xref: /linux/security/security.c (revision f9aec1648df09d55436a0e3a94acff1df507751f)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Security plug functions
4  *
5  * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
6  * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
7  * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
8  * Copyright (C) 2016 Mellanox Technologies
9  */
10 
11 #define pr_fmt(fmt) "LSM: " fmt
12 
13 #include <linux/bpf.h>
14 #include <linux/capability.h>
15 #include <linux/dcache.h>
16 #include <linux/export.h>
17 #include <linux/init.h>
18 #include <linux/kernel.h>
19 #include <linux/kernel_read_file.h>
20 #include <linux/lsm_hooks.h>
21 #include <linux/integrity.h>
22 #include <linux/ima.h>
23 #include <linux/evm.h>
24 #include <linux/fsnotify.h>
25 #include <linux/mman.h>
26 #include <linux/mount.h>
27 #include <linux/personality.h>
28 #include <linux/backing-dev.h>
29 #include <linux/string.h>
30 #include <linux/msg.h>
31 #include <net/flow.h>
32 
33 #define MAX_LSM_EVM_XATTR	2
34 
35 /* How many LSMs were built into the kernel? */
36 #define LSM_COUNT (__end_lsm_info - __start_lsm_info)
37 
38 /*
39  * These are descriptions of the reasons that can be passed to the
40  * security_locked_down() LSM hook. Placing this array here allows
41  * all security modules to use the same descriptions for auditing
42  * purposes.
43  */
44 const char *const lockdown_reasons[LOCKDOWN_CONFIDENTIALITY_MAX+1] = {
45 	[LOCKDOWN_NONE] = "none",
46 	[LOCKDOWN_MODULE_SIGNATURE] = "unsigned module loading",
47 	[LOCKDOWN_DEV_MEM] = "/dev/mem,kmem,port",
48 	[LOCKDOWN_EFI_TEST] = "/dev/efi_test access",
49 	[LOCKDOWN_KEXEC] = "kexec of unsigned images",
50 	[LOCKDOWN_HIBERNATION] = "hibernation",
51 	[LOCKDOWN_PCI_ACCESS] = "direct PCI access",
52 	[LOCKDOWN_IOPORT] = "raw io port access",
53 	[LOCKDOWN_MSR] = "raw MSR access",
54 	[LOCKDOWN_ACPI_TABLES] = "modifying ACPI tables",
55 	[LOCKDOWN_PCMCIA_CIS] = "direct PCMCIA CIS storage",
56 	[LOCKDOWN_TIOCSSERIAL] = "reconfiguration of serial port IO",
57 	[LOCKDOWN_MODULE_PARAMETERS] = "unsafe module parameters",
58 	[LOCKDOWN_MMIOTRACE] = "unsafe mmio",
59 	[LOCKDOWN_DEBUGFS] = "debugfs access",
60 	[LOCKDOWN_XMON_WR] = "xmon write access",
61 	[LOCKDOWN_BPF_WRITE_USER] = "use of bpf to write user RAM",
62 	[LOCKDOWN_INTEGRITY_MAX] = "integrity",
63 	[LOCKDOWN_KCORE] = "/proc/kcore access",
64 	[LOCKDOWN_KPROBES] = "use of kprobes",
65 	[LOCKDOWN_BPF_READ_KERNEL] = "use of bpf to read kernel RAM",
66 	[LOCKDOWN_PERF] = "unsafe use of perf",
67 	[LOCKDOWN_TRACEFS] = "use of tracefs",
68 	[LOCKDOWN_XMON_RW] = "xmon read and write access",
69 	[LOCKDOWN_XFRM_SECRET] = "xfrm SA secret",
70 	[LOCKDOWN_CONFIDENTIALITY_MAX] = "confidentiality",
71 };
72 
73 struct security_hook_heads security_hook_heads __lsm_ro_after_init;
74 static BLOCKING_NOTIFIER_HEAD(blocking_lsm_notifier_chain);
75 
76 static struct kmem_cache *lsm_file_cache;
77 static struct kmem_cache *lsm_inode_cache;
78 
79 char *lsm_names;
80 static struct lsm_blob_sizes blob_sizes __lsm_ro_after_init;
81 
82 /* Boot-time LSM user choice */
83 static __initdata const char *chosen_lsm_order;
84 static __initdata const char *chosen_major_lsm;
85 
86 static __initconst const char * const builtin_lsm_order = CONFIG_LSM;
87 
88 /* Ordered list of LSMs to initialize. */
89 static __initdata struct lsm_info **ordered_lsms;
90 static __initdata struct lsm_info *exclusive;
91 
92 static __initdata bool debug;
93 #define init_debug(...)						\
94 	do {							\
95 		if (debug)					\
96 			pr_info(__VA_ARGS__);			\
97 	} while (0)
98 
99 static bool __init is_enabled(struct lsm_info *lsm)
100 {
101 	if (!lsm->enabled)
102 		return false;
103 
104 	return *lsm->enabled;
105 }
106 
107 /* Mark an LSM's enabled flag. */
108 static int lsm_enabled_true __initdata = 1;
109 static int lsm_enabled_false __initdata = 0;
110 static void __init set_enabled(struct lsm_info *lsm, bool enabled)
111 {
112 	/*
113 	 * When an LSM hasn't configured an enable variable, we can use
114 	 * a hard-coded location for storing the default enabled state.
115 	 */
116 	if (!lsm->enabled) {
117 		if (enabled)
118 			lsm->enabled = &lsm_enabled_true;
119 		else
120 			lsm->enabled = &lsm_enabled_false;
121 	} else if (lsm->enabled == &lsm_enabled_true) {
122 		if (!enabled)
123 			lsm->enabled = &lsm_enabled_false;
124 	} else if (lsm->enabled == &lsm_enabled_false) {
125 		if (enabled)
126 			lsm->enabled = &lsm_enabled_true;
127 	} else {
128 		*lsm->enabled = enabled;
129 	}
130 }
131 
132 /* Is an LSM already listed in the ordered LSMs list? */
133 static bool __init exists_ordered_lsm(struct lsm_info *lsm)
134 {
135 	struct lsm_info **check;
136 
137 	for (check = ordered_lsms; *check; check++)
138 		if (*check == lsm)
139 			return true;
140 
141 	return false;
142 }
143 
144 /* Append an LSM to the list of ordered LSMs to initialize. */
145 static int last_lsm __initdata;
146 static void __init append_ordered_lsm(struct lsm_info *lsm, const char *from)
147 {
148 	/* Ignore duplicate selections. */
149 	if (exists_ordered_lsm(lsm))
150 		return;
151 
152 	if (WARN(last_lsm == LSM_COUNT, "%s: out of LSM slots!?\n", from))
153 		return;
154 
155 	/* Enable this LSM, if it is not already set. */
156 	if (!lsm->enabled)
157 		lsm->enabled = &lsm_enabled_true;
158 	ordered_lsms[last_lsm++] = lsm;
159 
160 	init_debug("%s ordering: %s (%sabled)\n", from, lsm->name,
161 		   is_enabled(lsm) ? "en" : "dis");
162 }
163 
164 /* Is an LSM allowed to be initialized? */
165 static bool __init lsm_allowed(struct lsm_info *lsm)
166 {
167 	/* Skip if the LSM is disabled. */
168 	if (!is_enabled(lsm))
169 		return false;
170 
171 	/* Not allowed if another exclusive LSM already initialized. */
172 	if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && exclusive) {
173 		init_debug("exclusive disabled: %s\n", lsm->name);
174 		return false;
175 	}
176 
177 	return true;
178 }
179 
180 static void __init lsm_set_blob_size(int *need, int *lbs)
181 {
182 	int offset;
183 
184 	if (*need > 0) {
185 		offset = *lbs;
186 		*lbs += *need;
187 		*need = offset;
188 	}
189 }
190 
191 static void __init lsm_set_blob_sizes(struct lsm_blob_sizes *needed)
192 {
193 	if (!needed)
194 		return;
195 
196 	lsm_set_blob_size(&needed->lbs_cred, &blob_sizes.lbs_cred);
197 	lsm_set_blob_size(&needed->lbs_file, &blob_sizes.lbs_file);
198 	/*
199 	 * The inode blob gets an rcu_head in addition to
200 	 * what the modules might need.
201 	 */
202 	if (needed->lbs_inode && blob_sizes.lbs_inode == 0)
203 		blob_sizes.lbs_inode = sizeof(struct rcu_head);
204 	lsm_set_blob_size(&needed->lbs_inode, &blob_sizes.lbs_inode);
205 	lsm_set_blob_size(&needed->lbs_ipc, &blob_sizes.lbs_ipc);
206 	lsm_set_blob_size(&needed->lbs_msg_msg, &blob_sizes.lbs_msg_msg);
207 	lsm_set_blob_size(&needed->lbs_superblock, &blob_sizes.lbs_superblock);
208 	lsm_set_blob_size(&needed->lbs_task, &blob_sizes.lbs_task);
209 }
210 
211 /* Prepare LSM for initialization. */
212 static void __init prepare_lsm(struct lsm_info *lsm)
213 {
214 	int enabled = lsm_allowed(lsm);
215 
216 	/* Record enablement (to handle any following exclusive LSMs). */
217 	set_enabled(lsm, enabled);
218 
219 	/* If enabled, do pre-initialization work. */
220 	if (enabled) {
221 		if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && !exclusive) {
222 			exclusive = lsm;
223 			init_debug("exclusive chosen: %s\n", lsm->name);
224 		}
225 
226 		lsm_set_blob_sizes(lsm->blobs);
227 	}
228 }
229 
230 /* Initialize a given LSM, if it is enabled. */
231 static void __init initialize_lsm(struct lsm_info *lsm)
232 {
233 	if (is_enabled(lsm)) {
234 		int ret;
235 
236 		init_debug("initializing %s\n", lsm->name);
237 		ret = lsm->init();
238 		WARN(ret, "%s failed to initialize: %d\n", lsm->name, ret);
239 	}
240 }
241 
242 /* Populate ordered LSMs list from comma-separated LSM name list. */
243 static void __init ordered_lsm_parse(const char *order, const char *origin)
244 {
245 	struct lsm_info *lsm;
246 	char *sep, *name, *next;
247 
248 	/* LSM_ORDER_FIRST is always first. */
249 	for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
250 		if (lsm->order == LSM_ORDER_FIRST)
251 			append_ordered_lsm(lsm, "first");
252 	}
253 
254 	/* Process "security=", if given. */
255 	if (chosen_major_lsm) {
256 		struct lsm_info *major;
257 
258 		/*
259 		 * To match the original "security=" behavior, this
260 		 * explicitly does NOT fallback to another Legacy Major
261 		 * if the selected one was separately disabled: disable
262 		 * all non-matching Legacy Major LSMs.
