1 /* 2 * Security plug functions 3 * 4 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com> 5 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com> 6 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com> 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2 of the License, or 11 * (at your option) any later version. 12 */ 13 14 #include <linux/capability.h> 15 #include <linux/module.h> 16 #include <linux/init.h> 17 #include <linux/kernel.h> 18 #include <linux/security.h> 19 20 21 /* things that live in dummy.c */ 22 extern struct security_operations dummy_security_ops; 23 extern void security_fixup_ops(struct security_operations *ops); 24 25 struct security_operations *security_ops; /* Initialized to NULL */ 26 27 /* amount of vm to protect from userspace access */ 28 unsigned long mmap_min_addr = CONFIG_SECURITY_DEFAULT_MMAP_MIN_ADDR; 29 30 static inline int verify(struct security_operations *ops) 31 { 32 /* verify the security_operations structure exists */ 33 if (!ops) 34 return -EINVAL; 35 security_fixup_ops(ops); 36 return 0; 37 } 38 39 static void __init do_security_initcalls(void) 40 { 41 initcall_t *call; 42 call = __security_initcall_start; 43 while (call < __security_initcall_end) { 44 (*call) (); 45 call++; 46 } 47 } 48 49 /** 50 * security_init - initializes the security framework 51 * 52 * This should be called early in the kernel initialization sequence. 53 */ 54 int __init security_init(void) 55 { 56 printk(KERN_INFO "Security Framework initialized\n"); 57 58 if (verify(&dummy_security_ops)) { 59 printk(KERN_ERR "%s could not verify " 60 "dummy_security_ops structure.\n", __FUNCTION__); 61 return -EIO; 62 } 63 64 security_ops = &dummy_security_ops; 65 do_security_initcalls(); 66 67 return 0; 68 } 69 70 /** 71 * register_security - registers a security framework with the kernel 72 * @ops: a pointer to the struct security_options that is to be registered 73 * 74 * This function is to allow a security module to register itself with the 75 * kernel security subsystem. Some rudimentary checking is done on the @ops 76 * value passed to this function. 77 * 78 * If there is already a security module registered with the kernel, 79 * an error will be returned. Otherwise 0 is returned on success. 80 */ 81 int register_security(struct security_operations *ops) 82 { 83 if (verify(ops)) { 84 printk(KERN_DEBUG "%s could not verify " 85 "security_operations structure.\n", __FUNCTION__); 86 return -EINVAL; 87 } 88 89 if (security_ops != &dummy_security_ops) 90 return -EAGAIN; 91 92 security_ops = ops; 93 94 return 0; 95 } 96 97 /** 98 * mod_reg_security - allows security modules to be "stacked" 99 * @name: a pointer to a string with the name of the security_options to be registered 100 * @ops: a pointer to the struct security_options that is to be registered 101 * 102 * This function allows security modules to be stacked if the currently loaded 103 * security module allows this to happen. It passes the @name and @ops to the 104 * register_security function of the currently loaded security module. 105 * 106 * The return value depends on the currently loaded security module, with 0 as 107 * success. 108 */ 109 int mod_reg_security(const char *name, struct security_operations *ops) 110 { 111 if (verify(ops)) { 112 printk(KERN_INFO "%s could not verify " 113 "security operations.\n", __FUNCTION__); 114 return -EINVAL; 115 } 116 117 if (ops == security_ops) { 118 printk(KERN_INFO "%s security operations " 119 "already registered.