xref: /linux/security/selinux/hooks.c (revision 08ec212c0f92cbf30e3ecc7349f18151714041d6)
1 /*
2  *  NSA Security-Enhanced Linux (SELinux) security module
3  *
4  *  This file contains the SELinux hook function implementations.
5  *
6  *  Authors:  Stephen Smalley, <sds@epoch.ncsc.mil>
7  *	      Chris Vance, <cvance@nai.com>
8  *	      Wayne Salamon, <wsalamon@nai.com>
9  *	      James Morris <jmorris@redhat.com>
10  *
11  *  Copyright (C) 2001,2002 Networks Associates Technology, Inc.
12  *  Copyright (C) 2003-2008 Red Hat, Inc., James Morris <jmorris@redhat.com>
13  *					   Eric Paris <eparis@redhat.com>
14  *  Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
15  *			    <dgoeddel@trustedcs.com>
16  *  Copyright (C) 2006, 2007, 2009 Hewlett-Packard Development Company, L.P.
17  *	Paul Moore <paul@paul-moore.com>
18  *  Copyright (C) 2007 Hitachi Software Engineering Co., Ltd.
19  *		       Yuichi Nakamura <ynakam@hitachisoft.jp>
20  *
21  *	This program is free software; you can redistribute it and/or modify
22  *	it under the terms of the GNU General Public License version 2,
23  *	as published by the Free Software Foundation.
24  */
25 
26 #include <linux/init.h>
27 #include <linux/kd.h>
28 #include <linux/kernel.h>
29 #include <linux/tracehook.h>
30 #include <linux/errno.h>
31 #include <linux/sched.h>
32 #include <linux/security.h>
33 #include <linux/xattr.h>
34 #include <linux/capability.h>
35 #include <linux/unistd.h>
36 #include <linux/mm.h>
37 #include <linux/mman.h>
38 #include <linux/slab.h>
39 #include <linux/pagemap.h>
40 #include <linux/proc_fs.h>
41 #include <linux/swap.h>
42 #include <linux/spinlock.h>
43 #include <linux/syscalls.h>
44 #include <linux/dcache.h>
45 #include <linux/file.h>
46 #include <linux/fdtable.h>
47 #include <linux/namei.h>
48 #include <linux/mount.h>
49 #include <linux/netfilter_ipv4.h>
50 #include <linux/netfilter_ipv6.h>
51 #include <linux/tty.h>
52 #include <net/icmp.h>
53 #include <net/ip.h>		/* for local_port_range[] */
54 #include <net/tcp.h>		/* struct or_callable used in sock_rcv_skb */
55 #include <net/net_namespace.h>
56 #include <net/netlabel.h>
57 #include <linux/uaccess.h>
58 #include <asm/ioctls.h>
59 #include <linux/atomic.h>
60 #include <linux/bitops.h>
61 #include <linux/interrupt.h>
62 #include <linux/netdevice.h>	/* for network interface checks */
63 #include <linux/netlink.h>
64 #include <linux/tcp.h>
65 #include <linux/udp.h>
66 #include <linux/dccp.h>
67 #include <linux/quota.h>
68 #include <linux/un.h>		/* for Unix socket types */
69 #include <net/af_unix.h>	/* for Unix socket types */
70 #include <linux/parser.h>
71 #include <linux/nfs_mount.h>
72 #include <net/ipv6.h>
73 #include <linux/hugetlb.h>
74 #include <linux/personality.h>
75 #include <linux/audit.h>
76 #include <linux/string.h>
77 #include <linux/selinux.h>
78 #include <linux/mutex.h>
79 #include <linux/posix-timers.h>
80 #include <linux/syslog.h>
81 #include <linux/user_namespace.h>
82 #include <linux/export.h>
83 #include <linux/msg.h>
84 #include <linux/shm.h>
85 
86 #include "avc.h"
87 #include "objsec.h"
88 #include "netif.h"
89 #include "netnode.h"
90 #include "netport.h"
91 #include "xfrm.h"
92 #include "netlabel.h"
93 #include "audit.h"
94 #include "avc_ss.h"
95 
96 #define NUM_SEL_MNT_OPTS 5
97 
98 extern struct security_operations *security_ops;
99 
100 /* SECMARK reference count */
101 static atomic_t selinux_secmark_refcount = ATOMIC_INIT(0);
102 
103 #ifdef CONFIG_SECURITY_SELINUX_DEVELOP
104 int selinux_enforcing;
105 
106 static int __init enforcing_setup(char *str)
107 {
108 	unsigned long enforcing;
109 	if (!strict_strtoul(str, 0, &enforcing))
110 		selinux_enforcing = enforcing ? 1 : 0;
111 	return 1;
112 }
113 __setup("enforcing=", enforcing_setup);
114 #endif
115 
116 #ifdef CONFIG_SECURITY_SELINUX_BOOTPARAM
117 int selinux_enabled = CONFIG_SECURITY_SELINUX_BOOTPARAM_VALUE;
118 
119 static int __init selinux_enabled_setup(char *str)
120 {
121 	unsigned long enabled;
122 	if (!strict_strtoul(str, 0, &enabled))
123 		selinux_enabled = enabled ? 1 : 0;
124 	return 1;
125 }
126 __setup("selinux=", selinux_enabled_setup);
127 #else
128 int selinux_enabled = 1;
129 #endif
130 
131 static struct kmem_cache *sel_inode_cache;
132 
133 /**
134  * selinux_secmark_enabled - Check to see if SECMARK is currently enabled
135  *
136  * Description:
137  * This function checks the SECMARK reference counter to see if any SECMARK
138  * targets are currently configured, if the reference counter is greater than
139  * zero SECMARK is considered to be enabled.  Returns true (1) if SECMARK is
140  * enabled, false (0) if SECMARK is disabled.
141  *
142  */
143 static int selinux_secmark_enabled(void)
144 {
145 	return (atomic_read(&selinux_secmark_refcount) > 0);
146 }
147 
148 /*
149  * initialise the security for the init task
150  */
151 static void cred_init_security(void)
152 {
153 	struct cred *cred = (struct cred *) current->real_cred;
154 	struct task_security_struct *tsec;
155 
156 	tsec = kzalloc(sizeof(struct task_security_struct), GFP_KERNEL);
157 	if (!tsec)
158 		panic("SELinux:  Failed to initialize initial task.\n");
159 
160 	tsec->osid = tsec->sid = SECINITSID_KERNEL;
161 	cred->security = tsec;
162 }
163 
164 /*
165  * get the security ID of a set of credentials
166  */
167 static inline u32 cred_sid(const struct cred *cred)
168 {
169 	const struct task_security_struct *tsec;
170 
171 	tsec = cred->security;
172 	return tsec->sid;
173 }
174 
175 /*
176  * get the objective security ID of a task
177  */
178 static inline u32 task_sid(const struct task_struct *task)
179 {
180 	u32 sid;
181 
182 	rcu_read_lock();
183 	sid = cred_sid(__task_cred(task));
184 	rcu_read_unlock();
185 	return sid;
186 }
187 
188 /*
189  * get the subjective security ID of the current task
190  */
191 static inline u32 current_sid(void)
192 {
193 	const struct task_security_struct *tsec = current_security();
194 
195 	return tsec->sid;
196 }
197 
198 /* Allocate and free functions for each kind of security blob. */
199 
200 static int inode_alloc_security(struct inode *inode)
201 {
202 	struct inode_security_struct *isec;
203 	u32 sid = current_sid();
204 
205 	isec = kmem_cache_zalloc(sel_inode_cache, GFP_NOFS);
206 	if (!isec)
207 		return -ENOMEM;
208 
209 	mutex_init(&isec->lock);
210 	INIT_LIST_HEAD(&isec->list);
211 	isec->inode = inode;
212 	isec->sid = SECINITSID_UNLABELED;
213 	isec->sclass = SECCLASS_FILE;
214 	isec->task_sid = sid;
215 	inode->i_security = isec;
216 
217 	return 0;
218 }
219 
220 static void inode_free_security(struct inode *inode)
221 {
222 	struct inode_security_struct *isec = inode->i_security;
223 	struct superblock_security_struct *sbsec = inode->i_sb->s_security;
224 
225 	spin_lock(&sbsec->isec_lock);
226 	if (!list_empty(&isec->list))
227 		list_del_init(&isec->list);
228 	spin_unlock(&sbsec->isec_lock);
229 
230 	inode->i_security = NULL;
231 	kmem_cache_free(sel_inode_cache, isec);
232 }
233 
234 static int file_alloc_security(struct file *file)
235 {
236 	struct file_security_struct *fsec;
237 	u32 sid = current_sid();
238 
239 	fsec = kzalloc(sizeof(struct file_security_struct), GFP_KERNEL);
240 	if (!fsec)
241 		return -ENOMEM;
242 
243 	fsec->sid = sid;
244 	fsec->fown_sid = sid;
245 	file->f_security = fsec;
246 
247 	return 0;
248 }
249 
250 static void file_free_security(struct file *file)
251 {
252 	struct file_security_struct *fsec = file->f_security;
253 	file->f_security = NULL;
254 	kfree(fsec);
255 }
256 
257 static int superblock_alloc_security(struct super_block *sb)
258 {
259 	struct superblock_security_struct *sbsec;
260 
261 	sbsec = kzalloc(sizeof(struct superblock_security_struct), GFP_KERNEL);
262 	if (!sbsec)
263 		return -ENOMEM;
264 
265 	mutex_init(&sbsec->lock);
266 	INIT_LIST_HEAD(&sbsec->isec_head);
267 	spin_lock_init(&sbsec->isec_lock);
268 	sbsec->sb = sb;
269 	sbsec->sid = SECINITSID_UNLABELED;
270 	sbsec->def_sid = SECINITSID_FILE;
271 	sbsec->mntpoint_sid = SECINITSID_UNLABELED;
272 	sb->s_security = sbsec;
273 
274 	return 0;
275 }
276 
277 static void superblock_free_security(struct super_block *sb)
278 {
279 	struct superblock_security_struct *sbsec = sb->s_security;
280 	sb->s_security = NULL;
281 	kfree(sbsec);
282 }
283 
284 /* The file system's label must be initialized prior to use. */
285 
286 static const char *labeling_behaviors[6] = {
287 	"uses xattr",
288 	"uses transition SIDs",
289 	"uses task SIDs",
290 	"uses genfs_contexts",
291 	"not configured for labeling",
292 	"uses mountpoint labeling",
293 };
294 
295 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry);
296 
297 static inline int inode_doinit(struct inode *inode)
298 {
299 	return inode_doinit_with_dentry(inode, NULL);
300 }
301 
302 enum {
303 	Opt_error = -1,
304 	Opt_context = 1,
305 	Opt_fscontext = 2,
306 	Opt_defcontext = 3,
307 	Opt_rootcontext = 4,
308 	Opt_labelsupport = 5,
309 };
310 
311 static const match_table_t tokens = {
312 	{Opt_context, CONTEXT_STR "%s"},
313 	{Opt_fscontext, FSCONTEXT_STR "%s"},
314 	{Opt_defcontext, DEFCONTEXT_STR "%s"},
315 	{Opt_rootcontext, ROOTCONTEXT_STR "%s"},
316 	{Opt_labelsupport, LABELSUPP_STR},
317 	{Opt_error, NULL},
318 };
319 
320 #define SEL_MOUNT_FAIL_MSG "SELinux:  duplicate or incompatible mount options\n"
321 
322 static int may_context_mount_sb_relabel(u32 sid,
323 			struct superblock_security_struct *sbsec,
324 			const struct cred *cred)
325 {
326 	const struct task_security_struct *tsec = cred->security;
327 	int rc;
328 
329 	rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
330 			  FILESYSTEM__RELABELFROM, NULL);
331 	if (rc)
332 		return rc;
333 
334 	rc = avc_has_perm(tsec->sid, sid, SECCLASS_FILESYSTEM,
335 			  FILESYSTEM__RELABELTO, NULL);
336 	return rc;
337 }
338 
339 static int may_context_mount_inode_relabel(u32 sid,
340 			struct superblock_security_struct *sbsec,
341 			const struct cred *cred)
342 {
343 	const struct task_security_struct *tsec = cred->security;
344 	int rc;
345 	rc = avc_has_perm(tsec->sid, sbsec->sid, SECCLASS_FILESYSTEM,
346 			  FILESYSTEM__RELABELFROM, NULL);
347 	if (rc)
348 		return rc;
349 
350 	rc = avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM,
351 			  FILESYSTEM__ASSOCIATE, NULL);
352 	return rc;
353 }
354 
355 static int sb_finish_set_opts(struct super_block *sb)
356 {
357 	struct superblock_security_struct *sbsec = sb->s_security;
358 	struct dentry *root = sb->s_root;
359 	struct inode *root_inode = root->d_inode;
360 	int rc = 0;
361 
362 	if (sbsec->behavior == SECURITY_FS_USE_XATTR) {
363 		/* Make sure that the xattr handler exists and that no
364 		   error other than -ENODATA is returned by getxattr on
365 		   the root directory.  -ENODATA is ok, as this may be
366 		   the first boot of the SELinux kernel before we have
367 		   assigned xattr values to the filesystem. */
368 		if (!root_inode->i_op->getxattr) {
369 			printk(KERN_WARNING "SELinux: (dev %s, type %s) has no "
370 			       "xattr support\n", sb->s_id, sb->s_type->name);
371 			rc = -EOPNOTSUPP;
372 			goto out;
373 		}
374 		rc = root_inode->i_op->getxattr(root, XATTR_NAME_SELINUX, NULL, 0);
375 		if (rc < 0 && rc != -ENODATA) {
376 			if (rc == -EOPNOTSUPP)
377 				printk(KERN_WARNING "SELinux: (dev %s, type "
378 				       "%s) has no security xattr handler\n",
379 				       sb->s_id, sb->s_type->name);
380 			else
381 				printk(KERN_WARNING "SELinux: (dev %s, type "
382 				       "%s) getxattr errno %d\n", sb->s_id,
383 				       sb->s_type->name, -rc);
384 			goto out;
385 		}
386 	}
387 
388 	sbsec->flags |= (SE_SBINITIALIZED | SE_SBLABELSUPP);
389 
390 	if (sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
391 		printk(KERN_ERR "SELinux: initialized (dev %s, type %s), unknown behavior\n",
392 		       sb->s_id, sb->s_type->name);
393 	else
394 		printk(KERN_DEBUG "SELinux: initialized (dev %s, type %s), %s\n",
395 		       sb->s_id, sb->s_type->name,
396 		       labeling_behaviors[sbsec->behavior-1]);
397 
398 	if (sbsec->behavior == SECURITY_FS_USE_GENFS ||
399 	    sbsec->behavior == SECURITY_FS_USE_MNTPOINT ||
400 	    sbsec->behavior == SECURITY_FS_USE_NONE ||
401 	    sbsec->behavior > ARRAY_SIZE(labeling_behaviors))
402 		sbsec->flags &= ~SE_SBLABELSUPP;
403 
404 	/* Special handling for sysfs. Is genfs but also has setxattr handler*/
405 	if (strncmp(sb->s_type->name, "sysfs", sizeof("sysfs")) == 0)
406 		sbsec->flags |= SE_SBLABELSUPP;
407 
408 	/* Initialize the root inode. */
409 	rc = inode_doinit_with_dentry(root_inode, root);
410 
411 	/* Initialize any other inodes associated with the superblock, e.g.
412 	   inodes created prior to initial policy load or inodes created
413 	   during get_sb by a pseudo filesystem that directly
414 	   populates itself. */
415 	spin_lock(&sbsec->isec_lock);
416 next_inode:
417 	if (!list_empty(&sbsec->isec_head)) {
418 		struct inode_security_struct *isec =
419 				list_entry(sbsec->isec_head.next,
420 					   struct inode_security_struct, list);
421 		struct inode *inode = isec->inode;
422 		spin_unlock(&sbsec->isec_lock);
423 		inode = igrab(inode);
424 		if (inode) {
425 			if (!IS_PRIVATE(inode))
426 				inode_doinit(inode);
427 			iput(inode);
428 		}
429 		spin_lock(&sbsec->isec_lock);
430 		list_del_init(&isec->list);
431 		goto next_inode;
432 	}
433 	spin_unlock(&sbsec->isec_lock);
434 out:
435 	return rc;
436 }
437 
438 /*
439  * This function should allow an FS to ask what it's mount security
440  * options were so it can use those later for submounts, displaying
441  * mount options, or whatever.
442  */
443 static int selinux_get_mnt_opts(const struct super_block *sb,
444 				struct security_mnt_opts *opts)
445 {
446 	int rc = 0, i;
447 	struct superblock_security_struct *sbsec = sb->s_security;
448 	char *context = NULL;
449 	u32 len;
450 	char tmp;
451 
452 	security_init_mnt_opts(opts);
453 
454 	if (!(sbsec->flags & SE_SBINITIALIZED))
455 		return -EINVAL;
456 
457 	if (!ss_initialized)
458 		return -EINVAL;
459 
460 	tmp = sbsec->flags & SE_MNTMASK;
461 	/* count the number of mount options for this sb */
462 	for (i = 0; i < 8; i++) {
463 		if (tmp & 0x01)
464 			opts->num_mnt_opts++;
465 		tmp >>= 1;
466 	}
467 	/* Check if the Label support flag is set */
468 	if (sbsec->flags & SE_SBLABELSUPP)
469 		opts->num_mnt_opts++;
470 
471 	opts->mnt_opts = kcalloc(opts->num_mnt_opts, sizeof(char *), GFP_ATOMIC);
472 	if (!opts->mnt_opts) {
473 		rc = -ENOMEM;
474 		goto out_free;
475 	}
476 
477 	opts->mnt_opts_flags = kcalloc(opts->num_mnt_opts, sizeof(int), GFP_ATOMIC);
478 	if (!opts->mnt_opts_flags) {
479 		rc = -ENOMEM;
480 		goto out_free;
481 	}
482 
483 	i = 0;
484 	if (sbsec->flags & FSCONTEXT_MNT) {
485 		rc = security_sid_to_context(sbsec->sid, &context, &len);
486 		if (rc)
487 			goto out_free;
488 		opts->mnt_opts[i] = context;
489 		opts->mnt_opts_flags[i++] = FSCONTEXT_MNT;
490 	}
491 	if (sbsec->flags & CONTEXT_MNT) {
492 		rc = security_sid_to_context(sbsec->mntpoint_sid, &context, &len);
493 		if (rc)
494 			goto out_free;
495 		opts->mnt_opts[i] = context;
496 		opts->mnt_opts_flags[i++] = CONTEXT_MNT;
497 	}
498 	if (sbsec->flags & DEFCONTEXT_MNT) {
499 		rc = security_sid_to_context(sbsec->def_sid, &context, &len);
500 		if (rc)
501 			goto out_free;
502 		opts->mnt_opts[i] = context;
503 		opts->mnt_opts_flags[i++] = DEFCONTEXT_MNT;
504 	}
505 	if (sbsec->flags & ROOTCONTEXT_MNT) {
506 		struct inode *root = sbsec->sb->s_root->d_inode;
507 		struct inode_security_struct *isec = root->i_security;
508 
509 		rc = security_sid_to_context(isec->sid, &context, &len);
510 		if (rc)
511 			goto out_free;
512 		opts->mnt_opts[i] = context;
513 		opts->mnt_opts_flags[i++] = ROOTCONTEXT_MNT;
514 	}
515 	if (sbsec->flags & SE_SBLABELSUPP) {
516 		opts->mnt_opts[i] = NULL;
517 		opts->mnt_opts_flags[i++] = SE_SBLABELSUPP;
518 	}
519 
520 	BUG_ON(i != opts->num_mnt_opts);
521 
522 	return 0;
523 
524 out_free:
525 	security_free_mnt_opts(opts);
526 	return rc;
527 }
528 
529 static int bad_option(struct superblock_security_struct *sbsec, char flag,
530 		      u32 old_sid, u32 new_sid)
531 {
532 	char mnt_flags = sbsec->flags & SE_MNTMASK;
533 
534 	/* check if the old mount command had the same options */
535 	if (sbsec->flags & SE_SBINITIALIZED)
536 		if (!(sbsec->flags & flag) ||
537 		    (old_sid != new_sid))
538 			return 1;
539 
540 	/* check if we were passed the same options twice,
541 	 * aka someone passed context=a,context=b
542 	 */
543 	if (!(sbsec->flags & SE_SBINITIALIZED))
544 		if (mnt_flags & flag)
545 			return 1;
546 	return 0;
547 }
548 
549 /*
550  * Allow filesystems with binary mount data to explicitly set mount point
551  * labeling information.
552  */
553 static int selinux_set_mnt_opts(struct super_block *sb,
554 				struct security_mnt_opts *opts)
555 {
556 	const struct cred *cred = current_cred();
557 	int rc = 0, i;
558 	struct superblock_security_struct *sbsec = sb->s_security;
559 	const char *name = sb->s_type->name;
560 	struct inode *inode = sbsec->sb->s_root->d_inode;
561 	struct inode_security_struct *root_isec = inode->i_security;
562 	u32 fscontext_sid = 0, context_sid = 0, rootcontext_sid = 0;
563 	u32 defcontext_sid = 0;
564 	char **mount_options = opts->mnt_opts;
565 	int *flags = opts->mnt_opts_flags;
566 	int num_opts = opts->num_mnt_opts;
567 
568 	mutex_lock(&sbsec->lock);
569 
570 	if (!ss_initialized) {
571 		if (!num_opts) {
572 			/* Defer initialization until selinux_complete_init,
573 			   after the initial policy is loaded and the security
574 			   server is ready to handle calls. */
575 			goto out;
576 		}
577 		rc = -EINVAL;
578 		printk(KERN_WARNING "SELinux: Unable to set superblock options "
579 			"before the security server is initialized\n");
580 		goto out;
581 	}
582 
583 	/*
584 	 * Binary mount data FS will come through this function twice.  Once
585 	 * from an explicit call and once from the generic calls from the vfs.
586 	 * Since the generic VFS calls will not contain any security mount data
587 	 * we need to skip the double mount verification.
588 	 *
589 	 * This does open a hole in which we will not notice if the first
590 	 * mount using this sb set explict options and a second mount using
591 	 * this sb does not set any security options.  (The first options
592 	 * will be used for both mounts)
593 	 */
594 	if ((sbsec->flags & SE_SBINITIALIZED) && (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
595 	    && (num_opts == 0))
596 		goto out;
597 
598 	/*
599 	 * parse the mount options, check if they are valid sids.
600 	 * also check if someone is trying to mount the same sb more
601 	 * than once with different security options.
602 	 */
603 	for (i = 0; i < num_opts; i++) {
604 		u32 sid;
605 
606 		if (flags[i] == SE_SBLABELSUPP)
607 			continue;
608 		rc = security_context_to_sid(mount_options[i],
609 					     strlen(mount_options[i]), &sid);
610 		if (rc) {
611 			printk(KERN_WARNING "SELinux: security_context_to_sid"
612 			       "(%s) failed for (dev %s, type %s) errno=%d\n",
613 			       mount_options[i], sb->s_id, name, rc);
614 			goto out;
615 		}
616 		switch (flags[i]) {
617 		case FSCONTEXT_MNT:
618 			fscontext_sid = sid;
619 
620 			if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid,
621 					fscontext_sid))
622 				goto out_double_mount;
623 
624 			sbsec->flags |= FSCONTEXT_MNT;
625 			break;
626 		case CONTEXT_MNT:
627 			context_sid = sid;
628 
629 			if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid,
630 					context_sid))
631 				goto out_double_mount;
632 
633 			sbsec->flags |= CONTEXT_MNT;
634 			break;
635 		case ROOTCONTEXT_MNT:
636 			rootcontext_sid = sid;
637 
638 			if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid,
639 					rootcontext_sid))
640 				goto out_double_mount;
641 
642 			sbsec->flags |= ROOTCONTEXT_MNT;
643 
644 			break;
645 		case DEFCONTEXT_MNT:
646 			defcontext_sid = sid;
647 
648 			if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid,
649 					defcontext_sid))
650 				goto out_double_mount;
651 
652 			sbsec->flags |= DEFCONTEXT_MNT;
653 
654 			break;
655 		default:
656 			rc = -EINVAL;
657 			goto out;
658 		}
659 	}
660 
661 	if (sbsec->flags & SE_SBINITIALIZED) {
662 		/* previously mounted with options, but not on this attempt? */
663 		if ((sbsec->flags & SE_MNTMASK) && !num_opts)
664 			goto out_double_mount;
665 		rc = 0;
666 		goto out;
667 	}
668 
669 	if (strcmp(sb->s_type->name, "proc") == 0)
670 		sbsec->flags |= SE_SBPROC;
671 
672 	/* Determine the labeling behavior to use for this filesystem type. */
673 	rc = security_fs_use((sbsec->flags & SE_SBPROC) ? "proc" : sb->s_type->name, &sbsec->behavior, &sbsec->sid);
674 	if (rc) {
675 		printk(KERN_WARNING "%s: security_fs_use(%s) returned %d\n",
676 		       __func__, sb->s_type->name, rc);
677 		goto out;
678 	}
679 
680 	/* sets the context of the superblock for the fs being mounted. */
681 	if (fscontext_sid) {
682 		rc = may_context_mount_sb_relabel(fscontext_sid, sbsec, cred);
683 		if (rc)
684 			goto out;
685 
686 		sbsec->sid = fscontext_sid;
687 	}
688 
689 	/*
690 	 * Switch to using mount point labeling behavior.
691 	 * sets the label used on all file below the mountpoint, and will set
692 	 * the superblock context if not already set.
