1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * NSA Security-Enhanced Linux (SELinux) security module 4 * 5 * This file contains the SELinux hook function implementations. 6 * 7 * Authors: Stephen Smalley, <sds@tycho.nsa.gov> 8 * Chris Vance, <cvance@nai.com> 9 * Wayne Salamon, <wsalamon@nai.com> 10 * James Morris <jmorris@redhat.com> 11 * 12 * Copyright (C) 2001,2002 Networks Associates Technology, Inc. 13 * Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com> 14 * Eric Paris <eparis@redhat.com> 15 * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc. 16 * <dgoeddel@trustedcs.com> 17 * Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P. 18 * Paul Moore <paul@paul-moore.com> 19 * Copyright (C) 2007 Hitachi Software Engineering Co., Ltd. 20 * Yuichi Nakamura <ynakam@hitachisoft.jp> 21 * Copyright (C) 2016 Mellanox Technologies 22 */ 23 24 #include <linux/init.h> 25 #include <linux/kd.h> 26 #include <linux/kernel.h> 27 #include <linux/tracehook.h> 28 #include <linux/errno.h> 29 #include <linux/sched/signal.h> 30 #include <linux/sched/task.h> 31 #include <linux/lsm_hooks.h> 32 #include <linux/xattr.h> 33 #include <linux/capability.h> 34 #include <linux/unistd.h> 35 #include <linux/mm.h> 36 #include <linux/mman.h> 37 #include <linux/slab.h> 38 #include <linux/pagemap.h> 39 #include <linux/proc_fs.h> 40 #include <linux/swap.h> 41 #include <linux/spinlock.h> 42 #include <linux/syscalls.h> 43 #include <linux/dcache.h> 44 #include <linux/file.h> 45 #include <linux/fdtable.h> 46 #include <linux/namei.h> 47 #include <linux/mount.h> 48 #include <linux/fs_context.h> 49 #include <linux/fs_parser.h> 50 #include <linux/netfilter_ipv4.h> 51 #include <linux/netfilter_ipv6.h> 52 #include <linux/tty.h> 53 #include <net/icmp.h> 54 #include <net/ip.h> /* for local_port_range[] */ 55 #include <net/tcp.h> /* struct or_callable used in sock_rcv_skb */ 56 #include <net/inet_connection_sock.h> 57 #include <net/net_namespace.h> 58 #include <net/netlabel.h> 59 #include <linux/uaccess.h> 60 #include <asm/ioctls.h> 61 #include <linux/atomic.h> 62 #include <linux/bitops.h> 63 #include <linux/interrupt.h> 64 #include <linux/netdevice.h> /* for network interface checks */ 65 #include <net/netlink.h> 66 #include <linux/tcp.h> 67 #include <linux/udp.h> 68 #include <linux/dccp.h> 69 #include <linux/sctp.h> 70 #include <net/sctp/structs.h> 71 #include <linux/quota.h> 72 #include <linux/un.h> /* for Unix socket types */ 73 #include <net/af_unix.h> /* for Unix socket types */ 74 #include <linux/parser.h> 75 #include <linux/nfs_mount.h> 76 #include <net/ipv6.h> 77 #include <linux/hugetlb.h> 78 #include <linux/personality.h> 79 #include <linux/audit.h> 80 #include <linux/string.h> 81 #include <linux/mutex.h> 82 #include <linux/posix-timers.h> 83 #include <linux/syslog.h> 84 #include <linux/user_namespace.h> 85 #include <linux/export.h> 86 #include <linux/msg.h> 87 #include <linux/shm.h> 88 #include <linux/bpf.h> 89 #include <linux/kernfs.h> 90 #include <linux/stringhash.h> /* for hashlen_string() */ 91 #include <uapi/linux/mount.h> 92 #include <linux/fsnotify.h> 93 #include <linux/fanotify.h> 94 95 #include "avc.h" 96 #include "objsec.h" 97 #include "netif.h" 98 #include "netnode.h" 99 #include "netport.h" 100 #include "ibpkey.h" 101 #include "xfrm.h" 102 #include "netlabel.h" 103 #include "audit.h" 104 #include "avc_ss.h" 105 106 struct selinux_state selinux_state; 107 108 /* SECMARK reference count */ 109 static atomic_t selinux_secmark_refcount = ATOMIC_INIT(0); 110 111 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP 112 static int selinux_enforcing_boot __initdata; 113 114 static int __init enforcing_setup(char *str) 115 { 116 unsigned long enforcing; 117 if (!kstrtoul(str, 0, &enforcing)) 118 selinux_enforcing_boot = enforcing ? 1 : 0; 119 return 1; 120 } 121 __setup("enforcing=", enforcing_setup); 122 #else 123 #define selinux_enforcing_boot 1 124 #endif 125 126 int selinux_enabled_boot __initdata = 1; 127 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM 128 static int __init selinux_enabled_setup(char *str) 129 { 130 unsigned long enabled; 131 if (!kstrtoul(str, 0, &enabled)) 132 selinux_enabled_boot = enabled ? 1 : 0; 133 return 1; 134 } 135 __setup("selinux=", selinux_enabled_setup); 136 #endif 137 138 static unsigned int selinux_checkreqprot_boot = 139 CONFIG_SECURITY_SELINUX_CHECKREQPROT_VALUE; 140 141 static int __init checkreqprot_setup(char *str) 142 { 143 unsigned long checkreqprot; 144 145 if (!kstrtoul(str, 0, &checkreqprot)) { 146 selinux_checkreqprot_boot = checkreqprot ? 1 : 0; 147 if (checkreqprot) 148 pr_warn("SELinux: checkreqprot set to 1 via kernel parameter. This is deprecated and will be rejected in a future kernel release.\n"); 149 } 150 return 1; 151 } 152 __setup("checkreqprot=", checkreqprot_setup); 153 154 /** 155 * selinux_secmark_enabled - Check to see if SECMARK is currently enabled 156 * 157 * Description: 158 * This function checks the SECMARK reference counter to see if any SECMARK 159 * targets are currently configured, if the reference counter is greater than 160 * zero SECMARK is considered to be enabled. Returns true (1) if SECMARK is 161 * enabled, false (0) if SECMARK is disabled. If the always_check_network 162 * policy capability is enabled, SECMARK is always considered enabled. 163 * 164 */ 165 static int selinux_secmark_enabled(void) 166 { 167 return (selinux_policycap_alwaysnetwork() || 168 atomic_read(&selinux_secmark_refcount)); 169 } 170 171 /** 172 * selinux_peerlbl_enabled - Check to see if peer labeling is currently enabled 173 * 174 * Description: 175 * This function checks if NetLabel or labeled IPSEC is enabled. Returns true 176 * (1) if any are enabled or false (0) if neither are enabled. If the 177 * always_check_network policy capability is enabled, peer labeling 178 * is always considered enabled. 179 * 180 */ 181 static int selinux_peerlbl_enabled(void) 182 { 183 return (selinux_policycap_alwaysnetwork() || 184 netlbl_enabled() || selinux_xfrm_enabled()); 185 } 186 187 static int selinux_netcache_avc_callback(u32 event) 188 { 189 if (event == AVC_CALLBACK_RESET) { 190 sel_netif_flush(); 191 sel_netnode_flush(); 192 sel_netport_flush(); 193 synchronize_net(); 194 } 195 return 0; 196 } 197 198 static int selinux_lsm_notifier_avc_callback(u32 event) 199 { 200 if (event == AVC_CALLBACK_RESET) { 201 sel_ib_pkey_flush(); 202 call_blocking_lsm_notifier(LSM_POLICY_CHANGE, NULL); 203 } 204 205 return 0; 206 } 207 208 /* 209 * initialise the security for the init task 210 */ 211 static void cred_init_security(void) 212 { 213 struct cred *cred = (struct cred *) current->real_cred; 214 struct task_security_struct *tsec; 215 216 tsec = selinux_cred(cred); 217 tsec->osid = tsec->sid = SECINITSID_KERNEL; 218 } 219 220 /* 221 * get the security ID of a set of credentials 222 */ 223 static inline u32 cred_sid(const struct cred *cred) 224 { 225 const struct task_security_struct *tsec; 226 227 tsec = selinux_cred(cred); 228 return tsec->sid; 229 } 230 231 /* 232 * get the objective security ID of a task 233 */ 234 static inline u32 task_sid(const struct task_struct *task) 235 { 236 u32 sid; 237 238 rcu_read_lock(); 239 sid = cred_sid(__task_cred(task)); 240 rcu_read_unlock(); 241 return sid; 242 } 243 244 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry); 245 246 /* 247 * Try reloading inode security labels that have been marked as invalid. The 248 * @may_sleep parameter indicates when sleeping and thus reloading labels is 249 * allowed; when set to false, returns -ECHILD when the label is 250 * invalid. The @dentry parameter should be set to a dentry of the inode. 251 */ 252 static int __inode_security_revalidate(struct inode *inode, 253 struct dentry *dentry, 254 bool may_sleep) 255 { 256 struct inode_security_struct *isec = selinux_inode(inode); 257 258 might_sleep_if(may_sleep); 259 260 if (selinux_initialized(&selinux_state) && 261 isec->initialized != LABEL_INITIALIZED) { 262 if (!may_sleep) 263 return -ECHILD; 264 265 /* 266 * Try reloading the inode security label. This will fail if 267 * @opt_dentry is NULL and no dentry for this inode can be 268 * found; in that case, continue using the old label. 269 */ 270 inode_doinit_with_dentry(inode, dentry); 271 } 272 return 0; 273 } 274 275 static struct inode_security_struct *inode_security_novalidate(struct inode *inode) 276 { 277 return selinux_inode(inode); 278 } 279 280 static struct inode_security_struct *inode_security_rcu(struct inode *inode, bool rcu) 281 { 282 int error; 283 284 error = __inode_security_revalidate(inode, NULL, !rcu); 285 if (error) 286 return ERR_PTR(error); 287 return selinux_inode(inode); 288 } 289 290 /* 291 * Get the security label of an inode. 292 */ 293 static struct inode_security_struct *inode_security(struct inode *inode) 294 { 295 __inode_security_revalidate(inode, NULL, true); 296 return selinux_inode(inode); 297 } 298 299 static struct inode_security_struct *backing_inode_security_novalidate(struct dentry *dentry) 300 { 301 struct inode *inode = d_backing_inode(dentry); 302 303 return selinux_inode(inode); 304 } 305 306 /* 307 * Get the security label of a dentry's backing inode. 308 */ 309 static struct inode_security_struct *backing_inode_security(struct dentry *dentry) 310 { 311 struct inode *inode = d_backing_inode(dentry); 312 313 __inode_security_revalidate(inode, dentry, true); 314 return selinux_inode(inode); 315 } 316 317 static void inode_free_security(struct inode *inode) 318 { 319 struct inode_security_struct *isec = selinux_inode(inode); 320 struct superblock_security_struct *sbsec; 321 322 if (!isec) 323 return; 324 sbsec = inode->i_sb->s_security; 325 /* 326 * As not all inode security structures are in a list, we check for 327 * empty list outside of the lock to make sure that we won't waste 328 * time taking a lock doing nothing. 329 * 330 * The list_del_init() function can be safely called more than once. 331 * It should not be possible for this function to be called with 332 * concurrent list_add(), but for better safety against future changes 333 * in the code, we use list_empty_careful() here. 334 */ 335 if (!list_empty_careful(&isec->list)) { 336 spin_lock(&sbsec->isec_lock); 337 list_del_init(&isec->list); 338 spin_unlock(&sbsec->isec_lock); 339 } 340 } 341 342 static void superblock_free_security(struct super_block *sb) 343 { 344 struct superblock_security_struct *sbsec = sb->s_security; 345 sb->s_security = NULL; 346 kfree(sbsec); 347 } 348 349 struct selinux_mnt_opts { 350 const char *fscontext, *context, *rootcontext, *defcontext; 351 }; 352 353 static void selinux_free_mnt_opts(void *mnt_opts) 354 { 355 struct selinux_mnt_opts *opts = mnt_opts; 356 kfree(opts->fscontext); 357 kfree(opts->context); 358 kfree(opts->rootcontext); 359 kfree(opts->defcontext); 360 kfree(opts); 361 } 362 363 enum { 364 Opt_error = -1, 365 Opt_context = 0, 366 Opt_defcontext = 1, 367 Opt_fscontext = 2, 368 Opt_rootcontext = 3, 369 Opt_seclabel = 4, 370 }; 371 372 #define A(s, has_arg) {#s, sizeof(#s) - 1, Opt_##s, has_arg} 373 static struct { 374 const char *name; 375 int len; 376 int opt; 377 bool has_arg; 378 } tokens[] = { 379 A(context, true), 380 A(fscontext, true), 381 A(defcontext, true), 382 A(rootcontext, true), 383 A(seclabel, false), 384 }; 385 #undef A 386 387 static int match_opt_prefix(char *s, int l, char **arg) 388 { 389 int i; 390 391 for (i = 0; i < ARRAY_SIZE(tokens); i++) { 392 size_t len = tokens[i].len; 393 if (len > l || memcmp(s, tokens[i].name, len)) 394 continue; 395 if (tokens[i].has_arg) { 396 if (len == l || s[len] != '=') 397 continue; 398 *arg = s + len + 1; 399 } else if (len != l) 400 continue; 401 return tokens[i].opt; 402 } 403 return Opt_error; 404 } 405 406 #define SEL_MOUNT_FAIL_MSG "SELinux: duplicate or incompatible mount options\n" 407 408 static int may_context_mount_sb_relabel(u32 sid, 409 struct superblock_security_struct *sbsec, 410 const struct cred *cred) 411 { 412 const struct task_security_struct *tsec = selinux_cred(cred); 413 int rc; 414 415 rc = avc_has_perm(&selinux_state, 416 tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM, 417 FILESYSTEM__RELABELFROM, NULL); 418 if (rc) 419 return rc; 420 421 rc = avc_has_perm(&selinux_state, 422 tsec->sid, sid, SECCLASS_FILESYSTEM, 423 FILESYSTEM__RELABELTO, NULL); 424 return rc; 425 } 426 427 static int may_context_mount_inode_relabel(u32 sid, 428 struct superblock_security_struct *sbsec, 429 const struct cred *cred) 430 { 431 const struct task_security_struct *tsec = selinux_cred(cred); 432 int rc; 433 rc = avc_has_perm(&selinux_state, 434 tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM, 435 FILESYSTEM__RELABELFROM, NULL); 436 if (rc) 437 return rc; 438 439 rc = avc_has_perm(&selinux_state, 440 sid, sbsec->sid, SECCLASS_FILESYSTEM, 441 FILESYSTEM__ASSOCIATE, NULL); 442 return rc; 443 } 444 445 static int selinux_is_genfs_special_handling(struct super_block *sb) 446 { 447 /* Special handling. Genfs but also in-core setxattr handler */ 448 return !strcmp(sb->s_type->name, "sysfs") || 449 !strcmp(sb->s_type->name, "pstore") || 450 !strcmp(sb->s_type->name, "debugfs") || 451 !strcmp(sb->s_type->name, "tracefs") || 452 !strcmp(sb->s_type->name, "rootfs") || 453 (selinux_policycap_cgroupseclabel() && 454 (!strcmp(sb->s_type->name, "cgroup") || 455 !strcmp(sb->s_type->name, "cgroup2"))); 456 } 457 458 static int selinux_is_sblabel_mnt(struct super_block *sb) 459 { 460 struct superblock_security_struct *sbsec = sb->s_security; 461 462 /* 463 * IMPORTANT: Double-check logic in this function when adding a new 464 * SECURITY_FS_USE_* definition! 465 */ 466 BUILD_BUG_ON(SECURITY_FS_USE_MAX != 7); 467 468 switch (sbsec->behavior) { 469 case SECURITY_FS_USE_XATTR: 470 case SECURITY_FS_USE_TRANS: 471 case SECURITY_FS_USE_TASK: 472 case SECURITY_FS_USE_NATIVE: 473 return 1; 474 475 case SECURITY_FS_USE_GENFS: 476 return selinux_is_genfs_special_handling(sb); 477 478 /* Never allow relabeling on context mounts */ 479 case SECURITY_FS_USE_MNTPOINT: 480 case SECURITY_FS_USE_NONE: 481 default: 482 return 0; 483 } 484 } 485 486 static int sb_finish_set_opts(struct super_block *sb) 487 { 488 struct superblock_security_struct *sbsec = sb->s_security; 489 struct dentry *root = sb->s_root; 490 struct inode *root_inode = d_backing_inode(root); 491 int rc = 0; 492 493 if (sbsec->behavior == SECURITY_FS_USE_XATTR) { 494 /* Make sure that the xattr handler exists and that no 495 error other than -ENODATA is returned by getxattr on 496 the root directory. -ENODATA is ok, as this may be 497 the first boot of the SELinux kernel before we have 498 assigned xattr values to the filesystem. */ 499 if (!(root_inode->i_opflags & IOP_XATTR)) { 500 pr_warn("SELinux: (dev %s, type %s) has no " 501 "xattr support\n", sb->s_id, sb->s_type->name); 502 rc = -EOPNOTSUPP; 503 goto out; 504 } 505 506 rc = __vfs_getxattr(root, root_inode, XATTR_NAME_SELINUX, NULL, 0); 507 if (rc < 0 && rc != -ENODATA) { 508 if (rc == -EOPNOTSUPP) 509 pr_warn("SELinux: (dev %s, type " 510 "%s) has no security xattr handler\n", 511 sb->s_id, sb->s_type->name); 512 else 513 pr_warn("SELinux: (dev %s, type " 514 "%s) getxattr errno %d\n", sb->s_id, 515 sb->s_type->name, -rc); 516 goto out; 517 } 518 } 519 520 sbsec->flags |= SE_SBINITIALIZED; 521 522 /* 523 * Explicitly set or clear SBLABEL_MNT. It's not sufficient to simply 524 * leave the flag untouched because sb_clone_mnt_opts might be handing 525 * us a superblock that needs the flag to be cleared. 526 */ 527 if (selinux_is_sblabel_mnt(sb)) 528 sbsec->flags |= SBLABEL_MNT; 529 else 530 sbsec->flags &= ~SBLABEL_MNT; 531 532 /* Initialize the root inode. */ 533 rc = inode_doinit_with_dentry(root_inode, root); 534 535 /* Initialize any other inodes associated with the superblock, e.g. 536 inodes created prior to initial policy load or inodes created 537 during get_sb by a pseudo filesystem that directly 538 populates itself. */ 539 spin_lock(&sbsec->isec_lock); 540 while (!list_empty(&sbsec->isec_head)) { 541 struct inode_security_struct *isec = 542 list_first_entry(&sbsec->isec_head, 543 struct inode_security_struct, list); 544 struct inode *inode = isec->inode; 545 list_del_init(&isec->list); 546 spin_unlock(&sbsec->isec_lock); 547 inode = igrab(inode); 548 if (inode) { 549 if (!IS_PRIVATE(inode)) 550 inode_doinit_with_dentry(inode, NULL); 551 iput(inode); 552 } 553 spin_lock(&sbsec->isec_lock); 554 } 555 spin_unlock(&sbsec->isec_lock); 556 out: 557 return rc; 558 } 559 560 static int bad_option(struct superblock_security_struct *sbsec, char flag, 561 u32 old_sid, u32 new_sid) 562 { 563 char mnt_flags = sbsec->flags & SE_MNTMASK; 564 565 /* check if the old mount command had the same options */ 566 if (sbsec->flags & SE_SBINITIALIZED) 567 if (!(sbsec->flags & flag) || 568 (old_sid != new_sid)) 569 return 1; 570 571 /* check if we were passed the same options twice, 572 * aka someone passed context=a,context=b 573 */ 574 if (!(sbsec->flags & SE_SBINITIALIZED)) 575 if (mnt_flags & flag) 576 return 1; 577 return 0; 578 } 579 580 static int parse_sid(struct super_block *sb, const char *s, u32 *sid) 581 { 582 int rc = security_context_str_to_sid(&selinux_state, s, 583 sid, GFP_KERNEL); 584 if (rc) 585 pr_warn("SELinux: security_context_str_to_sid" 586 "(%s) failed for (dev %s, type %s) errno=%d\n", 587 s, sb->s_id, sb->s_type->name, rc); 588 return rc; 589 } 590 591 /* 592 * Allow filesystems with binary mount data to explicitly set mount point 593 * labeling information. 594 */ 595 static int selinux_set_mnt_opts(struct super_block *sb, 596 void *mnt_opts, 597 unsigned long kern_flags, 598 unsigned long *set_kern_flags) 599 { 600 const struct cred *cred = current_cred(); 601 struct superblock_security_struct *sbsec = sb->s_security; 602 struct dentry *root = sbsec->sb->s_root; 603 struct selinux_mnt_opts *opts = mnt_opts; 604 struct inode_security_struct *root_isec; 605 u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0; 606 u32 defcontext_sid = 0; 607 int rc = 0; 608 609 mutex_lock(&sbsec->lock); 610 611 if (!selinux_initialized(&selinux_state)) { 612 if (!opts) { 613 /* Defer initialization until selinux_complete_init, 614 after the initial policy is loaded and the security 615 server is ready to handle calls. */ 616 goto out; 617 } 618 rc = -EINVAL; 619 pr_warn("SELinux: Unable to set superblock options " 620 "before the security server is initialized\n"); 621 goto out; 622 } 623 if (kern_flags && !set_kern_flags) { 624 /* Specifying internal flags without providing a place to 625 * place the results is not allowed */ 626 rc = -EINVAL; 627 goto out; 628 } 629 630 /* 631 * Binary mount data FS will come through this function twice. Once 632 * from an explicit call and once from the generic calls from the vfs. 633 * Since the generic VFS calls will not contain any security mount data 634 * we need to skip the double mount verification. 635 * 636 * This does open a hole in which we will not notice if the first 637 * mount using this sb set explict options and a second mount using 638 * this sb does not set any security options. (The first options 639 * will be used for both mounts) 640 */ 641 if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA) 642 && !opts) 643 goto out; 644 645 root_isec = backing_inode_security_novalidate(root); 646 647 /* 648 * parse the mount options, check if they are valid sids. 649 * also check if someone is trying to mount the same sb more 650 * than once with different security options. 651 */ 652 if (opts) { 653 if (opts->fscontext) { 654 rc = parse_sid(sb, opts->fscontext, &fscontext_sid); 655 if (rc) 656 goto out; 657 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, 658 fscontext_sid)) 659 goto out_double_mount; 660 sbsec->flags |= FSCONTEXT_MNT; 661 } 662 if (opts->context) { 663 rc = parse_sid(sb, opts->context, &context_sid); 664 if (rc) 665 goto out; 666 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, 667 context_sid)) 668 goto out_double_mount; 669 sbsec->flags |= CONTEXT_MNT; 670 } 671 if (opts->rootcontext) { 672 rc = parse_sid(sb, opts->rootcontext, &rootcontext_sid); 673 if (rc) 674 goto out; 675 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, 676 rootcontext_sid)) 677 goto out_double_mount; 678 sbsec->flags |= ROOTCONTEXT_MNT; 679 } 680 if (opts->defcontext) { 681 rc = parse_sid(sb, opts->defcontext, &defcontext_sid); 682 if (rc) 683 goto out; 684 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, 685 defcontext_sid)) 686 goto out_double_mount; 687 sbsec->flags |= DEFCONTEXT_MNT; 688 } 689 } 690 691 if (sbsec->flags & SE_SBINITIALIZED) { 692 /* previously mounted with options, but not on this attempt? */ 693 if ((sbsec->flags & SE_MNTMASK) && !opts) 694 goto out_double_mount; 695 rc = 0; 696 goto out; 697 } 698 699 if (strcmp(sb->s_type->name, "proc") == 0) 700 sbsec->flags |= SE_SBPROC | SE_SBGENFS; 701 702 if (!strcmp(sb->s_type->name, "debugfs") || 703 !strcmp(sb->s_type->name, "tracefs") || 704 !strcmp(sb->s_type->name, "binder") || 705 !strcmp(sb->s_type->name, "bpf") || 706 !strcmp(sb->s_type->name, "pstore")) 707 sbsec->flags |= SE_SBGENFS; 708 709 if (!strcmp(sb->s_type->name, "sysfs") || 710 !strcmp(sb->s_type->name, "cgroup") || 711 !strcmp(sb->s_type->name, "cgroup2")) 712 sbsec->flags |= SE_SBGENFS | SE_SBGENFS_XATTR; 713 714 if (!sbsec->behavior) { 715 /* 716 * Determine the labeling behavior to use for this 717 * filesystem type. 718 */ 719 rc = security_fs_use(&selinux_state, sb); 720 if (rc) { 721 pr_warn("%s: security_fs_use(%s) returned %d\n", 722 __func__, sb->s_type->name, rc); 723 goto out; 724 } 725 } 726 727 /* 728 * If this is a user namespace mount and the filesystem type is not 729 * explicitly whitelisted, then no contexts are allowed on the command 730 * line and security labels must be ignored. 731 */ 732 if (sb->s_user_ns != &init_user_ns && 733 strcmp(sb->s_type->name, "tmpfs") && 734 strcmp(sb->s_type->name, "ramfs") && 735 strcmp(sb->s_type->name, "devpts")) { 736 if (context_sid || fscontext_sid || rootcontext_sid || 737 defcontext_sid) { 738 rc = -EACCES; 739 goto out; 740 } 741 if (sbsec->behavior == SECURITY_FS_USE_XATTR) { 742 sbsec->behavior = SECURITY_FS_USE_MNTPOINT; 743 rc = security_transition_sid(&selinux_state, 744 current_sid(), 745 current_sid(), 746 SECCLASS_FILE, NULL, 747 &sbsec->mntpoint_sid); 748 if (rc) 749 goto out; 750 } 751 goto out_set_opts; 752 } 753 754 /* sets the context of the superblock for the fs being mounted. */ 755 if (fscontext_sid) { 756 rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred); 757 if (rc) 758 goto out; 759 760 sbsec->sid = fscontext_sid; 761 } 762 763 /* 764 * Switch to using mount point labeling behavior. 765 * sets the label used on all file below the mountpoint, and will set 766 * the superblock context if not already set. 767 */ 768 if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !context_sid) { 769 sbsec->behavior = SECURITY_FS_USE_NATIVE; 770 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS; 771 } 772 773 if (context_sid) { 774 if (!fscontext_sid) { 775 rc = may_context_mount_sb_relabel(context_sid, sbsec, 776 cred); 777 if (rc) 778 goto out; 779 sbsec->sid = context_sid; 780 } else { 781 rc = may_context_mount_inode_relabel(context_sid, sbsec, 782 cred); 783 if (rc) 784 goto out; 785 } 786 if (!rootcontext_sid) 787 rootcontext_sid = context_sid; 788 789 sbsec->mntpoint_sid = context_sid; 790 sbsec->behavior = SECURITY_FS_USE_MNTPOINT; 791 } 792 793 if (rootcontext_sid) { 794 rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec, 795 cred); 796 if (rc) 797 goto out; 798 799 root_isec->sid = rootcontext_sid; 800 root_isec->initialized = LABEL_INITIALIZED; 801 } 802 803 if (defcontext_sid) { 804 if (sbsec->behavior != SECURITY_FS_USE_XATTR && 805 sbsec->behavior != SECURITY_FS_USE_NATIVE) { 806 rc = -EINVAL; 807 pr_warn("SELinux: defcontext option is " 808 "invalid for this filesystem type\n"); 809 goto out; 810 } 811 812 if (defcontext_sid != sbsec->def_sid) { 813 rc = may_context_mount_inode_relabel(defcontext_sid, 814 sbsec, cred); 815 if (rc) 816 goto out; 817 } 818 819 sbsec->def_sid = defcontext_sid; 820 } 821 822 out_set_opts: 823 rc = sb_finish_set_opts(sb); 824 out: 825 mutex_unlock(&sbsec->lock); 826 return rc; 827 out_double_mount: 828 rc = -EINVAL; 829 pr_warn("SELinux: mount invalid. Same superblock, different " 830 "security settings for (dev %s, type %s)\n", sb->s_id, 831 sb->s_type->name); 832 goto out; 833 } 834 835 static int selinux_cmp_sb_context(const struct super_block *oldsb, 836 const struct super_block *newsb) 837 { 838 struct superblock_security_struct *old = oldsb->s_security; 839 struct superblock_security_struct *new = newsb->s_security; 840 char oldflags = old->flags & SE_MNTMASK; 841 char newflags = new->flags & SE_MNTMASK; 842 843 if (oldflags != newflags) 844 goto mismatch; 845 if ((oldflags & FSCONTEXT_MNT) && old->sid != new->sid) 846 goto mismatch; 847 if ((oldflags & CONTEXT_MNT) && old->mntpoint_sid != new->mntpoint_sid) 848 goto mismatch; 849 if ((oldflags & DEFCONTEXT_MNT) && old->def_sid != new->def_sid) 850 goto mismatch; 851 if (oldflags & ROOTCONTEXT_MNT) { 852 struct inode_security_struct *oldroot = backing_inode_security(oldsb->s_root); 853 struct inode_security_struct *newroot = backing_inode_security(newsb->s_root); 854 if (oldroot->sid != newroot->sid) 855 goto mismatch; 856 } 857 return 0; 858 mismatch: 859 pr_warn("SELinux: mount invalid. Same superblock, " 860 "different security settings for (dev %s, " 861 "type %s)\n", newsb->s_id, newsb->s_type->name); 862 return -EBUSY; 863 } 864 865 static int selinux_sb_clone_mnt_opts(const struct super_block *oldsb, 866 struct super_block *newsb, 867 unsigned long kern_flags, 868 unsigned long *set_kern_flags) 869 { 870 int rc = 0; 871 const struct superblock_security_struct *oldsbsec = oldsb->s_security; 872 struct superblock_security_struct *newsbsec = newsb->s_security; 873 874 int set_fscontext = (oldsbsec->flags & FSCONTEXT_MNT); 875 int set_context = (oldsbsec->flags & CONTEXT_MNT); 876 int set_rootcontext = (oldsbsec->flags & ROOTCONTEXT_MNT); 877 878 /* 879 * if the parent was able to be mounted it clearly had no special lsm 880 * mount options. thus we can safely deal with this superblock later 881 */ 882 if (!selinux_initialized(&selinux_state)) 883 return 0; 884 885 /* 886 * Specifying internal flags without providing a place to 887 * place the results is not allowed. 