parse_skb_ipv6(struct sk_buff *skb,
3665 			struct common_audit_data *ad, u8 *proto)
3666 {
3667 	u8 nexthdr;
3668 	int ret = -EINVAL, offset;
3669 	struct ipv6hdr _ipv6h, *ip6;
3670 	__be16 frag_off;
3671 
3672 	offset = skb_network_offset(skb);
3673 	ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
3674 	if (ip6 == NULL)
3675 		goto out;
3676 
3677 	ad->u.net->v6info.saddr = ip6->saddr;
3678 	ad->u.net->v6info.daddr = ip6->daddr;
3679 	ret = 0;
3680 
3681 	nexthdr = ip6->nexthdr;
3682 	offset += sizeof(_ipv6h);
3683 	offset = ipv6_skip_exthdr(skb, offset, &nexthdr, &frag_off);
3684 	if (offset < 0)
3685 		goto out;
3686 
3687 	if (proto)
3688 		*proto = nexthdr;
3689 
3690 	switch (nexthdr) {
3691 	case IPPROTO_TCP: {
3692 		struct tcphdr _tcph, *th;
3693 
3694 		th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3695 		if (th == NULL)
3696 			break;
3697 
3698 		ad->u.net->sport = th->source;
3699 		ad->u.net->dport = th->dest;
3700 		break;
3701 	}
3702 
3703 	case IPPROTO_UDP: {
3704 		struct udphdr _udph, *uh;
3705 
3706 		uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3707 		if (uh == NULL)
3708 			break;
3709 
3710 		ad->u.net->sport = uh->source;
3711 		ad->u.net->dport = uh->dest;
3712 		break;
3713 	}
3714 
3715 	case IPPROTO_DCCP: {
3716 		struct dccp_hdr _dccph, *dh;
3717 
3718 		dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3719 		if (dh == NULL)
3720 			break;
3721 
3722 		ad->u.net->sport = dh->dccph_sport;
3723 		ad->u.net->dport = dh->dccph_dport;
3724 		break;
3725 	}
3726 
3727 	/* includes fragments */
3728 	default:
3729 		break;
3730 	}
3731 out:
3732 	return ret;
3733 }
3734 
3735 #endif /* IPV6 */
3736 
3737 static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad,
3738 			     char **_addrp, int src, u8 *proto)
3739 {
3740 	char *addrp;
3741 	int ret;
3742 
3743 	switch (ad->u.net->family) {
3744 	case PF_INET:
3745 		ret = selinux_parse_skb_ipv4(skb, ad, proto);
3746 		if (ret)
3747 			goto parse_error;
3748 		addrp = (char *)(src ? &ad->u.net->v4info.saddr :
3749 				       &ad->u.net->v4info.daddr);
3750 		goto okay;
3751 
3752 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3753 	case PF_INET6:
3754 		ret = selinux_parse_skb_ipv6(skb, ad, proto);
3755 		if (ret)
3756 			goto parse_error;
3757 		addrp = (char *)(src ? &ad->u.net->v6info.saddr :
3758 				       &ad->u.net->v6info.daddr);
3759 		goto okay;
3760 #endif	/* IPV6 */
3761 	default:
3762 		addrp = NULL;
3763 		goto okay;
3764 	}
3765 
3766 parse_error:
3767 	printk(KERN_WARNING
3768 	       "SELinux: failure in selinux_parse_skb(),"
3769 	       " unable to parse packet\n");
3770 	return ret;
3771 
3772 okay:
3773 	if (_addrp)
3774 		*_addrp = addrp;
3775 	return 0;
3776 }
3777 
3778 /**
3779  * selinux_skb_peerlbl_sid - Determine the peer label of a packet
3780  * @skb: the packet
3781  * @family: protocol family
3782  * @sid: the packet's peer label SID
3783  *
3784  * Description:
3785  * Check the various different forms of network peer labeling and determine
3786  * the peer label/SID for the packet; most of the magic actually occurs in
3787  * the security server function security_net_peersid_cmp().  The function
3788  * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
3789  * or -EACCES if @sid is invalid due to inconsistencies with the different
3790  * peer labels.
3791  *
3792  */
3793 static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
3794 {
3795 	int err;
3796 	u32 xfrm_sid;
3797 	u32 nlbl_sid;
3798 	u32 nlbl_type;
3799 
3800 	selinux_skb_xfrm_sid(skb, &xfrm_sid);
3801 	selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
3802 
3803 	err = security_net_peersid_resolve(nlbl_sid, nlbl_type, xfrm_sid, sid);
3804 	if (unlikely(err)) {
3805 		printk(KERN_WARNING
3806 		       "SELinux: failure in selinux_skb_peerlbl_sid(),"
3807 		       " unable to determine packet's peer label\n");
3808 		return -EACCES;
3809 	}
3810 
3811 	return 0;
3812 }
3813 
3814 /* socket security operations */
3815 
3816 static int socket_sockcreate_sid(const struct task_security_struct *tsec,
3817 				 u16 secclass, u32 *socksid)
3818 {
3819 	if (tsec->sockcreate_sid > SECSID_NULL) {
3820 		*socksid = tsec->sockcreate_sid;
3821 		return 0;
3822 	}
3823 
3824 	return security_transition_sid(tsec->sid, tsec->sid, secclass, NULL,
3825 				       socksid);
3826 }
3827 
3828 static int sock_has_perm(struct task_struct *task, struct sock *sk, u32 perms)
3829 {
3830 	struct sk_security_struct *sksec = sk->sk_security;
3831 	struct common_audit_data ad;
3832 	struct lsm_network_audit net = {0,};
3833 	u32 tsid = task_sid(task);
3834 
3835 	if (sksec->sid == SECINITSID_KERNEL)
3836 		return 0;
3837 
3838 	ad.type = LSM_AUDIT_DATA_NET;
3839 	ad.u.net = &net;
3840 	ad.u.net->sk = sk;
3841 
3842 	return avc_has_perm(tsid, sksec->sid, sksec->sclass, perms, &ad);
3843 }
3844 
3845 static int selinux_socket_create(int family, int type,
3846 				 int protocol, int kern)
3847 {
3848 	const struct task_security_struct *tsec = current_security();
3849 	u32 newsid;
3850 	u16 secclass;
3851 	int rc;
3852 
3853 	if (kern)
3854 		return 0;
3855 
3856 	secclass = socket_type_to_security_class(family, type, protocol);
3857 	rc = socket_sockcreate_sid(tsec, secclass, &newsid);
3858 	if (rc)
3859 		return rc;
3860 
3861 	return avc_has_perm(tsec->sid, newsid, secclass, SOCKET__CREATE, NULL);
3862 }
3863 
3864 static int selinux_socket_post_create(struct socket *sock, int family,
3865 				      int type, int protocol, int kern)
3866 {
3867 	const struct task_security_struct *tsec = current_security();
3868 	struct inode_security_struct *isec = SOCK_INODE(sock)->i_security;
3869 	struct sk_security_struct *sksec;
3870 	int err = 0;
3871 
3872 	isec->sclass = socket_type_to_security_class(family, type, protocol);
3873 
3874 	if (kern)
3875 		isec->sid = SECINITSID_KERNEL;
3876 	else {
3877 		err = socket_sockcreate_sid(tsec, isec->sclass, &(isec->sid));
3878 		if (err)
3879 			return err;
3880 	}
3881 
3882 	isec->initialized = 1;
3883 
3884 	if (sock->sk) {
3885 		sksec = sock->sk->sk_security;
3886 		sksec->sid = isec->sid;
3887 		sksec->sclass = isec->sclass;
3888 		err = selinux_netlbl_socket_post_create(sock->sk, family);
3889 	}
3890 
3891 	return err;
3892 }
3893 
3894 /* Range of port numbers used to automatically bind.
3895    Need to determine whether we should perform a name_bind
3896    permission check between the socket and the port number. */
3897 
3898 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
3899 {
3900 	struct sock *sk = sock->sk;
3901 	u16 family;
3902 	int err;
3903 
3904 	err = sock_has_perm(current, sk, SOCKET__BIND);
3905 	if (err)
3906 		goto out;
3907 
3908 	/*
3909 	 * If PF_INET or PF_INET6, check name_bind permission for the port.
3910 	 * Multiple address binding for SCTP is not supported yet: we just
3911 	 * check the first address now.
3912 	 */
3913 	family = sk->sk_family;
3914 	if (family == PF_INET || family == PF_INET6) {
3915 		char *addrp;
3916 		struct sk_security_struct *sksec = sk->sk_security;
3917 		struct common_audit_data ad;
3918 		struct lsm_network_audit net = {0,};
3919 		struct sockaddr_in *addr4 = NULL;
3920 		struct sockaddr_in6 *addr6 = NULL;
3921 		unsigned short snum;
3922 		u32 sid, node_perm;
3923 
3924 		if (family == PF_INET) {
3925 			addr4 = (struct sockaddr_in *)address;
3926 			snum = ntohs(addr4->sin_port);
3927 			addrp = (char *)&addr4->sin_addr.s_addr;
3928 		} else {
3929 			addr6 = (struct sockaddr_in6 *)address;
3930 			snum = ntohs(addr6->sin6_port);
3931 			addrp = (char *)&addr6->sin6_addr.s6_addr;
3932 		}
3933 
3934 		if (snum) {
3935 			int low, high;
3936 
3937 			inet_get_local_port_range(&low, &high);
3938 
3939 			if (snum < max(PROT_SOCK, low) || snum > high) {
3940 				err = sel_netport_sid(sk->sk_protocol,
3941 						      snum, &sid);
3942 				if (err)
3943 					goto out;
3944 				ad.type = LSM_AUDIT_DATA_NET;
3945 				ad.u.net = &net;
3946 				ad.u.net->sport = htons(snum);
3947 				ad.u.net->family = family;
3948 				err = avc_has_perm(sksec->sid, sid,
3949 						   sksec->sclass,
3950 						   SOCKET__NAME_BIND, &ad);
3951 				if (err)
3952 					goto out;
3953 			}
3954 		}
3955 
3956 		switch (sksec->sclass) {
3957 		case SECCLASS_TCP_SOCKET:
3958 			node_perm = TCP_SOCKET__NODE_BIND;
3959 			break;
3960 
3961 		case SECCLASS_UDP_SOCKET:
3962 			node_perm = UDP_SOCKET__NODE_BIND;
3963 			break;
3964 
3965 		case SECCLASS_DCCP_SOCKET:
3966 			node_perm = DCCP_SOCKET__NODE_BIND;
3967 			break;
3968 
3969 		default:
3970 			node_perm = RAWIP_SOCKET__NODE_BIND;
3971 			break;
3972 		}
3973 
3974 		err = sel_netnode_sid(addrp, family, &sid);
3975 		if (err)
3976 			goto out;
3977 
3978 		ad.type = LSM_AUDIT_DATA_NET;
3979 		ad.u.net = &net;
3980 		ad.u.net->sport = htons(snum);
3981 		ad.u.net->family = family;
3982 
3983 		if (family == PF_INET)
3984 			ad.u.net->v4info.saddr = addr4->sin_addr.s_addr;
3985 		else
3986 			ad.u.net->v6info.saddr = addr6->sin6_addr;
3987 
3988 		err = avc_has_perm(sksec->sid, sid,
3989 				   sksec->sclass, node_perm, &ad);
3990 		if (err)
3991 			goto out;
3992 	}
3993 out:
3994 	return err;
3995 }
3996 
3997 static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
3998 {
3999 	struct sock *sk = sock->sk;
4000 	struct sk_security_struct *sksec = sk->sk_security;
4001 	int err;
4002 
4003 	err = sock_has_perm(current, sk, SOCKET__CONNECT);
4004 	if (err)
4005 		return err;
4006 
4007 	/*
4008 	 * If a TCP or DCCP socket, check name_connect permission for the port.
