xref: /linux/security/security.c (revision e814f3fd16acfb7f9966773953de8f740a1e3202)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Security plug functions
4  *
5  * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
6  * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
7  * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
8  * Copyright (C) 2016 Mellanox Technologies
9  * Copyright (C) 2023 Microsoft Corporation <paul@paul-moore.com>
10  */
11 
12 #define pr_fmt(fmt) "LSM: " fmt
13 
14 #include <linux/bpf.h>
15 #include <linux/capability.h>
16 #include <linux/dcache.h>
17 #include <linux/export.h>
18 #include <linux/init.h>
19 #include <linux/kernel.h>
20 #include <linux/kernel_read_file.h>
21 #include <linux/lsm_hooks.h>
22 #include <linux/mman.h>
23 #include <linux/mount.h>
24 #include <linux/personality.h>
25 #include <linux/backing-dev.h>
26 #include <linux/string.h>
27 #include <linux/xattr.h>
28 #include <linux/msg.h>
29 #include <linux/overflow.h>
30 #include <linux/perf_event.h>
31 #include <linux/fs.h>
32 #include <net/flow.h>
33 #include <net/sock.h>
34 
35 #define SECURITY_HOOK_ACTIVE_KEY(HOOK, IDX) security_hook_active_##HOOK##_##IDX
36 
37 /*
38  * Identifier for the LSM static calls.
39  * HOOK is an LSM hook as defined in linux/lsm_hookdefs.h
40  * IDX is the index of the static call. 0 <= NUM < MAX_LSM_COUNT
41  */
42 #define LSM_STATIC_CALL(HOOK, IDX) lsm_static_call_##HOOK##_##IDX
43 
44 /*
45  * Call the macro M for each LSM hook MAX_LSM_COUNT times.
46  */
47 #define LSM_LOOP_UNROLL(M, ...) 		\
48 do {						\
49 	UNROLL(MAX_LSM_COUNT, M, __VA_ARGS__)	\
50 } while (0)
51 
52 #define LSM_DEFINE_UNROLL(M, ...) UNROLL(MAX_LSM_COUNT, M, __VA_ARGS__)
53 
54 /*
55  * These are descriptions of the reasons that can be passed to the
56  * security_locked_down() LSM hook. Placing this array here allows
57  * all security modules to use the same descriptions for auditing
58  * purposes.
59  */
60 const char *const lockdown_reasons[LOCKDOWN_CONFIDENTIALITY_MAX + 1] = {
61 	[LOCKDOWN_NONE] = "none",
62 	[LOCKDOWN_MODULE_SIGNATURE] = "unsigned module loading",
63 	[LOCKDOWN_DEV_MEM] = "/dev/mem,kmem,port",
64 	[LOCKDOWN_EFI_TEST] = "/dev/efi_test access",
65 	[LOCKDOWN_KEXEC] = "kexec of unsigned images",
66 	[LOCKDOWN_HIBERNATION] = "hibernation",
67 	[LOCKDOWN_PCI_ACCESS] = "direct PCI access",
68 	[LOCKDOWN_IOPORT] = "raw io port access",
69 	[LOCKDOWN_MSR] = "raw MSR access",
70 	[LOCKDOWN_ACPI_TABLES] = "modifying ACPI tables",
71 	[LOCKDOWN_DEVICE_TREE] = "modifying device tree contents",
72 	[LOCKDOWN_PCMCIA_CIS] = "direct PCMCIA CIS storage",
73 	[LOCKDOWN_TIOCSSERIAL] = "reconfiguration of serial port IO",
74 	[LOCKDOWN_MODULE_PARAMETERS] = "unsafe module parameters",
75 	[LOCKDOWN_MMIOTRACE] = "unsafe mmio",
76 	[LOCKDOWN_DEBUGFS] = "debugfs access",
77 	[LOCKDOWN_XMON_WR] = "xmon write access",
78 	[LOCKDOWN_BPF_WRITE_USER] = "use of bpf to write user RAM",
79 	[LOCKDOWN_DBG_WRITE_KERNEL] = "use of kgdb/kdb to write kernel RAM",
80 	[LOCKDOWN_RTAS_ERROR_INJECTION] = "RTAS error injection",
81 	[LOCKDOWN_INTEGRITY_MAX] = "integrity",
82 	[LOCKDOWN_KCORE] = "/proc/kcore access",
83 	[LOCKDOWN_KPROBES] = "use of kprobes",
84 	[LOCKDOWN_BPF_READ_KERNEL] = "use of bpf to read kernel RAM",
85 	[LOCKDOWN_DBG_READ_KERNEL] = "use of kgdb/kdb to read kernel RAM",
86 	[LOCKDOWN_PERF] = "unsafe use of perf",
87 	[LOCKDOWN_TRACEFS] = "use of tracefs",
88 	[LOCKDOWN_XMON_RW] = "xmon read and write access",
89 	[LOCKDOWN_XFRM_SECRET] = "xfrm SA secret",
90 	[LOCKDOWN_CONFIDENTIALITY_MAX] = "confidentiality",
91 };
92 
93 static BLOCKING_NOTIFIER_HEAD(blocking_lsm_notifier_chain);
94 
95 static struct kmem_cache *lsm_file_cache;
96 static struct kmem_cache *lsm_inode_cache;
97 
98 char *lsm_names;
99 static struct lsm_blob_sizes blob_sizes __ro_after_init;
100 
101 /* Boot-time LSM user choice */
102 static __initdata const char *chosen_lsm_order;
103 static __initdata const char *chosen_major_lsm;
104 
105 static __initconst const char *const builtin_lsm_order = CONFIG_LSM;
106 
107 /* Ordered list of LSMs to initialize. */
108 static __initdata struct lsm_info *ordered_lsms[MAX_LSM_COUNT + 1];
109 static __initdata struct lsm_info *exclusive;
110 
111 #ifdef CONFIG_HAVE_STATIC_CALL
112 #define LSM_HOOK_TRAMP(NAME, NUM) \
113 	&STATIC_CALL_TRAMP(LSM_STATIC_CALL(NAME, NUM))
114 #else
115 #define LSM_HOOK_TRAMP(NAME, NUM) NULL
116 #endif
117 
118 /*
119  * Define static calls and static keys for each LSM hook.