\n", __FUNCTION__); 120 return -EINVAL; 121 } 122 123 return security_ops->register_security(name, ops); 124 } 125 126 /* Security operations */ 127 128 int security_ptrace(struct task_struct *parent, struct task_struct *child) 129 { 130 return security_ops->ptrace(parent, child); 131 } 132 133 int security_capget(struct task_struct *target, 134 kernel_cap_t *effective, 135 kernel_cap_t *inheritable, 136 kernel_cap_t *permitted) 137 { 138 return security_ops->capget(target, effective, inheritable, permitted); 139 } 140 141 int security_capset_check(struct task_struct *target, 142 kernel_cap_t *effective, 143 kernel_cap_t *inheritable, 144 kernel_cap_t *permitted) 145 { 146 return security_ops->capset_check(target, effective, inheritable, permitted); 147 } 148 149 void security_capset_set(struct task_struct *target, 150 kernel_cap_t *effective, 151 kernel_cap_t *inheritable, 152 kernel_cap_t *permitted) 153 { 154 security_ops->capset_set(target, effective, inheritable, permitted); 155 } 156 157 int security_capable(struct task_struct *tsk, int cap) 158 { 159 return security_ops->capable(tsk, cap); 160 } 161 162 int security_acct(struct file *file) 163 { 164 return security_ops->acct(file); 165 } 166 167 int security_sysctl(struct ctl_table *table, int op) 168 { 169 return security_ops->sysctl(table, op); 170 } 171 172 int security_quotactl(int cmds, int type, int id, struct super_block *sb) 173 { 174 return security_ops->quotactl(cmds, type, id, sb); 175 } 176 177 int security_quota_on(struct dentry *dentry) 178 { 179 return security_ops->quota_on(dentry); 180 } 181 182 int security_syslog(int type) 183 { 184 return security_ops->syslog(type); 185 } 186 187 int security_settime(struct timespec *ts, struct timezone *tz) 188 { 189 return security_ops->settime(ts, tz); 190 } 191 192 int security_vm_enough_memory(long pages) 193 { 194 return security_ops->vm_enough_memory(current->mm, pages); 195 } 196 197 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages) 198 { 199 return security_ops->vm_enough_memory(mm, pages); 200 } 201 202 int security_bprm_alloc(struct linux_binprm *bprm) 203 { 204 return security_ops->bprm_alloc_security(bprm); 205 } 206 207 void security_bprm_free(struct linux_binprm *bprm) 208 { 209 security_ops->bprm_free_security(bprm); 210 } 211 212 void security_bprm_apply_creds(struct linux_binprm *bprm, int unsafe) 213 { 214 security_ops->bprm_apply_creds(bprm, unsafe); 215 } 216 217 void security_bprm_post_apply_creds(struct linux_binprm *bprm) 218 { 219 security_ops->bprm_post_apply_creds(bprm); 220 } 221 222 int security_bprm_set(struct linux_binprm *bprm) 223 { 224 return security_ops->bprm_set_security(bprm); 225 } 226 227 int security_bprm_check(struct linux_binprm *bprm) 228 { 229 return security_ops->bprm_check_security(bprm); 230 } 231 232 int security_bprm_secureexec(struct linux_binprm *bprm) 233 { 234 return security_ops->bprm_secureexec(bprm); 235 } 236 237 int security_sb_alloc(struct super_block *sb) 238 { 239 return security_ops->sb_alloc_security(sb); 240 } 241 242 void security_sb_free(struct super_block *sb) 243 { 244 security_ops->sb_free_security(sb); 245 } 246 247 int security_sb_copy_data(struct file_system_type *type, void *orig, void *copy) 248 { 249 return security_ops->sb_copy_data(type, orig, copy); 250 } 251 252 int security_sb_kern_mount(struct super_block *sb, void *data) 253 { 254 return security_ops->sb_kern_mount(sb, data); 255 } 256 257 int security_sb_statfs(struct dentry *dentry) 258 { 259 return security_ops->sb_statfs(dentry); 260 } 261 262 int security_sb_mount(char *dev_name, struct nameidata *nd, 263 char *type, unsigned long flags, void *data) 264 { 265 return security_ops->sb_mount(dev_name, nd, type, flags, data); 266 } 267 268 int security_sb_check_sb(struct vfsmount *mnt, struct nameidata *nd) 269 { 270 return security_ops->sb_check_sb(mnt, nd); 271 } 272 273 int security_sb_umount(struct vfsmount *mnt, int flags) 274 { 275 return security_ops->sb_umount(mnt, flags); 276 } 277 278 void security_sb_umount_close(struct vfsmount *mnt) 279 { 280 security_ops->sb_umount_close(mnt); 281 } 282 283 void security_sb_umount_busy(struct vfsmount *mnt) 284 { 285 