xref: /linux/security/security.c (revision ed3174d93c342b8b2eeba6bbd124707d55304a7b)
1 /*
2  * Security plug functions
3  *
4  * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
5  * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
6  * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
7  *
8  *	This program is free software; you can redistribute it and/or modify
9  *	it under the terms of the GNU General Public License as published by
10  *	the Free Software Foundation; either version 2 of the License, or
11  *	(at your option) any later version.
12  */
13 
14 #include <linux/capability.h>
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/kernel.h>
18 #include <linux/security.h>
19 
20 
21 /* things that live in dummy.c */
22 extern struct security_operations dummy_security_ops;
23 extern void security_fixup_ops(struct security_operations *ops);
24 
25 struct security_operations *security_ops;	/* Initialized to NULL */
26 
27 /* amount of vm to protect from userspace access */
28 unsigned long mmap_min_addr = CONFIG_SECURITY_DEFAULT_MMAP_MIN_ADDR;
29 
30 static inline int verify(struct security_operations *ops)
31 {
32 	/* verify the security_operations structure exists */
33 	if (!ops)
34 		return -EINVAL;
35 	security_fixup_ops(ops);
36 	return 0;
37 }
38 
39 static void __init do_security_initcalls(void)
40 {
41 	initcall_t *call;
42 	call = __security_initcall_start;
43 	while (call < __security_initcall_end) {
44 		(*call) ();
45 		call++;
46 	}
47 }
48 
49 /**
50  * security_init - initializes the security framework
51  *
52  * This should be called early in the kernel initialization sequence.
53  */
54 int __init security_init(void)
55 {
56 	printk(KERN_INFO "Security Framework initialized\n");
57 
58 	if (verify(&dummy_security_ops)) {
59 		printk(KERN_ERR "%s could not verify "
60 		       "dummy_security_ops structure.\n", __FUNCTION__);
61 		return -EIO;
62 	}
63 
64 	security_ops = &dummy_security_ops;
65 	do_security_initcalls();
66 
67 	return 0;
68 }
69 
70 /**
71  * register_security - registers a security framework with the kernel
72  * @ops: a pointer to the struct security_options that is to be registered
73  *
74  * This function is to allow a security module to register itself with the
75  * kernel security subsystem.  Some rudimentary checking is done on the @ops
76  * value passed to this function.
77  *
78  * If there is already a security module registered with the kernel,
79  * an error will be returned.  Otherwise 0 is returned on success.
80  */
81 int register_security(struct security_operations *ops)
82 {
83 	if (verify(ops)) {
84 		printk(KERN_DEBUG "%s could not verify "
85 		       "security_operations structure.\n", __FUNCTION__);
86 		return -EINVAL;
87 	}
88 
89 	if (security_ops != &dummy_security_ops)
90 		return -EAGAIN;
91 
92 	security_ops = ops;
93 
94 	return 0;
95 }
96 
97 /**
98  * mod_reg_security - allows security modules to be "stacked"
99  * @name: a pointer to a string with the name of the security_options to be registered
100  * @ops: a pointer to the struct security_options that is to be registered
101  *
102  * This function allows security modules to be stacked if the currently loaded
103  * security module allows this to happen.  It passes the @name and @ops to the
104  * register_security function of the currently loaded security module.
105  *
106  * The return value depends on the currently loaded security module, with 0 as
107  * success.
