1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Security plug functions 4 * 5 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com> 6 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com> 7 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com> 8 * Copyright (C) 2016 Mellanox Technologies 9 * Copyright (C) 2023 Microsoft Corporation <paul@paul-moore.com> 10 */ 11 12 #define pr_fmt(fmt) "LSM: " fmt 13 14 #include <linux/bpf.h> 15 #include <linux/capability.h> 16 #include <linux/dcache.h> 17 #include <linux/export.h> 18 #include <linux/init.h> 19 #include <linux/kernel.h> 20 #include <linux/kernel_read_file.h> 21 #include <linux/lsm_hooks.h> 22 #include <linux/integrity.h> 23 #include <linux/ima.h> 24 #include <linux/evm.h> 25 #include <linux/fsnotify.h> 26 #include <linux/mman.h> 27 #include <linux/mount.h> 28 #include <linux/personality.h> 29 #include <linux/backing-dev.h> 30 #include <linux/string.h> 31 #include <linux/msg.h> 32 #include <net/flow.h> 33 34 /* How many LSMs were built into the kernel? */ 35 #define LSM_COUNT (__end_lsm_info - __start_lsm_info) 36 37 /* 38 * How many LSMs are built into the kernel as determined at 39 * build time. Used to determine fixed array sizes. 40 * The capability module is accounted for by CONFIG_SECURITY 41 */ 42 #define LSM_CONFIG_COUNT ( \ 43 (IS_ENABLED(CONFIG_SECURITY) ? 1 : 0) + \ 44 (IS_ENABLED(CONFIG_SECURITY_SELINUX) ? 1 : 0) + \ 45 (IS_ENABLED(CONFIG_SECURITY_SMACK) ? 1 : 0) + \ 46 (IS_ENABLED(CONFIG_SECURITY_TOMOYO) ? 1 : 0) + \ 47 (IS_ENABLED(CONFIG_SECURITY_APPARMOR) ? 1 : 0) + \ 48 (IS_ENABLED(CONFIG_SECURITY_YAMA) ? 1 : 0) + \ 49 (IS_ENABLED(CONFIG_SECURITY_LOADPIN) ? 1 : 0) + \ 50 (IS_ENABLED(CONFIG_SECURITY_SAFESETID) ? 1 : 0) + \ 51 (IS_ENABLED(CONFIG_SECURITY_LOCKDOWN_LSM) ? 1 : 0) + \ 52 (IS_ENABLED(CONFIG_BPF_LSM) ? 1 : 0) + \ 53 (IS_ENABLED(CONFIG_SECURITY_LANDLOCK) ? 1 : 0)) 54 55 /* 56 * These are descriptions of the reasons that can be passed to the 57 * security_locked_down() LSM hook. Placing this array here allows 58 * all security modules to use the same descriptions for auditing 59 * purposes. 60 */ 61 const char *const lockdown_reasons[LOCKDOWN_CONFIDENTIALITY_MAX + 1] = { 62 [LOCKDOWN_NONE] = "none", 63 [LOCKDOWN_MODULE_SIGNATURE] = "unsigned module loading", 64 [LOCKDOWN_DEV_MEM] = "/dev/mem,kmem,port", 65 [LOCKDOWN_EFI_TEST] = "/dev/efi_test access", 66 [LOCKDOWN_KEXEC] = "kexec of unsigned images", 67 [LOCKDOWN_HIBERNATION] = "hibernation", 68 [LOCKDOWN_PCI_ACCESS] = "direct PCI access", 69 [LOCKDOWN_IOPORT] = "raw io port access", 70 [LOCKDOWN_MSR] = "raw MSR access", 71 [LOCKDOWN_ACPI_TABLES] = "modifying ACPI tables", 72 [LOCKDOWN_DEVICE_TREE] = "modifying device tree contents", 73 [LOCKDOWN_PCMCIA_CIS] = "direct PCMCIA CIS storage", 74 [LOCKDOWN_TIOCSSERIAL] = "reconfiguration of serial port IO", 75 [LOCKDOWN_MODULE_PARAMETERS] = "unsafe module parameters", 76 [LOCKDOWN_MMIOTRACE] = "unsafe mmio", 77 [LOCKDOWN_DEBUGFS] = "debugfs access", 78 [LOCKDOWN_XMON_WR] = "xmon write access", 79 [LOCKDOWN_BPF_WRITE_USER] = "use of bpf to write user RAM", 80 [LOCKDOWN_DBG_WRITE_KERNEL] = "use of kgdb/kdb to write kernel RAM", 81 [LOCKDOWN_RTAS_ERROR_INJECTION] = "RTAS error injection", 82 [LOCKDOWN_INTEGRITY_MAX] = "integrity", 83 [LOCKDOWN_KCORE] = "/proc/kcore access", 84 [LOCKDOWN_KPROBES] = "use of kprobes", 85 [LOCKDOWN_BPF_READ_KERNEL] = "use of bpf to read kernel RAM", 86 [LOCKDOWN_DBG_READ_KERNEL] = "use of kgdb/kdb to read kernel RAM", 87 [LOCKDOWN_PERF] = "unsafe use of perf", 88 [LOCKDOWN_TRACEFS] = "use of tracefs", 89 [LOCKDOWN_XMON_RW] = "xmon read and write access", 90 [LOCKDOWN_XFRM_SECRET] = "xfrm SA secret", 91 [LOCKDOWN_CONFIDENTIALITY_MAX] = "confidentiality", 92 }; 93 94 struct security_hook_heads security_hook_heads __ro_after_init; 95 static BLOCKING_NOTIFIER_HEAD(blocking_lsm_notifier_chain); 96 97 static struct kmem_cache *lsm_file_cache; 98 static struct kmem_cache *lsm_inode_cache; 99 100 char *lsm_names; 101 static struct lsm_blob_sizes blob_sizes __ro_after_init; 102 103 /* Boot-time LSM user choice */ 104 static __initdata const char *chosen_lsm_order; 105 static __initdata const char *chosen_major_lsm; 106 107 static __initconst const char *const builtin_lsm_order = CONFIG_LSM; 108 109 /* Ordered list of LSMs to initialize. */ 110 static __initdata struct lsm_info **ordered_lsms; 111 static __initdata struct lsm_info *exclusive; 112 113 static __initdata bool debug; 114 #define init_debug(...) \ 115 do { \ 116 if (debug) \ 117 pr_info(__VA_ARGS__); \ 118 } while (0) 119 120 static bool __init is_enabled(struct lsm_info *lsm) 121 { 122 if (!lsm->enabled) 123 return false; 124 125 return *lsm->enabled; 126 } 127 128 /* Mark an LSM's enabled flag. */ 129 static int lsm_enabled_true __initdata = 1; 130 static int lsm_enabled_false __initdata = 0; 131 static void __init set_enabled(struct lsm_info *lsm, bool enabled) 132 { 133 /* 134 * When an LSM hasn't configured an enable variable, we can use 135 * a hard-coded location for storing the default enabled state. 136 */ 137 if (!lsm->enabled) { 138 if (enabled) 139 lsm->enabled = &lsm_enabled_true; 140 else 141 lsm->enabled = &lsm_enabled_false; 142 } else if (lsm->enabled == &lsm_enabled_true) { 143 if (!enabled) 144 lsm->enabled = &lsm_enabled_false; 145 } else if (lsm->enabled == &lsm_enabled_false) { 146 if (enabled) 147 lsm->enabled = &lsm_enabled_true; 148 } else { 149 *lsm->enabled = enabled; 150 } 151 } 152 153 /* Is an LSM already listed in the ordered LSMs list? */ 154 static bool __init exists_ordered_lsm(struct lsm_info *lsm) 155 { 156 struct lsm_info **check; 157 158 for (check = ordered_lsms; *check; check++) 159 if (*check == lsm) 160 return true; 161 162 return false; 163 } 164 165 /* Append an LSM to the list of ordered LSMs to initialize. */ 166 static int last_lsm __initdata; 167 static void __init append_ordered_lsm(struct lsm_info *lsm, const char *from) 168 { 169 /* Ignore duplicate selections. */ 170 if (exists_ordered_lsm(lsm)) 171 return; 172 173 if (WARN(last_lsm == LSM_COUNT, "%s: out of LSM slots!?\n", from)) 174 return; 175 176 /* Enable this LSM, if it is not already set. */ 177 if (!lsm->enabled) 178 lsm->enabled = &lsm_enabled_true; 179 ordered_lsms[last_lsm++] = lsm; 180 181 init_debug("%s ordered: %s (%s)\n", from, lsm->name, 182 is_enabled(lsm) ? "enabled" : "disabled"); 183 } 184 185 /* Is an LSM allowed to be initialized? */ 186 static bool __init lsm_allowed(struct lsm_info *lsm) 187 { 188 /* Skip if the LSM is disabled. */ 189 if (!is_enabled(lsm)) 190 return false; 191 192 /* Not allowed if another exclusive LSM already initialized. */ 193 if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && exclusive) { 194 init_debug("exclusive disabled: %s\n", lsm->name); 195 return false; 196 } 197 198 return true; 199 } 200 201 static void __init lsm_set_blob_size(int *need, int *lbs) 202 { 203 int offset; 204 205 if (*need <= 0) 206 return; 207 208 offset = ALIGN(*lbs, sizeof(void *)); 209 *lbs = offset + *need; 210 *need = offset; 211 } 212 213 static void __init lsm_set_blob_sizes(struct lsm_blob_sizes *needed) 214 { 215 if (!needed) 216 return; 217 218 lsm_set_blob_size(&needed->lbs_cred, &blob_sizes.lbs_cred); 219 lsm_set_blob_size(&needed->lbs_file, &blob_sizes.lbs_file); 220 /* 221 * The inode blob gets an rcu_head in addition to 222 * what the modules might need. 223 */ 224 if (needed->lbs_inode && blob_sizes.lbs_inode == 0) 225 blob_sizes.lbs_inode = sizeof(struct rcu_head); 226 lsm_set_blob_size(&needed->lbs_inode, &blob_sizes.lbs_inode); 227 lsm_set_blob_size(&needed->lbs_ipc, &blob_sizes.lbs_ipc); 228 lsm_set_blob_size(&needed->lbs_msg_msg, &blob_sizes.lbs_msg_msg); 229 lsm_set_blob_size(&needed->lbs_superblock, &blob_sizes.lbs_superblock); 230 lsm_set_blob_size(&needed->lbs_task, &blob_sizes.lbs_task); 231 lsm_set_blob_size(&needed->lbs_xattr_count, 232 &blob_sizes.lbs_xattr_count); 233 } 234 235 /* Prepare LSM for initialization. */ 236 static void __init prepare_lsm(struct lsm_info *lsm) 237 { 238 int enabled = lsm_allowed(lsm); 239 240 /* Record enablement (to handle any following exclusive LSMs). */ 241 set_enabled(lsm, enabled); 242 243 /* If enabled, do pre-initialization work. */ 244 if (enabled) { 245 if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && !exclusive) { 246 exclusive = lsm; 247 init_debug("exclusive chosen: %s\n", lsm->name); 248 } 249 250 lsm_set_blob_sizes(lsm->blobs); 251 } 252 } 253 254 /* Initialize a given LSM, if it is enabled. */ 255 static void __init initialize_lsm(struct lsm_info *lsm) 256 { 257 if (is_enabled(lsm)) { 258 int ret; 259 260 init_debug("initializing %s\n", lsm->name); 261 ret = lsm->init(); 262 WARN(ret, "%s failed to initialize: %d\n", lsm->name, ret); 263 } 264 } 265 266 /* 267 * Current index to use while initializing the lsm id list. 268 */ 269 u32 lsm_active_cnt __ro_after_init; 270 const struct lsm_id *lsm_idlist[LSM_CONFIG_COUNT]; 271 272 /* Populate ordered LSMs list from comma-separated LSM name list. */ 273 static void __init ordered_lsm_parse(const char *order, const char *origin) 274 { 275 struct lsm_info *lsm; 276 char *sep, *name, *next; 277 278 /* LSM_ORDER_FIRST is always first. */ 279 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { 280 if (lsm->order == LSM_ORDER_FIRST) 281 append_ordered_lsm(lsm, " first"); 282 } 283 284 /* Process "security=", if given. */ 285 if (chosen_major_lsm) { 286 struct lsm_info *major; 287 288 /* 289 * To match the original "security=" behavior, this 290 * explicitly does NOT fallback to another Legacy Major 291 * if the selected one was separately disabled: disable 292 * all non-matching Legacy Major LSMs. 293 */ 294 for (major = __start_lsm_info; major < __end_lsm_info; 295 major++) { 296 if ((major->flags & LSM_FLAG_LEGACY_MAJOR) && 297 strcmp(major->name, chosen_major_lsm) != 0) { 298 set_enabled(major, false); 299 init_debug("security=%s disabled: %s (only one legacy major LSM)\n", 300 chosen_major_lsm, major->name); 301 } 302 } 303 } 304 305 sep = kstrdup(order, GFP_KERNEL); 306 next = sep; 307 /* Walk the list, looking for matching LSMs. */ 308 while ((name = strsep(&next, ",")) != NULL) { 309 bool found = false; 310 311 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { 312 if (strcmp(lsm->name, name) == 0) { 313 if (lsm->order == LSM_ORDER_MUTABLE) 314 append_ordered_lsm(lsm, origin); 315 found = true; 316 } 317 } 318 319 if (!found) 320 init_debug("%s ignored: %s (not built into kernel)\n", 321 origin, name); 322 } 323 324 /* Process "security=", if given. */ 325 if (chosen_major_lsm) { 326 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { 327 if (exists_ordered_lsm(lsm)) 328 continue; 329 if (strcmp(lsm->name, chosen_major_lsm) == 0) 330 append_ordered_lsm(lsm, "security="); 331 } 332 } 333 334 /* LSM_ORDER_LAST is always last. */ 335 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { 336 if (lsm->order == LSM_ORDER_LAST) 337 append_ordered_lsm(lsm, " last"); 338 } 339 340 /* Disable all LSMs not in the ordered list. */ 341 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { 342 if (exists_ordered_lsm(lsm)) 343 continue; 344 set_enabled(lsm, false); 345 init_debug("%s skipped: %s (not in requested order)\n", 346 origin, lsm->name); 347 } 348 349 kfree(sep); 350 } 351 352 static void __init lsm_early_cred(struct cred *cred); 353 static void __init lsm_early_task(struct task_struct *task); 354 355 static int lsm_append(const char *new, char **result); 356 357 static void __init report_lsm_order(void) 358 { 359 struct lsm_info **lsm, *early; 360 int first = 0; 361 362 pr_info("initializing lsm="); 363 364 /* Report each enabled LSM name, comma separated. */ 365 for (early = __start_early_lsm_info; 366 early < __end_early_lsm_info; early++) 367 if (is_enabled(early)) 368 pr_cont("%s%s", first++ == 0 ? "" : ",", early->name); 369 for (lsm = ordered_lsms; *lsm; lsm++) 370 if (is_enabled(*lsm)) 371 pr_cont("%s%s", first++ == 0 ? "" : ",", (*lsm)->name); 372 373 pr_cont("\n"); 374 } 375 376 static void __init ordered_lsm_init(void) 377 { 378 struct lsm_info **lsm; 379 380 ordered_lsms = kcalloc(LSM_COUNT + 1, sizeof(*ordered_lsms), 381 GFP_KERNEL); 382 383 if (chosen_lsm_order) { 384 if (chosen_major_lsm) { 385 pr_warn("security=%s is ignored because it is superseded by lsm=%s\n", 386 chosen_major_lsm, chosen_lsm_order); 387 chosen_major_lsm = NULL; 388 } 389 ordered_lsm_parse(chosen_lsm_order, "cmdline"); 390 } else 391 ordered_lsm_parse(builtin_lsm_order, "builtin"); 392 393 for (lsm = ordered_lsms; *lsm; lsm++) 394 prepare_lsm(*lsm); 395 396 report_lsm_order(); 397 398 init_debug("cred blob size = %d\n", blob_sizes.lbs_cred); 399 init_debug("file blob size = %d\n", blob_sizes.lbs_file); 400 init_debug("inode blob size = %d\n", blob_sizes.lbs_inode); 401 init_debug("ipc blob size = %d\n", blob_sizes.lbs_ipc); 402 init_debug("msg_msg blob size = %d\n", blob_sizes.lbs_msg_msg); 403 init_debug("superblock blob size = %d\n", blob_sizes.lbs_superblock); 404 init_debug("task blob size = %d\n", blob_sizes.lbs_task); 405 init_debug("xattr slots = %d\n", blob_sizes.lbs_xattr_count); 406 407 /* 408 * Create any kmem_caches needed for blobs 409 */ 410 if (blob_sizes.lbs_file) 411 lsm_file_cache = kmem_cache_create("lsm_file_cache", 412 blob_sizes.lbs_file, 0, 413 SLAB_PANIC, NULL); 414 if (blob_sizes.lbs_inode) 415 lsm_inode_cache = kmem_cache_create("lsm_inode_cache", 416 blob_sizes.lbs_inode, 0, 417 SLAB_PANIC, NULL); 418 419 lsm_early_cred((struct cred *) current->cred); 420 lsm_early_task(current); 421 for (lsm = ordered_lsms; *lsm; lsm++) 422 initialize_lsm(*lsm); 423 424 kfree(ordered_lsms); 425 } 426 427 int __init early_security_init(void) 428 { 429 struct lsm_info *lsm; 430 431 #define LSM_HOOK(RET, DEFAULT, NAME, ...) \ 432 INIT_HLIST_HEAD(&security_hook_heads.NAME); 433 #include "linux/lsm_hook_defs.h" 434 #undef LSM_HOOK 435 436 for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) { 437 if (!lsm->enabled) 438 lsm->enabled = &lsm_enabled_true; 439 prepare_lsm(lsm); 440 initialize_lsm(lsm); 441 } 442 443 return 0; 444 } 445 446 /** 447 * security_init - initializes the security framework 448 * 449 * This should be called early in the kernel initialization sequence. 450 */ 451 int __init security_init(void) 452 { 453 struct lsm_info *lsm; 454 455 init_debug("legacy security=%s\n", chosen_major_lsm ? : " *unspecified*"); 456 init_debug(" CONFIG_LSM=%s\n", builtin_lsm_order); 457 init_debug("boot arg lsm=%s\n", chosen_lsm_order ? : " *unspecified*"); 458 459 /* 460 * Append the names of the early LSM modules now that kmalloc() is 461 * available 462 */ 463 for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) { 464 init_debug(" early started: %s (%s)\n", lsm->name, 465 is_enabled(lsm) ? "enabled" : "disabled"); 466 if (lsm->enabled) 467 lsm_append(lsm->name, &lsm_names); 468 } 469 470 /* Load LSMs in specified order. */ 471 ordered_lsm_init(); 472 473 return 0; 474 } 475 476 /* Save user chosen LSM */ 477 static int __init choose_major_lsm(char *str) 478 { 479 chosen_major_lsm = str; 480 return 1; 481 } 482 __setup("security=", choose_major_lsm); 483 484 /* Explicitly choose LSM initialization order. */ 485 static int __init choose_lsm_order(char *str) 486 { 487 chosen_lsm_order = str; 488 return 1; 489 } 490 __setup("lsm=", choose_lsm_order); 491 492 /* Enable LSM order debugging. */ 493 static int __init enable_debug(char *str) 494 { 495 debug = true; 496 return 1; 497 } 498 __setup("lsm.debug", enable_debug); 499 500 static bool match_last_lsm(const char *list, const char *lsm) 501 { 502 const char *last; 503 504 if (WARN_ON(!list || !lsm)) 505 return false; 506 last = strrchr(list, ','); 507 if (last) 508 /* Pass the comma, strcmp() will check for '\0' */ 509 last++; 510 else 511 last = list; 512 return !strcmp(last, lsm); 513 } 514 515 static int lsm_append(const char *new, char **result) 516 { 517 char *cp; 518 519 if (*result == NULL) { 520 *result = kstrdup(new, GFP_KERNEL); 521 if (*result == NULL) 522 return -ENOMEM; 523 } else { 524 /* Check if it is the last registered name */ 525 if (match_last_lsm(*result, new)) 526 return 0; 527 cp = kasprintf(GFP_KERNEL, "%s,%s", *result, new); 528 if (cp == NULL) 529 return -ENOMEM; 530 kfree(*result); 531 *result = cp; 532 } 533 return 0; 534 } 535 536 /** 537 * security_add_hooks - Add a modules hooks to the hook lists. 538 * @hooks: the hooks to add 539 * @count: the number of hooks to add 540 * @lsmid: the identification information for the security module 541 * 542 * Each LSM has to register its hooks with the infrastructure. 543 */ 544 void __init security_add_hooks(struct security_hook_list *hooks, int count, 545 const struct lsm_id *lsmid) 546 { 547 int i; 548 549 /* 550 * A security module may call security_add_hooks() more 551 * than once during initialization, and LSM initialization 552 * is serialized. Landlock is one such case. 553 * Look at the previous entry, if there is one, for duplication. 554 */ 555 if (lsm_active_cnt == 0 || lsm_idlist[lsm_active_cnt - 1] != lsmid) { 556 if (lsm_active_cnt >= LSM_CONFIG_COUNT) 557 panic("%s Too many LSMs registered.\n", __func__); 558 lsm_idlist[lsm_active_cnt++] = lsmid; 559 } 560 561 for (i = 0; i < count; i++) { 562 hooks[i].lsmid = lsmid; 563 hlist_add_tail_rcu(&hooks[i].list, hooks[i].head); 564 } 565 566 /* 567 * Don't try to append during early_security_init(), we'll come back 568 * and fix this up afterwards. 569 */ 570 if (slab_is_available()) { 571 if (lsm_append(lsmid->name, &lsm_names) < 0) 572 panic("%s - Cannot get early memory.\n", __func__); 573 } 574 } 575 576 int call_blocking_lsm_notifier(enum lsm_event event, void *data) 577 { 578 return blocking_notifier_call_chain(&blocking_lsm_notifier_chain, 579 event, data); 580 } 581 EXPORT_SYMBOL(call_blocking_lsm_notifier); 582 583 int register_blocking_lsm_notifier(struct notifier_block *nb) 584 { 585 return blocking_notifier_chain_register(&blocking_lsm_notifier_chain, 586 nb); 587 } 588 EXPORT_SYMBOL(register_blocking_lsm_notifier); 589 590 int unregister_blocking_lsm_notifier(struct notifier_block *nb) 591 { 592 return blocking_notifier_chain_unregister(&blocking_lsm_notifier_chain, 593 nb); 594 } 595 EXPORT_SYMBOL(unregister_blocking_lsm_notifier); 596 597 /** 598 * lsm_cred_alloc - allocate a composite cred blob 599 * @cred: the cred that needs a blob 600 * @gfp: allocation type 601 * 602 * Allocate the cred blob for all the modules 603 * 604 * Returns 0, or -ENOMEM if memory can't be allocated. 605 */ 606 static int lsm_cred_alloc(struct cred *cred, gfp_t gfp) 607 { 608 if (blob_sizes.lbs_cred == 0) { 609 cred->security = NULL; 610 return 0; 611 } 612 613 cred->security = kzalloc(blob_sizes.lbs_cred, gfp); 614 if (cred->security == NULL) 615 return -ENOMEM; 616 return 0; 617 } 618 619 /** 620 * lsm_early_cred - during initialization allocate a composite cred blob 621 * @cred: the cred that needs a blob 622 * 623 * Allocate the cred blob for all the modules 624 */ 625 static void __init lsm_early_cred(struct cred *cred) 626 { 627 int rc = lsm_cred_alloc(cred, GFP_KERNEL); 628 629 if (rc) 630 panic("%s: Early cred alloc failed.\n", __func__); 631 } 632 633 /** 634 * lsm_file_alloc - allocate a composite file blob 635 * @file: the file that needs a blob 636 * 637 * Allocate the file blob for all the modules 638 * 639 * Returns 0, or -ENOMEM if memory can't be allocated. 640 */ 641 static int lsm_file_alloc(struct file *file) 642 { 643 if (!lsm_file_cache) { 644 file->f_security = NULL; 645 return 0; 646 } 647 648 file->f_security = kmem_cache_zalloc(lsm_file_cache, GFP_KERNEL); 649 if (file->f_security == NULL) 650 return -ENOMEM; 651 return 0; 652 } 653 654 /** 655 * lsm_inode_alloc - allocate a composite inode blob 656 * @inode: the inode that needs a blob 657 * 658 * Allocate the inode blob for all the modules 659 * 660 * Returns 0, or -ENOMEM if memory can't be allocated. 661 */ 662 int lsm_inode_alloc(struct inode *inode) 663 { 664 if (!lsm_inode_cache) { 665 inode->i_security = NULL; 666 return 0; 667 } 668 669 inode->i_security = kmem_cache_zalloc(lsm_inode_cache, GFP_NOFS); 670 if (inode->i_security == NULL) 671 return -ENOMEM; 672 return 0; 673 } 674 675 /** 676 * lsm_task_alloc - allocate a composite task blob 677 * @task: the task that needs a blob 678 * 679 * Allocate the task blob for all the modules 680 * 681 * Returns 0, or -ENOMEM if memory can't be allocated. 682 */ 683 static int lsm_task_alloc(struct task_struct *task) 684 { 685 if (blob_sizes.lbs_task == 0) { 686 task->security = NULL; 687 return 0; 688 } 689 690 task->security = kzalloc(blob_sizes.lbs_task, GFP_KERNEL); 691 if (task->security == NULL) 692 return -ENOMEM; 693 return 0; 694 } 695 696 /** 697 * lsm_ipc_alloc - allocate a composite ipc blob 698 * @kip: the ipc that needs a blob 699 * 700 * Allocate the ipc blob for all the modules 701 * 702 * Returns 0, or -ENOMEM if memory can't be allocated. 703 */ 704 static int lsm_ipc_alloc(struct kern_ipc_perm *kip) 705 { 706 if (blob_sizes.lbs_ipc == 0) { 707 kip->security = NULL; 708 return 0; 709 } 710 711 kip->security = kzalloc(blob_sizes.lbs_ipc, GFP_KERNEL); 712 if (kip->security == NULL) 713 return -ENOMEM; 714 return 0; 715 } 716 717 /** 718 * lsm_msg_msg_alloc - allocate a composite msg_msg blob 719 * @mp: the msg_msg that needs a blob 720 * 721 * Allocate the ipc blob for all the modules 722 * 723 * Returns 0, or -ENOMEM if memory can't be allocated. 724 */ 725 static int lsm_msg_msg_alloc(struct msg_msg *mp) 726 { 727 if (blob_sizes.lbs_msg_msg == 0) { 728 mp->security = NULL; 729 return 0; 730 } 731 732 mp->security = kzalloc(blob_sizes.lbs_msg_msg, GFP_KERNEL); 733 if (mp->security == NULL) 734 return -ENOMEM; 735 return 0; 736 } 737 738 /** 739 * lsm_early_task - during initialization allocate a composite task blob 740 * @task: the task that needs a blob 741 * 742 * Allocate the task blob for all the modules 743 */ 744 static void __init lsm_early_task(struct task_struct *task) 745 { 746 int rc = lsm_task_alloc(task); 747 748 if (rc) 749 panic("%s: Early task alloc failed.\n", __func__); 750 } 751 752 /** 753 * lsm_superblock_alloc - allocate a composite superblock blob 754 * @sb: the superblock that needs a blob 755 * 756 * Allocate the superblock blob for all the modules 757 * 758 * Returns 0, or -ENOMEM if memory can't be allocated. 759 */ 760 static int lsm_superblock_alloc(struct super_block *sb) 761 { 762 if (blob_sizes.lbs_superblock == 0) { 763 sb->s_security = NULL; 764 return 0; 765 } 766 767 sb->s_security = kzalloc(blob_sizes.lbs_superblock, GFP_KERNEL); 768 if (sb->s_security == NULL) 769 return -ENOMEM; 770 return 0; 771 } 772 773 /** 774 * lsm_fill_user_ctx - Fill a user space lsm_ctx structure 775 * @uctx: a userspace LSM context to be filled 776 * @uctx_len: available uctx size (input), used uctx size (output) 777 * @val: the new LSM context value 778 * @val_len: the size of the new LSM context value 779 * @id: LSM id 780 * @flags: LSM defined flags 781 * 782 * Fill all of the fields in a userspace lsm_ctx structure. 