xref: /linux/security/selinux/avc.c (revision c537b994505099b7197e7d3125b942ecbcc51eb6)
1 /*
2  * Implementation of the kernel access vector cache (AVC).
3  *
4  * Authors:  Stephen Smalley, <sds@epoch.ncsc.mil>
5  *           James Morris <jmorris@redhat.com>
6  *
7  * Update:   KaiGai, Kohei <kaigai@ak.jp.nec.com>
8  *     Replaced the avc_lock spinlock by RCU.
9  *
10  * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
11  *
12  *	This program is free software; you can redistribute it and/or modify
13  *	it under the terms of the GNU General Public License version 2,
14  *      as published by the Free Software Foundation.
15  */
16 #include <linux/types.h>
17 #include <linux/stddef.h>
18 #include <linux/kernel.h>
19 #include <linux/slab.h>
20 #include <linux/fs.h>
21 #include <linux/dcache.h>
22 #include <linux/init.h>
23 #include <linux/skbuff.h>
24 #include <linux/percpu.h>
25 #include <net/sock.h>
26 #include <linux/un.h>
27 #include <net/af_unix.h>
28 #include <linux/ip.h>
29 #include <linux/audit.h>
30 #include <linux/ipv6.h>
31 #include <net/ipv6.h>
32 #include "avc.h"
33 #include "avc_ss.h"
34 
35 static const struct av_perm_to_string av_perm_to_string[] = {
36 #define S_(c, v, s) { c, v, s },
37 #include "av_perm_to_string.h"
38 #undef S_
39 };
40 
41 static const char *class_to_string[] = {
42 #define S_(s) s,
43 #include "class_to_string.h"
44 #undef S_
45 };
46 
47 #define TB_(s) static const char * s [] = {
48 #define TE_(s) };
49 #define S_(s) s,
50 #include "common_perm_to_string.h"
51 #undef TB_
52 #undef TE_
53 #undef S_
54 
55 static const struct av_inherit av_inherit[] = {
56 #define S_(c, i, b) { c, common_##i##_perm_to_string, b },
57 #include "av_inherit.h"
58 #undef S_
59 };
60 
61 const struct selinux_class_perm selinux_class_perm = {
62 	av_perm_to_string,
63 	ARRAY_SIZE(av_perm_to_string),
64 	class_to_string,
65 	ARRAY_SIZE(class_to_string),
66 	av_inherit,
67 	ARRAY_SIZE(av_inherit)
68 };
69 
70 #define AVC_CACHE_SLOTS			512
71 #define AVC_DEF_CACHE_THRESHOLD		512
72 #define AVC_CACHE_RECLAIM		16
73 
74 #ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
75 #define avc_cache_stats_incr(field) 				\
76 do {								\
77 	per_cpu(avc_cache_stats, get_cpu()).field++;		\
78 	put_cpu();						\
79 } while (0)
80 #else
81 #define avc_cache_stats_incr(field)	do {} while (0)
82 #endif
83 
84 struct avc_entry {
85 	u32			ssid;
86 	u32			tsid;
87 	u16			tclass;
88 	struct av_decision	avd;
89 	atomic_t		used;	/* used recently */
90 };
91 
92 struct avc_node {
93 	struct avc_entry	ae;
94 	struct list_head	list;
95 	struct rcu_head         rhead;
96 };
97 
98 struct avc_cache {
99 	struct list_head	slots[AVC_CACHE_SLOTS];
100 	spinlock_t		slots_lock[AVC_CACHE_SLOTS]; /* lock for writes */
101 	atomic_t		lru_hint;	/* LRU hint for reclaim scan */
102 	atomic_t		active_nodes;
103 	u32			latest_notif;	/* latest revocation notification */
104 };
105 
106 struct avc_callback_node {
107 	int (*callback) (u32 event, u32 ssid, u32 tsid,
108 	                 u16 tclass, u32 perms,
109 	                 u32 *out_retained);
110 	u32 events;
111 	u32 ssid;
112 	u32 tsid;
113 	u16 tclass;
114 	u32 perms;
115 	struct avc_callback_node *next;
116 };
117 
118 /* Exported via selinufs */
119 unsigned int avc_cache_threshold = AVC_DEF_CACHE_THRESHOLD;
120 
121 #ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
122 DEFINE_PER_CPU(struct avc_cache_stats, avc_cache_stats) = { 0 };
123 #endif
124 
125 static struct avc_cache avc_cache;
126 static struct avc_callback_node *avc_callbacks;
127 static struct kmem_cache *avc_node_cachep;
128 
129 static inline int avc_hash(u32 ssid, u32 tsid, u16 tclass)
130 {
131 	return (ssid ^ (tsid<<2) ^ (tclass<<4)) & (AVC_CACHE_SLOTS - 1);
132 }
133 
134 /**
135  * avc_dump_av - Display an access vector in human-readable form.