120  */
121 #define DEFINE_LSM_STATIC_CALL(NUM, NAME, RET, ...)			\
122 	DEFINE_STATIC_CALL_NULL(LSM_STATIC_CALL(NAME, NUM),		\
123 				*((RET(*)(__VA_ARGS__))NULL));		\
124 	DEFINE_STATIC_KEY_FALSE(SECURITY_HOOK_ACTIVE_KEY(NAME, NUM));
125 
126 #define LSM_HOOK(RET, DEFAULT, NAME, ...)				\
127 	LSM_DEFINE_UNROLL(DEFINE_LSM_STATIC_CALL, NAME, RET, __VA_ARGS__)
128 #include <linux/lsm_hook_defs.h>
129 #undef LSM_HOOK
130 #undef DEFINE_LSM_STATIC_CALL
131 
132 /*
133  * Initialise a table of static calls for each LSM hook.
134  * DEFINE_STATIC_CALL_NULL invocation above generates a key (STATIC_CALL_KEY)
135  * and a trampoline (STATIC_CALL_TRAMP) which are used to call
136  * __static_call_update when updating the static call.
137  *
138  * The static calls table is used by early LSMs, some architectures can fault on
139  * unaligned accesses and the fault handling code may not be ready by then.
140  * Thus, the static calls table should be aligned to avoid any unhandled faults
141  * in early init.
142  */
143 struct lsm_static_calls_table
144 	static_calls_table __ro_after_init __aligned(sizeof(u64)) = {
145 #define INIT_LSM_STATIC_CALL(NUM, NAME)					\
146 	(struct lsm_static_call) {					\
147 		.key = &STATIC_CALL_KEY(LSM_STATIC_CALL(NAME, NUM)),	\
148 		.trampoline = LSM_HOOK_TRAMP(NAME, NUM),		\
149 		.active = &SECURITY_HOOK_ACTIVE_KEY(NAME, NUM),		\
150 	},
151 #define LSM_HOOK(RET, DEFAULT, NAME, ...)				\
152 	.NAME = {							\
153 		LSM_DEFINE_UNROLL(INIT_LSM_STATIC_CALL, NAME)		\
154 	},
155 #include <linux/lsm_hook_defs.h>
156 #undef LSM_HOOK
157 #undef INIT_LSM_STATIC_CALL
158 	};
159 
160 static __initdata bool debug;
161 #define init_debug(...)						\
162 	do {							\
163 		if (debug)					\
164 			pr_info(__VA_ARGS__);			\
165 	} while (0)
166 
167 static bool __init is_enabled(struct lsm_info *lsm)
168 {
169 	if (!lsm->enabled)
170 		return false;
171 
172 	return *lsm->enabled;
173 }
174 
175 /* Mark an LSM's enabled flag. */
176 static int lsm_enabled_true __initdata = 1;
177 static int lsm_enabled_false __initdata = 0;
178 static void __init set_enabled(struct lsm_info *lsm, bool enabled)
179 {
180 	/*
181 	 * When an LSM hasn't configured an enable variable, we can use
182 	 * a hard-coded location for storing the default enabled state.