888 */ 889 if (kern_flags && !set_kern_flags) 890 return -EINVAL; 891 892 /* how can we clone if the old one wasn't set up?? */ 893 BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED)); 894 895 /* if fs is reusing a sb, make sure that the contexts match */ 896 if (newsbsec->flags & SE_SBINITIALIZED) { 897 if ((kern_flags & SECURITY_LSM_NATIVE_LABELS) && !set_context) 898 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS; 899 return selinux_cmp_sb_context(oldsb, newsb); 900 } 901 902 mutex_lock(&newsbsec->lock); 903 904 newsbsec->flags = oldsbsec->flags; 905 906 newsbsec->sid = oldsbsec->sid; 907 newsbsec->def_sid = oldsbsec->def_sid; 908 newsbsec->behavior = oldsbsec->behavior; 909 910 if (newsbsec->behavior == SECURITY_FS_USE_NATIVE && 911 !(kern_flags & SECURITY_LSM_NATIVE_LABELS) && !set_context) { 912 rc = security_fs_use(&selinux_state, newsb); 913 if (rc) 914 goto out; 915 } 916 917 if (kern_flags & SECURITY_LSM_NATIVE_LABELS && !set_context) { 918 newsbsec->behavior = SECURITY_FS_USE_NATIVE; 919 *set_kern_flags |= SECURITY_LSM_NATIVE_LABELS; 920 } 921 922 if (set_context) { 923 u32 sid = oldsbsec->mntpoint_sid; 924 925 if (!set_fscontext) 926 newsbsec->sid = sid; 927 if (!set_rootcontext) { 928 struct inode_security_struct *newisec = backing_inode_security(newsb->s_root); 929 newisec->sid = sid; 930 } 931 newsbsec->mntpoint_sid = sid; 932 } 933 if (set_rootcontext) { 934 const struct inode_security_struct *oldisec = backing_inode_security(oldsb->s_root); 935 struct inode_security_struct *newisec = backing_inode_security(newsb->s_root); 936 937 newisec->sid = oldisec->sid; 938 } 939 940 sb_finish_set_opts(newsb); 941 out: 942 mutex_unlock(&newsbsec->lock); 943 return rc; 944 } 945 946 static int selinux_add_opt(int token, const char *s, void **mnt_opts) 947 { 948 struct selinux_mnt_opts *opts = *mnt_opts; 949 950 if (token == Opt_seclabel) /* eaten and completely ignored */ 951 return 0; 952 953 if (!opts) { 954 opts = kzalloc(sizeof(struct selinux_mnt_opts), GFP_KERNEL); 955 if (!opts) 956 return -ENOMEM; 957 *mnt_opts = opts; 958 } 959 if (!s) 960 return -ENOMEM; 961 switch (token) { 962 case Opt_context: 963 if (opts->context || opts->defcontext) 964 goto Einval; 965 opts->context = s; 966 break; 967 case Opt_fscontext: 968 if (opts->fscontext) 969 goto Einval; 970 opts->fscontext = s; 971 break; 972 case Opt_rootcontext: 973 if (opts->rootcontext) 974 goto Einval; 975 opts->rootcontext = s; 976 break; 977 case Opt_defcontext: 978 if (opts->context || opts->defcontext) 979 goto Einval; 980 opts->defcontext = s; 981 break; 982 } 983 return 0; 984 Einval: 985 pr_warn(SEL_MOUNT_FAIL_MSG); 986 return -EINVAL; 987 } 988 989 static int selinux_add_mnt_opt(const char *option, const char *val, int len, 990 void **mnt_opts) 991 { 992 int token = Opt_error; 993 int rc, i; 994 995 for (i = 0; i < ARRAY_SIZE(tokens); i++) { 996 if (strcmp(option, tokens[i].name) == 0) { 997 token = tokens[i].opt; 998 break; 999 } 1000 } 1001 1002 if (token == Opt_error) 1003 return -EINVAL; 1004 1005 if (token != Opt_seclabel) { 1006 val = kmemdup_nul(val, len, GFP_KERNEL); 1007 if (!val) { 1008 rc = -ENOMEM; 1009 goto free_opt; 1010 } 1011 } 1012 rc = selinux_add_opt(token, val, mnt_opts); 1013 if (unlikely(rc)) { 1014 kfree(val); 1015 goto free_opt; 1016 } 1017 return rc; 1018 1019 free_opt: 1020 if (*mnt_opts) { 1021 selinux_free_mnt_opts(*mnt_opts); 1022 *mnt_opts = NULL; 1023 } 1024 return rc; 1025 } 1026 1027 static int show_sid(struct seq_file *m, u32 sid) 1028 { 1029 char *context = NULL; 1030 u32 len; 1031 int rc; 1032 1033 rc = security_sid_to_context(&selinux_state, sid, 1034 &context, &len); 1035 if (!rc) { 1036 bool has_comma = context && strchr(context, ','); 1037 1038 seq_putc(m, '='); 1039 if (has_comma) 1040 seq_putc(m, '\"'); 1041 seq_escape(m, context, "\"\n\\"); 1042 if (has_comma) 1043 seq_putc(m, '\"'); 1044 } 1045 kfree(context); 1046 return rc; 1047 } 1048 1049 static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb) 1050 { 1051 struct superblock_security_struct *sbsec = sb->s_security; 1052 int rc; 1053 1054 if (!(sbsec->flags & SE_SBINITIALIZED)) 1055 return 0; 1056 1057 if (!selinux_initialized(&selinux_state)) 1058 return 0; 1059 1060 if (sbsec->flags & FSCONTEXT_MNT) { 1061 seq_putc(m, ','); 1062 seq_puts(m, FSCONTEXT_STR); 1063 rc = show_sid(m, sbsec->sid); 1064 if (rc) 1065 return rc; 1066 } 1067 if (sbsec->flags & CONTEXT_MNT) { 1068 seq_putc(m, ','); 1069 seq_puts(m, CONTEXT_STR); 1070 rc = show_sid(m, sbsec->mntpoint_sid); 1071 if (rc) 1072 return rc; 1073 } 1074 if (sbsec->flags & DEFCONTEXT_MNT) { 1075 seq_putc(m, ','); 1076 seq_puts(m, DEFCONTEXT_STR); 1077 rc = show_sid(m, sbsec->def_sid); 1078 if (rc) 1079 return rc; 1080 } 1081 if (sbsec->flags & ROOTCONTEXT_MNT) { 1082 struct dentry *root = sbsec->sb->s_root; 1083 struct inode_security_struct *isec = backing_inode_security(root); 1084 seq_putc(m, ','); 1085 seq_puts(m, ROOTCONTEXT_STR); 1086 rc = show_sid(m, isec->sid); 1087 if (rc) 1088 return rc; 1089 } 1090 if (sbsec->flags & SBLABEL_MNT) { 1091 seq_putc(m, ','); 1092 seq_puts(m, SECLABEL_STR); 1093 } 1094 return 0; 1095 } 1096 1097 static inline u16 inode_mode_to_security_class(umode_t mode) 1098 { 1099 switch (mode & S_IFMT) { 1100 case S_IFSOCK: 1101 return SECCLASS_SOCK_FILE; 1102 case S_IFLNK: 1103 return SECCLASS_LNK_FILE; 1104 case S_IFREG: 1105 return SECCLASS_FILE; 1106 case S_IFBLK: 1107 return SECCLASS_BLK_FILE; 1108 case S_IFDIR: 1109 return SECCLASS_DIR; 1110 case S_IFCHR: 1111 return SECCLASS_CHR_FILE; 1112 case S_IFIFO: 1113 return SECCLASS_FIFO_FILE; 1114 1115 } 1116 1117 return SECCLASS_FILE; 1118 } 1119 1120 static inline int default_protocol_stream(int protocol) 1121 { 1122 return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP); 1123 } 1124 1125 static inline int default_protocol_dgram(int protocol) 1126 { 1127 return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP); 1128 } 1129 1130 static inline u16 socket_type_to_security_class(int family, int type, int protocol) 1131 { 1132 int extsockclass = selinux_policycap_extsockclass(); 1133 1134 switch (family) { 1135 case PF_UNIX: 1136 switch (type) { 1137 case SOCK_STREAM: 1138 case SOCK_SEQPACKET: 1139 return SECCLASS_UNIX_STREAM_SOCKET; 1140 case SOCK_DGRAM: 1141 case SOCK_RAW: 1142 return SECCLASS_UNIX_DGRAM_SOCKET; 1143 } 1144 break; 1145 case PF_INET: 1146 case PF_INET6: 1147 switch (type) { 1148 case SOCK_STREAM: 1149 case SOCK_SEQPACKET: 1150 if (default_protocol_stream(protocol)) 1151 return SECCLASS_TCP_SOCKET; 1152 else if (extsockclass && protocol == IPPROTO_SCTP) 1153 return SECCLASS_SCTP_SOCKET; 1154 else 1155 return SECCLASS_RAWIP_SOCKET; 1156 case SOCK_DGRAM: 1157 if (default_protocol_dgram(protocol)) 1158 return SECCLASS_UDP_SOCKET; 1159 else if (extsockclass && (protocol == IPPROTO_ICMP || 1160 protocol == IPPROTO_ICMPV6)) 1161 return SECCLASS_ICMP_SOCKET; 1162 else 1163 return SECCLASS_RAWIP_SOCKET; 1164 case SOCK_DCCP: 1165 return SECCLASS_DCCP_SOCKET; 1166 default: 1167 return SECCLASS_RAWIP_SOCKET; 1168 } 1169 break; 1170 case PF_NETLINK: 1171 switch (protocol) { 1172 case NETLINK_ROUTE: 1173 return SECCLASS_NETLINK_ROUTE_SOCKET; 1174 case NETLINK_SOCK_DIAG: 1175 return SECCLASS_NETLINK_TCPDIAG_SOCKET; 1176 case NETLINK_NFLOG: 1177 return SECCLASS_NETLINK_NFLOG_SOCKET; 1178 case NETLINK_XFRM: 1179 return SECCLASS_NETLINK_XFRM_SOCKET; 1180 case NETLINK_SELINUX: 1181 return SECCLASS_NETLINK_SELINUX_SOCKET; 1182 case NETLINK_ISCSI: 1183 return SECCLASS_NETLINK_ISCSI_SOCKET; 1184 case NETLINK_AUDIT: 1185 return SECCLASS_NETLINK_AUDIT_SOCKET; 1186 case NETLINK_FIB_LOOKUP: 1187 return SECCLASS_NETLINK_FIB_LOOKUP_SOCKET; 1188 case NETLINK_CONNECTOR: 1189 return SECCLASS_NETLINK_CONNECTOR_SOCKET; 1190 case NETLINK_NETFILTER: 1191 return SECCLASS_NETLINK_NETFILTER_SOCKET; 1192 case NETLINK_DNRTMSG: 1193 return SECCLASS_NETLINK_DNRT_SOCKET; 1194 case NETLINK_KOBJECT_UEVENT: 1195 return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET; 1196 case NETLINK_GENERIC: 1197 return SECCLASS_NETLINK_GENERIC_SOCKET; 1198 case NETLINK_SCSITRANSPORT: 1199 return SECCLASS_NETLINK_SCSITRANSPORT_SOCKET; 1200 case NETLINK_RDMA: 1201 return SECCLASS_NETLINK_RDMA_SOCKET; 1202 case NETLINK_CRYPTO: 1203 return SECCLASS_NETLINK_CRYPTO_SOCKET; 1204 default: 1205 return SECCLASS_NETLINK_SOCKET; 1206 } 1207 case PF_PACKET: 1208 return SECCLASS_PACKET_SOCKET; 1209 case PF_KEY: 1210 return SECCLASS_KEY_SOCKET; 1211 case PF_APPLETALK: 1212 return SECCLASS_APPLETALK_SOCKET; 1213 } 1214 1215 if (extsockclass) { 1216 switch (family) { 1217 case PF_AX25: 1218 return SECCLASS_AX25_SOCKET; 1219 case PF_IPX: 1220 return SECCLASS_IPX_SOCKET; 1221 case PF_NETROM: 1222 return SECCLASS_NETROM_SOCKET; 1223 case PF_ATMPVC: 1224 return SECCLASS_ATMPVC_SOCKET; 1225 case PF_X25: 1226 return SECCLASS_X25_SOCKET; 1227 case PF_ROSE: 1228 return SECCLASS_ROSE_SOCKET; 1229 case PF_DECnet: 1230 return SECCLASS_DECNET_SOCKET; 1231 case PF_ATMSVC: 1232 return SECCLASS_ATMSVC_SOCKET; 1233 case PF_RDS: 1234 return SECCLASS_RDS_SOCKET; 1235 case PF_IRDA: 1236 return SECCLASS_IRDA_SOCKET; 1237 case PF_PPPOX: 1238 return SECCLASS_PPPOX_SOCKET; 1239 case PF_LLC: 1240 return SECCLASS_LLC_SOCKET; 1241 case PF_CAN: 1242 return SECCLASS_CAN_SOCKET; 1243 case PF_TIPC: 1244 return SECCLASS_TIPC_SOCKET; 1245 case PF_BLUETOOTH: 1246 return SECCLASS_BLUETOOTH_SOCKET; 1247 case PF_IUCV: 1248 return SECCLASS_IUCV_SOCKET; 1249 case PF_RXRPC: 1250 return SECCLASS_RXRPC_SOCKET; 1251 case PF_ISDN: 1252 return SECCLASS_ISDN_SOCKET; 1253 case PF_PHONET: 1254 return SECCLASS_PHONET_SOCKET; 1255 case PF_IEEE802154: 1256 return SECCLASS_IEEE802154_SOCKET; 1257 case PF_CAIF: 1258 return SECCLASS_CAIF_SOCKET; 1259 case PF_ALG: 1260 return SECCLASS_ALG_SOCKET; 1261 case PF_NFC: 1262 return SECCLASS_NFC_SOCKET; 1263 case PF_VSOCK: 1264 return SECCLASS_VSOCK_SOCKET; 1265 case PF_KCM: 1266 return SECCLASS_KCM_SOCKET; 1267 case PF_QIPCRTR: 1268 return SECCLASS_QIPCRTR_SOCKET; 1269 case PF_SMC: 1270 return SECCLASS_SMC_SOCKET; 1271 case PF_XDP: 1272 return SECCLASS_XDP_SOCKET; 1273 #if PF_MAX > 45 1274 #error New address family defined, please update this function. 1275 #endif 1276 } 1277 } 1278 1279 return SECCLASS_SOCKET; 1280 } 1281 1282 static int selinux_genfs_get_sid(struct dentry *dentry, 1283 u16 tclass, 1284 u16 flags, 1285 u32 *sid) 1286 { 1287 int rc; 1288 struct super_block *sb = dentry->d_sb; 1289 char *buffer, *path; 1290 1291 buffer = (char *)__get_free_page(GFP_KERNEL); 1292 if (!buffer) 1293 return -ENOMEM; 1294 1295 path = dentry_path_raw(dentry, buffer, PAGE_SIZE); 1296 if (IS_ERR(path)) 1297 rc = PTR_ERR(path); 1298 else { 1299 if (flags & SE_SBPROC) { 1300 /* each process gets a /proc/PID/ entry. Strip off the 1301 * PID part to get a valid selinux labeling. 1302 * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */ 1303 while (path[1] >= '0' && path[1] <= '9') { 1304 path[1] = '/'; 1305 path++; 1306 } 1307 } 1308 rc = security_genfs_sid(&selinux_state, sb->s_type->name, 1309 path, tclass, sid); 1310 if (rc == -ENOENT) { 1311 /* No match in policy, mark as unlabeled. */ 1312 *sid = SECINITSID_UNLABELED; 1313 rc = 0; 1314 } 1315 } 1316 free_page((unsigned long)buffer); 1317 return rc; 1318 } 1319 1320 static int inode_doinit_use_xattr(struct inode *inode, struct dentry *dentry, 1321 u32 def_sid, u32 *sid) 1322 { 1323 #define INITCONTEXTLEN 255 1324 char *context; 1325 unsigned int len; 1326 int rc; 1327 1328 len = INITCONTEXTLEN; 1329 context = kmalloc(len + 1, GFP_NOFS); 1330 if (!context) 1331 return -ENOMEM; 1332 1333 context[len] = '\0'; 1334 rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, context, len); 1335 if (rc == -ERANGE) { 1336 kfree(context); 1337 1338 /* Need a larger buffer. Query for the right size. */ 1339 rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, NULL, 0); 1340 if (rc < 0) 1341 return rc; 1342 1343 len = rc; 1344 context = kmalloc(len + 1, GFP_NOFS); 1345 if (!context) 1346 return -ENOMEM; 1347 1348 context[len] = '\0'; 1349 rc = __vfs_getxattr(dentry, inode, XATTR_NAME_SELINUX, 1350 context, len); 1351 } 1352 if (rc < 0) { 1353 kfree(context); 1354 if (rc != -ENODATA) { 1355 pr_warn("SELinux: %s: getxattr returned %d for dev=%s ino=%ld\n", 1356 __func__, -rc, inode->i_sb->s_id, inode->i_ino); 1357 return rc; 1358 } 1359 *sid = def_sid; 1360 return 0; 1361 } 1362 1363 rc = security_context_to_sid_default(&selinux_state, context, rc, sid, 1364 def_sid, GFP_NOFS); 1365 if (rc) { 1366 char *dev = inode->i_sb->s_id; 1367 unsigned long ino = inode->i_ino; 1368 1369 if (rc == -EINVAL) { 1370 pr_notice_ratelimited("SELinux: inode=%lu on dev=%s was found to have an invalid context=%s. This indicates you may need to relabel the inode or the filesystem in question.\n", 1371 ino, dev, context); 1372 } else { 1373 pr_warn("SELinux: %s: context_to_sid(%s) returned %d for dev=%s ino=%ld\n", 1374 __func__, context, -rc, dev, ino); 1375 } 1376 } 1377 kfree(context); 1378 return 0; 1379 } 1380 1381 /* The inode's security attributes must be initialized before first use. */ 1382 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry) 1383 { 1384 struct superblock_security_struct *sbsec = NULL; 1385 struct inode_security_struct *isec = selinux_inode(inode); 1386 u32 task_sid, sid = 0; 1387 u16 sclass; 1388 struct dentry *dentry; 1389 int rc = 0; 1390 1391 if (isec->initialized == LABEL_INITIALIZED) 1392 return 0; 1393 1394 spin_lock(&isec->lock); 1395 if (isec->initialized == LABEL_INITIALIZED) 1396 goto out_unlock; 1397 1398 if (isec->sclass == SECCLASS_FILE) 1399 isec->sclass = inode_mode_to_security_class(inode->i_mode); 1400 1401 sbsec = inode->i_sb->s_security; 1402 if (!(sbsec->flags & SE_SBINITIALIZED)) { 1403 /* Defer initialization until selinux_complete_init, 1404 after the initial policy is loaded and the security 1405 server is ready to handle calls. */ 1406 spin_lock(&sbsec->isec_lock); 1407 if (list_empty(&isec->list)) 1408 list_add(&isec->list, &sbsec->isec_head); 1409 spin_unlock(&sbsec->isec_lock); 1410 goto out_unlock; 1411 } 1412 1413 sclass = isec->sclass; 1414 task_sid = isec->task_sid; 1415 sid = isec->sid; 1416 isec->initialized = LABEL_PENDING; 1417 spin_unlock(&isec->lock); 1418 1419 switch (sbsec->behavior) { 1420 case SECURITY_FS_USE_NATIVE: 1421 break; 1422 case SECURITY_FS_USE_XATTR: 1423 if (!(inode->i_opflags & IOP_XATTR)) { 1424 sid = sbsec->def_sid; 1425 break; 1426 } 1427 /* Need a dentry, since the xattr API requires one. 1428 Life would be simpler if we could just pass the inode. */ 1429 if (opt_dentry) { 1430 /* Called from d_instantiate or d_splice_alias. */ 1431 dentry = dget(opt_dentry); 1432 } else { 1433 /* 1434 * Called from selinux_complete_init, try to find a dentry. 1435 * Some filesystems really want a connected one, so try 1436 * that first. We could split SECURITY_FS_USE_XATTR in 1437 * two, depending upon that... 1438 */ 1439 dentry = d_find_alias(inode); 1440 if (!dentry) 1441 dentry = d_find_any_alias(inode); 1442 } 1443 if (!dentry) { 1444 /* 1445 * this is can be hit on boot when a file is accessed 1446 * before the policy is loaded. When we load policy we 1447 * may find inodes that have no dentry on the 1448 * sbsec->isec_head list. No reason to complain as these 1449 * will get fixed up the next time we go through 1450 * inode_doinit with a dentry, before these inodes could 1451 * be used again by userspace. 1452 */ 1453 goto out; 1454 } 1455 1456 rc = inode_doinit_use_xattr(inode, dentry, sbsec->def_sid, 1457 &sid); 1458 dput(dentry); 1459 if (rc) 1460 goto out; 1461 break; 1462 case SECURITY_FS_USE_TASK: 1463 sid = task_sid; 1464 break; 1465 case SECURITY_FS_USE_TRANS: 1466 /* Default to the fs SID. */ 1467 sid = sbsec->sid; 1468 1469 /* Try to obtain a transition SID. */ 1470 rc = security_transition_sid(&selinux_state, task_sid, sid, 1471 sclass, NULL, &sid); 1472 if (rc) 1473 goto out; 1474 break; 1475 case SECURITY_FS_USE_MNTPOINT: 1476 sid = sbsec->mntpoint_sid; 1477 break; 1478 default: 1479 /* Default to the fs superblock SID. */ 1480 sid = sbsec->sid; 1481 1482 if ((sbsec->flags & SE_SBGENFS) && 1483 (!S_ISLNK(inode->i_mode) || 1484 selinux_policycap_genfs_seclabel_symlinks())) { 1485 /* We must have a dentry to determine the label on 1486 * procfs inodes */ 1487 if (opt_dentry) { 1488 /* Called from d_instantiate or 1489 * d_splice_alias. */ 1490 dentry = dget(opt_dentry); 1491 } else { 1492 /* Called from selinux_complete_init, try to 1493 * find a dentry. Some filesystems really want 1494 * a connected one, so try that first. 1495 */ 1496 dentry = d_find_alias(inode); 1497 if (!dentry) 1498 dentry = d_find_any_alias(inode); 1499 } 1500 /* 1501 * This can be hit on boot when a file is accessed 1502 * before the policy is loaded. When we load policy we 1503 * may find inodes that have no dentry on the 1504 * sbsec->isec_head list. No reason to complain as 1505 * these will get fixed up the next time we go through 1506 * inode_doinit() with a dentry, before these inodes 1507 * could be used again by userspace. 1508 */ 1509 if (!dentry) 1510 goto out; 1511 rc = selinux_genfs_get_sid(dentry, sclass, 1512 sbsec->flags, &sid); 1513 if (rc) { 1514 dput(dentry); 1515 goto out; 1516 } 1517 1518 if ((sbsec->flags & SE_SBGENFS_XATTR) && 1519 (inode->i_opflags & IOP_XATTR)) { 1520 rc = inode_doinit_use_xattr(inode, dentry, 1521 sid, &sid); 1522 if (rc) { 1523 dput(dentry); 1524 goto out; 1525 } 1526 } 1527 dput(dentry); 1528 } 1529 break; 1530 } 1531 1532 out: 1533 spin_lock(&isec->lock); 1534 if (isec->initialized == LABEL_PENDING) { 1535 if (!sid || rc) { 1536 isec->initialized = LABEL_INVALID; 1537 goto out_unlock; 1538 } 1539 1540 isec->initialized = LABEL_INITIALIZED; 1541 isec->sid = sid; 1542 } 1543 1544 out_unlock: 1545 spin_unlock(&isec->lock); 1546 return rc; 1547 } 1548 1549 /* Convert a Linux signal to an access vector. */ 1550 static inline u32 signal_to_av(int sig) 1551 { 1552 u32 perm = 0; 1553 1554 switch (sig) { 1555 case SIGCHLD: 1556 /* Commonly granted from child to parent. */ 1557 perm = PROCESS__SIGCHLD; 1558 break; 1559 case SIGKILL: 1560 /* Cannot be caught or ignored */ 1561 perm = PROCESS__SIGKILL; 1562 break; 1563 case SIGSTOP: 1564 /* Cannot be caught or ignored */ 1565 perm = PROCESS__SIGSTOP; 1566 break; 1567 default: 1568 /* All other signals. */ 1569 perm = PROCESS__SIGNAL; 1570 break; 1571 } 1572 1573 return perm; 1574 } 1575 1576 #if CAP_LAST_CAP > 63 1577 #error Fix SELinux to handle capabilities > 63. 1578 #endif 1579 1580 /* Check whether a task is allowed to use a capability. */ 1581 static int cred_has_capability(const struct cred *cred, 1582 int cap, unsigned int opts, bool initns) 1583 { 1584 struct common_audit_data ad; 1585 struct av_decision avd; 1586 u16 sclass; 1587 u32 sid = cred_sid(cred); 1588 u32 av = CAP_TO_MASK(cap); 1589 int rc; 1590 1591 ad.type = LSM_AUDIT_DATA_CAP; 1592 ad.u.cap = cap; 1593 1594 switch (CAP_TO_INDEX(cap)) { 1595 case 0: 1596 sclass = initns ? SECCLASS_CAPABILITY : SECCLASS_CAP_USERNS; 1597 break; 1598 case 1: 1599 sclass = initns ? SECCLASS_CAPABILITY2 : SECCLASS_CAP2_USERNS; 1600 break; 1601 default: 1602 pr_err("SELinux: out of range capability %d\n", cap); 1603 BUG(); 1604 return -EINVAL; 1605 } 1606 1607 rc = avc_has_perm_noaudit(&selinux_state, 1608 sid, sid, sclass, av, 0, &avd); 1609 if (!(opts & CAP_OPT_NOAUDIT)) { 1610 int rc2 = avc_audit(&selinux_state, 1611 sid, sid, sclass, av, &avd, rc, &ad, 0); 1612 if (rc2) 1613 return rc2; 1614 } 1615 return rc; 1616 } 1617 1618 /* Check whether a task has a particular permission to an inode. 1619 The 'adp' parameter is optional and allows other audit 1620 data to be passed (e.g. the dentry). */ 1621 static int inode_has_perm(const struct cred *cred, 1622 struct inode *inode, 1623 u32 perms, 1624 struct common_audit_data *adp) 1625 { 1626 struct inode_security_struct *isec; 1627 u32 sid; 1628 1629 validate_creds(cred); 1630 1631 if (unlikely(IS_PRIVATE(inode))) 1632 return 0; 1633 1634 sid = cred_sid(cred); 1635 isec = selinux_inode(inode); 1636 1637 return avc_has_perm(&selinux_state, 1638 sid, isec->sid, isec->sclass, perms, adp); 1639 } 1640 1641 /* Same as inode_has_perm, but pass explicit audit data containing 1642 the dentry to help the auditing code to more easily generate the 1643 pathname if needed. */ 1644 static inline int dentry_has_perm(const struct cred *cred, 1645 struct dentry *dentry, 1646 u32 av) 1647 { 1648 struct inode *inode = d_backing_inode(dentry); 1649 struct common_audit_data ad; 1650 1651 ad.type = LSM_AUDIT_DATA_DENTRY; 1652 ad.u.dentry = dentry; 1653 __inode_security_revalidate(inode, dentry, true); 1654 return inode_has_perm(cred, inode, av, &ad); 1655 } 1656 1657 /* Same as inode_has_perm, but pass explicit audit data containing 1658 the path to help the auditing code to more easily generate the 1659 pathname if needed. */ 1660 static inline int path_has_perm(const struct cred *cred, 1661 const struct path *path, 1662 u32 av) 1663 { 1664 struct inode *inode = d_backing_inode(path->dentry); 1665 struct common_audit_data ad; 1666 1667 ad.type = LSM_AUDIT_DATA_PATH; 1668 ad.u.path = *path; 1669 __inode_security_revalidate(inode, path->dentry, true); 1670 return inode_has_perm(cred, inode, av, &ad); 1671 } 1672 1673 /* Same as path_has_perm, but uses the inode from the file struct. */ 1674 static inline int file_path_has_perm(const struct cred *cred, 1675 struct file *file, 1676 u32 av) 1677 { 1678 struct common_audit_data ad; 1679 1680 ad.type = LSM_AUDIT_DATA_FILE; 1681 ad.u.file = file; 1682 return inode_has_perm(cred, file_inode(file), av, &ad); 1683 } 1684 1685 #ifdef CONFIG_BPF_SYSCALL 1686 static int bpf_fd_pass(struct file *file, u32 sid); 1687 #endif 1688 1689 /* Check whether a task can use an open file descriptor to 1690 access an inode in a given way. Check access to the 1691 descriptor itself, and then use dentry_has_perm to 1692 check a particular permission to the file. 1693 Access to the descriptor is implicitly granted if it 1694 has the same SID as the process. If av is zero, then 1695 access to the file is not checked, e.g. for cases 1696 where only the descriptor is affected like seek. */ 1697 static int file_has_perm(const struct cred *cred, 1698 struct file *file, 1699 u32 av) 1700 { 1701 struct file_security_struct *fsec = selinux_file(file); 1702 struct inode *inode = file_inode(file); 1703 struct common_audit_data ad; 1704 u32 sid = cred_sid(cred); 1705 int rc; 1706 1707 ad.type = LSM_AUDIT_DATA_FILE; 1708 ad.u.file = file; 1709 1710 if (sid != fsec->sid) { 1711 rc = avc_has_perm(&selinux_state, 1712 sid, fsec->sid, 1713 SECCLASS_FD, 1714 FD__USE, 1715 &ad); 1716 if (rc) 1717 goto out; 1718 } 1719 1720 #ifdef CONFIG_BPF_SYSCALL 1721 rc = bpf_fd_pass(file, cred_sid(cred)); 1722 if (rc) 1723 return rc; 1724 #endif 1725 1726 /* av is zero if only checking access to the descriptor. */ 1727 rc = 0; 1728 if (av) 1729 rc = inode_has_perm(cred, inode, av, &ad); 1730 1731 out: 1732 return rc; 1733 } 1734 1735 /* 1736 * Determine the label for an inode that might be unioned. 1737 */ 1738 static int 1739 selinux_determine_inode_label(const struct task_security_struct *tsec, 1740 struct inode *dir, 1741 const struct qstr *name, u16 tclass, 1742 u32 *_new_isid) 1743 { 1744 const struct superblock_security_struct *sbsec = dir->i_sb->s_security; 1745 1746 if ((sbsec->flags & SE_SBINITIALIZED) && 1747 (sbsec->behavior == SECURITY_FS_USE_MNTPOINT)) { 1748 *_new_isid = sbsec->mntpoint_sid; 1749 } else if ((sbsec->flags & SBLABEL_MNT) && 1750 tsec->create_sid) { 1751 *_new_isid = tsec->create_sid; 1752 } else { 1753 const struct inode_security_struct *dsec = inode_security(dir); 1754 return security_transition_sid(&selinux_state, tsec->sid, 1755 dsec->sid, tclass, 1756 name, _new_isid); 1757 } 1758 1759 return 0; 1760 } 1761 1762 /* Check whether a task can create a file. */ 1763 static int may_create(struct inode *dir, 1764 struct dentry *dentry, 1765 u16 tclass) 1766 { 1767 const struct task_security_struct *tsec = selinux_cred(current_cred()); 1768 struct inode_security_struct *dsec; 1769 struct superblock_security_struct *sbsec; 1770 u32 sid, newsid; 1771 struct common_audit_data ad; 1772 int rc; 1773 1774 dsec = inode_security(dir); 1775 sbsec = dir->i_sb->s_security; 1776 1777 sid = tsec->sid; 1778 1779 ad.type = LSM_AUDIT_DATA_DENTRY; 1780 ad.u.dentry = dentry; 1781 1782 rc = avc_has_perm(&selinux_state, 1783 sid, dsec->sid, SECCLASS_DIR, 1784 DIR__ADD_NAME | DIR__SEARCH, 1785 &ad); 1786 if (rc) 1787 return rc; 1788 1789 rc = selinux_determine_inode_label(tsec, dir, &dentry->d_name, tclass, 1790 &newsid); 1791 if (rc) 1792 return rc; 1793 1794 rc = avc_has_perm(&selinux_state, 1795 sid, newsid, tclass, FILE__CREATE, &ad); 1796 if (rc) 1797 return rc; 1798 1799 return avc_has_perm(&selinux_state, 1800 newsid, sbsec->sid, 1801 SECCLASS_FILESYSTEM, 1802 FILESYSTEM__ASSOCIATE, &ad); 1803 } 1804 1805 #define MAY_LINK 0 1806 #define MAY_UNLINK 1 1807 #define MAY_RMDIR 2 1808 1809 /* Check whether a task can link, unlink, or rmdir a file/directory. */ 1810 static int may_link(struct inode *dir, 1811 struct dentry *dentry, 1812 int kind) 1813 1814 { 1815 struct inode_security_struct *dsec, *isec; 1816 struct common_audit_data ad; 1817 u32 sid = current_sid(); 1818 u32 av; 1819 int rc; 1820 1821 dsec = inode_security(dir); 1822 isec = backing_inode_security(dentry); 1823 1824 ad.type = LSM_AUDIT_DATA_DENTRY; 1825 ad.u.dentry = dentry; 1826 1827 av = DIR__SEARCH; 1828 av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME); 1829 rc = avc_has_perm(&selinux_state, 1830 sid, dsec->sid, SECCLASS_DIR, av, &ad); 1831 if (rc) 1832 return rc; 1833 1834 switch (kind) { 1835 case MAY_LINK: 1836 av = FILE__LINK; 1837 break; 1838 case MAY_UNLINK: 1839 av = FILE__UNLINK; 1840 break; 1841 case MAY_RMDIR: 1842 av = DIR__RMDIR; 1843 break; 1844 default: 1845 pr_warn("SELinux: %s: unrecognized kind %d\n", 1846 __func__, kind); 1847 return 0; 1848 } 1849 1850 rc = avc_has_perm(&selinux_state, 1851 sid, isec->sid, isec->sclass, av, &ad); 1852 return rc; 1853 } 1854 1855 static inline int may_rename(struct inode *old_dir, 1856 struct dentry *old_dentry, 1857 struct inode *new_dir, 1858 struct dentry *new_dentry) 1859 { 1860 struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec; 1861 struct common_audit_data ad; 1862 u32 sid = current_sid(); 1863 u32 av; 1864 int old_is_dir, new_is_dir; 1865 int rc; 1866 1867 old_dsec = inode_security(old_dir); 1868 old_isec = backing_inode_security(old_dentry); 1869 old_is_dir = d_is_dir(old_dentry); 1870 new_dsec = inode_security(new_dir); 1871 1872 ad.type = LSM_AUDIT_DATA_DENTRY; 1873 1874 ad.u.dentry = old_dentry; 1875 rc = avc_has_perm(&selinux_state, 1876 sid, old_dsec->sid, SECCLASS_DIR, 1877 DIR__REMOVE_NAME | DIR__SEARCH, &ad); 1878 if (rc) 1879 return rc; 1880 rc = avc_has_perm(&selinux_state, 1881 sid, old_isec->sid, 1882 old_isec->sclass, FILE__RENAME, &ad); 1883 if (rc) 1884 return rc; 1885 if (old_is_dir && new_dir != old_dir) { 1886 rc = avc_has_perm(&selinux_state, 1887 sid, old_isec->sid, 1888 old_isec->sclass, DIR__REPARENT, &ad); 1889 if (rc) 1890 return rc; 1891 } 1892 1893 ad.u.dentry = new_dentry; 1894 av = DIR__ADD_NAME | DIR__SEARCH; 1895 if (d_is_positive(new_dentry)) 1896 av |= DIR__REMOVE_NAME; 1897 rc = avc_has_perm(&selinux_state, 1898 sid, new_dsec->sid, SECCLASS_DIR, av, &ad); 1899 if (rc) 1900 return rc; 1901 if (d_is_positive(new_dentry)) { 1902 new_isec = backing_inode_security(new_dentry); 1903 new_is_dir = d_is_dir(new_dentry); 1904 rc = avc_has_perm(&selinux_state, 1905 sid, new_isec->sid, 1906 new_isec->sclass, 1907 (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad); 1908 if (rc) 1909 return rc; 1910 } 1911 1912 return 0; 1913 } 1914 1915 /* Check whether a task can perform a filesystem operation. */ 1916 static int superblock_has_perm(const struct cred *cred, 1917 struct super_block *sb, 1918 u32 perms, 1919 struct common_audit_data *ad) 1920 { 1921 struct superblock_security_struct *sbsec; 1922 u32 sid = cred_sid(cred); 1923 1924 sbsec = sb->s_security; 1925 return avc_has_perm(&selinux_state, 1926 sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad); 1927 } 1928 1929 /* Convert a Linux mode and permission mask to an access vector. */ 1930 static inline u32 file_mask_to_av(int mode, int mask) 1931 { 1932 u32 av = 0; 1933 1934 if (!S_ISDIR(mode)) { 1935 if (mask & MAY_EXEC) 1936 av |= FILE__EXECUTE; 1937 if (mask & MAY_READ) 1938 av |= FILE__READ; 1939 1940 if (mask & MAY_APPEND) 1941 av |= FILE__APPEND; 1942 else if (mask & MAY_WRITE) 1943 av |= FILE__WRITE; 1944 1945 } else { 1946 if (mask & MAY_EXEC) 1947 av |= DIR__SEARCH; 1948 if (mask & MAY_WRITE) 1949 av |= DIR__WRITE; 1950 if (mask & MAY_READ) 1951 av |= DIR__READ; 1952 } 1953 1954 return av; 1955 } 1956 1957 /* Convert a Linux file to an access vector. */ 1958 static inline u32 file_to_av(struct file *file) 1959 { 1960 u32 av = 0; 1961 1962 if (file->f_mode & FMODE_READ) 1963 av |= FILE__READ; 1964 if (file->f_mode & FMODE_WRITE) { 1965 if (file->f_flags & O_APPEND) 1966 av |= FILE__APPEND; 1967 else 1968 av |= FILE__WRITE; 1969 } 1970 if (!av) { 1971 /* 1972 * Special file opened with flags 3 for ioctl-only use. 1973 */ 1974 av = FILE__IOCTL; 1975 } 1976 1977 return av; 1978 } 1979 1980 /* 1981 * Convert a file to an access vector and include the correct open 1982 * open permission. 