security_ops->sb_umount_busy(mnt); 286 } 287 288 void security_sb_post_remount(struct vfsmount *mnt, unsigned long flags, void *data) 289 { 290 security_ops->sb_post_remount(mnt, flags, data); 291 } 292 293 void security_sb_post_addmount(struct vfsmount *mnt, struct nameidata *mountpoint_nd) 294 { 295 security_ops->sb_post_addmount(mnt, mountpoint_nd); 296 } 297 298 int security_sb_pivotroot(struct nameidata *old_nd, struct nameidata *new_nd) 299 { 300 return security_ops->sb_pivotroot(old_nd, new_nd); 301 } 302 303 void security_sb_post_pivotroot(struct nameidata *old_nd, struct nameidata *new_nd) 304 { 305 security_ops->sb_post_pivotroot(old_nd, new_nd); 306 } 307 308 int security_sb_get_mnt_opts(const struct super_block *sb, 309 char ***mount_options, 310 int **flags, int *num_opts) 311 { 312 return security_ops->sb_get_mnt_opts(sb, mount_options, flags, num_opts); 313 } 314 315 int security_sb_set_mnt_opts(struct super_block *sb, 316 char **mount_options, 317 int *flags, int num_opts) 318 { 319 return security_ops->sb_set_mnt_opts(sb, mount_options, flags, num_opts); 320 } 321 322 void security_sb_clone_mnt_opts(const struct super_block *oldsb, 323 struct super_block *newsb) 324 { 325 security_ops->sb_clone_mnt_opts(oldsb, newsb); 326 } 327 328 int security_inode_alloc(struct inode *inode) 329 { 330 inode->i_security = NULL; 331 return security_ops->inode_alloc_security(inode); 332 } 333 334 void security_inode_free(struct inode *inode) 335 { 336 security_ops->inode_free_security(inode); 337 } 338 339 int security_inode_init_security(struct inode *inode, struct inode *dir, 340 char **name, void **value, size_t *len) 341 { 342 if (unlikely(IS_PRIVATE(inode))) 343 return -EOPNOTSUPP; 344 return security_ops->inode_init_security(inode, dir, name, value, len); 345 } 346 EXPORT_SYMBOL(security_inode_init_security); 347 348 int security_inode_create(struct inode *dir, struct dentry *dentry, int mode) 349 { 350 if (unlikely(IS_PRIVATE(dir))) 351 return 0; 352 return security_ops->inode_create(dir, dentry, mode); 353 } 354 355 int security_inode_link(struct dentry *old_dentry, struct inode *dir, 356 struct dentry *new_dentry) 357 { 358 if (unlikely(IS_PRIVATE(old_dentry->d_inode))) 359 return 0; 360 return security_ops->inode_link(old_dentry, dir, new_dentry); 361 } 362 363 int security_inode_unlink(struct inode *dir, struct dentry *dentry) 364 { 365 if (unlikely(IS_PRIVATE(dentry->d_inode))) 366 return 0; 367 return security_ops->inode_unlink(dir, dentry); 368 } 369 370 int security_inode_symlink(struct inode *dir, struct dentry *dentry, 371 const char *old_name) 372 { 373 if (unlikely(IS_PRIVATE(dir))) 374 return 0; 375 return security_ops->inode_symlink(dir, dentry, old_name); 376 } 377 378 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, int mode) 379 { 380 if (unlikely(IS_PRIVATE(dir))) 381 return 0; 382 return security_ops->inode_mkdir(dir, dentry, mode); 383 } 384 385 int security_inode_rmdir(struct inode *dir, struct dentry *dentry) 386 { 387 if (unlikely(IS_PRIVATE(dentry->d_inode))) 388 return 0; 389 return security_ops->inode_rmdir(dir, dentry); 390 } 391 392 int security_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev) 393 { 394 if (unlikely(IS_PRIVATE(dir))) 395 return 0; 396 return security_ops->inode_mknod(dir, dentry, mode, dev); 397 } 398 399 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry, 400 struct inode *new_dir, struct dentry *new_dentry) 401 { 402 if (unlikely(IS_PRIVATE(old_dentry->d_inode) || 403 (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode)))) 404 return 0; 405 return security_ops->inode_rename(old_dir, old_dentry, 406 new_dir, new_dentry); 407 } 408 409 int security_inode_readlink(struct dentry *dentry) 410 { 411 if (unlikely(IS_PRIVATE(dentry->d_inode))) 412 return 0; 413 return security_ops->inode_readlink(dentry); 414 } 415 