4009 	 */
4010 	if (sksec->sclass == SECCLASS_TCP_SOCKET ||
4011 	    sksec->sclass == SECCLASS_DCCP_SOCKET) {
4012 		struct common_audit_data ad;
4013 		struct lsm_network_audit net = {0,};
4014 		struct sockaddr_in *addr4 = NULL;
4015 		struct sockaddr_in6 *addr6 = NULL;
4016 		unsigned short snum;
4017 		u32 sid, perm;
4018 
4019 		if (sk->sk_family == PF_INET) {
4020 			addr4 = (struct sockaddr_in *)address;
4021 			if (addrlen < sizeof(struct sockaddr_in))
4022 				return -EINVAL;
4023 			snum = ntohs(addr4->sin_port);
4024 		} else {
4025 			addr6 = (struct sockaddr_in6 *)address;
4026 			if (addrlen < SIN6_LEN_RFC2133)
4027 				return -EINVAL;
4028 			snum = ntohs(addr6->sin6_port);
4029 		}
4030 
4031 		err = sel_netport_sid(sk->sk_protocol, snum, &sid);
4032 		if (err)
4033 			goto out;
4034 
4035 		perm = (sksec->sclass == SECCLASS_TCP_SOCKET) ?
4036 		       TCP_SOCKET__NAME_CONNECT : DCCP_SOCKET__NAME_CONNECT;
4037 
4038 		ad.type = LSM_AUDIT_DATA_NET;
4039 		ad.u.net = &net;
4040 		ad.u.net->dport = htons(snum);
4041 		ad.u.net->family = sk->sk_family;
4042 		err = avc_has_perm(sksec->sid, sid, sksec->sclass, perm, &ad);
4043 		if (err)
4044 			goto out;
4045 	}
4046 
4047 	err = selinux_netlbl_socket_connect(sk, address);
4048 
4049 out:
4050 	return err;
4051 }
4052 
4053 static int selinux_socket_listen(struct socket *sock, int backlog)
4054 {
4055 	return sock_has_perm(current, sock->sk, SOCKET__LISTEN);
4056 }
4057 
4058 static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
4059 {
4060 	int err;
4061 	struct inode_security_struct *isec;
4062 	struct inode_security_struct *newisec;
4063 
4064 	err = sock_has_perm(current, sock->sk, SOCKET__ACCEPT);
4065 	if (err)
4066 		return err;
4067 
4068 	newisec = SOCK_INODE(newsock)->i_security;
4069 
4070 	isec = SOCK_INODE(sock)->i_security;
4071 	newisec->sclass = isec->sclass;
4072 	newisec->sid = isec->sid;
4073 	newisec->initialized = 1;
4074 
4075 	return 0;
4076 }
4077 
4078 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
4079 				  int size)
4080 {
4081 	return sock_has_perm(current, sock->sk, SOCKET__WRITE);
4082 }
4083 
4084 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
4085 				  int size, int flags)
4086 {
4087 	return sock_has_perm(current, sock->sk, SOCKET__READ);
4088 }
4089 
4090 static int selinux_socket_getsockname(struct socket *sock)
4091 {
4092 	return sock_has_perm(current, sock->sk, SOCKET__GETATTR);
4093 }
4094 
4095 static int selinux_socket_getpeername(struct socket *sock)
4096 {
4097 	return sock_has_perm(current, sock->sk, SOCKET__GETATTR);
4098 }
4099 
4100 static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
4101 {
4102 	int err;
4103 
4104 	err = sock_has_perm(current, sock->sk, SOCKET__SETOPT);
4105 	if (err)
4106 		return err;
4107 
4108 	return selinux_netlbl_socket_setsockopt(sock, level, optname);
4109 }
4110 
4111 static int selinux_socket_getsockopt(struct socket *sock, int level,
4112 				     int optname)
4113 {
4114 	return sock_has_perm(current, sock->sk, SOCKET__GETOPT);
4115 }
4116 
4117 static int selinux_socket_shutdown(struct socket *sock, int how)
4118 {
4119 	return sock_has_perm(current, sock->sk, SOCKET__SHUTDOWN);
4120 }
4121 
4122 static int selinux_socket_unix_stream_connect(struct sock *sock,
4123 					      struct sock *other,
4124 					      struct sock *newsk)
4125 {
4126 	struct sk_security_struct *sksec_sock = sock->sk_security;
4127 	struct sk_security_struct *sksec_other = other->sk_security;
4128 	struct sk_security_struct *sksec_new = newsk->sk_security;
4129 	struct common_audit_data ad;
4130 	struct lsm_network_audit net = {0,};
4131 	int err;
4132 
4133 	ad.type = LSM_AUDIT_DATA_NET;
4134 	ad.u.net = &net;
4135 	ad.u.net->sk = other;
4136 
4137 	err = avc_has_perm(sksec_sock->sid, sksec_other->sid,
4138 			   sksec_other->sclass,
4139 			   UNIX_STREAM_SOCKET__CONNECTTO, &ad);
4140 	if (err)
4141 		return err;
4142 
4143 	/* server child socket */
4144 	sksec_new->peer_sid = sksec_sock->sid;
4145 	err = security_sid_mls_copy(sksec_other->sid, sksec_sock->sid,
4146 				    &sksec_new->sid);
4147 	if (err)
4148 		return err;
4149 
4150 	/* connecting socket */
4151 	sksec_sock->peer_sid = sksec_new->sid;
4152 
4153 	return 0;
4154 }
4155 
4156 static int selinux_socket_unix_may_send(struct socket *sock,
4157 					struct socket *other)
4158 {
4159 	struct sk_security_struct *ssec = sock->sk->sk_security;
4160 	struct sk_security_struct *osec = other->sk->sk_security;
4161 	struct common_audit_data ad;
4162 	struct lsm_network_audit net = {0,};
4163 
4164 	ad.type = LSM_AUDIT_DATA_NET;
4165 	ad.u.net = &net;
4166 	ad.u.net->sk = other->sk;
4167 
4168 	return avc_has_perm(ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO,
4169 			    &ad);
4170 }
4171 
4172 static int selinux_inet_sys_rcv_skb(int ifindex, char *addrp, u16 family,
4173 				    u32 peer_sid,
4174 				    struct common_audit_data *ad)
4175 {
4176 	int err;
4177 	u32 if_sid;
4178 	u32 node_sid;
4179 
4180 	err = sel_netif_sid(ifindex, &if_sid);
4181 	if (err)
4182 		return err;
4183 	err = avc_has_perm(peer_sid, if_sid,
4184 			   SECCLASS_NETIF, NETIF__INGRESS, ad);
4185 	if (err)
4186 		return err;
4187 
4188 	err = sel_netnode_sid(addrp, family, &node_sid);
4189 	if (err)
4190 		return err;
4191 	return avc_has_perm(peer_sid, node_sid,
4192 			    SECCLASS_NODE, NODE__RECVFROM, ad);
4193 }
4194 
4195 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
4196 				       u16 family)
4197 {
4198 	int err = 0;
4199 	struct sk_security_struct *sksec = sk->sk_security;
4200 	u32 sk_sid = sksec->sid;
4201 	struct common_audit_data ad;
4202 	struct lsm_network_audit net = {0,};
4203 	char *addrp;
4204 
4205 	ad.type = LSM_AUDIT_DATA_NET;
4206 	ad.u.net = &net;
4207 	ad.u.net->netif = skb->skb_iif;
4208 	ad.u.net->family = family;
4209 	err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4210 	if (err)
4211 		return err;
4212 
4213 	if (selinux_secmark_enabled()) {
4214 		err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4215 				   PACKET__RECV, &ad);
4216 		if (err)
4217 			return err;
4218 	}
4219 
4220 	err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
4221 	if (err)
4222 		return err;
4223 	err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
4224 
4225 	return err;
4226 }
4227 
4228 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4229 {
4230 	int err;
4231 	struct sk_security_struct *sksec = sk->sk_security;
4232 	u16 family = sk->sk_family;
4233 	u32 sk_sid = sksec->sid;
4234 	struct common_audit_data ad;
4235 	struct lsm_network_audit net = {0,};
4236 	char *addrp;
4237 	u8 secmark_active;
4238 	u8 peerlbl_active;
4239 
4240 	if (family != PF_INET && family != PF_INET6)
4241 		return 0;
4242 
4243 	/* Handle mapped IPv4 packets arriving via IPv6 sockets */
4244 	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4245 		family = PF_INET;
4246 
4247 	/* If any sort of compatibility mode is enabled then handoff processing
4248 	 * to the selinux_sock_rcv_skb_compat() function to deal with the
4249 	 * special handling.  We do this in an attempt to keep this function
4250 	 * as fast and as clean as possible. */
4251 	if (!selinux_policycap_netpeer)
4252 		return selinux_sock_rcv_skb_compat(sk, skb, family);
4253 
4254 	secmark_active = selinux_secmark_enabled();
4255 	peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled();
4256 	if (!secmark_active && !peerlbl_active)
4257 		return 0;
4258 
4259 	ad.type = LSM_AUDIT_DATA_NET;
4260 	ad.u.net = &net;
4261 	ad.u.net->netif = skb->skb_iif;
4262 	ad.u.net->family = family;
4263 	err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4264 	if (err)
4265 		return err;
4266 
4267 	if (peerlbl_active) {
4268 		u32 peer_sid;
4269 
