xref: /linux/security/selinux/avc.c (revision 9cfc5c90ad38c8fc11bfd39de42a107da00871ba)
1 /*
2  * Implementation of the kernel access vector cache (AVC).
3  *
4  * Authors:  Stephen Smalley, <sds@epoch.ncsc.mil>
5  *	     James Morris <jmorris@redhat.com>
6  *
7  * Update:   KaiGai, Kohei <kaigai@ak.jp.nec.com>
8  *	Replaced the avc_lock spinlock by RCU.
9  *
10  * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com>
11  *
12  *	This program is free software; you can redistribute it and/or modify
13  *	it under the terms of the GNU General Public License version 2,
14  *	as published by the Free Software Foundation.
15  */
16 #include <linux/types.h>
17 #include <linux/stddef.h>
18 #include <linux/kernel.h>
19 #include <linux/slab.h>
20 #include <linux/fs.h>
21 #include <linux/dcache.h>
22 #include <linux/init.h>
23 #include <linux/skbuff.h>
24 #include <linux/percpu.h>
25 #include <linux/list.h>
26 #include <net/sock.h>
27 #include <linux/un.h>
28 #include <net/af_unix.h>
29 #include <linux/ip.h>
30 #include <linux/audit.h>
31 #include <linux/ipv6.h>
32 #include <net/ipv6.h>
33 #include "avc.h"
34 #include "avc_ss.h"
35 #include "classmap.h"
36 
37 #define AVC_CACHE_SLOTS			512
38 #define AVC_DEF_CACHE_THRESHOLD		512
39 #define AVC_CACHE_RECLAIM		16
40 
41 #ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
42 #define avc_cache_stats_incr(field)	this_cpu_inc(avc_cache_stats.field)
43 #else
44 #define avc_cache_stats_incr(field)	do {} while (0)
45 #endif
46 
47 struct avc_entry {
48 	u32			ssid;
49 	u32			tsid;
50 	u16			tclass;
51 	struct av_decision	avd;
52 	struct avc_xperms_node	*xp_node;
53 };
54 
55 struct avc_node {
56 	struct avc_entry	ae;
57 	struct hlist_node	list; /* anchored in avc_cache->slots[i] */
58 	struct rcu_head		rhead;
59 };
60 
61 struct avc_xperms_decision_node {
62 	struct extended_perms_decision xpd;
63 	struct list_head xpd_list; /* list of extended_perms_decision */
64 };
65 
66 struct avc_xperms_node {
67 	struct extended_perms xp;
68 	struct list_head xpd_head; /* list head of extended_perms_decision */
69 };
70 
71 struct avc_cache {
72 	struct hlist_head	slots[AVC_CACHE_SLOTS]; /* head for avc_node->list */
73 	spinlock_t		slots_lock[AVC_CACHE_SLOTS]; /* lock for writes */
74 	atomic_t		lru_hint;	/* LRU hint for reclaim scan */
75 	atomic_t		active_nodes;
76 	u32			latest_notif;	/* latest revocation notification */
77 };
78 
79 struct avc_callback_node {
80 	int (*callback) (u32 event);
81 	u32 events;
82 	struct avc_callback_node *next;
83 };
84 
85 /* Exported via selinufs */
86 unsigned int avc_cache_threshold = AVC_DEF_CACHE_THRESHOLD;
87 
88 #ifdef CONFIG_SECURITY_SELINUX_AVC_STATS
89 DEFINE_PER_CPU(struct avc_cache_stats, avc_cache_stats) = { 0 };
90 #endif
91 
92 static struct avc_cache avc_cache;
93 static struct avc_callback_node *avc_callbacks;
94 static struct kmem_cache *avc_node_cachep;
95 static struct kmem_cache *avc_xperms_data_cachep;
96 static struct kmem_cache *avc_xperms_decision_cachep;
97 static struct kmem_cache *avc_xperms_cachep;
98 
99 static inline int avc_hash(u32 ssid, u32 tsid, u16 tclass)
100 {
101 	return (ssid ^ (tsid<<2) ^ (tclass<<4)) & (AVC_CACHE_SLOTS - 1);
102 }
103 
104 /**
105  * avc_dump_av - Display an access vector in human-readable form.
106  * @tclass: target security class
107  * @av: access vector
108  */
109 static void avc_dump_av(struct audit_buffer *ab, u16 tclass, u32 av)
110 {
111 	const char **perms;
112 	int i, perm;
113 
114 	if (av == 0) {
115 		audit_log_format(ab, " null");
116 		return;
117 	}
118 
119 	BUG_ON(!tclass || tclass >= ARRAY_SIZE(secclass_map));
120 	perms = secclass_map[tclass-1].perms;
121 
122 	audit_log_format(ab, " {");
123 	i = 0;
124 	perm = 1;
125 	while (i < (sizeof(av) * 8)) {
126 		if ((perm & av) && perms[i]) {
127 			audit_log_format(ab, " %s", perms[i]);
128 			av &= ~perm;
129 		}
130 		i++;
131 		perm <<= 1;
132 	}
133 
134 	if (av)
135 		audit_log_format(ab, " 0x%x", av);
136 
137 	audit_log_format(ab, " }");
138 }
139 
140 /**
141  * avc_dump_query - Display a SID pair and a class in human-readable form.