108  */
109 int mod_reg_security(const char *name, struct security_operations *ops)
110 {
111 	if (verify(ops)) {
112 		printk(KERN_INFO "%s could not verify "
113 		       "security operations.\n", __FUNCTION__);
114 		return -EINVAL;
115 	}
116 
117 	if (ops == security_ops) {
118 		printk(KERN_INFO "%s security operations "
119 		       "already registered.\n", __FUNCTION__);
120 		return -EINVAL;
121 	}
122 
123 	return security_ops->register_security(name, ops);
124 }
125 
126 /* Security operations */
127 
128 int security_ptrace(struct task_struct *parent, struct task_struct *child)
129 {
130 	return security_ops->ptrace(parent, child);
131 }
132 
133 int security_capget(struct task_struct *target,
134 		     kernel_cap_t *effective,
135 		     kernel_cap_t *inheritable,
136 		     kernel_cap_t *permitted)
137 {
138 	return security_ops->capget(target, effective, inheritable, permitted);
139 }
140 
141 int security_capset_check(struct task_struct *target,
142 			   kernel_cap_t *effective,
143 			   kernel_cap_t *inheritable,
144 			   kernel_cap_t *permitted)
145 {
146 	return security_ops->capset_check(target, effective, inheritable, permitted);
147 }
148 
149 void security_capset_set(struct task_struct *target,
150 			  kernel_cap_t *effective,
151 			  kernel_cap_t *inheritable,
152 			  kernel_cap_t *permitted)
153 {
154 	security_ops->capset_set(target, effective, inheritable, permitted);
155 }
156 
157 int security_capable(struct task_struct *tsk, int cap)
158 {
159 	return security_ops->capable(tsk, cap);
160 }
161 
162 int security_acct(struct file *file)
163 {
164 	return security_ops->acct(file);
165 }
166 
167 int security_sysctl(struct ctl_table *table, int op)
168 {
169 	return security_ops->sysctl(table, op);
170 }
171 
172 int security_quotactl(int cmds, int type, int id, struct super_block *sb)
173 {
174 	return security_ops->quotactl(cmds, type, id, sb);
175 }
176 
177 int security_quota_on(struct dentry *dentry)
178 {
179 	return security_ops->quota_on(dentry);
180 }
181 
182 int security_syslog(int type)
183 {
184 	return security_ops->syslog(type);
185 }
186 
187 int security_settime(struct timespec *ts, struct timezone *tz)
188 {
189 	return security_ops->settime(ts, tz);
190 }
191 
192 int security_vm_enough_memory(long pages)
193 {
194 	return security_ops->vm_enough_memory(current->mm, pages);
195 }
196 
197 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
198 {
199 	return security_ops->vm_enough_memory(mm, pages);
200 }
201 
202 int security_bprm_alloc(struct linux_binprm *bprm)
203 {
204 	return security_ops->bprm_alloc_security(bprm);
205 }
206 
207 void security_bprm_free(struct linux_binprm *bprm)
208 {
209 	security_ops->bprm_free_security(bprm);
210 }
211 
212 void security_bprm_apply_creds(struct linux_binprm *bprm, int unsafe)
213 {
214 	security_ops->bprm_apply_creds(bprm, unsafe);
215 }
216 
217 void security_bprm_post_apply_creds(struct linux_binprm *bprm)
218 {
219 	security_ops->bprm_post_apply_creds(bprm);
220 }
221 
222 int security_bprm_set(struct linux_binprm *bprm)
223 {
224 	return security_ops->bprm_set_security(bprm);
225 }
226 
227 int security_bprm_check(struct linux_binprm *bprm)
228 {
229 	return security_ops->bprm_check_security(bprm);
230 }
231 
232 int security_bprm_secureexec(struct linux_binprm *bprm)
233 {
234 	return security_ops->bprm_secureexec(bprm);
235 }
236 
237 int security_sb_alloc(struct super_block *sb)
238 {
239 	return security_ops->sb_alloc_security(sb);
240 }
241 
242 void security_sb_free(struct super_block *sb)
243 {
244 	security_ops->sb_free_security(sb);
245 }
246 
247 int security_sb_copy_data(struct file_system_type *type, void *orig, void *copy)
248 {
249 	return security_ops->sb_copy_data(type, orig, copy);
250 }
251 
252 int security_sb_kern_mount(struct super_block *sb, void *data)
253 {
254 	return security_ops->sb_kern_mount(sb, data);
255 }
256 
257 int security_sb_statfs(struct dentry *dentry)
258 {
259 	return security_ops->sb_statfs(dentry);
260 }
261 