693 	 */
694 	if (context_sid) {
695 		if (!fscontext_sid) {
696 			rc = may_context_mount_sb_relabel(context_sid, sbsec,
697 							  cred);
698 			if (rc)
699 				goto out;
700 			sbsec->sid = context_sid;
701 		} else {
702 			rc = may_context_mount_inode_relabel(context_sid, sbsec,
703 							     cred);
704 			if (rc)
705 				goto out;
706 		}
707 		if (!rootcontext_sid)
708 			rootcontext_sid = context_sid;
709 
710 		sbsec->mntpoint_sid = context_sid;
711 		sbsec->behavior = SECURITY_FS_USE_MNTPOINT;
712 	}
713 
714 	if (rootcontext_sid) {
715 		rc = may_context_mount_inode_relabel(rootcontext_sid, sbsec,
716 						     cred);
717 		if (rc)
718 			goto out;
719 
720 		root_isec->sid = rootcontext_sid;
721 		root_isec->initialized = 1;
722 	}
723 
724 	if (defcontext_sid) {
725 		if (sbsec->behavior != SECURITY_FS_USE_XATTR) {
726 			rc = -EINVAL;
727 			printk(KERN_WARNING "SELinux: defcontext option is "
728 			       "invalid for this filesystem type\n");
729 			goto out;
730 		}
731 
732 		if (defcontext_sid != sbsec->def_sid) {
733 			rc = may_context_mount_inode_relabel(defcontext_sid,
734 							     sbsec, cred);
735 			if (rc)
736 				goto out;
737 		}
738 
739 		sbsec->def_sid = defcontext_sid;
740 	}
741 
742 	rc = sb_finish_set_opts(sb);
743 out:
744 	mutex_unlock(&sbsec->lock);
745 	return rc;
746 out_double_mount:
747 	rc = -EINVAL;
748 	printk(KERN_WARNING "SELinux: mount invalid.  Same superblock, different "
749 	       "security settings for (dev %s, type %s)\n", sb->s_id, name);
750 	goto out;
751 }
752 
753 static void selinux_sb_clone_mnt_opts(const struct super_block *oldsb,
754 					struct super_block *newsb)
755 {
756 	const struct superblock_security_struct *oldsbsec = oldsb->s_security;
757 	struct superblock_security_struct *newsbsec = newsb->s_security;
758 
759 	int set_fscontext =	(oldsbsec->flags & FSCONTEXT_MNT);
760 	int set_context =	(oldsbsec->flags & CONTEXT_MNT);
761 	int set_rootcontext =	(oldsbsec->flags & ROOTCONTEXT_MNT);
762 
763 	/*
764 	 * if the parent was able to be mounted it clearly had no special lsm
765 	 * mount options.  thus we can safely deal with this superblock later
766 	 */
767 	if (!ss_initialized)
768 		return;
769 
770 	/* how can we clone if the old one wasn't set up?? */
771 	BUG_ON(!(oldsbsec->flags & SE_SBINITIALIZED));
772 
773 	/* if fs is reusing a sb, just let its options stand... */
774 	if (newsbsec->flags & SE_SBINITIALIZED)
775 		return;
776 
777 	mutex_lock(&newsbsec->lock);
778 
779 	newsbsec->flags = oldsbsec->flags;
780 
781 	newsbsec->sid = oldsbsec->sid;
782 	newsbsec->def_sid = oldsbsec->def_sid;
783 	newsbsec->behavior = oldsbsec->behavior;
784 
785 	if (set_context) {
786 		u32 sid = oldsbsec->mntpoint_sid;
787 
788 		if (!set_fscontext)
789 			newsbsec->sid = sid;
790 		if (!set_rootcontext) {
791 			struct inode *newinode = newsb->s_root->d_inode;
792 			struct inode_security_struct *newisec = newinode->i_security;
793 			newisec->sid = sid;
794 		}
795 		newsbsec->mntpoint_sid = sid;
796 	}
797 	if (set_rootcontext) {
798 		const struct inode *oldinode = oldsb->s_root->d_inode;
799 		const struct inode_security_struct *oldisec = oldinode->i_security;
800 		struct inode *newinode = newsb->s_root->d_inode;
801 		struct inode_security_struct *newisec = newinode->i_security;
802 
803 		newisec->sid = oldisec->sid;
804 	}
805 
806 	sb_finish_set_opts(newsb);
807 	mutex_unlock(&newsbsec->lock);
808 }
809 
810 static int selinux_parse_opts_str(char *options,
811 				  struct security_mnt_opts *opts)
812 {
813 	char *p;
814 	char *context = NULL, *defcontext = NULL;
815 	char *fscontext = NULL, *rootcontext = NULL;
816 	int rc, num_mnt_opts = 0;
817 
818 	opts->num_mnt_opts = 0;
819 
820 	/* Standard string-based options. */
821 	while ((p = strsep(&options, "|")) != NULL) {
822 		int token;
823 		substring_t args[MAX_OPT_ARGS];
824 
825 		if (!*p)
826 			continue;
827 
828 		token = match_token(p, tokens, args);
829 
830 		switch (token) {
831 		case Opt_context:
832 			if (context || defcontext) {
833 				rc = -EINVAL;
834 				printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
835 				goto out_err;
836 			}
837 			context = match_strdup(&args[0]);
838 			if (!context) {
839 				rc = -ENOMEM;
840 				goto out_err;
841 			}
842 			break;
843 
844 		case Opt_fscontext:
845 			if (fscontext) {
846 				rc = -EINVAL;
847 				printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
848 				goto out_err;
849 			}
850 			fscontext = match_strdup(&args[0]);
851 			if (!fscontext) {
852 				rc = -ENOMEM;
853 				goto out_err;
854 			}
855 			break;
856 
857 		case Opt_rootcontext:
858 			if (rootcontext) {
859 				rc = -EINVAL;
860 				printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
861 				goto out_err;
862 			}
863 			rootcontext = match_strdup(&args[0]);
864 			if (!rootcontext) {
865 				rc = -ENOMEM;
866 				goto out_err;
867 			}
868 			break;
869 
870 		case Opt_defcontext:
871 			if (context || defcontext) {
872 				rc = -EINVAL;
873 				printk(KERN_WARNING SEL_MOUNT_FAIL_MSG);
874 				goto out_err;
875 			}
876 			defcontext = match_strdup(&args[0]);
877 			if (!defcontext) {
878 				rc = -ENOMEM;
879 				goto out_err;
880 			}
881 			break;
882 		case Opt_labelsupport:
883 			break;
884 		default:
885 			rc = -EINVAL;
886 			printk(KERN_WARNING "SELinux:  unknown mount option\n");
887 			goto out_err;
888 
889 		}
890 	}
891 
892 	rc = -ENOMEM;
893 	opts->mnt_opts = kcalloc(NUM_SEL_MNT_OPTS, sizeof(char *), GFP_ATOMIC);
894 	if (!opts->mnt_opts)
895 		goto out_err;
896 
897 	opts->mnt_opts_flags = kcalloc(NUM_SEL_MNT_OPTS, sizeof(int), GFP_ATOMIC);
898 	if (!opts->mnt_opts_flags) {
899 		kfree(opts->mnt_opts);
900 		goto out_err;
901 	}
902 
903 	if (fscontext) {
904 		opts->mnt_opts[num_mnt_opts] = fscontext;
905 		opts->mnt_opts_flags[num_mnt_opts++] = FSCONTEXT_MNT;
906 	}
907 	if (context) {
908 		opts->mnt_opts[num_mnt_opts] = context;
909 		opts->mnt_opts_flags[num_mnt_opts++] = CONTEXT_MNT;
910 	}
911 	if (rootcontext) {
912 		opts->mnt_opts[num_mnt_opts] = rootcontext;
913 		opts->mnt_opts_flags[num_mnt_opts++] = ROOTCONTEXT_MNT;
914 	}
915 	if (defcontext) {
916 		opts->mnt_opts[num_mnt_opts] = defcontext;
917 		opts->mnt_opts_flags[num_mnt_opts++] = DEFCONTEXT_MNT;
918 	}
919 
920 	opts->num_mnt_opts = num_mnt_opts;
921 	return 0;
922 
923 out_err:
924 	kfree(context);
925 	kfree(defcontext);
926 	kfree(fscontext);
927 	kfree(rootcontext);
928 	return rc;
929 }
930 /*
931  * string mount options parsing and call set the sbsec
932  */
933 static int superblock_doinit(struct super_block *sb, void *data)
934 {
935 	int rc = 0;
936 	char *options = data;
937 	struct security_mnt_opts opts;
938 
939 	security_init_mnt_opts(&opts);
940 
941 	if (!data)
942 		goto out;
943 
944 	BUG_ON(sb->s_type->fs_flags & FS_BINARY_MOUNTDATA);
945 
946 	rc = selinux_parse_opts_str(options, &opts);
947 	if (rc)
948 		goto out_err;
949 
950 out:
951 	rc = selinux_set_mnt_opts(sb, &opts);
952 
953 out_err:
954 	security_free_mnt_opts(&opts);
955 	return rc;
956 }
957 
958 static void selinux_write_opts(struct seq_file *m,
959 			       struct security_mnt_opts *opts)
960 {
961 	int i;
962 	char *prefix;
963 
964 	for (i = 0; i < opts->num_mnt_opts; i++) {
965 		char *has_comma;
966 
967 		if (opts->mnt_opts[i])
968 			has_comma = strchr(opts->mnt_opts[i], ',');
969 		else
970 			has_comma = NULL;
971 
972 		switch (opts->mnt_opts_flags[i]) {
973 		case CONTEXT_MNT:
974 			prefix = CONTEXT_STR;
975 			break;
976 		case FSCONTEXT_MNT:
977 			prefix = FSCONTEXT_STR;
978 			break;
979 		case ROOTCONTEXT_MNT:
980 			prefix = ROOTCONTEXT_STR;
981 			break;
982 		case DEFCONTEXT_MNT:
983 			prefix = DEFCONTEXT_STR;
984 			break;
985 		case SE_SBLABELSUPP:
986 			seq_putc(m, ',');
987 			seq_puts(m, LABELSUPP_STR);
988 			continue;
989 		default:
990 			BUG();
991 			return;
992 		};
993 		/* we need a comma before each option */
994 		seq_putc(m, ',');
995 		seq_puts(m, prefix);
996 		if (has_comma)
997 			seq_putc(m, '\"');
998 		seq_puts(m, opts->mnt_opts[i]);
999 		if (has_comma)
1000 			seq_putc(m, '\"');
1001 	}
1002 }
1003 
1004 static int selinux_sb_show_options(struct seq_file *m, struct super_block *sb)
1005 {
1006 	struct security_mnt_opts opts;
1007 	int rc;
1008 
1009 	rc = selinux_get_mnt_opts(sb, &opts);
1010 	if (rc) {
1011 		/* before policy load we may get EINVAL, don't show anything */
1012 		if (rc == -EINVAL)
1013 			rc = 0;
1014 		return rc;
1015 	}
1016 
1017 	selinux_write_opts(m, &opts);
1018 
1019 	security_free_mnt_opts(&opts);
1020 
1021 	return rc;
1022 }
1023 
1024 static inline u16 inode_mode_to_security_class(umode_t mode)
1025 {
1026 	switch (mode & S_IFMT) {
1027 	case S_IFSOCK:
1028 		return SECCLASS_SOCK_FILE;
1029 	case S_IFLNK:
1030 		return SECCLASS_LNK_FILE;
1031 	case S_IFREG:
1032 		return SECCLASS_FILE;
1033 	case S_IFBLK:
1034 		return SECCLASS_BLK_FILE;
1035 	case S_IFDIR:
1036 		return SECCLASS_DIR;
1037 	case S_IFCHR:
1038 		return SECCLASS_CHR_FILE;
1039 	case S_IFIFO:
1040 		return SECCLASS_FIFO_FILE;
1041 
1042 	}
1043 
1044 	return SECCLASS_FILE;
1045 }
1046 
1047 static inline int default_protocol_stream(int protocol)
1048 {
1049 	return (protocol == IPPROTO_IP || protocol == IPPROTO_TCP);
1050 }
1051 
1052 static inline int default_protocol_dgram(int protocol)
1053 {
1054 	return (protocol == IPPROTO_IP || protocol == IPPROTO_UDP);
1055 }
1056 
1057 static inline u16 socket_type_to_security_class(int family, int type, int protocol)
1058 {
1059 	switch (family) {
1060 	case PF_UNIX:
1061 		switch (type) {
1062 		case SOCK_STREAM:
1063 		case SOCK_SEQPACKET:
1064 			return SECCLASS_UNIX_STREAM_SOCKET;
1065 		case SOCK_DGRAM:
1066 			return SECCLASS_UNIX_DGRAM_SOCKET;
1067 		}
1068 		break;
1069 	case PF_INET:
1070 	case PF_INET6:
1071 		switch (type) {
1072 		case SOCK_STREAM:
1073 			if (default_protocol_stream(protocol))
1074 				return SECCLASS_TCP_SOCKET;
1075 			else
1076 				return SECCLASS_RAWIP_SOCKET;
1077 		case SOCK_DGRAM:
1078 			if (default_protocol_dgram(protocol))
1079 				return SECCLASS_UDP_SOCKET;
1080 			else
1081 				return SECCLASS_RAWIP_SOCKET;
1082 		case SOCK_DCCP:
1083 			return SECCLASS_DCCP_SOCKET;
1084 		default:
1085 			return SECCLASS_RAWIP_SOCKET;
1086 		}
1087 		break;
1088 	case PF_NETLINK:
1089 		switch (protocol) {
1090 		case NETLINK_ROUTE:
1091 			return SECCLASS_NETLINK_ROUTE_SOCKET;
1092 		case NETLINK_FIREWALL:
1093 			return SECCLASS_NETLINK_FIREWALL_SOCKET;
1094 		case NETLINK_SOCK_DIAG:
1095 			return SECCLASS_NETLINK_TCPDIAG_SOCKET;
1096 		case NETLINK_NFLOG:
1097 			return SECCLASS_NETLINK_NFLOG_SOCKET;
1098 		case NETLINK_XFRM:
1099 			return SECCLASS_NETLINK_XFRM_SOCKET;
1100 		case NETLINK_SELINUX:
1101 			return SECCLASS_NETLINK_SELINUX_SOCKET;
1102 		case NETLINK_AUDIT:
1103 			return SECCLASS_NETLINK_AUDIT_SOCKET;
1104 		case NETLINK_IP6_FW:
1105 			return SECCLASS_NETLINK_IP6FW_SOCKET;
1106 		case NETLINK_DNRTMSG:
1107 			return SECCLASS_NETLINK_DNRT_SOCKET;
1108 		case NETLINK_KOBJECT_UEVENT:
1109 			return SECCLASS_NETLINK_KOBJECT_UEVENT_SOCKET;
1110 		default:
1111 			return SECCLASS_NETLINK_SOCKET;
1112 		}
1113 	case PF_PACKET:
1114 		return SECCLASS_PACKET_SOCKET;
1115 	case PF_KEY:
1116 		return SECCLASS_KEY_SOCKET;
1117 	case PF_APPLETALK:
1118 		return SECCLASS_APPLETALK_SOCKET;
1119 	}
1120 
1121 	return SECCLASS_SOCKET;
1122 }
1123 
1124 #ifdef CONFIG_PROC_FS
1125 static int selinux_proc_get_sid(struct dentry *dentry,
1126 				u16 tclass,
1127 				u32 *sid)
1128 {
1129 	int rc;
1130 	char *buffer, *path;
1131 
1132 	buffer = (char *)__get_free_page(GFP_KERNEL);
1133 	if (!buffer)
1134 		return -ENOMEM;
1135 
1136 	path = dentry_path_raw(dentry, buffer, PAGE_SIZE);
1137 	if (IS_ERR(path))
1138 		rc = PTR_ERR(path);
1139 	else {
1140 		/* each process gets a /proc/PID/ entry. Strip off the
1141 		 * PID part to get a valid selinux labeling.
1142 		 * e.g. /proc/1/net/rpc/nfs -> /net/rpc/nfs */
1143 		while (path[1] >= '0' && path[1] <= '9') {
1144 			path[1] = '/';
1145 			path++;
1146 		}
1147 		rc = security_genfs_sid("proc", path, tclass, sid);
1148 	}
1149 	free_page((unsigned long)buffer);
1150 	return rc;
1151 }
1152 #else
1153 static int selinux_proc_get_sid(struct dentry *dentry,
1154 				u16 tclass,
1155 				u32 *sid)
1156 {
1157 	return -EINVAL;
1158 }
1159 #endif
1160 
1161 /* The inode's security attributes must be initialized before first use. */
1162 static int inode_doinit_with_dentry(struct inode *inode, struct dentry *opt_dentry)
1163 {
1164 	struct superblock_security_struct *sbsec = NULL;
1165 	struct inode_security_struct *isec = inode->i_security;
1166 	u32 sid;
1167 	struct dentry *dentry;
1168 #define INITCONTEXTLEN 255
1169 	char *context = NULL;
1170 	unsigned len = 0;
1171 	int rc = 0;
1172 
1173 	if (isec->initialized)
1174 		goto out;
1175 
1176 	mutex_lock(&isec->lock);
1177 	if (isec->initialized)
1178 		goto out_unlock;
1179 
1180 	sbsec = inode->i_sb->s_security;
1181 	if (!(sbsec->flags & SE_SBINITIALIZED)) {
1182 		/* Defer initialization until selinux_complete_init,
1183 		   after the initial policy is loaded and the security
1184 		   server is ready to handle calls. */
1185 		spin_lock(&sbsec->isec_lock);
1186 		if (list_empty(&isec->list))
1187 			list_add(&isec->list, &sbsec->isec_head);
1188 		spin_unlock(&sbsec->isec_lock);
1189 		goto out_unlock;
1190 	}
1191 
1192 	switch (sbsec->behavior) {
1193 	case SECURITY_FS_USE_XATTR:
1194 		if (!inode->i_op->getxattr) {
1195 			isec->sid = sbsec->def_sid;
1196 			break;
1197 		}
1198 
1199 		/* Need a dentry, since the xattr API requires one.
1200 		   Life would be simpler if we could just pass the inode. */
1201 		if (opt_dentry) {
1202 			/* Called from d_instantiate or d_splice_alias. */
1203 			dentry = dget(opt_dentry);
1204 		} else {
1205 			/* Called from selinux_complete_init, try to find a dentry. */
1206 			dentry = d_find_alias(inode);
1207 		}
1208 		if (!dentry) {
1209 			/*
1210 			 * this is can be hit on boot when a file is accessed
1211 			 * before the policy is loaded.  When we load policy we
1212 			 * may find inodes that have no dentry on the
1213 			 * sbsec->isec_head list.  No reason to complain as these
1214 			 * will get fixed up the next time we go through
1215 			 * inode_doinit with a dentry, before these inodes could
1216 			 * be used again by userspace.
1217 			 */
1218 			goto out_unlock;
1219 		}
1220 
1221 		len = INITCONTEXTLEN;
1222 		context = kmalloc(len+1, GFP_NOFS);
1223 		if (!context) {
1224 			rc = -ENOMEM;
1225 			dput(dentry);
1226 			goto out_unlock;
1227 		}
1228 		context[len] = '\0';
1229 		rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1230 					   context, len);
1231 		if (rc == -ERANGE) {
1232 			kfree(context);
1233 
1234 			/* Need a larger buffer.  Query for the right size. */
1235 			rc = inode->i_op->getxattr(dentry, XATTR_NAME_SELINUX,
1236 						   NULL, 0);
1237 			if (rc < 0) {
1238 				dput(dentry);
1239 				goto out_unlock;
1240 			}
1241 			len = rc;
1242 			context = kmalloc(len+1, GFP_NOFS);
1243 			if (!context) {
1244 				rc = -ENOMEM;
1245 				dput(dentry);
1246 				goto out_unlock;
1247 			}
1248 			context[len] = '\0';
1249 			rc = inode->i_op->getxattr(dentry,
1250 						   XATTR_NAME_SELINUX,
1251 						   context, len);
1252 		}
1253 		dput(dentry);
1254 		if (rc < 0) {
1255 			if (rc != -ENODATA) {
1256 				printk(KERN_WARNING "SELinux: %s:  getxattr returned "
1257 				       "%d for dev=%s ino=%ld\n", __func__,
1258 				       -rc, inode->i_sb->s_id, inode->i_ino);
1259 				kfree(context);
1260 				goto out_unlock;
1261 			}
1262 			/* Map ENODATA to the default file SID */
1263 			sid = sbsec->def_sid;
1264 			rc = 0;
1265 		} else {
1266 			rc = security_context_to_sid_default(context, rc, &sid,
1267 							     sbsec->def_sid,
1268 							     GFP_NOFS);
1269 			if (rc) {
1270 				char *dev = inode->i_sb->s_id;
1271 				unsigned long ino = inode->i_ino;
1272 
1273 				if (rc == -EINVAL) {
1274 					if (printk_ratelimit())
1275 						printk(KERN_NOTICE "SELinux: inode=%lu on dev=%s was found to have an invalid "
1276 							"context=%s.  This indicates you may need to relabel the inode or the "
1277 							"filesystem in question.\n", ino, dev, context);
1278 				} else {
1279 					printk(KERN_WARNING "SELinux: %s:  context_to_sid(%s) "
1280 					       "returned %d for dev=%s ino=%ld\n",
1281 					       __func__, context, -rc, dev, ino);
1282 				}
1283 				kfree(context);
1284 				/* Leave with the unlabeled SID */
1285 				rc = 0;
1286 				break;
1287 			}
1288 		}
1289 		kfree(context);
1290 		isec->sid = sid;
1291 		break;
1292 	case SECURITY_FS_USE_TASK:
1293 		isec->sid = isec->task_sid;
1294 		break;
1295 	case SECURITY_FS_USE_TRANS:
1296 		/* Default to the fs SID. */
1297 		isec->sid = sbsec->sid;
1298 
1299 		/* Try to obtain a transition SID. */
1300 		isec->sclass = inode_mode_to_security_class(inode->i_mode);
1301 		rc = security_transition_sid(isec->task_sid, sbsec->sid,
1302 					     isec->sclass, NULL, &sid);
1303 		if (rc)
1304 			goto out_unlock;
1305 		isec->sid = sid;
1306 		break;
1307 	case SECURITY_FS_USE_MNTPOINT:
1308 		isec->sid = sbsec->mntpoint_sid;
1309 		break;
1310 	default:
1311 		/* Default to the fs superblock SID. */
1312 		isec->sid = sbsec->sid;
1313 
1314 		if ((sbsec->flags & SE_SBPROC) && !S_ISLNK(inode->i_mode)) {
1315 			if (opt_dentry) {
1316 				isec->sclass = inode_mode_to_security_class(inode->i_mode);
1317 				rc = selinux_proc_get_sid(opt_dentry,
1318 							  isec->sclass,
1319 							  &sid);
1320 				if (rc)
1321 					goto out_unlock;
1322 				isec->sid = sid;
1323 			}
1324 		}
1325 		break;
1326 	}
1327 
1328 	isec->initialized = 1;
1329 
1330 out_unlock:
1331 	mutex_unlock(&isec->lock);
1332 out:
1333 	if (isec->sclass == SECCLASS_FILE)
1334 		isec->sclass = inode_mode_to_security_class(inode->i_mode);
1335 	return rc;
1336 }
1337 
1338 /* Convert a Linux signal to an access vector. */
1339 static inline u32 signal_to_av(int sig)
1340 {
1341 	u32 perm = 0;
1342 
1343 	switch (sig) {
1344 	case SIGCHLD:
1345 		/* Commonly granted from child to parent. */
1346 		perm = PROCESS__SIGCHLD;
1347 		break;
1348 	case SIGKILL:
1349 		/* Cannot be caught or ignored */
1350 		perm = PROCESS__SIGKILL;
1351 		break;
1352 	case SIGSTOP:
1353 		/* Cannot be caught or ignored */
1354 		perm = PROCESS__SIGSTOP;
1355 		break;
1356 	default:
1357 		/* All other signals. */
1358 		perm = PROCESS__SIGNAL;
1359 		break;
1360 	}
1361 
1362 	return perm;
1363 }
1364 
1365 /*
1366  * Check permission between a pair of credentials
1367  * fork check, ptrace check, etc.
1368  */
1369 static int cred_has_perm(const struct cred *actor,
1370 			 const struct cred *target,
1371 			 u32 perms)
1372 {
1373 	u32 asid = cred_sid(actor), tsid = cred_sid(target);
1374 
1375 	return avc_has_perm(asid, tsid, SECCLASS_PROCESS, perms, NULL);
1376 }
1377 
1378 /*
1379  * Check permission between a pair of tasks, e.g. signal checks,
1380  * fork check, ptrace check, etc.
1381  * tsk1 is the actor and tsk2 is the target
1382  * - this uses the default subjective creds of tsk1
1383  */
1384 static int task_has_perm(const struct task_struct *tsk1,
1385 			 const struct task_struct *tsk2,
1386 			 u32 perms)
1387 {
1388 	const struct task_security_struct *__tsec1, *__tsec2;
1389 	u32 sid1, sid2;
1390 
1391 	rcu_read_lock();
1392 	__tsec1 = __task_cred(tsk1)->security;	sid1 = __tsec1->sid;
1393 	__tsec2 = __task_cred(tsk2)->security;	sid2 = __tsec2->sid;
1394 	rcu_read_unlock();
1395 	return avc_has_perm(sid1, sid2, SECCLASS_PROCESS, perms, NULL);
1396 }
1397 
1398 /*
1399  * Check permission between current and another task, e.g. signal checks,
1400  * fork check, ptrace check, etc.
1401  * current is the actor and tsk2 is the target
1402  * - this uses current's subjective creds
1403  */
1404 static int current_has_perm(const struct task_struct *tsk,
1405 			    u32 perms)
1406 {
1407 	u32 sid, tsid;
1408 
1409 	sid = current_sid();
1410 	tsid = task_sid(tsk);
1411 	return avc_has_perm(sid, tsid, SECCLASS_PROCESS, perms, NULL);
1412 }
1413 
1414 #if CAP_LAST_CAP > 63
1415 #error Fix SELinux to handle capabilities > 63.
1416 #endif
1417 
1418 /* Check whether a task is allowed to use a capability. */
1419 static int cred_has_capability(const struct cred *cred,
1420 			       int cap, int audit)
1421 {
1422 	struct common_audit_data ad;
1423 	struct av_decision avd;
1424 	u16 sclass;
1425 	u32 sid = cred_sid(cred);
1426 	u32 av = CAP_TO_MASK(cap);
1427 	int rc;
1428 
1429 	ad.type = LSM_AUDIT_DATA_CAP;
1430 	ad.u.cap = cap;
1431 
1432 	switch (CAP_TO_INDEX(cap)) {
1433 	case 0:
1434 		sclass = SECCLASS_CAPABILITY;
1435 		break;
1436 	case 1:
1437 		sclass = SECCLASS_CAPABILITY2;
1438 		break;
1439 	default:
1440 		printk(KERN_ERR
1441 		       "SELinux:  out of range capability %d\n", cap);
1442 		BUG();
1443 		return -EINVAL;
1444 	}
1445 
1446 	rc = avc_has_perm_noaudit(sid, sid, sclass, av, 0, &avd);
1447 	if (audit == SECURITY_CAP_AUDIT) {
1448 		int rc2 = avc_audit(sid, sid, sclass, av, &avd, rc, &ad, 0);
1449 		if (rc2)
1450 			return rc2;
1451 	}
1452 	return rc;
1453 }
1454 
1455 /* Check whether a task is allowed to use a system operation. */
1456 static int task_has_system(struct task_struct *tsk,
1457 			   u32 perms)
1458 {
1459 	u32 sid = task_sid(tsk);
1460 
1461 	return avc_has_perm(sid, SECINITSID_KERNEL,
1462 			    SECCLASS_SYSTEM, perms, NULL);
1463 }
1464 
1465 /* Check whether a task has a particular permission to an inode.
