1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Implementation of the kernel access vector cache (AVC). 4 * 5 * Authors: Stephen Smalley, <stephen.smalley.work@gmail.com> 6 * James Morris <jmorris@redhat.com> 7 * 8 * Update: KaiGai, Kohei <kaigai@ak.jp.nec.com> 9 * Replaced the avc_lock spinlock by RCU. 10 * 11 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com> 12 */ 13 #include <linux/types.h> 14 #include <linux/stddef.h> 15 #include <linux/kernel.h> 16 #include <linux/slab.h> 17 #include <linux/fs.h> 18 #include <linux/dcache.h> 19 #include <linux/init.h> 20 #include <linux/skbuff.h> 21 #include <linux/percpu.h> 22 #include <linux/list.h> 23 #include <net/sock.h> 24 #include <linux/un.h> 25 #include <net/af_unix.h> 26 #include <linux/ip.h> 27 #include <linux/audit.h> 28 #include <linux/ipv6.h> 29 #include <net/ipv6.h> 30 #include "avc.h" 31 #include "avc_ss.h" 32 #include "classmap.h" 33 34 #define CREATE_TRACE_POINTS 35 #include <trace/events/avc.h> 36 37 #define AVC_CACHE_SLOTS 512 38 #define AVC_DEF_CACHE_THRESHOLD 512 39 #define AVC_CACHE_RECLAIM 16 40 41 #ifdef CONFIG_SECURITY_SELINUX_AVC_STATS 42 #define avc_cache_stats_incr(field) this_cpu_inc(avc_cache_stats.field) 43 #else 44 #define avc_cache_stats_incr(field) do {} while (0) 45 #endif 46 47 struct avc_entry { 48 u32 ssid; 49 u32 tsid; 50 u16 tclass; 51 struct av_decision avd; 52 struct avc_xperms_node *xp_node; 53 }; 54 55 struct avc_node { 56 struct avc_entry ae; 57 struct hlist_node list; /* anchored in avc_cache->slots[i] */ 58 struct rcu_head rhead; 59 }; 60 61 struct avc_xperms_decision_node { 62 struct extended_perms_decision xpd; 63 struct list_head xpd_list; /* list of extended_perms_decision */ 64 }; 65 66 struct avc_xperms_node { 67 struct extended_perms xp; 68 struct list_head xpd_head; /* list head of extended_perms_decision */ 69 }; 70 71 struct avc_cache { 72 struct hlist_head slots[AVC_CACHE_SLOTS]; /* head for avc_node->list */ 73 spinlock_t slots_lock[AVC_CACHE_SLOTS]; /* lock for writes */ 74 atomic_t lru_hint; /* LRU hint for reclaim scan */ 75 atomic_t active_nodes; 76 u32 latest_notif; /* latest revocation notification */ 77 }; 78 79 struct avc_callback_node { 80 int (*callback) (u32 event); 81 u32 events; 82 struct avc_callback_node *next; 83 }; 84 85 #ifdef CONFIG_SECURITY_SELINUX_AVC_STATS 86 DEFINE_PER_CPU(struct avc_cache_stats, avc_cache_stats) = { 0 }; 87 #endif 88 89 struct selinux_avc { 90 unsigned int avc_cache_threshold; 91 struct avc_cache avc_cache; 92 }; 93 94 static struct selinux_avc selinux_avc; 95 96 void selinux_avc_init(void) 97 { 98 int i; 99 100 selinux_avc.avc_cache_threshold = AVC_DEF_CACHE_THRESHOLD; 101 for (i = 0; i < AVC_CACHE_SLOTS; i++) { 102 INIT_HLIST_HEAD(&selinux_avc.avc_cache.slots[i]); 103 spin_lock_init(&selinux_avc.avc_cache.slots_lock[i]); 104 } 105 atomic_set(&selinux_avc.avc_cache.active_nodes, 0); 106 atomic_set(&selinux_avc.avc_cache.lru_hint, 0); 107 } 108 109 unsigned int avc_get_cache_threshold(void) 110 { 111 return selinux_avc.avc_cache_threshold; 112 } 113 114 void avc_set_cache_threshold(unsigned int cache_threshold) 115 { 116 selinux_avc.avc_cache_threshold = cache_threshold; 117 } 118 119 static struct avc_callback_node *avc_callbacks __ro_after_init; 120 static struct kmem_cache *avc_node_cachep __ro_after_init; 121 static struct kmem_cache *avc_xperms_data_cachep __ro_after_init; 122 static struct kmem_cache *avc_xperms_decision_cachep __ro_after_init; 123 static struct kmem_cache *avc_xperms_cachep __ro_after_init; 124 125 static inline u32 avc_hash(u32 ssid, u32 tsid, u16 tclass) 126 { 127 return (ssid ^ (tsid<<2) ^ (tclass<<4)) & (AVC_CACHE_SLOTS - 1); 128 } 129 130 /** 131 * avc_init - Initialize the AVC. 132 * 133 * Initialize the access vector cache. 