1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Implementation of the kernel access vector cache (AVC). 4 * 5 * Authors: Stephen Smalley, <stephen.smalley.work@gmail.com> 6 * James Morris <jmorris@redhat.com> 7 * 8 * Update: KaiGai, Kohei <kaigai@ak.jp.nec.com> 9 * Replaced the avc_lock spinlock by RCU. 10 * 11 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com> 12 */ 13 #include <linux/types.h> 14 #include <linux/stddef.h> 15 #include <linux/kernel.h> 16 #include <linux/slab.h> 17 #include <linux/fs.h> 18 #include <linux/dcache.h> 19 #include <linux/init.h> 20 #include <linux/skbuff.h> 21 #include <linux/percpu.h> 22 #include <linux/list.h> 23 #include <net/sock.h> 24 #include <linux/un.h> 25 #include <net/af_unix.h> 26 #include <linux/ip.h> 27 #include <linux/audit.h> 28 #include <linux/ipv6.h> 29 #include <net/ipv6.h> 30 #include "avc.h" 31 #include "avc_ss.h" 32 #include "classmap.h" 33 34 #define CREATE_TRACE_POINTS 35 #include <trace/events/avc.h> 36 37 #define AVC_CACHE_SLOTS 512 38 #define AVC_DEF_CACHE_THRESHOLD 512 39 #define AVC_CACHE_RECLAIM 16 40 41 #ifdef CONFIG_SECURITY_SELINUX_AVC_STATS 42 #define avc_cache_stats_incr(field) this_cpu_inc(avc_cache_stats.field) 43 #else 44 #define avc_cache_stats_incr(field) do {} while (0) 45 #endif 46 47 struct avc_entry { 48 u32 ssid; 49 u32 tsid; 50 u16 tclass; 51 struct av_decision avd; 52 struct avc_xperms_node *xp_node; 53 }; 54 55 struct avc_node { 56 struct avc_entry ae; 57 struct hlist_node list; /* anchored in avc_cache->slots[i] */ 58 struct rcu_head rhead; 59 }; 60 61 struct avc_xperms_decision_node { 62 struct extended_perms_decision xpd; 63 struct list_head xpd_list; /* list of extended_perms_decision */ 64 }; 65 66 struct avc_xperms_node { 67 struct extended_perms xp; 68 struct list_head xpd_head; /* list head of extended_perms_decision */ 69 }; 70 71 struct avc_cache { 72 struct hlist_head slots[AVC_CACHE_SLOTS]; /* head for avc_node->list */ 73 spinlock_t slots_lock[AVC_CACHE_SLOTS]; /* lock for writes */ 74 atomic_t lru_hint; /* LRU hint for reclaim scan */ 75 atomic_t active_nodes; 76 u32 latest_notif; /* latest revocation notification */ 77 }; 78 79 struct avc_callback_node { 80 int (*callback) (u32 event); 81 u32 events; 82 struct avc_callback_node *next; 83 }; 84 85 #ifdef CONFIG_SECURITY_SELINUX_AVC_STATS 86 DEFINE_PER_CPU(struct avc_cache_stats, avc_cache_stats) = { 0 }; 87 #endif 88 89 struct selinux_avc { 90 unsigned int avc_cache_threshold; 91 struct avc_cache avc_cache; 92 }; 93 94 static struct selinux_avc selinux_avc; 95 96 void selinux_avc_init(void) 97 { 98 int i; 99 100 selinux_avc.avc_cache_threshold = AVC_DEF_CACHE_THRESHOLD; 101 for (i = 0; i < AVC_CACHE_SLOTS; i++) { 102 INIT_HLIST_HEAD(&selinux_avc.avc_cache.slots[i]); 103 spin_lock_init(&selinux_avc.avc_cache.slots_lock[i]); 104 } 105 atomic_set(&selinux_avc.avc_cache.active_nodes, 0); 106 atomic_set(&selinux_avc.avc_cache.lru_hint, 0); 107 } 108 109 unsigned int avc_get_cache_threshold(void) 110 { 111 return selinux_avc.avc_cache_threshold; 112 } 113 114 void avc_set_cache_threshold(unsigned int cache_threshold) 115 { 116 selinux_avc.avc_cache_threshold = cache_threshold; 117 } 118 119 static struct avc_callback_node *avc_callbacks __ro_after_init; 120 static struct kmem_cache *avc_node_cachep __ro_after_init; 121 static struct kmem_cache *avc_xperms_data_cachep __ro_after_init; 122 static struct kmem_cache *avc_xperms_decision_cachep __ro_after_init; 123 static struct kmem_cache *avc_xperms_cachep __ro_after_init; 124 125 static inline u32 avc_hash(u32 ssid, u32 tsid, u16 tclass) 126 { 127 return (ssid ^ (tsid<<2) ^ (tclass<<4)) & (AVC_CACHE_SLOTS - 1); 128 } 129 130 /** 131 * avc_init - Initialize the AVC. 132 * 133 * Initialize the access vector cache. 