142  * @ssid: source security identifier
143  * @tsid: target security identifier
144  * @tclass: target security class
145  */
146 static void avc_dump_query(struct audit_buffer *ab, u32 ssid, u32 tsid, u16 tclass)
147 {
148 	int rc;
149 	char *scontext;
150 	u32 scontext_len;
151 
152 	rc = security_sid_to_context(ssid, &scontext, &scontext_len);
153 	if (rc)
154 		audit_log_format(ab, "ssid=%d", ssid);
155 	else {
156 		audit_log_format(ab, "scontext=%s", scontext);
157 		kfree(scontext);
158 	}
159 
160 	rc = security_sid_to_context(tsid, &scontext, &scontext_len);
161 	if (rc)
162 		audit_log_format(ab, " tsid=%d", tsid);
163 	else {
164 		audit_log_format(ab, " tcontext=%s", scontext);
165 		kfree(scontext);
166 	}
167 
168 	BUG_ON(!tclass || tclass >= ARRAY_SIZE(secclass_map));
169 	audit_log_format(ab, " tclass=%s", secclass_map[tclass-1].name);
170 }
171 
172 /**
173  * avc_init - Initialize the AVC.
174  *
175  * Initialize the access vector cache.
176  */
177 void __init avc_init(void)
178 {
179 	int i;
180 
181 	for (i = 0; i < AVC_CACHE_SLOTS; i++) {
182 		INIT_HLIST_HEAD(&avc_cache.slots[i]);
183 		spin_lock_init(&avc_cache.slots_lock[i]);
184 	}
185 	atomic_set(&avc_cache.active_nodes, 0);
186 	atomic_set(&avc_cache.lru_hint, 0);
187 
188 	avc_node_cachep = kmem_cache_create("avc_node", sizeof(struct avc_node),
189 					0, SLAB_PANIC, NULL);
190 	avc_xperms_cachep = kmem_cache_create("avc_xperms_node",
191 					sizeof(struct avc_xperms_node),
192 					0, SLAB_PANIC, NULL);
193 	avc_xperms_decision_cachep = kmem_cache_create(
194 					"avc_xperms_decision_node",
195 					sizeof(struct avc_xperms_decision_node),
196 					0, SLAB_PANIC, NULL);
197 	avc_xperms_data_cachep = kmem_cache_create("avc_xperms_data",
198 					sizeof(struct extended_perms_data),
199 					0, SLAB_PANIC, NULL);
200 
201 	audit_log(current->audit_context, GFP_KERNEL, AUDIT_KERNEL, "AVC INITIALIZED\n");
202 }
203 
204 int avc_get_hash_stats(char *page)
205 {
206 	int i, chain_len, max_chain_len, slots_used;
207 	struct avc_node *node;
208 	struct hlist_head *head;
209 
210 	rcu_read_lock();
211 
212 	slots_used = 0;
213 	max_chain_len = 0;
214 	for (i = 0; i < AVC_CACHE_SLOTS; i++) {
215 		head = &avc_cache.slots[i];
216 		if (!hlist_empty(head)) {
217 			slots_used++;
218 			chain_len = 0;
219 			hlist_for_each_entry_rcu(node, head, list)
220 				chain_len++;
221 			if (chain_len > max_chain_len)
222 				max_chain_len = chain_len;
223 		}
224 	}
225 
226 	rcu_read_unlock();
227 
228 	return scnprintf(page, PAGE_SIZE, "entries: %d\nbuckets used: %d/%d\n"
229 			 "longest chain: %d\n",
230 			 atomic_read(&avc_cache.active_nodes),
231 			 slots_used, AVC_CACHE_SLOTS, max_chain_len);
232 }
233 
234 /*
235  * using a linked list for extended_perms_decision lookup because the list is
236  * always small. i.e. less than 5, typically 1
237  */
238 static struct extended_perms_decision *avc_xperms_decision_lookup(u8 driver,
239 					struct avc_xperms_node *xp_node)
240 {
241 	struct avc_xperms_decision_node *xpd_node;
242 
243 	list_for_each_entry(xpd_node, &xp_node->xpd_head, xpd_list) {
244 		if (xpd_node->xpd.driver == driver)
245 			return &xpd_node->xpd;
246 	}
247 	return NULL;
248 }
249 
250 static inline unsigned int
251 avc_xperms_has_perm(struct extended_perms_decision *xpd,
252 					u8 perm, u8 which)
253 {
254 	unsigned int rc = 0;
255 
256 	if ((which == XPERMS_ALLOWED) &&
257 			(xpd->used & XPERMS_ALLOWED))
258 		rc = security_xperm_test(xpd->allowed->p, perm);
259 	else if ((which == XPERMS_AUDITALLOW) &&
260 			(xpd->used & XPERMS_AUDITALLOW))
261 		rc = security_xperm_test(xpd->auditallow->p, perm);
262 	else if ((which == XPERMS_DONTAUDIT) &&
263 			(xpd->used & XPERMS_DONTAUDIT))
264 		rc = security_xperm_test(xpd->dontaudit->p, perm);
265 	return rc;
266 }
267 
268 static void avc_xperms_allow_perm(struct avc_xperms_node *xp_node,
269 				u8 driver, u8 perm)
270 {
271 	struct extended_perms_decision *xpd;
272 	security_xperm_set(xp_node->xp.drivers.p, driver);
273 	xpd = avc_xperms_decision_lookup(driver, xp_node);
274 	if (xpd && xpd->allowed)
275 		security_xperm_set(xpd->allowed->p, perm);
276 }
277 
278 static void avc_xperms_decision_free(struct avc_xperms_decision_node *xpd_node)
279 {
280 	struct extended_perms_decision *xpd;
281 
282 	xpd = &xpd_node->xpd;
283 	if (xpd->allowed)
284 		kmem_cache_free(avc_xperms_data_cachep, xpd->allowed);
285 	if (xpd->auditallow)
286 		kmem_cache_free(avc_xperms_data_cachep, xpd->auditallow);