416 int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd) 417 { 418 if (unlikely(IS_PRIVATE(dentry->d_inode))) 419 return 0; 420 return security_ops->inode_follow_link(dentry, nd); 421 } 422 423 int security_inode_permission(struct inode *inode, int mask, struct nameidata *nd) 424 { 425 if (unlikely(IS_PRIVATE(inode))) 426 return 0; 427 return security_ops->inode_permission(inode, mask, nd); 428 } 429 430 int security_inode_setattr(struct dentry *dentry, struct iattr *attr) 431 { 432 if (unlikely(IS_PRIVATE(dentry->d_inode))) 433 return 0; 434 return security_ops->inode_setattr(dentry, attr); 435 } 436 437 int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry) 438 { 439 if (unlikely(IS_PRIVATE(dentry->d_inode))) 440 return 0; 441 return security_ops->inode_getattr(mnt, dentry); 442 } 443 444 void security_inode_delete(struct inode *inode) 445 { 446 if (unlikely(IS_PRIVATE(inode))) 447 return; 448 security_ops->inode_delete(inode); 449 } 450 451 int security_inode_setxattr(struct dentry *dentry, char *name, 452 void *value, size_t size, int flags) 453 { 454 if (unlikely(IS_PRIVATE(dentry->d_inode))) 455 return 0; 456 return security_ops->inode_setxattr(dentry, name, value, size, flags); 457 } 458 459 void security_inode_post_setxattr(struct dentry *dentry, char *name, 460 void *value, size_t size, int flags) 461 { 462 if (unlikely(IS_PRIVATE(dentry->d_inode))) 463 return; 464 security_ops->inode_post_setxattr(dentry, name, value, size, flags); 465 } 466 467 int security_inode_getxattr(struct dentry *dentry, char *name) 468 { 469 if (unlikely(IS_PRIVATE(dentry->d_inode))) 470 return 0; 471 return security_ops->inode_getxattr(dentry, name); 472 } 473 474 int security_inode_listxattr(struct dentry *dentry) 475 { 476 if (unlikely(IS_PRIVATE(dentry->d_inode))) 477 return 0; 478 return security_ops->inode_listxattr(dentry); 479 } 480 481 int security_inode_removexattr(struct dentry *dentry, char *name) 482 { 483 if (unlikely(IS_PRIVATE(dentry->d_inode))) 484 return 0; 485 return security_ops->inode_removexattr(dentry, name); 486 } 487 488 int security_inode_need_killpriv(struct dentry *dentry) 489 { 490 return security_ops->inode_need_killpriv(dentry); 491 } 492 493 int security_inode_killpriv(struct dentry *dentry) 494 { 495 return security_ops->inode_killpriv(dentry); 496 } 497 498 int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc) 499 { 500 if (unlikely(IS_PRIVATE(inode))) 501 return 0; 502 return security_ops->inode_getsecurity(inode, name, buffer, alloc); 503 } 504 505 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags) 506 { 507 if (unlikely(IS_PRIVATE(inode))) 508 return 0; 509 return security_ops->inode_setsecurity(inode, name, value, size, flags); 510 } 511 512 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size) 513 { 514 if (unlikely(IS_PRIVATE(inode))) 515 return 0; 516 return security_ops->inode_listsecurity(inode, buffer, buffer_size); 517 } 518 519 int security_file_permission(struct file *file, int mask) 520 { 521 return security_ops->file_permission(file, mask); 522 } 523 524 int security_file_alloc(struct file *file) 525 { 526 return security_ops->file_alloc_security(file); 527 } 528 529 void security_file_free(struct file *file) 530 { 531 security_ops->file_free_security(file); 532 } 533 534 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 535 { 536 return security_ops->file_ioctl(file, cmd, arg); 537 } 538 539 int security_file_mmap(struct file *file, unsigned long reqprot, 540 unsigned long prot, unsigned long flags, 541 unsigned long addr, unsigned long addr_only) 542 { 543 return security_ops->file_mmap(file, reqprot, prot, flags, addr, addr_only); 544 } 545 546 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot, 547 unsigned long prot) 548 { 549 return security_ops->file_mprotect(vma, reqprot, prot); 550 } 551 552 int