1466    The 'adp' parameter is optional and allows other audit
1467    data to be passed (e.g. the dentry). */
1468 static int inode_has_perm(const struct cred *cred,
1469 			  struct inode *inode,
1470 			  u32 perms,
1471 			  struct common_audit_data *adp,
1472 			  unsigned flags)
1473 {
1474 	struct inode_security_struct *isec;
1475 	u32 sid;
1476 
1477 	validate_creds(cred);
1478 
1479 	if (unlikely(IS_PRIVATE(inode)))
1480 		return 0;
1481 
1482 	sid = cred_sid(cred);
1483 	isec = inode->i_security;
1484 
1485 	return avc_has_perm_flags(sid, isec->sid, isec->sclass, perms, adp, flags);
1486 }
1487 
1488 /* Same as inode_has_perm, but pass explicit audit data containing
1489    the dentry to help the auditing code to more easily generate the
1490    pathname if needed. */
1491 static inline int dentry_has_perm(const struct cred *cred,
1492 				  struct dentry *dentry,
1493 				  u32 av)
1494 {
1495 	struct inode *inode = dentry->d_inode;
1496 	struct common_audit_data ad;
1497 
1498 	ad.type = LSM_AUDIT_DATA_DENTRY;
1499 	ad.u.dentry = dentry;
1500 	return inode_has_perm(cred, inode, av, &ad, 0);
1501 }
1502 
1503 /* Same as inode_has_perm, but pass explicit audit data containing
1504    the path to help the auditing code to more easily generate the
1505    pathname if needed. */
1506 static inline int path_has_perm(const struct cred *cred,
1507 				struct path *path,
1508 				u32 av)
1509 {
1510 	struct inode *inode = path->dentry->d_inode;
1511 	struct common_audit_data ad;
1512 
1513 	ad.type = LSM_AUDIT_DATA_PATH;
1514 	ad.u.path = *path;
1515 	return inode_has_perm(cred, inode, av, &ad, 0);
1516 }
1517 
1518 /* Check whether a task can use an open file descriptor to
1519    access an inode in a given way.  Check access to the
1520    descriptor itself, and then use dentry_has_perm to
1521    check a particular permission to the file.
1522    Access to the descriptor is implicitly granted if it
1523    has the same SID as the process.  If av is zero, then
1524    access to the file is not checked, e.g. for cases
1525    where only the descriptor is affected like seek. */
1526 static int file_has_perm(const struct cred *cred,
1527 			 struct file *file,
1528 			 u32 av)
1529 {
1530 	struct file_security_struct *fsec = file->f_security;
1531 	struct inode *inode = file->f_path.dentry->d_inode;
1532 	struct common_audit_data ad;
1533 	u32 sid = cred_sid(cred);
1534 	int rc;
1535 
1536 	ad.type = LSM_AUDIT_DATA_PATH;
1537 	ad.u.path = file->f_path;
1538 
1539 	if (sid != fsec->sid) {
1540 		rc = avc_has_perm(sid, fsec->sid,
1541 				  SECCLASS_FD,
1542 				  FD__USE,
1543 				  &ad);
1544 		if (rc)
1545 			goto out;
1546 	}
1547 
1548 	/* av is zero if only checking access to the descriptor. */
1549 	rc = 0;
1550 	if (av)
1551 		rc = inode_has_perm(cred, inode, av, &ad, 0);
1552 
1553 out:
1554 	return rc;
1555 }
1556 
1557 /* Check whether a task can create a file. */
1558 static int may_create(struct inode *dir,
1559 		      struct dentry *dentry,
1560 		      u16 tclass)
1561 {
1562 	const struct task_security_struct *tsec = current_security();
1563 	struct inode_security_struct *dsec;
1564 	struct superblock_security_struct *sbsec;
1565 	u32 sid, newsid;
1566 	struct common_audit_data ad;
1567 	int rc;
1568 
1569 	dsec = dir->i_security;
1570 	sbsec = dir->i_sb->s_security;
1571 
1572 	sid = tsec->sid;
1573 	newsid = tsec->create_sid;
1574 
1575 	ad.type = LSM_AUDIT_DATA_DENTRY;
1576 	ad.u.dentry = dentry;
1577 
1578 	rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR,
1579 			  DIR__ADD_NAME | DIR__SEARCH,
1580 			  &ad);
1581 	if (rc)
1582 		return rc;
1583 
1584 	if (!newsid || !(sbsec->flags & SE_SBLABELSUPP)) {
1585 		rc = security_transition_sid(sid, dsec->sid, tclass,
1586 					     &dentry->d_name, &newsid);
1587 		if (rc)
1588 			return rc;
1589 	}
1590 
1591 	rc = avc_has_perm(sid, newsid, tclass, FILE__CREATE, &ad);
1592 	if (rc)
1593 		return rc;
1594 
1595 	return avc_has_perm(newsid, sbsec->sid,
1596 			    SECCLASS_FILESYSTEM,
1597 			    FILESYSTEM__ASSOCIATE, &ad);
1598 }
1599 
1600 /* Check whether a task can create a key. */
1601 static int may_create_key(u32 ksid,
1602 			  struct task_struct *ctx)
1603 {
1604 	u32 sid = task_sid(ctx);
1605 
1606 	return avc_has_perm(sid, ksid, SECCLASS_KEY, KEY__CREATE, NULL);
1607 }
1608 
1609 #define MAY_LINK	0
1610 #define MAY_UNLINK	1
1611 #define MAY_RMDIR	2
1612 
1613 /* Check whether a task can link, unlink, or rmdir a file/directory. */
1614 static int may_link(struct inode *dir,
1615 		    struct dentry *dentry,
1616 		    int kind)
1617 
1618 {
1619 	struct inode_security_struct *dsec, *isec;
1620 	struct common_audit_data ad;
1621 	u32 sid = current_sid();
1622 	u32 av;
1623 	int rc;
1624 
1625 	dsec = dir->i_security;
1626 	isec = dentry->d_inode->i_security;
1627 
1628 	ad.type = LSM_AUDIT_DATA_DENTRY;
1629 	ad.u.dentry = dentry;
1630 
1631 	av = DIR__SEARCH;
1632 	av |= (kind ? DIR__REMOVE_NAME : DIR__ADD_NAME);
1633 	rc = avc_has_perm(sid, dsec->sid, SECCLASS_DIR, av, &ad);
1634 	if (rc)
1635 		return rc;
1636 
1637 	switch (kind) {
1638 	case MAY_LINK:
1639 		av = FILE__LINK;
1640 		break;
1641 	case MAY_UNLINK:
1642 		av = FILE__UNLINK;
1643 		break;
1644 	case MAY_RMDIR:
1645 		av = DIR__RMDIR;
1646 		break;
1647 	default:
1648 		printk(KERN_WARNING "SELinux: %s:  unrecognized kind %d\n",
1649 			__func__, kind);
1650 		return 0;
1651 	}
1652 
1653 	rc = avc_has_perm(sid, isec->sid, isec->sclass, av, &ad);
1654 	return rc;
1655 }
1656 
1657 static inline int may_rename(struct inode *old_dir,
1658 			     struct dentry *old_dentry,
1659 			     struct inode *new_dir,
1660 			     struct dentry *new_dentry)
1661 {
1662 	struct inode_security_struct *old_dsec, *new_dsec, *old_isec, *new_isec;
1663 	struct common_audit_data ad;
1664 	u32 sid = current_sid();
1665 	u32 av;
1666 	int old_is_dir, new_is_dir;
1667 	int rc;
1668 
1669 	old_dsec = old_dir->i_security;
1670 	old_isec = old_dentry->d_inode->i_security;
1671 	old_is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
1672 	new_dsec = new_dir->i_security;
1673 
1674 	ad.type = LSM_AUDIT_DATA_DENTRY;
1675 
1676 	ad.u.dentry = old_dentry;
1677 	rc = avc_has_perm(sid, old_dsec->sid, SECCLASS_DIR,
1678 			  DIR__REMOVE_NAME | DIR__SEARCH, &ad);
1679 	if (rc)
1680 		return rc;
1681 	rc = avc_has_perm(sid, old_isec->sid,
1682 			  old_isec->sclass, FILE__RENAME, &ad);
1683 	if (rc)
1684 		return rc;
1685 	if (old_is_dir && new_dir != old_dir) {
1686 		rc = avc_has_perm(sid, old_isec->sid,
1687 				  old_isec->sclass, DIR__REPARENT, &ad);
1688 		if (rc)
1689 			return rc;
1690 	}
1691 
1692 	ad.u.dentry = new_dentry;
1693 	av = DIR__ADD_NAME | DIR__SEARCH;
1694 	if (new_dentry->d_inode)
1695 		av |= DIR__REMOVE_NAME;
1696 	rc = avc_has_perm(sid, new_dsec->sid, SECCLASS_DIR, av, &ad);
1697 	if (rc)
1698 		return rc;
1699 	if (new_dentry->d_inode) {
1700 		new_isec = new_dentry->d_inode->i_security;
1701 		new_is_dir = S_ISDIR(new_dentry->d_inode->i_mode);
1702 		rc = avc_has_perm(sid, new_isec->sid,
1703 				  new_isec->sclass,
1704 				  (new_is_dir ? DIR__RMDIR : FILE__UNLINK), &ad);
1705 		if (rc)
1706 			return rc;
1707 	}
1708 
1709 	return 0;
1710 }
1711 
1712 /* Check whether a task can perform a filesystem operation. */
1713 static int superblock_has_perm(const struct cred *cred,
1714 			       struct super_block *sb,
1715 			       u32 perms,
1716 			       struct common_audit_data *ad)
1717 {
1718 	struct superblock_security_struct *sbsec;
1719 	u32 sid = cred_sid(cred);
1720 
1721 	sbsec = sb->s_security;
1722 	return avc_has_perm(sid, sbsec->sid, SECCLASS_FILESYSTEM, perms, ad);
1723 }
1724 
1725 /* Convert a Linux mode and permission mask to an access vector. */
1726 static inline u32 file_mask_to_av(int mode, int mask)
1727 {
1728 	u32 av = 0;
1729 
1730 	if (!S_ISDIR(mode)) {
1731 		if (mask & MAY_EXEC)
1732 			av |= FILE__EXECUTE;
1733 		if (mask & MAY_READ)
1734 			av |= FILE__READ;
1735 
1736 		if (mask & MAY_APPEND)
1737 			av |= FILE__APPEND;
1738 		else if (mask & MAY_WRITE)
1739 			av |= FILE__WRITE;
1740 
1741 	} else {
1742 		if (mask & MAY_EXEC)
1743 			av |= DIR__SEARCH;
1744 		if (mask & MAY_WRITE)
1745 			av |= DIR__WRITE;
1746 		if (mask & MAY_READ)
1747 			av |= DIR__READ;
1748 	}
1749 
1750 	return av;
1751 }
1752 
1753 /* Convert a Linux file to an access vector. */
1754 static inline u32 file_to_av(struct file *file)
1755 {
1756 	u32 av = 0;
1757 
1758 	if (file->f_mode & FMODE_READ)
1759 		av |= FILE__READ;
1760 	if (file->f_mode & FMODE_WRITE) {
1761 		if (file->f_flags & O_APPEND)
1762 			av |= FILE__APPEND;
1763 		else
1764 			av |= FILE__WRITE;
1765 	}
1766 	if (!av) {
1767 		/*
1768 		 * Special file opened with flags 3 for ioctl-only use.
1769 		 */
1770 		av = FILE__IOCTL;
1771 	}
1772 
1773 	return av;
1774 }
1775 
1776 /*
1777  * Convert a file to an access vector and include the correct open
1778  * open permission.
1779  */
1780 static inline u32 open_file_to_av(struct file *file)
1781 {
1782 	u32 av = file_to_av(file);
1783 
1784 	if (selinux_policycap_openperm)
1785 		av |= FILE__OPEN;
1786 
1787 	return av;
1788 }
1789 
1790 /* Hook functions begin here. */
1791 
1792 static int selinux_ptrace_access_check(struct task_struct *child,
1793 				     unsigned int mode)
1794 {
1795 	int rc;
1796 
1797 	rc = cap_ptrace_access_check(child, mode);
1798 	if (rc)
1799 		return rc;
1800 
1801 	if (mode & PTRACE_MODE_READ) {
1802 		u32 sid = current_sid();
1803 		u32 csid = task_sid(child);
1804 		return avc_has_perm(sid, csid, SECCLASS_FILE, FILE__READ, NULL);
1805 	}
1806 
1807 	return current_has_perm(child, PROCESS__PTRACE);
1808 }
1809 
1810 static int selinux_ptrace_traceme(struct task_struct *parent)
1811 {
1812 	int rc;
1813 
1814 	rc = cap_ptrace_traceme(parent);
1815 	if (rc)
1816 		return rc;
1817 
1818 	return task_has_perm(parent, current, PROCESS__PTRACE);
1819 }
1820 
1821 static int selinux_capget(struct task_struct *target, kernel_cap_t *effective,
1822 			  kernel_cap_t *inheritable, kernel_cap_t *permitted)
1823 {
1824 	int error;
1825 
1826 	error = current_has_perm(target, PROCESS__GETCAP);
1827 	if (error)
1828 		return error;
1829 
1830 	return cap_capget(target, effective, inheritable, permitted);
1831 }
1832 
1833 static int selinux_capset(struct cred *new, const struct cred *old,
1834 			  const kernel_cap_t *effective,
1835 			  const kernel_cap_t *inheritable,
1836 			  const kernel_cap_t *permitted)
1837 {
1838 	int error;
1839 
1840 	error = cap_capset(new, old,
1841 				      effective, inheritable, permitted);
1842 	if (error)
1843 		return error;
1844 
1845 	return cred_has_perm(old, new, PROCESS__SETCAP);
1846 }
1847 
1848 /*
1849  * (This comment used to live with the selinux_task_setuid hook,
1850  * which was removed).
1851  *
1852  * Since setuid only affects the current process, and since the SELinux
1853  * controls are not based on the Linux identity attributes, SELinux does not
1854  * need to control this operation.  However, SELinux does control the use of
1855  * the CAP_SETUID and CAP_SETGID capabilities using the capable hook.
1856  */
1857 
1858 static int selinux_capable(const struct cred *cred, struct user_namespace *ns,
1859 			   int cap, int audit)
1860 {
1861 	int rc;
1862 
1863 	rc = cap_capable(cred, ns, cap, audit);
1864 	if (rc)
1865 		return rc;
1866 
1867 	return cred_has_capability(cred, cap, audit);
1868 }
1869 
1870 static int selinux_quotactl(int cmds, int type, int id, struct super_block *sb)
1871 {
1872 	const struct cred *cred = current_cred();
1873 	int rc = 0;
1874 
1875 	if (!sb)
1876 		return 0;
1877 
1878 	switch (cmds) {
1879 	case Q_SYNC:
1880 	case Q_QUOTAON:
1881 	case Q_QUOTAOFF:
1882 	case Q_SETINFO:
1883 	case Q_SETQUOTA:
1884 		rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAMOD, NULL);
1885 		break;
1886 	case Q_GETFMT:
1887 	case Q_GETINFO:
1888 	case Q_GETQUOTA:
1889 		rc = superblock_has_perm(cred, sb, FILESYSTEM__QUOTAGET, NULL);
1890 		break;
1891 	default:
1892 		rc = 0;  /* let the kernel handle invalid cmds */
1893 		break;
1894 	}
1895 	return rc;
1896 }
1897 
1898 static int selinux_quota_on(struct dentry *dentry)
1899 {
1900 	const struct cred *cred = current_cred();
1901 
1902 	return dentry_has_perm(cred, dentry, FILE__QUOTAON);
1903 }
1904 
1905 static int selinux_syslog(int type)
1906 {
1907 	int rc;
1908 
1909 	switch (type) {
1910 	case SYSLOG_ACTION_READ_ALL:	/* Read last kernel messages */
1911 	case SYSLOG_ACTION_SIZE_BUFFER:	/* Return size of the log buffer */
1912 		rc = task_has_system(current, SYSTEM__SYSLOG_READ);
1913 		break;
1914 	case SYSLOG_ACTION_CONSOLE_OFF:	/* Disable logging to console */
1915 	case SYSLOG_ACTION_CONSOLE_ON:	/* Enable logging to console */
1916 	/* Set level of messages printed to console */
1917 	case SYSLOG_ACTION_CONSOLE_LEVEL:
1918 		rc = task_has_system(current, SYSTEM__SYSLOG_CONSOLE);
1919 		break;
1920 	case SYSLOG_ACTION_CLOSE:	/* Close log */
1921 	case SYSLOG_ACTION_OPEN:	/* Open log */
1922 	case SYSLOG_ACTION_READ:	/* Read from log */
1923 	case SYSLOG_ACTION_READ_CLEAR:	/* Read/clear last kernel messages */
1924 	case SYSLOG_ACTION_CLEAR:	/* Clear ring buffer */
1925 	default:
1926 		rc = task_has_system(current, SYSTEM__SYSLOG_MOD);
1927 		break;
1928 	}
1929 	return rc;
1930 }
1931 
1932 /*
1933  * Check that a process has enough memory to allocate a new virtual
1934  * mapping. 0 means there is enough memory for the allocation to
1935  * succeed and -ENOMEM implies there is not.
1936  *
1937  * Do not audit the selinux permission check, as this is applied to all
1938  * processes that allocate mappings.
1939  */
1940 static int selinux_vm_enough_memory(struct mm_struct *mm, long pages)
1941 {
1942 	int rc, cap_sys_admin = 0;
1943 
1944 	rc = selinux_capable(current_cred(), &init_user_ns, CAP_SYS_ADMIN,
1945 			     SECURITY_CAP_NOAUDIT);
1946 	if (rc == 0)
1947 		cap_sys_admin = 1;
1948 
1949 	return __vm_enough_memory(mm, pages, cap_sys_admin);
1950 }
1951 
1952 /* binprm security operations */
1953 
1954 static int selinux_bprm_set_creds(struct linux_binprm *bprm)
1955 {
1956 	const struct task_security_struct *old_tsec;
1957 	struct task_security_struct *new_tsec;
1958 	struct inode_security_struct *isec;
1959 	struct common_audit_data ad;
1960 	struct inode *inode = bprm->file->f_path.dentry->d_inode;
1961 	int rc;
1962 
1963 	rc = cap_bprm_set_creds(bprm);
1964 	if (rc)
1965 		return rc;
1966 
1967 	/* SELinux context only depends on initial program or script and not
1968 	 * the script interpreter */
1969 	if (bprm->cred_prepared)
1970 		return 0;
1971 
1972 	old_tsec = current_security();
1973 	new_tsec = bprm->cred->security;
1974 	isec = inode->i_security;
1975 
1976 	/* Default to the current task SID. */
1977 	new_tsec->sid = old_tsec->sid;
1978 	new_tsec->osid = old_tsec->sid;
1979 
1980 	/* Reset fs, key, and sock SIDs on execve. */
1981 	new_tsec->create_sid = 0;
1982 	new_tsec->keycreate_sid = 0;
1983 	new_tsec->sockcreate_sid = 0;
1984 
1985 	if (old_tsec->exec_sid) {
1986 		new_tsec->sid = old_tsec->exec_sid;
1987 		/* Reset exec SID on execve. */
1988 		new_tsec->exec_sid = 0;
1989 
1990 		/*
1991 		 * Minimize confusion: if no_new_privs and a transition is
1992 		 * explicitly requested, then fail the exec.
1993 		 */
1994 		if (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS)
1995 			return -EPERM;
1996 	} else {
1997 		/* Check for a default transition on this program. */
1998 		rc = security_transition_sid(old_tsec->sid, isec->sid,
1999 					     SECCLASS_PROCESS, NULL,
2000 					     &new_tsec->sid);
2001 		if (rc)
2002 			return rc;
2003 	}
2004 
2005 	ad.type = LSM_AUDIT_DATA_PATH;
2006 	ad.u.path = bprm->file->f_path;
2007 
2008 	if ((bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID) ||
2009 	    (bprm->unsafe & LSM_UNSAFE_NO_NEW_PRIVS))
2010 		new_tsec->sid = old_tsec->sid;
2011 
2012 	if (new_tsec->sid == old_tsec->sid) {
2013 		rc = avc_has_perm(old_tsec->sid, isec->sid,
2014 				  SECCLASS_FILE, FILE__EXECUTE_NO_TRANS, &ad);
2015 		if (rc)
2016 			return rc;
2017 	} else {
2018 		/* Check permissions for the transition. */
2019 		rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2020 				  SECCLASS_PROCESS, PROCESS__TRANSITION, &ad);
2021 		if (rc)
2022 			return rc;
2023 
2024 		rc = avc_has_perm(new_tsec->sid, isec->sid,
2025 				  SECCLASS_FILE, FILE__ENTRYPOINT, &ad);
2026 		if (rc)
2027 			return rc;
2028 
2029 		/* Check for shared state */
2030 		if (bprm->unsafe & LSM_UNSAFE_SHARE) {
2031 			rc = avc_has_perm(old_tsec->sid, new_tsec->sid,
2032 					  SECCLASS_PROCESS, PROCESS__SHARE,
2033 					  NULL);
2034 			if (rc)
2035 				return -EPERM;
2036 		}
2037 
2038 		/* Make sure that anyone attempting to ptrace over a task that
2039 		 * changes its SID has the appropriate permit */
2040 		if (bprm->unsafe &
2041 		    (LSM_UNSAFE_PTRACE | LSM_UNSAFE_PTRACE_CAP)) {
2042 			struct task_struct *tracer;
2043 			struct task_security_struct *sec;
2044 			u32 ptsid = 0;
2045 
2046 			rcu_read_lock();
2047 			tracer = ptrace_parent(current);
2048 			if (likely(tracer != NULL)) {
2049 				sec = __task_cred(tracer)->security;
2050 				ptsid = sec->sid;
2051 			}
2052 			rcu_read_unlock();
2053 
2054 			if (ptsid != 0) {
2055 				rc = avc_has_perm(ptsid, new_tsec->sid,
2056 						  SECCLASS_PROCESS,
2057 						  PROCESS__PTRACE, NULL);
2058 				if (rc)
2059 					return -EPERM;
2060 			}
2061 		}
2062 
2063 		/* Clear any possibly unsafe personality bits on exec: */
2064 		bprm->per_clear |= PER_CLEAR_ON_SETID;
2065 	}
2066 
2067 	return 0;
2068 }
2069 
2070 static int selinux_bprm_secureexec(struct linux_binprm *bprm)
2071 {
2072 	const struct task_security_struct *tsec = current_security();
2073 	u32 sid, osid;
2074 	int atsecure = 0;
2075 
2076 	sid = tsec->sid;
2077 	osid = tsec->osid;
2078 
2079 	if (osid != sid) {
2080 		/* Enable secure mode for SIDs transitions unless
2081 		   the noatsecure permission is granted between
2082 		   the two SIDs, i.e. ahp returns 0. */
2083 		atsecure = avc_has_perm(osid, sid,
2084 					SECCLASS_PROCESS,
2085 					PROCESS__NOATSECURE, NULL);
2086 	}
2087 
2088 	return (atsecure || cap_bprm_secureexec(bprm));
2089 }
2090 
2091 static int match_file(const void *p, struct file *file, unsigned fd)
2092 {
2093 	return file_has_perm(p, file, file_to_av(file)) ? fd + 1 : 0;
2094 }
2095 
2096 /* Derived from fs/exec.c:flush_old_files. */
2097 static inline void flush_unauthorized_files(const struct cred *cred,
2098 					    struct files_struct *files)
2099 {
2100 	struct file *file, *devnull = NULL;
2101 	struct tty_struct *tty;
2102 	int drop_tty = 0;
2103 	unsigned n;
2104 
2105 	tty = get_current_tty();
2106 	if (tty) {
2107 		spin_lock(&tty_files_lock);
2108 		if (!list_empty(&tty->tty_files)) {
2109 			struct tty_file_private *file_priv;
2110 
2111 			/* Revalidate access to controlling tty.
2112 			   Use path_has_perm on the tty path directly rather
2113 			   than using file_has_perm, as this particular open
2114 			   file may belong to another process and we are only
2115 			   interested in the inode-based check here. */
2116 			file_priv = list_first_entry(&tty->tty_files,
2117 						struct tty_file_private, list);
2118 			file = file_priv->file;
2119 			if (path_has_perm(cred, &file->f_path, FILE__READ | FILE__WRITE))
2120 				drop_tty = 1;
2121 		}
2122 		spin_unlock(&tty_files_lock);
2123 		tty_kref_put(tty);
2124 	}
2125 	/* Reset controlling tty. */
2126 	if (drop_tty)
2127 		no_tty();
2128 
2129 	/* Revalidate access to inherited open files. */
2130 	n = iterate_fd(files, 0, match_file, cred);
2131 	if (!n) /* none found? */
2132 		return;
2133 
2134 	devnull = dentry_open(&selinux_null, O_RDWR, cred);
2135 	if (IS_ERR(devnull))
2136 		devnull = NULL;
2137 	/* replace all the matching ones with this */
2138 	do {
2139 		replace_fd(n - 1, devnull, 0);
2140 	} while ((n = iterate_fd(files, n, match_file, cred)) != 0);
2141 	if (devnull)
2142 		fput(devnull);
2143 }
2144 
2145 /*
2146  * Prepare a process for imminent new credential changes due to exec
2147  */
2148 static void selinux_bprm_committing_creds(struct linux_binprm *bprm)
2149 {
2150 	struct task_security_struct *new_tsec;
2151 	struct rlimit *rlim, *initrlim;
2152 	int rc, i;
2153 
2154 	new_tsec = bprm->cred->security;
2155 	if (new_tsec->sid == new_tsec->osid)
2156 		return;
2157 
2158 	/* Close files for which the new task SID is not authorized. */
2159 	flush_unauthorized_files(bprm->cred, current->files);
2160 
2161 	/* Always clear parent death signal on SID transitions. */
2162 	current->pdeath_signal = 0;
2163 
2164 	/* Check whether the new SID can inherit resource limits from the old
2165 	 * SID.  If not, reset all soft limits to the lower of the current
2166 	 * task's hard limit and the init task's soft limit.
2167 	 *
2168 	 * Note that the setting of hard limits (even to lower them) can be
2169 	 * controlled by the setrlimit check.  The inclusion of the init task's
2170 	 * soft limit into the computation is to avoid resetting soft limits
2171 	 * higher than the default soft limit for cases where the default is
2172 	 * lower than the hard limit, e.g. RLIMIT_CORE or RLIMIT_STACK.
2173 	 */
2174 	rc = avc_has_perm(new_tsec->osid, new_tsec->sid, SECCLASS_PROCESS,
2175 			  PROCESS__RLIMITINH, NULL);
2176 	if (rc) {
2177 		/* protect against do_prlimit() */
2178 		task_lock(current);
2179 		for (i = 0; i < RLIM_NLIMITS; i++) {
2180 			rlim = current->signal->rlim + i;
2181 			initrlim = init_task.signal->rlim + i;
2182 			rlim->rlim_cur = min(rlim->rlim_max, initrlim->rlim_cur);
2183 		}
2184 		task_unlock(current);
2185 		update_rlimit_cpu(current, rlimit(RLIMIT_CPU));
2186 	}
2187 }
2188 
2189 /*
2190  * Clean up the process immediately after the installation of new credentials
2191  * due to exec
2192  */
2193 static void selinux_bprm_committed_creds(struct linux_binprm *bprm)
2194 {
2195 	const struct task_security_struct *tsec = current_security();
2196 	struct itimerval itimer;
2197 	u32 osid, sid;
2198 	int rc, i;
2199 
2200 	osid = tsec->osid;
2201 	sid = tsec->sid;
2202 
2203 	if (sid == osid)
2204 		return;
2205 
2206 	/* Check whether the new SID can inherit signal state from the old SID.