263 		 */
264 		for (major = __start_lsm_info; major < __end_lsm_info;
265 		     major++) {
266 			if ((major->flags & LSM_FLAG_LEGACY_MAJOR) &&
267 			    strcmp(major->name, chosen_major_lsm) != 0) {
268 				set_enabled(major, false);
269 				init_debug("security=%s disabled: %s\n",
270 					   chosen_major_lsm, major->name);
271 			}
272 		}
273 	}
274 
275 	sep = kstrdup(order, GFP_KERNEL);
276 	next = sep;
277 	/* Walk the list, looking for matching LSMs. */
278 	while ((name = strsep(&next, ",")) != NULL) {
279 		bool found = false;
280 
281 		for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
282 			if (lsm->order == LSM_ORDER_MUTABLE &&
283 			    strcmp(lsm->name, name) == 0) {
284 				append_ordered_lsm(lsm, origin);
285 				found = true;
286 			}
287 		}
288 
289 		if (!found)
290 			init_debug("%s ignored: %s\n", origin, name);
291 	}
292 
293 	/* Process "security=", if given. */
294 	if (chosen_major_lsm) {
295 		for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
296 			if (exists_ordered_lsm(lsm))
297 				continue;
298 			if (strcmp(lsm->name, chosen_major_lsm) == 0)
299 				append_ordered_lsm(lsm, "security=");
300 		}
301 	}
302 
303 	/* Disable all LSMs not in the ordered list. */
304 	for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
305 		if (exists_ordered_lsm(lsm))
306 			continue;
307 		set_enabled(lsm, false);
308 		init_debug("%s disabled: %s\n", origin, lsm->name);
309 	}
310 
311 	kfree(sep);
312 }
313 
314 static void __init lsm_early_cred(struct cred *cred);
315 static void __init lsm_early_task(struct task_struct *task);
316 
317 static int lsm_append(const char *new, char **result);
318 
319 static void __init ordered_lsm_init(void)
320 {
321 	struct lsm_info **lsm;
322 
323 	ordered_lsms = kcalloc(LSM_COUNT + 1, sizeof(*ordered_lsms),
324 				GFP_KERNEL);
325 
326 	if (chosen_lsm_order) {
327 		if (chosen_major_lsm) {
328 			pr_info("security= is ignored because it is superseded by lsm=\n");
329 			chosen_major_lsm = NULL;
330 		}
331 		ordered_lsm_parse(chosen_lsm_order, "cmdline");
332 	} else
333 		ordered_lsm_parse(builtin_lsm_order, "builtin");
334 
335 	for (lsm = ordered_lsms; *lsm; lsm++)
336 		prepare_lsm(*lsm);
337 
338 	init_debug("cred blob size       = %d\n", blob_sizes.lbs_cred);
339 	init_debug("file blob size       = %d\n", blob_sizes.lbs_file);
340 	init_debug("inode blob size      = %d\n", blob_sizes.lbs_inode);
341 	init_debug("ipc blob size        = %d\n", blob_sizes.lbs_ipc);
342 	init_debug("msg_msg blob size    = %d\n", blob_sizes.lbs_msg_msg);
343 	init_debug("superblock blob size = %d\n", blob_sizes.lbs_superblock);
344 	init_debug("task blob size       = %d\n", blob_sizes.lbs_task);
345 
346 	/*
347 	 * Create any kmem_caches needed for blobs
348 	 */
349 	if (blob_sizes.lbs_file)
350 		lsm_file_cache = kmem_cache_create("lsm_file_cache",
351 						   blob_sizes.lbs_file, 0,
352 						   SLAB_PANIC, NULL);
353 	if (blob_sizes.lbs_inode)
354 		lsm_inode_cache = kmem_cache_create("lsm_inode_cache",
355 						    blob_sizes.lbs_inode, 0,
356 						    SLAB_PANIC, NULL);
357 
358 	lsm_early_cred((struct cred *) current->cred);
359 	lsm_early_task(current);
360 	for (lsm = ordered_lsms; *lsm; lsm++)
361 		initialize_lsm(*lsm);
362 
363 	kfree(ordered_lsms);
364 }
365 
366 int __init early_security_init(void)
367 {
368 	int i;
369 	struct hlist_head *list = (struct hlist_head *) &security_hook_heads;
370 	struct lsm_info *lsm;
371 
372 	for (i = 0; i < sizeof(security_hook_heads) / sizeof(struct hlist_head);
373 	     i++)
374 		INIT_HLIST_HEAD(&list[i]);
375 
376 	for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
377 		if (!lsm->enabled)
378 			lsm->enabled = &lsm_enabled_true;
379 		prepare_lsm(lsm);
380 		initialize_lsm(lsm);
381 	}
382 
383 	return 0;
384 }
385 
386 /**
387  * security_init - initializes the security framework
388  *
389  * This should be called early in the kernel initialization sequence.
390  */
391 int __init security_init(void)
392 {
393 	struct lsm_info *lsm;
394 
395 	pr_info("Security Framework initializing\n");
396 
397 	/*
398 	 * Append the names of the early LSM modules now that kmalloc() is
399 	 * available
400 	 */
401 	for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
402 		if (lsm->enabled)
403 			lsm_append(lsm->name, &lsm_names);
404 	}
405 
406 	/* Load LSMs in specified order. */
407 	ordered_lsm_init();
408 
409 	return 0;
410 }
411 
412 /* Save user chosen LSM */
413 static int __init choose_major_lsm(char *str)
414 {
415 	chosen_major_lsm = str;
416 	return 1;
417 }
418 __setup("security=", choose_major_lsm);
419 
420 /* Explicitly choose LSM initialization order. */
421 static int __init choose_lsm_order(char *str)
422 {
423 	chosen_lsm_order = str;
424 	return 1;
425 }
426 __setup("lsm=", choose_lsm_order);
427 
428 /* Enable LSM order debugging. */
429 static int __init enable_debug(char *str)
430 {
431 	debug = true;
432 	return 1;
433 }
434 __setup("lsm.debug", enable_debug);
435 
436 static bool match_last_lsm(const char *list, const char *lsm)
437 {
438 	const char *last;
439 
440 	if (WARN_ON(!list || !lsm))
441 		return false;
442 	last = strrchr(list, ',');
443 	if (last)
444 		/* Pass the comma, strcmp() will check for '\0' */
445 		last++;
446 	else
447 		last = list;
448 	return !strcmp(last, lsm);
449 }
450 
451 static int lsm_append(const char *new, char **result)
452 {
453 	char *cp;
454 
455 	if (*result == NULL) {
456 		*result = kstrdup(new, GFP_KERNEL);
457 		if (*result == NULL)
458 			return -ENOMEM;
459 	} else {
460 		/* Check if it is the last registered name */
461 		if (match_last_lsm(*result, new))
462 			return 0;
463 		cp = kasprintf(GFP_KERNEL, "%s,%s", *result, new);
464 		if (cp == NULL)
465 			return -ENOMEM;
466 		kfree(*result);
467 		*result = cp;
468 	}
469 	return 0;
470 }
471 
472 /**
473  * security_add_hooks - Add a modules hooks to the hook lists.
474  * @hooks: the hooks to add
475  * @count: the number of hooks to add
476  * @lsm: the name of the security module
477  *
478  * Each LSM has to register its hooks with the infrastructure.
479  */
480 void __init security_add_hooks(struct security_hook_list *hooks, int count,
481 				char *lsm)
482 {
483 	int i;
484 
485 	for (i = 0; i < count; i++) {
486 		hooks[i].lsm = lsm;
487 		hlist_add_tail_rcu(&hooks[i].list, hooks[i].head);
488 	}
489 
490 	/*
491 	 * Don't try to append during early_security_init(), we'll come back
492 	 * and fix this up afterwards.
493 	 */
494 	if (slab_is_available()) {
495 		if (lsm_append(lsm, &lsm_names) < 0)
496 			panic("%s - Cannot get early memory.\n", __func__);
497 	}
498 }
499 
500 int call_blocking_lsm_notifier(enum lsm_event event, void *data)
501 {
502 	return blocking_notifier_call_chain(&blocking_lsm_notifier_chain,
503 					    event, data);
504 }
505 EXPORT_SYMBOL(call_blocking_lsm_notifier);
506 
507 int register_blocking_lsm_notifier(struct notifier_block *nb)
508 {
509 	return blocking_notifier_chain_register(&blocking_lsm_notifier_chain,
510 						nb);
511 }
512 EXPORT_SYMBOL(register_blocking_lsm_notifier);
513 
514 int unregister_blocking_lsm_notifier(struct notifier_block *nb)
515 {
516 	return blocking_notifier_chain_unregister(&blocking_lsm_notifier_chain,
517 						  nb);
518 }
519 EXPORT_SYMBOL(unregister_blocking_lsm_notifier);
520 
521 /**
522  * lsm_cred_alloc - allocate a composite cred blob
523  * @cred: the cred that needs a blob
524  * @gfp: allocation type
525  *
526  * Allocate the cred blob for all the modules
527  *
528  * Returns 0, or -ENOMEM if memory can't be allocated.
529  */
530 static int lsm_cred_alloc(struct cred *cred, gfp_t gfp)
531 {
532 	if (blob_sizes.lbs_cred == 0) {
533 		cred->security = NULL;
534 		return 0;
535 	}
536 
537 	cred->security = kzalloc(blob_sizes.lbs_cred, gfp);
538 	if (cred->security == NULL)
539 		return -ENOMEM;
540 	return 0;
541 }
542 
543 /**
544  * lsm_early_cred - during initialization allocate a composite cred blob
545  * @cred: the cred that needs a blob
546  *
547  * Allocate the cred blob for all the modules
548  */
549 static void __init lsm_early_cred(struct cred *cred)
550 {
551 	int rc = lsm_cred_alloc(cred, GFP_KERNEL);
552 
553 	if (rc)
554 		panic("%s: Early cred alloc failed.\n", __func__);
555 }
556 
557 /**
558  * lsm_file_alloc - allocate a composite file blob
559  * @file: the file that needs a blob
560  *
561  * Allocate the file blob for all the modules
562  *
563  * Returns 0, or -ENOMEM if memory can't be allocated.
564  */
565 static int lsm_file_alloc(struct file *file)
566 {
567 	if (!lsm_file_cache) {
568 		file->f_security = NULL;
569 		return 0;
570 	}
571 
572 	file->f_security = kmem_cache_zalloc(lsm_file_cache, GFP_KERNEL);
573 	if (file->f_security == NULL)
574 		return -ENOMEM;
575 	return 0;
576 }
577 
578 /**
579  * lsm_inode_alloc - allocate a composite inode blob
580  * @inode: the inode that needs a blob
581  *
582  * Allocate the inode blob for all the modules
583  *
584  * Returns 0, or -ENOMEM if memory can't be allocated.
585  */
586 int lsm_inode_alloc(struct inode *inode)
587 {
588 	if (!lsm_inode_cache) {
589 		inode->i_security = NULL;
590 		return 0;
591 	}
592 
593 	inode->i_security = kmem_cache_zalloc(lsm_inode_cache, GFP_NOFS);
594 	if (inode->i_security == NULL)
595 		return -ENOMEM;
596 	return 0;
597 }
598 
599 /**
600  * lsm_task_alloc - allocate a composite task blob
601  * @task: the task that needs a blob
602  *
603  * Allocate the task blob for all the modules
604  *
605  * Returns 0, or -ENOMEM if memory can't be allocated.
606  */
607 static int lsm_task_alloc(struct task_struct *task)
608 {
609 	if (blob_sizes.lbs_task == 0) {
610 		task->security = NULL;
611 		return 0;
612 	}
613 
614 	task->security = kzalloc(blob_sizes.lbs_task, GFP_KERNEL);
615 	if (task->security == NULL)
616 		return -ENOMEM;
617 	return 0;
618 }
619 
620 /**
621  * lsm_ipc_alloc - allocate a composite ipc blob
622  * @kip: the ipc that needs a blob
623  *
624  * Allocate the ipc blob for all the modules
625  *
626  * Returns 0, or -ENOMEM if memory can't be allocated.
627  */
628 static int lsm_ipc_alloc(struct kern_ipc_perm *kip)
629 {
630 	if (blob_sizes.lbs_ipc == 0) {
631 		kip->security = NULL;
632 		return 0;
633 	}
634 
635 	kip->security = kzalloc(blob_sizes.lbs_ipc, GFP_KERNEL);
636 	if (kip->security == NULL)
637 		return -ENOMEM;
638 	return 0;
639 }
640 
641 /**
642  * lsm_msg_msg_alloc - allocate a composite msg_msg blob
643  * @mp: the msg_msg that needs a blob
644  *
645  * Allocate the ipc blob for all the modules
646  *
647  * Returns 0, or -ENOMEM if memory can't be allocated.