security_file_lock(struct file *file, unsigned int cmd) 553 { 554 return security_ops->file_lock(file, cmd); 555 } 556 557 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg) 558 { 559 return security_ops->file_fcntl(file, cmd, arg); 560 } 561 562 int security_file_set_fowner(struct file *file) 563 { 564 return security_ops->file_set_fowner(file); 565 } 566 567 int security_file_send_sigiotask(struct task_struct *tsk, 568 struct fown_struct *fown, int sig) 569 { 570 return security_ops->file_send_sigiotask(tsk, fown, sig); 571 } 572 573 int security_file_receive(struct file *file) 574 { 575 return security_ops->file_receive(file); 576 } 577 578 int security_dentry_open(struct file *file) 579 { 580 return security_ops->dentry_open(file); 581 } 582 583 int security_task_create(unsigned long clone_flags) 584 { 585 return security_ops->task_create(clone_flags); 586 } 587 588 int security_task_alloc(struct task_struct *p) 589 { 590 return security_ops->task_alloc_security(p); 591 } 592 593 void security_task_free(struct task_struct *p) 594 { 595 security_ops->task_free_security(p); 596 } 597 598 int security_task_setuid(uid_t id0, uid_t id1, uid_t id2, int flags) 599 { 600 return security_ops->task_setuid(id0, id1, id2, flags); 601 } 602 603 int security_task_post_setuid(uid_t old_ruid, uid_t old_euid, 604 uid_t old_suid, int flags) 605 { 606 return security_ops->task_post_setuid(old_ruid, old_euid, old_suid, flags); 607 } 608 609 int security_task_setgid(gid_t id0, gid_t id1, gid_t id2, int flags) 610 { 611 return security_ops->task_setgid(id0, id1, id2, flags); 612 } 613 614 int security_task_setpgid(struct task_struct *p, pid_t pgid) 615 { 616 return security_ops->task_setpgid(p, pgid); 617 } 618 619 int security_task_getpgid(struct task_struct *p) 620 { 621 return security_ops->task_getpgid(p); 622 } 623 624 int security_task_getsid(struct task_struct *p) 625 { 626 return security_ops->task_getsid(p); 627 } 628 629 void security_task_getsecid(struct task_struct *p, u32 *secid) 630 { 631 security_ops->task_getsecid(p, secid); 632 } 633 EXPORT_SYMBOL(security_task_getsecid); 634 635 int security_task_setgroups(struct group_info *group_info) 636 { 637 return security_ops->task_setgroups(group_info); 638 } 639 640 int security_task_setnice(struct task_struct *p, int nice) 641 { 642 return security_ops->task_setnice(p, nice); 643 } 644 645 int security_task_setioprio(struct task_struct *p, int ioprio) 646 { 647 return security_ops->task_setioprio(p, ioprio); 648 } 649 650 int security_task_getioprio(struct task_struct *p) 651 { 652 return security_ops->task_getioprio(p); 653 } 654 655 int security_task_setrlimit(unsigned int resource, struct rlimit *new_rlim) 656 { 657 return security_ops->task_setrlimit(resource, new_rlim); 658 } 659 660 int security_task_setscheduler(struct task_struct *p, 661 int policy, struct sched_param *lp) 662 { 663 return security_ops->task_setscheduler(p, policy, lp); 664 } 665 666 int security_task_getscheduler(struct task_struct *p) 667 { 668 return security_ops->task_getscheduler(p); 669 } 670 671 int security_task_movememory(struct task_struct *p) 672 { 673 return security_ops->task_movememory(p); 674 } 675 676 int security_task_kill(struct task_struct *p, struct siginfo *info, 677 int sig, u32 secid) 678 { 679 return security_ops->task_kill(p, info, sig, secid); 680 } 681 682 int security_task_wait(struct task_struct *p) 683 { 684 return security_ops->task_wait(p); 685 } 686 687 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3, 688 unsigned long arg4, unsigned long arg5) 689 { 690 return security_ops->task_prctl(option, arg2, arg3, arg4, arg5); 691 } 692 693 void security_task_reparent_to_init(struct task_struct *p) 694 { 695 security_ops->task_reparent_to_init(p); 696 } 697 698 void security_task_to_inode(struct task_struct *p, struct inode *inode) 699 { 700 security_ops->task_to_inode(p, inode); 701 } 702 703 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag) 704 { 705 return security_ops->ipc_permission(ipcp, flag); 706 } 707 708 int security_msg_msg_alloc(struct msg_msg *msg) 709 { 710 return security_ops->msg_msg_alloc_security(msg); 711 } 712 713 void security_msg_msg_free(struct msg_msg *msg) 714 { 715 security_ops->msg_msg_free_security(msg); 716 } 717 718 int security_msg_queue_alloc(struct msg_queue *msq) 719 { 720 return security_ops->msg_queue_alloc_security(msq); 721 } 722 723 void security_msg_queue_free(struct msg_queue *msq) 724 { 725 security_ops->msg_queue_free_security(msq); 726 } 727 728 int security_msg_queue_associate(struct msg_queue *msq, int msqflg) 729 { 730 return security_ops->msg_queue_associate(msq, msqflg); 731 } 732 733 int security_msg_queue_msgctl(struct msg_queue *msq, int cmd) 734 { 735 return security_ops->msg_queue_msgctl(msq, cmd); 736 } 737 738 int security_msg_queue_msgsnd(struct msg_queue *msq, 739 struct msg_msg *msg, int msqflg) 740 { 741 return security_ops->msg_queue_msgsnd(msq, msg, msqflg); 742 } 743 744 int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg, 745 struct task_struct *target, long type, int mode) 746 { 747 return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode); 748 } 749 750 int security_shm_alloc(struct shmid_kernel *shp) 751 { 752 return security_ops->shm_alloc_security(shp); 753 } 754 755 void security_shm_free(struct shmid_kernel *shp) 756 { 757 security_ops->shm_free_security(shp); 758 } 759 760 int security_shm_associate(struct shmid_kernel *shp, int shmflg) 761 { 762 return security_ops->shm_associate(shp, shmflg); 763 } 764 765 int security_shm_shmctl(struct shmid_kernel *shp, int cmd) 766 { 767 return security_ops->shm_shmctl(shp, cmd); 768 } 769 770 int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg) 771 { 772 return security_ops->shm_shmat(shp, shmaddr, shmflg); 773 } 774 775 int security_sem_alloc(struct sem_array *sma) 776 { 777 return security_ops->sem_alloc_security(sma); 778 } 779 780 void security_sem_free(struct sem_array *sma) 781 { 782 security_ops->sem_free_security(sma); 783 } 784 785 int security_sem_associate(struct sem_array *sma, int semflg) 786 { 787 return security_ops->sem_associate(sma, semflg); 788 } 789 790 int security_sem_semctl(struct sem_array *sma, int cmd) 791 { 792 return security_ops->sem_semctl(sma, cmd); 793 } 794 795 int security_sem_semop(struct sem_array *sma, struct sembuf *sops, 796 unsigned nsops, int alter) 797 { 798 return security_ops->sem_semop(sma, sops, nsops, alter); 799 } 800 801 void security_d_instantiate(struct dentry *dentry, struct inode *inode) 802 { 803 if (unlikely(inode && IS_PRIVATE(inode))) 804 return; 805 security_ops->d_instantiate(dentry, inode); 806 } 807 EXPORT_SYMBOL(security_d_instantiate); 808 809 int security_getprocattr(struct task_struct *p, char *name, char **value) 810 { 811 return security_ops->getprocattr(p, name, value); 812 } 813 814 int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size) 815 { 816 return security_ops->setprocattr(p, name, value, size); 817 } 818 819 int security_netlink_send(struct sock *sk, struct sk_buff *skb) 820 { 821 return security_ops->netlink_send(sk, skb); 822 } 823 824 int security_netlink_recv(struct sk_buff *skb, int cap) 825 { 826 return security_ops->netlink_recv(skb, cap); 827 } 828 EXPORT_SYMBOL(security_netlink_recv); 829 830 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen) 831 { 832 return security_ops->secid_to_secctx(secid, secdata, seclen); 833 } 834 EXPORT_SYMBOL(security_secid_to_secctx); 835 836 int security_secctx_to_secid(char *secdata, u32 seclen, u32 *secid) 837 { 838 return security_ops->secctx_to_secid(secdata, seclen, secid); 839 } 840 EXPORT_SYMBOL(security_secctx_to_secid); 841 842 void