xref: /linux/security/security.c (revision f5dafb8909dc2f5d859734eec41ceb21777d855e)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Security plug functions
4  *
5  * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
6  * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
7  * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
8  * Copyright (C) 2016 Mellanox Technologies
9  * Copyright (C) 2023 Microsoft Corporation <paul@paul-moore.com>
10  */
11 
12 #define pr_fmt(fmt) "LSM: " fmt
13 
14 #include <linux/bpf.h>
15 #include <linux/capability.h>
16 #include <linux/dcache.h>
17 #include <linux/export.h>
18 #include <linux/init.h>
19 #include <linux/kernel.h>
20 #include <linux/kernel_read_file.h>
21 #include <linux/lsm_hooks.h>
22 #include <linux/fsnotify.h>
23 #include <linux/mman.h>
24 #include <linux/mount.h>
25 #include <linux/personality.h>
26 #include <linux/backing-dev.h>
27 #include <linux/string.h>
28 #include <linux/xattr.h>
29 #include <linux/msg.h>
30 #include <linux/overflow.h>
31 #include <linux/perf_event.h>
32 #include <linux/fs.h>
33 #include <net/flow.h>
34 #include <net/sock.h>
35 
36 /* How many LSMs were built into the kernel? */
37 #define LSM_COUNT (__end_lsm_info - __start_lsm_info)
38 
39 /*
40  * How many LSMs are built into the kernel as determined at
41  * build time. Used to determine fixed array sizes.
42  * The capability module is accounted for by CONFIG_SECURITY
43  */
44 #define LSM_CONFIG_COUNT ( \
45 	(IS_ENABLED(CONFIG_SECURITY) ? 1 : 0) + \
46 	(IS_ENABLED(CONFIG_SECURITY_SELINUX) ? 1 : 0) + \
47 	(IS_ENABLED(CONFIG_SECURITY_SMACK) ? 1 : 0) + \
48 	(IS_ENABLED(CONFIG_SECURITY_TOMOYO) ? 1 : 0) + \
49 	(IS_ENABLED(CONFIG_SECURITY_APPARMOR) ? 1 : 0) + \
50 	(IS_ENABLED(CONFIG_SECURITY_YAMA) ? 1 : 0) + \
51 	(IS_ENABLED(CONFIG_SECURITY_LOADPIN) ? 1 : 0) + \
52 	(IS_ENABLED(CONFIG_SECURITY_SAFESETID) ? 1 : 0) + \
53 	(IS_ENABLED(CONFIG_SECURITY_LOCKDOWN_LSM) ? 1 : 0) + \
54 	(IS_ENABLED(CONFIG_BPF_LSM) ? 1 : 0) + \
55 	(IS_ENABLED(CONFIG_SECURITY_LANDLOCK) ? 1 : 0) + \
56 	(IS_ENABLED(CONFIG_IMA) ? 1 : 0) + \
57 	(IS_ENABLED(CONFIG_EVM) ? 1 : 0) + \
58 	(IS_ENABLED(CONFIG_SECURITY_IPE) ? 1 : 0))
59 
60 #define SECURITY_HOOK_ACTIVE_KEY(HOOK, IDX) security_hook_active_##HOOK##_##IDX
61 
62 /*
63  * Identifier for the LSM static calls.
64  * HOOK is an LSM hook as defined in linux/lsm_hookdefs.h
65  * IDX is the index of the static call. 0 <= NUM < MAX_LSM_COUNT
66  */
67 #define LSM_STATIC_CALL(HOOK, IDX) lsm_static_call_##HOOK##_##IDX
68 
69 /*
70  * Call the macro M for each LSM hook MAX_LSM_COUNT times.
71  */
72 #define LSM_LOOP_UNROLL(M, ...) 		\
73 do {						\
74 	UNROLL(MAX_LSM_COUNT, M, __VA_ARGS__)	\
75 } while (0)
76 
77 #define LSM_DEFINE_UNROLL(M, ...) UNROLL(MAX_LSM_COUNT, M, __VA_ARGS__)
78 
79 /*
80  * These are descriptions of the reasons that can be passed to the
81  * security_locked_down() LSM hook. Placing this array here allows
82  * all security modules to use the same descriptions for auditing
83  * purposes.
84  */
85 const char *const lockdown_reasons[LOCKDOWN_CONFIDENTIALITY_MAX + 1] = {
86 	[LOCKDOWN_NONE] = "none",
87 	[LOCKDOWN_MODULE_SIGNATURE] = "unsigned module loading",
88 	[LOCKDOWN_DEV_MEM] = "/dev/mem,kmem,port",
89 	[LOCKDOWN_EFI_TEST] = "/dev/efi_test access",
90 	[LOCKDOWN_KEXEC] = "kexec of unsigned images",
91 	[LOCKDOWN_HIBERNATION] = "hibernation",
92 	[LOCKDOWN_PCI_ACCESS] = "direct PCI access",
93 	[LOCKDOWN_IOPORT] = "raw io port access",
94 	[LOCKDOWN_MSR] = "raw MSR access",
95 	[LOCKDOWN_ACPI_TABLES] = "modifying ACPI tables",
96 	[LOCKDOWN_DEVICE_TREE] = "modifying device tree contents",
97 	[LOCKDOWN_PCMCIA_CIS] = "direct PCMCIA CIS storage",
98 	[LOCKDOWN_TIOCSSERIAL] = "reconfiguration of serial port IO",
99 	[LOCKDOWN_MODULE_PARAMETERS] = "unsafe module parameters",
100 	[LOCKDOWN_MMIOTRACE] = "unsafe mmio",
101 	[LOCKDOWN_DEBUGFS] = "debugfs access",
102 	[LOCKDOWN_XMON_WR] = "xmon write access",
103 	[LOCKDOWN_BPF_WRITE_USER] = "use of bpf to write user RAM",
104 	[LOCKDOWN_DBG_WRITE_KERNEL] = "use of kgdb/kdb to write kernel RAM",
105 	[LOCKDOWN_RTAS_ERROR_INJECTION] = "RTAS error injection",
106 	[LOCKDOWN_INTEGRITY_MAX] = "integrity",
107 	[LOCKDOWN_KCORE] = "/proc/kcore access",
108 	[LOCKDOWN_KPROBES] = "use of kprobes",
109 	[LOCKDOWN_BPF_READ_KERNEL] = "use of bpf to read kernel RAM",
110 	[LOCKDOWN_DBG_READ_KERNEL] = "use of kgdb/kdb to read kernel RAM",
111 	[LOCKDOWN_PERF] = "unsafe use of perf",
112 	[LOCKDOWN_TRACEFS] = "use of tracefs",
113 	[LOCKDOWN_XMON_RW] = "xmon read and write access",
114 	[LOCKDOWN_XFRM_SECRET] = "xfrm SA secret",
115 	[LOCKDOWN_CONFIDENTIALITY_MAX] = "confidentiality",
116 };
117 
118 static BLOCKING_NOTIFIER_HEAD(blocking_lsm_notifier_chain);
119 
120 static struct kmem_cache *lsm_file_cache;
121 static struct kmem_cache *lsm_inode_cache;
122 
123 char *lsm_names;
124 static struct lsm_blob_sizes blob_sizes __ro_after_init;
125 
126 /* Boot-time LSM user choice */
127 static __initdata const char *chosen_lsm_order;
128 static __initdata const char *chosen_major_lsm;
129 
130 static __initconst const char *const builtin_lsm_order = CONFIG_LSM;
131 
132 /* Ordered list of LSMs to initialize. */
133 static __initdata struct lsm_info **ordered_lsms;
134 static __initdata struct lsm_info *exclusive;
135 
136 #ifdef CONFIG_HAVE_STATIC_CALL
137 #define LSM_HOOK_TRAMP(NAME, NUM) \
138 	&STATIC_CALL_TRAMP(LSM_STATIC_CALL(NAME, NUM))
139 #else
140 #define LSM_HOOK_TRAMP(NAME, NUM) NULL
141 #endif
142 
143 /*
144  * Define static calls and static keys for each LSM hook.
145  */
146 #define DEFINE_LSM_STATIC_CALL(NUM, NAME, RET, ...)			\
147 	DEFINE_STATIC_CALL_NULL(LSM_STATIC_CALL(NAME, NUM),		\
148 				*((RET(*)(__VA_ARGS__))NULL));		\
149 	DEFINE_STATIC_KEY_FALSE(SECURITY_HOOK_ACTIVE_KEY(NAME, NUM));
150 
151 #define LSM_HOOK(RET, DEFAULT, NAME, ...)				\
152 	LSM_DEFINE_UNROLL(DEFINE_LSM_STATIC_CALL, NAME, RET, __VA_ARGS__)
153 #include <linux/lsm_hook_defs.h>
154 #undef LSM_HOOK
155 #undef DEFINE_LSM_STATIC_CALL
156 
157 /*
158  * Initialise a table of static calls for each LSM hook.
159  * DEFINE_STATIC_CALL_NULL invocation above generates a key (STATIC_CALL_KEY)
160  * and a trampoline (STATIC_CALL_TRAMP) which are used to call
161  * __static_call_update when updating the static call.
162  *
163  * The static calls table is used by early LSMs, some architectures can fault on
164  * unaligned accesses and the fault handling code may not be ready by then.
165  * Thus, the static calls table should be aligned to avoid any unhandled faults
166  * in early init.
167  */
168 struct lsm_static_calls_table
169 	static_calls_table __ro_after_init __aligned(sizeof(u64)) = {
170 #define INIT_LSM_STATIC_CALL(NUM, NAME)					\
171 	(struct lsm_static_call) {					\
172 		.key = &STATIC_CALL_KEY(LSM_STATIC_CALL(NAME, NUM)),	\
173 		.trampoline = LSM_HOOK_TRAMP(NAME, NUM),		\
174 		.active = &SECURITY_HOOK_ACTIVE_KEY(NAME, NUM),		\
175 	},
176 #define LSM_HOOK(RET, DEFAULT, NAME, ...)				\
177 	.NAME = {							\
178 		LSM_DEFINE_UNROLL(INIT_LSM_STATIC_CALL, NAME)		\
179 	},
180 #include <linux/lsm_hook_defs.h>
181 #undef LSM_HOOK
182 #undef INIT_LSM_STATIC_CALL
183 	};
184 
185 static __initdata bool debug;
186 #define init_debug(...)						\
187 	do {							\
188 		if (debug)					\
189 			pr_info(__VA_ARGS__);			\
190 	} while (0)
191 
192 static bool __init is_enabled(struct lsm_info *lsm)
193 {
194 	if (!lsm->enabled)
195 		return false;
196 
197 	return *lsm->enabled;
198 }
199 
200 /* Mark an LSM's enabled flag. */
201 static int lsm_enabled_true __initdata = 1;
202 static int lsm_enabled_false __initdata = 0;
203 static void __init set_enabled(struct lsm_info *lsm, bool enabled)
204 {
205 	/*
206 	 * When an LSM hasn't configured an enable variable, we can use
207 	 * a hard-coded location for storing the default enabled state.
208 	 */
209 	if (!lsm->enabled) {
210 		if (enabled)
211 			lsm->enabled = &lsm_enabled_true;
212 		else
213 			lsm->enabled = &lsm_enabled_false;
214 	} else if (lsm->enabled == &lsm_enabled_true) {
215 		if (!enabled)
216 			lsm->enabled = &lsm_enabled_false;
217 	} else if (lsm->enabled == &lsm_enabled_false) {
218 		if (enabled)
219 			lsm->enabled = &lsm_enabled_true;
220 	} else {
221 		*lsm->enabled = enabled;
222 	}
223 }
224 
225 /* Is an LSM already listed in the ordered LSMs list? */
226 static bool __init exists_ordered_lsm(struct lsm_info *lsm)
227 {
228 	struct lsm_info **check;
229 
230 	for (check = ordered_lsms; *check; check++)
231 		if (*check == lsm)
232 			return true;
233 
234 	return false;
235 }
236 
237 /* Append an LSM to the list of ordered LSMs to initialize. */
238 static int last_lsm __initdata;
239 static void __init append_ordered_lsm(struct lsm_info *lsm, const char *from)
240 {
241 	/* Ignore duplicate selections. */
242 	if (exists_ordered_lsm(lsm))
243 		return;
244 
245 	if (WARN(last_lsm == LSM_COUNT, "%s: out of LSM static calls!?\n", from))
246 		return;
247 
248 	/* Enable this LSM, if it is not already set. */
249 	if (!lsm->enabled)
250 		lsm->enabled = &lsm_enabled_true;
251 	ordered_lsms[last_lsm++] = lsm;
252 
253 	init_debug("%s ordered: %s (%s)\n", from, lsm->name,
254 		   is_enabled(lsm) ? "enabled" : "disabled");
255 }
256 
257 /* Is an LSM allowed to be initialized? */
258 static bool __init lsm_allowed(struct lsm_info *lsm)
259 {
260 	/* Skip if the LSM is disabled. */
261 	if (!is_enabled(lsm))
262 		return false;
263 
264 	/* Not allowed if another exclusive LSM already initialized. */
265 	if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && exclusive) {
266 		init_debug("exclusive disabled: %s\n", lsm->name);
267 		return false;
268 	}
269 
270 	return true;
271 }
272 
273 static void __init lsm_set_blob_size(int *need, int *lbs)
274 {
275 	int offset;
276 
277 	if (*need <= 0)
278 		return;
279 
280 	offset = ALIGN(*lbs, sizeof(void *));
281 	*lbs = offset + *need;
282 	*need = offset;
283 }
284 
285 static void __init lsm_set_blob_sizes(struct lsm_blob_sizes *needed)
286 {
287 	if (!needed)
288 		return;
289 
290 	lsm_set_blob_size(&needed->lbs_cred, &blob_sizes.lbs_cred);
291 	lsm_set_blob_size(&needed->lbs_file, &blob_sizes.lbs_file);
292 	lsm_set_blob_size(&needed->lbs_ib, &blob_sizes.lbs_ib);
293 	/*
294 	 * The inode blob gets an rcu_head in addition to
295 	 * what the modules might need.
296 	 */
297 	if (needed->lbs_inode && blob_sizes.lbs_inode == 0)
298 		blob_sizes.lbs_inode = sizeof(struct rcu_head);
299 	lsm_set_blob_size(&needed->lbs_inode, &blob_sizes.lbs_inode);
300 	lsm_set_blob_size(&needed->lbs_ipc, &blob_sizes.lbs_ipc);
301 	lsm_set_blob_size(&needed->lbs_key, &blob_sizes.lbs_key);
302 	lsm_set_blob_size(&needed->lbs_msg_msg, &blob_sizes.lbs_msg_msg);
303 	lsm_set_blob_size(&needed->lbs_perf_event, &blob_sizes.lbs_perf_event);
304 	lsm_set_blob_size(&needed->lbs_sock, &blob_sizes.lbs_sock);
305 	lsm_set_blob_size(&needed->lbs_superblock, &blob_sizes.lbs_superblock);
306 	lsm_set_blob_size(&needed->lbs_task, &blob_sizes.lbs_task);
307 	lsm_set_blob_size(&needed->lbs_tun_dev, &blob_sizes.lbs_tun_dev);
308 	lsm_set_blob_size(&needed->lbs_xattr_count,
309 			  &blob_sizes.lbs_xattr_count);
310 	lsm_set_blob_size(&needed->lbs_bdev, &blob_sizes.lbs_bdev);
311 }
312 
313 /* Prepare LSM for initialization. */
314 static void __init prepare_lsm(struct lsm_info *lsm)
315 {
316 	int enabled = lsm_allowed(lsm);
317 
318 	/* Record enablement (to handle any following exclusive LSMs). */
319 	set_enabled(lsm, enabled);
320 
321 	/* If enabled, do pre-initialization work. */
322 	if (enabled) {
323 		if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && !exclusive) {
324 			exclusive = lsm;
325 			init_debug("exclusive chosen:   %s\n", lsm->name);
326 		}
327 
328 		lsm_set_blob_sizes(lsm->blobs);
329 	}
330 }
331 
332 /* Initialize a given LSM, if it is enabled. */
333 static void __init initialize_lsm(struct lsm_info *lsm)
334 {
335 	if (is_enabled(lsm)) {
336 		int ret;
337 
338 		init_debug("initializing %s\n", lsm->name);
339 		ret = lsm->init();
340 		WARN(ret, "%s failed to initialize: %d\n", lsm->name, ret);
341 	}
342 }
343 
344 /*
345  * Current index to use while initializing the lsm id list.
346  */
347 u32 lsm_active_cnt __ro_after_init;
348 const struct lsm_id *lsm_idlist[LSM_CONFIG_COUNT];
349 
350 /* Populate ordered LSMs list from comma-separated LSM name list. */
351 static void __init ordered_lsm_parse(const char *order, const char *origin)
352 {
353 	struct lsm_info *lsm;
354 	char *sep, *name, *next;
355 
356 	/* LSM_ORDER_FIRST is always first. */
357 	for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
358 		if (lsm->order == LSM_ORDER_FIRST)
359 			append_ordered_lsm(lsm, "  first");
360 	}
361 
362 	/* Process "security=", if given. */
363 	if (chosen_major_lsm) {
364 		struct lsm_info *major;
365 
366 		/*
367 		 * To match the original "security=" behavior, this
368 		 * explicitly does NOT fallback to another Legacy Major
369 		 * if the selected one was separately disabled: disable
370 		 * all non-matching Legacy Major LSMs.
371 		 */
372 		for (major = __start_lsm_info; major < __end_lsm_info;
373 		     major++) {
374 			if ((major->flags & LSM_FLAG_LEGACY_MAJOR) &&
375 			    strcmp(major->name, chosen_major_lsm) != 0) {
376 				set_enabled(major, false);
377 				init_debug("security=%s disabled: %s (only one legacy major LSM)\n",
378 					   chosen_major_lsm, major->name);
379 			}
380 		}
381 	}
382 
383 	sep = kstrdup(order, GFP_KERNEL);
384 	next = sep;
385 	/* Walk the list, looking for matching LSMs. */
386 	while ((name = strsep(&next, ",")) != NULL) {
387 		bool found = false;
388 
389 		for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
390 			if (strcmp(lsm->name, name) == 0) {
391 				if (lsm->order == LSM_ORDER_MUTABLE)
392 					append_ordered_lsm(lsm, origin);
393 				found = true;
394 			}
395 		}
396 
397 		if (!found)
398 			init_debug("%s ignored: %s (not built into kernel)\n",
399 				   origin, name);
400 	}
401 
402 	/* Process "security=", if given. */
403 	if (chosen_major_lsm) {
404 		for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
405 			if (exists_ordered_lsm(lsm))
406 				continue;
407 			if (strcmp(lsm->name, chosen_major_lsm) == 0)
408 				append_ordered_lsm(lsm, "security=");
409 		}
410 	}
411 
412 	/* LSM_ORDER_LAST is always last. */
413 	for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
414 		if (lsm->order == LSM_ORDER_LAST)
415 			append_ordered_lsm(lsm, "   last");
416 	}
417 
418 	/* Disable all LSMs not in the ordered list. */
419 	for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
420 		if (exists_ordered_lsm(lsm))
421 			continue;
422 		set_enabled(lsm, false);
423 		init_debug("%s skipped: %s (not in requested order)\n",
424 			   origin, lsm->name);
425 	}
426 
427 	kfree(sep);
428 }
429 
430 static void __init lsm_static_call_init(struct security_hook_list *hl)
431 {
432 	struct lsm_static_call *scall = hl->scalls;
433 	int i;
434 
435 	for (i = 0; i < MAX_LSM_COUNT; i++) {
436 		/* Update the first static call that is not used yet */
437 		if (!scall->hl) {
438 			__static_call_update(scall->key, scall->trampoline,
439 					     hl->hook.lsm_func_addr);
440 			scall->hl = hl;
441 			static_branch_enable(scall->active);
442 			return;
443 		}
444 		scall++;
445 	}
446 	panic("%s - Ran out of static slots.\n", __func__);
447 }
448 
449 static void __init lsm_early_cred(struct cred *cred);
450 static void __init lsm_early_task(struct task_struct *task);
451 
452 static int lsm_append(const char *new, char **result);
453 
454 static void __init report_lsm_order(void)
455 {
456 	struct lsm_info **lsm, *early;
457 	int first = 0;
458 
459 	pr_info("initializing lsm=");
460 
461 	/* Report each enabled LSM name, comma separated. */
462 	for (early = __start_early_lsm_info;
463 	     early < __end_early_lsm_info; early++)
464 		if (is_enabled(early))
465 			pr_cont("%s%s", first++ == 0 ? "" : ",", early->name);
466 	for (lsm = ordered_lsms; *lsm; lsm++)
467 		if (is_enabled(*lsm))
468 			pr_cont("%s%s", first++ == 0 ? "" : ",", (*lsm)->name);
469 
470 	pr_cont("\n");
471 }
472 
473 static void __init ordered_lsm_init(void)
474 {
475 	struct lsm_info **lsm;
476 
477 	ordered_lsms = kcalloc(LSM_COUNT + 1, sizeof(*ordered_lsms),
478 			       GFP_KERNEL);
479 
480 	if (chosen_lsm_order) {
481 		if (chosen_major_lsm) {
482 			pr_warn("security=%s is ignored because it is superseded by lsm=%s\n",
483 				chosen_major_lsm, chosen_lsm_order);
484 			chosen_major_lsm = NULL;
485 		}
486 		ordered_lsm_parse(chosen_lsm_order, "cmdline");
487 	} else
488 		ordered_lsm_parse(builtin_lsm_order, "builtin");
489 
490 	for (lsm = ordered_lsms; *lsm; lsm++)
491 		prepare_lsm(*lsm);
492 
493 	report_lsm_order();
494 
495 	init_debug("cred blob size       = %d\n", blob_sizes.lbs_cred);
496 	init_debug("file blob size       = %d\n", blob_sizes.lbs_file);
497 	init_debug("ib blob size         = %d\n", blob_sizes.lbs_ib);
498 	init_debug("inode blob size      = %d\n", blob_sizes.lbs_inode);
499 	init_debug("ipc blob size        = %d\n", blob_sizes.lbs_ipc);
500 #ifdef CONFIG_KEYS
501 	init_debug("key blob size        = %d\n", blob_sizes.lbs_key);
502 #endif /* CONFIG_KEYS */
503 	init_debug("msg_msg blob size    = %d\n", blob_sizes.lbs_msg_msg);
504 	init_debug("sock blob size       = %d\n", blob_sizes.lbs_sock);
505 	init_debug("superblock blob size = %d\n", blob_sizes.lbs_superblock);
506 	init_debug("perf event blob size = %d\n", blob_sizes.lbs_perf_event);
507 	init_debug("task blob size       = %d\n", blob_sizes.lbs_task);
508 	init_debug("tun device blob size = %d\n", blob_sizes.lbs_tun_dev);
509 	init_debug("xattr slots          = %d\n", blob_sizes.lbs_xattr_count);
510 	init_debug("bdev blob size       = %d\n", blob_sizes.lbs_bdev);
511 
512 	/*
513 	 * Create any kmem_caches needed for blobs
514 	 */
515 	if (blob_sizes.lbs_file)
516 		lsm_file_cache = kmem_cache_create("lsm_file_cache",
517 						   blob_sizes.lbs_file, 0,
518 						   SLAB_PANIC, NULL);
519 	if (blob_sizes.lbs_inode)
520 		lsm_inode_cache = kmem_cache_create("lsm_inode_cache",
521 						    blob_sizes.lbs_inode, 0,
522 						    SLAB_PANIC, NULL);
523 
524 	lsm_early_cred((struct cred *) current->cred);
525 	lsm_early_task(current);
526 	for (lsm = ordered_lsms; *lsm; lsm++)
527 		initialize_lsm(*lsm);
528 
529 	kfree(ordered_lsms);
530 }
531 
532 int __init early_security_init(void)
533 {
534 	struct lsm_info *lsm;
535 
536 	for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
537 		if (!lsm->enabled)
538 			lsm->enabled = &lsm_enabled_true;
539 		prepare_lsm(lsm);
540 		initialize_lsm(lsm);
541 	}
542 
543 	return 0;
544 }
545 
546 /**
547  * security_init - initializes the security framework
548  *
549  * This should be called early in the kernel initialization sequence.
550  */
551 int __init security_init(void)
552 {
553 	struct lsm_info *lsm;
554 
555 	init_debug("legacy security=%s\n", chosen_major_lsm ? : " *unspecified*");
556 	init_debug("  CONFIG_LSM=%s\n", builtin_lsm_order);
557 	init_debug("boot arg lsm=%s\n", chosen_lsm_order ? : " *unspecified*");
558 
559 	/*
560 	 * Append the names of the early LSM modules now that kmalloc() is
561 	 * available
562 	 */
563 	for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
564 		init_debug("  early started: %s (%s)\n", lsm->name,
565 			   is_enabled(lsm) ? "enabled" : "disabled");
566 		if (lsm->enabled)
567 			lsm_append(lsm->name, &lsm_names);
568 	}
569 
570 	/* Load LSMs in specified order. */
571 	ordered_lsm_init();
572 
573 	return 0;
574 }
575 
576 /* Save user chosen LSM */
577 static int __init choose_major_lsm(char *str)
578 {
579 	chosen_major_lsm = str;
580 	return 1;
581 }
582 __setup("security=", choose_major_lsm);
583 
584 /* Explicitly choose LSM initialization order. */
585 static int __init choose_lsm_order(char *str)
586 {
587 	chosen_lsm_order = str;
588 	return 1;
589 }
590 __setup("lsm=", choose_lsm_order);
591 
592 /* Enable LSM order debugging. */
593 static int __init enable_debug(char *str)
594 {
595 	debug = true;
596 	return 1;
597 }
598 __setup("lsm.debug", enable_debug);
599 
600 static bool match_last_lsm(const char *list, const char *lsm)
601 {
602 	const char *last;
603 
604 	if (WARN_ON(!list || !lsm))
605 		return false;
606 	last = strrchr(list, ',');
607 	if (last)
608 		/* Pass the comma, strcmp() will check for '\0' */
609 		last++;
610 	else
611 		last = list;
612 	return !strcmp(last, lsm);
613 }
614 
615 static int lsm_append(const char *new, char **result)
616 {
617 	char *cp;
618 
619 	if (*result == NULL) {
620 		*result = kstrdup(new, GFP_KERNEL);
621 		if (*result == NULL)
622 			return -ENOMEM;
623 	} else {
624 		/* Check if it is the last registered name */
625 		if (match_last_lsm(*result, new))
626 			return 0;
627 		cp = kasprintf(GFP_KERNEL, "%s,%s", *result, new);
628 		if (cp == NULL)
629 			return -ENOMEM;
630 		kfree(*result);
631 		*result = cp;
632 	}
633 	return 0;
634 }
635 
636 /**
637  * security_add_hooks - Add a modules hooks to the hook lists.
638  * @hooks: the hooks to add
639  * @count: the number of hooks to add
640  * @lsmid: the identification information for the security module
641  *
642  * Each LSM has to register its hooks with the infrastructure.
643  */
644 void __init security_add_hooks(struct security_hook_list *hooks, int count,
645 			       const struct lsm_id *lsmid)
646 {
647 	int i;
648 
649 	/*
650 	 * A security module may call security_add_hooks() more
651 	 * than once during initialization, and LSM initialization
652 	 * is serialized. Landlock is one such case.
653 	 * Look at the previous entry, if there is one, for duplication.