1983 */ 1984 static inline u32 open_file_to_av(struct file *file) 1985 { 1986 u32 av = file_to_av(file); 1987 struct inode *inode = file_inode(file); 1988 1989 if (selinux_policycap_openperm() && 1990 inode->i_sb->s_magic != SOCKFS_MAGIC) 1991 av |= FILE__OPEN; 1992 1993 return av; 1994 } 1995 1996 /* Hook functions begin here. */ 1997 1998 static int selinux_binder_set_context_mgr(struct task_struct *mgr) 1999 { 2000 u32 mysid = current_sid(); 2001 u32 mgrsid = task_sid(mgr); 2002 2003 return avc_has_perm(&selinux_state, 2004 mysid, mgrsid, SECCLASS_BINDER, 2005 BINDER__SET_CONTEXT_MGR, NULL); 2006 } 2007 2008 static int selinux_binder_transaction(struct task_struct *from, 2009 struct task_struct *to) 2010 { 2011 u32 mysid = current_sid(); 2012 u32 fromsid = task_sid(from); 2013 u32 tosid = task_sid(to); 2014 int rc; 2015 2016 if (mysid != fromsid) { 2017 rc = avc_has_perm(&selinux_state, 2018 mysid, fromsid, SECCLASS_BINDER, 2019 BINDER__IMPERSONATE, NULL); 2020 if (rc) 2021 return rc; 2022 } 2023 2024 return avc_has_perm(&selinux_state, 2025 fromsid, tosid, SECCLASS_BINDER, BINDER__CALL, 2026 NULL); 2027 } 2028 2029 static int selinux_binder_transfer_binder(struct task_struct *from, 2030 struct task_struct *to) 2031 { 2032 u32 fromsid = task_sid(from); 2033 u32 tosid = task_sid(to); 2034 2035 return avc_has_perm(&selinux_state, 2036 fromsid, tosid, SECCLASS_BINDER, BINDER__TRANSFER, 2037 NULL); 2038 } 2039 2040 static int selinux_binder_transfer_file(struct task_struct *from, 2041 struct task_struct *to, 2042 struct file *file) 2043 { 2044 u32 sid = task_sid(to); 2045 struct file_security_struct *fsec = selinux_file(file); 2046 struct dentry *dentry = file->f_path.dentry; 2047 struct inode_security_struct *isec; 2048 struct common_audit_data ad; 2049 int rc; 2050 2051 ad.type = LSM_AUDIT_DATA_PATH; 2052 ad.u.path = file->f_path; 2053 2054 if (sid != fsec->sid) { 2055 rc = avc_has_perm(&selinux_state, 2056 sid, fsec->sid, 2057 SECCLASS_FD, 2058 FD__USE, 2059 &ad); 2060 if (rc) 2061 return rc; 2062 } 2063 2064 #ifdef CONFIG_BPF_SYSCALL 2065 rc = bpf_fd_pass(file, sid); 2066 if (rc) 2067 return rc; 2068 #endif 2069 2070 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2071 return 0; 2072 2073 isec = backing_inode_security(dentry); 2074 return avc_has_perm(&selinux_state, 2075 sid, isec->sid, isec->sclass, file_to_av(file), 2076 &ad); 2077 } 2078 2079 static int selinux_ptrace_access_check(struct task_struct *child, 2080 unsigned int mode) 2081 { 2082 u32 sid = current_sid(); 2083 u32 csid = task_sid(child); 2084 2085 if (mode & PTRACE_MODE_READ) 2086 return avc_has_perm(&selinux_state, 2087 sid, csid, SECCLASS_FILE, FILE__READ, NULL); 2088 2089 return avc_has_perm(&selinux_state, 2090 sid, csid, SECCLASS_PROCESS, PROCESS__PTRACE, NULL); 2091 } 2092 2093 static int selinux_ptrace_traceme(struct task_struct *parent) 2094 { 2095 return avc_has_perm(&selinux_state, 2096 task_sid(parent), current_sid(), SECCLASS_PROCESS, 2097 PROCESS__PTRACE, NULL); 2098 } 2099 2100 static int selinux_capget(struct task_struct *target, kernel_cap_t *effective, 2101 kernel_cap_t *inheritable, kernel_cap_t *permitted) 2102 { 2103 return avc_has_perm(&selinux_state, 2104 current_sid(), task_sid(target), SECCLASS_PROCESS, 2105 PROCESS__GETCAP, NULL); 2106 } 2107 2108 static int selinux_capset(struct cred *new, const struct cred *old, 2109 const kernel_cap_t *effective, 2110 const kernel_cap_t *inheritable, 2111 const kernel_cap_t *permitted) 2112 { 2113 return avc_has_perm(&selinux_state, 2114 cred_sid(old), cred_sid(new), SECCLASS_PROCESS, 2115 PROCESS__SETCAP, NULL); 2116 } 2117 2118 /* 2119 * (This comment used to live with the selinux_task_setuid hook, 2120 * which was removed). 2121 * 2122 * Since setuid only affects the current process, and since the SELinux 2123 * controls are not based on the Linux identity attributes, SELinux does not 2124 * need to control this operation. However, SELinux does control the use of 2125 * the CAP_SETUID and CAP_SETGID capabilities using the capable hook. 2126 */ 2127 2128 static int selinux_capable(const struct cred *cred, struct user_namespace *ns, 2129 int cap, unsigned int opts) 2130 { 2131 return cred_has_capability(cred, cap, opts, ns == &init_user_ns); 2132 } 2133 2134 static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb) 2135 { 2136 const struct cred *cred = current_cred(); 2137 int rc = 0; 2138 2139 if (!sb) 2140 return 0; 2141 2142 switch (cmds) { 2143 case Q_SYNC: 2144 case Q_QUOTAON: 2145 case Q_QUOTAOFF: 2146 case Q_SETINFO: 2147 case Q_SETQUOTA: 2148 case Q_XQUOTAOFF: 2149 case Q_XQUOTAON: 2150 case Q_XSETQLIM: 2151 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL); 2152 break; 2153 case Q_GETFMT: 2154 case Q_GETINFO: 2155 case Q_GETQUOTA: 2156 case Q_XGETQUOTA: 2157 case Q_XGETQSTAT: 2158 case Q_XGETQSTATV: 2159 case Q_XGETNEXTQUOTA: 2160 rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL); 2161 break; 2162 default: 2163 rc = 0; /* let the kernel handle invalid cmds */ 2164 break; 2165 } 2166 return rc; 2167 } 2168 2169 static int selinux_quota_on(struct dentry *dentry) 2170 { 2171 const struct cred *cred = current_cred(); 2172 2173 return dentry_has_perm(cred, dentry, FILE__QUOTAON); 2174 } 2175 2176 static int selinux_syslog(int type) 2177 { 2178 switch (type) { 2179 case SYSLOG_ACTION_READ_ALL: /* Read last kernel messages */ 2180 case SYSLOG_ACTION_SIZE_BUFFER: /* Return size of the log buffer */ 2181 return avc_has_perm(&selinux_state, 2182 current_sid(), SECINITSID_KERNEL, 2183 SECCLASS_SYSTEM, SYSTEM__SYSLOG_READ, NULL); 2184 case SYSLOG_ACTION_CONSOLE_OFF: /* Disable logging to console */ 2185 case SYSLOG_ACTION_CONSOLE_ON: /* Enable logging to console */ 2186 /* Set level of messages printed to console */ 2187 case SYSLOG_ACTION_CONSOLE_LEVEL: 2188 return avc_has_perm(&selinux_state, 2189 current_sid(), SECINITSID_KERNEL, 2190 SECCLASS_SYSTEM, SYSTEM__SYSLOG_CONSOLE, 2191 NULL); 2192 } 2193 /* All other syslog types */ 2194 return avc_has_perm(&selinux_state, 2195 current_sid(), SECINITSID_KERNEL, 2196 SECCLASS_SYSTEM, SYSTEM__SYSLOG_MOD, NULL); 2197 } 2198 2199 /* 2200 * Check that a process has enough memory to allocate a new virtual 2201 * mapping. 0 means there is enough memory for the allocation to 2202 * succeed and -ENOMEM implies there is not. 2203 * 2204 * Do not audit the selinux permission check, as this is applied to all 2205 * processes that allocate mappings. 2206 */ 2207 static int selinux_vm_enough_memory(struct mm_struct *mm, long pages) 2208 { 2209 int rc, cap_sys_admin = 0; 2210 2211 rc = cred_has_capability(current_cred(), CAP_SYS_ADMIN, 2212 CAP_OPT_NOAUDIT, true); 2213 if (rc == 0) 2214 cap_sys_admin = 1; 2215 2216 return cap_sys_admin; 2217 } 2218 2219 /* binprm security operations */ 2220 2221 static u32 ptrace_parent_sid(void) 2222 { 2223 u32 sid = 0; 2224 struct task_struct *tracer; 2225 2226 rcu_read_lock(); 2227 tracer = ptrace_parent(current); 2228 if (tracer) 2229 sid = task_sid(tracer); 2230 rcu_read_unlock(); 2231 2232 return sid; 2233 } 2234 2235 static int check_nnp_nosuid(const struct linux_binprm *bprm, 2236 const struct task_security_struct *old_tsec, 2237 const struct task_security_struct *new_tsec) 2238 { 2239 int nnp = (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS); 2240 int nosuid = !mnt_may_suid(bprm->file->f_path.mnt); 2241 int rc; 2242 u32 av; 2243 2244 if (!nnp && !nosuid) 2245 return 0; /* neither NNP nor nosuid */ 2246 2247 if (new_tsec->sid == old_tsec->sid) 2248 return 0; /* No change in credentials */ 2249 2250 /* 2251 * If the policy enables the nnp_nosuid_transition policy capability, 2252 * then we permit transitions under NNP or nosuid if the 2253 * policy allows the corresponding permission between 2254 * the old and new contexts. 2255 */ 2256 if (selinux_policycap_nnp_nosuid_transition()) { 2257 av = 0; 2258 if (nnp) 2259 av |= PROCESS2__NNP_TRANSITION; 2260 if (nosuid) 2261 av |= PROCESS2__NOSUID_TRANSITION; 2262 rc = avc_has_perm(&selinux_state, 2263 old_tsec->sid, new_tsec->sid, 2264 SECCLASS_PROCESS2, av, NULL); 2265 if (!rc) 2266 return 0; 2267 } 2268 2269 /* 2270 * We also permit NNP or nosuid transitions to bounded SIDs, 2271 * i.e. SIDs that are guaranteed to only be allowed a subset 2272 * of the permissions of the current SID. 2273 */ 2274 rc = security_bounded_transition(&selinux_state, old_tsec->sid, 2275 new_tsec->sid); 2276 if (!rc) 2277 return 0; 2278 2279 /* 2280 * On failure, preserve the errno values for NNP vs nosuid. 2281 * NNP: Operation not permitted for caller. 2282 * nosuid: Permission denied to file. 2283 */ 2284 if (nnp) 2285 return -EPERM; 2286 return -EACCES; 2287 } 2288 2289 static int selinux_bprm_creds_for_exec(struct linux_binprm *bprm) 2290 { 2291 const struct task_security_struct *old_tsec; 2292 struct task_security_struct *new_tsec; 2293 struct inode_security_struct *isec; 2294 struct common_audit_data ad; 2295 struct inode *inode = file_inode(bprm->file); 2296 int rc; 2297 2298 /* SELinux context only depends on initial program or script and not 2299 * the script interpreter */ 2300 2301 old_tsec = selinux_cred(current_cred()); 2302 new_tsec = selinux_cred(bprm->cred); 2303 isec = inode_security(inode); 2304 2305 /* Default to the current task SID. */ 2306 new_tsec->sid = old_tsec->sid; 2307 new_tsec->osid = old_tsec->sid; 2308 2309 /* Reset fs, key, and sock SIDs on execve. */ 2310 new_tsec->create_sid = 0; 2311 new_tsec->keycreate_sid = 0; 2312 new_tsec->sockcreate_sid = 0; 2313 2314 if (old_tsec->exec_sid) { 2315 new_tsec->sid = old_tsec->exec_sid; 2316 /* Reset exec SID on execve. */ 2317 new_tsec->exec_sid = 0; 2318 2319 /* Fail on NNP or nosuid if not an allowed transition. */ 2320 rc = check_nnp_nosuid(bprm, old_tsec, new_tsec); 2321 if (rc) 2322 return rc; 2323 } else { 2324 /* Check for a default transition on this program. */ 2325 rc = security_transition_sid(&selinux_state, old_tsec->sid, 2326 isec->sid, SECCLASS_PROCESS, NULL, 2327 &new_tsec->sid); 2328 if (rc) 2329 return rc; 2330 2331 /* 2332 * Fallback to old SID on NNP or nosuid if not an allowed 2333 * transition. 2334 */ 2335 rc = check_nnp_nosuid(bprm, old_tsec, new_tsec); 2336 if (rc) 2337 new_tsec->sid = old_tsec->sid; 2338 } 2339 2340 ad.type = LSM_AUDIT_DATA_FILE; 2341 ad.u.file = bprm->file; 2342 2343 if (new_tsec->sid == old_tsec->sid) { 2344 rc = avc_has_perm(&selinux_state, 2345 old_tsec->sid, isec->sid, 2346 SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad); 2347 if (rc) 2348 return rc; 2349 } else { 2350 /* Check permissions for the transition. */ 2351 rc = avc_has_perm(&selinux_state, 2352 old_tsec->sid, new_tsec->sid, 2353 SECCLASS_PROCESS, PROCESS__TRANSITION, &ad); 2354 if (rc) 2355 return rc; 2356 2357 rc = avc_has_perm(&selinux_state, 2358 new_tsec->sid, isec->sid, 2359 SECCLASS_FILE, FILE__ENTRYPOINT, &ad); 2360 if (rc) 2361 return rc; 2362 2363 /* Check for shared state */ 2364 if (bprm->unsafe & LSM_UNSAFE_SHARE) { 2365 rc = avc_has_perm(&selinux_state, 2366 old_tsec->sid, new_tsec->sid, 2367 SECCLASS_PROCESS, PROCESS__SHARE, 2368 NULL); 2369 if (rc) 2370 return -EPERM; 2371 } 2372 2373 /* Make sure that anyone attempting to ptrace over a task that 2374 * changes its SID has the appropriate permit */ 2375 if (bprm->unsafe & LSM_UNSAFE_PTRACE) { 2376 u32 ptsid = ptrace_parent_sid(); 2377 if (ptsid != 0) { 2378 rc = avc_has_perm(&selinux_state, 2379 ptsid, new_tsec->sid, 2380 SECCLASS_PROCESS, 2381 PROCESS__PTRACE, NULL); 2382 if (rc) 2383 return -EPERM; 2384 } 2385 } 2386 2387 /* Clear any possibly unsafe personality bits on exec: */ 2388 bprm->per_clear |= PER_CLEAR_ON_SETID; 2389 2390 /* Enable secure mode for SIDs transitions unless 2391 the noatsecure permission is granted between 2392 the two SIDs, i.e. ahp returns 0. */ 2393 rc = avc_has_perm(&selinux_state, 2394 old_tsec->sid, new_tsec->sid, 2395 SECCLASS_PROCESS, PROCESS__NOATSECURE, 2396 NULL); 2397 bprm->secureexec |= !!rc; 2398 } 2399 2400 return 0; 2401 } 2402 2403 static int match_file(const void *p, struct file *file, unsigned fd) 2404 { 2405 return file_has_perm(p, file, file_to_av(file)) ? fd + 1 : 0; 2406 } 2407 2408 /* Derived from fs/exec.c:flush_old_files. */ 2409 static inline void flush_unauthorized_files(const struct cred *cred, 2410 struct files_struct *files) 2411 { 2412 struct file *file, *devnull = NULL; 2413 struct tty_struct *tty; 2414 int drop_tty = 0; 2415 unsigned n; 2416 2417 tty = get_current_tty(); 2418 if (tty) { 2419 spin_lock(&tty->files_lock); 2420 if (!list_empty(&tty->tty_files)) { 2421 struct tty_file_private *file_priv; 2422 2423 /* Revalidate access to controlling tty. 2424 Use file_path_has_perm on the tty path directly 2425 rather than using file_has_perm, as this particular 2426 open file may belong to another process and we are 2427 only interested in the inode-based check here. */ 2428 file_priv = list_first_entry(&tty->tty_files, 2429 struct tty_file_private, list); 2430 file = file_priv->file; 2431 if (file_path_has_perm(cred, file, FILE__READ | FILE__WRITE)) 2432 drop_tty = 1; 2433 } 2434 spin_unlock(&tty->files_lock); 2435 tty_kref_put(tty); 2436 } 2437 /* Reset controlling tty. */ 2438 if (drop_tty) 2439 no_tty(); 2440 2441 /* Revalidate access to inherited open files. */ 2442 n = iterate_fd(files, 0, match_file, cred); 2443 if (!n) /* none found? */ 2444 return; 2445 2446 devnull = dentry_open(&selinux_null, O_RDWR, cred); 2447 if (IS_ERR(devnull)) 2448 devnull = NULL; 2449 /* replace all the matching ones with this */ 2450 do { 2451 replace_fd(n - 1, devnull, 0); 2452 } while ((n = iterate_fd(files, n, match_file, cred)) != 0); 2453 if (devnull) 2454 fput(devnull); 2455 } 2456 2457 /* 2458 * Prepare a process for imminent new credential changes due to exec 2459 */ 2460 static void selinux_bprm_committing_creds(struct linux_binprm *bprm) 2461 { 2462 struct task_security_struct *new_tsec; 2463 struct rlimit *rlim, *initrlim; 2464 int rc, i; 2465 2466 new_tsec = selinux_cred(bprm->cred); 2467 if (new_tsec->sid == new_tsec->osid) 2468 return; 2469 2470 /* Close files for which the new task SID is not authorized. */ 2471 flush_unauthorized_files(bprm->cred, current->files); 2472 2473 /* Always clear parent death signal on SID transitions. */ 2474 current->pdeath_signal = 0; 2475 2476 /* Check whether the new SID can inherit resource limits from the old 2477 * SID. If not, reset all soft limits to the lower of the current 2478 * task's hard limit and the init task's soft limit. 2479 * 2480 * Note that the setting of hard limits (even to lower them) can be 2481 * controlled by the setrlimit check. The inclusion of the init task's 2482 * soft limit into the computation is to avoid resetting soft limits 2483 * higher than the default soft limit for cases where the default is 2484 * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK. 2485 */ 2486 rc = avc_has_perm(&selinux_state, 2487 new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS, 2488 PROCESS__RLIMITINH, NULL); 2489 if (rc) { 2490 /* protect against do_prlimit() */ 2491 task_lock(current); 2492 for (i = 0; i < RLIM_NLIMITS; i++) { 2493 rlim = current->signal->rlim + i; 2494 initrlim = init_task.signal->rlim + i; 2495 rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur); 2496 } 2497 task_unlock(current); 2498 if (IS_ENABLED(CONFIG_POSIX_TIMERS)) 2499 update_rlimit_cpu(current, rlimit(RLIMIT_CPU)); 2500 } 2501 } 2502 2503 /* 2504 * Clean up the process immediately after the installation of new credentials 2505 * due to exec 2506 */ 2507 static void selinux_bprm_committed_creds(struct linux_binprm *bprm) 2508 { 2509 const struct task_security_struct *tsec = selinux_cred(current_cred()); 2510 u32 osid, sid; 2511 int rc; 2512 2513 osid = tsec->osid; 2514 sid = tsec->sid; 2515 2516 if (sid == osid) 2517 return; 2518 2519 /* Check whether the new SID can inherit signal state from the old SID. 2520 * If not, clear itimers to avoid subsequent signal generation and 2521 * flush and unblock signals. 2522 * 2523 * This must occur _after_ the task SID has been updated so that any 2524 * kill done after the flush will be checked against the new SID. 2525 */ 2526 rc = avc_has_perm(&selinux_state, 2527 osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL); 2528 if (rc) { 2529 clear_itimer(); 2530 2531 spin_lock_irq(¤t->sighand->siglock); 2532 if (!fatal_signal_pending(current)) { 2533 flush_sigqueue(¤t->pending); 2534 flush_sigqueue(¤t->signal->shared_pending); 2535 flush_signal_handlers(current, 1); 2536 sigemptyset(¤t->blocked); 2537 recalc_sigpending(); 2538 } 2539 spin_unlock_irq(¤t->sighand->siglock); 2540 } 2541 2542 /* Wake up the parent if it is waiting so that it can recheck 2543 * wait permission to the new task SID. */ 2544 read_lock(&tasklist_lock); 2545 __wake_up_parent(current, current->real_parent); 2546 read_unlock(&tasklist_lock); 2547 } 2548 2549 /* superblock security operations */ 2550 2551 static int selinux_sb_alloc_security(struct super_block *sb) 2552 { 2553 struct superblock_security_struct *sbsec; 2554 2555 sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL); 2556 if (!sbsec) 2557 return -ENOMEM; 2558 2559 mutex_init(&sbsec->lock); 2560 INIT_LIST_HEAD(&sbsec->isec_head); 2561 spin_lock_init(&sbsec->isec_lock); 2562 sbsec->sb = sb; 2563 sbsec->sid = SECINITSID_UNLABELED; 2564 sbsec->def_sid = SECINITSID_FILE; 2565 sbsec->mntpoint_sid = SECINITSID_UNLABELED; 2566 sb->s_security = sbsec; 2567 2568 return 0; 2569 } 2570 2571 static void selinux_sb_free_security(struct super_block *sb) 2572 { 2573 superblock_free_security(sb); 2574 } 2575 2576 static inline int opt_len(const char *s) 2577 { 2578 bool open_quote = false; 2579 int len; 2580 char c; 2581 2582 for (len = 0; (c = s[len]) != '\0'; len++) { 2583 if (c == '"') 2584 open_quote = !open_quote; 2585 if (c == ',' && !open_quote) 2586 break; 2587 } 2588 return len; 2589 } 2590 2591 static int selinux_sb_eat_lsm_opts(char *options, void **mnt_opts) 2592 { 2593 char *from = options; 2594 char *to = options; 2595 bool first = true; 2596 int rc; 2597 2598 while (1) { 2599 int len = opt_len(from); 2600 int token; 2601 char *arg = NULL; 2602 2603 token = match_opt_prefix(from, len, &arg); 2604 2605 if (token != Opt_error) { 2606 char *p, *q; 2607 2608 /* strip quotes */ 2609 if (arg) { 2610 for (p = q = arg; p < from + len; p++) { 2611 char c = *p; 2612 if (c != '"') 2613 *q++ = c; 2614 } 2615 arg = kmemdup_nul(arg, q - arg, GFP_KERNEL); 2616 if (!arg) { 2617 rc = -ENOMEM; 2618 goto free_opt; 2619 } 2620 } 2621 rc = selinux_add_opt(token, arg, mnt_opts); 2622 if (unlikely(rc)) { 2623 kfree(arg); 2624 goto free_opt; 2625 } 2626 } else { 2627 if (!first) { // copy with preceding comma 2628 from--; 2629 len++; 2630 } 2631 if (to != from) 2632 memmove(to, from, len); 2633 to += len; 2634 first = false; 2635 } 2636 if (!from[len]) 2637 break; 2638 from += len + 1; 2639 } 2640 *to = '\0'; 2641 return 0; 2642 2643 free_opt: 2644 if (*mnt_opts) { 2645 selinux_free_mnt_opts(*mnt_opts); 2646 *mnt_opts = NULL; 2647 } 2648 return rc; 2649 } 2650 2651 static int selinux_sb_remount(struct super_block *sb, void *mnt_opts) 2652 { 2653 struct selinux_mnt_opts *opts = mnt_opts; 2654 struct superblock_security_struct *sbsec = sb->s_security; 2655 u32 sid; 2656 int rc; 2657 2658 if (!(sbsec->flags & SE_SBINITIALIZED)) 2659 return 0; 2660 2661 if (!opts) 2662 return 0; 2663 2664 if (opts->fscontext) { 2665 rc = parse_sid(sb, opts->fscontext, &sid); 2666 if (rc) 2667 return rc; 2668 if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, sid)) 2669 goto out_bad_option; 2670 } 2671 if (opts->context) { 2672 rc = parse_sid(sb, opts->context, &sid); 2673 if (rc) 2674 return rc; 2675 if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, sid)) 2676 goto out_bad_option; 2677 } 2678 if (opts->rootcontext) { 2679 struct inode_security_struct *root_isec; 2680 root_isec = backing_inode_security(sb->s_root); 2681 rc = parse_sid(sb, opts->rootcontext, &sid); 2682 if (rc) 2683 return rc; 2684 if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, sid)) 2685 goto out_bad_option; 2686 } 2687 if (opts->defcontext) { 2688 rc = parse_sid(sb, opts->defcontext, &sid); 2689 if (rc) 2690 return rc; 2691 if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, sid)) 2692 goto out_bad_option; 2693 } 2694 return 0; 2695 2696 out_bad_option: 2697 pr_warn("SELinux: unable to change security options " 2698 "during remount (dev %s, type=%s)\n", sb->s_id, 2699 sb->s_type->name); 2700 return -EINVAL; 2701 } 2702 2703 static int selinux_sb_kern_mount(struct super_block *sb) 2704 { 2705 const struct cred *cred = current_cred(); 2706 struct common_audit_data ad; 2707 2708 ad.type = LSM_AUDIT_DATA_DENTRY; 2709 ad.u.dentry = sb->s_root; 2710 return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad); 2711 } 2712 2713 static int selinux_sb_statfs(struct dentry *dentry) 2714 { 2715 const struct cred *cred = current_cred(); 2716 struct common_audit_data ad; 2717 2718 ad.type = LSM_AUDIT_DATA_DENTRY; 2719 ad.u.dentry = dentry->d_sb->s_root; 2720 return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad); 2721 } 2722 2723 static int selinux_mount(const char *dev_name, 2724 const struct path *path, 2725 const char *type, 2726 unsigned long flags, 2727 void *data) 2728 { 2729 const struct cred *cred = current_cred(); 2730 2731 if (flags & MS_REMOUNT) 2732 return superblock_has_perm(cred, path->dentry->d_sb, 2733 FILESYSTEM__REMOUNT, NULL); 2734 else 2735 return path_has_perm(cred, path, FILE__MOUNTON); 2736 } 2737 2738 static int selinux_move_mount(const struct path *from_path, 2739 const struct path *to_path) 2740 { 2741 const struct cred *cred = current_cred(); 2742 2743 return path_has_perm(cred, to_path, FILE__MOUNTON); 2744 } 2745 2746 static int selinux_umount(struct vfsmount *mnt, int flags) 2747 { 2748 const struct cred *cred = current_cred(); 2749 2750 return superblock_has_perm(cred, mnt->mnt_sb, 2751 FILESYSTEM__UNMOUNT, NULL); 2752 } 2753 2754 static int selinux_fs_context_dup(struct fs_context *fc, 2755 struct fs_context *src_fc) 2756 { 2757 const struct selinux_mnt_opts *src = src_fc->security; 2758 struct selinux_mnt_opts *opts; 2759 2760 if (!src) 2761 return 0; 2762 2763 fc->security = kzalloc(sizeof(struct selinux_mnt_opts), GFP_KERNEL); 2764 if (!fc->security) 2765 return -ENOMEM; 2766 2767 opts = fc->security; 2768 2769 if (src->fscontext) { 2770 opts->fscontext = kstrdup(src->fscontext, GFP_KERNEL); 2771 if (!opts->fscontext) 2772 return -ENOMEM; 2773 } 2774 if (src->context) { 2775 opts->context = kstrdup(src->context, GFP_KERNEL); 2776 if (!opts->context) 2777 return -ENOMEM; 2778 } 2779 if (src->rootcontext) { 2780 opts->rootcontext = kstrdup(src->rootcontext, GFP_KERNEL); 2781 if (!opts->rootcontext) 2782 return -ENOMEM; 2783 } 2784 if (src->defcontext) { 2785 opts->defcontext = kstrdup(src->defcontext, GFP_KERNEL); 2786 if (!opts->defcontext) 2787 return -ENOMEM; 2788 } 2789 return 0; 2790 } 2791 2792 static const struct fs_parameter_spec selinux_fs_parameters[] = { 2793 fsparam_string(CONTEXT_STR, Opt_context), 2794 fsparam_string(DEFCONTEXT_STR, Opt_defcontext), 2795 fsparam_string(FSCONTEXT_STR, Opt_fscontext), 2796 fsparam_string(ROOTCONTEXT_STR, Opt_rootcontext), 2797 fsparam_flag (SECLABEL_STR, Opt_seclabel), 2798 {} 2799 }; 2800 2801 static int selinux_fs_context_parse_param(struct fs_context *fc, 2802 struct fs_parameter *param) 2803 { 2804 struct fs_parse_result result; 2805 int opt, rc; 2806 2807 opt = fs_parse(fc, selinux_fs_parameters, param, &result); 2808 if (opt < 0) 2809 return opt; 2810 2811 rc = selinux_add_opt(opt, param->string, &fc->security); 2812 if (!rc) { 2813 param->string = NULL; 2814 rc = 1; 2815 } 2816 return rc; 2817 } 2818 2819 /* inode security operations */ 2820 2821 static int selinux_inode_alloc_security(struct inode *inode) 2822 { 2823 struct inode_security_struct *isec = selinux_inode(inode); 2824 u32 sid = current_sid(); 2825 2826 spin_lock_init(&isec->lock); 2827 INIT_LIST_HEAD(&isec->list); 2828 isec->inode = inode; 2829 isec->sid = SECINITSID_UNLABELED; 2830 isec->sclass = SECCLASS_FILE; 2831 isec->task_sid = sid; 2832 isec->initialized = LABEL_INVALID; 2833 2834 return 0; 2835 } 2836 2837 static void selinux_inode_free_security(struct inode *inode) 2838 { 2839 inode_free_security(inode); 2840 } 2841 2842 static int selinux_dentry_init_security(struct dentry *dentry, int mode, 2843 const struct qstr *name, void **ctx, 2844 u32 *ctxlen) 2845 { 2846 u32 newsid; 2847 int rc; 2848 2849 rc = selinux_determine_inode_label(selinux_cred(current_cred()), 2850 d_inode(dentry->d_parent), name, 2851 inode_mode_to_security_class(mode), 2852 &newsid); 2853 if (rc) 2854 return rc; 2855 2856 return security_sid_to_context(&selinux_state, newsid, (char **)ctx, 2857 ctxlen); 2858 } 2859 2860 static int selinux_dentry_create_files_as(struct dentry *dentry, int mode, 2861 struct qstr *name, 2862 const struct cred *old, 2863 struct cred *new) 2864 { 2865 u32 newsid; 2866 int rc; 2867 struct task_security_struct *tsec; 2868 2869 rc = selinux_determine_inode_label(selinux_cred(old), 2870 d_inode(dentry->d_parent), name, 2871 inode_mode_to_security_class(mode), 2872 &newsid); 2873 if (rc) 2874 return rc; 2875 2876 tsec = selinux_cred(new); 2877 tsec->create_sid = newsid; 2878 return 0; 2879 } 2880 2881 static int selinux_inode_init_security(struct inode *inode, struct inode *dir, 2882 const struct qstr *qstr, 2883 const char **name, 2884 void **value, size_t *len) 2885 { 2886 const struct task_security_struct *tsec = selinux_cred(current_cred()); 2887 struct superblock_security_struct *sbsec; 2888 u32 newsid, clen; 2889 int rc; 2890 char *context; 2891 2892 sbsec = dir->i_sb->s_security; 2893 2894 newsid = tsec->create_sid; 2895 2896 rc = selinux_determine_inode_label(tsec, dir, qstr, 2897 inode_mode_to_security_class(inode->i_mode), 2898 &newsid); 2899 if (rc) 2900 return rc; 2901 2902 /* Possibly defer initialization to selinux_complete_init. */ 2903 if (sbsec->flags & SE_SBINITIALIZED) { 2904 struct inode_security_struct *isec = selinux_inode(inode); 2905 isec->sclass = inode_mode_to_security_class(inode->i_mode); 2906 isec->sid = newsid; 2907 isec->initialized = LABEL_INITIALIZED; 2908 } 2909 2910 if (!selinux_initialized(&selinux_state) || 2911 !