4270 		err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
4271 		if (err)
4272 			return err;
4273 		err = selinux_inet_sys_rcv_skb(skb->skb_iif, addrp, family,
4274 					       peer_sid, &ad);
4275 		if (err) {
4276 			selinux_netlbl_err(skb, err, 0);
4277 			return err;
4278 		}
4279 		err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER,
4280 				   PEER__RECV, &ad);
4281 		if (err)
4282 			selinux_netlbl_err(skb, err, 0);
4283 	}
4284 
4285 	if (secmark_active) {
4286 		err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4287 				   PACKET__RECV, &ad);
4288 		if (err)
4289 			return err;
4290 	}
4291 
4292 	return err;
4293 }
4294 
4295 static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
4296 					    int __user *optlen, unsigned len)
4297 {
4298 	int err = 0;
4299 	char *scontext;
4300 	u32 scontext_len;
4301 	struct sk_security_struct *sksec = sock->sk->sk_security;
4302 	u32 peer_sid = SECSID_NULL;
4303 
4304 	if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
4305 	    sksec->sclass == SECCLASS_TCP_SOCKET)
4306 		peer_sid = sksec->peer_sid;
4307 	if (peer_sid == SECSID_NULL)
4308 		return -ENOPROTOOPT;
4309 
4310 	err = security_sid_to_context(peer_sid, &scontext, &scontext_len);
4311 	if (err)
4312 		return err;
4313 
4314 	if (scontext_len > len) {
4315 		err = -ERANGE;
4316 		goto out_len;
4317 	}
4318 
4319 	if (copy_to_user(optval, scontext, scontext_len))
4320 		err = -EFAULT;
4321 
4322 out_len:
4323 	if (put_user(scontext_len, optlen))
4324 		err = -EFAULT;
4325 	kfree(scontext);
4326 	return err;
4327 }
4328 
4329 static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
4330 {
4331 	u32 peer_secid = SECSID_NULL;
4332 	u16 family;
4333 
4334 	if (skb && skb->protocol == htons(ETH_P_IP))
4335 		family = PF_INET;
4336 	else if (skb && skb->protocol == htons(ETH_P_IPV6))
4337 		family = PF_INET6;
4338 	else if (sock)
4339 		family = sock->sk->sk_family;
4340 	else
4341 		goto out;
4342 
4343 	if (sock && family == PF_UNIX)
4344 		selinux_inode_getsecid(SOCK_INODE(sock), &peer_secid);
4345 	else if (skb)
4346 		selinux_skb_peerlbl_sid(skb, family, &peer_secid);
4347 
4348 out:
4349 	*secid = peer_secid;
4350 	if (peer_secid == SECSID_NULL)
4351 		return -EINVAL;
4352 	return 0;
4353 }
4354 
4355 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
4356 {
4357 	struct sk_security_struct *sksec;
4358 
4359 	sksec = kzalloc(sizeof(*sksec), priority);
4360 	if (!sksec)
4361 		return -ENOMEM;
4362 
4363 	sksec->peer_sid = SECINITSID_UNLABELED;
4364 	sksec->sid = SECINITSID_UNLABELED;
4365 	selinux_netlbl_sk_security_reset(sksec);
4366 	sk->sk_security = sksec;
4367 
4368 	return 0;
4369 }
4370 
4371 static void selinux_sk_free_security(struct sock *sk)
4372 {
4373 	struct sk_security_struct *sksec = sk->sk_security;
4374 
4375 	sk->sk_security = NULL;
4376 	selinux_netlbl_sk_security_free(sksec);
4377 	kfree(sksec);
4378 }
4379 
4380 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
4381 {
4382 	struct sk_security_struct *sksec = sk->sk_security;
4383 	struct sk_security_struct *newsksec = newsk->sk_security;
4384 
4385 	newsksec->sid = sksec->sid;
4386 	newsksec->peer_sid = sksec->peer_sid;
4387 	newsksec->sclass = sksec->sclass;
4388 
4389 	selinux_netlbl_sk_security_reset(newsksec);
4390 }
4391 
4392 static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
4393 {
4394 	if (!sk)
4395 		*secid = SECINITSID_ANY_SOCKET;
4396 	else {
4397 		struct sk_security_struct *sksec = sk->sk_security;
4398 
4399 		*secid = sksec->sid;
4400 	}
4401 }
4402 
4403 static void selinux_sock_graft(struct sock *sk, struct socket *parent)
4404 {
4405 	struct inode_security_struct *isec = SOCK_INODE(parent)->i_security;
4406 	struct sk_security_struct *sksec = sk->sk_security;
4407 
4408 	if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
4409 	    sk->sk_family == PF_UNIX)
4410 		isec->sid = sksec->sid;
4411 	sksec->sclass = isec->sclass;
4412 }
4413 
4414 static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
4415 				     struct request_sock *req)
4416 {
4417 	struct sk_security_struct *sksec = sk->sk_security;
4418 	int err;
4419 	u16 family = sk->sk_family;
4420 	u32 newsid;
4421 	u32 peersid;
4422 
4423 	/* handle mapped IPv4 packets arriving via IPv6 sockets */
4424 	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4425 		family = PF_INET;
4426 
4427 	err = selinux_skb_peerlbl_sid(skb, family, &peersid);
4428 	if (err)
4429 		return err;
4430 	if (peersid == SECSID_NULL) {
4431 		req->secid = sksec->sid;
4432 		req->peer_secid = SECSID_NULL;
4433 	} else {
4434 		err = security_sid_mls_copy(sksec->sid, peersid, &newsid);
4435 		if (err)
4436 			return err;
4437 		req->secid = newsid;
4438 		req->peer_secid = peersid;
4439 	}
4440 
4441 	return selinux_netlbl_inet_conn_request(req, family);
4442 }
4443 
4444 static void selinux_inet_csk_clone(struct sock *newsk,
4445 				   const struct request_sock *req)
4446 {
4447 	struct sk_security_struct *newsksec = newsk->sk_security;
4448 
4449 	newsksec->sid = req->secid;
4450 	newsksec->peer_sid = req->peer_secid;
4451 	/* NOTE: Ideally, we should also get the isec->sid for the
4452 	   new socket in sync, but we don't have the isec available yet.
4453 	   So we will wait until sock_graft to do it, by which
4454 	   time it will have been created and available. */
4455 
4456 	/* We don't need to take any sort of lock here as we are the only
4457 	 * thread with access to newsksec */
4458 	selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family);
4459 }
4460 
4461 static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
4462 {
4463 	u16 family = sk->sk_family;
4464 	struct sk_security_struct *sksec = sk->sk_security;
4465 
4466 	/* handle mapped IPv4 packets arriving via IPv6 sockets */
4467 	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4468 		family = PF_INET;
4469 
4470 	selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
4471 }
4472 
4473 static void selinux_skb_owned_by(struct sk_buff *skb, struct sock *sk)
4474 {
4475 	skb_set_owner_w(skb, sk);
4476 }
4477 
4478 static int selinux_secmark_relabel_packet(u32 sid)
4479 {
4480 	const struct task_security_struct *__tsec;
4481 	u32 tsid;
4482 
4483 	__tsec = current_security();
4484 	tsid = __tsec->sid;
4485 
4486 	return avc_has_perm(tsid, sid, SECCLASS_PACKET, PACKET__RELABELTO, NULL);
4487 }
4488 
4489 static void selinux_secmark_refcount_inc(void)
4490 {
4491 	atomic_inc(&selinux_secmark_refcount);
4492 }
4493 
4494 static void selinux_secmark_refcount_dec(void)
4495 {
4496 	atomic_dec(&selinux_secmark_refcount);
4497 }
4498 
4499 static void selinux_req_classify_flow(const struct request_sock *req,
4500 				      struct flowi *fl)
4501 {
4502 	fl->flowi_secid = req->secid;
4503 }
4504 
4505 static int selinux_tun_dev_alloc_security(void **security)
4506 {
4507 	struct tun_security_struct *tunsec;
4508 
4509 	tunsec = kzalloc(sizeof(*tunsec), GFP_KERNEL);
4510 	if (!tunsec)
4511 		return -ENOMEM;
4512 	tunsec->sid = current_sid();
4513 
4514 	*security = tunsec;
4515 	return 0;
4516 }
4517 
4518 static void selinux_tun_dev_free_security(void *security)
4519 {
4520 	kfree(security);
4521 }
4522 
4523 static int selinux_tun_dev_create(void)
4524 {
4525 	u32 sid = current_sid();
4526 
4527 	/* we aren't taking into account the "sockcreate" SID since the socket
4528 	 * that is being created here is not a socket in the traditional sense,
4529 	 * instead it is a private sock, accessible only to the kernel, and
4530 	 * representing a wide range of network traffic spanning multiple
4531 	 * connections unlike traditional sockets - check the TUN driver to
4532 	 * get a better understanding of why this socket is special */
4533 
4534 	return avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE,