783 * 784 * Returns 0 on success, -E2BIG if userspace buffer is not large enough, 785 * -EFAULT on a copyout error, -ENOMEM if memory can't be allocated. 786 */ 787 int lsm_fill_user_ctx(struct lsm_ctx __user *uctx, size_t *uctx_len, 788 void *val, size_t val_len, 789 u64 id, u64 flags) 790 { 791 struct lsm_ctx *nctx = NULL; 792 size_t nctx_len; 793 int rc = 0; 794 795 nctx_len = ALIGN(struct_size(nctx, ctx, val_len), sizeof(void *)); 796 if (nctx_len > *uctx_len) { 797 rc = -E2BIG; 798 goto out; 799 } 800 801 nctx = kzalloc(nctx_len, GFP_KERNEL); 802 if (nctx == NULL) { 803 rc = -ENOMEM; 804 goto out; 805 } 806 nctx->id = id; 807 nctx->flags = flags; 808 nctx->len = nctx_len; 809 nctx->ctx_len = val_len; 810 memcpy(nctx->ctx, val, val_len); 811 812 if (copy_to_user(uctx, nctx, nctx_len)) 813 rc = -EFAULT; 814 815 out: 816 kfree(nctx); 817 *uctx_len = nctx_len; 818 return rc; 819 } 820 821 /* 822 * The default value of the LSM hook is defined in linux/lsm_hook_defs.h and 823 * can be accessed with: 824 * 825 * LSM_RET_DEFAULT(<hook_name>) 826 * 827 * The macros below define static constants for the default value of each 828 * LSM hook. 829 */ 830 #define LSM_RET_DEFAULT(NAME) (NAME##_default) 831 #define DECLARE_LSM_RET_DEFAULT_void(DEFAULT, NAME) 832 #define DECLARE_LSM_RET_DEFAULT_int(DEFAULT, NAME) \ 833 static const int __maybe_unused LSM_RET_DEFAULT(NAME) = (DEFAULT); 834 #define LSM_HOOK(RET, DEFAULT, NAME, ...) \ 835 DECLARE_LSM_RET_DEFAULT_##RET(DEFAULT, NAME) 836 837 #include <linux/lsm_hook_defs.h> 838 #undef LSM_HOOK 839 840 /* 841 * Hook list operation macros. 842 * 843 * call_void_hook: 844 * This is a hook that does not return a value. 845 * 846 * call_int_hook: 847 * This is a hook that returns a value. 848 */ 849 850 #define call_void_hook(FUNC, ...) \ 851 do { \ 852 struct security_hook_list *P; \ 853 \ 854 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) \ 855 P->hook.FUNC(__VA_ARGS__); \ 856 } while (0) 857 858 #define call_int_hook(FUNC, IRC, ...) ({ \ 859 int RC = IRC; \ 860 do { \ 861 struct security_hook_list *P; \ 862 \ 863 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) { \ 864 RC = P->hook.FUNC(__VA_ARGS__); \ 865 if (RC != 0) \ 866 break; \ 867 } \ 868 } while (0); \ 869 RC; \ 870 }) 871 872 /* Security operations */ 873 874 /** 875 * security_binder_set_context_mgr() - Check if becoming binder ctx mgr is ok 876 * @mgr: task credentials of current binder process 877 * 878 * Check whether @mgr is allowed to be the binder context manager. 879 * 880 * Return: Return 0 if permission is granted. 881 */ 882 int security_binder_set_context_mgr(const struct cred *mgr) 883 { 884 return call_int_hook(binder_set_context_mgr, 0, mgr); 885 } 886 887 /** 888 * security_binder_transaction() - Check if a binder transaction is allowed 889 * @from: sending process 890 * @to: receiving process 891 * 892 * Check whether @from is allowed to invoke a binder transaction call to @to. 893 * 894 * Return: Returns 0 if permission is granted. 895 */ 896 int security_binder_transaction(const struct cred *from, 897 const struct cred *to) 898 { 899 return call_int_hook(binder_transaction, 0, from, to); 900 } 901 902 /** 903 * security_binder_transfer_binder() - Check if a binder transfer is allowed 904 * @from: sending process 905 * @to: receiving process 906 * 907 * Check whether @from is allowed to transfer a binder reference to @to. 908 * 909 * Return: Returns 0 if permission is granted. 910 */ 911 int security_binder_transfer_binder(const struct cred *from, 912 const struct cred *to) 913 { 914 return call_int_hook(binder_transfer_binder, 0, from, to); 915 } 916 917 /** 918 * security_binder_transfer_file() - Check if a binder file xfer is allowed 919 * @from: sending process 920 * @to: receiving process 921 * @file: file being transferred 922 * 923 * Check whether @from is allowed to transfer @file to @to. 924 * 925 * Return: Returns 0 if permission is granted. 926 */ 927 int security_binder_transfer_file(const struct cred *from, 928 const struct cred *to, const struct file *file) 929 { 930 return call_int_hook(binder_transfer_file, 0, from, to, file); 931 } 932 933 /** 934 * security_ptrace_access_check() - Check if tracing is allowed 935 * @child: target process 936 * @mode: PTRACE_MODE flags 937 * 938 * Check permission before allowing the current process to trace the @child 939 * process. Security modules may also want to perform a process tracing check 940 * during an execve in the set_security or apply_creds hooks of tracing check 941 * during an execve in the bprm_set_creds hook of binprm_security_ops if the 942 * process is being traced and its security attributes would be changed by the 943 * execve. 944 * 945 * Return: Returns 0 if permission is granted. 946 */ 947 int security_ptrace_access_check(struct task_struct *child, unsigned int mode) 948 { 949 return call_int_hook(ptrace_access_check, 0, child, mode); 950 } 951 952 /** 953 * security_ptrace_traceme() - Check if tracing is allowed 954 * @parent: tracing process 955 * 956 * Check that the @parent process has sufficient permission to trace the 957 * current process before allowing the current process to present itself to the 958 * @parent process for tracing. 959 * 960 * Return: Returns 0 if permission is granted. 961 */ 962 int security_ptrace_traceme(struct task_struct *parent) 963 { 964 return call_int_hook(ptrace_traceme, 0, parent); 965 } 966 967 /** 968 * security_capget() - Get the capability sets for a process 969 * @target: target process 970 * @effective: effective capability set 971 * @inheritable: inheritable capability set 972 * @permitted: permitted capability set 973 * 974 * Get the @effective, @inheritable, and @permitted capability sets for the 975 * @target process. The hook may also perform permission checking to determine 976 * if the current process is allowed to see the capability sets of the @target 977 * process. 978 * 979 * Return: Returns 0 if the capability sets were successfully obtained. 980 */ 981 int security_capget(const struct task_struct *target, 982 kernel_cap_t *effective, 983 kernel_cap_t *inheritable, 984 kernel_cap_t *permitted) 985 { 986 return call_int_hook(capget, 0, target, 987 effective, inheritable, permitted); 988 } 989 990 /** 991 * security_capset() - Set the capability sets for a process 992 * @new: new credentials for the target process 993 * @old: current credentials of the target process 994 * @effective: effective capability set 995 * @inheritable: inheritable capability set 996 * @permitted: permitted capability set 997 * 998 * Set the @effective, @inheritable, and @permitted capability sets for the 999 * current process. 1000 * 1001 * Return: Returns 0 and update @new if permission is granted. 1002 */ 1003 int security_capset(struct cred *new, const struct cred *old, 1004 const kernel_cap_t *effective, 1005 const kernel_cap_t *inheritable, 1006 const kernel_cap_t *permitted) 1007 { 1008 return call_int_hook(capset, 0, new, old, 1009 effective, inheritable, permitted); 1010 } 1011 1012 /** 1013 * security_capable() - Check if a process has the necessary capability 1014 * @cred: credentials to examine 1015 * @ns: user namespace 1016 * @cap: capability requested 1017 * @opts: capability check options 1018 * 1019 * Check whether the @tsk process has the @cap capability in the indicated 1020 * credentials. @cap contains the capability <include/linux/capability.h>. 1021 * @opts contains options for the capable check <include/linux/security.h>. 1022 * 1023 * Return: Returns 0 if the capability is granted. 1024 */ 1025 int security_capable(const struct cred *cred, 1026 struct user_namespace *ns, 1027 int cap, 1028 unsigned int opts) 1029 { 1030 return call_int_hook(capable, 0, cred, ns, cap, opts); 1031 } 1032 1033 /** 1034 * security_quotactl() - Check if a quotactl() syscall is allowed for this fs 1035 * @cmds: commands 1036 * @type: type 1037 * @id: id 1038 * @sb: filesystem 1039 * 1040 * Check whether the quotactl syscall is allowed for this @sb. 1041 * 1042 * Return: Returns 0 if permission is granted. 1043 */ 1044 int security_quotactl(int cmds, int type, int id, const struct super_block *sb) 1045 { 1046 return call_int_hook(quotactl, 0, cmds, type, id, sb); 1047 } 1048 1049 /** 1050 * security_quota_on() - Check if QUOTAON is allowed for a dentry 1051 * @dentry: dentry 1052 * 1053 * Check whether QUOTAON is allowed for @dentry. 1054 * 1055 * Return: Returns 0 if permission is granted. 1056 */ 1057 int security_quota_on(struct dentry *dentry) 1058 { 1059 return call_int_hook(quota_on, 0, dentry); 1060 } 1061 1062 /** 1063 * security_syslog() - Check if accessing the kernel message ring is allowed 1064 * @type: SYSLOG_ACTION_* type 1065 * 1066 * Check permission before accessing the kernel message ring or changing 1067 * logging to the console. See the syslog(2) manual page for an explanation of 1068 * the @type values. 1069 * 1070 * Return: Return 0 if permission is granted. 1071 */ 1072 int security_syslog(int type) 1073 { 1074 return call_int_hook(syslog, 0, type); 1075 } 1076 1077 /** 1078 * security_settime64() - Check if changing the system time is allowed 1079 * @ts: new time 1080 * @tz: timezone 1081 * 1082 * Check permission to change the system time, struct timespec64 is defined in 1083 * <include/linux/time64.h> and timezone is defined in <include/linux/time.h>. 1084 * 1085 * Return: Returns 0 if permission is granted. 1086 */ 1087 int security_settime64(const struct timespec64 *ts, const struct timezone *tz) 1088 { 1089 return call_int_hook(settime, 0, ts, tz); 1090 } 1091 1092 /** 1093 * security_vm_enough_memory_mm() - Check if allocating a new mem map is allowed 1094 * @mm: mm struct 1095 * @pages: number of pages 1096 * 1097 * Check permissions for allocating a new virtual mapping. If all LSMs return 1098 * a positive value, __vm_enough_memory() will be called with cap_sys_admin 1099 * set. If at least one LSM returns 0 or negative, __vm_enough_memory() will be 1100 * called with cap_sys_admin cleared. 1101 * 1102 * Return: Returns 0 if permission is granted by the LSM infrastructure to the 1103 * caller. 1104 */ 1105 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages) 1106 { 1107 struct security_hook_list *hp; 1108 int cap_sys_admin = 1; 1109 int rc; 1110 1111 /* 1112 * The module will respond with a positive value if 1113 * it thinks the __vm_enough_memory() call should be 1114 * made with the cap_sys_admin set. If all of the modules 1115 * agree that it should be set it will. If any module 1116 * thinks it should not be set it won't. 1117 */ 1118 hlist_for_each_entry(hp, &security_hook_heads.vm_enough_memory, list) { 1119 rc = hp->hook.vm_enough_memory(mm, pages); 1120 if (rc <= 0) { 1121 cap_sys_admin = 0; 1122 break; 1123 } 1124 } 1125 return __vm_enough_memory(mm, pages, cap_sys_admin); 1126 } 1127 1128 /** 1129 * security_bprm_creds_for_exec() - Prepare the credentials for exec() 1130 * @bprm: binary program information 1131 * 1132 * If the setup in prepare_exec_creds did not setup @bprm->cred->security 1133 * properly for executing @bprm->file, update the LSM's portion of 1134 * @bprm->cred->security to be what commit_creds needs to install for the new 1135 * program. This hook may also optionally check permissions (e.g. for 1136 * transitions between security domains). The hook must set @bprm->secureexec 1137 * to 1 if AT_SECURE should be set to request libc enable secure mode. @bprm 1138 * contains the linux_binprm structure. 1139 * 1140 * Return: Returns 0 if the hook is successful and permission is granted. 1141 */ 1142 int security_bprm_creds_for_exec(struct linux_binprm *bprm) 1143 { 1144 return call_int_hook(bprm_creds_for_exec, 0, bprm); 1145 } 1146 1147 /** 1148 * security_bprm_creds_from_file() - Update linux_binprm creds based on file 1149 * @bprm: binary program information 1150 * @file: associated file 1151 * 1152 * If @file is setpcap, suid, sgid or otherwise marked to change privilege upon 1153 * exec, update @bprm->cred to reflect that change. This is called after 1154 * finding the binary that will be executed without an interpreter. This 1155 * ensures that the credentials will not be derived from a script that the 1156 * binary will need to reopen, which when reopend may end up being a completely 1157 * different file. This hook may also optionally check permissions (e.g. for 1158 * transitions between security domains). The hook must set @bprm->secureexec 1159 * to 1 if AT_SECURE should be set to request libc enable secure mode. The 1160 * hook must add to @bprm->per_clear any personality flags that should be 1161 * cleared from current->personality. @bprm contains the linux_binprm 1162 * structure. 1163 * 1164 * Return: Returns 0 if the hook is successful and permission is granted. 1165 */ 1166 int security_bprm_creds_from_file(struct linux_binprm *bprm, const struct file *file) 1167 { 1168 return call_int_hook(bprm_creds_from_file, 0, bprm, file); 1169 } 1170 1171 /** 1172 * security_bprm_check() - Mediate binary handler search 1173 * @bprm: binary program information 1174 * 1175 * This hook mediates the point when a search for a binary handler will begin. 1176 * It allows a check against the @bprm->cred->security value which was set in 1177 * the preceding creds_for_exec call. The argv list and envp list are reliably 1178 * available in @bprm. This hook may be called multiple times during a single 1179 * execve. @bprm contains the linux_binprm structure. 1180 * 1181 * Return: Returns 0 if the hook is successful and permission is granted. 1182 */ 1183 int security_bprm_check(struct linux_binprm *bprm) 1184 { 1185 int ret; 1186 1187 ret = call_int_hook(bprm_check_security, 0, bprm); 1188 if (ret) 1189 return ret; 1190 return ima_bprm_check(bprm); 1191 } 1192 1193 /** 1194 * security_bprm_committing_creds() - Install creds for a process during exec() 1195 * @bprm: binary program information 1196 * 1197 * Prepare to install the new security attributes of a process being 1198 * transformed by an execve operation, based on the old credentials pointed to 1199 * by @current->cred and the information set in @bprm->cred by the 1200 * bprm_creds_for_exec hook. @bprm points to the linux_binprm structure. This 1201 * hook is a good place to perform state changes on the process such as closing 1202 * open file descriptors to which access will no longer be granted when the 1203 * attributes are changed. This is called immediately before commit_creds(). 1204 */ 1205 void security_bprm_committing_creds(const struct linux_binprm *bprm) 1206 { 1207 call_void_hook(bprm_committing_creds, bprm); 1208 } 1209 1210 /** 1211 * security_bprm_committed_creds() - Tidy up after cred install during exec() 1212 * @bprm: binary program information 1213 * 1214 * Tidy up after the installation of the new security attributes of a process 1215 * being transformed by an execve operation. The new credentials have, by this 1216 * point, been set to @current->cred. @bprm points to the linux_binprm 1217 * structure. This hook is a good place to perform state changes on the 1218 * process such as clearing out non-inheritable signal state. This is called 1219 * immediately after commit_creds(). 1220 */ 1221 void security_bprm_committed_creds(const struct linux_binprm *bprm) 1222 { 1223 call_void_hook(bprm_committed_creds, bprm); 1224 } 1225 1226 /** 1227 * security_fs_context_submount() - Initialise fc->security 1228 * @fc: new filesystem context 1229 * @reference: dentry reference for submount/remount 1230 * 1231 * Fill out the ->security field for a new fs_context. 1232 * 1233 * Return: Returns 0 on success or negative error code on failure. 1234 */ 1235 int security_fs_context_submount(struct fs_context *fc, struct super_block *reference) 1236 { 1237 return call_int_hook(fs_context_submount, 0, fc, reference); 1238 } 1239 1240 /** 1241 * security_fs_context_dup() - Duplicate a fs_context LSM blob 1242 * @fc: destination filesystem context 1243 * @src_fc: source filesystem context 1244 * 1245 * Allocate and attach a security structure to sc->security. This pointer is 1246 * initialised to NULL by the caller. @fc indicates the new filesystem context. 1247 * @src_fc indicates the original filesystem context. 1248 * 1249 * Return: Returns 0 on success or a negative error code on failure. 1250 */ 1251 int security_fs_context_dup(struct fs_context *fc, struct fs_context *src_fc) 1252 { 1253 return call_int_hook(fs_context_dup, 0, fc, src_fc); 1254 } 1255 1256 /** 1257 * security_fs_context_parse_param() - Configure a filesystem context 1258 * @fc: filesystem context 1259 * @param: filesystem parameter 1260 * 1261 * Userspace provided a parameter to configure a superblock. The LSM can 1262 * consume the parameter or return it to the caller for use elsewhere. 1263 * 1264 * Return: If the parameter is used by the LSM it should return 0, if it is 1265 * returned to the caller -ENOPARAM is returned, otherwise a negative 1266 * error code is returned. 1267 */ 1268 int security_fs_context_parse_param(struct fs_context *fc, 1269 struct fs_parameter *param) 1270 { 1271 struct security_hook_list *hp; 1272 int trc; 1273 int rc = -ENOPARAM; 1274 1275 hlist_for_each_entry(hp, &security_hook_heads.fs_context_parse_param, 1276 list) { 1277 trc = hp->hook.fs_context_parse_param(fc, param); 1278 if (trc == 0) 1279 rc = 0; 1280 else if (trc != -ENOPARAM) 1281 return trc; 1282 } 1283 return rc; 1284 } 1285 1286 /** 1287 * security_sb_alloc() - Allocate a super_block LSM blob 1288 * @sb: filesystem superblock 1289 * 1290 * Allocate and attach a security structure to the sb->s_security field. The 1291 * s_security field is initialized to NULL when the structure is allocated. 1292 * @sb contains the super_block structure to be modified. 1293 * 1294 * Return: Returns 0 if operation was successful. 1295 */ 1296 int security_sb_alloc(struct super_block *sb) 1297 { 1298 int rc = lsm_superblock_alloc(sb); 1299 1300 if (unlikely(rc)) 1301 return rc; 1302 rc = call_int_hook(sb_alloc_security, 0, sb); 1303 if (unlikely(rc)) 1304 security_sb_free(sb); 1305 return rc; 1306 } 1307 1308 /** 1309 * security_sb_delete() - Release super_block LSM associated objects 1310 * @sb: filesystem superblock 1311 * 1312 * Release objects tied to a superblock (e.g. inodes). @sb contains the 1313 * super_block structure being released. 1314 */ 1315 void security_sb_delete(struct super_block *sb) 1316 { 1317 call_void_hook(sb_delete, sb); 1318 } 1319 1320 /** 1321 * security_sb_free() - Free a super_block LSM blob 1322 * @sb: filesystem superblock 1323 * 1324 * Deallocate and clear the sb->s_security field. @sb contains the super_block 1325 * structure to be modified. 1326 */ 1327 void security_sb_free(struct super_block *sb) 1328 { 1329 call_void_hook(sb_free_security, sb); 1330 kfree(sb->s_security); 1331 sb->s_security = NULL; 1332 } 1333 1334 /** 1335 * security_free_mnt_opts() - Free memory associated with mount options 1336 * @mnt_opts: LSM processed mount options 1337 * 1338 * Free memory associated with @mnt_ops. 1339 */ 1340 void security_free_mnt_opts(void **mnt_opts) 1341 { 1342 if (!*mnt_opts) 1343 return; 1344 call_void_hook(sb_free_mnt_opts, *mnt_opts); 1345 *mnt_opts = NULL; 1346 } 1347 EXPORT_SYMBOL(security_free_mnt_opts); 1348 1349 /** 1350 * security_sb_eat_lsm_opts() - Consume LSM mount options 1351 * @options: mount options 1352 * @mnt_opts: LSM processed mount options 1353 * 1354 * Eat (scan @options) and save them in @mnt_opts. 1355 * 1356 * Return: Returns 0 on success, negative values on failure. 1357 */ 1358 int security_sb_eat_lsm_opts(char *options, void **mnt_opts) 1359 { 1360 return call_int_hook(sb_eat_lsm_opts, 0, options, mnt_opts); 1361 } 1362 EXPORT_SYMBOL(security_sb_eat_lsm_opts); 1363 1364 /** 1365 * security_sb_mnt_opts_compat() - Check if new mount options are allowed 1366 * @sb: filesystem superblock 1367 * @mnt_opts: new mount options 1368 * 1369 * Determine if the new mount options in @mnt_opts are allowed given the 1370 * existing mounted filesystem at @sb. @sb superblock being compared. 1371 * 1372 * Return: Returns 0 if options are compatible. 1373 */ 1374 int security_sb_mnt_opts_compat(struct super_block *sb, 1375 void *mnt_opts) 1376 { 1377 return call_int_hook(sb_mnt_opts_compat, 0, sb, mnt_opts); 1378 } 1379 EXPORT_SYMBOL(security_sb_mnt_opts_compat); 1380 1381 /** 1382 * security_sb_remount() - Verify no incompatible mount changes during remount 1383 * @sb: filesystem superblock 1384 * @mnt_opts: (re)mount options 1385 * 1386 * Extracts security system specific mount options and verifies no changes are 1387 * being made to those options. 1388 * 1389 * Return: Returns 0 if permission is granted. 1390 */ 1391 int security_sb_remount(struct super_block *sb, 1392 void *mnt_opts) 1393 { 1394 return call_int_hook(sb_remount, 0, sb, mnt_opts); 1395 } 1396 EXPORT_SYMBOL(security_sb_remount); 1397 1398 /** 1399 * security_sb_kern_mount() - Check if a kernel mount is allowed 1400 * @sb: filesystem superblock 1401 * 1402 * Mount this @sb if allowed by permissions. 1403 * 1404 * Return: Returns 0 if permission is granted. 1405 */ 1406 int security_sb_kern_mount(const struct super_block *sb) 1407 { 1408 return call_int_hook(sb_kern_mount, 0, sb); 1409 } 1410 1411 /** 1412 * security_sb_show_options() - Output the mount options for a superblock 1413 * @m: output file 1414 * @sb: filesystem superblock 1415 * 1416 * Show (print on @m) mount options for this @sb. 1417 * 1418 * Return: Returns 0 on success, negative values on failure. 1419 */ 1420 int security_sb_show_options(struct seq_file *m, struct super_block *sb) 1421 { 1422 return call_int_hook(sb_show_options, 0, m, sb); 1423 } 1424 1425 /** 1426 * security_sb_statfs() - Check if accessing fs stats is allowed 1427 * @dentry: superblock handle 1428 * 1429 * Check permission before obtaining filesystem statistics for the @mnt 1430 * mountpoint. @dentry is a handle on the superblock for the filesystem. 1431 * 1432 * Return: Returns 0 if permission is granted. 1433 */ 1434 int security_sb_statfs(struct dentry *dentry) 1435 { 1436 return call_int_hook(sb_statfs, 0, dentry); 1437 } 1438 1439 /** 1440 * security_sb_mount() - Check permission for mounting a filesystem 1441 * @dev_name: filesystem backing device 1442 * @path: mount point 1443 * @type: filesystem type 1444 * @flags: mount flags 1445 * @data: filesystem specific data 1446 * 1447 * Check permission before an object specified by @dev_name is mounted on the 1448 * mount point named by @nd. For an ordinary mount, @dev_name identifies a 1449 * device if the file system type requires a device. For a remount 1450 * (@flags & MS_REMOUNT), @dev_name is irrelevant. For a loopback/bind mount 1451 * (@flags & MS_BIND), @dev_name identifies the pathname of the object being 1452 * mounted. 