2207 	 * If not, clear itimers to avoid subsequent signal generation and
2208 	 * flush and unblock signals.
2209 	 *
2210 	 * This must occur _after_ the task SID has been updated so that any
2211 	 * kill done after the flush will be checked against the new SID.
2212 	 */
2213 	rc = avc_has_perm(osid, sid, SECCLASS_PROCESS, PROCESS__SIGINH, NULL);
2214 	if (rc) {
2215 		memset(&itimer, 0, sizeof itimer);
2216 		for (i = 0; i < 3; i++)
2217 			do_setitimer(i, &itimer, NULL);
2218 		spin_lock_irq(&current->sighand->siglock);
2219 		if (!(current->signal->flags & SIGNAL_GROUP_EXIT)) {
2220 			__flush_signals(current);
2221 			flush_signal_handlers(current, 1);
2222 			sigemptyset(&current->blocked);
2223 		}
2224 		spin_unlock_irq(&current->sighand->siglock);
2225 	}
2226 
2227 	/* Wake up the parent if it is waiting so that it can recheck
2228 	 * wait permission to the new task SID. */
2229 	read_lock(&tasklist_lock);
2230 	__wake_up_parent(current, current->real_parent);
2231 	read_unlock(&tasklist_lock);
2232 }
2233 
2234 /* superblock security operations */
2235 
2236 static int selinux_sb_alloc_security(struct super_block *sb)
2237 {
2238 	return superblock_alloc_security(sb);
2239 }
2240 
2241 static void selinux_sb_free_security(struct super_block *sb)
2242 {
2243 	superblock_free_security(sb);
2244 }
2245 
2246 static inline int match_prefix(char *prefix, int plen, char *option, int olen)
2247 {
2248 	if (plen > olen)
2249 		return 0;
2250 
2251 	return !memcmp(prefix, option, plen);
2252 }
2253 
2254 static inline int selinux_option(char *option, int len)
2255 {
2256 	return (match_prefix(CONTEXT_STR, sizeof(CONTEXT_STR)-1, option, len) ||
2257 		match_prefix(FSCONTEXT_STR, sizeof(FSCONTEXT_STR)-1, option, len) ||
2258 		match_prefix(DEFCONTEXT_STR, sizeof(DEFCONTEXT_STR)-1, option, len) ||
2259 		match_prefix(ROOTCONTEXT_STR, sizeof(ROOTCONTEXT_STR)-1, option, len) ||
2260 		match_prefix(LABELSUPP_STR, sizeof(LABELSUPP_STR)-1, option, len));
2261 }
2262 
2263 static inline void take_option(char **to, char *from, int *first, int len)
2264 {
2265 	if (!*first) {
2266 		**to = ',';
2267 		*to += 1;
2268 	} else
2269 		*first = 0;
2270 	memcpy(*to, from, len);
2271 	*to += len;
2272 }
2273 
2274 static inline void take_selinux_option(char **to, char *from, int *first,
2275 				       int len)
2276 {
2277 	int current_size = 0;
2278 
2279 	if (!*first) {
2280 		**to = '|';
2281 		*to += 1;
2282 	} else
2283 		*first = 0;
2284 
2285 	while (current_size < len) {
2286 		if (*from != '"') {
2287 			**to = *from;
2288 			*to += 1;
2289 		}
2290 		from += 1;
2291 		current_size += 1;
2292 	}
2293 }
2294 
2295 static int selinux_sb_copy_data(char *orig, char *copy)
2296 {
2297 	int fnosec, fsec, rc = 0;
2298 	char *in_save, *in_curr, *in_end;
2299 	char *sec_curr, *nosec_save, *nosec;
2300 	int open_quote = 0;
2301 
2302 	in_curr = orig;
2303 	sec_curr = copy;
2304 
2305 	nosec = (char *)get_zeroed_page(GFP_KERNEL);
2306 	if (!nosec) {
2307 		rc = -ENOMEM;
2308 		goto out;
2309 	}
2310 
2311 	nosec_save = nosec;
2312 	fnosec = fsec = 1;
2313 	in_save = in_end = orig;
2314 
2315 	do {
2316 		if (*in_end == '"')
2317 			open_quote = !open_quote;
2318 		if ((*in_end == ',' && open_quote == 0) ||
2319 				*in_end == '\0') {
2320 			int len = in_end - in_curr;
2321 
2322 			if (selinux_option(in_curr, len))
2323 				take_selinux_option(&sec_curr, in_curr, &fsec, len);
2324 			else
2325 				take_option(&nosec, in_curr, &fnosec, len);
2326 
2327 			in_curr = in_end + 1;
2328 		}
2329 	} while (*in_end++);
2330 
2331 	strcpy(in_save, nosec_save);
2332 	free_page((unsigned long)nosec_save);
2333 out:
2334 	return rc;
2335 }
2336 
2337 static int selinux_sb_remount(struct super_block *sb, void *data)
2338 {
2339 	int rc, i, *flags;
2340 	struct security_mnt_opts opts;
2341 	char *secdata, **mount_options;
2342 	struct superblock_security_struct *sbsec = sb->s_security;
2343 
2344 	if (!(sbsec->flags & SE_SBINITIALIZED))
2345 		return 0;
2346 
2347 	if (!data)
2348 		return 0;
2349 
2350 	if (sb->s_type->fs_flags & FS_BINARY_MOUNTDATA)
2351 		return 0;
2352 
2353 	security_init_mnt_opts(&opts);
2354 	secdata = alloc_secdata();
2355 	if (!secdata)
2356 		return -ENOMEM;
2357 	rc = selinux_sb_copy_data(data, secdata);
2358 	if (rc)
2359 		goto out_free_secdata;
2360 
2361 	rc = selinux_parse_opts_str(secdata, &opts);
2362 	if (rc)
2363 		goto out_free_secdata;
2364 
2365 	mount_options = opts.mnt_opts;
2366 	flags = opts.mnt_opts_flags;
2367 
2368 	for (i = 0; i < opts.num_mnt_opts; i++) {
2369 		u32 sid;
2370 		size_t len;
2371 
2372 		if (flags[i] == SE_SBLABELSUPP)
2373 			continue;
2374 		len = strlen(mount_options[i]);
2375 		rc = security_context_to_sid(mount_options[i], len, &sid);
2376 		if (rc) {
2377 			printk(KERN_WARNING "SELinux: security_context_to_sid"
2378 			       "(%s) failed for (dev %s, type %s) errno=%d\n",
2379 			       mount_options[i], sb->s_id, sb->s_type->name, rc);
2380 			goto out_free_opts;
2381 		}
2382 		rc = -EINVAL;
2383 		switch (flags[i]) {
2384 		case FSCONTEXT_MNT:
2385 			if (bad_option(sbsec, FSCONTEXT_MNT, sbsec->sid, sid))
2386 				goto out_bad_option;
2387 			break;
2388 		case CONTEXT_MNT:
2389 			if (bad_option(sbsec, CONTEXT_MNT, sbsec->mntpoint_sid, sid))
2390 				goto out_bad_option;
2391 			break;
2392 		case ROOTCONTEXT_MNT: {
2393 			struct inode_security_struct *root_isec;
2394 			root_isec = sb->s_root->d_inode->i_security;
2395 
2396 			if (bad_option(sbsec, ROOTCONTEXT_MNT, root_isec->sid, sid))
2397 				goto out_bad_option;
2398 			break;
2399 		}
2400 		case DEFCONTEXT_MNT:
2401 			if (bad_option(sbsec, DEFCONTEXT_MNT, sbsec->def_sid, sid))
2402 				goto out_bad_option;
2403 			break;
2404 		default:
2405 			goto out_free_opts;
2406 		}
2407 	}
2408 
2409 	rc = 0;
2410 out_free_opts:
2411 	security_free_mnt_opts(&opts);
2412 out_free_secdata:
2413 	free_secdata(secdata);
2414 	return rc;
2415 out_bad_option:
2416 	printk(KERN_WARNING "SELinux: unable to change security options "
2417 	       "during remount (dev %s, type=%s)\n", sb->s_id,
2418 	       sb->s_type->name);
2419 	goto out_free_opts;
2420 }
2421 
2422 static int selinux_sb_kern_mount(struct super_block *sb, int flags, void *data)
2423 {
2424 	const struct cred *cred = current_cred();
2425 	struct common_audit_data ad;
2426 	int rc;
2427 
2428 	rc = superblock_doinit(sb, data);
2429 	if (rc)
2430 		return rc;
2431 
2432 	/* Allow all mounts performed by the kernel */
2433 	if (flags & MS_KERNMOUNT)
2434 		return 0;
2435 
2436 	ad.type = LSM_AUDIT_DATA_DENTRY;
2437 	ad.u.dentry = sb->s_root;
2438 	return superblock_has_perm(cred, sb, FILESYSTEM__MOUNT, &ad);
2439 }
2440 
2441 static int selinux_sb_statfs(struct dentry *dentry)
2442 {
2443 	const struct cred *cred = current_cred();
2444 	struct common_audit_data ad;
2445 
2446 	ad.type = LSM_AUDIT_DATA_DENTRY;
2447 	ad.u.dentry = dentry->d_sb->s_root;
2448 	return superblock_has_perm(cred, dentry->d_sb, FILESYSTEM__GETATTR, &ad);
2449 }
2450 
2451 static int selinux_mount(const char *dev_name,
2452 			 struct path *path,
2453 			 const char *type,
2454 			 unsigned long flags,
2455 			 void *data)
2456 {
2457 	const struct cred *cred = current_cred();
2458 
2459 	if (flags & MS_REMOUNT)
2460 		return superblock_has_perm(cred, path->dentry->d_sb,
2461 					   FILESYSTEM__REMOUNT, NULL);
2462 	else
2463 		return path_has_perm(cred, path, FILE__MOUNTON);
2464 }
2465 
2466 static int selinux_umount(struct vfsmount *mnt, int flags)
2467 {
2468 	const struct cred *cred = current_cred();
2469 
2470 	return superblock_has_perm(cred, mnt->mnt_sb,
2471 				   FILESYSTEM__UNMOUNT, NULL);
2472 }
2473 
2474 /* inode security operations */
2475 
2476 static int selinux_inode_alloc_security(struct inode *inode)
2477 {
2478 	return inode_alloc_security(inode);
2479 }
2480 
2481 static void selinux_inode_free_security(struct inode *inode)
2482 {
2483 	inode_free_security(inode);
2484 }
2485 
2486 static int selinux_inode_init_security(struct inode *inode, struct inode *dir,
2487 				       const struct qstr *qstr, char **name,
2488 				       void **value, size_t *len)
2489 {
2490 	const struct task_security_struct *tsec = current_security();
2491 	struct inode_security_struct *dsec;
2492 	struct superblock_security_struct *sbsec;
2493 	u32 sid, newsid, clen;
2494 	int rc;
2495 	char *namep = NULL, *context;
2496 
2497 	dsec = dir->i_security;
2498 	sbsec = dir->i_sb->s_security;
2499 
2500 	sid = tsec->sid;
2501 	newsid = tsec->create_sid;
2502 
2503 	if ((sbsec->flags & SE_SBINITIALIZED) &&
2504 	    (sbsec->behavior == SECURITY_FS_USE_MNTPOINT))
2505 		newsid = sbsec->mntpoint_sid;
2506 	else if (!newsid || !(sbsec->flags & SE_SBLABELSUPP)) {
2507 		rc = security_transition_sid(sid, dsec->sid,
2508 					     inode_mode_to_security_class(inode->i_mode),
2509 					     qstr, &newsid);
2510 		if (rc) {
2511 			printk(KERN_WARNING "%s:  "
2512 			       "security_transition_sid failed, rc=%d (dev=%s "
2513 			       "ino=%ld)\n",
2514 			       __func__,
2515 			       -rc, inode->i_sb->s_id, inode->i_ino);
2516 			return rc;
2517 		}
2518 	}
2519 
2520 	/* Possibly defer initialization to selinux_complete_init. */
2521 	if (sbsec->flags & SE_SBINITIALIZED) {
2522 		struct inode_security_struct *isec = inode->i_security;
2523 		isec->sclass = inode_mode_to_security_class(inode->i_mode);
2524 		isec->sid = newsid;
2525 		isec->initialized = 1;
2526 	}
2527 
2528 	if (!ss_initialized || !(sbsec->flags & SE_SBLABELSUPP))
2529 		return -EOPNOTSUPP;
2530 
2531 	if (name) {
2532 		namep = kstrdup(XATTR_SELINUX_SUFFIX, GFP_NOFS);
2533 		if (!namep)
2534 			return -ENOMEM;
2535 		*name = namep;
2536 	}
2537 
2538 	if (value && len) {
2539 		rc = security_sid_to_context_force(newsid, &context, &clen);
2540 		if (rc) {
2541 			kfree(namep);
2542 			return rc;
2543 		}
2544 		*value = context;
2545 		*len = clen;
2546 	}
2547 
2548 	return 0;
2549 }
2550 
2551 static int selinux_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
2552 {
2553 	return may_create(dir, dentry, SECCLASS_FILE);
2554 }
2555 
2556 static int selinux_inode_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2557 {
2558 	return may_link(dir, old_dentry, MAY_LINK);
2559 }
2560 
2561 static int selinux_inode_unlink(struct inode *dir, struct dentry *dentry)
2562 {
2563 	return may_link(dir, dentry, MAY_UNLINK);
2564 }
2565 
2566 static int selinux_inode_symlink(struct inode *dir, struct dentry *dentry, const char *name)
2567 {
2568 	return may_create(dir, dentry, SECCLASS_LNK_FILE);
2569 }
2570 
2571 static int selinux_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mask)
2572 {
2573 	return may_create(dir, dentry, SECCLASS_DIR);
2574 }
2575 
2576 static int selinux_inode_rmdir(struct inode *dir, struct dentry *dentry)
2577 {
2578 	return may_link(dir, dentry, MAY_RMDIR);
2579 }
2580 
2581 static int selinux_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
2582 {
2583 	return may_create(dir, dentry, inode_mode_to_security_class(mode));
2584 }
2585 
2586 static int selinux_inode_rename(struct inode *old_inode, struct dentry *old_dentry,
2587 				struct inode *new_inode, struct dentry *new_dentry)
2588 {
2589 	return may_rename(old_inode, old_dentry, new_inode, new_dentry);
2590 }
2591 
2592 static int selinux_inode_readlink(struct dentry *dentry)
2593 {
2594 	const struct cred *cred = current_cred();
2595 
2596 	return dentry_has_perm(cred, dentry, FILE__READ);
2597 }
2598 
2599 static int selinux_inode_follow_link(struct dentry *dentry, struct nameidata *nameidata)
2600 {
2601 	const struct cred *cred = current_cred();
2602 
2603 	return dentry_has_perm(cred, dentry, FILE__READ);
2604 }
2605 
2606 static noinline int audit_inode_permission(struct inode *inode,
2607 					   u32 perms, u32 audited, u32 denied,
2608 					   unsigned flags)
2609 {
2610 	struct common_audit_data ad;
2611 	struct inode_security_struct *isec = inode->i_security;
2612 	int rc;
2613 
2614 	ad.type = LSM_AUDIT_DATA_INODE;
2615 	ad.u.inode = inode;
2616 
2617 	rc = slow_avc_audit(current_sid(), isec->sid, isec->sclass, perms,
2618 			    audited, denied, &ad, flags);
2619 	if (rc)
2620 		return rc;
2621 	return 0;
2622 }
2623 
2624 static int selinux_inode_permission(struct inode *inode, int mask)
2625 {
2626 	const struct cred *cred = current_cred();
2627 	u32 perms;
2628 	bool from_access;
2629 	unsigned flags = mask & MAY_NOT_BLOCK;
2630 	struct inode_security_struct *isec;
2631 	u32 sid;
2632 	struct av_decision avd;
2633 	int rc, rc2;
2634 	u32 audited, denied;
2635 
2636 	from_access = mask & MAY_ACCESS;
2637 	mask &= (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND);
2638 
2639 	/* No permission to check.  Existence test. */
2640 	if (!mask)
2641 		return 0;
2642 
2643 	validate_creds(cred);
2644 
2645 	if (unlikely(IS_PRIVATE(inode)))
2646 		return 0;
2647 
2648 	perms = file_mask_to_av(inode->i_mode, mask);
2649 
2650 	sid = cred_sid(cred);
2651 	isec = inode->i_security;
2652 
2653 	rc = avc_has_perm_noaudit(sid, isec->sid, isec->sclass, perms, 0, &avd);
2654 	audited = avc_audit_required(perms, &avd, rc,
2655 				     from_access ? FILE__AUDIT_ACCESS : 0,
2656 				     &denied);
2657 	if (likely(!audited))
2658 		return rc;
2659 
2660 	rc2 = audit_inode_permission(inode, perms, audited, denied, flags);
2661 	if (rc2)
2662 		return rc2;
2663 	return rc;
2664 }
2665 
2666 static int selinux_inode_setattr(struct dentry *dentry, struct iattr *iattr)
2667 {
2668 	const struct cred *cred = current_cred();
2669 	unsigned int ia_valid = iattr->ia_valid;
2670 	__u32 av = FILE__WRITE;
2671 
2672 	/* ATTR_FORCE is just used for ATTR_KILL_S[UG]ID. */
2673 	if (ia_valid & ATTR_FORCE) {
2674 		ia_valid &= ~(ATTR_KILL_SUID | ATTR_KILL_SGID | ATTR_MODE |
2675 			      ATTR_FORCE);
2676 		if (!ia_valid)
2677 			return 0;
2678 	}
2679 
2680 	if (ia_valid & (ATTR_MODE | ATTR_UID | ATTR_GID |
2681 			ATTR_ATIME_SET | ATTR_MTIME_SET | ATTR_TIMES_SET))
2682 		return dentry_has_perm(cred, dentry, FILE__SETATTR);
2683 
2684 	if (selinux_policycap_openperm && (ia_valid & ATTR_SIZE))
2685 		av |= FILE__OPEN;
2686 
2687 	return dentry_has_perm(cred, dentry, av);
2688 }
2689 
2690 static int selinux_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
2691 {
2692 	const struct cred *cred = current_cred();
2693 	struct path path;
2694 
2695 	path.dentry = dentry;
2696 	path.mnt = mnt;
2697 
2698 	return path_has_perm(cred, &path, FILE__GETATTR);
2699 }
2700 
2701 static int selinux_inode_setotherxattr(struct dentry *dentry, const char *name)
2702 {
2703 	const struct cred *cred = current_cred();
2704 
2705 	if (!strncmp(name, XATTR_SECURITY_PREFIX,
2706 		     sizeof XATTR_SECURITY_PREFIX - 1)) {
2707 		if (!strcmp(name, XATTR_NAME_CAPS)) {
2708 			if (!capable(CAP_SETFCAP))
2709 				return -EPERM;
2710 		} else if (!capable(CAP_SYS_ADMIN)) {
2711 			/* A different attribute in the security namespace.
2712 			   Restrict to administrator. */
2713 			return -EPERM;
2714 		}
2715 	}
2716 
2717 	/* Not an attribute we recognize, so just check the
2718 	   ordinary setattr permission. */
2719 	return dentry_has_perm(cred, dentry, FILE__SETATTR);
2720 }
2721 
2722 static int selinux_inode_setxattr(struct dentry *dentry, const char *name,
2723 				  const void *value, size_t size, int flags)
2724 {
2725 	struct inode *inode = dentry->d_inode;
2726 	struct inode_security_struct *isec = inode->i_security;
2727 	struct superblock_security_struct *sbsec;
2728 	struct common_audit_data ad;
2729 	u32 newsid, sid = current_sid();
2730 	int rc = 0;
2731 
2732 	if (strcmp(name, XATTR_NAME_SELINUX))
2733 		return selinux_inode_setotherxattr(dentry, name);
2734 
2735 	sbsec = inode->i_sb->s_security;
2736 	if (!(sbsec->flags & SE_SBLABELSUPP))
2737 		return -EOPNOTSUPP;
2738 
2739 	if (!inode_owner_or_capable(inode))
2740 		return -EPERM;
2741 
2742 	ad.type = LSM_AUDIT_DATA_DENTRY;
2743 	ad.u.dentry = dentry;
2744 
2745 	rc = avc_has_perm(sid, isec->sid, isec->sclass,
2746 			  FILE__RELABELFROM, &ad);
2747 	if (rc)
2748 		return rc;
2749 
2750 	rc = security_context_to_sid(value, size, &newsid);
2751 	if (rc == -EINVAL) {
2752 		if (!capable(CAP_MAC_ADMIN)) {
2753 			struct audit_buffer *ab;
2754 			size_t audit_size;
2755 			const char *str;
2756 
2757 			/* We strip a nul only if it is at the end, otherwise the
2758 			 * context contains a nul and we should audit that */
2759 			if (value) {
2760 				str = value;
2761 				if (str[size - 1] == '\0')
2762 					audit_size = size - 1;
2763 				else
2764 					audit_size = size;
2765 			} else {
2766 				str = "";
2767 				audit_size = 0;
2768 			}
2769 			ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR);
2770 			audit_log_format(ab, "op=setxattr invalid_context=");
2771 			audit_log_n_untrustedstring(ab, value, audit_size);
2772 			audit_log_end(ab);
2773 
2774 			return rc;
2775 		}
2776 		rc = security_context_to_sid_force(value, size, &newsid);
2777 	}
2778 	if (rc)
2779 		return rc;
2780 
2781 	rc = avc_has_perm(sid, newsid, isec->sclass,
2782 			  FILE__RELABELTO, &ad);
2783 	if (rc)
2784 		return rc;
2785 
2786 	rc = security_validate_transition(isec->sid, newsid, sid,
2787 					  isec->sclass);
2788 	if (rc)
2789 		return rc;
2790 
2791 	return avc_has_perm(newsid,
2792 			    sbsec->sid,
2793 			    SECCLASS_FILESYSTEM,
2794 			    FILESYSTEM__ASSOCIATE,
2795 			    &ad);
2796 }
2797 
2798 static void selinux_inode_post_setxattr(struct dentry *dentry, const char *name,
2799 					const void *value, size_t size,
2800 					int flags)
2801 {
2802 	struct inode *inode = dentry->d_inode;
2803 	struct inode_security_struct *isec = inode->i_security;
2804 	u32 newsid;
2805 	int rc;
2806 
2807 	if (strcmp(name, XATTR_NAME_SELINUX)) {
2808 		/* Not an attribute we recognize, so nothing to do. */
2809 		return;
2810 	}
2811 
2812 	rc = security_context_to_sid_force(value, size, &newsid);
2813 	if (rc) {
2814 		printk(KERN_ERR "SELinux:  unable to map context to SID"
2815 		       "for (%s, %lu), rc=%d\n",
2816 		       inode->i_sb->s_id, inode->i_ino, -rc);
2817 		return;
2818 	}
2819 
2820 	isec->sid = newsid;
2821 	return;
2822 }
2823 
2824 static int selinux_inode_getxattr(struct dentry *dentry, const char *name)
2825 {
2826 	const struct cred *cred = current_cred();
2827 
2828 	return dentry_has_perm(cred, dentry, FILE__GETATTR);
2829 }
2830 
2831 static int selinux_inode_listxattr(struct dentry *dentry)
2832 {
2833 	const struct cred *cred = current_cred();
2834 
2835 	return dentry_has_perm(cred, dentry, FILE__GETATTR);
2836 }
2837 
2838 static int selinux_inode_removexattr(struct dentry *dentry, const char *name)
2839 {
2840 	if (strcmp(name, XATTR_NAME_SELINUX))
2841 		return selinux_inode_setotherxattr(dentry, name);
2842 
2843 	/* No one is allowed to remove a SELinux security label.
2844 	   You can change the label, but all data must be labeled. */
2845 	return -EACCES;
2846 }
2847 
2848 /*
2849  * Copy the inode security context value to the user.
2850  *
2851  * Permission check is handled by selinux_inode_getxattr hook.
2852  */
2853 static int selinux_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
2854 {
2855 	u32 size;
2856 	int error;
2857 	char *context = NULL;
2858 	struct inode_security_struct *isec = inode->i_security;
2859 
2860 	if (strcmp(name, XATTR_SELINUX_SUFFIX))
2861 		return -EOPNOTSUPP;
2862 
2863 	/*
2864 	 * If the caller has CAP_MAC_ADMIN, then get the raw context
2865 	 * value even if it is not defined by current policy; otherwise,
2866 	 * use the in-core value under current policy.
2867 	 * Use the non-auditing forms of the permission checks since
2868 	 * getxattr may be called by unprivileged processes commonly
2869 	 * and lack of permission just means that we fall back to the
2870 	 * in-core context value, not a denial.
2871 	 */
2872 	error = selinux_capable(current_cred(), &init_user_ns, CAP_MAC_ADMIN,
2873 				SECURITY_CAP_NOAUDIT);
2874 	if (!error)
2875 		error = security_sid_to_context_force(isec->sid, &context,
2876 						      &size);
2877 	else
2878 		error = security_sid_to_context(isec->sid, &context, &size);
2879 	if (error)
2880 		return error;
2881 	error = size;
2882 	if (alloc) {
2883 		*buffer = context;
2884 		goto out_nofree;
2885 	}
2886 	kfree(context);
2887 out_nofree:
2888 	return error;
2889 }
2890 
2891 static int selinux_inode_setsecurity(struct inode *inode, const char *name,
2892 				     const void *value, size_t size, int flags)
2893 {
2894 	struct inode_security_struct *isec = inode->i_security;
2895 	u32 newsid;
2896 	int rc;
2897 
2898 	if (strcmp(name, XATTR_SELINUX_SUFFIX))
2899 		return -EOPNOTSUPP;
2900 
2901 	if (!value || !size)
2902 		return -EACCES;
2903 
2904 	rc = security_context_to_sid((void *)value, size, &newsid);
2905 	if (rc)
2906 		return rc;
2907 
2908 	isec->sid = newsid;
2909 	isec->initialized = 1;
2910 	return 0;
2911 }
2912 
2913 static int selinux_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
2914 {
2915 	const int len = sizeof(XATTR_NAME_SELINUX);
2916 	if (buffer && len <= buffer_size)
2917 		memcpy(buffer, XATTR_NAME_SELINUX, len);
2918 	return len;
2919 }
2920 
2921 static void selinux_inode_getsecid(const struct inode *inode, u32 *secid)
2922 {
2923 	struct inode_security_struct *isec = inode->i_security;
2924 	*secid = isec->sid;
2925 }
2926 
2927 /* file security operations */
2928 
2929 static int selinux_revalidate_file_permission(struct file *file, int mask)
2930 {
2931 	const struct cred *cred = current_cred();
2932 	struct inode *inode = file->f_path.dentry->d_inode;
2933 
2934 	/* file_mask_to_av won't add FILE__WRITE if MAY_APPEND is set */
2935 	if ((file->f_flags & O_APPEND) && (mask & MAY_WRITE))
2936 		mask |= MAY_APPEND;
2937 
2938 	return file_has_perm(cred, file,
2939 			     file_mask_to_av(inode->i_mode, mask));
2940 }
2941 
2942 static int selinux_file_permission(struct file *file, int mask)
2943 {
2944 	struct inode *inode = file->f_path.dentry->d_inode;
2945 	struct file_security_struct *fsec = file->f_security;
2946 	struct inode_security_struct *isec = inode->i_security;
2947 	u32 sid = current_sid();
2948 
2949 	if (!mask)
2950 		/* No permission to check.  Existence test. */
2951 		return 0;
2952 
2953 	if (sid == fsec->sid && fsec->isid == isec->sid &&
2954 	    fsec->pseqno == avc_policy_seqno())
2955 		/* No change since file_open check. */
2956 		return 0;
2957 
2958 	return selinux_revalidate_file_permission(file, mask);
2959 }
2960 
2961 static int selinux_file_alloc_security(struct file *file)
2962 {
2963 	return file_alloc_security(file);
2964 }
2965 
2966 static void selinux_file_free_security(struct file *file)
2967 {
2968 	file_free_security(file);
2969 }
2970 
2971 static int selinux_file_ioctl(struct file *file, unsigned int cmd,
2972 			      unsigned long arg)
2973 {
2974 	const struct cred *cred = current_cred();
2975 	int error = 0;
2976 
2977 	switch (cmd) {
2978 	case FIONREAD:
2979 	/* fall through */
2980 	case FIBMAP:
2981 	/* fall through */
2982 	case FIGETBSZ:
2983 	/* fall through */
2984 	case FS_IOC_GETFLAGS:
2985 	/* fall through */
2986 	case FS_IOC_GETVERSION:
2987 		error = file_has_perm(cred, file, FILE__GETATTR);
2988 		break;
2989 
2990 	case FS_IOC_SETFLAGS:
2991 	/* fall through */
2992 	case FS_IOC_SETVERSION:
2993 		error = file_has_perm(cred, file, FILE__SETATTR);
2994 		break;
2995 
2996 	/* sys_ioctl() checks */
2997 	case FIONBIO:
2998 	/* fall through */
2999 	case FIOASYNC:
3000 		error = file_has_perm(cred, file, 0);
3001 		break;
3002 
3003 	case KDSKBENT:
3004 	case KDSKBSENT:
3005 		error = cred_has_capability(cred, CAP_SYS_TTY_CONFIG,
3006 					    SECURITY_CAP_AUDIT);
3007 		break;
3008 
3009 	/* default case assumes that the command will go
3010 	 * to the file's ioctl() function.