(sbsec->flags & SBLABEL_MNT)) 2912 return -EOPNOTSUPP; 2913 2914 if (name) 2915 *name = XATTR_SELINUX_SUFFIX; 2916 2917 if (value && len) { 2918 rc = security_sid_to_context_force(&selinux_state, newsid, 2919 &context, &clen); 2920 if (rc) 2921 return rc; 2922 *value = context; 2923 *len = clen; 2924 } 2925 2926 return 0; 2927 } 2928 2929 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode) 2930 { 2931 return may_create(dir, dentry, SECCLASS_FILE); 2932 } 2933 2934 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry) 2935 { 2936 return may_link(dir, old_dentry, MAY_LINK); 2937 } 2938 2939 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry) 2940 { 2941 return may_link(dir, dentry, MAY_UNLINK); 2942 } 2943 2944 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name) 2945 { 2946 return may_create(dir, dentry, SECCLASS_LNK_FILE); 2947 } 2948 2949 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mask) 2950 { 2951 return may_create(dir, dentry, SECCLASS_DIR); 2952 } 2953 2954 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry) 2955 { 2956 return may_link(dir, dentry, MAY_RMDIR); 2957 } 2958 2959 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) 2960 { 2961 return may_create(dir, dentry, inode_mode_to_security_class(mode)); 2962 } 2963 2964 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry, 2965 struct inode *new_inode, struct dentry *new_dentry) 2966 { 2967 return may_rename(old_inode, old_dentry, new_inode, new_dentry); 2968 } 2969 2970 static int selinux_inode_readlink(struct dentry *dentry) 2971 { 2972 const struct cred *cred = current_cred(); 2973 2974 return dentry_has_perm(cred, dentry, FILE__READ); 2975 } 2976 2977 static int selinux_inode_follow_link(struct dentry *dentry, struct inode *inode, 2978 bool rcu) 2979 { 2980 const struct cred *cred = current_cred(); 2981 struct common_audit_data ad; 2982 struct inode_security_struct *isec; 2983 u32 sid; 2984 2985 validate_creds(cred); 2986 2987 ad.type = LSM_AUDIT_DATA_DENTRY; 2988 ad.u.dentry = dentry; 2989 sid = cred_sid(cred); 2990 isec = inode_security_rcu(inode, rcu); 2991 if (IS_ERR(isec)) 2992 return PTR_ERR(isec); 2993 2994 return avc_has_perm_flags(&selinux_state, 2995 sid, isec->sid, isec->sclass, FILE__READ, &ad, 2996 rcu ? MAY_NOT_BLOCK : 0); 2997 } 2998 2999 static noinline int audit_inode_permission(struct inode *inode, 3000 u32 perms, u32 audited, u32 denied, 3001 int result) 3002 { 3003 struct common_audit_data ad; 3004 struct inode_security_struct *isec = selinux_inode(inode); 3005 int rc; 3006 3007 ad.type = LSM_AUDIT_DATA_INODE; 3008 ad.u.inode = inode; 3009 3010 rc = slow_avc_audit(&selinux_state, 3011 current_sid(), isec->sid, isec->sclass, perms, 3012 audited, denied, result, &ad); 3013 if (rc) 3014 return rc; 3015 return 0; 3016 } 3017 3018 static int selinux_inode_permission(struct inode *inode, int mask) 3019 { 3020 const struct cred *cred = current_cred(); 3021 u32 perms; 3022 bool from_access; 3023 bool no_block = mask & MAY_NOT_BLOCK; 3024 struct inode_security_struct *isec; 3025 u32 sid; 3026 struct av_decision avd; 3027 int rc, rc2; 3028 u32 audited, denied; 3029 3030 from_access = mask & MAY_ACCESS; 3031 mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND); 3032 3033 /* No permission to check. Existence test. */ 3034 if (!mask) 3035 return 0; 3036 3037 validate_creds(cred); 3038 3039 if (unlikely(IS_PRIVATE(inode))) 3040 return 0; 3041 3042 perms = file_mask_to_av(inode->i_mode, mask); 3043 3044 sid = cred_sid(cred); 3045 isec = inode_security_rcu(inode, no_block); 3046 if (IS_ERR(isec)) 3047 return PTR_ERR(isec); 3048 3049 rc = avc_has_perm_noaudit(&selinux_state, 3050 sid, isec->sid, isec->sclass, perms, 3051 no_block ? AVC_NONBLOCKING : 0, 3052 &avd); 3053 audited = avc_audit_required(perms, &avd, rc, 3054 from_access ? FILE__AUDIT_ACCESS : 0, 3055 &denied); 3056 if (likely(!audited)) 3057 return rc; 3058 3059 /* fall back to ref-walk if we have to generate audit */ 3060 if (no_block) 3061 return -ECHILD; 3062 3063 rc2 = audit_inode_permission(inode, perms, audited, denied, rc); 3064 if (rc2) 3065 return rc2; 3066 return rc; 3067 } 3068 3069 static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr) 3070 { 3071 const struct cred *cred = current_cred(); 3072 struct inode *inode = d_backing_inode(dentry); 3073 unsigned int ia_valid = iattr->ia_valid; 3074 __u32 av = FILE__WRITE; 3075 3076 /* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */ 3077 if (ia_valid & ATTR_FORCE) { 3078 ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE | 3079 ATTR_FORCE); 3080 if (!ia_valid) 3081 return 0; 3082 } 3083 3084 if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID | 3085 ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET)) 3086 return dentry_has_perm(cred, dentry, FILE__SETATTR); 3087 3088 if (selinux_policycap_openperm() && 3089 inode->i_sb->s_magic != SOCKFS_MAGIC && 3090 (ia_valid & ATTR_SIZE) && 3091 !(ia_valid & ATTR_FILE)) 3092 av |= FILE__OPEN; 3093 3094 return dentry_has_perm(cred, dentry, av); 3095 } 3096 3097 static int selinux_inode_getattr(const struct path *path) 3098 { 3099 return path_has_perm(current_cred(), path, FILE__GETATTR); 3100 } 3101 3102 static bool has_cap_mac_admin(bool audit) 3103 { 3104 const struct cred *cred = current_cred(); 3105 unsigned int opts = audit ? CAP_OPT_NONE : CAP_OPT_NOAUDIT; 3106 3107 if (cap_capable(cred, &init_user_ns, CAP_MAC_ADMIN, opts)) 3108 return false; 3109 if (cred_has_capability(cred, CAP_MAC_ADMIN, opts, true)) 3110 return false; 3111 return true; 3112 } 3113 3114 static int selinux_inode_setxattr(struct dentry *dentry, const char *name, 3115 const void *value, size_t size, int flags) 3116 { 3117 struct inode *inode = d_backing_inode(dentry); 3118 struct inode_security_struct *isec; 3119 struct superblock_security_struct *sbsec; 3120 struct common_audit_data ad; 3121 u32 newsid, sid = current_sid(); 3122 int rc = 0; 3123 3124 if (strcmp(name, XATTR_NAME_SELINUX)) { 3125 rc = cap_inode_setxattr(dentry, name, value, size, flags); 3126 if (rc) 3127 return rc; 3128 3129 /* Not an attribute we recognize, so just check the 3130 ordinary setattr permission. */ 3131 return dentry_has_perm(current_cred(), dentry, FILE__SETATTR); 3132 } 3133 3134 if (!selinux_initialized(&selinux_state)) 3135 return (inode_owner_or_capable(inode) ? 0 : -EPERM); 3136 3137 sbsec = inode->i_sb->s_security; 3138 if (!(sbsec->flags & SBLABEL_MNT)) 3139 return -EOPNOTSUPP; 3140 3141 if (!inode_owner_or_capable(inode)) 3142 return -EPERM; 3143 3144 ad.type = LSM_AUDIT_DATA_DENTRY; 3145 ad.u.dentry = dentry; 3146 3147 isec = backing_inode_security(dentry); 3148 rc = avc_has_perm(&selinux_state, 3149 sid, isec->sid, isec->sclass, 3150 FILE__RELABELFROM, &ad); 3151 if (rc) 3152 return rc; 3153 3154 rc = security_context_to_sid(&selinux_state, value, size, &newsid, 3155 GFP_KERNEL); 3156 if (rc == -EINVAL) { 3157 if (!has_cap_mac_admin(true)) { 3158 struct audit_buffer *ab; 3159 size_t audit_size; 3160 3161 /* We strip a nul only if it is at the end, otherwise the 3162 * context contains a nul and we should audit that */ 3163 if (value) { 3164 const char *str = value; 3165 3166 if (str[size - 1] == '\0') 3167 audit_size = size - 1; 3168 else 3169 audit_size = size; 3170 } else { 3171 audit_size = 0; 3172 } 3173 ab = audit_log_start(audit_context(), 3174 GFP_ATOMIC, AUDIT_SELINUX_ERR); 3175 audit_log_format(ab, "op=setxattr invalid_context="); 3176 audit_log_n_untrustedstring(ab, value, audit_size); 3177 audit_log_end(ab); 3178 3179 return rc; 3180 } 3181 rc = security_context_to_sid_force(&selinux_state, value, 3182 size, &newsid); 3183 } 3184 if (rc) 3185 return rc; 3186 3187 rc = avc_has_perm(&selinux_state, 3188 sid, newsid, isec->sclass, 3189 FILE__RELABELTO, &ad); 3190 if (rc) 3191 return rc; 3192 3193 rc = security_validate_transition(&selinux_state, isec->sid, newsid, 3194 sid, isec->sclass); 3195 if (rc) 3196 return rc; 3197 3198 return avc_has_perm(&selinux_state, 3199 newsid, 3200 sbsec->sid, 3201 SECCLASS_FILESYSTEM, 3202 FILESYSTEM__ASSOCIATE, 3203 &ad); 3204 } 3205 3206 static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name, 3207 const void *value, size_t size, 3208 int flags) 3209 { 3210 struct inode *inode = d_backing_inode(dentry); 3211 struct inode_security_struct *isec; 3212 u32 newsid; 3213 int rc; 3214 3215 if (strcmp(name, XATTR_NAME_SELINUX)) { 3216 /* Not an attribute we recognize, so nothing to do. */ 3217 return; 3218 } 3219 3220 if (!selinux_initialized(&selinux_state)) { 3221 /* If we haven't even been initialized, then we can't validate 3222 * against a policy, so leave the label as invalid. It may 3223 * resolve to a valid label on the next revalidation try if 3224 * we've since initialized. 3225 */ 3226 return; 3227 } 3228 3229 rc = security_context_to_sid_force(&selinux_state, value, size, 3230 &newsid); 3231 if (rc) { 3232 pr_err("SELinux: unable to map context to SID" 3233 "for (%s, %lu), rc=%d\n", 3234 inode->i_sb->s_id, inode->i_ino, -rc); 3235 return; 3236 } 3237 3238 isec = backing_inode_security(dentry); 3239 spin_lock(&isec->lock); 3240 isec->sclass = inode_mode_to_security_class(inode->i_mode); 3241 isec->sid = newsid; 3242 isec->initialized = LABEL_INITIALIZED; 3243 spin_unlock(&isec->lock); 3244 3245 return; 3246 } 3247 3248 static int selinux_inode_getxattr(struct dentry *dentry, const char *name) 3249 { 3250 const struct cred *cred = current_cred(); 3251 3252 return dentry_has_perm(cred, dentry, FILE__GETATTR); 3253 } 3254 3255 static int selinux_inode_listxattr(struct dentry *dentry) 3256 { 3257 const struct cred *cred = current_cred(); 3258 3259 return dentry_has_perm(cred, dentry, FILE__GETATTR); 3260 } 3261 3262 static int selinux_inode_removexattr(struct dentry *dentry, const char *name) 3263 { 3264 if (strcmp(name, XATTR_NAME_SELINUX)) { 3265 int rc = cap_inode_removexattr(dentry, name); 3266 if (rc) 3267 return rc; 3268 3269 /* Not an attribute we recognize, so just check the 3270 ordinary setattr permission. */ 3271 return dentry_has_perm(current_cred(), dentry, FILE__SETATTR); 3272 } 3273 3274 /* No one is allowed to remove a SELinux security label. 3275 You can change the label, but all data must be labeled. */ 3276 return -EACCES; 3277 } 3278 3279 static int selinux_path_notify(const struct path *path, u64 mask, 3280 unsigned int obj_type) 3281 { 3282 int ret; 3283 u32 perm; 3284 3285 struct common_audit_data ad; 3286 3287 ad.type = LSM_AUDIT_DATA_PATH; 3288 ad.u.path = *path; 3289 3290 /* 3291 * Set permission needed based on the type of mark being set. 3292 * Performs an additional check for sb watches. 3293 */ 3294 switch (obj_type) { 3295 case FSNOTIFY_OBJ_TYPE_VFSMOUNT: 3296 perm = FILE__WATCH_MOUNT; 3297 break; 3298 case FSNOTIFY_OBJ_TYPE_SB: 3299 perm = FILE__WATCH_SB; 3300 ret = superblock_has_perm(current_cred(), path->dentry->d_sb, 3301 FILESYSTEM__WATCH, &ad); 3302 if (ret) 3303 return ret; 3304 break; 3305 case FSNOTIFY_OBJ_TYPE_INODE: 3306 perm = FILE__WATCH; 3307 break; 3308 default: 3309 return -EINVAL; 3310 } 3311 3312 /* blocking watches require the file:watch_with_perm permission */ 3313 if (mask & (ALL_FSNOTIFY_PERM_EVENTS)) 3314 perm |= FILE__WATCH_WITH_PERM; 3315 3316 /* watches on read-like events need the file:watch_reads permission */ 3317 if (mask & (FS_ACCESS | FS_ACCESS_PERM | FS_CLOSE_NOWRITE)) 3318 perm |= FILE__WATCH_READS; 3319 3320 return path_has_perm(current_cred(), path, perm); 3321 } 3322 3323 /* 3324 * Copy the inode security context value to the user. 3325 * 3326 * Permission check is handled by selinux_inode_getxattr hook. 3327 */ 3328 static int selinux_inode_getsecurity(struct inode *inode, const char *name, void **buffer, bool alloc) 3329 { 3330 u32 size; 3331 int error; 3332 char *context = NULL; 3333 struct inode_security_struct *isec; 3334 3335 if (strcmp(name, XATTR_SELINUX_SUFFIX)) 3336 return -EOPNOTSUPP; 3337 3338 /* 3339 * If the caller has CAP_MAC_ADMIN, then get the raw context 3340 * value even if it is not defined by current policy; otherwise, 3341 * use the in-core value under current policy. 3342 * Use the non-auditing forms of the permission checks since 3343 * getxattr may be called by unprivileged processes commonly 3344 * and lack of permission just means that we fall back to the 3345 * in-core context value, not a denial. 3346 */ 3347 isec = inode_security(inode); 3348 if (has_cap_mac_admin(false)) 3349 error = security_sid_to_context_force(&selinux_state, 3350 isec->sid, &context, 3351 &size); 3352 else 3353 error = security_sid_to_context(&selinux_state, isec->sid, 3354 &context, &size); 3355 if (error) 3356 return error; 3357 error = size; 3358 if (alloc) { 3359 *buffer = context; 3360 goto out_nofree; 3361 } 3362 kfree(context); 3363 out_nofree: 3364 return error; 3365 } 3366 3367 static int selinux_inode_setsecurity(struct inode *inode, const char *name, 3368 const void *value, size_t size, int flags) 3369 { 3370 struct inode_security_struct *isec = inode_security_novalidate(inode); 3371 struct superblock_security_struct *sbsec = inode->i_sb->s_security; 3372 u32 newsid; 3373 int rc; 3374 3375 if (strcmp(name, XATTR_SELINUX_SUFFIX)) 3376 return -EOPNOTSUPP; 3377 3378 if (!(sbsec->flags & SBLABEL_MNT)) 3379 return -EOPNOTSUPP; 3380 3381 if (!value || !size) 3382 return -EACCES; 3383 3384 rc = security_context_to_sid(&selinux_state, value, size, &newsid, 3385 GFP_KERNEL); 3386 if (rc) 3387 return rc; 3388 3389 spin_lock(&isec->lock); 3390 isec->sclass = inode_mode_to_security_class(inode->i_mode); 3391 isec->sid = newsid; 3392 isec->initialized = LABEL_INITIALIZED; 3393 spin_unlock(&isec->lock); 3394 return 0; 3395 } 3396 3397 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size) 3398 { 3399 const int len = sizeof(XATTR_NAME_SELINUX); 3400 if (buffer && len <= buffer_size) 3401 memcpy(buffer, XATTR_NAME_SELINUX, len); 3402 return len; 3403 } 3404 3405 static void selinux_inode_getsecid(struct inode *inode, u32 *secid) 3406 { 3407 struct inode_security_struct *isec = inode_security_novalidate(inode); 3408 *secid = isec->sid; 3409 } 3410 3411 static int selinux_inode_copy_up(struct dentry *src, struct cred **new) 3412 { 3413 u32 sid; 3414 struct task_security_struct *tsec; 3415 struct cred *new_creds = *new; 3416 3417 if (new_creds == NULL) { 3418 new_creds = prepare_creds(); 3419 if (!new_creds) 3420 return -ENOMEM; 3421 } 3422 3423 tsec = selinux_cred(new_creds); 3424 /* Get label from overlay inode and set it in create_sid */ 3425 selinux_inode_getsecid(d_inode(src), &sid); 3426 tsec->create_sid = sid; 3427 *new = new_creds; 3428 return 0; 3429 } 3430 3431 static int selinux_inode_copy_up_xattr(const char *name) 3432 { 3433 /* The copy_up hook above sets the initial context on an inode, but we 3434 * don't then want to overwrite it by blindly copying all the lower 3435 * xattrs up. Instead, we have to filter out SELinux-related xattrs. 3436 */ 3437 if (strcmp(name, XATTR_NAME_SELINUX) == 0) 3438 return 1; /* Discard */ 3439 /* 3440 * Any other attribute apart from SELINUX is not claimed, supported 3441 * by selinux. 3442 */ 3443 return -EOPNOTSUPP; 3444 } 3445 3446 /* kernfs node operations */ 3447 3448 static int selinux_kernfs_init_security(struct kernfs_node *kn_dir, 3449 struct kernfs_node *kn) 3450 { 3451 const struct task_security_struct *tsec = selinux_cred(current_cred()); 3452 u32 parent_sid, newsid, clen; 3453 int rc; 3454 char *context; 3455 3456 rc = kernfs_xattr_get(kn_dir, XATTR_NAME_SELINUX, NULL, 0); 3457 if (rc == -ENODATA) 3458 return 0; 3459 else if (rc < 0) 3460 return rc; 3461 3462 clen = (u32)rc; 3463 context = kmalloc(clen, GFP_KERNEL); 3464 if (!context) 3465 return -ENOMEM; 3466 3467 rc = kernfs_xattr_get(kn_dir, XATTR_NAME_SELINUX, context, clen); 3468 if (rc < 0) { 3469 kfree(context); 3470 return rc; 3471 } 3472 3473 rc = security_context_to_sid(&selinux_state, context, clen, &parent_sid, 3474 GFP_KERNEL); 3475 kfree(context); 3476 if (rc) 3477 return rc; 3478 3479 if (tsec->create_sid) { 3480 newsid = tsec->create_sid; 3481 } else { 3482 u16 secclass = inode_mode_to_security_class(kn->mode); 3483 struct qstr q; 3484 3485 q.name = kn->name; 3486 q.hash_len = hashlen_string(kn_dir, kn->name); 3487 3488 rc = security_transition_sid(&selinux_state, tsec->sid, 3489 parent_sid, secclass, &q, 3490 &newsid); 3491 if (rc) 3492 return rc; 3493 } 3494 3495 rc = security_sid_to_context_force(&selinux_state, newsid, 3496 &context, &clen); 3497 if (rc) 3498 return rc; 3499 3500 rc = kernfs_xattr_set(kn, XATTR_NAME_SELINUX, context, clen, 3501 XATTR_CREATE); 3502 kfree(context); 3503 return rc; 3504 } 3505 3506 3507 /* file security operations */ 3508 3509 static int selinux_revalidate_file_permission(struct file *file, int mask) 3510 { 3511 const struct cred *cred = current_cred(); 3512 struct inode *inode = file_inode(file); 3513 3514 /* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */ 3515 if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE)) 3516 mask |= MAY_APPEND; 3517 3518 return file_has_perm(cred, file, 3519 file_mask_to_av(inode->i_mode, mask)); 3520 } 3521 3522 static int selinux_file_permission(struct file *file, int mask) 3523 { 3524 struct inode *inode = file_inode(file); 3525 struct file_security_struct *fsec = selinux_file(file); 3526 struct inode_security_struct *isec; 3527 u32 sid = current_sid(); 3528 3529 if (!mask) 3530 /* No permission to check. Existence test. */ 3531 return 0; 3532 3533 isec = inode_security(inode); 3534 if (sid == fsec->sid && fsec->isid == isec->sid && 3535 fsec->pseqno == avc_policy_seqno(&selinux_state)) 3536 /* No change since file_open check. */ 3537 return 0; 3538 3539 return selinux_revalidate_file_permission(file, mask); 3540 } 3541 3542 static int selinux_file_alloc_security(struct file *file) 3543 { 3544 struct file_security_struct *fsec = selinux_file(file); 3545 u32 sid = current_sid(); 3546 3547 fsec->sid = sid; 3548 fsec->fown_sid = sid; 3549 3550 return 0; 3551 } 3552 3553 /* 3554 * Check whether a task has the ioctl permission and cmd 3555 * operation to an inode. 3556 */ 3557 static int ioctl_has_perm(const struct cred *cred, struct file *file, 3558 u32 requested, u16 cmd) 3559 { 3560 struct common_audit_data ad; 3561 struct file_security_struct *fsec = selinux_file(file); 3562 struct inode *inode = file_inode(file); 3563 struct inode_security_struct *isec; 3564 struct lsm_ioctlop_audit ioctl; 3565 u32 ssid = cred_sid(cred); 3566 int rc; 3567 u8 driver = cmd >> 8; 3568 u8 xperm = cmd & 0xff; 3569 3570 ad.type = LSM_AUDIT_DATA_IOCTL_OP; 3571 ad.u.op = &ioctl; 3572 ad.u.op->cmd = cmd; 3573 ad.u.op->path = file->f_path; 3574 3575 if (ssid != fsec->sid) { 3576 rc = avc_has_perm(&selinux_state, 3577 ssid, fsec->sid, 3578 SECCLASS_FD, 3579 FD__USE, 3580 &ad); 3581 if (rc) 3582 goto out; 3583 } 3584 3585 if (unlikely(IS_PRIVATE(inode))) 3586 return 0; 3587 3588 isec = inode_security(inode); 3589 rc = avc_has_extended_perms(&selinux_state, 3590 ssid, isec->sid, isec->sclass, 3591 requested, driver, xperm, &ad); 3592 out: 3593 return rc; 3594 } 3595 3596 static int selinux_file_ioctl(struct file *file, unsigned int cmd, 3597 unsigned long arg) 3598 { 3599 const struct cred *cred = current_cred(); 3600 int error = 0; 3601 3602 switch (cmd) { 3603 case FIONREAD: 3604 /* fall through */ 3605 case FIBMAP: 3606 /* fall through */ 3607 case FIGETBSZ: 3608 /* fall through */ 3609 case FS_IOC_GETFLAGS: 3610 /* fall through */ 3611 case FS_IOC_GETVERSION: 3612 error = file_has_perm(cred, file, FILE__GETATTR); 3613 break; 3614 3615 case FS_IOC_SETFLAGS: 3616 /* fall through */ 3617 case FS_IOC_SETVERSION: 3618 error = file_has_perm(cred, file, FILE__SETATTR); 3619 break; 3620 3621 /* sys_ioctl() checks */ 3622 case FIONBIO: 3623 /* fall through */ 3624 case FIOASYNC: 3625 error = file_has_perm(cred, file, 0); 3626 break; 3627 3628 case KDSKBENT: 3629 case KDSKBSENT: 3630 error = cred_has_capability(cred, CAP_SYS_TTY_CONFIG, 3631 CAP_OPT_NONE, true); 3632 break; 3633 3634 /* default case assumes that the command will go 3635 * to the file's ioctl() function. 3636 */ 3637 default: 3638 error = ioctl_has_perm(cred, file, FILE__IOCTL, (u16) cmd); 3639 } 3640 return error; 3641 } 3642 3643 static int default_noexec __ro_after_init; 3644 3645 static int file_map_prot_check(struct file *file, unsigned long prot, int shared) 3646 { 3647 const struct cred *cred = current_cred(); 3648 u32 sid = cred_sid(cred); 3649 int rc = 0; 3650 3651 if (default_noexec && 3652 (prot & PROT_EXEC) && (!file || IS_PRIVATE(file_inode(file)) || 3653 (!shared && (prot & PROT_WRITE)))) { 3654 /* 3655 * We are making executable an anonymous mapping or a 3656 * private file mapping that will also be writable. 3657 * This has an additional check. 3658 */ 3659 rc = avc_has_perm(&selinux_state, 3660 sid, sid, SECCLASS_PROCESS, 3661 PROCESS__EXECMEM, NULL); 3662 if (rc) 3663 goto error; 3664 } 3665 3666 if (file) { 3667 /* read access is always possible with a mapping */ 3668 u32 av = FILE__READ; 3669 3670 /* write access only matters if the mapping is shared */ 3671 if (shared && (prot & PROT_WRITE)) 3672 av |= FILE__WRITE; 3673 3674 if (prot & PROT_EXEC) 3675 av |= FILE__EXECUTE; 3676 3677 return file_has_perm(cred, file, av); 3678 } 3679 3680 error: 3681 return rc; 3682 } 3683 3684 static int selinux_mmap_addr(unsigned long addr) 3685 { 3686 int rc = 0; 3687 3688 if (addr < CONFIG_LSM_MMAP_MIN_ADDR) { 3689 u32 sid = current_sid(); 3690 rc = avc_has_perm(&selinux_state, 3691 sid, sid, SECCLASS_MEMPROTECT, 3692 MEMPROTECT__MMAP_ZERO, NULL); 3693 } 3694 3695 return rc; 3696 } 3697 3698 static int selinux_mmap_file(struct file *file, unsigned long reqprot, 3699 unsigned long prot, unsigned long flags) 3700 { 3701 struct common_audit_data ad; 3702 int rc; 3703 3704 if (file) { 3705 ad.type = LSM_AUDIT_DATA_FILE; 3706 ad.u.file = file; 3707 rc = inode_has_perm(current_cred(), file_inode(file), 3708 FILE__MAP, &ad); 3709 if (rc) 3710 return rc; 3711 } 3712 3713 if (selinux_state.checkreqprot) 3714 prot = reqprot; 3715 3716 return file_map_prot_check(file, prot, 3717 (flags & MAP_TYPE) == MAP_SHARED); 3718 } 3719 3720 static int selinux_file_mprotect(struct vm_area_struct *vma, 3721 unsigned long reqprot, 3722 unsigned long prot) 3723 { 3724 const struct cred *cred = current_cred(); 3725 u32 sid = cred_sid(cred); 3726 3727 if (selinux_state.checkreqprot) 3728 prot = reqprot; 3729 3730 if (default_noexec && 3731 (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) { 3732 int rc = 0; 3733 if (vma->vm_start >= vma->vm_mm->start_brk && 3734 vma->vm_end <= vma->vm_mm->brk) { 3735 rc = avc_has_perm(&selinux_state, 3736 sid, sid, SECCLASS_PROCESS, 3737 PROCESS__EXECHEAP, NULL); 3738 } else if (!vma->vm_file && 3739 ((vma->vm_start <= vma->vm_mm->start_stack && 3740 vma->vm_end >= vma->vm_mm->start_stack) || 3741 vma_is_stack_for_current(vma))) { 3742 rc = avc_has_perm(&selinux_state, 3743 sid, sid, SECCLASS_PROCESS, 3744 PROCESS__EXECSTACK, NULL); 3745 } else if (vma->vm_file && vma->anon_vma) { 3746 /* 3747 * We are making executable a file mapping that has 3748 * had some COW done. Since pages might have been 3749 * written, check ability to execute the possibly 3750 * modified content. This typically should only 3751 * occur for text relocations. 