1453 * 1454 * Return: Returns 0 if permission is granted. 1455 */ 1456 int security_sb_mount(const char *dev_name, const struct path *path, 1457 const char *type, unsigned long flags, void *data) 1458 { 1459 return call_int_hook(sb_mount, 0, dev_name, path, type, flags, data); 1460 } 1461 1462 /** 1463 * security_sb_umount() - Check permission for unmounting a filesystem 1464 * @mnt: mounted filesystem 1465 * @flags: unmount flags 1466 * 1467 * Check permission before the @mnt file system is unmounted. 1468 * 1469 * Return: Returns 0 if permission is granted. 1470 */ 1471 int security_sb_umount(struct vfsmount *mnt, int flags) 1472 { 1473 return call_int_hook(sb_umount, 0, mnt, flags); 1474 } 1475 1476 /** 1477 * security_sb_pivotroot() - Check permissions for pivoting the rootfs 1478 * @old_path: new location for current rootfs 1479 * @new_path: location of the new rootfs 1480 * 1481 * Check permission before pivoting the root filesystem. 1482 * 1483 * Return: Returns 0 if permission is granted. 1484 */ 1485 int security_sb_pivotroot(const struct path *old_path, 1486 const struct path *new_path) 1487 { 1488 return call_int_hook(sb_pivotroot, 0, old_path, new_path); 1489 } 1490 1491 /** 1492 * security_sb_set_mnt_opts() - Set the mount options for a filesystem 1493 * @sb: filesystem superblock 1494 * @mnt_opts: binary mount options 1495 * @kern_flags: kernel flags (in) 1496 * @set_kern_flags: kernel flags (out) 1497 * 1498 * Set the security relevant mount options used for a superblock. 1499 * 1500 * Return: Returns 0 on success, error on failure. 1501 */ 1502 int security_sb_set_mnt_opts(struct super_block *sb, 1503 void *mnt_opts, 1504 unsigned long kern_flags, 1505 unsigned long *set_kern_flags) 1506 { 1507 return call_int_hook(sb_set_mnt_opts, 1508 mnt_opts ? -EOPNOTSUPP : 0, sb, 1509 mnt_opts, kern_flags, set_kern_flags); 1510 } 1511 EXPORT_SYMBOL(security_sb_set_mnt_opts); 1512 1513 /** 1514 * security_sb_clone_mnt_opts() - Duplicate superblock mount options 1515 * @oldsb: source superblock 1516 * @newsb: destination superblock 1517 * @kern_flags: kernel flags (in) 1518 * @set_kern_flags: kernel flags (out) 1519 * 1520 * Copy all security options from a given superblock to another. 1521 * 1522 * Return: Returns 0 on success, error on failure. 1523 */ 1524 int security_sb_clone_mnt_opts(const struct super_block *oldsb, 1525 struct super_block *newsb, 1526 unsigned long kern_flags, 1527 unsigned long *set_kern_flags) 1528 { 1529 return call_int_hook(sb_clone_mnt_opts, 0, oldsb, newsb, 1530 kern_flags, set_kern_flags); 1531 } 1532 EXPORT_SYMBOL(security_sb_clone_mnt_opts); 1533 1534 /** 1535 * security_move_mount() - Check permissions for moving a mount 1536 * @from_path: source mount point 1537 * @to_path: destination mount point 1538 * 1539 * Check permission before a mount is moved. 1540 * 1541 * Return: Returns 0 if permission is granted. 1542 */ 1543 int security_move_mount(const struct path *from_path, 1544 const struct path *to_path) 1545 { 1546 return call_int_hook(move_mount, 0, from_path, to_path); 1547 } 1548 1549 /** 1550 * security_path_notify() - Check if setting a watch is allowed 1551 * @path: file path 1552 * @mask: event mask 1553 * @obj_type: file path type 1554 * 1555 * Check permissions before setting a watch on events as defined by @mask, on 1556 * an object at @path, whose type is defined by @obj_type. 1557 * 1558 * Return: Returns 0 if permission is granted. 1559 */ 1560 int security_path_notify(const struct path *path, u64 mask, 1561 unsigned int obj_type) 1562 { 1563 return call_int_hook(path_notify, 0, path, mask, obj_type); 1564 } 1565 1566 /** 1567 * security_inode_alloc() - Allocate an inode LSM blob 1568 * @inode: the inode 1569 * 1570 * Allocate and attach a security structure to @inode->i_security. The 1571 * i_security field is initialized to NULL when the inode structure is 1572 * allocated. 1573 * 1574 * Return: Return 0 if operation was successful. 1575 */ 1576 int security_inode_alloc(struct inode *inode) 1577 { 1578 int rc = lsm_inode_alloc(inode); 1579 1580 if (unlikely(rc)) 1581 return rc; 1582 rc = call_int_hook(inode_alloc_security, 0, inode); 1583 if (unlikely(rc)) 1584 security_inode_free(inode); 1585 return rc; 1586 } 1587 1588 static void inode_free_by_rcu(struct rcu_head *head) 1589 { 1590 /* 1591 * The rcu head is at the start of the inode blob 1592 */ 1593 kmem_cache_free(lsm_inode_cache, head); 1594 } 1595 1596 /** 1597 * security_inode_free() - Free an inode's LSM blob 1598 * @inode: the inode 1599 * 1600 * Deallocate the inode security structure and set @inode->i_security to NULL. 1601 */ 1602 void security_inode_free(struct inode *inode) 1603 { 1604 integrity_inode_free(inode); 1605 call_void_hook(inode_free_security, inode); 1606 /* 1607 * The inode may still be referenced in a path walk and 1608 * a call to security_inode_permission() can be made 1609 * after inode_free_security() is called. Ideally, the VFS 1610 * wouldn't do this, but fixing that is a much harder 1611 * job. For now, simply free the i_security via RCU, and 1612 * leave the current inode->i_security pointer intact. 1613 * The inode will be freed after the RCU grace period too. 1614 */ 1615 if (inode->i_security) 1616 call_rcu((struct rcu_head *)inode->i_security, 1617 inode_free_by_rcu); 1618 } 1619 1620 /** 1621 * security_dentry_init_security() - Perform dentry initialization 1622 * @dentry: the dentry to initialize 1623 * @mode: mode used to determine resource type 1624 * @name: name of the last path component 1625 * @xattr_name: name of the security/LSM xattr 1626 * @ctx: pointer to the resulting LSM context 1627 * @ctxlen: length of @ctx 1628 * 1629 * Compute a context for a dentry as the inode is not yet available since NFSv4 1630 * has no label backed by an EA anyway. It is important to note that 1631 * @xattr_name does not need to be free'd by the caller, it is a static string. 1632 * 1633 * Return: Returns 0 on success, negative values on failure. 1634 */ 1635 int security_dentry_init_security(struct dentry *dentry, int mode, 1636 const struct qstr *name, 1637 const char **xattr_name, void **ctx, 1638 u32 *ctxlen) 1639 { 1640 struct security_hook_list *hp; 1641 int rc; 1642 1643 /* 1644 * Only one module will provide a security context. 1645 */ 1646 hlist_for_each_entry(hp, &security_hook_heads.dentry_init_security, 1647 list) { 1648 rc = hp->hook.dentry_init_security(dentry, mode, name, 1649 xattr_name, ctx, ctxlen); 1650 if (rc != LSM_RET_DEFAULT(dentry_init_security)) 1651 return rc; 1652 } 1653 return LSM_RET_DEFAULT(dentry_init_security); 1654 } 1655 EXPORT_SYMBOL(security_dentry_init_security); 1656 1657 /** 1658 * security_dentry_create_files_as() - Perform dentry initialization 1659 * @dentry: the dentry to initialize 1660 * @mode: mode used to determine resource type 1661 * @name: name of the last path component 1662 * @old: creds to use for LSM context calculations 1663 * @new: creds to modify 1664 * 1665 * Compute a context for a dentry as the inode is not yet available and set 1666 * that context in passed in creds so that new files are created using that 1667 * context. Context is calculated using the passed in creds and not the creds 1668 * of the caller. 1669 * 1670 * Return: Returns 0 on success, error on failure. 1671 */ 1672 int security_dentry_create_files_as(struct dentry *dentry, int mode, 1673 struct qstr *name, 1674 const struct cred *old, struct cred *new) 1675 { 1676 return call_int_hook(dentry_create_files_as, 0, dentry, mode, 1677 name, old, new); 1678 } 1679 EXPORT_SYMBOL(security_dentry_create_files_as); 1680 1681 /** 1682 * security_inode_init_security() - Initialize an inode's LSM context 1683 * @inode: the inode 1684 * @dir: parent directory 1685 * @qstr: last component of the pathname 1686 * @initxattrs: callback function to write xattrs 1687 * @fs_data: filesystem specific data 1688 * 1689 * Obtain the security attribute name suffix and value to set on a newly 1690 * created inode and set up the incore security field for the new inode. This 1691 * hook is called by the fs code as part of the inode creation transaction and 1692 * provides for atomic labeling of the inode, unlike the post_create/mkdir/... 1693 * hooks called by the VFS. 1694 * 1695 * The hook function is expected to populate the xattrs array, by calling 1696 * lsm_get_xattr_slot() to retrieve the slots reserved by the security module 1697 * with the lbs_xattr_count field of the lsm_blob_sizes structure. For each 1698 * slot, the hook function should set ->name to the attribute name suffix 1699 * (e.g. selinux), to allocate ->value (will be freed by the caller) and set it 1700 * to the attribute value, to set ->value_len to the length of the value. If 1701 * the security module does not use security attributes or does not wish to put 1702 * a security attribute on this particular inode, then it should return 1703 * -EOPNOTSUPP to skip this processing. 1704 * 1705 * Return: Returns 0 if the LSM successfully initialized all of the inode 1706 * security attributes that are required, negative values otherwise. 1707 */ 1708 int security_inode_init_security(struct inode *inode, struct inode *dir, 1709 const struct qstr *qstr, 1710 const initxattrs initxattrs, void *fs_data) 1711 { 1712 struct security_hook_list *hp; 1713 struct xattr *new_xattrs = NULL; 1714 int ret = -EOPNOTSUPP, xattr_count = 0; 1715 1716 if (unlikely(IS_PRIVATE(inode))) 1717 return 0; 1718 1719 if (!blob_sizes.lbs_xattr_count) 1720 return 0; 1721 1722 if (initxattrs) { 1723 /* Allocate +1 for EVM and +1 as terminator. */ 1724 new_xattrs = kcalloc(blob_sizes.lbs_xattr_count + 2, 1725 sizeof(*new_xattrs), GFP_NOFS); 1726 if (!new_xattrs) 1727 return -ENOMEM; 1728 } 1729 1730 hlist_for_each_entry(hp, &security_hook_heads.inode_init_security, 1731 list) { 1732 ret = hp->hook.inode_init_security(inode, dir, qstr, new_xattrs, 1733 &xattr_count); 1734 if (ret && ret != -EOPNOTSUPP) 1735 goto out; 1736 /* 1737 * As documented in lsm_hooks.h, -EOPNOTSUPP in this context 1738 * means that the LSM is not willing to provide an xattr, not 1739 * that it wants to signal an error. Thus, continue to invoke 1740 * the remaining LSMs. 1741 */ 1742 } 1743 1744 /* If initxattrs() is NULL, xattr_count is zero, skip the call. */ 1745 if (!xattr_count) 1746 goto out; 1747 1748 ret = evm_inode_init_security(inode, dir, qstr, new_xattrs, 1749 &xattr_count); 1750 if (ret) 1751 goto out; 1752 ret = initxattrs(inode, new_xattrs, fs_data); 1753 out: 1754 for (; xattr_count > 0; xattr_count--) 1755 kfree(new_xattrs[xattr_count - 1].value); 1756 kfree(new_xattrs); 1757 return (ret == -EOPNOTSUPP) ? 0 : ret; 1758 } 1759 EXPORT_SYMBOL(security_inode_init_security); 1760 1761 /** 1762 * security_inode_init_security_anon() - Initialize an anonymous inode 1763 * @inode: the inode 1764 * @name: the anonymous inode class 1765 * @context_inode: an optional related inode 1766 * 1767 * Set up the incore security field for the new anonymous inode and return 1768 * whether the inode creation is permitted by the security module or not. 1769 * 1770 * Return: Returns 0 on success, -EACCES if the security module denies the 1771 * creation of this inode, or another -errno upon other errors. 1772 */ 1773 int security_inode_init_security_anon(struct inode *inode, 1774 const struct qstr *name, 1775 const struct inode *context_inode) 1776 { 1777 return call_int_hook(inode_init_security_anon, 0, inode, name, 1778 context_inode); 1779 } 1780 1781 #ifdef CONFIG_SECURITY_PATH 1782 /** 1783 * security_path_mknod() - Check if creating a special file is allowed 1784 * @dir: parent directory 1785 * @dentry: new file 1786 * @mode: new file mode 1787 * @dev: device number 1788 * 1789 * Check permissions when creating a file. Note that this hook is called even 1790 * if mknod operation is being done for a regular file. 1791 * 1792 * Return: Returns 0 if permission is granted. 1793 */ 1794 int security_path_mknod(const struct path *dir, struct dentry *dentry, 1795 umode_t mode, unsigned int dev) 1796 { 1797 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 1798 return 0; 1799 return call_int_hook(path_mknod, 0, dir, dentry, mode, dev); 1800 } 1801 EXPORT_SYMBOL(security_path_mknod); 1802 1803 /** 1804 * security_path_mkdir() - Check if creating a new directory is allowed 1805 * @dir: parent directory 1806 * @dentry: new directory 1807 * @mode: new directory mode 1808 * 1809 * Check permissions to create a new directory in the existing directory. 1810 * 1811 * Return: Returns 0 if permission is granted. 1812 */ 1813 int security_path_mkdir(const struct path *dir, struct dentry *dentry, 1814 umode_t mode) 1815 { 1816 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 1817 return 0; 1818 return call_int_hook(path_mkdir, 0, dir, dentry, mode); 1819 } 1820 EXPORT_SYMBOL(security_path_mkdir); 1821 1822 /** 1823 * security_path_rmdir() - Check if removing a directory is allowed 1824 * @dir: parent directory 1825 * @dentry: directory to remove 1826 * 1827 * Check the permission to remove a directory. 1828 * 1829 * Return: Returns 0 if permission is granted. 1830 */ 1831 int security_path_rmdir(const struct path *dir, struct dentry *dentry) 1832 { 1833 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 1834 return 0; 1835 return call_int_hook(path_rmdir, 0, dir, dentry); 1836 } 1837 1838 /** 1839 * security_path_unlink() - Check if removing a hard link is allowed 1840 * @dir: parent directory 1841 * @dentry: file 1842 * 1843 * Check the permission to remove a hard link to a file. 1844 * 1845 * Return: Returns 0 if permission is granted. 1846 */ 1847 int security_path_unlink(const struct path *dir, struct dentry *dentry) 1848 { 1849 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 1850 return 0; 1851 return call_int_hook(path_unlink, 0, dir, dentry); 1852 } 1853 EXPORT_SYMBOL(security_path_unlink); 1854 1855 /** 1856 * security_path_symlink() - Check if creating a symbolic link is allowed 1857 * @dir: parent directory 1858 * @dentry: symbolic link 1859 * @old_name: file pathname 1860 * 1861 * Check the permission to create a symbolic link to a file. 1862 * 1863 * Return: Returns 0 if permission is granted. 1864 */ 1865 int security_path_symlink(const struct path *dir, struct dentry *dentry, 1866 const char *old_name) 1867 { 1868 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 1869 return 0; 1870 return call_int_hook(path_symlink, 0, dir, dentry, old_name); 1871 } 1872 1873 /** 1874 * security_path_link - Check if creating a hard link is allowed 1875 * @old_dentry: existing file 1876 * @new_dir: new parent directory 1877 * @new_dentry: new link 1878 * 1879 * Check permission before creating a new hard link to a file. 1880 * 1881 * Return: Returns 0 if permission is granted. 1882 */ 1883 int security_path_link(struct dentry *old_dentry, const struct path *new_dir, 1884 struct dentry *new_dentry) 1885 { 1886 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)))) 1887 return 0; 1888 return call_int_hook(path_link, 0, old_dentry, new_dir, new_dentry); 1889 } 1890 1891 /** 1892 * security_path_rename() - Check if renaming a file is allowed 1893 * @old_dir: parent directory of the old file 1894 * @old_dentry: the old file 1895 * @new_dir: parent directory of the new file 1896 * @new_dentry: the new file 1897 * @flags: flags 1898 * 1899 * Check for permission to rename a file or directory. 1900 * 1901 * Return: Returns 0 if permission is granted. 1902 */ 1903 int security_path_rename(const struct path *old_dir, struct dentry *old_dentry, 1904 const struct path *new_dir, struct dentry *new_dentry, 1905 unsigned int flags) 1906 { 1907 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) || 1908 (d_is_positive(new_dentry) && 1909 IS_PRIVATE(d_backing_inode(new_dentry))))) 1910 return 0; 1911 1912 return call_int_hook(path_rename, 0, old_dir, old_dentry, new_dir, 1913 new_dentry, flags); 1914 } 1915 EXPORT_SYMBOL(security_path_rename); 1916 1917 /** 1918 * security_path_truncate() - Check if truncating a file is allowed 1919 * @path: file 1920 * 1921 * Check permission before truncating the file indicated by path. Note that 1922 * truncation permissions may also be checked based on already opened files, 1923 * using the security_file_truncate() hook. 1924 * 1925 * Return: Returns 0 if permission is granted. 1926 */ 1927 int security_path_truncate(const struct path *path) 1928 { 1929 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 1930 return 0; 1931 return call_int_hook(path_truncate, 0, path); 1932 } 1933 1934 /** 1935 * security_path_chmod() - Check if changing the file's mode is allowed 1936 * @path: file 1937 * @mode: new mode 1938 * 1939 * Check for permission to change a mode of the file @path. The new mode is 1940 * specified in @mode which is a bitmask of constants from 1941 * <include/uapi/linux/stat.h>. 1942 * 1943 * Return: Returns 0 if permission is granted. 1944 */ 1945 int security_path_chmod(const struct path *path, umode_t mode) 1946 { 1947 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 1948 return 0; 1949 return call_int_hook(path_chmod, 0, path, mode); 1950 } 1951 1952 /** 1953 * security_path_chown() - Check if changing the file's owner/group is allowed 1954 * @path: file 1955 * @uid: file owner 1956 * @gid: file group 1957 * 1958 * Check for permission to change owner/group of a file or directory. 1959 * 1960 * Return: Returns 0 if permission is granted. 1961 */ 1962 int security_path_chown(const struct path *path, kuid_t uid, kgid_t gid) 1963 { 1964 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 1965 return 0; 1966 return call_int_hook(path_chown, 0, path, uid, gid); 1967 } 1968 1969 /** 1970 * security_path_chroot() - Check if changing the root directory is allowed 1971 * @path: directory 1972 * 1973 * Check for permission to change root directory. 1974 * 1975 * Return: Returns 0 if permission is granted. 1976 */ 1977 int security_path_chroot(const struct path *path) 1978 { 1979 return call_int_hook(path_chroot, 0, path); 1980 } 1981 #endif /* CONFIG_SECURITY_PATH */ 1982 1983 /** 1984 * security_inode_create() - Check if creating a file is allowed 1985 * @dir: the parent directory 1986 * @dentry: the file being created 1987 * @mode: requested file mode 1988 * 1989 * Check permission to create a regular file. 1990 * 1991 * Return: Returns 0 if permission is granted. 1992 */ 1993 int security_inode_create(struct inode *dir, struct dentry *dentry, 1994 umode_t mode) 1995 { 1996 if (unlikely(IS_PRIVATE(dir))) 1997 return 0; 1998 return call_int_hook(inode_create, 0, dir, dentry, mode); 1999 } 2000 EXPORT_SYMBOL_GPL(security_inode_create); 2001 2002 /** 2003 * security_inode_link() - Check if creating a hard link is allowed 2004 * @old_dentry: existing file 2005 * @dir: new parent directory 2006 * @new_dentry: new link 2007 * 2008 * Check permission before creating a new hard link to a file. 2009 * 2010 * Return: Returns 0 if permission is granted. 2011 */ 2012 int security_inode_link(struct dentry *old_dentry, struct inode *dir, 2013 struct dentry *new_dentry) 2014 { 2015 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)))) 2016 return 0; 2017 return call_int_hook(inode_link, 0, old_dentry, dir, new_dentry); 2018 } 2019 2020 /** 2021 * security_inode_unlink() - Check if removing a hard link is allowed 2022 * @dir: parent directory 2023 * @dentry: file 2024 * 2025 * Check the permission to remove a hard link to a file. 2026 * 2027 * Return: Returns 0 if permission is granted. 2028 */ 2029 int security_inode_unlink(struct inode *dir, struct dentry *dentry) 2030 { 2031 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2032 return 0; 2033 return call_int_hook(inode_unlink, 0, dir, dentry); 2034 } 2035 2036 /** 2037 * security_inode_symlink() - Check if creating a symbolic link is allowed 2038 * @dir: parent directory 2039 * @dentry: symbolic link 2040 * @old_name: existing filename 2041 * 2042 * Check the permission to create a symbolic link to a file. 2043 * 2044 * Return: Returns 0 if permission is granted. 2045 */ 2046 int security_inode_symlink(struct inode *dir, struct dentry *dentry, 2047 const char *old_name) 2048 { 2049 if (unlikely(IS_PRIVATE(dir))) 2050 return 0; 2051 return call_int_hook(inode_symlink, 0, dir, dentry, old_name); 2052 } 2053 2054 /** 2055 * security_inode_mkdir() - Check if creation a new director is allowed 2056 * @dir: parent directory 2057 * @dentry: new directory 2058 * @mode: new directory mode 2059 * 2060 * Check permissions to create a new directory in the existing directory 2061 * associated with inode structure @dir. 2062 * 2063 * Return: Returns 0 if permission is granted. 2064 */ 2065 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 2066 { 2067 if (unlikely(IS_PRIVATE(dir))) 2068 return 0; 2069 return call_int_hook(inode_mkdir, 0, dir, dentry, mode); 2070 } 2071 EXPORT_SYMBOL_GPL(security_inode_mkdir); 2072 2073 /** 2074 * security_inode_rmdir() - Check if removing a directory is allowed 2075 * @dir: parent directory 2076 * @dentry: directory to be removed 2077 * 2078 * Check the permission to remove a directory. 2079 * 2080 * Return: Returns 0 if permission is granted. 2081 */ 2082 int security_inode_rmdir(struct inode *dir, struct dentry *dentry) 2083 { 2084 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2085 return 0; 2086 return call_int_hook(inode_rmdir, 0, dir, dentry); 2087 } 2088 2089 /** 2090 * security_inode_mknod() - Check if creating a special file is allowed 2091 * @dir: parent directory 2092 * @dentry: new file 2093 * @mode: new file mode 2094 * @dev: device number 2095 * 2096 * Check permissions when creating a special file (or a socket or a fifo file 2097 * created via the mknod system call). Note that if mknod operation is being 2098 * done for a regular file, then the create hook will be called and not this 2099 * hook. 2100 * 2101 * Return: Returns 0 if permission is granted. 2102 */ 2103 int security_inode_mknod(struct inode *dir, struct dentry *dentry, 2104 umode_t mode, dev_t dev) 2105 { 2106 if (unlikely(IS_PRIVATE(dir))) 2107 return 0; 2108 return call_int_hook(inode_mknod, 0, dir, dentry, mode, dev); 2109 } 2110 2111 /** 2112 * security_inode_rename() - Check if renaming a file is allowed 2113 * @old_dir: parent directory of the old file 2114 * @old_dentry: the old file 2115 * @new_dir: parent directory of the new file 2116 * @new_dentry: the new file 2117 * @flags: flags 2118 * 2119 * Check for permission to rename a file or directory. 2120 * 2121 * Return: Returns 0 if permission is granted. 