4535 			    NULL);
4536 }
4537 
4538 static int selinux_tun_dev_attach_queue(void *security)
4539 {
4540 	struct tun_security_struct *tunsec = security;
4541 
4542 	return avc_has_perm(current_sid(), tunsec->sid, SECCLASS_TUN_SOCKET,
4543 			    TUN_SOCKET__ATTACH_QUEUE, NULL);
4544 }
4545 
4546 static int selinux_tun_dev_attach(struct sock *sk, void *security)
4547 {
4548 	struct tun_security_struct *tunsec = security;
4549 	struct sk_security_struct *sksec = sk->sk_security;
4550 
4551 	/* we don't currently perform any NetLabel based labeling here and it
4552 	 * isn't clear that we would want to do so anyway; while we could apply
4553 	 * labeling without the support of the TUN user the resulting labeled
4554 	 * traffic from the other end of the connection would almost certainly
4555 	 * cause confusion to the TUN user that had no idea network labeling
4556 	 * protocols were being used */
4557 
4558 	sksec->sid = tunsec->sid;
4559 	sksec->sclass = SECCLASS_TUN_SOCKET;
4560 
4561 	return 0;
4562 }
4563 
4564 static int selinux_tun_dev_open(void *security)
4565 {
4566 	struct tun_security_struct *tunsec = security;
4567 	u32 sid = current_sid();
4568 	int err;
4569 
4570 	err = avc_has_perm(sid, tunsec->sid, SECCLASS_TUN_SOCKET,
4571 			   TUN_SOCKET__RELABELFROM, NULL);
4572 	if (err)
4573 		return err;
4574 	err = avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET,
4575 			   TUN_SOCKET__RELABELTO, NULL);
4576 	if (err)
4577 		return err;
4578 	tunsec->sid = sid;
4579 
4580 	return 0;
4581 }
4582 
4583 static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
4584 {
4585 	int err = 0;
4586 	u32 perm;
4587 	struct nlmsghdr *nlh;
4588 	struct sk_security_struct *sksec = sk->sk_security;
4589 
4590 	if (skb->len < NLMSG_HDRLEN) {
4591 		err = -EINVAL;
4592 		goto out;
4593 	}
4594 	nlh = nlmsg_hdr(skb);
4595 
4596 	err = selinux_nlmsg_lookup(sksec->sclass, nlh->nlmsg_type, &perm);
4597 	if (err) {
4598 		if (err == -EINVAL) {
4599 			audit_log(current->audit_context, GFP_KERNEL, AUDIT_SELINUX_ERR,
4600 				  "SELinux:  unrecognized netlink message"
4601 				  " type=%hu for sclass=%hu\n",
4602 				  nlh->nlmsg_type, sksec->sclass);
4603 			if (!selinux_enforcing || security_get_allow_unknown())
4604 				err = 0;
4605 		}
4606 
4607 		/* Ignore */
4608 		if (err == -ENOENT)
4609 			err = 0;
4610 		goto out;
4611 	}
4612 
4613 	err = sock_has_perm(current, sk, perm);
4614 out:
4615 	return err;
4616 }
4617 
4618 #ifdef CONFIG_NETFILTER
4619 
4620 static unsigned int selinux_ip_forward(struct sk_buff *skb, int ifindex,
4621 				       u16 family)
4622 {
4623 	int err;
4624 	char *addrp;
4625 	u32 peer_sid;
4626 	struct common_audit_data ad;
4627 	struct lsm_network_audit net = {0,};
4628 	u8 secmark_active;
4629 	u8 netlbl_active;
4630 	u8 peerlbl_active;
4631 
4632 	if (!selinux_policycap_netpeer)
4633 		return NF_ACCEPT;
4634 
4635 	secmark_active = selinux_secmark_enabled();
4636 	netlbl_active = netlbl_enabled();
4637 	peerlbl_active = netlbl_active || selinux_xfrm_enabled();
4638 	if (!secmark_active && !peerlbl_active)
4639 		return NF_ACCEPT;
4640 
4641 	if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
4642 		return NF_DROP;
4643 
4644 	ad.type = LSM_AUDIT_DATA_NET;
4645 	ad.u.net = &net;
4646 	ad.u.net->netif = ifindex;
4647 	ad.u.net->family = family;
4648 	if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
4649 		return NF_DROP;
4650 
4651 	if (peerlbl_active) {
4652 		err = selinux_inet_sys_rcv_skb(ifindex, addrp, family,
4653 					       peer_sid, &ad);
4654 		if (err) {
4655 			selinux_netlbl_err(skb, err, 1);
4656 			return NF_DROP;
4657 		}
4658 	}
4659 
4660 	if (secmark_active)
4661 		if (avc_has_perm(peer_sid, skb->secmark,
4662 				 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
4663 			return NF_DROP;
4664 
4665 	if (netlbl_active)
4666 		/* we do this in the FORWARD path and not the POST_ROUTING
4667 		 * path because we want to make sure we apply the necessary
4668 		 * labeling before IPsec is applied so we can leverage AH
4669 		 * protection */
4670 		if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
4671 			return NF_DROP;
4672 
4673 	return NF_ACCEPT;
4674 }
4675 
4676 static unsigned int selinux_ipv4_forward(unsigned int hooknum,
4677 					 struct sk_buff *skb,
4678 					 const struct net_device *in,
4679 					 const struct net_device *out,
4680 					 int (*okfn)(struct sk_buff *))
4681 {
4682 	return selinux_ip_forward(skb, in->ifindex, PF_INET);
4683 }
4684 
4685 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4686 static unsigned int selinux_ipv6_forward(unsigned int hooknum,
4687 					 struct sk_buff *skb,
4688 					 const struct net_device *in,
4689 					 const struct net_device *out,
4690 					 int (*okfn)(struct sk_buff *))
4691 {
4692 	return selinux_ip_forward(skb, in->ifindex, PF_INET6);
4693 }
4694 #endif	/* IPV6 */
4695 
4696 static unsigned int selinux_ip_output(struct sk_buff *skb,
4697 				      u16 family)
4698 {
4699 	u32 sid;
4700 
4701 	if (!netlbl_enabled())
4702 		return NF_ACCEPT;
4703 
4704 	/* we do this in the LOCAL_OUT path and not the POST_ROUTING path
4705 	 * because we want to make sure we apply the necessary labeling
4706 	 * before IPsec is applied so we can leverage AH protection */
4707 	if (skb->sk) {
4708 		struct sk_security_struct *sksec = skb->sk->sk_security;
4709 		sid = sksec->sid;
4710 	} else
4711 		sid = SECINITSID_KERNEL;
4712 	if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0)
4713 		return NF_DROP;
4714 
4715 	return NF_ACCEPT;
4716 }
4717 
4718 static unsigned int selinux_ipv4_output(unsigned int hooknum,
4719 					struct sk_buff *skb,
4720 					const struct net_device *in,
4721 					const struct net_device *out,
4722 					int (*okfn)(struct sk_buff *))
4723 {
4724 	return selinux_ip_output(skb, PF_INET);
4725 }
4726 
4727 static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
4728 						int ifindex,
4729 						u16 family)
4730 {
4731 	struct sock *sk = skb->sk;
4732 	struct sk_security_struct *sksec;
4733 	struct common_audit_data ad;
4734 	struct lsm_network_audit net = {0,};
4735 	char *addrp;
4736 	u8 proto;
4737 
4738 	if (sk == NULL)
4739 		return NF_ACCEPT;
4740 	sksec = sk->sk_security;
4741 
4742 	ad.type = LSM_AUDIT_DATA_NET;
4743 	ad.u.net = &net;
4744 	ad.u.net->netif = ifindex;
4745 	ad.u.net->family = family;
4746 	if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto))
4747 		return NF_DROP;
4748 
4749 	if (selinux_secmark_enabled())
4750 		if (avc_has_perm(sksec->sid, skb->secmark,
4751 				 SECCLASS_PACKET, PACKET__SEND, &ad))
4752 			return NF_DROP_ERR(-ECONNREFUSED);
4753 
4754 	if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
4755 		return NF_DROP_ERR(-ECONNREFUSED);
4756 
4757 	return NF_ACCEPT;
4758 }
4759 
4760 static unsigned int selinux_ip_postroute(struct sk_buff *skb, int ifindex,
4761 					 u16 family)
4762 {
4763 	u32 secmark_perm;
4764 	u32 peer_sid;
4765 	struct sock *sk;
4766 	struct common_audit_data ad;
4767 	struct lsm_network_audit net = {0,};
4768 	char *addrp;
4769 	u8 secmark_active;
4770 	u8 peerlbl_active;
4771 
4772 	/* If any sort of compatibility mode is enabled then handoff processing
4773 	 * to the selinux_ip_postroute_compat() function to deal with the
4774 	 * special handling.  We do this in an attempt to keep this function
4775 	 * as fast and as clean as possible. */
4776 	if (!selinux_policycap_netpeer)
4777 		return selinux_ip_postroute_compat(skb, ifindex, family);
4778 #ifdef CONFIG_XFRM
4779 	/* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
4780 	 * packet transformation so allow the packet to pass without any checks
4781 	 * since we'll have another chance to perform access control checks
4782 	 * when the packet is on it's final way out.
