1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Implementation of the kernel access vector cache (AVC). 4 * 5 * Authors: Stephen Smalley, <stephen.smalley.work@gmail.com> 6 * James Morris <jmorris@redhat.com> 7 * 8 * Update: KaiGai, Kohei <kaigai@ak.jp.nec.com> 9 * Replaced the avc_lock spinlock by RCU. 10 * 11 * Copyright (C) 2003 Red Hat, Inc., James Morris <jmorris@redhat.com> 12 */ 13 #include <linux/types.h> 14 #include <linux/stddef.h> 15 #include <linux/kernel.h> 16 #include <linux/slab.h> 17 #include <linux/fs.h> 18 #include <linux/dcache.h> 19 #include <linux/init.h> 20 #include <linux/skbuff.h> 21 #include <linux/percpu.h> 22 #include <linux/list.h> 23 #include <net/sock.h> 24 #include <linux/un.h> 25 #include <net/af_unix.h> 26 #include <linux/ip.h> 27 #include <linux/audit.h> 28 #include <linux/ipv6.h> 29 #include <net/ipv6.h> 30 #include "avc.h" 31 #include "avc_ss.h" 32 #include "classmap.h" 33 34 #define CREATE_TRACE_POINTS 35 #include <trace/events/avc.h> 36 37 #define AVC_CACHE_SLOTS 512 38 #define AVC_DEF_CACHE_THRESHOLD 512 39 #define AVC_CACHE_RECLAIM 16 40 41 #ifdef CONFIG_SECURITY_SELINUX_AVC_STATS 42 #define avc_cache_stats_incr(field) this_cpu_inc(avc_cache_stats.field) 43 #else 44 #define avc_cache_stats_incr(field) do {} while (0) 45 #endif 46 47 struct avc_entry { 48 u32 ssid; 49 u32 tsid; 50 u16 tclass; 51 struct av_decision avd; 52 struct avc_xperms_node *xp_node; 53 }; 54 55 struct avc_node { 56 struct avc_entry ae; 57 struct hlist_node list; /* anchored in avc_cache->slots[i] */ 58 struct rcu_head rhead; 59 }; 60 61 struct avc_xperms_decision_node { 62 struct extended_perms_decision xpd; 63 struct list_head xpd_list; /* list of extended_perms_decision */ 64 }; 65 66 struct avc_xperms_node { 67 struct extended_perms xp; 68 struct list_head xpd_head; /* list head of extended_perms_decision */ 69 }; 70 71 struct avc_cache { 72 struct hlist_head slots[AVC_CACHE_SLOTS]; /* head for avc_node->list */ 73 spinlock_t slots_lock[AVC_CACHE_SLOTS]; /* lock for writes */ 74 atomic_t lru_hint; /* LRU hint for reclaim scan */ 75 atomic_t active_nodes; 76 u32 latest_notif; /* latest revocation notification */ 77 }; 78 79 struct avc_callback_node { 80 int (*callback) (u32 event); 81 u32 events; 82 struct avc_callback_node *next; 83 }; 84 85 #ifdef CONFIG_SECURITY_SELINUX_AVC_STATS 86 DEFINE_PER_CPU(struct avc_cache_stats, avc_cache_stats) = { 0 }; 87 #endif 88 89 struct selinux_avc { 90 unsigned int avc_cache_threshold; 91 struct avc_cache avc_cache; 92 }; 93 94 static struct selinux_avc selinux_avc; 95 96 void selinux_avc_init(void) 97 { 98 int i; 99 100 selinux_avc.avc_cache_threshold = AVC_DEF_CACHE_THRESHOLD; 101 for (i = 0; i < AVC_CACHE_SLOTS; i++) { 102 INIT_HLIST_HEAD(&selinux_avc.avc_cache.slots[i]); 103 spin_lock_init(&selinux_avc.avc_cache.slots_lock[i]); 104 } 105 atomic_set(&selinux_avc.avc_cache.active_nodes, 0); 106 atomic_set(&selinux_avc.avc_cache.lru_hint, 0); 107 } 108 109 unsigned int avc_get_cache_threshold(void) 110 { 111 return selinux_avc.avc_cache_threshold; 112 } 113 114 void avc_set_cache_threshold(unsigned int cache_threshold) 115 { 116 selinux_avc.avc_cache_threshold = cache_threshold; 117 } 118 119 static struct avc_callback_node *avc_callbacks __ro_after_init; 120 static struct kmem_cache *avc_node_cachep __ro_after_init; 121 static struct kmem_cache *avc_xperms_data_cachep __ro_after_init; 122 static struct kmem_cache *avc_xperms_decision_cachep __ro_after_init; 123 static struct kmem_cache *avc_xperms_cachep __ro_after_init; 124 125 static inline u32 avc_hash(u32 ssid, u32 tsid, u16 tclass) 126 { 127 return (ssid ^ (tsid<<2) ^ (tclass<<4)) & (AVC_CACHE_SLOTS - 1); 128 } 129 130 /** 131 * avc_init - Initialize the AVC. 132 * 133 * Initialize the access vector cache. 