183 	 */
184 	if (!lsm->enabled) {
185 		if (enabled)
186 			lsm->enabled = &lsm_enabled_true;
187 		else
188 			lsm->enabled = &lsm_enabled_false;
189 	} else if (lsm->enabled == &lsm_enabled_true) {
190 		if (!enabled)
191 			lsm->enabled = &lsm_enabled_false;
192 	} else if (lsm->enabled == &lsm_enabled_false) {
193 		if (enabled)
194 			lsm->enabled = &lsm_enabled_true;
195 	} else {
196 		*lsm->enabled = enabled;
197 	}
198 }
199 
200 /* Is an LSM already listed in the ordered LSMs list? */
201 static bool __init exists_ordered_lsm(struct lsm_info *lsm)
202 {
203 	struct lsm_info **check;
204 
205 	for (check = ordered_lsms; *check; check++)
206 		if (*check == lsm)
207 			return true;
208 
209 	return false;
210 }
211 
212 /* Append an LSM to the list of ordered LSMs to initialize. */
213 static int last_lsm __initdata;
214 static void __init append_ordered_lsm(struct lsm_info *lsm, const char *from)
215 {
216 	/* Ignore duplicate selections. */
217 	if (exists_ordered_lsm(lsm))
218 		return;
219 
220 	if (WARN(last_lsm == MAX_LSM_COUNT, "%s: out of LSM static calls!?\n", from))
221 		return;
222 
223 	/* Enable this LSM, if it is not already set. */
224 	if (!lsm->enabled)
225 		lsm->enabled = &lsm_enabled_true;
226 	ordered_lsms[last_lsm++] = lsm;
227 
228 	init_debug("%s ordered: %s (%s)\n", from, lsm->name,
229 		   is_enabled(lsm) ? "enabled" : "disabled");
230 }
231 
232 /* Is an LSM allowed to be initialized? */
233 static bool __init lsm_allowed(struct lsm_info *lsm)
234 {
235 	/* Skip if the LSM is disabled. */
236 	if (!is_enabled(lsm))
237 		return false;
238 
239 	/* Not allowed if another exclusive LSM already initialized. */
240 	if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && exclusive) {
241 		init_debug("exclusive disabled: %s\n", lsm->name);
242 		return false;
243 	}
244 
245 	return true;
246 }
247 
248 static void __init lsm_set_blob_size(int *need, int *lbs)
249 {
250 	int offset;
251 
252 	if (*need <= 0)
253 		return;
254 
255 	offset = ALIGN(*lbs, sizeof(void *));
256 	*lbs = offset + *need;
257 	*need = offset;
258 }
259 
260 static void __init lsm_set_blob_sizes(struct lsm_blob_sizes *needed)
261 {
262 	if (!needed)
263 		return;
264 
265 	lsm_set_blob_size(&needed->lbs_cred, &blob_sizes.lbs_cred);
266 	lsm_set_blob_size(&needed->lbs_file, &blob_sizes.lbs_file);
267 	lsm_set_blob_size(&needed->lbs_ib, &blob_sizes.lbs_ib);
268 	/*
269 	 * The inode blob gets an rcu_head in addition to
270 	 * what the modules might need.
271 	 */
272 	if (needed->lbs_inode && blob_sizes.lbs_inode == 0)
273 		blob_sizes.lbs_inode = sizeof(struct rcu_head);
274 	lsm_set_blob_size(&needed->lbs_inode, &blob_sizes.lbs_inode);
275 	lsm_set_blob_size(&needed->lbs_ipc, &blob_sizes.lbs_ipc);
276 	lsm_set_blob_size(&needed->lbs_key, &blob_sizes.lbs_key);
277 	lsm_set_blob_size(&needed->lbs_msg_msg, &blob_sizes.lbs_msg_msg);
278 	lsm_set_blob_size(&needed->lbs_perf_event, &blob_sizes.lbs_perf_event);
279 	lsm_set_blob_size(&needed->lbs_sock, &blob_sizes.lbs_sock);
280 	lsm_set_blob_size(&needed->lbs_superblock, &blob_sizes.lbs_superblock);
281 	lsm_set_blob_size(&needed->lbs_task, &blob_sizes.lbs_task);
282 	lsm_set_blob_size(&needed->lbs_tun_dev, &blob_sizes.lbs_tun_dev);
283 	lsm_set_blob_size(&needed->lbs_xattr_count,
284 			  &blob_sizes.lbs_xattr_count);
285 	lsm_set_blob_size(&needed->lbs_bdev, &blob_sizes.lbs_bdev);
286 }
287 
288 /* Prepare LSM for initialization. */
289 static void __init prepare_lsm(struct lsm_info *lsm)
290 {
291 	int enabled = lsm_allowed(lsm);
292 
293 	/* Record enablement (to handle any following exclusive LSMs). */
294 	set_enabled(lsm, enabled);
295 
296 	/* If enabled, do pre-initialization work. */
297 	if (enabled) {
298 		if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && !exclusive) {
299 			exclusive = lsm;
300 			init_debug("exclusive chosen:   %s\n", lsm->name);
301 		}
302 
303 		lsm_set_blob_sizes(lsm->blobs);
304 	}
305 }
306 
307 /* Initialize a given LSM, if it is enabled. */
308 static void __init initialize_lsm(struct lsm_info *lsm)
309 {
310 	if (is_enabled(lsm)) {
311 		int ret;
312 
313 		init_debug("initializing %s\n", lsm->name);
314 		ret = lsm->init();
315 		WARN(ret, "%s failed to initialize: %d\n", lsm->name, ret);
316 	}
317 }
318 
319 /*
320  * Current index to use while initializing the lsm id list.
321  */
322 u32 lsm_active_cnt __ro_after_init;
323 const struct lsm_id *lsm_idlist[MAX_LSM_COUNT];
324 
325 /* Populate ordered LSMs list from comma-separated LSM name list. */
326 static void __init ordered_lsm_parse(const char *order, const char *origin)
327 {
328 	struct lsm_info *lsm;
329 	char *sep, *name, *next;
330 
331 	/* LSM_ORDER_FIRST is always first. */
332 	for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
333 		if (lsm->order == LSM_ORDER_FIRST)
334 			append_ordered_lsm(lsm, "  first");
335 	}
336 
337 	/* Process "security=", if given. */
338 	if (chosen_major_lsm) {
339 		struct lsm_info *major;
340 
341 		/*
342 		 * To match the original "security=" behavior, this
343 		 * explicitly does NOT fallback to another Legacy Major
344 		 * if the selected one was separately disabled: disable
345 		 * all non-matching Legacy Major LSMs.