287 	if (xpd->dontaudit)
288 		kmem_cache_free(avc_xperms_data_cachep, xpd->dontaudit);
289 	kmem_cache_free(avc_xperms_decision_cachep, xpd_node);
290 }
291 
292 static void avc_xperms_free(struct avc_xperms_node *xp_node)
293 {
294 	struct avc_xperms_decision_node *xpd_node, *tmp;
295 
296 	if (!xp_node)
297 		return;
298 
299 	list_for_each_entry_safe(xpd_node, tmp, &xp_node->xpd_head, xpd_list) {
300 		list_del(&xpd_node->xpd_list);
301 		avc_xperms_decision_free(xpd_node);
302 	}
303 	kmem_cache_free(avc_xperms_cachep, xp_node);
304 }
305 
306 static void avc_copy_xperms_decision(struct extended_perms_decision *dest,
307 					struct extended_perms_decision *src)
308 {
309 	dest->driver = src->driver;
310 	dest->used = src->used;
311 	if (dest->used & XPERMS_ALLOWED)
312 		memcpy(dest->allowed->p, src->allowed->p,
313 				sizeof(src->allowed->p));
314 	if (dest->used & XPERMS_AUDITALLOW)
315 		memcpy(dest->auditallow->p, src->auditallow->p,
316 				sizeof(src->auditallow->p));
317 	if (dest->used & XPERMS_DONTAUDIT)
318 		memcpy(dest->dontaudit->p, src->dontaudit->p,
319 				sizeof(src->dontaudit->p));
320 }
321 
322 /*
323  * similar to avc_copy_xperms_decision, but only copy decision
324  * information relevant to this perm
325  */
326 static inline void avc_quick_copy_xperms_decision(u8 perm,
327 			struct extended_perms_decision *dest,
328 			struct extended_perms_decision *src)
329 {
330 	/*
331 	 * compute index of the u32 of the 256 bits (8 u32s) that contain this
332 	 * command permission
333 	 */
334 	u8 i = perm >> 5;
335 
336 	dest->used = src->used;
337 	if (dest->used & XPERMS_ALLOWED)
338 		dest->allowed->p[i] = src->allowed->p[i];
339 	if (dest->used & XPERMS_AUDITALLOW)
340 		dest->auditallow->p[i] = src->auditallow->p[i];
341 	if (dest->used & XPERMS_DONTAUDIT)
342 		dest->dontaudit->p[i] = src->dontaudit->p[i];
343 }
344 
345 static struct avc_xperms_decision_node
346 		*avc_xperms_decision_alloc(u8 which)
347 {
348 	struct avc_xperms_decision_node *xpd_node;
349 	struct extended_perms_decision *xpd;
350 
351 	xpd_node = kmem_cache_zalloc(avc_xperms_decision_cachep,
352 				GFP_ATOMIC | __GFP_NOMEMALLOC);
353 	if (!xpd_node)
354 		return NULL;
355 
356 	xpd = &xpd_node->xpd;
357 	if (which & XPERMS_ALLOWED) {
358 		xpd->allowed = kmem_cache_zalloc(avc_xperms_data_cachep,
359 						GFP_ATOMIC | __GFP_NOMEMALLOC);
360 		if (!xpd->allowed)
361 			goto error;
362 	}
363 	if (which & XPERMS_AUDITALLOW) {
364 		xpd->auditallow = kmem_cache_zalloc(avc_xperms_data_cachep,
365 						GFP_ATOMIC | __GFP_NOMEMALLOC);
366 		if (!xpd->auditallow)
367 			goto error;
368 	}
369 	if (which & XPERMS_DONTAUDIT) {
370 		xpd->dontaudit = kmem_cache_zalloc(avc_xperms_data_cachep,
371 						GFP_ATOMIC | __GFP_NOMEMALLOC);
372 		if (!xpd->dontaudit)
373 			goto error;
374 	}
375 	return xpd_node;
376 error:
377 	avc_xperms_decision_free(xpd_node);
378 	return NULL;
379 }
380 
381 static int avc_add_xperms_decision(struct avc_node *node,
382 			struct extended_perms_decision *src)
383 {
384 	struct avc_xperms_decision_node *dest_xpd;
385 
386 	node->ae.xp_node->xp.len++;
387 	dest_xpd = avc_xperms_decision_alloc(src->used);
388 	if (!dest_xpd)
389 		return -ENOMEM;
390 	avc_copy_xperms_decision(&dest_xpd->xpd, src);
391 	list_add(&dest_xpd->xpd_list, &node->ae.xp_node->xpd_head);
392 	return 0;
393 }
394 
395 static struct avc_xperms_node *avc_xperms_alloc(void)
396 {
397 	struct avc_xperms_node *xp_node;
398 
399 	xp_node = kmem_cache_zalloc(avc_xperms_cachep,
400 				GFP_ATOMIC|__GFP_NOMEMALLOC);
401 	if (!xp_node)
402 		return xp_node;
403 	INIT_LIST_HEAD(&xp_node->xpd_head);
404 	return xp_node;
405 }
406 
407 static int avc_xperms_populate(struct avc_node *node,
408 				struct avc_xperms_node *src)
409 {
410 	struct avc_xperms_node *dest;
411 	struct avc_xperms_decision_node *dest_xpd;
412 	struct avc_xperms_decision_node *src_xpd;
413 
414 	if (src->xp.len == 0)
415 		return 0;
416 	dest = avc_xperms_alloc();
417 	if (!dest)
418 		return -ENOMEM;
419 
420 	memcpy(dest->xp.drivers.p, src->xp.drivers.p, sizeof(dest->xp.drivers.p));
421 	dest->xp.len = src->xp.len;
422 
423 	/* for each source xpd allocate a destination xpd and copy */
424 	list_for_each_entry(src_xpd, &src->xpd_head, xpd_list) {
425 		dest_xpd = avc_xperms_decision_alloc(src_xpd->xpd.used);
426 		if (!dest_xpd)
427 			goto error;
428 		avc_copy_xperms_decision(&dest_xpd->xpd, &src_xpd->xpd);
429 		list_add(&dest_xpd->xpd_list, &dest->xpd_head);