134 */ 135 void __init avc_init(void) 136 { 137 avc_node_cachep = KMEM_CACHE(avc_node, SLAB_PANIC); 138 avc_xperms_cachep = KMEM_CACHE(avc_xperms_node, SLAB_PANIC); 139 avc_xperms_decision_cachep = KMEM_CACHE(avc_xperms_decision_node, SLAB_PANIC); 140 avc_xperms_data_cachep = KMEM_CACHE(extended_perms_data, SLAB_PANIC); 141 } 142 143 int avc_get_hash_stats(char *page) 144 { 145 int i, chain_len, max_chain_len, slots_used; 146 struct avc_node *node; 147 struct hlist_head *head; 148 149 rcu_read_lock(); 150 151 slots_used = 0; 152 max_chain_len = 0; 153 for (i = 0; i < AVC_CACHE_SLOTS; i++) { 154 head = &selinux_avc.avc_cache.slots[i]; 155 if (!hlist_empty(head)) { 156 slots_used++; 157 chain_len = 0; 158 hlist_for_each_entry_rcu(node, head, list) 159 chain_len++; 160 if (chain_len > max_chain_len) 161 max_chain_len = chain_len; 162 } 163 } 164 165 rcu_read_unlock(); 166 167 return scnprintf(page, PAGE_SIZE, "entries: %d\nbuckets used: %d/%d\n" 168 "longest chain: %d\n", 169 atomic_read(&selinux_avc.avc_cache.active_nodes), 170 slots_used, AVC_CACHE_SLOTS, max_chain_len); 171 } 172 173 /* 174 * using a linked list for extended_perms_decision lookup because the list is 175 * always small. i.e. less than 5, typically 1 176 */ 177 static struct extended_perms_decision * 178 avc_xperms_decision_lookup(u8 driver, u8 base_perm, 179 struct avc_xperms_node *xp_node) 180 { 181 struct avc_xperms_decision_node *xpd_node; 182 183 list_for_each_entry(xpd_node, &xp_node->xpd_head, xpd_list) { 184 if (xpd_node->xpd.driver == driver && 185 xpd_node->xpd.base_perm == base_perm) 186 return &xpd_node->xpd; 187 } 188 return NULL; 189 } 190 191 static inline unsigned int 192 avc_xperms_has_perm(struct extended_perms_decision *xpd, 193 u8 perm, u8 which) 194 { 195 unsigned int rc = 0; 196 197 if ((which == XPERMS_ALLOWED) && 198 (xpd->used & XPERMS_ALLOWED)) 199 rc = security_xperm_test(xpd->allowed->p, perm); 200 else if ((which == XPERMS_AUDITALLOW) && 201 (xpd->used & XPERMS_AUDITALLOW)) 202 rc = security_xperm_test(xpd->auditallow->p, perm); 203 else if ((which == XPERMS_DONTAUDIT) && 204 (xpd->used & XPERMS_DONTAUDIT)) 205 rc = security_xperm_test(xpd->dontaudit->p, perm); 206 return rc; 207 } 208 209 static void avc_xperms_allow_perm(struct avc_xperms_node *xp_node, 210 u8 driver, u8 base_perm, u8 perm) 211 { 212 struct extended_perms_decision *xpd; 213 security_xperm_set(xp_node->xp.drivers.p, driver); 214 xp_node->xp.base_perms |= base_perm; 215 xpd = avc_xperms_decision_lookup(driver, base_perm, xp_node); 216 if (xpd && xpd->allowed) 217 security_xperm_set(xpd->allowed->p, perm); 218 } 219 220 static void avc_xperms_decision_free(struct avc_xperms_decision_node *xpd_node) 221 { 222 struct extended_perms_decision *xpd; 223 224 xpd = &xpd_node->xpd; 225 if (xpd->allowed) 226 kmem_cache_free(avc_xperms_data_cachep, xpd->allowed); 227 if (xpd->auditallow) 228 kmem_cache_free(avc_xperms_data_cachep, xpd->auditallow); 229 if (xpd->dontaudit) 230 kmem_cache_free(avc_xperms_data_cachep, xpd->dontaudit); 231 kmem_cache_free(avc_xperms_decision_cachep, xpd_node); 232 } 233 234 static void avc_xperms_free(struct avc_xperms_node *xp_node) 235 { 236 struct avc_xperms_decision_node *xpd_node, *tmp; 237 238 if (!xp_node) 239 return; 240 241 list_for_each_entry_safe(xpd_node, tmp, &xp_node->xpd_head, xpd_list) { 242 list_del(&xpd_node->xpd_list); 243 avc_xperms_decision_free(xpd_node); 244 } 245 kmem_cache_free(avc_xperms_cachep, xp_node); 246 } 247 248 static void avc_copy_xperms_decision(struct extended_perms_decision *dest, 249 struct extended_perms_decision *src) 250 { 251 dest->base_perm = src->base_perm; 252 dest->driver = src->driver; 253 dest->used = src->used; 254 if (dest->used & XPERMS_ALLOWED) 255 memcpy(dest->allowed->p, src->allowed->p, 256 sizeof(src->allowed->p)); 257 if (dest->used & XPERMS_AUDITALLOW) 258 memcpy(dest->auditallow->p, src->auditallow->p, 259 sizeof(src->auditallow->p)); 260 if (dest->used & XPERMS_DONTAUDIT) 261 memcpy(dest->dontaudit->p, src->dontaudit->p, 262 sizeof(src->dontaudit->p)); 263 } 264 265 /* 266 * similar to avc_copy_xperms_decision, but only copy decision 267 * information relevant to this perm 268 */ 269 static inline void avc_quick_copy_xperms_decision(u8 perm, 270 struct extended_perms_decision *dest, 271 struct extended_perms_decision *src) 272 { 273 /* 274 * compute index of the u32 of the 256 bits (8 u32s) that contain this 275 * command permission 276 */ 277 u8 i = perm >> 5; 278 279 dest->base_perm = src->base_perm; 280 dest->used = src->used; 281 if (dest->used & XPERMS_ALLOWED) 282 dest->allowed->p[i] = src->allowed->p[i]; 283 if (dest->used & XPERMS_AUDITALLOW) 284 dest->auditallow->p[i] = src->auditallow->p[i]; 285 if (dest->used & XPERMS_DONTAUDIT) 286 dest->dontaudit->p[i] = src->dontaudit->p[i]; 287 } 288 289 static struct avc_xperms_decision_node 290 *avc_xperms_decision_alloc(u8 which) 291 { 292 struct avc_xperms_decision_node *xpd_node; 293 struct extended_perms_decision *xpd; 