346 		 */
347 		for (major = __start_lsm_info; major < __end_lsm_info;
348 		     major++) {
349 			if ((major->flags & LSM_FLAG_LEGACY_MAJOR) &&
350 			    strcmp(major->name, chosen_major_lsm) != 0) {
351 				set_enabled(major, false);
352 				init_debug("security=%s disabled: %s (only one legacy major LSM)\n",
353 					   chosen_major_lsm, major->name);
354 			}
355 		}
356 	}
357 
358 	sep = kstrdup(order, GFP_KERNEL);
359 	next = sep;
360 	/* Walk the list, looking for matching LSMs. */
361 	while ((name = strsep(&next, ",")) != NULL) {
362 		bool found = false;
363 
364 		for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
365 			if (strcmp(lsm->name, name) == 0) {
366 				if (lsm->order == LSM_ORDER_MUTABLE)
367 					append_ordered_lsm(lsm, origin);
368 				found = true;
369 			}
370 		}
371 
372 		if (!found)
373 			init_debug("%s ignored: %s (not built into kernel)\n",
374 				   origin, name);
375 	}
376 
377 	/* Process "security=", if given. */
378 	if (chosen_major_lsm) {
379 		for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
380 			if (exists_ordered_lsm(lsm))
381 				continue;
382 			if (strcmp(lsm->name, chosen_major_lsm) == 0)
383 				append_ordered_lsm(lsm, "security=");
384 		}
385 	}
386 
387 	/* LSM_ORDER_LAST is always last. */
388 	for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
389 		if (lsm->order == LSM_ORDER_LAST)
390 			append_ordered_lsm(lsm, "   last");
391 	}
392 
393 	/* Disable all LSMs not in the ordered list. */
394 	for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
395 		if (exists_ordered_lsm(lsm))
396 			continue;
397 		set_enabled(lsm, false);
398 		init_debug("%s skipped: %s (not in requested order)\n",
399 			   origin, lsm->name);
400 	}
401 
402 	kfree(sep);
403 }
404 
405 static void __init lsm_static_call_init(struct security_hook_list *hl)
406 {
407 	struct lsm_static_call *scall = hl->scalls;
408 	int i;
409 
410 	for (i = 0; i < MAX_LSM_COUNT; i++) {
411 		/* Update the first static call that is not used yet */
412 		if (!scall->hl) {
413 			__static_call_update(scall->key, scall->trampoline,
414 					     hl->hook.lsm_func_addr);
415 			scall->hl = hl;
416 			static_branch_enable(scall->active);
417 			return;
418 		}
419 		scall++;
420 	}
421 	panic("%s - Ran out of static slots.\n", __func__);
422 }
423 
424 static void __init lsm_early_cred(struct cred *cred);
425 static void __init lsm_early_task(struct task_struct *task);
426 
427 static int lsm_append(const char *new, char **result);
428 
429 static void __init report_lsm_order(void)
430 {
431 	struct lsm_info **lsm, *early;
432 	int first = 0;
433 
434 	pr_info("initializing lsm=");
435 
436 	/* Report each enabled LSM name, comma separated. */
437 	for (early = __start_early_lsm_info;
438 	     early < __end_early_lsm_info; early++)
439 		if (is_enabled(early))
440 			pr_cont("%s%s", first++ == 0 ? "" : ",", early->name);
441 	for (lsm = ordered_lsms; *lsm; lsm++)
442 		if (is_enabled(*lsm))
443 			pr_cont("%s%s", first++ == 0 ? "" : ",", (*lsm)->name);
444 
445 	pr_cont("\n");
446 }
447 
448 static void __init ordered_lsm_init(void)
449 {
450 	struct lsm_info **lsm;
451 
452 	if (chosen_lsm_order) {
453 		if (chosen_major_lsm) {
454 			pr_warn("security=%s is ignored because it is superseded by lsm=%s\n",
455 				chosen_major_lsm, chosen_lsm_order);
456 			chosen_major_lsm = NULL;
457 		}
458 		ordered_lsm_parse(chosen_lsm_order, "cmdline");
459 	} else
460 		ordered_lsm_parse(builtin_lsm_order, "builtin");
461 
462 	for (lsm = ordered_lsms; *lsm; lsm++)
463 		prepare_lsm(*lsm);
464 
465 	report_lsm_order();
466 
467 	init_debug("cred blob size       = %d\n", blob_sizes.lbs_cred);
468 	init_debug("file blob size       = %d\n", blob_sizes.lbs_file);
469 	init_debug("ib blob size         = %d\n", blob_sizes.lbs_ib);
470 	init_debug("inode blob size      = %d\n", blob_sizes.lbs_inode);
471 	init_debug("ipc blob size        = %d\n", blob_sizes.lbs_ipc);
472 #ifdef CONFIG_KEYS
473 	init_debug("key blob size        = %d\n", blob_sizes.lbs_key);