3011 	 */
3012 	default:
3013 		error = file_has_perm(cred, file, FILE__IOCTL);
3014 	}
3015 	return error;
3016 }
3017 
3018 static int default_noexec;
3019 
3020 static int file_map_prot_check(struct file *file, unsigned long prot, int shared)
3021 {
3022 	const struct cred *cred = current_cred();
3023 	int rc = 0;
3024 
3025 	if (default_noexec &&
3026 	    (prot & PROT_EXEC) && (!file || (!shared && (prot & PROT_WRITE)))) {
3027 		/*
3028 		 * We are making executable an anonymous mapping or a
3029 		 * private file mapping that will also be writable.
3030 		 * This has an additional check.
3031 		 */
3032 		rc = cred_has_perm(cred, cred, PROCESS__EXECMEM);
3033 		if (rc)
3034 			goto error;
3035 	}
3036 
3037 	if (file) {
3038 		/* read access is always possible with a mapping */
3039 		u32 av = FILE__READ;
3040 
3041 		/* write access only matters if the mapping is shared */
3042 		if (shared && (prot & PROT_WRITE))
3043 			av |= FILE__WRITE;
3044 
3045 		if (prot & PROT_EXEC)
3046 			av |= FILE__EXECUTE;
3047 
3048 		return file_has_perm(cred, file, av);
3049 	}
3050 
3051 error:
3052 	return rc;
3053 }
3054 
3055 static int selinux_mmap_addr(unsigned long addr)
3056 {
3057 	int rc = 0;
3058 	u32 sid = current_sid();
3059 
3060 	/*
3061 	 * notice that we are intentionally putting the SELinux check before
3062 	 * the secondary cap_file_mmap check.  This is such a likely attempt
3063 	 * at bad behaviour/exploit that we always want to get the AVC, even
3064 	 * if DAC would have also denied the operation.
3065 	 */
3066 	if (addr < CONFIG_LSM_MMAP_MIN_ADDR) {
3067 		rc = avc_has_perm(sid, sid, SECCLASS_MEMPROTECT,
3068 				  MEMPROTECT__MMAP_ZERO, NULL);
3069 		if (rc)
3070 			return rc;
3071 	}
3072 
3073 	/* do DAC check on address space usage */
3074 	return cap_mmap_addr(addr);
3075 }
3076 
3077 static int selinux_mmap_file(struct file *file, unsigned long reqprot,
3078 			     unsigned long prot, unsigned long flags)
3079 {
3080 	if (selinux_checkreqprot)
3081 		prot = reqprot;
3082 
3083 	return file_map_prot_check(file, prot,
3084 				   (flags & MAP_TYPE) == MAP_SHARED);
3085 }
3086 
3087 static int selinux_file_mprotect(struct vm_area_struct *vma,
3088 				 unsigned long reqprot,
3089 				 unsigned long prot)
3090 {
3091 	const struct cred *cred = current_cred();
3092 
3093 	if (selinux_checkreqprot)
3094 		prot = reqprot;
3095 
3096 	if (default_noexec &&
3097 	    (prot & PROT_EXEC) && !(vma->vm_flags & VM_EXEC)) {
3098 		int rc = 0;
3099 		if (vma->vm_start >= vma->vm_mm->start_brk &&
3100 		    vma->vm_end <= vma->vm_mm->brk) {
3101 			rc = cred_has_perm(cred, cred, PROCESS__EXECHEAP);
3102 		} else if (!vma->vm_file &&
3103 			   vma->vm_start <= vma->vm_mm->start_stack &&
3104 			   vma->vm_end >= vma->vm_mm->start_stack) {
3105 			rc = current_has_perm(current, PROCESS__EXECSTACK);
3106 		} else if (vma->vm_file && vma->anon_vma) {
3107 			/*
3108 			 * We are making executable a file mapping that has
3109 			 * had some COW done. Since pages might have been
3110 			 * written, check ability to execute the possibly
3111 			 * modified content.  This typically should only
3112 			 * occur for text relocations.
3113 			 */
3114 			rc = file_has_perm(cred, vma->vm_file, FILE__EXECMOD);
3115 		}
3116 		if (rc)
3117 			return rc;
3118 	}
3119 
3120 	return file_map_prot_check(vma->vm_file, prot, vma->vm_flags&VM_SHARED);
3121 }
3122 
3123 static int selinux_file_lock(struct file *file, unsigned int cmd)
3124 {
3125 	const struct cred *cred = current_cred();
3126 
3127 	return file_has_perm(cred, file, FILE__LOCK);
3128 }
3129 
3130 static int selinux_file_fcntl(struct file *file, unsigned int cmd,
3131 			      unsigned long arg)
3132 {
3133 	const struct cred *cred = current_cred();
3134 	int err = 0;
3135 
3136 	switch (cmd) {
3137 	case F_SETFL:
3138 		if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
3139 			err = -EINVAL;
3140 			break;
3141 		}
3142 
3143 		if ((file->f_flags & O_APPEND) && !(arg & O_APPEND)) {
3144 			err = file_has_perm(cred, file, FILE__WRITE);
3145 			break;
3146 		}
3147 		/* fall through */
3148 	case F_SETOWN:
3149 	case F_SETSIG:
3150 	case F_GETFL:
3151 	case F_GETOWN:
3152 	case F_GETSIG:
3153 	case F_GETOWNER_UIDS:
3154 		/* Just check FD__USE permission */
3155 		err = file_has_perm(cred, file, 0);
3156 		break;
3157 	case F_GETLK:
3158 	case F_SETLK:
3159 	case F_SETLKW:
3160 #if BITS_PER_LONG == 32
3161 	case F_GETLK64:
3162 	case F_SETLK64:
3163 	case F_SETLKW64:
3164 #endif
3165 		if (!file->f_path.dentry || !file->f_path.dentry->d_inode) {
3166 			err = -EINVAL;
3167 			break;
3168 		}
3169 		err = file_has_perm(cred, file, FILE__LOCK);
3170 		break;
3171 	}
3172 
3173 	return err;
3174 }
3175 
3176 static int selinux_file_set_fowner(struct file *file)
3177 {
3178 	struct file_security_struct *fsec;
3179 
3180 	fsec = file->f_security;
3181 	fsec->fown_sid = current_sid();
3182 
3183 	return 0;
3184 }
3185 
3186 static int selinux_file_send_sigiotask(struct task_struct *tsk,
3187 				       struct fown_struct *fown, int signum)
3188 {
3189 	struct file *file;
3190 	u32 sid = task_sid(tsk);
3191 	u32 perm;
3192 	struct file_security_struct *fsec;
3193 
3194 	/* struct fown_struct is never outside the context of a struct file */
3195 	file = container_of(fown, struct file, f_owner);
3196 
3197 	fsec = file->f_security;
3198 
3199 	if (!signum)
3200 		perm = signal_to_av(SIGIO); /* as per send_sigio_to_task */
3201 	else
3202 		perm = signal_to_av(signum);
3203 
3204 	return avc_has_perm(fsec->fown_sid, sid,
3205 			    SECCLASS_PROCESS, perm, NULL);
3206 }
3207 
3208 static int selinux_file_receive(struct file *file)
3209 {
3210 	const struct cred *cred = current_cred();
3211 
3212 	return file_has_perm(cred, file, file_to_av(file));
3213 }
3214 
3215 static int selinux_file_open(struct file *file, const struct cred *cred)
3216 {
3217 	struct file_security_struct *fsec;
3218 	struct inode_security_struct *isec;
3219 
3220 	fsec = file->f_security;
3221 	isec = file->f_path.dentry->d_inode->i_security;
3222 	/*
3223 	 * Save inode label and policy sequence number
3224 	 * at open-time so that selinux_file_permission
3225 	 * can determine whether revalidation is necessary.
3226 	 * Task label is already saved in the file security
3227 	 * struct as its SID.
3228 	 */
3229 	fsec->isid = isec->sid;
3230 	fsec->pseqno = avc_policy_seqno();
3231 	/*
3232 	 * Since the inode label or policy seqno may have changed
3233 	 * between the selinux_inode_permission check and the saving
3234 	 * of state above, recheck that access is still permitted.
3235 	 * Otherwise, access might never be revalidated against the
3236 	 * new inode label or new policy.
3237 	 * This check is not redundant - do not remove.
3238 	 */
3239 	return path_has_perm(cred, &file->f_path, open_file_to_av(file));
3240 }
3241 
3242 /* task security operations */
3243 
3244 static int selinux_task_create(unsigned long clone_flags)
3245 {
3246 	return current_has_perm(current, PROCESS__FORK);
3247 }
3248 
3249 /*
3250  * allocate the SELinux part of blank credentials
3251  */
3252 static int selinux_cred_alloc_blank(struct cred *cred, gfp_t gfp)
3253 {
3254 	struct task_security_struct *tsec;
3255 
3256 	tsec = kzalloc(sizeof(struct task_security_struct), gfp);
3257 	if (!tsec)
3258 		return -ENOMEM;
3259 
3260 	cred->security = tsec;
3261 	return 0;
3262 }
3263 
3264 /*
3265  * detach and free the LSM part of a set of credentials
3266  */
3267 static void selinux_cred_free(struct cred *cred)
3268 {
3269 	struct task_security_struct *tsec = cred->security;
3270 
3271 	/*
3272 	 * cred->security == NULL if security_cred_alloc_blank() or
3273 	 * security_prepare_creds() returned an error.
3274 	 */
3275 	BUG_ON(cred->security && (unsigned long) cred->security < PAGE_SIZE);
3276 	cred->security = (void *) 0x7UL;
3277 	kfree(tsec);
3278 }
3279 
3280 /*
3281  * prepare a new set of credentials for modification
3282  */
3283 static int selinux_cred_prepare(struct cred *new, const struct cred *old,
3284 				gfp_t gfp)
3285 {
3286 	const struct task_security_struct *old_tsec;
3287 	struct task_security_struct *tsec;
3288 
3289 	old_tsec = old->security;
3290 
3291 	tsec = kmemdup(old_tsec, sizeof(struct task_security_struct), gfp);
3292 	if (!tsec)
3293 		return -ENOMEM;
3294 
3295 	new->security = tsec;
3296 	return 0;
3297 }
3298 
3299 /*
3300  * transfer the SELinux data to a blank set of creds
3301  */
3302 static void selinux_cred_transfer(struct cred *new, const struct cred *old)
3303 {
3304 	const struct task_security_struct *old_tsec = old->security;
3305 	struct task_security_struct *tsec = new->security;
3306 
3307 	*tsec = *old_tsec;
3308 }
3309 
3310 /*
3311  * set the security data for a kernel service
3312  * - all the creation contexts are set to unlabelled
3313  */
3314 static int selinux_kernel_act_as(struct cred *new, u32 secid)
3315 {
3316 	struct task_security_struct *tsec = new->security;
3317 	u32 sid = current_sid();
3318 	int ret;
3319 
3320 	ret = avc_has_perm(sid, secid,
3321 			   SECCLASS_KERNEL_SERVICE,
3322 			   KERNEL_SERVICE__USE_AS_OVERRIDE,
3323 			   NULL);
3324 	if (ret == 0) {
3325 		tsec->sid = secid;
3326 		tsec->create_sid = 0;
3327 		tsec->keycreate_sid = 0;
3328 		tsec->sockcreate_sid = 0;
3329 	}
3330 	return ret;
3331 }
3332 
3333 /*
3334  * set the file creation context in a security record to the same as the
3335  * objective context of the specified inode
3336  */
3337 static int selinux_kernel_create_files_as(struct cred *new, struct inode *inode)
3338 {
3339 	struct inode_security_struct *isec = inode->i_security;
3340 	struct task_security_struct *tsec = new->security;
3341 	u32 sid = current_sid();
3342 	int ret;
3343 
3344 	ret = avc_has_perm(sid, isec->sid,
3345 			   SECCLASS_KERNEL_SERVICE,
3346 			   KERNEL_SERVICE__CREATE_FILES_AS,
3347 			   NULL);
3348 
3349 	if (ret == 0)
3350 		tsec->create_sid = isec->sid;
3351 	return ret;
3352 }
3353 
3354 static int selinux_kernel_module_request(char *kmod_name)
3355 {
3356 	u32 sid;
3357 	struct common_audit_data ad;
3358 
3359 	sid = task_sid(current);
3360 
3361 	ad.type = LSM_AUDIT_DATA_KMOD;
3362 	ad.u.kmod_name = kmod_name;
3363 
3364 	return avc_has_perm(sid, SECINITSID_KERNEL, SECCLASS_SYSTEM,
3365 			    SYSTEM__MODULE_REQUEST, &ad);
3366 }
3367 
3368 static int selinux_task_setpgid(struct task_struct *p, pid_t pgid)
3369 {
3370 	return current_has_perm(p, PROCESS__SETPGID);
3371 }
3372 
3373 static int selinux_task_getpgid(struct task_struct *p)
3374 {
3375 	return current_has_perm(p, PROCESS__GETPGID);
3376 }
3377 
3378 static int selinux_task_getsid(struct task_struct *p)
3379 {
3380 	return current_has_perm(p, PROCESS__GETSESSION);
3381 }
3382 
3383 static void selinux_task_getsecid(struct task_struct *p, u32 *secid)
3384 {
3385 	*secid = task_sid(p);
3386 }
3387 
3388 static int selinux_task_setnice(struct task_struct *p, int nice)
3389 {
3390 	int rc;
3391 
3392 	rc = cap_task_setnice(p, nice);
3393 	if (rc)
3394 		return rc;
3395 
3396 	return current_has_perm(p, PROCESS__SETSCHED);
3397 }
3398 
3399 static int selinux_task_setioprio(struct task_struct *p, int ioprio)
3400 {
3401 	int rc;
3402 
3403 	rc = cap_task_setioprio(p, ioprio);
3404 	if (rc)
3405 		return rc;
3406 
3407 	return current_has_perm(p, PROCESS__SETSCHED);
3408 }
3409 
3410 static int selinux_task_getioprio(struct task_struct *p)
3411 {
3412 	return current_has_perm(p, PROCESS__GETSCHED);
3413 }
3414 
3415 static int selinux_task_setrlimit(struct task_struct *p, unsigned int resource,
3416 		struct rlimit *new_rlim)
3417 {
3418 	struct rlimit *old_rlim = p->signal->rlim + resource;
3419 
3420 	/* Control the ability to change the hard limit (whether
3421 	   lowering or raising it), so that the hard limit can
3422 	   later be used as a safe reset point for the soft limit
3423 	   upon context transitions.  See selinux_bprm_committing_creds. */
3424 	if (old_rlim->rlim_max != new_rlim->rlim_max)
3425 		return current_has_perm(p, PROCESS__SETRLIMIT);
3426 
3427 	return 0;
3428 }
3429 
3430 static int selinux_task_setscheduler(struct task_struct *p)
3431 {
3432 	int rc;
3433 
3434 	rc = cap_task_setscheduler(p);
3435 	if (rc)
3436 		return rc;
3437 
3438 	return current_has_perm(p, PROCESS__SETSCHED);
3439 }
3440 
3441 static int selinux_task_getscheduler(struct task_struct *p)
3442 {
3443 	return current_has_perm(p, PROCESS__GETSCHED);
3444 }
3445 
3446 static int selinux_task_movememory(struct task_struct *p)
3447 {
3448 	return current_has_perm(p, PROCESS__SETSCHED);
3449 }
3450 
3451 static int selinux_task_kill(struct task_struct *p, struct siginfo *info,
3452 				int sig, u32 secid)
3453 {
3454 	u32 perm;
3455 	int rc;
3456 
3457 	if (!sig)
3458 		perm = PROCESS__SIGNULL; /* null signal; existence test */
3459 	else
3460 		perm = signal_to_av(sig);
3461 	if (secid)
3462 		rc = avc_has_perm(secid, task_sid(p),
3463 				  SECCLASS_PROCESS, perm, NULL);
3464 	else
3465 		rc = current_has_perm(p, perm);
3466 	return rc;
3467 }
3468 
3469 static int selinux_task_wait(struct task_struct *p)
3470 {
3471 	return task_has_perm(p, current, PROCESS__SIGCHLD);
3472 }
3473 
3474 static void selinux_task_to_inode(struct task_struct *p,
3475 				  struct inode *inode)
3476 {
3477 	struct inode_security_struct *isec = inode->i_security;
3478 	u32 sid = task_sid(p);
3479 
3480 	isec->sid = sid;
3481 	isec->initialized = 1;
3482 }
3483 
3484 /* Returns error only if unable to parse addresses */
3485 static int selinux_parse_skb_ipv4(struct sk_buff *skb,
3486 			struct common_audit_data *ad, u8 *proto)
3487 {
3488 	int offset, ihlen, ret = -EINVAL;
3489 	struct iphdr _iph, *ih;
3490 
3491 	offset = skb_network_offset(skb);
3492 	ih = skb_header_pointer(skb, offset, sizeof(_iph), &_iph);
3493 	if (ih == NULL)
3494 		goto out;
3495 
3496 	ihlen = ih->ihl * 4;
3497 	if (ihlen < sizeof(_iph))
3498 		goto out;
3499 
3500 	ad->u.net->v4info.saddr = ih->saddr;
3501 	ad->u.net->v4info.daddr = ih->daddr;
3502 	ret = 0;
3503 
3504 	if (proto)
3505 		*proto = ih->protocol;
3506 
3507 	switch (ih->protocol) {
3508 	case IPPROTO_TCP: {
3509 		struct tcphdr _tcph, *th;
3510 
3511 		if (ntohs(ih->frag_off) & IP_OFFSET)
3512 			break;
3513 
3514 		offset += ihlen;
3515 		th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3516 		if (th == NULL)
3517 			break;
3518 
3519 		ad->u.net->sport = th->source;
3520 		ad->u.net->dport = th->dest;
3521 		break;
3522 	}
3523 
3524 	case IPPROTO_UDP: {
3525 		struct udphdr _udph, *uh;
3526 
3527 		if (ntohs(ih->frag_off) & IP_OFFSET)
3528 			break;
3529 
3530 		offset += ihlen;
3531 		uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3532 		if (uh == NULL)
3533 			break;
3534 
3535 		ad->u.net->sport = uh->source;
3536 		ad->u.net->dport = uh->dest;
3537 		break;
3538 	}
3539 
3540 	case IPPROTO_DCCP: {
3541 		struct dccp_hdr _dccph, *dh;
3542 
3543 		if (ntohs(ih->frag_off) & IP_OFFSET)
3544 			break;
3545 
3546 		offset += ihlen;
3547 		dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3548 		if (dh == NULL)
3549 			break;
3550 
3551 		ad->u.net->sport = dh->dccph_sport;
3552 		ad->u.net->dport = dh->dccph_dport;
3553 		break;
3554 	}
3555 
3556 	default:
3557 		break;
3558 	}
3559 out:
3560 	return ret;
3561 }
3562 
3563 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3564 
3565 /* Returns error only if unable to parse addresses */
3566 static int selinux_parse_skb_ipv6(struct sk_buff *skb,
3567 			struct common_audit_data *ad, u8 *proto)
3568 {
3569 	u8 nexthdr;
3570 	int ret = -EINVAL, offset;
3571 	struct ipv6hdr _ipv6h, *ip6;
3572 	__be16 frag_off;
3573 
3574 	offset = skb_network_offset(skb);
3575 	ip6 = skb_header_pointer(skb, offset, sizeof(_ipv6h), &_ipv6h);
3576 	if (ip6 == NULL)
3577 		goto out;
3578 
3579 	ad->u.net->v6info.saddr = ip6->saddr;
3580 	ad->u.net->v6info.daddr = ip6->daddr;
3581 	ret = 0;
3582 
3583 	nexthdr = ip6->nexthdr;
3584 	offset += sizeof(_ipv6h);
3585 	offset = ipv6_skip_exthdr(skb, offset, &nexthdr, &frag_off);
3586 	if (offset < 0)
3587 		goto out;
3588 
3589 	if (proto)
3590 		*proto = nexthdr;
3591 
3592 	switch (nexthdr) {
3593 	case IPPROTO_TCP: {
3594 		struct tcphdr _tcph, *th;
3595 
3596 		th = skb_header_pointer(skb, offset, sizeof(_tcph), &_tcph);
3597 		if (th == NULL)
3598 			break;
3599 
3600 		ad->u.net->sport = th->source;
3601 		ad->u.net->dport = th->dest;
3602 		break;
3603 	}
3604 
3605 	case IPPROTO_UDP: {
3606 		struct udphdr _udph, *uh;
3607 
3608 		uh = skb_header_pointer(skb, offset, sizeof(_udph), &_udph);
3609 		if (uh == NULL)
3610 			break;
3611 
3612 		ad->u.net->sport = uh->source;
3613 		ad->u.net->dport = uh->dest;
3614 		break;
3615 	}
3616 
3617 	case IPPROTO_DCCP: {
3618 		struct dccp_hdr _dccph, *dh;
3619 
3620 		dh = skb_header_pointer(skb, offset, sizeof(_dccph), &_dccph);
3621 		if (dh == NULL)
3622 			break;
3623 
3624 		ad->u.net->sport = dh->dccph_sport;
3625 		ad->u.net->dport = dh->dccph_dport;
3626 		break;
3627 	}
3628 
3629 	/* includes fragments */
3630 	default:
3631 		break;
3632 	}
3633 out:
3634 	return ret;
3635 }
3636 
3637 #endif /* IPV6 */
3638 
3639 static int selinux_parse_skb(struct sk_buff *skb, struct common_audit_data *ad,
3640 			     char **_addrp, int src, u8 *proto)
3641 {
3642 	char *addrp;
3643 	int ret;
3644 
3645 	switch (ad->u.net->family) {
3646 	case PF_INET:
3647 		ret = selinux_parse_skb_ipv4(skb, ad, proto);
3648 		if (ret)
3649 			goto parse_error;
3650 		addrp = (char *)(src ? &ad->u.net->v4info.saddr :
3651 				       &ad->u.net->v4info.daddr);
3652 		goto okay;
3653 
3654 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
3655 	case PF_INET6:
3656 		ret = selinux_parse_skb_ipv6(skb, ad, proto);
3657 		if (ret)
3658 			goto parse_error;
3659 		addrp = (char *)(src ? &ad->u.net->v6info.saddr :
3660 				       &ad->u.net->v6info.daddr);
3661 		goto okay;
3662 #endif	/* IPV6 */
3663 	default:
3664 		addrp = NULL;
3665 		goto okay;
3666 	}
3667 
3668 parse_error:
3669 	printk(KERN_WARNING
3670 	       "SELinux: failure in selinux_parse_skb(),"
3671 	       " unable to parse packet\n");
3672 	return ret;
3673 
3674 okay:
3675 	if (_addrp)
3676 		*_addrp = addrp;
3677 	return 0;
3678 }
3679 
3680 /**
3681  * selinux_skb_peerlbl_sid - Determine the peer label of a packet
3682  * @skb: the packet
3683  * @family: protocol family
3684  * @sid: the packet's peer label SID
3685  *
3686  * Description:
3687  * Check the various different forms of network peer labeling and determine
3688  * the peer label/SID for the packet; most of the magic actually occurs in
3689  * the security server function security_net_peersid_cmp().  The function
3690  * returns zero if the value in @sid is valid (although it may be SECSID_NULL)
3691  * or -EACCES if @sid is invalid due to inconsistencies with the different
3692  * peer labels.