136  * @tclass: target security class
137  * @av: access vector
138  */
139 static void avc_dump_av(struct audit_buffer *ab, u16 tclass, u32 av)
140 {
141 	const char **common_pts = NULL;
142 	u32 common_base = 0;
143 	int i, i2, perm;
144 
145 	if (av == 0) {
146 		audit_log_format(ab, " null");
147 		return;
148 	}
149 
150 	for (i = 0; i < ARRAY_SIZE(av_inherit); i++) {
151 		if (av_inherit[i].tclass == tclass) {
152 			common_pts = av_inherit[i].common_pts;
153 			common_base = av_inherit[i].common_base;
154 			break;
155 		}
156 	}
157 
158 	audit_log_format(ab, " {");
159 	i = 0;
160 	perm = 1;
161 	while (perm < common_base) {
162 		if (perm & av) {
163 			audit_log_format(ab, " %s", common_pts[i]);
164 			av &= ~perm;
165 		}
166 		i++;
167 		perm <<= 1;
168 	}
169 
170 	while (i < sizeof(av) * 8) {
171 		if (perm & av) {
172 			for (i2 = 0; i2 < ARRAY_SIZE(av_perm_to_string); i2++) {
173 				if ((av_perm_to_string[i2].tclass == tclass) &&
174 				    (av_perm_to_string[i2].value == perm))
175 					break;
176 			}
177 			if (i2 < ARRAY_SIZE(av_perm_to_string)) {
178 				audit_log_format(ab, " %s",
179 						 av_perm_to_string[i2].name);
180 				av &= ~perm;
181 			}
182 		}
183 		i++;
184 		perm <<= 1;
185 	}
186 
187 	if (av)
188 		audit_log_format(ab, " 0x%x", av);
189 
190 	audit_log_format(ab, " }");
191 }
192 
193 /**
194  * avc_dump_query - Display a SID pair and a class in human-readable form.
195  * @ssid: source security identifier
196  * @tsid: target security identifier
197  * @tclass: target security class
198  */
199 static void avc_dump_query(struct audit_buffer *ab, u32 ssid, u32 tsid, u16 tclass)
200 {
201 	int rc;
202 	char *scontext;
203 	u32 scontext_len;
204 
205  	rc = security_sid_to_context(ssid, &scontext, &scontext_len);
206 	if (rc)
207 		audit_log_format(ab, "ssid=%d", ssid);
208 	else {
209 		audit_log_format(ab, "scontext=%s", scontext);
210 		kfree(scontext);
211 	}
212 
213 	rc = security_sid_to_context(tsid, &scontext, &scontext_len);
214 	if (rc)
215 		audit_log_format(ab, " tsid=%d", tsid);
216 	else {
217 		audit_log_format(ab, " tcontext=%s", scontext);
218 		kfree(scontext);
219 	}
220 	audit_log_format(ab, " tclass=%s", class_to_string[tclass]);
221 }
222 
223 /**
224  * avc_init - Initialize the AVC.
225  *
226  * Initialize the access vector cache.