648  */
649 static int lsm_msg_msg_alloc(struct msg_msg *mp)
650 {
651 	if (blob_sizes.lbs_msg_msg == 0) {
652 		mp->security = NULL;
653 		return 0;
654 	}
655 
656 	mp->security = kzalloc(blob_sizes.lbs_msg_msg, GFP_KERNEL);
657 	if (mp->security == NULL)
658 		return -ENOMEM;
659 	return 0;
660 }
661 
662 /**
663  * lsm_early_task - during initialization allocate a composite task blob
664  * @task: the task that needs a blob
665  *
666  * Allocate the task blob for all the modules
667  */
668 static void __init lsm_early_task(struct task_struct *task)
669 {
670 	int rc = lsm_task_alloc(task);
671 
672 	if (rc)
673 		panic("%s: Early task alloc failed.\n", __func__);
674 }
675 
676 /**
677  * lsm_superblock_alloc - allocate a composite superblock blob
678  * @sb: the superblock that needs a blob
679  *
680  * Allocate the superblock blob for all the modules
681  *
682  * Returns 0, or -ENOMEM if memory can't be allocated.
683  */
684 static int lsm_superblock_alloc(struct super_block *sb)
685 {
686 	if (blob_sizes.lbs_superblock == 0) {
687 		sb->s_security = NULL;
688 		return 0;
689 	}
690 
691 	sb->s_security = kzalloc(blob_sizes.lbs_superblock, GFP_KERNEL);
692 	if (sb->s_security == NULL)
693 		return -ENOMEM;
694 	return 0;
695 }
696 
697 /*
698  * The default value of the LSM hook is defined in linux/lsm_hook_defs.h and
699  * can be accessed with:
700  *
701  *	LSM_RET_DEFAULT(<hook_name>)
702  *
703  * The macros below define static constants for the default value of each
704  * LSM hook.
705  */
706 #define LSM_RET_DEFAULT(NAME) (NAME##_default)
707 #define DECLARE_LSM_RET_DEFAULT_void(DEFAULT, NAME)
708 #define DECLARE_LSM_RET_DEFAULT_int(DEFAULT, NAME) \
709 	static const int LSM_RET_DEFAULT(NAME) = (DEFAULT);
710 #define LSM_HOOK(RET, DEFAULT, NAME, ...) \
711 	DECLARE_LSM_RET_DEFAULT_##RET(DEFAULT, NAME)
712 
713 #include <linux/lsm_hook_defs.h>
714 #undef LSM_HOOK
715 
716 /*
717  * Hook list operation macros.
718  *
719  * call_void_hook:
720  *	This is a hook that does not return a value.
721  *
722  * call_int_hook:
723  *	This is a hook that returns a value.
724  */
725 
726 #define call_void_hook(FUNC, ...)				\
727 	do {							\
728 		struct security_hook_list *P;			\
729 								\
730 		hlist_for_each_entry(P, &security_hook_heads.FUNC, list) \
731 			P->hook.FUNC(__VA_ARGS__);		\
732 	} while (0)
733 
734 #define call_int_hook(FUNC, IRC, ...) ({			\
735 	int RC = IRC;						\
736 	do {							\
737 		struct security_hook_list *P;			\
738 								\
739 		hlist_for_each_entry(P, &security_hook_heads.FUNC, list) { \
740 			RC = P->hook.FUNC(__VA_ARGS__);		\
741 			if (RC != 0)				\
742 				break;				\
743 		}						\
744 	} while (0);						\
745 	RC;							\
746 })
747 
748 /* Security operations */
749 
750 int security_binder_set_context_mgr(struct task_struct *mgr)
751 {
752 	return call_int_hook(binder_set_context_mgr, 0, mgr);
753 }
754 
755 int security_binder_transaction(struct task_struct *from,
756 				struct task_struct *to)
757 {
758 	return call_int_hook(binder_transaction, 0, from, to);
759 }
760 
761 int security_binder_transfer_binder(struct task_struct *from,
762 				    struct task_struct *to)
763 {
764 	return call_int_hook(binder_transfer_binder, 0, from, to);
765 }
766 
767 int security_binder_transfer_file(struct task_struct *from,
768 				  struct task_struct *to, struct file *file)
769 {
770 	return call_int_hook(binder_transfer_file, 0, from, to, file);
771 }
772 
773 int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
774 {
775 	return call_int_hook(ptrace_access_check, 0, child, mode);
776 }
777 
778 int security_ptrace_traceme(struct task_struct *parent)
779 {
780 	return call_int_hook(ptrace_traceme, 0, parent);
781 }
782 
783 int security_capget(struct task_struct *target,
784 		     kernel_cap_t *effective,
785 		     kernel_cap_t *inheritable,
786 		     kernel_cap_t *permitted)
787 {
788 	return call_int_hook(capget, 0, target,
789 				effective, inheritable, permitted);
790 }
791 
792 int security_capset(struct cred *new, const struct cred *old,
793 		    const kernel_cap_t *effective,
794 		    const kernel_cap_t *inheritable,
795 		    const kernel_cap_t *permitted)
796 {
797 	return call_int_hook(capset, 0, new, old,
798 				effective, inheritable, permitted);
799 }
800 
801 int security_capable(const struct cred *cred,
802 		     struct user_namespace *ns,
803 		     int cap,
804 		     unsigned int opts)
805 {
806 	return call_int_hook(capable, 0, cred, ns, cap, opts);
807 }
808 
809 int security_quotactl(int cmds, int type, int id, struct super_block *sb)
810 {
811 	return call_int_hook(quotactl, 0, cmds, type, id, sb);
812 }
813 
814 int security_quota_on(struct dentry *dentry)
815 {
816 	return call_int_hook(quota_on, 0, dentry);
817 }
818 
819 int security_syslog(int type)
820 {
821 	return call_int_hook(syslog, 0, type);
822 }
823 
824 int security_settime64(const struct timespec64 *ts, const struct timezone *tz)
825 {
826 	return call_int_hook(settime, 0, ts, tz);
827 }
828 
829 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
830 {
831 	struct security_hook_list *hp;
832 	int cap_sys_admin = 1;
833 	int rc;
834 
835 	/*
836 	 * The module will respond with a positive value if
837 	 * it thinks the __vm_enough_memory() call should be
838 	 * made with the cap_sys_admin set. If all of the modules
839 	 * agree that it should be set it will. If any module
840 	 * thinks it should not be set it won't.
841 	 */
842 	hlist_for_each_entry(hp, &security_hook_heads.vm_enough_memory, list) {
843 		rc = hp->hook.vm_enough_memory(mm, pages);
844 		if (rc <= 0) {
845 			cap_sys_admin = 0;
846 			break;
847 		}
848 	}
849 	return __vm_enough_memory(mm, pages, cap_sys_admin);
850 }
851 
852 int security_bprm_creds_for_exec(struct linux_binprm *bprm)
853 {
854 	return call_int_hook(bprm_creds_for_exec, 0, bprm);
855 }
856 
857 int security_bprm_creds_from_file(struct linux_binprm *bprm, struct file *file)
858 {
859 	return call_int_hook(bprm_creds_from_file, 0, bprm, file);
860 }
861 
862 int security_bprm_check(struct linux_binprm *bprm)
863 {
864 	int ret;
865 
866 	ret = call_int_hook(bprm_check_security, 0, bprm);
867 	if (ret)
868 		return ret;
869 	return ima_bprm_check(bprm);
870 }
871 
872 void security_bprm_committing_creds(struct linux_binprm *bprm)
873 {
874 	call_void_hook(bprm_committing_creds, bprm);
875 }
876 
877 void security_bprm_committed_creds(struct linux_binprm *bprm)
878 {
879 	call_void_hook(bprm_committed_creds, bprm);
880 }
881 
882 int security_fs_context_dup(struct fs_context *fc, struct fs_context *src_fc)
883 {
884 	return call_int_hook(fs_context_dup, 0, fc, src_fc);
885 }
886 
887 int security_fs_context_parse_param(struct fs_context *fc, struct fs_parameter *param)
888 {
889 	return call_int_hook(fs_context_parse_param, -ENOPARAM, fc, param);
890 }
891 
892 int security_sb_alloc(struct super_block *sb)
893 {
894 	int rc = lsm_superblock_alloc(sb);
895 
896 	if (unlikely(rc))
897 		return rc;
898 	rc = call_int_hook(sb_alloc_security, 0, sb);
899 	if (unlikely(rc))
900 		security_sb_free(sb);
901 	return rc;
902 }
903 
904 void security_sb_delete(struct super_block *sb)
905 {
906 	call_void_hook(sb_delete, sb);
907 }
908 
909 void security_sb_free(struct super_block *sb)
910 {
911 	call_void_hook(sb_free_security, sb);
912 	kfree(sb->s_security);
913 	sb->s_security = NULL;
914 }
915 
916 void security_free_mnt_opts(void **mnt_opts)
917 {
918 	if (!*mnt_opts)
919 		return;
920 	call_void_hook(sb_free_mnt_opts, *mnt_opts);
921 	*mnt_opts = NULL;
922 }
923 EXPORT_SYMBOL(security_free_mnt_opts);
924 
925 int security_sb_eat_lsm_opts(char *options, void **mnt_opts)
926 {
927 	return call_int_hook(sb_eat_lsm_opts, 0, options, mnt_opts);
928 }
929 EXPORT_SYMBOL(security_sb_eat_lsm_opts);
930 
931 int security_sb_mnt_opts_compat(struct super_block *sb,
932 				void *mnt_opts)
933 {
934 	return call_int_hook(sb_mnt_opts_compat, 0, sb, mnt_opts);
935 }
936 EXPORT_SYMBOL(security_sb_mnt_opts_compat);
937 
938 int security_sb_remount(struct super_block *sb,
939 			void *mnt_opts)
940 {
941 	return call_int_hook(sb_remount, 0, sb, mnt_opts);
942 }
943 EXPORT_SYMBOL(security_sb_remount);
944 
945 int security_sb_kern_mount(struct super_block *sb)
946 {
947 	return call_int_hook(sb_kern_mount, 0, sb);
948 }
949 
950 int security_sb_show_options(struct seq_file *m, struct super_block *sb)
951 {
952 	return call_int_hook(sb_show_options, 0, m, sb);
953 }
954 
955 int security_sb_statfs(struct dentry *dentry)
956 {
957 	return call_int_hook(sb_statfs, 0, dentry);
958 }
959 
960 int security_sb_mount(const char *dev_name, const struct path *path,
961                        const char *type, unsigned long flags, void *data)
962 {
963 	return call_int_hook(sb_mount, 0, dev_name, path, type, flags, data);
964 }
965 
966 int security_sb_umount(struct vfsmount *mnt, int flags)
967 {
968 	return call_int_hook(sb_umount, 0, mnt, flags);
969 }
970 
971 int security_sb_pivotroot(const struct path *old_path, const struct path *new_path)
972 {
973 	return call_int_hook(sb_pivotroot, 0, old_path, new_path);
974 }
975 
976 int security_sb_set_mnt_opts(struct super_block *sb,
977 				void *mnt_opts,
978 				unsigned long kern_flags,
979 				unsigned long *set_kern_flags)
980 {
981 	return call_int_hook(sb_set_mnt_opts,
982 				mnt_opts ? -EOPNOTSUPP : 0, sb,
983 				mnt_opts, kern_flags, set_kern_flags);
984 }
985 EXPORT_SYMBOL(security_sb_set_mnt_opts);
986 
987 int security_sb_clone_mnt_opts(const struct super_block *oldsb,
988 				struct super_block *newsb,
989 				unsigned long kern_flags,
990 				unsigned long *set_kern_flags)
991 {
992 	return call_int_hook(sb_clone_mnt_opts, 0, oldsb, newsb,
993 				kern_flags, set_kern_flags);
994 }
995 EXPORT_SYMBOL(security_sb_clone_mnt_opts);
996 
997 int security_add_mnt_opt(const char *option, const char *val, int len,
998 			 void **mnt_opts)
999 {
1000 	return call_int_hook(sb_add_mnt_opt, -EINVAL,
1001 					option, val, len, mnt_opts);
1002 }
1003 EXPORT_SYMBOL(security_add_mnt_opt);
1004 
1005 int security_move_mount(const struct path *from_path, const struct path *to_path)
1006 {
1007 	return call_int_hook(move_mount, 0, from_path, to_path);
1008 }
1009 
1010 int security_path_notify(const struct path *path, u64 mask,
1011 				unsigned int obj_type)
1012 {
1013 	return call_int_hook(path_notify, 0, path, mask, obj_type);
1014 }
1015 
1016 int security_inode_alloc(struct inode *inode)
1017 {
1018 	int rc = lsm_inode_alloc(inode);
1019 
1020 	if (unlikely(rc))
1021 		return rc;
1022 	rc = call_int_hook(inode_alloc_security, 0, inode);
1023 	if (unlikely(rc))
1024 		security_inode_free(inode);
1025 	return rc;
1026 }
1027 
1028 static void inode_free_by_rcu(struct rcu_head *head)
1029 {
1030 	/*
1031 	 * The rcu head is at the start of the inode blob
1032 	 */
1033 	kmem_cache_free(lsm_inode_cache, head);
1034 }
1035 
1036 void security_inode_free(struct inode *inode)
1037 {
1038 	integrity_inode_free(inode);
1039 	call_void_hook(inode_free_security, inode);
1040 	/*
1041 	 * The inode may still be referenced in a path walk and
1042 	 * a call to security_inode_permission() can be made
1043 	 * after inode_free_security() is called. Ideally, the VFS
1044 	 * wouldn't do this, but fixing that is a much harder
1045 	 * job. For now, simply free the i_security via RCU, and
1046 	 * leave the current inode->i_security pointer intact.