134 */ 135 void __init avc_init(void) 136 { 137 avc_node_cachep = KMEM_CACHE(avc_node, SLAB_PANIC); 138 avc_xperms_cachep = KMEM_CACHE(avc_xperms_node, SLAB_PANIC); 139 avc_xperms_decision_cachep = KMEM_CACHE(avc_xperms_decision_node, SLAB_PANIC); 140 avc_xperms_data_cachep = KMEM_CACHE(extended_perms_data, SLAB_PANIC); 141 } 142 143 int avc_get_hash_stats(char *page) 144 { 145 int i, chain_len, max_chain_len, slots_used; 146 struct avc_node *node; 147 struct hlist_head *head; 148 149 rcu_read_lock(); 150 151 slots_used = 0; 152 max_chain_len = 0; 153 for (i = 0; i < AVC_CACHE_SLOTS; i++) { 154 head = &selinux_avc.avc_cache.slots[i]; 155 if (!hlist_empty(head)) { 156 slots_used++; 157 chain_len = 0; 158 hlist_for_each_entry_rcu(node, head, list) 159 chain_len++; 160 if (chain_len > max_chain_len) 161 max_chain_len = chain_len; 162 } 163 } 164 165 rcu_read_unlock(); 166 167 return scnprintf(page, PAGE_SIZE, "entries: %d\nbuckets used: %d/%d\n" 168 "longest chain: %d\n", 169 atomic_read(&selinux_avc.avc_cache.active_nodes), 170 slots_used, AVC_CACHE_SLOTS, max_chain_len); 171 } 172 173 /* 174 * using a linked list for extended_perms_decision lookup because the list is 175 * always small. i.e. less than 5, typically 1 176 */ 177 static struct extended_perms_decision * 178 avc_xperms_decision_lookup(u8 driver, u8 base_perm, 179 struct avc_xperms_node *xp_node) 180 { 181 struct avc_xperms_decision_node *xpd_node; 182 183 list_for_each_entry(xpd_node, &xp_node->xpd_head, xpd_list) { 184 if (xpd_node->xpd.driver == driver && 185 xpd_node->xpd.base_perm == base_perm) 186 return &xpd_node->xpd; 187 } 188 return NULL; 189 } 190 191 static inline unsigned int 192 avc_xperms_has_perm(struct extended_perms_decision *xpd, 193 u8 perm, u8 which) 194 { 195 unsigned int rc = 0; 196 197 if ((which == XPERMS_ALLOWED) && 198 (xpd->used & XPERMS_ALLOWED)) 199 rc = security_xperm_test(xpd->allowed->p, perm); 200 else if ((which == XPERMS_AUDITALLOW) && 201 (xpd->used & XPERMS_AUDITALLOW)) 202 rc = security_xperm_test(xpd->auditallow->p, perm); 203 else if ((which == XPERMS_DONTAUDIT) && 204 (xpd->used & XPERMS_DONTAUDIT)) 205 rc = security_xperm_test(xpd->dontaudit->p, perm); 206 return rc; 207 } 208 209 static void avc_xperms_allow_perm(struct avc_xperms_node *xp_node, 210 u8 driver, u8 base_perm, u8 perm) 211 { 212 struct extended_perms_decision *xpd; 213 security_xperm_set(xp_node->xp.drivers.p, driver); 214 xp_node->xp.base_perms |= base_perm; 215 xpd = avc_xperms_decision_lookup(driver, base_perm, xp_node); 216 if (xpd && xpd->allowed) 217 security_xperm_set(xpd->allowed->p, perm); 218 } 219 220 static void avc_xperms_decision_free(struct avc_xperms_decision_node *xpd_node) 221 { 222 struct extended_perms_decision *xpd; 223 224 xpd = &xpd_node->xpd; 225 if (xpd->allowed) 226 kmem_cache_free(avc_xperms_data_cachep, xpd->allowed); 227 if (xpd->auditallow) 228 kmem_cache_free(avc_xperms_data_cachep, xpd->auditallow); 229 if (xpd->dontaudit) 230 kmem_cache_free(avc_xperms_data_cachep, xpd->dontaudit); 231 kmem_cache_free(avc_xperms_decision_cachep, xpd_node); 232 } 233 234 static void avc_xperms_free(struct avc_xperms_node *xp_node) 235 { 236 struct avc_xperms_decision_node *xpd_node, *tmp; 237 238 if (!xp_node) 239 return; 240 241 list_for_each_entry_safe(xpd_node, tmp, &xp_node->xpd_head, xpd_list) { 242 list_del(&xpd_node->xpd_list); 243 avc_xperms_decision_free(xpd_node); 244 } 245 kmem_cache_free(avc_xperms_cachep, xp_node); 246 } 247 248 static void avc_copy_xperms_decision(struct extended_perms_decision *dest, 249 struct extended_perms_decision *src) 250 { 251 dest->base_perm = src->base_perm; 252 dest->driver = src->driver; 253 dest->used = src->used; 254 if (dest->used & XPERMS_ALLOWED) 255 memcpy(dest->allowed->p, src->allowed->p, 256 sizeof(src->allowed->p)); 257 if (dest->used & XPERMS_AUDITALLOW) 258 memcpy(dest->auditallow->p, src->auditallow->p, 259 sizeof(src->auditallow->p)); 260 if (dest->used & XPERMS_DONTAUDIT) 261 memcpy(dest->dontaudit->p, src->dontaudit->p, 262 sizeof(src->dontaudit->p)); 263 } 264 265 /* 266 * similar to avc_copy_xperms_decision, but only copy decision 267 * information relevant to this perm 268 */ 269 static inline void avc_quick_copy_xperms_decision(u8 perm, 270 struct extended_perms_decision *dest, 271 struct extended_perms_decision *src) 272 { 273 /* 274 * compute index of the u32 of the 256 bits (8 u32s) that contain this 275 * command permission 276 */ 277 u8 i = perm >> 5; 278 279 dest->base_perm = src->base_perm; 280 dest->used = src->used; 281 if (dest->used & XPERMS_ALLOWED) 282 dest->allowed->p[i] = src->allowed->p[i]; 283 if (dest->used & XPERMS_AUDITALLOW) 284 dest->auditallow->p[i] = src->auditallow->p[i]; 285 if (dest->used & XPERMS_DONTAUDIT) 286 dest->dontaudit->p[i] = src->dontaudit->p[i]; 287 } 288 289 static struct avc_xperms_decision_node 290 *avc_xperms_decision_alloc(u8 which) 291 { 292 struct avc_xperms_decision_node *xpd_node; 293 struct extended_perms_decision *xpd; 294 295 xpd_node = kmem_cache_zalloc(avc_xperms_decision_cachep, 296 GFP_NOWAIT | __GFP_NOWARN); 297 if (!xpd_node) 298 return NULL; 299 300 xpd = &xpd_node->xpd; 301 if (which & XPERMS_ALLOWED) { 302 xpd->allowed = kmem_cache_zalloc(avc_xperms_data_cachep, 303 GFP_NOWAIT | __GFP_NOWARN); 304 if (!xpd->allowed) 305 goto error; 306 } 307 if (which & XPERMS_AUDITALLOW) { 308 xpd->auditallow = kmem_cache_zalloc(avc_xperms_data_cachep, 309 GFP_NOWAIT | __GFP_NOWARN); 310 if (!xpd->auditallow) 311 goto error; 312 } 313 if (which & XPERMS_DONTAUDIT) { 314 xpd->dontaudit = kmem_cache_zalloc(avc_xperms_data_cachep, 315 GFP_NOWAIT | __GFP_NOWARN); 316 if (!xpd->dontaudit) 317 goto error; 318 } 319 return xpd_node; 320 error: 321 avc_xperms_decision_free(xpd_node); 322 return NULL; 323 } 324 325 static int avc_add_xperms_decision(struct avc_node *node, 326 struct extended_perms_decision *src) 327 { 328 struct avc_xperms_decision_node *dest_xpd; 329 330 dest_xpd = avc_xperms_decision_alloc(src->used); 331 if (!dest_xpd) 332 return -ENOMEM; 333 avc_copy_xperms_decision(&dest_xpd->xpd, src); 334 list_add(&dest_xpd->xpd_list, &node->ae.xp_node->xpd_head); 335 node->ae.xp_node->xp.len++; 336 return 0; 337 } 338 339 static struct avc_xperms_node *avc_xperms_alloc(void) 340 { 341 struct avc_xperms_node *xp_node; 342 343 xp_node = kmem_cache_zalloc(avc_xperms_cachep, GFP_NOWAIT | __GFP_NOWARN); 344 if (!xp_node) 345 return xp_node; 346 INIT_LIST_HEAD(&xp_node->xpd_head); 347 return xp_node; 348 } 349 350 static int avc_xperms_populate(struct avc_node *node, 351 struct avc_xperms_node *src) 352 { 353 struct avc_xperms_node *dest; 354 struct avc_xperms_decision_node *dest_xpd; 355 struct avc_xperms_decision_node *src_xpd; 356 357 if (src->xp.len == 0) 358 return 0; 359 dest = avc_xperms_alloc(); 360 if (!dest) 361 return -ENOMEM; 362 363 memcpy(dest->xp.drivers.p, src->xp.drivers.p, sizeof(dest->xp.drivers.p)); 364 dest->xp.len = src->xp.len; 365 dest->xp.base_perms = src->xp.base_perms; 366 367 /* for each source xpd allocate a destination xpd and copy */ 368 list_for_each_entry(src_xpd, &src->xpd_head, xpd_list) { 369 dest_xpd = avc_xperms_decision_alloc(src_xpd->xpd.used); 370 if (!dest_xpd) 371 goto error; 372 avc_copy_xperms_decision(&dest_xpd->xpd, &src_xpd->xpd); 373 list_add(&dest_xpd->xpd_list, &dest->xpd_head); 374 } 375 node->ae.xp_node = dest; 376 return 0; 377 error: 378 avc_xperms_free(dest); 379 return -ENOMEM; 380 381 } 382 383 static inline u32 avc_xperms_audit_required(u32 requested, 384 struct av_decision *avd, 385 struct extended_perms_decision *xpd, 386 u8 perm, 387 int result, 388 u32 *deniedp) 389 { 390 u32 denied, audited; 391 392 denied = requested & ~avd->allowed; 393 if (unlikely(denied)) { 394 audited = denied & avd->auditdeny; 395 if (audited && xpd) { 396 if (avc_xperms_has_perm(xpd, perm, XPERMS_DONTAUDIT)) 397 audited = 0; 398 } 399 } else if (result) { 400 audited = denied = requested; 401 } else { 402 audited = requested & avd->auditallow; 403 if (audited && xpd) { 404 if (!avc_xperms_has_perm(xpd, perm, XPERMS_AUDITALLOW)) 405 audited = 0; 406 } 407 } 408 409 *deniedp = denied; 410 return audited; 411 } 412 413 static inline int avc_xperms_audit(u32 ssid, u32 tsid, u16 tclass, 414 u32 requested, struct av_decision *avd, 415 struct extended_perms_decision *xpd, 416 u8 perm, int result, 417 struct common_audit_data *ad) 418 { 419 u32 audited, denied; 420 421 audited = avc_xperms_audit_required( 422 requested, avd, xpd, perm, result, &denied); 423 if (likely(!audited)) 424 return 0; 425 return slow_avc_audit(ssid, tsid, tclass, requested, 426 audited, denied, result, ad); 427 } 428 429 static void avc_node_free(struct rcu_head *rhead) 430 { 431 struct avc_node *node = container_of(rhead, struct avc_node, rhead); 432 avc_xperms_free(node->ae.xp_node); 433 kmem_cache_free(avc_node_cachep, node); 434 avc_cache_stats_incr(frees); 435 } 436 437 static void avc_node_delete(struct avc_node *node) 438 { 439 hlist_del_rcu(&node->list); 440 call_rcu(&node->rhead, avc_node_free); 441 atomic_dec(&selinux_avc.avc_cache.active_nodes); 442 } 443 444 static void avc_node_kill(struct avc_node *node) 445 { 446 avc_xperms_free(node->ae.xp_node); 447 kmem_cache_free(avc_node_cachep, node); 448 avc_cache_stats_incr(frees); 449 atomic_dec(&selinux_avc.avc_cache.active_nodes); 450 } 451 452 static void avc_node_replace(struct avc_node *new, struct avc_node *old) 453 { 