227  */
228 void __init avc_init(void)
229 {
230 	int i;
231 
232 	for (i = 0; i < AVC_CACHE_SLOTS; i++) {
233 		INIT_LIST_HEAD(&avc_cache.slots[i]);
234 		spin_lock_init(&avc_cache.slots_lock[i]);
235 	}
236 	atomic_set(&avc_cache.active_nodes, 0);
237 	atomic_set(&avc_cache.lru_hint, 0);
238 
239 	avc_node_cachep = kmem_cache_create("avc_node", sizeof(struct avc_node),
240 					     0, SLAB_PANIC, NULL, NULL);
241 
242 	audit_log(current->audit_context, GFP_KERNEL, AUDIT_KERNEL, "AVC INITIALIZED\n");
243 }
244 
245 int avc_get_hash_stats(char *page)
246 {
247 	int i, chain_len, max_chain_len, slots_used;
248 	struct avc_node *node;
249 
250 	rcu_read_lock();
251 
252 	slots_used = 0;
253 	max_chain_len = 0;
254 	for (i = 0; i < AVC_CACHE_SLOTS; i++) {
255 		if (!list_empty(&avc_cache.slots[i])) {
256 			slots_used++;
257 			chain_len = 0;
258 			list_for_each_entry_rcu(node, &avc_cache.slots[i], list)
259 				chain_len++;
260 			if (chain_len > max_chain_len)
261 				max_chain_len = chain_len;
262 		}
263 	}
264 
265 	rcu_read_unlock();
266 
267 	return scnprintf(page, PAGE_SIZE, "entries: %d\nbuckets used: %d/%d\n"
268 			 "longest chain: %d\n",
269 			 atomic_read(&avc_cache.active_nodes),
270 			 slots_used, AVC_CACHE_SLOTS, max_chain_len);
271 }
272 
273 static void avc_node_free(struct rcu_head *rhead)
274 {
275 	struct avc_node *node = container_of(rhead, struct avc_node, rhead);
276 	kmem_cache_free(avc_node_cachep, node);
277 	avc_cache_stats_incr(frees);
278 }
279 
280 static void avc_node_delete(struct avc_node *node)
281 {
282 	list_del_rcu(&node->list);
283 	call_rcu(&node->rhead, avc_node_free);
284 	atomic_dec(&avc_cache.active_nodes);
285 }
286 
287 static void avc_node_kill(struct avc_node *node)
288 {
289 	kmem_cache_free(avc_node_cachep, node);
290 	avc_cache_stats_incr(frees);
291 	atomic_dec(&avc_cache.active_nodes);
292 }
293 
294 static void avc_node_replace(struct avc_node *new, struct avc_node *old)
295 {
296 	list_replace_rcu(&old->list, &new->list);
297 	call_rcu(&old->rhead, avc_node_free);
298 	atomic_dec(&avc_cache.active_nodes);
299 }
300 
301 static inline int avc_reclaim_node(void)
302 {
303 	struct avc_node *node;
304 	int hvalue, try, ecx;
305 	unsigned long flags;
306 
307 	for (try = 0, ecx = 0; try < AVC_CACHE_SLOTS; try++ ) {
308 		hvalue = atomic_inc_return(&avc_cache.lru_hint) & (AVC_CACHE_SLOTS - 1);
309 
310 		if (!spin_trylock_irqsave(&avc_cache.slots_lock[hvalue], flags))
311 			continue;
312 
313 		list_for_each_entry(node, &avc_cache.slots[hvalue], list) {
314 			if (atomic_dec_and_test(&node->ae.used)) {
315 				/* Recently Unused */
316 				avc_node_delete(node);
317 				avc_cache_stats_incr(reclaims);
318 				ecx++;
319 				if (ecx >= AVC_CACHE_RECLAIM) {
320 					spin_unlock_irqrestore(&avc_cache.slots_lock[hvalue], flags);
321 					goto out;
322 				}
323 			}
324 		}
325 		spin_unlock_irqrestore(&avc_cache.slots_lock[hvalue], flags);
326 	}
327 out:
328 	return ecx;
329 }
330 
331 static struct avc_node *avc_alloc_node(void)
332 {
333 	struct avc_node *node;
334 
335 	node = kmem_cache_zalloc(avc_node_cachep, GFP_ATOMIC);
336 	if (!node)
337 		goto out;
338 
339 	INIT_RCU_HEAD(&node->rhead);
340 	INIT_LIST_HEAD(&node->list);
341 	atomic_set(&node->ae.used, 1);
342 	avc_cache_stats_incr(allocations);
343 
344 	if (atomic_inc_return(&avc_cache.active_nodes) > avc_cache_threshold)
345 		avc_reclaim_node();
346 
347 out:
348 	return node;
349 }
350 
351 static void avc_node_populate(struct avc_node *node, u32 ssid, u32 tsid, u16 tclass, struct avc_entry *ae)
352 {
353 	node->ae.ssid = ssid;
354 	node->ae.tsid = tsid;
355 	node->ae.tclass = tclass;
356 	memcpy(&node->ae.avd, &ae->avd, sizeof(node->ae.avd));
357 }
358 
359 static inline struct avc_node *avc_search_node(u32 ssid, u32 tsid, u16 tclass)
360 {
361 	struct avc_node *node, *ret = NULL;
362 	int hvalue;
363 
364 	hvalue = avc_hash(ssid, tsid, tclass);
365 	list_for_each_entry_rcu(node, &avc_cache.slots[hvalue], list) {
366 		if (ssid == node->ae.ssid &&
367 		    tclass == node->ae.tclass &&
368 		    tsid == node->ae.tsid) {
369 			ret = node;
370 			break;
371 		}
372 	}
373 
374 	if (ret == NULL) {
375 		/* cache miss */
376 		goto out;
377 	}
378 
379 	/* cache hit */
380 	if (atomic_read(&ret->ae.used) != 1)
381 		atomic_set(&ret->ae.used, 1);
382 out:
383 	return ret;
384 }
385 
386 /**
387  * avc_lookup - Look up an AVC entry.