3752 */ 3753 rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD); 3754 } 3755 if (rc) 3756 return rc; 3757 } 3758 3759 return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED); 3760 } 3761 3762 static int selinux_file_lock(struct file *file, unsigned int cmd) 3763 { 3764 const struct cred *cred = current_cred(); 3765 3766 return file_has_perm(cred, file, FILE__LOCK); 3767 } 3768 3769 static int selinux_file_fcntl(struct file *file, unsigned int cmd, 3770 unsigned long arg) 3771 { 3772 const struct cred *cred = current_cred(); 3773 int err = 0; 3774 3775 switch (cmd) { 3776 case F_SETFL: 3777 if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) { 3778 err = file_has_perm(cred, file, FILE__WRITE); 3779 break; 3780 } 3781 /* fall through */ 3782 case F_SETOWN: 3783 case F_SETSIG: 3784 case F_GETFL: 3785 case F_GETOWN: 3786 case F_GETSIG: 3787 case F_GETOWNER_UIDS: 3788 /* Just check FD__USE permission */ 3789 err = file_has_perm(cred, file, 0); 3790 break; 3791 case F_GETLK: 3792 case F_SETLK: 3793 case F_SETLKW: 3794 case F_OFD_GETLK: 3795 case F_OFD_SETLK: 3796 case F_OFD_SETLKW: 3797 #if BITS_PER_LONG == 32 3798 case F_GETLK64: 3799 case F_SETLK64: 3800 case F_SETLKW64: 3801 #endif 3802 err = file_has_perm(cred, file, FILE__LOCK); 3803 break; 3804 } 3805 3806 return err; 3807 } 3808 3809 static void selinux_file_set_fowner(struct file *file) 3810 { 3811 struct file_security_struct *fsec; 3812 3813 fsec = selinux_file(file); 3814 fsec->fown_sid = current_sid(); 3815 } 3816 3817 static int selinux_file_send_sigiotask(struct task_struct *tsk, 3818 struct fown_struct *fown, int signum) 3819 { 3820 struct file *file; 3821 u32 sid = task_sid(tsk); 3822 u32 perm; 3823 struct file_security_struct *fsec; 3824 3825 /* struct fown_struct is never outside the context of a struct file */ 3826 file = container_of(fown, struct file, f_owner); 3827 3828 fsec = selinux_file(file); 3829 3830 if (!signum) 3831 perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */ 3832 else 3833 perm = signal_to_av(signum); 3834 3835 return avc_has_perm(&selinux_state, 3836 fsec->fown_sid, sid, 3837 SECCLASS_PROCESS, perm, NULL); 3838 } 3839 3840 static int selinux_file_receive(struct file *file) 3841 { 3842 const struct cred *cred = current_cred(); 3843 3844 return file_has_perm(cred, file, file_to_av(file)); 3845 } 3846 3847 static int selinux_file_open(struct file *file) 3848 { 3849 struct file_security_struct *fsec; 3850 struct inode_security_struct *isec; 3851 3852 fsec = selinux_file(file); 3853 isec = inode_security(file_inode(file)); 3854 /* 3855 * Save inode label and policy sequence number 3856 * at open-time so that selinux_file_permission 3857 * can determine whether revalidation is necessary. 3858 * Task label is already saved in the file security 3859 * struct as its SID. 3860 */ 3861 fsec->isid = isec->sid; 3862 fsec->pseqno = avc_policy_seqno(&selinux_state); 3863 /* 3864 * Since the inode label or policy seqno may have changed 3865 * between the selinux_inode_permission check and the saving 3866 * of state above, recheck that access is still permitted. 3867 * Otherwise, access might never be revalidated against the 3868 * new inode label or new policy. 3869 * This check is not redundant - do not remove. 3870 */ 3871 return file_path_has_perm(file->f_cred, file, open_file_to_av(file)); 3872 } 3873 3874 /* task security operations */ 3875 3876 static int selinux_task_alloc(struct task_struct *task, 3877 unsigned long clone_flags) 3878 { 3879 u32 sid = current_sid(); 3880 3881 return avc_has_perm(&selinux_state, 3882 sid, sid, SECCLASS_PROCESS, PROCESS__FORK, NULL); 3883 } 3884 3885 /* 3886 * prepare a new set of credentials for modification 3887 */ 3888 static int selinux_cred_prepare(struct cred *new, const struct cred *old, 3889 gfp_t gfp) 3890 { 3891 const struct task_security_struct *old_tsec = selinux_cred(old); 3892 struct task_security_struct *tsec = selinux_cred(new); 3893 3894 *tsec = *old_tsec; 3895 return 0; 3896 } 3897 3898 /* 3899 * transfer the SELinux data to a blank set of creds 3900 */ 3901 static void selinux_cred_transfer(struct cred *new, const struct cred *old) 3902 { 3903 const struct task_security_struct *old_tsec = selinux_cred(old); 3904 struct task_security_struct *tsec = selinux_cred(new); 3905 3906 *tsec = *old_tsec; 3907 } 3908 3909 static void selinux_cred_getsecid(const struct cred *c, u32 *secid) 3910 { 3911 *secid = cred_sid(c); 3912 } 3913 3914 /* 3915 * set the security data for a kernel service 3916 * - all the creation contexts are set to unlabelled 3917 */ 3918 static int selinux_kernel_act_as(struct cred *new, u32 secid) 3919 { 3920 struct task_security_struct *tsec = selinux_cred(new); 3921 u32 sid = current_sid(); 3922 int ret; 3923 3924 ret = avc_has_perm(&selinux_state, 3925 sid, secid, 3926 SECCLASS_KERNEL_SERVICE, 3927 KERNEL_SERVICE__USE_AS_OVERRIDE, 3928 NULL); 3929 if (ret == 0) { 3930 tsec->sid = secid; 3931 tsec->create_sid = 0; 3932 tsec->keycreate_sid = 0; 3933 tsec->sockcreate_sid = 0; 3934 } 3935 return ret; 3936 } 3937 3938 /* 3939 * set the file creation context in a security record to the same as the 3940 * objective context of the specified inode 3941 */ 3942 static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode) 3943 { 3944 struct inode_security_struct *isec = inode_security(inode); 3945 struct task_security_struct *tsec = selinux_cred(new); 3946 u32 sid = current_sid(); 3947 int ret; 3948 3949 ret = avc_has_perm(&selinux_state, 3950 sid, isec->sid, 3951 SECCLASS_KERNEL_SERVICE, 3952 KERNEL_SERVICE__CREATE_FILES_AS, 3953 NULL); 3954 3955 if (ret == 0) 3956 tsec->create_sid = isec->sid; 3957 return ret; 3958 } 3959 3960 static int selinux_kernel_module_request(char *kmod_name) 3961 { 3962 struct common_audit_data ad; 3963 3964 ad.type = LSM_AUDIT_DATA_KMOD; 3965 ad.u.kmod_name = kmod_name; 3966 3967 return avc_has_perm(&selinux_state, 3968 current_sid(), SECINITSID_KERNEL, SECCLASS_SYSTEM, 3969 SYSTEM__MODULE_REQUEST, &ad); 3970 } 3971 3972 static int selinux_kernel_module_from_file(struct file *file) 3973 { 3974 struct common_audit_data ad; 3975 struct inode_security_struct *isec; 3976 struct file_security_struct *fsec; 3977 u32 sid = current_sid(); 3978 int rc; 3979 3980 /* init_module */ 3981 if (file == NULL) 3982 return avc_has_perm(&selinux_state, 3983 sid, sid, SECCLASS_SYSTEM, 3984 SYSTEM__MODULE_LOAD, NULL); 3985 3986 /* finit_module */ 3987 3988 ad.type = LSM_AUDIT_DATA_FILE; 3989 ad.u.file = file; 3990 3991 fsec = selinux_file(file); 3992 if (sid != fsec->sid) { 3993 rc = avc_has_perm(&selinux_state, 3994 sid, fsec->sid, SECCLASS_FD, FD__USE, &ad); 3995 if (rc) 3996 return rc; 3997 } 3998 3999 isec = inode_security(file_inode(file)); 4000 return avc_has_perm(&selinux_state, 4001 sid, isec->sid, SECCLASS_SYSTEM, 4002 SYSTEM__MODULE_LOAD, &ad); 4003 } 4004 4005 static int selinux_kernel_read_file(struct file *file, 4006 enum kernel_read_file_id id) 4007 { 4008 int rc = 0; 4009 4010 switch (id) { 4011 case READING_MODULE: 4012 rc = selinux_kernel_module_from_file(file); 4013 break; 4014 default: 4015 break; 4016 } 4017 4018 return rc; 4019 } 4020 4021 static int selinux_kernel_load_data(enum kernel_load_data_id id) 4022 { 4023 int rc = 0; 4024 4025 switch (id) { 4026 case LOADING_MODULE: 4027 rc = selinux_kernel_module_from_file(NULL); 4028 default: 4029 break; 4030 } 4031 4032 return rc; 4033 } 4034 4035 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid) 4036 { 4037 return avc_has_perm(&selinux_state, 4038 current_sid(), task_sid(p), SECCLASS_PROCESS, 4039 PROCESS__SETPGID, NULL); 4040 } 4041 4042 static int selinux_task_getpgid(struct task_struct *p) 4043 { 4044 return avc_has_perm(&selinux_state, 4045 current_sid(), task_sid(p), SECCLASS_PROCESS, 4046 PROCESS__GETPGID, NULL); 4047 } 4048 4049 static int selinux_task_getsid(struct task_struct *p) 4050 { 4051 return avc_has_perm(&selinux_state, 4052 current_sid(), task_sid(p), SECCLASS_PROCESS, 4053 PROCESS__GETSESSION, NULL); 4054 } 4055 4056 static void selinux_task_getsecid(struct task_struct *p, u32 *secid) 4057 { 4058 *secid = task_sid(p); 4059 } 4060 4061 static int selinux_task_setnice(struct task_struct *p, int nice) 4062 { 4063 return avc_has_perm(&selinux_state, 4064 current_sid(), task_sid(p), SECCLASS_PROCESS, 4065 PROCESS__SETSCHED, NULL); 4066 } 4067 4068 static int selinux_task_setioprio(struct task_struct *p, int ioprio) 4069 { 4070 return avc_has_perm(&selinux_state, 4071 current_sid(), task_sid(p), SECCLASS_PROCESS, 4072 PROCESS__SETSCHED, NULL); 4073 } 4074 4075 static int selinux_task_getioprio(struct task_struct *p) 4076 { 4077 return avc_has_perm(&selinux_state, 4078 current_sid(), task_sid(p), SECCLASS_PROCESS, 4079 PROCESS__GETSCHED, NULL); 4080 } 4081 4082 static int selinux_task_prlimit(const struct cred *cred, const struct cred *tcred, 4083 unsigned int flags) 4084 { 4085 u32 av = 0; 4086 4087 if (!flags) 4088 return 0; 4089 if (flags & LSM_PRLIMIT_WRITE) 4090 av |= PROCESS__SETRLIMIT; 4091 if (flags & LSM_PRLIMIT_READ) 4092 av |= PROCESS__GETRLIMIT; 4093 return avc_has_perm(&selinux_state, 4094 cred_sid(cred), cred_sid(tcred), 4095 SECCLASS_PROCESS, av, NULL); 4096 } 4097 4098 static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource, 4099 struct rlimit *new_rlim) 4100 { 4101 struct rlimit *old_rlim = p->signal->rlim + resource; 4102 4103 /* Control the ability to change the hard limit (whether 4104 lowering or raising it), so that the hard limit can 4105 later be used as a safe reset point for the soft limit 4106 upon context transitions. See selinux_bprm_committing_creds. */ 4107 if (old_rlim->rlim_max != new_rlim->rlim_max) 4108 return avc_has_perm(&selinux_state, 4109 current_sid(), task_sid(p), 4110 SECCLASS_PROCESS, PROCESS__SETRLIMIT, NULL); 4111 4112 return 0; 4113 } 4114 4115 static int selinux_task_setscheduler(struct task_struct *p) 4116 { 4117 return avc_has_perm(&selinux_state, 4118 current_sid(), task_sid(p), SECCLASS_PROCESS, 4119 PROCESS__SETSCHED, NULL); 4120 } 4121 4122 static int selinux_task_getscheduler(struct task_struct *p) 4123 { 4124 return avc_has_perm(&selinux_state, 4125 current_sid(), task_sid(p), SECCLASS_PROCESS, 4126 PROCESS__GETSCHED, NULL); 4127 } 4128 4129 static int selinux_task_movememory(struct task_struct *p) 4130 { 4131 return avc_has_perm(&selinux_state, 4132 current_sid(), task_sid(p), SECCLASS_PROCESS, 4133 PROCESS__SETSCHED, NULL); 4134 } 4135 4136 static int selinux_task_kill(struct task_struct *p, struct kernel_siginfo *info, 4137 int sig, const struct cred *cred) 4138 { 4139 u32 secid; 4140 u32 perm; 4141 4142 if (!sig) 4143 perm = PROCESS__SIGNULL; /* null signal; existence test */ 4144 else 4145 perm = signal_to_av(sig); 4146 if (!cred) 4147 secid = current_sid(); 4148 else 4149 secid = cred_sid(cred); 4150 return avc_has_perm(&selinux_state, 4151 secid, task_sid(p), SECCLASS_PROCESS, perm, NULL); 4152 } 4153 4154 static void selinux_task_to_inode(struct task_struct *p, 4155 struct inode *inode) 4156 { 4157 struct inode_security_struct *isec = selinux_inode(inode); 4158 u32 sid = task_sid(p); 4159 4160 spin_lock(&isec->lock); 4161 isec->sclass = inode_mode_to_security_class(inode->i_mode); 4162 isec->sid = sid; 4163 isec->initialized = LABEL_INITIALIZED; 4164 spin_unlock(&isec->lock); 4165 } 4166 4167 /* Returns error only if unable to parse addresses */ 4168 static int selinux_parse_skb_ipv4(struct sk_buff *skb, 4169 struct common_audit_data *ad, u8 *proto) 4170 { 4171 int offset, ihlen, ret = -EINVAL; 4172 struct iphdr _iph, *ih; 4173 4174 offset = skb_network_offset(skb); 4175 ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph); 4176 if (ih == NULL) 4177 goto out; 4178 4179 ihlen = ih->ihl * 4; 4180 if (ihlen < sizeof(_iph)) 4181 goto out; 4182 4183 ad->u.net->v4info.saddr = ih->saddr; 4184 ad->u.net->v4info.daddr = ih->daddr; 4185 ret = 0; 4186 4187 if (proto) 4188 *proto = ih->protocol; 4189 4190 switch (ih->protocol) { 4191 case IPPROTO_TCP: { 4192 struct tcphdr _tcph, *th; 4193 4194 if (ntohs(ih->frag_off) & IP_OFFSET) 4195 break; 4196 4197 offset += ihlen; 4198 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph); 4199 if (th == NULL) 4200 break; 4201 4202 ad->u.net->sport = th->source; 4203 ad->u.net->dport = th->dest; 4204 break; 4205 } 4206 4207 case IPPROTO_UDP: { 4208 struct udphdr _udph, *uh; 4209 4210 if (ntohs(ih->frag_off) & IP_OFFSET) 4211 break; 4212 4213 offset += ihlen; 4214 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph); 4215 if (uh == NULL) 4216 break; 4217 4218 ad->u.net->sport = uh->source; 4219 ad->u.net->dport = uh->dest; 4220 break; 4221 } 4222 4223 case IPPROTO_DCCP: { 4224 struct dccp_hdr _dccph, *dh; 4225 4226 if (ntohs(ih->frag_off) & IP_OFFSET) 4227 break; 4228 4229 offset += ihlen; 4230 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph); 4231 if (dh == NULL) 4232 break; 4233 4234 ad->u.net->sport = dh->dccph_sport; 4235 ad->u.net->dport = dh->dccph_dport; 4236 break; 4237 } 4238 4239 #if IS_ENABLED(CONFIG_IP_SCTP) 4240 case IPPROTO_SCTP: { 4241 struct sctphdr _sctph, *sh; 4242 4243 if (ntohs(ih->frag_off) & IP_OFFSET) 4244 break; 4245 4246 offset += ihlen; 4247 sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph); 4248 if (sh == NULL) 4249 break; 4250 4251 ad->u.net->sport = sh->source; 4252 ad->u.net->dport = sh->dest; 4253 break; 4254 } 4255 #endif 4256 default: 4257 break; 4258 } 4259 out: 4260 return ret; 4261 } 4262 4263 #if IS_ENABLED(CONFIG_IPV6) 4264 4265 /* Returns error only if unable to parse addresses */ 4266 static int selinux_parse_skb_ipv6(struct sk_buff *skb, 4267 struct common_audit_data *ad, u8 *proto) 4268 { 4269 u8 nexthdr; 4270 int ret = -EINVAL, offset; 4271 struct ipv6hdr _ipv6h, *ip6; 4272 __be16 frag_off; 4273 4274 offset = skb_network_offset(skb); 4275 ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h); 4276 if (ip6 == NULL) 4277 goto out; 4278 4279 ad->u.net->v6info.saddr = ip6->saddr; 4280 ad->u.net->v6info.daddr = ip6->daddr; 4281 ret = 0; 4282 4283 nexthdr = ip6->nexthdr; 4284 offset += sizeof(_ipv6h); 4285 offset = ipv6_skip_exthdr(skb, offset, &nexthdr, &frag_off); 4286 if (offset < 0) 4287 goto out; 4288 4289 if (proto) 4290 *proto = nexthdr; 4291 4292 switch (nexthdr) { 4293 case IPPROTO_TCP: { 4294 struct tcphdr _tcph, *th; 4295 4296 th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph); 4297 if (th == NULL) 4298 break; 4299 4300 ad->u.net->sport = th->source; 4301 ad->u.net->dport = th->dest; 4302 break; 4303 } 4304 4305 case IPPROTO_UDP: { 4306 struct udphdr _udph, *uh; 4307 4308 uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph); 4309 if (uh == NULL) 4310 break; 4311 4312 ad->u.net->sport = uh->source; 4313 ad->u.net->dport = uh->dest; 4314 break; 4315 } 4316 4317 case IPPROTO_DCCP: { 4318 struct dccp_hdr _dccph, *dh; 4319 4320 dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph); 4321 if (dh == NULL) 4322 break; 4323 4324 ad->u.net->sport = dh->dccph_sport; 4325 ad->u.net->dport = dh->dccph_dport; 4326 break; 4327 } 4328 4329 #if IS_ENABLED(CONFIG_IP_SCTP) 4330 case IPPROTO_SCTP: { 4331 struct sctphdr _sctph, *sh; 4332 4333 sh = skb_header_pointer(skb, offset, sizeof(_sctph), &_sctph); 4334 if (sh == NULL) 4335 break; 4336 4337 ad->u.net->sport = sh->source; 4338 ad->u.net->dport = sh->dest; 4339 break; 4340 } 4341 #endif 4342 /* includes fragments */ 4343 default: 4344 break; 4345 } 4346 out: 4347 return ret; 4348 } 4349 4350 #endif /* IPV6 */ 4351 4352 static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad, 4353 char **_addrp, int src, u8 *proto) 4354 { 4355 char *addrp; 4356 int ret; 4357 4358 switch (ad->u.net->family) { 4359 case PF_INET: 4360 ret = selinux_parse_skb_ipv4(skb, ad, proto); 4361 if (ret) 4362 goto parse_error; 4363 addrp = (char *)(src ? &ad->u.net->v4info.saddr : 4364 &ad->u.net->v4info.daddr); 4365 goto okay; 4366 4367 #if IS_ENABLED(CONFIG_IPV6) 4368 case PF_INET6: 4369 ret = selinux_parse_skb_ipv6(skb, ad, proto); 4370 if (ret) 4371 goto parse_error; 4372 addrp = (char *)(src ? &ad->u.net->v6info.saddr : 4373 &ad->u.net->v6info.daddr); 4374 goto okay; 4375 #endif /* IPV6 */ 4376 default: 4377 addrp = NULL; 4378 goto okay; 4379 } 4380 4381 parse_error: 4382 pr_warn( 4383 "SELinux: failure in selinux_parse_skb()," 4384 " unable to parse packet\n"); 4385 return ret; 4386 4387 okay: 4388 if (_addrp) 4389 *_addrp = addrp; 4390 return 0; 4391 } 4392 4393 /** 4394 * selinux_skb_peerlbl_sid - Determine the peer label of a packet 4395 * @skb: the packet 4396 * @family: protocol family 4397 * @sid: the packet's peer label SID 4398 * 4399 * Description: 4400 * Check the various different forms of network peer labeling and determine 4401 * the peer label/SID for the packet; most of the magic actually occurs in 4402 * the security server function security_net_peersid_cmp(). The function 4403 * returns zero if the value in @sid is valid (although it may be SECSID_NULL) 4404 * or -EACCES if @sid is invalid due to inconsistencies with the different 4405 * peer labels. 4406 * 4407 */ 4408 static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid) 4409 { 4410 int err; 4411 u32 xfrm_sid; 4412 u32 nlbl_sid; 4413 u32 nlbl_type; 4414 4415 err = selinux_xfrm_skb_sid(skb, &xfrm_sid); 4416 if (unlikely(err)) 4417 return -EACCES; 4418 err = selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid); 4419 if (unlikely(err)) 4420 return -EACCES; 4421 4422 err = security_net_peersid_resolve(&selinux_state, nlbl_sid, 4423 nlbl_type, xfrm_sid, sid); 4424 if (unlikely(err)) { 4425 pr_warn( 4426 "SELinux: failure in selinux_skb_peerlbl_sid()," 4427 " unable to determine packet's peer label\n"); 4428 return -EACCES; 4429 } 4430 4431 return 0; 4432 } 4433 4434 /** 4435 * selinux_conn_sid - Determine the child socket label for a connection 4436 * @sk_sid: the parent socket's SID 4437 * @skb_sid: the packet's SID 4438 * @conn_sid: the resulting connection SID 4439 * 4440 * If @skb_sid is valid then the user:role:type information from @sk_sid is 4441 * combined with the MLS information from @skb_sid in order to create 4442 * @conn_sid. If @skb_sid is not valid then then @conn_sid is simply a copy 4443 * of @sk_sid. Returns zero on success, negative values on failure. 4444 * 4445 */ 4446 static int selinux_conn_sid(u32 sk_sid, u32 skb_sid, u32 *conn_sid) 4447 { 4448 int err = 0; 4449 4450 if (skb_sid != SECSID_NULL) 4451 err = security_sid_mls_copy(&selinux_state, sk_sid, skb_sid, 4452 conn_sid); 4453 else 4454 *conn_sid = sk_sid; 4455 4456 return err; 4457 } 4458 4459 /* socket security operations */ 4460 4461 static int socket_sockcreate_sid(const struct task_security_struct *tsec, 4462 u16 secclass, u32 *socksid) 4463 { 4464 if (tsec->sockcreate_sid > SECSID_NULL) { 4465 *socksid = tsec->sockcreate_sid; 4466 return 0; 4467 } 4468 4469 return security_transition_sid(&selinux_state, tsec->sid, tsec->sid, 4470 secclass, NULL, socksid); 4471 } 4472 4473 static int sock_has_perm(struct sock *sk, u32 perms) 4474 { 4475 struct sk_security_struct *sksec = sk->sk_security; 4476 struct common_audit_data ad; 4477 struct lsm_network_audit net = {0,}; 4478 4479 if (sksec->sid == SECINITSID_KERNEL) 4480 return 0; 4481 4482 ad.type = LSM_AUDIT_DATA_NET; 4483 ad.u.net = &net; 4484 ad.u.net->sk = sk; 4485 4486 return avc_has_perm(&selinux_state, 4487 current_sid(), sksec->sid, sksec->sclass, perms, 4488 &ad); 4489 } 4490 4491 static int selinux_socket_create(int family, int type, 4492 int protocol, int kern) 4493 { 4494 const struct task_security_struct *tsec = selinux_cred(current_cred()); 4495 u32 newsid; 4496 u16 secclass; 4497 int rc; 4498 4499 if (kern) 4500 return 0; 4501 4502 secclass = socket_type_to_security_class(family, type, protocol); 4503 rc = socket_sockcreate_sid(tsec, secclass, &newsid); 4504 if (rc) 4505 return rc; 4506 4507 return avc_has_perm(&selinux_state, 4508 tsec->sid, newsid, secclass, SOCKET__CREATE, NULL); 4509 } 4510 4511 static int selinux_socket_post_create(struct socket *sock, int family, 4512 int type, int protocol, int kern) 4513 { 4514 const struct task_security_struct *tsec = selinux_cred(current_cred()); 4515 struct inode_security_struct *isec = inode_security_novalidate(SOCK_INODE(sock)); 4516 struct sk_security_struct *sksec; 4517 u16 sclass = socket_type_to_security_class(family, type, protocol); 4518 u32 sid = SECINITSID_KERNEL; 4519 int err = 0; 4520 4521 if (!kern) { 4522 err = socket_sockcreate_sid(tsec, sclass, &sid); 4523 if (err) 4524 return err; 4525 } 4526 4527 isec->sclass = sclass; 4528 isec->sid = sid; 4529 isec->initialized = LABEL_INITIALIZED; 4530 4531 if (sock->sk) { 4532 sksec = sock->sk->sk_security; 4533 sksec->sclass = sclass; 4534 sksec->sid = sid; 4535 /* Allows detection of the first association on this socket */ 4536 if (sksec->sclass == SECCLASS_SCTP_SOCKET) 4537 sksec->sctp_assoc_state = SCTP_ASSOC_UNSET; 4538 4539 err = selinux_netlbl_socket_post_create(sock->sk, family); 4540 } 4541 4542 return err; 4543 } 4544 4545 static int selinux_socket_socketpair(struct socket *socka, 4546 struct socket *sockb) 4547 { 4548 struct sk_security_struct *sksec_a = socka->sk->sk_security; 4549 struct sk_security_struct *sksec_b = sockb->sk->sk_security; 4550 4551 sksec_a->peer_sid = sksec_b->sid; 4552 sksec_b->peer_sid = sksec_a->sid; 4553 4554 return 0; 4555 } 4556 4557 /* Range of port numbers used to automatically bind. 4558 Need to determine whether we should perform a name_bind 4559 permission check between the socket and the port number. */ 4560 4561 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen) 4562 { 4563 struct sock *sk = sock->sk; 4564 struct sk_security_struct *sksec = sk->sk_security; 4565 u16 family; 4566 int err; 4567 4568 err = sock_has_perm(sk, SOCKET__BIND); 4569 if (err) 4570 goto out; 4571 4572 /* If PF_INET or PF_INET6, check name_bind permission for the port. */ 4573 family = sk->sk_family; 4574 if (family == PF_INET || family == PF_INET6) { 4575 char *addrp; 4576 struct common_audit_data ad; 4577 struct lsm_network_audit net = {0,}; 4578 struct sockaddr_in *addr4 = NULL; 4579 struct sockaddr_in6 *addr6 = NULL; 4580 u16 family_sa; 4581 unsigned short snum; 4582 u32 sid, node_perm; 4583 4584 /* 4585 * sctp_bindx(3) calls via selinux_sctp_bind_connect() 4586 * that validates multiple binding addresses. Because of this 4587 * need to check address->sa_family as it is possible to have 4588 * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET. 4589 */ 4590 if (addrlen < offsetofend(struct sockaddr, sa_family)) 4591 return -EINVAL; 4592 family_sa = address->sa_family; 4593 switch (family_sa) { 4594 case AF_UNSPEC: 4595 case AF_INET: 4596 if (addrlen < sizeof(struct sockaddr_in)) 4597 return -EINVAL; 4598 addr4 = (struct sockaddr_in *)address; 4599 if (family_sa == AF_UNSPEC) { 4600 /* see __inet_bind(), we only want to allow 4601 * AF_UNSPEC if the address is INADDR_ANY 4602 */ 4603 if (addr4->sin_addr.s_addr != htonl(INADDR_ANY)) 4604 goto err_af; 4605 family_sa = AF_INET; 4606 } 4607 snum = ntohs(addr4->sin_port); 4608 addrp = (char *)&addr4->sin_addr.s_addr; 4609 break; 4610 case AF_INET6: 4611 if (addrlen < SIN6_LEN_RFC2133) 4612 return -EINVAL; 4613 addr6 = (struct sockaddr_in6 *)address; 4614 snum = ntohs(addr6->sin6_port); 4615 addrp = (char *)&addr6->sin6_addr.s6_addr; 4616 break; 4617 default: 4618 goto err_af; 4619 } 4620 4621 ad.type = LSM_AUDIT_DATA_NET; 4622 ad.u.net = &net; 4623 ad.u.net->sport = htons(snum); 4624 ad.u.net->family = family_sa; 4625 4626 if (snum) { 4627 int low, high; 4628 4629 inet_get_local_port_range(sock_net(sk), &low, &high); 4630 4631 if (inet_port_requires_bind_service(sock_net(sk), snum) || 4632 snum < low || snum > high) { 4633 err = sel_netport_sid(sk->sk_protocol, 4634 snum, &sid); 4635 if (err) 4636 goto out; 4637 err = avc_has_perm(&selinux_state, 4638 sksec->sid, sid, 4639 sksec->sclass, 4640 SOCKET__NAME_BIND, &ad); 4641 if (err) 4642 goto out; 4643 } 4644 } 4645 4646 switch (sksec->sclass) { 4647 case SECCLASS_TCP_SOCKET: 4648 node_perm = TCP_SOCKET__NODE_BIND; 4649 break; 4650 4651 case SECCLASS_UDP_SOCKET: 4652 node_perm = UDP_SOCKET__NODE_BIND; 4653 break; 4654 4655 case SECCLASS_DCCP_SOCKET: 4656 node_perm = DCCP_SOCKET__NODE_BIND; 4657 break; 4658 4659 case SECCLASS_SCTP_SOCKET: 4660 node_perm = SCTP_SOCKET__NODE_BIND; 4661 break; 4662 4663 default: 4664 node_perm = RAWIP_SOCKET__NODE_BIND; 4665 break; 4666 } 4667 4668 err = sel_netnode_sid(addrp, family_sa, &sid); 4669 if (err) 4670 goto out; 4671 4672 if (family_sa == AF_INET) 4673 ad.u.net->v4info.saddr = addr4->sin_addr.s_addr; 4674 else 4675 ad.u.net->v6info.saddr = addr6->sin6_addr; 4676 4677 err = avc_has_perm(&selinux_state, 4678 sksec->sid, sid, 4679 sksec->sclass, node_perm, &ad); 4680 if (err) 4681 goto out; 4682 } 4683 out: 4684 return err; 4685 err_af: 4686 /* Note that SCTP services expect -EINVAL, others -EAFNOSUPPORT. */ 4687 if (sksec->sclass == SECCLASS_SCTP_SOCKET) 4688 return -EINVAL; 4689 return -EAFNOSUPPORT; 4690 } 4691 4692 /* This supports connect(2) and SCTP connect services such as sctp_connectx(3) 4693 * and sctp_sendmsg(3) as described in Documentation/security/SCTP.rst 4694 */ 4695 static int selinux_socket_connect_helper(struct socket *sock, 4696 struct sockaddr *address, int addrlen) 4697 { 4698 struct sock *sk = sock->sk; 4699 struct sk_security_struct *sksec = sk->sk_security; 4700 int err; 4701 4702 err = sock_has_perm(sk, SOCKET__CONNECT); 4703 if (err) 4704 return err; 4705 if (addrlen < offsetofend(struct sockaddr, sa_family)) 4706 return -EINVAL; 4707 4708 /* connect(AF_UNSPEC) has special handling, as it is a documented 4709 * way to disconnect the socket 4710 */ 4711 if (address->sa_family == AF_UNSPEC) 4712 return 0; 4713 4714 /* 4715 * If a TCP, DCCP or SCTP socket, check name_connect permission 4716 * for the port. 4717 */ 4718 if (sksec->sclass == SECCLASS_TCP_SOCKET || 4719 sksec->sclass == SECCLASS_DCCP_SOCKET || 4720 sksec->sclass == SECCLASS_SCTP_SOCKET) { 4721 struct common_audit_data ad; 4722 struct lsm_network_audit net = {0,}; 4723 struct sockaddr_in *addr4 = NULL; 4724 struct sockaddr_in6 *addr6 = NULL; 4725 unsigned short snum; 4726 u32 sid, perm; 4727 4728 /* sctp_connectx(3) calls via selinux_sctp_bind_connect() 4729 * that validates multiple connect addresses. Because of this 4730 * need to check address->sa_family as it is possible to have 4731 * sk->sk_family = PF_INET6 with addr->sa_family = AF_INET. 4732 */ 4733 switch (address->sa_family) { 4734 case AF_INET: 4735 addr4 = (struct sockaddr_in *)address; 4736 if (addrlen < sizeof(struct sockaddr_in)) 4737 return -EINVAL; 4738 snum = ntohs(addr4->sin_port); 4739 break; 4740 case AF_INET6: 4741 addr6 = (struct sockaddr_in6 *)address; 4742 if (addrlen < SIN6_LEN_RFC2133) 4743 return -EINVAL; 4744 snum = ntohs(addr6->sin6_port); 4745 break; 4746 default: 4747 /* Note that SCTP services expect -EINVAL, whereas 4748 * others expect -EAFNOSUPPORT. 