294 295 xpd_node = kmem_cache_zalloc(avc_xperms_decision_cachep, GFP_NOWAIT); 296 if (!xpd_node) 297 return NULL; 298 299 xpd = &xpd_node->xpd; 300 if (which & XPERMS_ALLOWED) { 301 xpd->allowed = kmem_cache_zalloc(avc_xperms_data_cachep, 302 GFP_NOWAIT); 303 if (!xpd->allowed) 304 goto error; 305 } 306 if (which & XPERMS_AUDITALLOW) { 307 xpd->auditallow = kmem_cache_zalloc(avc_xperms_data_cachep, 308 GFP_NOWAIT); 309 if (!xpd->auditallow) 310 goto error; 311 } 312 if (which & XPERMS_DONTAUDIT) { 313 xpd->dontaudit = kmem_cache_zalloc(avc_xperms_data_cachep, 314 GFP_NOWAIT); 315 if (!xpd->dontaudit) 316 goto error; 317 } 318 return xpd_node; 319 error: 320 avc_xperms_decision_free(xpd_node); 321 return NULL; 322 } 323 324 static int avc_add_xperms_decision(struct avc_node *node, 325 struct extended_perms_decision *src) 326 { 327 struct avc_xperms_decision_node *dest_xpd; 328 329 dest_xpd = avc_xperms_decision_alloc(src->used); 330 if (!dest_xpd) 331 return -ENOMEM; 332 avc_copy_xperms_decision(&dest_xpd->xpd, src); 333 list_add(&dest_xpd->xpd_list, &node->ae.xp_node->xpd_head); 334 node->ae.xp_node->xp.len++; 335 return 0; 336 } 337 338 static struct avc_xperms_node *avc_xperms_alloc(void) 339 { 340 struct avc_xperms_node *xp_node; 341 342 xp_node = kmem_cache_zalloc(avc_xperms_cachep, GFP_NOWAIT); 343 if (!xp_node) 344 return xp_node; 345 INIT_LIST_HEAD(&xp_node->xpd_head); 346 return xp_node; 347 } 348 349 static int avc_xperms_populate(struct avc_node *node, 350 struct avc_xperms_node *src) 351 { 352 struct avc_xperms_node *dest; 353 struct avc_xperms_decision_node *dest_xpd; 354 struct avc_xperms_decision_node *src_xpd; 355 356 if (src->xp.len == 0) 357 return 0; 358 dest = avc_xperms_alloc(); 359 if (!dest) 360 return -ENOMEM; 361 362 memcpy(dest->xp.drivers.p, src->xp.drivers.p, sizeof(dest->xp.drivers.p)); 363 dest->xp.len = src->xp.len; 364 dest->xp.base_perms = src->xp.base_perms; 365 366 /* for each source xpd allocate a destination xpd and copy */ 367 list_for_each_entry(src_xpd, &src->xpd_head, xpd_list) { 368 dest_xpd = avc_xperms_decision_alloc(src_xpd->xpd.used); 369 if (!dest_xpd) 370 goto error; 371 avc_copy_xperms_decision(&dest_xpd->xpd, &src_xpd->xpd); 372 list_add(&dest_xpd->xpd_list, &dest->xpd_head); 373 } 374 node->ae.xp_node = dest; 375 return 0; 376 error: 377 avc_xperms_free(dest); 378 return -ENOMEM; 379 380 } 381 382 static inline u32 avc_xperms_audit_required(u32 requested, 383 struct av_decision *avd, 384 struct extended_perms_decision *xpd, 385 u8 perm, 386 int result, 387 u32 *deniedp) 388 { 389 u32 denied, audited; 390 391 denied = requested & ~avd->allowed; 392 if (unlikely(denied)) { 393 audited = denied & avd->auditdeny; 394 if (audited && xpd) { 395 if (avc_xperms_has_perm(xpd, perm, XPERMS_DONTAUDIT)) 396 audited = 0; 397 } 398 } else if (result) { 399 audited = denied = requested; 400 } else { 401 audited = requested & avd->auditallow; 402 if (audited && xpd) { 403 if (!avc_xperms_has_perm(xpd, perm, XPERMS_AUDITALLOW)) 404 audited = 0; 405 } 406 } 407 408 *deniedp = denied; 409 return audited; 410 } 411 412 static inline int avc_xperms_audit(u32 ssid, u32 tsid, u16 tclass, 413 u32 requested, struct av_decision *avd, 414 struct extended_perms_decision *xpd, 415 u8 perm, int result, 416 struct common_audit_data *ad) 417 { 418 u32 audited, denied; 419 420 audited = avc_xperms_audit_required( 421 requested, avd, xpd, perm, result, &denied); 422 if (likely(!audited)) 423 return 0; 424 return slow_avc_audit(ssid, tsid, tclass, requested, 425 audited, denied, result, ad); 426 } 427 428 static void avc_node_free(struct rcu_head *rhead) 429 { 430 struct avc_node *node = container_of(rhead, struct avc_node, rhead); 431 avc_xperms_free(node->ae.xp_node); 432 kmem_cache_free(avc_node_cachep, node); 433 avc_cache_stats_incr(frees); 434 } 435 436 static void avc_node_delete(struct avc_node *node) 437 { 438 hlist_del_rcu(&node->list); 439 call_rcu(&node->rhead, avc_node_free); 440 atomic_dec(&selinux_avc.avc_cache.active_nodes); 441 } 442 443 static void avc_node_kill(struct avc_node *node) 444 { 445 avc_xperms_free(node->ae.xp_node); 446 kmem_cache_free(avc_node_cachep, node); 447 avc_cache_stats_incr(frees); 448 atomic_dec(&selinux_avc.avc_cache.active_nodes); 449 } 450 451 static void avc_node_replace(struct avc_node *new, struct avc_node *old) 452 { 453 hlist_replace_rcu(&old->list, &new->list); 