474 #endif /* CONFIG_KEYS */
475 	init_debug("msg_msg blob size    = %d\n", blob_sizes.lbs_msg_msg);
476 	init_debug("sock blob size       = %d\n", blob_sizes.lbs_sock);
477 	init_debug("superblock blob size = %d\n", blob_sizes.lbs_superblock);
478 	init_debug("perf event blob size = %d\n", blob_sizes.lbs_perf_event);
479 	init_debug("task blob size       = %d\n", blob_sizes.lbs_task);
480 	init_debug("tun device blob size = %d\n", blob_sizes.lbs_tun_dev);
481 	init_debug("xattr slots          = %d\n", blob_sizes.lbs_xattr_count);
482 	init_debug("bdev blob size       = %d\n", blob_sizes.lbs_bdev);
483 
484 	/*
485 	 * Create any kmem_caches needed for blobs
486 	 */
487 	if (blob_sizes.lbs_file)
488 		lsm_file_cache = kmem_cache_create("lsm_file_cache",
489 						   blob_sizes.lbs_file, 0,
490 						   SLAB_PANIC, NULL);
491 	if (blob_sizes.lbs_inode)
492 		lsm_inode_cache = kmem_cache_create("lsm_inode_cache",
493 						    blob_sizes.lbs_inode, 0,
494 						    SLAB_PANIC, NULL);
495 
496 	lsm_early_cred((struct cred *) current->cred);
497 	lsm_early_task(current);
498 	for (lsm = ordered_lsms; *lsm; lsm++)
499 		initialize_lsm(*lsm);
500 }
501 
502 int __init early_security_init(void)
503 {
504 	struct lsm_info *lsm;
505 
506 	for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
507 		if (!lsm->enabled)
508 			lsm->enabled = &lsm_enabled_true;
509 		prepare_lsm(lsm);
510 		initialize_lsm(lsm);
511 	}
512 
513 	return 0;
514 }
515 
516 /**
517  * security_init - initializes the security framework
518  *
519  * This should be called early in the kernel initialization sequence.
520  */
521 int __init security_init(void)
522 {
523 	struct lsm_info *lsm;
524 
525 	init_debug("legacy security=%s\n", chosen_major_lsm ? : " *unspecified*");
526 	init_debug("  CONFIG_LSM=%s\n", builtin_lsm_order);
527 	init_debug("boot arg lsm=%s\n", chosen_lsm_order ? : " *unspecified*");
528 
529 	/*
530 	 * Append the names of the early LSM modules now that kmalloc() is
531 	 * available
532 	 */
533 	for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
534 		init_debug("  early started: %s (%s)\n", lsm->name,
535 			   is_enabled(lsm) ? "enabled" : "disabled");
536 		if (lsm->enabled)
537 			lsm_append(lsm->name, &lsm_names);
538 	}
539 
540 	/* Load LSMs in specified order. */
541 	ordered_lsm_init();
542 
543 	return 0;
544 }
545 
546 /* Save user chosen LSM */
547 static int __init choose_major_lsm(char *str)
548 {
549 	chosen_major_lsm = str;
550 	return 1;
551 }
552 __setup("security=", choose_major_lsm);
553 
554 /* Explicitly choose LSM initialization order. */
555 static int __init choose_lsm_order(char *str)
556 {
557 	chosen_lsm_order = str;
558 	return 1;
559 }
560 __setup("lsm=", choose_lsm_order);
561 
562 /* Enable LSM order debugging. */
563 static int __init enable_debug(char *str)
564 {
565 	debug = true;
566 	return 1;
567 }
568 __setup("lsm.debug", enable_debug);
569 
570 static bool match_last_lsm(const char *list, const char *lsm)
571 {
572 	const char *last;
573 
574 	if (WARN_ON(!list || !lsm))
575 		return false;
576 	last = strrchr(list, ',');
577 	if (last)
578 		/* Pass the comma, strcmp() will check for '\0' */
579 		last++;
580 	else
581 		last = list;
582 	return !strcmp(last, lsm);
583 }
584 
585 static int lsm_append(const char *new, char **result)
586 {
587 	char *cp;
588 
589 	if (*result == NULL) {
590 		*result = kstrdup(new, GFP_KERNEL);
591 		if (*result == NULL)
592 			return -ENOMEM;
593 	} else {
594 		/* Check if it is the last registered name */
595 		if (match_last_lsm(*result, new))
596 			return 0;
597 		cp = kasprintf(GFP_KERNEL, "%s,%s", *result, new);
598 		if (cp == NULL)
599 			return -ENOMEM;
600 		kfree(*result);
601 		*result = cp;
602 	}
603 	return 0;
604 }
605 
606 /**
607  * security_add_hooks - Add a modules hooks to the hook lists.
608  * @hooks: the hooks to add
609  * @count: the number of hooks to add
610  * @lsmid: the identification information for the security module
611  *
612  * Each LSM has to register its hooks with the infrastructure.