654 	 */
655 	if (lsm_active_cnt == 0 || lsm_idlist[lsm_active_cnt - 1] != lsmid) {
656 		if (lsm_active_cnt >= LSM_CONFIG_COUNT)
657 			panic("%s Too many LSMs registered.\n", __func__);
658 		lsm_idlist[lsm_active_cnt++] = lsmid;
659 	}
660 
661 	for (i = 0; i < count; i++) {
662 		hooks[i].lsmid = lsmid;
663 		lsm_static_call_init(&hooks[i]);
664 	}
665 
666 	/*
667 	 * Don't try to append during early_security_init(), we'll come back
668 	 * and fix this up afterwards.
669 	 */
670 	if (slab_is_available()) {
671 		if (lsm_append(lsmid->name, &lsm_names) < 0)
672 			panic("%s - Cannot get early memory.\n", __func__);
673 	}
674 }
675 
676 int call_blocking_lsm_notifier(enum lsm_event event, void *data)
677 {
678 	return blocking_notifier_call_chain(&blocking_lsm_notifier_chain,
679 					    event, data);
680 }
681 EXPORT_SYMBOL(call_blocking_lsm_notifier);
682 
683 int register_blocking_lsm_notifier(struct notifier_block *nb)
684 {
685 	return blocking_notifier_chain_register(&blocking_lsm_notifier_chain,
686 						nb);
687 }
688 EXPORT_SYMBOL(register_blocking_lsm_notifier);
689 
690 int unregister_blocking_lsm_notifier(struct notifier_block *nb)
691 {
692 	return blocking_notifier_chain_unregister(&blocking_lsm_notifier_chain,
693 						  nb);
694 }
695 EXPORT_SYMBOL(unregister_blocking_lsm_notifier);
696 
697 /**
698  * lsm_blob_alloc - allocate a composite blob
699  * @dest: the destination for the blob
700  * @size: the size of the blob
701  * @gfp: allocation type
702  *
703  * Allocate a blob for all the modules
704  *
705  * Returns 0, or -ENOMEM if memory can't be allocated.
706  */
707 static int lsm_blob_alloc(void **dest, size_t size, gfp_t gfp)
708 {
709 	if (size == 0) {
710 		*dest = NULL;
711 		return 0;
712 	}
713 
714 	*dest = kzalloc(size, gfp);
715 	if (*dest == NULL)
716 		return -ENOMEM;
717 	return 0;
718 }
719 
720 /**
721  * lsm_cred_alloc - allocate a composite cred blob
722  * @cred: the cred that needs a blob
723  * @gfp: allocation type
724  *
725  * Allocate the cred blob for all the modules
726  *
727  * Returns 0, or -ENOMEM if memory can't be allocated.
728  */
729 static int lsm_cred_alloc(struct cred *cred, gfp_t gfp)
730 {
731 	return lsm_blob_alloc(&cred->security, blob_sizes.lbs_cred, gfp);
732 }
733 
734 /**
735  * lsm_early_cred - during initialization allocate a composite cred blob
736  * @cred: the cred that needs a blob
737  *
738  * Allocate the cred blob for all the modules
739  */
740 static void __init lsm_early_cred(struct cred *cred)
741 {
742 	int rc = lsm_cred_alloc(cred, GFP_KERNEL);
743 
744 	if (rc)
745 		panic("%s: Early cred alloc failed.\n", __func__);
746 }
747 
748 /**
749  * lsm_file_alloc - allocate a composite file blob
750  * @file: the file that needs a blob
751  *
752  * Allocate the file blob for all the modules
753  *
754  * Returns 0, or -ENOMEM if memory can't be allocated.
755  */
756 static int lsm_file_alloc(struct file *file)
757 {
758 	if (!lsm_file_cache) {
759 		file->f_security = NULL;
760 		return 0;
761 	}
762 
763 	file->f_security = kmem_cache_zalloc(lsm_file_cache, GFP_KERNEL);
764 	if (file->f_security == NULL)
765 		return -ENOMEM;
766 	return 0;
767 }
768 
769 /**
770  * lsm_inode_alloc - allocate a composite inode blob
771  * @inode: the inode that needs a blob
772  *
773  * Allocate the inode blob for all the modules
774  *
775  * Returns 0, or -ENOMEM if memory can't be allocated.
776  */
777 static int lsm_inode_alloc(struct inode *inode)
778 {
779 	if (!lsm_inode_cache) {
780 		inode->i_security = NULL;
781 		return 0;
782 	}
783 
784 	inode->i_security = kmem_cache_zalloc(lsm_inode_cache, GFP_NOFS);
785 	if (inode->i_security == NULL)
786 		return -ENOMEM;
787 	return 0;
788 }
789 
790 /**
791  * lsm_task_alloc - allocate a composite task blob
792  * @task: the task that needs a blob
793  *
794  * Allocate the task blob for all the modules
795  *
796  * Returns 0, or -ENOMEM if memory can't be allocated.
797  */
798 static int lsm_task_alloc(struct task_struct *task)
799 {
800 	return lsm_blob_alloc(&task->security, blob_sizes.lbs_task, GFP_KERNEL);
801 }
802 
803 /**
804  * lsm_ipc_alloc - allocate a composite ipc blob
805  * @kip: the ipc that needs a blob
806  *
807  * Allocate the ipc blob for all the modules
808  *
809  * Returns 0, or -ENOMEM if memory can't be allocated.
810  */
811 static int lsm_ipc_alloc(struct kern_ipc_perm *kip)
812 {
813 	return lsm_blob_alloc(&kip->security, blob_sizes.lbs_ipc, GFP_KERNEL);
814 }
815 
816 #ifdef CONFIG_KEYS
817 /**
818  * lsm_key_alloc - allocate a composite key blob
819  * @key: the key that needs a blob
820  *
821  * Allocate the key blob for all the modules
822  *
823  * Returns 0, or -ENOMEM if memory can't be allocated.
824  */
825 static int lsm_key_alloc(struct key *key)
826 {
827 	return lsm_blob_alloc(&key->security, blob_sizes.lbs_key, GFP_KERNEL);
828 }
829 #endif /* CONFIG_KEYS */
830 
831 /**
832  * lsm_msg_msg_alloc - allocate a composite msg_msg blob
833  * @mp: the msg_msg that needs a blob
834  *
835  * Allocate the ipc blob for all the modules
836  *
837  * Returns 0, or -ENOMEM if memory can't be allocated.
838  */
839 static int lsm_msg_msg_alloc(struct msg_msg *mp)
840 {
841 	return lsm_blob_alloc(&mp->security, blob_sizes.lbs_msg_msg,
842 			      GFP_KERNEL);
843 }
844 
845 /**
846  * lsm_bdev_alloc - allocate a composite block_device blob
847  * @bdev: the block_device that needs a blob
848  *
849  * Allocate the block_device blob for all the modules
850  *
851  * Returns 0, or -ENOMEM if memory can't be allocated.
852  */
853 static int lsm_bdev_alloc(struct block_device *bdev)
854 {
855 	if (blob_sizes.lbs_bdev == 0) {
856 		bdev->bd_security = NULL;
857 		return 0;
858 	}
859 
860 	bdev->bd_security = kzalloc(blob_sizes.lbs_bdev, GFP_KERNEL);
861 	if (!bdev->bd_security)
862 		return -ENOMEM;
863 
864 	return 0;
865 }
866 
867 /**
868  * lsm_early_task - during initialization allocate a composite task blob
869  * @task: the task that needs a blob
870  *
871  * Allocate the task blob for all the modules
872  */
873 static void __init lsm_early_task(struct task_struct *task)
874 {
875 	int rc = lsm_task_alloc(task);
876 
877 	if (rc)
878 		panic("%s: Early task alloc failed.\n", __func__);
879 }
880 
881 /**
882  * lsm_superblock_alloc - allocate a composite superblock blob
883  * @sb: the superblock that needs a blob
884  *
885  * Allocate the superblock blob for all the modules
886  *
887  * Returns 0, or -ENOMEM if memory can't be allocated.
888  */
889 static int lsm_superblock_alloc(struct super_block *sb)
890 {
891 	return lsm_blob_alloc(&sb->s_security, blob_sizes.lbs_superblock,
892 			      GFP_KERNEL);
893 }
894 
895 /**
896  * lsm_fill_user_ctx - Fill a user space lsm_ctx structure
897  * @uctx: a userspace LSM context to be filled
898  * @uctx_len: available uctx size (input), used uctx size (output)
899  * @val: the new LSM context value
900  * @val_len: the size of the new LSM context value
901  * @id: LSM id
902  * @flags: LSM defined flags
903  *
904  * Fill all of the fields in a userspace lsm_ctx structure.  If @uctx is NULL
905  * simply calculate the required size to output via @utc_len and return
906  * success.
907  *
908  * Returns 0 on success, -E2BIG if userspace buffer is not large enough,
909  * -EFAULT on a copyout error, -ENOMEM if memory can't be allocated.
910  */
911 int lsm_fill_user_ctx(struct lsm_ctx __user *uctx, u32 *uctx_len,
912 		      void *val, size_t val_len,
913 		      u64 id, u64 flags)
914 {
915 	struct lsm_ctx *nctx = NULL;
916 	size_t nctx_len;
917 	int rc = 0;
918 
919 	nctx_len = ALIGN(struct_size(nctx, ctx, val_len), sizeof(void *));
920 	if (nctx_len > *uctx_len) {
921 		rc = -E2BIG;
922 		goto out;
923 	}
924 
925 	/* no buffer - return success/0 and set @uctx_len to the req size */
926 	if (!uctx)
927 		goto out;
928 
929 	nctx = kzalloc(nctx_len, GFP_KERNEL);
930 	if (nctx == NULL) {
931 		rc = -ENOMEM;
932 		goto out;
933 	}
934 	nctx->id = id;
935 	nctx->flags = flags;
936 	nctx->len = nctx_len;
937 	nctx->ctx_len = val_len;
938 	memcpy(nctx->ctx, val, val_len);
939 
940 	if (copy_to_user(uctx, nctx, nctx_len))
941 		rc = -EFAULT;
942 
943 out:
944 	kfree(nctx);
945 	*uctx_len = nctx_len;
946 	return rc;
947 }
948 
949 /*
950  * The default value of the LSM hook is defined in linux/lsm_hook_defs.h and
951  * can be accessed with:
952  *
953  *	LSM_RET_DEFAULT(<hook_name>)
954  *
955  * The macros below define static constants for the default value of each
956  * LSM hook.
957  */
958 #define LSM_RET_DEFAULT(NAME) (NAME##_default)
959 #define DECLARE_LSM_RET_DEFAULT_void(DEFAULT, NAME)
960 #define DECLARE_LSM_RET_DEFAULT_int(DEFAULT, NAME) \
961 	static const int __maybe_unused LSM_RET_DEFAULT(NAME) = (DEFAULT);
962 #define LSM_HOOK(RET, DEFAULT, NAME, ...) \
963 	DECLARE_LSM_RET_DEFAULT_##RET(DEFAULT, NAME)
964 
965 #include <linux/lsm_hook_defs.h>
966 #undef LSM_HOOK
967 
968 /*
969  * Hook list operation macros.
970  *
971  * call_void_hook:
972  *	This is a hook that does not return a value.
973  *
974  * call_int_hook:
975  *	This is a hook that returns a value.
976  */
977 #define __CALL_STATIC_VOID(NUM, HOOK, ...)				     \
978 do {									     \
979 	if (static_branch_unlikely(&SECURITY_HOOK_ACTIVE_KEY(HOOK, NUM))) {    \
980 		static_call(LSM_STATIC_CALL(HOOK, NUM))(__VA_ARGS__);	     \
981 	}								     \
982 } while (0);
983 
984 #define call_void_hook(HOOK, ...)                                 \
985 	do {                                                      \
986 		LSM_LOOP_UNROLL(__CALL_STATIC_VOID, HOOK, __VA_ARGS__); \
987 	} while (0)
988 
989 
990 #define __CALL_STATIC_INT(NUM, R, HOOK, LABEL, ...)			     \
991 do {									     \
992 	if (static_branch_unlikely(&SECURITY_HOOK_ACTIVE_KEY(HOOK, NUM))) {  \
993 		R = static_call(LSM_STATIC_CALL(HOOK, NUM))(__VA_ARGS__);    \
994 		if (R != LSM_RET_DEFAULT(HOOK))				     \
995 			goto LABEL;					     \
996 	}								     \
997 } while (0);
998 
999 #define call_int_hook(HOOK, ...)					\
1000 ({									\
1001 	__label__ OUT;							\
1002 	int RC = LSM_RET_DEFAULT(HOOK);					\
1003 									\
1004 	LSM_LOOP_UNROLL(__CALL_STATIC_INT, RC, HOOK, OUT, __VA_ARGS__);	\
1005 OUT:									\
1006 	RC;								\
1007 })
1008 
1009 #define lsm_for_each_hook(scall, NAME)					\
1010 	for (scall = static_calls_table.NAME;				\
1011 	     scall - static_calls_table.NAME < MAX_LSM_COUNT; scall++)  \
1012 		if (static_key_enabled(&scall->active->key))
1013 
1014 /* Security operations */
1015 
1016 /**
1017  * security_binder_set_context_mgr() - Check if becoming binder ctx mgr is ok
1018  * @mgr: task credentials of current binder process
1019  *
1020  * Check whether @mgr is allowed to be the binder context manager.
1021  *
1022  * Return: Return 0 if permission is granted.
1023  */
1024 int security_binder_set_context_mgr(const struct cred *mgr)
1025 {
1026 	return call_int_hook(binder_set_context_mgr, mgr);
1027 }
1028 
1029 /**
1030  * security_binder_transaction() - Check if a binder transaction is allowed
1031  * @from: sending process
1032  * @to: receiving process
1033  *
1034  * Check whether @from is allowed to invoke a binder transaction call to @to.
1035  *
1036  * Return: Returns 0 if permission is granted.
1037  */
1038 int security_binder_transaction(const struct cred *from,
1039 				const struct cred *to)
1040 {
1041 	return call_int_hook(binder_transaction, from, to);
1042 }
1043 
1044 /**
1045  * security_binder_transfer_binder() - Check if a binder transfer is allowed
1046  * @from: sending process
1047  * @to: receiving process
1048  *
1049  * Check whether @from is allowed to transfer a binder reference to @to.
1050  *
1051  * Return: Returns 0 if permission is granted.
1052  */
1053 int security_binder_transfer_binder(const struct cred *from,
1054 				    const struct cred *to)
1055 {
1056 	return call_int_hook(binder_transfer_binder, from, to);
1057 }
1058 
1059 /**
1060  * security_binder_transfer_file() - Check if a binder file xfer is allowed
1061  * @from: sending process
1062  * @to: receiving process
1063  * @file: file being transferred
1064  *
1065  * Check whether @from is allowed to transfer @file to @to.
1066  *
1067  * Return: Returns 0 if permission is granted.
1068  */
1069 int security_binder_transfer_file(const struct cred *from,
1070 				  const struct cred *to, const struct file *file)
1071 {
1072 	return call_int_hook(binder_transfer_file, from, to, file);
1073 }
1074 
1075 /**
1076  * security_ptrace_access_check() - Check if tracing is allowed
1077  * @child: target process
1078  * @mode: PTRACE_MODE flags
1079  *
1080  * Check permission before allowing the current process to trace the @child
1081  * process.  Security modules may also want to perform a process tracing check
1082  * during an execve in the set_security or apply_creds hooks of tracing check
1083  * during an execve in the bprm_set_creds hook of binprm_security_ops if the
1084  * process is being traced and its security attributes would be changed by the
1085  * execve.
1086  *
1087  * Return: Returns 0 if permission is granted.
1088  */
1089 int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
1090 {
1091 	return call_int_hook(ptrace_access_check, child, mode);
1092 }
1093 
1094 /**
1095  * security_ptrace_traceme() - Check if tracing is allowed
1096  * @parent: tracing process
1097  *
1098  * Check that the @parent process has sufficient permission to trace the
1099  * current process before allowing the current process to present itself to the
1100  * @parent process for tracing.
1101  *
1102  * Return: Returns 0 if permission is granted.
1103  */
1104 int security_ptrace_traceme(struct task_struct *parent)
1105 {
1106 	return call_int_hook(ptrace_traceme, parent);
1107 }
1108 
1109 /**
1110  * security_capget() - Get the capability sets for a process
1111  * @target: target process
1112  * @effective: effective capability set
1113  * @inheritable: inheritable capability set
1114  * @permitted: permitted capability set
1115  *
1116  * Get the @effective, @inheritable, and @permitted capability sets for the
1117  * @target process.  The hook may also perform permission checking to determine
1118  * if the current process is allowed to see the capability sets of the @target
1119  * process.
1120  *
1121  * Return: Returns 0 if the capability sets were successfully obtained.
1122  */
1123 int security_capget(const struct task_struct *target,
1124 		    kernel_cap_t *effective,
1125 		    kernel_cap_t *inheritable,
1126 		    kernel_cap_t *permitted)
1127 {
1128 	return call_int_hook(capget, target, effective, inheritable, permitted);
1129 }
1130 
1131 /**
1132  * security_capset() - Set the capability sets for a process
1133  * @new: new credentials for the target process
1134  * @old: current credentials of the target process
1135  * @effective: effective capability set
1136  * @inheritable: inheritable capability set
1137  * @permitted: permitted capability set
1138  *
1139  * Set the @effective, @inheritable, and @permitted capability sets for the
1140  * current process.
1141  *
1142  * Return: Returns 0 and update @new if permission is granted.
1143  */
1144 int security_capset(struct cred *new, const struct cred *old,
1145 		    const kernel_cap_t *effective,
1146 		    const kernel_cap_t *inheritable,
1147 		    const kernel_cap_t *permitted)
1148 {
1149 	return call_int_hook(capset, new, old, effective, inheritable,
1150 			     permitted);
1151 }
1152 
1153 /**
1154  * security_capable() - Check if a process has the necessary capability
1155  * @cred: credentials to examine
1156  * @ns: user namespace
1157  * @cap: capability requested
1158  * @opts: capability check options
1159  *
1160  * Check whether the @tsk process has the @cap capability in the indicated
1161  * credentials.  @cap contains the capability <include/linux/capability.h>.
1162  * @opts contains options for the capable check <include/linux/security.h>.
1163  *
1164  * Return: Returns 0 if the capability is granted.
1165  */
1166 int security_capable(const struct cred *cred,
1167 		     struct user_namespace *ns,
1168 		     int cap,
1169 		     unsigned int opts)
1170 {
1171 	return call_int_hook(capable, cred, ns, cap, opts);
1172 }
1173 
1174 /**
1175  * security_quotactl() - Check if a quotactl() syscall is allowed for this fs
1176  * @cmds: commands
1177  * @type: type
1178  * @id: id
1179  * @sb: filesystem
1180  *
1181  * Check whether the quotactl syscall is allowed for this @sb.
1182  *
1183  * Return: Returns 0 if permission is granted.
1184  */
1185 int security_quotactl(int cmds, int type, int id, const struct super_block *sb)
1186 {
1187 	return call_int_hook(quotactl, cmds, type, id, sb);
1188 }
1189 
1190 /**
1191  * security_quota_on() - Check if QUOTAON is allowed for a dentry
1192  * @dentry: dentry
1193  *
1194  * Check whether QUOTAON is allowed for @dentry.
1195  *
1196  * Return: Returns 0 if permission is granted.
1197  */
1198 int security_quota_on(struct dentry *dentry)
1199 {
1200 	return call_int_hook(quota_on, dentry);
1201 }
1202 
1203 /**
1204  * security_syslog() - Check if accessing the kernel message ring is allowed
1205  * @type: SYSLOG_ACTION_* type
1206  *
1207  * Check permission before accessing the kernel message ring or changing
1208  * logging to the console.  See the syslog(2) manual page for an explanation of
1209  * the @type values.
1210  *
1211  * Return: Return 0 if permission is granted.
1212  */
1213 int security_syslog(int type)
1214 {
1215 	return call_int_hook(syslog, type);
1216 }
1217 
1218 /**
1219  * security_settime64() - Check if changing the system time is allowed
1220  * @ts: new time
1221  * @tz: timezone
1222  *
1223  * Check permission to change the system time, struct timespec64 is defined in
1224  * <include/linux/time64.h> and timezone is defined in <include/linux/time.h>.
1225  *
1226  * Return: Returns 0 if permission is granted.
1227  */
1228 int security_settime64(const struct timespec64 *ts, const struct timezone *tz)
1229 {
1230 	return call_int_hook(settime, ts, tz);
1231 }
1232 
1233 /**
1234  * security_vm_enough_memory_mm() - Check if allocating a new mem map is allowed
1235  * @mm: mm struct
1236  * @pages: number of pages
1237  *
1238  * Check permissions for allocating a new virtual mapping.  If all LSMs return
1239  * a positive value, __vm_enough_memory() will be called with cap_sys_admin
1240  * set. If at least one LSM returns 0 or negative, __vm_enough_memory() will be
1241  * called with cap_sys_admin cleared.
1242  *
1243  * Return: Returns 0 if permission is granted by the LSM infrastructure to the
1244  *         caller.
1245  */
1246 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
1247 {
1248 	struct lsm_static_call *scall;
1249 	int cap_sys_admin = 1;
1250 	int rc;
1251 
1252 	/*
1253 	 * The module will respond with 0 if it thinks the __vm_enough_memory()
1254 	 * call should be made with the cap_sys_admin set. If all of the modules
1255 	 * agree that it should be set it will. If any module thinks it should
1256 	 * not be set it won't.
1257 	 */
1258 	lsm_for_each_hook(scall, vm_enough_memory) {
1259 		rc = scall->hl->hook.vm_enough_memory(mm, pages);
1260 		if (rc < 0) {
1261 			cap_sys_admin = 0;
1262 			break;
1263 		}
1264 	}
1265 	return __vm_enough_memory(mm, pages, cap_sys_admin);
1266 }
1267 
1268 /**
1269  * security_bprm_creds_for_exec() - Prepare the credentials for exec()
1270  * @bprm: binary program information
1271  *
1272  * If the setup in prepare_exec_creds did not setup @bprm->cred->security
1273  * properly for executing @bprm->file, update the LSM's portion of
1274  * @bprm->cred->security to be what commit_creds needs to install for the new
1275  * program.  This hook may also optionally check permissions (e.g. for
1276  * transitions between security domains).  The hook must set @bprm->secureexec
1277  * to 1 if AT_SECURE should be set to request libc enable secure mode.  @bprm
1278  * contains the linux_binprm structure.
1279  *
1280  * Return: Returns 0 if the hook is successful and permission is granted.
1281  */
1282 int security_bprm_creds_for_exec(struct linux_binprm *bprm)
1283 {
1284 	return call_int_hook(bprm_creds_for_exec, bprm);
1285 }
1286 
1287 /**
1288  * security_bprm_creds_from_file() - Update linux_binprm creds based on file
1289  * @bprm: binary program information
1290  * @file: associated file
1291  *
1292  * If @file is setpcap, suid, sgid or otherwise marked to change privilege upon
1293  * exec, update @bprm->cred to reflect that change. This is called after
1294  * finding the binary that will be executed without an interpreter.  This
1295  * ensures that the credentials will not be derived from a script that the
1296  * binary will need to reopen, which when reopend may end up being a completely
1297  * different file.  This hook may also optionally check permissions (e.g. for
1298  * transitions between security domains).  The hook must set @bprm->secureexec
1299  * to 1 if AT_SECURE should be set to request libc enable secure mode.  The
1300  * hook must add to @bprm->per_clear any personality flags that should be
1301  * cleared from current->personality.  @bprm contains the linux_binprm
1302  * structure.
1303  *
1304  * Return: Returns 0 if the hook is successful and permission is granted.
1305  */
1306 int security_bprm_creds_from_file(struct linux_binprm *bprm, const struct file *file)
1307 {
1308 	return call_int_hook(bprm_creds_from_file, bprm, file);
1309 }
1310 
1311 /**
1312  * security_bprm_check() - Mediate binary handler search
1313  * @bprm: binary program information
1314  *
1315  * This hook mediates the point when a search for a binary handler will begin.
1316  * It allows a check against the @bprm->cred->security value which was set in
1317  * the preceding creds_for_exec call.  The argv list and envp list are reliably
1318  * available in @bprm.  This hook may be called multiple times during a single
1319  * execve.  @bprm contains the linux_binprm structure.
1320  *
1321  * Return: Returns 0 if the hook is successful and permission is granted.
1322  */
1323 int security_bprm_check(struct linux_binprm *bprm)
1324 {
1325 	return call_int_hook(bprm_check_security, bprm);
1326 }
1327 
1328 /**
1329  * security_bprm_committing_creds() - Install creds for a process during exec()
1330  * @bprm: binary program information
1331  *
1332  * Prepare to install the new security attributes of a process being
1333  * transformed by an execve operation, based on the old credentials pointed to
1334  * by @current->cred and the information set in @bprm->cred by the
1335  * bprm_creds_for_exec hook.  @bprm points to the linux_binprm structure.  This
1336  * hook is a good place to perform state changes on the process such as closing
1337  * open file descriptors to which access will no longer be granted when the
1338  * attributes are changed.  This is called immediately before commit_creds().
1339  */
1340 void security_bprm_committing_creds(const struct linux_binprm *bprm)
1341 {
1342 	call_void_hook(bprm_committing_creds, bprm);
1343 }
1344 
1345 /**
1346  * security_bprm_committed_creds() - Tidy up after cred install during exec()
1347  * @bprm: binary program information
1348  *
1349  * Tidy up after the installation of the new security attributes of a process
1350  * being transformed by an execve operation.  The new credentials have, by this
1351  * point, been set to @current->cred.  @bprm points to the linux_binprm
1352  * structure.  This hook is a good place to perform state changes on the
1353  * process such as clearing out non-inheritable signal state.  This is called
1354  * immediately after commit_creds().
1355  */
1356 void security_bprm_committed_creds(const struct linux_binprm *bprm)
1357 {
1358 	call_void_hook(bprm_committed_creds, bprm);
1359 }
1360 
1361 /**
1362  * security_fs_context_submount() - Initialise fc->security
1363  * @fc: new filesystem context
1364  * @reference: dentry reference for submount/remount
1365  *
1366  * Fill out the ->security field for a new fs_context.
1367  *
1368  * Return: Returns 0 on success or negative error code on failure.
1369  */
1370 int security_fs_context_submount(struct fs_context *fc, struct super_block *reference)
1371 {
1372 	return call_int_hook(fs_context_submount, fc, reference);
1373 }
1374 
1375 /**
1376  * security_fs_context_dup() - Duplicate a fs_context LSM blob
1377  * @fc: destination filesystem context
1378  * @src_fc: source filesystem context
1379  *
1380  * Allocate and attach a security structure to sc->security.  This pointer is
1381  * initialised to NULL by the caller.  @fc indicates the new filesystem context.
1382  * @src_fc indicates the original filesystem context.
1383  *
1384  * Return: Returns 0 on success or a negative error code on failure.
1385  */
1386 int security_fs_context_dup(struct fs_context *fc, struct fs_context *src_fc)
1387 {
1388 	return call_int_hook(fs_context_dup, fc, src_fc);
1389 }
1390 
1391 /**
1392  * security_fs_context_parse_param() - Configure a filesystem context
1393  * @fc: filesystem context
1394  * @param: filesystem parameter
1395  *
1396  * Userspace provided a parameter to configure a superblock.  The LSM can
1397  * consume the parameter or return it to the caller for use elsewhere.
1398  *
1399  * Return: If the parameter is used by the LSM it should return 0, if it is
1400  *         returned to the caller -ENOPARAM is returned, otherwise a negative
1401  *         error code is returned.