454 call_rcu(&old->rhead, avc_node_free); 455 atomic_dec(&selinux_avc.avc_cache.active_nodes); 456 } 457 458 static inline int avc_reclaim_node(void) 459 { 460 struct avc_node *node; 461 int hvalue, try, ecx; 462 unsigned long flags; 463 struct hlist_head *head; 464 spinlock_t *lock; 465 466 for (try = 0, ecx = 0; try < AVC_CACHE_SLOTS; try++) { 467 hvalue = atomic_inc_return(&selinux_avc.avc_cache.lru_hint) & 468 (AVC_CACHE_SLOTS - 1); 469 head = &selinux_avc.avc_cache.slots[hvalue]; 470 lock = &selinux_avc.avc_cache.slots_lock[hvalue]; 471 472 if (!spin_trylock_irqsave(lock, flags)) 473 continue; 474 475 rcu_read_lock(); 476 hlist_for_each_entry(node, head, list) { 477 avc_node_delete(node); 478 avc_cache_stats_incr(reclaims); 479 ecx++; 480 if (ecx >= AVC_CACHE_RECLAIM) { 481 rcu_read_unlock(); 482 spin_unlock_irqrestore(lock, flags); 483 goto out; 484 } 485 } 486 rcu_read_unlock(); 487 spin_unlock_irqrestore(lock, flags); 488 } 489 out: 490 return ecx; 491 } 492 493 static struct avc_node *avc_alloc_node(void) 494 { 495 struct avc_node *node; 496 497 node = kmem_cache_zalloc(avc_node_cachep, GFP_NOWAIT); 498 if (!node) 499 goto out; 500 501 INIT_HLIST_NODE(&node->list); 502 avc_cache_stats_incr(allocations); 503 504 if (atomic_inc_return(&selinux_avc.avc_cache.active_nodes) > 505 selinux_avc.avc_cache_threshold) 506 avc_reclaim_node(); 507 508 out: 509 return node; 510 } 511 512 static void avc_node_populate(struct avc_node *node, u32 ssid, u32 tsid, u16 tclass, struct av_decision *avd) 513 { 514 node->ae.ssid = ssid; 515 node->ae.tsid = tsid; 516 node->ae.tclass = tclass; 517 memcpy(&node->ae.avd, avd, sizeof(node->ae.avd)); 518 } 519 520 static inline struct avc_node *avc_search_node(u32 ssid, u32 tsid, u16 tclass) 521 { 522 struct avc_node *node, *ret = NULL; 523 u32 hvalue; 524 struct hlist_head *head; 525 526 hvalue = avc_hash(ssid, tsid, tclass); 527 head = &selinux_avc.avc_cache.slots[hvalue]; 528 hlist_for_each_entry_rcu(node, head, list) { 529 if (ssid == node->ae.ssid && 530 tclass == node->ae.tclass && 531 tsid == node->ae.tsid) { 532 ret = node; 533 break; 534 } 535 } 536 537 return ret; 538 } 539 540 /** 541 * avc_lookup - Look up an AVC entry. 542 * @ssid: source security identifier 543 * @tsid: target security identifier 544 * @tclass: target security class 545 * 546 * Look up an AVC entry that is valid for the 547 * (@ssid, @tsid), interpreting the permissions 548 * based on @tclass. If a valid AVC entry exists, 549 * then this function returns the avc_node. 550 * Otherwise, this function returns NULL. 551 */ 552 static struct avc_node *avc_lookup(u32 ssid, u32 tsid, u16 tclass) 553 { 554 struct avc_node *node; 555 556 avc_cache_stats_incr(lookups); 557 node = avc_search_node(ssid, tsid, tclass); 558 559 if (node) 560 return node; 561 562 avc_cache_stats_incr(misses); 563 return NULL; 564 } 565 566 static int avc_latest_notif_update(u32 seqno, int is_insert) 567 { 568 int ret = 0; 569 static DEFINE_SPINLOCK(notif_lock); 570 unsigned long flag; 571 572 spin_lock_irqsave(¬if_lock, flag); 573 if (is_insert) { 574 if (seqno < selinux_avc.avc_cache.latest_notif) { 575 pr_warn("SELinux: avc: seqno %d < latest_notif %d\n", 576 seqno, selinux_avc.avc_cache.latest_notif); 577 ret = -EAGAIN; 578 } 579 } else { 580 if (seqno > selinux_avc.avc_cache.latest_notif) 581 selinux_avc.avc_cache.latest_notif = seqno; 582 } 583 spin_unlock_irqrestore(¬if_lock, flag); 584 585 return ret; 586 } 587 588 /** 589 * avc_insert - Insert an AVC entry. 590 * @ssid: source security identifier 591 * @tsid: target security identifier 592 * @tclass: target security class 593 * @avd: resulting av decision 594 * @xp_node: resulting extended permissions 595 * 596 * Insert an AVC entry for the SID pair 597 * (@ssid, @tsid) and class @tclass. 598 * The access vectors and the sequence number are 599 * normally provided by the security server in 600 * response to a security_compute_av() call. If the 601 * sequence number @avd->seqno is not less than the latest 602 * revocation notification, then the function copies 603 * the access vectors into a cache entry. 