security_release_secctx(char *secdata, u32 seclen) 843 { 844 return security_ops->release_secctx(secdata, seclen); 845 } 846 EXPORT_SYMBOL(security_release_secctx); 847 848 #ifdef CONFIG_SECURITY_NETWORK 849 850 int security_unix_stream_connect(struct socket *sock, struct socket *other, 851 struct sock *newsk) 852 { 853 return security_ops->unix_stream_connect(sock, other, newsk); 854 } 855 EXPORT_SYMBOL(security_unix_stream_connect); 856 857 int security_unix_may_send(struct socket *sock, struct socket *other) 858 { 859 return security_ops->unix_may_send(sock, other); 860 } 861 EXPORT_SYMBOL(security_unix_may_send); 862 863 int security_socket_create(int family, int type, int protocol, int kern) 864 { 865 return security_ops->socket_create(family, type, protocol, kern); 866 } 867 868 int security_socket_post_create(struct socket *sock, int family, 869 int type, int protocol, int kern) 870 { 871 return security_ops->socket_post_create(sock, family, type, 872 protocol, kern); 873 } 874 875 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen) 876 { 877 return security_ops->socket_bind(sock, address, addrlen); 878 } 879 880 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen) 881 { 882 return security_ops->socket_connect(sock, address, addrlen); 883 } 884 885 int security_socket_listen(struct socket *sock, int backlog) 886 { 887 return security_ops->socket_listen(sock, backlog); 888 } 889 890 int security_socket_accept(struct socket *sock, struct socket *newsock) 891 { 892 return security_ops->socket_accept(sock, newsock); 893 } 894 895 void security_socket_post_accept(struct socket *sock, struct socket *newsock) 896 { 897 security_ops->socket_post_accept(sock, newsock); 898 } 899 900 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size) 901 { 902 return security_ops->socket_sendmsg(sock, msg, size); 903 } 904 905 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg, 906 int size, int flags) 907 { 908 return security_ops->socket_recvmsg(sock, msg, size, flags); 909 } 910 911 int security_socket_getsockname(struct socket *sock) 912 { 913 return security_ops->socket_getsockname(sock); 914 } 915 916 int security_socket_getpeername(struct socket *sock) 917 { 918 return security_ops->socket_getpeername(sock); 919 } 920 921 int security_socket_getsockopt(struct socket *sock, int level, int optname) 922 { 923 return security_ops->socket_getsockopt(sock, level, optname); 924 } 925 926 int security_socket_setsockopt(struct socket *sock, int level, int optname) 927 { 928 return security_ops->socket_setsockopt(sock, level, optname); 929 } 930 931 int security_socket_shutdown(struct socket *sock, int how) 932 { 933 return security_ops->socket_shutdown(sock, how); 934 } 935 936 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb) 937 { 938 return security_ops->socket_sock_rcv_skb(sk, skb); 939 } 940 EXPORT_SYMBOL(security_sock_rcv_skb); 941 942 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval, 943 int __user *optlen, unsigned len) 944 { 945 return security_ops->socket_getpeersec_stream(sock, optval, optlen, len); 946 } 947 948 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid) 949 { 950 return security_ops->socket_getpeersec_dgram(sock, skb, secid); 951 } 952 EXPORT_SYMBOL(security_socket_getpeersec_dgram); 953 954 int security_sk_alloc(struct sock *sk, int family, gfp_t priority) 955 { 956 return security_ops->sk_alloc_security(sk, family, priority); 957 } 958 959 void security_sk_free(struct sock *sk) 960 { 961 return security_ops->sk_free_security(sk); 962 } 963 964 void security_sk_clone(const struct sock *sk, struct sock *newsk) 965 { 966 return security_ops->sk_clone_security(sk, newsk); 967 } 968 969 void security_sk_classify_flow(struct sock *sk, struct flowi *fl) 970 { 971 security_ops->sk_getsecid(sk, &fl->secid); 972 } 973 EXPORT_SYMBOL(security_sk_classify_flow); 