388  * @ssid: source security identifier
389  * @tsid: target security identifier
390  * @tclass: target security class
391  * @requested: requested permissions, interpreted based on @tclass
392  *
393  * Look up an AVC entry that is valid for the
394  * @requested permissions between the SID pair
395  * (@ssid, @tsid), interpreting the permissions
396  * based on @tclass.  If a valid AVC entry exists,
397  * then this function return the avc_node.
398  * Otherwise, this function returns NULL.
399  */
400 static struct avc_node *avc_lookup(u32 ssid, u32 tsid, u16 tclass, u32 requested)
401 {
402 	struct avc_node *node;
403 
404 	avc_cache_stats_incr(lookups);
405 	node = avc_search_node(ssid, tsid, tclass);
406 
407 	if (node && ((node->ae.avd.decided & requested) == requested)) {
408 		avc_cache_stats_incr(hits);
409 		goto out;
410 	}
411 
412 	node = NULL;
413 	avc_cache_stats_incr(misses);
414 out:
415 	return node;
416 }
417 
418 static int avc_latest_notif_update(int seqno, int is_insert)
419 {
420 	int ret = 0;
421 	static DEFINE_SPINLOCK(notif_lock);
422 	unsigned long flag;
423 
424 	spin_lock_irqsave(&notif_lock, flag);
425 	if (is_insert) {
426 		if (seqno < avc_cache.latest_notif) {
427 			printk(KERN_WARNING "avc:  seqno %d < latest_notif %d\n",
428 			       seqno, avc_cache.latest_notif);
429 			ret = -EAGAIN;
430 		}
431 	} else {
432 		if (seqno > avc_cache.latest_notif)
433 			avc_cache.latest_notif = seqno;
434 	}
435 	spin_unlock_irqrestore(&notif_lock, flag);
436 
437 	return ret;
438 }
439 
440 /**
441  * avc_insert - Insert an AVC entry.
442  * @ssid: source security identifier
443  * @tsid: target security identifier
444  * @tclass: target security class
445  * @ae: AVC entry
446  *
447  * Insert an AVC entry for the SID pair
448  * (@ssid, @tsid) and class @tclass.
449  * The access vectors and the sequence number are
450  * normally provided by the security server in
451  * response to a security_compute_av() call.  If the
452  * sequence number @ae->avd.seqno is not less than the latest
453  * revocation notification, then the function copies
454  * the access vectors into a cache entry, returns
455  * avc_node inserted. Otherwise, this function returns NULL.