430 	}
431 	node->ae.xp_node = dest;
432 	return 0;
433 error:
434 	avc_xperms_free(dest);
435 	return -ENOMEM;
436 
437 }
438 
439 static inline u32 avc_xperms_audit_required(u32 requested,
440 					struct av_decision *avd,
441 					struct extended_perms_decision *xpd,
442 					u8 perm,
443 					int result,
444 					u32 *deniedp)
445 {
446 	u32 denied, audited;
447 
448 	denied = requested & ~avd->allowed;
449 	if (unlikely(denied)) {
450 		audited = denied & avd->auditdeny;
451 		if (audited && xpd) {
452 			if (avc_xperms_has_perm(xpd, perm, XPERMS_DONTAUDIT))
453 				audited &= ~requested;
454 		}
455 	} else if (result) {
456 		audited = denied = requested;
457 	} else {
458 		audited = requested & avd->auditallow;
459 		if (audited && xpd) {
460 			if (!avc_xperms_has_perm(xpd, perm, XPERMS_AUDITALLOW))
461 				audited &= ~requested;
462 		}
463 	}
464 
465 	*deniedp = denied;
466 	return audited;
467 }
468 
469 static inline int avc_xperms_audit(u32 ssid, u32 tsid, u16 tclass,
470 				u32 requested, struct av_decision *avd,
471 				struct extended_perms_decision *xpd,
472 				u8 perm, int result,
473 				struct common_audit_data *ad)
474 {
475 	u32 audited, denied;
476 
477 	audited = avc_xperms_audit_required(
478 			requested, avd, xpd, perm, result, &denied);
479 	if (likely(!audited))
480 		return 0;
481 	return slow_avc_audit(ssid, tsid, tclass, requested,
482 			audited, denied, result, ad, 0);
483 }
484 
485 static void avc_node_free(struct rcu_head *rhead)
486 {
487 	struct avc_node *node = container_of(rhead, struct avc_node, rhead);
488 	avc_xperms_free(node->ae.xp_node);
489 	kmem_cache_free(avc_node_cachep, node);
490 	avc_cache_stats_incr(frees);
491 }
492 
493 static void avc_node_delete(struct avc_node *node)
494 {
495 	hlist_del_rcu(&node->list);
496 	call_rcu(&node->rhead, avc_node_free);
497 	atomic_dec(&avc_cache.active_nodes);
498 }
499 
500 static void avc_node_kill(struct avc_node *node)
501 {
502 	avc_xperms_free(node->ae.xp_node);
503 	kmem_cache_free(avc_node_cachep, node);
504 	avc_cache_stats_incr(frees);
505 	atomic_dec(&avc_cache.active_nodes);
506 }
507 
508 static void avc_node_replace(struct avc_node *new, struct avc_node *old)
509 {
510 	hlist_replace_rcu(&old->list, &new->list);
511 	call_rcu(&old->rhead, avc_node_free);
512 	atomic_dec(&avc_cache.active_nodes);
513 }
514 
515 static inline int avc_reclaim_node(void)
516 {
517 	struct avc_node *node;
518 	int hvalue, try, ecx;
519 	unsigned long flags;
520 	struct hlist_head *head;
521 	spinlock_t *lock;
522 
523 	for (try = 0, ecx = 0; try < AVC_CACHE_SLOTS; try++) {
524 		hvalue = atomic_inc_return(&avc_cache.lru_hint) & (AVC_CACHE_SLOTS - 1);
525 		head = &avc_cache.slots[hvalue];
526 		lock = &avc_cache.slots_lock[hvalue];
527 
528 		if (!spin_trylock_irqsave(lock, flags))
529 			continue;
530 
531 		rcu_read_lock();
532 		hlist_for_each_entry(node, head, list) {
533 			avc_node_delete(node);
534 			avc_cache_stats_incr(reclaims);
535 			ecx++;
536 			if (ecx >= AVC_CACHE_RECLAIM) {
537 				rcu_read_unlock();
538 				spin_unlock_irqrestore(lock, flags);
539 				goto out;
540 			}
541 		}
542 		rcu_read_unlock();
543 		spin_unlock_irqrestore(lock, flags);
544 	}
545 out:
546 	return ecx;
547 }
548 
549 static struct avc_node *avc_alloc_node(void)
550 {
551 	struct avc_node *node;
552 
553 	node = kmem_cache_zalloc(avc_node_cachep, GFP_ATOMIC|__GFP_NOMEMALLOC);
554 	if (!node)
555 		goto out;
556 
557 	INIT_HLIST_NODE(&node->list);
558 	avc_cache_stats_incr(allocations);
559 
560 	if (atomic_inc_return(&avc_cache.active_nodes) > avc_cache_threshold)
561 		avc_reclaim_node();
562 
563 out:
564 	return node;
565 }
566 
567 static void avc_node_populate(struct avc_node *node, u32 ssid, u32 tsid, u16 tclass, struct av_decision *avd)
568 {
569 	node->ae.ssid = ssid;
570 	node->ae.tsid = tsid;
571 	node->ae.tclass = tclass;
572 	memcpy(&node->ae.avd, avd, sizeof(node->ae.avd));
573 }
574 
575 static inline struct avc_node *avc_search_node(u32 ssid, u32 tsid, u16 tclass)
576 {
577 	struct avc_node *node, *ret = NULL;
578 	int hvalue;
579 	struct hlist_head *head;
580 
581 	hvalue = avc_hash(ssid, tsid, tclass);
582 	head = &avc_cache.slots[hvalue];
583 	hlist_for_each_entry_rcu(node, head, list) {
584 		if (ssid == node->ae.ssid &&
585 		    tclass == node->ae.tclass &&
586 		    tsid == node->ae.tsid) {
587 			ret = node;
588 			break;
589 		}
590 	}
591 
592 	return ret;
593 }
594 
595 /**
596  * avc_lookup - Look up an AVC entry.