262 int security_sb_mount(char *dev_name, struct nameidata *nd,
263                        char *type, unsigned long flags, void *data)
264 {
265 	return security_ops->sb_mount(dev_name, nd, type, flags, data);
266 }
267 
268 int security_sb_check_sb(struct vfsmount *mnt, struct nameidata *nd)
269 {
270 	return security_ops->sb_check_sb(mnt, nd);
271 }
272 
273 int security_sb_umount(struct vfsmount *mnt, int flags)
274 {
275 	return security_ops->sb_umount(mnt, flags);
276 }
277 
278 void security_sb_umount_close(struct vfsmount *mnt)
279 {
280 	security_ops->sb_umount_close(mnt);
281 }
282 
283 void security_sb_umount_busy(struct vfsmount *mnt)
284 {
285 	security_ops->sb_umount_busy(mnt);
286 }
287 
288 void security_sb_post_remount(struct vfsmount *mnt, unsigned long flags, void *data)
289 {
290 	security_ops->sb_post_remount(mnt, flags, data);
291 }
292 
293 void security_sb_post_addmount(struct vfsmount *mnt, struct nameidata *mountpoint_nd)
294 {
295 	security_ops->sb_post_addmount(mnt, mountpoint_nd);
296 }
297 
298 int security_sb_pivotroot(struct nameidata *old_nd, struct nameidata *new_nd)
299 {
300 	return security_ops->sb_pivotroot(old_nd, new_nd);
301 }
302 
303 void security_sb_post_pivotroot(struct nameidata *old_nd, struct nameidata *new_nd)
304 {
305 	security_ops->sb_post_pivotroot(old_nd, new_nd);
306 }
307 
308 int security_sb_get_mnt_opts(const struct super_block *sb,
309 			      char ***mount_options,
310 			      int **flags, int *num_opts)
311 {
312 	return security_ops->sb_get_mnt_opts(sb, mount_options, flags, num_opts);
313 }
314 
315 int security_sb_set_mnt_opts(struct super_block *sb,
316 			      char **mount_options,
317 			      int *flags, int num_opts)
318 {
319 	return security_ops->sb_set_mnt_opts(sb, mount_options, flags, num_opts);
320 }
321 
322 void security_sb_clone_mnt_opts(const struct super_block *oldsb,
323 				struct super_block *newsb)
324 {
325 	security_ops->sb_clone_mnt_opts(oldsb, newsb);
326 }
327 
328 int security_inode_alloc(struct inode *inode)
329 {
330 	inode->i_security = NULL;
331 	return security_ops->inode_alloc_security(inode);
332 }
333 
334 void security_inode_free(struct inode *inode)
335 {
336 	security_ops->inode_free_security(inode);
337 }
338 
339 int security_inode_init_security(struct inode *inode, struct inode *dir,
340 				  char **name, void **value, size_t *len)
341 {
342 	if (unlikely(IS_PRIVATE(inode)))
343 		return -EOPNOTSUPP;
344 	return security_ops->inode_init_security(inode, dir, name, value, len);
345 }
346 EXPORT_SYMBOL(security_inode_init_security);
347 
348 int security_inode_create(struct inode *dir, struct dentry *dentry, int mode)
349 {
350 	if (unlikely(IS_PRIVATE(dir)))
351 		return 0;
352 	return security_ops->inode_create(dir, dentry, mode);
353 }
354 
355 int security_inode_link(struct dentry *old_dentry, struct inode *dir,
356 			 struct dentry *new_dentry)
357 {
358 	if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
359 		return 0;
360 	return security_ops->inode_link(old_dentry, dir, new_dentry);
361 }
362 
363 int security_inode_unlink(struct inode *dir, struct dentry *dentry)
364 {
365 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
366 		return 0;
367 	return security_ops->inode_unlink(dir, dentry);
368 }
369 
370 int security_inode_symlink(struct inode *dir, struct dentry *dentry,
371 			    const char *old_name)
372 {
373 	if (unlikely(IS_PRIVATE(dir)))
374 		return 0;
375 	return security_ops->inode_symlink(dir, dentry, old_name);
376 }
377 
378 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, int mode)
379 {
380 	if (unlikely(IS_PRIVATE(dir)))
381 		return 0;
382 	return security_ops->inode_mkdir(dir, dentry, mode);
383 }
384 
385 int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
386 {
387 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
388 		return 0;
389 	return security_ops->inode_rmdir(dir, dentry);
390 }
391 
392 int security_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
393 {
394 	if (unlikely(IS_PRIVATE(dir)))
395 		return 0;