454 hlist_replace_rcu(&old->list, &new->list); 455 call_rcu(&old->rhead, avc_node_free); 456 atomic_dec(&selinux_avc.avc_cache.active_nodes); 457 } 458 459 static inline int avc_reclaim_node(void) 460 { 461 struct avc_node *node; 462 int hvalue, try, ecx; 463 unsigned long flags; 464 struct hlist_head *head; 465 spinlock_t *lock; 466 467 for (try = 0, ecx = 0; try < AVC_CACHE_SLOTS; try++) { 468 hvalue = atomic_inc_return(&selinux_avc.avc_cache.lru_hint) & 469 (AVC_CACHE_SLOTS - 1); 470 head = &selinux_avc.avc_cache.slots[hvalue]; 471 lock = &selinux_avc.avc_cache.slots_lock[hvalue]; 472 473 if (!spin_trylock_irqsave(lock, flags)) 474 continue; 475 476 rcu_read_lock(); 477 hlist_for_each_entry(node, head, list) { 478 avc_node_delete(node); 479 avc_cache_stats_incr(reclaims); 480 ecx++; 481 if (ecx >= AVC_CACHE_RECLAIM) { 482 rcu_read_unlock(); 483 spin_unlock_irqrestore(lock, flags); 484 goto out; 485 } 486 } 487 rcu_read_unlock(); 488 spin_unlock_irqrestore(lock, flags); 489 } 490 out: 491 return ecx; 492 } 493 494 static struct avc_node *avc_alloc_node(void) 495 { 496 struct avc_node *node; 497 498 node = kmem_cache_zalloc(avc_node_cachep, GFP_NOWAIT | __GFP_NOWARN); 499 if (!node) 500 goto out; 501 502 INIT_HLIST_NODE(&node->list); 503 avc_cache_stats_incr(allocations); 504 505 if (atomic_inc_return(&selinux_avc.avc_cache.active_nodes) > 506 selinux_avc.avc_cache_threshold) 507 avc_reclaim_node(); 508 509 out: 510 return node; 511 } 512 513 static void avc_node_populate(struct avc_node *node, u32 ssid, u32 tsid, u16 tclass, struct av_decision *avd) 514 { 515 node->ae.ssid = ssid; 516 node->ae.tsid = tsid; 517 node->ae.tclass = tclass; 518 memcpy(&node->ae.avd, avd, sizeof(node->ae.avd)); 519 } 520 521 static inline struct avc_node *avc_search_node(u32 ssid, u32 tsid, u16 tclass) 522 { 523 struct avc_node *node, *ret = NULL; 524 u32 hvalue; 525 struct hlist_head *head; 526 527 hvalue = avc_hash(ssid, tsid, tclass); 528 head = &selinux_avc.avc_cache.slots[hvalue]; 529 hlist_for_each_entry_rcu(node, head, list) { 530 if (ssid == node->ae.ssid && 531 tclass == node->ae.tclass && 532 tsid == node->ae.tsid) { 533 ret = node; 534 break; 535 } 536 } 537 538 return ret; 539 } 540 541 /** 542 * avc_lookup - Look up an AVC entry. 543 * @ssid: source security identifier 544 * @tsid: target security identifier 545 * @tclass: target security class 546 * 547 * Look up an AVC entry that is valid for the 548 * (@ssid, @tsid), interpreting the permissions 549 * based on @tclass. If a valid AVC entry exists, 550 * then this function returns the avc_node. 551 * Otherwise, this function returns NULL. 552 */ 553 static struct avc_node *avc_lookup(u32 ssid, u32 tsid, u16 tclass) 554 { 555 struct avc_node *node; 556 557 avc_cache_stats_incr(lookups); 558 node = avc_search_node(ssid, tsid, tclass); 559 560 if (node) 561 return node; 562 563 avc_cache_stats_incr(misses); 564 return NULL; 565 } 566 567 static int avc_latest_notif_update(u32 seqno, int is_insert) 568 { 569 int ret = 0; 570 static DEFINE_SPINLOCK(notif_lock); 571 unsigned long flag; 572 573 spin_lock_irqsave(¬if_lock, flag); 574 if (is_insert) { 575 if (seqno < selinux_avc.avc_cache.latest_notif) { 576 pr_warn("SELinux: avc: seqno %d < latest_notif %d\n", 577 seqno, selinux_avc.avc_cache.latest_notif); 578 ret = -EAGAIN; 579 } 580 } else { 581 if (seqno > selinux_avc.avc_cache.latest_notif) 582 selinux_avc.avc_cache.latest_notif = seqno; 583 } 584 spin_unlock_irqrestore(¬if_lock, flag); 585 586 return ret; 587 } 588 589 /** 590 * avc_insert - Insert an AVC entry. 591 * @ssid: source security identifier 592 * @tsid: target security identifier 593 * @tclass: target security class 594 * @avd: resulting av decision 595 * @xp_node: resulting extended permissions 596 * 597 * Insert an AVC entry for the SID pair 598 * (@ssid, @tsid) and class @tclass. 599 * The access vectors and the sequence number are 600 * normally provided by the security server in 601 * response to a security_compute_av() call. If the 602 * sequence number @avd->seqno is not less than the latest 603 * revocation notification, then the function copies 604 * the access vectors into a cache entry. 