2122 */ 2123 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry, 2124 struct inode *new_dir, struct dentry *new_dentry, 2125 unsigned int flags) 2126 { 2127 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) || 2128 (d_is_positive(new_dentry) && 2129 IS_PRIVATE(d_backing_inode(new_dentry))))) 2130 return 0; 2131 2132 if (flags & RENAME_EXCHANGE) { 2133 int err = call_int_hook(inode_rename, 0, new_dir, new_dentry, 2134 old_dir, old_dentry); 2135 if (err) 2136 return err; 2137 } 2138 2139 return call_int_hook(inode_rename, 0, old_dir, old_dentry, 2140 new_dir, new_dentry); 2141 } 2142 2143 /** 2144 * security_inode_readlink() - Check if reading a symbolic link is allowed 2145 * @dentry: link 2146 * 2147 * Check the permission to read the symbolic link. 2148 * 2149 * Return: Returns 0 if permission is granted. 2150 */ 2151 int security_inode_readlink(struct dentry *dentry) 2152 { 2153 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2154 return 0; 2155 return call_int_hook(inode_readlink, 0, dentry); 2156 } 2157 2158 /** 2159 * security_inode_follow_link() - Check if following a symbolic link is allowed 2160 * @dentry: link dentry 2161 * @inode: link inode 2162 * @rcu: true if in RCU-walk mode 2163 * 2164 * Check permission to follow a symbolic link when looking up a pathname. If 2165 * @rcu is true, @inode is not stable. 2166 * 2167 * Return: Returns 0 if permission is granted. 2168 */ 2169 int security_inode_follow_link(struct dentry *dentry, struct inode *inode, 2170 bool rcu) 2171 { 2172 if (unlikely(IS_PRIVATE(inode))) 2173 return 0; 2174 return call_int_hook(inode_follow_link, 0, dentry, inode, rcu); 2175 } 2176 2177 /** 2178 * security_inode_permission() - Check if accessing an inode is allowed 2179 * @inode: inode 2180 * @mask: access mask 2181 * 2182 * Check permission before accessing an inode. This hook is called by the 2183 * existing Linux permission function, so a security module can use it to 2184 * provide additional checking for existing Linux permission checks. Notice 2185 * that this hook is called when a file is opened (as well as many other 2186 * operations), whereas the file_security_ops permission hook is called when 2187 * the actual read/write operations are performed. 2188 * 2189 * Return: Returns 0 if permission is granted. 2190 */ 2191 int security_inode_permission(struct inode *inode, int mask) 2192 { 2193 if (unlikely(IS_PRIVATE(inode))) 2194 return 0; 2195 return call_int_hook(inode_permission, 0, inode, mask); 2196 } 2197 2198 /** 2199 * security_inode_setattr() - Check if setting file attributes is allowed 2200 * @idmap: idmap of the mount 2201 * @dentry: file 2202 * @attr: new attributes 2203 * 2204 * Check permission before setting file attributes. Note that the kernel call 2205 * to notify_change is performed from several locations, whenever file 2206 * attributes change (such as when a file is truncated, chown/chmod operations, 2207 * transferring disk quotas, etc). 2208 * 2209 * Return: Returns 0 if permission is granted. 2210 */ 2211 int security_inode_setattr(struct mnt_idmap *idmap, 2212 struct dentry *dentry, struct iattr *attr) 2213 { 2214 int ret; 2215 2216 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2217 return 0; 2218 ret = call_int_hook(inode_setattr, 0, dentry, attr); 2219 if (ret) 2220 return ret; 2221 return evm_inode_setattr(idmap, dentry, attr); 2222 } 2223 EXPORT_SYMBOL_GPL(security_inode_setattr); 2224 2225 /** 2226 * security_inode_getattr() - Check if getting file attributes is allowed 2227 * @path: file 2228 * 2229 * Check permission before obtaining file attributes. 2230 * 2231 * Return: Returns 0 if permission is granted. 2232 */ 2233 int security_inode_getattr(const struct path *path) 2234 { 2235 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 2236 return 0; 2237 return call_int_hook(inode_getattr, 0, path); 2238 } 2239 2240 /** 2241 * security_inode_setxattr() - Check if setting file xattrs is allowed 2242 * @idmap: idmap of the mount 2243 * @dentry: file 2244 * @name: xattr name 2245 * @value: xattr value 2246 * @size: size of xattr value 2247 * @flags: flags 2248 * 2249 * Check permission before setting the extended attributes. 2250 * 2251 * Return: Returns 0 if permission is granted. 2252 */ 2253 int security_inode_setxattr(struct mnt_idmap *idmap, 2254 struct dentry *dentry, const char *name, 2255 const void *value, size_t size, int flags) 2256 { 2257 int ret; 2258 2259 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2260 return 0; 2261 /* 2262 * SELinux and Smack integrate the cap call, 2263 * so assume that all LSMs supplying this call do so. 2264 */ 2265 ret = call_int_hook(inode_setxattr, 1, idmap, dentry, name, value, 2266 size, flags); 2267 2268 if (ret == 1) 2269 ret = cap_inode_setxattr(dentry, name, value, size, flags); 2270 if (ret) 2271 return ret; 2272 ret = ima_inode_setxattr(dentry, name, value, size); 2273 if (ret) 2274 return ret; 2275 return evm_inode_setxattr(idmap, dentry, name, value, size); 2276 } 2277 2278 /** 2279 * security_inode_set_acl() - Check if setting posix acls is allowed 2280 * @idmap: idmap of the mount 2281 * @dentry: file 2282 * @acl_name: acl name 2283 * @kacl: acl struct 2284 * 2285 * Check permission before setting posix acls, the posix acls in @kacl are 2286 * identified by @acl_name. 2287 * 2288 * Return: Returns 0 if permission is granted. 2289 */ 2290 int security_inode_set_acl(struct mnt_idmap *idmap, 2291 struct dentry *dentry, const char *acl_name, 2292 struct posix_acl *kacl) 2293 { 2294 int ret; 2295 2296 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2297 return 0; 2298 ret = call_int_hook(inode_set_acl, 0, idmap, dentry, acl_name, 2299 kacl); 2300 if (ret) 2301 return ret; 2302 ret = ima_inode_set_acl(idmap, dentry, acl_name, kacl); 2303 if (ret) 2304 return ret; 2305 return evm_inode_set_acl(idmap, dentry, acl_name, kacl); 2306 } 2307 2308 /** 2309 * security_inode_get_acl() - Check if reading posix acls is allowed 2310 * @idmap: idmap of the mount 2311 * @dentry: file 2312 * @acl_name: acl name 2313 * 2314 * Check permission before getting osix acls, the posix acls are identified by 2315 * @acl_name. 2316 * 2317 * Return: Returns 0 if permission is granted. 2318 */ 2319 int security_inode_get_acl(struct mnt_idmap *idmap, 2320 struct dentry *dentry, const char *acl_name) 2321 { 2322 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2323 return 0; 2324 return call_int_hook(inode_get_acl, 0, idmap, dentry, acl_name); 2325 } 2326 2327 /** 2328 * security_inode_remove_acl() - Check if removing a posix acl is allowed 2329 * @idmap: idmap of the mount 2330 * @dentry: file 2331 * @acl_name: acl name 2332 * 2333 * Check permission before removing posix acls, the posix acls are identified 2334 * by @acl_name. 2335 * 2336 * Return: Returns 0 if permission is granted. 2337 */ 2338 int security_inode_remove_acl(struct mnt_idmap *idmap, 2339 struct dentry *dentry, const char *acl_name) 2340 { 2341 int ret; 2342 2343 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2344 return 0; 2345 ret = call_int_hook(inode_remove_acl, 0, idmap, dentry, acl_name); 2346 if (ret) 2347 return ret; 2348 ret = ima_inode_remove_acl(idmap, dentry, acl_name); 2349 if (ret) 2350 return ret; 2351 return evm_inode_remove_acl(idmap, dentry, acl_name); 2352 } 2353 2354 /** 2355 * security_inode_post_setxattr() - Update the inode after a setxattr operation 2356 * @dentry: file 2357 * @name: xattr name 2358 * @value: xattr value 2359 * @size: xattr value size 2360 * @flags: flags 2361 * 2362 * Update inode security field after successful setxattr operation. 2363 */ 2364 void security_inode_post_setxattr(struct dentry *dentry, const char *name, 2365 const void *value, size_t size, int flags) 2366 { 2367 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2368 return; 2369 call_void_hook(inode_post_setxattr, dentry, name, value, size, flags); 2370 evm_inode_post_setxattr(dentry, name, value, size); 2371 } 2372 2373 /** 2374 * security_inode_getxattr() - Check if xattr access is allowed 2375 * @dentry: file 2376 * @name: xattr name 2377 * 2378 * Check permission before obtaining the extended attributes identified by 2379 * @name for @dentry. 2380 * 2381 * Return: Returns 0 if permission is granted. 2382 */ 2383 int security_inode_getxattr(struct dentry *dentry, const char *name) 2384 { 2385 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2386 return 0; 2387 return call_int_hook(inode_getxattr, 0, dentry, name); 2388 } 2389 2390 /** 2391 * security_inode_listxattr() - Check if listing xattrs is allowed 2392 * @dentry: file 2393 * 2394 * Check permission before obtaining the list of extended attribute names for 2395 * @dentry. 2396 * 2397 * Return: Returns 0 if permission is granted. 2398 */ 2399 int security_inode_listxattr(struct dentry *dentry) 2400 { 2401 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2402 return 0; 2403 return call_int_hook(inode_listxattr, 0, dentry); 2404 } 2405 2406 /** 2407 * security_inode_removexattr() - Check if removing an xattr is allowed 2408 * @idmap: idmap of the mount 2409 * @dentry: file 2410 * @name: xattr name 2411 * 2412 * Check permission before removing the extended attribute identified by @name 2413 * for @dentry. 2414 * 2415 * Return: Returns 0 if permission is granted. 2416 */ 2417 int security_inode_removexattr(struct mnt_idmap *idmap, 2418 struct dentry *dentry, const char *name) 2419 { 2420 int ret; 2421 2422 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2423 return 0; 2424 /* 2425 * SELinux and Smack integrate the cap call, 2426 * so assume that all LSMs supplying this call do so. 2427 */ 2428 ret = call_int_hook(inode_removexattr, 1, idmap, dentry, name); 2429 if (ret == 1) 2430 ret = cap_inode_removexattr(idmap, dentry, name); 2431 if (ret) 2432 return ret; 2433 ret = ima_inode_removexattr(dentry, name); 2434 if (ret) 2435 return ret; 2436 return evm_inode_removexattr(idmap, dentry, name); 2437 } 2438 2439 /** 2440 * security_inode_need_killpriv() - Check if security_inode_killpriv() required 2441 * @dentry: associated dentry 2442 * 2443 * Called when an inode has been changed to determine if 2444 * security_inode_killpriv() should be called. 2445 * 2446 * Return: Return <0 on error to abort the inode change operation, return 0 if 2447 * security_inode_killpriv() does not need to be called, return >0 if 2448 * security_inode_killpriv() does need to be called. 2449 */ 2450 int security_inode_need_killpriv(struct dentry *dentry) 2451 { 2452 return call_int_hook(inode_need_killpriv, 0, dentry); 2453 } 2454 2455 /** 2456 * security_inode_killpriv() - The setuid bit is removed, update LSM state 2457 * @idmap: idmap of the mount 2458 * @dentry: associated dentry 2459 * 2460 * The @dentry's setuid bit is being removed. Remove similar security labels. 2461 * Called with the dentry->d_inode->i_mutex held. 2462 * 2463 * Return: Return 0 on success. If error is returned, then the operation 2464 * causing setuid bit removal is failed. 2465 */ 2466 int security_inode_killpriv(struct mnt_idmap *idmap, 2467 struct dentry *dentry) 2468 { 2469 return call_int_hook(inode_killpriv, 0, idmap, dentry); 2470 } 2471 2472 /** 2473 * security_inode_getsecurity() - Get the xattr security label of an inode 2474 * @idmap: idmap of the mount 2475 * @inode: inode 2476 * @name: xattr name 2477 * @buffer: security label buffer 2478 * @alloc: allocation flag 2479 * 2480 * Retrieve a copy of the extended attribute representation of the security 2481 * label associated with @name for @inode via @buffer. Note that @name is the 2482 * remainder of the attribute name after the security prefix has been removed. 2483 * @alloc is used to specify if the call should return a value via the buffer 2484 * or just the value length. 2485 * 2486 * Return: Returns size of buffer on success. 2487 */ 2488 int security_inode_getsecurity(struct mnt_idmap *idmap, 2489 struct inode *inode, const char *name, 2490 void **buffer, bool alloc) 2491 { 2492 struct security_hook_list *hp; 2493 int rc; 2494 2495 if (unlikely(IS_PRIVATE(inode))) 2496 return LSM_RET_DEFAULT(inode_getsecurity); 2497 /* 2498 * Only one module will provide an attribute with a given name. 2499 */ 2500 hlist_for_each_entry(hp, &security_hook_heads.inode_getsecurity, list) { 2501 rc = hp->hook.inode_getsecurity(idmap, inode, name, buffer, 2502 alloc); 2503 if (rc != LSM_RET_DEFAULT(inode_getsecurity)) 2504 return rc; 2505 } 2506 return LSM_RET_DEFAULT(inode_getsecurity); 2507 } 2508 2509 /** 2510 * security_inode_setsecurity() - Set the xattr security label of an inode 2511 * @inode: inode 2512 * @name: xattr name 2513 * @value: security label 2514 * @size: length of security label 2515 * @flags: flags 2516 * 2517 * Set the security label associated with @name for @inode from the extended 2518 * attribute value @value. @size indicates the size of the @value in bytes. 2519 * @flags may be XATTR_CREATE, XATTR_REPLACE, or 0. Note that @name is the 2520 * remainder of the attribute name after the security. prefix has been removed. 2521 * 2522 * Return: Returns 0 on success. 2523 */ 2524 int security_inode_setsecurity(struct inode *inode, const char *name, 2525 const void *value, size_t size, int flags) 2526 { 2527 struct security_hook_list *hp; 2528 int rc; 2529 2530 if (unlikely(IS_PRIVATE(inode))) 2531 return LSM_RET_DEFAULT(inode_setsecurity); 2532 /* 2533 * Only one module will provide an attribute with a given name. 2534 */ 2535 hlist_for_each_entry(hp, &security_hook_heads.inode_setsecurity, list) { 2536 rc = hp->hook.inode_setsecurity(inode, name, value, size, 2537 flags); 2538 if (rc != LSM_RET_DEFAULT(inode_setsecurity)) 2539 return rc; 2540 } 2541 return LSM_RET_DEFAULT(inode_setsecurity); 2542 } 2543 2544 /** 2545 * security_inode_listsecurity() - List the xattr security label names 2546 * @inode: inode 2547 * @buffer: buffer 2548 * @buffer_size: size of buffer 2549 * 2550 * Copy the extended attribute names for the security labels associated with 2551 * @inode into @buffer. The maximum size of @buffer is specified by 2552 * @buffer_size. @buffer may be NULL to request the size of the buffer 2553 * required. 2554 * 2555 * Return: Returns number of bytes used/required on success. 2556 */ 2557 int security_inode_listsecurity(struct inode *inode, 2558 char *buffer, size_t buffer_size) 2559 { 2560 if (unlikely(IS_PRIVATE(inode))) 2561 return 0; 2562 return call_int_hook(inode_listsecurity, 0, inode, buffer, buffer_size); 2563 } 2564 EXPORT_SYMBOL(security_inode_listsecurity); 2565 2566 /** 2567 * security_inode_getsecid() - Get an inode's secid 2568 * @inode: inode 2569 * @secid: secid to return 2570 * 2571 * Get the secid associated with the node. In case of failure, @secid will be 2572 * set to zero. 2573 */ 2574 void security_inode_getsecid(struct inode *inode, u32 *secid) 2575 { 2576 call_void_hook(inode_getsecid, inode, secid); 2577 } 2578 2579 /** 2580 * security_inode_copy_up() - Create new creds for an overlayfs copy-up op 2581 * @src: union dentry of copy-up file 2582 * @new: newly created creds 2583 * 2584 * A file is about to be copied up from lower layer to upper layer of overlay 2585 * filesystem. Security module can prepare a set of new creds and modify as 2586 * need be and return new creds. Caller will switch to new creds temporarily to 2587 * create new file and release newly allocated creds. 2588 * 2589 * Return: Returns 0 on success or a negative error code on error. 2590 */ 2591 int security_inode_copy_up(struct dentry *src, struct cred **new) 2592 { 2593 return call_int_hook(inode_copy_up, 0, src, new); 2594 } 2595 EXPORT_SYMBOL(security_inode_copy_up); 2596 2597 /** 2598 * security_inode_copy_up_xattr() - Filter xattrs in an overlayfs copy-up op 2599 * @name: xattr name 2600 * 2601 * Filter the xattrs being copied up when a unioned file is copied up from a 2602 * lower layer to the union/overlay layer. The caller is responsible for 2603 * reading and writing the xattrs, this hook is merely a filter. 2604 * 2605 * Return: Returns 0 to accept the xattr, 1 to discard the xattr, -EOPNOTSUPP 2606 * if the security module does not know about attribute, or a negative 2607 * error code to abort the copy up. 2608 */ 2609 int security_inode_copy_up_xattr(const char *name) 2610 { 2611 struct security_hook_list *hp; 2612 int rc; 2613 2614 /* 2615 * The implementation can return 0 (accept the xattr), 1 (discard the 2616 * xattr), -EOPNOTSUPP if it does not know anything about the xattr or 2617 * any other error code in case of an error. 2618 */ 2619 hlist_for_each_entry(hp, 2620 &security_hook_heads.inode_copy_up_xattr, list) { 2621 rc = hp->hook.inode_copy_up_xattr(name); 2622 if (rc != LSM_RET_DEFAULT(inode_copy_up_xattr)) 2623 return rc; 2624 } 2625 2626 return evm_inode_copy_up_xattr(name); 2627 } 2628 EXPORT_SYMBOL(security_inode_copy_up_xattr); 2629 2630 /** 2631 * security_kernfs_init_security() - Init LSM context for a kernfs node 2632 * @kn_dir: parent kernfs node 2633 * @kn: the kernfs node to initialize 2634 * 2635 * Initialize the security context of a newly created kernfs node based on its 2636 * own and its parent's attributes. 2637 * 2638 * Return: Returns 0 if permission is granted. 2639 */ 2640 int security_kernfs_init_security(struct kernfs_node *kn_dir, 2641 struct kernfs_node *kn) 2642 { 2643 return call_int_hook(kernfs_init_security, 0, kn_dir, kn); 2644 } 2645 2646 /** 2647 * security_file_permission() - Check file permissions 2648 * @file: file 2649 * @mask: requested permissions 2650 * 2651 * Check file permissions before accessing an open file. This hook is called 2652 * by various operations that read or write files. A security module can use 2653 * this hook to perform additional checking on these operations, e.g. to 2654 * revalidate permissions on use to support privilege bracketing or policy 2655 * changes. Notice that this hook is used when the actual read/write 2656 * operations are performed, whereas the inode_security_ops hook is called when 2657 * a file is opened (as well as many other operations). Although this hook can 2658 * be used to revalidate permissions for various system call operations that 2659 * read or write files, it does not address the revalidation of permissions for 2660 * memory-mapped files. Security modules must handle this separately if they 2661 * need such revalidation. 2662 * 2663 * Return: Returns 0 if permission is granted. 2664 */ 2665 int security_file_permission(struct file *file, int mask) 2666 { 2667 return call_int_hook(file_permission, 0, file, mask); 2668 } 2669 2670 /** 2671 * security_file_alloc() - Allocate and init a file's LSM blob 2672 * @file: the file 2673 * 2674 * Allocate and attach a security structure to the file->f_security field. The 2675 * security field is initialized to NULL when the structure is first created. 2676 * 2677 * Return: Return 0 if the hook is successful and permission is granted. 2678 */ 2679 int security_file_alloc(struct file *file) 2680 { 2681 int rc = lsm_file_alloc(file); 2682 2683 if (rc) 2684 return rc; 2685 rc = call_int_hook(file_alloc_security, 0, file); 2686 if (unlikely(rc)) 2687 security_file_free(file); 2688 return rc; 2689 } 2690 2691 /** 2692 * security_file_free() - Free a file's LSM blob 2693 * @file: the file 2694 * 2695 * Deallocate and free any security structures stored in file->f_security. 2696 */ 2697 void security_file_free(struct file *file) 2698 { 2699 void *blob; 2700 2701 call_void_hook(file_free_security, file); 2702 2703 blob = file->f_security; 2704 if (blob) { 2705 file->f_security = NULL; 2706 kmem_cache_free(lsm_file_cache, blob); 2707 } 2708 } 2709 2710 /** 2711 * security_file_ioctl() - Check if an ioctl is allowed 2712 * @file: associated file 2713 * @cmd: ioctl cmd 2714 * @arg: ioctl arguments 2715 * 2716 * Check permission for an ioctl operation on @file. Note that @arg sometimes 2717 * represents a user space pointer; in other cases, it may be a simple integer 2718 * value. When @arg represents a user space pointer, it should never be used 2719 * by the security module. 2720 * 2721 * Return: Returns 0 if permission is granted. 2722 */ 2723 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 2724 { 2725 return call_int_hook(file_ioctl, 0, file, cmd, arg); 2726 } 2727 EXPORT_SYMBOL_GPL(security_file_ioctl); 2728 2729 /** 2730 * security_file_ioctl_compat() - Check if an ioctl is allowed in compat mode 2731 * @file: associated file 2732 * @cmd: ioctl cmd 2733 * @arg: ioctl arguments 2734 * 2735 * Compat version of security_file_ioctl() that correctly handles 32-bit 2736 * processes running on 64-bit kernels. 2737 * 2738 * Return: Returns 0 if permission is granted. 2739 */ 2740 int security_file_ioctl_compat(struct file *file, unsigned int cmd, 2741 unsigned long arg) 2742 { 2743 return call_int_hook(file_ioctl_compat, 0, file, cmd, arg); 2744 } 2745 EXPORT_SYMBOL_GPL(security_file_ioctl_compat); 2746 2747 static inline unsigned long mmap_prot(struct file *file, unsigned long prot) 2748 { 2749 /* 2750 * Does we have PROT_READ and does the application expect 2751 * it to imply PROT_EXEC? If not, nothing to talk about... 2752 */ 2753 if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ) 2754 return prot; 2755 if (!(current->personality & READ_IMPLIES_EXEC)) 2756 return prot; 2757 /* 2758 * if that's an anonymous mapping, let it. 2759 */ 2760 if (!file) 2761 return prot | PROT_EXEC; 2762 /* 2763 * ditto if it's not on noexec mount, except that on !MMU we need 2764 * NOMMU_MAP_EXEC (== VM_MAYEXEC) in this case 2765 */ 2766 if (!path_noexec(&file->f_path)) { 2767 #ifndef CONFIG_MMU 2768 if (file->f_op->mmap_capabilities) { 2769 unsigned caps = file->f_op->mmap_capabilities(file); 2770 if (!(caps & NOMMU_MAP_EXEC)) 2771 return prot; 2772 } 2773 #endif 2774 return prot | PROT_EXEC; 2775 } 2776 /* anything on noexec mount won't get PROT_EXEC */ 2777 return prot; 2778 } 2779 2780 /** 2781 * security_mmap_file() - Check if mmap'ing a file is allowed 2782 * @file: file 2783 * @prot: protection applied by the kernel 2784 * @flags: flags 2785 * 2786 * Check permissions for a mmap operation. The @file may be NULL, e.g. if 2787 * mapping anonymous memory. 2788 * 2789 * Return: Returns 0 if permission is granted. 2790 */ 2791 int security_mmap_file(struct file *file, unsigned long prot, 2792 unsigned long flags) 2793 { 2794 unsigned long prot_adj = mmap_prot(file, prot); 2795 int ret; 2796 2797 ret = call_int_hook(mmap_file, 0, file, prot, prot_adj, flags); 2798 if (ret) 2799 return ret; 2800 return ima_file_mmap(file, prot, prot_adj, flags); 2801 } 2802 2803 /** 2804 * security_mmap_addr() - Check if mmap'ing an address is allowed 2805 * @addr: address 2806 * 2807 * Check permissions for a mmap operation at @addr. 2808 * 2809 * Return: Returns 0 if permission is granted. 2810 */ 2811 int security_mmap_addr(unsigned long addr) 2812 { 2813 return call_int_hook(mmap_addr, 0, addr); 2814 } 2815 2816 /** 2817 * security_file_mprotect() - Check if changing memory protections is allowed 2818 * @vma: memory region 2819 * @reqprot: application requested protection 2820 * @prot: protection applied by the kernel 2821 * 2822 * Check permissions before changing memory access permissions. 