396 	return security_ops->inode_mknod(dir, dentry, mode, dev);
397 }
398 
399 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
400 			   struct inode *new_dir, struct dentry *new_dentry)
401 {
402         if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
403             (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
404 		return 0;
405 	return security_ops->inode_rename(old_dir, old_dentry,
406 					   new_dir, new_dentry);
407 }
408 
409 int security_inode_readlink(struct dentry *dentry)
410 {
411 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
412 		return 0;
413 	return security_ops->inode_readlink(dentry);
414 }
415 
416 int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd)
417 {
418 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
419 		return 0;
420 	return security_ops->inode_follow_link(dentry, nd);
421 }
422 
423 int security_inode_permission(struct inode *inode, int mask, struct nameidata *nd)
424 {
425 	if (unlikely(IS_PRIVATE(inode)))
426 		return 0;
427 	return security_ops->inode_permission(inode, mask, nd);
428 }
429 
430 int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
431 {
432 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
433 		return 0;
434 	return security_ops->inode_setattr(dentry, attr);
435 }
436 
437 int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
438 {
439 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
440 		return 0;
441 	return security_ops->inode_getattr(mnt, dentry);
442 }
443 
444 void security_inode_delete(struct inode *inode)
445 {
446 	if (unlikely(IS_PRIVATE(inode)))
447 		return;
448 	security_ops->inode_delete(inode);
449 }
450 
451 int security_inode_setxattr(struct dentry *dentry, char *name,
452 			     void *value, size_t size, int flags)
453 {
454 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
455 		return 0;
456 	return security_ops->inode_setxattr(dentry, name, value, size, flags);
457 }
458 
459 void security_inode_post_setxattr(struct dentry *dentry, char *name,
460 				   void *value, size_t size, int flags)
461 {
462 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
463 		return;
464 	security_ops->inode_post_setxattr(dentry, name, value, size, flags);
465 }
466 
467 int security_inode_getxattr(struct dentry *dentry, char *name)
468 {
469 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
470 		return 0;
471 	return security_ops->inode_getxattr(dentry, name);
472 }
473 
474 int security_inode_listxattr(struct dentry *dentry)
475 {
476 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
477 		return 0;
478 	return security_ops->inode_listxattr(dentry);
479 }
480 
481 int security_inode_removexattr(struct dentry *dentry, char *name)
482 {
483 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
484 		return 0;
485 	return security_ops->inode_removexattr(dentry, name);
486 }
487 
488 int security_inode_need_killpriv(struct dentry *dentry)
489 {
490 	return security_ops->inode_need_killpriv(dentry);
491 }
492 
493 int security_inode_killpriv(struct dentry *dentry)
494 {
495 	return security_ops->inode_killpriv(dentry);
496 }
497 
498 int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
499 {
500 	if (unlikely(IS_PRIVATE(inode)))
501 		return 0;
502 	return security_ops->inode_getsecurity(inode, name, buffer, alloc);
503 }
504 
505 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
506 {
507 	if (unlikely(IS_PRIVATE(inode)))
508 		return 0;
509 	return security_ops->inode_setsecurity(inode, name, value, size, flags);
510 }
511 
512 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
513 {
514 	if (unlikely(IS_PRIVATE(inode)))
515 		return 0;
516 	return security_ops->inode_listsecurity(inode, buffer, buffer_size);
517 }
518 
519 int security_file_permission(struct file *file, int mask)
520 {
521 	return security_ops->file_permission(file, mask);
522 }
523 
524 int security_file_alloc(struct file *file)
525 {
526 	return security_ops->file_alloc_security(file);
527 }
528 
529 void security_file_free(struct file *file)
530 {
531 	security_ops->file_free_security(file);
532 }
533 