4749 */ 4750 if (sksec->sclass == SECCLASS_SCTP_SOCKET) 4751 return -EINVAL; 4752 else 4753 return -EAFNOSUPPORT; 4754 } 4755 4756 err = sel_netport_sid(sk->sk_protocol, snum, &sid); 4757 if (err) 4758 return err; 4759 4760 switch (sksec->sclass) { 4761 case SECCLASS_TCP_SOCKET: 4762 perm = TCP_SOCKET__NAME_CONNECT; 4763 break; 4764 case SECCLASS_DCCP_SOCKET: 4765 perm = DCCP_SOCKET__NAME_CONNECT; 4766 break; 4767 case SECCLASS_SCTP_SOCKET: 4768 perm = SCTP_SOCKET__NAME_CONNECT; 4769 break; 4770 } 4771 4772 ad.type = LSM_AUDIT_DATA_NET; 4773 ad.u.net = &net; 4774 ad.u.net->dport = htons(snum); 4775 ad.u.net->family = address->sa_family; 4776 err = avc_has_perm(&selinux_state, 4777 sksec->sid, sid, sksec->sclass, perm, &ad); 4778 if (err) 4779 return err; 4780 } 4781 4782 return 0; 4783 } 4784 4785 /* Supports connect(2), see comments in selinux_socket_connect_helper() */ 4786 static int selinux_socket_connect(struct socket *sock, 4787 struct sockaddr *address, int addrlen) 4788 { 4789 int err; 4790 struct sock *sk = sock->sk; 4791 4792 err = selinux_socket_connect_helper(sock, address, addrlen); 4793 if (err) 4794 return err; 4795 4796 return selinux_netlbl_socket_connect(sk, address); 4797 } 4798 4799 static int selinux_socket_listen(struct socket *sock, int backlog) 4800 { 4801 return sock_has_perm(sock->sk, SOCKET__LISTEN); 4802 } 4803 4804 static int selinux_socket_accept(struct socket *sock, struct socket *newsock) 4805 { 4806 int err; 4807 struct inode_security_struct *isec; 4808 struct inode_security_struct *newisec; 4809 u16 sclass; 4810 u32 sid; 4811 4812 err = sock_has_perm(sock->sk, SOCKET__ACCEPT); 4813 if (err) 4814 return err; 4815 4816 isec = inode_security_novalidate(SOCK_INODE(sock)); 4817 spin_lock(&isec->lock); 4818 sclass = isec->sclass; 4819 sid = isec->sid; 4820 spin_unlock(&isec->lock); 4821 4822 newisec = inode_security_novalidate(SOCK_INODE(newsock)); 4823 newisec->sclass = sclass; 4824 newisec->sid = sid; 4825 newisec->initialized = LABEL_INITIALIZED; 4826 4827 return 0; 4828 } 4829 4830 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg, 4831 int size) 4832 { 4833 return sock_has_perm(sock->sk, SOCKET__WRITE); 4834 } 4835 4836 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg, 4837 int size, int flags) 4838 { 4839 return sock_has_perm(sock->sk, SOCKET__READ); 4840 } 4841 4842 static int selinux_socket_getsockname(struct socket *sock) 4843 { 4844 return sock_has_perm(sock->sk, SOCKET__GETATTR); 4845 } 4846 4847 static int selinux_socket_getpeername(struct socket *sock) 4848 { 4849 return sock_has_perm(sock->sk, SOCKET__GETATTR); 4850 } 4851 4852 static int selinux_socket_setsockopt(struct socket *sock, int level, int optname) 4853 { 4854 int err; 4855 4856 err = sock_has_perm(sock->sk, SOCKET__SETOPT); 4857 if (err) 4858 return err; 4859 4860 return selinux_netlbl_socket_setsockopt(sock, level, optname); 4861 } 4862 4863 static int selinux_socket_getsockopt(struct socket *sock, int level, 4864 int optname) 4865 { 4866 return sock_has_perm(sock->sk, SOCKET__GETOPT); 4867 } 4868 4869 static int selinux_socket_shutdown(struct socket *sock, int how) 4870 { 4871 return sock_has_perm(sock->sk, SOCKET__SHUTDOWN); 4872 } 4873 4874 static int selinux_socket_unix_stream_connect(struct sock *sock, 4875 struct sock *other, 4876 struct sock *newsk) 4877 { 4878 struct sk_security_struct *sksec_sock = sock->sk_security; 4879 struct sk_security_struct *sksec_other = other->sk_security; 4880 struct sk_security_struct *sksec_new = newsk->sk_security; 4881 struct common_audit_data ad; 4882 struct lsm_network_audit net = {0,}; 4883 int err; 4884 4885 ad.type = LSM_AUDIT_DATA_NET; 4886 ad.u.net = &net; 4887 ad.u.net->sk = other; 4888 4889 err = avc_has_perm(&selinux_state, 4890 sksec_sock->sid, sksec_other->sid, 4891 sksec_other->sclass, 4892 UNIX_STREAM_SOCKET__CONNECTTO, &ad); 4893 if (err) 4894 return err; 4895 4896 /* server child socket */ 4897 sksec_new->peer_sid = sksec_sock->sid; 4898 err = security_sid_mls_copy(&selinux_state, sksec_other->sid, 4899 sksec_sock->sid, &sksec_new->sid); 4900 if (err) 4901 return err; 4902 4903 /* connecting socket */ 4904 sksec_sock->peer_sid = sksec_new->sid; 4905 4906 return 0; 4907 } 4908 4909 static int selinux_socket_unix_may_send(struct socket *sock, 4910 struct socket *other) 4911 { 4912 struct sk_security_struct *ssec = sock->sk->sk_security; 4913 struct sk_security_struct *osec = other->sk->sk_security; 4914 struct common_audit_data ad; 4915 struct lsm_network_audit net = {0,}; 4916 4917 ad.type = LSM_AUDIT_DATA_NET; 4918 ad.u.net = &net; 4919 ad.u.net->sk = other->sk; 4920 4921 return avc_has_perm(&selinux_state, 4922 ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO, 4923 &ad); 4924 } 4925 4926 static int selinux_inet_sys_rcv_skb(struct net *ns, int ifindex, 4927 char *addrp, u16 family, u32 peer_sid, 4928 struct common_audit_data *ad) 4929 { 4930 int err; 4931 u32 if_sid; 4932 u32 node_sid; 4933 4934 err = sel_netif_sid(ns, ifindex, &if_sid); 4935 if (err) 4936 return err; 4937 err = avc_has_perm(&selinux_state, 4938 peer_sid, if_sid, 4939 SECCLASS_NETIF, NETIF__INGRESS, ad); 4940 if (err) 4941 return err; 4942 4943 err = sel_netnode_sid(addrp, family, &node_sid); 4944 if (err) 4945 return err; 4946 return avc_has_perm(&selinux_state, 4947 peer_sid, node_sid, 4948 SECCLASS_NODE, NODE__RECVFROM, ad); 4949 } 4950 4951 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb, 4952 u16 family) 4953 { 4954 int err = 0; 4955 struct sk_security_struct *sksec = sk->sk_security; 4956 u32 sk_sid = sksec->sid; 4957 struct common_audit_data ad; 4958 struct lsm_network_audit net = {0,}; 4959 char *addrp; 4960 4961 ad.type = LSM_AUDIT_DATA_NET; 4962 ad.u.net = &net; 4963 ad.u.net->netif = skb->skb_iif; 4964 ad.u.net->family = family; 4965 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL); 4966 if (err) 4967 return err; 4968 4969 if (selinux_secmark_enabled()) { 4970 err = avc_has_perm(&selinux_state, 4971 sk_sid, skb->secmark, SECCLASS_PACKET, 4972 PACKET__RECV, &ad); 4973 if (err) 4974 return err; 4975 } 4976 4977 err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad); 4978 if (err) 4979 return err; 4980 err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad); 4981 4982 return err; 4983 } 4984 4985 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb) 4986 { 4987 int err; 4988 struct sk_security_struct *sksec = sk->sk_security; 4989 u16 family = sk->sk_family; 4990 u32 sk_sid = sksec->sid; 4991 struct common_audit_data ad; 4992 struct lsm_network_audit net = {0,}; 4993 char *addrp; 4994 u8 secmark_active; 4995 u8 peerlbl_active; 4996 4997 if (family != PF_INET && family != PF_INET6) 4998 return 0; 4999 5000 /* Handle mapped IPv4 packets arriving via IPv6 sockets */ 5001 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP)) 5002 family = PF_INET; 5003 5004 /* If any sort of compatibility mode is enabled then handoff processing 5005 * to the selinux_sock_rcv_skb_compat() function to deal with the 5006 * special handling. We do this in an attempt to keep this function 5007 * as fast and as clean as possible. */ 5008 if (!selinux_policycap_netpeer()) 5009 return selinux_sock_rcv_skb_compat(sk, skb, family); 5010 5011 secmark_active = selinux_secmark_enabled(); 5012 peerlbl_active = selinux_peerlbl_enabled(); 5013 if (!secmark_active && !peerlbl_active) 5014 return 0; 5015 5016 ad.type = LSM_AUDIT_DATA_NET; 5017 ad.u.net = &net; 5018 ad.u.net->netif = skb->skb_iif; 5019 ad.u.net->family = family; 5020 err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL); 5021 if (err) 5022 return err; 5023 5024 if (peerlbl_active) { 5025 u32 peer_sid; 5026 5027 err = selinux_skb_peerlbl_sid(skb, family, &peer_sid); 5028 if (err) 5029 return err; 5030 err = selinux_inet_sys_rcv_skb(sock_net(sk), skb->skb_iif, 5031 addrp, family, peer_sid, &ad); 5032 if (err) { 5033 selinux_netlbl_err(skb, family, err, 0); 5034 return err; 5035 } 5036 err = avc_has_perm(&selinux_state, 5037 sk_sid, peer_sid, SECCLASS_PEER, 5038 PEER__RECV, &ad); 5039 if (err) { 5040 selinux_netlbl_err(skb, family, err, 0); 5041 return err; 5042 } 5043 } 5044 5045 if (secmark_active) { 5046 err = avc_has_perm(&selinux_state, 5047 sk_sid, skb->secmark, SECCLASS_PACKET, 5048 PACKET__RECV, &ad); 5049 if (err) 5050 return err; 5051 } 5052 5053 return err; 5054 } 5055 5056 static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval, 5057 int __user *optlen, unsigned len) 5058 { 5059 int err = 0; 5060 char *scontext; 5061 u32 scontext_len; 5062 struct sk_security_struct *sksec = sock->sk->sk_security; 5063 u32 peer_sid = SECSID_NULL; 5064 5065 if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET || 5066 sksec->sclass == SECCLASS_TCP_SOCKET || 5067 sksec->sclass == SECCLASS_SCTP_SOCKET) 5068 peer_sid = sksec->peer_sid; 5069 if (peer_sid == SECSID_NULL) 5070 return -ENOPROTOOPT; 5071 5072 err = security_sid_to_context(&selinux_state, peer_sid, &scontext, 5073 &scontext_len); 5074 if (err) 5075 return err; 5076 5077 if (scontext_len > len) { 5078 err = -ERANGE; 5079 goto out_len; 5080 } 5081 5082 if (copy_to_user(optval, scontext, scontext_len)) 5083 err = -EFAULT; 5084 5085 out_len: 5086 if (put_user(scontext_len, optlen)) 5087 err = -EFAULT; 5088 kfree(scontext); 5089 return err; 5090 } 5091 5092 static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid) 5093 { 5094 u32 peer_secid = SECSID_NULL; 5095 u16 family; 5096 struct inode_security_struct *isec; 5097 5098 if (skb && skb->protocol == htons(ETH_P_IP)) 5099 family = PF_INET; 5100 else if (skb && skb->protocol == htons(ETH_P_IPV6)) 5101 family = PF_INET6; 5102 else if (sock) 5103 family = sock->sk->sk_family; 5104 else 5105 goto out; 5106 5107 if (sock && family == PF_UNIX) { 5108 isec = inode_security_novalidate(SOCK_INODE(sock)); 5109 peer_secid = isec->sid; 5110 } else if (skb) 5111 selinux_skb_peerlbl_sid(skb, family, &peer_secid); 5112 5113 out: 5114 *secid = peer_secid; 5115 if (peer_secid == SECSID_NULL) 5116 return -EINVAL; 5117 return 0; 5118 } 5119 5120 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority) 5121 { 5122 struct sk_security_struct *sksec; 5123 5124 sksec = kzalloc(sizeof(*sksec), priority); 5125 if (!sksec) 5126 return -ENOMEM; 5127 5128 sksec->peer_sid = SECINITSID_UNLABELED; 5129 sksec->sid = SECINITSID_UNLABELED; 5130 sksec->sclass = SECCLASS_SOCKET; 5131 selinux_netlbl_sk_security_reset(sksec); 5132 sk->sk_security = sksec; 5133 5134 return 0; 5135 } 5136 5137 static void selinux_sk_free_security(struct sock *sk) 5138 { 5139 struct sk_security_struct *sksec = sk->sk_security; 5140 5141 sk->sk_security = NULL; 5142 selinux_netlbl_sk_security_free(sksec); 5143 kfree(sksec); 5144 } 5145 5146 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk) 5147 { 5148 struct sk_security_struct *sksec = sk->sk_security; 5149 struct sk_security_struct *newsksec = newsk->sk_security; 5150 5151 newsksec->sid = sksec->sid; 5152 newsksec->peer_sid = sksec->peer_sid; 5153 newsksec->sclass = sksec->sclass; 5154 5155 selinux_netlbl_sk_security_reset(newsksec); 5156 } 5157 5158 static void selinux_sk_getsecid(struct sock *sk, u32 *secid) 5159 { 5160 if (!sk) 5161 *secid = SECINITSID_ANY_SOCKET; 5162 else { 5163 struct sk_security_struct *sksec = sk->sk_security; 5164 5165 *secid = sksec->sid; 5166 } 5167 } 5168 5169 static void selinux_sock_graft(struct sock *sk, struct socket *parent) 5170 { 5171 struct inode_security_struct *isec = 5172 inode_security_novalidate(SOCK_INODE(parent)); 5173 struct sk_security_struct *sksec = sk->sk_security; 5174 5175 if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 || 5176 sk->sk_family == PF_UNIX) 5177 isec->sid = sksec->sid; 5178 sksec->sclass = isec->sclass; 5179 } 5180 5181 /* Called whenever SCTP receives an INIT chunk. This happens when an incoming 5182 * connect(2), sctp_connectx(3) or sctp_sendmsg(3) (with no association 5183 * already present). 5184 */ 5185 static int selinux_sctp_assoc_request(struct sctp_endpoint *ep, 5186 struct sk_buff *skb) 5187 { 5188 struct sk_security_struct *sksec = ep->base.sk->sk_security; 5189 struct common_audit_data ad; 5190 struct lsm_network_audit net = {0,}; 5191 u8 peerlbl_active; 5192 u32 peer_sid = SECINITSID_UNLABELED; 5193 u32 conn_sid; 5194 int err = 0; 5195 5196 if (!selinux_policycap_extsockclass()) 5197 return 0; 5198 5199 peerlbl_active = selinux_peerlbl_enabled(); 5200 5201 if (peerlbl_active) { 5202 /* This will return peer_sid = SECSID_NULL if there are 5203 * no peer labels, see security_net_peersid_resolve(). 5204 */ 5205 err = selinux_skb_peerlbl_sid(skb, ep->base.sk->sk_family, 5206 &peer_sid); 5207 if (err) 5208 return err; 5209 5210 if (peer_sid == SECSID_NULL) 5211 peer_sid = SECINITSID_UNLABELED; 5212 } 5213 5214 if (sksec->sctp_assoc_state == SCTP_ASSOC_UNSET) { 5215 sksec->sctp_assoc_state = SCTP_ASSOC_SET; 5216 5217 /* Here as first association on socket. As the peer SID 5218 * was allowed by peer recv (and the netif/node checks), 5219 * then it is approved by policy and used as the primary 5220 * peer SID for getpeercon(3). 5221 */ 5222 sksec->peer_sid = peer_sid; 5223 } else if (sksec->peer_sid != peer_sid) { 5224 /* Other association peer SIDs are checked to enforce 5225 * consistency among the peer SIDs. 5226 */ 5227 ad.type = LSM_AUDIT_DATA_NET; 5228 ad.u.net = &net; 5229 ad.u.net->sk = ep->base.sk; 5230 err = avc_has_perm(&selinux_state, 5231 sksec->peer_sid, peer_sid, sksec->sclass, 5232 SCTP_SOCKET__ASSOCIATION, &ad); 5233 if (err) 5234 return err; 5235 } 5236 5237 /* Compute the MLS component for the connection and store 5238 * the information in ep. This will be used by SCTP TCP type 5239 * sockets and peeled off connections as they cause a new 5240 * socket to be generated. selinux_sctp_sk_clone() will then 5241 * plug this into the new socket. 5242 */ 5243 err = selinux_conn_sid(sksec->sid, peer_sid, &conn_sid); 5244 if (err) 5245 return err; 5246 5247 ep->secid = conn_sid; 5248 ep->peer_secid = peer_sid; 5249 5250 /* Set any NetLabel labels including CIPSO/CALIPSO options. */ 5251 return selinux_netlbl_sctp_assoc_request(ep, skb); 5252 } 5253 5254 /* Check if sctp IPv4/IPv6 addresses are valid for binding or connecting 5255 * based on their @optname. 5256 */ 5257 static int selinux_sctp_bind_connect(struct sock *sk, int optname, 5258 struct sockaddr *address, 5259 int addrlen) 5260 { 5261 int len, err = 0, walk_size = 0; 5262 void *addr_buf; 5263 struct sockaddr *addr; 5264 struct socket *sock; 5265 5266 if (!selinux_policycap_extsockclass()) 5267 return 0; 5268 5269 /* Process one or more addresses that may be IPv4 or IPv6 */ 5270 sock = sk->sk_socket; 5271 addr_buf = address; 5272 5273 while (walk_size < addrlen) { 5274 if (walk_size + sizeof(sa_family_t) > addrlen) 5275 return -EINVAL; 5276 5277 addr = addr_buf; 5278 switch (addr->sa_family) { 5279 case AF_UNSPEC: 5280 case AF_INET: 5281 len = sizeof(struct sockaddr_in); 5282 break; 5283 case AF_INET6: 5284 len = sizeof(struct sockaddr_in6); 5285 break; 5286 default: 5287 return -EINVAL; 5288 } 5289 5290 if (walk_size + len > addrlen) 5291 return -EINVAL; 5292 5293 err = -EINVAL; 5294 switch (optname) { 5295 /* Bind checks */ 5296 case SCTP_PRIMARY_ADDR: 5297 case SCTP_SET_PEER_PRIMARY_ADDR: 5298 case SCTP_SOCKOPT_BINDX_ADD: 5299 err = selinux_socket_bind(sock, addr, len); 5300 break; 5301 /* Connect checks */ 5302 case SCTP_SOCKOPT_CONNECTX: 5303 case SCTP_PARAM_SET_PRIMARY: 5304 case SCTP_PARAM_ADD_IP: 5305 case SCTP_SENDMSG_CONNECT: 5306 err = selinux_socket_connect_helper(sock, addr, len); 5307 if (err) 5308 return err; 5309 5310 /* As selinux_sctp_bind_connect() is called by the 5311 * SCTP protocol layer, the socket is already locked, 5312 * therefore selinux_netlbl_socket_connect_locked() is 5313 * is called here. The situations handled are: 5314 * sctp_connectx(3), sctp_sendmsg(3), sendmsg(2), 5315 * whenever a new IP address is added or when a new 5316 * primary address is selected. 5317 * Note that an SCTP connect(2) call happens before 5318 * the SCTP protocol layer and is handled via 5319 * selinux_socket_connect(). 5320 */ 5321 err = selinux_netlbl_socket_connect_locked(sk, addr); 5322 break; 5323 } 5324 5325 if (err) 5326 return err; 5327 5328 addr_buf += len; 5329 walk_size += len; 5330 } 5331 5332 return 0; 5333 } 5334 5335 /* Called whenever a new socket is created by accept(2) or sctp_peeloff(3). */ 5336 static void selinux_sctp_sk_clone(struct sctp_endpoint *ep, struct sock *sk, 5337 struct sock *newsk) 5338 { 5339 struct sk_security_struct *sksec = sk->sk_security; 5340 struct sk_security_struct *newsksec = newsk->sk_security; 5341 5342 /* If policy does not support SECCLASS_SCTP_SOCKET then call 5343 * the non-sctp clone version. 5344 */ 5345 if (!selinux_policycap_extsockclass()) 5346 return selinux_sk_clone_security(sk, newsk); 5347 5348 newsksec->sid = ep->secid; 5349 newsksec->peer_sid = ep->peer_secid; 5350 newsksec->sclass = sksec->sclass; 5351 selinux_netlbl_sctp_sk_clone(sk, newsk); 5352 } 5353 5354 static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb, 5355 struct request_sock *req) 5356 { 5357 struct sk_security_struct *sksec = sk->sk_security; 5358 int err; 5359 u16 family = req->rsk_ops->family; 5360 u32 connsid; 5361 u32 peersid; 5362 5363 err = selinux_skb_peerlbl_sid(skb, family, &peersid); 5364 if (err) 5365 return err; 5366 err = selinux_conn_sid(sksec->sid, peersid, &connsid); 5367 if (err) 5368 return err; 5369 req->secid = connsid; 5370 req->peer_secid = peersid; 5371 5372 return selinux_netlbl_inet_conn_request(req, family); 5373 } 5374 5375 static void selinux_inet_csk_clone(struct sock *newsk, 5376 const struct request_sock *req) 5377 { 5378 struct sk_security_struct *newsksec = newsk->sk_security; 5379 5380 newsksec->sid = req->secid; 5381 newsksec->peer_sid = req->peer_secid; 5382 /* NOTE: Ideally, we should also get the isec->sid for the 5383 new socket in sync, but we don't have the isec available yet. 5384 So we will wait until sock_graft to do it, by which 5385 time it will have been created and available. */ 5386 5387 /* We don't need to take any sort of lock here as we are the only 5388 * thread with access to newsksec */ 5389 selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family); 5390 } 5391 5392 static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb) 5393 { 5394 u16 family = sk->sk_family; 5395 struct sk_security_struct *sksec = sk->sk_security; 5396 5397 /* handle mapped IPv4 packets arriving via IPv6 sockets */ 5398 if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP)) 5399 family = PF_INET; 5400 5401 selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid); 5402 } 5403 5404 static int selinux_secmark_relabel_packet(u32 sid) 5405 { 5406 const struct task_security_struct *__tsec; 5407 u32 tsid; 5408 5409 __tsec = selinux_cred(current_cred()); 5410 tsid = __tsec->sid; 5411 5412 return avc_has_perm(&selinux_state, 5413 tsid, sid, SECCLASS_PACKET, PACKET__RELABELTO, 5414 NULL); 5415 } 5416 5417 static void selinux_secmark_refcount_inc(void) 5418 { 5419 atomic_inc(&selinux_secmark_refcount); 5420 } 5421 5422 static void selinux_secmark_refcount_dec(void) 5423 { 5424 atomic_dec(&selinux_secmark_refcount); 5425 } 5426 5427 static void selinux_req_classify_flow(const struct request_sock *req, 5428 struct flowi *fl) 5429 { 5430 fl->flowi_secid = req->secid; 5431 } 5432 5433 static int selinux_tun_dev_alloc_security(void **security) 5434 { 5435 struct tun_security_struct *tunsec; 5436 5437 tunsec = kzalloc(sizeof(*tunsec), GFP_KERNEL); 5438 if (!tunsec) 5439 return -ENOMEM; 5440 tunsec->sid = current_sid(); 5441 5442 *security = tunsec; 5443 return 0; 5444 } 5445 5446 static void selinux_tun_dev_free_security(void *security) 5447 { 5448 kfree(security); 5449 } 5450 5451 static int selinux_tun_dev_create(void) 5452 { 5453 u32 sid = current_sid(); 5454 5455 /* we aren't taking into account the "sockcreate" SID since the socket 5456 * that is being created here is not a socket in the traditional sense, 5457 * instead it is a private sock, accessible only to the kernel, and 5458 * representing a wide range of network traffic spanning multiple 5459 * connections unlike traditional sockets - check the TUN driver to 5460 * get a better understanding of why this socket is special */ 5461 5462 return avc_has_perm(&selinux_state, 5463 sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE, 5464 NULL); 5465 } 5466 5467 static int selinux_tun_dev_attach_queue(void *security) 5468 { 5469 struct tun_security_struct *tunsec = security; 5470 5471 return avc_has_perm(&selinux_state, 5472 current_sid(), tunsec->sid, SECCLASS_TUN_SOCKET, 5473 TUN_SOCKET__ATTACH_QUEUE, NULL); 5474 } 5475 5476 static int selinux_tun_dev_attach(struct sock *sk, void *security) 5477 { 5478 struct tun_security_struct *tunsec = security; 5479 struct sk_security_struct *sksec = sk->sk_security; 5480 5481 /* we don't currently perform any NetLabel based labeling here and it 5482 * isn't clear that we would want to do so anyway; while we could apply 5483 * labeling without the support of the TUN user the resulting labeled 5484 * traffic from the other end of the connection would almost certainly 5485 * cause confusion to the TUN user that had no idea network labeling 5486 * protocols were being used */ 5487 5488 sksec->sid = tunsec->sid; 5489 sksec->sclass = SECCLASS_TUN_SOCKET; 5490 5491 return 0; 5492 } 5493 5494 static int selinux_tun_dev_open(void *security) 5495 { 5496 struct tun_security_struct *tunsec = security; 5497 u32 sid = current_sid(); 5498 int err; 5499 5500 err = avc_has_perm(&selinux_state, 5501 sid, tunsec->sid, SECCLASS_TUN_SOCKET, 5502 TUN_SOCKET__RELABELFROM, NULL); 5503 if (err) 5504 return err; 5505 err = avc_has_perm(&selinux_state, 5506 sid, sid, SECCLASS_TUN_SOCKET, 5507 TUN_SOCKET__RELABELTO, NULL); 5508 if (err) 5509 return err; 5510 tunsec->sid = sid; 5511 5512 return 0; 5513 } 5514 5515 #ifdef CONFIG_NETFILTER 5516 5517 static unsigned int selinux_ip_forward(struct sk_buff *skb, 5518 const struct net_device *indev, 5519 u16 family) 5520 { 5521 int err; 5522 char *addrp; 5523 u32 peer_sid; 5524 struct common_audit_data ad; 5525 struct lsm_network_audit net = {0,}; 5526 u8 secmark_active; 5527 u8 netlbl_active; 5528 u8 peerlbl_active; 5529 5530 if (!selinux_policycap_netpeer()) 5531 return NF_ACCEPT; 5532 5533 secmark_active = selinux_secmark_enabled(); 5534 netlbl_active = netlbl_enabled(); 5535 peerlbl_active = selinux_peerlbl_enabled(); 5536 if (!secmark_active && !peerlbl_active) 5537 return NF_ACCEPT; 5538 5539 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0) 5540 return NF_DROP; 5541 5542 ad.type = LSM_AUDIT_DATA_NET; 5543 ad.u.net = &net; 5544 ad.u.net->netif = indev->ifindex; 5545 ad.u.net->family = family; 5546 if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0) 5547 return NF_DROP; 5548 5549 if (peerlbl_active) { 5550 err = selinux_inet_sys_rcv_skb(dev_net(indev), indev->ifindex, 5551 addrp, family, peer_sid, &ad); 5552 if (err) { 5553 selinux_netlbl_err(skb, family, err, 1); 5554 return NF_DROP; 5555 } 5556 } 5557 5558 if (secmark_active) 5559 if (avc_has_perm(&selinux_state, 5560 peer_sid, skb->secmark, 5561 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad)) 5562 return NF_DROP; 5563 5564 if (netlbl_active) 5565 /* we do this in the FORWARD path and not the POST_ROUTING 5566 * path because we want to make sure we apply the necessary 5567 * labeling before IPsec is applied so we can leverage AH 5568 * protection */ 5569 if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0) 5570 return NF_DROP; 5571 5572 return NF_ACCEPT; 5573 } 5574 5575 static unsigned int selinux_ipv4_forward(void *priv, 5576 struct sk_buff *skb, 5577 const struct nf_hook_state *state) 5578 { 5579 return selinux_ip_forward(skb, state->in, PF_INET); 5580 } 5581 5582 #if IS_ENABLED(CONFIG_IPV6) 5583 static unsigned int selinux_ipv6_forward(void *priv, 5584 struct sk_buff *skb, 5585 const struct nf_hook_state *state) 5586 { 5587 return selinux_ip_forward(skb, state->in, PF_INET6); 5588 } 5589 #endif /* IPV6 */ 5590 5591 static unsigned int selinux_ip_output(struct sk_buff *skb, 5592 u16 family) 5593 { 5594 struct sock *sk; 5595 u32 sid; 5596 5597 if (!netlbl_enabled()) 5598 return NF_ACCEPT; 5599 5600 /* we do this in the LOCAL_OUT path and not the POST_ROUTING path 5601 * because we want to make sure we apply the necessary labeling 5602 * before IPsec is applied so we can leverage AH protection */ 5603 sk = skb->sk; 5604 if (sk) { 5605 struct sk_security_struct *sksec; 5606 5607 if (sk_listener(sk)) 5608 /* if the socket is the listening state then this 5609 * packet is a SYN-ACK packet which means it needs to 5610 * be labeled based on the connection/request_sock and 5611 * not the parent socket. unfortunately, we can't 5612 * lookup the request_sock yet as it isn't queued on 5613 * the parent socket until after the SYN-ACK is sent. 5614 * the "solution" is to simply pass the packet as-is 5615 * as any IP option based labeling should be copied 5616 * from the initial connection request (in the IP 5617 * layer). it is far from ideal, but until we get a 5618 * security label in the packet itself this is the 5619 * best we can do. */ 5620 return NF_ACCEPT; 5621 5622 /* standard practice, label using the parent socket */ 5623 sksec = sk->sk_security; 5624 sid = sksec->sid; 5625 } else 5626 sid = SECINITSID_KERNEL; 5627 if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0) 5628 return NF_DROP; 5629 5630 return NF_ACCEPT; 5631 } 5632 5633 static unsigned int selinux_ipv4_output(void *priv, 5634 struct sk_buff *skb, 5635 const struct nf_hook_state *state) 5636 { 5637 return selinux_ip_output(skb, PF_INET); 5638 } 5639 5640 #if IS_ENABLED(CONFIG_IPV6) 5641 static unsigned int selinux_ipv6_output(void *priv, 5642 struct sk_buff *skb, 5643 const struct nf_hook_state *state) 5644 { 5645 return selinux_ip_output(skb, PF_INET6); 5646 } 5647 #endif /* IPV6 */ 5648 5649 static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb, 5650 int ifindex, 5651 u16 family) 5652 { 5653 struct sock *sk = skb_to_full_sk(skb); 5654 struct sk_security_struct *sksec; 5655 struct common_audit_data ad; 5656 struct lsm_network_audit net = {0,}; 5657 char *addrp; 5658 u8 proto; 5659 5660 if (sk == NULL) 5661 return NF_ACCEPT; 5662 sksec = sk->sk_security; 5663 5664 ad.type = LSM_AUDIT_DATA_NET; 5665 ad.u.net = &net; 5666 ad.u.net->netif = ifindex; 5667 ad.u.net->family = family; 5668 if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto)) 5669 return NF_DROP; 5670 5671 if (selinux_secmark_enabled()) 5672 if (avc_has_perm(&selinux_state, 5673 sksec->sid, skb->secmark, 5674 SECCLASS_PACKET, PACKET__SEND, &ad)) 5675 return NF_DROP_ERR(-ECONNREFUSED); 5676 5677 if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto)) 5678 return NF_DROP_ERR(-ECONNREFUSED); 5679 5680 return NF_ACCEPT; 5681 } 5682 5683 static unsigned int selinux_ip_postroute(struct sk_buff *skb, 5684 const struct net_device *outdev, 5685 u16 family) 5686 { 5687 u32 secmark_perm; 5688 u32 peer_sid; 5689 int ifindex = outdev->ifindex; 5690 struct sock *sk; 5691 struct common_audit_data ad; 5692 struct lsm_network_audit net = {0,}; 5693 char *addrp; 5694 u8 secmark_active; 5695 u8 peerlbl_active; 5696 5697 /* If any sort of compatibility mode is enabled then handoff processing 5698 * to the selinux_ip_postroute_compat() function to deal with the 5699 * special handling. We do this in an attempt to keep this function 5700 * as fast and as clean as possible. */ 5701 if (!selinux_policycap_netpeer()) 5702 return selinux_ip_postroute_compat(skb, ifindex, family); 5703 5704 secmark_active = selinux_secmark_enabled(); 5705 peerlbl_active = selinux_peerlbl_enabled(); 5706 if (!secmark_active && !peerlbl_active) 5707 return NF_ACCEPT; 5708 5709 sk = skb_to_full_sk(skb); 5710 5711 #ifdef CONFIG_XFRM 5712 /* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec 5713 * packet transformation so allow the packet to pass without any checks 5714 * since we'll have another chance to perform access control checks 5715 * when the packet is on it's final way out. 5716 * NOTE: there appear to be some IPv6 multicast cases where skb->dst 5717 * is NULL, in this case go ahead and apply access control. 