1047 	 * The inode will be freed after the RCU grace period too.
1048 	 */
1049 	if (inode->i_security)
1050 		call_rcu((struct rcu_head *)inode->i_security,
1051 				inode_free_by_rcu);
1052 }
1053 
1054 int security_dentry_init_security(struct dentry *dentry, int mode,
1055 					const struct qstr *name, void **ctx,
1056 					u32 *ctxlen)
1057 {
1058 	return call_int_hook(dentry_init_security, -EOPNOTSUPP, dentry, mode,
1059 				name, ctx, ctxlen);
1060 }
1061 EXPORT_SYMBOL(security_dentry_init_security);
1062 
1063 int security_dentry_create_files_as(struct dentry *dentry, int mode,
1064 				    struct qstr *name,
1065 				    const struct cred *old, struct cred *new)
1066 {
1067 	return call_int_hook(dentry_create_files_as, 0, dentry, mode,
1068 				name, old, new);
1069 }
1070 EXPORT_SYMBOL(security_dentry_create_files_as);
1071 
1072 int security_inode_init_security(struct inode *inode, struct inode *dir,
1073 				 const struct qstr *qstr,
1074 				 const initxattrs initxattrs, void *fs_data)
1075 {
1076 	struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1];
1077 	struct xattr *lsm_xattr, *evm_xattr, *xattr;
1078 	int ret;
1079 
1080 	if (unlikely(IS_PRIVATE(inode)))
1081 		return 0;
1082 
1083 	if (!initxattrs)
1084 		return call_int_hook(inode_init_security, -EOPNOTSUPP, inode,
1085 				     dir, qstr, NULL, NULL, NULL);
1086 	memset(new_xattrs, 0, sizeof(new_xattrs));
1087 	lsm_xattr = new_xattrs;
1088 	ret = call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir, qstr,
1089 						&lsm_xattr->name,
1090 						&lsm_xattr->value,
1091 						&lsm_xattr->value_len);
1092 	if (ret)
1093 		goto out;
1094 
1095 	evm_xattr = lsm_xattr + 1;
1096 	ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr);
1097 	if (ret)
1098 		goto out;
1099 	ret = initxattrs(inode, new_xattrs, fs_data);
1100 out:
1101 	for (xattr = new_xattrs; xattr->value != NULL; xattr++)
1102 		kfree(xattr->value);
1103 	return (ret == -EOPNOTSUPP) ? 0 : ret;
1104 }
1105 EXPORT_SYMBOL(security_inode_init_security);
1106 
1107 int security_inode_init_security_anon(struct inode *inode,
1108 				      const struct qstr *name,
1109 				      const struct inode *context_inode)
1110 {
1111 	return call_int_hook(inode_init_security_anon, 0, inode, name,
1112 			     context_inode);
1113 }
1114 
1115 int security_old_inode_init_security(struct inode *inode, struct inode *dir,
1116 				     const struct qstr *qstr, const char **name,
1117 				     void **value, size_t *len)
1118 {
1119 	if (unlikely(IS_PRIVATE(inode)))
1120 		return -EOPNOTSUPP;
1121 	return call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir,
1122 			     qstr, name, value, len);
1123 }
1124 EXPORT_SYMBOL(security_old_inode_init_security);
1125 
1126 #ifdef CONFIG_SECURITY_PATH
1127 int security_path_mknod(const struct path *dir, struct dentry *dentry, umode_t mode,
1128 			unsigned int dev)
1129 {
1130 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1131 		return 0;
1132 	return call_int_hook(path_mknod, 0, dir, dentry, mode, dev);
1133 }
1134 EXPORT_SYMBOL(security_path_mknod);
1135 
1136 int security_path_mkdir(const struct path *dir, struct dentry *dentry, umode_t mode)
1137 {
1138 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1139 		return 0;
1140 	return call_int_hook(path_mkdir, 0, dir, dentry, mode);
1141 }
1142 EXPORT_SYMBOL(security_path_mkdir);
1143 
1144 int security_path_rmdir(const struct path *dir, struct dentry *dentry)
1145 {
1146 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1147 		return 0;
1148 	return call_int_hook(path_rmdir, 0, dir, dentry);
1149 }
1150 
1151 int security_path_unlink(const struct path *dir, struct dentry *dentry)
1152 {
1153 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1154 		return 0;
1155 	return call_int_hook(path_unlink, 0, dir, dentry);
1156 }
1157 EXPORT_SYMBOL(security_path_unlink);
1158 
1159 int security_path_symlink(const struct path *dir, struct dentry *dentry,
1160 			  const char *old_name)
1161 {
1162 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1163 		return 0;
1164 	return call_int_hook(path_symlink, 0, dir, dentry, old_name);
1165 }
1166 
1167 int security_path_link(struct dentry *old_dentry, const struct path *new_dir,
1168 		       struct dentry *new_dentry)
1169 {
1170 	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
1171 		return 0;
1172 	return call_int_hook(path_link, 0, old_dentry, new_dir, new_dentry);
1173 }
1174 
1175 int security_path_rename(const struct path *old_dir, struct dentry *old_dentry,
1176 			 const struct path *new_dir, struct dentry *new_dentry,
1177 			 unsigned int flags)
1178 {
1179 	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
1180 		     (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
1181 		return 0;
1182 
1183 	if (flags & RENAME_EXCHANGE) {
1184 		int err = call_int_hook(path_rename, 0, new_dir, new_dentry,
1185 					old_dir, old_dentry);
1186 		if (err)
1187 			return err;
1188 	}
1189 
1190 	return call_int_hook(path_rename, 0, old_dir, old_dentry, new_dir,
1191 				new_dentry);
1192 }
1193 EXPORT_SYMBOL(security_path_rename);
1194 
1195 int security_path_truncate(const struct path *path)
1196 {
1197 	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1198 		return 0;
1199 	return call_int_hook(path_truncate, 0, path);
1200 }
1201 
1202 int security_path_chmod(const struct path *path, umode_t mode)
1203 {
1204 	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1205 		return 0;
1206 	return call_int_hook(path_chmod, 0, path, mode);
1207 }
1208 
1209 int security_path_chown(const struct path *path, kuid_t uid, kgid_t gid)
1210 {
1211 	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1212 		return 0;
1213 	return call_int_hook(path_chown, 0, path, uid, gid);
1214 }
1215 
1216 int security_path_chroot(const struct path *path)
1217 {
1218 	return call_int_hook(path_chroot, 0, path);
1219 }
1220 #endif
1221 
1222 int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
1223 {
1224 	if (unlikely(IS_PRIVATE(dir)))
1225 		return 0;
1226 	return call_int_hook(inode_create, 0, dir, dentry, mode);
1227 }
1228 EXPORT_SYMBOL_GPL(security_inode_create);
1229 
1230 int security_inode_link(struct dentry *old_dentry, struct inode *dir,
1231 			 struct dentry *new_dentry)
1232 {
1233 	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
1234 		return 0;
1235 	return call_int_hook(inode_link, 0, old_dentry, dir, new_dentry);
1236 }
1237 
1238 int security_inode_unlink(struct inode *dir, struct dentry *dentry)
1239 {
1240 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1241 		return 0;
1242 	return call_int_hook(inode_unlink, 0, dir, dentry);
1243 }
1244 
1245 int security_inode_symlink(struct inode *dir, struct dentry *dentry,
1246 			    const char *old_name)
1247 {
1248 	if (unlikely(IS_PRIVATE(dir)))
1249 		return 0;
1250 	return call_int_hook(inode_symlink, 0, dir, dentry, old_name);
1251 }
1252 
1253 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1254 {
1255 	if (unlikely(IS_PRIVATE(dir)))
1256 		return 0;
1257 	return call_int_hook(inode_mkdir, 0, dir, dentry, mode);
1258 }
1259 EXPORT_SYMBOL_GPL(security_inode_mkdir);
1260 
1261 int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
1262 {
1263 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1264 		return 0;
1265 	return call_int_hook(inode_rmdir, 0, dir, dentry);
1266 }
1267 
1268 int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1269 {
1270 	if (unlikely(IS_PRIVATE(dir)))
1271 		return 0;
1272 	return call_int_hook(inode_mknod, 0, dir, dentry, mode, dev);
1273 }
1274 
1275 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
1276 			   struct inode *new_dir, struct dentry *new_dentry,
1277 			   unsigned int flags)
1278 {
1279         if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
1280             (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
1281 		return 0;
1282 
1283 	if (flags & RENAME_EXCHANGE) {
1284 		int err = call_int_hook(inode_rename, 0, new_dir, new_dentry,
1285 						     old_dir, old_dentry);
1286 		if (err)
1287 			return err;
1288 	}
1289 
1290 	return call_int_hook(inode_rename, 0, old_dir, old_dentry,
1291 					   new_dir, new_dentry);
1292 }
1293 
1294 int security_inode_readlink(struct dentry *dentry)
1295 {
1296 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1297 		return 0;
1298 	return call_int_hook(inode_readlink, 0, dentry);
1299 }
1300 
1301 int security_inode_follow_link(struct dentry *dentry, struct inode *inode,
1302 			       bool rcu)
1303 {
1304 	if (unlikely(IS_PRIVATE(inode)))
1305 		return 0;
1306 	return call_int_hook(inode_follow_link, 0, dentry, inode, rcu);
1307 }
1308 
1309 int security_inode_permission(struct inode *inode, int mask)
1310 {
1311 	if (unlikely(IS_PRIVATE(inode)))
1312 		return 0;
1313 	return call_int_hook(inode_permission, 0, inode, mask);
1314 }
1315 
1316 int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
1317 {
1318 	int ret;
1319 
1320 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1321 		return 0;
1322 	ret = call_int_hook(inode_setattr, 0, dentry, attr);
1323 	if (ret)
1324 		return ret;
1325 	return evm_inode_setattr(dentry, attr);
1326 }
1327 EXPORT_SYMBOL_GPL(security_inode_setattr);
1328 
1329 int security_inode_getattr(const struct path *path)
1330 {
1331 	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1332 		return 0;
1333 	return call_int_hook(inode_getattr, 0, path);
1334 }
1335 
1336 int security_inode_setxattr(struct user_namespace *mnt_userns,
1337 			    struct dentry *dentry, const char *name,
1338 			    const void *value, size_t size, int flags)
1339 {
1340 	int ret;
1341 
1342 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1343 		return 0;
1344 	/*
1345 	 * SELinux and Smack integrate the cap call,
1346 	 * so assume that all LSMs supplying this call do so.