456  */
457 static struct avc_node *avc_insert(u32 ssid, u32 tsid, u16 tclass, struct avc_entry *ae)
458 {
459 	struct avc_node *pos, *node = NULL;
460 	int hvalue;
461 	unsigned long flag;
462 
463 	if (avc_latest_notif_update(ae->avd.seqno, 1))
464 		goto out;
465 
466 	node = avc_alloc_node();
467 	if (node) {
468 		hvalue = avc_hash(ssid, tsid, tclass);
469 		avc_node_populate(node, ssid, tsid, tclass, ae);
470 
471 		spin_lock_irqsave(&avc_cache.slots_lock[hvalue], flag);
472 		list_for_each_entry(pos, &avc_cache.slots[hvalue], list) {
473 			if (pos->ae.ssid == ssid &&
474 			    pos->ae.tsid == tsid &&
475 			    pos->ae.tclass == tclass) {
476 			    	avc_node_replace(node, pos);
477 				goto found;
478 			}
479 		}
480 		list_add_rcu(&node->list, &avc_cache.slots[hvalue]);
481 found:
482 		spin_unlock_irqrestore(&avc_cache.slots_lock[hvalue], flag);
483 	}
484 out:
485 	return node;
486 }
487 
488 static inline void avc_print_ipv6_addr(struct audit_buffer *ab,
489 				       struct in6_addr *addr, __be16 port,
490 				       char *name1, char *name2)
491 {
492 	if (!ipv6_addr_any(addr))
493 		audit_log_format(ab, " %s=" NIP6_FMT, name1, NIP6(*addr));
494 	if (port)
495 		audit_log_format(ab, " %s=%d", name2, ntohs(port));
496 }
497 
498 static inline void avc_print_ipv4_addr(struct audit_buffer *ab, __be32 addr,
499 				       __be16 port, char *name1, char *name2)
500 {
501 	if (addr)
502 		audit_log_format(ab, " %s=" NIPQUAD_FMT, name1, NIPQUAD(addr));
503 	if (port)
504 		audit_log_format(ab, " %s=%d", name2, ntohs(port));
505 }
506 
507 /**
508  * avc_audit - Audit the granting or denial of permissions.
509  * @ssid: source security identifier
510  * @tsid: target security identifier
511  * @tclass: target security class
512  * @requested: requested permissions
513  * @avd: access vector decisions
514  * @result: result from avc_has_perm_noaudit
515  * @a:  auxiliary audit data
516  *
517  * Audit the granting or denial of permissions in accordance
518  * with the policy.  This function is typically called by
519  * avc_has_perm() after a permission check, but can also be
520  * called directly by callers who use avc_has_perm_noaudit()
521  * in order to separate the permission check from the auditing.
522  * For example, this separation is useful when the permission check must
523  * be performed under a lock, to allow the lock to be released
524  * before calling the auditing code.
525  */
526 void avc_audit(u32 ssid, u32 tsid,
527                u16 tclass, u32 requested,
528                struct av_decision *avd, int result, struct avc_audit_data *a)
529 {
530 	struct task_struct *tsk = current;
531 	struct inode *inode = NULL;
532 	u32 denied, audited;
533 	struct audit_buffer *ab;
534 
535 	denied = requested & ~avd->allowed;
536 	if (denied) {
537 		audited = denied;
538 		if (!(audited & avd->auditdeny))
539 			return;
540 	} else if (result) {
541 		audited = denied = requested;
542         } else {
543 		audited = requested;
544 		if (!(audited & avd->auditallow))
545 			return;
546 	}
547 
548 	ab = audit_log_start(current->audit_context, GFP_ATOMIC, AUDIT_AVC);
549 	if (!ab)
550 		return;		/* audit_panic has been called */
551 	audit_log_format(ab, "avc:  %s ", denied ? "denied" : "granted");
552 	avc_dump_av(ab, tclass,audited);
553 	audit_log_format(ab, " for ");
554 	if (a && a->tsk)
555 		tsk = a->tsk;
556 	if (tsk && tsk->pid) {
557 		audit_log_format(ab, " pid=%d comm=", tsk->pid);
558 		audit_log_untrustedstring(ab, tsk->comm);
559 	}
560 	if (a) {
561 		switch (a->type) {
562 		case AVC_AUDIT_DATA_IPC:
563 			audit_log_format(ab, " key=%d", a->u.ipc_id);
564 			break;
565 		case AVC_AUDIT_DATA_CAP:
566 			audit_log_format(ab, " capability=%d", a->u.cap);
567 			break;
568 		case AVC_AUDIT_DATA_FS:
569 			if (a->u.fs.dentry) {
570 				struct dentry *dentry = a->u.fs.dentry;
571 				if (a->u.fs.mnt)
572 					audit_avc_path(dentry, a->u.fs.mnt);
573 				audit_log_format(ab, " name=");
574 				audit_log_untrustedstring(ab, dentry->d_name.name);
575 				inode = dentry->d_inode;
576 			} else if (a->u.fs.inode) {
577 				struct dentry *dentry;
578 				inode = a->u.fs.inode;
579 				dentry = d_find_alias(inode);
580 				if (dentry) {
581 					audit_log_format(ab, " name=");
582 					audit_log_untrustedstring(ab, dentry->d_name.name);
583 					dput(dentry);
584 				}
585 			}
586 			if (inode)
587 				audit_log_format(ab, " dev=%s ino=%ld",
588 						 inode->i_sb->s_id,
589 						 inode->i_ino);
590 			break;
591 		case AVC_AUDIT_DATA_NET:
592 			if (a->u.net.sk) {
593 				struct sock *sk = a->u.net.sk;
594 				struct unix_sock *u;
595 				int len = 0;
596 				char *p = NULL;
597 
598 				switch (sk->sk_family) {
599 				case AF_INET: {
600 					struct inet_sock *inet = inet_sk(sk);
601 
602 					avc_print_ipv4_addr(ab, inet->rcv_saddr,
603 							    inet->sport,
604 							    "laddr", "lport");
605 					avc_print_ipv4_addr(ab, inet->daddr,
606 							    inet->dport,
607 							    "faddr", "fport");
608 					break;
609 				}
610 				case AF_INET6: {
611 					struct inet_sock *inet = inet_sk(sk);
612 					struct ipv6_pinfo *inet6 = inet6_sk(sk);
613 
614 					avc_print_ipv6_addr(ab, &inet6->rcv_saddr,
615 							    inet->sport,
616 							    "laddr", "lport");
617 					avc_print_ipv6_addr(ab, &inet6->daddr,
618 							    inet->dport,
619 							    "faddr", "fport");
620 					break;
621 				}
622 				case AF_UNIX:
623 					u = unix_sk(sk);
624 					if (u->dentry) {
625 						audit_avc_path(u->dentry, u->mnt);
626 						audit_log_format(ab, " name=");
627 						audit_log_untrustedstring(ab, u->dentry->d_name.name);
628 						break;
629 					}
630 					if (!u->addr)
631 						break;
632 					len = u->addr->len-sizeof(short);
633 					p = &u->addr->name->sun_path[0];
634 					audit_log_format(ab, " path=");
635 					if (*p)
636 						audit_log_untrustedstring(ab, p);
637 					else
638 						audit_log_hex(ab, p, len);
639 					break;
640 				}
641 			}
642 
643 			switch (a->u.net.family) {
644 			case AF_INET:
645 				avc_print_ipv4_addr(ab, a->u.net.v4info.saddr,
646 						    a->u.net.sport,
647 						    "saddr", "src");
648 				avc_print_ipv4_addr(ab, a->u.net.v4info.daddr,
649 						    a->u.net.dport,
650 						    "daddr", "dest");
651 				break;
652 			case AF_INET6:
653 				avc_print_ipv6_addr(ab, &a->u.net.v6info.saddr,
654 						    a->u.net.sport,
655 						    "saddr", "src");
656 				avc_print_ipv6_addr(ab, &a->u.net.v6info.daddr,
657 						    a->u.net.dport,
658 						    "daddr", "dest");
659 				break;
660 			}
661 			if (a->u.net.netif)
662 				audit_log_format(ab, " netif=%s",
663 					a->u.net.netif);
664 			break;
665 		}
666 	}
667 	audit_log_format(ab, " ");
668 	avc_dump_query(ab, ssid, tsid, tclass);
669 	audit_log_end(ab);
670 }
671 
672 /**
673  * avc_add_callback - Register a callback for security events.
674  * @callback: callback function
675  * @events: security events
676  * @ssid: source security identifier or %SECSID_WILD
677  * @tsid: target security identifier or %SECSID_WILD
678  * @tclass: target security class
679  * @perms: permissions
680  *
681  * Register a callback function for events in the set @events
682  * related to the SID pair (@ssid, @tsid) and
683  * and the permissions @perms, interpreting
684  * @perms based on @tclass.  Returns %0 on success or
685  * -%ENOMEM if insufficient memory exists to add the callback.