1402  */
1403 int security_fs_context_parse_param(struct fs_context *fc,
1404 				    struct fs_parameter *param)
1405 {
1406 	struct lsm_static_call *scall;
1407 	int trc;
1408 	int rc = -ENOPARAM;
1409 
1410 	lsm_for_each_hook(scall, fs_context_parse_param) {
1411 		trc = scall->hl->hook.fs_context_parse_param(fc, param);
1412 		if (trc == 0)
1413 			rc = 0;
1414 		else if (trc != -ENOPARAM)
1415 			return trc;
1416 	}
1417 	return rc;
1418 }
1419 
1420 /**
1421  * security_sb_alloc() - Allocate a super_block LSM blob
1422  * @sb: filesystem superblock
1423  *
1424  * Allocate and attach a security structure to the sb->s_security field.  The
1425  * s_security field is initialized to NULL when the structure is allocated.
1426  * @sb contains the super_block structure to be modified.
1427  *
1428  * Return: Returns 0 if operation was successful.
1429  */
1430 int security_sb_alloc(struct super_block *sb)
1431 {
1432 	int rc = lsm_superblock_alloc(sb);
1433 
1434 	if (unlikely(rc))
1435 		return rc;
1436 	rc = call_int_hook(sb_alloc_security, sb);
1437 	if (unlikely(rc))
1438 		security_sb_free(sb);
1439 	return rc;
1440 }
1441 
1442 /**
1443  * security_sb_delete() - Release super_block LSM associated objects
1444  * @sb: filesystem superblock
1445  *
1446  * Release objects tied to a superblock (e.g. inodes).  @sb contains the
1447  * super_block structure being released.
1448  */
1449 void security_sb_delete(struct super_block *sb)
1450 {
1451 	call_void_hook(sb_delete, sb);
1452 }
1453 
1454 /**
1455  * security_sb_free() - Free a super_block LSM blob
1456  * @sb: filesystem superblock
1457  *
1458  * Deallocate and clear the sb->s_security field.  @sb contains the super_block
1459  * structure to be modified.
1460  */
1461 void security_sb_free(struct super_block *sb)
1462 {
1463 	call_void_hook(sb_free_security, sb);
1464 	kfree(sb->s_security);
1465 	sb->s_security = NULL;
1466 }
1467 
1468 /**
1469  * security_free_mnt_opts() - Free memory associated with mount options
1470  * @mnt_opts: LSM processed mount options
1471  *
1472  * Free memory associated with @mnt_ops.
1473  */
1474 void security_free_mnt_opts(void **mnt_opts)
1475 {
1476 	if (!*mnt_opts)
1477 		return;
1478 	call_void_hook(sb_free_mnt_opts, *mnt_opts);
1479 	*mnt_opts = NULL;
1480 }
1481 EXPORT_SYMBOL(security_free_mnt_opts);
1482 
1483 /**
1484  * security_sb_eat_lsm_opts() - Consume LSM mount options
1485  * @options: mount options
1486  * @mnt_opts: LSM processed mount options
1487  *
1488  * Eat (scan @options) and save them in @mnt_opts.
1489  *
1490  * Return: Returns 0 on success, negative values on failure.
1491  */
1492 int security_sb_eat_lsm_opts(char *options, void **mnt_opts)
1493 {
1494 	return call_int_hook(sb_eat_lsm_opts, options, mnt_opts);
1495 }
1496 EXPORT_SYMBOL(security_sb_eat_lsm_opts);
1497 
1498 /**
1499  * security_sb_mnt_opts_compat() - Check if new mount options are allowed
1500  * @sb: filesystem superblock
1501  * @mnt_opts: new mount options
1502  *
1503  * Determine if the new mount options in @mnt_opts are allowed given the
1504  * existing mounted filesystem at @sb.  @sb superblock being compared.
1505  *
1506  * Return: Returns 0 if options are compatible.
1507  */
1508 int security_sb_mnt_opts_compat(struct super_block *sb,
1509 				void *mnt_opts)
1510 {
1511 	return call_int_hook(sb_mnt_opts_compat, sb, mnt_opts);
1512 }
1513 EXPORT_SYMBOL(security_sb_mnt_opts_compat);
1514 
1515 /**
1516  * security_sb_remount() - Verify no incompatible mount changes during remount
1517  * @sb: filesystem superblock
1518  * @mnt_opts: (re)mount options
1519  *
1520  * Extracts security system specific mount options and verifies no changes are
1521  * being made to those options.
1522  *
1523  * Return: Returns 0 if permission is granted.
1524  */
1525 int security_sb_remount(struct super_block *sb,
1526 			void *mnt_opts)
1527 {
1528 	return call_int_hook(sb_remount, sb, mnt_opts);
1529 }
1530 EXPORT_SYMBOL(security_sb_remount);
1531 
1532 /**
1533  * security_sb_kern_mount() - Check if a kernel mount is allowed
1534  * @sb: filesystem superblock
1535  *
1536  * Mount this @sb if allowed by permissions.
1537  *
1538  * Return: Returns 0 if permission is granted.
1539  */
1540 int security_sb_kern_mount(const struct super_block *sb)
1541 {
1542 	return call_int_hook(sb_kern_mount, sb);
1543 }
1544 
1545 /**
1546  * security_sb_show_options() - Output the mount options for a superblock
1547  * @m: output file
1548  * @sb: filesystem superblock
1549  *
1550  * Show (print on @m) mount options for this @sb.
1551  *
1552  * Return: Returns 0 on success, negative values on failure.
1553  */
1554 int security_sb_show_options(struct seq_file *m, struct super_block *sb)
1555 {
1556 	return call_int_hook(sb_show_options, m, sb);
1557 }
1558 
1559 /**
1560  * security_sb_statfs() - Check if accessing fs stats is allowed
1561  * @dentry: superblock handle
1562  *
1563  * Check permission before obtaining filesystem statistics for the @mnt
1564  * mountpoint.  @dentry is a handle on the superblock for the filesystem.
1565  *
1566  * Return: Returns 0 if permission is granted.
1567  */
1568 int security_sb_statfs(struct dentry *dentry)
1569 {
1570 	return call_int_hook(sb_statfs, dentry);
1571 }
1572 
1573 /**
1574  * security_sb_mount() - Check permission for mounting a filesystem
1575  * @dev_name: filesystem backing device
1576  * @path: mount point
1577  * @type: filesystem type
1578  * @flags: mount flags
1579  * @data: filesystem specific data
1580  *
1581  * Check permission before an object specified by @dev_name is mounted on the
1582  * mount point named by @nd.  For an ordinary mount, @dev_name identifies a
1583  * device if the file system type requires a device.  For a remount
1584  * (@flags & MS_REMOUNT), @dev_name is irrelevant.  For a loopback/bind mount
1585  * (@flags & MS_BIND), @dev_name identifies the	pathname of the object being
1586  * mounted.
1587  *
1588  * Return: Returns 0 if permission is granted.
1589  */
1590 int security_sb_mount(const char *dev_name, const struct path *path,
1591 		      const char *type, unsigned long flags, void *data)
1592 {
1593 	return call_int_hook(sb_mount, dev_name, path, type, flags, data);
1594 }
1595 
1596 /**
1597  * security_sb_umount() - Check permission for unmounting a filesystem
1598  * @mnt: mounted filesystem
1599  * @flags: unmount flags
1600  *
1601  * Check permission before the @mnt file system is unmounted.
1602  *
1603  * Return: Returns 0 if permission is granted.
1604  */
1605 int security_sb_umount(struct vfsmount *mnt, int flags)
1606 {
1607 	return call_int_hook(sb_umount, mnt, flags);
1608 }
1609 
1610 /**
1611  * security_sb_pivotroot() - Check permissions for pivoting the rootfs
1612  * @old_path: new location for current rootfs
1613  * @new_path: location of the new rootfs
1614  *
1615  * Check permission before pivoting the root filesystem.
1616  *
1617  * Return: Returns 0 if permission is granted.
1618  */
1619 int security_sb_pivotroot(const struct path *old_path,
1620 			  const struct path *new_path)
1621 {
1622 	return call_int_hook(sb_pivotroot, old_path, new_path);
1623 }
1624 
1625 /**
1626  * security_sb_set_mnt_opts() - Set the mount options for a filesystem
1627  * @sb: filesystem superblock
1628  * @mnt_opts: binary mount options
1629  * @kern_flags: kernel flags (in)
1630  * @set_kern_flags: kernel flags (out)
1631  *
1632  * Set the security relevant mount options used for a superblock.
1633  *
1634  * Return: Returns 0 on success, error on failure.
1635  */
1636 int security_sb_set_mnt_opts(struct super_block *sb,
1637 			     void *mnt_opts,
1638 			     unsigned long kern_flags,
1639 			     unsigned long *set_kern_flags)
1640 {
1641 	struct lsm_static_call *scall;
1642 	int rc = mnt_opts ? -EOPNOTSUPP : LSM_RET_DEFAULT(sb_set_mnt_opts);
1643 
1644 	lsm_for_each_hook(scall, sb_set_mnt_opts) {
1645 		rc = scall->hl->hook.sb_set_mnt_opts(sb, mnt_opts, kern_flags,
1646 					      set_kern_flags);
1647 		if (rc != LSM_RET_DEFAULT(sb_set_mnt_opts))
1648 			break;
1649 	}
1650 	return rc;
1651 }
1652 EXPORT_SYMBOL(security_sb_set_mnt_opts);
1653 
1654 /**
1655  * security_sb_clone_mnt_opts() - Duplicate superblock mount options
1656  * @oldsb: source superblock
1657  * @newsb: destination superblock
1658  * @kern_flags: kernel flags (in)
1659  * @set_kern_flags: kernel flags (out)
1660  *
1661  * Copy all security options from a given superblock to another.
1662  *
1663  * Return: Returns 0 on success, error on failure.
1664  */
1665 int security_sb_clone_mnt_opts(const struct super_block *oldsb,
1666 			       struct super_block *newsb,
1667 			       unsigned long kern_flags,
1668 			       unsigned long *set_kern_flags)
1669 {
1670 	return call_int_hook(sb_clone_mnt_opts, oldsb, newsb,
1671 			     kern_flags, set_kern_flags);
1672 }
1673 EXPORT_SYMBOL(security_sb_clone_mnt_opts);
1674 
1675 /**
1676  * security_move_mount() - Check permissions for moving a mount
1677  * @from_path: source mount point
1678  * @to_path: destination mount point
1679  *
1680  * Check permission before a mount is moved.
1681  *
1682  * Return: Returns 0 if permission is granted.
1683  */
1684 int security_move_mount(const struct path *from_path,
1685 			const struct path *to_path)
1686 {
1687 	return call_int_hook(move_mount, from_path, to_path);
1688 }
1689 
1690 /**
1691  * security_path_notify() - Check if setting a watch is allowed
1692  * @path: file path
1693  * @mask: event mask
1694  * @obj_type: file path type
1695  *
1696  * Check permissions before setting a watch on events as defined by @mask, on
1697  * an object at @path, whose type is defined by @obj_type.
1698  *
1699  * Return: Returns 0 if permission is granted.
1700  */
1701 int security_path_notify(const struct path *path, u64 mask,
1702 			 unsigned int obj_type)
1703 {
1704 	return call_int_hook(path_notify, path, mask, obj_type);
1705 }
1706 
1707 /**
1708  * security_inode_alloc() - Allocate an inode LSM blob
1709  * @inode: the inode
1710  *
1711  * Allocate and attach a security structure to @inode->i_security.  The
1712  * i_security field is initialized to NULL when the inode structure is
1713  * allocated.
1714  *
1715  * Return: Return 0 if operation was successful.
1716  */
1717 int security_inode_alloc(struct inode *inode)
1718 {
1719 	int rc = lsm_inode_alloc(inode);
1720 
1721 	if (unlikely(rc))
1722 		return rc;
1723 	rc = call_int_hook(inode_alloc_security, inode);
1724 	if (unlikely(rc))
1725 		security_inode_free(inode);
1726 	return rc;
1727 }
1728 
1729 static void inode_free_by_rcu(struct rcu_head *head)
1730 {
1731 	/* The rcu head is at the start of the inode blob */
1732 	call_void_hook(inode_free_security_rcu, head);
1733 	kmem_cache_free(lsm_inode_cache, head);
1734 }
1735 
1736 /**
1737  * security_inode_free() - Free an inode's LSM blob
1738  * @inode: the inode
1739  *
1740  * Release any LSM resources associated with @inode, although due to the
1741  * inode's RCU protections it is possible that the resources will not be
1742  * fully released until after the current RCU grace period has elapsed.
1743  *
1744  * It is important for LSMs to note that despite being present in a call to
1745  * security_inode_free(), @inode may still be referenced in a VFS path walk
1746  * and calls to security_inode_permission() may be made during, or after,
1747  * a call to security_inode_free().  For this reason the inode->i_security
1748  * field is released via a call_rcu() callback and any LSMs which need to
1749  * retain inode state for use in security_inode_permission() should only
1750  * release that state in the inode_free_security_rcu() LSM hook callback.
1751  */
1752 void security_inode_free(struct inode *inode)
1753 {
1754 	call_void_hook(inode_free_security, inode);
1755 	if (!inode->i_security)
1756 		return;
1757 	call_rcu((struct rcu_head *)inode->i_security, inode_free_by_rcu);
1758 }
1759 
1760 /**
1761  * security_dentry_init_security() - Perform dentry initialization
1762  * @dentry: the dentry to initialize
1763  * @mode: mode used to determine resource type
1764  * @name: name of the last path component
1765  * @xattr_name: name of the security/LSM xattr
1766  * @ctx: pointer to the resulting LSM context
1767  * @ctxlen: length of @ctx
1768  *
1769  * Compute a context for a dentry as the inode is not yet available since NFSv4
1770  * has no label backed by an EA anyway.  It is important to note that
1771  * @xattr_name does not need to be free'd by the caller, it is a static string.
1772  *
1773  * Return: Returns 0 on success, negative values on failure.
1774  */
1775 int security_dentry_init_security(struct dentry *dentry, int mode,
1776 				  const struct qstr *name,
1777 				  const char **xattr_name, void **ctx,
1778 				  u32 *ctxlen)
1779 {
1780 	return call_int_hook(dentry_init_security, dentry, mode, name,
1781 			     xattr_name, ctx, ctxlen);
1782 }
1783 EXPORT_SYMBOL(security_dentry_init_security);
1784 
1785 /**
1786  * security_dentry_create_files_as() - Perform dentry initialization
1787  * @dentry: the dentry to initialize
1788  * @mode: mode used to determine resource type
1789  * @name: name of the last path component
1790  * @old: creds to use for LSM context calculations
1791  * @new: creds to modify
1792  *
1793  * Compute a context for a dentry as the inode is not yet available and set
1794  * that context in passed in creds so that new files are created using that
1795  * context. Context is calculated using the passed in creds and not the creds
1796  * of the caller.
1797  *
1798  * Return: Returns 0 on success, error on failure.
1799  */
1800 int security_dentry_create_files_as(struct dentry *dentry, int mode,
1801 				    struct qstr *name,
1802 				    const struct cred *old, struct cred *new)
1803 {
1804 	return call_int_hook(dentry_create_files_as, dentry, mode,
1805 			     name, old, new);
1806 }
1807 EXPORT_SYMBOL(security_dentry_create_files_as);
1808 
1809 /**
1810  * security_inode_init_security() - Initialize an inode's LSM context
1811  * @inode: the inode
1812  * @dir: parent directory
1813  * @qstr: last component of the pathname
1814  * @initxattrs: callback function to write xattrs
1815  * @fs_data: filesystem specific data
1816  *
1817  * Obtain the security attribute name suffix and value to set on a newly
1818  * created inode and set up the incore security field for the new inode.  This
1819  * hook is called by the fs code as part of the inode creation transaction and
1820  * provides for atomic labeling of the inode, unlike the post_create/mkdir/...
1821  * hooks called by the VFS.
1822  *
1823  * The hook function is expected to populate the xattrs array, by calling
1824  * lsm_get_xattr_slot() to retrieve the slots reserved by the security module
1825  * with the lbs_xattr_count field of the lsm_blob_sizes structure.  For each
1826  * slot, the hook function should set ->name to the attribute name suffix
1827  * (e.g. selinux), to allocate ->value (will be freed by the caller) and set it
1828  * to the attribute value, to set ->value_len to the length of the value.  If
1829  * the security module does not use security attributes or does not wish to put
1830  * a security attribute on this particular inode, then it should return
1831  * -EOPNOTSUPP to skip this processing.
1832  *
1833  * Return: Returns 0 if the LSM successfully initialized all of the inode
1834  *         security attributes that are required, negative values otherwise.
1835  */
1836 int security_inode_init_security(struct inode *inode, struct inode *dir,
1837 				 const struct qstr *qstr,
1838 				 const initxattrs initxattrs, void *fs_data)
1839 {
1840 	struct lsm_static_call *scall;
1841 	struct xattr *new_xattrs = NULL;
1842 	int ret = -EOPNOTSUPP, xattr_count = 0;
1843 
1844 	if (unlikely(IS_PRIVATE(inode)))
1845 		return 0;
1846 
1847 	if (!blob_sizes.lbs_xattr_count)
1848 		return 0;
1849 
1850 	if (initxattrs) {
1851 		/* Allocate +1 as terminator. */
1852 		new_xattrs = kcalloc(blob_sizes.lbs_xattr_count + 1,
1853 				     sizeof(*new_xattrs), GFP_NOFS);
1854 		if (!new_xattrs)
1855 			return -ENOMEM;
1856 	}
1857 
1858 	lsm_for_each_hook(scall, inode_init_security) {
1859 		ret = scall->hl->hook.inode_init_security(inode, dir, qstr, new_xattrs,
1860 						  &xattr_count);
1861 		if (ret && ret != -EOPNOTSUPP)
1862 			goto out;
1863 		/*
1864 		 * As documented in lsm_hooks.h, -EOPNOTSUPP in this context
1865 		 * means that the LSM is not willing to provide an xattr, not
1866 		 * that it wants to signal an error. Thus, continue to invoke
1867 		 * the remaining LSMs.
1868 		 */
1869 	}
1870 
1871 	/* If initxattrs() is NULL, xattr_count is zero, skip the call. */
1872 	if (!xattr_count)
1873 		goto out;
1874 
1875 	ret = initxattrs(inode, new_xattrs, fs_data);
1876 out:
1877 	for (; xattr_count > 0; xattr_count--)
1878 		kfree(new_xattrs[xattr_count - 1].value);
1879 	kfree(new_xattrs);
1880 	return (ret == -EOPNOTSUPP) ? 0 : ret;
1881 }
1882 EXPORT_SYMBOL(security_inode_init_security);
1883 
1884 /**
1885  * security_inode_init_security_anon() - Initialize an anonymous inode
1886  * @inode: the inode
1887  * @name: the anonymous inode class
1888  * @context_inode: an optional related inode
1889  *
1890  * Set up the incore security field for the new anonymous inode and return
1891  * whether the inode creation is permitted by the security module or not.
1892  *
1893  * Return: Returns 0 on success, -EACCES if the security module denies the
1894  * creation of this inode, or another -errno upon other errors.
1895  */
1896 int security_inode_init_security_anon(struct inode *inode,
1897 				      const struct qstr *name,
1898 				      const struct inode *context_inode)
1899 {
1900 	return call_int_hook(inode_init_security_anon, inode, name,
1901 			     context_inode);
1902 }
1903 
1904 #ifdef CONFIG_SECURITY_PATH
1905 /**
1906  * security_path_mknod() - Check if creating a special file is allowed
1907  * @dir: parent directory
1908  * @dentry: new file
1909  * @mode: new file mode
1910  * @dev: device number
1911  *
1912  * Check permissions when creating a file. Note that this hook is called even
1913  * if mknod operation is being done for a regular file.
1914  *
1915  * Return: Returns 0 if permission is granted.
1916  */
1917 int security_path_mknod(const struct path *dir, struct dentry *dentry,
1918 			umode_t mode, unsigned int dev)
1919 {
1920 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1921 		return 0;
1922 	return call_int_hook(path_mknod, dir, dentry, mode, dev);
1923 }
1924 EXPORT_SYMBOL(security_path_mknod);
1925 
1926 /**
1927  * security_path_post_mknod() - Update inode security after reg file creation
1928  * @idmap: idmap of the mount
1929  * @dentry: new file
1930  *
1931  * Update inode security field after a regular file has been created.
1932  */
1933 void security_path_post_mknod(struct mnt_idmap *idmap, struct dentry *dentry)
1934 {
1935 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1936 		return;
1937 	call_void_hook(path_post_mknod, idmap, dentry);
1938 }
1939 
1940 /**
1941  * security_path_mkdir() - Check if creating a new directory is allowed
1942  * @dir: parent directory
1943  * @dentry: new directory
1944  * @mode: new directory mode
1945  *
1946  * Check permissions to create a new directory in the existing directory.
1947  *
1948  * Return: Returns 0 if permission is granted.
1949  */
1950 int security_path_mkdir(const struct path *dir, struct dentry *dentry,
1951 			umode_t mode)
1952 {
1953 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1954 		return 0;
1955 	return call_int_hook(path_mkdir, dir, dentry, mode);
1956 }
1957 EXPORT_SYMBOL(security_path_mkdir);
1958 
1959 /**
1960  * security_path_rmdir() - Check if removing a directory is allowed
1961  * @dir: parent directory
1962  * @dentry: directory to remove
1963  *
1964  * Check the permission to remove a directory.
1965  *
1966  * Return: Returns 0 if permission is granted.
1967  */
1968 int security_path_rmdir(const struct path *dir, struct dentry *dentry)
1969 {
1970 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1971 		return 0;
1972 	return call_int_hook(path_rmdir, dir, dentry);
1973 }
1974 
1975 /**
1976  * security_path_unlink() - Check if removing a hard link is allowed
1977  * @dir: parent directory
1978  * @dentry: file
1979  *
1980  * Check the permission to remove a hard link to a file.
1981  *
1982  * Return: Returns 0 if permission is granted.
1983  */
1984 int security_path_unlink(const struct path *dir, struct dentry *dentry)
1985 {
1986 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1987 		return 0;
1988 	return call_int_hook(path_unlink, dir, dentry);
1989 }
1990 EXPORT_SYMBOL(security_path_unlink);
1991 
1992 /**
1993  * security_path_symlink() - Check if creating a symbolic link is allowed
1994  * @dir: parent directory
1995  * @dentry: symbolic link
1996  * @old_name: file pathname
1997  *
1998  * Check the permission to create a symbolic link to a file.
1999  *
2000  * Return: Returns 0 if permission is granted.
2001  */
2002 int security_path_symlink(const struct path *dir, struct dentry *dentry,
2003 			  const char *old_name)
2004 {
2005 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
2006 		return 0;
2007 	return call_int_hook(path_symlink, dir, dentry, old_name);
2008 }
2009 
2010 /**
2011  * security_path_link - Check if creating a hard link is allowed
2012  * @old_dentry: existing file
2013  * @new_dir: new parent directory
2014  * @new_dentry: new link
2015  *
2016  * Check permission before creating a new hard link to a file.
2017  *
2018  * Return: Returns 0 if permission is granted.
2019  */
2020 int security_path_link(struct dentry *old_dentry, const struct path *new_dir,
2021 		       struct dentry *new_dentry)
2022 {
2023 	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
2024 		return 0;
2025 	return call_int_hook(path_link, old_dentry, new_dir, new_dentry);
2026 }
2027 
2028 /**
2029  * security_path_rename() - Check if renaming a file is allowed
2030  * @old_dir: parent directory of the old file
2031  * @old_dentry: the old file
2032  * @new_dir: parent directory of the new file
2033  * @new_dentry: the new file
2034  * @flags: flags
2035  *
2036  * Check for permission to rename a file or directory.
2037  *
2038  * Return: Returns 0 if permission is granted.
2039  */
2040 int security_path_rename(const struct path *old_dir, struct dentry *old_dentry,
2041 			 const struct path *new_dir, struct dentry *new_dentry,
2042 			 unsigned int flags)
2043 {
2044 	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
2045 		     (d_is_positive(new_dentry) &&
2046 		      IS_PRIVATE(d_backing_inode(new_dentry)))))
2047 		return 0;
2048 
2049 	return call_int_hook(path_rename, old_dir, old_dentry, new_dir,
2050 			     new_dentry, flags);
2051 }
2052 EXPORT_SYMBOL(security_path_rename);
2053 
2054 /**
2055  * security_path_truncate() - Check if truncating a file is allowed
2056  * @path: file
2057  *
2058  * Check permission before truncating the file indicated by path.  Note that
2059  * truncation permissions may also be checked based on already opened files,
2060  * using the security_file_truncate() hook.
2061  *
2062  * Return: Returns 0 if permission is granted.
2063  */
2064 int security_path_truncate(const struct path *path)
2065 {
2066 	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
2067 		return 0;
2068 	return call_int_hook(path_truncate, path);
2069 }
2070 
2071 /**
2072  * security_path_chmod() - Check if changing the file's mode is allowed
2073  * @path: file
2074  * @mode: new mode
2075  *
2076  * Check for permission to change a mode of the file @path. The new mode is
2077  * specified in @mode which is a bitmask of constants from
2078  * <include/uapi/linux/stat.h>.
2079  *
2080  * Return: Returns 0 if permission is granted.
2081  */
2082 int security_path_chmod(const struct path *path, umode_t mode)
2083 {
2084 	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
2085 		return 0;
2086 	return call_int_hook(path_chmod, path, mode);
2087 }
2088 
2089 /**
2090  * security_path_chown() - Check if changing the file's owner/group is allowed
2091  * @path: file
2092  * @uid: file owner
2093  * @gid: file group
2094  *
2095  * Check for permission to change owner/group of a file or directory.
2096  *
2097  * Return: Returns 0 if permission is granted.
2098  */
2099 int security_path_chown(const struct path *path, kuid_t uid, kgid_t gid)
2100 {
2101 	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
2102 		return 0;
2103 	return call_int_hook(path_chown, path, uid, gid);
2104 }
2105 
2106 /**
2107  * security_path_chroot() - Check if changing the root directory is allowed
2108  * @path: directory
2109  *
2110  * Check for permission to change root directory.
2111  *
2112  * Return: Returns 0 if permission is granted.
2113  */
2114 int security_path_chroot(const struct path *path)
2115 {
2116 	return call_int_hook(path_chroot, path);
2117 }
2118 #endif /* CONFIG_SECURITY_PATH */
2119 
2120 /**
2121  * security_inode_create() - Check if creating a file is allowed
2122  * @dir: the parent directory
2123  * @dentry: the file being created
2124  * @mode: requested file mode
2125  *
2126  * Check permission to create a regular file.
2127  *
2128  * Return: Returns 0 if permission is granted.
2129  */
2130 int security_inode_create(struct inode *dir, struct dentry *dentry,
2131 			  umode_t mode)
2132 {
2133 	if (unlikely(IS_PRIVATE(dir)))
2134 		return 0;
2135 	return call_int_hook(inode_create, dir, dentry, mode);
2136 }
2137 EXPORT_SYMBOL_GPL(security_inode_create);
2138 
2139 /**
2140  * security_inode_post_create_tmpfile() - Update inode security of new tmpfile
2141  * @idmap: idmap of the mount
2142  * @inode: inode of the new tmpfile
2143  *
2144  * Update inode security data after a tmpfile has been created.
2145  */
2146 void security_inode_post_create_tmpfile(struct mnt_idmap *idmap,
2147 					struct inode *inode)
2148 {
2149 	if (unlikely(IS_PRIVATE(inode)))
2150 		return;
2151 	call_void_hook(inode_post_create_tmpfile, idmap, inode);
2152 }
2153 
2154 /**
2155  * security_inode_link() - Check if creating a hard link is allowed
2156  * @old_dentry: existing file
2157  * @dir: new parent directory
2158  * @new_dentry: new link
2159  *
2160  * Check permission before creating a new hard link to a file.