534 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
535 {
536 	return security_ops->file_ioctl(file, cmd, arg);
537 }
538 
539 int security_file_mmap(struct file *file, unsigned long reqprot,
540 			unsigned long prot, unsigned long flags,
541 			unsigned long addr, unsigned long addr_only)
542 {
543 	return security_ops->file_mmap(file, reqprot, prot, flags, addr, addr_only);
544 }
545 
546 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
547 			    unsigned long prot)
548 {
549 	return security_ops->file_mprotect(vma, reqprot, prot);
550 }
551 
552 int security_file_lock(struct file *file, unsigned int cmd)
553 {
554 	return security_ops->file_lock(file, cmd);
555 }
556 
557 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
558 {
559 	return security_ops->file_fcntl(file, cmd, arg);
560 }
561 
562 int security_file_set_fowner(struct file *file)
563 {
564 	return security_ops->file_set_fowner(file);
565 }
566 
567 int security_file_send_sigiotask(struct task_struct *tsk,
568 				  struct fown_struct *fown, int sig)
569 {
570 	return security_ops->file_send_sigiotask(tsk, fown, sig);
571 }
572 
573 int security_file_receive(struct file *file)
574 {
575 	return security_ops->file_receive(file);
576 }
577 
578 int security_dentry_open(struct file *file)
579 {
580 	return security_ops->dentry_open(file);
581 }
582 
583 int security_task_create(unsigned long clone_flags)
584 {
585 	return security_ops->task_create(clone_flags);
586 }
587 
588 int security_task_alloc(struct task_struct *p)
589 {
590 	return security_ops->task_alloc_security(p);
591 }
592 
593 void security_task_free(struct task_struct *p)
594 {
595 	security_ops->task_free_security(p);
596 }
597 
598 int security_task_setuid(uid_t id0, uid_t id1, uid_t id2, int flags)
599 {
600 	return security_ops->task_setuid(id0, id1, id2, flags);
601 }
602 
603 int security_task_post_setuid(uid_t old_ruid, uid_t old_euid,
604 			       uid_t old_suid, int flags)
605 {
606 	return security_ops->task_post_setuid(old_ruid, old_euid, old_suid, flags);
607 }
608 
609 int security_task_setgid(gid_t id0, gid_t id1, gid_t id2, int flags)
610 {
611 	return security_ops->task_setgid(id0, id1, id2, flags);
612 }
613 
614 int security_task_setpgid(struct task_struct *p, pid_t pgid)
615 {
616 	return security_ops->task_setpgid(p, pgid);
617 }
618 
619 int security_task_getpgid(struct task_struct *p)
620 {
621 	return security_ops->task_getpgid(p);
622 }
623 
624 int security_task_getsid(struct task_struct *p)
625 {
626 	return security_ops->task_getsid(p);
627 }
628 
629 void security_task_getsecid(struct task_struct *p, u32 *secid)
630 {
631 	security_ops->task_getsecid(p, secid);
632 }
633 EXPORT_SYMBOL(security_task_getsecid);
634 
635 int security_task_setgroups(struct group_info *group_info)
636 {
637 	return security_ops->task_setgroups(group_info);
638 }
639 
640 int security_task_setnice(struct task_struct *p, int nice)
641 {
642 	return security_ops->task_setnice(p, nice);
643 }
644 
645 int security_task_setioprio(struct task_struct *p, int ioprio)
646 {
647 	return security_ops->task_setioprio(p, ioprio);
648 }
649 
650 int security_task_getioprio(struct task_struct *p)
651 {
652 	return security_ops->task_getioprio(p);
653 }
654 
655 int security_task_setrlimit(unsigned int resource, struct rlimit *new_rlim)
656 {
657 	return security_ops->task_setrlimit(resource, new_rlim);
658 }
659 
660 int security_task_setscheduler(struct task_struct *p,
661 				int policy, struct sched_param *lp)
662 {
663 	return security_ops->task_setscheduler(p, policy, lp);
664 }
665 
666 int security_task_getscheduler(struct task_struct *p)
667 {
668 	return security_ops->task_getscheduler(p);
669 }
670 
671 int security_task_movememory(struct task_struct *p)
672 {
673 	return security_ops->task_movememory(p);
674 }
675 
676 int security_task_kill(struct task_struct *p, struct siginfo *info,
677 			int sig, u32 secid)
678 {
679 	return security_ops->task_kill(p, info, sig, secid);
680 }
681 
682 int security_task_wait(struct task_struct *p)