613  */
614 void __init security_add_hooks(struct security_hook_list *hooks, int count,
615 			       const struct lsm_id *lsmid)
616 {
617 	int i;
618 
619 	/*
620 	 * A security module may call security_add_hooks() more
621 	 * than once during initialization, and LSM initialization
622 	 * is serialized. Landlock is one such case.
623 	 * Look at the previous entry, if there is one, for duplication.
624 	 */
625 	if (lsm_active_cnt == 0 || lsm_idlist[lsm_active_cnt - 1] != lsmid) {
626 		if (lsm_active_cnt >= MAX_LSM_COUNT)
627 			panic("%s Too many LSMs registered.\n", __func__);
628 		lsm_idlist[lsm_active_cnt++] = lsmid;
629 	}
630 
631 	for (i = 0; i < count; i++) {
632 		hooks[i].lsmid = lsmid;
633 		lsm_static_call_init(&hooks[i]);
634 	}
635 
636 	/*
637 	 * Don't try to append during early_security_init(), we'll come back
638 	 * and fix this up afterwards.
639 	 */
640 	if (slab_is_available()) {
641 		if (lsm_append(lsmid->name, &lsm_names) < 0)
642 			panic("%s - Cannot get early memory.\n", __func__);
643 	}
644 }
645 
646 int call_blocking_lsm_notifier(enum lsm_event event, void *data)
647 {
648 	return blocking_notifier_call_chain(&blocking_lsm_notifier_chain,
649 					    event, data);
650 }
651 EXPORT_SYMBOL(call_blocking_lsm_notifier);
652 
653 int register_blocking_lsm_notifier(struct notifier_block *nb)
654 {
655 	return blocking_notifier_chain_register(&blocking_lsm_notifier_chain,
656 						nb);
657 }
658 EXPORT_SYMBOL(register_blocking_lsm_notifier);
659 
660 int unregister_blocking_lsm_notifier(struct notifier_block *nb)
661 {
662 	return blocking_notifier_chain_unregister(&blocking_lsm_notifier_chain,
663 						  nb);
664 }
665 EXPORT_SYMBOL(unregister_blocking_lsm_notifier);
666 
667 /**
668  * lsm_blob_alloc - allocate a composite blob
669  * @dest: the destination for the blob
670  * @size: the size of the blob
671  * @gfp: allocation type
672  *
673  * Allocate a blob for all the modules
674  *
675  * Returns 0, or -ENOMEM if memory can't be allocated.
676  */
677 static int lsm_blob_alloc(void **dest, size_t size, gfp_t gfp)
678 {
679 	if (size == 0) {
680 		*dest = NULL;
681 		return 0;
682 	}
683 
684 	*dest = kzalloc(size, gfp);
685 	if (*dest == NULL)
686 		return -ENOMEM;
687 	return 0;
688 }
689 
690 /**
691  * lsm_cred_alloc - allocate a composite cred blob
692  * @cred: the cred that needs a blob
693  * @gfp: allocation type
694  *
695  * Allocate the cred blob for all the modules
696  *
697  * Returns 0, or -ENOMEM if memory can't be allocated.
698  */
699 static int lsm_cred_alloc(struct cred *cred, gfp_t gfp)
700 {
701 	return lsm_blob_alloc(&cred->security, blob_sizes.lbs_cred, gfp);
702 }
703 
704 /**
705  * lsm_early_cred - during initialization allocate a composite cred blob
706  * @cred: the cred that needs a blob
707  *
708  * Allocate the cred blob for all the modules
709  */
710 static void __init lsm_early_cred(struct cred *cred)
711 {
712 	int rc = lsm_cred_alloc(cred, GFP_KERNEL);
713 
714 	if (rc)
715 		panic("%s: Early cred alloc failed.\n", __func__);
716 }
717 
718 /**
719  * lsm_file_alloc - allocate a composite file blob
720  * @file: the file that needs a blob
721  *
722  * Allocate the file blob for all the modules
723  *
724  * Returns 0, or -ENOMEM if memory can't be allocated.
725  */
726 static int lsm_file_alloc(struct file *file)
727 {
728 	if (!lsm_file_cache) {
729 		file->f_security = NULL;
730 		return 0;
731 	}
732 
733 	file->f_security = kmem_cache_zalloc(lsm_file_cache, GFP_KERNEL);
734 	if (file->f_security == NULL)
735 		return -ENOMEM;
736 	return 0;
737 }
738 
739 /**
740  * lsm_inode_alloc - allocate a composite inode blob
741  * @inode: the inode that needs a blob
742  * @gfp: allocation flags
743  *
744  * Allocate the inode blob for all the modules
745  *
746  * Returns 0, or -ENOMEM if memory can't be allocated.
747  */
748 static int lsm_inode_alloc(struct inode *inode, gfp_t gfp)
749 {
750 	if (!lsm_inode_cache) {
751 		inode->i_security = NULL;
752 		return 0;
753 	}
754 
755 	inode->i_security = kmem_cache_zalloc(lsm_inode_cache, gfp);
756 	if (inode->i_security == NULL)
757 		return -ENOMEM;
758 	return 0;
759 }
760 
761 /**
762  * lsm_task_alloc - allocate a composite task blob
763  * @task: the task that needs a blob
764  *
765  * Allocate the task blob for all the modules
766  *
767  * Returns 0, or -ENOMEM if memory can't be allocated.