1347 	 */
1348 	ret = call_int_hook(inode_setxattr, 1, mnt_userns, dentry, name, value,
1349 			    size, flags);
1350 
1351 	if (ret == 1)
1352 		ret = cap_inode_setxattr(dentry, name, value, size, flags);
1353 	if (ret)
1354 		return ret;
1355 	ret = ima_inode_setxattr(dentry, name, value, size);
1356 	if (ret)
1357 		return ret;
1358 	return evm_inode_setxattr(mnt_userns, dentry, name, value, size);
1359 }
1360 
1361 void security_inode_post_setxattr(struct dentry *dentry, const char *name,
1362 				  const void *value, size_t size, int flags)
1363 {
1364 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1365 		return;
1366 	call_void_hook(inode_post_setxattr, dentry, name, value, size, flags);
1367 	evm_inode_post_setxattr(dentry, name, value, size);
1368 }
1369 
1370 int security_inode_getxattr(struct dentry *dentry, const char *name)
1371 {
1372 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1373 		return 0;
1374 	return call_int_hook(inode_getxattr, 0, dentry, name);
1375 }
1376 
1377 int security_inode_listxattr(struct dentry *dentry)
1378 {
1379 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1380 		return 0;
1381 	return call_int_hook(inode_listxattr, 0, dentry);
1382 }
1383 
1384 int security_inode_removexattr(struct user_namespace *mnt_userns,
1385 			       struct dentry *dentry, const char *name)
1386 {
1387 	int ret;
1388 
1389 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1390 		return 0;
1391 	/*
1392 	 * SELinux and Smack integrate the cap call,
1393 	 * so assume that all LSMs supplying this call do so.
1394 	 */
1395 	ret = call_int_hook(inode_removexattr, 1, mnt_userns, dentry, name);
1396 	if (ret == 1)
1397 		ret = cap_inode_removexattr(mnt_userns, dentry, name);
1398 	if (ret)
1399 		return ret;
1400 	ret = ima_inode_removexattr(dentry, name);
1401 	if (ret)
1402 		return ret;
1403 	return evm_inode_removexattr(mnt_userns, dentry, name);
1404 }
1405 
1406 int security_inode_need_killpriv(struct dentry *dentry)
1407 {
1408 	return call_int_hook(inode_need_killpriv, 0, dentry);
1409 }
1410 
1411 int security_inode_killpriv(struct user_namespace *mnt_userns,
1412 			    struct dentry *dentry)
1413 {
1414 	return call_int_hook(inode_killpriv, 0, mnt_userns, dentry);
1415 }
1416 
1417 int security_inode_getsecurity(struct user_namespace *mnt_userns,
1418 			       struct inode *inode, const char *name,
1419 			       void **buffer, bool alloc)
1420 {
1421 	struct security_hook_list *hp;
1422 	int rc;
1423 
1424 	if (unlikely(IS_PRIVATE(inode)))
1425 		return LSM_RET_DEFAULT(inode_getsecurity);
1426 	/*
1427 	 * Only one module will provide an attribute with a given name.
1428 	 */
1429 	hlist_for_each_entry(hp, &security_hook_heads.inode_getsecurity, list) {
1430 		rc = hp->hook.inode_getsecurity(mnt_userns, inode, name, buffer, alloc);
1431 		if (rc != LSM_RET_DEFAULT(inode_getsecurity))
1432 			return rc;
1433 	}
1434 	return LSM_RET_DEFAULT(inode_getsecurity);
1435 }
1436 
1437 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
1438 {
1439 	struct security_hook_list *hp;
1440 	int rc;
1441 
1442 	if (unlikely(IS_PRIVATE(inode)))
1443 		return LSM_RET_DEFAULT(inode_setsecurity);
1444 	/*
1445 	 * Only one module will provide an attribute with a given name.
1446 	 */
1447 	hlist_for_each_entry(hp, &security_hook_heads.inode_setsecurity, list) {
1448 		rc = hp->hook.inode_setsecurity(inode, name, value, size,
1449 								flags);
1450 		if (rc != LSM_RET_DEFAULT(inode_setsecurity))
1451 			return rc;
1452 	}
1453 	return LSM_RET_DEFAULT(inode_setsecurity);
1454 }
1455 
1456 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
1457 {
1458 	if (unlikely(IS_PRIVATE(inode)))
1459 		return 0;
1460 	return call_int_hook(inode_listsecurity, 0, inode, buffer, buffer_size);
1461 }
1462 EXPORT_SYMBOL(security_inode_listsecurity);
1463 
1464 void security_inode_getsecid(struct inode *inode, u32 *secid)
1465 {
1466 	call_void_hook(inode_getsecid, inode, secid);
1467 }
1468 
1469 int security_inode_copy_up(struct dentry *src, struct cred **new)
1470 {
1471 	return call_int_hook(inode_copy_up, 0, src, new);
1472 }
1473 EXPORT_SYMBOL(security_inode_copy_up);
1474 
1475 int security_inode_copy_up_xattr(const char *name)
1476 {
1477 	struct security_hook_list *hp;
1478 	int rc;
1479 
1480 	/*
1481 	 * The implementation can return 0 (accept the xattr), 1 (discard the
1482 	 * xattr), -EOPNOTSUPP if it does not know anything about the xattr or
1483 	 * any other error code incase of an error.
1484 	 */
1485 	hlist_for_each_entry(hp,
1486 		&security_hook_heads.inode_copy_up_xattr, list) {
1487 		rc = hp->hook.inode_copy_up_xattr(name);
1488 		if (rc != LSM_RET_DEFAULT(inode_copy_up_xattr))
1489 			return rc;
1490 	}
1491 
1492 	return LSM_RET_DEFAULT(inode_copy_up_xattr);
1493 }
1494 EXPORT_SYMBOL(security_inode_copy_up_xattr);
1495 
1496 int security_kernfs_init_security(struct kernfs_node *kn_dir,
1497 				  struct kernfs_node *kn)
1498 {
1499 	return call_int_hook(kernfs_init_security, 0, kn_dir, kn);
1500 }
1501 
1502 int security_file_permission(struct file *file, int mask)
1503 {
1504 	int ret;
1505 
1506 	ret = call_int_hook(file_permission, 0, file, mask);
1507 	if (ret)
1508 		return ret;
1509 
1510 	return fsnotify_perm(file, mask);
1511 }
1512 
1513 int security_file_alloc(struct file *file)
1514 {
1515 	int rc = lsm_file_alloc(file);
1516 
1517 	if (rc)
1518 		return rc;
1519 	rc = call_int_hook(file_alloc_security, 0, file);
1520 	if (unlikely(rc))
1521 		security_file_free(file);
1522 	return rc;
1523 }
1524 
1525 void security_file_free(struct file *file)
1526 {
1527 	void *blob;
1528 
1529 	call_void_hook(file_free_security, file);
1530 
1531 	blob = file->f_security;
1532 	if (blob) {
1533 		file->f_security = NULL;
1534 		kmem_cache_free(lsm_file_cache, blob);
1535 	}
1536 }
1537 
1538 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1539 {
1540 	return call_int_hook(file_ioctl, 0, file, cmd, arg);
1541 }
1542 EXPORT_SYMBOL_GPL(security_file_ioctl);
1543 
1544 static inline unsigned long mmap_prot(struct file *file, unsigned long prot)
1545 {
1546 	/*
1547 	 * Does we have PROT_READ and does the application expect
1548 	 * it to imply PROT_EXEC?  If not, nothing to talk about...
1549 	 */
1550 	if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ)
1551 		return prot;
1552 	if (!(current->personality & READ_IMPLIES_EXEC))
1553 		return prot;
1554 	/*
1555 	 * if that's an anonymous mapping, let it.
1556 	 */
1557 	if (!file)
1558 		return prot | PROT_EXEC;
1559 	/*
1560 	 * ditto if it's not on noexec mount, except that on !MMU we need
1561 	 * NOMMU_MAP_EXEC (== VM_MAYEXEC) in this case
1562 	 */
1563 	if (!path_noexec(&file->f_path)) {
1564 #ifndef CONFIG_MMU
1565 		if (file->f_op->mmap_capabilities) {
1566 			unsigned caps = file->f_op->mmap_capabilities(file);
1567 			if (!(caps & NOMMU_MAP_EXEC))
1568 				return prot;
1569 		}
1570 #endif
1571 		return prot | PROT_EXEC;
1572 	}
1573 	/* anything on noexec mount won't get PROT_EXEC */
1574 	return prot;
1575 }
1576 
1577 int security_mmap_file(struct file *file, unsigned long prot,
1578 			unsigned long flags)
1579 {
1580 	int ret;
1581 	ret = call_int_hook(mmap_file, 0, file, prot,
1582 					mmap_prot(file, prot), flags);
1583 	if (ret)
1584 		return ret;
1585 	return ima_file_mmap(file, prot);
1586 }
1587 
1588 int security_mmap_addr(unsigned long addr)
1589 {
1590 	return call_int_hook(mmap_addr, 0, addr);
1591 }
1592 
1593 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
1594 			    unsigned long prot)
1595 {
1596 	int ret;
1597 
1598 	ret = call_int_hook(file_mprotect, 0, vma, reqprot, prot);
1599 	if (ret)
1600 		return ret;
1601 	return ima_file_mprotect(vma, prot);
1602 }
1603 
1604 int security_file_lock(struct file *file, unsigned int cmd)
1605 {
1606 	return call_int_hook(file_lock, 0, file, cmd);
1607 }
1608 
1609 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
1610 {
1611 	return call_int_hook(file_fcntl, 0, file, cmd, arg);
1612 }
1613 
1614 void security_file_set_fowner(struct file *file)
1615 {
1616 	call_void_hook(file_set_fowner, file);
1617 }
1618 
1619 int security_file_send_sigiotask(struct task_struct *tsk,
1620 				  struct fown_struct *fown, int sig)
1621 {
1622 	return call_int_hook(file_send_sigiotask, 0, tsk, fown, sig);
1623 }
1624 
1625 int security_file_receive(struct file *file)
1626 {
1627 	return call_int_hook(file_receive, 0, file);
1628 }
1629 
1630 int security_file_open(struct file *file)
1631 {
1632 	int ret;
1633 
1634 	ret = call_int_hook(file_open, 0, file);
1635 	if (ret)
1636 		return ret;
1637 
1638 	return fsnotify_perm(file, MAY_OPEN);
1639 }
1640 
1641 int security_task_alloc(struct task_struct *task, unsigned long clone_flags)
1642 {
1643 	int rc = lsm_task_alloc(task);
1644 
1645 	if (rc)
1646 		return rc;
1647 	rc = call_int_hook(task_alloc, 0, task, clone_flags);
1648 	if (unlikely(rc))
1649 		security_task_free(task);
1650 	return rc;
1651 }
1652 
1653 void security_task_free(struct task_struct *task)
1654 {
1655 	call_void_hook(task_free, task);
1656 
1657 	kfree(task->security);
1658 	task->security = NULL;
1659 }
1660 
1661 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
1662 {
1663 	int rc = lsm_cred_alloc(cred, gfp);
1664 
1665 	if (rc)
1666 		return rc;
1667 
1668 	rc = call_int_hook(cred_alloc_blank, 0, cred, gfp);
1669 	if (unlikely(rc))
1670 		security_cred_free(cred);
1671 	return rc;
1672 }
1673 
1674 void security_cred_free(struct cred *cred)
1675 {
1676 	/*
1677 	 * There is a failure case in prepare_creds() that
1678 	 * may result in a call here with ->security being NULL.