134 */ 135 void __init avc_init(void) 136 { 137 avc_node_cachep = KMEM_CACHE(avc_node, SLAB_PANIC); 138 avc_xperms_cachep = KMEM_CACHE(avc_xperms_node, SLAB_PANIC); 139 avc_xperms_decision_cachep = KMEM_CACHE(avc_xperms_decision_node, SLAB_PANIC); 140 avc_xperms_data_cachep = KMEM_CACHE(extended_perms_data, SLAB_PANIC); 141 } 142 143 int avc_get_hash_stats(char *page) 144 { 145 int i, chain_len, max_chain_len, slots_used; 146 struct avc_node *node; 147 struct hlist_head *head; 148 149 rcu_read_lock(); 150 151 slots_used = 0; 152 max_chain_len = 0; 153 for (i = 0; i < AVC_CACHE_SLOTS; i++) { 154 head = &selinux_avc.avc_cache.slots[i]; 155 if (!hlist_empty(head)) { 156 slots_used++; 157 chain_len = 0; 158 hlist_for_each_entry_rcu(node, head, list) 159 chain_len++; 160 if (chain_len > max_chain_len) 161 max_chain_len = chain_len; 162 } 163 } 164 165 rcu_read_unlock(); 166 167 return scnprintf(page, PAGE_SIZE, "entries: %d\nbuckets used: %d/%d\n" 168 "longest chain: %d\n", 169 atomic_read(&selinux_avc.avc_cache.active_nodes), 170 slots_used, AVC_CACHE_SLOTS, max_chain_len); 171 } 172 173 /* 174 * using a linked list for extended_perms_decision lookup because the list is 175 * always small. i.e. less than 5, typically 1 176 */ 177 static struct extended_perms_decision *avc_xperms_decision_lookup(u8 driver, 178 struct avc_xperms_node *xp_node) 179 { 180 struct avc_xperms_decision_node *xpd_node; 181 182 list_for_each_entry(xpd_node, &xp_node->xpd_head, xpd_list) { 183 if (xpd_node->xpd.driver == driver) 184 return &xpd_node->xpd; 185 } 186 return NULL; 187 } 188 189 static inline unsigned int 190 avc_xperms_has_perm(struct extended_perms_decision *xpd, 191 u8 perm, u8 which) 192 { 193 unsigned int rc = 0; 194 195 if ((which == XPERMS_ALLOWED) && 196 (xpd->used & XPERMS_ALLOWED)) 197 rc = security_xperm_test(xpd->allowed->p, perm); 198 else if ((which == XPERMS_AUDITALLOW) && 199 (xpd->used & XPERMS_AUDITALLOW)) 200 rc = security_xperm_test(xpd->auditallow->p, perm); 201 else if ((which == XPERMS_DONTAUDIT) && 202 (xpd->used & XPERMS_DONTAUDIT)) 203 rc = security_xperm_test(xpd->dontaudit->p, perm); 204 return rc; 205 } 206 207 static void avc_xperms_allow_perm(struct avc_xperms_node *xp_node, 208 u8 driver, u8 perm) 209 { 210 struct extended_perms_decision *xpd; 211 security_xperm_set(xp_node->xp.drivers.p, driver); 212 xpd = avc_xperms_decision_lookup(driver, xp_node); 213 if (xpd && xpd->allowed) 214 security_xperm_set(xpd->allowed->p, perm); 215 } 216 217 static void avc_xperms_decision_free(struct avc_xperms_decision_node *xpd_node) 218 { 219 struct extended_perms_decision *xpd; 220 221 xpd = &xpd_node->xpd; 222 if (xpd->allowed) 223 kmem_cache_free(avc_xperms_data_cachep, xpd->allowed); 224 if (xpd->auditallow) 225 kmem_cache_free(avc_xperms_data_cachep, xpd->auditallow); 226 if (xpd->dontaudit) 227 kmem_cache_free(avc_xperms_data_cachep, xpd->dontaudit); 228 kmem_cache_free(avc_xperms_decision_cachep, xpd_node); 229 } 230 231 static void avc_xperms_free(struct avc_xperms_node *xp_node) 232 { 233 struct avc_xperms_decision_node *xpd_node, *tmp; 234 235 if (!xp_node) 236 return; 237 238 list_for_each_entry_safe(xpd_node, tmp, &xp_node->xpd_head, xpd_list) { 239 list_del(&xpd_node->xpd_list); 240 avc_xperms_decision_free(xpd_node); 241 } 242 kmem_cache_free(avc_xperms_cachep, xp_node); 243 } 244 245 static void avc_copy_xperms_decision(struct extended_perms_decision *dest, 246 struct extended_perms_decision *src) 247 { 248 dest->driver = src->driver; 249 dest->used = src->used; 250 if (dest->used & XPERMS_ALLOWED) 251 memcpy(dest->allowed->p, src->allowed->p, 252 sizeof(src->allowed->p)); 253 if (dest->used & XPERMS_AUDITALLOW) 254 memcpy(dest->auditallow->p, src->auditallow->p, 255 sizeof(src->auditallow->p)); 256 if (dest->used & XPERMS_DONTAUDIT) 257 memcpy(dest->dontaudit->p, src->dontaudit->p, 258 sizeof(src->dontaudit->p)); 259 } 260 261 /* 262 * similar to avc_copy_xperms_decision, but only copy decision 263 * information relevant to this perm 264 */ 265 static inline void avc_quick_copy_xperms_decision(u8 perm, 266 struct extended_perms_decision *dest, 267 struct extended_perms_decision *src) 268 { 269 /* 270 * compute index of the u32 of the 256 bits (8 u32s) that contain this 271 * command permission 272 */ 273 u8 i = perm >> 5; 274 275 dest->used = src->used; 276 if (dest->used & XPERMS_ALLOWED) 277 dest->allowed->p[i] = src->allowed->p[i]; 278 if (dest->used & XPERMS_AUDITALLOW) 279 dest->auditallow->p[i] = src->auditallow->p[i]; 280 if (dest->used & XPERMS_DONTAUDIT) 281 dest->dontaudit->p[i] = src->dontaudit->p[i]; 282 } 283 284 static struct avc_xperms_decision_node 285 *avc_xperms_decision_alloc(u8 which) 286 { 287 struct avc_xperms_decision_node *xpd_node; 288 struct extended_perms_decision *xpd; 289 290 xpd_node = kmem_cache_zalloc(avc_xperms_decision_cachep, 291 GFP_NOWAIT | __GFP_NOWARN); 292 if (!xpd_node) 293 return NULL; 294 295 xpd = &xpd_node->xpd; 296 if (which & XPERMS_ALLOWED) { 297 xpd->allowed = kmem_cache_zalloc(avc_xperms_data_cachep, 298 GFP_NOWAIT | __GFP_NOWARN); 299 if (!xpd->allowed) 300 goto error; 301 } 302 if (which & XPERMS_AUDITALLOW) { 303 xpd->auditallow = kmem_cache_zalloc(avc_xperms_data_cachep, 304 GFP_NOWAIT | __GFP_NOWARN); 305 if (!xpd->auditallow) 306 goto error; 307 } 308 if (which & XPERMS_DONTAUDIT) { 309 xpd->dontaudit = kmem_cache_zalloc(avc_xperms_data_cachep, 310 GFP_NOWAIT | __GFP_NOWARN); 311 if (!xpd->dontaudit) 312 goto error; 313 } 314 return xpd_node; 315 error: 316 avc_xperms_decision_free(xpd_node); 317 return NULL; 318 } 319 320 static int avc_add_xperms_decision(struct avc_node *node, 321 struct extended_perms_decision *src) 322 { 323 struct avc_xperms_decision_node *dest_xpd; 324 325 dest_xpd = avc_xperms_decision_alloc(src->used); 326 if (!dest_xpd) 327 return -ENOMEM; 328 avc_copy_xperms_decision(&dest_xpd->xpd, src); 329 list_add(&dest_xpd->xpd_list, &node->ae.xp_node->xpd_head); 330 node->ae.xp_node->xp.len++; 331 return 0; 332 } 333 334 static struct avc_xperms_node *avc_xperms_alloc(void) 335 { 336 struct avc_xperms_node *xp_node; 337 338 xp_node = kmem_cache_zalloc(avc_xperms_cachep, GFP_NOWAIT | __GFP_NOWARN); 339 if (!xp_node) 340 return xp_node; 341 INIT_LIST_HEAD(&xp_node->xpd_head); 342 return xp_node; 343 } 344 345 static int avc_xperms_populate(struct avc_node *node, 346 struct avc_xperms_node *src) 347 { 348 struct avc_xperms_node *dest; 349 struct avc_xperms_decision_node *dest_xpd; 350 struct avc_xperms_decision_node *src_xpd; 351 352 if (src->xp.len == 0) 353 return 0; 354 dest = avc_xperms_alloc(); 355 if (!dest) 356 return -ENOMEM; 357 358 memcpy(dest->xp.drivers.p, src->xp.drivers.p, sizeof(dest->xp.drivers.p)); 359 dest->xp.len = src->xp.len; 360 361 /* for each source xpd allocate a destination xpd and copy */ 362 list_for_each_entry(src_xpd, &src->xpd_head, xpd_list) { 363 dest_xpd = avc_xperms_decision_alloc(src_xpd->xpd.used); 364 if (!dest_xpd) 365 goto error; 366 avc_copy_xperms_decision(&dest_xpd->xpd, &src_xpd->xpd); 367 list_add(&dest_xpd->xpd_list, &dest->xpd_head); 368 } 369 node->ae.xp_node = dest; 370 return 0; 371 error: 372 avc_xperms_free(dest); 373 return -ENOMEM; 374 375 } 376 377 static inline u32 avc_xperms_audit_required(u32 requested, 378 struct av_decision *avd, 379 struct extended_perms_decision *xpd, 380 u8 perm, 381 int result, 382 u32 *deniedp) 383 { 384 u32 denied, audited; 385 386 denied = requested & ~avd->allowed; 387 if (unlikely(denied)) { 388 audited = denied & avd->auditdeny; 389 if (audited && xpd) { 390 if (avc_xperms_has_perm(xpd, perm, XPERMS_DONTAUDIT)) 391 audited = 0; 392 } 393 } else if (result) { 394 audited = denied = requested; 395 } else { 396 audited = requested & avd->auditallow; 397 if (audited && xpd) { 398 if (!avc_xperms_has_perm(xpd, perm, XPERMS_AUDITALLOW)) 399 audited = 0; 400 } 401 } 402 403 *deniedp = denied; 404 return audited; 405 } 406 407 static inline int avc_xperms_audit(u32 ssid, u32 tsid, u16 tclass, 408 u32 requested, struct av_decision *avd, 409 struct extended_perms_decision *xpd, 410 u8 perm, int result, 411 struct common_audit_data *ad) 412 { 413 u32 audited, denied; 414 415 audited = avc_xperms_audit_required( 416 requested, avd, xpd, perm, result, &denied); 417 if (likely(!audited)) 418 return 0; 419 return slow_avc_audit(ssid, tsid, tclass, requested, 420 audited, denied, result, ad); 421 } 422 423 static void avc_node_free(struct rcu_head *rhead) 424 { 425 struct avc_node *node = container_of(rhead, struct avc_node, rhead); 426 avc_xperms_free(node->ae.xp_node); 427 kmem_cache_free(avc_node_cachep, node); 428 avc_cache_stats_incr(frees); 429 } 430 431 static void avc_node_delete(struct avc_node *node) 432 { 433 hlist_del_rcu(&node->list); 434 call_rcu(&node->rhead, avc_node_free); 435 atomic_dec(&selinux_avc.avc_cache.active_nodes); 436 } 437 438 static void avc_node_kill(struct avc_node *node) 439 { 440 avc_xperms_free(node->ae.xp_node); 441 kmem_cache_free(avc_node_cachep, node); 442 avc_cache_stats_incr(frees); 443 atomic_dec(&selinux_avc.avc_cache.active_nodes); 444 } 445 446 static void avc_node_replace(struct avc_node *new, struct avc_node *old) 447 { 448 hlist_replace_rcu(&old->list, &new->list); 449 