2823 * 2824 * Return: Returns 0 if permission is granted. 2825 */ 2826 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot, 2827 unsigned long prot) 2828 { 2829 int ret; 2830 2831 ret = call_int_hook(file_mprotect, 0, vma, reqprot, prot); 2832 if (ret) 2833 return ret; 2834 return ima_file_mprotect(vma, prot); 2835 } 2836 2837 /** 2838 * security_file_lock() - Check if a file lock is allowed 2839 * @file: file 2840 * @cmd: lock operation (e.g. F_RDLCK, F_WRLCK) 2841 * 2842 * Check permission before performing file locking operations. Note the hook 2843 * mediates both flock and fcntl style locks. 2844 * 2845 * Return: Returns 0 if permission is granted. 2846 */ 2847 int security_file_lock(struct file *file, unsigned int cmd) 2848 { 2849 return call_int_hook(file_lock, 0, file, cmd); 2850 } 2851 2852 /** 2853 * security_file_fcntl() - Check if fcntl() op is allowed 2854 * @file: file 2855 * @cmd: fcntl command 2856 * @arg: command argument 2857 * 2858 * Check permission before allowing the file operation specified by @cmd from 2859 * being performed on the file @file. Note that @arg sometimes represents a 2860 * user space pointer; in other cases, it may be a simple integer value. When 2861 * @arg represents a user space pointer, it should never be used by the 2862 * security module. 2863 * 2864 * Return: Returns 0 if permission is granted. 2865 */ 2866 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg) 2867 { 2868 return call_int_hook(file_fcntl, 0, file, cmd, arg); 2869 } 2870 2871 /** 2872 * security_file_set_fowner() - Set the file owner info in the LSM blob 2873 * @file: the file 2874 * 2875 * Save owner security information (typically from current->security) in 2876 * file->f_security for later use by the send_sigiotask hook. 2877 * 2878 * Return: Returns 0 on success. 2879 */ 2880 void security_file_set_fowner(struct file *file) 2881 { 2882 call_void_hook(file_set_fowner, file); 2883 } 2884 2885 /** 2886 * security_file_send_sigiotask() - Check if sending SIGIO/SIGURG is allowed 2887 * @tsk: target task 2888 * @fown: signal sender 2889 * @sig: signal to be sent, SIGIO is sent if 0 2890 * 2891 * Check permission for the file owner @fown to send SIGIO or SIGURG to the 2892 * process @tsk. Note that this hook is sometimes called from interrupt. Note 2893 * that the fown_struct, @fown, is never outside the context of a struct file, 2894 * so the file structure (and associated security information) can always be 2895 * obtained: container_of(fown, struct file, f_owner). 2896 * 2897 * Return: Returns 0 if permission is granted. 2898 */ 2899 int security_file_send_sigiotask(struct task_struct *tsk, 2900 struct fown_struct *fown, int sig) 2901 { 2902 return call_int_hook(file_send_sigiotask, 0, tsk, fown, sig); 2903 } 2904 2905 /** 2906 * security_file_receive() - Check is receiving a file via IPC is allowed 2907 * @file: file being received 2908 * 2909 * This hook allows security modules to control the ability of a process to 2910 * receive an open file descriptor via socket IPC. 2911 * 2912 * Return: Returns 0 if permission is granted. 2913 */ 2914 int security_file_receive(struct file *file) 2915 { 2916 return call_int_hook(file_receive, 0, file); 2917 } 2918 2919 /** 2920 * security_file_open() - Save open() time state for late use by the LSM 2921 * @file: 2922 * 2923 * Save open-time permission checking state for later use upon file_permission, 2924 * and recheck access if anything has changed since inode_permission. 2925 * 2926 * Return: Returns 0 if permission is granted. 2927 */ 2928 int security_file_open(struct file *file) 2929 { 2930 int ret; 2931 2932 ret = call_int_hook(file_open, 0, file); 2933 if (ret) 2934 return ret; 2935 2936 return fsnotify_open_perm(file); 2937 } 2938 2939 /** 2940 * security_file_truncate() - Check if truncating a file is allowed 2941 * @file: file 2942 * 2943 * Check permission before truncating a file, i.e. using ftruncate. Note that 2944 * truncation permission may also be checked based on the path, using the 2945 * @path_truncate hook. 2946 * 2947 * Return: Returns 0 if permission is granted. 2948 */ 2949 int security_file_truncate(struct file *file) 2950 { 2951 return call_int_hook(file_truncate, 0, file); 2952 } 2953 2954 /** 2955 * security_task_alloc() - Allocate a task's LSM blob 2956 * @task: the task 2957 * @clone_flags: flags indicating what is being shared 2958 * 2959 * Handle allocation of task-related resources. 2960 * 2961 * Return: Returns a zero on success, negative values on failure. 2962 */ 2963 int security_task_alloc(struct task_struct *task, unsigned long clone_flags) 2964 { 2965 int rc = lsm_task_alloc(task); 2966 2967 if (rc) 2968 return rc; 2969 rc = call_int_hook(task_alloc, 0, task, clone_flags); 2970 if (unlikely(rc)) 2971 security_task_free(task); 2972 return rc; 2973 } 2974 2975 /** 2976 * security_task_free() - Free a task's LSM blob and related resources 2977 * @task: task 2978 * 2979 * Handle release of task-related resources. Note that this can be called from 2980 * interrupt context. 2981 */ 2982 void security_task_free(struct task_struct *task) 2983 { 2984 call_void_hook(task_free, task); 2985 2986 kfree(task->security); 2987 task->security = NULL; 2988 } 2989 2990 /** 2991 * security_cred_alloc_blank() - Allocate the min memory to allow cred_transfer 2992 * @cred: credentials 2993 * @gfp: gfp flags 2994 * 2995 * Only allocate sufficient memory and attach to @cred such that 2996 * cred_transfer() will not get ENOMEM. 2997 * 2998 * Return: Returns 0 on success, negative values on failure. 2999 */ 3000 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp) 3001 { 3002 int rc = lsm_cred_alloc(cred, gfp); 3003 3004 if (rc) 3005 return rc; 3006 3007 rc = call_int_hook(cred_alloc_blank, 0, cred, gfp); 3008 if (unlikely(rc)) 3009 security_cred_free(cred); 3010 return rc; 3011 } 3012 3013 /** 3014 * security_cred_free() - Free the cred's LSM blob and associated resources 3015 * @cred: credentials 3016 * 3017 * Deallocate and clear the cred->security field in a set of credentials. 3018 */ 3019 void security_cred_free(struct cred *cred) 3020 { 3021 /* 3022 * There is a failure case in prepare_creds() that 3023 * may result in a call here with ->security being NULL. 3024 */ 3025 if (unlikely(cred->security == NULL)) 3026 return; 3027 3028 call_void_hook(cred_free, cred); 3029 3030 kfree(cred->security); 3031 cred->security = NULL; 3032 } 3033 3034 /** 3035 * security_prepare_creds() - Prepare a new set of credentials 3036 * @new: new credentials 3037 * @old: original credentials 3038 * @gfp: gfp flags 3039 * 3040 * Prepare a new set of credentials by copying the data from the old set. 3041 * 3042 * Return: Returns 0 on success, negative values on failure. 3043 */ 3044 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp) 3045 { 3046 int rc = lsm_cred_alloc(new, gfp); 3047 3048 if (rc) 3049 return rc; 3050 3051 rc = call_int_hook(cred_prepare, 0, new, old, gfp); 3052 if (unlikely(rc)) 3053 security_cred_free(new); 3054 return rc; 3055 } 3056 3057 /** 3058 * security_transfer_creds() - Transfer creds 3059 * @new: target credentials 3060 * @old: original credentials 3061 * 3062 * Transfer data from original creds to new creds. 3063 */ 3064 void security_transfer_creds(struct cred *new, const struct cred *old) 3065 { 3066 call_void_hook(cred_transfer, new, old); 3067 } 3068 3069 /** 3070 * security_cred_getsecid() - Get the secid from a set of credentials 3071 * @c: credentials 3072 * @secid: secid value 3073 * 3074 * Retrieve the security identifier of the cred structure @c. In case of 3075 * failure, @secid will be set to zero. 3076 */ 3077 void security_cred_getsecid(const struct cred *c, u32 *secid) 3078 { 3079 *secid = 0; 3080 call_void_hook(cred_getsecid, c, secid); 3081 } 3082 EXPORT_SYMBOL(security_cred_getsecid); 3083 3084 /** 3085 * security_kernel_act_as() - Set the kernel credentials to act as secid 3086 * @new: credentials 3087 * @secid: secid 3088 * 3089 * Set the credentials for a kernel service to act as (subjective context). 3090 * The current task must be the one that nominated @secid. 3091 * 3092 * Return: Returns 0 if successful. 3093 */ 3094 int security_kernel_act_as(struct cred *new, u32 secid) 3095 { 3096 return call_int_hook(kernel_act_as, 0, new, secid); 3097 } 3098 3099 /** 3100 * security_kernel_create_files_as() - Set file creation context using an inode 3101 * @new: target credentials 3102 * @inode: reference inode 3103 * 3104 * Set the file creation context in a set of credentials to be the same as the 3105 * objective context of the specified inode. The current task must be the one 3106 * that nominated @inode. 3107 * 3108 * Return: Returns 0 if successful. 3109 */ 3110 int security_kernel_create_files_as(struct cred *new, struct inode *inode) 3111 { 3112 return call_int_hook(kernel_create_files_as, 0, new, inode); 3113 } 3114 3115 /** 3116 * security_kernel_module_request() - Check is loading a module is allowed 3117 * @kmod_name: module name 3118 * 3119 * Ability to trigger the kernel to automatically upcall to userspace for 3120 * userspace to load a kernel module with the given name. 3121 * 3122 * Return: Returns 0 if successful. 3123 */ 3124 int security_kernel_module_request(char *kmod_name) 3125 { 3126 int ret; 3127 3128 ret = call_int_hook(kernel_module_request, 0, kmod_name); 3129 if (ret) 3130 return ret; 3131 return integrity_kernel_module_request(kmod_name); 3132 } 3133 3134 /** 3135 * security_kernel_read_file() - Read a file specified by userspace 3136 * @file: file 3137 * @id: file identifier 3138 * @contents: trust if security_kernel_post_read_file() will be called 3139 * 3140 * Read a file specified by userspace. 3141 * 3142 * Return: Returns 0 if permission is granted. 3143 */ 3144 int security_kernel_read_file(struct file *file, enum kernel_read_file_id id, 3145 bool contents) 3146 { 3147 int ret; 3148 3149 ret = call_int_hook(kernel_read_file, 0, file, id, contents); 3150 if (ret) 3151 return ret; 3152 return ima_read_file(file, id, contents); 3153 } 3154 EXPORT_SYMBOL_GPL(security_kernel_read_file); 3155 3156 /** 3157 * security_kernel_post_read_file() - Read a file specified by userspace 3158 * @file: file 3159 * @buf: file contents 3160 * @size: size of file contents 3161 * @id: file identifier 3162 * 3163 * Read a file specified by userspace. This must be paired with a prior call 3164 * to security_kernel_read_file() call that indicated this hook would also be 3165 * called, see security_kernel_read_file() for more information. 3166 * 3167 * Return: Returns 0 if permission is granted. 3168 */ 3169 int security_kernel_post_read_file(struct file *file, char *buf, loff_t size, 3170 enum kernel_read_file_id id) 3171 { 3172 int ret; 3173 3174 ret = call_int_hook(kernel_post_read_file, 0, file, buf, size, id); 3175 if (ret) 3176 return ret; 3177 return ima_post_read_file(file, buf, size, id); 3178 } 3179 EXPORT_SYMBOL_GPL(security_kernel_post_read_file); 3180 3181 /** 3182 * security_kernel_load_data() - Load data provided by userspace 3183 * @id: data identifier 3184 * @contents: true if security_kernel_post_load_data() will be called 3185 * 3186 * Load data provided by userspace. 3187 * 3188 * Return: Returns 0 if permission is granted. 3189 */ 3190 int security_kernel_load_data(enum kernel_load_data_id id, bool contents) 3191 { 3192 int ret; 3193 3194 ret = call_int_hook(kernel_load_data, 0, id, contents); 3195 if (ret) 3196 return ret; 3197 return ima_load_data(id, contents); 3198 } 3199 EXPORT_SYMBOL_GPL(security_kernel_load_data); 3200 3201 /** 3202 * security_kernel_post_load_data() - Load userspace data from a non-file source 3203 * @buf: data 3204 * @size: size of data 3205 * @id: data identifier 3206 * @description: text description of data, specific to the id value 3207 * 3208 * Load data provided by a non-file source (usually userspace buffer). This 3209 * must be paired with a prior security_kernel_load_data() call that indicated 3210 * this hook would also be called, see security_kernel_load_data() for more 3211 * information. 3212 * 3213 * Return: Returns 0 if permission is granted. 3214 */ 3215 int security_kernel_post_load_data(char *buf, loff_t size, 3216 enum kernel_load_data_id id, 3217 char *description) 3218 { 3219 int ret; 3220 3221 ret = call_int_hook(kernel_post_load_data, 0, buf, size, id, 3222 description); 3223 if (ret) 3224 return ret; 3225 return ima_post_load_data(buf, size, id, description); 3226 } 3227 EXPORT_SYMBOL_GPL(security_kernel_post_load_data); 3228 3229 /** 3230 * security_task_fix_setuid() - Update LSM with new user id attributes 3231 * @new: updated credentials 3232 * @old: credentials being replaced 3233 * @flags: LSM_SETID_* flag values 3234 * 3235 * Update the module's state after setting one or more of the user identity 3236 * attributes of the current process. The @flags parameter indicates which of 3237 * the set*uid system calls invoked this hook. If @new is the set of 3238 * credentials that will be installed. Modifications should be made to this 3239 * rather than to @current->cred. 3240 * 3241 * Return: Returns 0 on success. 3242 */ 3243 int security_task_fix_setuid(struct cred *new, const struct cred *old, 3244 int flags) 3245 { 3246 return call_int_hook(task_fix_setuid, 0, new, old, flags); 3247 } 3248 3249 /** 3250 * security_task_fix_setgid() - Update LSM with new group id attributes 3251 * @new: updated credentials 3252 * @old: credentials being replaced 3253 * @flags: LSM_SETID_* flag value 3254 * 3255 * Update the module's state after setting one or more of the group identity 3256 * attributes of the current process. The @flags parameter indicates which of 3257 * the set*gid system calls invoked this hook. @new is the set of credentials 3258 * that will be installed. Modifications should be made to this rather than to 3259 * @current->cred. 3260 * 3261 * Return: Returns 0 on success. 3262 */ 3263 int security_task_fix_setgid(struct cred *new, const struct cred *old, 3264 int flags) 3265 { 3266 return call_int_hook(task_fix_setgid, 0, new, old, flags); 3267 } 3268 3269 /** 3270 * security_task_fix_setgroups() - Update LSM with new supplementary groups 3271 * @new: updated credentials 3272 * @old: credentials being replaced 3273 * 3274 * Update the module's state after setting the supplementary group identity 3275 * attributes of the current process. @new is the set of credentials that will 3276 * be installed. Modifications should be made to this rather than to 3277 * @current->cred. 3278 * 3279 * Return: Returns 0 on success. 3280 */ 3281 int security_task_fix_setgroups(struct cred *new, const struct cred *old) 3282 { 3283 return call_int_hook(task_fix_setgroups, 0, new, old); 3284 } 3285 3286 /** 3287 * security_task_setpgid() - Check if setting the pgid is allowed 3288 * @p: task being modified 3289 * @pgid: new pgid 3290 * 3291 * Check permission before setting the process group identifier of the process 3292 * @p to @pgid. 3293 * 3294 * Return: Returns 0 if permission is granted. 3295 */ 3296 int security_task_setpgid(struct task_struct *p, pid_t pgid) 3297 { 3298 return call_int_hook(task_setpgid, 0, p, pgid); 3299 } 3300 3301 /** 3302 * security_task_getpgid() - Check if getting the pgid is allowed 3303 * @p: task 3304 * 3305 * Check permission before getting the process group identifier of the process 3306 * @p. 3307 * 3308 * Return: Returns 0 if permission is granted. 3309 */ 3310 int security_task_getpgid(struct task_struct *p) 3311 { 3312 return call_int_hook(task_getpgid, 0, p); 3313 } 3314 3315 /** 3316 * security_task_getsid() - Check if getting the session id is allowed 3317 * @p: task 3318 * 3319 * Check permission before getting the session identifier of the process @p. 3320 * 3321 * Return: Returns 0 if permission is granted. 3322 */ 3323 int security_task_getsid(struct task_struct *p) 3324 { 3325 return call_int_hook(task_getsid, 0, p); 3326 } 3327 3328 /** 3329 * security_current_getsecid_subj() - Get the current task's subjective secid 3330 * @secid: secid value 3331 * 3332 * Retrieve the subjective security identifier of the current task and return 3333 * it in @secid. In case of failure, @secid will be set to zero. 3334 */ 3335 void security_current_getsecid_subj(u32 *secid) 3336 { 3337 *secid = 0; 3338 call_void_hook(current_getsecid_subj, secid); 3339 } 3340 EXPORT_SYMBOL(security_current_getsecid_subj); 3341 3342 /** 3343 * security_task_getsecid_obj() - Get a task's objective secid 3344 * @p: target task 3345 * @secid: secid value 3346 * 3347 * Retrieve the objective security identifier of the task_struct in @p and 3348 * return it in @secid. In case of failure, @secid will be set to zero. 3349 */ 3350 void security_task_getsecid_obj(struct task_struct *p, u32 *secid) 3351 { 3352 *secid = 0; 3353 call_void_hook(task_getsecid_obj, p, secid); 3354 } 3355 EXPORT_SYMBOL(security_task_getsecid_obj); 3356 3357 /** 3358 * security_task_setnice() - Check if setting a task's nice value is allowed 3359 * @p: target task 3360 * @nice: nice value 3361 * 3362 * Check permission before setting the nice value of @p to @nice. 3363 * 3364 * Return: Returns 0 if permission is granted. 3365 */ 3366 int security_task_setnice(struct task_struct *p, int nice) 3367 { 3368 return call_int_hook(task_setnice, 0, p, nice); 3369 } 3370 3371 /** 3372 * security_task_setioprio() - Check if setting a task's ioprio is allowed 3373 * @p: target task 3374 * @ioprio: ioprio value 3375 * 3376 * Check permission before setting the ioprio value of @p to @ioprio. 3377 * 3378 * Return: Returns 0 if permission is granted. 3379 */ 3380 int security_task_setioprio(struct task_struct *p, int ioprio) 3381 { 3382 return call_int_hook(task_setioprio, 0, p, ioprio); 3383 } 3384 3385 /** 3386 * security_task_getioprio() - Check if getting a task's ioprio is allowed 3387 * @p: task 3388 * 3389 * Check permission before getting the ioprio value of @p. 3390 * 3391 * Return: Returns 0 if permission is granted. 3392 */ 3393 int security_task_getioprio(struct task_struct *p) 3394 { 3395 return call_int_hook(task_getioprio, 0, p); 3396 } 3397 3398 /** 3399 * security_task_prlimit() - Check if get/setting resources limits is allowed 3400 * @cred: current task credentials 3401 * @tcred: target task credentials 3402 * @flags: LSM_PRLIMIT_* flag bits indicating a get/set/both 3403 * 3404 * Check permission before getting and/or setting the resource limits of 3405 * another task. 3406 * 3407 * Return: Returns 0 if permission is granted. 3408 */ 3409 int security_task_prlimit(const struct cred *cred, const struct cred *tcred, 3410 unsigned int flags) 3411 { 3412 return call_int_hook(task_prlimit, 0, cred, tcred, flags); 3413 } 3414 3415 /** 3416 * security_task_setrlimit() - Check if setting a new rlimit value is allowed 3417 * @p: target task's group leader 3418 * @resource: resource whose limit is being set 3419 * @new_rlim: new resource limit 3420 * 3421 * Check permission before setting the resource limits of process @p for 3422 * @resource to @new_rlim. The old resource limit values can be examined by 3423 * dereferencing (p->signal->rlim + resource). 3424 * 3425 * Return: Returns 0 if permission is granted. 3426 */ 3427 int security_task_setrlimit(struct task_struct *p, unsigned int resource, 3428 struct rlimit *new_rlim) 3429 { 3430 return call_int_hook(task_setrlimit, 0, p, resource, new_rlim); 3431 } 3432 3433 /** 3434 * security_task_setscheduler() - Check if setting sched policy/param is allowed 3435 * @p: target task 3436 * 3437 * Check permission before setting scheduling policy and/or parameters of 3438 * process @p. 3439 * 3440 * Return: Returns 0 if permission is granted. 3441 */ 3442 int security_task_setscheduler(struct task_struct *p) 3443 { 3444 return call_int_hook(task_setscheduler, 0, p); 3445 } 3446 3447 /** 3448 * security_task_getscheduler() - Check if getting scheduling info is allowed 3449 * @p: target task 3450 * 3451 * Check permission before obtaining scheduling information for process @p. 3452 * 3453 * Return: Returns 0 if permission is granted. 3454 */ 3455 int security_task_getscheduler(struct task_struct *p) 3456 { 3457 return call_int_hook(task_getscheduler, 0, p); 3458 } 3459 3460 /** 3461 * security_task_movememory() - Check if moving memory is allowed 3462 * @p: task 3463 * 3464 * Check permission before moving memory owned by process @p. 3465 * 3466 * Return: Returns 0 if permission is granted. 3467 */ 3468 int security_task_movememory(struct task_struct *p) 3469 { 3470 return call_int_hook(task_movememory, 0, p); 3471 } 3472 3473 /** 3474 * security_task_kill() - Check if sending a signal is allowed 3475 * @p: target process 3476 * @info: signal information 3477 * @sig: signal value 3478 * @cred: credentials of the signal sender, NULL if @current 3479 * 3480 * Check permission before sending signal @sig to @p. @info can be NULL, the 3481 * constant 1, or a pointer to a kernel_siginfo structure. If @info is 1 or 3482 * SI_FROMKERNEL(info) is true, then the signal should be viewed as coming from 3483 * the kernel and should typically be permitted. SIGIO signals are handled 3484 * separately by the send_sigiotask hook in file_security_ops. 3485 * 3486 * Return: Returns 0 if permission is granted. 3487 */ 3488 int security_task_kill(struct task_struct *p, struct kernel_siginfo *info, 3489 int sig, const struct cred *cred) 3490 { 3491 return call_int_hook(task_kill, 0, p, info, sig, cred); 3492 } 3493 3494 /** 3495 * security_task_prctl() - Check if a prctl op is allowed 3496 * @option: operation 3497 * @arg2: argument 3498 * @arg3: argument 3499 * @arg4: argument 3500 * @arg5: argument 3501 * 3502 * Check permission before performing a process control operation on the 3503 * current process. 3504 * 3505 * Return: Return -ENOSYS if no-one wanted to handle this op, any other value 3506 * to cause prctl() to return immediately with that value. 3507 */ 3508 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3, 3509 unsigned long arg4, unsigned long arg5) 3510 { 3511 int thisrc; 3512 int rc = LSM_RET_DEFAULT(task_prctl); 3513 struct security_hook_list *hp; 3514 3515 hlist_for_each_entry(hp, &security_hook_heads.task_prctl, list) { 3516 thisrc = hp->hook.task_prctl(option, arg2, arg3, arg4, arg5); 3517 if (thisrc != LSM_RET_DEFAULT(task_prctl)) { 3518 rc = thisrc; 3519 if (thisrc != 0) 3520 break; 3521 } 3522 } 3523 return rc; 3524 } 3525 3526 /** 3527 * security_task_to_inode() - Set the security attributes of a task's inode 3528 * @p: task 3529 * @inode: inode 3530 * 3531 * Set the security attributes for an inode based on an associated task's 3532 * security attributes, e.g. for /proc/pid inodes. 3533 */ 3534 void security_task_to_inode(struct task_struct *p, struct inode *inode) 3535 { 3536 call_void_hook(task_to_inode, p, inode); 3537 } 3538 3539 /** 3540 * security_create_user_ns() - Check if creating a new userns is allowed 3541 * @cred: prepared creds 3542 * 3543 * Check permission prior to creating a new user namespace. 