4783 	 * NOTE: there appear to be some IPv6 multicast cases where skb->dst
4784 	 *       is NULL, in this case go ahead and apply access control. */
4785 	if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL)
4786 		return NF_ACCEPT;
4787 #endif
4788 	secmark_active = selinux_secmark_enabled();
4789 	peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled();
4790 	if (!secmark_active && !peerlbl_active)
4791 		return NF_ACCEPT;
4792 
4793 	/* if the packet is being forwarded then get the peer label from the
4794 	 * packet itself; otherwise check to see if it is from a local
4795 	 * application or the kernel, if from an application get the peer label
4796 	 * from the sending socket, otherwise use the kernel's sid */
4797 	sk = skb->sk;
4798 	if (sk == NULL) {
4799 		if (skb->skb_iif) {
4800 			secmark_perm = PACKET__FORWARD_OUT;
4801 			if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
4802 				return NF_DROP;
4803 		} else {
4804 			secmark_perm = PACKET__SEND;
4805 			peer_sid = SECINITSID_KERNEL;
4806 		}
4807 	} else {
4808 		struct sk_security_struct *sksec = sk->sk_security;
4809 		peer_sid = sksec->sid;
4810 		secmark_perm = PACKET__SEND;
4811 	}
4812 
4813 	ad.type = LSM_AUDIT_DATA_NET;
4814 	ad.u.net = &net;
4815 	ad.u.net->netif = ifindex;
4816 	ad.u.net->family = family;
4817 	if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
4818 		return NF_DROP;
4819 
4820 	if (secmark_active)
4821 		if (avc_has_perm(peer_sid, skb->secmark,
4822 				 SECCLASS_PACKET, secmark_perm, &ad))
4823 			return NF_DROP_ERR(-ECONNREFUSED);
4824 
4825 	if (peerlbl_active) {
4826 		u32 if_sid;
4827 		u32 node_sid;
4828 
4829 		if (sel_netif_sid(ifindex, &if_sid))
4830 			return NF_DROP;
4831 		if (avc_has_perm(peer_sid, if_sid,
4832 				 SECCLASS_NETIF, NETIF__EGRESS, &ad))
4833 			return NF_DROP_ERR(-ECONNREFUSED);
4834 
4835 		if (sel_netnode_sid(addrp, family, &node_sid))
4836 			return NF_DROP;
4837 		if (avc_has_perm(peer_sid, node_sid,
4838 				 SECCLASS_NODE, NODE__SENDTO, &ad))
4839 			return NF_DROP_ERR(-ECONNREFUSED);
4840 	}
4841 
4842 	return NF_ACCEPT;
4843 }
4844 
4845 static unsigned int selinux_ipv4_postroute(unsigned int hooknum,
4846 					   struct sk_buff *skb,
4847 					   const struct net_device *in,
4848 					   const struct net_device *out,
4849 					   int (*okfn)(struct sk_buff *))
4850 {
4851 	return selinux_ip_postroute(skb, out->ifindex, PF_INET);
4852 }
4853 
4854 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4855 static unsigned int selinux_ipv6_postroute(unsigned int hooknum,
4856 					   struct sk_buff *skb,
4857 					   const struct net_device *in,
4858 					   const struct net_device *out,
4859 					   int (*okfn)(struct sk_buff *))
4860 {
4861 	return selinux_ip_postroute(skb, out->ifindex, PF_INET6);
4862 }
4863 #endif	/* IPV6 */
4864 
4865 #endif	/* CONFIG_NETFILTER */
4866 
4867 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
4868 {
4869 	int err;
4870 
4871 	err = cap_netlink_send(sk, skb);
4872 	if (err)
4873 		return err;
4874 
4875 	return selinux_nlmsg_perm(sk, skb);
4876 }
4877 
4878 static int ipc_alloc_security(struct task_struct *task,
4879 			      struct kern_ipc_perm *perm,
4880 			      u16 sclass)
4881 {
4882 	struct ipc_security_struct *isec;
4883 	u32 sid;
4884 
4885 	isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL);
4886 	if (!isec)
4887 		return -ENOMEM;
4888 
4889 	sid = task_sid(task);
4890 	isec->sclass = sclass;
4891 	isec->sid = sid;
4892 	perm->security = isec;
4893 
4894 	return 0;
4895 }
4896 
4897 static void ipc_free_security(struct kern_ipc_perm *perm)
4898 {
4899 	struct ipc_security_struct *isec = perm->security;
4900 	perm->security = NULL;
4901 	kfree(isec);
4902 }
4903 
4904 static int msg_msg_alloc_security(struct msg_msg *msg)
4905 {
4906 	struct msg_security_struct *msec;
4907 
4908 	msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL);
4909 	if (!msec)
4910 		return -ENOMEM;
4911 
4912 	msec->sid = SECINITSID_UNLABELED;
4913 	msg->security = msec;
4914 
4915 	return 0;
4916 }
4917 
4918 static void msg_msg_free_security(struct msg_msg *msg)
4919 {
4920 	struct msg_security_struct *msec = msg->security;
4921 
4922 	msg->security = NULL;
4923 	kfree(msec);
4924 }
4925 
4926 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
4927 			u32 perms)
4928 {
4929 	struct ipc_security_struct *isec;
4930 	struct common_audit_data ad;
4931 	u32 sid = current_sid();
4932 
4933 	isec = ipc_perms->security;
4934 
4935 	ad.type = LSM_AUDIT_DATA_IPC;
4936 	ad.u.ipc_id = ipc_perms->key;
4937 
4938 	return avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad);
4939 }
4940 
4941 static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
4942 {
4943 	return msg_msg_alloc_security(msg);
4944 }
4945 
4946 static void selinux_msg_msg_free_security(struct msg_msg *msg)
4947 {
4948 	msg_msg_free_security(msg);
4949 }
4950 
4951 /* message queue security operations */
4952 static int selinux_msg_queue_alloc_security(struct msg_queue *msq)
4953 {
4954 	struct ipc_security_struct *isec;
4955 	struct common_audit_data ad;
4956 	u32 sid = current_sid();
4957 	int rc;
4958 
4959 	rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ);
4960 	if (rc)
4961 		return rc;
4962 
4963 	isec = msq->q_perm.security;
4964 
4965 	ad.type = LSM_AUDIT_DATA_IPC;
4966 	ad.u.ipc_id = msq->q_perm.key;
4967 
4968 	rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
4969 			  MSGQ__CREATE, &ad);
4970 	if (rc) {
4971 		ipc_free_security(&msq->q_perm);
4972 		return rc;
4973 	}
4974 	return 0;
4975 }
4976 
4977 static void selinux_msg_queue_free_security(struct msg_queue *msq)
4978 {
4979 	ipc_free_security(&msq->q_perm);
4980 }
4981 
4982 static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg)
4983 {
4984 	struct ipc_security_struct *isec;
4985 	struct common_audit_data ad;
4986 	u32 sid = current_sid();
4987 
4988 	isec = msq->q_perm.security;
4989 
4990 	ad.type = LSM_AUDIT_DATA_IPC;
4991 	ad.u.ipc_id = msq->q_perm.key;
4992 
4993 	return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
4994 			    MSGQ__ASSOCIATE, &ad);
4995 }
4996 
4997 static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd)
4998 {
4999 	int err;
5000 	int perms;
5001 
5002 	switch (cmd) {
5003 	case IPC_INFO:
5004 	case MSG_INFO:
5005 		/* No specific object, just general system-wide information. */
5006 		return task_has_system(current, SYSTEM__IPC_INFO);
5007 	case IPC_STAT:
5008 	case MSG_STAT:
5009 		perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
5010 		break;
5011 	case IPC_SET:
5012 		perms = MSGQ__SETATTR;
5013 		break;
5014 	case IPC_RMID:
5015 		perms = MSGQ__DESTROY;
5016 		break;
5017 	default:
5018 		return 0;
5019 	}
5020 
5021 	err = ipc_has_perm(&msq->q_perm, perms);
5022 	return err;
5023 }
5024 
5025 static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg)
5026 {
5027 	struct ipc_security_struct *isec;
5028 	struct msg_security_struct *msec;
5029 	struct common_audit_data ad;
5030 	u32 sid = current_sid();
5031 	int rc;
5032 
5033 	isec = msq->q_perm.security;
5034 	msec = msg->security;
5035 
5036 	/*
5037 	 * First time through, need to assign label to the message
5038 	 */
5039 	if (msec->sid == SECINITSID_UNLABELED) {
5040 		/*
5041 		 * Compute new sid based on current process and
5042 		 * message queue this message will be stored in
5043 		 */
5044 		rc = security_transition_sid(sid, isec->sid, SECCLASS_MSG,
5045 					     NULL, &msec->sid);
5046 		if (rc)
5047 			return rc;
5048 	}
5049 
5050 	ad.type = LSM_AUDIT_DATA_IPC;
5051 	ad.u.ipc_id = msq->q_perm.key;
5052 
5053 	/* Can this process write to the queue? */
5054 	rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
5055 			  MSGQ__WRITE, &ad);
5056 	if (!rc)
5057 		/* Can this process send the message */
5058 		rc = avc_has_perm(sid, msec->sid, SECCLASS_MSG,
5059 				  MSG__SEND, &ad);
5060 	if (!rc)
5061 		/* Can the message be put in the queue? */
5062 		rc = avc_has_perm(msec->sid, isec->sid, SECCLASS_MSGQ,
5063 				  MSGQ__ENQUEUE, &ad);
5064 
5065 	return rc;
5066 }
5067 
5068 static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
5069 				    struct task_struct *target,
5070 				    long type, int mode)
5071 {
5072 	struct ipc_security_struct *isec;
5073 	struct msg_security_struct *msec;
5074 	struct common_audit_data ad;
5075 	u32 sid = task_sid(target);
5076 	int rc;
5077 
5078 	isec = msq->q_perm.security;
5079 	msec = msg->security;
5080 
5081 	ad.type = LSM_AUDIT_DATA_IPC;
5082 	ad.u.ipc_id = msq->q_perm.key;
5083 
5084 	rc = avc_has_perm(sid, isec->sid,
5085 			  SECCLASS_MSGQ, MSGQ__READ, &ad);
5086 	if (!rc)
5087 		rc = avc_has_perm(sid, msec->sid,
5088 				  SECCLASS_MSG, MSG__RECEIVE, &ad);
5089 	return rc;
5090 }
5091 
5092 /* Shared Memory security operations */
5093 static int selinux_shm_alloc_security(struct shmid_kernel *shp)
5094 {
5095 	struct ipc_security_struct *isec;
5096 	struct common_audit_data ad;
5097 	u32 sid = current_sid();
5098 	int rc;
5099 
5100 	rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM);
5101 	if (rc)
5102 		return rc;
5103 
5104 	isec = shp->shm_perm.security;
5105 
5106 	ad.type = LSM_AUDIT_DATA_IPC;
5107 	ad.u.ipc_id = shp->shm_perm.key;
5108 
5109 	rc = avc_has_perm(sid, isec->sid, SECCLASS_SHM,
5110 			  SHM__CREATE, &ad);
5111 	if (rc) {
5112 		ipc_free_security(&shp->shm_perm);
5113 		return rc;
5114 	}
5115 	return 0;
5116 }
5117 
5118 static void selinux_shm_free_security(struct shmid_kernel *shp)
5119 {
5120 	ipc_free_security(&shp->shm_perm);
5121 }
5122 