597  * @ssid: source security identifier
598  * @tsid: target security identifier
599  * @tclass: target security class
600  *
601  * Look up an AVC entry that is valid for the
602  * (@ssid, @tsid), interpreting the permissions
603  * based on @tclass.  If a valid AVC entry exists,
604  * then this function returns the avc_node.
605  * Otherwise, this function returns NULL.
606  */
607 static struct avc_node *avc_lookup(u32 ssid, u32 tsid, u16 tclass)
608 {
609 	struct avc_node *node;
610 
611 	avc_cache_stats_incr(lookups);
612 	node = avc_search_node(ssid, tsid, tclass);
613 
614 	if (node)
615 		return node;
616 
617 	avc_cache_stats_incr(misses);
618 	return NULL;
619 }
620 
621 static int avc_latest_notif_update(int seqno, int is_insert)
622 {
623 	int ret = 0;
624 	static DEFINE_SPINLOCK(notif_lock);
625 	unsigned long flag;
626 
627 	spin_lock_irqsave(&notif_lock, flag);
628 	if (is_insert) {
629 		if (seqno < avc_cache.latest_notif) {
630 			printk(KERN_WARNING "SELinux: avc:  seqno %d < latest_notif %d\n",
631 			       seqno, avc_cache.latest_notif);
632 			ret = -EAGAIN;
633 		}
634 	} else {
635 		if (seqno > avc_cache.latest_notif)
636 			avc_cache.latest_notif = seqno;
637 	}
638 	spin_unlock_irqrestore(&notif_lock, flag);
639 
640 	return ret;
641 }
642 
643 /**
644  * avc_insert - Insert an AVC entry.
645  * @ssid: source security identifier
646  * @tsid: target security identifier
647  * @tclass: target security class
648  * @avd: resulting av decision
649  * @xp_node: resulting extended permissions
650  *
651  * Insert an AVC entry for the SID pair
652  * (@ssid, @tsid) and class @tclass.
653  * The access vectors and the sequence number are
654  * normally provided by the security server in
655  * response to a security_compute_av() call.  If the
656  * sequence number @avd->seqno is not less than the latest
657  * revocation notification, then the function copies
658  * the access vectors into a cache entry, returns
659  * avc_node inserted. Otherwise, this function returns NULL.
660  */
661 static struct avc_node *avc_insert(u32 ssid, u32 tsid, u16 tclass,
662 				struct av_decision *avd,
663 				struct avc_xperms_node *xp_node)
664 {
665 	struct avc_node *pos, *node = NULL;
666 	int hvalue;
667 	unsigned long flag;
668 
669 	if (avc_latest_notif_update(avd->seqno, 1))
670 		goto out;
671 
672 	node = avc_alloc_node();
673 	if (node) {
674 		struct hlist_head *head;
675 		spinlock_t *lock;
676 		int rc = 0;
677 
678 		hvalue = avc_hash(ssid, tsid, tclass);
679 		avc_node_populate(node, ssid, tsid, tclass, avd);
680 		rc = avc_xperms_populate(node, xp_node);
681 		if (rc) {
682 			kmem_cache_free(avc_node_cachep, node);
683 			return NULL;
684 		}
685 		head = &avc_cache.slots[hvalue];
686 		lock = &avc_cache.slots_lock[hvalue];
687 
688 		spin_lock_irqsave(lock, flag);
689 		hlist_for_each_entry(pos, head, list) {
690 			if (pos->ae.ssid == ssid &&
691 			    pos->ae.tsid == tsid &&
692 			    pos->ae.tclass == tclass) {
693 				avc_node_replace(node, pos);
694 				goto found;
695 			}
696 		}
697 		hlist_add_head_rcu(&node->list, head);
698 found:
699 		spin_unlock_irqrestore(lock, flag);
700 	}
701 out:
702 	return node;
703 }
704 
705 /**
706  * avc_audit_pre_callback - SELinux specific information
707  * will be called by generic audit code
708  * @ab: the audit buffer
709  * @a: audit_data
710  */
711 static void avc_audit_pre_callback(struct audit_buffer *ab, void *a)
712 {
713 	struct common_audit_data *ad = a;
714 	audit_log_format(ab, "avc:  %s ",
715 			 ad->selinux_audit_data->denied ? "denied" : "granted");
716 	avc_dump_av(ab, ad->selinux_audit_data->tclass,
717 			ad->selinux_audit_data->audited);
718 	audit_log_format(ab, " for ");
719 }
720 
721 /**
722  * avc_audit_post_callback - SELinux specific information
723  * will be called by generic audit code
724  * @ab: the audit buffer
725  * @a: audit_data
726  */
727 static void avc_audit_post_callback(struct audit_buffer *ab, void *a)
728 {
729 	struct common_audit_data *ad = a;
730 	audit_log_format(ab, " ");
731 	avc_dump_query(ab, ad->selinux_audit_data->ssid,
732 			   ad->selinux_audit_data->tsid,
733 			   ad->selinux_audit_data->tclass);
734 	if (ad->selinux_audit_data->denied) {
735 		audit_log_format(ab, " permissive=%u",
736 				 ad->selinux_audit_data->result ? 0 : 1);
737 	}
738 }
739 
740 /* This is the slow part of avc audit with big stack footprint */
741 noinline int slow_avc_audit(u32 ssid, u32 tsid, u16 tclass,
742 		u32 requested, u32 audited, u32 denied, int result,
743 		struct common_audit_data *a,
744 		unsigned flags)
745 {
746 	struct common_audit_data stack_data;
747 	struct selinux_audit_data sad;
748 
749 	if (!a) {
750 		a = &stack_data;
751 		a->type = LSM_AUDIT_DATA_NONE;
752 	}
753 
754 	/*
755 	 * When in a RCU walk do the audit on the RCU retry.  This is because
756 	 * the collection of the dname in an inode audit message is not RCU
757 	 * safe.  Note this may drop some audits when the situation changes
758 	 * during retry. However this is logically just as if the operation
759 	 * happened a little later.