2161  *
2162  * Return: Returns 0 if permission is granted.
2163  */
2164 int security_inode_link(struct dentry *old_dentry, struct inode *dir,
2165 			struct dentry *new_dentry)
2166 {
2167 	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
2168 		return 0;
2169 	return call_int_hook(inode_link, old_dentry, dir, new_dentry);
2170 }
2171 
2172 /**
2173  * security_inode_unlink() - Check if removing a hard link is allowed
2174  * @dir: parent directory
2175  * @dentry: file
2176  *
2177  * Check the permission to remove a hard link to a file.
2178  *
2179  * Return: Returns 0 if permission is granted.
2180  */
2181 int security_inode_unlink(struct inode *dir, struct dentry *dentry)
2182 {
2183 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2184 		return 0;
2185 	return call_int_hook(inode_unlink, dir, dentry);
2186 }
2187 
2188 /**
2189  * security_inode_symlink() - Check if creating a symbolic link is allowed
2190  * @dir: parent directory
2191  * @dentry: symbolic link
2192  * @old_name: existing filename
2193  *
2194  * Check the permission to create a symbolic link to a file.
2195  *
2196  * Return: Returns 0 if permission is granted.
2197  */
2198 int security_inode_symlink(struct inode *dir, struct dentry *dentry,
2199 			   const char *old_name)
2200 {
2201 	if (unlikely(IS_PRIVATE(dir)))
2202 		return 0;
2203 	return call_int_hook(inode_symlink, dir, dentry, old_name);
2204 }
2205 
2206 /**
2207  * security_inode_mkdir() - Check if creation a new director is allowed
2208  * @dir: parent directory
2209  * @dentry: new directory
2210  * @mode: new directory mode
2211  *
2212  * Check permissions to create a new directory in the existing directory
2213  * associated with inode structure @dir.
2214  *
2215  * Return: Returns 0 if permission is granted.
2216  */
2217 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2218 {
2219 	if (unlikely(IS_PRIVATE(dir)))
2220 		return 0;
2221 	return call_int_hook(inode_mkdir, dir, dentry, mode);
2222 }
2223 EXPORT_SYMBOL_GPL(security_inode_mkdir);
2224 
2225 /**
2226  * security_inode_rmdir() - Check if removing a directory is allowed
2227  * @dir: parent directory
2228  * @dentry: directory to be removed
2229  *
2230  * Check the permission to remove a directory.
2231  *
2232  * Return: Returns 0 if permission is granted.
2233  */
2234 int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
2235 {
2236 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2237 		return 0;
2238 	return call_int_hook(inode_rmdir, dir, dentry);
2239 }
2240 
2241 /**
2242  * security_inode_mknod() - Check if creating a special file is allowed
2243  * @dir: parent directory
2244  * @dentry: new file
2245  * @mode: new file mode
2246  * @dev: device number
2247  *
2248  * Check permissions when creating a special file (or a socket or a fifo file
2249  * created via the mknod system call).  Note that if mknod operation is being
2250  * done for a regular file, then the create hook will be called and not this
2251  * hook.
2252  *
2253  * Return: Returns 0 if permission is granted.
2254  */
2255 int security_inode_mknod(struct inode *dir, struct dentry *dentry,
2256 			 umode_t mode, dev_t dev)
2257 {
2258 	if (unlikely(IS_PRIVATE(dir)))
2259 		return 0;
2260 	return call_int_hook(inode_mknod, dir, dentry, mode, dev);
2261 }
2262 
2263 /**
2264  * security_inode_rename() - Check if renaming a file is allowed
2265  * @old_dir: parent directory of the old file
2266  * @old_dentry: the old file
2267  * @new_dir: parent directory of the new file
2268  * @new_dentry: the new file
2269  * @flags: flags
2270  *
2271  * Check for permission to rename a file or directory.
2272  *
2273  * Return: Returns 0 if permission is granted.
2274  */
2275 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
2276 			  struct inode *new_dir, struct dentry *new_dentry,
2277 			  unsigned int flags)
2278 {
2279 	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
2280 		     (d_is_positive(new_dentry) &&
2281 		      IS_PRIVATE(d_backing_inode(new_dentry)))))
2282 		return 0;
2283 
2284 	if (flags & RENAME_EXCHANGE) {
2285 		int err = call_int_hook(inode_rename, new_dir, new_dentry,
2286 					old_dir, old_dentry);
2287 		if (err)
2288 			return err;
2289 	}
2290 
2291 	return call_int_hook(inode_rename, old_dir, old_dentry,
2292 			     new_dir, new_dentry);
2293 }
2294 
2295 /**
2296  * security_inode_readlink() - Check if reading a symbolic link is allowed
2297  * @dentry: link
2298  *
2299  * Check the permission to read the symbolic link.
2300  *
2301  * Return: Returns 0 if permission is granted.
2302  */
2303 int security_inode_readlink(struct dentry *dentry)
2304 {
2305 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2306 		return 0;
2307 	return call_int_hook(inode_readlink, dentry);
2308 }
2309 
2310 /**
2311  * security_inode_follow_link() - Check if following a symbolic link is allowed
2312  * @dentry: link dentry
2313  * @inode: link inode
2314  * @rcu: true if in RCU-walk mode
2315  *
2316  * Check permission to follow a symbolic link when looking up a pathname.  If
2317  * @rcu is true, @inode is not stable.
2318  *
2319  * Return: Returns 0 if permission is granted.
2320  */
2321 int security_inode_follow_link(struct dentry *dentry, struct inode *inode,
2322 			       bool rcu)
2323 {
2324 	if (unlikely(IS_PRIVATE(inode)))
2325 		return 0;
2326 	return call_int_hook(inode_follow_link, dentry, inode, rcu);
2327 }
2328 
2329 /**
2330  * security_inode_permission() - Check if accessing an inode is allowed
2331  * @inode: inode
2332  * @mask: access mask
2333  *
2334  * Check permission before accessing an inode.  This hook is called by the
2335  * existing Linux permission function, so a security module can use it to
2336  * provide additional checking for existing Linux permission checks.  Notice
2337  * that this hook is called when a file is opened (as well as many other
2338  * operations), whereas the file_security_ops permission hook is called when
2339  * the actual read/write operations are performed.
2340  *
2341  * Return: Returns 0 if permission is granted.
2342  */
2343 int security_inode_permission(struct inode *inode, int mask)
2344 {
2345 	if (unlikely(IS_PRIVATE(inode)))
2346 		return 0;
2347 	return call_int_hook(inode_permission, inode, mask);
2348 }
2349 
2350 /**
2351  * security_inode_setattr() - Check if setting file attributes is allowed
2352  * @idmap: idmap of the mount
2353  * @dentry: file
2354  * @attr: new attributes
2355  *
2356  * Check permission before setting file attributes.  Note that the kernel call
2357  * to notify_change is performed from several locations, whenever file
2358  * attributes change (such as when a file is truncated, chown/chmod operations,
2359  * transferring disk quotas, etc).
2360  *
2361  * Return: Returns 0 if permission is granted.
2362  */
2363 int security_inode_setattr(struct mnt_idmap *idmap,
2364 			   struct dentry *dentry, struct iattr *attr)
2365 {
2366 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2367 		return 0;
2368 	return call_int_hook(inode_setattr, idmap, dentry, attr);
2369 }
2370 EXPORT_SYMBOL_GPL(security_inode_setattr);
2371 
2372 /**
2373  * security_inode_post_setattr() - Update the inode after a setattr operation
2374  * @idmap: idmap of the mount
2375  * @dentry: file
2376  * @ia_valid: file attributes set
2377  *
2378  * Update inode security field after successful setting file attributes.
2379  */
2380 void security_inode_post_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
2381 				 int ia_valid)
2382 {
2383 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2384 		return;
2385 	call_void_hook(inode_post_setattr, idmap, dentry, ia_valid);
2386 }
2387 
2388 /**
2389  * security_inode_getattr() - Check if getting file attributes is allowed
2390  * @path: file
2391  *
2392  * Check permission before obtaining file attributes.
2393  *
2394  * Return: Returns 0 if permission is granted.
2395  */
2396 int security_inode_getattr(const struct path *path)
2397 {
2398 	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
2399 		return 0;
2400 	return call_int_hook(inode_getattr, path);
2401 }
2402 
2403 /**
2404  * security_inode_setxattr() - Check if setting file xattrs is allowed
2405  * @idmap: idmap of the mount
2406  * @dentry: file
2407  * @name: xattr name
2408  * @value: xattr value
2409  * @size: size of xattr value
2410  * @flags: flags
2411  *
2412  * This hook performs the desired permission checks before setting the extended
2413  * attributes (xattrs) on @dentry.  It is important to note that we have some
2414  * additional logic before the main LSM implementation calls to detect if we
2415  * need to perform an additional capability check at the LSM layer.
2416  *
2417  * Normally we enforce a capability check prior to executing the various LSM
2418  * hook implementations, but if a LSM wants to avoid this capability check,
2419  * it can register a 'inode_xattr_skipcap' hook and return a value of 1 for
2420  * xattrs that it wants to avoid the capability check, leaving the LSM fully
2421  * responsible for enforcing the access control for the specific xattr.  If all
2422  * of the enabled LSMs refrain from registering a 'inode_xattr_skipcap' hook,
2423  * or return a 0 (the default return value), the capability check is still
2424  * performed.  If no 'inode_xattr_skipcap' hooks are registered the capability
2425  * check is performed.
2426  *
2427  * Return: Returns 0 if permission is granted.
2428  */
2429 int security_inode_setxattr(struct mnt_idmap *idmap,
2430 			    struct dentry *dentry, const char *name,
2431 			    const void *value, size_t size, int flags)
2432 {
2433 	int rc;
2434 
2435 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2436 		return 0;
2437 
2438 	/* enforce the capability checks at the lsm layer, if needed */
2439 	if (!call_int_hook(inode_xattr_skipcap, name)) {
2440 		rc = cap_inode_setxattr(dentry, name, value, size, flags);
2441 		if (rc)
2442 			return rc;
2443 	}
2444 
2445 	return call_int_hook(inode_setxattr, idmap, dentry, name, value, size,
2446 			     flags);
2447 }
2448 
2449 /**
2450  * security_inode_set_acl() - Check if setting posix acls is allowed
2451  * @idmap: idmap of the mount
2452  * @dentry: file
2453  * @acl_name: acl name
2454  * @kacl: acl struct
2455  *
2456  * Check permission before setting posix acls, the posix acls in @kacl are
2457  * identified by @acl_name.
2458  *
2459  * Return: Returns 0 if permission is granted.
2460  */
2461 int security_inode_set_acl(struct mnt_idmap *idmap,
2462 			   struct dentry *dentry, const char *acl_name,
2463 			   struct posix_acl *kacl)
2464 {
2465 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2466 		return 0;
2467 	return call_int_hook(inode_set_acl, idmap, dentry, acl_name, kacl);
2468 }
2469 
2470 /**
2471  * security_inode_post_set_acl() - Update inode security from posix acls set
2472  * @dentry: file
2473  * @acl_name: acl name
2474  * @kacl: acl struct
2475  *
2476  * Update inode security data after successfully setting posix acls on @dentry.
2477  * The posix acls in @kacl are identified by @acl_name.
2478  */
2479 void security_inode_post_set_acl(struct dentry *dentry, const char *acl_name,
2480 				 struct posix_acl *kacl)
2481 {
2482 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2483 		return;
2484 	call_void_hook(inode_post_set_acl, dentry, acl_name, kacl);
2485 }
2486 
2487 /**
2488  * security_inode_get_acl() - Check if reading posix acls is allowed
2489  * @idmap: idmap of the mount
2490  * @dentry: file
2491  * @acl_name: acl name
2492  *
2493  * Check permission before getting osix acls, the posix acls are identified by
2494  * @acl_name.
2495  *
2496  * Return: Returns 0 if permission is granted.
2497  */
2498 int security_inode_get_acl(struct mnt_idmap *idmap,
2499 			   struct dentry *dentry, const char *acl_name)
2500 {
2501 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2502 		return 0;
2503 	return call_int_hook(inode_get_acl, idmap, dentry, acl_name);
2504 }
2505 
2506 /**
2507  * security_inode_remove_acl() - Check if removing a posix acl is allowed
2508  * @idmap: idmap of the mount
2509  * @dentry: file
2510  * @acl_name: acl name
2511  *
2512  * Check permission before removing posix acls, the posix acls are identified
2513  * by @acl_name.
2514  *
2515  * Return: Returns 0 if permission is granted.
2516  */
2517 int security_inode_remove_acl(struct mnt_idmap *idmap,
2518 			      struct dentry *dentry, const char *acl_name)
2519 {
2520 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2521 		return 0;
2522 	return call_int_hook(inode_remove_acl, idmap, dentry, acl_name);
2523 }
2524 
2525 /**
2526  * security_inode_post_remove_acl() - Update inode security after rm posix acls
2527  * @idmap: idmap of the mount
2528  * @dentry: file
2529  * @acl_name: acl name
2530  *
2531  * Update inode security data after successfully removing posix acls on
2532  * @dentry in @idmap. The posix acls are identified by @acl_name.
2533  */
2534 void security_inode_post_remove_acl(struct mnt_idmap *idmap,
2535 				    struct dentry *dentry, const char *acl_name)
2536 {
2537 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2538 		return;
2539 	call_void_hook(inode_post_remove_acl, idmap, dentry, acl_name);
2540 }
2541 
2542 /**
2543  * security_inode_post_setxattr() - Update the inode after a setxattr operation
2544  * @dentry: file
2545  * @name: xattr name
2546  * @value: xattr value
2547  * @size: xattr value size
2548  * @flags: flags
2549  *
2550  * Update inode security field after successful setxattr operation.
2551  */
2552 void security_inode_post_setxattr(struct dentry *dentry, const char *name,
2553 				  const void *value, size_t size, int flags)
2554 {
2555 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2556 		return;
2557 	call_void_hook(inode_post_setxattr, dentry, name, value, size, flags);
2558 }
2559 
2560 /**
2561  * security_inode_getxattr() - Check if xattr access is allowed
2562  * @dentry: file
2563  * @name: xattr name
2564  *
2565  * Check permission before obtaining the extended attributes identified by
2566  * @name for @dentry.
2567  *
2568  * Return: Returns 0 if permission is granted.
2569  */
2570 int security_inode_getxattr(struct dentry *dentry, const char *name)
2571 {
2572 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2573 		return 0;
2574 	return call_int_hook(inode_getxattr, dentry, name);
2575 }
2576 
2577 /**
2578  * security_inode_listxattr() - Check if listing xattrs is allowed
2579  * @dentry: file
2580  *
2581  * Check permission before obtaining the list of extended attribute names for
2582  * @dentry.
2583  *
2584  * Return: Returns 0 if permission is granted.
2585  */
2586 int security_inode_listxattr(struct dentry *dentry)
2587 {
2588 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2589 		return 0;
2590 	return call_int_hook(inode_listxattr, dentry);
2591 }
2592 
2593 /**
2594  * security_inode_removexattr() - Check if removing an xattr is allowed
2595  * @idmap: idmap of the mount
2596  * @dentry: file
2597  * @name: xattr name
2598  *
2599  * This hook performs the desired permission checks before setting the extended
2600  * attributes (xattrs) on @dentry.  It is important to note that we have some
2601  * additional logic before the main LSM implementation calls to detect if we
2602  * need to perform an additional capability check at the LSM layer.
2603  *
2604  * Normally we enforce a capability check prior to executing the various LSM
2605  * hook implementations, but if a LSM wants to avoid this capability check,
2606  * it can register a 'inode_xattr_skipcap' hook and return a value of 1 for
2607  * xattrs that it wants to avoid the capability check, leaving the LSM fully
2608  * responsible for enforcing the access control for the specific xattr.  If all
2609  * of the enabled LSMs refrain from registering a 'inode_xattr_skipcap' hook,
2610  * or return a 0 (the default return value), the capability check is still
2611  * performed.  If no 'inode_xattr_skipcap' hooks are registered the capability
2612  * check is performed.
2613  *
2614  * Return: Returns 0 if permission is granted.
2615  */
2616 int security_inode_removexattr(struct mnt_idmap *idmap,
2617 			       struct dentry *dentry, const char *name)
2618 {
2619 	int rc;
2620 
2621 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2622 		return 0;
2623 
2624 	/* enforce the capability checks at the lsm layer, if needed */
2625 	if (!call_int_hook(inode_xattr_skipcap, name)) {
2626 		rc = cap_inode_removexattr(idmap, dentry, name);
2627 		if (rc)
2628 			return rc;
2629 	}
2630 
2631 	return call_int_hook(inode_removexattr, idmap, dentry, name);
2632 }
2633 
2634 /**
2635  * security_inode_post_removexattr() - Update the inode after a removexattr op
2636  * @dentry: file
2637  * @name: xattr name
2638  *
2639  * Update the inode after a successful removexattr operation.
2640  */
2641 void security_inode_post_removexattr(struct dentry *dentry, const char *name)
2642 {
2643 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2644 		return;
2645 	call_void_hook(inode_post_removexattr, dentry, name);
2646 }
2647 
2648 /**
2649  * security_inode_need_killpriv() - Check if security_inode_killpriv() required
2650  * @dentry: associated dentry
2651  *
2652  * Called when an inode has been changed to determine if
2653  * security_inode_killpriv() should be called.
2654  *
2655  * Return: Return <0 on error to abort the inode change operation, return 0 if
2656  *         security_inode_killpriv() does not need to be called, return >0 if
2657  *         security_inode_killpriv() does need to be called.
2658  */
2659 int security_inode_need_killpriv(struct dentry *dentry)
2660 {
2661 	return call_int_hook(inode_need_killpriv, dentry);
2662 }
2663 
2664 /**
2665  * security_inode_killpriv() - The setuid bit is removed, update LSM state
2666  * @idmap: idmap of the mount
2667  * @dentry: associated dentry
2668  *
2669  * The @dentry's setuid bit is being removed.  Remove similar security labels.
2670  * Called with the dentry->d_inode->i_mutex held.
2671  *
2672  * Return: Return 0 on success.  If error is returned, then the operation
2673  *         causing setuid bit removal is failed.
2674  */
2675 int security_inode_killpriv(struct mnt_idmap *idmap,
2676 			    struct dentry *dentry)
2677 {
2678 	return call_int_hook(inode_killpriv, idmap, dentry);
2679 }
2680 
2681 /**
2682  * security_inode_getsecurity() - Get the xattr security label of an inode
2683  * @idmap: idmap of the mount
2684  * @inode: inode
2685  * @name: xattr name
2686  * @buffer: security label buffer
2687  * @alloc: allocation flag
2688  *
2689  * Retrieve a copy of the extended attribute representation of the security
2690  * label associated with @name for @inode via @buffer.  Note that @name is the
2691  * remainder of the attribute name after the security prefix has been removed.
2692  * @alloc is used to specify if the call should return a value via the buffer
2693  * or just the value length.
2694  *
2695  * Return: Returns size of buffer on success.
2696  */
2697 int security_inode_getsecurity(struct mnt_idmap *idmap,
2698 			       struct inode *inode, const char *name,
2699 			       void **buffer, bool alloc)
2700 {
2701 	if (unlikely(IS_PRIVATE(inode)))
2702 		return LSM_RET_DEFAULT(inode_getsecurity);
2703 
2704 	return call_int_hook(inode_getsecurity, idmap, inode, name, buffer,
2705 			     alloc);
2706 }
2707 
2708 /**
2709  * security_inode_setsecurity() - Set the xattr security label of an inode
2710  * @inode: inode
2711  * @name: xattr name
2712  * @value: security label
2713  * @size: length of security label
2714  * @flags: flags
2715  *
2716  * Set the security label associated with @name for @inode from the extended
2717  * attribute value @value.  @size indicates the size of the @value in bytes.
2718  * @flags may be XATTR_CREATE, XATTR_REPLACE, or 0. Note that @name is the
2719  * remainder of the attribute name after the security. prefix has been removed.
2720  *
2721  * Return: Returns 0 on success.
2722  */
2723 int security_inode_setsecurity(struct inode *inode, const char *name,
2724 			       const void *value, size_t size, int flags)
2725 {
2726 	if (unlikely(IS_PRIVATE(inode)))
2727 		return LSM_RET_DEFAULT(inode_setsecurity);
2728 
2729 	return call_int_hook(inode_setsecurity, inode, name, value, size,
2730 			     flags);
2731 }
2732 
2733 /**
2734  * security_inode_listsecurity() - List the xattr security label names
2735  * @inode: inode
2736  * @buffer: buffer
2737  * @buffer_size: size of buffer
2738  *
2739  * Copy the extended attribute names for the security labels associated with
2740  * @inode into @buffer.  The maximum size of @buffer is specified by
2741  * @buffer_size.  @buffer may be NULL to request the size of the buffer
2742  * required.
2743  *
2744  * Return: Returns number of bytes used/required on success.
2745  */
2746 int security_inode_listsecurity(struct inode *inode,
2747 				char *buffer, size_t buffer_size)
2748 {
2749 	if (unlikely(IS_PRIVATE(inode)))
2750 		return 0;
2751 	return call_int_hook(inode_listsecurity, inode, buffer, buffer_size);
2752 }
2753 EXPORT_SYMBOL(security_inode_listsecurity);
2754 
2755 /**
2756  * security_inode_getsecid() - Get an inode's secid
2757  * @inode: inode
2758  * @secid: secid to return
2759  *
2760  * Get the secid associated with the node.  In case of failure, @secid will be
2761  * set to zero.
2762  */
2763 void security_inode_getsecid(struct inode *inode, u32 *secid)
2764 {
2765 	call_void_hook(inode_getsecid, inode, secid);
2766 }
2767 
2768 /**
2769  * security_inode_copy_up() - Create new creds for an overlayfs copy-up op
2770  * @src: union dentry of copy-up file
2771  * @new: newly created creds
2772  *
2773  * A file is about to be copied up from lower layer to upper layer of overlay
2774  * filesystem. Security module can prepare a set of new creds and modify as
2775  * need be and return new creds. Caller will switch to new creds temporarily to
2776  * create new file and release newly allocated creds.
2777  *
2778  * Return: Returns 0 on success or a negative error code on error.
2779  */
2780 int security_inode_copy_up(struct dentry *src, struct cred **new)
2781 {
2782 	return call_int_hook(inode_copy_up, src, new);
2783 }
2784 EXPORT_SYMBOL(security_inode_copy_up);
2785 
2786 /**
2787  * security_inode_copy_up_xattr() - Filter xattrs in an overlayfs copy-up op
2788  * @src: union dentry of copy-up file
2789  * @name: xattr name
2790  *
2791  * Filter the xattrs being copied up when a unioned file is copied up from a
2792  * lower layer to the union/overlay layer.   The caller is responsible for
2793  * reading and writing the xattrs, this hook is merely a filter.
2794  *
2795  * Return: Returns 0 to accept the xattr, -ECANCELED to discard the xattr,
2796  *         -EOPNOTSUPP if the security module does not know about attribute,
2797  *         or a negative error code to abort the copy up.
2798  */
2799 int security_inode_copy_up_xattr(struct dentry *src, const char *name)
2800 {
2801 	int rc;
2802 
2803 	rc = call_int_hook(inode_copy_up_xattr, src, name);
2804 	if (rc != LSM_RET_DEFAULT(inode_copy_up_xattr))
2805 		return rc;
2806 
2807 	return LSM_RET_DEFAULT(inode_copy_up_xattr);
2808 }
2809 EXPORT_SYMBOL(security_inode_copy_up_xattr);
2810 
2811 /**
2812  * security_inode_setintegrity() - Set the inode's integrity data
2813  * @inode: inode
2814  * @type: type of integrity, e.g. hash digest, signature, etc
2815  * @value: the integrity value
2816  * @size: size of the integrity value
2817  *
2818  * Register a verified integrity measurement of a inode with LSMs.
2819  * LSMs should free the previously saved data if @value is NULL.
2820  *
2821  * Return: Returns 0 on success, negative values on failure.
2822  */
2823 int security_inode_setintegrity(const struct inode *inode,
2824 				enum lsm_integrity_type type, const void *value,
2825 				size_t size)
2826 {
2827 	return call_int_hook(inode_setintegrity, inode, type, value, size);
2828 }
2829 EXPORT_SYMBOL(security_inode_setintegrity);
2830 
2831 /**
2832  * security_kernfs_init_security() - Init LSM context for a kernfs node
2833  * @kn_dir: parent kernfs node
2834  * @kn: the kernfs node to initialize
2835  *
2836  * Initialize the security context of a newly created kernfs node based on its
2837  * own and its parent's attributes.
2838  *
2839  * Return: Returns 0 if permission is granted.
2840  */
2841 int security_kernfs_init_security(struct kernfs_node *kn_dir,
2842 				  struct kernfs_node *kn)
2843 {
2844 	return call_int_hook(kernfs_init_security, kn_dir, kn);
2845 }
2846 
2847 /**
2848  * security_file_permission() - Check file permissions
2849  * @file: file
2850  * @mask: requested permissions
2851  *
2852  * Check file permissions before accessing an open file.  This hook is called
2853  * by various operations that read or write files.  A security module can use
2854  * this hook to perform additional checking on these operations, e.g. to
2855  * revalidate permissions on use to support privilege bracketing or policy
2856  * changes.  Notice that this hook is used when the actual read/write
2857  * operations are performed, whereas the inode_security_ops hook is called when
2858  * a file is opened (as well as many other operations).  Although this hook can
2859  * be used to revalidate permissions for various system call operations that
2860  * read or write files, it does not address the revalidation of permissions for
2861  * memory-mapped files.  Security modules must handle this separately if they
2862  * need such revalidation.
2863  *
2864  * Return: Returns 0 if permission is granted.
2865  */
2866 int security_file_permission(struct file *file, int mask)
2867 {
2868 	return call_int_hook(file_permission, file, mask);
2869 }
2870 
2871 /**
2872  * security_file_alloc() - Allocate and init a file's LSM blob
2873  * @file: the file
2874  *
2875  * Allocate and attach a security structure to the file->f_security field.  The
2876  * security field is initialized to NULL when the structure is first created.
2877  *
2878  * Return: Return 0 if the hook is successful and permission is granted.
2879  */
2880 int security_file_alloc(struct file *file)
2881 {
2882 	int rc = lsm_file_alloc(file);
2883 
2884 	if (rc)
2885 		return rc;
2886 	rc = call_int_hook(file_alloc_security, file);
2887 	if (unlikely(rc))
2888 		security_file_free(file);
2889 	return rc;
2890 }
2891 
2892 /**
2893  * security_file_release() - Perform actions before releasing the file ref
2894  * @file: the file
2895  *
2896  * Perform actions before releasing the last reference to a file.
2897  */
2898 void security_file_release(struct file *file)
2899 {
2900 	call_void_hook(file_release, file);
2901 }
2902 
2903 /**
2904  * security_file_free() - Free a file's LSM blob
2905  * @file: the file
2906  *
2907  * Deallocate and free any security structures stored in file->f_security.