5123 static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg)
5124 {
5125 	struct ipc_security_struct *isec;
5126 	struct common_audit_data ad;
5127 	u32 sid = current_sid();
5128 
5129 	isec = shp->shm_perm.security;
5130 
5131 	ad.type = LSM_AUDIT_DATA_IPC;
5132 	ad.u.ipc_id = shp->shm_perm.key;
5133 
5134 	return avc_has_perm(sid, isec->sid, SECCLASS_SHM,
5135 			    SHM__ASSOCIATE, &ad);
5136 }
5137 
5138 /* Note, at this point, shp is locked down */
5139 static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd)
5140 {
5141 	int perms;
5142 	int err;
5143 
5144 	switch (cmd) {
5145 	case IPC_INFO:
5146 	case SHM_INFO:
5147 		/* No specific object, just general system-wide information. */
5148 		return task_has_system(current, SYSTEM__IPC_INFO);
5149 	case IPC_STAT:
5150 	case SHM_STAT:
5151 		perms = SHM__GETATTR | SHM__ASSOCIATE;
5152 		break;
5153 	case IPC_SET:
5154 		perms = SHM__SETATTR;
5155 		break;
5156 	case SHM_LOCK:
5157 	case SHM_UNLOCK:
5158 		perms = SHM__LOCK;
5159 		break;
5160 	case IPC_RMID:
5161 		perms = SHM__DESTROY;
5162 		break;
5163 	default:
5164 		return 0;
5165 	}
5166 
5167 	err = ipc_has_perm(&shp->shm_perm, perms);
5168 	return err;
5169 }
5170 
5171 static int selinux_shm_shmat(struct shmid_kernel *shp,
5172 			     char __user *shmaddr, int shmflg)
5173 {
5174 	u32 perms;
5175 
5176 	if (shmflg & SHM_RDONLY)
5177 		perms = SHM__READ;
5178 	else
5179 		perms = SHM__READ | SHM__WRITE;
5180 
5181 	return ipc_has_perm(&shp->shm_perm, perms);
5182 }
5183 
5184 /* Semaphore security operations */
5185 static int selinux_sem_alloc_security(struct sem_array *sma)
5186 {
5187 	struct ipc_security_struct *isec;
5188 	struct common_audit_data ad;
5189 	u32 sid = current_sid();
5190 	int rc;
5191 
5192 	rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM);
5193 	if (rc)
5194 		return rc;
5195 
5196 	isec = sma->sem_perm.security;
5197 
5198 	ad.type = LSM_AUDIT_DATA_IPC;
5199 	ad.u.ipc_id = sma->sem_perm.key;
5200 
5201 	rc = avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5202 			  SEM__CREATE, &ad);
5203 	if (rc) {
5204 		ipc_free_security(&sma->sem_perm);
5205 		return rc;
5206 	}
5207 	return 0;
5208 }
5209 
5210 static void selinux_sem_free_security(struct sem_array *sma)
5211 {
5212 	ipc_free_security(&sma->sem_perm);
5213 }
5214 
5215 static int selinux_sem_associate(struct sem_array *sma, int semflg)
5216 {
5217 	struct ipc_security_struct *isec;
5218 	struct common_audit_data ad;
5219 	u32 sid = current_sid();
5220 
5221 	isec = sma->sem_perm.security;
5222 
5223 	ad.type = LSM_AUDIT_DATA_IPC;
5224 	ad.u.ipc_id = sma->sem_perm.key;
5225 
5226 	return avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5227 			    SEM__ASSOCIATE, &ad);
5228 }
5229 
5230 /* Note, at this point, sma is locked down */
5231 static int selinux_sem_semctl(struct sem_array *sma, int cmd)
5232 {
5233 	int err;
5234 	u32 perms;
5235 
5236 	switch (cmd) {
5237 	case IPC_INFO:
5238 	case SEM_INFO:
5239 		/* No specific object, just general system-wide information. */
5240 		return task_has_system(current, SYSTEM__IPC_INFO);
5241 	case GETPID:
5242 	case GETNCNT:
5243 	case GETZCNT:
5244 		perms = SEM__GETATTR;
5245 		break;
5246 	case GETVAL:
5247 	case GETALL:
5248 		perms = SEM__READ;
5249 		break;
5250 	case SETVAL:
5251 	case SETALL:
5252 		perms = SEM__WRITE;
5253 		break;
5254 	case IPC_RMID:
5255 		perms = SEM__DESTROY;
5256 		break;
5257 	case IPC_SET:
5258 		perms = SEM__SETATTR;
5259 		break;
5260 	case IPC_STAT:
5261 	case SEM_STAT:
5262 		perms = SEM__GETATTR | SEM__ASSOCIATE;
5263 		break;
5264 	default:
5265 		return 0;
5266 	}
5267 
5268 	err = ipc_has_perm(&sma->sem_perm, perms);
5269 	return err;
5270 }
5271 
5272 static int selinux_sem_semop(struct sem_array *sma,
5273 			     struct sembuf *sops, unsigned nsops, int alter)
5274 {
5275 	u32 perms;
5276 
5277 	if (alter)
5278 		perms = SEM__READ | SEM__WRITE;
5279 	else
5280 		perms = SEM__READ;
5281 
5282 	return ipc_has_perm(&sma->sem_perm, perms);
5283 }
5284 
5285 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
5286 {
5287 	u32 av = 0;
5288 
5289 	av = 0;
5290 	if (flag & S_IRUGO)
5291 		av |= IPC__UNIX_READ;
5292 	if (flag & S_IWUGO)
5293 		av |= IPC__UNIX_WRITE;
5294 
5295 	if (av == 0)
5296 		return 0;
5297 
5298 	return ipc_has_perm(ipcp, av);
5299 }
5300 
5301 static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
5302 {
5303 	struct ipc_security_struct *isec = ipcp->security;
5304 	*secid = isec->sid;
5305 }
5306 
5307 static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
5308 {
5309 	if (inode)
5310 		inode_doinit_with_dentry(inode, dentry);
5311 }
5312 
5313 static int selinux_getprocattr(struct task_struct *p,
5314 			       char *name, char **value)
5315 {
5316 	const struct task_security_struct *__tsec;
5317 	u32 sid;
5318 	int error;
5319 	unsigned len;
5320 
5321 	if (current != p) {
5322 		error = current_has_perm(p, PROCESS__GETATTR);
5323 		if (error)
5324 			return error;
5325 	}
5326 
5327 	rcu_read_lock();
5328 	__tsec = __task_cred(p)->security;
5329 
5330 	if (!strcmp(name, "current"))
5331 		sid = __tsec->sid;
5332 	else if (!strcmp(name, "prev"))
5333 		sid = __tsec->osid;
5334 	else if (!strcmp(name, "exec"))
5335 		sid = __tsec->exec_sid;
5336 	else if (!strcmp(name, "fscreate"))
5337 		sid = __tsec->create_sid;
5338 	else if (!strcmp(name, "keycreate"))
5339 		sid = __tsec->keycreate_sid;
5340 	else if (!strcmp(name, "sockcreate"))
5341 		sid = __tsec->sockcreate_sid;
5342 	else
5343 		goto invalid;
5344 	rcu_read_unlock();
5345 
5346 	if (!sid)
5347 		return 0;
5348 
5349 	error = security_sid_to_context(sid, value, &len);
5350 	if (error)
5351 		return error;
5352 	return len;
5353 
5354 invalid:
5355 	rcu_read_unlock();
5356 	return -EINVAL;
5357 }
5358 
5359 static int selinux_setprocattr(struct task_struct *p,
5360 			       char *name, void *value, size_t size)
5361 {
5362 	struct task_security_struct *tsec;
5363 	struct task_struct *tracer;
5364 	struct cred *new;
5365 	u32 sid = 0, ptsid;
5366 	int error;
5367 	char *str = value;
5368 
5369 	if (current != p) {
5370 		/* SELinux only allows a process to change its own
5371 		   security attributes. */
5372 		return -EACCES;
5373 	}
5374 
5375 	/*
5376 	 * Basic control over ability to set these attributes at all.
5377 	 * current == p, but we'll pass them separately in case the
5378 	 * above restriction is ever removed.
5379 	 */
5380 	if (!strcmp(name, "exec"))
5381 		error = current_has_perm(p, PROCESS__SETEXEC);
5382 	else if (!strcmp(name, "fscreate"))
5383 		error = current_has_perm(p, PROCESS__SETFSCREATE);
5384 	else if (!strcmp(name, "keycreate"))
5385 		error = current_has_perm(p, PROCESS__SETKEYCREATE);
5386 	else if (!strcmp(name, "sockcreate"))
5387 		error = current_has_perm(p, PROCESS__SETSOCKCREATE);
5388 	else if (!strcmp(name, "current"))
5389 		error = current_has_perm(p, PROCESS__SETCURRENT);
5390 	else
5391 		error = -EINVAL;
5392 	if (error)
5393 		return error;
5394 
5395 	/* Obtain a SID for the context, if one was specified. */
5396 	if (size && str[1] && str[1] != '\n') {
5397 		if (str[size-1] == '\n') {
5398 			str[size-1] = 0;
5399 			size--;
5400 		}
5401 		error = security_context_to_sid(value, size, &sid);
5402 		if (error == -EINVAL && !strcmp(name, "fscreate")) {
5403 			if (!capable(CAP_MAC_ADMIN)) {
5404 				struct audit_buffer *ab;
5405 				size_t audit_size;
5406 
5407 				/* We strip a nul only if it is at the end, otherwise the
5408 				 * context contains a nul and we should audit that */
5409 				if (str[size - 1] == '\0')
5410 					audit_size = size - 1;
5411 				else
5412 					audit_size = size;
5413 				ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR);
5414 				audit_log_format(ab, "op=fscreate invalid_context=");
5415 				audit_log_n_untrustedstring(ab, value, audit_size);
5416 				audit_log_end(ab);
5417 
5418 				return error;
5419 			}
5420 			error = security_context_to_sid_force(value, size,
5421 							      &sid);
5422 		}
5423 		if (error)
5424 			return error;
5425 	}
5426 
5427 	new = prepare_creds();
5428 	if (!new)
5429 		return -ENOMEM;
5430 
5431 	/* Permission checking based on the specified context is
5432 	   performed during the actual operation (execve,
5433 	   open/mkdir/...), when we know the full context of the
5434 	   operation.  See selinux_bprm_set_creds for the execve
5435 	   checks and may_create for the file creation checks. The
5436 	   operation will then fail if the context is not permitted. */
5437 	tsec = new->security;
5438 	if (!strcmp(name, "exec")) {
5439 		tsec->exec_sid = sid;
5440 	} else if (!strcmp(name, "fscreate")) {
5441 		tsec->create_sid = sid;
5442 	} else if (!strcmp(name, "keycreate")) {
5443 		error = may_create_key(sid, p);
5444 		if (error)
5445 			goto abort_change;
5446 		tsec->keycreate_sid = sid;
5447 	} else if (!strcmp(name, "sockcreate")) {
5448 		tsec->sockcreate_sid = sid;
5449 	} else if (!strcmp(name, "current")) {
5450 		error = -EINVAL;
5451 		if (sid == 0)
5452 			goto abort_change;
5453 
5454 		/* Only allow single threaded processes to change context */
5455 		error = -EPERM;
5456 		if (!current_is_single_threaded()) {
5457 			error = security_bounded_transition(tsec->sid, sid);
5458 			if (error)
5459 				goto abort_change;
5460 		}
5461 
5462 		/* Check permissions for the transition. */
5463 		error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
5464 				     PROCESS__DYNTRANSITION, NULL);
5465 		if (error)
5466 			goto abort_change;
5467 
5468 		/* Check for ptracing, and update the task SID if ok.