760 	 */
761 	if ((a->type == LSM_AUDIT_DATA_INODE) &&
762 	    (flags & MAY_NOT_BLOCK))
763 		return -ECHILD;
764 
765 	sad.tclass = tclass;
766 	sad.requested = requested;
767 	sad.ssid = ssid;
768 	sad.tsid = tsid;
769 	sad.audited = audited;
770 	sad.denied = denied;
771 	sad.result = result;
772 
773 	a->selinux_audit_data = &sad;
774 
775 	common_lsm_audit(a, avc_audit_pre_callback, avc_audit_post_callback);
776 	return 0;
777 }
778 
779 /**
780  * avc_add_callback - Register a callback for security events.
781  * @callback: callback function
782  * @events: security events
783  *
784  * Register a callback function for events in the set @events.
785  * Returns %0 on success or -%ENOMEM if insufficient memory
786  * exists to add the callback.
787  */
788 int __init avc_add_callback(int (*callback)(u32 event), u32 events)
789 {
790 	struct avc_callback_node *c;
791 	int rc = 0;
792 
793 	c = kmalloc(sizeof(*c), GFP_KERNEL);
794 	if (!c) {
795 		rc = -ENOMEM;
796 		goto out;
797 	}
798 
799 	c->callback = callback;
800 	c->events = events;
801 	c->next = avc_callbacks;
802 	avc_callbacks = c;
803 out:
804 	return rc;
805 }
806 
807 /**
808  * avc_update_node Update an AVC entry
809  * @event : Updating event
810  * @perms : Permission mask bits
811  * @ssid,@tsid,@tclass : identifier of an AVC entry
812  * @seqno : sequence number when decision was made
813  * @xpd: extended_perms_decision to be added to the node
814  *
815  * if a valid AVC entry doesn't exist,this function returns -ENOENT.
816  * if kmalloc() called internal returns NULL, this function returns -ENOMEM.
817  * otherwise, this function updates the AVC entry. The original AVC-entry object
818  * will release later by RCU.
819  */
820 static int avc_update_node(u32 event, u32 perms, u8 driver, u8 xperm, u32 ssid,
821 			u32 tsid, u16 tclass, u32 seqno,
822 			struct extended_perms_decision *xpd,
823 			u32 flags)
824 {
825 	int hvalue, rc = 0;
826 	unsigned long flag;
827 	struct avc_node *pos, *node, *orig = NULL;
828 	struct hlist_head *head;
829 	spinlock_t *lock;
830 
831 	node = avc_alloc_node();
832 	if (!node) {
833 		rc = -ENOMEM;
834 		goto out;
835 	}
836 
837 	/* Lock the target slot */
838 	hvalue = avc_hash(ssid, tsid, tclass);
839 
840 	head = &avc_cache.slots[hvalue];
841 	lock = &avc_cache.slots_lock[hvalue];
842 
843 	spin_lock_irqsave(lock, flag);
844 
845 	hlist_for_each_entry(pos, head, list) {
846 		if (ssid == pos->ae.ssid &&
847 		    tsid == pos->ae.tsid &&
848 		    tclass == pos->ae.tclass &&
849 		    seqno == pos->ae.avd.seqno){
850 			orig = pos;
851 			break;
852 		}
853 	}
854 
855 	if (!orig) {
856 		rc = -ENOENT;
857 		avc_node_kill(node);
858 		goto out_unlock;
859 	}
860 
861 	/*
862 	 * Copy and replace original node.
863 	 */
864 
865 	avc_node_populate(node, ssid, tsid, tclass, &orig->ae.avd);
866 
867 	if (orig->ae.xp_node) {
868 		rc = avc_xperms_populate(node, orig->ae.xp_node);
869 		if (rc) {
870 			kmem_cache_free(avc_node_cachep, node);
871 			goto out_unlock;
872 		}
873 	}
874 
875 	switch (event) {
876 	case AVC_CALLBACK_GRANT:
877 		node->ae.avd.allowed |= perms;
878 		if (node->ae.xp_node && (flags & AVC_EXTENDED_PERMS))
879 			avc_xperms_allow_perm(node->ae.xp_node, driver, xperm);
880 		break;
881 	case AVC_CALLBACK_TRY_REVOKE:
882 	case AVC_CALLBACK_REVOKE:
883 		node->ae.avd.allowed &= ~perms;
884 		break;
885 	case AVC_CALLBACK_AUDITALLOW_ENABLE:
886 		node->ae.avd.auditallow |= perms;
887 		break;
888 	case AVC_CALLBACK_AUDITALLOW_DISABLE:
889 		node->ae.avd.auditallow &= ~perms;
890 		break;
891 	case AVC_CALLBACK_AUDITDENY_ENABLE:
892 		node->ae.avd.auditdeny |= perms;
893 		break;
894 	case AVC_CALLBACK_AUDITDENY_DISABLE:
895 		node->ae.avd.auditdeny &= ~perms;
896 		break;
897 	case AVC_CALLBACK_ADD_XPERMS:
898 		avc_add_xperms_decision(node, xpd);
899 		break;
900 	}
901 	avc_node_replace(node, orig);
902 out_unlock:
903 	spin_unlock_irqrestore(lock, flag);
904 out:
905 	return rc;
906 }
907 
908 /**
909  * avc_flush - Flush the cache
910  */
911 static void avc_flush(void)
912 {
913 	struct hlist_head *head;
914 	struct avc_node *node;
915 	spinlock_t *lock;
916 	unsigned long flag;
917 	int i;
918 
919 	for (i = 0; i < AVC_CACHE_SLOTS; i++) {
920 		head = &avc_cache.slots[i];
921 		lock = &avc_cache.slots_lock[i];
922 
923 		spin_lock_irqsave(lock, flag);
924 		/*
925 		 * With preemptable RCU, the outer spinlock does not
926 		 * prevent RCU grace periods from ending.