604 */ 605 static void avc_insert(u32 ssid, u32 tsid, u16 tclass, 606 struct av_decision *avd, struct avc_xperms_node *xp_node) 607 { 608 struct avc_node *pos, *node = NULL; 609 u32 hvalue; 610 unsigned long flag; 611 spinlock_t *lock; 612 struct hlist_head *head; 613 614 if (avc_latest_notif_update(avd->seqno, 1)) 615 return; 616 617 node = avc_alloc_node(); 618 if (!node) 619 return; 620 621 avc_node_populate(node, ssid, tsid, tclass, avd); 622 if (avc_xperms_populate(node, xp_node)) { 623 avc_node_kill(node); 624 return; 625 } 626 627 hvalue = avc_hash(ssid, tsid, tclass); 628 head = &selinux_avc.avc_cache.slots[hvalue]; 629 lock = &selinux_avc.avc_cache.slots_lock[hvalue]; 630 spin_lock_irqsave(lock, flag); 631 hlist_for_each_entry(pos, head, list) { 632 if (pos->ae.ssid == ssid && 633 pos->ae.tsid == tsid && 634 pos->ae.tclass == tclass) { 635 avc_node_replace(node, pos); 636 goto found; 637 } 638 } 639 hlist_add_head_rcu(&node->list, head); 640 found: 641 spin_unlock_irqrestore(lock, flag); 642 } 643 644 /** 645 * avc_audit_pre_callback - SELinux specific information 646 * will be called by generic audit code 647 * @ab: the audit buffer 648 * @a: audit_data 649 */ 650 static void avc_audit_pre_callback(struct audit_buffer *ab, void *a) 651 { 652 struct common_audit_data *ad = a; 653 struct selinux_audit_data *sad = ad->selinux_audit_data; 654 u32 av = sad->audited, perm; 655 const char *const *perms; 656 u32 i; 657 658 audit_log_format(ab, "avc: %s ", sad->denied ? "denied" : "granted"); 659 660 if (av == 0) { 661 audit_log_format(ab, " null"); 662 return; 663 } 664 665 perms = secclass_map[sad->tclass-1].perms; 666 667 audit_log_format(ab, " {"); 668 i = 0; 669 perm = 1; 670 while (i < (sizeof(av) * 8)) { 671 if ((perm & av) && perms[i]) { 672 audit_log_format(ab, " %s", perms[i]); 673 av &= ~perm; 674 } 675 i++; 676 perm <<= 1; 677 } 678 679 if (av) 680 audit_log_format(ab, " 0x%x", av); 681 682 audit_log_format(ab, " } for "); 683 } 684 685 /** 686 * avc_audit_post_callback - SELinux specific information 687 * will be called by generic audit code 688 * @ab: the audit buffer 689 * @a: audit_data 690 */ 691 static void avc_audit_post_callback(struct audit_buffer *ab, void *a) 692 { 693 struct common_audit_data *ad = a; 694 struct selinux_audit_data *sad = ad->selinux_audit_data; 695 char *scontext = NULL; 696 char *tcontext = NULL; 697 const char *tclass = NULL; 698 u32 scontext_len; 699 u32 tcontext_len; 700 int rc; 701 702 rc = security_sid_to_context(sad->ssid, &scontext, 703 &scontext_len); 704 if (rc) 705 audit_log_format(ab, " ssid=%d", sad->ssid); 706 else 707 audit_log_format(ab, " scontext=%s", scontext); 708 709 rc = security_sid_to_context(sad->tsid, &tcontext, 710 &tcontext_len); 711 if (rc) 712 audit_log_format(ab, " tsid=%d", sad->tsid); 713 else 714 audit_log_format(ab, " tcontext=%s", tcontext); 715 716 tclass = secclass_map[sad->tclass-1].name; 717 audit_log_format(ab, " tclass=%s", tclass); 718 719 if (sad->denied) 720 audit_log_format(ab, " permissive=%u", sad->result ? 0 : 1); 721 722 trace_selinux_audited(sad, scontext, tcontext, tclass); 723 kfree(tcontext); 724 kfree(scontext); 725 726 /* in case of invalid context report also the actual context string */ 727 rc = security_sid_to_context_inval(sad->ssid, &scontext, 728 &scontext_len); 729 if (!rc && scontext) { 730 if (scontext_len && scontext[scontext_len - 1] == '\0') 731 scontext_len--; 732 audit_log_format(ab, " srawcon="); 733 audit_log_n_untrustedstring(ab, scontext, scontext_len); 734 kfree(scontext); 735 } 736 737 rc = security_sid_to_context_inval(sad->tsid, &scontext, 738 &scontext_len); 739 if (!rc && scontext) { 740 if (scontext_len && scontext[scontext_len - 1] == '\0') 741 scontext_len--; 742 audit_log_format(ab, " trawcon="); 743 audit_log_n_untrustedstring(ab, scontext, scontext_len); 744 kfree(scontext); 745 } 746 } 747 748 /* 749 * This is the slow part of avc audit with big stack footprint. 750 * Note that it is non-blocking and can be called from under 751 * rcu_read_lock(). 752 */ 753 noinline int slow_avc_audit(u32 ssid, u32 tsid, u16 tclass, 754 u32 requested, u32 audited, u32 denied, int result, 755 struct common_audit_data *a) 756 { 757 struct common_audit_data stack_data; 758 struct selinux_audit_data sad; 759 760 if (WARN_ON(!tclass || tclass >= ARRAY_SIZE(secclass_map))) 761 return -EINVAL; 762 763 if (!a) { 764 a = &stack_data; 765 a->type = LSM_AUDIT_DATA_NONE; 766 } 767 768 sad.tclass = tclass; 769 sad.requested = requested; 770 sad.ssid = ssid; 771 sad.tsid = tsid; 772 sad.audited = audited; 773 sad.denied = denied; 774 sad.result = result; 775 776 a->selinux_audit_data = &sad; 777 778 common_lsm_audit(a, avc_audit_pre_callback, avc_audit_post_callback); 779 return 0; 780 } 781 782 /** 783 * avc_add_callback - Register a callback for security events. 