call_rcu(&old->rhead, avc_node_free); 450 atomic_dec(&selinux_avc.avc_cache.active_nodes); 451 } 452 453 static inline int avc_reclaim_node(void) 454 { 455 struct avc_node *node; 456 int hvalue, try, ecx; 457 unsigned long flags; 458 struct hlist_head *head; 459 spinlock_t *lock; 460 461 for (try = 0, ecx = 0; try < AVC_CACHE_SLOTS; try++) { 462 hvalue = atomic_inc_return(&selinux_avc.avc_cache.lru_hint) & 463 (AVC_CACHE_SLOTS - 1); 464 head = &selinux_avc.avc_cache.slots[hvalue]; 465 lock = &selinux_avc.avc_cache.slots_lock[hvalue]; 466 467 if (!spin_trylock_irqsave(lock, flags)) 468 continue; 469 470 rcu_read_lock(); 471 hlist_for_each_entry(node, head, list) { 472 avc_node_delete(node); 473 avc_cache_stats_incr(reclaims); 474 ecx++; 475 if (ecx >= AVC_CACHE_RECLAIM) { 476 rcu_read_unlock(); 477 spin_unlock_irqrestore(lock, flags); 478 goto out; 479 } 480 } 481 rcu_read_unlock(); 482 spin_unlock_irqrestore(lock, flags); 483 } 484 out: 485 return ecx; 486 } 487 488 static struct avc_node *avc_alloc_node(void) 489 { 490 struct avc_node *node; 491 492 node = kmem_cache_zalloc(avc_node_cachep, GFP_NOWAIT | __GFP_NOWARN); 493 if (!node) 494 goto out; 495 496 INIT_HLIST_NODE(&node->list); 497 avc_cache_stats_incr(allocations); 498 499 if (atomic_inc_return(&selinux_avc.avc_cache.active_nodes) > 500 selinux_avc.avc_cache_threshold) 501 avc_reclaim_node(); 502 503 out: 504 return node; 505 } 506 507 static void avc_node_populate(struct avc_node *node, u32 ssid, u32 tsid, u16 tclass, struct av_decision *avd) 508 { 509 node->ae.ssid = ssid; 510 node->ae.tsid = tsid; 511 node->ae.tclass = tclass; 512 memcpy(&node->ae.avd, avd, sizeof(node->ae.avd)); 513 } 514 515 static inline struct avc_node *avc_search_node(u32 ssid, u32 tsid, u16 tclass) 516 { 517 struct avc_node *node, *ret = NULL; 518 u32 hvalue; 519 struct hlist_head *head; 520 521 hvalue = avc_hash(ssid, tsid, tclass); 522 head = &selinux_avc.avc_cache.slots[hvalue]; 523 hlist_for_each_entry_rcu(node, head, list) { 524 if (ssid == node->ae.ssid && 525 tclass == node->ae.tclass && 526 tsid == node->ae.tsid) { 527 ret = node; 528 break; 529 } 530 } 531 532 return ret; 533 } 534 535 /** 536 * avc_lookup - Look up an AVC entry. 537 * @ssid: source security identifier 538 * @tsid: target security identifier 539 * @tclass: target security class 540 * 541 * Look up an AVC entry that is valid for the 542 * (@ssid, @tsid), interpreting the permissions 543 * based on @tclass. If a valid AVC entry exists, 544 * then this function returns the avc_node. 545 * Otherwise, this function returns NULL. 546 */ 547 static struct avc_node *avc_lookup(u32 ssid, u32 tsid, u16 tclass) 548 { 549 struct avc_node *node; 550 551 avc_cache_stats_incr(lookups); 552 node = avc_search_node(ssid, tsid, tclass); 553 554 if (node) 555 return node; 556 557 avc_cache_stats_incr(misses); 558 return NULL; 559 } 560 561 static int avc_latest_notif_update(u32 seqno, int is_insert) 562 { 563 int ret = 0; 564 static DEFINE_SPINLOCK(notif_lock); 565 unsigned long flag; 566 567 spin_lock_irqsave(¬if_lock, flag); 568 if (is_insert) { 569 if (seqno < selinux_avc.avc_cache.latest_notif) { 570 pr_warn("SELinux: avc: seqno %d < latest_notif %d\n", 571 seqno, selinux_avc.avc_cache.latest_notif); 572 ret = -EAGAIN; 573 } 574 } else { 575 if (seqno > selinux_avc.avc_cache.latest_notif) 576 selinux_avc.avc_cache.latest_notif = seqno; 577 } 578 spin_unlock_irqrestore(¬if_lock, flag); 579 580 return ret; 581 } 582 583 /** 584 * avc_insert - Insert an AVC entry. 585 * @ssid: source security identifier 586 * @tsid: target security identifier 587 * @tclass: target security class 588 * @avd: resulting av decision 589 * @xp_node: resulting extended permissions 590 * 591 * Insert an AVC entry for the SID pair 592 * (@ssid, @tsid) and class @tclass. 593 * The access vectors and the sequence number are 594 * normally provided by the security server in 595 * response to a security_compute_av() call. If the 596 * sequence number @avd->seqno is not less than the latest 597 * revocation notification, then the function copies 598 * the access vectors into a cache entry. 