2908  */
2909 void security_file_free(struct file *file)
2910 {
2911 	void *blob;
2912 
2913 	call_void_hook(file_free_security, file);
2914 
2915 	blob = file->f_security;
2916 	if (blob) {
2917 		file->f_security = NULL;
2918 		kmem_cache_free(lsm_file_cache, blob);
2919 	}
2920 }
2921 
2922 /**
2923  * security_file_ioctl() - Check if an ioctl is allowed
2924  * @file: associated file
2925  * @cmd: ioctl cmd
2926  * @arg: ioctl arguments
2927  *
2928  * Check permission for an ioctl operation on @file.  Note that @arg sometimes
2929  * represents a user space pointer; in other cases, it may be a simple integer
2930  * value.  When @arg represents a user space pointer, it should never be used
2931  * by the security module.
2932  *
2933  * Return: Returns 0 if permission is granted.
2934  */
2935 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2936 {
2937 	return call_int_hook(file_ioctl, file, cmd, arg);
2938 }
2939 EXPORT_SYMBOL_GPL(security_file_ioctl);
2940 
2941 /**
2942  * security_file_ioctl_compat() - Check if an ioctl is allowed in compat mode
2943  * @file: associated file
2944  * @cmd: ioctl cmd
2945  * @arg: ioctl arguments
2946  *
2947  * Compat version of security_file_ioctl() that correctly handles 32-bit
2948  * processes running on 64-bit kernels.
2949  *
2950  * Return: Returns 0 if permission is granted.
2951  */
2952 int security_file_ioctl_compat(struct file *file, unsigned int cmd,
2953 			       unsigned long arg)
2954 {
2955 	return call_int_hook(file_ioctl_compat, file, cmd, arg);
2956 }
2957 EXPORT_SYMBOL_GPL(security_file_ioctl_compat);
2958 
2959 static inline unsigned long mmap_prot(struct file *file, unsigned long prot)
2960 {
2961 	/*
2962 	 * Does we have PROT_READ and does the application expect
2963 	 * it to imply PROT_EXEC?  If not, nothing to talk about...
2964 	 */
2965 	if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ)
2966 		return prot;
2967 	if (!(current->personality & READ_IMPLIES_EXEC))
2968 		return prot;
2969 	/*
2970 	 * if that's an anonymous mapping, let it.
2971 	 */
2972 	if (!file)
2973 		return prot | PROT_EXEC;
2974 	/*
2975 	 * ditto if it's not on noexec mount, except that on !MMU we need
2976 	 * NOMMU_MAP_EXEC (== VM_MAYEXEC) in this case
2977 	 */
2978 	if (!path_noexec(&file->f_path)) {
2979 #ifndef CONFIG_MMU
2980 		if (file->f_op->mmap_capabilities) {
2981 			unsigned caps = file->f_op->mmap_capabilities(file);
2982 			if (!(caps & NOMMU_MAP_EXEC))
2983 				return prot;
2984 		}
2985 #endif
2986 		return prot | PROT_EXEC;
2987 	}
2988 	/* anything on noexec mount won't get PROT_EXEC */
2989 	return prot;
2990 }
2991 
2992 /**
2993  * security_mmap_file() - Check if mmap'ing a file is allowed
2994  * @file: file
2995  * @prot: protection applied by the kernel
2996  * @flags: flags
2997  *
2998  * Check permissions for a mmap operation.  The @file may be NULL, e.g. if
2999  * mapping anonymous memory.
3000  *
3001  * Return: Returns 0 if permission is granted.
3002  */
3003 int security_mmap_file(struct file *file, unsigned long prot,
3004 		       unsigned long flags)
3005 {
3006 	return call_int_hook(mmap_file, file, prot, mmap_prot(file, prot),
3007 			     flags);
3008 }
3009 
3010 /**
3011  * security_mmap_addr() - Check if mmap'ing an address is allowed
3012  * @addr: address
3013  *
3014  * Check permissions for a mmap operation at @addr.
3015  *
3016  * Return: Returns 0 if permission is granted.
3017  */
3018 int security_mmap_addr(unsigned long addr)
3019 {
3020 	return call_int_hook(mmap_addr, addr);
3021 }
3022 
3023 /**
3024  * security_file_mprotect() - Check if changing memory protections is allowed
3025  * @vma: memory region
3026  * @reqprot: application requested protection
3027  * @prot: protection applied by the kernel
3028  *
3029  * Check permissions before changing memory access permissions.
3030  *
3031  * Return: Returns 0 if permission is granted.
3032  */
3033 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
3034 			   unsigned long prot)
3035 {
3036 	return call_int_hook(file_mprotect, vma, reqprot, prot);
3037 }
3038 
3039 /**
3040  * security_file_lock() - Check if a file lock is allowed
3041  * @file: file
3042  * @cmd: lock operation (e.g. F_RDLCK, F_WRLCK)
3043  *
3044  * Check permission before performing file locking operations.  Note the hook
3045  * mediates both flock and fcntl style locks.
3046  *
3047  * Return: Returns 0 if permission is granted.
3048  */
3049 int security_file_lock(struct file *file, unsigned int cmd)
3050 {
3051 	return call_int_hook(file_lock, file, cmd);
3052 }
3053 
3054 /**
3055  * security_file_fcntl() - Check if fcntl() op is allowed
3056  * @file: file
3057  * @cmd: fcntl command
3058  * @arg: command argument
3059  *
3060  * Check permission before allowing the file operation specified by @cmd from
3061  * being performed on the file @file.  Note that @arg sometimes represents a
3062  * user space pointer; in other cases, it may be a simple integer value.  When
3063  * @arg represents a user space pointer, it should never be used by the
3064  * security module.
3065  *
3066  * Return: Returns 0 if permission is granted.
3067  */
3068 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
3069 {
3070 	return call_int_hook(file_fcntl, file, cmd, arg);
3071 }
3072 
3073 /**
3074  * security_file_set_fowner() - Set the file owner info in the LSM blob
3075  * @file: the file
3076  *
3077  * Save owner security information (typically from current->security) in
3078  * file->f_security for later use by the send_sigiotask hook.
3079  *
3080  * Return: Returns 0 on success.
3081  */
3082 void security_file_set_fowner(struct file *file)
3083 {
3084 	call_void_hook(file_set_fowner, file);
3085 }
3086 
3087 /**
3088  * security_file_send_sigiotask() - Check if sending SIGIO/SIGURG is allowed
3089  * @tsk: target task
3090  * @fown: signal sender
3091  * @sig: signal to be sent, SIGIO is sent if 0
3092  *
3093  * Check permission for the file owner @fown to send SIGIO or SIGURG to the
3094  * process @tsk.  Note that this hook is sometimes called from interrupt.  Note
3095  * that the fown_struct, @fown, is never outside the context of a struct file,
3096  * so the file structure (and associated security information) can always be
3097  * obtained: container_of(fown, struct file, f_owner).
3098  *
3099  * Return: Returns 0 if permission is granted.
3100  */
3101 int security_file_send_sigiotask(struct task_struct *tsk,
3102 				 struct fown_struct *fown, int sig)
3103 {
3104 	return call_int_hook(file_send_sigiotask, tsk, fown, sig);
3105 }
3106 
3107 /**
3108  * security_file_receive() - Check if receiving a file via IPC is allowed
3109  * @file: file being received
3110  *
3111  * This hook allows security modules to control the ability of a process to
3112  * receive an open file descriptor via socket IPC.
3113  *
3114  * Return: Returns 0 if permission is granted.
3115  */
3116 int security_file_receive(struct file *file)
3117 {
3118 	return call_int_hook(file_receive, file);
3119 }
3120 
3121 /**
3122  * security_file_open() - Save open() time state for late use by the LSM
3123  * @file:
3124  *
3125  * Save open-time permission checking state for later use upon file_permission,
3126  * and recheck access if anything has changed since inode_permission.
3127  *
3128  * Return: Returns 0 if permission is granted.
3129  */
3130 int security_file_open(struct file *file)
3131 {
3132 	int ret;
3133 
3134 	ret = call_int_hook(file_open, file);
3135 	if (ret)
3136 		return ret;
3137 
3138 	return fsnotify_open_perm(file);
3139 }
3140 
3141 /**
3142  * security_file_post_open() - Evaluate a file after it has been opened
3143  * @file: the file
3144  * @mask: access mask
3145  *
3146  * Evaluate an opened file and the access mask requested with open(). The hook
3147  * is useful for LSMs that require the file content to be available in order to
3148  * make decisions.
3149  *
3150  * Return: Returns 0 if permission is granted.
3151  */
3152 int security_file_post_open(struct file *file, int mask)
3153 {
3154 	return call_int_hook(file_post_open, file, mask);
3155 }
3156 EXPORT_SYMBOL_GPL(security_file_post_open);
3157 
3158 /**
3159  * security_file_truncate() - Check if truncating a file is allowed
3160  * @file: file
3161  *
3162  * Check permission before truncating a file, i.e. using ftruncate.  Note that
3163  * truncation permission may also be checked based on the path, using the
3164  * @path_truncate hook.
3165  *
3166  * Return: Returns 0 if permission is granted.
3167  */
3168 int security_file_truncate(struct file *file)
3169 {
3170 	return call_int_hook(file_truncate, file);
3171 }
3172 
3173 /**
3174  * security_task_alloc() - Allocate a task's LSM blob
3175  * @task: the task
3176  * @clone_flags: flags indicating what is being shared
3177  *
3178  * Handle allocation of task-related resources.
3179  *
3180  * Return: Returns a zero on success, negative values on failure.
3181  */
3182 int security_task_alloc(struct task_struct *task, unsigned long clone_flags)
3183 {
3184 	int rc = lsm_task_alloc(task);
3185 
3186 	if (rc)
3187 		return rc;
3188 	rc = call_int_hook(task_alloc, task, clone_flags);
3189 	if (unlikely(rc))
3190 		security_task_free(task);
3191 	return rc;
3192 }
3193 
3194 /**
3195  * security_task_free() - Free a task's LSM blob and related resources
3196  * @task: task
3197  *
3198  * Handle release of task-related resources.  Note that this can be called from
3199  * interrupt context.
3200  */
3201 void security_task_free(struct task_struct *task)
3202 {
3203 	call_void_hook(task_free, task);
3204 
3205 	kfree(task->security);
3206 	task->security = NULL;
3207 }
3208 
3209 /**
3210  * security_cred_alloc_blank() - Allocate the min memory to allow cred_transfer
3211  * @cred: credentials
3212  * @gfp: gfp flags
3213  *
3214  * Only allocate sufficient memory and attach to @cred such that
3215  * cred_transfer() will not get ENOMEM.
3216  *
3217  * Return: Returns 0 on success, negative values on failure.
3218  */
3219 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
3220 {
3221 	int rc = lsm_cred_alloc(cred, gfp);
3222 
3223 	if (rc)
3224 		return rc;
3225 
3226 	rc = call_int_hook(cred_alloc_blank, cred, gfp);
3227 	if (unlikely(rc))
3228 		security_cred_free(cred);
3229 	return rc;
3230 }
3231 
3232 /**
3233  * security_cred_free() - Free the cred's LSM blob and associated resources
3234  * @cred: credentials
3235  *
3236  * Deallocate and clear the cred->security field in a set of credentials.
3237  */
3238 void security_cred_free(struct cred *cred)
3239 {
3240 	/*
3241 	 * There is a failure case in prepare_creds() that
3242 	 * may result in a call here with ->security being NULL.
3243 	 */
3244 	if (unlikely(cred->security == NULL))
3245 		return;
3246 
3247 	call_void_hook(cred_free, cred);
3248 
3249 	kfree(cred->security);
3250 	cred->security = NULL;
3251 }
3252 
3253 /**
3254  * security_prepare_creds() - Prepare a new set of credentials
3255  * @new: new credentials
3256  * @old: original credentials
3257  * @gfp: gfp flags
3258  *
3259  * Prepare a new set of credentials by copying the data from the old set.
3260  *
3261  * Return: Returns 0 on success, negative values on failure.
3262  */
3263 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
3264 {
3265 	int rc = lsm_cred_alloc(new, gfp);
3266 
3267 	if (rc)
3268 		return rc;
3269 
3270 	rc = call_int_hook(cred_prepare, new, old, gfp);
3271 	if (unlikely(rc))
3272 		security_cred_free(new);
3273 	return rc;
3274 }
3275 
3276 /**
3277  * security_transfer_creds() - Transfer creds
3278  * @new: target credentials
3279  * @old: original credentials
3280  *
3281  * Transfer data from original creds to new creds.
3282  */
3283 void security_transfer_creds(struct cred *new, const struct cred *old)
3284 {
3285 	call_void_hook(cred_transfer, new, old);
3286 }
3287 
3288 /**
3289  * security_cred_getsecid() - Get the secid from a set of credentials
3290  * @c: credentials
3291  * @secid: secid value
3292  *
3293  * Retrieve the security identifier of the cred structure @c.  In case of
3294  * failure, @secid will be set to zero.
3295  */
3296 void security_cred_getsecid(const struct cred *c, u32 *secid)
3297 {
3298 	*secid = 0;
3299 	call_void_hook(cred_getsecid, c, secid);
3300 }
3301 EXPORT_SYMBOL(security_cred_getsecid);
3302 
3303 /**
3304  * security_kernel_act_as() - Set the kernel credentials to act as secid
3305  * @new: credentials
3306  * @secid: secid
3307  *
3308  * Set the credentials for a kernel service to act as (subjective context).
3309  * The current task must be the one that nominated @secid.
3310  *
3311  * Return: Returns 0 if successful.
3312  */
3313 int security_kernel_act_as(struct cred *new, u32 secid)
3314 {
3315 	return call_int_hook(kernel_act_as, new, secid);
3316 }
3317 
3318 /**
3319  * security_kernel_create_files_as() - Set file creation context using an inode
3320  * @new: target credentials
3321  * @inode: reference inode
3322  *
3323  * Set the file creation context in a set of credentials to be the same as the
3324  * objective context of the specified inode.  The current task must be the one
3325  * that nominated @inode.
3326  *
3327  * Return: Returns 0 if successful.
3328  */
3329 int security_kernel_create_files_as(struct cred *new, struct inode *inode)
3330 {
3331 	return call_int_hook(kernel_create_files_as, new, inode);
3332 }
3333 
3334 /**
3335  * security_kernel_module_request() - Check if loading a module is allowed
3336  * @kmod_name: module name
3337  *
3338  * Ability to trigger the kernel to automatically upcall to userspace for
3339  * userspace to load a kernel module with the given name.
3340  *
3341  * Return: Returns 0 if successful.
3342  */
3343 int security_kernel_module_request(char *kmod_name)
3344 {
3345 	return call_int_hook(kernel_module_request, kmod_name);
3346 }
3347 
3348 /**
3349  * security_kernel_read_file() - Read a file specified by userspace
3350  * @file: file
3351  * @id: file identifier
3352  * @contents: trust if security_kernel_post_read_file() will be called
3353  *
3354  * Read a file specified by userspace.
3355  *
3356  * Return: Returns 0 if permission is granted.
3357  */
3358 int security_kernel_read_file(struct file *file, enum kernel_read_file_id id,
3359 			      bool contents)
3360 {
3361 	return call_int_hook(kernel_read_file, file, id, contents);
3362 }
3363 EXPORT_SYMBOL_GPL(security_kernel_read_file);
3364 
3365 /**
3366  * security_kernel_post_read_file() - Read a file specified by userspace
3367  * @file: file
3368  * @buf: file contents
3369  * @size: size of file contents
3370  * @id: file identifier
3371  *
3372  * Read a file specified by userspace.  This must be paired with a prior call
3373  * to security_kernel_read_file() call that indicated this hook would also be
3374  * called, see security_kernel_read_file() for more information.
3375  *
3376  * Return: Returns 0 if permission is granted.
3377  */
3378 int security_kernel_post_read_file(struct file *file, char *buf, loff_t size,
3379 				   enum kernel_read_file_id id)
3380 {
3381 	return call_int_hook(kernel_post_read_file, file, buf, size, id);
3382 }
3383 EXPORT_SYMBOL_GPL(security_kernel_post_read_file);
3384 
3385 /**
3386  * security_kernel_load_data() - Load data provided by userspace
3387  * @id: data identifier
3388  * @contents: true if security_kernel_post_load_data() will be called
3389  *
3390  * Load data provided by userspace.
3391  *
3392  * Return: Returns 0 if permission is granted.
3393  */
3394 int security_kernel_load_data(enum kernel_load_data_id id, bool contents)
3395 {
3396 	return call_int_hook(kernel_load_data, id, contents);
3397 }
3398 EXPORT_SYMBOL_GPL(security_kernel_load_data);
3399 
3400 /**
3401  * security_kernel_post_load_data() - Load userspace data from a non-file source
3402  * @buf: data
3403  * @size: size of data
3404  * @id: data identifier
3405  * @description: text description of data, specific to the id value
3406  *
3407  * Load data provided by a non-file source (usually userspace buffer).  This
3408  * must be paired with a prior security_kernel_load_data() call that indicated
3409  * this hook would also be called, see security_kernel_load_data() for more
3410  * information.
3411  *
3412  * Return: Returns 0 if permission is granted.
3413  */
3414 int security_kernel_post_load_data(char *buf, loff_t size,
3415 				   enum kernel_load_data_id id,
3416 				   char *description)
3417 {
3418 	return call_int_hook(kernel_post_load_data, buf, size, id, description);
3419 }
3420 EXPORT_SYMBOL_GPL(security_kernel_post_load_data);
3421 
3422 /**
3423  * security_task_fix_setuid() - Update LSM with new user id attributes
3424  * @new: updated credentials
3425  * @old: credentials being replaced
3426  * @flags: LSM_SETID_* flag values
3427  *
3428  * Update the module's state after setting one or more of the user identity
3429  * attributes of the current process.  The @flags parameter indicates which of
3430  * the set*uid system calls invoked this hook.  If @new is the set of
3431  * credentials that will be installed.  Modifications should be made to this
3432  * rather than to @current->cred.
3433  *
3434  * Return: Returns 0 on success.
3435  */
3436 int security_task_fix_setuid(struct cred *new, const struct cred *old,
3437 			     int flags)
3438 {
3439 	return call_int_hook(task_fix_setuid, new, old, flags);
3440 }
3441 
3442 /**
3443  * security_task_fix_setgid() - Update LSM with new group id attributes
3444  * @new: updated credentials
3445  * @old: credentials being replaced
3446  * @flags: LSM_SETID_* flag value
3447  *
3448  * Update the module's state after setting one or more of the group identity
3449  * attributes of the current process.  The @flags parameter indicates which of
3450  * the set*gid system calls invoked this hook.  @new is the set of credentials
3451  * that will be installed.  Modifications should be made to this rather than to
3452  * @current->cred.
3453  *
3454  * Return: Returns 0 on success.
3455  */
3456 int security_task_fix_setgid(struct cred *new, const struct cred *old,
3457 			     int flags)
3458 {
3459 	return call_int_hook(task_fix_setgid, new, old, flags);
3460 }
3461 
3462 /**
3463  * security_task_fix_setgroups() - Update LSM with new supplementary groups
3464  * @new: updated credentials
3465  * @old: credentials being replaced
3466  *
3467  * Update the module's state after setting the supplementary group identity
3468  * attributes of the current process.  @new is the set of credentials that will
3469  * be installed.  Modifications should be made to this rather than to
3470  * @current->cred.
3471  *
3472  * Return: Returns 0 on success.
3473  */
3474 int security_task_fix_setgroups(struct cred *new, const struct cred *old)
3475 {
3476 	return call_int_hook(task_fix_setgroups, new, old);
3477 }
3478 
3479 /**
3480  * security_task_setpgid() - Check if setting the pgid is allowed
3481  * @p: task being modified
3482  * @pgid: new pgid
3483  *
3484  * Check permission before setting the process group identifier of the process
3485  * @p to @pgid.
3486  *
3487  * Return: Returns 0 if permission is granted.
3488  */
3489 int security_task_setpgid(struct task_struct *p, pid_t pgid)
3490 {
3491 	return call_int_hook(task_setpgid, p, pgid);
3492 }
3493 
3494 /**
3495  * security_task_getpgid() - Check if getting the pgid is allowed
3496  * @p: task
3497  *
3498  * Check permission before getting the process group identifier of the process
3499  * @p.
3500  *
3501  * Return: Returns 0 if permission is granted.
3502  */
3503 int security_task_getpgid(struct task_struct *p)
3504 {
3505 	return call_int_hook(task_getpgid, p);
3506 }
3507 
3508 /**
3509  * security_task_getsid() - Check if getting the session id is allowed
3510  * @p: task
3511  *
3512  * Check permission before getting the session identifier of the process @p.
3513  *
3514  * Return: Returns 0 if permission is granted.
3515  */
3516 int security_task_getsid(struct task_struct *p)
3517 {
3518 	return call_int_hook(task_getsid, p);
3519 }
3520 
3521 /**
3522  * security_current_getsecid_subj() - Get the current task's subjective secid
3523  * @secid: secid value
3524  *
3525  * Retrieve the subjective security identifier of the current task and return
3526  * it in @secid.  In case of failure, @secid will be set to zero.
3527  */
3528 void security_current_getsecid_subj(u32 *secid)
3529 {
3530 	*secid = 0;
3531 	call_void_hook(current_getsecid_subj, secid);
3532 }
3533 EXPORT_SYMBOL(security_current_getsecid_subj);
3534 
3535 /**
3536  * security_task_getsecid_obj() - Get a task's objective secid
3537  * @p: target task
3538  * @secid: secid value
3539  *
3540  * Retrieve the objective security identifier of the task_struct in @p and
3541  * return it in @secid. In case of failure, @secid will be set to zero.
3542  */
3543 void security_task_getsecid_obj(struct task_struct *p, u32 *secid)
3544 {
3545 	*secid = 0;
3546 	call_void_hook(task_getsecid_obj, p, secid);
3547 }
3548 EXPORT_SYMBOL(security_task_getsecid_obj);
3549 
3550 /**
3551  * security_task_setnice() - Check if setting a task's nice value is allowed
3552  * @p: target task
3553  * @nice: nice value
3554  *
3555  * Check permission before setting the nice value of @p to @nice.
3556  *
3557  * Return: Returns 0 if permission is granted.
3558  */
3559 int security_task_setnice(struct task_struct *p, int nice)
3560 {
3561 	return call_int_hook(task_setnice, p, nice);
3562 }
3563 
3564 /**
3565  * security_task_setioprio() - Check if setting a task's ioprio is allowed
3566  * @p: target task
3567  * @ioprio: ioprio value
3568  *
3569  * Check permission before setting the ioprio value of @p to @ioprio.
3570  *
3571  * Return: Returns 0 if permission is granted.
3572  */
3573 int security_task_setioprio(struct task_struct *p, int ioprio)
3574 {
3575 	return call_int_hook(task_setioprio, p, ioprio);
3576 }
3577 
3578 /**
3579  * security_task_getioprio() - Check if getting a task's ioprio is allowed
3580  * @p: task
3581  *
3582  * Check permission before getting the ioprio value of @p.
3583  *
3584  * Return: Returns 0 if permission is granted.
3585  */
3586 int security_task_getioprio(struct task_struct *p)
3587 {
3588 	return call_int_hook(task_getioprio, p);
3589 }
3590 
3591 /**
3592  * security_task_prlimit() - Check if get/setting resources limits is allowed
3593  * @cred: current task credentials
3594  * @tcred: target task credentials
3595  * @flags: LSM_PRLIMIT_* flag bits indicating a get/set/both
3596  *
3597  * Check permission before getting and/or setting the resource limits of
3598  * another task.
3599  *
3600  * Return: Returns 0 if permission is granted.
3601  */
3602 int security_task_prlimit(const struct cred *cred, const struct cred *tcred,
3603 			  unsigned int flags)
3604 {
3605 	return call_int_hook(task_prlimit, cred, tcred, flags);
3606 }
3607 
3608 /**
3609  * security_task_setrlimit() - Check if setting a new rlimit value is allowed
3610  * @p: target task's group leader
3611  * @resource: resource whose limit is being set
3612  * @new_rlim: new resource limit
3613  *
3614  * Check permission before setting the resource limits of process @p for
3615  * @resource to @new_rlim.  The old resource limit values can be examined by
3616  * dereferencing (p->signal->rlim + resource).
3617  *
3618  * Return: Returns 0 if permission is granted.
3619  */
3620 int security_task_setrlimit(struct task_struct *p, unsigned int resource,
3621 			    struct rlimit *new_rlim)
3622 {
3623 	return call_int_hook(task_setrlimit, p, resource, new_rlim);
3624 }
3625 
3626 /**
3627  * security_task_setscheduler() - Check if setting sched policy/param is allowed
3628  * @p: target task
3629  *
3630  * Check permission before setting scheduling policy and/or parameters of
3631  * process @p.
3632  *
3633  * Return: Returns 0 if permission is granted.
3634  */
3635 int security_task_setscheduler(struct task_struct *p)
3636 {
3637 	return call_int_hook(task_setscheduler, p);
3638 }
3639 
3640 /**
3641  * security_task_getscheduler() - Check if getting scheduling info is allowed
3642  * @p: target task
3643  *
3644  * Check permission before obtaining scheduling information for process @p.
3645  *
3646  * Return: Returns 0 if permission is granted.
3647  */
3648 int security_task_getscheduler(struct task_struct *p)
3649 {
3650 	return call_int_hook(task_getscheduler, p);
3651 }
3652 
3653 /**
3654  * security_task_movememory() - Check if moving memory is allowed
3655  * @p: task
3656  *
3657  * Check permission before moving memory owned by process @p.
3658  *
3659  * Return: Returns 0 if permission is granted.
3660  */
3661 int security_task_movememory(struct task_struct *p)
3662 {
3663 	return call_int_hook(task_movememory, p);
3664 }
3665 
3666 /**
3667  * security_task_kill() - Check if sending a signal is allowed
3668  * @p: target process
3669  * @info: signal information
3670  * @sig: signal value
3671  * @cred: credentials of the signal sender, NULL if @current
3672  *
3673  * Check permission before sending signal @sig to @p.  @info can be NULL, the
3674  * constant 1, or a pointer to a kernel_siginfo structure.  If @info is 1 or
3675  * SI_FROMKERNEL(info) is true, then the signal should be viewed as coming from
3676  * the kernel and should typically be permitted.  SIGIO signals are handled
3677  * separately by the send_sigiotask hook in file_security_ops.
3678  *
3679  * Return: Returns 0 if permission is granted.
3680  */
3681 int security_task_kill(struct task_struct *p, struct kernel_siginfo *info,
3682 		       int sig, const struct cred *cred)
3683 {
3684 	return call_int_hook(task_kill, p, info, sig, cred);
3685 }
3686 
3687 /**
3688  * security_task_prctl() - Check if a prctl op is allowed
3689  * @option: operation
3690  * @arg2: argument
3691  * @arg3: argument
3692  * @arg4: argument
3693  * @arg5: argument
3694  *
3695  * Check permission before performing a process control operation on the
3696  * current process.
3697  *
3698  * Return: Return -ENOSYS if no-one wanted to handle this op, any other value
3699  *         to cause prctl() to return immediately with that value.
3700  */
3701 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
3702 			unsigned long arg4, unsigned long arg5)
3703 {
3704 	int thisrc;
3705 	int rc = LSM_RET_DEFAULT(task_prctl);
3706 	struct lsm_static_call *scall;
3707 
3708 	lsm_for_each_hook(scall, task_prctl) {
3709 		thisrc = scall->hl->hook.task_prctl(option, arg2, arg3, arg4, arg5);
3710 		if (thisrc != LSM_RET_DEFAULT(task_prctl)) {
3711 			rc = thisrc;
3712 			if (thisrc != 0)
3713 				break;
3714 		}
3715 	}
3716 	return rc;
3717 }
3718 
3719 /**
3720  * security_task_to_inode() - Set the security attributes of a task's inode
3721  * @p: task
3722  * @inode: inode
3723  *
3724  * Set the security attributes for an inode based on an associated task's
3725  * security attributes, e.g. for /proc/pid inodes.