605 */ 606 static void avc_insert(u32 ssid, u32 tsid, u16 tclass, 607 struct av_decision *avd, struct avc_xperms_node *xp_node) 608 { 609 struct avc_node *pos, *node = NULL; 610 u32 hvalue; 611 unsigned long flag; 612 spinlock_t *lock; 613 struct hlist_head *head; 614 615 if (avc_latest_notif_update(avd->seqno, 1)) 616 return; 617 618 node = avc_alloc_node(); 619 if (!node) 620 return; 621 622 avc_node_populate(node, ssid, tsid, tclass, avd); 623 if (avc_xperms_populate(node, xp_node)) { 624 avc_node_kill(node); 625 return; 626 } 627 628 hvalue = avc_hash(ssid, tsid, tclass); 629 head = &selinux_avc.avc_cache.slots[hvalue]; 630 lock = &selinux_avc.avc_cache.slots_lock[hvalue]; 631 spin_lock_irqsave(lock, flag); 632 hlist_for_each_entry(pos, head, list) { 633 if (pos->ae.ssid == ssid && 634 pos->ae.tsid == tsid && 635 pos->ae.tclass == tclass) { 636 avc_node_replace(node, pos); 637 goto found; 638 } 639 } 640 hlist_add_head_rcu(&node->list, head); 641 found: 642 spin_unlock_irqrestore(lock, flag); 643 } 644 645 /** 646 * avc_audit_pre_callback - SELinux specific information 647 * will be called by generic audit code 648 * @ab: the audit buffer 649 * @a: audit_data 650 */ 651 static void avc_audit_pre_callback(struct audit_buffer *ab, void *a) 652 { 653 struct common_audit_data *ad = a; 654 struct selinux_audit_data *sad = ad->selinux_audit_data; 655 u32 av = sad->audited, perm; 656 const char *const *perms; 657 u32 i; 658 659 audit_log_format(ab, "avc: %s ", sad->denied ? "denied" : "granted"); 660 661 if (av == 0) { 662 audit_log_format(ab, " null"); 663 return; 664 } 665 666 perms = secclass_map[sad->tclass-1].perms; 667 668 audit_log_format(ab, " {"); 669 i = 0; 670 perm = 1; 671 while (i < (sizeof(av) * 8)) { 672 if ((perm & av) && perms[i]) { 673 audit_log_format(ab, " %s", perms[i]); 674 av &= ~perm; 675 } 676 i++; 677 perm <<= 1; 678 } 679 680 if (av) 681 audit_log_format(ab, " 0x%x", av); 682 683 audit_log_format(ab, " } for "); 684 } 685 686 /** 687 * avc_audit_post_callback - SELinux specific information 688 * will be called by generic audit code 689 * @ab: the audit buffer 690 * @a: audit_data 691 */ 692 static void avc_audit_post_callback(struct audit_buffer *ab, void *a) 693 { 694 struct common_audit_data *ad = a; 695 struct selinux_audit_data *sad = ad->selinux_audit_data; 696 char *scontext = NULL; 697 char *tcontext = NULL; 698 const char *tclass = NULL; 699 u32 scontext_len; 700 u32 tcontext_len; 701 int rc; 702 703 rc = security_sid_to_context(sad->ssid, &scontext, 704 &scontext_len); 705 if (rc) 706 audit_log_format(ab, " ssid=%d", sad->ssid); 707 else 708 audit_log_format(ab, " scontext=%s", scontext); 709 710 rc = security_sid_to_context(sad->tsid, &tcontext, 711 &tcontext_len); 712 if (rc) 713 audit_log_format(ab, " tsid=%d", sad->tsid); 714 else 715 audit_log_format(ab, " tcontext=%s", tcontext); 716 717 tclass = secclass_map[sad->tclass-1].name; 718 audit_log_format(ab, " tclass=%s", tclass); 719 720 if (sad->denied) 721 audit_log_format(ab, " permissive=%u", sad->result ? 0 : 1); 722 723 trace_selinux_audited(sad, scontext, tcontext, tclass); 724 kfree(tcontext); 725 kfree(scontext); 726 727 /* in case of invalid context report also the actual context string */ 728 rc = security_sid_to_context_inval(sad->ssid, &scontext, 729 &scontext_len); 730 if (!rc && scontext) { 731 if (scontext_len && scontext[scontext_len - 1] == '\0') 732 scontext_len--; 733 audit_log_format(ab, " srawcon="); 734 audit_log_n_untrustedstring(ab, scontext, scontext_len); 735 kfree(scontext); 736 } 737 738 rc = security_sid_to_context_inval(sad->tsid, &scontext, 739 &scontext_len); 740 if (!rc && scontext) { 741 if (scontext_len && scontext[scontext_len - 1] == '\0') 742 scontext_len--; 743 audit_log_format(ab, " trawcon="); 744 audit_log_n_untrustedstring(ab, scontext, scontext_len); 745 kfree(scontext); 746 } 747 } 748 749 /* 750 * This is the slow part of avc audit with big stack footprint. 751 * Note that it is non-blocking and can be called from under 752 * rcu_read_lock(). 753 */ 754 noinline int slow_avc_audit(u32 ssid, u32 tsid, u16 tclass, 755 u32 requested, u32 audited, u32 denied, int result, 756 struct common_audit_data *a) 757 { 758 struct common_audit_data stack_data; 759 struct selinux_audit_data sad; 760 761 if (WARN_ON(!tclass || tclass >= ARRAY_SIZE(secclass_map))) 762 return -EINVAL; 763 764 if (!a) { 765 a = &stack_data; 766 a->type = LSM_AUDIT_DATA_NONE; 767 } 768 769 sad.tclass = tclass; 770 sad.requested = requested; 771 sad.ssid = ssid; 772 sad.tsid = tsid; 773 sad.audited = audited; 774 sad.denied = denied; 775 sad.result = result; 776 777 a->selinux_audit_data = &sad; 778 779 common_lsm_audit(a, avc_audit_pre_callback, avc_audit_post_callback); 780 return 0; 781 } 782 783 /** 784 * avc_add_callback - Register a callback for security events. 