3544 * 3545 * Return: Returns 0 if successful, otherwise < 0 error code. 3546 */ 3547 int security_create_user_ns(const struct cred *cred) 3548 { 3549 return call_int_hook(userns_create, 0, cred); 3550 } 3551 3552 /** 3553 * security_ipc_permission() - Check if sysv ipc access is allowed 3554 * @ipcp: ipc permission structure 3555 * @flag: requested permissions 3556 * 3557 * Check permissions for access to IPC. 3558 * 3559 * Return: Returns 0 if permission is granted. 3560 */ 3561 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag) 3562 { 3563 return call_int_hook(ipc_permission, 0, ipcp, flag); 3564 } 3565 3566 /** 3567 * security_ipc_getsecid() - Get the sysv ipc object's secid 3568 * @ipcp: ipc permission structure 3569 * @secid: secid pointer 3570 * 3571 * Get the secid associated with the ipc object. In case of failure, @secid 3572 * will be set to zero. 3573 */ 3574 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid) 3575 { 3576 *secid = 0; 3577 call_void_hook(ipc_getsecid, ipcp, secid); 3578 } 3579 3580 /** 3581 * security_msg_msg_alloc() - Allocate a sysv ipc message LSM blob 3582 * @msg: message structure 3583 * 3584 * Allocate and attach a security structure to the msg->security field. The 3585 * security field is initialized to NULL when the structure is first created. 3586 * 3587 * Return: Return 0 if operation was successful and permission is granted. 3588 */ 3589 int security_msg_msg_alloc(struct msg_msg *msg) 3590 { 3591 int rc = lsm_msg_msg_alloc(msg); 3592 3593 if (unlikely(rc)) 3594 return rc; 3595 rc = call_int_hook(msg_msg_alloc_security, 0, msg); 3596 if (unlikely(rc)) 3597 security_msg_msg_free(msg); 3598 return rc; 3599 } 3600 3601 /** 3602 * security_msg_msg_free() - Free a sysv ipc message LSM blob 3603 * @msg: message structure 3604 * 3605 * Deallocate the security structure for this message. 3606 */ 3607 void security_msg_msg_free(struct msg_msg *msg) 3608 { 3609 call_void_hook(msg_msg_free_security, msg); 3610 kfree(msg->security); 3611 msg->security = NULL; 3612 } 3613 3614 /** 3615 * security_msg_queue_alloc() - Allocate a sysv ipc msg queue LSM blob 3616 * @msq: sysv ipc permission structure 3617 * 3618 * Allocate and attach a security structure to @msg. The security field is 3619 * initialized to NULL when the structure is first created. 3620 * 3621 * Return: Returns 0 if operation was successful and permission is granted. 3622 */ 3623 int security_msg_queue_alloc(struct kern_ipc_perm *msq) 3624 { 3625 int rc = lsm_ipc_alloc(msq); 3626 3627 if (unlikely(rc)) 3628 return rc; 3629 rc = call_int_hook(msg_queue_alloc_security, 0, msq); 3630 if (unlikely(rc)) 3631 security_msg_queue_free(msq); 3632 return rc; 3633 } 3634 3635 /** 3636 * security_msg_queue_free() - Free a sysv ipc msg queue LSM blob 3637 * @msq: sysv ipc permission structure 3638 * 3639 * Deallocate security field @perm->security for the message queue. 3640 */ 3641 void security_msg_queue_free(struct kern_ipc_perm *msq) 3642 { 3643 call_void_hook(msg_queue_free_security, msq); 3644 kfree(msq->security); 3645 msq->security = NULL; 3646 } 3647 3648 /** 3649 * security_msg_queue_associate() - Check if a msg queue operation is allowed 3650 * @msq: sysv ipc permission structure 3651 * @msqflg: operation flags 3652 * 3653 * Check permission when a message queue is requested through the msgget system 3654 * call. This hook is only called when returning the message queue identifier 3655 * for an existing message queue, not when a new message queue is created. 3656 * 3657 * Return: Return 0 if permission is granted. 3658 */ 3659 int security_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg) 3660 { 3661 return call_int_hook(msg_queue_associate, 0, msq, msqflg); 3662 } 3663 3664 /** 3665 * security_msg_queue_msgctl() - Check if a msg queue operation is allowed 3666 * @msq: sysv ipc permission structure 3667 * @cmd: operation 3668 * 3669 * Check permission when a message control operation specified by @cmd is to be 3670 * performed on the message queue with permissions. 3671 * 3672 * Return: Returns 0 if permission is granted. 3673 */ 3674 int security_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd) 3675 { 3676 return call_int_hook(msg_queue_msgctl, 0, msq, cmd); 3677 } 3678 3679 /** 3680 * security_msg_queue_msgsnd() - Check if sending a sysv ipc message is allowed 3681 * @msq: sysv ipc permission structure 3682 * @msg: message 3683 * @msqflg: operation flags 3684 * 3685 * Check permission before a message, @msg, is enqueued on the message queue 3686 * with permissions specified in @msq. 3687 * 3688 * Return: Returns 0 if permission is granted. 3689 */ 3690 int security_msg_queue_msgsnd(struct kern_ipc_perm *msq, 3691 struct msg_msg *msg, int msqflg) 3692 { 3693 return call_int_hook(msg_queue_msgsnd, 0, msq, msg, msqflg); 3694 } 3695 3696 /** 3697 * security_msg_queue_msgrcv() - Check if receiving a sysv ipc msg is allowed 3698 * @msq: sysv ipc permission structure 3699 * @msg: message 3700 * @target: target task 3701 * @type: type of message requested 3702 * @mode: operation flags 3703 * 3704 * Check permission before a message, @msg, is removed from the message queue. 3705 * The @target task structure contains a pointer to the process that will be 3706 * receiving the message (not equal to the current process when inline receives 3707 * are being performed). 3708 * 3709 * Return: Returns 0 if permission is granted. 3710 */ 3711 int security_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg, 3712 struct task_struct *target, long type, int mode) 3713 { 3714 return call_int_hook(msg_queue_msgrcv, 0, msq, msg, target, type, mode); 3715 } 3716 3717 /** 3718 * security_shm_alloc() - Allocate a sysv shm LSM blob 3719 * @shp: sysv ipc permission structure 3720 * 3721 * Allocate and attach a security structure to the @shp security field. The 3722 * security field is initialized to NULL when the structure is first created. 3723 * 3724 * Return: Returns 0 if operation was successful and permission is granted. 3725 */ 3726 int security_shm_alloc(struct kern_ipc_perm *shp) 3727 { 3728 int rc = lsm_ipc_alloc(shp); 3729 3730 if (unlikely(rc)) 3731 return rc; 3732 rc = call_int_hook(shm_alloc_security, 0, shp); 3733 if (unlikely(rc)) 3734 security_shm_free(shp); 3735 return rc; 3736 } 3737 3738 /** 3739 * security_shm_free() - Free a sysv shm LSM blob 3740 * @shp: sysv ipc permission structure 3741 * 3742 * Deallocate the security structure @perm->security for the memory segment. 3743 */ 3744 void security_shm_free(struct kern_ipc_perm *shp) 3745 { 3746 call_void_hook(shm_free_security, shp); 3747 kfree(shp->security); 3748 shp->security = NULL; 3749 } 3750 3751 /** 3752 * security_shm_associate() - Check if a sysv shm operation is allowed 3753 * @shp: sysv ipc permission structure 3754 * @shmflg: operation flags 3755 * 3756 * Check permission when a shared memory region is requested through the shmget 3757 * system call. This hook is only called when returning the shared memory 3758 * region identifier for an existing region, not when a new shared memory 3759 * region is created. 3760 * 3761 * Return: Returns 0 if permission is granted. 3762 */ 3763 int security_shm_associate(struct kern_ipc_perm *shp, int shmflg) 3764 { 3765 return call_int_hook(shm_associate, 0, shp, shmflg); 3766 } 3767 3768 /** 3769 * security_shm_shmctl() - Check if a sysv shm operation is allowed 3770 * @shp: sysv ipc permission structure 3771 * @cmd: operation 3772 * 3773 * Check permission when a shared memory control operation specified by @cmd is 3774 * to be performed on the shared memory region with permissions in @shp. 3775 * 3776 * Return: Return 0 if permission is granted. 3777 */ 3778 int security_shm_shmctl(struct kern_ipc_perm *shp, int cmd) 3779 { 3780 return call_int_hook(shm_shmctl, 0, shp, cmd); 3781 } 3782 3783 /** 3784 * security_shm_shmat() - Check if a sysv shm attach operation is allowed 3785 * @shp: sysv ipc permission structure 3786 * @shmaddr: address of memory region to attach 3787 * @shmflg: operation flags 3788 * 3789 * Check permissions prior to allowing the shmat system call to attach the 3790 * shared memory segment with permissions @shp to the data segment of the 3791 * calling process. The attaching address is specified by @shmaddr. 3792 * 3793 * Return: Returns 0 if permission is granted. 3794 */ 3795 int security_shm_shmat(struct kern_ipc_perm *shp, 3796 char __user *shmaddr, int shmflg) 3797 { 3798 return call_int_hook(shm_shmat, 0, shp, shmaddr, shmflg); 3799 } 3800 3801 /** 3802 * security_sem_alloc() - Allocate a sysv semaphore LSM blob 3803 * @sma: sysv ipc permission structure 3804 * 3805 * Allocate and attach a security structure to the @sma security field. The 3806 * security field is initialized to NULL when the structure is first created. 3807 * 3808 * Return: Returns 0 if operation was successful and permission is granted. 3809 */ 3810 int security_sem_alloc(struct kern_ipc_perm *sma) 3811 { 3812 int rc = lsm_ipc_alloc(sma); 3813 3814 if (unlikely(rc)) 3815 return rc; 3816 rc = call_int_hook(sem_alloc_security, 0, sma); 3817 if (unlikely(rc)) 3818 security_sem_free(sma); 3819 return rc; 3820 } 3821 3822 /** 3823 * security_sem_free() - Free a sysv semaphore LSM blob 3824 * @sma: sysv ipc permission structure 3825 * 3826 * Deallocate security structure @sma->security for the semaphore. 3827 */ 3828 void security_sem_free(struct kern_ipc_perm *sma) 3829 { 3830 call_void_hook(sem_free_security, sma); 3831 kfree(sma->security); 3832 sma->security = NULL; 3833 } 3834 3835 /** 3836 * security_sem_associate() - Check if a sysv semaphore operation is allowed 3837 * @sma: sysv ipc permission structure 3838 * @semflg: operation flags 3839 * 3840 * Check permission when a semaphore is requested through the semget system 3841 * call. This hook is only called when returning the semaphore identifier for 3842 * an existing semaphore, not when a new one must be created. 3843 * 3844 * Return: Returns 0 if permission is granted. 3845 */ 3846 int security_sem_associate(struct kern_ipc_perm *sma, int semflg) 3847 { 3848 return call_int_hook(sem_associate, 0, sma, semflg); 3849 } 3850 3851 /** 3852 * security_sem_semctl() - Check if a sysv semaphore operation is allowed 3853 * @sma: sysv ipc permission structure 3854 * @cmd: operation 3855 * 3856 * Check permission when a semaphore operation specified by @cmd is to be 3857 * performed on the semaphore. 3858 * 3859 * Return: Returns 0 if permission is granted. 3860 */ 3861 int security_sem_semctl(struct kern_ipc_perm *sma, int cmd) 3862 { 3863 return call_int_hook(sem_semctl, 0, sma, cmd); 3864 } 3865 3866 /** 3867 * security_sem_semop() - Check if a sysv semaphore operation is allowed 3868 * @sma: sysv ipc permission structure 3869 * @sops: operations to perform 3870 * @nsops: number of operations 3871 * @alter: flag indicating changes will be made 3872 * 3873 * Check permissions before performing operations on members of the semaphore 3874 * set. If the @alter flag is nonzero, the semaphore set may be modified. 3875 * 3876 * Return: Returns 0 if permission is granted. 3877 */ 3878 int security_sem_semop(struct kern_ipc_perm *sma, struct sembuf *sops, 3879 unsigned nsops, int alter) 3880 { 3881 return call_int_hook(sem_semop, 0, sma, sops, nsops, alter); 3882 } 3883 3884 /** 3885 * security_d_instantiate() - Populate an inode's LSM state based on a dentry 3886 * @dentry: dentry 3887 * @inode: inode 3888 * 3889 * Fill in @inode security information for a @dentry if allowed. 3890 */ 3891 void security_d_instantiate(struct dentry *dentry, struct inode *inode) 3892 { 3893 if (unlikely(inode && IS_PRIVATE(inode))) 3894 return; 3895 call_void_hook(d_instantiate, dentry, inode); 3896 } 3897 EXPORT_SYMBOL(security_d_instantiate); 3898 3899 /* 3900 * Please keep this in sync with it's counterpart in security/lsm_syscalls.c 3901 */ 3902 3903 /** 3904 * security_getselfattr - Read an LSM attribute of the current process. 3905 * @attr: which attribute to return 3906 * @uctx: the user-space destination for the information, or NULL 3907 * @size: pointer to the size of space available to receive the data 3908 * @flags: special handling options. LSM_FLAG_SINGLE indicates that only 3909 * attributes associated with the LSM identified in the passed @ctx be 3910 * reported. 3911 * 3912 * A NULL value for @uctx can be used to get both the number of attributes 3913 * and the size of the data. 3914 * 3915 * Returns the number of attributes found on success, negative value 3916 * on error. @size is reset to the total size of the data. 3917 * If @size is insufficient to contain the data -E2BIG is returned. 3918 */ 3919 int security_getselfattr(unsigned int attr, struct lsm_ctx __user *uctx, 3920 size_t __user *size, u32 flags) 3921 { 3922 struct security_hook_list *hp; 3923 struct lsm_ctx lctx = { .id = LSM_ID_UNDEF, }; 3924 u8 __user *base = (u8 __user *)uctx; 3925 size_t total = 0; 3926 size_t entrysize; 3927 size_t left; 3928 bool toobig = false; 3929 bool single = false; 3930 int count = 0; 3931 int rc; 3932 3933 if (attr == LSM_ATTR_UNDEF) 3934 return -EINVAL; 3935 if (size == NULL) 3936 return -EINVAL; 3937 if (get_user(left, size)) 3938 return -EFAULT; 3939 3940 if (flags) { 3941 /* 3942 * Only flag supported is LSM_FLAG_SINGLE 3943 */ 3944 if (flags != LSM_FLAG_SINGLE || !uctx) 3945 return -EINVAL; 3946 if (copy_from_user(&lctx, uctx, sizeof(lctx))) 3947 return -EFAULT; 3948 /* 3949 * If the LSM ID isn't specified it is an error. 3950 */ 3951 if (lctx.id == LSM_ID_UNDEF) 3952 return -EINVAL; 3953 single = true; 3954 } 3955 3956 /* 3957 * In the usual case gather all the data from the LSMs. 3958 * In the single case only get the data from the LSM specified. 3959 */ 3960 hlist_for_each_entry(hp, &security_hook_heads.getselfattr, list) { 3961 if (single && lctx.id != hp->lsmid->id) 3962 continue; 3963 entrysize = left; 3964 if (base) 3965 uctx = (struct lsm_ctx __user *)(base + total); 3966 rc = hp->hook.getselfattr(attr, uctx, &entrysize, flags); 3967 if (rc == -EOPNOTSUPP) { 3968 rc = 0; 3969 continue; 3970 } 3971 if (rc == -E2BIG) { 3972 rc = 0; 3973 left = 0; 3974 toobig = true; 3975 } else if (rc < 0) 3976 return rc; 3977 else 3978 left -= entrysize; 3979 3980 total += entrysize; 3981 count += rc; 3982 if (single) 3983 break; 3984 } 3985 if (put_user(total, size)) 3986 return -EFAULT; 3987 if (toobig) 3988 return -E2BIG; 3989 if (count == 0) 3990 return LSM_RET_DEFAULT(getselfattr); 3991 return count; 3992 } 3993 3994 /* 3995 * Please keep this in sync with it's counterpart in security/lsm_syscalls.c 3996 */ 3997 3998 /** 3999 * security_setselfattr - Set an LSM attribute on the current process. 4000 * @attr: which attribute to set 4001 * @uctx: the user-space source for the information 4002 * @size: the size of the data 4003 * @flags: reserved for future use, must be 0 4004 * 4005 * Set an LSM attribute for the current process. The LSM, attribute 4006 * and new value are included in @uctx. 4007 * 4008 * Returns 0 on success, -EINVAL if the input is inconsistent, -EFAULT 4009 * if the user buffer is inaccessible, E2BIG if size is too big, or an 4010 * LSM specific failure. 4011 */ 4012 int security_setselfattr(unsigned int attr, struct lsm_ctx __user *uctx, 4013 size_t size, u32 flags) 4014 { 4015 struct security_hook_list *hp; 4016 struct lsm_ctx *lctx; 4017 int rc = LSM_RET_DEFAULT(setselfattr); 4018 4019 if (flags) 4020 return -EINVAL; 4021 if (size < sizeof(*lctx)) 4022 return -EINVAL; 4023 if (size > PAGE_SIZE) 4024 return -E2BIG; 4025 4026 lctx = memdup_user(uctx, size); 4027 if (IS_ERR(lctx)) 4028 return PTR_ERR(lctx); 4029 4030 if (size < lctx->len || size < lctx->ctx_len + sizeof(*lctx) || 4031 lctx->len < lctx->ctx_len + sizeof(*lctx)) { 4032 rc = -EINVAL; 4033 goto free_out; 4034 } 4035 4036 hlist_for_each_entry(hp, &security_hook_heads.setselfattr, list) 4037 if ((hp->lsmid->id) == lctx->id) { 4038 rc = hp->hook.setselfattr(attr, lctx, size, flags); 4039 break; 4040 } 4041 4042 free_out: 4043 kfree(lctx); 4044 return rc; 4045 } 4046 4047 /** 4048 * security_getprocattr() - Read an attribute for a task 4049 * @p: the task 4050 * @lsmid: LSM identification 4051 * @name: attribute name 4052 * @value: attribute value 4053 * 4054 * Read attribute @name for task @p and store it into @value if allowed. 4055 * 4056 * Return: Returns the length of @value on success, a negative value otherwise. 4057 */ 4058 int security_getprocattr(struct task_struct *p, int lsmid, const char *name, 4059 char **value) 4060 { 4061 struct security_hook_list *hp; 4062 4063 hlist_for_each_entry(hp, &security_hook_heads.getprocattr, list) { 4064 if (lsmid != 0 && lsmid != hp->lsmid->id) 4065 continue; 4066 return hp->hook.getprocattr(p, name, value); 4067 } 4068 return LSM_RET_DEFAULT(getprocattr); 4069 } 4070 4071 /** 4072 * security_setprocattr() - Set an attribute for a task 4073 * @lsmid: LSM identification 4074 * @name: attribute name 4075 * @value: attribute value 4076 * @size: attribute value size 4077 * 4078 * Write (set) the current task's attribute @name to @value, size @size if 4079 * allowed. 4080 * 4081 * Return: Returns bytes written on success, a negative value otherwise. 4082 */ 4083 int security_setprocattr(int lsmid, const char *name, void *value, size_t size) 4084 { 4085 struct security_hook_list *hp; 4086 4087 hlist_for_each_entry(hp, &security_hook_heads.setprocattr, list) { 4088 if (lsmid != 0 && lsmid != hp->lsmid->id) 4089 continue; 4090 return hp->hook.setprocattr(name, value, size); 4091 } 4092 return LSM_RET_DEFAULT(setprocattr); 4093 } 4094 4095 /** 4096 * security_netlink_send() - Save info and check if netlink sending is allowed 4097 * @sk: sending socket 4098 * @skb: netlink message 4099 * 4100 * Save security information for a netlink message so that permission checking 4101 * can be performed when the message is processed. The security information 4102 * can be saved using the eff_cap field of the netlink_skb_parms structure. 4103 * Also may be used to provide fine grained control over message transmission. 4104 * 4105 * Return: Returns 0 if the information was successfully saved and message is 4106 * allowed to be transmitted. 4107 */ 4108 int security_netlink_send(struct sock *sk, struct sk_buff *skb) 4109 { 4110 return call_int_hook(netlink_send, 0, sk, skb); 4111 } 4112 4113 /** 4114 * security_ismaclabel() - Check is the named attribute is a MAC label 4115 * @name: full extended attribute name 4116 * 4117 * Check if the extended attribute specified by @name represents a MAC label. 4118 * 4119 * Return: Returns 1 if name is a MAC attribute otherwise returns 0. 4120 */ 4121 int security_ismaclabel(const char *name) 4122 { 4123 return call_int_hook(ismaclabel, 0, name); 4124 } 4125 EXPORT_SYMBOL(security_ismaclabel); 4126 4127 /** 4128 * security_secid_to_secctx() - Convert a secid to a secctx 4129 * @secid: secid 4130 * @secdata: secctx 4131 * @seclen: secctx length 4132 * 4133 * Convert secid to security context. If @secdata is NULL the length of the 4134 * result will be returned in @seclen, but no @secdata will be returned. This 4135 * does mean that the length could change between calls to check the length and 4136 * the next call which actually allocates and returns the @secdata. 4137 * 4138 * Return: Return 0 on success, error on failure. 4139 */ 4140 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen) 4141 { 4142 struct security_hook_list *hp; 4143 int rc; 4144 4145 /* 4146 * Currently, only one LSM can implement secid_to_secctx (i.e this 4147 * LSM hook is not "stackable"). 4148 */ 4149 hlist_for_each_entry(hp, &security_hook_heads.secid_to_secctx, list) { 4150 rc = hp->hook.secid_to_secctx(secid, secdata, seclen); 4151 if (rc != LSM_RET_DEFAULT(secid_to_secctx)) 4152 return rc; 4153 } 4154 4155 return LSM_RET_DEFAULT(secid_to_secctx); 4156 } 4157 EXPORT_SYMBOL(security_secid_to_secctx); 4158 4159 /** 4160 * security_secctx_to_secid() - Convert a secctx to a secid 4161 * @secdata: secctx 4162 * @seclen: length of secctx 4163 * @secid: secid 4164 * 4165 * Convert security context to secid. 4166 * 4167 * Return: Returns 0 on success, error on failure. 4168 */ 4169 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid) 4170 { 4171 *secid = 0; 4172 return call_int_hook(secctx_to_secid, 0, secdata, seclen, secid); 4173 } 4174 EXPORT_SYMBOL(security_secctx_to_secid); 4175 4176 /** 4177 * security_release_secctx() - Free a secctx buffer 4178 * @secdata: secctx 4179 * @seclen: length of secctx 4180 * 4181 * Release the security context. 4182 */ 4183 void security_release_secctx(char *secdata, u32 seclen) 4184 { 4185 call_void_hook(release_secctx, secdata, seclen); 4186 } 4187 EXPORT_SYMBOL(security_release_secctx); 4188 4189 /** 4190 * security_inode_invalidate_secctx() - Invalidate an inode's security label 4191 * @inode: inode 4192 * 4193 * Notify the security module that it must revalidate the security context of 4194 * an inode. 4195 */ 4196 void security_inode_invalidate_secctx(struct inode *inode) 4197 { 4198 call_void_hook(inode_invalidate_secctx, inode); 4199 } 4200 EXPORT_SYMBOL(security_inode_invalidate_secctx); 4201 4202 /** 4203 * security_inode_notifysecctx() - Notify the LSM of an inode's security label 4204 * @inode: inode 4205 * @ctx: secctx 4206 * @ctxlen: length of secctx 4207 * 4208 * Notify the security module of what the security context of an inode should 4209 * be. Initializes the incore security context managed by the security module 4210 * for this inode. Example usage: NFS client invokes this hook to initialize 4211 * the security context in its incore inode to the value provided by the server 4212 * for the file when the server returned the file's attributes to the client. 4213 * Must be called with inode->i_mutex locked. 4214 * 4215 * Return: Returns 0 on success, error on failure. 4216 */ 4217 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen) 4218 { 4219 return call_int_hook(inode_notifysecctx, 0, inode, ctx, ctxlen); 4220 } 4221 EXPORT_SYMBOL(security_inode_notifysecctx); 4222 4223 /** 4224 * security_inode_setsecctx() - Change the security label of an inode 4225 * @dentry: inode 4226 * @ctx: secctx 4227 * @ctxlen: length of secctx 4228 * 4229 * Change the security context of an inode. Updates the incore security 4230 * context managed by the security module and invokes the fs code as needed 4231 * (via __vfs_setxattr_noperm) to update any backing xattrs that represent the 4232 * context. Example usage: NFS server invokes this hook to change the security 4233 * context in its incore inode and on the backing filesystem to a value 4234 * provided by the client on a SETATTR operation. Must be called with 4235 * inode->i_mutex locked. 4236 * 4237 * Return: Returns 0 on success, error on failure. 