974 975 void security_req_classify_flow(const struct request_sock *req, struct flowi *fl) 976 { 977 security_ops->req_classify_flow(req, fl); 978 } 979 EXPORT_SYMBOL(security_req_classify_flow); 980 981 void security_sock_graft(struct sock *sk, struct socket *parent) 982 { 983 security_ops->sock_graft(sk, parent); 984 } 985 EXPORT_SYMBOL(security_sock_graft); 986 987 int security_inet_conn_request(struct sock *sk, 988 struct sk_buff *skb, struct request_sock *req) 989 { 990 return security_ops->inet_conn_request(sk, skb, req); 991 } 992 EXPORT_SYMBOL(security_inet_conn_request); 993 994 void security_inet_csk_clone(struct sock *newsk, 995 const struct request_sock *req) 996 { 997 security_ops->inet_csk_clone(newsk, req); 998 } 999 1000 void security_inet_conn_established(struct sock *sk, 1001 struct sk_buff *skb) 1002 { 1003 security_ops->inet_conn_established(sk, skb); 1004 } 1005 1006 #endif /* CONFIG_SECURITY_NETWORK */ 1007 1008 #ifdef CONFIG_SECURITY_NETWORK_XFRM 1009 1010 int security_xfrm_policy_alloc(struct xfrm_policy *xp, struct xfrm_user_sec_ctx *sec_ctx) 1011 { 1012 return security_ops->xfrm_policy_alloc_security(xp, sec_ctx); 1013 } 1014 EXPORT_SYMBOL(security_xfrm_policy_alloc); 1015 1016 int security_xfrm_policy_clone(struct xfrm_policy *old, struct xfrm_policy *new) 1017 { 1018 return security_ops->xfrm_policy_clone_security(old, new); 1019 } 1020 1021 void security_xfrm_policy_free(struct xfrm_policy *xp) 1022 { 1023 security_ops->xfrm_policy_free_security(xp); 1024 } 1025 EXPORT_SYMBOL(security_xfrm_policy_free); 1026 1027 int security_xfrm_policy_delete(struct xfrm_policy *xp) 1028 { 1029 return security_ops->xfrm_policy_delete_security(xp); 1030 } 1031 1032 int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx) 1033 { 1034 return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0); 1035 } 1036 EXPORT_SYMBOL(security_xfrm_state_alloc); 1037 1038 int security_xfrm_state_alloc_acquire(struct xfrm_state *x, 1039 struct xfrm_sec_ctx *polsec, u32 secid) 1040 { 1041 if (!polsec) 1042 return 0; 1043 /* 1044 * We want the context to be taken from secid which is usually 1045 * from the sock. 1046 */ 1047 return security_ops->xfrm_state_alloc_security(x, NULL, secid); 1048 } 1049 1050 int security_xfrm_state_delete(struct xfrm_state *x) 1051 { 1052 return security_ops->xfrm_state_delete_security(x); 1053 } 1054 EXPORT_SYMBOL(security_xfrm_state_delete); 1055 1056 void security_xfrm_state_free(struct xfrm_state *x) 1057 { 1058 security_ops->xfrm_state_free_security(x); 1059 } 1060 1061 int security_xfrm_policy_lookup(struct xfrm_policy *xp, u32 fl_secid, u8 dir) 1062 { 1063 return security_ops->xfrm_policy_lookup(xp, fl_secid, dir); 1064 } 1065 1066 int security_xfrm_state_pol_flow_match(struct xfrm_state *x, 1067 struct xfrm_policy *xp, struct flowi *fl) 1068 { 1069 return security_ops->xfrm_state_pol_flow_match(x, xp, fl); 1070 } 1071 1072 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid) 1073 { 1074 return security_ops->xfrm_decode_session(skb, secid, 1); 1075 } 1076 1077 void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl) 1078 { 1079 int rc = security_ops->xfrm_decode_session(skb, &fl->secid, 0); 1080 1081 BUG_ON(rc); 1082 } 1083 EXPORT_SYMBOL(security_skb_classify_flow); 1084 1085 #endif /* CONFIG_SECURITY_NETWORK_XFRM */ 1086 1087 #ifdef CONFIG_KEYS 1088 1089 int security_key_alloc(struct key *key, struct task_struct *tsk, unsigned long flags) 1090 { 1091 return security_ops->key_alloc(key, tsk, flags); 1092 } 1093 1094 void security_key_free(struct key *key) 1095 { 1096 security_ops->key_free(key); 1097 } 1098 1099 int security_key_permission(key_ref_t key_ref, 1100 struct task_struct *context, key_perm_t perm) 1101 { 1102 return security_ops->key_permission(key_ref, context, perm); 1103 } 1104 1105 #endif /* CONFIG_KEYS */ 1106