1679 	 */
1680 	if (unlikely(cred->security == NULL))
1681 		return;
1682 
1683 	call_void_hook(cred_free, cred);
1684 
1685 	kfree(cred->security);
1686 	cred->security = NULL;
1687 }
1688 
1689 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
1690 {
1691 	int rc = lsm_cred_alloc(new, gfp);
1692 
1693 	if (rc)
1694 		return rc;
1695 
1696 	rc = call_int_hook(cred_prepare, 0, new, old, gfp);
1697 	if (unlikely(rc))
1698 		security_cred_free(new);
1699 	return rc;
1700 }
1701 
1702 void security_transfer_creds(struct cred *new, const struct cred *old)
1703 {
1704 	call_void_hook(cred_transfer, new, old);
1705 }
1706 
1707 void security_cred_getsecid(const struct cred *c, u32 *secid)
1708 {
1709 	*secid = 0;
1710 	call_void_hook(cred_getsecid, c, secid);
1711 }
1712 EXPORT_SYMBOL(security_cred_getsecid);
1713 
1714 int security_kernel_act_as(struct cred *new, u32 secid)
1715 {
1716 	return call_int_hook(kernel_act_as, 0, new, secid);
1717 }
1718 
1719 int security_kernel_create_files_as(struct cred *new, struct inode *inode)
1720 {
1721 	return call_int_hook(kernel_create_files_as, 0, new, inode);
1722 }
1723 
1724 int security_kernel_module_request(char *kmod_name)
1725 {
1726 	int ret;
1727 
1728 	ret = call_int_hook(kernel_module_request, 0, kmod_name);
1729 	if (ret)
1730 		return ret;
1731 	return integrity_kernel_module_request(kmod_name);
1732 }
1733 
1734 int security_kernel_read_file(struct file *file, enum kernel_read_file_id id,
1735 			      bool contents)
1736 {
1737 	int ret;
1738 
1739 	ret = call_int_hook(kernel_read_file, 0, file, id, contents);
1740 	if (ret)
1741 		return ret;
1742 	return ima_read_file(file, id, contents);
1743 }
1744 EXPORT_SYMBOL_GPL(security_kernel_read_file);
1745 
1746 int security_kernel_post_read_file(struct file *file, char *buf, loff_t size,
1747 				   enum kernel_read_file_id id)
1748 {
1749 	int ret;
1750 
1751 	ret = call_int_hook(kernel_post_read_file, 0, file, buf, size, id);
1752 	if (ret)
1753 		return ret;
1754 	return ima_post_read_file(file, buf, size, id);
1755 }
1756 EXPORT_SYMBOL_GPL(security_kernel_post_read_file);
1757 
1758 int security_kernel_load_data(enum kernel_load_data_id id, bool contents)
1759 {
1760 	int ret;
1761 
1762 	ret = call_int_hook(kernel_load_data, 0, id, contents);
1763 	if (ret)
1764 		return ret;
1765 	return ima_load_data(id, contents);
1766 }
1767 EXPORT_SYMBOL_GPL(security_kernel_load_data);
1768 
1769 int security_kernel_post_load_data(char *buf, loff_t size,
1770 				   enum kernel_load_data_id id,
1771 				   char *description)
1772 {
1773 	int ret;
1774 
1775 	ret = call_int_hook(kernel_post_load_data, 0, buf, size, id,
1776 			    description);
1777 	if (ret)
1778 		return ret;
1779 	return ima_post_load_data(buf, size, id, description);
1780 }
1781 EXPORT_SYMBOL_GPL(security_kernel_post_load_data);
1782 
1783 int security_task_fix_setuid(struct cred *new, const struct cred *old,
1784 			     int flags)
1785 {
1786 	return call_int_hook(task_fix_setuid, 0, new, old, flags);
1787 }
1788 
1789 int security_task_fix_setgid(struct cred *new, const struct cred *old,
1790 				 int flags)
1791 {
1792 	return call_int_hook(task_fix_setgid, 0, new, old, flags);
1793 }
1794 
1795 int security_task_setpgid(struct task_struct *p, pid_t pgid)
1796 {
1797 	return call_int_hook(task_setpgid, 0, p, pgid);
1798 }
1799 
1800 int security_task_getpgid(struct task_struct *p)
1801 {
1802 	return call_int_hook(task_getpgid, 0, p);
1803 }
1804 
1805 int security_task_getsid(struct task_struct *p)
1806 {
1807 	return call_int_hook(task_getsid, 0, p);
1808 }
1809 
1810 void security_task_getsecid_subj(struct task_struct *p, u32 *secid)
1811 {
1812 	*secid = 0;
1813 	call_void_hook(task_getsecid_subj, p, secid);
1814 }
1815 EXPORT_SYMBOL(security_task_getsecid_subj);
1816 
1817 void security_task_getsecid_obj(struct task_struct *p, u32 *secid)
1818 {
1819 	*secid = 0;
1820 	call_void_hook(task_getsecid_obj, p, secid);
1821 }
1822 EXPORT_SYMBOL(security_task_getsecid_obj);
1823 
1824 int security_task_setnice(struct task_struct *p, int nice)
1825 {
1826 	return call_int_hook(task_setnice, 0, p, nice);
1827 }
1828 
1829 int security_task_setioprio(struct task_struct *p, int ioprio)
1830 {
1831 	return call_int_hook(task_setioprio, 0, p, ioprio);
1832 }
1833 
1834 int security_task_getioprio(struct task_struct *p)
1835 {
1836 	return call_int_hook(task_getioprio, 0, p);
1837 }
1838 
1839 int security_task_prlimit(const struct cred *cred, const struct cred *tcred,
1840 			  unsigned int flags)
1841 {
1842 	return call_int_hook(task_prlimit, 0, cred, tcred, flags);
1843 }
1844 
1845 int security_task_setrlimit(struct task_struct *p, unsigned int resource,
1846 		struct rlimit *new_rlim)
1847 {
1848 	return call_int_hook(task_setrlimit, 0, p, resource, new_rlim);
1849 }
1850 
1851 int security_task_setscheduler(struct task_struct *p)
1852 {
1853 	return call_int_hook(task_setscheduler, 0, p);
1854 }
1855 
1856 int security_task_getscheduler(struct task_struct *p)
1857 {
1858 	return call_int_hook(task_getscheduler, 0, p);
1859 }
1860 
1861 int security_task_movememory(struct task_struct *p)
1862 {
1863 	return call_int_hook(task_movememory, 0, p);
1864 }
1865 
1866 int security_task_kill(struct task_struct *p, struct kernel_siginfo *info,
1867 			int sig, const struct cred *cred)
1868 {
1869 	return call_int_hook(task_kill, 0, p, info, sig, cred);
1870 }
1871 
1872 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
1873 			 unsigned long arg4, unsigned long arg5)
1874 {
1875 	int thisrc;
1876 	int rc = LSM_RET_DEFAULT(task_prctl);
1877 	struct security_hook_list *hp;
1878 
1879 	hlist_for_each_entry(hp, &security_hook_heads.task_prctl, list) {
1880 		thisrc = hp->hook.task_prctl(option, arg2, arg3, arg4, arg5);
1881 		if (thisrc != LSM_RET_DEFAULT(task_prctl)) {
1882 			rc = thisrc;
1883 			if (thisrc != 0)
1884 				break;
1885 		}
1886 	}
1887 	return rc;
1888 }
1889 
1890 void security_task_to_inode(struct task_struct *p, struct inode *inode)
1891 {
1892 	call_void_hook(task_to_inode, p, inode);
1893 }
1894 
1895 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
1896 {
1897 	return call_int_hook(ipc_permission, 0, ipcp, flag);
1898 }
1899 
1900 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
1901 {
1902 	*secid = 0;
1903 	call_void_hook(ipc_getsecid, ipcp, secid);
1904 }
1905 
1906 int security_msg_msg_alloc(struct msg_msg *msg)
1907 {
1908 	int rc = lsm_msg_msg_alloc(msg);
1909 
1910 	if (unlikely(rc))
1911 		return rc;
1912 	rc = call_int_hook(msg_msg_alloc_security, 0, msg);
1913 	if (unlikely(rc))
1914 		security_msg_msg_free(msg);
1915 	return rc;
1916 }
1917 
1918 void security_msg_msg_free(struct msg_msg *msg)
1919 {
1920 	call_void_hook(msg_msg_free_security, msg);
1921 	kfree(msg->security);
1922 	msg->security = NULL;
1923 }
1924 
1925 int security_msg_queue_alloc(struct kern_ipc_perm *msq)
1926 {
1927 	int rc = lsm_ipc_alloc(msq);
1928 
1929 	if (unlikely(rc))
1930 		return rc;
1931 	rc = call_int_hook(msg_queue_alloc_security, 0, msq);
1932 	if (unlikely(rc))
1933 		security_msg_queue_free(msq);
1934 	return rc;
1935 }
1936 
1937 void security_msg_queue_free(struct kern_ipc_perm *msq)
1938 {
1939 	call_void_hook(msg_queue_free_security, msq);
1940 	kfree(msq->security);
1941 	msq->security = NULL;
1942 }
1943 
1944 int security_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
1945 {
1946 	return call_int_hook(msg_queue_associate, 0, msq, msqflg);
1947 }
1948 
1949 int security_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
1950 {
1951 	return call_int_hook(msg_queue_msgctl, 0, msq, cmd);
1952 }
1953 
1954 int security_msg_queue_msgsnd(struct kern_ipc_perm *msq,
1955 			       struct msg_msg *msg, int msqflg)
1956 {
1957 	return call_int_hook(msg_queue_msgsnd, 0, msq, msg, msqflg);
1958 }
1959 
1960 int security_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
1961 			       struct task_struct *target, long type, int mode)
1962 {
1963 	return call_int_hook(msg_queue_msgrcv, 0, msq, msg, target, type, mode);
1964 }
1965 
1966 int security_shm_alloc(struct kern_ipc_perm *shp)
1967 {
1968 	int rc = lsm_ipc_alloc(shp);
1969 
1970 	if (unlikely(rc))
1971 		return rc;
1972 	rc = call_int_hook(shm_alloc_security, 0, shp);
1973 	if (unlikely(rc))
1974 		security_shm_free(shp);
1975 	return rc;
1976 }
1977 
1978 void security_shm_free(struct kern_ipc_perm *shp)
1979 {
1980 	call_void_hook(shm_free_security, shp);
1981 	kfree(shp->security);
1982 	shp->security = NULL;
1983 }
1984 
1985 int security_shm_associate(struct kern_ipc_perm *shp, int shmflg)
1986 {
1987 	return call_int_hook(shm_associate, 0, shp, shmflg);
1988 }
1989 
1990 int security_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
1991 {
1992 	return call_int_hook(shm_shmctl, 0, shp, cmd);
1993 }
1994 
1995 int security_shm_shmat(struct kern_ipc_perm *shp, char __user *shmaddr, int shmflg)
1996 {
1997 	return call_int_hook(shm_shmat, 0, shp, shmaddr, shmflg);
1998 }
1999 
2000 int security_sem_alloc(struct kern_ipc_perm *sma)
2001 {
2002 	int rc = lsm_ipc_alloc(sma);
2003 
2004 	if (unlikely(rc))
2005 		return rc;
2006 	rc = call_int_hook(sem_alloc_security, 0, sma);
2007 	if (unlikely(rc))
2008 		security_sem_free(sma);
2009 	return rc;
2010 }
2011 
2012 void security_sem_free(struct kern_ipc_perm *sma)
2013 {
2014 	call_void_hook(sem_free_security, sma);
2015 	kfree(sma->security);
2016 	sma->security = NULL;
2017 }
2018 
2019 int security_sem_associate(struct kern_ipc_perm *sma, int semflg)
2020 {
2021 	return call_int_hook(sem_associate, 0, sma, semflg);
2022 }
2023 
2024 int security_sem_semctl(struct kern_ipc_perm *sma, int cmd)
2025 {
2026 	return call_int_hook(sem_semctl, 0, sma, cmd);
2027 }
2028 
2029 int security_sem_semop(struct kern_ipc_perm *sma, struct sembuf *sops,
2030 			unsigned nsops, int alter)
2031 {
2032 	return call_int_hook(sem_semop, 0, sma, sops, nsops, alter);
2033 }
2034 
2035 void security_d_instantiate(struct dentry *dentry, struct inode *inode)
2036 {
2037 	if (unlikely(inode && IS_PRIVATE(inode)))
2038 		return;
2039 	call_void_hook(d_instantiate, dentry, inode);
2040 }
2041 EXPORT_SYMBOL(security_d_instantiate);
2042 
2043 int security_getprocattr(struct task_struct *p, const char *lsm, char *name,
2044 				char **value)
2045 {
2046 	struct security_hook_list *hp;
2047 
2048 	hlist_for_each_entry(hp, &security_hook_heads.getprocattr, list) {
2049 		if (lsm != NULL && strcmp(lsm, hp->lsm))
2050 			continue;
2051 		return hp->hook.getprocattr(p, name, value);
2052 	}
2053 	return LSM_RET_DEFAULT(getprocattr);
2054 }
2055 
2056 int security_setprocattr(const char *lsm, const char *name, void *value,
2057 			 size_t size)
2058 {
2059 	struct security_hook_list *hp;
2060 
2061 	hlist_for_each_entry(hp, &security_hook_heads.setprocattr, list) {
2062 		if (lsm != NULL && strcmp(lsm, hp->lsm))
2063 			continue;
2064 		return hp->hook.setprocattr(name, value, size);
2065 	}
2066 	return LSM_RET_DEFAULT(setprocattr);
2067 }
2068 
2069 int security_netlink_send(struct sock *sk, struct sk_buff *skb)
2070 {
2071 	return call_int_hook(netlink_send, 0, sk, skb);
2072 }
2073 
2074 int security_ismaclabel(const char *name)
2075 {
2076 	return call_int_hook(ismaclabel, 0, name);
2077 }
2078 EXPORT_SYMBOL(security_ismaclabel);
2079 
2080 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
2081 {
2082 	struct security_hook_list *hp;
2083 	int rc;
2084 
2085 	/*
2086 	 * Currently, only one LSM can implement secid_to_secctx (i.e this
2087 	 * LSM hook is not "stackable").