683 {
684 	return security_ops->task_wait(p);
685 }
686 
687 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
688 			 unsigned long arg4, unsigned long arg5)
689 {
690 	return security_ops->task_prctl(option, arg2, arg3, arg4, arg5);
691 }
692 
693 void security_task_reparent_to_init(struct task_struct *p)
694 {
695 	security_ops->task_reparent_to_init(p);
696 }
697 
698 void security_task_to_inode(struct task_struct *p, struct inode *inode)
699 {
700 	security_ops->task_to_inode(p, inode);
701 }
702 
703 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
704 {
705 	return security_ops->ipc_permission(ipcp, flag);
706 }
707 
708 int security_msg_msg_alloc(struct msg_msg *msg)
709 {
710 	return security_ops->msg_msg_alloc_security(msg);
711 }
712 
713 void security_msg_msg_free(struct msg_msg *msg)
714 {
715 	security_ops->msg_msg_free_security(msg);
716 }
717 
718 int security_msg_queue_alloc(struct msg_queue *msq)
719 {
720 	return security_ops->msg_queue_alloc_security(msq);
721 }
722 
723 void security_msg_queue_free(struct msg_queue *msq)
724 {
725 	security_ops->msg_queue_free_security(msq);
726 }
727 
728 int security_msg_queue_associate(struct msg_queue *msq, int msqflg)
729 {
730 	return security_ops->msg_queue_associate(msq, msqflg);
731 }
732 
733 int security_msg_queue_msgctl(struct msg_queue *msq, int cmd)
734 {
735 	return security_ops->msg_queue_msgctl(msq, cmd);
736 }
737 
738 int security_msg_queue_msgsnd(struct msg_queue *msq,
739 			       struct msg_msg *msg, int msqflg)
740 {
741 	return security_ops->msg_queue_msgsnd(msq, msg, msqflg);
742 }
743 
744 int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
745 			       struct task_struct *target, long type, int mode)
746 {
747 	return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode);
748 }
749 
750 int security_shm_alloc(struct shmid_kernel *shp)
751 {
752 	return security_ops->shm_alloc_security(shp);
753 }
754 
755 void security_shm_free(struct shmid_kernel *shp)
756 {
757 	security_ops->shm_free_security(shp);
758 }
759 
760 int security_shm_associate(struct shmid_kernel *shp, int shmflg)
761 {
762 	return security_ops->shm_associate(shp, shmflg);
763 }
764 
765 int security_shm_shmctl(struct shmid_kernel *shp, int cmd)
766 {
767 	return security_ops->shm_shmctl(shp, cmd);
768 }
769 
770 int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg)
771 {
772 	return security_ops->shm_shmat(shp, shmaddr, shmflg);
773 }
774 
775 int security_sem_alloc(struct sem_array *sma)
776 {
777 	return security_ops->sem_alloc_security(sma);
778 }
779 
780 void security_sem_free(struct sem_array *sma)
781 {
782 	security_ops->sem_free_security(sma);
783 }
784 
785 int security_sem_associate(struct sem_array *sma, int semflg)
786 {
787 	return security_ops->sem_associate(sma, semflg);
788 }
789 
790 int security_sem_semctl(struct sem_array *sma, int cmd)
791 {
792 	return security_ops->sem_semctl(sma, cmd);
793 }
794 
795 int security_sem_semop(struct sem_array *sma, struct sembuf *sops,
796 			unsigned nsops, int alter)
797 {
798 	return security_ops->sem_semop(sma, sops, nsops, alter);
799 }
800 
801 void security_d_instantiate(struct dentry *dentry, struct inode *inode)
802 {
803 	if (unlikely(inode && IS_PRIVATE(inode)))
804 		return;
805 	security_ops->d_instantiate(dentry, inode);
806 }
807 EXPORT_SYMBOL(security_d_instantiate);
808 
809 int security_getprocattr(struct task_struct *p, char *name, char **value)
810 {
811 	return security_ops->getprocattr(p, name, value);
812 }
813 
814 int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
815 {
816 	return security_ops->setprocattr(p, name, value, size);
817 }
818 
819 int security_netlink_send(struct sock *sk, struct sk_buff *skb)
820 {
821 	return security_ops->netlink_send(sk, skb);
822 }
823 
824 int security_netlink_recv(struct sk_buff *skb, int cap)
825 {
826 	return security_ops->netlink_recv(skb, cap);
827 }
828 EXPORT_SYMBOL(security_netlink_recv);
829 
830 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
831 {