784 * @callback: callback function 785 * @events: security events 786 * 787 * Register a callback function for events in the set @events. 788 * Returns %0 on success or -%ENOMEM if insufficient memory 789 * exists to add the callback. 790 */ 791 int __init avc_add_callback(int (*callback)(u32 event), u32 events) 792 { 793 struct avc_callback_node *c; 794 int rc = 0; 795 796 c = kmalloc(sizeof(*c), GFP_KERNEL); 797 if (!c) { 798 rc = -ENOMEM; 799 goto out; 800 } 801 802 c->callback = callback; 803 c->events = events; 804 c->next = avc_callbacks; 805 avc_callbacks = c; 806 out: 807 return rc; 808 } 809 810 /** 811 * avc_update_node - Update an AVC entry 812 * @event : Updating event 813 * @perms : Permission mask bits 814 * @driver: xperm driver information 815 * @base_perm: the base permission associated with the extended permission 816 * @xperm: xperm permissions 817 * @ssid: AVC entry source sid 818 * @tsid: AVC entry target sid 819 * @tclass : AVC entry target object class 820 * @seqno : sequence number when decision was made 821 * @xpd: extended_perms_decision to be added to the node 822 * @flags: the AVC_* flags, e.g. AVC_EXTENDED_PERMS, or 0. 823 * 824 * if a valid AVC entry doesn't exist,this function returns -ENOENT. 825 * if kmalloc() called internal returns NULL, this function returns -ENOMEM. 826 * otherwise, this function updates the AVC entry. The original AVC-entry object 827 * will release later by RCU. 828 */ 829 static int avc_update_node(u32 event, u32 perms, u8 driver, u8 base_perm, 830 u8 xperm, u32 ssid, u32 tsid, u16 tclass, u32 seqno, 831 struct extended_perms_decision *xpd, u32 flags) 832 { 833 u32 hvalue; 834 int rc = 0; 835 unsigned long flag; 836 struct avc_node *pos, *node, *orig = NULL; 837 struct hlist_head *head; 838 spinlock_t *lock; 839 840 node = avc_alloc_node(); 841 if (!node) { 842 rc = -ENOMEM; 843 goto out; 844 } 845 846 /* Lock the target slot */ 847 hvalue = avc_hash(ssid, tsid, tclass); 848 849 head = &selinux_avc.avc_cache.slots[hvalue]; 850 lock = &selinux_avc.avc_cache.slots_lock[hvalue]; 851 852 spin_lock_irqsave(lock, flag); 853 854 hlist_for_each_entry(pos, head, list) { 855 if (ssid == pos->ae.ssid && 856 tsid == pos->ae.tsid && 857 tclass == pos->ae.tclass && 858 seqno == pos->ae.avd.seqno){ 859 orig = pos; 860 break; 861 } 862 } 863 864 if (!orig) { 865 rc = -ENOENT; 866 avc_node_kill(node); 867 goto out_unlock; 868 } 869 870 /* 871 * Copy and replace original node. 872 */ 873 874 avc_node_populate(node, ssid, tsid, tclass, &orig->ae.avd); 875 876 if (orig->ae.xp_node) { 877 rc = avc_xperms_populate(node, orig->ae.xp_node); 878 if (rc) { 879 avc_node_kill(node); 880 goto out_unlock; 881 } 882 } 883 884 switch (event) { 885 case AVC_CALLBACK_GRANT: 886 node->ae.avd.allowed |= perms; 887 if (node->ae.xp_node && (flags & AVC_EXTENDED_PERMS)) 888 avc_xperms_allow_perm(node->ae.xp_node, driver, base_perm, xperm); 889 break; 890 case AVC_CALLBACK_TRY_REVOKE: 891 case AVC_CALLBACK_REVOKE: 892 node->ae.avd.allowed &= ~perms; 893 break; 894 case AVC_CALLBACK_AUDITALLOW_ENABLE: 895 node->ae.avd.auditallow |= perms; 896 break; 897 case AVC_CALLBACK_AUDITALLOW_DISABLE: 898 node->ae.avd.auditallow &= ~perms; 899 break; 900 case AVC_CALLBACK_AUDITDENY_ENABLE: 901 node->ae.avd.auditdeny |= perms; 902 break; 903 case AVC_CALLBACK_AUDITDENY_DISABLE: 904 node->ae.avd.auditdeny &= ~perms; 905 break; 906 case AVC_CALLBACK_ADD_XPERMS: 907 rc = avc_add_xperms_decision(node, xpd); 908 if (rc) { 909 avc_node_kill(node); 910 goto out_unlock; 911 } 912 break; 913 } 914 avc_node_replace(node, orig); 915 out_unlock: 916 spin_unlock_irqrestore(lock, flag); 917 out: 918 return rc; 919 } 920 921 /** 922 * avc_flush - Flush the cache 923 */ 924 static void avc_flush(void) 925 { 926 struct hlist_head *head; 927 struct avc_node *node; 928 spinlock_t *lock; 929 unsigned long flag; 930 int i; 931 932 for (i = 0; i < AVC_CACHE_SLOTS; i++) { 933 head = &selinux_avc.avc_cache.slots[i]; 934 lock = &selinux_avc.avc_cache.slots_lock[i]; 935 936 spin_lock_irqsave(lock, flag); 937 /* 938 * With preemptible RCU, the outer spinlock does not 939 * prevent RCU grace periods from ending. 