5718 * NOTE: if this is a local socket (skb->sk != NULL) that is in the 5719 * TCP listening state we cannot wait until the XFRM processing 5720 * is done as we will miss out on the SA label if we do; 5721 * unfortunately, this means more work, but it is only once per 5722 * connection. */ 5723 if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL && 5724 !(sk && sk_listener(sk))) 5725 return NF_ACCEPT; 5726 #endif 5727 5728 if (sk == NULL) { 5729 /* Without an associated socket the packet is either coming 5730 * from the kernel or it is being forwarded; check the packet 5731 * to determine which and if the packet is being forwarded 5732 * query the packet directly to determine the security label. */ 5733 if (skb->skb_iif) { 5734 secmark_perm = PACKET__FORWARD_OUT; 5735 if (selinux_skb_peerlbl_sid(skb, family, &peer_sid)) 5736 return NF_DROP; 5737 } else { 5738 secmark_perm = PACKET__SEND; 5739 peer_sid = SECINITSID_KERNEL; 5740 } 5741 } else if (sk_listener(sk)) { 5742 /* Locally generated packet but the associated socket is in the 5743 * listening state which means this is a SYN-ACK packet. In 5744 * this particular case the correct security label is assigned 5745 * to the connection/request_sock but unfortunately we can't 5746 * query the request_sock as it isn't queued on the parent 5747 * socket until after the SYN-ACK packet is sent; the only 5748 * viable choice is to regenerate the label like we do in 5749 * selinux_inet_conn_request(). See also selinux_ip_output() 5750 * for similar problems. */ 5751 u32 skb_sid; 5752 struct sk_security_struct *sksec; 5753 5754 sksec = sk->sk_security; 5755 if (selinux_skb_peerlbl_sid(skb, family, &skb_sid)) 5756 return NF_DROP; 5757 /* At this point, if the returned skb peerlbl is SECSID_NULL 5758 * and the packet has been through at least one XFRM 5759 * transformation then we must be dealing with the "final" 5760 * form of labeled IPsec packet; since we've already applied 5761 * all of our access controls on this packet we can safely 5762 * pass the packet. */ 5763 if (skb_sid == SECSID_NULL) { 5764 switch (family) { 5765 case PF_INET: 5766 if (IPCB(skb)->flags & IPSKB_XFRM_TRANSFORMED) 5767 return NF_ACCEPT; 5768 break; 5769 case PF_INET6: 5770 if (IP6CB(skb)->flags & IP6SKB_XFRM_TRANSFORMED) 5771 return NF_ACCEPT; 5772 break; 5773 default: 5774 return NF_DROP_ERR(-ECONNREFUSED); 5775 } 5776 } 5777 if (selinux_conn_sid(sksec->sid, skb_sid, &peer_sid)) 5778 return NF_DROP; 5779 secmark_perm = PACKET__SEND; 5780 } else { 5781 /* Locally generated packet, fetch the security label from the 5782 * associated socket. */ 5783 struct sk_security_struct *sksec = sk->sk_security; 5784 peer_sid = sksec->sid; 5785 secmark_perm = PACKET__SEND; 5786 } 5787 5788 ad.type = LSM_AUDIT_DATA_NET; 5789 ad.u.net = &net; 5790 ad.u.net->netif = ifindex; 5791 ad.u.net->family = family; 5792 if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL)) 5793 return NF_DROP; 5794 5795 if (secmark_active) 5796 if (avc_has_perm(&selinux_state, 5797 peer_sid, skb->secmark, 5798 SECCLASS_PACKET, secmark_perm, &ad)) 5799 return NF_DROP_ERR(-ECONNREFUSED); 5800 5801 if (peerlbl_active) { 5802 u32 if_sid; 5803 u32 node_sid; 5804 5805 if (sel_netif_sid(dev_net(outdev), ifindex, &if_sid)) 5806 return NF_DROP; 5807 if (avc_has_perm(&selinux_state, 5808 peer_sid, if_sid, 5809 SECCLASS_NETIF, NETIF__EGRESS, &ad)) 5810 return NF_DROP_ERR(-ECONNREFUSED); 5811 5812 if (sel_netnode_sid(addrp, family, &node_sid)) 5813 return NF_DROP; 5814 if (avc_has_perm(&selinux_state, 5815 peer_sid, node_sid, 5816 SECCLASS_NODE, NODE__SENDTO, &ad)) 5817 return NF_DROP_ERR(-ECONNREFUSED); 5818 } 5819 5820 return NF_ACCEPT; 5821 } 5822 5823 static unsigned int selinux_ipv4_postroute(void *priv, 5824 struct sk_buff *skb, 5825 const struct nf_hook_state *state) 5826 { 5827 return selinux_ip_postroute(skb, state->out, PF_INET); 5828 } 5829 5830 #if IS_ENABLED(CONFIG_IPV6) 5831 static unsigned int selinux_ipv6_postroute(void *priv, 5832 struct sk_buff *skb, 5833 const struct nf_hook_state *state) 5834 { 5835 return selinux_ip_postroute(skb, state->out, PF_INET6); 5836 } 5837 #endif /* IPV6 */ 5838 5839 #endif /* CONFIG_NETFILTER */ 5840 5841 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb) 5842 { 5843 int rc = 0; 5844 unsigned int msg_len; 5845 unsigned int data_len = skb->len; 5846 unsigned char *data = skb->data; 5847 struct nlmsghdr *nlh; 5848 struct sk_security_struct *sksec = sk->sk_security; 5849 u16 sclass = sksec->sclass; 5850 u32 perm; 5851 5852 while (data_len >= nlmsg_total_size(0)) { 5853 nlh = (struct nlmsghdr *)data; 5854 5855 /* NOTE: the nlmsg_len field isn't reliably set by some netlink 5856 * users which means we can't reject skb's with bogus 5857 * length fields; our solution is to follow what 5858 * netlink_rcv_skb() does and simply skip processing at 5859 * messages with length fields that are clearly junk 5860 */ 5861 if (nlh->nlmsg_len < NLMSG_HDRLEN || nlh->nlmsg_len > data_len) 5862 return 0; 5863 5864 rc = selinux_nlmsg_lookup(sclass, nlh->nlmsg_type, &perm); 5865 if (rc == 0) { 5866 rc = sock_has_perm(sk, perm); 5867 if (rc) 5868 return rc; 5869 } else if (rc == -EINVAL) { 5870 /* -EINVAL is a missing msg/perm mapping */ 5871 pr_warn_ratelimited("SELinux: unrecognized netlink" 5872 " message: protocol=%hu nlmsg_type=%hu sclass=%s" 5873 " pid=%d comm=%s\n", 5874 sk->sk_protocol, nlh->nlmsg_type, 5875 secclass_map[sclass - 1].name, 5876 task_pid_nr(current), current->comm); 5877 if (enforcing_enabled(&selinux_state) && 5878 !security_get_allow_unknown(&selinux_state)) 5879 return rc; 5880 rc = 0; 5881 } else if (rc == -ENOENT) { 5882 /* -ENOENT is a missing socket/class mapping, ignore */ 5883 rc = 0; 5884 } else { 5885 return rc; 5886 } 5887 5888 /* move to the next message after applying netlink padding */ 5889 msg_len = NLMSG_ALIGN(nlh->nlmsg_len); 5890 if (msg_len >= data_len) 5891 return 0; 5892 data_len -= msg_len; 5893 data += msg_len; 5894 } 5895 5896 return rc; 5897 } 5898 5899 static void ipc_init_security(struct ipc_security_struct *isec, u16 sclass) 5900 { 5901 isec->sclass = sclass; 5902 isec->sid = current_sid(); 5903 } 5904 5905 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms, 5906 u32 perms) 5907 { 5908 struct ipc_security_struct *isec; 5909 struct common_audit_data ad; 5910 u32 sid = current_sid(); 5911 5912 isec = selinux_ipc(ipc_perms); 5913 5914 ad.type = LSM_AUDIT_DATA_IPC; 5915 ad.u.ipc_id = ipc_perms->key; 5916 5917 return avc_has_perm(&selinux_state, 5918 sid, isec->sid, isec->sclass, perms, &ad); 5919 } 5920 5921 static int selinux_msg_msg_alloc_security(struct msg_msg *msg) 5922 { 5923 struct msg_security_struct *msec; 5924 5925 msec = selinux_msg_msg(msg); 5926 msec->sid = SECINITSID_UNLABELED; 5927 5928 return 0; 5929 } 5930 5931 /* message queue security operations */ 5932 static int selinux_msg_queue_alloc_security(struct kern_ipc_perm *msq) 5933 { 5934 struct ipc_security_struct *isec; 5935 struct common_audit_data ad; 5936 u32 sid = current_sid(); 5937 int rc; 5938 5939 isec = selinux_ipc(msq); 5940 ipc_init_security(isec, SECCLASS_MSGQ); 5941 5942 ad.type = LSM_AUDIT_DATA_IPC; 5943 ad.u.ipc_id = msq->key; 5944 5945 rc = avc_has_perm(&selinux_state, 5946 sid, isec->sid, SECCLASS_MSGQ, 5947 MSGQ__CREATE, &ad); 5948 return rc; 5949 } 5950 5951 static int selinux_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg) 5952 { 5953 struct ipc_security_struct *isec; 5954 struct common_audit_data ad; 5955 u32 sid = current_sid(); 5956 5957 isec = selinux_ipc(msq); 5958 5959 ad.type = LSM_AUDIT_DATA_IPC; 5960 ad.u.ipc_id = msq->key; 5961 5962 return avc_has_perm(&selinux_state, 5963 sid, isec->sid, SECCLASS_MSGQ, 5964 MSGQ__ASSOCIATE, &ad); 5965 } 5966 5967 static int selinux_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd) 5968 { 5969 int err; 5970 int perms; 5971 5972 switch (cmd) { 5973 case IPC_INFO: 5974 case MSG_INFO: 5975 /* No specific object, just general system-wide information. */ 5976 return avc_has_perm(&selinux_state, 5977 current_sid(), SECINITSID_KERNEL, 5978 SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL); 5979 case IPC_STAT: 5980 case MSG_STAT: 5981 case MSG_STAT_ANY: 5982 perms = MSGQ__GETATTR | MSGQ__ASSOCIATE; 5983 break; 5984 case IPC_SET: 5985 perms = MSGQ__SETATTR; 5986 break; 5987 case IPC_RMID: 5988 perms = MSGQ__DESTROY; 5989 break; 5990 default: 5991 return 0; 5992 } 5993 5994 err = ipc_has_perm(msq, perms); 5995 return err; 5996 } 5997 5998 static int selinux_msg_queue_msgsnd(struct kern_ipc_perm *msq, struct msg_msg *msg, int msqflg) 5999 { 6000 struct ipc_security_struct *isec; 6001 struct msg_security_struct *msec; 6002 struct common_audit_data ad; 6003 u32 sid = current_sid(); 6004 int rc; 6005 6006 isec = selinux_ipc(msq); 6007 msec = selinux_msg_msg(msg); 6008 6009 /* 6010 * First time through, need to assign label to the message 6011 */ 6012 if (msec->sid == SECINITSID_UNLABELED) { 6013 /* 6014 * Compute new sid based on current process and 6015 * message queue this message will be stored in 6016 */ 6017 rc = security_transition_sid(&selinux_state, sid, isec->sid, 6018 SECCLASS_MSG, NULL, &msec->sid); 6019 if (rc) 6020 return rc; 6021 } 6022 6023 ad.type = LSM_AUDIT_DATA_IPC; 6024 ad.u.ipc_id = msq->key; 6025 6026 /* Can this process write to the queue? */ 6027 rc = avc_has_perm(&selinux_state, 6028 sid, isec->sid, SECCLASS_MSGQ, 6029 MSGQ__WRITE, &ad); 6030 if (!rc) 6031 /* Can this process send the message */ 6032 rc = avc_has_perm(&selinux_state, 6033 sid, msec->sid, SECCLASS_MSG, 6034 MSG__SEND, &ad); 6035 if (!rc) 6036 /* Can the message be put in the queue? */ 6037 rc = avc_has_perm(&selinux_state, 6038 msec->sid, isec->sid, SECCLASS_MSGQ, 6039 MSGQ__ENQUEUE, &ad); 6040 6041 return rc; 6042 } 6043 6044 static int selinux_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg, 6045 struct task_struct *target, 6046 long type, int mode) 6047 { 6048 struct ipc_security_struct *isec; 6049 struct msg_security_struct *msec; 6050 struct common_audit_data ad; 6051 u32 sid = task_sid(target); 6052 int rc; 6053 6054 isec = selinux_ipc(msq); 6055 msec = selinux_msg_msg(msg); 6056 6057 ad.type = LSM_AUDIT_DATA_IPC; 6058 ad.u.ipc_id = msq->key; 6059 6060 rc = avc_has_perm(&selinux_state, 6061 sid, isec->sid, 6062 SECCLASS_MSGQ, MSGQ__READ, &ad); 6063 if (!rc) 6064 rc = avc_has_perm(&selinux_state, 6065 sid, msec->sid, 6066 SECCLASS_MSG, MSG__RECEIVE, &ad); 6067 return rc; 6068 } 6069 6070 /* Shared Memory security operations */ 6071 static int selinux_shm_alloc_security(struct kern_ipc_perm *shp) 6072 { 6073 struct ipc_security_struct *isec; 6074 struct common_audit_data ad; 6075 u32 sid = current_sid(); 6076 int rc; 6077 6078 isec = selinux_ipc(shp); 6079 ipc_init_security(isec, SECCLASS_SHM); 6080 6081 ad.type = LSM_AUDIT_DATA_IPC; 6082 ad.u.ipc_id = shp->key; 6083 6084 rc = avc_has_perm(&selinux_state, 6085 sid, isec->sid, SECCLASS_SHM, 6086 SHM__CREATE, &ad); 6087 return rc; 6088 } 6089 6090 static int selinux_shm_associate(struct kern_ipc_perm *shp, int shmflg) 6091 { 6092 struct ipc_security_struct *isec; 6093 struct common_audit_data ad; 6094 u32 sid = current_sid(); 6095 6096 isec = selinux_ipc(shp); 6097 6098 ad.type = LSM_AUDIT_DATA_IPC; 6099 ad.u.ipc_id = shp->key; 6100 6101 return avc_has_perm(&selinux_state, 6102 sid, isec->sid, SECCLASS_SHM, 6103 SHM__ASSOCIATE, &ad); 6104 } 6105 6106 /* Note, at this point, shp is locked down */ 6107 static int selinux_shm_shmctl(struct kern_ipc_perm *shp, int cmd) 6108 { 6109 int perms; 6110 int err; 6111 6112 switch (cmd) { 6113 case IPC_INFO: 6114 case SHM_INFO: 6115 /* No specific object, just general system-wide information. */ 6116 return avc_has_perm(&selinux_state, 6117 current_sid(), SECINITSID_KERNEL, 6118 SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL); 6119 case IPC_STAT: 6120 case SHM_STAT: 6121 case SHM_STAT_ANY: 6122 perms = SHM__GETATTR | SHM__ASSOCIATE; 6123 break; 6124 case IPC_SET: 6125 perms = SHM__SETATTR; 6126 break; 6127 case SHM_LOCK: 6128 case SHM_UNLOCK: 6129 perms = SHM__LOCK; 6130 break; 6131 case IPC_RMID: 6132 perms = SHM__DESTROY; 6133 break; 6134 default: 6135 return 0; 6136 } 6137 6138 err = ipc_has_perm(shp, perms); 6139 return err; 6140 } 6141 6142 static int selinux_shm_shmat(struct kern_ipc_perm *shp, 6143 char __user *shmaddr, int shmflg) 6144 { 6145 u32 perms; 6146 6147 if (shmflg & SHM_RDONLY) 6148 perms = SHM__READ; 6149 else 6150 perms = SHM__READ | SHM__WRITE; 6151 6152 return ipc_has_perm(shp, perms); 6153 } 6154 6155 /* Semaphore security operations */ 6156 static int selinux_sem_alloc_security(struct kern_ipc_perm *sma) 6157 { 6158 struct ipc_security_struct *isec; 6159 struct common_audit_data ad; 6160 u32 sid = current_sid(); 6161 int rc; 6162 6163 isec = selinux_ipc(sma); 6164 ipc_init_security(isec, SECCLASS_SEM); 6165 6166 ad.type = LSM_AUDIT_DATA_IPC; 6167 ad.u.ipc_id = sma->key; 6168 6169 rc = avc_has_perm(&selinux_state, 6170 sid, isec->sid, SECCLASS_SEM, 6171 SEM__CREATE, &ad); 6172 return rc; 6173 } 6174 6175 static int selinux_sem_associate(struct kern_ipc_perm *sma, int semflg) 6176 { 6177 struct ipc_security_struct *isec; 6178 struct common_audit_data ad; 6179 u32 sid = current_sid(); 6180 6181 isec = selinux_ipc(sma); 6182 6183 ad.type = LSM_AUDIT_DATA_IPC; 6184 ad.u.ipc_id = sma->key; 6185 6186 return avc_has_perm(&selinux_state, 6187 sid, isec->sid, SECCLASS_SEM, 6188 SEM__ASSOCIATE, &ad); 6189 } 6190 6191 /* Note, at this point, sma is locked down */ 6192 static int selinux_sem_semctl(struct kern_ipc_perm *sma, int cmd) 6193 { 6194 int err; 6195 u32 perms; 6196 6197 switch (cmd) { 6198 case IPC_INFO: 6199 case SEM_INFO: 6200 /* No specific object, just general system-wide information. */ 6201 return avc_has_perm(&selinux_state, 6202 current_sid(), SECINITSID_KERNEL, 6203 SECCLASS_SYSTEM, SYSTEM__IPC_INFO, NULL); 6204 case GETPID: 6205 case GETNCNT: 6206 case GETZCNT: 6207 perms = SEM__GETATTR; 6208 break; 6209 case GETVAL: 6210 case GETALL: 6211 perms = SEM__READ; 6212 break; 6213 case SETVAL: 6214 case SETALL: 6215 perms = SEM__WRITE; 6216 break; 6217 case IPC_RMID: 6218 perms = SEM__DESTROY; 6219 break; 6220 case IPC_SET: 6221 perms = SEM__SETATTR; 6222 break; 6223 case IPC_STAT: 6224 case SEM_STAT: 6225 case SEM_STAT_ANY: 6226 perms = SEM__GETATTR | SEM__ASSOCIATE; 6227 break; 6228 default: 6229 return 0; 6230 } 6231 6232 err = ipc_has_perm(sma, perms); 6233 return err; 6234 } 6235 6236 static int selinux_sem_semop(struct kern_ipc_perm *sma, 6237 struct sembuf *sops, unsigned nsops, int alter) 6238 { 6239 u32 perms; 6240 6241 if (alter) 6242 perms = SEM__READ | SEM__WRITE; 6243 else 6244 perms = SEM__READ; 6245 6246 return ipc_has_perm(sma, perms); 6247 } 6248 6249 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag) 6250 { 6251 u32 av = 0; 6252 6253 av = 0; 6254 if (flag & S_IRUGO) 6255 av |= IPC__UNIX_READ; 6256 if (flag & S_IWUGO) 6257 av |= IPC__UNIX_WRITE; 6258 6259 if (av == 0) 6260 return 0; 6261 6262 return ipc_has_perm(ipcp, av); 6263 } 6264 6265 static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid) 6266 { 6267 struct ipc_security_struct *isec = selinux_ipc(ipcp); 6268 *secid = isec->sid; 6269 } 6270 6271 static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode) 6272 { 6273 if (inode) 6274 inode_doinit_with_dentry(inode, dentry); 6275 } 6276 6277 static int selinux_getprocattr(struct task_struct *p, 6278 char *name, char **value) 6279 { 6280 const struct task_security_struct *__tsec; 6281 u32 sid; 6282 int error; 6283 unsigned len; 6284 6285 rcu_read_lock(); 6286 __tsec = selinux_cred(__task_cred(p)); 6287 6288 if (current != p) { 6289 error = avc_has_perm(&selinux_state, 6290 current_sid(), __tsec->sid, 6291 SECCLASS_PROCESS, PROCESS__GETATTR, NULL); 6292 if (error) 6293 goto bad; 6294 } 6295 6296 if (!strcmp(name, "current")) 6297 sid = __tsec->sid; 6298 else if (!strcmp(name, "prev")) 6299 sid = __tsec->osid; 6300 else if (!strcmp(name, "exec")) 6301 sid = __tsec->exec_sid; 6302 else if (!strcmp(name, "fscreate")) 6303 sid = __tsec->create_sid; 6304 else if (!strcmp(name, "keycreate")) 6305 sid = __tsec->keycreate_sid; 6306 else if (!strcmp(name, "sockcreate")) 6307 sid = __tsec->sockcreate_sid; 6308 else { 6309 error = -EINVAL; 6310 goto bad; 6311 } 6312 rcu_read_unlock(); 6313 6314 if (!sid) 6315 return 0; 6316 6317 error = security_sid_to_context(&selinux_state, sid, value, &len); 6318 if (error) 6319 return error; 6320 return len; 6321 6322 bad: 6323 rcu_read_unlock(); 6324 return error; 6325 } 6326 6327 static int selinux_setprocattr(const char *name, void *value, size_t size) 6328 { 6329 struct task_security_struct *tsec; 6330 struct cred *new; 6331 u32 mysid = current_sid(), sid = 0, ptsid; 6332 int error; 6333 char *str = value; 6334 6335 /* 6336 * Basic control over ability to set these attributes at all. 6337 */ 6338 if (!strcmp(name, "exec")) 6339 error = avc_has_perm(&selinux_state, 6340 mysid, mysid, SECCLASS_PROCESS, 6341 PROCESS__SETEXEC, NULL); 6342 else if (!strcmp(name, "fscreate")) 6343 error = avc_has_perm(&selinux_state, 6344 mysid, mysid, SECCLASS_PROCESS, 6345 PROCESS__SETFSCREATE, NULL); 6346 else if (!strcmp(name, "keycreate")) 6347 error = avc_has_perm(&selinux_state, 6348 mysid, mysid, SECCLASS_PROCESS, 6349 PROCESS__SETKEYCREATE, NULL); 6350 else if (!strcmp(name, "sockcreate")) 6351 error = avc_has_perm(&selinux_state, 6352 mysid, mysid, SECCLASS_PROCESS, 6353 PROCESS__SETSOCKCREATE, NULL); 6354 else if (!strcmp(name, "current")) 6355 error = avc_has_perm(&selinux_state, 6356 mysid, mysid, SECCLASS_PROCESS, 6357 PROCESS__SETCURRENT, NULL); 6358 else 6359 error = -EINVAL; 6360 if (error) 6361 return error; 6362 6363 /* Obtain a SID for the context, if one was specified. */ 6364 if (size && str[0] && str[0] != '\n') { 6365 if (str[size-1] == '\n') { 6366 str[size-1] = 0; 6367 size--; 6368 } 6369 error = security_context_to_sid(&selinux_state, value, size, 6370 &sid, GFP_KERNEL); 6371 if (error == -EINVAL && !strcmp(name, "fscreate")) { 6372 if (!has_cap_mac_admin(true)) { 6373 struct audit_buffer *ab; 6374 size_t audit_size; 6375 6376 /* We strip a nul only if it is at the end, otherwise the 6377 * context contains a nul and we should audit that */ 6378 if (str[size - 1] == '\0') 6379 audit_size = size - 1; 6380 else 6381 audit_size = size; 6382 ab = audit_log_start(audit_context(), 6383 GFP_ATOMIC, 6384 AUDIT_SELINUX_ERR); 6385 audit_log_format(ab, "op=fscreate invalid_context="); 6386 audit_log_n_untrustedstring(ab, value, audit_size); 6387 audit_log_end(ab); 6388 6389 return error; 6390 } 6391 error = security_context_to_sid_force( 6392 &selinux_state, 6393 value, size, &sid); 6394 } 6395 if (error) 6396 return error; 6397 } 6398 6399 new = prepare_creds(); 6400 if (!new) 6401 return -ENOMEM; 6402 6403 /* Permission checking based on the specified context is 6404 performed during the actual operation (execve, 6405 open/mkdir/...), when we know the full context of the 6406 operation. See selinux_bprm_creds_for_exec for the execve 6407 checks and may_create for the file creation checks. The 6408 operation will then fail if the context is not permitted. */ 6409 tsec = selinux_cred(new); 6410 if (!strcmp(name, "exec")) { 6411 tsec->exec_sid = sid; 6412 } else if (!strcmp(name, "fscreate")) { 6413 tsec->create_sid = sid; 6414 } else if (!strcmp(name, "keycreate")) { 6415 if (sid) { 6416 error = avc_has_perm(&selinux_state, mysid, sid, 6417 SECCLASS_KEY, KEY__CREATE, NULL); 6418 if (error) 6419 goto abort_change; 6420 } 6421 tsec->keycreate_sid = sid; 6422 } else if (!strcmp(name, "sockcreate")) { 6423 tsec->sockcreate_sid = sid; 6424 } else if (!strcmp(name, "current")) { 6425 error = -EINVAL; 6426 if (sid == 0) 6427 goto abort_change; 6428 6429 /* Only allow single threaded processes to change context */ 6430 error = -EPERM; 6431 if (!current_is_single_threaded()) { 6432 error = security_bounded_transition(&selinux_state, 6433 tsec->sid, sid); 6434 if (error) 6435 goto abort_change; 6436 } 6437 6438 /* Check permissions for the transition. */ 6439 error = avc_has_perm(&selinux_state, 6440 tsec->sid, sid, SECCLASS_PROCESS, 6441 PROCESS__DYNTRANSITION, NULL); 6442 if (error) 6443 goto abort_change; 6444 6445 /* Check for ptracing, and update the task SID if ok. 6446 Otherwise, leave SID unchanged and fail. */ 6447 ptsid = ptrace_parent_sid(); 6448 if (ptsid != 0) { 6449 error = avc_has_perm(&selinux_state, 6450 ptsid, sid, SECCLASS_PROCESS, 6451 PROCESS__PTRACE, NULL); 6452 if (error) 6453 goto abort_change; 6454 } 6455 6456 tsec->sid = sid; 6457 } else { 6458 error = -EINVAL; 6459 goto abort_change; 6460 } 6461 6462 commit_creds(new); 6463 return size; 6464 6465 abort_change: 6466 abort_creds(new); 6467 return error; 6468 } 6469 6470 static int selinux_ismaclabel(const char *name) 6471 { 6472 return (strcmp(name, XATTR_SELINUX_SUFFIX) == 0); 6473 } 6474 6475 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen) 6476 { 6477 return security_sid_to_context(&selinux_state, secid, 6478 secdata, seclen); 6479 } 6480 6481 static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid) 6482 { 6483 return security_context_to_sid(&selinux_state, secdata, seclen, 6484 secid, GFP_KERNEL); 6485 } 6486 6487 static void selinux_release_secctx(char *secdata, u32 seclen) 6488 { 6489 kfree(secdata); 6490 } 6491 6492 static void selinux_inode_invalidate_secctx(struct inode *inode) 6493 { 6494 struct inode_security_struct *isec = selinux_inode(inode); 6495 6496 spin_lock(&isec->lock); 6497 isec->initialized = LABEL_INVALID; 6498 spin_unlock(&isec->lock); 6499 } 6500 6501 /* 6502 * called with inode->i_mutex locked 6503 */ 6504 static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen) 6505 { 6506 int rc = selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX, 6507 ctx, ctxlen, 0); 6508 /* Do not return error when suppressing label (SBLABEL_MNT not set). */ 6509 return rc == -EOPNOTSUPP ? 0 : rc; 6510 } 6511 6512 /* 6513 * called with inode->i_mutex locked 6514 */ 6515 static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen) 6516 { 6517 return __vfs_setxattr_noperm(dentry, XATTR_NAME_SELINUX, ctx, ctxlen, 0); 6518 } 6519 6520 static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen) 6521 { 6522 int len = 0; 6523 len = selinux_inode_getsecurity(inode, XATTR_SELINUX_SUFFIX, 6524 ctx, true); 6525 if (len < 0) 6526 return len; 6527 *ctxlen = len; 6528 return 0; 6529 } 6530 #ifdef CONFIG_KEYS 6531 6532 static int selinux_key_alloc(struct key *k, const struct cred *cred, 6533 unsigned long flags) 6534 { 6535 const struct task_security_struct *tsec; 6536 struct key_security_struct *ksec; 6537 6538 ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL); 6539 if (!ksec) 6540 return -ENOMEM; 6541 6542 tsec = selinux_cred(cred); 6543 if (tsec->keycreate_sid) 6544 ksec->sid = tsec->keycreate_sid; 6545 else 6546 ksec->sid = tsec->sid; 6547 6548 k->security = ksec; 6549 return 0; 6550 } 6551 6552 static void selinux_key_free(struct key *k) 6553 { 6554 struct key_security_struct *ksec = k->security; 6555 6556 k->security = NULL; 6557 kfree(ksec); 6558 } 6559 6560 static int selinux_key_permission(key_ref_t key_ref, 6561 const struct cred *cred, 6562 enum key_need_perm need_perm) 6563 { 6564 struct key *key; 6565 struct key_security_struct *ksec; 6566 u32 perm, sid; 6567 6568 switch (need_perm) { 6569 case KEY_NEED_VIEW: 6570 perm = KEY__VIEW; 6571 break; 6572 case KEY_NEED_READ: 6573 perm = KEY__READ; 6574 break; 6575 case KEY_NEED_WRITE: 6576 perm = KEY__WRITE; 6577 break; 6578 case KEY_NEED_SEARCH: 6579 perm = KEY__SEARCH; 6580 break; 6581 case KEY_NEED_LINK: 6582 perm = KEY__LINK; 6583 break; 6584 case KEY_NEED_SETATTR: 6585 perm = KEY__SETATTR; 6586 break; 6587 case KEY_NEED_UNLINK: 6588 case KEY_SYSADMIN_OVERRIDE: 6589 case KEY_AUTHTOKEN_OVERRIDE: 6590 case KEY_DEFER_PERM_CHECK: 6591 return 0; 6592 default: 6593 WARN_ON(1); 6594 return -EPERM; 6595 6596 } 6597 6598 sid = cred_sid(cred); 6599 key = key_ref_to_ptr(key_ref); 6600 ksec = key->security; 6601 6602 return avc_has_perm(&selinux_state, 6603 sid, ksec->sid, SECCLASS_KEY, perm, NULL); 6604 } 6605 6606 static int selinux_key_getsecurity(struct key *key, char **_buffer) 6607 { 6608 struct key_security_struct *ksec = key->security; 6609 char *context = NULL; 6610 unsigned len; 6611 int rc; 6612 6613 rc = security_sid_to_context(&selinux_state, ksec->sid, 6614 &context, &len); 6615 if (!rc) 6616 rc = len; 6617 *_buffer = context; 6618 return rc; 6619 } 6620 6621 #ifdef CONFIG_KEY_NOTIFICATIONS 6622 static int selinux_watch_key(struct key *key) 6623 { 6624 struct key_security_struct *ksec = key->security; 6625 u32 sid = current_sid(); 6626 6627 return avc_has_perm(&selinux_state, 6628 sid, ksec->sid, SECCLASS_KEY, KEY__VIEW, NULL); 6629 } 6630 #endif 6631 #endif 6632 6633 #ifdef CONFIG_SECURITY_INFINIBAND 6634 static int selinux_ib_pkey_access(void *ib_sec, u64 subnet_prefix, u16 pkey_val) 6635 { 6636 struct common_audit_data ad; 6637 int err; 6638 u32 sid = 0; 6639 struct ib_security_struct *sec = ib_sec; 6640 struct lsm_ibpkey_audit ibpkey; 6641 6642 err = sel_ib_pkey_sid(subnet_prefix, pkey_val, &sid); 6643 if (err) 6644 return err; 6645 6646 ad.type = LSM_AUDIT_DATA_IBPKEY; 6647 ibpkey.subnet_prefix = subnet_prefix; 6648 ibpkey.pkey = pkey_val; 6649 ad.u.ibpkey = &ibpkey; 6650 return avc_has_perm(&selinux_state, 6651 sec->sid, sid, 6652 SECCLASS_INFINIBAND_PKEY, 6653 INFINIBAND_PKEY__ACCESS, &ad); 6654 } 6655 6656 static int selinux_ib_endport_manage_subnet(void *ib_sec, const char *dev_name, 6657 u8 port_num) 6658 { 6659 struct common_audit_data ad; 6660 int err; 6661 u32 sid = 0; 6662 struct ib_security_struct *sec = ib_sec; 6663 struct lsm_ibendport_audit ibendport; 6664 6665 err = security_ib_endport_sid(&selinux_state, dev_name, port_num, 6666 &sid); 6667 6668 if (err) 6669 return err; 6670 6671 ad.type = LSM_AUDIT_DATA_IBENDPORT; 6672 strncpy(ibendport.dev_name, dev_name, sizeof(ibendport.dev_name)); 6673 ibendport.port = port_num; 6674 ad.u.ibendport = &ibendport; 6675 return avc_has_perm(&selinux_state, 6676 sec->sid, sid, 6677 SECCLASS_INFINIBAND_ENDPORT, 6678 INFINIBAND_ENDPORT__MANAGE_SUBNET, &ad); 6679 } 6680 6681 static int selinux_ib_alloc_security(void **ib_sec) 6682 { 6683 struct ib_security_struct *sec; 6684 6685 sec = kzalloc(sizeof(*sec), GFP_KERNEL); 6686 if (!sec) 6687 return -ENOMEM; 6688 sec->sid = current_sid(); 6689 6690 *ib_sec = sec; 6691 return 0; 6692 } 6693 6694 static void selinux_ib_free_security(void *ib_sec) 6695 { 6696 kfree(ib_sec); 6697 } 6698 #endif 6699 6700 #ifdef CONFIG_BPF_SYSCALL 6701 static int selinux_bpf(int cmd, union bpf_attr *attr, 6702 unsigned int size) 6703 { 6704 u32 sid = current_sid(); 6705 int ret; 6706 6707 switch (cmd) { 6708 case BPF_MAP_CREATE: 6709 ret = avc_has_perm(&selinux_state, 6710 sid, sid, SECCLASS_BPF, BPF__MAP_CREATE, 6711 NULL); 6712 break; 6713 case BPF_PROG_LOAD: 6714 ret = avc_has_perm(&selinux_state, 6715 sid, sid, SECCLASS_BPF, BPF__PROG_LOAD, 6716 NULL); 6717 break; 6718 default: 6719 ret = 0; 6720 break; 6721 } 6722 6723 return ret; 6724 } 6725 6726 static u32 bpf_map_fmode_to_av(fmode_t fmode) 6727 { 6728 u32 av = 0; 6729 6730 if (fmode & FMODE_READ) 6731 av |= BPF__MAP_READ; 6732 if (fmode & FMODE_WRITE) 6733 av |= BPF__MAP_WRITE; 6734 return av; 6735 } 6736 6737 /* This function will check the file pass through unix socket or binder to see 6738 * if it is a bpf related object. And apply correspinding checks on the bpf 6739 * object based on the type. The bpf maps and programs, not like other files and 6740 * socket, are using a shared anonymous inode inside the kernel as their inode. 