599 */ 600 static void avc_insert(u32 ssid, u32 tsid, u16 tclass, 601 struct av_decision *avd, struct avc_xperms_node *xp_node) 602 { 603 struct avc_node *pos, *node = NULL; 604 u32 hvalue; 605 unsigned long flag; 606 spinlock_t *lock; 607 struct hlist_head *head; 608 609 if (avc_latest_notif_update(avd->seqno, 1)) 610 return; 611 612 node = avc_alloc_node(); 613 if (!node) 614 return; 615 616 avc_node_populate(node, ssid, tsid, tclass, avd); 617 if (avc_xperms_populate(node, xp_node)) { 618 avc_node_kill(node); 619 return; 620 } 621 622 hvalue = avc_hash(ssid, tsid, tclass); 623 head = &selinux_avc.avc_cache.slots[hvalue]; 624 lock = &selinux_avc.avc_cache.slots_lock[hvalue]; 625 spin_lock_irqsave(lock, flag); 626 hlist_for_each_entry(pos, head, list) { 627 if (pos->ae.ssid == ssid && 628 pos->ae.tsid == tsid && 629 pos->ae.tclass == tclass) { 630 avc_node_replace(node, pos); 631 goto found; 632 } 633 } 634 hlist_add_head_rcu(&node->list, head); 635 found: 636 spin_unlock_irqrestore(lock, flag); 637 } 638 639 /** 640 * avc_audit_pre_callback - SELinux specific information 641 * will be called by generic audit code 642 * @ab: the audit buffer 643 * @a: audit_data 644 */ 645 static void avc_audit_pre_callback(struct audit_buffer *ab, void *a) 646 { 647 struct common_audit_data *ad = a; 648 struct selinux_audit_data *sad = ad->selinux_audit_data; 649 u32 av = sad->audited, perm; 650 const char *const *perms; 651 u32 i; 652 653 audit_log_format(ab, "avc: %s ", sad->denied ? "denied" : "granted"); 654 655 if (av == 0) { 656 audit_log_format(ab, " null"); 657 return; 658 } 659 660 perms = secclass_map[sad->tclass-1].perms; 661 662 audit_log_format(ab, " {"); 663 i = 0; 664 perm = 1; 665 while (i < (sizeof(av) * 8)) { 666 if ((perm & av) && perms[i]) { 667 audit_log_format(ab, " %s", perms[i]); 668 av &= ~perm; 669 } 670 i++; 671 perm <<= 1; 672 } 673 674 if (av) 675 audit_log_format(ab, " 0x%x", av); 676 677 audit_log_format(ab, " } for "); 678 } 679 680 /** 681 * avc_audit_post_callback - SELinux specific information 682 * will be called by generic audit code 683 * @ab: the audit buffer 684 * @a: audit_data 685 */ 686 static void avc_audit_post_callback(struct audit_buffer *ab, void *a) 687 { 688 struct common_audit_data *ad = a; 689 struct selinux_audit_data *sad = ad->selinux_audit_data; 690 char *scontext = NULL; 691 char *tcontext = NULL; 692 const char *tclass = NULL; 693 u32 scontext_len; 694 u32 tcontext_len; 695 int rc; 696 697 rc = security_sid_to_context(sad->ssid, &scontext, 698 &scontext_len); 699 if (rc) 700 audit_log_format(ab, " ssid=%d", sad->ssid); 701 else 702 audit_log_format(ab, " scontext=%s", scontext); 703 704 rc = security_sid_to_context(sad->tsid, &tcontext, 705 &tcontext_len); 706 if (rc) 707 audit_log_format(ab, " tsid=%d", sad->tsid); 708 else 709 audit_log_format(ab, " tcontext=%s", tcontext); 710 711 tclass = secclass_map[sad->tclass-1].name; 712 audit_log_format(ab, " tclass=%s", tclass); 713 714 if (sad->denied) 715 audit_log_format(ab, " permissive=%u", sad->result ? 0 : 1); 716 717 trace_selinux_audited(sad, scontext, tcontext, tclass); 718 kfree(tcontext); 719 kfree(scontext); 720 721 /* in case of invalid context report also the actual context string */ 722 rc = security_sid_to_context_inval(sad->ssid, &scontext, 723 &scontext_len); 724 if (!rc && scontext) { 725 if (scontext_len && scontext[scontext_len - 1] == '\0') 726 scontext_len--; 727 audit_log_format(ab, " srawcon="); 728 audit_log_n_untrustedstring(ab, scontext, scontext_len); 729 kfree(scontext); 730 } 731 732 rc = security_sid_to_context_inval(sad->tsid, &scontext, 733 &scontext_len); 734 if (!rc && scontext) { 735 if (scontext_len && scontext[scontext_len - 1] == '\0') 736 scontext_len--; 737 audit_log_format(ab, " trawcon="); 738 audit_log_n_untrustedstring(ab, scontext, scontext_len); 739 kfree(scontext); 740 } 741 } 742 743 /* 744 * This is the slow part of avc audit with big stack footprint. 745 * Note that it is non-blocking and can be called from under 746 * rcu_read_lock(). 747 */ 748 noinline int slow_avc_audit(u32 ssid, u32 tsid, u16 tclass, 749 u32 requested, u32 audited, u32 denied, int result, 750 struct common_audit_data *a) 751 { 752 struct common_audit_data stack_data; 753 struct selinux_audit_data sad; 754 755 if (WARN_ON(!tclass || tclass >= ARRAY_SIZE(secclass_map))) 756 return -EINVAL; 757 758 if (!a) { 759 a = &stack_data; 760 a->type = LSM_AUDIT_DATA_NONE; 761 } 762 763 sad.tclass = tclass; 764 sad.requested = requested; 765 sad.ssid = ssid; 766 sad.tsid = tsid; 767 sad.audited = audited; 768 sad.denied = denied; 769 sad.result = result; 770 771 a->selinux_audit_data = &sad; 772 773 common_lsm_audit(a, avc_audit_pre_callback, avc_audit_post_callback); 774 return 0; 775 } 776 777 /** 778 * avc_add_callback - Register a callback for security events. 