832 	return security_ops->secid_to_secctx(secid, secdata, seclen);
833 }
834 EXPORT_SYMBOL(security_secid_to_secctx);
835 
836 int security_secctx_to_secid(char *secdata, u32 seclen, u32 *secid)
837 {
838 	return security_ops->secctx_to_secid(secdata, seclen, secid);
839 }
840 EXPORT_SYMBOL(security_secctx_to_secid);
841 
842 void security_release_secctx(char *secdata, u32 seclen)
843 {
844 	return security_ops->release_secctx(secdata, seclen);
845 }
846 EXPORT_SYMBOL(security_release_secctx);
847 
848 #ifdef CONFIG_SECURITY_NETWORK
849 
850 int security_unix_stream_connect(struct socket *sock, struct socket *other,
851 				 struct sock *newsk)
852 {
853 	return security_ops->unix_stream_connect(sock, other, newsk);
854 }
855 EXPORT_SYMBOL(security_unix_stream_connect);
856 
857 int security_unix_may_send(struct socket *sock,  struct socket *other)
858 {
859 	return security_ops->unix_may_send(sock, other);
860 }
861 EXPORT_SYMBOL(security_unix_may_send);
862 
863 int security_socket_create(int family, int type, int protocol, int kern)
864 {
865 	return security_ops->socket_create(family, type, protocol, kern);
866 }
867 
868 int security_socket_post_create(struct socket *sock, int family,
869 				int type, int protocol, int kern)
870 {
871 	return security_ops->socket_post_create(sock, family, type,
872 						protocol, kern);
873 }
874 
875 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
876 {
877 	return security_ops->socket_bind(sock, address, addrlen);
878 }
879 
880 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
881 {
882 	return security_ops->socket_connect(sock, address, addrlen);
883 }
884 
885 int security_socket_listen(struct socket *sock, int backlog)
886 {
887 	return security_ops->socket_listen(sock, backlog);
888 }
889 
890 int security_socket_accept(struct socket *sock, struct socket *newsock)
891 {
892 	return security_ops->socket_accept(sock, newsock);
893 }
894 
895 void security_socket_post_accept(struct socket *sock, struct socket *newsock)
896 {
897 	security_ops->socket_post_accept(sock, newsock);
898 }
899 
900 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
901 {
902 	return security_ops->socket_sendmsg(sock, msg, size);
903 }
904 
905 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
906 			    int size, int flags)
907 {
908 	return security_ops->socket_recvmsg(sock, msg, size, flags);
909 }
910 
911 int security_socket_getsockname(struct socket *sock)
912 {
913 	return security_ops->socket_getsockname(sock);
914 }
915 
916 int security_socket_getpeername(struct socket *sock)
917 {
918 	return security_ops->socket_getpeername(sock);
919 }
920 
921 int security_socket_getsockopt(struct socket *sock, int level, int optname)
922 {
923 	return security_ops->socket_getsockopt(sock, level, optname);
924 }
925 
926 int security_socket_setsockopt(struct socket *sock, int level, int optname)
927 {
928 	return security_ops->socket_setsockopt(sock, level, optname);
929 }
930 
931 int security_socket_shutdown(struct socket *sock, int how)
932 {
933 	return security_ops->socket_shutdown(sock, how);
934 }
935 
936 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
937 {
938 	return security_ops->socket_sock_rcv_skb(sk, skb);
939 }
940 EXPORT_SYMBOL(security_sock_rcv_skb);
941 
942 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
943 				      int __user *optlen, unsigned len)
944 {
945 	return security_ops->socket_getpeersec_stream(sock, optval, optlen, len);
946 }
947 
948 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
949 {
950 	return security_ops->socket_getpeersec_dgram(sock, skb, secid);
951 }
952 EXPORT_SYMBOL(security_socket_getpeersec_dgram);
953 
954 int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
955 {
956 	return security_ops->sk_alloc_security(sk, family, priority);
957 }
958 
959 void security_sk_free(struct sock *sk)
960 {
961 	return security_ops->sk_free_security(sk);
962 }
963 
964 void security_sk_clone(const struct sock *sk, struct sock *newsk)
965 {
966 	return security_ops->sk_clone_security(sk, newsk);
967 }
968 