940 */ 941 rcu_read_lock(); 942 hlist_for_each_entry(node, head, list) 943 avc_node_delete(node); 944 rcu_read_unlock(); 945 spin_unlock_irqrestore(lock, flag); 946 } 947 } 948 949 /** 950 * avc_ss_reset - Flush the cache and revalidate migrated permissions. 951 * @seqno: policy sequence number 952 */ 953 int avc_ss_reset(u32 seqno) 954 { 955 struct avc_callback_node *c; 956 int rc = 0, tmprc; 957 958 avc_flush(); 959 960 for (c = avc_callbacks; c; c = c->next) { 961 if (c->events & AVC_CALLBACK_RESET) { 962 tmprc = c->callback(AVC_CALLBACK_RESET); 963 /* save the first error encountered for the return 964 value and continue processing the callbacks */ 965 if (!rc) 966 rc = tmprc; 967 } 968 } 969 970 avc_latest_notif_update(seqno, 0); 971 return rc; 972 } 973 974 /** 975 * avc_compute_av - Add an entry to the AVC based on the security policy 976 * @ssid: subject 977 * @tsid: object/target 978 * @tclass: object class 979 * @avd: access vector decision 980 * @xp_node: AVC extended permissions node 981 * 982 * Slow-path helper function for avc_has_perm_noaudit, when the avc_node lookup 983 * fails. Don't inline this, since it's the slow-path and just results in a 984 * bigger stack frame. 985 */ 986 static noinline void avc_compute_av(u32 ssid, u32 tsid, u16 tclass, 987 struct av_decision *avd, 988 struct avc_xperms_node *xp_node) 989 { 990 INIT_LIST_HEAD(&xp_node->xpd_head); 991 security_compute_av(ssid, tsid, tclass, avd, &xp_node->xp); 992 avc_insert(ssid, tsid, tclass, avd, xp_node); 993 } 994 995 static noinline int avc_denied(u32 ssid, u32 tsid, u16 tclass, u32 requested, 996 u8 driver, u8 base_perm, u8 xperm, 997 unsigned int flags, struct av_decision *avd) 998 { 999 if (flags & AVC_STRICT) 1000 return -EACCES; 1001 1002 if (enforcing_enabled() && 1003 !(avd->flags & AVD_FLAGS_PERMISSIVE)) 1004 return -EACCES; 1005 1006 avc_update_node(AVC_CALLBACK_GRANT, requested, driver, base_perm, 1007 xperm, ssid, tsid, tclass, avd->seqno, NULL, flags); 1008 return 0; 1009 } 1010 1011 /* 1012 * The avc extended permissions logic adds an additional 256 bits of 1013 * permissions to an avc node when extended permissions for that node are 1014 * specified in the avtab. If the additional 256 permissions is not adequate, 1015 * as-is the case with ioctls, then multiple may be chained together and the 1016 * driver field is used to specify which set contains the permission. 1017 */ 1018 int avc_has_extended_perms(u32 ssid, u32 tsid, u16 tclass, u32 requested, 1019 u8 driver, u8 base_perm, u8 xperm, 1020 struct common_audit_data *ad) 1021 { 1022 struct avc_node *node; 1023 struct av_decision avd; 1024 u32 denied; 1025 struct extended_perms_decision local_xpd; 1026 struct extended_perms_decision *xpd = NULL; 1027 struct extended_perms_data allowed; 1028 struct extended_perms_data auditallow; 1029 struct extended_perms_data dontaudit; 1030 struct avc_xperms_node local_xp_node; 1031 struct avc_xperms_node *xp_node; 1032 int rc = 0, rc2; 1033 1034 xp_node = &local_xp_node; 1035 if (WARN_ON(!requested)) 1036 return -EACCES; 1037 1038 rcu_read_lock(); 1039 1040 node = avc_lookup(ssid, tsid, tclass); 1041 if (unlikely(!node)) { 1042 avc_compute_av(ssid, tsid, tclass, &avd, xp_node); 1043 } else { 1044 memcpy(&avd, &node->ae.avd, sizeof(avd)); 1045 xp_node = node->ae.xp_node; 1046 } 1047 /* if extended permissions are not defined, only consider av_decision */ 1048 if (!xp_node || !xp_node->xp.len) 1049 goto decision; 1050 1051 local_xpd.allowed = &allowed; 1052 local_xpd.auditallow = &auditallow; 1053 local_xpd.dontaudit = &dontaudit; 1054 1055 xpd = avc_xperms_decision_lookup(driver, base_perm, xp_node); 1056 if (unlikely(!xpd)) { 1057 /* 1058 * Compute the extended_perms_decision only if the driver 1059 * is flagged and the base permission is known. 1060 */ 1061 if (!security_xperm_test(xp_node->xp.drivers.p, driver) || 1062 !