3693  *
3694  */
3695 static int selinux_skb_peerlbl_sid(struct sk_buff *skb, u16 family, u32 *sid)
3696 {
3697 	int err;
3698 	u32 xfrm_sid;
3699 	u32 nlbl_sid;
3700 	u32 nlbl_type;
3701 
3702 	selinux_skb_xfrm_sid(skb, &xfrm_sid);
3703 	selinux_netlbl_skbuff_getsid(skb, family, &nlbl_type, &nlbl_sid);
3704 
3705 	err = security_net_peersid_resolve(nlbl_sid, nlbl_type, xfrm_sid, sid);
3706 	if (unlikely(err)) {
3707 		printk(KERN_WARNING
3708 		       "SELinux: failure in selinux_skb_peerlbl_sid(),"
3709 		       " unable to determine packet's peer label\n");
3710 		return -EACCES;
3711 	}
3712 
3713 	return 0;
3714 }
3715 
3716 /* socket security operations */
3717 
3718 static int socket_sockcreate_sid(const struct task_security_struct *tsec,
3719 				 u16 secclass, u32 *socksid)
3720 {
3721 	if (tsec->sockcreate_sid > SECSID_NULL) {
3722 		*socksid = tsec->sockcreate_sid;
3723 		return 0;
3724 	}
3725 
3726 	return security_transition_sid(tsec->sid, tsec->sid, secclass, NULL,
3727 				       socksid);
3728 }
3729 
3730 static int sock_has_perm(struct task_struct *task, struct sock *sk, u32 perms)
3731 {
3732 	struct sk_security_struct *sksec = sk->sk_security;
3733 	struct common_audit_data ad;
3734 	struct lsm_network_audit net = {0,};
3735 	u32 tsid = task_sid(task);
3736 
3737 	if (sksec->sid == SECINITSID_KERNEL)
3738 		return 0;
3739 
3740 	ad.type = LSM_AUDIT_DATA_NET;
3741 	ad.u.net = &net;
3742 	ad.u.net->sk = sk;
3743 
3744 	return avc_has_perm(tsid, sksec->sid, sksec->sclass, perms, &ad);
3745 }
3746 
3747 static int selinux_socket_create(int family, int type,
3748 				 int protocol, int kern)
3749 {
3750 	const struct task_security_struct *tsec = current_security();
3751 	u32 newsid;
3752 	u16 secclass;
3753 	int rc;
3754 
3755 	if (kern)
3756 		return 0;
3757 
3758 	secclass = socket_type_to_security_class(family, type, protocol);
3759 	rc = socket_sockcreate_sid(tsec, secclass, &newsid);
3760 	if (rc)
3761 		return rc;
3762 
3763 	return avc_has_perm(tsec->sid, newsid, secclass, SOCKET__CREATE, NULL);
3764 }
3765 
3766 static int selinux_socket_post_create(struct socket *sock, int family,
3767 				      int type, int protocol, int kern)
3768 {
3769 	const struct task_security_struct *tsec = current_security();
3770 	struct inode_security_struct *isec = SOCK_INODE(sock)->i_security;
3771 	struct sk_security_struct *sksec;
3772 	int err = 0;
3773 
3774 	isec->sclass = socket_type_to_security_class(family, type, protocol);
3775 
3776 	if (kern)
3777 		isec->sid = SECINITSID_KERNEL;
3778 	else {
3779 		err = socket_sockcreate_sid(tsec, isec->sclass, &(isec->sid));
3780 		if (err)
3781 			return err;
3782 	}
3783 
3784 	isec->initialized = 1;
3785 
3786 	if (sock->sk) {
3787 		sksec = sock->sk->sk_security;
3788 		sksec->sid = isec->sid;
3789 		sksec->sclass = isec->sclass;
3790 		err = selinux_netlbl_socket_post_create(sock->sk, family);
3791 	}
3792 
3793 	return err;
3794 }
3795 
3796 /* Range of port numbers used to automatically bind.
3797    Need to determine whether we should perform a name_bind
3798    permission check between the socket and the port number. */
3799 
3800 static int selinux_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
3801 {
3802 	struct sock *sk = sock->sk;
3803 	u16 family;
3804 	int err;
3805 
3806 	err = sock_has_perm(current, sk, SOCKET__BIND);
3807 	if (err)
3808 		goto out;
3809 
3810 	/*
3811 	 * If PF_INET or PF_INET6, check name_bind permission for the port.
3812 	 * Multiple address binding for SCTP is not supported yet: we just
3813 	 * check the first address now.
3814 	 */
3815 	family = sk->sk_family;
3816 	if (family == PF_INET || family == PF_INET6) {
3817 		char *addrp;
3818 		struct sk_security_struct *sksec = sk->sk_security;
3819 		struct common_audit_data ad;
3820 		struct lsm_network_audit net = {0,};
3821 		struct sockaddr_in *addr4 = NULL;
3822 		struct sockaddr_in6 *addr6 = NULL;
3823 		unsigned short snum;
3824 		u32 sid, node_perm;
3825 
3826 		if (family == PF_INET) {
3827 			addr4 = (struct sockaddr_in *)address;
3828 			snum = ntohs(addr4->sin_port);
3829 			addrp = (char *)&addr4->sin_addr.s_addr;
3830 		} else {
3831 			addr6 = (struct sockaddr_in6 *)address;
3832 			snum = ntohs(addr6->sin6_port);
3833 			addrp = (char *)&addr6->sin6_addr.s6_addr;
3834 		}
3835 
3836 		if (snum) {
3837 			int low, high;
3838 
3839 			inet_get_local_port_range(&low, &high);
3840 
3841 			if (snum < max(PROT_SOCK, low) || snum > high) {
3842 				err = sel_netport_sid(sk->sk_protocol,
3843 						      snum, &sid);
3844 				if (err)
3845 					goto out;
3846 				ad.type = LSM_AUDIT_DATA_NET;
3847 				ad.u.net = &net;
3848 				ad.u.net->sport = htons(snum);
3849 				ad.u.net->family = family;
3850 				err = avc_has_perm(sksec->sid, sid,
3851 						   sksec->sclass,
3852 						   SOCKET__NAME_BIND, &ad);
3853 				if (err)
3854 					goto out;
3855 			}
3856 		}
3857 
3858 		switch (sksec->sclass) {
3859 		case SECCLASS_TCP_SOCKET:
3860 			node_perm = TCP_SOCKET__NODE_BIND;
3861 			break;
3862 
3863 		case SECCLASS_UDP_SOCKET:
3864 			node_perm = UDP_SOCKET__NODE_BIND;
3865 			break;
3866 
3867 		case SECCLASS_DCCP_SOCKET:
3868 			node_perm = DCCP_SOCKET__NODE_BIND;
3869 			break;
3870 
3871 		default:
3872 			node_perm = RAWIP_SOCKET__NODE_BIND;
3873 			break;
3874 		}
3875 
3876 		err = sel_netnode_sid(addrp, family, &sid);
3877 		if (err)
3878 			goto out;
3879 
3880 		ad.type = LSM_AUDIT_DATA_NET;
3881 		ad.u.net = &net;
3882 		ad.u.net->sport = htons(snum);
3883 		ad.u.net->family = family;
3884 
3885 		if (family == PF_INET)
3886 			ad.u.net->v4info.saddr = addr4->sin_addr.s_addr;
3887 		else
3888 			ad.u.net->v6info.saddr = addr6->sin6_addr;
3889 
3890 		err = avc_has_perm(sksec->sid, sid,
3891 				   sksec->sclass, node_perm, &ad);
3892 		if (err)
3893 			goto out;
3894 	}
3895 out:
3896 	return err;
3897 }
3898 
3899 static int selinux_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
3900 {
3901 	struct sock *sk = sock->sk;
3902 	struct sk_security_struct *sksec = sk->sk_security;
3903 	int err;
3904 
3905 	err = sock_has_perm(current, sk, SOCKET__CONNECT);
3906 	if (err)
3907 		return err;
3908 
3909 	/*
3910 	 * If a TCP or DCCP socket, check name_connect permission for the port.
3911 	 */
3912 	if (sksec->sclass == SECCLASS_TCP_SOCKET ||
3913 	    sksec->sclass == SECCLASS_DCCP_SOCKET) {
3914 		struct common_audit_data ad;
3915 		struct lsm_network_audit net = {0,};
3916 		struct sockaddr_in *addr4 = NULL;
3917 		struct sockaddr_in6 *addr6 = NULL;
3918 		unsigned short snum;
3919 		u32 sid, perm;
3920 
3921 		if (sk->sk_family == PF_INET) {
3922 			addr4 = (struct sockaddr_in *)address;
3923 			if (addrlen < sizeof(struct sockaddr_in))
3924 				return -EINVAL;
3925 			snum = ntohs(addr4->sin_port);
3926 		} else {
3927 			addr6 = (struct sockaddr_in6 *)address;
3928 			if (addrlen < SIN6_LEN_RFC2133)
3929 				return -EINVAL;
3930 			snum = ntohs(addr6->sin6_port);
3931 		}
3932 
3933 		err = sel_netport_sid(sk->sk_protocol, snum, &sid);
3934 		if (err)
3935 			goto out;
3936 
3937 		perm = (sksec->sclass == SECCLASS_TCP_SOCKET) ?
3938 		       TCP_SOCKET__NAME_CONNECT : DCCP_SOCKET__NAME_CONNECT;
3939 
3940 		ad.type = LSM_AUDIT_DATA_NET;
3941 		ad.u.net = &net;
3942 		ad.u.net->dport = htons(snum);
3943 		ad.u.net->family = sk->sk_family;
3944 		err = avc_has_perm(sksec->sid, sid, sksec->sclass, perm, &ad);
3945 		if (err)
3946 			goto out;
3947 	}
3948 
3949 	err = selinux_netlbl_socket_connect(sk, address);
3950 
3951 out:
3952 	return err;
3953 }
3954 
3955 static int selinux_socket_listen(struct socket *sock, int backlog)
3956 {
3957 	return sock_has_perm(current, sock->sk, SOCKET__LISTEN);
3958 }
3959 
3960 static int selinux_socket_accept(struct socket *sock, struct socket *newsock)
3961 {
3962 	int err;
3963 	struct inode_security_struct *isec;
3964 	struct inode_security_struct *newisec;
3965 
3966 	err = sock_has_perm(current, sock->sk, SOCKET__ACCEPT);
3967 	if (err)
3968 		return err;
3969 
3970 	newisec = SOCK_INODE(newsock)->i_security;
3971 
3972 	isec = SOCK_INODE(sock)->i_security;
3973 	newisec->sclass = isec->sclass;
3974 	newisec->sid = isec->sid;
3975 	newisec->initialized = 1;
3976 
3977 	return 0;
3978 }
3979 
3980 static int selinux_socket_sendmsg(struct socket *sock, struct msghdr *msg,
3981 				  int size)
3982 {
3983 	return sock_has_perm(current, sock->sk, SOCKET__WRITE);
3984 }
3985 
3986 static int selinux_socket_recvmsg(struct socket *sock, struct msghdr *msg,
3987 				  int size, int flags)
3988 {
3989 	return sock_has_perm(current, sock->sk, SOCKET__READ);
3990 }
3991 
3992 static int selinux_socket_getsockname(struct socket *sock)
3993 {
3994 	return sock_has_perm(current, sock->sk, SOCKET__GETATTR);
3995 }
3996 
3997 static int selinux_socket_getpeername(struct socket *sock)
3998 {
3999 	return sock_has_perm(current, sock->sk, SOCKET__GETATTR);
4000 }
4001 
4002 static int selinux_socket_setsockopt(struct socket *sock, int level, int optname)
4003 {
4004 	int err;
4005 
4006 	err = sock_has_perm(current, sock->sk, SOCKET__SETOPT);
4007 	if (err)
4008 		return err;
4009 
4010 	return selinux_netlbl_socket_setsockopt(sock, level, optname);
4011 }
4012 
4013 static int selinux_socket_getsockopt(struct socket *sock, int level,
4014 				     int optname)
4015 {
4016 	return sock_has_perm(current, sock->sk, SOCKET__GETOPT);
4017 }
4018 
4019 static int selinux_socket_shutdown(struct socket *sock, int how)
4020 {
4021 	return sock_has_perm(current, sock->sk, SOCKET__SHUTDOWN);
4022 }
4023 
4024 static int selinux_socket_unix_stream_connect(struct sock *sock,
4025 					      struct sock *other,
4026 					      struct sock *newsk)
4027 {
4028 	struct sk_security_struct *sksec_sock = sock->sk_security;
4029 	struct sk_security_struct *sksec_other = other->sk_security;
4030 	struct sk_security_struct *sksec_new = newsk->sk_security;
4031 	struct common_audit_data ad;
4032 	struct lsm_network_audit net = {0,};
4033 	int err;
4034 
4035 	ad.type = LSM_AUDIT_DATA_NET;
4036 	ad.u.net = &net;
4037 	ad.u.net->sk = other;
4038 
4039 	err = avc_has_perm(sksec_sock->sid, sksec_other->sid,
4040 			   sksec_other->sclass,
4041 			   UNIX_STREAM_SOCKET__CONNECTTO, &ad);
4042 	if (err)
4043 		return err;
4044 
4045 	/* server child socket */
4046 	sksec_new->peer_sid = sksec_sock->sid;
4047 	err = security_sid_mls_copy(sksec_other->sid, sksec_sock->sid,
4048 				    &sksec_new->sid);
4049 	if (err)
4050 		return err;
4051 
4052 	/* connecting socket */
4053 	sksec_sock->peer_sid = sksec_new->sid;
4054 
4055 	return 0;
4056 }
4057 
4058 static int selinux_socket_unix_may_send(struct socket *sock,
4059 					struct socket *other)
4060 {
4061 	struct sk_security_struct *ssec = sock->sk->sk_security;
4062 	struct sk_security_struct *osec = other->sk->sk_security;
4063 	struct common_audit_data ad;
4064 	struct lsm_network_audit net = {0,};
4065 
4066 	ad.type = LSM_AUDIT_DATA_NET;
4067 	ad.u.net = &net;
4068 	ad.u.net->sk = other->sk;
4069 
4070 	return avc_has_perm(ssec->sid, osec->sid, osec->sclass, SOCKET__SENDTO,
4071 			    &ad);
4072 }
4073 
4074 static int selinux_inet_sys_rcv_skb(int ifindex, char *addrp, u16 family,
4075 				    u32 peer_sid,
4076 				    struct common_audit_data *ad)
4077 {
4078 	int err;
4079 	u32 if_sid;
4080 	u32 node_sid;
4081 
4082 	err = sel_netif_sid(ifindex, &if_sid);
4083 	if (err)
4084 		return err;
4085 	err = avc_has_perm(peer_sid, if_sid,
4086 			   SECCLASS_NETIF, NETIF__INGRESS, ad);
4087 	if (err)
4088 		return err;
4089 
4090 	err = sel_netnode_sid(addrp, family, &node_sid);
4091 	if (err)
4092 		return err;
4093 	return avc_has_perm(peer_sid, node_sid,
4094 			    SECCLASS_NODE, NODE__RECVFROM, ad);
4095 }
4096 
4097 static int selinux_sock_rcv_skb_compat(struct sock *sk, struct sk_buff *skb,
4098 				       u16 family)
4099 {
4100 	int err = 0;
4101 	struct sk_security_struct *sksec = sk->sk_security;
4102 	u32 sk_sid = sksec->sid;
4103 	struct common_audit_data ad;
4104 	struct lsm_network_audit net = {0,};
4105 	char *addrp;
4106 
4107 	ad.type = LSM_AUDIT_DATA_NET;
4108 	ad.u.net = &net;
4109 	ad.u.net->netif = skb->skb_iif;
4110 	ad.u.net->family = family;
4111 	err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4112 	if (err)
4113 		return err;
4114 
4115 	if (selinux_secmark_enabled()) {
4116 		err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4117 				   PACKET__RECV, &ad);
4118 		if (err)
4119 			return err;
4120 	}
4121 
4122 	err = selinux_netlbl_sock_rcv_skb(sksec, skb, family, &ad);
4123 	if (err)
4124 		return err;
4125 	err = selinux_xfrm_sock_rcv_skb(sksec->sid, skb, &ad);
4126 
4127 	return err;
4128 }
4129 
4130 static int selinux_socket_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4131 {
4132 	int err;
4133 	struct sk_security_struct *sksec = sk->sk_security;
4134 	u16 family = sk->sk_family;
4135 	u32 sk_sid = sksec->sid;
4136 	struct common_audit_data ad;
4137 	struct lsm_network_audit net = {0,};
4138 	char *addrp;
4139 	u8 secmark_active;
4140 	u8 peerlbl_active;
4141 
4142 	if (family != PF_INET && family != PF_INET6)
4143 		return 0;
4144 
4145 	/* Handle mapped IPv4 packets arriving via IPv6 sockets */
4146 	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4147 		family = PF_INET;
4148 
4149 	/* If any sort of compatibility mode is enabled then handoff processing
4150 	 * to the selinux_sock_rcv_skb_compat() function to deal with the
4151 	 * special handling.  We do this in an attempt to keep this function
4152 	 * as fast and as clean as possible. */
4153 	if (!selinux_policycap_netpeer)
4154 		return selinux_sock_rcv_skb_compat(sk, skb, family);
4155 
4156 	secmark_active = selinux_secmark_enabled();
4157 	peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled();
4158 	if (!secmark_active && !peerlbl_active)
4159 		return 0;
4160 
4161 	ad.type = LSM_AUDIT_DATA_NET;
4162 	ad.u.net = &net;
4163 	ad.u.net->netif = skb->skb_iif;
4164 	ad.u.net->family = family;
4165 	err = selinux_parse_skb(skb, &ad, &addrp, 1, NULL);
4166 	if (err)
4167 		return err;
4168 
4169 	if (peerlbl_active) {
4170 		u32 peer_sid;
4171 
4172 		err = selinux_skb_peerlbl_sid(skb, family, &peer_sid);
4173 		if (err)
4174 			return err;
4175 		err = selinux_inet_sys_rcv_skb(skb->skb_iif, addrp, family,
4176 					       peer_sid, &ad);
4177 		if (err) {
4178 			selinux_netlbl_err(skb, err, 0);
4179 			return err;
4180 		}
4181 		err = avc_has_perm(sk_sid, peer_sid, SECCLASS_PEER,
4182 				   PEER__RECV, &ad);
4183 		if (err)
4184 			selinux_netlbl_err(skb, err, 0);
4185 	}
4186 
4187 	if (secmark_active) {
4188 		err = avc_has_perm(sk_sid, skb->secmark, SECCLASS_PACKET,
4189 				   PACKET__RECV, &ad);
4190 		if (err)
4191 			return err;
4192 	}
4193 
4194 	return err;
4195 }
4196 
4197 static int selinux_socket_getpeersec_stream(struct socket *sock, char __user *optval,
4198 					    int __user *optlen, unsigned len)
4199 {
4200 	int err = 0;
4201 	char *scontext;
4202 	u32 scontext_len;
4203 	struct sk_security_struct *sksec = sock->sk->sk_security;
4204 	u32 peer_sid = SECSID_NULL;
4205 
4206 	if (sksec->sclass == SECCLASS_UNIX_STREAM_SOCKET ||
4207 	    sksec->sclass == SECCLASS_TCP_SOCKET)
4208 		peer_sid = sksec->peer_sid;
4209 	if (peer_sid == SECSID_NULL)
4210 		return -ENOPROTOOPT;
4211 
4212 	err = security_sid_to_context(peer_sid, &scontext, &scontext_len);
4213 	if (err)
4214 		return err;
4215 
4216 	if (scontext_len > len) {
4217 		err = -ERANGE;
4218 		goto out_len;
4219 	}
4220 
4221 	if (copy_to_user(optval, scontext, scontext_len))
4222 		err = -EFAULT;
4223 
4224 out_len:
4225 	if (put_user(scontext_len, optlen))
4226 		err = -EFAULT;
4227 	kfree(scontext);
4228 	return err;
4229 }
4230 
4231 static int selinux_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
4232 {
4233 	u32 peer_secid = SECSID_NULL;
4234 	u16 family;
4235 
4236 	if (skb && skb->protocol == htons(ETH_P_IP))
4237 		family = PF_INET;
4238 	else if (skb && skb->protocol == htons(ETH_P_IPV6))
4239 		family = PF_INET6;
4240 	else if (sock)
4241 		family = sock->sk->sk_family;
4242 	else
4243 		goto out;
4244 
4245 	if (sock && family == PF_UNIX)
4246 		selinux_inode_getsecid(SOCK_INODE(sock), &peer_secid);
4247 	else if (skb)
4248 		selinux_skb_peerlbl_sid(skb, family, &peer_secid);
4249 
4250 out:
4251 	*secid = peer_secid;
4252 	if (peer_secid == SECSID_NULL)
4253 		return -EINVAL;
4254 	return 0;
4255 }
4256 
4257 static int selinux_sk_alloc_security(struct sock *sk, int family, gfp_t priority)
4258 {
4259 	struct sk_security_struct *sksec;
4260 
4261 	sksec = kzalloc(sizeof(*sksec), priority);
4262 	if (!sksec)
4263 		return -ENOMEM;
4264 
4265 	sksec->peer_sid = SECINITSID_UNLABELED;
4266 	sksec->sid = SECINITSID_UNLABELED;
4267 	selinux_netlbl_sk_security_reset(sksec);
4268 	sk->sk_security = sksec;
4269 
4270 	return 0;
4271 }
4272 
4273 static void selinux_sk_free_security(struct sock *sk)
4274 {
4275 	struct sk_security_struct *sksec = sk->sk_security;
4276 
4277 	sk->sk_security = NULL;
4278 	selinux_netlbl_sk_security_free(sksec);
4279 	kfree(sksec);
4280 }
4281 
4282 static void selinux_sk_clone_security(const struct sock *sk, struct sock *newsk)
4283 {
4284 	struct sk_security_struct *sksec = sk->sk_security;
4285 	struct sk_security_struct *newsksec = newsk->sk_security;
4286 
4287 	newsksec->sid = sksec->sid;
4288 	newsksec->peer_sid = sksec->peer_sid;
4289 	newsksec->sclass = sksec->sclass;
4290 
4291 	selinux_netlbl_sk_security_reset(newsksec);
4292 }
4293 
4294 static void selinux_sk_getsecid(struct sock *sk, u32 *secid)
4295 {
4296 	if (!sk)
4297 		*secid = SECINITSID_ANY_SOCKET;
4298 	else {
4299 		struct sk_security_struct *sksec = sk->sk_security;
4300 
4301 		*secid = sksec->sid;
4302 	}
4303 }
4304 
4305 static void selinux_sock_graft(struct sock *sk, struct socket *parent)
4306 {
4307 	struct inode_security_struct *isec = SOCK_INODE(parent)->i_security;
4308 	struct sk_security_struct *sksec = sk->sk_security;
4309 
4310 	if (sk->sk_family == PF_INET || sk->sk_family == PF_INET6 ||
4311 	    sk->sk_family == PF_UNIX)
4312 		isec->sid = sksec->sid;
4313 	sksec->sclass = isec->sclass;
4314 }
4315 
4316 static int selinux_inet_conn_request(struct sock *sk, struct sk_buff *skb,
4317 				     struct request_sock *req)
4318 {
4319 	struct sk_security_struct *sksec = sk->sk_security;
4320 	int err;
4321 	u16 family = sk->sk_family;
4322 	u32 newsid;
4323 	u32 peersid;
4324 
4325 	/* handle mapped IPv4 packets arriving via IPv6 sockets */
4326 	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4327 		family = PF_INET;
4328 
4329 	err = selinux_skb_peerlbl_sid(skb, family, &peersid);
4330 	if (err)
4331 		return err;
4332 	if (peersid == SECSID_NULL) {
4333 		req->secid = sksec->sid;
4334 		req->peer_secid = SECSID_NULL;
4335 	} else {
4336 		err = security_sid_mls_copy(sksec->sid, peersid, &newsid);
4337 		if (err)
4338 			return err;
4339 		req->secid = newsid;
4340 		req->peer_secid = peersid;
4341 	}
4342 
4343 	return selinux_netlbl_inet_conn_request(req, family);
4344 }
4345 
4346 static void selinux_inet_csk_clone(struct sock *newsk,
4347 				   const struct request_sock *req)
4348 {
4349 	struct sk_security_struct *newsksec = newsk->sk_security;
4350 
4351 	newsksec->sid = req->secid;
4352 	newsksec->peer_sid = req->peer_secid;
4353 	/* NOTE: Ideally, we should also get the isec->sid for the
4354 	   new socket in sync, but we don't have the isec available yet.