2088 	 */
2089 	hlist_for_each_entry(hp, &security_hook_heads.secid_to_secctx, list) {
2090 		rc = hp->hook.secid_to_secctx(secid, secdata, seclen);
2091 		if (rc != LSM_RET_DEFAULT(secid_to_secctx))
2092 			return rc;
2093 	}
2094 
2095 	return LSM_RET_DEFAULT(secid_to_secctx);
2096 }
2097 EXPORT_SYMBOL(security_secid_to_secctx);
2098 
2099 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
2100 {
2101 	*secid = 0;
2102 	return call_int_hook(secctx_to_secid, 0, secdata, seclen, secid);
2103 }
2104 EXPORT_SYMBOL(security_secctx_to_secid);
2105 
2106 void security_release_secctx(char *secdata, u32 seclen)
2107 {
2108 	call_void_hook(release_secctx, secdata, seclen);
2109 }
2110 EXPORT_SYMBOL(security_release_secctx);
2111 
2112 void security_inode_invalidate_secctx(struct inode *inode)
2113 {
2114 	call_void_hook(inode_invalidate_secctx, inode);
2115 }
2116 EXPORT_SYMBOL(security_inode_invalidate_secctx);
2117 
2118 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
2119 {
2120 	return call_int_hook(inode_notifysecctx, 0, inode, ctx, ctxlen);
2121 }
2122 EXPORT_SYMBOL(security_inode_notifysecctx);
2123 
2124 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
2125 {
2126 	return call_int_hook(inode_setsecctx, 0, dentry, ctx, ctxlen);
2127 }
2128 EXPORT_SYMBOL(security_inode_setsecctx);
2129 
2130 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
2131 {
2132 	return call_int_hook(inode_getsecctx, -EOPNOTSUPP, inode, ctx, ctxlen);
2133 }
2134 EXPORT_SYMBOL(security_inode_getsecctx);
2135 
2136 #ifdef CONFIG_WATCH_QUEUE
2137 int security_post_notification(const struct cred *w_cred,
2138 			       const struct cred *cred,
2139 			       struct watch_notification *n)
2140 {
2141 	return call_int_hook(post_notification, 0, w_cred, cred, n);
2142 }
2143 #endif /* CONFIG_WATCH_QUEUE */
2144 
2145 #ifdef CONFIG_KEY_NOTIFICATIONS
2146 int security_watch_key(struct key *key)
2147 {
2148 	return call_int_hook(watch_key, 0, key);
2149 }
2150 #endif
2151 
2152 #ifdef CONFIG_SECURITY_NETWORK
2153 
2154 int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk)
2155 {
2156 	return call_int_hook(unix_stream_connect, 0, sock, other, newsk);
2157 }
2158 EXPORT_SYMBOL(security_unix_stream_connect);
2159 
2160 int security_unix_may_send(struct socket *sock,  struct socket *other)
2161 {
2162 	return call_int_hook(unix_may_send, 0, sock, other);
2163 }
2164 EXPORT_SYMBOL(security_unix_may_send);
2165 
2166 int security_socket_create(int family, int type, int protocol, int kern)
2167 {
2168 	return call_int_hook(socket_create, 0, family, type, protocol, kern);
2169 }
2170 
2171 int security_socket_post_create(struct socket *sock, int family,
2172 				int type, int protocol, int kern)
2173 {
2174 	return call_int_hook(socket_post_create, 0, sock, family, type,
2175 						protocol, kern);
2176 }
2177 
2178 int security_socket_socketpair(struct socket *socka, struct socket *sockb)
2179 {
2180 	return call_int_hook(socket_socketpair, 0, socka, sockb);
2181 }
2182 EXPORT_SYMBOL(security_socket_socketpair);
2183 
2184 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
2185 {
2186 	return call_int_hook(socket_bind, 0, sock, address, addrlen);
2187 }
2188 
2189 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
2190 {
2191 	return call_int_hook(socket_connect, 0, sock, address, addrlen);
2192 }
2193 
2194 int security_socket_listen(struct socket *sock, int backlog)
2195 {
2196 	return call_int_hook(socket_listen, 0, sock, backlog);
2197 }
2198 
2199 int security_socket_accept(struct socket *sock, struct socket *newsock)
2200 {
2201 	return call_int_hook(socket_accept, 0, sock, newsock);
2202 }
2203 
2204 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
2205 {
2206 	return call_int_hook(socket_sendmsg, 0, sock, msg, size);
2207 }
2208 
2209 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
2210 			    int size, int flags)
2211 {
2212 	return call_int_hook(socket_recvmsg, 0, sock, msg, size, flags);
2213 }
2214 
2215 int security_socket_getsockname(struct socket *sock)
2216 {
2217 	return call_int_hook(socket_getsockname, 0, sock);
2218 }
2219 
2220 int security_socket_getpeername(struct socket *sock)
2221 {
2222 	return call_int_hook(socket_getpeername, 0, sock);
2223 }
2224 
2225 int security_socket_getsockopt(struct socket *sock, int level, int optname)
2226 {
2227 	return call_int_hook(socket_getsockopt, 0, sock, level, optname);
2228 }
2229 
2230 int security_socket_setsockopt(struct socket *sock, int level, int optname)
2231 {
2232 	return call_int_hook(socket_setsockopt, 0, sock, level, optname);
2233 }
2234 
2235 int security_socket_shutdown(struct socket *sock, int how)
2236 {
2237 	return call_int_hook(socket_shutdown, 0, sock, how);
2238 }
2239 
2240 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
2241 {
2242 	return call_int_hook(socket_sock_rcv_skb, 0, sk, skb);
2243 }
2244 EXPORT_SYMBOL(security_sock_rcv_skb);
2245 
2246 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
2247 				      int __user *optlen, unsigned len)
2248 {
2249 	return call_int_hook(socket_getpeersec_stream, -ENOPROTOOPT, sock,
2250 				optval, optlen, len);
2251 }
2252 
2253 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
2254 {
2255 	return call_int_hook(socket_getpeersec_dgram, -ENOPROTOOPT, sock,
2256 			     skb, secid);
2257 }
2258 EXPORT_SYMBOL(security_socket_getpeersec_dgram);
2259 
2260 int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
2261 {
2262 	return call_int_hook(sk_alloc_security, 0, sk, family, priority);
2263 }
2264 
2265 void security_sk_free(struct sock *sk)
2266 {
2267 	call_void_hook(sk_free_security, sk);
2268 }
2269 
2270 void security_sk_clone(const struct sock *sk, struct sock *newsk)
2271 {
2272 	call_void_hook(sk_clone_security, sk, newsk);
2273 }
2274 EXPORT_SYMBOL(security_sk_clone);
2275 
2276 void security_sk_classify_flow(struct sock *sk, struct flowi_common *flic)
2277 {
2278 	call_void_hook(sk_getsecid, sk, &flic->flowic_secid);
2279 }
2280 EXPORT_SYMBOL(security_sk_classify_flow);
2281 
2282 void security_req_classify_flow(const struct request_sock *req,
2283 				struct flowi_common *flic)
2284 {
2285 	call_void_hook(req_classify_flow, req, flic);
2286 }
2287 EXPORT_SYMBOL(security_req_classify_flow);
2288 
2289 void security_sock_graft(struct sock *sk, struct socket *parent)
2290 {
2291 	call_void_hook(sock_graft, sk, parent);
2292 }
2293 EXPORT_SYMBOL(security_sock_graft);
2294 
2295 int security_inet_conn_request(const struct sock *sk,
2296 			struct sk_buff *skb, struct request_sock *req)
2297 {
2298 	return call_int_hook(inet_conn_request, 0, sk, skb, req);
2299 }
2300 EXPORT_SYMBOL(security_inet_conn_request);
2301 
2302 void security_inet_csk_clone(struct sock *newsk,
2303 			const struct request_sock *req)
2304 {
2305 	call_void_hook(inet_csk_clone, newsk, req);
2306 }
2307 
2308 void security_inet_conn_established(struct sock *sk,
2309 			struct sk_buff *skb)
2310 {
2311 	call_void_hook(inet_conn_established, sk, skb);
2312 }
2313 EXPORT_SYMBOL(security_inet_conn_established);
2314 
2315 int security_secmark_relabel_packet(u32 secid)
2316 {
2317 	return call_int_hook(secmark_relabel_packet, 0, secid);
2318 }
2319 EXPORT_SYMBOL(security_secmark_relabel_packet);
2320 
2321 void security_secmark_refcount_inc(void)
2322 {
2323 	call_void_hook(secmark_refcount_inc);
2324 }
2325 EXPORT_SYMBOL(security_secmark_refcount_inc);
2326 
2327 void security_secmark_refcount_dec(void)
2328 {
2329 	call_void_hook(secmark_refcount_dec);
2330 }
2331 EXPORT_SYMBOL(security_secmark_refcount_dec);
2332 
2333 int security_tun_dev_alloc_security(void **security)
2334 {
2335 	return call_int_hook(tun_dev_alloc_security, 0, security);
2336 }
2337 EXPORT_SYMBOL(security_tun_dev_alloc_security);
2338 
2339 void security_tun_dev_free_security(void *security)
2340 {
2341 	call_void_hook(tun_dev_free_security, security);
2342 }
2343 EXPORT_SYMBOL(security_tun_dev_free_security);
2344 
2345 int security_tun_dev_create(void)
2346 {
2347 	return call_int_hook(tun_dev_create, 0);
2348 }
2349 EXPORT_SYMBOL(security_tun_dev_create);
2350 
2351 int security_tun_dev_attach_queue(void *security)
2352 {
2353 	return call_int_hook(tun_dev_attach_queue, 0, security);
2354 }
2355 EXPORT_SYMBOL(security_tun_dev_attach_queue);
2356 