(xp_node->xp.base_perms & base_perm)) { 1063 avd.allowed &= ~requested; 1064 goto decision; 1065 } 1066 rcu_read_unlock(); 1067 security_compute_xperms_decision(ssid, tsid, tclass, driver, 1068 base_perm, &local_xpd); 1069 rcu_read_lock(); 1070 avc_update_node(AVC_CALLBACK_ADD_XPERMS, requested, driver, 1071 base_perm, xperm, ssid, tsid, tclass, avd.seqno, 1072 &local_xpd, 0); 1073 } else { 1074 avc_quick_copy_xperms_decision(xperm, &local_xpd, xpd); 1075 } 1076 xpd = &local_xpd; 1077 1078 if (!avc_xperms_has_perm(xpd, xperm, XPERMS_ALLOWED)) 1079 avd.allowed &= ~requested; 1080 1081 decision: 1082 denied = requested & ~(avd.allowed); 1083 if (unlikely(denied)) 1084 rc = avc_denied(ssid, tsid, tclass, requested, driver, 1085 base_perm, xperm, AVC_EXTENDED_PERMS, &avd); 1086 1087 rcu_read_unlock(); 1088 1089 rc2 = avc_xperms_audit(ssid, tsid, tclass, requested, 1090 &avd, xpd, xperm, rc, ad); 1091 if (rc2) 1092 return rc2; 1093 return rc; 1094 } 1095 1096 /** 1097 * avc_perm_nonode - Add an entry to the AVC 1098 * @ssid: subject 1099 * @tsid: object/target 1100 * @tclass: object class 1101 * @requested: requested permissions 1102 * @flags: AVC flags 1103 * @avd: access vector decision 1104 * 1105 * This is the "we have no node" part of avc_has_perm_noaudit(), which is 1106 * unlikely and needs extra stack space for the new node that we generate, so 1107 * don't inline it. 1108 */ 1109 static noinline int avc_perm_nonode(u32 ssid, u32 tsid, u16 tclass, 1110 u32 requested, unsigned int flags, 1111 struct av_decision *avd) 1112 { 1113 u32 denied; 1114 struct avc_xperms_node xp_node; 1115 1116 avc_compute_av(ssid, tsid, tclass, avd, &xp_node); 1117 denied = requested & ~(avd->allowed); 1118 if (unlikely(denied)) 1119 return avc_denied(ssid, tsid, tclass, requested, 0, 0, 0, 1120 flags, avd); 1121 return 0; 1122 } 1123 1124 /** 1125 * avc_has_perm_noaudit - Check permissions but perform no auditing. 1126 * @ssid: source security identifier 1127 * @tsid: target security identifier 1128 * @tclass: target security class 1129 * @requested: requested permissions, interpreted based on @tclass 1130 * @flags: AVC_STRICT or 0 1131 * @avd: access vector decisions 1132 * 1133 * Check the AVC to determine whether the @requested permissions are granted 1134 * for the SID pair (@ssid, @tsid), interpreting the permissions 1135 * based on @tclass, and call the security server on a cache miss to obtain 1136 * a new decision and add it to the cache. Return a copy of the decisions 1137 * in @avd. Return %0 if all @requested permissions are granted, 1138 * -%EACCES if any permissions are denied, or another -errno upon 1139 * other errors. This function is typically called by avc_has_perm(), 1140 * but may also be called directly to separate permission checking from 1141 * auditing, e.g. in cases where a lock must be held for the check but 1142 * should be released for the auditing. 1143 */ 1144 inline int avc_has_perm_noaudit(u32 ssid, u32 tsid, 1145 u16 tclass, u32 requested, 1146 unsigned int flags, 1147 struct av_decision *avd) 1148 { 1149 u32 denied; 1150 struct avc_node *node; 1151 1152 if (WARN_ON(!requested)) 1153 return -EACCES; 1154 1155 rcu_read_lock(); 1156 node = avc_lookup(ssid, tsid, tclass); 1157 if (unlikely(!node)) { 1158 rcu_read_unlock(); 1159 return avc_perm_nonode(ssid, tsid, tclass, requested, 1160 flags, avd); 1161 } 1162 denied = requested & ~node->ae.avd.allowed; 1163 memcpy(avd, &node->ae.avd, sizeof(*avd)); 1164 rcu_read_unlock(); 1165 1166 if (unlikely(denied)) 1167 return avc_denied(ssid, tsid, tclass, requested, 0, 0, 0, 1168 flags, avd); 1169 return 0; 1170 } 1171 1172 /** 1173 * avc_has_perm - Check permissions and perform any appropriate auditing. 1174 * @ssid: source security identifier 1175 * @tsid: target security identifier 1176 * @tclass: target security class 1177 * @requested: requested permissions, interpreted based on @tclass 1178 * @auditdata: auxiliary audit data 1179 * 1180 * Check the AVC to determine whether the @requested permissions are granted 1181 * for the SID pair (@ssid, @tsid), interpreting the permissions 1182 * based on @tclass, and call the security server on a cache miss to obtain 1183 * a new decision and add it to the cache. Audit the granting or denial of 1184 * permissions in accordance with the policy. Return %0 if all @requested 1185 * permissions are granted, -%EACCES if any permissions are denied, or 1186 * another -errno upon other errors. 1187 */ 1188 int avc_has_perm(u32 ssid, u32 tsid, u16 tclass, 1189 u32 requested, struct common_audit_data *auditdata) 1190 { 1191 struct av_decision avd; 1192 int rc, rc2; 1193 1194 rc = avc_has_perm_noaudit(ssid, tsid, tclass, requested, 0, 1195 &avd); 1196 1197 rc2 = avc_audit(ssid, tsid, tclass, requested, &avd, rc, 1198 auditdata); 1199 if (rc2) 1200 return rc2; 1201 return rc; 1202 } 1203 1204 u32 avc_policy_seqno(void) 1205 { 1206 return selinux_avc.avc_cache.latest_notif; 1207 } 1208