4355 	   So we will wait until sock_graft to do it, by which
4356 	   time it will have been created and available. */
4357 
4358 	/* We don't need to take any sort of lock here as we are the only
4359 	 * thread with access to newsksec */
4360 	selinux_netlbl_inet_csk_clone(newsk, req->rsk_ops->family);
4361 }
4362 
4363 static void selinux_inet_conn_established(struct sock *sk, struct sk_buff *skb)
4364 {
4365 	u16 family = sk->sk_family;
4366 	struct sk_security_struct *sksec = sk->sk_security;
4367 
4368 	/* handle mapped IPv4 packets arriving via IPv6 sockets */
4369 	if (family == PF_INET6 && skb->protocol == htons(ETH_P_IP))
4370 		family = PF_INET;
4371 
4372 	selinux_skb_peerlbl_sid(skb, family, &sksec->peer_sid);
4373 }
4374 
4375 static int selinux_secmark_relabel_packet(u32 sid)
4376 {
4377 	const struct task_security_struct *__tsec;
4378 	u32 tsid;
4379 
4380 	__tsec = current_security();
4381 	tsid = __tsec->sid;
4382 
4383 	return avc_has_perm(tsid, sid, SECCLASS_PACKET, PACKET__RELABELTO, NULL);
4384 }
4385 
4386 static void selinux_secmark_refcount_inc(void)
4387 {
4388 	atomic_inc(&selinux_secmark_refcount);
4389 }
4390 
4391 static void selinux_secmark_refcount_dec(void)
4392 {
4393 	atomic_dec(&selinux_secmark_refcount);
4394 }
4395 
4396 static void selinux_req_classify_flow(const struct request_sock *req,
4397 				      struct flowi *fl)
4398 {
4399 	fl->flowi_secid = req->secid;
4400 }
4401 
4402 static int selinux_tun_dev_create(void)
4403 {
4404 	u32 sid = current_sid();
4405 
4406 	/* we aren't taking into account the "sockcreate" SID since the socket
4407 	 * that is being created here is not a socket in the traditional sense,
4408 	 * instead it is a private sock, accessible only to the kernel, and
4409 	 * representing a wide range of network traffic spanning multiple
4410 	 * connections unlike traditional sockets - check the TUN driver to
4411 	 * get a better understanding of why this socket is special */
4412 
4413 	return avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET, TUN_SOCKET__CREATE,
4414 			    NULL);
4415 }
4416 
4417 static void selinux_tun_dev_post_create(struct sock *sk)
4418 {
4419 	struct sk_security_struct *sksec = sk->sk_security;
4420 
4421 	/* we don't currently perform any NetLabel based labeling here and it
4422 	 * isn't clear that we would want to do so anyway; while we could apply
4423 	 * labeling without the support of the TUN user the resulting labeled
4424 	 * traffic from the other end of the connection would almost certainly
4425 	 * cause confusion to the TUN user that had no idea network labeling
4426 	 * protocols were being used */
4427 
4428 	/* see the comments in selinux_tun_dev_create() about why we don't use
4429 	 * the sockcreate SID here */
4430 
4431 	sksec->sid = current_sid();
4432 	sksec->sclass = SECCLASS_TUN_SOCKET;
4433 }
4434 
4435 static int selinux_tun_dev_attach(struct sock *sk)
4436 {
4437 	struct sk_security_struct *sksec = sk->sk_security;
4438 	u32 sid = current_sid();
4439 	int err;
4440 
4441 	err = avc_has_perm(sid, sksec->sid, SECCLASS_TUN_SOCKET,
4442 			   TUN_SOCKET__RELABELFROM, NULL);
4443 	if (err)
4444 		return err;
4445 	err = avc_has_perm(sid, sid, SECCLASS_TUN_SOCKET,
4446 			   TUN_SOCKET__RELABELTO, NULL);
4447 	if (err)
4448 		return err;
4449 
4450 	sksec->sid = sid;
4451 
4452 	return 0;
4453 }
4454 
4455 static int selinux_nlmsg_perm(struct sock *sk, struct sk_buff *skb)
4456 {
4457 	int err = 0;
4458 	u32 perm;
4459 	struct nlmsghdr *nlh;
4460 	struct sk_security_struct *sksec = sk->sk_security;
4461 
4462 	if (skb->len < NLMSG_SPACE(0)) {
4463 		err = -EINVAL;
4464 		goto out;
4465 	}
4466 	nlh = nlmsg_hdr(skb);
4467 
4468 	err = selinux_nlmsg_lookup(sksec->sclass, nlh->nlmsg_type, &perm);
4469 	if (err) {
4470 		if (err == -EINVAL) {
4471 			audit_log(current->audit_context, GFP_KERNEL, AUDIT_SELINUX_ERR,
4472 				  "SELinux:  unrecognized netlink message"
4473 				  " type=%hu for sclass=%hu\n",
4474 				  nlh->nlmsg_type, sksec->sclass);
4475 			if (!selinux_enforcing || security_get_allow_unknown())
4476 				err = 0;
4477 		}
4478 
4479 		/* Ignore */
4480 		if (err == -ENOENT)
4481 			err = 0;
4482 		goto out;
4483 	}
4484 
4485 	err = sock_has_perm(current, sk, perm);
4486 out:
4487 	return err;
4488 }
4489 
4490 #ifdef CONFIG_NETFILTER
4491 
4492 static unsigned int selinux_ip_forward(struct sk_buff *skb, int ifindex,
4493 				       u16 family)
4494 {
4495 	int err;
4496 	char *addrp;
4497 	u32 peer_sid;
4498 	struct common_audit_data ad;
4499 	struct lsm_network_audit net = {0,};
4500 	u8 secmark_active;
4501 	u8 netlbl_active;
4502 	u8 peerlbl_active;
4503 
4504 	if (!selinux_policycap_netpeer)
4505 		return NF_ACCEPT;
4506 
4507 	secmark_active = selinux_secmark_enabled();
4508 	netlbl_active = netlbl_enabled();
4509 	peerlbl_active = netlbl_active || selinux_xfrm_enabled();
4510 	if (!secmark_active && !peerlbl_active)
4511 		return NF_ACCEPT;
4512 
4513 	if (selinux_skb_peerlbl_sid(skb, family, &peer_sid) != 0)
4514 		return NF_DROP;
4515 
4516 	ad.type = LSM_AUDIT_DATA_NET;
4517 	ad.u.net = &net;
4518 	ad.u.net->netif = ifindex;
4519 	ad.u.net->family = family;
4520 	if (selinux_parse_skb(skb, &ad, &addrp, 1, NULL) != 0)
4521 		return NF_DROP;
4522 
4523 	if (peerlbl_active) {
4524 		err = selinux_inet_sys_rcv_skb(ifindex, addrp, family,
4525 					       peer_sid, &ad);
4526 		if (err) {
4527 			selinux_netlbl_err(skb, err, 1);
4528 			return NF_DROP;
4529 		}
4530 	}
4531 
4532 	if (secmark_active)
4533 		if (avc_has_perm(peer_sid, skb->secmark,
4534 				 SECCLASS_PACKET, PACKET__FORWARD_IN, &ad))
4535 			return NF_DROP;
4536 
4537 	if (netlbl_active)
4538 		/* we do this in the FORWARD path and not the POST_ROUTING
4539 		 * path because we want to make sure we apply the necessary
4540 		 * labeling before IPsec is applied so we can leverage AH
4541 		 * protection */
4542 		if (selinux_netlbl_skbuff_setsid(skb, family, peer_sid) != 0)
4543 			return NF_DROP;
4544 
4545 	return NF_ACCEPT;
4546 }
4547 
4548 static unsigned int selinux_ipv4_forward(unsigned int hooknum,
4549 					 struct sk_buff *skb,
4550 					 const struct net_device *in,
4551 					 const struct net_device *out,
4552 					 int (*okfn)(struct sk_buff *))
4553 {
4554 	return selinux_ip_forward(skb, in->ifindex, PF_INET);
4555 }
4556 
4557 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4558 static unsigned int selinux_ipv6_forward(unsigned int hooknum,
4559 					 struct sk_buff *skb,
4560 					 const struct net_device *in,
4561 					 const struct net_device *out,
4562 					 int (*okfn)(struct sk_buff *))
4563 {
4564 	return selinux_ip_forward(skb, in->ifindex, PF_INET6);
4565 }
4566 #endif	/* IPV6 */
4567 
4568 static unsigned int selinux_ip_output(struct sk_buff *skb,
4569 				      u16 family)
4570 {
4571 	u32 sid;
4572 
4573 	if (!netlbl_enabled())
4574 		return NF_ACCEPT;
4575 
4576 	/* we do this in the LOCAL_OUT path and not the POST_ROUTING path
4577 	 * because we want to make sure we apply the necessary labeling
4578 	 * before IPsec is applied so we can leverage AH protection */
4579 	if (skb->sk) {
4580 		struct sk_security_struct *sksec = skb->sk->sk_security;
4581 		sid = sksec->sid;
4582 	} else
4583 		sid = SECINITSID_KERNEL;
4584 	if (selinux_netlbl_skbuff_setsid(skb, family, sid) != 0)
4585 		return NF_DROP;
4586 
4587 	return NF_ACCEPT;
4588 }
4589 
4590 static unsigned int selinux_ipv4_output(unsigned int hooknum,
4591 					struct sk_buff *skb,
4592 					const struct net_device *in,
4593 					const struct net_device *out,
4594 					int (*okfn)(struct sk_buff *))
4595 {
4596 	return selinux_ip_output(skb, PF_INET);
4597 }
4598 
4599 static unsigned int selinux_ip_postroute_compat(struct sk_buff *skb,
4600 						int ifindex,
4601 						u16 family)
4602 {
4603 	struct sock *sk = skb->sk;
4604 	struct sk_security_struct *sksec;
4605 	struct common_audit_data ad;
4606 	struct lsm_network_audit net = {0,};
4607 	char *addrp;
4608 	u8 proto;
4609 
4610 	if (sk == NULL)
4611 		return NF_ACCEPT;
4612 	sksec = sk->sk_security;
4613 
4614 	ad.type = LSM_AUDIT_DATA_NET;
4615 	ad.u.net = &net;
4616 	ad.u.net->netif = ifindex;
4617 	ad.u.net->family = family;
4618 	if (selinux_parse_skb(skb, &ad, &addrp, 0, &proto))
4619 		return NF_DROP;
4620 
4621 	if (selinux_secmark_enabled())
4622 		if (avc_has_perm(sksec->sid, skb->secmark,
4623 				 SECCLASS_PACKET, PACKET__SEND, &ad))
4624 			return NF_DROP_ERR(-ECONNREFUSED);
4625 
4626 	if (selinux_xfrm_postroute_last(sksec->sid, skb, &ad, proto))
4627 		return NF_DROP_ERR(-ECONNREFUSED);
4628 
4629 	return NF_ACCEPT;
4630 }
4631 
4632 static unsigned int selinux_ip_postroute(struct sk_buff *skb, int ifindex,
4633 					 u16 family)
4634 {
4635 	u32 secmark_perm;
4636 	u32 peer_sid;
4637 	struct sock *sk;
4638 	struct common_audit_data ad;
4639 	struct lsm_network_audit net = {0,};
4640 	char *addrp;
4641 	u8 secmark_active;
4642 	u8 peerlbl_active;
4643 
4644 	/* If any sort of compatibility mode is enabled then handoff processing
4645 	 * to the selinux_ip_postroute_compat() function to deal with the
4646 	 * special handling.  We do this in an attempt to keep this function
4647 	 * as fast and as clean as possible. */
4648 	if (!selinux_policycap_netpeer)
4649 		return selinux_ip_postroute_compat(skb, ifindex, family);
4650 #ifdef CONFIG_XFRM
4651 	/* If skb->dst->xfrm is non-NULL then the packet is undergoing an IPsec
4652 	 * packet transformation so allow the packet to pass without any checks
4653 	 * since we'll have another chance to perform access control checks
4654 	 * when the packet is on it's final way out.
4655 	 * NOTE: there appear to be some IPv6 multicast cases where skb->dst
4656 	 *       is NULL, in this case go ahead and apply access control. */
4657 	if (skb_dst(skb) != NULL && skb_dst(skb)->xfrm != NULL)
4658 		return NF_ACCEPT;
4659 #endif
4660 	secmark_active = selinux_secmark_enabled();
4661 	peerlbl_active = netlbl_enabled() || selinux_xfrm_enabled();
4662 	if (!secmark_active && !peerlbl_active)
4663 		return NF_ACCEPT;
4664 
4665 	/* if the packet is being forwarded then get the peer label from the
4666 	 * packet itself; otherwise check to see if it is from a local
4667 	 * application or the kernel, if from an application get the peer label
4668 	 * from the sending socket, otherwise use the kernel's sid */
4669 	sk = skb->sk;
4670 	if (sk == NULL) {
4671 		if (skb->skb_iif) {
4672 			secmark_perm = PACKET__FORWARD_OUT;
4673 			if (selinux_skb_peerlbl_sid(skb, family, &peer_sid))
4674 				return NF_DROP;
4675 		} else {
4676 			secmark_perm = PACKET__SEND;
4677 			peer_sid = SECINITSID_KERNEL;
4678 		}
4679 	} else {
4680 		struct sk_security_struct *sksec = sk->sk_security;
4681 		peer_sid = sksec->sid;
4682 		secmark_perm = PACKET__SEND;
4683 	}
4684 
4685 	ad.type = LSM_AUDIT_DATA_NET;
4686 	ad.u.net = &net;
4687 	ad.u.net->netif = ifindex;
4688 	ad.u.net->family = family;
4689 	if (selinux_parse_skb(skb, &ad, &addrp, 0, NULL))
4690 		return NF_DROP;
4691 
4692 	if (secmark_active)
4693 		if (avc_has_perm(peer_sid, skb->secmark,
4694 				 SECCLASS_PACKET, secmark_perm, &ad))
4695 			return NF_DROP_ERR(-ECONNREFUSED);
4696 
4697 	if (peerlbl_active) {
4698 		u32 if_sid;
4699 		u32 node_sid;
4700 
4701 		if (sel_netif_sid(ifindex, &if_sid))
4702 			return NF_DROP;
4703 		if (avc_has_perm(peer_sid, if_sid,
4704 				 SECCLASS_NETIF, NETIF__EGRESS, &ad))
4705 			return NF_DROP_ERR(-ECONNREFUSED);
4706 
4707 		if (sel_netnode_sid(addrp, family, &node_sid))
4708 			return NF_DROP;
4709 		if (avc_has_perm(peer_sid, node_sid,
4710 				 SECCLASS_NODE, NODE__SENDTO, &ad))
4711 			return NF_DROP_ERR(-ECONNREFUSED);
4712 	}
4713 
4714 	return NF_ACCEPT;
4715 }
4716 
4717 static unsigned int selinux_ipv4_postroute(unsigned int hooknum,
4718 					   struct sk_buff *skb,
4719 					   const struct net_device *in,
4720 					   const struct net_device *out,
4721 					   int (*okfn)(struct sk_buff *))
4722 {
4723 	return selinux_ip_postroute(skb, out->ifindex, PF_INET);
4724 }
4725 
4726 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
4727 static unsigned int selinux_ipv6_postroute(unsigned int hooknum,
4728 					   struct sk_buff *skb,
4729 					   const struct net_device *in,
4730 					   const struct net_device *out,
4731 					   int (*okfn)(struct sk_buff *))
4732 {
4733 	return selinux_ip_postroute(skb, out->ifindex, PF_INET6);
4734 }
4735 #endif	/* IPV6 */
4736 
4737 #endif	/* CONFIG_NETFILTER */
4738 
4739 static int selinux_netlink_send(struct sock *sk, struct sk_buff *skb)
4740 {
4741 	int err;
4742 
4743 	err = cap_netlink_send(sk, skb);
4744 	if (err)
4745 		return err;
4746 
4747 	return selinux_nlmsg_perm(sk, skb);
4748 }
4749 
4750 static int ipc_alloc_security(struct task_struct *task,
4751 			      struct kern_ipc_perm *perm,
4752 			      u16 sclass)
4753 {
4754 	struct ipc_security_struct *isec;
4755 	u32 sid;
4756 
4757 	isec = kzalloc(sizeof(struct ipc_security_struct), GFP_KERNEL);
4758 	if (!isec)
4759 		return -ENOMEM;
4760 
4761 	sid = task_sid(task);
4762 	isec->sclass = sclass;
4763 	isec->sid = sid;
4764 	perm->security = isec;
4765 
4766 	return 0;
4767 }
4768 
4769 static void ipc_free_security(struct kern_ipc_perm *perm)
4770 {
4771 	struct ipc_security_struct *isec = perm->security;
4772 	perm->security = NULL;
4773 	kfree(isec);
4774 }
4775 
4776 static int msg_msg_alloc_security(struct msg_msg *msg)
4777 {
4778 	struct msg_security_struct *msec;
4779 
4780 	msec = kzalloc(sizeof(struct msg_security_struct), GFP_KERNEL);
4781 	if (!msec)
4782 		return -ENOMEM;
4783 
4784 	msec->sid = SECINITSID_UNLABELED;
4785 	msg->security = msec;
4786 
4787 	return 0;
4788 }
4789 
4790 static void msg_msg_free_security(struct msg_msg *msg)
4791 {
4792 	struct msg_security_struct *msec = msg->security;
4793 
4794 	msg->security = NULL;
4795 	kfree(msec);
4796 }
4797 
4798 static int ipc_has_perm(struct kern_ipc_perm *ipc_perms,
4799 			u32 perms)
4800 {
4801 	struct ipc_security_struct *isec;
4802 	struct common_audit_data ad;
4803 	u32 sid = current_sid();
4804 
4805 	isec = ipc_perms->security;
4806 
4807 	ad.type = LSM_AUDIT_DATA_IPC;
4808 	ad.u.ipc_id = ipc_perms->key;
4809 
4810 	return avc_has_perm(sid, isec->sid, isec->sclass, perms, &ad);
4811 }
4812 
4813 static int selinux_msg_msg_alloc_security(struct msg_msg *msg)
4814 {
4815 	return msg_msg_alloc_security(msg);
4816 }
4817 
4818 static void selinux_msg_msg_free_security(struct msg_msg *msg)
4819 {
4820 	msg_msg_free_security(msg);
4821 }
4822 
4823 /* message queue security operations */
4824 static int selinux_msg_queue_alloc_security(struct msg_queue *msq)
4825 {
4826 	struct ipc_security_struct *isec;
4827 	struct common_audit_data ad;
4828 	u32 sid = current_sid();
4829 	int rc;
4830 
4831 	rc = ipc_alloc_security(current, &msq->q_perm, SECCLASS_MSGQ);
4832 	if (rc)
4833 		return rc;
4834 
4835 	isec = msq->q_perm.security;
4836 
4837 	ad.type = LSM_AUDIT_DATA_IPC;
4838 	ad.u.ipc_id = msq->q_perm.key;
4839 
4840 	rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
4841 			  MSGQ__CREATE, &ad);
4842 	if (rc) {
4843 		ipc_free_security(&msq->q_perm);
4844 		return rc;
4845 	}
4846 	return 0;
4847 }
4848 
4849 static void selinux_msg_queue_free_security(struct msg_queue *msq)
4850 {
4851 	ipc_free_security(&msq->q_perm);
4852 }
4853 
4854 static int selinux_msg_queue_associate(struct msg_queue *msq, int msqflg)
4855 {
4856 	struct ipc_security_struct *isec;
4857 	struct common_audit_data ad;
4858 	u32 sid = current_sid();
4859 
4860 	isec = msq->q_perm.security;
4861 
4862 	ad.type = LSM_AUDIT_DATA_IPC;
4863 	ad.u.ipc_id = msq->q_perm.key;
4864 
4865 	return avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
4866 			    MSGQ__ASSOCIATE, &ad);
4867 }
4868 
4869 static int selinux_msg_queue_msgctl(struct msg_queue *msq, int cmd)
4870 {
4871 	int err;
4872 	int perms;
4873 
4874 	switch (cmd) {
4875 	case IPC_INFO:
4876 	case MSG_INFO:
4877 		/* No specific object, just general system-wide information. */
4878 		return task_has_system(current, SYSTEM__IPC_INFO);
4879 	case IPC_STAT:
4880 	case MSG_STAT:
4881 		perms = MSGQ__GETATTR | MSGQ__ASSOCIATE;
4882 		break;
4883 	case IPC_SET:
4884 		perms = MSGQ__SETATTR;
4885 		break;
4886 	case IPC_RMID:
4887 		perms = MSGQ__DESTROY;
4888 		break;
4889 	default:
4890 		return 0;
4891 	}
4892 
4893 	err = ipc_has_perm(&msq->q_perm, perms);
4894 	return err;
4895 }
4896 
4897 static int selinux_msg_queue_msgsnd(struct msg_queue *msq, struct msg_msg *msg, int msqflg)
4898 {
4899 	struct ipc_security_struct *isec;
4900 	struct msg_security_struct *msec;
4901 	struct common_audit_data ad;
4902 	u32 sid = current_sid();
4903 	int rc;
4904 
4905 	isec = msq->q_perm.security;
4906 	msec = msg->security;
4907 
4908 	/*
4909 	 * First time through, need to assign label to the message
4910 	 */
4911 	if (msec->sid == SECINITSID_UNLABELED) {
4912 		/*
4913 		 * Compute new sid based on current process and
4914 		 * message queue this message will be stored in
4915 		 */
4916 		rc = security_transition_sid(sid, isec->sid, SECCLASS_MSG,
4917 					     NULL, &msec->sid);
4918 		if (rc)
4919 			return rc;
4920 	}
4921 
4922 	ad.type = LSM_AUDIT_DATA_IPC;
4923 	ad.u.ipc_id = msq->q_perm.key;
4924 
4925 	/* Can this process write to the queue? */
4926 	rc = avc_has_perm(sid, isec->sid, SECCLASS_MSGQ,
4927 			  MSGQ__WRITE, &ad);
4928 	if (!rc)
4929 		/* Can this process send the message */
4930 		rc = avc_has_perm(sid, msec->sid, SECCLASS_MSG,
4931 				  MSG__SEND, &ad);
4932 	if (!rc)
4933 		/* Can the message be put in the queue? */
4934 		rc = avc_has_perm(msec->sid, isec->sid, SECCLASS_MSGQ,
4935 				  MSGQ__ENQUEUE, &ad);
4936 
4937 	return rc;
4938 }
4939 
4940 static int selinux_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
4941 				    struct task_struct *target,
4942 				    long type, int mode)
4943 {
4944 	struct ipc_security_struct *isec;
4945 	struct msg_security_struct *msec;
4946 	struct common_audit_data ad;
4947 	u32 sid = task_sid(target);
4948 	int rc;
4949 
4950 	isec = msq->q_perm.security;
4951 	msec = msg->security;
4952 
4953 	ad.type = LSM_AUDIT_DATA_IPC;
4954 	ad.u.ipc_id = msq->q_perm.key;
4955 
4956 	rc = avc_has_perm(sid, isec->sid,
4957 			  SECCLASS_MSGQ, MSGQ__READ, &ad);
4958 	if (!rc)
4959 		rc = avc_has_perm(sid, msec->sid,
4960 				  SECCLASS_MSG, MSG__RECEIVE, &ad);
4961 	return rc;
4962 }
4963 
4964 /* Shared Memory security operations */
4965 static int selinux_shm_alloc_security(struct shmid_kernel *shp)
4966 {
4967 	struct ipc_security_struct *isec;
4968 	struct common_audit_data ad;
4969 	u32 sid = current_sid();
4970 	int rc;
4971 
4972 	rc = ipc_alloc_security(current, &shp->shm_perm, SECCLASS_SHM);
4973 	if (rc)
4974 		return rc;
4975 
4976 	isec = shp->shm_perm.security;
4977 
4978 	ad.type = LSM_AUDIT_DATA_IPC;
4979 	ad.u.ipc_id = shp->shm_perm.key;
4980 
4981 	rc = avc_has_perm(sid, isec->sid, SECCLASS_SHM,
4982 			  SHM__CREATE, &ad);
4983 	if (rc) {
4984 		ipc_free_security(&shp->shm_perm);
4985 		return rc;
4986 	}
4987 	return 0;
4988 }
4989 
4990 static void selinux_shm_free_security(struct shmid_kernel *shp)
4991 {
4992 	ipc_free_security(&shp->shm_perm);
4993 }
4994 
4995 static int selinux_shm_associate(struct shmid_kernel *shp, int shmflg)
4996 {
4997 	struct ipc_security_struct *isec;
4998 	struct common_audit_data ad;
4999 	u32 sid = current_sid();
5000 
5001 	isec = shp->shm_perm.security;
5002 
5003 	ad.type = LSM_AUDIT_DATA_IPC;
5004 	ad.u.ipc_id = shp->shm_perm.key;
5005 
5006 	return avc_has_perm(sid, isec->sid, SECCLASS_SHM,
5007 			    SHM__ASSOCIATE, &ad);
5008 }
5009 
5010 /* Note, at this point, shp is locked down */
5011 static int selinux_shm_shmctl(struct shmid_kernel *shp, int cmd)
5012 {
5013 	int perms;
5014 	int err;
5015 
5016 	switch (cmd) {
5017 	case IPC_INFO:
5018 	case SHM_INFO:
5019 		/* No specific object, just general system-wide information. */
5020 		return task_has_system(current, SYSTEM__IPC_INFO);
5021 	case IPC_STAT:
5022 	case SHM_STAT:
5023 		perms = SHM__GETATTR | SHM__ASSOCIATE;
5024 		break;
5025 	case IPC_SET:
5026 		perms = SHM__SETATTR;
5027 		break;
5028 	case SHM_LOCK:
5029 	case SHM_UNLOCK:
5030 		perms = SHM__LOCK;
5031 		break;
5032 	case IPC_RMID:
5033 		perms = SHM__DESTROY;
5034 		break;
5035 	default:
5036 		return 0;
5037 	}
5038 
5039 	err = ipc_has_perm(&shp->shm_perm, perms);
5040 	return err;
5041 }
5042 
5043 static int selinux_shm_shmat(struct shmid_kernel *shp,
5044 			     char __user *shmaddr, int shmflg)
5045 {
5046 	u32 perms;
5047 
5048 	if (shmflg & SHM_RDONLY)
5049 		perms = SHM__READ;
5050 	else
5051 		perms = SHM__READ | SHM__WRITE;
5052 
5053 	return ipc_has_perm(&shp->shm_perm, perms);
5054 }
5055 
5056 /* Semaphore security operations */
5057 static int selinux_sem_alloc_security(struct sem_array *sma)
5058 {
5059 	struct ipc_security_struct *isec;
5060 	struct common_audit_data ad;
5061 	u32 sid = current_sid();
5062 	int rc;
5063 
5064 	rc = ipc_alloc_security(current, &sma->sem_perm, SECCLASS_SEM);
5065 	if (rc)
5066 		return rc;
5067 
5068 	isec = sma->sem_perm.security;
5069 
5070 	ad.type = LSM_AUDIT_DATA_IPC;
5071 	ad.u.ipc_id = sma->sem_perm.key;
5072 
5073 	rc = avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5074 			  SEM__CREATE, &ad);
5075 	if (rc) {
5076 		ipc_free_security(&sma->sem_perm);
5077 		return rc;
5078 	}
5079 	return 0;
5080 }
5081 
5082 static void selinux_sem_free_security(struct sem_array *sma)
5083 {
5084 	ipc_free_security(&sma->sem_perm);
5085 }
5086 
5087 static int selinux_sem_associate(struct sem_array *sma, int semflg)
5088 {
5089 	struct ipc_security_struct *isec;
5090 	struct common_audit_data ad;
5091 	u32 sid = current_sid();
5092 
5093 	isec = sma->sem_perm.security;
5094 
5095 	ad.type = LSM_AUDIT_DATA_IPC;
5096 	ad.u.ipc_id = sma->sem_perm.key;
5097 
5098 	return avc_has_perm(sid, isec->sid, SECCLASS_SEM,
5099 			    SEM__ASSOCIATE, &ad);
5100 }
5101 
5102 /* Note, at this point, sma is locked down */
5103 static int selinux_sem_semctl(struct sem_array *sma, int cmd)
5104 {
5105 	int err;
5106 	u32 perms;
5107 
5108 	switch (cmd) {
5109 	case IPC_INFO:
5110 	case SEM_INFO:
5111 		/* No specific object, just general system-wide information. */
5112 		return task_has_system(current, SYSTEM__IPC_INFO);
5113 	case GETPID:
5114 	case GETNCNT:
5115 	case GETZCNT:
5116 		perms = SEM__GETATTR;
5117 		break;
5118 	case GETVAL:
5119 	case GETALL:
5120 		perms = SEM__READ;
5121 		break;
5122 	case SETVAL:
5123 	case SETALL:
5124 		perms = SEM__WRITE;
5125 		break;
5126 	case IPC_RMID:
5127 		perms = SEM__DESTROY;
5128 		break;
5129 	case IPC_SET:
5130 		perms = SEM__SETATTR;
5131 		break;
5132 	case IPC_STAT:
5133 	case SEM_STAT:
5134 		perms = SEM__GETATTR | SEM__ASSOCIATE;
5135 		break;
5136 	default:
5137 		return 0;
5138 	}
5139 
5140 	err = ipc_has_perm(&sma->sem_perm, perms);
5141 	return err;
5142 }
5143 
5144 static int selinux_sem_semop(struct sem_array *sma,
5145 			     struct sembuf *sops, unsigned nsops, int alter)
5146 {
5147 	u32 perms;
5148 
5149 	if (alter)
5150 		perms = SEM__READ | SEM__WRITE;
5151 	else
5152 		perms = SEM__READ;
5153 
5154 	return ipc_has_perm(&sma->sem_perm, perms);
5155 }
5156 
5157 static int selinux_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
5158 {
5159 	u32 av = 0;
5160 
5161 	av = 0;
5162 	if (flag & S_IRUGO)
5163 		av |= IPC__UNIX_READ;
5164 	if (flag & S_IWUGO)
5165 		av |= IPC__UNIX_WRITE;
5166 
5167 	if (av == 0)
5168 		return 0;
5169 
5170 	return ipc_has_perm(ipcp, av);
5171 }
5172 
5173 static void selinux_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
5174 {
5175 	struct ipc_security_struct *isec = ipcp->security;
5176 	*secid = isec->sid;
5177 }
5178 
5179 static void selinux_d_instantiate(struct dentry *dentry, struct inode *inode)
5180 {
5181 	if (inode)
5182 		inode_doinit_with_dentry(inode, dentry);
5183 }
5184 
5185 static int selinux_getprocattr(struct task_struct *p,
5186 			       char *name, char **value)
5187 {
5188 	const struct task_security_struct *__tsec;
5189 	u32 sid;
5190 	int error;
5191 	unsigned len;
5192 
5193 	if (current != p) {
5194 		error = current_has_perm(p, PROCESS__GETATTR);
5195 		if (error)
5196 			return error;
5197 	}
5198 
5199 	rcu_read_lock();
5200 	__tsec = __task_cred(p)->security;
5201 
5202 	if (!strcmp(name, "current"))
5203 		sid = __tsec->sid;
5204 	else if (!strcmp(name, "prev"))
5205 		sid = __tsec->osid;
5206 	else if (!strcmp(name, "exec"))
5207 		sid = __tsec->exec_sid;
5208 	else if (!strcmp(name, "fscreate"))
5209 		sid = __tsec->create_sid;
5210 	else if (!strcmp(name, "keycreate"))
5211 		sid = __tsec->keycreate_sid;
5212 	else if (!strcmp(name, "sockcreate"))
5213 		sid = __tsec->sockcreate_sid;
5214 	else
5215 		goto invalid;
5216 	rcu_read_unlock();
5217 
5218 	if (!sid)
5219 		return 0;
5220 
5221 	error = security_sid_to_context(sid, value, &len);
5222 	if (error)
5223 		return error;
5224 	return len;
5225 
5226 invalid:
5227 	rcu_read_unlock();
5228 	return -EINVAL;
5229 }
5230 
5231 static int selinux_setprocattr(struct task_struct *p,
5232 			       char *name, void *value, size_t size)
5233 {
5234 	struct task_security_struct *tsec;
5235 	struct task_struct *tracer;
5236 	struct cred *new;
5237 	u32 sid = 0, ptsid;
5238 	int error;
5239 	char *str = value;
5240 
5241 	if (current != p) {
5242 		/* SELinux only allows a process to change its own
5243 		   security attributes. */
5244 		return -EACCES;
5245 	}
5246 
5247 	/*
5248 	 * Basic control over ability to set these attributes at all.