3726  */
3727 void security_task_to_inode(struct task_struct *p, struct inode *inode)
3728 {
3729 	call_void_hook(task_to_inode, p, inode);
3730 }
3731 
3732 /**
3733  * security_create_user_ns() - Check if creating a new userns is allowed
3734  * @cred: prepared creds
3735  *
3736  * Check permission prior to creating a new user namespace.
3737  *
3738  * Return: Returns 0 if successful, otherwise < 0 error code.
3739  */
3740 int security_create_user_ns(const struct cred *cred)
3741 {
3742 	return call_int_hook(userns_create, cred);
3743 }
3744 
3745 /**
3746  * security_ipc_permission() - Check if sysv ipc access is allowed
3747  * @ipcp: ipc permission structure
3748  * @flag: requested permissions
3749  *
3750  * Check permissions for access to IPC.
3751  *
3752  * Return: Returns 0 if permission is granted.
3753  */
3754 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
3755 {
3756 	return call_int_hook(ipc_permission, ipcp, flag);
3757 }
3758 
3759 /**
3760  * security_ipc_getsecid() - Get the sysv ipc object's secid
3761  * @ipcp: ipc permission structure
3762  * @secid: secid pointer
3763  *
3764  * Get the secid associated with the ipc object.  In case of failure, @secid
3765  * will be set to zero.
3766  */
3767 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
3768 {
3769 	*secid = 0;
3770 	call_void_hook(ipc_getsecid, ipcp, secid);
3771 }
3772 
3773 /**
3774  * security_msg_msg_alloc() - Allocate a sysv ipc message LSM blob
3775  * @msg: message structure
3776  *
3777  * Allocate and attach a security structure to the msg->security field.  The
3778  * security field is initialized to NULL when the structure is first created.
3779  *
3780  * Return: Return 0 if operation was successful and permission is granted.
3781  */
3782 int security_msg_msg_alloc(struct msg_msg *msg)
3783 {
3784 	int rc = lsm_msg_msg_alloc(msg);
3785 
3786 	if (unlikely(rc))
3787 		return rc;
3788 	rc = call_int_hook(msg_msg_alloc_security, msg);
3789 	if (unlikely(rc))
3790 		security_msg_msg_free(msg);
3791 	return rc;
3792 }
3793 
3794 /**
3795  * security_msg_msg_free() - Free a sysv ipc message LSM blob
3796  * @msg: message structure
3797  *
3798  * Deallocate the security structure for this message.
3799  */
3800 void security_msg_msg_free(struct msg_msg *msg)
3801 {
3802 	call_void_hook(msg_msg_free_security, msg);
3803 	kfree(msg->security);
3804 	msg->security = NULL;
3805 }
3806 
3807 /**
3808  * security_msg_queue_alloc() - Allocate a sysv ipc msg queue LSM blob
3809  * @msq: sysv ipc permission structure
3810  *
3811  * Allocate and attach a security structure to @msg. The security field is
3812  * initialized to NULL when the structure is first created.
3813  *
3814  * Return: Returns 0 if operation was successful and permission is granted.
3815  */
3816 int security_msg_queue_alloc(struct kern_ipc_perm *msq)
3817 {
3818 	int rc = lsm_ipc_alloc(msq);
3819 
3820 	if (unlikely(rc))
3821 		return rc;
3822 	rc = call_int_hook(msg_queue_alloc_security, msq);
3823 	if (unlikely(rc))
3824 		security_msg_queue_free(msq);
3825 	return rc;
3826 }
3827 
3828 /**
3829  * security_msg_queue_free() - Free a sysv ipc msg queue LSM blob
3830  * @msq: sysv ipc permission structure
3831  *
3832  * Deallocate security field @perm->security for the message queue.
3833  */
3834 void security_msg_queue_free(struct kern_ipc_perm *msq)
3835 {
3836 	call_void_hook(msg_queue_free_security, msq);
3837 	kfree(msq->security);
3838 	msq->security = NULL;
3839 }
3840 
3841 /**
3842  * security_msg_queue_associate() - Check if a msg queue operation is allowed
3843  * @msq: sysv ipc permission structure
3844  * @msqflg: operation flags
3845  *
3846  * Check permission when a message queue is requested through the msgget system
3847  * call. This hook is only called when returning the message queue identifier
3848  * for an existing message queue, not when a new message queue is created.
3849  *
3850  * Return: Return 0 if permission is granted.
3851  */
3852 int security_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
3853 {
3854 	return call_int_hook(msg_queue_associate, msq, msqflg);
3855 }
3856 
3857 /**
3858  * security_msg_queue_msgctl() - Check if a msg queue operation is allowed
3859  * @msq: sysv ipc permission structure
3860  * @cmd: operation
3861  *
3862  * Check permission when a message control operation specified by @cmd is to be
3863  * performed on the message queue with permissions.
3864  *
3865  * Return: Returns 0 if permission is granted.
3866  */
3867 int security_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
3868 {
3869 	return call_int_hook(msg_queue_msgctl, msq, cmd);
3870 }
3871 
3872 /**
3873  * security_msg_queue_msgsnd() - Check if sending a sysv ipc message is allowed
3874  * @msq: sysv ipc permission structure
3875  * @msg: message
3876  * @msqflg: operation flags
3877  *
3878  * Check permission before a message, @msg, is enqueued on the message queue
3879  * with permissions specified in @msq.
3880  *
3881  * Return: Returns 0 if permission is granted.
3882  */
3883 int security_msg_queue_msgsnd(struct kern_ipc_perm *msq,
3884 			      struct msg_msg *msg, int msqflg)
3885 {
3886 	return call_int_hook(msg_queue_msgsnd, msq, msg, msqflg);
3887 }
3888 
3889 /**
3890  * security_msg_queue_msgrcv() - Check if receiving a sysv ipc msg is allowed
3891  * @msq: sysv ipc permission structure
3892  * @msg: message
3893  * @target: target task
3894  * @type: type of message requested
3895  * @mode: operation flags
3896  *
3897  * Check permission before a message, @msg, is removed from the message	queue.
3898  * The @target task structure contains a pointer to the process that will be
3899  * receiving the message (not equal to the current process when inline receives
3900  * are being performed).
3901  *
3902  * Return: Returns 0 if permission is granted.
3903  */
3904 int security_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
3905 			      struct task_struct *target, long type, int mode)
3906 {
3907 	return call_int_hook(msg_queue_msgrcv, msq, msg, target, type, mode);
3908 }
3909 
3910 /**
3911  * security_shm_alloc() - Allocate a sysv shm LSM blob
3912  * @shp: sysv ipc permission structure
3913  *
3914  * Allocate and attach a security structure to the @shp security field.  The
3915  * security field is initialized to NULL when the structure is first created.
3916  *
3917  * Return: Returns 0 if operation was successful and permission is granted.
3918  */
3919 int security_shm_alloc(struct kern_ipc_perm *shp)
3920 {
3921 	int rc = lsm_ipc_alloc(shp);
3922 
3923 	if (unlikely(rc))
3924 		return rc;
3925 	rc = call_int_hook(shm_alloc_security, shp);
3926 	if (unlikely(rc))
3927 		security_shm_free(shp);
3928 	return rc;
3929 }
3930 
3931 /**
3932  * security_shm_free() - Free a sysv shm LSM blob
3933  * @shp: sysv ipc permission structure
3934  *
3935  * Deallocate the security structure @perm->security for the memory segment.
3936  */
3937 void security_shm_free(struct kern_ipc_perm *shp)
3938 {
3939 	call_void_hook(shm_free_security, shp);
3940 	kfree(shp->security);
3941 	shp->security = NULL;
3942 }
3943 
3944 /**
3945  * security_shm_associate() - Check if a sysv shm operation is allowed
3946  * @shp: sysv ipc permission structure
3947  * @shmflg: operation flags
3948  *
3949  * Check permission when a shared memory region is requested through the shmget
3950  * system call. This hook is only called when returning the shared memory
3951  * region identifier for an existing region, not when a new shared memory
3952  * region is created.
3953  *
3954  * Return: Returns 0 if permission is granted.
3955  */
3956 int security_shm_associate(struct kern_ipc_perm *shp, int shmflg)
3957 {
3958 	return call_int_hook(shm_associate, shp, shmflg);
3959 }
3960 
3961 /**
3962  * security_shm_shmctl() - Check if a sysv shm operation is allowed
3963  * @shp: sysv ipc permission structure
3964  * @cmd: operation
3965  *
3966  * Check permission when a shared memory control operation specified by @cmd is
3967  * to be performed on the shared memory region with permissions in @shp.
3968  *
3969  * Return: Return 0 if permission is granted.
3970  */
3971 int security_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
3972 {
3973 	return call_int_hook(shm_shmctl, shp, cmd);
3974 }
3975 
3976 /**
3977  * security_shm_shmat() - Check if a sysv shm attach operation is allowed
3978  * @shp: sysv ipc permission structure
3979  * @shmaddr: address of memory region to attach
3980  * @shmflg: operation flags
3981  *
3982  * Check permissions prior to allowing the shmat system call to attach the
3983  * shared memory segment with permissions @shp to the data segment of the
3984  * calling process. The attaching address is specified by @shmaddr.
3985  *
3986  * Return: Returns 0 if permission is granted.
3987  */
3988 int security_shm_shmat(struct kern_ipc_perm *shp,
3989 		       char __user *shmaddr, int shmflg)
3990 {
3991 	return call_int_hook(shm_shmat, shp, shmaddr, shmflg);
3992 }
3993 
3994 /**
3995  * security_sem_alloc() - Allocate a sysv semaphore LSM blob
3996  * @sma: sysv ipc permission structure
3997  *
3998  * Allocate and attach a security structure to the @sma security field. The
3999  * security field is initialized to NULL when the structure is first created.
4000  *
4001  * Return: Returns 0 if operation was successful and permission is granted.
4002  */
4003 int security_sem_alloc(struct kern_ipc_perm *sma)
4004 {
4005 	int rc = lsm_ipc_alloc(sma);
4006 
4007 	if (unlikely(rc))
4008 		return rc;
4009 	rc = call_int_hook(sem_alloc_security, sma);
4010 	if (unlikely(rc))
4011 		security_sem_free(sma);
4012 	return rc;
4013 }
4014 
4015 /**
4016  * security_sem_free() - Free a sysv semaphore LSM blob
4017  * @sma: sysv ipc permission structure
4018  *
4019  * Deallocate security structure @sma->security for the semaphore.
4020  */
4021 void security_sem_free(struct kern_ipc_perm *sma)
4022 {
4023 	call_void_hook(sem_free_security, sma);
4024 	kfree(sma->security);
4025 	sma->security = NULL;
4026 }
4027 
4028 /**
4029  * security_sem_associate() - Check if a sysv semaphore operation is allowed
4030  * @sma: sysv ipc permission structure
4031  * @semflg: operation flags
4032  *
4033  * Check permission when a semaphore is requested through the semget system
4034  * call. This hook is only called when returning the semaphore identifier for
4035  * an existing semaphore, not when a new one must be created.
4036  *
4037  * Return: Returns 0 if permission is granted.
4038  */
4039 int security_sem_associate(struct kern_ipc_perm *sma, int semflg)
4040 {
4041 	return call_int_hook(sem_associate, sma, semflg);
4042 }
4043 
4044 /**
4045  * security_sem_semctl() - Check if a sysv semaphore operation is allowed
4046  * @sma: sysv ipc permission structure
4047  * @cmd: operation
4048  *
4049  * Check permission when a semaphore operation specified by @cmd is to be
4050  * performed on the semaphore.
4051  *
4052  * Return: Returns 0 if permission is granted.
4053  */
4054 int security_sem_semctl(struct kern_ipc_perm *sma, int cmd)
4055 {
4056 	return call_int_hook(sem_semctl, sma, cmd);
4057 }
4058 
4059 /**
4060  * security_sem_semop() - Check if a sysv semaphore operation is allowed
4061  * @sma: sysv ipc permission structure
4062  * @sops: operations to perform
4063  * @nsops: number of operations
4064  * @alter: flag indicating changes will be made
4065  *
4066  * Check permissions before performing operations on members of the semaphore
4067  * set. If the @alter flag is nonzero, the semaphore set may be modified.
4068  *
4069  * Return: Returns 0 if permission is granted.
4070  */
4071 int security_sem_semop(struct kern_ipc_perm *sma, struct sembuf *sops,
4072 		       unsigned nsops, int alter)
4073 {
4074 	return call_int_hook(sem_semop, sma, sops, nsops, alter);
4075 }
4076 
4077 /**
4078  * security_d_instantiate() - Populate an inode's LSM state based on a dentry
4079  * @dentry: dentry
4080  * @inode: inode
4081  *
4082  * Fill in @inode security information for a @dentry if allowed.
4083  */
4084 void security_d_instantiate(struct dentry *dentry, struct inode *inode)
4085 {
4086 	if (unlikely(inode && IS_PRIVATE(inode)))
4087 		return;
4088 	call_void_hook(d_instantiate, dentry, inode);
4089 }
4090 EXPORT_SYMBOL(security_d_instantiate);
4091 
4092 /*
4093  * Please keep this in sync with it's counterpart in security/lsm_syscalls.c
4094  */
4095 
4096 /**
4097  * security_getselfattr - Read an LSM attribute of the current process.
4098  * @attr: which attribute to return
4099  * @uctx: the user-space destination for the information, or NULL
4100  * @size: pointer to the size of space available to receive the data
4101  * @flags: special handling options. LSM_FLAG_SINGLE indicates that only
4102  * attributes associated with the LSM identified in the passed @ctx be
4103  * reported.
4104  *
4105  * A NULL value for @uctx can be used to get both the number of attributes
4106  * and the size of the data.
4107  *
4108  * Returns the number of attributes found on success, negative value
4109  * on error. @size is reset to the total size of the data.
4110  * If @size is insufficient to contain the data -E2BIG is returned.
4111  */
4112 int security_getselfattr(unsigned int attr, struct lsm_ctx __user *uctx,
4113 			 u32 __user *size, u32 flags)
4114 {
4115 	struct lsm_static_call *scall;
4116 	struct lsm_ctx lctx = { .id = LSM_ID_UNDEF, };
4117 	u8 __user *base = (u8 __user *)uctx;
4118 	u32 entrysize;
4119 	u32 total = 0;
4120 	u32 left;
4121 	bool toobig = false;
4122 	bool single = false;
4123 	int count = 0;
4124 	int rc;
4125 
4126 	if (attr == LSM_ATTR_UNDEF)
4127 		return -EINVAL;
4128 	if (size == NULL)
4129 		return -EINVAL;
4130 	if (get_user(left, size))
4131 		return -EFAULT;
4132 
4133 	if (flags) {
4134 		/*
4135 		 * Only flag supported is LSM_FLAG_SINGLE
4136 		 */
4137 		if (flags != LSM_FLAG_SINGLE || !uctx)
4138 			return -EINVAL;
4139 		if (copy_from_user(&lctx, uctx, sizeof(lctx)))
4140 			return -EFAULT;
4141 		/*
4142 		 * If the LSM ID isn't specified it is an error.
4143 		 */
4144 		if (lctx.id == LSM_ID_UNDEF)
4145 			return -EINVAL;
4146 		single = true;
4147 	}
4148 
4149 	/*
4150 	 * In the usual case gather all the data from the LSMs.
4151 	 * In the single case only get the data from the LSM specified.
4152 	 */
4153 	lsm_for_each_hook(scall, getselfattr) {
4154 		if (single && lctx.id != scall->hl->lsmid->id)
4155 			continue;
4156 		entrysize = left;
4157 		if (base)
4158 			uctx = (struct lsm_ctx __user *)(base + total);
4159 		rc = scall->hl->hook.getselfattr(attr, uctx, &entrysize, flags);
4160 		if (rc == -EOPNOTSUPP) {
4161 			rc = 0;
4162 			continue;
4163 		}
4164 		if (rc == -E2BIG) {
4165 			rc = 0;
4166 			left = 0;
4167 			toobig = true;
4168 		} else if (rc < 0)
4169 			return rc;
4170 		else
4171 			left -= entrysize;
4172 
4173 		total += entrysize;
4174 		count += rc;
4175 		if (single)
4176 			break;
4177 	}
4178 	if (put_user(total, size))
4179 		return -EFAULT;
4180 	if (toobig)
4181 		return -E2BIG;
4182 	if (count == 0)
4183 		return LSM_RET_DEFAULT(getselfattr);
4184 	return count;
4185 }
4186 
4187 /*
4188  * Please keep this in sync with it's counterpart in security/lsm_syscalls.c
4189  */
4190 
4191 /**
4192  * security_setselfattr - Set an LSM attribute on the current process.
4193  * @attr: which attribute to set
4194  * @uctx: the user-space source for the information
4195  * @size: the size of the data
4196  * @flags: reserved for future use, must be 0
4197  *
4198  * Set an LSM attribute for the current process. The LSM, attribute
4199  * and new value are included in @uctx.
4200  *
4201  * Returns 0 on success, -EINVAL if the input is inconsistent, -EFAULT
4202  * if the user buffer is inaccessible, E2BIG if size is too big, or an
4203  * LSM specific failure.
4204  */
4205 int security_setselfattr(unsigned int attr, struct lsm_ctx __user *uctx,
4206 			 u32 size, u32 flags)
4207 {
4208 	struct lsm_static_call *scall;
4209 	struct lsm_ctx *lctx;
4210 	int rc = LSM_RET_DEFAULT(setselfattr);
4211 	u64 required_len;
4212 
4213 	if (flags)
4214 		return -EINVAL;
4215 	if (size < sizeof(*lctx))
4216 		return -EINVAL;
4217 	if (size > PAGE_SIZE)
4218 		return -E2BIG;
4219 
4220 	lctx = memdup_user(uctx, size);
4221 	if (IS_ERR(lctx))
4222 		return PTR_ERR(lctx);
4223 
4224 	if (size < lctx->len ||
4225 	    check_add_overflow(sizeof(*lctx), lctx->ctx_len, &required_len) ||
4226 	    lctx->len < required_len) {
4227 		rc = -EINVAL;
4228 		goto free_out;
4229 	}
4230 
4231 	lsm_for_each_hook(scall, setselfattr)
4232 		if ((scall->hl->lsmid->id) == lctx->id) {
4233 			rc = scall->hl->hook.setselfattr(attr, lctx, size, flags);
4234 			break;
4235 		}
4236 
4237 free_out:
4238 	kfree(lctx);
4239 	return rc;
4240 }
4241 
4242 /**
4243  * security_getprocattr() - Read an attribute for a task
4244  * @p: the task
4245  * @lsmid: LSM identification
4246  * @name: attribute name
4247  * @value: attribute value
4248  *
4249  * Read attribute @name for task @p and store it into @value if allowed.
4250  *
4251  * Return: Returns the length of @value on success, a negative value otherwise.
4252  */
4253 int security_getprocattr(struct task_struct *p, int lsmid, const char *name,
4254 			 char **value)
4255 {
4256 	struct lsm_static_call *scall;
4257 
4258 	lsm_for_each_hook(scall, getprocattr) {
4259 		if (lsmid != 0 && lsmid != scall->hl->lsmid->id)
4260 			continue;
4261 		return scall->hl->hook.getprocattr(p, name, value);
4262 	}
4263 	return LSM_RET_DEFAULT(getprocattr);
4264 }
4265 
4266 /**
4267  * security_setprocattr() - Set an attribute for a task
4268  * @lsmid: LSM identification
4269  * @name: attribute name
4270  * @value: attribute value
4271  * @size: attribute value size
4272  *
4273  * Write (set) the current task's attribute @name to @value, size @size if
4274  * allowed.
4275  *
4276  * Return: Returns bytes written on success, a negative value otherwise.
4277  */
4278 int security_setprocattr(int lsmid, const char *name, void *value, size_t size)
4279 {
4280 	struct lsm_static_call *scall;
4281 
4282 	lsm_for_each_hook(scall, setprocattr) {
4283 		if (lsmid != 0 && lsmid != scall->hl->lsmid->id)
4284 			continue;
4285 		return scall->hl->hook.setprocattr(name, value, size);
4286 	}
4287 	return LSM_RET_DEFAULT(setprocattr);
4288 }
4289 
4290 /**
4291  * security_netlink_send() - Save info and check if netlink sending is allowed
4292  * @sk: sending socket
4293  * @skb: netlink message
4294  *
4295  * Save security information for a netlink message so that permission checking
4296  * can be performed when the message is processed.  The security information
4297  * can be saved using the eff_cap field of the netlink_skb_parms structure.
4298  * Also may be used to provide fine grained control over message transmission.
4299  *
4300  * Return: Returns 0 if the information was successfully saved and message is
4301  *         allowed to be transmitted.
4302  */
4303 int security_netlink_send(struct sock *sk, struct sk_buff *skb)
4304 {
4305 	return call_int_hook(netlink_send, sk, skb);
4306 }
4307 
4308 /**
4309  * security_ismaclabel() - Check if the named attribute is a MAC label
4310  * @name: full extended attribute name
4311  *
4312  * Check if the extended attribute specified by @name represents a MAC label.
4313  *
4314  * Return: Returns 1 if name is a MAC attribute otherwise returns 0.
4315  */
4316 int security_ismaclabel(const char *name)
4317 {
4318 	return call_int_hook(ismaclabel, name);
4319 }
4320 EXPORT_SYMBOL(security_ismaclabel);
4321 
4322 /**
4323  * security_secid_to_secctx() - Convert a secid to a secctx
4324  * @secid: secid
4325  * @secdata: secctx
4326  * @seclen: secctx length
4327  *
4328  * Convert secid to security context.  If @secdata is NULL the length of the
4329  * result will be returned in @seclen, but no @secdata will be returned.  This
4330  * does mean that the length could change between calls to check the length and
4331  * the next call which actually allocates and returns the @secdata.
4332  *
4333  * Return: Return 0 on success, error on failure.
4334  */
4335 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
4336 {
4337 	return call_int_hook(secid_to_secctx, secid, secdata, seclen);
4338 }
4339 EXPORT_SYMBOL(security_secid_to_secctx);
4340 
4341 /**
4342  * security_secctx_to_secid() - Convert a secctx to a secid
4343  * @secdata: secctx
4344  * @seclen: length of secctx
4345  * @secid: secid
4346  *
4347  * Convert security context to secid.
4348  *
4349  * Return: Returns 0 on success, error on failure.
4350  */
4351 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
4352 {
4353 	*secid = 0;
4354 	return call_int_hook(secctx_to_secid, secdata, seclen, secid);
4355 }
4356 EXPORT_SYMBOL(security_secctx_to_secid);
4357 
4358 /**
4359  * security_release_secctx() - Free a secctx buffer
4360  * @secdata: secctx
4361  * @seclen: length of secctx
4362  *
4363  * Release the security context.
4364  */
4365 void security_release_secctx(char *secdata, u32 seclen)
4366 {
4367 	call_void_hook(release_secctx, secdata, seclen);
4368 }
4369 EXPORT_SYMBOL(security_release_secctx);
4370 
4371 /**
4372  * security_inode_invalidate_secctx() - Invalidate an inode's security label
4373  * @inode: inode
4374  *
4375  * Notify the security module that it must revalidate the security context of
4376  * an inode.
4377  */
4378 void security_inode_invalidate_secctx(struct inode *inode)
4379 {
4380 	call_void_hook(inode_invalidate_secctx, inode);
4381 }
4382 EXPORT_SYMBOL(security_inode_invalidate_secctx);
4383 
4384 /**
4385  * security_inode_notifysecctx() - Notify the LSM of an inode's security label
4386  * @inode: inode
4387  * @ctx: secctx
4388  * @ctxlen: length of secctx
4389  *
4390  * Notify the security module of what the security context of an inode should
4391  * be.  Initializes the incore security context managed by the security module
4392  * for this inode.  Example usage: NFS client invokes this hook to initialize
4393  * the security context in its incore inode to the value provided by the server
4394  * for the file when the server returned the file's attributes to the client.
4395  * Must be called with inode->i_mutex locked.
4396  *
4397  * Return: Returns 0 on success, error on failure.
4398  */
4399 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
4400 {
4401 	return call_int_hook(inode_notifysecctx, inode, ctx, ctxlen);
4402 }
4403 EXPORT_SYMBOL(security_inode_notifysecctx);
4404 
4405 /**
4406  * security_inode_setsecctx() - Change the security label of an inode
4407  * @dentry: inode
4408  * @ctx: secctx
4409  * @ctxlen: length of secctx
4410  *
4411  * Change the security context of an inode.  Updates the incore security
4412  * context managed by the security module and invokes the fs code as needed
4413  * (via __vfs_setxattr_noperm) to update any backing xattrs that represent the
4414  * context.  Example usage: NFS server invokes this hook to change the security
4415  * context in its incore inode and on the backing filesystem to a value
4416  * provided by the client on a SETATTR operation.  Must be called with
4417  * inode->i_mutex locked.
4418  *
4419  * Return: Returns 0 on success, error on failure.
4420  */
4421 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
4422 {
4423 	return call_int_hook(inode_setsecctx, dentry, ctx, ctxlen);
4424 }
4425 EXPORT_SYMBOL(security_inode_setsecctx);
4426 
4427 /**
4428  * security_inode_getsecctx() - Get the security label of an inode
4429  * @inode: inode
4430  * @ctx: secctx
4431  * @ctxlen: length of secctx
4432  *
4433  * On success, returns 0 and fills out @ctx and @ctxlen with the security
4434  * context for the given @inode.
4435  *
4436  * Return: Returns 0 on success, error on failure.
4437  */
4438 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
4439 {
4440 	return call_int_hook(inode_getsecctx, inode, ctx, ctxlen);
4441 }
4442 EXPORT_SYMBOL(security_inode_getsecctx);
4443 
4444 #ifdef CONFIG_WATCH_QUEUE
4445 /**
4446  * security_post_notification() - Check if a watch notification can be posted
4447  * @w_cred: credentials of the task that set the watch
4448  * @cred: credentials of the task which triggered the watch
4449  * @n: the notification
4450  *
4451  * Check to see if a watch notification can be posted to a particular queue.
4452  *
4453  * Return: Returns 0 if permission is granted.
4454  */
4455 int security_post_notification(const struct cred *w_cred,
4456 			       const struct cred *cred,
4457 			       struct watch_notification *n)
4458 {
4459 	return call_int_hook(post_notification, w_cred, cred, n);
4460 }
4461 #endif /* CONFIG_WATCH_QUEUE */
4462 
4463 #ifdef CONFIG_KEY_NOTIFICATIONS
4464 /**
4465  * security_watch_key() - Check if a task is allowed to watch for key events
4466  * @key: the key to watch
4467  *
4468  * Check to see if a process is allowed to watch for event notifications from
4469  * a key or keyring.
4470  *
4471  * Return: Returns 0 if permission is granted.
4472  */
4473 int security_watch_key(struct key *key)
4474 {
4475 	return call_int_hook(watch_key, key);
4476 }
4477 #endif /* CONFIG_KEY_NOTIFICATIONS */
4478 
4479 #ifdef CONFIG_SECURITY_NETWORK
4480 /**
4481  * security_unix_stream_connect() - Check if a AF_UNIX stream is allowed
4482  * @sock: originating sock
4483  * @other: peer sock
4484  * @newsk: new sock
4485  *
4486  * Check permissions before establishing a Unix domain stream connection
4487  * between @sock and @other.