686  */
687 int avc_add_callback(int (*callback)(u32 event, u32 ssid, u32 tsid,
688                                      u16 tclass, u32 perms,
689                                      u32 *out_retained),
690                      u32 events, u32 ssid, u32 tsid,
691                      u16 tclass, u32 perms)
692 {
693 	struct avc_callback_node *c;
694 	int rc = 0;
695 
696 	c = kmalloc(sizeof(*c), GFP_ATOMIC);
697 	if (!c) {
698 		rc = -ENOMEM;
699 		goto out;
700 	}
701 
702 	c->callback = callback;
703 	c->events = events;
704 	c->ssid = ssid;
705 	c->tsid = tsid;
706 	c->perms = perms;
707 	c->next = avc_callbacks;
708 	avc_callbacks = c;
709 out:
710 	return rc;
711 }
712 
713 static inline int avc_sidcmp(u32 x, u32 y)
714 {
715 	return (x == y || x == SECSID_WILD || y == SECSID_WILD);
716 }
717 
718 /**
719  * avc_update_node Update an AVC entry
720  * @event : Updating event
721  * @perms : Permission mask bits
722  * @ssid,@tsid,@tclass : identifier of an AVC entry
723  *
724  * if a valid AVC entry doesn't exist,this function returns -ENOENT.
725  * if kmalloc() called internal returns NULL, this function returns -ENOMEM.
726  * otherwise, this function update the AVC entry. The original AVC-entry object
727  * will release later by RCU.
728  */
729 static int avc_update_node(u32 event, u32 perms, u32 ssid, u32 tsid, u16 tclass)
730 {
731 	int hvalue, rc = 0;
732 	unsigned long flag;
733 	struct avc_node *pos, *node, *orig = NULL;
734 
735 	node = avc_alloc_node();
736 	if (!node) {
737 		rc = -ENOMEM;
738 		goto out;
739 	}
740 
741 	/* Lock the target slot */
742 	hvalue = avc_hash(ssid, tsid, tclass);
743 	spin_lock_irqsave(&avc_cache.slots_lock[hvalue], flag);
744 
745 	list_for_each_entry(pos, &avc_cache.slots[hvalue], list){
746 		if ( ssid==pos->ae.ssid &&
747 		     tsid==pos->ae.tsid &&
748 		     tclass==pos->ae.tclass ){
749 			orig = pos;
750 			break;
751 		}
752 	}
753 
754 	if (!orig) {
755 		rc = -ENOENT;
756 		avc_node_kill(node);
757 		goto out_unlock;
758 	}
759 
760 	/*
761 	 * Copy and replace original node.
762 	 */
763 
764 	avc_node_populate(node, ssid, tsid, tclass, &orig->ae);
765 
766 	switch (event) {
767 	case AVC_CALLBACK_GRANT:
768 		node->ae.avd.allowed |= perms;
769 		break;
770 	case AVC_CALLBACK_TRY_REVOKE:
771 	case AVC_CALLBACK_REVOKE:
772 		node->ae.avd.allowed &= ~perms;
773 		break;
774 	case AVC_CALLBACK_AUDITALLOW_ENABLE:
775 		node->ae.avd.auditallow |= perms;
776 		break;
777 	case AVC_CALLBACK_AUDITALLOW_DISABLE:
778 		node->ae.avd.auditallow &= ~perms;
779 		break;
780 	case AVC_CALLBACK_AUDITDENY_ENABLE:
781 		node->ae.avd.auditdeny |= perms;
782 		break;
783 	case AVC_CALLBACK_AUDITDENY_DISABLE:
784 		node->ae.avd.auditdeny &= ~perms;
785 		break;
786 	}
787 	avc_node_replace(node, orig);
788 out_unlock:
789 	spin_unlock_irqrestore(&avc_cache.slots_lock[hvalue], flag);
790 out:
791 	return rc;
792 }
793 
794 /**
795  * avc_ss_reset - Flush the cache and revalidate migrated permissions.