927 		 */
928 		rcu_read_lock();
929 		hlist_for_each_entry(node, head, list)
930 			avc_node_delete(node);
931 		rcu_read_unlock();
932 		spin_unlock_irqrestore(lock, flag);
933 	}
934 }
935 
936 /**
937  * avc_ss_reset - Flush the cache and revalidate migrated permissions.
938  * @seqno: policy sequence number
939  */
940 int avc_ss_reset(u32 seqno)
941 {
942 	struct avc_callback_node *c;
943 	int rc = 0, tmprc;
944 
945 	avc_flush();
946 
947 	for (c = avc_callbacks; c; c = c->next) {
948 		if (c->events & AVC_CALLBACK_RESET) {
949 			tmprc = c->callback(AVC_CALLBACK_RESET);
950 			/* save the first error encountered for the return
951 			   value and continue processing the callbacks */
952 			if (!rc)
953 				rc = tmprc;
954 		}
955 	}
956 
957 	avc_latest_notif_update(seqno, 0);
958 	return rc;
959 }
960 
961 /*
962  * Slow-path helper function for avc_has_perm_noaudit,
963  * when the avc_node lookup fails. We get called with
964  * the RCU read lock held, and need to return with it
965  * still held, but drop if for the security compute.
966  *
967  * Don't inline this, since it's the slow-path and just
968  * results in a bigger stack frame.
969  */
970 static noinline struct avc_node *avc_compute_av(u32 ssid, u32 tsid,
971 			 u16 tclass, struct av_decision *avd,
972 			 struct avc_xperms_node *xp_node)
973 {
974 	rcu_read_unlock();
975 	INIT_LIST_HEAD(&xp_node->xpd_head);
976 	security_compute_av(ssid, tsid, tclass, avd, &xp_node->xp);
977 	rcu_read_lock();
978 	return avc_insert(ssid, tsid, tclass, avd, xp_node);
979 }
980 
981 static noinline int avc_denied(u32 ssid, u32 tsid,
982 				u16 tclass, u32 requested,
983 				u8 driver, u8 xperm, unsigned flags,
984 				struct av_decision *avd)
985 {
986 	if (flags & AVC_STRICT)
987 		return -EACCES;
988 
989 	if (selinux_enforcing && !(avd->flags & AVD_FLAGS_PERMISSIVE))
990 		return -EACCES;
991 
992 	avc_update_node(AVC_CALLBACK_GRANT, requested, driver, xperm, ssid,
993 				tsid, tclass, avd->seqno, NULL, flags);
994 	return 0;
995 }
996 
997 /*
998  * The avc extended permissions logic adds an additional 256 bits of
999  * permissions to an avc node when extended permissions for that node are
1000  * specified in the avtab. If the additional 256 permissions is not adequate,
1001  * as-is the case with ioctls, then multiple may be chained together and the
1002  * driver field is used to specify which set contains the permission.
1003  */
1004 int avc_has_extended_perms(u32 ssid, u32 tsid, u16 tclass, u32 requested,
1005 			u8 driver, u8 xperm, struct common_audit_data *ad)
1006 {
1007 	struct avc_node *node;
1008 	struct av_decision avd;
1009 	u32 denied;
1010 	struct extended_perms_decision local_xpd;
1011 	struct extended_perms_decision *xpd = NULL;
1012 	struct extended_perms_data allowed;
1013 	struct extended_perms_data auditallow;
1014 	struct extended_perms_data dontaudit;
1015 	struct avc_xperms_node local_xp_node;
1016 	struct avc_xperms_node *xp_node;
1017 	int rc = 0, rc2;
1018 
1019 	xp_node = &local_xp_node;
1020 	BUG_ON(!requested);
1021 
1022 	rcu_read_lock();
1023 
1024 	node = avc_lookup(ssid, tsid, tclass);
1025 	if (unlikely(!node)) {
1026 		node = avc_compute_av(ssid, tsid, tclass, &avd, xp_node);
1027 	} else {
1028 		memcpy(&avd, &node->ae.avd, sizeof(avd));
1029 		xp_node = node->ae.xp_node;
1030 	}
1031 	/* if extended permissions are not defined, only consider av_decision */
1032 	if (!xp_node || !xp_node->xp.len)
1033 		goto decision;
1034 
1035 	local_xpd.allowed = &allowed;
1036 	local_xpd.auditallow = &auditallow;
1037 	local_xpd.dontaudit = &dontaudit;
1038 
1039 	xpd = avc_xperms_decision_lookup(driver, xp_node);
1040 	if (unlikely(!xpd)) {
1041 		/*
1042 		 * Compute the extended_perms_decision only if the driver
1043 		 * is flagged
1044 		 */
1045 		if (!security_xperm_test(xp_node->xp.drivers.p, driver)) {
1046 			avd.allowed &= ~requested;
1047 			goto decision;
1048 		}
1049 		rcu_read_unlock();
1050 		security_compute_xperms_decision(ssid, tsid, tclass, driver,
1051 						&local_xpd);
1052 		rcu_read_lock();
1053 		avc_update_node(AVC_CALLBACK_ADD_XPERMS, requested, driver, xperm,
1054 				ssid, tsid, tclass, avd.seqno, &local_xpd, 0);
1055 	} else {
1056 		avc_quick_copy_xperms_decision(xperm, &local_xpd, xpd);
1057 	}
1058 	xpd = &local_xpd;
1059 
1060 	if (!avc_xperms_has_perm(xpd, xperm, XPERMS_ALLOWED))
1061 		avd.allowed &= ~requested;
1062 
1063 decision:
1064 	denied = requested & ~(avd.allowed);
1065 	if (unlikely(denied))
1066 		rc = avc_denied(ssid, tsid, tclass, requested, driver, xperm,
1067 				AVC_EXTENDED_PERMS, &avd);
1068 
1069 	rcu_read_unlock();
1070 
1071 	rc2 = avc_xperms_audit(ssid, tsid, tclass, requested,
1072 			&avd, xpd, xperm, rc, ad);
1073 	if (rc2)
1074 		return rc2;
1075 	return rc;
1076 }
1077 
1078 /**
1079  * avc_has_perm_noaudit - Check permissions but perform no auditing.