5469 		   Otherwise, leave SID unchanged and fail. */
5470 		ptsid = 0;
5471 		task_lock(p);
5472 		tracer = ptrace_parent(p);
5473 		if (tracer)
5474 			ptsid = task_sid(tracer);
5475 		task_unlock(p);
5476 
5477 		if (tracer) {
5478 			error = avc_has_perm(ptsid, sid, SECCLASS_PROCESS,
5479 					     PROCESS__PTRACE, NULL);
5480 			if (error)
5481 				goto abort_change;
5482 		}
5483 
5484 		tsec->sid = sid;
5485 	} else {
5486 		error = -EINVAL;
5487 		goto abort_change;
5488 	}
5489 
5490 	commit_creds(new);
5491 	return size;
5492 
5493 abort_change:
5494 	abort_creds(new);
5495 	return error;
5496 }
5497 
5498 static int selinux_ismaclabel(const char *name)
5499 {
5500 	return (strcmp(name, XATTR_SELINUX_SUFFIX) == 0);
5501 }
5502 
5503 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
5504 {
5505 	return security_sid_to_context(secid, secdata, seclen);
5506 }
5507 
5508 static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
5509 {
5510 	return security_context_to_sid(secdata, seclen, secid);
5511 }
5512 
5513 static void selinux_release_secctx(char *secdata, u32 seclen)
5514 {
5515 	kfree(secdata);
5516 }
5517 
5518 /*
5519  *	called with inode->i_mutex locked
5520  */
5521 static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
5522 {
5523 	return selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX, ctx, ctxlen, 0);
5524 }
5525 
5526 /*
5527  *	called with inode->i_mutex locked
5528  */
5529 static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
5530 {
5531 	return __vfs_setxattr_noperm(dentry, XATTR_NAME_SELINUX, ctx, ctxlen, 0);
5532 }
5533 
5534 static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
5535 {
5536 	int len = 0;
5537 	len = selinux_inode_getsecurity(inode, XATTR_SELINUX_SUFFIX,
5538 						ctx, true);
5539 	if (len < 0)
5540 		return len;
5541 	*ctxlen = len;
5542 	return 0;
5543 }
5544 #ifdef CONFIG_KEYS
5545 
5546 static int selinux_key_alloc(struct key *k, const struct cred *cred,
5547 			     unsigned long flags)
5548 {
5549 	const struct task_security_struct *tsec;
5550 	struct key_security_struct *ksec;
5551 
5552 	ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
5553 	if (!ksec)
5554 		return -ENOMEM;
5555 
5556 	tsec = cred->security;
5557 	if (tsec->keycreate_sid)
5558 		ksec->sid = tsec->keycreate_sid;
5559 	else
5560 		ksec->sid = tsec->sid;
5561 
5562 	k->security = ksec;
5563 	return 0;
5564 }
5565 
5566 static void selinux_key_free(struct key *k)
5567 {
5568 	struct key_security_struct *ksec = k->security;
5569 
5570 	k->security = NULL;
5571 	kfree(ksec);
5572 }
5573 
5574 static int selinux_key_permission(key_ref_t key_ref,
5575 				  const struct cred *cred,
5576 				  key_perm_t perm)
5577 {
5578 	struct key *key;
5579 	struct key_security_struct *ksec;
5580 	u32 sid;
5581 
5582 	/* if no specific permissions are requested, we skip the
5583 	   permission check. No serious, additional covert channels
5584 	   appear to be created. */
5585 	if (perm == 0)
5586 		return 0;
5587 
5588 	sid = cred_sid(cred);
5589 
5590 	key = key_ref_to_ptr(key_ref);
5591 	ksec = key->security;
5592 
5593 	return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, perm, NULL);
5594 }
5595 
5596 static int selinux_key_getsecurity(struct key *key, char **_buffer)
5597 {
5598 	struct key_security_struct *ksec = key->security;
5599 	char *context = NULL;
5600 	unsigned len;
5601 	int rc;
5602 
5603 	rc = security_sid_to_context(ksec->sid, &context, &len);
5604 	if (!rc)
5605 		rc = len;
5606 	*_buffer = context;
5607 	return rc;
5608 }
5609 
5610 #endif
5611 
5612 static struct security_operations selinux_ops = {
5613 	.name =				"selinux",
5614 
5615 	.ptrace_access_check =		selinux_ptrace_access_check,
5616 	.ptrace_traceme =		selinux_ptrace_traceme,
5617 	.capget =			selinux_capget,
5618 	.capset =			selinux_capset,
5619 	.capable =			selinux_capable,
5620 	.quotactl =			selinux_quotactl,
5621 	.quota_on =			selinux_quota_on,
5622 	.syslog =			selinux_syslog,
5623 	.vm_enough_memory =		selinux_vm_enough_memory,
5624 
5625 	.netlink_send =			selinux_netlink_send,
5626 
5627 	.bprm_set_creds =		selinux_bprm_set_creds,
5628 	.bprm_committing_creds =	selinux_bprm_committing_creds,
5629 	.bprm_committed_creds =		selinux_bprm_committed_creds,
5630 	.bprm_secureexec =		selinux_bprm_secureexec,
5631 
5632 	.sb_alloc_security =		selinux_sb_alloc_security,
5633 	.sb_free_security =		selinux_sb_free_security,
5634 	.sb_copy_data =			selinux_sb_copy_data,
5635 	.sb_remount =			selinux_sb_remount,
5636 	.sb_kern_mount =		selinux_sb_kern_mount,
5637 	.sb_show_options =		selinux_sb_show_options,
5638 	.sb_statfs =			selinux_sb_statfs,
5639 	.sb_mount =			selinux_mount,
5640 	.sb_umount =			selinux_umount,
5641 	.sb_set_mnt_opts =		selinux_set_mnt_opts,
5642 	.sb_clone_mnt_opts =		selinux_sb_clone_mnt_opts,
5643 	.sb_parse_opts_str = 		selinux_parse_opts_str,
5644 
5645 	.dentry_init_security =		selinux_dentry_init_security,
5646 
5647 	.inode_alloc_security =		selinux_inode_alloc_security,
5648 	.inode_free_security =		selinux_inode_free_security,
5649 	.inode_init_security =		selinux_inode_init_security,
5650 	.inode_create =			selinux_inode_create,
5651 	.inode_link =			selinux_inode_link,
5652 	.inode_unlink =			selinux_inode_unlink,
5653 	.inode_symlink =		selinux_inode_symlink,
5654 	.inode_mkdir =			selinux_inode_mkdir,
5655 	.inode_rmdir =			selinux_inode_rmdir,
5656 	.inode_mknod =			selinux_inode_mknod,
5657 	.inode_rename =			selinux_inode_rename,
5658 	.inode_readlink =		selinux_inode_readlink,
5659 	.inode_follow_link =		selinux_inode_follow_link,
5660 	.inode_permission =		selinux_inode_permission,
5661 	.inode_setattr =		selinux_inode_setattr,
5662 	.inode_getattr =		selinux_inode_getattr,
5663 	.inode_setxattr =		selinux_inode_setxattr,
5664 	.inode_post_setxattr =		selinux_inode_post_setxattr,
5665 	.inode_getxattr =		selinux_inode_getxattr,
5666 	.inode_listxattr =		selinux_inode_listxattr,
5667 	.inode_removexattr =		selinux_inode_removexattr,
5668 	.inode_getsecurity =		selinux_inode_getsecurity,
5669 	.inode_setsecurity =		selinux_inode_setsecurity,
5670 	.inode_listsecurity =		selinux_inode_listsecurity,
5671 	.inode_getsecid =		selinux_inode_getsecid,
5672 
5673 	.file_permission =		selinux_file_permission,
5674 	.file_alloc_security =		selinux_file_alloc_security,
5675 	.file_free_security =		selinux_file_free_security,
5676 	.file_ioctl =			selinux_file_ioctl,
5677 	.mmap_file =			selinux_mmap_file,
5678 	.mmap_addr =			selinux_mmap_addr,
5679 	.file_mprotect =		selinux_file_mprotect,
5680 	.file_lock =			selinux_file_lock,
5681 	.file_fcntl =			selinux_file_fcntl,
5682 	.file_set_fowner =		selinux_file_set_fowner,
5683 	.file_send_sigiotask =		selinux_file_send_sigiotask,
5684 	.file_receive =			selinux_file_receive,
5685 
5686 	.file_open =			selinux_file_open,
5687 
5688 	.task_create =			selinux_task_create,
5689 	.cred_alloc_blank =		selinux_cred_alloc_blank,
5690 	.cred_free =			selinux_cred_free,
5691 	.cred_prepare =			selinux_cred_prepare,
5692 	.cred_transfer =		selinux_cred_transfer,
5693 	.kernel_act_as =		selinux_kernel_act_as,
5694 	.kernel_create_files_as =	selinux_kernel_create_files_as,
5695 	.kernel_module_request =	selinux_kernel_module_request,
5696 	.task_setpgid =			selinux_task_setpgid,
5697 	.task_getpgid =			selinux_task_getpgid,
5698 	.task_getsid =			selinux_task_getsid,
5699 	.task_getsecid =		selinux_task_getsecid,
5700 	.task_setnice =			selinux_task_setnice,
5701 	.task_setioprio =		selinux_task_setioprio,
5702 	.task_getioprio =		selinux_task_getioprio,
5703 	.task_setrlimit =		selinux_task_setrlimit,
5704 	.task_setscheduler =		selinux_task_setscheduler,
5705 	.task_getscheduler =		selinux_task_getscheduler,
5706 	.task_movememory =		selinux_task_movememory,
5707 	.task_kill =			selinux_task_kill,
5708 	.task_wait =			selinux_task_wait,
5709 	.task_to_inode =		selinux_task_to_inode,
5710 
5711 	.ipc_permission =		selinux_ipc_permission,
5712 	.ipc_getsecid =			selinux_ipc_getsecid,
5713 
5714 	.msg_msg_alloc_security =	selinux_msg_msg_alloc_security,
5715 	.msg_msg_free_security =	selinux_msg_msg_free_security,
5716 
5717 	.msg_queue_alloc_security =	selinux_msg_queue_alloc_security,
5718 	.msg_queue_free_security =	selinux_msg_queue_free_security,
5719 	.msg_queue_associate =		selinux_msg_queue_associate,
5720 	.msg_queue_msgctl =		selinux_msg_queue_msgctl,
5721 	.msg_queue_msgsnd =		selinux_msg_queue_msgsnd,
5722 	.msg_queue_msgrcv =		selinux_msg_queue_msgrcv,
5723 
5724 	.shm_alloc_security =		selinux_shm_alloc_security,
5725 	.shm_free_security =		selinux_shm_free_security,
5726 	.shm_associate =		selinux_shm_associate,
5727 	.shm_shmctl =			selinux_shm_shmctl,
5728 	.shm_shmat =			selinux_shm_shmat,
5729 
5730 	.sem_alloc_security =		selinux_sem_alloc_security,