785 * @callback: callback function 786 * @events: security events 787 * 788 * Register a callback function for events in the set @events. 789 * Returns %0 on success or -%ENOMEM if insufficient memory 790 * exists to add the callback. 791 */ 792 int __init avc_add_callback(int (*callback)(u32 event), u32 events) 793 { 794 struct avc_callback_node *c; 795 int rc = 0; 796 797 c = kmalloc(sizeof(*c), GFP_KERNEL); 798 if (!c) { 799 rc = -ENOMEM; 800 goto out; 801 } 802 803 c->callback = callback; 804 c->events = events; 805 c->next = avc_callbacks; 806 avc_callbacks = c; 807 out: 808 return rc; 809 } 810 811 /** 812 * avc_update_node - Update an AVC entry 813 * @event : Updating event 814 * @perms : Permission mask bits 815 * @driver: xperm driver information 816 * @base_perm: the base permission associated with the extended permission 817 * @xperm: xperm permissions 818 * @ssid: AVC entry source sid 819 * @tsid: AVC entry target sid 820 * @tclass : AVC entry target object class 821 * @seqno : sequence number when decision was made 822 * @xpd: extended_perms_decision to be added to the node 823 * @flags: the AVC_* flags, e.g. AVC_EXTENDED_PERMS, or 0. 824 * 825 * if a valid AVC entry doesn't exist,this function returns -ENOENT. 826 * if kmalloc() called internal returns NULL, this function returns -ENOMEM. 827 * otherwise, this function updates the AVC entry. The original AVC-entry object 828 * will release later by RCU. 829 */ 830 static int avc_update_node(u32 event, u32 perms, u8 driver, u8 base_perm, 831 u8 xperm, u32 ssid, u32 tsid, u16 tclass, u32 seqno, 832 struct extended_perms_decision *xpd, u32 flags) 833 { 834 u32 hvalue; 835 int rc = 0; 836 unsigned long flag; 837 struct avc_node *pos, *node, *orig = NULL; 838 struct hlist_head *head; 839 spinlock_t *lock; 840 841 node = avc_alloc_node(); 842 if (!node) { 843 rc = -ENOMEM; 844 goto out; 845 } 846 847 /* Lock the target slot */ 848 hvalue = avc_hash(ssid, tsid, tclass); 849 850 head = &selinux_avc.avc_cache.slots[hvalue]; 851 lock = &selinux_avc.avc_cache.slots_lock[hvalue]; 852 853 spin_lock_irqsave(lock, flag); 854 855 hlist_for_each_entry(pos, head, list) { 856 if (ssid == pos->ae.ssid && 857 tsid == pos->ae.tsid && 858 tclass == pos->ae.tclass && 859 seqno == pos->ae.avd.seqno){ 860 orig = pos; 861 break; 862 } 863 } 864 865 if (!orig) { 866 rc = -ENOENT; 867 avc_node_kill(node); 868 goto out_unlock; 869 } 870 871 /* 872 * Copy and replace original node. 873 */ 874 875 avc_node_populate(node, ssid, tsid, tclass, &orig->ae.avd); 876 877 if (orig->ae.xp_node) { 878 rc = avc_xperms_populate(node, orig->ae.xp_node); 879 if (rc) { 880 avc_node_kill(node); 881 goto out_unlock; 882 } 883 } 884 885 switch (event) { 886 case AVC_CALLBACK_GRANT: 887 node->ae.avd.allowed |= perms; 888 if (node->ae.xp_node && (flags & AVC_EXTENDED_PERMS)) 889 avc_xperms_allow_perm(node->ae.xp_node, driver, base_perm, xperm); 890 break; 891 case AVC_CALLBACK_TRY_REVOKE: 892 case AVC_CALLBACK_REVOKE: 893 node->ae.avd.allowed &= ~perms; 894 break; 895 case AVC_CALLBACK_AUDITALLOW_ENABLE: 896 node->ae.avd.auditallow |= perms; 897 break; 898 case AVC_CALLBACK_AUDITALLOW_DISABLE: 899 node->ae.avd.auditallow &= ~perms; 900 break; 901 case AVC_CALLBACK_AUDITDENY_ENABLE: 902 node->ae.avd.auditdeny |= perms; 903 break; 904 case AVC_CALLBACK_AUDITDENY_DISABLE: 905 node->ae.avd.auditdeny &= ~perms; 906 break; 907 case AVC_CALLBACK_ADD_XPERMS: 908 rc = avc_add_xperms_decision(node, xpd); 909 if (rc) { 910 avc_node_kill(node); 911 goto out_unlock; 912 } 913 break; 914 } 915 avc_node_replace(node, orig); 916 out_unlock: 917 spin_unlock_irqrestore(lock, flag); 918 out: 919 return rc; 920 } 921 922 /** 923 * avc_flush - Flush the cache 924 */ 925 static void avc_flush(void) 926 { 927 struct hlist_head *head; 928 struct avc_node *node; 929 spinlock_t *lock; 930 unsigned long flag; 931 int i; 932 933 for (i = 0; i < AVC_CACHE_SLOTS; i++) { 934 head = &selinux_avc.avc_cache.slots[i]; 935 lock = &selinux_avc.avc_cache.slots_lock[i]; 936 937 spin_lock_irqsave(lock, flag); 938 /* 939 * With preemptable RCU, the outer spinlock does not 940 * prevent RCU grace periods from ending. 