779 * @callback: callback function 780 * @events: security events 781 * 782 * Register a callback function for events in the set @events. 783 * Returns %0 on success or -%ENOMEM if insufficient memory 784 * exists to add the callback. 785 */ 786 int __init avc_add_callback(int (*callback)(u32 event), u32 events) 787 { 788 struct avc_callback_node *c; 789 int rc = 0; 790 791 c = kmalloc(sizeof(*c), GFP_KERNEL); 792 if (!c) { 793 rc = -ENOMEM; 794 goto out; 795 } 796 797 c->callback = callback; 798 c->events = events; 799 c->next = avc_callbacks; 800 avc_callbacks = c; 801 out: 802 return rc; 803 } 804 805 /** 806 * avc_update_node - Update an AVC entry 807 * @event : Updating event 808 * @perms : Permission mask bits 809 * @driver: xperm driver information 810 * @xperm: xperm permissions 811 * @ssid: AVC entry source sid 812 * @tsid: AVC entry target sid 813 * @tclass : AVC entry target object class 814 * @seqno : sequence number when decision was made 815 * @xpd: extended_perms_decision to be added to the node 816 * @flags: the AVC_* flags, e.g. AVC_EXTENDED_PERMS, or 0. 817 * 818 * if a valid AVC entry doesn't exist,this function returns -ENOENT. 819 * if kmalloc() called internal returns NULL, this function returns -ENOMEM. 820 * otherwise, this function updates the AVC entry. The original AVC-entry object 821 * will release later by RCU. 822 */ 823 static int avc_update_node(u32 event, u32 perms, u8 driver, u8 xperm, u32 ssid, 824 u32 tsid, u16 tclass, u32 seqno, 825 struct extended_perms_decision *xpd, 826 u32 flags) 827 { 828 u32 hvalue; 829 int rc = 0; 830 unsigned long flag; 831 struct avc_node *pos, *node, *orig = NULL; 832 struct hlist_head *head; 833 spinlock_t *lock; 834 835 node = avc_alloc_node(); 836 if (!node) { 837 rc = -ENOMEM; 838 goto out; 839 } 840 841 /* Lock the target slot */ 842 hvalue = avc_hash(ssid, tsid, tclass); 843 844 head = &selinux_avc.avc_cache.slots[hvalue]; 845 lock = &selinux_avc.avc_cache.slots_lock[hvalue]; 846 847 spin_lock_irqsave(lock, flag); 848 849 hlist_for_each_entry(pos, head, list) { 850 if (ssid == pos->ae.ssid && 851 tsid == pos->ae.tsid && 852 tclass == pos->ae.tclass && 853 seqno == pos->ae.avd.seqno){ 854 orig = pos; 855 break; 856 } 857 } 858 859 if (!orig) { 860 rc = -ENOENT; 861 avc_node_kill(node); 862 goto out_unlock; 863 } 864 865 /* 866 * Copy and replace original node. 867 */ 868 869 avc_node_populate(node, ssid, tsid, tclass, &orig->ae.avd); 870 871 if (orig->ae.xp_node) { 872 rc = avc_xperms_populate(node, orig->ae.xp_node); 873 if (rc) { 874 avc_node_kill(node); 875 goto out_unlock; 876 } 877 } 878 879 switch (event) { 880 case AVC_CALLBACK_GRANT: 881 node->ae.avd.allowed |= perms; 882 if (node->ae.xp_node && (flags & AVC_EXTENDED_PERMS)) 883 avc_xperms_allow_perm(node->ae.xp_node, driver, xperm); 884 break; 885 case AVC_CALLBACK_TRY_REVOKE: 886 case AVC_CALLBACK_REVOKE: 887 node->ae.avd.allowed &= ~perms; 888 break; 889 case AVC_CALLBACK_AUDITALLOW_ENABLE: 890 node->ae.avd.auditallow |= perms; 891 break; 892 case AVC_CALLBACK_AUDITALLOW_DISABLE: 893 node->ae.avd.auditallow &= ~perms; 894 break; 895 case AVC_CALLBACK_AUDITDENY_ENABLE: 896 node->ae.avd.auditdeny |= perms; 897 break; 898 case AVC_CALLBACK_AUDITDENY_DISABLE: 899 node->ae.avd.auditdeny &= ~perms; 900 break; 901 case AVC_CALLBACK_ADD_XPERMS: 902 rc = avc_add_xperms_decision(node, xpd); 903 if (rc) { 904 avc_node_kill(node); 905 goto out_unlock; 906 } 907 break; 908 } 909 avc_node_replace(node, orig); 910 out_unlock: 911 spin_unlock_irqrestore(lock, flag); 912 out: 913 return rc; 914 } 915 916 /** 917 * avc_flush - Flush the cache 918 */ 919 static void avc_flush(void) 920 { 921 struct hlist_head *head; 922 struct avc_node *node; 923 spinlock_t *lock; 924 unsigned long flag; 925 int i; 926 927 for (i = 0; i < AVC_CACHE_SLOTS; i++) { 928 head = &selinux_avc.avc_cache.slots[i]; 929 lock = &selinux_avc.avc_cache.slots_lock[i]; 930 931 spin_lock_irqsave(lock, flag); 932 /* 933 * With preemptable RCU, the outer spinlock does not 934 * prevent RCU grace periods from ending. 