1080  * @ssid: source security identifier
1081  * @tsid: target security identifier
1082  * @tclass: target security class
1083  * @requested: requested permissions, interpreted based on @tclass
1084  * @flags:  AVC_STRICT or 0
1085  * @avd: access vector decisions
1086  *
1087  * Check the AVC to determine whether the @requested permissions are granted
1088  * for the SID pair (@ssid, @tsid), interpreting the permissions
1089  * based on @tclass, and call the security server on a cache miss to obtain
1090  * a new decision and add it to the cache.  Return a copy of the decisions
1091  * in @avd.  Return %0 if all @requested permissions are granted,
1092  * -%EACCES if any permissions are denied, or another -errno upon
1093  * other errors.  This function is typically called by avc_has_perm(),
1094  * but may also be called directly to separate permission checking from
1095  * auditing, e.g. in cases where a lock must be held for the check but
1096  * should be released for the auditing.
1097  */
1098 inline int avc_has_perm_noaudit(u32 ssid, u32 tsid,
1099 			 u16 tclass, u32 requested,
1100 			 unsigned flags,
1101 			 struct av_decision *avd)
1102 {
1103 	struct avc_node *node;
1104 	struct avc_xperms_node xp_node;
1105 	int rc = 0;
1106 	u32 denied;
1107 
1108 	BUG_ON(!requested);
1109 
1110 	rcu_read_lock();
1111 
1112 	node = avc_lookup(ssid, tsid, tclass);
1113 	if (unlikely(!node))
1114 		node = avc_compute_av(ssid, tsid, tclass, avd, &xp_node);
1115 	else
1116 		memcpy(avd, &node->ae.avd, sizeof(*avd));
1117 
1118 	denied = requested & ~(avd->allowed);
1119 	if (unlikely(denied))
1120 		rc = avc_denied(ssid, tsid, tclass, requested, 0, 0, flags, avd);
1121 
1122 	rcu_read_unlock();
1123 	return rc;
1124 }
1125 
1126 /**
1127  * avc_has_perm - Check permissions and perform any appropriate auditing.
1128  * @ssid: source security identifier
1129  * @tsid: target security identifier
1130  * @tclass: target security class
1131  * @requested: requested permissions, interpreted based on @tclass
1132  * @auditdata: auxiliary audit data
1133  *
1134  * Check the AVC to determine whether the @requested permissions are granted
1135  * for the SID pair (@ssid, @tsid), interpreting the permissions
1136  * based on @tclass, and call the security server on a cache miss to obtain
1137  * a new decision and add it to the cache.  Audit the granting or denial of
1138  * permissions in accordance with the policy.  Return %0 if all @requested
1139  * permissions are granted, -%EACCES if any permissions are denied, or
1140  * another -errno upon other errors.
1141  */
1142 int avc_has_perm(u32 ssid, u32 tsid, u16 tclass,
1143 		 u32 requested, struct common_audit_data *auditdata)
1144 {
1145 	struct av_decision avd;
1146 	int rc, rc2;
1147 
1148 	rc = avc_has_perm_noaudit(ssid, tsid, tclass, requested, 0, &avd);
1149 
1150 	rc2 = avc_audit(ssid, tsid, tclass, requested, &avd, rc, auditdata, 0);
1151 	if (rc2)
1152 		return rc2;
1153 	return rc;
1154 }
1155 
1156 int avc_has_perm_flags(u32 ssid, u32 tsid, u16 tclass,
1157 		       u32 requested, struct common_audit_data *auditdata,
1158 		       int flags)
1159 {
1160 	struct av_decision avd;
1161 	int rc, rc2;
1162 
1163 	rc = avc_has_perm_noaudit(ssid, tsid, tclass, requested, 0, &avd);
1164 
1165 	rc2 = avc_audit(ssid, tsid, tclass, requested, &avd, rc,
1166 			auditdata, flags);
1167 	if (rc2)
1168 		return rc2;
1169 	return rc;
1170 }
1171 
1172 u32 avc_policy_seqno(void)
1173 {
1174 	return avc_cache.latest_notif;
1175 }
1176 
1177 void avc_disable(void)
1178 {
1179 	/*
1180 	 * If you are looking at this because you have realized that we are
1181 	 * not destroying the avc_node_cachep it might be easy to fix, but
1182 	 * I don't know the memory barrier semantics well enough to know.  It's
1183 	 * possible that some other task dereferenced security_ops when
1184 	 * it still pointed to selinux operations.  If that is the case it's
1185 	 * possible that it is about to use the avc and is about to need the
1186 	 * avc_node_cachep.  I know I could wrap the security.c security_ops call
1187 	 * in an rcu_lock, but seriously, it's not worth it.  Instead I just flush
1188 	 * the cache and get that memory back.
1189 	 */
1190 	if (avc_node_cachep) {
1191 		avc_flush();
1192 		/* kmem_cache_destroy(avc_node_cachep); */
1193 	}
1194 }
1195