5731 	.sem_free_security =		selinux_sem_free_security,
5732 	.sem_associate =		selinux_sem_associate,
5733 	.sem_semctl =			selinux_sem_semctl,
5734 	.sem_semop =			selinux_sem_semop,
5735 
5736 	.d_instantiate =		selinux_d_instantiate,
5737 
5738 	.getprocattr =			selinux_getprocattr,
5739 	.setprocattr =			selinux_setprocattr,
5740 
5741 	.ismaclabel =			selinux_ismaclabel,
5742 	.secid_to_secctx =		selinux_secid_to_secctx,
5743 	.secctx_to_secid =		selinux_secctx_to_secid,
5744 	.release_secctx =		selinux_release_secctx,
5745 	.inode_notifysecctx =		selinux_inode_notifysecctx,
5746 	.inode_setsecctx =		selinux_inode_setsecctx,
5747 	.inode_getsecctx =		selinux_inode_getsecctx,
5748 
5749 	.unix_stream_connect =		selinux_socket_unix_stream_connect,
5750 	.unix_may_send =		selinux_socket_unix_may_send,
5751 
5752 	.socket_create =		selinux_socket_create,
5753 	.socket_post_create =		selinux_socket_post_create,
5754 	.socket_bind =			selinux_socket_bind,
5755 	.socket_connect =		selinux_socket_connect,
5756 	.socket_listen =		selinux_socket_listen,
5757 	.socket_accept =		selinux_socket_accept,
5758 	.socket_sendmsg =		selinux_socket_sendmsg,
5759 	.socket_recvmsg =		selinux_socket_recvmsg,
5760 	.socket_getsockname =		selinux_socket_getsockname,
5761 	.socket_getpeername =		selinux_socket_getpeername,
5762 	.socket_getsockopt =		selinux_socket_getsockopt,
5763 	.socket_setsockopt =		selinux_socket_setsockopt,
5764 	.socket_shutdown =		selinux_socket_shutdown,
5765 	.socket_sock_rcv_skb =		selinux_socket_sock_rcv_skb,
5766 	.socket_getpeersec_stream =	selinux_socket_getpeersec_stream,
5767 	.socket_getpeersec_dgram =	selinux_socket_getpeersec_dgram,
5768 	.sk_alloc_security =		selinux_sk_alloc_security,
5769 	.sk_free_security =		selinux_sk_free_security,
5770 	.sk_clone_security =		selinux_sk_clone_security,
5771 	.sk_getsecid =			selinux_sk_getsecid,
5772 	.sock_graft =			selinux_sock_graft,
5773 	.inet_conn_request =		selinux_inet_conn_request,
5774 	.inet_csk_clone =		selinux_inet_csk_clone,
5775 	.inet_conn_established =	selinux_inet_conn_established,
5776 	.secmark_relabel_packet =	selinux_secmark_relabel_packet,
5777 	.secmark_refcount_inc =		selinux_secmark_refcount_inc,
5778 	.secmark_refcount_dec =		selinux_secmark_refcount_dec,
5779 	.req_classify_flow =		selinux_req_classify_flow,
5780 	.tun_dev_alloc_security =	selinux_tun_dev_alloc_security,
5781 	.tun_dev_free_security =	selinux_tun_dev_free_security,
5782 	.tun_dev_create =		selinux_tun_dev_create,
5783 	.tun_dev_attach_queue =		selinux_tun_dev_attach_queue,
5784 	.tun_dev_attach =		selinux_tun_dev_attach,
5785 	.tun_dev_open =			selinux_tun_dev_open,
5786 	.skb_owned_by =			selinux_skb_owned_by,
5787 
5788 #ifdef CONFIG_SECURITY_NETWORK_XFRM
5789 	.xfrm_policy_alloc_security =	selinux_xfrm_policy_alloc,
5790 	.xfrm_policy_clone_security =	selinux_xfrm_policy_clone,
5791 	.xfrm_policy_free_security =	selinux_xfrm_policy_free,
5792 	.xfrm_policy_delete_security =	selinux_xfrm_policy_delete,
5793 	.xfrm_state_alloc_security =	selinux_xfrm_state_alloc,
5794 	.xfrm_state_free_security =	selinux_xfrm_state_free,
5795 	.xfrm_state_delete_security =	selinux_xfrm_state_delete,
5796 	.xfrm_policy_lookup =		selinux_xfrm_policy_lookup,
5797 	.xfrm_state_pol_flow_match =	selinux_xfrm_state_pol_flow_match,
5798 	.xfrm_decode_session =		selinux_xfrm_decode_session,
5799 #endif
5800 
5801 #ifdef CONFIG_KEYS
5802 	.key_alloc =			selinux_key_alloc,
5803 	.key_free =			selinux_key_free,
5804 	.key_permission =		selinux_key_permission,
5805 	.key_getsecurity =		selinux_key_getsecurity,
5806 #endif
5807 
5808 #ifdef CONFIG_AUDIT
5809 	.audit_rule_init =		selinux_audit_rule_init,
5810 	.audit_rule_known =		selinux_audit_rule_known,
5811 	.audit_rule_match =		selinux_audit_rule_match,
5812 	.audit_rule_free =		selinux_audit_rule_free,
5813 #endif
5814 };
5815 
5816 static __init int selinux_init(void)
5817 {
5818 	if (!security_module_enable(&selinux_ops)) {
5819 		selinux_enabled = 0;
5820 		return 0;
5821 	}
5822 
5823 	if (!selinux_enabled) {
5824 		printk(KERN_INFO "SELinux:  Disabled at boot.\n");
5825 		return 0;
5826 	}
5827 
5828 	printk(KERN_INFO "SELinux:  Initializing.\n");
5829 
5830 	/* Set the security state for the initial task. */
5831 	cred_init_security();
5832 
5833 	default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC);
5834 
5835 	sel_inode_cache = kmem_cache_create("selinux_inode_security",
5836 					    sizeof(struct inode_security_struct),
5837 					    0, SLAB_PANIC, NULL);
5838 	avc_init();
5839 
5840 	if (register_security(&selinux_ops))
5841 		panic("SELinux: Unable to register with kernel.\n");
5842 
5843 	if (selinux_enforcing)
5844 		printk(KERN_DEBUG "SELinux:  Starting in enforcing mode\n");
5845 	else
5846 		printk(KERN_DEBUG "SELinux:  Starting in permissive mode\n");
5847 
5848 	return 0;
5849 }
5850 
5851 static void delayed_superblock_init(struct super_block *sb, void *unused)
5852 {
5853 	superblock_doinit(sb, NULL);
5854 }
5855 
5856 void selinux_complete_init(void)
5857 {
5858 	printk(KERN_DEBUG "SELinux:  Completing initialization.\n");
5859 
5860 	/* Set up any superblocks initialized prior to the policy load. */
5861 	printk(KERN_DEBUG "SELinux:  Setting up existing superblocks.\n");
5862 	iterate_supers(delayed_superblock_init, NULL);
5863 }
5864 
5865 /* SELinux requires early initialization in order to label
5866    all processes and objects when they are created. */
5867 security_initcall(selinux_init);
5868 
5869 #if defined(CONFIG_NETFILTER)
5870 
5871 static struct nf_hook_ops selinux_ipv4_ops[] = {
5872 	{
5873 		.hook =		selinux_ipv4_postroute,
5874 		.owner =	THIS_MODULE,
5875 		.pf =		NFPROTO_IPV4,
5876 		.hooknum =	NF_INET_POST_ROUTING,
5877 		.priority =	NF_IP_PRI_SELINUX_LAST,
5878 	},
5879 	{
5880 		.hook =		selinux_ipv4_forward,
5881 		.owner =	THIS_MODULE,
5882 		.pf =		NFPROTO_IPV4,
5883 		.hooknum =	NF_INET_FORWARD,
5884 		.priority =	NF_IP_PRI_SELINUX_FIRST,
5885 	},
5886 	{
5887 		.hook =		selinux_ipv4_output,
5888 		.owner =	THIS_MODULE,
5889 		.pf =		NFPROTO_IPV4,
5890 		.hooknum =	NF_INET_LOCAL_OUT,
5891 		.priority =	NF_IP_PRI_SELINUX_FIRST,
5892 	}
5893 };
5894 
5895 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5896 
5897 static struct nf_hook_ops selinux_ipv6_ops[] = {
5898 	{
5899 		.hook =		selinux_ipv6_postroute,
5900 		.owner =	THIS_MODULE,
5901 		.pf =		NFPROTO_IPV6,
5902 		.hooknum =	NF_INET_POST_ROUTING,
5903 		.priority =	NF_IP6_PRI_SELINUX_LAST,
5904 	},
5905 	{
5906 		.hook =		selinux_ipv6_forward,
5907 		.owner =	THIS_MODULE,
5908 		.pf =		NFPROTO_IPV6,
5909 		.hooknum =	NF_INET_FORWARD,
5910 		.priority =	NF_IP6_PRI_SELINUX_FIRST,
5911 	}
5912 };
5913 
5914 #endif	/* IPV6 */
5915 
5916 static int __init selinux_nf_ip_init(void)
5917 {
5918 	int err = 0;
5919 
5920 	if (!selinux_enabled)
5921 		goto out;
5922 
5923 	printk(KERN_DEBUG "SELinux:  Registering netfilter hooks\n");
5924 
5925 	err = nf_register_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
5926 	if (err)
5927 		panic("SELinux: nf_register_hooks for IPv4: error %d\n", err);
5928 
5929 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5930 	err = nf_register_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
5931 	if (err)
5932 		panic("SELinux: nf_register_hooks for IPv6: error %d\n", err);
5933 #endif	/* IPV6 */
5934 
5935 out:
5936 	return err;
5937 }
5938 
5939 __initcall(selinux_nf_ip_init);
5940 
5941 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5942 static void selinux_nf_ip_exit(void)
5943 {
5944 	printk(KERN_DEBUG "SELinux:  Unregistering netfilter hooks\n");
5945 
5946 	nf_unregister_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
5947 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5948 	nf_unregister_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
5949 #endif	/* IPV6 */
5950 }
5951 #endif
5952 
5953 #else /* CONFIG_NETFILTER */
5954 
5955 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5956 #define selinux_nf_ip_exit()
5957 #endif
5958 
5959 #endif /* CONFIG_NETFILTER */
5960 
5961 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5962 static int selinux_disabled;
5963 
5964 int selinux_disable(void)
5965 {
5966 	if (ss_initialized) {
5967 		/* Not permitted after initial policy load. */
5968 		return -EINVAL;
5969 	}
5970 
5971 	if (selinux_disabled) {
5972 		/* Only do this once. */
5973 		return -EINVAL;
5974 	}
5975 
5976 	printk(KERN_INFO "SELinux:  Disabled at runtime.\n");
5977 
5978 	selinux_disabled = 1;
5979 	selinux_enabled = 0;
5980 
5981 	reset_security_ops();
5982 
5983 	/* Try to destroy the avc node cache */
5984 	avc_disable();
5985 
5986 	/* Unregister netfilter hooks. */
5987 	selinux_nf_ip_exit();
5988 
5989 	/* Unregister selinuxfs. */
5990 	exit_sel_fs();
5991 
5992 	return 0;
5993 }
5994 #endif
5995