941 */ 942 rcu_read_lock(); 943 hlist_for_each_entry(node, head, list) 944 avc_node_delete(node); 945 rcu_read_unlock(); 946 spin_unlock_irqrestore(lock, flag); 947 } 948 } 949 950 /** 951 * avc_ss_reset - Flush the cache and revalidate migrated permissions. 952 * @seqno: policy sequence number 953 */ 954 int avc_ss_reset(u32 seqno) 955 { 956 struct avc_callback_node *c; 957 int rc = 0, tmprc; 958 959 avc_flush(); 960 961 for (c = avc_callbacks; c; c = c->next) { 962 if (c->events & AVC_CALLBACK_RESET) { 963 tmprc = c->callback(AVC_CALLBACK_RESET); 964 /* save the first error encountered for the return 965 value and continue processing the callbacks */ 966 if (!rc) 967 rc = tmprc; 968 } 969 } 970 971 avc_latest_notif_update(seqno, 0); 972 return rc; 973 } 974 975 /** 976 * avc_compute_av - Add an entry to the AVC based on the security policy 977 * @ssid: subject 978 * @tsid: object/target 979 * @tclass: object class 980 * @avd: access vector decision 981 * @xp_node: AVC extended permissions node 982 * 983 * Slow-path helper function for avc_has_perm_noaudit, when the avc_node lookup 984 * fails. Don't inline this, since it's the slow-path and just results in a 985 * bigger stack frame. 986 */ 987 static noinline void avc_compute_av(u32 ssid, u32 tsid, u16 tclass, 988 struct av_decision *avd, 989 struct avc_xperms_node *xp_node) 990 { 991 INIT_LIST_HEAD(&xp_node->xpd_head); 992 security_compute_av(ssid, tsid, tclass, avd, &xp_node->xp); 993 avc_insert(ssid, tsid, tclass, avd, xp_node); 994 } 995 996 static noinline int avc_denied(u32 ssid, u32 tsid, u16 tclass, u32 requested, 997 u8 driver, u8 base_perm, u8 xperm, 998 unsigned int flags, struct av_decision *avd) 999 { 1000 if (flags & AVC_STRICT) 1001 return -EACCES; 1002 1003 if (enforcing_enabled() && 1004 !(avd->flags & AVD_FLAGS_PERMISSIVE)) 1005 return -EACCES; 1006 1007 avc_update_node(AVC_CALLBACK_GRANT, requested, driver, base_perm, 1008 xperm, ssid, tsid, tclass, avd->seqno, NULL, flags); 1009 return 0; 1010 } 1011 1012 /* 1013 * The avc extended permissions logic adds an additional 256 bits of 1014 * permissions to an avc node when extended permissions for that node are 1015 * specified in the avtab. If the additional 256 permissions is not adequate, 1016 * as-is the case with ioctls, then multiple may be chained together and the 1017 * driver field is used to specify which set contains the permission. 1018 */ 1019 int avc_has_extended_perms(u32 ssid, u32 tsid, u16 tclass, u32 requested, 1020 u8 driver, u8 base_perm, u8 xperm, 1021 struct common_audit_data *ad) 1022 { 1023 struct avc_node *node; 1024 struct av_decision avd; 1025 u32 denied; 1026 struct extended_perms_decision local_xpd; 1027 struct extended_perms_decision *xpd = NULL; 1028 struct extended_perms_data allowed; 1029 struct extended_perms_data auditallow; 1030 struct extended_perms_data dontaudit; 1031 struct avc_xperms_node local_xp_node; 1032 struct avc_xperms_node *xp_node; 1033 int rc = 0, rc2; 1034 1035 xp_node = &local_xp_node; 1036 if (WARN_ON(!requested)) 1037 return -EACCES; 1038 1039 rcu_read_lock(); 1040 1041 node = avc_lookup(ssid, tsid, tclass); 1042 if (unlikely(!node)) { 1043 avc_compute_av(ssid, tsid, tclass, &avd, xp_node); 1044 } else { 1045 memcpy(&avd, &node->ae.avd, sizeof(avd)); 1046 xp_node = node->ae.xp_node; 1047 } 1048 /* if extended permissions are not defined, only consider av_decision */ 1049 if (!xp_node || !xp_node->xp.len) 1050 goto decision; 1051 1052 local_xpd.allowed = &allowed; 1053 local_xpd.auditallow = &auditallow; 1054 local_xpd.dontaudit = &dontaudit; 1055 1056 xpd = avc_xperms_decision_lookup(driver, base_perm, xp_node); 1057 if (unlikely(!xpd)) { 1058 /* 1059 * Compute the extended_perms_decision only if the driver 1060 * is flagged and the base permission is known. 1061 */ 1062 if (!security_xperm_test(xp_node->xp.drivers.p, driver) || 1063 !