5249 	 * current == p, but we'll pass them separately in case the
5250 	 * above restriction is ever removed.
5251 	 */
5252 	if (!strcmp(name, "exec"))
5253 		error = current_has_perm(p, PROCESS__SETEXEC);
5254 	else if (!strcmp(name, "fscreate"))
5255 		error = current_has_perm(p, PROCESS__SETFSCREATE);
5256 	else if (!strcmp(name, "keycreate"))
5257 		error = current_has_perm(p, PROCESS__SETKEYCREATE);
5258 	else if (!strcmp(name, "sockcreate"))
5259 		error = current_has_perm(p, PROCESS__SETSOCKCREATE);
5260 	else if (!strcmp(name, "current"))
5261 		error = current_has_perm(p, PROCESS__SETCURRENT);
5262 	else
5263 		error = -EINVAL;
5264 	if (error)
5265 		return error;
5266 
5267 	/* Obtain a SID for the context, if one was specified. */
5268 	if (size && str[1] && str[1] != '\n') {
5269 		if (str[size-1] == '\n') {
5270 			str[size-1] = 0;
5271 			size--;
5272 		}
5273 		error = security_context_to_sid(value, size, &sid);
5274 		if (error == -EINVAL && !strcmp(name, "fscreate")) {
5275 			if (!capable(CAP_MAC_ADMIN)) {
5276 				struct audit_buffer *ab;
5277 				size_t audit_size;
5278 
5279 				/* We strip a nul only if it is at the end, otherwise the
5280 				 * context contains a nul and we should audit that */
5281 				if (str[size - 1] == '\0')
5282 					audit_size = size - 1;
5283 				else
5284 					audit_size = size;
5285 				ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_SELINUX_ERR);
5286 				audit_log_format(ab, "op=fscreate invalid_context=");
5287 				audit_log_n_untrustedstring(ab, value, audit_size);
5288 				audit_log_end(ab);
5289 
5290 				return error;
5291 			}
5292 			error = security_context_to_sid_force(value, size,
5293 							      &sid);
5294 		}
5295 		if (error)
5296 			return error;
5297 	}
5298 
5299 	new = prepare_creds();
5300 	if (!new)
5301 		return -ENOMEM;
5302 
5303 	/* Permission checking based on the specified context is
5304 	   performed during the actual operation (execve,
5305 	   open/mkdir/...), when we know the full context of the
5306 	   operation.  See selinux_bprm_set_creds for the execve
5307 	   checks and may_create for the file creation checks. The
5308 	   operation will then fail if the context is not permitted. */
5309 	tsec = new->security;
5310 	if (!strcmp(name, "exec")) {
5311 		tsec->exec_sid = sid;
5312 	} else if (!strcmp(name, "fscreate")) {
5313 		tsec->create_sid = sid;
5314 	} else if (!strcmp(name, "keycreate")) {
5315 		error = may_create_key(sid, p);
5316 		if (error)
5317 			goto abort_change;
5318 		tsec->keycreate_sid = sid;
5319 	} else if (!strcmp(name, "sockcreate")) {
5320 		tsec->sockcreate_sid = sid;
5321 	} else if (!strcmp(name, "current")) {
5322 		error = -EINVAL;
5323 		if (sid == 0)
5324 			goto abort_change;
5325 
5326 		/* Only allow single threaded processes to change context */
5327 		error = -EPERM;
5328 		if (!current_is_single_threaded()) {
5329 			error = security_bounded_transition(tsec->sid, sid);
5330 			if (error)
5331 				goto abort_change;
5332 		}
5333 
5334 		/* Check permissions for the transition. */
5335 		error = avc_has_perm(tsec->sid, sid, SECCLASS_PROCESS,
5336 				     PROCESS__DYNTRANSITION, NULL);
5337 		if (error)
5338 			goto abort_change;
5339 
5340 		/* Check for ptracing, and update the task SID if ok.
5341 		   Otherwise, leave SID unchanged and fail. */
5342 		ptsid = 0;
5343 		task_lock(p);
5344 		tracer = ptrace_parent(p);
5345 		if (tracer)
5346 			ptsid = task_sid(tracer);
5347 		task_unlock(p);
5348 
5349 		if (tracer) {
5350 			error = avc_has_perm(ptsid, sid, SECCLASS_PROCESS,
5351 					     PROCESS__PTRACE, NULL);
5352 			if (error)
5353 				goto abort_change;
5354 		}
5355 
5356 		tsec->sid = sid;
5357 	} else {
5358 		error = -EINVAL;
5359 		goto abort_change;
5360 	}
5361 
5362 	commit_creds(new);
5363 	return size;
5364 
5365 abort_change:
5366 	abort_creds(new);
5367 	return error;
5368 }
5369 
5370 static int selinux_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
5371 {
5372 	return security_sid_to_context(secid, secdata, seclen);
5373 }
5374 
5375 static int selinux_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
5376 {
5377 	return security_context_to_sid(secdata, seclen, secid);
5378 }
5379 
5380 static void selinux_release_secctx(char *secdata, u32 seclen)
5381 {
5382 	kfree(secdata);
5383 }
5384 
5385 /*
5386  *	called with inode->i_mutex locked
5387  */
5388 static int selinux_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
5389 {
5390 	return selinux_inode_setsecurity(inode, XATTR_SELINUX_SUFFIX, ctx, ctxlen, 0);
5391 }
5392 
5393 /*
5394  *	called with inode->i_mutex locked
5395  */
5396 static int selinux_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
5397 {
5398 	return __vfs_setxattr_noperm(dentry, XATTR_NAME_SELINUX, ctx, ctxlen, 0);
5399 }
5400 
5401 static int selinux_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
5402 {
5403 	int len = 0;
5404 	len = selinux_inode_getsecurity(inode, XATTR_SELINUX_SUFFIX,
5405 						ctx, true);
5406 	if (len < 0)
5407 		return len;
5408 	*ctxlen = len;
5409 	return 0;
5410 }
5411 #ifdef CONFIG_KEYS
5412 
5413 static int selinux_key_alloc(struct key *k, const struct cred *cred,
5414 			     unsigned long flags)
5415 {
5416 	const struct task_security_struct *tsec;
5417 	struct key_security_struct *ksec;
5418 
5419 	ksec = kzalloc(sizeof(struct key_security_struct), GFP_KERNEL);
5420 	if (!ksec)
5421 		return -ENOMEM;
5422 
5423 	tsec = cred->security;
5424 	if (tsec->keycreate_sid)
5425 		ksec->sid = tsec->keycreate_sid;
5426 	else
5427 		ksec->sid = tsec->sid;
5428 
5429 	k->security = ksec;
5430 	return 0;
5431 }
5432 
5433 static void selinux_key_free(struct key *k)
5434 {
5435 	struct key_security_struct *ksec = k->security;
5436 
5437 	k->security = NULL;
5438 	kfree(ksec);
5439 }
5440 
5441 static int selinux_key_permission(key_ref_t key_ref,
5442 				  const struct cred *cred,
5443 				  key_perm_t perm)
5444 {
5445 	struct key *key;
5446 	struct key_security_struct *ksec;
5447 	u32 sid;
5448 
5449 	/* if no specific permissions are requested, we skip the
5450 	   permission check. No serious, additional covert channels
5451 	   appear to be created. */
5452 	if (perm == 0)
5453 		return 0;
5454 
5455 	sid = cred_sid(cred);
5456 
5457 	key = key_ref_to_ptr(key_ref);
5458 	ksec = key->security;
5459 
5460 	return avc_has_perm(sid, ksec->sid, SECCLASS_KEY, perm, NULL);
5461 }
5462 
5463 static int selinux_key_getsecurity(struct key *key, char **_buffer)
5464 {
5465 	struct key_security_struct *ksec = key->security;
5466 	char *context = NULL;
5467 	unsigned len;
5468 	int rc;
5469 
5470 	rc = security_sid_to_context(ksec->sid, &context, &len);
5471 	if (!rc)
5472 		rc = len;
5473 	*_buffer = context;
5474 	return rc;
5475 }
5476 
5477 #endif
5478 
5479 static struct security_operations selinux_ops = {
5480 	.name =				"selinux",
5481 
5482 	.ptrace_access_check =		selinux_ptrace_access_check,
5483 	.ptrace_traceme =		selinux_ptrace_traceme,
5484 	.capget =			selinux_capget,
5485 	.capset =			selinux_capset,
5486 	.capable =			selinux_capable,
5487 	.quotactl =			selinux_quotactl,
5488 	.quota_on =			selinux_quota_on,
5489 	.syslog =			selinux_syslog,
5490 	.vm_enough_memory =		selinux_vm_enough_memory,
5491 
5492 	.netlink_send =			selinux_netlink_send,
5493 
5494 	.bprm_set_creds =		selinux_bprm_set_creds,
5495 	.bprm_committing_creds =	selinux_bprm_committing_creds,
5496 	.bprm_committed_creds =		selinux_bprm_committed_creds,
5497 	.bprm_secureexec =		selinux_bprm_secureexec,
5498 
5499 	.sb_alloc_security =		selinux_sb_alloc_security,
5500 	.sb_free_security =		selinux_sb_free_security,
5501 	.sb_copy_data =			selinux_sb_copy_data,
5502 	.sb_remount =			selinux_sb_remount,
5503 	.sb_kern_mount =		selinux_sb_kern_mount,
5504 	.sb_show_options =		selinux_sb_show_options,
5505 	.sb_statfs =			selinux_sb_statfs,
5506 	.sb_mount =			selinux_mount,
5507 	.sb_umount =			selinux_umount,
5508 	.sb_set_mnt_opts =		selinux_set_mnt_opts,
5509 	.sb_clone_mnt_opts =		selinux_sb_clone_mnt_opts,
5510 	.sb_parse_opts_str = 		selinux_parse_opts_str,
5511 
5512 
5513 	.inode_alloc_security =		selinux_inode_alloc_security,
5514 	.inode_free_security =		selinux_inode_free_security,
5515 	.inode_init_security =		selinux_inode_init_security,
5516 	.inode_create =			selinux_inode_create,
5517 	.inode_link =			selinux_inode_link,
5518 	.inode_unlink =			selinux_inode_unlink,
5519 	.inode_symlink =		selinux_inode_symlink,
5520 	.inode_mkdir =			selinux_inode_mkdir,
5521 	.inode_rmdir =			selinux_inode_rmdir,
5522 	.inode_mknod =			selinux_inode_mknod,
5523 	.inode_rename =			selinux_inode_rename,
5524 	.inode_readlink =		selinux_inode_readlink,
5525 	.inode_follow_link =		selinux_inode_follow_link,
5526 	.inode_permission =		selinux_inode_permission,
5527 	.inode_setattr =		selinux_inode_setattr,
5528 	.inode_getattr =		selinux_inode_getattr,
5529 	.inode_setxattr =		selinux_inode_setxattr,
5530 	.inode_post_setxattr =		selinux_inode_post_setxattr,
5531 	.inode_getxattr =		selinux_inode_getxattr,
5532 	.inode_listxattr =		selinux_inode_listxattr,
5533 	.inode_removexattr =		selinux_inode_removexattr,
5534 	.inode_getsecurity =		selinux_inode_getsecurity,
5535 	.inode_setsecurity =		selinux_inode_setsecurity,
5536 	.inode_listsecurity =		selinux_inode_listsecurity,
5537 	.inode_getsecid =		selinux_inode_getsecid,
5538 
5539 	.file_permission =		selinux_file_permission,
5540 	.file_alloc_security =		selinux_file_alloc_security,
5541 	.file_free_security =		selinux_file_free_security,
5542 	.file_ioctl =			selinux_file_ioctl,
5543 	.mmap_file =			selinux_mmap_file,
5544 	.mmap_addr =			selinux_mmap_addr,
5545 	.file_mprotect =		selinux_file_mprotect,
5546 	.file_lock =			selinux_file_lock,
5547 	.file_fcntl =			selinux_file_fcntl,
5548 	.file_set_fowner =		selinux_file_set_fowner,
5549 	.file_send_sigiotask =		selinux_file_send_sigiotask,
5550 	.file_receive =			selinux_file_receive,
5551 
5552 	.file_open =			selinux_file_open,
5553 
5554 	.task_create =			selinux_task_create,
5555 	.cred_alloc_blank =		selinux_cred_alloc_blank,
5556 	.cred_free =			selinux_cred_free,
5557 	.cred_prepare =			selinux_cred_prepare,
5558 	.cred_transfer =		selinux_cred_transfer,
5559 	.kernel_act_as =		selinux_kernel_act_as,
5560 	.kernel_create_files_as =	selinux_kernel_create_files_as,
5561 	.kernel_module_request =	selinux_kernel_module_request,
5562 	.task_setpgid =			selinux_task_setpgid,
5563 	.task_getpgid =			selinux_task_getpgid,
5564 	.task_getsid =			selinux_task_getsid,
5565 	.task_getsecid =		selinux_task_getsecid,
5566 	.task_setnice =			selinux_task_setnice,
5567 	.task_setioprio =		selinux_task_setioprio,
5568 	.task_getioprio =		selinux_task_getioprio,
5569 	.task_setrlimit =		selinux_task_setrlimit,
5570 	.task_setscheduler =		selinux_task_setscheduler,
5571 	.task_getscheduler =		selinux_task_getscheduler,
5572 	.task_movememory =		selinux_task_movememory,
5573 	.task_kill =			selinux_task_kill,
5574 	.task_wait =			selinux_task_wait,
5575 	.task_to_inode =		selinux_task_to_inode,
5576 
5577 	.ipc_permission =		selinux_ipc_permission,
5578 	.ipc_getsecid =			selinux_ipc_getsecid,
5579 
5580 	.msg_msg_alloc_security =	selinux_msg_msg_alloc_security,
5581 	.msg_msg_free_security =	selinux_msg_msg_free_security,
5582 
5583 	.msg_queue_alloc_security =	selinux_msg_queue_alloc_security,
5584 	.msg_queue_free_security =	selinux_msg_queue_free_security,
5585 	.msg_queue_associate =		selinux_msg_queue_associate,
5586 	.msg_queue_msgctl =		selinux_msg_queue_msgctl,
5587 	.msg_queue_msgsnd =		selinux_msg_queue_msgsnd,
5588 	.msg_queue_msgrcv =		selinux_msg_queue_msgrcv,
5589 
5590 	.shm_alloc_security =		selinux_shm_alloc_security,
5591 	.shm_free_security =		selinux_shm_free_security,
5592 	.shm_associate =		selinux_shm_associate,
5593 	.shm_shmctl =			selinux_shm_shmctl,
5594 	.shm_shmat =			selinux_shm_shmat,
5595 
5596 	.sem_alloc_security =		selinux_sem_alloc_security,
5597 	.sem_free_security =		selinux_sem_free_security,
5598 	.sem_associate =		selinux_sem_associate,
5599 	.sem_semctl =			selinux_sem_semctl,
5600 	.sem_semop =			selinux_sem_semop,
5601 
5602 	.d_instantiate =		selinux_d_instantiate,
5603 
5604 	.getprocattr =			selinux_getprocattr,
5605 	.setprocattr =			selinux_setprocattr,
5606 
5607 	.secid_to_secctx =		selinux_secid_to_secctx,
5608 	.secctx_to_secid =		selinux_secctx_to_secid,
5609 	.release_secctx =		selinux_release_secctx,
5610 	.inode_notifysecctx =		selinux_inode_notifysecctx,
5611 	.inode_setsecctx =		selinux_inode_setsecctx,
5612 	.inode_getsecctx =		selinux_inode_getsecctx,
5613 
5614 	.unix_stream_connect =		selinux_socket_unix_stream_connect,
5615 	.unix_may_send =		selinux_socket_unix_may_send,
5616 
5617 	.socket_create =		selinux_socket_create,
5618 	.socket_post_create =		selinux_socket_post_create,
5619 	.socket_bind =			selinux_socket_bind,
5620 	.socket_connect =		selinux_socket_connect,
5621 	.socket_listen =		selinux_socket_listen,
5622 	.socket_accept =		selinux_socket_accept,
5623 	.socket_sendmsg =		selinux_socket_sendmsg,
5624 	.socket_recvmsg =		selinux_socket_recvmsg,
5625 	.socket_getsockname =		selinux_socket_getsockname,
5626 	.socket_getpeername =		selinux_socket_getpeername,
5627 	.socket_getsockopt =		selinux_socket_getsockopt,
5628 	.socket_setsockopt =		selinux_socket_setsockopt,
5629 	.socket_shutdown =		selinux_socket_shutdown,
5630 	.socket_sock_rcv_skb =		selinux_socket_sock_rcv_skb,
5631 	.socket_getpeersec_stream =	selinux_socket_getpeersec_stream,
5632 	.socket_getpeersec_dgram =	selinux_socket_getpeersec_dgram,
5633 	.sk_alloc_security =		selinux_sk_alloc_security,
5634 	.sk_free_security =		selinux_sk_free_security,
5635 	.sk_clone_security =		selinux_sk_clone_security,
5636 	.sk_getsecid =			selinux_sk_getsecid,
5637 	.sock_graft =			selinux_sock_graft,
5638 	.inet_conn_request =		selinux_inet_conn_request,
5639 	.inet_csk_clone =		selinux_inet_csk_clone,
5640 	.inet_conn_established =	selinux_inet_conn_established,
5641 	.secmark_relabel_packet =	selinux_secmark_relabel_packet,
5642 	.secmark_refcount_inc =		selinux_secmark_refcount_inc,
5643 	.secmark_refcount_dec =		selinux_secmark_refcount_dec,
5644 	.req_classify_flow =		selinux_req_classify_flow,
5645 	.tun_dev_create =		selinux_tun_dev_create,
5646 	.tun_dev_post_create = 		selinux_tun_dev_post_create,
5647 	.tun_dev_attach =		selinux_tun_dev_attach,
5648 
5649 #ifdef CONFIG_SECURITY_NETWORK_XFRM
5650 	.xfrm_policy_alloc_security =	selinux_xfrm_policy_alloc,
5651 	.xfrm_policy_clone_security =	selinux_xfrm_policy_clone,
5652 	.xfrm_policy_free_security =	selinux_xfrm_policy_free,
5653 	.xfrm_policy_delete_security =	selinux_xfrm_policy_delete,
5654 	.xfrm_state_alloc_security =	selinux_xfrm_state_alloc,
5655 	.xfrm_state_free_security =	selinux_xfrm_state_free,
5656 	.xfrm_state_delete_security =	selinux_xfrm_state_delete,
5657 	.xfrm_policy_lookup =		selinux_xfrm_policy_lookup,
5658 	.xfrm_state_pol_flow_match =	selinux_xfrm_state_pol_flow_match,
5659 	.xfrm_decode_session =		selinux_xfrm_decode_session,
5660 #endif
5661 
5662 #ifdef CONFIG_KEYS
5663 	.key_alloc =			selinux_key_alloc,
5664 	.key_free =			selinux_key_free,
5665 	.key_permission =		selinux_key_permission,
5666 	.key_getsecurity =		selinux_key_getsecurity,
5667 #endif
5668 
5669 #ifdef CONFIG_AUDIT
5670 	.audit_rule_init =		selinux_audit_rule_init,
5671 	.audit_rule_known =		selinux_audit_rule_known,
5672 	.audit_rule_match =		selinux_audit_rule_match,
5673 	.audit_rule_free =		selinux_audit_rule_free,
5674 #endif
5675 };
5676 
5677 static __init int selinux_init(void)
5678 {
5679 	if (!security_module_enable(&selinux_ops)) {
5680 		selinux_enabled = 0;
5681 		return 0;
5682 	}
5683 
5684 	if (!selinux_enabled) {
5685 		printk(KERN_INFO "SELinux:  Disabled at boot.\n");
5686 		return 0;
5687 	}
5688 
5689 	printk(KERN_INFO "SELinux:  Initializing.\n");
5690 
5691 	/* Set the security state for the initial task. */
5692 	cred_init_security();
5693 
5694 	default_noexec = !(VM_DATA_DEFAULT_FLAGS & VM_EXEC);
5695 
5696 	sel_inode_cache = kmem_cache_create("selinux_inode_security",
5697 					    sizeof(struct inode_security_struct),
5698 					    0, SLAB_PANIC, NULL);
5699 	avc_init();
5700 
5701 	if (register_security(&selinux_ops))
5702 		panic("SELinux: Unable to register with kernel.\n");
5703 
5704 	if (selinux_enforcing)
5705 		printk(KERN_DEBUG "SELinux:  Starting in enforcing mode\n");
5706 	else
5707 		printk(KERN_DEBUG "SELinux:  Starting in permissive mode\n");
5708 
5709 	return 0;
5710 }
5711 
5712 static void delayed_superblock_init(struct super_block *sb, void *unused)
5713 {
5714 	superblock_doinit(sb, NULL);
5715 }
5716 
5717 void selinux_complete_init(void)
5718 {
5719 	printk(KERN_DEBUG "SELinux:  Completing initialization.\n");
5720 
5721 	/* Set up any superblocks initialized prior to the policy load. */
5722 	printk(KERN_DEBUG "SELinux:  Setting up existing superblocks.\n");
5723 	iterate_supers(delayed_superblock_init, NULL);
5724 }
5725 
5726 /* SELinux requires early initialization in order to label
5727    all processes and objects when they are created. */
5728 security_initcall(selinux_init);
5729 
5730 #if defined(CONFIG_NETFILTER)
5731 
5732 static struct nf_hook_ops selinux_ipv4_ops[] = {
5733 	{
5734 		.hook =		selinux_ipv4_postroute,
5735 		.owner =	THIS_MODULE,
5736 		.pf =		NFPROTO_IPV4,
5737 		.hooknum =	NF_INET_POST_ROUTING,
5738 		.priority =	NF_IP_PRI_SELINUX_LAST,
5739 	},
5740 	{
5741 		.hook =		selinux_ipv4_forward,
5742 		.owner =	THIS_MODULE,
5743 		.pf =		NFPROTO_IPV4,
5744 		.hooknum =	NF_INET_FORWARD,
5745 		.priority =	NF_IP_PRI_SELINUX_FIRST,
5746 	},
5747 	{
5748 		.hook =		selinux_ipv4_output,
5749 		.owner =	THIS_MODULE,
5750 		.pf =		NFPROTO_IPV4,
5751 		.hooknum =	NF_INET_LOCAL_OUT,
5752 		.priority =	NF_IP_PRI_SELINUX_FIRST,
5753 	}
5754 };
5755 
5756 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5757 
5758 static struct nf_hook_ops selinux_ipv6_ops[] = {
5759 	{
5760 		.hook =		selinux_ipv6_postroute,
5761 		.owner =	THIS_MODULE,
5762 		.pf =		NFPROTO_IPV6,
5763 		.hooknum =	NF_INET_POST_ROUTING,
5764 		.priority =	NF_IP6_PRI_SELINUX_LAST,
5765 	},
5766 	{
5767 		.hook =		selinux_ipv6_forward,
5768 		.owner =	THIS_MODULE,
5769 		.pf =		NFPROTO_IPV6,
5770 		.hooknum =	NF_INET_FORWARD,
5771 		.priority =	NF_IP6_PRI_SELINUX_FIRST,
5772 	}
5773 };
5774 
5775 #endif	/* IPV6 */
5776 
5777 static int __init selinux_nf_ip_init(void)
5778 {
5779 	int err = 0;
5780 
5781 	if (!selinux_enabled)
5782 		goto out;
5783 
5784 	printk(KERN_DEBUG "SELinux:  Registering netfilter hooks\n");
5785 
5786 	err = nf_register_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
5787 	if (err)
5788 		panic("SELinux: nf_register_hooks for IPv4: error %d\n", err);
5789 
5790 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5791 	err = nf_register_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
5792 	if (err)
5793 		panic("SELinux: nf_register_hooks for IPv6: error %d\n", err);
5794 #endif	/* IPV6 */
5795 
5796 out:
5797 	return err;
5798 }
5799 
5800 __initcall(selinux_nf_ip_init);
5801 
5802 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5803 static void selinux_nf_ip_exit(void)
5804 {
5805 	printk(KERN_DEBUG "SELinux:  Unregistering netfilter hooks\n");
5806 
5807 	nf_unregister_hooks(selinux_ipv4_ops, ARRAY_SIZE(selinux_ipv4_ops));
5808 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
5809 	nf_unregister_hooks(selinux_ipv6_ops, ARRAY_SIZE(selinux_ipv6_ops));
5810 #endif	/* IPV6 */
5811 }
5812 #endif
5813 
5814 #else /* CONFIG_NETFILTER */
5815 
5816 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5817 #define selinux_nf_ip_exit()
5818 #endif
5819 
5820 #endif /* CONFIG_NETFILTER */
5821 
5822 #ifdef CONFIG_SECURITY_SELINUX_DISABLE
5823 static int selinux_disabled;
5824 
5825 int selinux_disable(void)
5826 {
5827 	if (ss_initialized) {
5828 		/* Not permitted after initial policy load. */
5829 		return -EINVAL;
5830 	}
5831 
5832 	if (selinux_disabled) {
5833 		/* Only do this once. */
5834 		return -EINVAL;
5835 	}
5836 
5837 	printk(KERN_INFO "SELinux:  Disabled at runtime.\n");
5838 
5839 	selinux_disabled = 1;
5840 	selinux_enabled = 0;
5841 
5842 	reset_security_ops();
5843 
5844 	/* Try to destroy the avc node cache */
5845 	avc_disable();
5846 
5847 	/* Unregister netfilter hooks. */
5848 	selinux_nf_ip_exit();
5849 
5850 	/* Unregister selinuxfs. */
5851 	exit_sel_fs();
5852 
5853 	return 0;
5854 }
5855 #endif
5856