2357 int security_tun_dev_attach(struct sock *sk, void *security)
2358 {
2359 	return call_int_hook(tun_dev_attach, 0, sk, security);
2360 }
2361 EXPORT_SYMBOL(security_tun_dev_attach);
2362 
2363 int security_tun_dev_open(void *security)
2364 {
2365 	return call_int_hook(tun_dev_open, 0, security);
2366 }
2367 EXPORT_SYMBOL(security_tun_dev_open);
2368 
2369 int security_sctp_assoc_request(struct sctp_endpoint *ep, struct sk_buff *skb)
2370 {
2371 	return call_int_hook(sctp_assoc_request, 0, ep, skb);
2372 }
2373 EXPORT_SYMBOL(security_sctp_assoc_request);
2374 
2375 int security_sctp_bind_connect(struct sock *sk, int optname,
2376 			       struct sockaddr *address, int addrlen)
2377 {
2378 	return call_int_hook(sctp_bind_connect, 0, sk, optname,
2379 			     address, addrlen);
2380 }
2381 EXPORT_SYMBOL(security_sctp_bind_connect);
2382 
2383 void security_sctp_sk_clone(struct sctp_endpoint *ep, struct sock *sk,
2384 			    struct sock *newsk)
2385 {
2386 	call_void_hook(sctp_sk_clone, ep, sk, newsk);
2387 }
2388 EXPORT_SYMBOL(security_sctp_sk_clone);
2389 
2390 #endif	/* CONFIG_SECURITY_NETWORK */
2391 
2392 #ifdef CONFIG_SECURITY_INFINIBAND
2393 
2394 int security_ib_pkey_access(void *sec, u64 subnet_prefix, u16 pkey)
2395 {
2396 	return call_int_hook(ib_pkey_access, 0, sec, subnet_prefix, pkey);
2397 }
2398 EXPORT_SYMBOL(security_ib_pkey_access);
2399 
2400 int security_ib_endport_manage_subnet(void *sec, const char *dev_name, u8 port_num)
2401 {
2402 	return call_int_hook(ib_endport_manage_subnet, 0, sec, dev_name, port_num);
2403 }
2404 EXPORT_SYMBOL(security_ib_endport_manage_subnet);
2405 
2406 int security_ib_alloc_security(void **sec)
2407 {
2408 	return call_int_hook(ib_alloc_security, 0, sec);
2409 }
2410 EXPORT_SYMBOL(security_ib_alloc_security);
2411 
2412 void security_ib_free_security(void *sec)
2413 {
2414 	call_void_hook(ib_free_security, sec);
2415 }
2416 EXPORT_SYMBOL(security_ib_free_security);
2417 #endif	/* CONFIG_SECURITY_INFINIBAND */
2418 
2419 #ifdef CONFIG_SECURITY_NETWORK_XFRM
2420 
2421 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp,
2422 			       struct xfrm_user_sec_ctx *sec_ctx,
2423 			       gfp_t gfp)
2424 {
2425 	return call_int_hook(xfrm_policy_alloc_security, 0, ctxp, sec_ctx, gfp);
2426 }
2427 EXPORT_SYMBOL(security_xfrm_policy_alloc);
2428 
2429 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
2430 			      struct xfrm_sec_ctx **new_ctxp)
2431 {
2432 	return call_int_hook(xfrm_policy_clone_security, 0, old_ctx, new_ctxp);
2433 }
2434 
2435 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
2436 {
2437 	call_void_hook(xfrm_policy_free_security, ctx);
2438 }
2439 EXPORT_SYMBOL(security_xfrm_policy_free);
2440 
2441 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
2442 {
2443 	return call_int_hook(xfrm_policy_delete_security, 0, ctx);
2444 }
2445 
2446 int security_xfrm_state_alloc(struct xfrm_state *x,
2447 			      struct xfrm_user_sec_ctx *sec_ctx)
2448 {
2449 	return call_int_hook(xfrm_state_alloc, 0, x, sec_ctx);
2450 }
2451 EXPORT_SYMBOL(security_xfrm_state_alloc);
2452 
2453 int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
2454 				      struct xfrm_sec_ctx *polsec, u32 secid)
2455 {
2456 	return call_int_hook(xfrm_state_alloc_acquire, 0, x, polsec, secid);
2457 }
2458 
2459 int security_xfrm_state_delete(struct xfrm_state *x)
2460 {
2461 	return call_int_hook(xfrm_state_delete_security, 0, x);
2462 }
2463 EXPORT_SYMBOL(security_xfrm_state_delete);
2464 
2465 void security_xfrm_state_free(struct xfrm_state *x)
2466 {
2467 	call_void_hook(xfrm_state_free_security, x);
2468 }
2469 
2470 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid)
2471 {
2472 	return call_int_hook(xfrm_policy_lookup, 0, ctx, fl_secid);
2473 }
2474 
2475 int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
2476 				       struct xfrm_policy *xp,
2477 				       const struct flowi_common *flic)
2478 {
2479 	struct security_hook_list *hp;
2480 	int rc = LSM_RET_DEFAULT(xfrm_state_pol_flow_match);
2481 
2482 	/*
2483 	 * Since this function is expected to return 0 or 1, the judgment
2484 	 * becomes difficult if multiple LSMs supply this call. Fortunately,
2485 	 * we can use the first LSM's judgment because currently only SELinux
2486 	 * supplies this call.
2487 	 *
2488 	 * For speed optimization, we explicitly break the loop rather than
2489 	 * using the macro
2490 	 */
2491 	hlist_for_each_entry(hp, &security_hook_heads.xfrm_state_pol_flow_match,
2492 				list) {
2493 		rc = hp->hook.xfrm_state_pol_flow_match(x, xp, flic);
2494 		break;
2495 	}
2496 	return rc;
2497 }
2498 
2499 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
2500 {
2501 	return call_int_hook(xfrm_decode_session, 0, skb, secid, 1);
2502 }
2503 
2504 void security_skb_classify_flow(struct sk_buff *skb, struct flowi_common *flic)
2505 {
2506 	int rc = call_int_hook(xfrm_decode_session, 0, skb, &flic->flowic_secid,
2507 				0);
2508 
2509 	BUG_ON(rc);
2510 }
2511 EXPORT_SYMBOL(security_skb_classify_flow);
2512 
2513 #endif	/* CONFIG_SECURITY_NETWORK_XFRM */
2514 
2515 #ifdef CONFIG_KEYS
2516 
2517 int security_key_alloc(struct key *key, const struct cred *cred,
2518 		       unsigned long flags)
2519 {
2520 	return call_int_hook(key_alloc, 0, key, cred, flags);
2521 }
2522 
2523 void security_key_free(struct key *key)
2524 {
2525 	call_void_hook(key_free, key);
2526 }
2527 
2528 int security_key_permission(key_ref_t key_ref, const struct cred *cred,
2529 			    enum key_need_perm need_perm)
2530 {
2531 	return call_int_hook(key_permission, 0, key_ref, cred, need_perm);
2532 }
2533 
2534 int security_key_getsecurity(struct key *key, char **_buffer)
2535 {
2536 	*_buffer = NULL;
2537 	return call_int_hook(key_getsecurity, 0, key, _buffer);
2538 }
2539 
2540 #endif	/* CONFIG_KEYS */
2541 
2542 #ifdef CONFIG_AUDIT
2543 
2544 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
2545 {
2546 	return call_int_hook(audit_rule_init, 0, field, op, rulestr, lsmrule);
2547 }
2548 
2549 int security_audit_rule_known(struct audit_krule *krule)
2550 {
2551 	return call_int_hook(audit_rule_known, 0, krule);
2552 }
2553 
2554 void security_audit_rule_free(void *lsmrule)
2555 {
2556 	call_void_hook(audit_rule_free, lsmrule);
2557 }
2558 
2559 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule)
2560 {
2561 	return call_int_hook(audit_rule_match, 0, secid, field, op, lsmrule);
2562 }
2563 #endif /* CONFIG_AUDIT */
2564 
2565 #ifdef CONFIG_BPF_SYSCALL
2566 int security_bpf(int cmd, union bpf_attr *attr, unsigned int size)
2567 {
2568 	return call_int_hook(bpf, 0, cmd, attr, size);
2569 }
2570 int security_bpf_map(struct bpf_map *map, fmode_t fmode)
2571 {
2572 	return call_int_hook(bpf_map, 0, map, fmode);
2573 }
2574 int security_bpf_prog(struct bpf_prog *prog)
2575 {
2576 	return call_int_hook(bpf_prog, 0, prog);
2577 }
2578 int security_bpf_map_alloc(struct bpf_map *map)
2579 {
2580 	return call_int_hook(bpf_map_alloc_security, 0, map);
2581 }
2582 int security_bpf_prog_alloc(struct bpf_prog_aux *aux)
2583 {
2584 	return call_int_hook(bpf_prog_alloc_security, 0, aux);
2585 }
2586 void security_bpf_map_free(struct bpf_map *map)
2587 {
2588 	call_void_hook(bpf_map_free_security, map);
2589 }
2590 void security_bpf_prog_free(struct bpf_prog_aux *aux)
2591 {
2592 	call_void_hook(bpf_prog_free_security, aux);
2593 }
2594 #endif /* CONFIG_BPF_SYSCALL */
2595 
2596 int security_locked_down(enum lockdown_reason what)
2597 {
2598 	return call_int_hook(locked_down, 0, what);
2599 }
2600 EXPORT_SYMBOL(security_locked_down);
2601 
2602 #ifdef CONFIG_PERF_EVENTS
2603 int security_perf_event_open(struct perf_event_attr *attr, int type)
2604 {
2605 	return call_int_hook(perf_event_open, 0, attr, type);
2606 }
2607 
2608 int security_perf_event_alloc(struct perf_event *event)
2609 {
2610 	return call_int_hook(perf_event_alloc, 0, event);
2611 }
2612 
2613 void security_perf_event_free(struct perf_event *event)
2614 {
2615 	call_void_hook(perf_event_free, event);
2616 }
2617 
2618 int security_perf_event_read(struct perf_event *event)
2619 {
2620 	return call_int_hook(perf_event_read, 0, event);
2621 }
2622 
2623 int security_perf_event_write(struct perf_event *event)
2624 {
2625 	return call_int_hook(perf_event_write, 0, event);
2626 }
2627 #endif /* CONFIG_PERF_EVENTS */
2628