(xp_node->xp.base_perms & base_perm)) { 1064 avd.allowed &= ~requested; 1065 goto decision; 1066 } 1067 rcu_read_unlock(); 1068 security_compute_xperms_decision(ssid, tsid, tclass, driver, 1069 base_perm, &local_xpd); 1070 rcu_read_lock(); 1071 avc_update_node(AVC_CALLBACK_ADD_XPERMS, requested, driver, 1072 base_perm, xperm, ssid, tsid, tclass, avd.seqno, 1073 &local_xpd, 0); 1074 } else { 1075 avc_quick_copy_xperms_decision(xperm, &local_xpd, xpd); 1076 } 1077 xpd = &local_xpd; 1078 1079 if (!avc_xperms_has_perm(xpd, xperm, XPERMS_ALLOWED)) 1080 avd.allowed &= ~requested; 1081 1082 decision: 1083 denied = requested & ~(avd.allowed); 1084 if (unlikely(denied)) 1085 rc = avc_denied(ssid, tsid, tclass, requested, driver, 1086 base_perm, xperm, AVC_EXTENDED_PERMS, &avd); 1087 1088 rcu_read_unlock(); 1089 1090 rc2 = avc_xperms_audit(ssid, tsid, tclass, requested, 1091 &avd, xpd, xperm, rc, ad); 1092 if (rc2) 1093 return rc2; 1094 return rc; 1095 } 1096 1097 /** 1098 * avc_perm_nonode - Add an entry to the AVC 1099 * @ssid: subject 1100 * @tsid: object/target 1101 * @tclass: object class 1102 * @requested: requested permissions 1103 * @flags: AVC flags 1104 * @avd: access vector decision 1105 * 1106 * This is the "we have no node" part of avc_has_perm_noaudit(), which is 1107 * unlikely and needs extra stack space for the new node that we generate, so 1108 * don't inline it. 1109 */ 1110 static noinline int avc_perm_nonode(u32 ssid, u32 tsid, u16 tclass, 1111 u32 requested, unsigned int flags, 1112 struct av_decision *avd) 1113 { 1114 u32 denied; 1115 struct avc_xperms_node xp_node; 1116 1117 avc_compute_av(ssid, tsid, tclass, avd, &xp_node); 1118 denied = requested & ~(avd->allowed); 1119 if (unlikely(denied)) 1120 return avc_denied(ssid, tsid, tclass, requested, 0, 0, 0, 1121 flags, avd); 1122 return 0; 1123 } 1124 1125 /** 1126 * avc_has_perm_noaudit - Check permissions but perform no auditing. 1127 * @ssid: source security identifier 1128 * @tsid: target security identifier 1129 * @tclass: target security class 1130 * @requested: requested permissions, interpreted based on @tclass 1131 * @flags: AVC_STRICT or 0 1132 * @avd: access vector decisions 1133 * 1134 * Check the AVC to determine whether the @requested permissions are granted 1135 * for the SID pair (@ssid, @tsid), interpreting the permissions 1136 * based on @tclass, and call the security server on a cache miss to obtain 1137 * a new decision and add it to the cache. Return a copy of the decisions 1138 * in @avd. Return %0 if all @requested permissions are granted, 1139 * -%EACCES if any permissions are denied, or another -errno upon 1140 * other errors. This function is typically called by avc_has_perm(), 1141 * but may also be called directly to separate permission checking from 1142 * auditing, e.g. in cases where a lock must be held for the check but 1143 * should be released for the auditing. 1144 */ 1145 inline int avc_has_perm_noaudit(u32 ssid, u32 tsid, 1146 u16 tclass, u32 requested, 1147 unsigned int flags, 1148 struct av_decision *avd) 1149 { 1150 u32 denied; 1151 struct avc_node *node; 1152 1153 if (WARN_ON(!requested)) 1154 return -EACCES; 1155 1156 rcu_read_lock(); 1157 node = avc_lookup(ssid, tsid, tclass); 1158 if (unlikely(!node)) { 1159 rcu_read_unlock(); 1160 return avc_perm_nonode(ssid, tsid, tclass, requested, 1161 flags, avd); 1162 } 1163 denied = requested & ~node->ae.avd.allowed; 1164 memcpy(avd, &node->ae.avd, sizeof(*avd)); 1165 rcu_read_unlock(); 1166 1167 if (unlikely(denied)) 1168 return avc_denied(ssid, tsid, tclass, requested, 0, 0, 0, 1169 flags, avd); 1170 return 0; 1171 } 1172 1173 /** 1174 * avc_has_perm - Check permissions and perform any appropriate auditing. 1175 * @ssid: source security identifier 1176 * @tsid: target security identifier 1177 * @tclass: target security class 1178 * @requested: requested permissions, interpreted based on @tclass 1179 * @auditdata: auxiliary audit data 1180 * 1181 * Check the AVC to determine whether the @requested permissions are granted 1182 * for the SID pair (@ssid, @tsid), interpreting the permissions 1183 * based on @tclass, and call the security server on a cache miss to obtain 1184 * a new decision and add it to the cache. Audit the granting or denial of 1185 * permissions in accordance with the policy. Return %0 if all @requested 1186 * permissions are granted, -%EACCES if any permissions are denied, or 1187 * another -errno upon other errors. 1188 */ 1189 int avc_has_perm(u32 ssid, u32 tsid, u16 tclass, 1190 u32 requested, struct common_audit_data *auditdata) 1191 { 1192 struct av_decision avd; 1193 int rc, rc2; 1194 1195 rc = avc_has_perm_noaudit(ssid, tsid, tclass, requested, 0, 1196 &avd); 1197 1198 rc2 = avc_audit(ssid, tsid, tclass, requested, &avd, rc, 1199 auditdata); 1200 if (rc2) 1201 return rc2; 1202 return rc; 1203 } 1204 1205 u32 avc_policy_seqno(void) 1206 { 1207 return selinux_avc.avc_cache.latest_notif; 1208 } 1209