768  */
769 static int lsm_task_alloc(struct task_struct *task)
770 {
771 	return lsm_blob_alloc(&task->security, blob_sizes.lbs_task, GFP_KERNEL);
772 }
773 
774 /**
775  * lsm_ipc_alloc - allocate a composite ipc blob
776  * @kip: the ipc that needs a blob
777  *
778  * Allocate the ipc blob for all the modules
779  *
780  * Returns 0, or -ENOMEM if memory can't be allocated.
781  */
782 static int lsm_ipc_alloc(struct kern_ipc_perm *kip)
783 {
784 	return lsm_blob_alloc(&kip->security, blob_sizes.lbs_ipc, GFP_KERNEL);
785 }
786 
787 #ifdef CONFIG_KEYS
788 /**
789  * lsm_key_alloc - allocate a composite key blob
790  * @key: the key that needs a blob
791  *
792  * Allocate the key blob for all the modules
793  *
794  * Returns 0, or -ENOMEM if memory can't be allocated.
795  */
796 static int lsm_key_alloc(struct key *key)
797 {
798 	return lsm_blob_alloc(&key->security, blob_sizes.lbs_key, GFP_KERNEL);
799 }
800 #endif /* CONFIG_KEYS */
801 
802 /**
803  * lsm_msg_msg_alloc - allocate a composite msg_msg blob
804  * @mp: the msg_msg that needs a blob
805  *
806  * Allocate the ipc blob for all the modules
807  *
808  * Returns 0, or -ENOMEM if memory can't be allocated.
809  */
810 static int lsm_msg_msg_alloc(struct msg_msg *mp)
811 {
812 	return lsm_blob_alloc(&mp->security, blob_sizes.lbs_msg_msg,
813 			      GFP_KERNEL);
814 }
815 
816 /**
817  * lsm_bdev_alloc - allocate a composite block_device blob
818  * @bdev: the block_device that needs a blob
819  *
820  * Allocate the block_device blob for all the modules
821  *
822  * Returns 0, or -ENOMEM if memory can't be allocated.
823  */
824 static int lsm_bdev_alloc(struct block_device *bdev)
825 {
826 	if (blob_sizes.lbs_bdev == 0) {
827 		bdev->bd_security = NULL;
828 		return 0;
829 	}
830 
831 	bdev->bd_security = kzalloc(blob_sizes.lbs_bdev, GFP_KERNEL);
832 	if (!bdev->bd_security)
833 		return -ENOMEM;
834 
835 	return 0;
836 }
837 
838 /**
839  * lsm_early_task - during initialization allocate a composite task blob
840  * @task: the task that needs a blob
841  *
842  * Allocate the task blob for all the modules
843  */
844 static void __init lsm_early_task(struct task_struct *task)
845 {
846 	int rc = lsm_task_alloc(task);
847 
848 	if (rc)
849 		panic("%s: Early task alloc failed.\n", __func__);
850 }
851 
852 /**
853  * lsm_superblock_alloc - allocate a composite superblock blob
854  * @sb: the superblock that needs a blob
855  *
856  * Allocate the superblock blob for all the modules
857  *
858  * Returns 0, or -ENOMEM if memory can't be allocated.
859  */
860 static int lsm_superblock_alloc(struct super_block *sb)
861 {
862 	return lsm_blob_alloc(&sb->s_security, blob_sizes.lbs_superblock,
863 			      GFP_KERNEL);
864 }
865 
866 /**
867  * lsm_fill_user_ctx - Fill a user space lsm_ctx structure
868  * @uctx: a userspace LSM context to be filled
869  * @uctx_len: available uctx size (input), used uctx size (output)
870  * @val: the new LSM context value
871  * @val_len: the size of the new LSM context value
872  * @id: LSM id
873  * @flags: LSM defined flags
874  *
875  * Fill all of the fields in a userspace lsm_ctx structure.  If @uctx is NULL
876  * simply calculate the required size to output via @utc_len and return
877  * success.
878  *
879  * Returns 0 on success, -E2BIG if userspace buffer is not large enough,
880  * -EFAULT on a copyout error, -ENOMEM if memory can't be allocated.
881  */
882 int lsm_fill_user_ctx(struct lsm_ctx __user *uctx, u32 *uctx_len,
883 		      void *val, size_t val_len,
884 		      u64 id, u64 flags)
885 {
886 	struct lsm_ctx *nctx = NULL;
887 	size_t nctx_len;
888 	int rc = 0;
889 
890 	nctx_len = ALIGN(struct_size(nctx, ctx, val_len), sizeof(void *));
891 	if (nctx_len > *uctx_len) {
892 		rc = -E2BIG;
893 		goto out;
894 	}
895 
896 	/* no buffer - return success/0 and set @uctx_len to the req size */
897 	if (!uctx)
898 		goto out;
899 
900 	nctx = kzalloc(nctx_len, GFP_KERNEL);
901 	if (nctx == NULL) {
902 		rc = -ENOMEM;
903 		goto out;
904 	}
905 	nctx->id = id;
906 	nctx->flags = flags;
907 	nctx->len = nctx_len;
908 	nctx->ctx_len = val_len;
909 	memcpy(nctx->ctx, val, val_len);
910 
911 	if (copy_to_user(uctx, nctx, nctx_len))
912 		rc = -EFAULT;
913 
914 out:
915 	kfree(nctx);
916 	*uctx_len = nctx_len;
917 	return rc;
918 }
919 
920 /*
921  * The default value of the LSM hook is defined in linux/lsm_hook_defs.h and
922  * can be accessed with:
923  *
924  *	LSM_RET_DEFAULT(<hook_name>)
925  *
926  * The macros below define static constants for the default value of each
927  * LSM hook.