6741 * So checking that inode cannot identify if the process have privilege to 6742 * access the bpf object and that's why we have to add this additional check in 6743 * selinux_file_receive and selinux_binder_transfer_files. 6744 */ 6745 static int bpf_fd_pass(struct file *file, u32 sid) 6746 { 6747 struct bpf_security_struct *bpfsec; 6748 struct bpf_prog *prog; 6749 struct bpf_map *map; 6750 int ret; 6751 6752 if (file->f_op == &bpf_map_fops) { 6753 map = file->private_data; 6754 bpfsec = map->security; 6755 ret = avc_has_perm(&selinux_state, 6756 sid, bpfsec->sid, SECCLASS_BPF, 6757 bpf_map_fmode_to_av(file->f_mode), NULL); 6758 if (ret) 6759 return ret; 6760 } else if (file->f_op == &bpf_prog_fops) { 6761 prog = file->private_data; 6762 bpfsec = prog->aux->security; 6763 ret = avc_has_perm(&selinux_state, 6764 sid, bpfsec->sid, SECCLASS_BPF, 6765 BPF__PROG_RUN, NULL); 6766 if (ret) 6767 return ret; 6768 } 6769 return 0; 6770 } 6771 6772 static int selinux_bpf_map(struct bpf_map *map, fmode_t fmode) 6773 { 6774 u32 sid = current_sid(); 6775 struct bpf_security_struct *bpfsec; 6776 6777 bpfsec = map->security; 6778 return avc_has_perm(&selinux_state, 6779 sid, bpfsec->sid, SECCLASS_BPF, 6780 bpf_map_fmode_to_av(fmode), NULL); 6781 } 6782 6783 static int selinux_bpf_prog(struct bpf_prog *prog) 6784 { 6785 u32 sid = current_sid(); 6786 struct bpf_security_struct *bpfsec; 6787 6788 bpfsec = prog->aux->security; 6789 return avc_has_perm(&selinux_state, 6790 sid, bpfsec->sid, SECCLASS_BPF, 6791 BPF__PROG_RUN, NULL); 6792 } 6793 6794 static int selinux_bpf_map_alloc(struct bpf_map *map) 6795 { 6796 struct bpf_security_struct *bpfsec; 6797 6798 bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL); 6799 if (!bpfsec) 6800 return -ENOMEM; 6801 6802 bpfsec->sid = current_sid(); 6803 map->security = bpfsec; 6804 6805 return 0; 6806 } 6807 6808 static void selinux_bpf_map_free(struct bpf_map *map) 6809 { 6810 struct bpf_security_struct *bpfsec = map->security; 6811 6812 map->security = NULL; 6813 kfree(bpfsec); 6814 } 6815 6816 static int selinux_bpf_prog_alloc(struct bpf_prog_aux *aux) 6817 { 6818 struct bpf_security_struct *bpfsec; 6819 6820 bpfsec = kzalloc(sizeof(*bpfsec), GFP_KERNEL); 6821 if (!bpfsec) 6822 return -ENOMEM; 6823 6824 bpfsec->sid = current_sid(); 6825 aux->security = bpfsec; 6826 6827 return 0; 6828 } 6829 6830 static void selinux_bpf_prog_free(struct bpf_prog_aux *aux) 6831 { 6832 struct bpf_security_struct *bpfsec = aux->security; 6833 6834 aux->security = NULL; 6835 kfree(bpfsec); 6836 } 6837 #endif 6838 6839 static int selinux_lockdown(enum lockdown_reason what) 6840 { 6841 struct common_audit_data ad; 6842 u32 sid = current_sid(); 6843 int invalid_reason = (what <= LOCKDOWN_NONE) || 6844 (what == LOCKDOWN_INTEGRITY_MAX) || 6845 (what >= LOCKDOWN_CONFIDENTIALITY_MAX); 6846 6847 if (WARN(invalid_reason, "Invalid lockdown reason")) { 6848 audit_log(audit_context(), 6849 GFP_ATOMIC, AUDIT_SELINUX_ERR, 6850 "lockdown_reason=invalid"); 6851 return -EINVAL; 6852 } 6853 6854 ad.type = LSM_AUDIT_DATA_LOCKDOWN; 6855 ad.u.reason = what; 6856 6857 if (what <= LOCKDOWN_INTEGRITY_MAX) 6858 return avc_has_perm(&selinux_state, 6859 sid, sid, SECCLASS_LOCKDOWN, 6860 LOCKDOWN__INTEGRITY, &ad); 6861 else 6862 return avc_has_perm(&selinux_state, 6863 sid, sid, SECCLASS_LOCKDOWN, 6864 LOCKDOWN__CONFIDENTIALITY, &ad); 6865 } 6866 6867 struct lsm_blob_sizes selinux_blob_sizes __lsm_ro_after_init = { 6868 .lbs_cred = sizeof(struct task_security_struct), 6869 .lbs_file = sizeof(struct file_security_struct), 6870 .lbs_inode = sizeof(struct inode_security_struct), 6871 .lbs_ipc = sizeof(struct ipc_security_struct), 6872 .lbs_msg_msg = sizeof(struct msg_security_struct), 6873 }; 6874 6875 #ifdef CONFIG_PERF_EVENTS 6876 static int selinux_perf_event_open(struct perf_event_attr *attr, int type) 6877 { 6878 u32 requested, sid = current_sid(); 6879 6880 if (type == PERF_SECURITY_OPEN) 6881 requested = PERF_EVENT__OPEN; 6882 else if (type == PERF_SECURITY_CPU) 6883 requested = PERF_EVENT__CPU; 6884 else if (type == PERF_SECURITY_KERNEL) 6885 requested = PERF_EVENT__KERNEL; 6886 else if (type == PERF_SECURITY_TRACEPOINT) 6887 requested = PERF_EVENT__TRACEPOINT; 6888 else 6889 return -EINVAL; 6890 6891 return avc_has_perm(&selinux_state, sid, sid, SECCLASS_PERF_EVENT, 6892 requested, NULL); 6893 } 6894 6895 static int selinux_perf_event_alloc(struct perf_event *event) 6896 { 6897 struct perf_event_security_struct *perfsec; 6898 6899 perfsec = kzalloc(sizeof(*perfsec), GFP_KERNEL); 6900 if (!perfsec) 6901 return -ENOMEM; 6902 6903 perfsec->sid = current_sid(); 6904 event->security = perfsec; 6905 6906 return 0; 6907 } 6908 6909 static void selinux_perf_event_free(struct perf_event *event) 6910 { 6911 struct perf_event_security_struct *perfsec = event->security; 6912 6913 event->security = NULL; 6914 kfree(perfsec); 6915 } 6916 6917 static int selinux_perf_event_read(struct perf_event *event) 6918 { 6919 struct perf_event_security_struct *perfsec = event->security; 6920 u32 sid = current_sid(); 6921 6922 return avc_has_perm(&selinux_state, sid, perfsec->sid, 6923 SECCLASS_PERF_EVENT, PERF_EVENT__READ, NULL); 6924 } 6925 6926 static int selinux_perf_event_write(struct perf_event *event) 6927 { 6928 struct perf_event_security_struct *perfsec = event->security; 6929 u32 sid = current_sid(); 6930 6931 return avc_has_perm(&selinux_state, sid, perfsec->sid, 6932 SECCLASS_PERF_EVENT, PERF_EVENT__WRITE, NULL); 6933 } 6934 #endif 6935 6936 /* 6937 * IMPORTANT NOTE: When adding new hooks, please be careful to keep this order: 6938 * 1. any hooks that don't belong to (2.) or (3.) below, 6939 * 2. hooks that both access structures allocated by other hooks, and allocate 6940 * structures that can be later accessed by other hooks (mostly "cloning" 6941 * hooks), 6942 * 3. hooks that only allocate structures that can be later accessed by other 6943 * hooks ("allocating" hooks). 6944 * 6945 * Please follow block comment delimiters in the list to keep this order. 6946 * 6947 * This ordering is needed for SELinux runtime disable to work at least somewhat 6948 * safely. Breaking the ordering rules above might lead to NULL pointer derefs 6949 * when disabling SELinux at runtime. 6950 */ 6951 static struct security_hook_list selinux_hooks[] __lsm_ro_after_init = { 6952 LSM_HOOK_INIT(binder_set_context_mgr, selinux_binder_set_context_mgr), 6953 LSM_HOOK_INIT(binder_transaction, selinux_binder_transaction), 6954 LSM_HOOK_INIT(binder_transfer_binder, selinux_binder_transfer_binder), 6955 LSM_HOOK_INIT(binder_transfer_file, selinux_binder_transfer_file), 6956 6957 LSM_HOOK_INIT(ptrace_access_check, selinux_ptrace_access_check), 6958 LSM_HOOK_INIT(ptrace_traceme, selinux_ptrace_traceme), 6959 LSM_HOOK_INIT(capget, selinux_capget), 6960 LSM_HOOK_INIT(capset, selinux_capset), 6961 LSM_HOOK_INIT(capable, selinux_capable), 6962 LSM_HOOK_INIT(quotactl, selinux_quotactl), 6963 LSM_HOOK_INIT(quota_on, selinux_quota_on), 6964 LSM_HOOK_INIT(syslog, selinux_syslog), 6965 LSM_HOOK_INIT(vm_enough_memory, selinux_vm_enough_memory), 6966 6967 LSM_HOOK_INIT(netlink_send, selinux_netlink_send), 6968 6969 LSM_HOOK_INIT(bprm_creds_for_exec, selinux_bprm_creds_for_exec), 6970 LSM_HOOK_INIT(bprm_committing_creds, selinux_bprm_committing_creds), 6971 LSM_HOOK_INIT(bprm_committed_creds, selinux_bprm_committed_creds), 6972 6973 LSM_HOOK_INIT(sb_free_security, selinux_sb_free_security), 6974 LSM_HOOK_INIT(sb_free_mnt_opts, selinux_free_mnt_opts), 6975 LSM_HOOK_INIT(sb_remount, selinux_sb_remount), 6976 LSM_HOOK_INIT(sb_kern_mount, selinux_sb_kern_mount), 6977 LSM_HOOK_INIT(sb_show_options, selinux_sb_show_options), 6978 LSM_HOOK_INIT(sb_statfs, selinux_sb_statfs), 6979 LSM_HOOK_INIT(sb_mount, selinux_mount), 6980 LSM_HOOK_INIT(sb_umount, selinux_umount), 6981 LSM_HOOK_INIT(sb_set_mnt_opts, selinux_set_mnt_opts), 6982 LSM_HOOK_INIT(sb_clone_mnt_opts, selinux_sb_clone_mnt_opts), 6983 6984 LSM_HOOK_INIT(move_mount, selinux_move_mount), 6985 6986 LSM_HOOK_INIT(dentry_init_security, selinux_dentry_init_security), 6987 LSM_HOOK_INIT(dentry_create_files_as, selinux_dentry_create_files_as), 6988 6989 LSM_HOOK_INIT(inode_free_security, selinux_inode_free_security), 6990 LSM_HOOK_INIT(inode_init_security, selinux_inode_init_security), 6991 LSM_HOOK_INIT(inode_create, selinux_inode_create), 6992 LSM_HOOK_INIT(inode_link, selinux_inode_link), 6993 LSM_HOOK_INIT(inode_unlink, selinux_inode_unlink), 6994 LSM_HOOK_INIT(inode_symlink, selinux_inode_symlink), 6995 LSM_HOOK_INIT(inode_mkdir, selinux_inode_mkdir), 6996 LSM_HOOK_INIT(inode_rmdir, selinux_inode_rmdir), 6997 LSM_HOOK_INIT(inode_mknod, selinux_inode_mknod), 6998 LSM_HOOK_INIT(inode_rename, selinux_inode_rename), 6999 LSM_HOOK_INIT(inode_readlink, selinux_inode_readlink), 7000 LSM_HOOK_INIT(inode_follow_link, selinux_inode_follow_link), 7001 LSM_HOOK_INIT(inode_permission, selinux_inode_permission), 7002 LSM_HOOK_INIT(inode_setattr, selinux_inode_setattr), 7003 LSM_HOOK_INIT(inode_getattr, selinux_inode_getattr), 7004 LSM_HOOK_INIT(inode_setxattr, selinux_inode_setxattr), 7005 LSM_HOOK_INIT(inode_post_setxattr, selinux_inode_post_setxattr), 7006 LSM_HOOK_INIT(inode_getxattr, selinux_inode_getxattr), 7007 LSM_HOOK_INIT(inode_listxattr, selinux_inode_listxattr), 7008 LSM_HOOK_INIT(inode_removexattr, selinux_inode_removexattr), 7009 LSM_HOOK_INIT(inode_getsecurity, selinux_inode_getsecurity), 7010 LSM_HOOK_INIT(inode_setsecurity, selinux_inode_setsecurity), 7011 LSM_HOOK_INIT(inode_listsecurity, selinux_inode_listsecurity), 7012 LSM_HOOK_INIT(inode_getsecid, selinux_inode_getsecid), 7013 LSM_HOOK_INIT(inode_copy_up, selinux_inode_copy_up), 7014 LSM_HOOK_INIT(inode_copy_up_xattr, selinux_inode_copy_up_xattr), 7015 LSM_HOOK_INIT(path_notify, selinux_path_notify), 7016 7017 LSM_HOOK_INIT(kernfs_init_security, selinux_kernfs_init_security), 7018 7019 LSM_HOOK_INIT(file_permission, selinux_file_permission), 7020 LSM_HOOK_INIT(file_alloc_security, selinux_file_alloc_security), 7021 LSM_HOOK_INIT(file_ioctl, selinux_file_ioctl), 7022 LSM_HOOK_INIT(mmap_file, selinux_mmap_file), 7023 LSM_HOOK_INIT(mmap_addr, selinux_mmap_addr), 7024 LSM_HOOK_INIT(file_mprotect, selinux_file_mprotect), 7025 LSM_HOOK_INIT(file_lock, selinux_file_lock), 7026 LSM_HOOK_INIT(file_fcntl, selinux_file_fcntl), 7027 LSM_HOOK_INIT(file_set_fowner, selinux_file_set_fowner), 7028 LSM_HOOK_INIT(file_send_sigiotask, selinux_file_send_sigiotask), 7029 LSM_HOOK_INIT(file_receive, selinux_file_receive), 7030 7031 LSM_HOOK_INIT(file_open, selinux_file_open), 7032 7033 LSM_HOOK_INIT(task_alloc, selinux_task_alloc), 7034 LSM_HOOK_INIT(cred_prepare, selinux_cred_prepare), 7035 LSM_HOOK_INIT(cred_transfer, selinux_cred_transfer), 7036 LSM_HOOK_INIT(cred_getsecid, selinux_cred_getsecid), 7037 LSM_HOOK_INIT(kernel_act_as, selinux_kernel_act_as), 7038 LSM_HOOK_INIT(kernel_create_files_as, selinux_kernel_create_files_as), 7039 LSM_HOOK_INIT(kernel_module_request, selinux_kernel_module_request), 7040 LSM_HOOK_INIT(kernel_load_data, selinux_kernel_load_data), 7041 LSM_HOOK_INIT(kernel_read_file, selinux_kernel_read_file), 7042 LSM_HOOK_INIT(task_setpgid, selinux_task_setpgid), 7043 LSM_HOOK_INIT(task_getpgid, selinux_task_getpgid), 7044 LSM_HOOK_INIT(task_getsid, selinux_task_getsid), 7045 LSM_HOOK_INIT(task_getsecid, selinux_task_getsecid), 7046 LSM_HOOK_INIT(task_setnice, selinux_task_setnice), 7047 LSM_HOOK_INIT(task_setioprio, selinux_task_setioprio), 7048 LSM_HOOK_INIT(task_getioprio, selinux_task_getioprio), 7049 LSM_HOOK_INIT(task_prlimit, selinux_task_prlimit), 7050 LSM_HOOK_INIT(task_setrlimit, selinux_task_setrlimit), 7051 LSM_HOOK_INIT(task_setscheduler, selinux_task_setscheduler), 7052 LSM_HOOK_INIT(task_getscheduler, selinux_task_getscheduler), 7053 LSM_HOOK_INIT(task_movememory, selinux_task_movememory), 7054 LSM_HOOK_INIT(task_kill, selinux_task_kill), 7055 LSM_HOOK_INIT(task_to_inode, selinux_task_to_inode), 7056 7057 LSM_HOOK_INIT(ipc_permission, selinux_ipc_permission), 7058 LSM_HOOK_INIT(ipc_getsecid, selinux_ipc_getsecid), 7059 7060 LSM_HOOK_INIT(msg_queue_associate, selinux_msg_queue_associate), 7061 LSM_HOOK_INIT(msg_queue_msgctl, selinux_msg_queue_msgctl), 7062 LSM_HOOK_INIT(msg_queue_msgsnd, selinux_msg_queue_msgsnd), 7063 LSM_HOOK_INIT(msg_queue_msgrcv, selinux_msg_queue_msgrcv), 7064 7065 LSM_HOOK_INIT(shm_associate, selinux_shm_associate), 7066 LSM_HOOK_INIT(shm_shmctl, selinux_shm_shmctl), 7067 LSM_HOOK_INIT(shm_shmat, selinux_shm_shmat), 7068 7069 LSM_HOOK_INIT(sem_associate, selinux_sem_associate), 7070 LSM_HOOK_INIT(sem_semctl, selinux_sem_semctl), 7071 LSM_HOOK_INIT(sem_semop, selinux_sem_semop), 7072 7073 LSM_HOOK_INIT(d_instantiate, selinux_d_instantiate), 7074 7075 LSM_HOOK_INIT(getprocattr, selinux_getprocattr), 7076 LSM_HOOK_INIT(setprocattr, selinux_setprocattr), 7077 7078 LSM_HOOK_INIT(ismaclabel, selinux_ismaclabel), 7079 LSM_HOOK_INIT(secctx_to_secid, selinux_secctx_to_secid), 7080 LSM_HOOK_INIT(release_secctx, selinux_release_secctx), 7081 LSM_HOOK_INIT(inode_invalidate_secctx, selinux_inode_invalidate_secctx), 7082 LSM_HOOK_INIT(inode_notifysecctx, selinux_inode_notifysecctx), 7083 LSM_HOOK_INIT(inode_setsecctx, selinux_inode_setsecctx), 7084 7085 LSM_HOOK_INIT(unix_stream_connect, selinux_socket_unix_stream_connect), 7086 LSM_HOOK_INIT(unix_may_send, selinux_socket_unix_may_send), 7087 7088 LSM_HOOK_INIT(socket_create, selinux_socket_create), 7089 LSM_HOOK_INIT(socket_post_create, selinux_socket_post_create), 7090 LSM_HOOK_INIT(socket_socketpair, selinux_socket_socketpair), 7091 LSM_HOOK_INIT(socket_bind, selinux_socket_bind), 7092 LSM_HOOK_INIT(socket_connect, selinux_socket_connect), 7093 LSM_HOOK_INIT(socket_listen, selinux_socket_listen), 7094 LSM_HOOK_INIT(socket_accept, selinux_socket_accept), 7095 LSM_HOOK_INIT(socket_sendmsg, selinux_socket_sendmsg), 7096 LSM_HOOK_INIT(socket_recvmsg, selinux_socket_recvmsg), 7097 LSM_HOOK_INIT(socket_getsockname, selinux_socket_getsockname), 7098 LSM_HOOK_INIT(socket_getpeername, selinux_socket_getpeername), 7099 LSM_HOOK_INIT(socket_getsockopt, selinux_socket_getsockopt), 7100 LSM_HOOK_INIT(socket_setsockopt, selinux_socket_setsockopt), 7101 LSM_HOOK_INIT(socket_shutdown, selinux_socket_shutdown), 7102 LSM_HOOK_INIT(socket_sock_rcv_skb, selinux_socket_sock_rcv_skb), 7103 LSM_HOOK_INIT(socket_getpeersec_stream, 7104 selinux_socket_getpeersec_stream), 7105 LSM_HOOK_INIT(socket_getpeersec_dgram, selinux_socket_getpeersec_dgram), 7106 LSM_HOOK_INIT(sk_free_security, selinux_sk_free_security), 7107 LSM_HOOK_INIT(sk_clone_security, selinux_sk_clone_security), 7108 LSM_HOOK_INIT(sk_getsecid, selinux_sk_getsecid), 7109 LSM_HOOK_INIT(sock_graft, selinux_sock_graft), 7110 LSM_HOOK_INIT(sctp_assoc_request, selinux_sctp_assoc_request), 7111 LSM_HOOK_INIT(sctp_sk_clone, selinux_sctp_sk_clone), 7112 LSM_HOOK_INIT(sctp_bind_connect, selinux_sctp_bind_connect), 7113 LSM_HOOK_INIT(inet_conn_request, selinux_inet_conn_request), 7114 LSM_HOOK_INIT(inet_csk_clone, selinux_inet_csk_clone), 7115 LSM_HOOK_INIT(inet_conn_established, selinux_inet_conn_established), 7116 LSM_HOOK_INIT(secmark_relabel_packet, selinux_secmark_relabel_packet), 7117 LSM_HOOK_INIT(secmark_refcount_inc, selinux_secmark_refcount_inc), 7118 LSM_HOOK_INIT(secmark_refcount_dec, selinux_secmark_refcount_dec), 7119 LSM_HOOK_INIT(req_classify_flow, selinux_req_classify_flow), 7120 LSM_HOOK_INIT(tun_dev_free_security, selinux_tun_dev_free_security), 7121 LSM_HOOK_INIT(tun_dev_create, selinux_tun_dev_create), 7122 LSM_HOOK_INIT(tun_dev_attach_queue, selinux_tun_dev_attach_queue), 7123 LSM_HOOK_INIT(tun_dev_attach, selinux_tun_dev_attach), 7124 LSM_HOOK_INIT(tun_dev_open, selinux_tun_dev_open), 7125 #ifdef CONFIG_SECURITY_INFINIBAND 7126 LSM_HOOK_INIT(ib_pkey_access, selinux_ib_pkey_access), 7127 LSM_HOOK_INIT(ib_endport_manage_subnet, 7128 selinux_ib_endport_manage_subnet), 7129 LSM_HOOK_INIT(ib_free_security, selinux_ib_free_security), 7130 #endif 7131 #ifdef CONFIG_SECURITY_NETWORK_XFRM 7132 LSM_HOOK_INIT(xfrm_policy_free_security, selinux_xfrm_policy_free), 7133 LSM_HOOK_INIT(xfrm_policy_delete_security, selinux_xfrm_policy_delete), 7134 LSM_HOOK_INIT(xfrm_state_free_security, selinux_xfrm_state_free), 7135 LSM_HOOK_INIT(xfrm_state_delete_security, selinux_xfrm_state_delete), 7136 LSM_HOOK_INIT(xfrm_policy_lookup, selinux_xfrm_policy_lookup), 7137 LSM_HOOK_INIT(xfrm_state_pol_flow_match, 7138 selinux_xfrm_state_pol_flow_match), 7139 LSM_HOOK_INIT(xfrm_decode_session, selinux_xfrm_decode_session), 7140 #endif 7141 7142 #ifdef CONFIG_KEYS 7143 LSM_HOOK_INIT(key_free, selinux_key_free), 7144 LSM_HOOK_INIT(key_permission, selinux_key_permission), 7145 LSM_HOOK_INIT(key_getsecurity, selinux_key_getsecurity), 7146 #ifdef CONFIG_KEY_NOTIFICATIONS 7147 LSM_HOOK_INIT(watch_key, selinux_watch_key), 7148 #endif 7149 #endif 7150 7151 #ifdef CONFIG_AUDIT 7152 LSM_HOOK_INIT(audit_rule_known, selinux_audit_rule_known), 7153 LSM_HOOK_INIT(audit_rule_match, selinux_audit_rule_match), 7154 LSM_HOOK_INIT(audit_rule_free, selinux_audit_rule_free), 7155 #endif 7156 7157 #ifdef CONFIG_BPF_SYSCALL 7158 LSM_HOOK_INIT(bpf, selinux_bpf), 7159 LSM_HOOK_INIT(bpf_map, selinux_bpf_map), 7160 LSM_HOOK_INIT(bpf_prog, selinux_bpf_prog), 7161 LSM_HOOK_INIT(bpf_map_free_security, selinux_bpf_map_free), 7162 LSM_HOOK_INIT(bpf_prog_free_security, selinux_bpf_prog_free), 7163 #endif 7164 7165 #ifdef CONFIG_PERF_EVENTS 7166 LSM_HOOK_INIT(perf_event_open, selinux_perf_event_open), 7167 LSM_HOOK_INIT(perf_event_free, selinux_perf_event_free), 7168 LSM_HOOK_INIT(perf_event_read, selinux_perf_event_read), 7169 LSM_HOOK_INIT(perf_event_write, selinux_perf_event_write), 7170 #endif 7171 7172 LSM_HOOK_INIT(locked_down, selinux_lockdown), 7173 7174 /* 7175 * PUT "CLONING" (ACCESSING + ALLOCATING) HOOKS HERE 7176 */ 7177 LSM_HOOK_INIT(fs_context_dup, selinux_fs_context_dup), 7178 LSM_HOOK_INIT(fs_context_parse_param, selinux_fs_context_parse_param), 7179 LSM_HOOK_INIT(sb_eat_lsm_opts, selinux_sb_eat_lsm_opts), 7180 LSM_HOOK_INIT(sb_add_mnt_opt, selinux_add_mnt_opt), 7181 #ifdef CONFIG_SECURITY_NETWORK_XFRM 7182 LSM_HOOK_INIT(xfrm_policy_clone_security, selinux_xfrm_policy_clone), 7183 #endif 7184 7185 /* 7186 * PUT "ALLOCATING" HOOKS HERE 7187 */ 7188 LSM_HOOK_INIT(msg_msg_alloc_security, selinux_msg_msg_alloc_security), 7189 LSM_HOOK_INIT(msg_queue_alloc_security, 7190 selinux_msg_queue_alloc_security), 7191 LSM_HOOK_INIT(shm_alloc_security, selinux_shm_alloc_security), 7192 LSM_HOOK_INIT(sb_alloc_security, selinux_sb_alloc_security), 7193 LSM_HOOK_INIT(inode_alloc_security, selinux_inode_alloc_security), 7194 LSM_HOOK_INIT(sem_alloc_security, selinux_sem_alloc_security), 7195 LSM_HOOK_INIT(secid_to_secctx, selinux_secid_to_secctx), 7196 LSM_HOOK_INIT(inode_getsecctx, selinux_inode_getsecctx), 7197 LSM_HOOK_INIT(sk_alloc_security, selinux_sk_alloc_security), 7198 LSM_HOOK_INIT(tun_dev_alloc_security, selinux_tun_dev_alloc_security), 7199 #ifdef CONFIG_SECURITY_INFINIBAND 7200 LSM_HOOK_INIT(ib_alloc_security, selinux_ib_alloc_security), 7201 #endif 7202 #ifdef CONFIG_SECURITY_NETWORK_XFRM 7203 LSM_HOOK_INIT(xfrm_policy_alloc_security, selinux_xfrm_policy_alloc), 7204 LSM_HOOK_INIT(xfrm_state_alloc, selinux_xfrm_state_alloc), 7205 LSM_HOOK_INIT(xfrm_state_alloc_acquire, 7206 selinux_xfrm_state_alloc_acquire), 7207 #endif 7208 #ifdef CONFIG_KEYS 7209 LSM_HOOK_INIT(key_alloc, selinux_key_alloc), 7210 #endif 7211 #ifdef CONFIG_AUDIT 7212 LSM_HOOK_INIT(audit_rule_init, selinux_audit_rule_init), 7213 #endif 7214 #ifdef CONFIG_BPF_SYSCALL 7215 LSM_HOOK_INIT(bpf_map_alloc_security, selinux_bpf_map_alloc), 7216 LSM_HOOK_INIT(bpf_prog_alloc_security, selinux_bpf_prog_alloc), 7217 #endif 7218 #ifdef CONFIG_PERF_EVENTS 7219 LSM_HOOK_INIT(perf_event_alloc, selinux_perf_event_alloc), 7220 #endif 7221 }; 7222 7223 static __init int selinux_init(void) 7224 { 7225 pr_info("SELinux: Initializing.\n"); 7226 7227 memset(&selinux_state, 0, sizeof(selinux_state)); 7228 enforcing_set(&selinux_state, selinux_enforcing_boot); 7229 selinux_state.checkreqprot = selinux_checkreqprot_boot; 7230 selinux_ss_init(&selinux_state.ss); 7231 selinux_avc_init(&selinux_state.avc); 7232 mutex_init(&selinux_state.status_lock); 7233 7234 /* Set the security state for the initial task. */ 7235 cred_init_security(); 7236 7237 default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC); 7238 7239 avc_init(); 7240 7241 avtab_cache_init(); 7242 7243 ebitmap_cache_init(); 7244 7245 hashtab_cache_init(); 7246 7247 security_add_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks), "selinux"); 7248 7249 if (avc_add_callback(selinux_netcache_avc_callback, AVC_CALLBACK_RESET)) 7250 panic("SELinux: Unable to register AVC netcache callback\n"); 7251 7252 if (avc_add_callback(selinux_lsm_notifier_avc_callback, AVC_CALLBACK_RESET)) 7253 panic("SELinux: Unable to register AVC LSM notifier callback\n"); 7254 7255 if (selinux_enforcing_boot) 7256 pr_debug("SELinux: Starting in enforcing mode\n"); 7257 else 7258 pr_debug("SELinux: Starting in permissive mode\n"); 7259 7260 fs_validate_description("selinux", selinux_fs_parameters); 7261 7262 return 0; 7263 } 7264 7265 static void delayed_superblock_init(struct super_block *sb, void *unused) 7266 { 7267 selinux_set_mnt_opts(sb, NULL, 0, NULL); 7268 } 7269 7270 void selinux_complete_init(void) 7271 { 7272 pr_debug("SELinux: Completing initialization.\n"); 7273 7274 /* Set up any superblocks initialized prior to the policy load. */ 7275 pr_debug("SELinux: Setting up existing superblocks.\n"); 7276 iterate_supers(delayed_superblock_init, NULL); 7277 } 7278 7279 /* SELinux requires early initialization in order to label 7280 all processes and objects when they are created. */ 7281 DEFINE_LSM(selinux) = { 7282 .name = "selinux", 7283 .flags = LSM_FLAG_LEGACY_MAJOR | LSM_FLAG_EXCLUSIVE, 7284 .enabled = &selinux_enabled_boot, 7285 .blobs = &selinux_blob_sizes, 7286 .init = selinux_init, 7287 }; 7288 7289 #if defined(CONFIG_NETFILTER) 7290 7291 static const struct nf_hook_ops selinux_nf_ops[] = { 7292 { 7293 .hook = selinux_ipv4_postroute, 7294 .pf = NFPROTO_IPV4, 7295 .hooknum = NF_INET_POST_ROUTING, 7296 .priority = NF_IP_PRI_SELINUX_LAST, 7297 }, 7298 { 7299 .hook = selinux_ipv4_forward, 7300 .pf = NFPROTO_IPV4, 7301 .hooknum = NF_INET_FORWARD, 7302 .priority = NF_IP_PRI_SELINUX_FIRST, 7303 }, 7304 { 7305 .hook = selinux_ipv4_output, 7306 .pf = NFPROTO_IPV4, 7307 .hooknum = NF_INET_LOCAL_OUT, 7308 .priority = NF_IP_PRI_SELINUX_FIRST, 7309 }, 7310 #if IS_ENABLED(CONFIG_IPV6) 7311 { 7312 .hook = selinux_ipv6_postroute, 7313 .pf = NFPROTO_IPV6, 7314 .hooknum = NF_INET_POST_ROUTING, 7315 .priority = NF_IP6_PRI_SELINUX_LAST, 7316 }, 7317 { 7318 .hook = selinux_ipv6_forward, 7319 .pf = NFPROTO_IPV6, 7320 .hooknum = NF_INET_FORWARD, 7321 .priority = NF_IP6_PRI_SELINUX_FIRST, 7322 }, 7323 { 7324 .hook = selinux_ipv6_output, 7325 .pf = NFPROTO_IPV6, 7326 .hooknum = NF_INET_LOCAL_OUT, 7327 .priority = NF_IP6_PRI_SELINUX_FIRST, 7328 }, 7329 #endif /* IPV6 */ 7330 }; 7331 7332 static int __net_init selinux_nf_register(struct net *net) 7333 { 7334 return nf_register_net_hooks(net, selinux_nf_ops, 7335 ARRAY_SIZE(selinux_nf_ops)); 7336 } 7337 7338 static void __net_exit selinux_nf_unregister(struct net *net) 7339 { 7340 nf_unregister_net_hooks(net, selinux_nf_ops, 7341 ARRAY_SIZE(selinux_nf_ops)); 7342 } 7343 7344 static struct pernet_operations selinux_net_ops = { 7345 .init = selinux_nf_register, 7346 .exit = selinux_nf_unregister, 7347 }; 7348 7349 static int __init selinux_nf_ip_init(void) 7350 { 7351 int err; 7352 7353 if (!selinux_enabled_boot) 7354 return 0; 7355 7356 pr_debug("SELinux: Registering netfilter hooks\n"); 7357 7358 err = register_pernet_subsys(&selinux_net_ops); 7359 if (err) 7360 panic("SELinux: register_pernet_subsys: error %d\n", err); 7361 7362 return 0; 7363 } 7364 __initcall(selinux_nf_ip_init); 7365 7366 #ifdef CONFIG_SECURITY_SELINUX_DISABLE 7367 static void selinux_nf_ip_exit(void) 7368 { 7369 pr_debug("SELinux: Unregistering netfilter hooks\n"); 7370 7371 unregister_pernet_subsys(&selinux_net_ops); 7372 } 7373 #endif 7374 7375 #else /* CONFIG_NETFILTER */ 7376 7377 #ifdef CONFIG_SECURITY_SELINUX_DISABLE 7378 #define selinux_nf_ip_exit() 7379 #endif 7380 7381 #endif /* CONFIG_NETFILTER */ 7382 7383 #ifdef CONFIG_SECURITY_SELINUX_DISABLE 7384 int selinux_disable(struct selinux_state *state) 7385 { 7386 if (selinux_initialized(state)) { 7387 /* Not permitted after initial policy load. */ 7388 return -EINVAL; 7389 } 7390 7391 if (selinux_disabled(state)) { 7392 /* Only do this once. */ 7393 return -EINVAL; 7394 } 7395 7396 selinux_mark_disabled(state); 7397 7398 pr_info("SELinux: Disabled at runtime.\n"); 7399 7400 /* 7401 * Unregister netfilter hooks. 7402 * Must be done before security_delete_hooks() to avoid breaking 7403 * runtime disable. 7404 */ 7405 selinux_nf_ip_exit(); 7406 7407 security_delete_hooks(selinux_hooks, ARRAY_SIZE(selinux_hooks)); 7408 7409 /* Try to destroy the avc node cache */ 7410 avc_disable(); 7411 7412 /* Unregister selinuxfs. */ 7413 exit_sel_fs(); 7414 7415 return 0; 7416 } 7417 #endif 7418