796  * @seqno: policy sequence number
797  */
798 int avc_ss_reset(u32 seqno)
799 {
800 	struct avc_callback_node *c;
801 	int i, rc = 0, tmprc;
802 	unsigned long flag;
803 	struct avc_node *node;
804 
805 	for (i = 0; i < AVC_CACHE_SLOTS; i++) {
806 		spin_lock_irqsave(&avc_cache.slots_lock[i], flag);
807 		list_for_each_entry(node, &avc_cache.slots[i], list)
808 			avc_node_delete(node);
809 		spin_unlock_irqrestore(&avc_cache.slots_lock[i], flag);
810 	}
811 
812 	for (c = avc_callbacks; c; c = c->next) {
813 		if (c->events & AVC_CALLBACK_RESET) {
814 			tmprc = c->callback(AVC_CALLBACK_RESET,
815 			                    0, 0, 0, 0, NULL);
816 			/* save the first error encountered for the return
817 			   value and continue processing the callbacks */
818 			if (!rc)
819 				rc = tmprc;
820 		}
821 	}
822 
823 	avc_latest_notif_update(seqno, 0);
824 	return rc;
825 }
826 
827 /**
828  * avc_has_perm_noaudit - Check permissions but perform no auditing.
829  * @ssid: source security identifier
830  * @tsid: target security identifier
831  * @tclass: target security class
832  * @requested: requested permissions, interpreted based on @tclass
833  * @avd: access vector decisions
834  *
835  * Check the AVC to determine whether the @requested permissions are granted
836  * for the SID pair (@ssid, @tsid), interpreting the permissions
837  * based on @tclass, and call the security server on a cache miss to obtain
838  * a new decision and add it to the cache.  Return a copy of the decisions
839  * in @avd.  Return %0 if all @requested permissions are granted,
840  * -%EACCES if any permissions are denied, or another -errno upon
841  * other errors.  This function is typically called by avc_has_perm(),
842  * but may also be called directly to separate permission checking from
843  * auditing, e.g. in cases where a lock must be held for the check but
844  * should be released for the auditing.
845  */
846 int avc_has_perm_noaudit(u32 ssid, u32 tsid,
847                          u16 tclass, u32 requested,
848                          struct av_decision *avd)
849 {
850 	struct avc_node *node;
851 	struct avc_entry entry, *p_ae;
852 	int rc = 0;
853 	u32 denied;
854 
855 	rcu_read_lock();
856 
857 	node = avc_lookup(ssid, tsid, tclass, requested);
858 	if (!node) {
859 		rcu_read_unlock();
860 		rc = security_compute_av(ssid,tsid,tclass,requested,&entry.avd);
861 		if (rc)
862 			goto out;
863 		rcu_read_lock();
864 		node = avc_insert(ssid,tsid,tclass,&entry);
865 	}
866 
867 	p_ae = node ? &node->ae : &entry;
868 
869 	if (avd)
870 		memcpy(avd, &p_ae->avd, sizeof(*avd));
871 
872 	denied = requested & ~(p_ae->avd.allowed);
873 
874 	if (!requested || denied) {
875 		if (selinux_enforcing)
876 			rc = -EACCES;
877 		else
878 			if (node)
879 				avc_update_node(AVC_CALLBACK_GRANT,requested,
880 						ssid,tsid,tclass);
881 	}
882 
883 	rcu_read_unlock();
884 out:
885 	return rc;
886 }
887 
888 /**
889  * avc_has_perm - Check permissions and perform any appropriate auditing.
890  * @ssid: source security identifier
891  * @tsid: target security identifier
892  * @tclass: target security class
893  * @requested: requested permissions, interpreted based on @tclass
894  * @auditdata: auxiliary audit data
895  *
896  * Check the AVC to determine whether the @requested permissions are granted
897  * for the SID pair (@ssid, @tsid), interpreting the permissions
898  * based on @tclass, and call the security server on a cache miss to obtain
899  * a new decision and add it to the cache.  Audit the granting or denial of
900  * permissions in accordance with the policy.  Return %0 if all @requested
901  * permissions are granted, -%EACCES if any permissions are denied, or
902  * another -errno upon other errors.
903  */
904 int avc_has_perm(u32 ssid, u32 tsid, u16 tclass,
905                  u32 requested, struct avc_audit_data *auditdata)
906 {
907 	struct av_decision avd;
908 	int rc;
909 
910 	rc = avc_has_perm_noaudit(ssid, tsid, tclass, requested, &avd);
911 	avc_audit(ssid, tsid, tclass, requested, &avd, rc, auditdata);
912 	return rc;
913 }
914