4488  *
4489  * The @unix_stream_connect and @unix_may_send hooks were necessary because
4490  * Linux provides an alternative to the conventional file name space for Unix
4491  * domain sockets.  Whereas binding and connecting to sockets in the file name
4492  * space is mediated by the typical file permissions (and caught by the mknod
4493  * and permission hooks in inode_security_ops), binding and connecting to
4494  * sockets in the abstract name space is completely unmediated.  Sufficient
4495  * control of Unix domain sockets in the abstract name space isn't possible
4496  * using only the socket layer hooks, since we need to know the actual target
4497  * socket, which is not looked up until we are inside the af_unix code.
4498  *
4499  * Return: Returns 0 if permission is granted.
4500  */
4501 int security_unix_stream_connect(struct sock *sock, struct sock *other,
4502 				 struct sock *newsk)
4503 {
4504 	return call_int_hook(unix_stream_connect, sock, other, newsk);
4505 }
4506 EXPORT_SYMBOL(security_unix_stream_connect);
4507 
4508 /**
4509  * security_unix_may_send() - Check if AF_UNIX socket can send datagrams
4510  * @sock: originating sock
4511  * @other: peer sock
4512  *
4513  * Check permissions before connecting or sending datagrams from @sock to
4514  * @other.
4515  *
4516  * The @unix_stream_connect and @unix_may_send hooks were necessary because
4517  * Linux provides an alternative to the conventional file name space for Unix
4518  * domain sockets.  Whereas binding and connecting to sockets in the file name
4519  * space is mediated by the typical file permissions (and caught by the mknod
4520  * and permission hooks in inode_security_ops), binding and connecting to
4521  * sockets in the abstract name space is completely unmediated.  Sufficient
4522  * control of Unix domain sockets in the abstract name space isn't possible
4523  * using only the socket layer hooks, since we need to know the actual target
4524  * socket, which is not looked up until we are inside the af_unix code.
4525  *
4526  * Return: Returns 0 if permission is granted.
4527  */
4528 int security_unix_may_send(struct socket *sock,  struct socket *other)
4529 {
4530 	return call_int_hook(unix_may_send, sock, other);
4531 }
4532 EXPORT_SYMBOL(security_unix_may_send);
4533 
4534 /**
4535  * security_socket_create() - Check if creating a new socket is allowed
4536  * @family: protocol family
4537  * @type: communications type
4538  * @protocol: requested protocol
4539  * @kern: set to 1 if a kernel socket is requested
4540  *
4541  * Check permissions prior to creating a new socket.
4542  *
4543  * Return: Returns 0 if permission is granted.
4544  */
4545 int security_socket_create(int family, int type, int protocol, int kern)
4546 {
4547 	return call_int_hook(socket_create, family, type, protocol, kern);
4548 }
4549 
4550 /**
4551  * security_socket_post_create() - Initialize a newly created socket
4552  * @sock: socket
4553  * @family: protocol family
4554  * @type: communications type
4555  * @protocol: requested protocol
4556  * @kern: set to 1 if a kernel socket is requested
4557  *
4558  * This hook allows a module to update or allocate a per-socket security
4559  * structure. Note that the security field was not added directly to the socket
4560  * structure, but rather, the socket security information is stored in the
4561  * associated inode.  Typically, the inode alloc_security hook will allocate
4562  * and attach security information to SOCK_INODE(sock)->i_security.  This hook
4563  * may be used to update the SOCK_INODE(sock)->i_security field with additional
4564  * information that wasn't available when the inode was allocated.
4565  *
4566  * Return: Returns 0 if permission is granted.
4567  */
4568 int security_socket_post_create(struct socket *sock, int family,
4569 				int type, int protocol, int kern)
4570 {
4571 	return call_int_hook(socket_post_create, sock, family, type,
4572 			     protocol, kern);
4573 }
4574 
4575 /**
4576  * security_socket_socketpair() - Check if creating a socketpair is allowed
4577  * @socka: first socket
4578  * @sockb: second socket
4579  *
4580  * Check permissions before creating a fresh pair of sockets.
4581  *
4582  * Return: Returns 0 if permission is granted and the connection was
4583  *         established.
4584  */
4585 int security_socket_socketpair(struct socket *socka, struct socket *sockb)
4586 {
4587 	return call_int_hook(socket_socketpair, socka, sockb);
4588 }
4589 EXPORT_SYMBOL(security_socket_socketpair);
4590 
4591 /**
4592  * security_socket_bind() - Check if a socket bind operation is allowed
4593  * @sock: socket
4594  * @address: requested bind address
4595  * @addrlen: length of address
4596  *
4597  * Check permission before socket protocol layer bind operation is performed
4598  * and the socket @sock is bound to the address specified in the @address
4599  * parameter.
4600  *
4601  * Return: Returns 0 if permission is granted.
4602  */
4603 int security_socket_bind(struct socket *sock,
4604 			 struct sockaddr *address, int addrlen)
4605 {
4606 	return call_int_hook(socket_bind, sock, address, addrlen);
4607 }
4608 
4609 /**
4610  * security_socket_connect() - Check if a socket connect operation is allowed
4611  * @sock: socket
4612  * @address: address of remote connection point
4613  * @addrlen: length of address
4614  *
4615  * Check permission before socket protocol layer connect operation attempts to
4616  * connect socket @sock to a remote address, @address.
4617  *
4618  * Return: Returns 0 if permission is granted.
4619  */
4620 int security_socket_connect(struct socket *sock,
4621 			    struct sockaddr *address, int addrlen)
4622 {
4623 	return call_int_hook(socket_connect, sock, address, addrlen);
4624 }
4625 
4626 /**
4627  * security_socket_listen() - Check if a socket is allowed to listen
4628  * @sock: socket
4629  * @backlog: connection queue size
4630  *
4631  * Check permission before socket protocol layer listen operation.
4632  *
4633  * Return: Returns 0 if permission is granted.
4634  */
4635 int security_socket_listen(struct socket *sock, int backlog)
4636 {
4637 	return call_int_hook(socket_listen, sock, backlog);
4638 }
4639 
4640 /**
4641  * security_socket_accept() - Check if a socket is allowed to accept connections
4642  * @sock: listening socket
4643  * @newsock: newly creation connection socket
4644  *
4645  * Check permission before accepting a new connection.  Note that the new
4646  * socket, @newsock, has been created and some information copied to it, but
4647  * the accept operation has not actually been performed.
4648  *
4649  * Return: Returns 0 if permission is granted.
4650  */
4651 int security_socket_accept(struct socket *sock, struct socket *newsock)
4652 {
4653 	return call_int_hook(socket_accept, sock, newsock);
4654 }
4655 
4656 /**
4657  * security_socket_sendmsg() - Check if sending a message is allowed
4658  * @sock: sending socket
4659  * @msg: message to send
4660  * @size: size of message
4661  *
4662  * Check permission before transmitting a message to another socket.
4663  *
4664  * Return: Returns 0 if permission is granted.
4665  */
4666 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
4667 {
4668 	return call_int_hook(socket_sendmsg, sock, msg, size);
4669 }
4670 
4671 /**
4672  * security_socket_recvmsg() - Check if receiving a message is allowed
4673  * @sock: receiving socket
4674  * @msg: message to receive
4675  * @size: size of message
4676  * @flags: operational flags
4677  *
4678  * Check permission before receiving a message from a socket.
4679  *
4680  * Return: Returns 0 if permission is granted.
4681  */
4682 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
4683 			    int size, int flags)
4684 {
4685 	return call_int_hook(socket_recvmsg, sock, msg, size, flags);
4686 }
4687 
4688 /**
4689  * security_socket_getsockname() - Check if reading the socket addr is allowed
4690  * @sock: socket
4691  *
4692  * Check permission before reading the local address (name) of the socket
4693  * object.
4694  *
4695  * Return: Returns 0 if permission is granted.
4696  */
4697 int security_socket_getsockname(struct socket *sock)
4698 {
4699 	return call_int_hook(socket_getsockname, sock);
4700 }
4701 
4702 /**
4703  * security_socket_getpeername() - Check if reading the peer's addr is allowed
4704  * @sock: socket
4705  *
4706  * Check permission before the remote address (name) of a socket object.
4707  *
4708  * Return: Returns 0 if permission is granted.
4709  */
4710 int security_socket_getpeername(struct socket *sock)
4711 {
4712 	return call_int_hook(socket_getpeername, sock);
4713 }
4714 
4715 /**
4716  * security_socket_getsockopt() - Check if reading a socket option is allowed
4717  * @sock: socket
4718  * @level: option's protocol level
4719  * @optname: option name
4720  *
4721  * Check permissions before retrieving the options associated with socket
4722  * @sock.
4723  *
4724  * Return: Returns 0 if permission is granted.
4725  */
4726 int security_socket_getsockopt(struct socket *sock, int level, int optname)
4727 {
4728 	return call_int_hook(socket_getsockopt, sock, level, optname);
4729 }
4730 
4731 /**
4732  * security_socket_setsockopt() - Check if setting a socket option is allowed
4733  * @sock: socket
4734  * @level: option's protocol level
4735  * @optname: option name
4736  *
4737  * Check permissions before setting the options associated with socket @sock.
4738  *
4739  * Return: Returns 0 if permission is granted.
4740  */
4741 int security_socket_setsockopt(struct socket *sock, int level, int optname)
4742 {
4743 	return call_int_hook(socket_setsockopt, sock, level, optname);
4744 }
4745 
4746 /**
4747  * security_socket_shutdown() - Checks if shutting down the socket is allowed
4748  * @sock: socket
4749  * @how: flag indicating how sends and receives are handled
4750  *
4751  * Checks permission before all or part of a connection on the socket @sock is
4752  * shut down.
4753  *
4754  * Return: Returns 0 if permission is granted.
4755  */
4756 int security_socket_shutdown(struct socket *sock, int how)
4757 {
4758 	return call_int_hook(socket_shutdown, sock, how);
4759 }
4760 
4761 /**
4762  * security_sock_rcv_skb() - Check if an incoming network packet is allowed
4763  * @sk: destination sock
4764  * @skb: incoming packet
4765  *
4766  * Check permissions on incoming network packets.  This hook is distinct from
4767  * Netfilter's IP input hooks since it is the first time that the incoming
4768  * sk_buff @skb has been associated with a particular socket, @sk.  Must not
4769  * sleep inside this hook because some callers hold spinlocks.
4770  *
4771  * Return: Returns 0 if permission is granted.
4772  */
4773 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4774 {
4775 	return call_int_hook(socket_sock_rcv_skb, sk, skb);
4776 }
4777 EXPORT_SYMBOL(security_sock_rcv_skb);
4778 
4779 /**
4780  * security_socket_getpeersec_stream() - Get the remote peer label
4781  * @sock: socket
4782  * @optval: destination buffer
4783  * @optlen: size of peer label copied into the buffer
4784  * @len: maximum size of the destination buffer
4785  *
4786  * This hook allows the security module to provide peer socket security state
4787  * for unix or connected tcp sockets to userspace via getsockopt SO_GETPEERSEC.
4788  * For tcp sockets this can be meaningful if the socket is associated with an
4789  * ipsec SA.
4790  *
4791  * Return: Returns 0 if all is well, otherwise, typical getsockopt return
4792  *         values.
4793  */
4794 int security_socket_getpeersec_stream(struct socket *sock, sockptr_t optval,
4795 				      sockptr_t optlen, unsigned int len)
4796 {
4797 	return call_int_hook(socket_getpeersec_stream, sock, optval, optlen,
4798 			     len);
4799 }
4800 
4801 /**
4802  * security_socket_getpeersec_dgram() - Get the remote peer label
4803  * @sock: socket
4804  * @skb: datagram packet
4805  * @secid: remote peer label secid
4806  *
4807  * This hook allows the security module to provide peer socket security state
4808  * for udp sockets on a per-packet basis to userspace via getsockopt
4809  * SO_GETPEERSEC. The application must first have indicated the IP_PASSSEC
4810  * option via getsockopt. It can then retrieve the security state returned by
4811  * this hook for a packet via the SCM_SECURITY ancillary message type.
4812  *
4813  * Return: Returns 0 on success, error on failure.
4814  */
4815 int security_socket_getpeersec_dgram(struct socket *sock,
4816 				     struct sk_buff *skb, u32 *secid)
4817 {
4818 	return call_int_hook(socket_getpeersec_dgram, sock, skb, secid);
4819 }
4820 EXPORT_SYMBOL(security_socket_getpeersec_dgram);
4821 
4822 /**
4823  * lsm_sock_alloc - allocate a composite sock blob
4824  * @sock: the sock that needs a blob
4825  * @gfp: allocation mode
4826  *
4827  * Allocate the sock blob for all the modules
4828  *
4829  * Returns 0, or -ENOMEM if memory can't be allocated.
4830  */
4831 static int lsm_sock_alloc(struct sock *sock, gfp_t gfp)
4832 {
4833 	return lsm_blob_alloc(&sock->sk_security, blob_sizes.lbs_sock, gfp);
4834 }
4835 
4836 /**
4837  * security_sk_alloc() - Allocate and initialize a sock's LSM blob
4838  * @sk: sock
4839  * @family: protocol family
4840  * @priority: gfp flags
4841  *
4842  * Allocate and attach a security structure to the sk->sk_security field, which
4843  * is used to copy security attributes between local stream sockets.
4844  *
4845  * Return: Returns 0 on success, error on failure.
4846  */
4847 int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
4848 {
4849 	int rc = lsm_sock_alloc(sk, priority);
4850 
4851 	if (unlikely(rc))
4852 		return rc;
4853 	rc = call_int_hook(sk_alloc_security, sk, family, priority);
4854 	if (unlikely(rc))
4855 		security_sk_free(sk);
4856 	return rc;
4857 }
4858 
4859 /**
4860  * security_sk_free() - Free the sock's LSM blob
4861  * @sk: sock
4862  *
4863  * Deallocate security structure.
4864  */
4865 void security_sk_free(struct sock *sk)
4866 {
4867 	call_void_hook(sk_free_security, sk);
4868 	kfree(sk->sk_security);
4869 	sk->sk_security = NULL;
4870 }
4871 
4872 /**
4873  * security_sk_clone() - Clone a sock's LSM state
4874  * @sk: original sock
4875  * @newsk: target sock
4876  *
4877  * Clone/copy security structure.
4878  */
4879 void security_sk_clone(const struct sock *sk, struct sock *newsk)
4880 {
4881 	call_void_hook(sk_clone_security, sk, newsk);
4882 }
4883 EXPORT_SYMBOL(security_sk_clone);
4884 
4885 /**
4886  * security_sk_classify_flow() - Set a flow's secid based on socket
4887  * @sk: original socket
4888  * @flic: target flow
4889  *
4890  * Set the target flow's secid to socket's secid.
4891  */
4892 void security_sk_classify_flow(const struct sock *sk, struct flowi_common *flic)
4893 {
4894 	call_void_hook(sk_getsecid, sk, &flic->flowic_secid);
4895 }
4896 EXPORT_SYMBOL(security_sk_classify_flow);
4897 
4898 /**
4899  * security_req_classify_flow() - Set a flow's secid based on request_sock
4900  * @req: request_sock
4901  * @flic: target flow
4902  *
4903  * Sets @flic's secid to @req's secid.
4904  */
4905 void security_req_classify_flow(const struct request_sock *req,
4906 				struct flowi_common *flic)
4907 {
4908 	call_void_hook(req_classify_flow, req, flic);
4909 }
4910 EXPORT_SYMBOL(security_req_classify_flow);
4911 
4912 /**
4913  * security_sock_graft() - Reconcile LSM state when grafting a sock on a socket
4914  * @sk: sock being grafted
4915  * @parent: target parent socket
4916  *
4917  * Sets @parent's inode secid to @sk's secid and update @sk with any necessary
4918  * LSM state from @parent.
4919  */
4920 void security_sock_graft(struct sock *sk, struct socket *parent)
4921 {
4922 	call_void_hook(sock_graft, sk, parent);
4923 }
4924 EXPORT_SYMBOL(security_sock_graft);
4925 
4926 /**
4927  * security_inet_conn_request() - Set request_sock state using incoming connect
4928  * @sk: parent listening sock
4929  * @skb: incoming connection
4930  * @req: new request_sock
4931  *
4932  * Initialize the @req LSM state based on @sk and the incoming connect in @skb.
4933  *
4934  * Return: Returns 0 if permission is granted.
4935  */
4936 int security_inet_conn_request(const struct sock *sk,
4937 			       struct sk_buff *skb, struct request_sock *req)
4938 {
4939 	return call_int_hook(inet_conn_request, sk, skb, req);
4940 }
4941 EXPORT_SYMBOL(security_inet_conn_request);
4942 
4943 /**
4944  * security_inet_csk_clone() - Set new sock LSM state based on request_sock
4945  * @newsk: new sock
4946  * @req: connection request_sock
4947  *
4948  * Set that LSM state of @sock using the LSM state from @req.
4949  */
4950 void security_inet_csk_clone(struct sock *newsk,
4951 			     const struct request_sock *req)
4952 {
4953 	call_void_hook(inet_csk_clone, newsk, req);
4954 }
4955 
4956 /**
4957  * security_inet_conn_established() - Update sock's LSM state with connection
4958  * @sk: sock
4959  * @skb: connection packet
4960  *
4961  * Update @sock's LSM state to represent a new connection from @skb.
4962  */
4963 void security_inet_conn_established(struct sock *sk,
4964 				    struct sk_buff *skb)
4965 {
4966 	call_void_hook(inet_conn_established, sk, skb);
4967 }
4968 EXPORT_SYMBOL(security_inet_conn_established);
4969 
4970 /**
4971  * security_secmark_relabel_packet() - Check if setting a secmark is allowed
4972  * @secid: new secmark value
4973  *
4974  * Check if the process should be allowed to relabel packets to @secid.
4975  *
4976  * Return: Returns 0 if permission is granted.
4977  */
4978 int security_secmark_relabel_packet(u32 secid)
4979 {
4980 	return call_int_hook(secmark_relabel_packet, secid);
4981 }
4982 EXPORT_SYMBOL(security_secmark_relabel_packet);
4983 
4984 /**
4985  * security_secmark_refcount_inc() - Increment the secmark labeling rule count
4986  *
4987  * Tells the LSM to increment the number of secmark labeling rules loaded.
4988  */
4989 void security_secmark_refcount_inc(void)
4990 {
4991 	call_void_hook(secmark_refcount_inc);
4992 }
4993 EXPORT_SYMBOL(security_secmark_refcount_inc);
4994 
4995 /**
4996  * security_secmark_refcount_dec() - Decrement the secmark labeling rule count
4997  *
4998  * Tells the LSM to decrement the number of secmark labeling rules loaded.
4999  */
5000 void security_secmark_refcount_dec(void)
5001 {
5002 	call_void_hook(secmark_refcount_dec);
5003 }
5004 EXPORT_SYMBOL(security_secmark_refcount_dec);
5005 
5006 /**
5007  * security_tun_dev_alloc_security() - Allocate a LSM blob for a TUN device
5008  * @security: pointer to the LSM blob
5009  *
5010  * This hook allows a module to allocate a security structure for a TUN	device,
5011  * returning the pointer in @security.
5012  *
5013  * Return: Returns a zero on success, negative values on failure.
5014  */
5015 int security_tun_dev_alloc_security(void **security)
5016 {
5017 	int rc;
5018 
5019 	rc = lsm_blob_alloc(security, blob_sizes.lbs_tun_dev, GFP_KERNEL);
5020 	if (rc)
5021 		return rc;
5022 
5023 	rc = call_int_hook(tun_dev_alloc_security, *security);
5024 	if (rc) {
5025 		kfree(*security);
5026 		*security = NULL;
5027 	}
5028 	return rc;
5029 }
5030 EXPORT_SYMBOL(security_tun_dev_alloc_security);
5031 
5032 /**
5033  * security_tun_dev_free_security() - Free a TUN device LSM blob
5034  * @security: LSM blob
5035  *
5036  * This hook allows a module to free the security structure for a TUN device.
5037  */
5038 void security_tun_dev_free_security(void *security)
5039 {
5040 	kfree(security);
5041 }
5042 EXPORT_SYMBOL(security_tun_dev_free_security);
5043 
5044 /**
5045  * security_tun_dev_create() - Check if creating a TUN device is allowed
5046  *
5047  * Check permissions prior to creating a new TUN device.
5048  *
5049  * Return: Returns 0 if permission is granted.
5050  */
5051 int security_tun_dev_create(void)
5052 {
5053 	return call_int_hook(tun_dev_create);
5054 }
5055 EXPORT_SYMBOL(security_tun_dev_create);
5056 
5057 /**
5058  * security_tun_dev_attach_queue() - Check if attaching a TUN queue is allowed
5059  * @security: TUN device LSM blob
5060  *
5061  * Check permissions prior to attaching to a TUN device queue.
5062  *
5063  * Return: Returns 0 if permission is granted.
5064  */
5065 int security_tun_dev_attach_queue(void *security)
5066 {
5067 	return call_int_hook(tun_dev_attach_queue, security);
5068 }
5069 EXPORT_SYMBOL(security_tun_dev_attach_queue);
5070 
5071 /**
5072  * security_tun_dev_attach() - Update TUN device LSM state on attach
5073  * @sk: associated sock
5074  * @security: TUN device LSM blob
5075  *
5076  * This hook can be used by the module to update any security state associated
5077  * with the TUN device's sock structure.
5078  *
5079  * Return: Returns 0 if permission is granted.
5080  */
5081 int security_tun_dev_attach(struct sock *sk, void *security)
5082 {
5083 	return call_int_hook(tun_dev_attach, sk, security);
5084 }
5085 EXPORT_SYMBOL(security_tun_dev_attach);
5086 
5087 /**
5088  * security_tun_dev_open() - Update TUN device LSM state on open
5089  * @security: TUN device LSM blob
5090  *
5091  * This hook can be used by the module to update any security state associated
5092  * with the TUN device's security structure.
5093  *
5094  * Return: Returns 0 if permission is granted.
5095  */
5096 int security_tun_dev_open(void *security)
5097 {
5098 	return call_int_hook(tun_dev_open, security);
5099 }
5100 EXPORT_SYMBOL(security_tun_dev_open);
5101 
5102 /**
5103  * security_sctp_assoc_request() - Update the LSM on a SCTP association req
5104  * @asoc: SCTP association
5105  * @skb: packet requesting the association
5106  *
5107  * Passes the @asoc and @chunk->skb of the association INIT packet to the LSM.
5108  *
5109  * Return: Returns 0 on success, error on failure.
5110  */
5111 int security_sctp_assoc_request(struct sctp_association *asoc,
5112 				struct sk_buff *skb)
5113 {
5114 	return call_int_hook(sctp_assoc_request, asoc, skb);
5115 }
5116 EXPORT_SYMBOL(security_sctp_assoc_request);
5117 
5118 /**
5119  * security_sctp_bind_connect() - Validate a list of addrs for a SCTP option
5120  * @sk: socket
5121  * @optname: SCTP option to validate
5122  * @address: list of IP addresses to validate
5123  * @addrlen: length of the address list
5124  *
5125  * Validiate permissions required for each address associated with sock	@sk.
5126  * Depending on @optname, the addresses will be treated as either a connect or
5127  * bind service. The @addrlen is calculated on each IPv4 and IPv6 address using
5128  * sizeof(struct sockaddr_in) or sizeof(struct sockaddr_in6).
5129  *
5130  * Return: Returns 0 on success, error on failure.
5131  */
5132 int security_sctp_bind_connect(struct sock *sk, int optname,
5133 			       struct sockaddr *address, int addrlen)
5134 {
5135 	return call_int_hook(sctp_bind_connect, sk, optname, address, addrlen);
5136 }
5137 EXPORT_SYMBOL(security_sctp_bind_connect);
5138 
5139 /**
5140  * security_sctp_sk_clone() - Clone a SCTP sock's LSM state
5141  * @asoc: SCTP association
5142  * @sk: original sock
5143  * @newsk: target sock
5144  *
5145  * Called whenever a new socket is created by accept(2) (i.e. a TCP style
5146  * socket) or when a socket is 'peeled off' e.g userspace calls
5147  * sctp_peeloff(3).
5148  */
5149 void security_sctp_sk_clone(struct sctp_association *asoc, struct sock *sk,
5150 			    struct sock *newsk)
5151 {
5152 	call_void_hook(sctp_sk_clone, asoc, sk, newsk);
5153 }
5154 EXPORT_SYMBOL(security_sctp_sk_clone);
5155 
5156 /**
5157  * security_sctp_assoc_established() - Update LSM state when assoc established
5158  * @asoc: SCTP association
5159  * @skb: packet establishing the association
5160  *
5161  * Passes the @asoc and @chunk->skb of the association COOKIE_ACK packet to the
5162  * security module.
5163  *
5164  * Return: Returns 0 if permission is granted.
5165  */
5166 int security_sctp_assoc_established(struct sctp_association *asoc,
5167 				    struct sk_buff *skb)
5168 {
5169 	return call_int_hook(sctp_assoc_established, asoc, skb);
5170 }
5171 EXPORT_SYMBOL(security_sctp_assoc_established);
5172 
5173 /**
5174  * security_mptcp_add_subflow() - Inherit the LSM label from the MPTCP socket
5175  * @sk: the owning MPTCP socket
5176  * @ssk: the new subflow
5177  *
5178  * Update the labeling for the given MPTCP subflow, to match the one of the
5179  * owning MPTCP socket. This hook has to be called after the socket creation and
5180  * initialization via the security_socket_create() and
5181  * security_socket_post_create() LSM hooks.
5182  *
5183  * Return: Returns 0 on success or a negative error code on failure.
5184  */
5185 int security_mptcp_add_subflow(struct sock *sk, struct sock *ssk)
5186 {
5187 	return call_int_hook(mptcp_add_subflow, sk, ssk);
5188 }
5189 
5190 #endif	/* CONFIG_SECURITY_NETWORK */
5191 
5192 #ifdef CONFIG_SECURITY_INFINIBAND
5193 /**
5194  * security_ib_pkey_access() - Check if access to an IB pkey is allowed
5195  * @sec: LSM blob
5196  * @subnet_prefix: subnet prefix of the port
5197  * @pkey: IB pkey
5198  *
5199  * Check permission to access a pkey when modifying a QP.
5200  *
5201  * Return: Returns 0 if permission is granted.
5202  */
5203 int security_ib_pkey_access(void *sec, u64 subnet_prefix, u16 pkey)
5204 {
5205 	return call_int_hook(ib_pkey_access, sec, subnet_prefix, pkey);
5206 }
5207 EXPORT_SYMBOL(security_ib_pkey_access);
5208 
5209 /**
5210  * security_ib_endport_manage_subnet() - Check if SMPs traffic is allowed
5211  * @sec: LSM blob
5212  * @dev_name: IB device name
5213  * @port_num: port number
5214  *
5215  * Check permissions to send and receive SMPs on a end port.
5216  *
5217  * Return: Returns 0 if permission is granted.
5218  */
5219 int security_ib_endport_manage_subnet(void *sec,
5220 				      const char *dev_name, u8 port_num)
5221 {
5222 	return call_int_hook(ib_endport_manage_subnet, sec, dev_name, port_num);
5223 }
5224 EXPORT_SYMBOL(security_ib_endport_manage_subnet);
5225 
5226 /**
5227  * security_ib_alloc_security() - Allocate an Infiniband LSM blob
5228  * @sec: LSM blob
5229  *
5230  * Allocate a security structure for Infiniband objects.
5231  *
5232  * Return: Returns 0 on success, non-zero on failure.