935 */ 936 rcu_read_lock(); 937 hlist_for_each_entry(node, head, list) 938 avc_node_delete(node); 939 rcu_read_unlock(); 940 spin_unlock_irqrestore(lock, flag); 941 } 942 } 943 944 /** 945 * avc_ss_reset - Flush the cache and revalidate migrated permissions. 946 * @seqno: policy sequence number 947 */ 948 int avc_ss_reset(u32 seqno) 949 { 950 struct avc_callback_node *c; 951 int rc = 0, tmprc; 952 953 avc_flush(); 954 955 for (c = avc_callbacks; c; c = c->next) { 956 if (c->events & AVC_CALLBACK_RESET) { 957 tmprc = c->callback(AVC_CALLBACK_RESET); 958 /* save the first error encountered for the return 959 value and continue processing the callbacks */ 960 if (!rc) 961 rc = tmprc; 962 } 963 } 964 965 avc_latest_notif_update(seqno, 0); 966 return rc; 967 } 968 969 /** 970 * avc_compute_av - Add an entry to the AVC based on the security policy 971 * @ssid: subject 972 * @tsid: object/target 973 * @tclass: object class 974 * @avd: access vector decision 975 * @xp_node: AVC extended permissions node 976 * 977 * Slow-path helper function for avc_has_perm_noaudit, when the avc_node lookup 978 * fails. Don't inline this, since it's the slow-path and just results in a 979 * bigger stack frame. 980 */ 981 static noinline void avc_compute_av(u32 ssid, u32 tsid, u16 tclass, 982 struct av_decision *avd, 983 struct avc_xperms_node *xp_node) 984 { 985 INIT_LIST_HEAD(&xp_node->xpd_head); 986 security_compute_av(ssid, tsid, tclass, avd, &xp_node->xp); 987 avc_insert(ssid, tsid, tclass, avd, xp_node); 988 } 989 990 static noinline int avc_denied(u32 ssid, u32 tsid, 991 u16 tclass, u32 requested, 992 u8 driver, u8 xperm, unsigned int flags, 993 struct av_decision *avd) 994 { 995 if (flags & AVC_STRICT) 996 return -EACCES; 997 998 if (enforcing_enabled() && 999 !(avd->flags & AVD_FLAGS_PERMISSIVE)) 1000 return -EACCES; 1001 1002 avc_update_node(AVC_CALLBACK_GRANT, requested, driver, 1003 xperm, ssid, tsid, tclass, avd->seqno, NULL, flags); 1004 return 0; 1005 } 1006 1007 /* 1008 * The avc extended permissions logic adds an additional 256 bits of 1009 * permissions to an avc node when extended permissions for that node are 1010 * specified in the avtab. If the additional 256 permissions is not adequate, 1011 * as-is the case with ioctls, then multiple may be chained together and the 1012 * driver field is used to specify which set contains the permission. 1013 */ 1014 int avc_has_extended_perms(u32 ssid, u32 tsid, u16 tclass, u32 requested, 1015 u8 driver, u8 xperm, struct common_audit_data *ad) 1016 { 1017 struct avc_node *node; 1018 struct av_decision avd; 1019 u32 denied; 1020 struct extended_perms_decision local_xpd; 1021 struct extended_perms_decision *xpd = NULL; 1022 struct extended_perms_data allowed; 1023 struct extended_perms_data auditallow; 1024 struct extended_perms_data dontaudit; 1025 struct avc_xperms_node local_xp_node; 1026 struct avc_xperms_node *xp_node; 1027 int rc = 0, rc2; 1028 1029 xp_node = &local_xp_node; 1030 if (WARN_ON(!requested)) 1031 return -EACCES; 1032 1033 rcu_read_lock(); 1034 1035 node = avc_lookup(ssid, tsid, tclass); 1036 if (unlikely(!node)) { 1037 avc_compute_av(ssid, tsid, tclass, &avd, xp_node); 1038 } else { 1039 memcpy(&avd, &node->ae.avd, sizeof(avd)); 1040 xp_node = node->ae.xp_node; 1041 } 1042 /* if extended permissions are not defined, only consider av_decision */ 1043 if (!xp_node || !xp_node->xp.len) 1044 goto decision; 1045 1046 local_xpd.allowed = &allowed; 1047 local_xpd.auditallow = &auditallow; 1048 local_xpd.dontaudit = &dontaudit; 1049 1050 xpd = avc_xperms_decision_lookup(driver, xp_node); 1051 if (unlikely(!xpd)) { 1052 /* 1053 * Compute the extended_perms_decision only if the driver 1054 * is flagged 1055 */ 1056 if (!security_xperm_test(xp_node->xp.drivers.p, driver)) { 1057 avd.allowed &= ~requested; 1058 goto decision; 1059 } 1060 rcu_read_unlock(); 1061 security_compute_xperms_decision(ssid, tsid, tclass, 1062 driver, &local_xpd); 1063 rcu_read_lock(); 1064 avc_update_node(AVC_CALLBACK_ADD_XPERMS, requested, 1065 driver, xperm, ssid, tsid, tclass, avd.seqno, 1066 &local_xpd, 0); 1067 } else { 1068 avc_quick_copy_xperms_decision(xperm, &local_xpd, xpd); 1069 } 1070 xpd = &local_xpd; 1071 1072 if (!avc_xperms_has_perm(xpd, xperm, XPERMS_ALLOWED)) 1073 avd.allowed &= ~requested; 1074 1075 decision: 