4238 */ 4239 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen) 4240 { 4241 return call_int_hook(inode_setsecctx, 0, dentry, ctx, ctxlen); 4242 } 4243 EXPORT_SYMBOL(security_inode_setsecctx); 4244 4245 /** 4246 * security_inode_getsecctx() - Get the security label of an inode 4247 * @inode: inode 4248 * @ctx: secctx 4249 * @ctxlen: length of secctx 4250 * 4251 * On success, returns 0 and fills out @ctx and @ctxlen with the security 4252 * context for the given @inode. 4253 * 4254 * Return: Returns 0 on success, error on failure. 4255 */ 4256 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen) 4257 { 4258 struct security_hook_list *hp; 4259 int rc; 4260 4261 /* 4262 * Only one module will provide a security context. 4263 */ 4264 hlist_for_each_entry(hp, &security_hook_heads.inode_getsecctx, list) { 4265 rc = hp->hook.inode_getsecctx(inode, ctx, ctxlen); 4266 if (rc != LSM_RET_DEFAULT(inode_getsecctx)) 4267 return rc; 4268 } 4269 4270 return LSM_RET_DEFAULT(inode_getsecctx); 4271 } 4272 EXPORT_SYMBOL(security_inode_getsecctx); 4273 4274 #ifdef CONFIG_WATCH_QUEUE 4275 /** 4276 * security_post_notification() - Check if a watch notification can be posted 4277 * @w_cred: credentials of the task that set the watch 4278 * @cred: credentials of the task which triggered the watch 4279 * @n: the notification 4280 * 4281 * Check to see if a watch notification can be posted to a particular queue. 4282 * 4283 * Return: Returns 0 if permission is granted. 4284 */ 4285 int security_post_notification(const struct cred *w_cred, 4286 const struct cred *cred, 4287 struct watch_notification *n) 4288 { 4289 return call_int_hook(post_notification, 0, w_cred, cred, n); 4290 } 4291 #endif /* CONFIG_WATCH_QUEUE */ 4292 4293 #ifdef CONFIG_KEY_NOTIFICATIONS 4294 /** 4295 * security_watch_key() - Check if a task is allowed to watch for key events 4296 * @key: the key to watch 4297 * 4298 * Check to see if a process is allowed to watch for event notifications from 4299 * a key or keyring. 4300 * 4301 * Return: Returns 0 if permission is granted. 4302 */ 4303 int security_watch_key(struct key *key) 4304 { 4305 return call_int_hook(watch_key, 0, key); 4306 } 4307 #endif /* CONFIG_KEY_NOTIFICATIONS */ 4308 4309 #ifdef CONFIG_SECURITY_NETWORK 4310 /** 4311 * security_unix_stream_connect() - Check if a AF_UNIX stream is allowed 4312 * @sock: originating sock 4313 * @other: peer sock 4314 * @newsk: new sock 4315 * 4316 * Check permissions before establishing a Unix domain stream connection 4317 * between @sock and @other. 4318 * 4319 * The @unix_stream_connect and @unix_may_send hooks were necessary because 4320 * Linux provides an alternative to the conventional file name space for Unix 4321 * domain sockets. Whereas binding and connecting to sockets in the file name 4322 * space is mediated by the typical file permissions (and caught by the mknod 4323 * and permission hooks in inode_security_ops), binding and connecting to 4324 * sockets in the abstract name space is completely unmediated. Sufficient 4325 * control of Unix domain sockets in the abstract name space isn't possible 4326 * using only the socket layer hooks, since we need to know the actual target 4327 * socket, which is not looked up until we are inside the af_unix code. 4328 * 4329 * Return: Returns 0 if permission is granted. 4330 */ 4331 int security_unix_stream_connect(struct sock *sock, struct sock *other, 4332 struct sock *newsk) 4333 { 4334 return call_int_hook(unix_stream_connect, 0, sock, other, newsk); 4335 } 4336 EXPORT_SYMBOL(security_unix_stream_connect); 4337 4338 /** 4339 * security_unix_may_send() - Check if AF_UNIX socket can send datagrams 4340 * @sock: originating sock 4341 * @other: peer sock 4342 * 4343 * Check permissions before connecting or sending datagrams from @sock to 4344 * @other. 4345 * 4346 * The @unix_stream_connect and @unix_may_send hooks were necessary because 4347 * Linux provides an alternative to the conventional file name space for Unix 4348 * domain sockets. Whereas binding and connecting to sockets in the file name 4349 * space is mediated by the typical file permissions (and caught by the mknod 4350 * and permission hooks in inode_security_ops), binding and connecting to 4351 * sockets in the abstract name space is completely unmediated. Sufficient 4352 * control of Unix domain sockets in the abstract name space isn't possible 4353 * using only the socket layer hooks, since we need to know the actual target 4354 * socket, which is not looked up until we are inside the af_unix code. 4355 * 4356 * Return: Returns 0 if permission is granted. 4357 */ 4358 int security_unix_may_send(struct socket *sock, struct socket *other) 4359 { 4360 return call_int_hook(unix_may_send, 0, sock, other); 4361 } 4362 EXPORT_SYMBOL(security_unix_may_send); 4363 4364 /** 4365 * security_socket_create() - Check if creating a new socket is allowed 4366 * @family: protocol family 4367 * @type: communications type 4368 * @protocol: requested protocol 4369 * @kern: set to 1 if a kernel socket is requested 4370 * 4371 * Check permissions prior to creating a new socket. 4372 * 4373 * Return: Returns 0 if permission is granted. 4374 */ 4375 int security_socket_create(int family, int type, int protocol, int kern) 4376 { 4377 return call_int_hook(socket_create, 0, family, type, protocol, kern); 4378 } 4379 4380 /** 4381 * security_socket_post_create() - Initialize a newly created socket 4382 * @sock: socket 4383 * @family: protocol family 4384 * @type: communications type 4385 * @protocol: requested protocol 4386 * @kern: set to 1 if a kernel socket is requested 4387 * 4388 * This hook allows a module to update or allocate a per-socket security 4389 * structure. Note that the security field was not added directly to the socket 4390 * structure, but rather, the socket security information is stored in the 4391 * associated inode. Typically, the inode alloc_security hook will allocate 4392 * and attach security information to SOCK_INODE(sock)->i_security. This hook 4393 * may be used to update the SOCK_INODE(sock)->i_security field with additional 4394 * information that wasn't available when the inode was allocated. 4395 * 4396 * Return: Returns 0 if permission is granted. 4397 */ 4398 int security_socket_post_create(struct socket *sock, int family, 4399 int type, int protocol, int kern) 4400 { 4401 return call_int_hook(socket_post_create, 0, sock, family, type, 4402 protocol, kern); 4403 } 4404 4405 /** 4406 * security_socket_socketpair() - Check if creating a socketpair is allowed 4407 * @socka: first socket 4408 * @sockb: second socket 4409 * 4410 * Check permissions before creating a fresh pair of sockets. 4411 * 4412 * Return: Returns 0 if permission is granted and the connection was 4413 * established. 4414 */ 4415 int security_socket_socketpair(struct socket *socka, struct socket *sockb) 4416 { 4417 return call_int_hook(socket_socketpair, 0, socka, sockb); 4418 } 4419 EXPORT_SYMBOL(security_socket_socketpair); 4420 4421 /** 4422 * security_socket_bind() - Check if a socket bind operation is allowed 4423 * @sock: socket 4424 * @address: requested bind address 4425 * @addrlen: length of address 4426 * 4427 * Check permission before socket protocol layer bind operation is performed 4428 * and the socket @sock is bound to the address specified in the @address 4429 * parameter. 4430 * 4431 * Return: Returns 0 if permission is granted. 4432 */ 4433 int security_socket_bind(struct socket *sock, 4434 struct sockaddr *address, int addrlen) 4435 { 4436 return call_int_hook(socket_bind, 0, sock, address, addrlen); 4437 } 4438 4439 /** 4440 * security_socket_connect() - Check if a socket connect operation is allowed 4441 * @sock: socket 4442 * @address: address of remote connection point 4443 * @addrlen: length of address 4444 * 4445 * Check permission before socket protocol layer connect operation attempts to 4446 * connect socket @sock to a remote address, @address. 4447 * 4448 * Return: Returns 0 if permission is granted. 4449 */ 4450 int security_socket_connect(struct socket *sock, 4451 struct sockaddr *address, int addrlen) 4452 { 4453 return call_int_hook(socket_connect, 0, sock, address, addrlen); 4454 } 4455 4456 /** 4457 * security_socket_listen() - Check if a socket is allowed to listen 4458 * @sock: socket 4459 * @backlog: connection queue size 4460 * 4461 * Check permission before socket protocol layer listen operation. 4462 * 4463 * Return: Returns 0 if permission is granted. 4464 */ 4465 int security_socket_listen(struct socket *sock, int backlog) 4466 { 4467 return call_int_hook(socket_listen, 0, sock, backlog); 4468 } 4469 4470 /** 4471 * security_socket_accept() - Check if a socket is allowed to accept connections 4472 * @sock: listening socket 4473 * @newsock: newly creation connection socket 4474 * 4475 * Check permission before accepting a new connection. Note that the new 4476 * socket, @newsock, has been created and some information copied to it, but 4477 * the accept operation has not actually been performed. 4478 * 4479 * Return: Returns 0 if permission is granted. 4480 */ 4481 int security_socket_accept(struct socket *sock, struct socket *newsock) 4482 { 4483 return call_int_hook(socket_accept, 0, sock, newsock); 4484 } 4485 4486 /** 4487 * security_socket_sendmsg() - Check is sending a message is allowed 4488 * @sock: sending socket 4489 * @msg: message to send 4490 * @size: size of message 4491 * 4492 * Check permission before transmitting a message to another socket. 4493 * 4494 * Return: Returns 0 if permission is granted. 4495 */ 4496 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size) 4497 { 4498 return call_int_hook(socket_sendmsg, 0, sock, msg, size); 4499 } 4500 4501 /** 4502 * security_socket_recvmsg() - Check if receiving a message is allowed 4503 * @sock: receiving socket 4504 * @msg: message to receive 4505 * @size: size of message 4506 * @flags: operational flags 4507 * 4508 * Check permission before receiving a message from a socket. 4509 * 4510 * Return: Returns 0 if permission is granted. 4511 */ 4512 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg, 4513 int size, int flags) 4514 { 4515 return call_int_hook(socket_recvmsg, 0, sock, msg, size, flags); 4516 } 4517 4518 /** 4519 * security_socket_getsockname() - Check if reading the socket addr is allowed 4520 * @sock: socket 4521 * 4522 * Check permission before reading the local address (name) of the socket 4523 * object. 4524 * 4525 * Return: Returns 0 if permission is granted. 4526 */ 4527 int security_socket_getsockname(struct socket *sock) 4528 { 4529 return call_int_hook(socket_getsockname, 0, sock); 4530 } 4531 4532 /** 4533 * security_socket_getpeername() - Check if reading the peer's addr is allowed 4534 * @sock: socket 4535 * 4536 * Check permission before the remote address (name) of a socket object. 4537 * 4538 * Return: Returns 0 if permission is granted. 4539 */ 4540 int security_socket_getpeername(struct socket *sock) 4541 { 4542 return call_int_hook(socket_getpeername, 0, sock); 4543 } 4544 4545 /** 4546 * security_socket_getsockopt() - Check if reading a socket option is allowed 4547 * @sock: socket 4548 * @level: option's protocol level 4549 * @optname: option name 4550 * 4551 * Check permissions before retrieving the options associated with socket 4552 * @sock. 4553 * 4554 * Return: Returns 0 if permission is granted. 4555 */ 4556 int security_socket_getsockopt(struct socket *sock, int level, int optname) 4557 { 4558 return call_int_hook(socket_getsockopt, 0, sock, level, optname); 4559 } 4560 4561 /** 4562 * security_socket_setsockopt() - Check if setting a socket option is allowed 4563 * @sock: socket 4564 * @level: option's protocol level 4565 * @optname: option name 4566 * 4567 * Check permissions before setting the options associated with socket @sock. 4568 * 4569 * Return: Returns 0 if permission is granted. 4570 */ 4571 int security_socket_setsockopt(struct socket *sock, int level, int optname) 4572 { 4573 return call_int_hook(socket_setsockopt, 0, sock, level, optname); 4574 } 4575 4576 /** 4577 * security_socket_shutdown() - Checks if shutting down the socket is allowed 4578 * @sock: socket 4579 * @how: flag indicating how sends and receives are handled 4580 * 4581 * Checks permission before all or part of a connection on the socket @sock is 4582 * shut down. 4583 * 4584 * Return: Returns 0 if permission is granted. 4585 */ 4586 int security_socket_shutdown(struct socket *sock, int how) 4587 { 4588 return call_int_hook(socket_shutdown, 0, sock, how); 4589 } 4590 4591 /** 4592 * security_sock_rcv_skb() - Check if an incoming network packet is allowed 4593 * @sk: destination sock 4594 * @skb: incoming packet 4595 * 4596 * Check permissions on incoming network packets. This hook is distinct from 4597 * Netfilter's IP input hooks since it is the first time that the incoming 4598 * sk_buff @skb has been associated with a particular socket, @sk. Must not 4599 * sleep inside this hook because some callers hold spinlocks. 4600 * 4601 * Return: Returns 0 if permission is granted. 4602 */ 4603 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb) 4604 { 4605 return call_int_hook(socket_sock_rcv_skb, 0, sk, skb); 4606 } 4607 EXPORT_SYMBOL(security_sock_rcv_skb); 4608 4609 /** 4610 * security_socket_getpeersec_stream() - Get the remote peer label 4611 * @sock: socket 4612 * @optval: destination buffer 4613 * @optlen: size of peer label copied into the buffer 4614 * @len: maximum size of the destination buffer 4615 * 4616 * This hook allows the security module to provide peer socket security state 4617 * for unix or connected tcp sockets to userspace via getsockopt SO_GETPEERSEC. 4618 * For tcp sockets this can be meaningful if the socket is associated with an 4619 * ipsec SA. 4620 * 4621 * Return: Returns 0 if all is well, otherwise, typical getsockopt return 4622 * values. 4623 */ 4624 int security_socket_getpeersec_stream(struct socket *sock, sockptr_t optval, 4625 sockptr_t optlen, unsigned int len) 4626 { 4627 struct security_hook_list *hp; 4628 int rc; 4629 4630 /* 4631 * Only one module will provide a security context. 4632 */ 4633 hlist_for_each_entry(hp, &security_hook_heads.socket_getpeersec_stream, 4634 list) { 4635 rc = hp->hook.socket_getpeersec_stream(sock, optval, optlen, 4636 len); 4637 if (rc != LSM_RET_DEFAULT(socket_getpeersec_stream)) 4638 return rc; 4639 } 4640 return LSM_RET_DEFAULT(socket_getpeersec_stream); 4641 } 4642 4643 /** 4644 * security_socket_getpeersec_dgram() - Get the remote peer label 4645 * @sock: socket 4646 * @skb: datagram packet 4647 * @secid: remote peer label secid 4648 * 4649 * This hook allows the security module to provide peer socket security state 4650 * for udp sockets on a per-packet basis to userspace via getsockopt 4651 * SO_GETPEERSEC. The application must first have indicated the IP_PASSSEC 4652 * option via getsockopt. It can then retrieve the security state returned by 4653 * this hook for a packet via the SCM_SECURITY ancillary message type. 4654 * 4655 * Return: Returns 0 on success, error on failure. 4656 */ 4657 int security_socket_getpeersec_dgram(struct socket *sock, 4658 struct sk_buff *skb, u32 *secid) 4659 { 4660 struct security_hook_list *hp; 4661 int rc; 4662 4663 /* 4664 * Only one module will provide a security context. 4665 */ 4666 hlist_for_each_entry(hp, &security_hook_heads.socket_getpeersec_dgram, 4667 list) { 4668 rc = hp->hook.socket_getpeersec_dgram(sock, skb, secid); 4669 if (rc != LSM_RET_DEFAULT(socket_getpeersec_dgram)) 4670 return rc; 4671 } 4672 return LSM_RET_DEFAULT(socket_getpeersec_dgram); 4673 } 4674 EXPORT_SYMBOL(security_socket_getpeersec_dgram); 4675 4676 /** 4677 * security_sk_alloc() - Allocate and initialize a sock's LSM blob 4678 * @sk: sock 4679 * @family: protocol family 4680 * @priority: gfp flags 4681 * 4682 * Allocate and attach a security structure to the sk->sk_security field, which 4683 * is used to copy security attributes between local stream sockets. 4684 * 4685 * Return: Returns 0 on success, error on failure. 4686 */ 4687 int security_sk_alloc(struct sock *sk, int family, gfp_t priority) 4688 { 4689 return call_int_hook(sk_alloc_security, 0, sk, family, priority); 4690 } 4691 4692 /** 4693 * security_sk_free() - Free the sock's LSM blob 4694 * @sk: sock 4695 * 4696 * Deallocate security structure. 4697 */ 4698 void security_sk_free(struct sock *sk) 4699 { 4700 call_void_hook(sk_free_security, sk); 4701 } 4702 4703 /** 4704 * security_sk_clone() - Clone a sock's LSM state 4705 * @sk: original sock 4706 * @newsk: target sock 4707 * 4708 * Clone/copy security structure. 4709 */ 4710 void security_sk_clone(const struct sock *sk, struct sock *newsk) 4711 { 4712 call_void_hook(sk_clone_security, sk, newsk); 4713 } 4714 EXPORT_SYMBOL(security_sk_clone); 4715 4716 /** 4717 * security_sk_classify_flow() - Set a flow's secid based on socket 4718 * @sk: original socket 4719 * @flic: target flow 4720 * 4721 * Set the target flow's secid to socket's secid. 4722 */ 4723 void security_sk_classify_flow(const struct sock *sk, struct flowi_common *flic) 4724 { 4725 call_void_hook(sk_getsecid, sk, &flic->flowic_secid); 4726 } 4727 EXPORT_SYMBOL(security_sk_classify_flow); 4728 4729 /** 4730 * security_req_classify_flow() - Set a flow's secid based on request_sock 4731 * @req: request_sock 4732 * @flic: target flow 4733 * 4734 * Sets @flic's secid to @req's secid. 4735 */ 4736 void security_req_classify_flow(const struct request_sock *req, 4737 struct flowi_common *flic) 4738 { 4739 call_void_hook(req_classify_flow, req, flic); 4740 } 4741 EXPORT_SYMBOL(security_req_classify_flow); 4742 4743 /** 4744 * security_sock_graft() - Reconcile LSM state when grafting a sock on a socket 4745 * @sk: sock being grafted 4746 * @parent: target parent socket 4747 * 4748 * Sets @parent's inode secid to @sk's secid and update @sk with any necessary 4749 * LSM state from @parent. 4750 */ 4751 void security_sock_graft(struct sock *sk, struct socket *parent) 4752 { 4753 call_void_hook(sock_graft, sk, parent); 4754 } 4755 EXPORT_SYMBOL(security_sock_graft); 4756 4757 /** 4758 * security_inet_conn_request() - Set request_sock state using incoming connect 4759 * @sk: parent listening sock 4760 * @skb: incoming connection 4761 * @req: new request_sock 4762 * 4763 * Initialize the @req LSM state based on @sk and the incoming connect in @skb. 4764 * 4765 * Return: Returns 0 if permission is granted. 4766 */ 4767 int security_inet_conn_request(const struct sock *sk, 4768 struct sk_buff *skb, struct request_sock *req) 4769 { 4770 return call_int_hook(inet_conn_request, 0, sk, skb, req); 4771 } 4772 EXPORT_SYMBOL(security_inet_conn_request); 4773 4774 /** 4775 * security_inet_csk_clone() - Set new sock LSM state based on request_sock 4776 * @newsk: new sock 4777 * @req: connection request_sock 4778 * 4779 * Set that LSM state of @sock using the LSM state from @req. 4780 */ 4781 void security_inet_csk_clone(struct sock *newsk, 4782 const struct request_sock *req) 4783 { 4784 call_void_hook(inet_csk_clone, newsk, req); 4785 } 4786 4787 /** 4788 * security_inet_conn_established() - Update sock's LSM state with connection 4789 * @sk: sock 4790 * @skb: connection packet 4791 * 4792 * Update @sock's LSM state to represent a new connection from @skb. 4793 */ 4794 void security_inet_conn_established(struct sock *sk, 4795 struct sk_buff *skb) 4796 { 4797 call_void_hook(inet_conn_established, sk, skb); 4798 } 4799 EXPORT_SYMBOL(security_inet_conn_established); 4800 4801 /** 4802 * security_secmark_relabel_packet() - Check if setting a secmark is allowed 4803 * @secid: new secmark value 4804 * 4805 * Check if the process should be allowed to relabel packets to @secid. 4806 * 4807 * Return: Returns 0 if permission is granted. 4808 */ 4809 int security_secmark_relabel_packet(u32 secid) 4810 { 4811 return call_int_hook(secmark_relabel_packet, 0, secid); 4812 } 4813 EXPORT_SYMBOL(security_secmark_relabel_packet); 4814 4815 /** 4816 * security_secmark_refcount_inc() - Increment the secmark labeling rule count 4817 * 4818 * Tells the LSM to increment the number of secmark labeling rules loaded. 4819 */ 4820 void security_secmark_refcount_inc(void) 4821 { 4822 call_void_hook(secmark_refcount_inc); 4823 } 4824 EXPORT_SYMBOL(security_secmark_refcount_inc); 4825 4826 /** 4827 * security_secmark_refcount_dec() - Decrement the secmark labeling rule count 4828 * 4829 * Tells the LSM to decrement the number of secmark labeling rules loaded. 4830 */ 4831 void security_secmark_refcount_dec(void) 4832 { 4833 call_void_hook(secmark_refcount_dec); 4834 } 4835 EXPORT_SYMBOL(security_secmark_refcount_dec); 4836 4837 /** 4838 * security_tun_dev_alloc_security() - Allocate a LSM blob for a TUN device 4839 * @security: pointer to the LSM blob 4840 * 4841 * This hook allows a module to allocate a security structure for a TUN device, 4842 * returning the pointer in @security. 4843 * 4844 * Return: Returns a zero on success, negative values on failure. 4845 */ 4846 int security_tun_dev_alloc_security(void **security) 4847 { 4848 return call_int_hook(tun_dev_alloc_security, 0, security); 4849 } 4850 EXPORT_SYMBOL(security_tun_dev_alloc_security); 4851 4852 /** 4853 * security_tun_dev_free_security() - Free a TUN device LSM blob 4854 * @security: LSM blob 4855 * 4856 * This hook allows a module to free the security structure for a TUN device. 4857 */ 4858 void security_tun_dev_free_security(void *security) 4859 { 4860 call_void_hook(tun_dev_free_security, security); 4861 } 4862 EXPORT_SYMBOL(security_tun_dev_free_security); 4863 4864 /** 4865 * security_tun_dev_create() - Check if creating a TUN device is allowed 4866 * 4867 * Check permissions prior to creating a new TUN device. 4868 * 4869 * Return: Returns 0 if permission is granted. 4870 */ 4871 int security_tun_dev_create(void) 4872 { 4873 return call_int_hook(tun_dev_create, 0); 4874 } 4875 EXPORT_SYMBOL(security_tun_dev_create); 4876 4877 /** 4878 * security_tun_dev_attach_queue() - Check if attaching a TUN queue is allowed 4879 * @security: TUN device LSM blob 4880 * 4881 * Check permissions prior to attaching to a TUN device queue. 4882 * 4883 * Return: Returns 0 if permission is granted. 4884 */ 4885 int security_tun_dev_attach_queue(void *security) 4886 { 4887 return call_int_hook(tun_dev_attach_queue, 0, security); 4888 } 4889 EXPORT_SYMBOL(security_tun_dev_attach_queue); 4890 4891 /** 4892 * security_tun_dev_attach() - Update TUN device LSM state on attach 4893 * @sk: associated sock 4894 * @security: TUN device LSM blob 4895 * 4896 * This hook can be used by the module to update any security state associated 4897 * with the TUN device's sock structure. 4898 * 4899 * Return: Returns 0 if permission is granted. 