969 void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
970 {
971 	security_ops->sk_getsecid(sk, &fl->secid);
972 }
973 EXPORT_SYMBOL(security_sk_classify_flow);
974 
975 void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
976 {
977 	security_ops->req_classify_flow(req, fl);
978 }
979 EXPORT_SYMBOL(security_req_classify_flow);
980 
981 void security_sock_graft(struct sock *sk, struct socket *parent)
982 {
983 	security_ops->sock_graft(sk, parent);
984 }
985 EXPORT_SYMBOL(security_sock_graft);
986 
987 int security_inet_conn_request(struct sock *sk,
988 			struct sk_buff *skb, struct request_sock *req)
989 {
990 	return security_ops->inet_conn_request(sk, skb, req);
991 }
992 EXPORT_SYMBOL(security_inet_conn_request);
993 
994 void security_inet_csk_clone(struct sock *newsk,
995 			const struct request_sock *req)
996 {
997 	security_ops->inet_csk_clone(newsk, req);
998 }
999 
1000 void security_inet_conn_established(struct sock *sk,
1001 			struct sk_buff *skb)
1002 {
1003 	security_ops->inet_conn_established(sk, skb);
1004 }
1005 
1006 #endif	/* CONFIG_SECURITY_NETWORK */
1007 
1008 #ifdef CONFIG_SECURITY_NETWORK_XFRM
1009 
1010 int security_xfrm_policy_alloc(struct xfrm_policy *xp, struct xfrm_user_sec_ctx *sec_ctx)
1011 {
1012 	return security_ops->xfrm_policy_alloc_security(xp, sec_ctx);
1013 }
1014 EXPORT_SYMBOL(security_xfrm_policy_alloc);
1015 
1016 int security_xfrm_policy_clone(struct xfrm_policy *old, struct xfrm_policy *new)
1017 {
1018 	return security_ops->xfrm_policy_clone_security(old, new);
1019 }
1020 
1021 void security_xfrm_policy_free(struct xfrm_policy *xp)
1022 {
1023 	security_ops->xfrm_policy_free_security(xp);
1024 }
1025 EXPORT_SYMBOL(security_xfrm_policy_free);
1026 
1027 int security_xfrm_policy_delete(struct xfrm_policy *xp)
1028 {
1029 	return security_ops->xfrm_policy_delete_security(xp);
1030 }
1031 
1032 int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx)
1033 {
1034 	return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0);
1035 }
1036 EXPORT_SYMBOL(security_xfrm_state_alloc);
1037 
1038 int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
1039 				      struct xfrm_sec_ctx *polsec, u32 secid)
1040 {
1041 	if (!polsec)
1042 		return 0;
1043 	/*
1044 	 * We want the context to be taken from secid which is usually
1045 	 * from the sock.
1046 	 */
1047 	return security_ops->xfrm_state_alloc_security(x, NULL, secid);
1048 }
1049 
1050 int security_xfrm_state_delete(struct xfrm_state *x)
1051 {
1052 	return security_ops->xfrm_state_delete_security(x);
1053 }
1054 EXPORT_SYMBOL(security_xfrm_state_delete);
1055 
1056 void security_xfrm_state_free(struct xfrm_state *x)
1057 {
1058 	security_ops->xfrm_state_free_security(x);
1059 }
1060 
1061 int security_xfrm_policy_lookup(struct xfrm_policy *xp, u32 fl_secid, u8 dir)
1062 {
1063 	return security_ops->xfrm_policy_lookup(xp, fl_secid, dir);
1064 }
1065 
1066 int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
1067 				       struct xfrm_policy *xp, struct flowi *fl)
1068 {
1069 	return security_ops->xfrm_state_pol_flow_match(x, xp, fl);
1070 }
1071 
1072 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
1073 {
1074 	return security_ops->xfrm_decode_session(skb, secid, 1);
1075 }
1076 
1077 void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
1078 {
1079 	int rc = security_ops->xfrm_decode_session(skb, &fl->secid, 0);
1080 
1081 	BUG_ON(rc);
1082 }
1083 EXPORT_SYMBOL(security_skb_classify_flow);
1084 
1085 #endif	/* CONFIG_SECURITY_NETWORK_XFRM */
1086 
1087 #ifdef CONFIG_KEYS
1088 
1089 int security_key_alloc(struct key *key, struct task_struct *tsk, unsigned long flags)
1090 {
1091 	return security_ops->key_alloc(key, tsk, flags);
1092 }
1093 
1094 void security_key_free(struct key *key)
1095 {
1096 	security_ops->key_free(key);
1097 }
1098 
1099 int security_key_permission(key_ref_t key_ref,
1100 			    struct task_struct *context, key_perm_t perm)
1101 {
1102 	return security_ops->key_permission(key_ref, context, perm);
1103 }
1104 
1105 #endif	/* CONFIG_KEYS */
1106