1076 denied = requested & ~(avd.allowed); 1077 if (unlikely(denied)) 1078 rc = avc_denied(ssid, tsid, tclass, requested, 1079 driver, xperm, AVC_EXTENDED_PERMS, &avd); 1080 1081 rcu_read_unlock(); 1082 1083 rc2 = avc_xperms_audit(ssid, tsid, tclass, requested, 1084 &avd, xpd, xperm, rc, ad); 1085 if (rc2) 1086 return rc2; 1087 return rc; 1088 } 1089 1090 /** 1091 * avc_perm_nonode - Add an entry to the AVC 1092 * @ssid: subject 1093 * @tsid: object/target 1094 * @tclass: object class 1095 * @requested: requested permissions 1096 * @flags: AVC flags 1097 * @avd: access vector decision 1098 * 1099 * This is the "we have no node" part of avc_has_perm_noaudit(), which is 1100 * unlikely and needs extra stack space for the new node that we generate, so 1101 * don't inline it. 1102 */ 1103 static noinline int avc_perm_nonode(u32 ssid, u32 tsid, u16 tclass, 1104 u32 requested, unsigned int flags, 1105 struct av_decision *avd) 1106 { 1107 u32 denied; 1108 struct avc_xperms_node xp_node; 1109 1110 avc_compute_av(ssid, tsid, tclass, avd, &xp_node); 1111 denied = requested & ~(avd->allowed); 1112 if (unlikely(denied)) 1113 return avc_denied(ssid, tsid, tclass, requested, 0, 0, 1114 flags, avd); 1115 return 0; 1116 } 1117 1118 /** 1119 * avc_has_perm_noaudit - Check permissions but perform no auditing. 1120 * @ssid: source security identifier 1121 * @tsid: target security identifier 1122 * @tclass: target security class 1123 * @requested: requested permissions, interpreted based on @tclass 1124 * @flags: AVC_STRICT or 0 1125 * @avd: access vector decisions 1126 * 1127 * Check the AVC to determine whether the @requested permissions are granted 1128 * for the SID pair (@ssid, @tsid), interpreting the permissions 1129 * based on @tclass, and call the security server on a cache miss to obtain 1130 * a new decision and add it to the cache. Return a copy of the decisions 1131 * in @avd. Return %0 if all @requested permissions are granted, 1132 * -%EACCES if any permissions are denied, or another -errno upon 1133 * other errors. This function is typically called by avc_has_perm(), 1134 * but may also be called directly to separate permission checking from 1135 * auditing, e.g. in cases where a lock must be held for the check but 1136 * should be released for the auditing. 1137 */ 1138 inline int avc_has_perm_noaudit(u32 ssid, u32 tsid, 1139 u16 tclass, u32 requested, 1140 unsigned int flags, 1141 struct av_decision *avd) 1142 { 1143 u32 denied; 1144 struct avc_node *node; 1145 1146 if (WARN_ON(!requested)) 1147 return -EACCES; 1148 1149 rcu_read_lock(); 1150 node = avc_lookup(ssid, tsid, tclass); 1151 if (unlikely(!node)) { 1152 rcu_read_unlock(); 1153 return avc_perm_nonode(ssid, tsid, tclass, requested, 1154 flags, avd); 1155 } 1156 denied = requested & ~node->ae.avd.allowed; 1157 memcpy(avd, &node->ae.avd, sizeof(*avd)); 1158 rcu_read_unlock(); 1159 1160 if (unlikely(denied)) 1161 return avc_denied(ssid, tsid, tclass, requested, 0, 0, 1162 flags, avd); 1163 return 0; 1164 } 1165 1166 /** 1167 * avc_has_perm - Check permissions and perform any appropriate auditing. 1168 * @ssid: source security identifier 1169 * @tsid: target security identifier 1170 * @tclass: target security class 1171 * @requested: requested permissions, interpreted based on @tclass 1172 * @auditdata: auxiliary audit data 1173 * 1174 * Check the AVC to determine whether the @requested permissions are granted 1175 * for the SID pair (@ssid, @tsid), interpreting the permissions 1176 * based on @tclass, and call the security server on a cache miss to obtain 1177 * a new decision and add it to the cache. Audit the granting or denial of 1178 * permissions in accordance with the policy. Return %0 if all @requested 1179 * permissions are granted, -%EACCES if any permissions are denied, or 1180 * another -errno upon other errors. 1181 */ 1182 int avc_has_perm(u32 ssid, u32 tsid, u16 tclass, 1183 u32 requested, struct common_audit_data *auditdata) 1184 { 1185 struct av_decision avd; 1186 int rc, rc2; 1187 1188 rc = avc_has_perm_noaudit(ssid, tsid, tclass, requested, 0, 1189 &avd); 1190 1191 rc2 = avc_audit(ssid, tsid, tclass, requested, &avd, rc, 1192 auditdata); 1193 if (rc2) 1194 return rc2; 1195 return rc; 1196 } 1197 1198 u32 avc_policy_seqno(void) 1199 { 1200 return selinux_avc.avc_cache.latest_notif; 1201 } 1202