4900 */ 4901 int security_tun_dev_attach(struct sock *sk, void *security) 4902 { 4903 return call_int_hook(tun_dev_attach, 0, sk, security); 4904 } 4905 EXPORT_SYMBOL(security_tun_dev_attach); 4906 4907 /** 4908 * security_tun_dev_open() - Update TUN device LSM state on open 4909 * @security: TUN device LSM blob 4910 * 4911 * This hook can be used by the module to update any security state associated 4912 * with the TUN device's security structure. 4913 * 4914 * Return: Returns 0 if permission is granted. 4915 */ 4916 int security_tun_dev_open(void *security) 4917 { 4918 return call_int_hook(tun_dev_open, 0, security); 4919 } 4920 EXPORT_SYMBOL(security_tun_dev_open); 4921 4922 /** 4923 * security_sctp_assoc_request() - Update the LSM on a SCTP association req 4924 * @asoc: SCTP association 4925 * @skb: packet requesting the association 4926 * 4927 * Passes the @asoc and @chunk->skb of the association INIT packet to the LSM. 4928 * 4929 * Return: Returns 0 on success, error on failure. 4930 */ 4931 int security_sctp_assoc_request(struct sctp_association *asoc, 4932 struct sk_buff *skb) 4933 { 4934 return call_int_hook(sctp_assoc_request, 0, asoc, skb); 4935 } 4936 EXPORT_SYMBOL(security_sctp_assoc_request); 4937 4938 /** 4939 * security_sctp_bind_connect() - Validate a list of addrs for a SCTP option 4940 * @sk: socket 4941 * @optname: SCTP option to validate 4942 * @address: list of IP addresses to validate 4943 * @addrlen: length of the address list 4944 * 4945 * Validiate permissions required for each address associated with sock @sk. 4946 * Depending on @optname, the addresses will be treated as either a connect or 4947 * bind service. The @addrlen is calculated on each IPv4 and IPv6 address using 4948 * sizeof(struct sockaddr_in) or sizeof(struct sockaddr_in6). 4949 * 4950 * Return: Returns 0 on success, error on failure. 4951 */ 4952 int security_sctp_bind_connect(struct sock *sk, int optname, 4953 struct sockaddr *address, int addrlen) 4954 { 4955 return call_int_hook(sctp_bind_connect, 0, sk, optname, 4956 address, addrlen); 4957 } 4958 EXPORT_SYMBOL(security_sctp_bind_connect); 4959 4960 /** 4961 * security_sctp_sk_clone() - Clone a SCTP sock's LSM state 4962 * @asoc: SCTP association 4963 * @sk: original sock 4964 * @newsk: target sock 4965 * 4966 * Called whenever a new socket is created by accept(2) (i.e. a TCP style 4967 * socket) or when a socket is 'peeled off' e.g userspace calls 4968 * sctp_peeloff(3). 4969 */ 4970 void security_sctp_sk_clone(struct sctp_association *asoc, struct sock *sk, 4971 struct sock *newsk) 4972 { 4973 call_void_hook(sctp_sk_clone, asoc, sk, newsk); 4974 } 4975 EXPORT_SYMBOL(security_sctp_sk_clone); 4976 4977 /** 4978 * security_sctp_assoc_established() - Update LSM state when assoc established 4979 * @asoc: SCTP association 4980 * @skb: packet establishing the association 4981 * 4982 * Passes the @asoc and @chunk->skb of the association COOKIE_ACK packet to the 4983 * security module. 4984 * 4985 * Return: Returns 0 if permission is granted. 4986 */ 4987 int security_sctp_assoc_established(struct sctp_association *asoc, 4988 struct sk_buff *skb) 4989 { 4990 return call_int_hook(sctp_assoc_established, 0, asoc, skb); 4991 } 4992 EXPORT_SYMBOL(security_sctp_assoc_established); 4993 4994 /** 4995 * security_mptcp_add_subflow() - Inherit the LSM label from the MPTCP socket 4996 * @sk: the owning MPTCP socket 4997 * @ssk: the new subflow 4998 * 4999 * Update the labeling for the given MPTCP subflow, to match the one of the 5000 * owning MPTCP socket. This hook has to be called after the socket creation and 5001 * initialization via the security_socket_create() and 5002 * security_socket_post_create() LSM hooks. 5003 * 5004 * Return: Returns 0 on success or a negative error code on failure. 5005 */ 5006 int security_mptcp_add_subflow(struct sock *sk, struct sock *ssk) 5007 { 5008 return call_int_hook(mptcp_add_subflow, 0, sk, ssk); 5009 } 5010 5011 #endif /* CONFIG_SECURITY_NETWORK */ 5012 5013 #ifdef CONFIG_SECURITY_INFINIBAND 5014 /** 5015 * security_ib_pkey_access() - Check if access to an IB pkey is allowed 5016 * @sec: LSM blob 5017 * @subnet_prefix: subnet prefix of the port 5018 * @pkey: IB pkey 5019 * 5020 * Check permission to access a pkey when modifying a QP. 5021 * 5022 * Return: Returns 0 if permission is granted. 5023 */ 5024 int security_ib_pkey_access(void *sec, u64 subnet_prefix, u16 pkey) 5025 { 5026 return call_int_hook(ib_pkey_access, 0, sec, subnet_prefix, pkey); 5027 } 5028 EXPORT_SYMBOL(security_ib_pkey_access); 5029 5030 /** 5031 * security_ib_endport_manage_subnet() - Check if SMPs traffic is allowed 5032 * @sec: LSM blob 5033 * @dev_name: IB device name 5034 * @port_num: port number 5035 * 5036 * Check permissions to send and receive SMPs on a end port. 5037 * 5038 * Return: Returns 0 if permission is granted. 5039 */ 5040 int security_ib_endport_manage_subnet(void *sec, 5041 const char *dev_name, u8 port_num) 5042 { 5043 return call_int_hook(ib_endport_manage_subnet, 0, sec, 5044 dev_name, port_num); 5045 } 5046 EXPORT_SYMBOL(security_ib_endport_manage_subnet); 5047 5048 /** 5049 * security_ib_alloc_security() - Allocate an Infiniband LSM blob 5050 * @sec: LSM blob 5051 * 5052 * Allocate a security structure for Infiniband objects. 5053 * 5054 * Return: Returns 0 on success, non-zero on failure. 5055 */ 5056 int security_ib_alloc_security(void **sec) 5057 { 5058 return call_int_hook(ib_alloc_security, 0, sec); 5059 } 5060 EXPORT_SYMBOL(security_ib_alloc_security); 5061 5062 /** 5063 * security_ib_free_security() - Free an Infiniband LSM blob 5064 * @sec: LSM blob 5065 * 5066 * Deallocate an Infiniband security structure. 5067 */ 5068 void security_ib_free_security(void *sec) 5069 { 5070 call_void_hook(ib_free_security, sec); 5071 } 5072 EXPORT_SYMBOL(security_ib_free_security); 5073 #endif /* CONFIG_SECURITY_INFINIBAND */ 5074 5075 #ifdef CONFIG_SECURITY_NETWORK_XFRM 5076 /** 5077 * security_xfrm_policy_alloc() - Allocate a xfrm policy LSM blob 5078 * @ctxp: xfrm security context being added to the SPD 5079 * @sec_ctx: security label provided by userspace 5080 * @gfp: gfp flags 5081 * 5082 * Allocate a security structure to the xp->security field; the security field 5083 * is initialized to NULL when the xfrm_policy is allocated. 5084 * 5085 * Return: Return 0 if operation was successful. 5086 */ 5087 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, 5088 struct xfrm_user_sec_ctx *sec_ctx, 5089 gfp_t gfp) 5090 { 5091 return call_int_hook(xfrm_policy_alloc_security, 0, ctxp, sec_ctx, gfp); 5092 } 5093 EXPORT_SYMBOL(security_xfrm_policy_alloc); 5094 5095 /** 5096 * security_xfrm_policy_clone() - Clone xfrm policy LSM state 5097 * @old_ctx: xfrm security context 5098 * @new_ctxp: target xfrm security context 5099 * 5100 * Allocate a security structure in new_ctxp that contains the information from 5101 * the old_ctx structure. 5102 * 5103 * Return: Return 0 if operation was successful. 5104 */ 5105 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx, 5106 struct xfrm_sec_ctx **new_ctxp) 5107 { 5108 return call_int_hook(xfrm_policy_clone_security, 0, old_ctx, new_ctxp); 5109 } 5110 5111 /** 5112 * security_xfrm_policy_free() - Free a xfrm security context 5113 * @ctx: xfrm security context 5114 * 5115 * Free LSM resources associated with @ctx. 5116 */ 5117 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx) 5118 { 5119 call_void_hook(xfrm_policy_free_security, ctx); 5120 } 5121 EXPORT_SYMBOL(security_xfrm_policy_free); 5122 5123 /** 5124 * security_xfrm_policy_delete() - Check if deleting a xfrm policy is allowed 5125 * @ctx: xfrm security context 5126 * 5127 * Authorize deletion of a SPD entry. 5128 * 5129 * Return: Returns 0 if permission is granted. 5130 */ 5131 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx) 5132 { 5133 return call_int_hook(xfrm_policy_delete_security, 0, ctx); 5134 } 5135 5136 /** 5137 * security_xfrm_state_alloc() - Allocate a xfrm state LSM blob 5138 * @x: xfrm state being added to the SAD 5139 * @sec_ctx: security label provided by userspace 5140 * 5141 * Allocate a security structure to the @x->security field; the security field 5142 * is initialized to NULL when the xfrm_state is allocated. Set the context to 5143 * correspond to @sec_ctx. 5144 * 5145 * Return: Return 0 if operation was successful. 5146 */ 5147 int security_xfrm_state_alloc(struct xfrm_state *x, 5148 struct xfrm_user_sec_ctx *sec_ctx) 5149 { 5150 return call_int_hook(xfrm_state_alloc, 0, x, sec_ctx); 5151 } 5152 EXPORT_SYMBOL(security_xfrm_state_alloc); 5153 5154 /** 5155 * security_xfrm_state_alloc_acquire() - Allocate a xfrm state LSM blob 5156 * @x: xfrm state being added to the SAD 5157 * @polsec: associated policy's security context 5158 * @secid: secid from the flow 5159 * 5160 * Allocate a security structure to the x->security field; the security field 5161 * is initialized to NULL when the xfrm_state is allocated. Set the context to 5162 * correspond to secid. 5163 * 5164 * Return: Returns 0 if operation was successful. 5165 */ 5166 int security_xfrm_state_alloc_acquire(struct xfrm_state *x, 5167 struct xfrm_sec_ctx *polsec, u32 secid) 5168 { 5169 return call_int_hook(xfrm_state_alloc_acquire, 0, x, polsec, secid); 5170 } 5171 5172 /** 5173 * security_xfrm_state_delete() - Check if deleting a xfrm state is allowed 5174 * @x: xfrm state 5175 * 5176 * Authorize deletion of x->security. 5177 * 5178 * Return: Returns 0 if permission is granted. 5179 */ 5180 int security_xfrm_state_delete(struct xfrm_state *x) 5181 { 5182 return call_int_hook(xfrm_state_delete_security, 0, x); 5183 } 5184 EXPORT_SYMBOL(security_xfrm_state_delete); 5185 5186 /** 5187 * security_xfrm_state_free() - Free a xfrm state 5188 * @x: xfrm state 5189 * 5190 * Deallocate x->security. 5191 */ 5192 void security_xfrm_state_free(struct xfrm_state *x) 5193 { 5194 call_void_hook(xfrm_state_free_security, x); 5195 } 5196 5197 /** 5198 * security_xfrm_policy_lookup() - Check if using a xfrm policy is allowed 5199 * @ctx: target xfrm security context 5200 * @fl_secid: flow secid used to authorize access 5201 * 5202 * Check permission when a flow selects a xfrm_policy for processing XFRMs on a 5203 * packet. The hook is called when selecting either a per-socket policy or a 5204 * generic xfrm policy. 5205 * 5206 * Return: Return 0 if permission is granted, -ESRCH otherwise, or -errno on 5207 * other errors. 5208 */ 5209 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid) 5210 { 5211 return call_int_hook(xfrm_policy_lookup, 0, ctx, fl_secid); 5212 } 5213 5214 /** 5215 * security_xfrm_state_pol_flow_match() - Check for a xfrm match 5216 * @x: xfrm state to match 5217 * @xp: xfrm policy to check for a match 5218 * @flic: flow to check for a match. 5219 * 5220 * Check @xp and @flic for a match with @x. 5221 * 5222 * Return: Returns 1 if there is a match. 5223 */ 5224 int security_xfrm_state_pol_flow_match(struct xfrm_state *x, 5225 struct xfrm_policy *xp, 5226 const struct flowi_common *flic) 5227 { 5228 struct security_hook_list *hp; 5229 int rc = LSM_RET_DEFAULT(xfrm_state_pol_flow_match); 5230 5231 /* 5232 * Since this function is expected to return 0 or 1, the judgment 5233 * becomes difficult if multiple LSMs supply this call. Fortunately, 5234 * we can use the first LSM's judgment because currently only SELinux 5235 * supplies this call. 5236 * 5237 * For speed optimization, we explicitly break the loop rather than 5238 * using the macro 5239 */ 5240 hlist_for_each_entry(hp, &security_hook_heads.xfrm_state_pol_flow_match, 5241 list) { 5242 rc = hp->hook.xfrm_state_pol_flow_match(x, xp, flic); 5243 break; 5244 } 5245 return rc; 5246 } 5247 5248 /** 5249 * security_xfrm_decode_session() - Determine the xfrm secid for a packet 5250 * @skb: xfrm packet 5251 * @secid: secid 5252 * 5253 * Decode the packet in @skb and return the security label in @secid. 5254 * 5255 * Return: Return 0 if all xfrms used have the same secid. 5256 */ 5257 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid) 5258 { 5259 return call_int_hook(xfrm_decode_session, 0, skb, secid, 1); 5260 } 5261 5262 void security_skb_classify_flow(struct sk_buff *skb, struct flowi_common *flic) 5263 { 5264 int rc = call_int_hook(xfrm_decode_session, 0, skb, &flic->flowic_secid, 5265 0); 5266 5267 BUG_ON(rc); 5268 } 5269 EXPORT_SYMBOL(security_skb_classify_flow); 5270 #endif /* CONFIG_SECURITY_NETWORK_XFRM */ 5271 5272 #ifdef CONFIG_KEYS 5273 /** 5274 * security_key_alloc() - Allocate and initialize a kernel key LSM blob 5275 * @key: key 5276 * @cred: credentials 5277 * @flags: allocation flags 5278 * 5279 * Permit allocation of a key and assign security data. Note that key does not 5280 * have a serial number assigned at this point. 5281 * 5282 * Return: Return 0 if permission is granted, -ve error otherwise. 5283 */ 5284 int security_key_alloc(struct key *key, const struct cred *cred, 5285 unsigned long flags) 5286 { 5287 return call_int_hook(key_alloc, 0, key, cred, flags); 5288 } 5289 5290 /** 5291 * security_key_free() - Free a kernel key LSM blob 5292 * @key: key 5293 * 5294 * Notification of destruction; free security data. 5295 */ 5296 void security_key_free(struct key *key) 5297 { 5298 call_void_hook(key_free, key); 5299 } 5300 5301 /** 5302 * security_key_permission() - Check if a kernel key operation is allowed 5303 * @key_ref: key reference 5304 * @cred: credentials of actor requesting access 5305 * @need_perm: requested permissions 5306 * 5307 * See whether a specific operational right is granted to a process on a key. 5308 * 5309 * Return: Return 0 if permission is granted, -ve error otherwise. 5310 */ 5311 int security_key_permission(key_ref_t key_ref, const struct cred *cred, 5312 enum key_need_perm need_perm) 5313 { 5314 return call_int_hook(key_permission, 0, key_ref, cred, need_perm); 5315 } 5316 5317 /** 5318 * security_key_getsecurity() - Get the key's security label 5319 * @key: key 5320 * @buffer: security label buffer 5321 * 5322 * Get a textual representation of the security context attached to a key for 5323 * the purposes of honouring KEYCTL_GETSECURITY. This function allocates the 5324 * storage for the NUL-terminated string and the caller should free it. 5325 * 5326 * Return: Returns the length of @buffer (including terminating NUL) or -ve if 5327 * an error occurs. May also return 0 (and a NULL buffer pointer) if 5328 * there is no security label assigned to the key. 5329 */ 5330 int security_key_getsecurity(struct key *key, char **buffer) 5331 { 5332 *buffer = NULL; 5333 return call_int_hook(key_getsecurity, 0, key, buffer); 5334 } 5335 #endif /* CONFIG_KEYS */ 5336 5337 #ifdef CONFIG_AUDIT 5338 /** 5339 * security_audit_rule_init() - Allocate and init an LSM audit rule struct 5340 * @field: audit action 5341 * @op: rule operator 5342 * @rulestr: rule context 5343 * @lsmrule: receive buffer for audit rule struct 5344 * 5345 * Allocate and initialize an LSM audit rule structure. 5346 * 5347 * Return: Return 0 if @lsmrule has been successfully set, -EINVAL in case of 5348 * an invalid rule. 5349 */ 5350 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule) 5351 { 5352 return call_int_hook(audit_rule_init, 0, field, op, rulestr, lsmrule); 5353 } 5354 5355 /** 5356 * security_audit_rule_known() - Check if an audit rule contains LSM fields 5357 * @krule: audit rule 5358 * 5359 * Specifies whether given @krule contains any fields related to the current 5360 * LSM. 5361 * 5362 * Return: Returns 1 in case of relation found, 0 otherwise. 5363 */ 5364 int security_audit_rule_known(struct audit_krule *krule) 5365 { 5366 return call_int_hook(audit_rule_known, 0, krule); 5367 } 5368 5369 /** 5370 * security_audit_rule_free() - Free an LSM audit rule struct 5371 * @lsmrule: audit rule struct 5372 * 5373 * Deallocate the LSM audit rule structure previously allocated by 5374 * audit_rule_init(). 5375 */ 5376 void security_audit_rule_free(void *lsmrule) 5377 { 5378 call_void_hook(audit_rule_free, lsmrule); 5379 } 5380 5381 /** 5382 * security_audit_rule_match() - Check if a label matches an audit rule 5383 * @secid: security label 5384 * @field: LSM audit field 5385 * @op: matching operator 5386 * @lsmrule: audit rule 5387 * 5388 * Determine if given @secid matches a rule previously approved by 5389 * security_audit_rule_known(). 5390 * 5391 * Return: Returns 1 if secid matches the rule, 0 if it does not, -ERRNO on 5392 * failure. 5393 */ 5394 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule) 5395 { 5396 return call_int_hook(audit_rule_match, 0, secid, field, op, lsmrule); 5397 } 5398 #endif /* CONFIG_AUDIT */ 5399 5400 #ifdef CONFIG_BPF_SYSCALL 5401 /** 5402 * security_bpf() - Check if the bpf syscall operation is allowed 5403 * @cmd: command 5404 * @attr: bpf attribute 5405 * @size: size 5406 * 5407 * Do a initial check for all bpf syscalls after the attribute is copied into 5408 * the kernel. The actual security module can implement their own rules to 5409 * check the specific cmd they need. 5410 * 5411 * Return: Returns 0 if permission is granted. 5412 */ 5413 int security_bpf(int cmd, union bpf_attr *attr, unsigned int size) 5414 { 5415 return call_int_hook(bpf, 0, cmd, attr, size); 5416 } 5417 5418 /** 5419 * security_bpf_map() - Check if access to a bpf map is allowed 5420 * @map: bpf map 5421 * @fmode: mode 5422 * 5423 * Do a check when the kernel generates and returns a file descriptor for eBPF 5424 * maps. 5425 * 5426 * Return: Returns 0 if permission is granted. 5427 */ 5428 int security_bpf_map(struct bpf_map *map, fmode_t fmode) 5429 { 5430 return call_int_hook(bpf_map, 0, map, fmode); 5431 } 5432 5433 /** 5434 * security_bpf_prog() - Check if access to a bpf program is allowed 5435 * @prog: bpf program 5436 * 5437 * Do a check when the kernel generates and returns a file descriptor for eBPF 5438 * programs. 5439 * 5440 * Return: Returns 0 if permission is granted. 5441 */ 5442 int security_bpf_prog(struct bpf_prog *prog) 5443 { 5444 return call_int_hook(bpf_prog, 0, prog); 5445 } 5446 5447 /** 5448 * security_bpf_map_alloc() - Allocate a bpf map LSM blob 5449 * @map: bpf map 5450 * 5451 * Initialize the security field inside bpf map. 5452 * 5453 * Return: Returns 0 on success, error on failure. 5454 */ 5455 int security_bpf_map_alloc(struct bpf_map *map) 5456 { 5457 return call_int_hook(bpf_map_alloc_security, 0, map); 5458 } 5459 5460 /** 5461 * security_bpf_prog_alloc() - Allocate a bpf program LSM blob 5462 * @aux: bpf program aux info struct 5463 * 5464 * Initialize the security field inside bpf program. 5465 * 5466 * Return: Returns 0 on success, error on failure. 5467 */ 5468 int security_bpf_prog_alloc(struct bpf_prog_aux *aux) 5469 { 5470 return call_int_hook(bpf_prog_alloc_security, 0, aux); 5471 } 5472 5473 /** 5474 * security_bpf_map_free() - Free a bpf map's LSM blob 5475 * @map: bpf map 5476 * 5477 * Clean up the security information stored inside bpf map. 5478 */ 5479 void security_bpf_map_free(struct bpf_map *map) 5480 { 5481 call_void_hook(bpf_map_free_security, map); 5482 } 5483 5484 /** 5485 * security_bpf_prog_free() - Free a bpf program's LSM blob 5486 * @aux: bpf program aux info struct 5487 * 5488 * Clean up the security information stored inside bpf prog. 5489 */ 5490 void security_bpf_prog_free(struct bpf_prog_aux *aux) 5491 { 5492 call_void_hook(bpf_prog_free_security, aux); 5493 } 5494 #endif /* CONFIG_BPF_SYSCALL */ 5495 5496 /** 5497 * security_locked_down() - Check if a kernel feature is allowed 5498 * @what: requested kernel feature 5499 * 5500 * Determine whether a kernel feature that potentially enables arbitrary code 5501 * execution in kernel space should be permitted. 5502 * 5503 * Return: Returns 0 if permission is granted. 5504 */ 5505 int security_locked_down(enum lockdown_reason what) 5506 { 5507 return call_int_hook(locked_down, 0, what); 5508 } 5509 EXPORT_SYMBOL(security_locked_down); 5510 5511 #ifdef CONFIG_PERF_EVENTS 5512 /** 5513 * security_perf_event_open() - Check if a perf event open is allowed 5514 * @attr: perf event attribute 5515 * @type: type of event 5516 * 5517 * Check whether the @type of perf_event_open syscall is allowed. 5518 * 5519 * Return: Returns 0 if permission is granted. 5520 */ 5521 int security_perf_event_open(struct perf_event_attr *attr, int type) 5522 { 5523 return call_int_hook(perf_event_open, 0, attr, type); 5524 } 5525 5526 /** 5527 * security_perf_event_alloc() - Allocate a perf event LSM blob 5528 * @event: perf event 5529 * 5530 * Allocate and save perf_event security info. 5531 * 5532 * Return: Returns 0 on success, error on failure. 5533 */ 5534 int security_perf_event_alloc(struct perf_event *event) 5535 { 5536 return call_int_hook(perf_event_alloc, 0, event); 5537 } 5538 5539 /** 5540 * security_perf_event_free() - Free a perf event LSM blob 5541 * @event: perf event 5542 * 5543 * Release (free) perf_event security info. 5544 */ 5545 void security_perf_event_free(struct perf_event *event) 5546 { 5547 call_void_hook(perf_event_free, event); 5548 } 5549 5550 /** 5551 * security_perf_event_read() - Check if reading a perf event label is allowed 5552 * @event: perf event 5553 * 5554 * Read perf_event security info if allowed. 5555 * 5556 * Return: Returns 0 if permission is granted. 5557 */ 5558 int security_perf_event_read(struct perf_event *event) 5559 { 5560 return call_int_hook(perf_event_read, 0, event); 5561 } 5562 5563 /** 5564 * security_perf_event_write() - Check if writing a perf event label is allowed 5565 * @event: perf event 5566 * 5567 * Write perf_event security info if allowed. 5568 * 5569 * Return: Returns 0 if permission is granted. 5570 */ 5571 int security_perf_event_write(struct perf_event *event) 5572 { 5573 return call_int_hook(perf_event_write, 0, event); 5574 } 5575 #endif /* CONFIG_PERF_EVENTS */ 5576 5577 #ifdef CONFIG_IO_URING 5578 /** 5579 * security_uring_override_creds() - Check if overriding creds is allowed 5580 * @new: new credentials 5581 * 5582 * Check if the current task, executing an io_uring operation, is allowed to 5583 * override it's credentials with @new. 5584 * 5585 * Return: Returns 0 if permission is granted. 5586 */ 5587 int security_uring_override_creds(const struct cred *new) 5588 { 5589 return call_int_hook(uring_override_creds, 0, new); 5590 } 5591 5592 /** 5593 * security_uring_sqpoll() - Check if IORING_SETUP_SQPOLL is allowed 5594 * 5595 * Check whether the current task is allowed to spawn a io_uring polling thread 5596 * (IORING_SETUP_SQPOLL). 5597 * 5598 * Return: Returns 0 if permission is granted. 5599 */ 5600 int security_uring_sqpoll(void) 5601 { 5602 return call_int_hook(uring_sqpoll, 0); 5603 } 5604 5605 /** 5606 * security_uring_cmd() - Check if a io_uring passthrough command is allowed 5607 * @ioucmd: command 5608 * 5609 * Check whether the file_operations uring_cmd is allowed to run. 5610 * 5611 * Return: Returns 0 if permission is granted. 5612 */ 5613 int security_uring_cmd(struct io_uring_cmd *ioucmd) 5614 { 5615 return call_int_hook(uring_cmd, 0, ioucmd); 5616 } 5617 #endif /* CONFIG_IO_URING */ 5618