5233  */
5234 int security_ib_alloc_security(void **sec)
5235 {
5236 	int rc;
5237 
5238 	rc = lsm_blob_alloc(sec, blob_sizes.lbs_ib, GFP_KERNEL);
5239 	if (rc)
5240 		return rc;
5241 
5242 	rc = call_int_hook(ib_alloc_security, *sec);
5243 	if (rc) {
5244 		kfree(*sec);
5245 		*sec = NULL;
5246 	}
5247 	return rc;
5248 }
5249 EXPORT_SYMBOL(security_ib_alloc_security);
5250 
5251 /**
5252  * security_ib_free_security() - Free an Infiniband LSM blob
5253  * @sec: LSM blob
5254  *
5255  * Deallocate an Infiniband security structure.
5256  */
5257 void security_ib_free_security(void *sec)
5258 {
5259 	kfree(sec);
5260 }
5261 EXPORT_SYMBOL(security_ib_free_security);
5262 #endif	/* CONFIG_SECURITY_INFINIBAND */
5263 
5264 #ifdef CONFIG_SECURITY_NETWORK_XFRM
5265 /**
5266  * security_xfrm_policy_alloc() - Allocate a xfrm policy LSM blob
5267  * @ctxp: xfrm security context being added to the SPD
5268  * @sec_ctx: security label provided by userspace
5269  * @gfp: gfp flags
5270  *
5271  * Allocate a security structure to the xp->security field; the security field
5272  * is initialized to NULL when the xfrm_policy is allocated.
5273  *
5274  * Return:  Return 0 if operation was successful.
5275  */
5276 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp,
5277 			       struct xfrm_user_sec_ctx *sec_ctx,
5278 			       gfp_t gfp)
5279 {
5280 	return call_int_hook(xfrm_policy_alloc_security, ctxp, sec_ctx, gfp);
5281 }
5282 EXPORT_SYMBOL(security_xfrm_policy_alloc);
5283 
5284 /**
5285  * security_xfrm_policy_clone() - Clone xfrm policy LSM state
5286  * @old_ctx: xfrm security context
5287  * @new_ctxp: target xfrm security context
5288  *
5289  * Allocate a security structure in new_ctxp that contains the information from
5290  * the old_ctx structure.
5291  *
5292  * Return: Return 0 if operation was successful.
5293  */
5294 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
5295 			       struct xfrm_sec_ctx **new_ctxp)
5296 {
5297 	return call_int_hook(xfrm_policy_clone_security, old_ctx, new_ctxp);
5298 }
5299 
5300 /**
5301  * security_xfrm_policy_free() - Free a xfrm security context
5302  * @ctx: xfrm security context
5303  *
5304  * Free LSM resources associated with @ctx.
5305  */
5306 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
5307 {
5308 	call_void_hook(xfrm_policy_free_security, ctx);
5309 }
5310 EXPORT_SYMBOL(security_xfrm_policy_free);
5311 
5312 /**
5313  * security_xfrm_policy_delete() - Check if deleting a xfrm policy is allowed
5314  * @ctx: xfrm security context
5315  *
5316  * Authorize deletion of a SPD entry.
5317  *
5318  * Return: Returns 0 if permission is granted.
5319  */
5320 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
5321 {
5322 	return call_int_hook(xfrm_policy_delete_security, ctx);
5323 }
5324 
5325 /**
5326  * security_xfrm_state_alloc() - Allocate a xfrm state LSM blob
5327  * @x: xfrm state being added to the SAD
5328  * @sec_ctx: security label provided by userspace
5329  *
5330  * Allocate a security structure to the @x->security field; the security field
5331  * is initialized to NULL when the xfrm_state is allocated. Set the context to
5332  * correspond to @sec_ctx.
5333  *
5334  * Return: Return 0 if operation was successful.
5335  */
5336 int security_xfrm_state_alloc(struct xfrm_state *x,
5337 			      struct xfrm_user_sec_ctx *sec_ctx)
5338 {
5339 	return call_int_hook(xfrm_state_alloc, x, sec_ctx);
5340 }
5341 EXPORT_SYMBOL(security_xfrm_state_alloc);
5342 
5343 /**
5344  * security_xfrm_state_alloc_acquire() - Allocate a xfrm state LSM blob
5345  * @x: xfrm state being added to the SAD
5346  * @polsec: associated policy's security context
5347  * @secid: secid from the flow
5348  *
5349  * Allocate a security structure to the x->security field; the security field
5350  * is initialized to NULL when the xfrm_state is allocated.  Set the context to
5351  * correspond to secid.
5352  *
5353  * Return: Returns 0 if operation was successful.
5354  */
5355 int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
5356 				      struct xfrm_sec_ctx *polsec, u32 secid)
5357 {
5358 	return call_int_hook(xfrm_state_alloc_acquire, x, polsec, secid);
5359 }
5360 
5361 /**
5362  * security_xfrm_state_delete() - Check if deleting a xfrm state is allowed
5363  * @x: xfrm state
5364  *
5365  * Authorize deletion of x->security.
5366  *
5367  * Return: Returns 0 if permission is granted.
5368  */
5369 int security_xfrm_state_delete(struct xfrm_state *x)
5370 {
5371 	return call_int_hook(xfrm_state_delete_security, x);
5372 }
5373 EXPORT_SYMBOL(security_xfrm_state_delete);
5374 
5375 /**
5376  * security_xfrm_state_free() - Free a xfrm state
5377  * @x: xfrm state
5378  *
5379  * Deallocate x->security.
5380  */
5381 void security_xfrm_state_free(struct xfrm_state *x)
5382 {
5383 	call_void_hook(xfrm_state_free_security, x);
5384 }
5385 
5386 /**
5387  * security_xfrm_policy_lookup() - Check if using a xfrm policy is allowed
5388  * @ctx: target xfrm security context
5389  * @fl_secid: flow secid used to authorize access
5390  *
5391  * Check permission when a flow selects a xfrm_policy for processing XFRMs on a
5392  * packet.  The hook is called when selecting either a per-socket policy or a
5393  * generic xfrm policy.
5394  *
5395  * Return: Return 0 if permission is granted, -ESRCH otherwise, or -errno on
5396  *         other errors.
5397  */
5398 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid)
5399 {
5400 	return call_int_hook(xfrm_policy_lookup, ctx, fl_secid);
5401 }
5402 
5403 /**
5404  * security_xfrm_state_pol_flow_match() - Check for a xfrm match
5405  * @x: xfrm state to match
5406  * @xp: xfrm policy to check for a match
5407  * @flic: flow to check for a match.
5408  *
5409  * Check @xp and @flic for a match with @x.
5410  *
5411  * Return: Returns 1 if there is a match.
5412  */
5413 int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
5414 				       struct xfrm_policy *xp,
5415 				       const struct flowi_common *flic)
5416 {
5417 	struct lsm_static_call *scall;
5418 	int rc = LSM_RET_DEFAULT(xfrm_state_pol_flow_match);
5419 
5420 	/*
5421 	 * Since this function is expected to return 0 or 1, the judgment
5422 	 * becomes difficult if multiple LSMs supply this call. Fortunately,
5423 	 * we can use the first LSM's judgment because currently only SELinux
5424 	 * supplies this call.
5425 	 *
5426 	 * For speed optimization, we explicitly break the loop rather than
5427 	 * using the macro
5428 	 */
5429 	lsm_for_each_hook(scall, xfrm_state_pol_flow_match) {
5430 		rc = scall->hl->hook.xfrm_state_pol_flow_match(x, xp, flic);
5431 		break;
5432 	}
5433 	return rc;
5434 }
5435 
5436 /**
5437  * security_xfrm_decode_session() - Determine the xfrm secid for a packet
5438  * @skb: xfrm packet
5439  * @secid: secid
5440  *
5441  * Decode the packet in @skb and return the security label in @secid.
5442  *
5443  * Return: Return 0 if all xfrms used have the same secid.
5444  */
5445 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
5446 {
5447 	return call_int_hook(xfrm_decode_session, skb, secid, 1);
5448 }
5449 
5450 void security_skb_classify_flow(struct sk_buff *skb, struct flowi_common *flic)
5451 {
5452 	int rc = call_int_hook(xfrm_decode_session, skb, &flic->flowic_secid,
5453 			       0);
5454 
5455 	BUG_ON(rc);
5456 }
5457 EXPORT_SYMBOL(security_skb_classify_flow);
5458 #endif	/* CONFIG_SECURITY_NETWORK_XFRM */
5459 
5460 #ifdef CONFIG_KEYS
5461 /**
5462  * security_key_alloc() - Allocate and initialize a kernel key LSM blob
5463  * @key: key
5464  * @cred: credentials
5465  * @flags: allocation flags
5466  *
5467  * Permit allocation of a key and assign security data. Note that key does not
5468  * have a serial number assigned at this point.
5469  *
5470  * Return: Return 0 if permission is granted, -ve error otherwise.
5471  */
5472 int security_key_alloc(struct key *key, const struct cred *cred,
5473 		       unsigned long flags)
5474 {
5475 	int rc = lsm_key_alloc(key);
5476 
5477 	if (unlikely(rc))
5478 		return rc;
5479 	rc = call_int_hook(key_alloc, key, cred, flags);
5480 	if (unlikely(rc))
5481 		security_key_free(key);
5482 	return rc;
5483 }
5484 
5485 /**
5486  * security_key_free() - Free a kernel key LSM blob
5487  * @key: key
5488  *
5489  * Notification of destruction; free security data.
5490  */
5491 void security_key_free(struct key *key)
5492 {
5493 	kfree(key->security);
5494 	key->security = NULL;
5495 }
5496 
5497 /**
5498  * security_key_permission() - Check if a kernel key operation is allowed
5499  * @key_ref: key reference
5500  * @cred: credentials of actor requesting access
5501  * @need_perm: requested permissions
5502  *
5503  * See whether a specific operational right is granted to a process on a key.
5504  *
5505  * Return: Return 0 if permission is granted, -ve error otherwise.
5506  */
5507 int security_key_permission(key_ref_t key_ref, const struct cred *cred,
5508 			    enum key_need_perm need_perm)
5509 {
5510 	return call_int_hook(key_permission, key_ref, cred, need_perm);
5511 }
5512 
5513 /**
5514  * security_key_getsecurity() - Get the key's security label
5515  * @key: key
5516  * @buffer: security label buffer
5517  *
5518  * Get a textual representation of the security context attached to a key for
5519  * the purposes of honouring KEYCTL_GETSECURITY.  This function allocates the
5520  * storage for the NUL-terminated string and the caller should free it.
5521  *
5522  * Return: Returns the length of @buffer (including terminating NUL) or -ve if
5523  *         an error occurs.  May also return 0 (and a NULL buffer pointer) if
5524  *         there is no security label assigned to the key.
5525  */
5526 int security_key_getsecurity(struct key *key, char **buffer)
5527 {
5528 	*buffer = NULL;
5529 	return call_int_hook(key_getsecurity, key, buffer);
5530 }
5531 
5532 /**
5533  * security_key_post_create_or_update() - Notification of key create or update
5534  * @keyring: keyring to which the key is linked to
5535  * @key: created or updated key
5536  * @payload: data used to instantiate or update the key
5537  * @payload_len: length of payload
5538  * @flags: key flags
5539  * @create: flag indicating whether the key was created or updated
5540  *
5541  * Notify the caller of a key creation or update.
5542  */
5543 void security_key_post_create_or_update(struct key *keyring, struct key *key,
5544 					const void *payload, size_t payload_len,
5545 					unsigned long flags, bool create)
5546 {
5547 	call_void_hook(key_post_create_or_update, keyring, key, payload,
5548 		       payload_len, flags, create);
5549 }
5550 #endif	/* CONFIG_KEYS */
5551 
5552 #ifdef CONFIG_AUDIT
5553 /**
5554  * security_audit_rule_init() - Allocate and init an LSM audit rule struct
5555  * @field: audit action
5556  * @op: rule operator
5557  * @rulestr: rule context
5558  * @lsmrule: receive buffer for audit rule struct
5559  * @gfp: GFP flag used for kmalloc
5560  *
5561  * Allocate and initialize an LSM audit rule structure.
5562  *
5563  * Return: Return 0 if @lsmrule has been successfully set, -EINVAL in case of
5564  *         an invalid rule.
5565  */
5566 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule,
5567 			     gfp_t gfp)
5568 {
5569 	return call_int_hook(audit_rule_init, field, op, rulestr, lsmrule, gfp);
5570 }
5571 
5572 /**
5573  * security_audit_rule_known() - Check if an audit rule contains LSM fields
5574  * @krule: audit rule
5575  *
5576  * Specifies whether given @krule contains any fields related to the current
5577  * LSM.
5578  *
5579  * Return: Returns 1 in case of relation found, 0 otherwise.
5580  */
5581 int security_audit_rule_known(struct audit_krule *krule)
5582 {
5583 	return call_int_hook(audit_rule_known, krule);
5584 }
5585 
5586 /**
5587  * security_audit_rule_free() - Free an LSM audit rule struct
5588  * @lsmrule: audit rule struct
5589  *
5590  * Deallocate the LSM audit rule structure previously allocated by
5591  * audit_rule_init().
5592  */
5593 void security_audit_rule_free(void *lsmrule)
5594 {
5595 	call_void_hook(audit_rule_free, lsmrule);
5596 }
5597 
5598 /**
5599  * security_audit_rule_match() - Check if a label matches an audit rule
5600  * @secid: security label
5601  * @field: LSM audit field
5602  * @op: matching operator
5603  * @lsmrule: audit rule
5604  *
5605  * Determine if given @secid matches a rule previously approved by
5606  * security_audit_rule_known().
5607  *
5608  * Return: Returns 1 if secid matches the rule, 0 if it does not, -ERRNO on
5609  *         failure.
5610  */
5611 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule)
5612 {
5613 	return call_int_hook(audit_rule_match, secid, field, op, lsmrule);
5614 }
5615 #endif /* CONFIG_AUDIT */
5616 
5617 #ifdef CONFIG_BPF_SYSCALL
5618 /**
5619  * security_bpf() - Check if the bpf syscall operation is allowed
5620  * @cmd: command
5621  * @attr: bpf attribute
5622  * @size: size
5623  *
5624  * Do a initial check for all bpf syscalls after the attribute is copied into
5625  * the kernel. The actual security module can implement their own rules to
5626  * check the specific cmd they need.
5627  *
5628  * Return: Returns 0 if permission is granted.
5629  */
5630 int security_bpf(int cmd, union bpf_attr *attr, unsigned int size)
5631 {
5632 	return call_int_hook(bpf, cmd, attr, size);
5633 }
5634 
5635 /**
5636  * security_bpf_map() - Check if access to a bpf map is allowed
5637  * @map: bpf map
5638  * @fmode: mode
5639  *
5640  * Do a check when the kernel generates and returns a file descriptor for eBPF
5641  * maps.
5642  *
5643  * Return: Returns 0 if permission is granted.
5644  */
5645 int security_bpf_map(struct bpf_map *map, fmode_t fmode)
5646 {
5647 	return call_int_hook(bpf_map, map, fmode);
5648 }
5649 
5650 /**
5651  * security_bpf_prog() - Check if access to a bpf program is allowed
5652  * @prog: bpf program
5653  *
5654  * Do a check when the kernel generates and returns a file descriptor for eBPF
5655  * programs.
5656  *
5657  * Return: Returns 0 if permission is granted.
5658  */
5659 int security_bpf_prog(struct bpf_prog *prog)
5660 {
5661 	return call_int_hook(bpf_prog, prog);
5662 }
5663 
5664 /**
5665  * security_bpf_map_create() - Check if BPF map creation is allowed
5666  * @map: BPF map object
5667  * @attr: BPF syscall attributes used to create BPF map
5668  * @token: BPF token used to grant user access
5669  *
5670  * Do a check when the kernel creates a new BPF map. This is also the
5671  * point where LSM blob is allocated for LSMs that need them.
5672  *
5673  * Return: Returns 0 on success, error on failure.
5674  */
5675 int security_bpf_map_create(struct bpf_map *map, union bpf_attr *attr,
5676 			    struct bpf_token *token)
5677 {
5678 	return call_int_hook(bpf_map_create, map, attr, token);
5679 }
5680 
5681 /**
5682  * security_bpf_prog_load() - Check if loading of BPF program is allowed
5683  * @prog: BPF program object
5684  * @attr: BPF syscall attributes used to create BPF program
5685  * @token: BPF token used to grant user access to BPF subsystem
5686  *
5687  * Perform an access control check when the kernel loads a BPF program and
5688  * allocates associated BPF program object. This hook is also responsible for
5689  * allocating any required LSM state for the BPF program.
5690  *
5691  * Return: Returns 0 on success, error on failure.
5692  */
5693 int security_bpf_prog_load(struct bpf_prog *prog, union bpf_attr *attr,
5694 			   struct bpf_token *token)
5695 {
5696 	return call_int_hook(bpf_prog_load, prog, attr, token);
5697 }
5698 
5699 /**
5700  * security_bpf_token_create() - Check if creating of BPF token is allowed
5701  * @token: BPF token object
5702  * @attr: BPF syscall attributes used to create BPF token
5703  * @path: path pointing to BPF FS mount point from which BPF token is created
5704  *
5705  * Do a check when the kernel instantiates a new BPF token object from BPF FS
5706  * instance. This is also the point where LSM blob can be allocated for LSMs.
5707  *
5708  * Return: Returns 0 on success, error on failure.
5709  */
5710 int security_bpf_token_create(struct bpf_token *token, union bpf_attr *attr,
5711 			      struct path *path)
5712 {
5713 	return call_int_hook(bpf_token_create, token, attr, path);
5714 }
5715 
5716 /**
5717  * security_bpf_token_cmd() - Check if BPF token is allowed to delegate
5718  * requested BPF syscall command
5719  * @token: BPF token object
5720  * @cmd: BPF syscall command requested to be delegated by BPF token
5721  *
5722  * Do a check when the kernel decides whether provided BPF token should allow
5723  * delegation of requested BPF syscall command.
5724  *
5725  * Return: Returns 0 on success, error on failure.
5726  */
5727 int security_bpf_token_cmd(const struct bpf_token *token, enum bpf_cmd cmd)
5728 {
5729 	return call_int_hook(bpf_token_cmd, token, cmd);
5730 }
5731 
5732 /**
5733  * security_bpf_token_capable() - Check if BPF token is allowed to delegate
5734  * requested BPF-related capability
5735  * @token: BPF token object
5736  * @cap: capabilities requested to be delegated by BPF token
5737  *
5738  * Do a check when the kernel decides whether provided BPF token should allow
5739  * delegation of requested BPF-related capabilities.
5740  *
5741  * Return: Returns 0 on success, error on failure.
5742  */
5743 int security_bpf_token_capable(const struct bpf_token *token, int cap)
5744 {
5745 	return call_int_hook(bpf_token_capable, token, cap);
5746 }
5747 
5748 /**
5749  * security_bpf_map_free() - Free a bpf map's LSM blob
5750  * @map: bpf map
5751  *
5752  * Clean up the security information stored inside bpf map.
5753  */
5754 void security_bpf_map_free(struct bpf_map *map)
5755 {
5756 	call_void_hook(bpf_map_free, map);
5757 }
5758 
5759 /**
5760  * security_bpf_prog_free() - Free a BPF program's LSM blob
5761  * @prog: BPF program struct
5762  *
5763  * Clean up the security information stored inside BPF program.
5764  */
5765 void security_bpf_prog_free(struct bpf_prog *prog)
5766 {
5767 	call_void_hook(bpf_prog_free, prog);
5768 }
5769 
5770 /**
5771  * security_bpf_token_free() - Free a BPF token's LSM blob
5772  * @token: BPF token struct
5773  *
5774  * Clean up the security information stored inside BPF token.
5775  */
5776 void security_bpf_token_free(struct bpf_token *token)
5777 {
5778 	call_void_hook(bpf_token_free, token);
5779 }
5780 #endif /* CONFIG_BPF_SYSCALL */
5781 
5782 /**
5783  * security_locked_down() - Check if a kernel feature is allowed
5784  * @what: requested kernel feature
5785  *
5786  * Determine whether a kernel feature that potentially enables arbitrary code
5787  * execution in kernel space should be permitted.
5788  *
5789  * Return: Returns 0 if permission is granted.
5790  */
5791 int security_locked_down(enum lockdown_reason what)
5792 {
5793 	return call_int_hook(locked_down, what);
5794 }
5795 EXPORT_SYMBOL(security_locked_down);
5796 
5797 /**
5798  * security_bdev_alloc() - Allocate a block device LSM blob
5799  * @bdev: block device
5800  *
5801  * Allocate and attach a security structure to @bdev->bd_security.  The
5802  * security field is initialized to NULL when the bdev structure is
5803  * allocated.
5804  *
5805  * Return: Return 0 if operation was successful.
5806  */
5807 int security_bdev_alloc(struct block_device *bdev)
5808 {
5809 	int rc = 0;
5810 
5811 	rc = lsm_bdev_alloc(bdev);
5812 	if (unlikely(rc))
5813 		return rc;
5814 
5815 	rc = call_int_hook(bdev_alloc_security, bdev);
5816 	if (unlikely(rc))
5817 		security_bdev_free(bdev);
5818 
5819 	return rc;
5820 }
5821 EXPORT_SYMBOL(security_bdev_alloc);
5822 
5823 /**
5824  * security_bdev_free() - Free a block device's LSM blob
5825  * @bdev: block device
5826  *
5827  * Deallocate the bdev security structure and set @bdev->bd_security to NULL.
5828  */
5829 void security_bdev_free(struct block_device *bdev)
5830 {
5831 	if (!bdev->bd_security)
5832 		return;
5833 
5834 	call_void_hook(bdev_free_security, bdev);
5835 
5836 	kfree(bdev->bd_security);
5837 	bdev->bd_security = NULL;
5838 }
5839 EXPORT_SYMBOL(security_bdev_free);
5840 
5841 /**
5842  * security_bdev_setintegrity() - Set the device's integrity data
5843  * @bdev: block device
5844  * @type: type of integrity, e.g. hash digest, signature, etc
5845  * @value: the integrity value
5846  * @size: size of the integrity value
5847  *
5848  * Register a verified integrity measurement of a bdev with LSMs.
5849  * LSMs should free the previously saved data if @value is NULL.
5850  * Please note that the new hook should be invoked every time the security
5851  * information is updated to keep these data current. For example, in dm-verity,
5852  * if the mapping table is reloaded and configured to use a different dm-verity
5853  * target with a new roothash and signing information, the previously stored
5854  * data in the LSM blob will become obsolete. It is crucial to re-invoke the
5855  * hook to refresh these data and ensure they are up to date. This necessity
5856  * arises from the design of device-mapper, where a device-mapper device is
5857  * first created, and then targets are subsequently loaded into it. These
5858  * targets can be modified multiple times during the device's lifetime.
5859  * Therefore, while the LSM blob is allocated during the creation of the block
5860  * device, its actual contents are not initialized at this stage and can change
5861  * substantially over time. This includes alterations from data that the LSMs
5862  * 'trusts' to those they do not, making it essential to handle these changes
5863  * correctly. Failure to address this dynamic aspect could potentially allow
5864  * for bypassing LSM checks.
5865  *
5866  * Return: Returns 0 on success, negative values on failure.
5867  */
5868 int security_bdev_setintegrity(struct block_device *bdev,
5869 			       enum lsm_integrity_type type, const void *value,
5870 			       size_t size)
5871 {
5872 	return call_int_hook(bdev_setintegrity, bdev, type, value, size);
5873 }
5874 EXPORT_SYMBOL(security_bdev_setintegrity);
5875 
5876 #ifdef CONFIG_PERF_EVENTS
5877 /**
5878  * security_perf_event_open() - Check if a perf event open is allowed
5879  * @attr: perf event attribute
5880  * @type: type of event
5881  *
5882  * Check whether the @type of perf_event_open syscall is allowed.
5883  *
5884  * Return: Returns 0 if permission is granted.
5885  */
5886 int security_perf_event_open(struct perf_event_attr *attr, int type)
5887 {
5888 	return call_int_hook(perf_event_open, attr, type);
5889 }
5890 
5891 /**
5892  * security_perf_event_alloc() - Allocate a perf event LSM blob
5893  * @event: perf event
5894  *
5895  * Allocate and save perf_event security info.
5896  *
5897  * Return: Returns 0 on success, error on failure.
5898  */
5899 int security_perf_event_alloc(struct perf_event *event)
5900 {
5901 	int rc;
5902 
5903 	rc = lsm_blob_alloc(&event->security, blob_sizes.lbs_perf_event,
5904 			    GFP_KERNEL);
5905 	if (rc)
5906 		return rc;
5907 
5908 	rc = call_int_hook(perf_event_alloc, event);
5909 	if (rc) {
5910 		kfree(event->security);
5911 		event->security = NULL;
5912 	}
5913 	return rc;
5914 }
5915 
5916 /**
5917  * security_perf_event_free() - Free a perf event LSM blob
5918  * @event: perf event
5919  *
5920  * Release (free) perf_event security info.
5921  */
5922 void security_perf_event_free(struct perf_event *event)
5923 {
5924 	kfree(event->security);
5925 	event->security = NULL;
5926 }
5927 
5928 /**
5929  * security_perf_event_read() - Check if reading a perf event label is allowed
5930  * @event: perf event
5931  *
5932  * Read perf_event security info if allowed.
5933  *
5934  * Return: Returns 0 if permission is granted.
5935  */
5936 int security_perf_event_read(struct perf_event *event)
5937 {
5938 	return call_int_hook(perf_event_read, event);
5939 }
5940 
5941 /**
5942  * security_perf_event_write() - Check if writing a perf event label is allowed
5943  * @event: perf event
5944  *
5945  * Write perf_event security info if allowed.
5946  *
5947  * Return: Returns 0 if permission is granted.
5948  */
5949 int security_perf_event_write(struct perf_event *event)
5950 {
5951 	return call_int_hook(perf_event_write, event);
5952 }
5953 #endif /* CONFIG_PERF_EVENTS */
5954 
5955 #ifdef CONFIG_IO_URING
5956 /**
5957  * security_uring_override_creds() - Check if overriding creds is allowed
5958  * @new: new credentials
5959  *
5960  * Check if the current task, executing an io_uring operation, is allowed to
5961  * override it's credentials with @new.
5962  *
5963  * Return: Returns 0 if permission is granted.
5964  */
5965 int security_uring_override_creds(const struct cred *new)
5966 {
5967 	return call_int_hook(uring_override_creds, new);
5968 }
5969 
5970 /**
5971  * security_uring_sqpoll() - Check if IORING_SETUP_SQPOLL is allowed
5972  *
5973  * Check whether the current task is allowed to spawn a io_uring polling thread
5974  * (IORING_SETUP_SQPOLL).
5975  *
5976  * Return: Returns 0 if permission is granted.
5977  */
5978 int security_uring_sqpoll(void)
5979 {
5980 	return call_int_hook(uring_sqpoll);
5981 }
5982 
5983 /**
5984  * security_uring_cmd() - Check if a io_uring passthrough command is allowed
5985  * @ioucmd: command
5986  *
5987  * Check whether the file_operations uring_cmd is allowed to run.
5988  *
5989  * Return: Returns 0 if permission is granted.
5990  */
5991 int security_uring_cmd(struct io_uring_cmd *ioucmd)
5992 {
5993 	return call_int_hook(uring_cmd, ioucmd);
5994 }
5995 #endif /* CONFIG_IO_URING */
5996 
5997 /**
5998  * security_initramfs_populated() - Notify LSMs that initramfs has been loaded
5999  *
6000  * Tells the LSMs the initramfs has been unpacked into the rootfs.
6001  */
6002 void security_initramfs_populated(void)
6003 {
6004 	call_void_hook(initramfs_populated);
6005 }
6006