928  */
929 #define LSM_RET_DEFAULT(NAME) (NAME##_default)
930 #define DECLARE_LSM_RET_DEFAULT_void(DEFAULT, NAME)
931 #define DECLARE_LSM_RET_DEFAULT_int(DEFAULT, NAME) \
932 	static const int __maybe_unused LSM_RET_DEFAULT(NAME) = (DEFAULT);
933 #define LSM_HOOK(RET, DEFAULT, NAME, ...) \
934 	DECLARE_LSM_RET_DEFAULT_##RET(DEFAULT, NAME)
935 
936 #include <linux/lsm_hook_defs.h>
937 #undef LSM_HOOK
938 
939 /*
940  * Hook list operation macros.
941  *
942  * call_void_hook:
943  *	This is a hook that does not return a value.
944  *
945  * call_int_hook:
946  *	This is a hook that returns a value.
947  */
948 #define __CALL_STATIC_VOID(NUM, HOOK, ...)				     \
949 do {									     \
950 	if (static_branch_unlikely(&SECURITY_HOOK_ACTIVE_KEY(HOOK, NUM))) {    \
951 		static_call(LSM_STATIC_CALL(HOOK, NUM))(__VA_ARGS__);	     \
952 	}								     \
953 } while (0);
954 
955 #define call_void_hook(HOOK, ...)                                 \
956 	do {                                                      \
957 		LSM_LOOP_UNROLL(__CALL_STATIC_VOID, HOOK, __VA_ARGS__); \
958 	} while (0)
959 
960 
961 #define __CALL_STATIC_INT(NUM, R, HOOK, LABEL, ...)			     \
962 do {									     \
963 	if (static_branch_unlikely(&SECURITY_HOOK_ACTIVE_KEY(HOOK, NUM))) {  \
964 		R = static_call(LSM_STATIC_CALL(HOOK, NUM))(__VA_ARGS__);    \
965 		if (R != LSM_RET_DEFAULT(HOOK))				     \
966 			goto LABEL;					     \
967 	}								     \
968 } while (0);
969 
970 #define call_int_hook(HOOK, ...)					\
971 ({									\
972 	__label__ OUT;							\
973 	int RC = LSM_RET_DEFAULT(HOOK);					\
974 									\
975 	LSM_LOOP_UNROLL(__CALL_STATIC_INT, RC, HOOK, OUT, __VA_ARGS__);	\
976 OUT:									\
977 	RC;								\
978 })
979 
980 #define lsm_for_each_hook(scall, NAME)					\
981 	for (scall = static_calls_table.NAME;				\
982 	     scall - static_calls_table.NAME < MAX_LSM_COUNT; scall++)  \
983 		if (static_key_enabled(&scall->active->key))
984 
985 /* Security operations */
986 
987 /**
988  * security_binder_set_context_mgr() - Check if becoming binder ctx mgr is ok
989  * @mgr: task credentials of current binder process
990  *
991  * Check whether @mgr is allowed to be the binder context manager.
992  *
993  * Return: Return 0 if permission is granted.
994  */
995 int security_binder_set_context_mgr(const struct cred *mgr)
996 {
997 	return call_int_hook(binder_set_context_mgr, mgr);
998 }
999 
1000 /**
1001  * security_binder_transaction() - Check if a binder transaction is allowed
1002  * @from: sending process
1003  * @to: receiving process
1004  *
1005  * Check whether @from is allowed to invoke a binder transaction call to @to.
1006  *
1007  * Return: Returns 0 if permission is granted.
1008  */
1009 int security_binder_transaction(const struct cred *from,
1010 				const struct cred *to)
1011 {
1012 	return call_int_hook(binder_transaction, from, to);
1013 }
1014 
1015 /**
1016  * security_binder_transfer_binder() - Check if a binder transfer is allowed
1017  * @from: sending process
1018  * @to: receiving process
1019  *
1020  * Check whether @from is allowed to transfer a binder reference to @to.
1021  *
1022  * Return: Returns 0 if permission is granted.
1023  */
1024 int security_binder_transfer_binder(const struct cred *from,
1025 				    const struct cred *to)
1026 {
1027 	return call_int_hook(binder_transfer_binder, from, to);
1028 }
1029 
1030 /**
1031  * security_binder_transfer_file() - Check if a binder file xfer is allowed
1032  * @from: sending process
1033  * @to: receiving process
1034  * @file: file being transferred
1035  *
1036  * Check whether @from is allowed to transfer @file to @to.
1037  *
1038  * Return: Returns 0 if permission is granted.
1039  */
1040 int security_binder_transfer_file(const struct cred *from,
1041 				  const struct cred *to, const struct file *file)
1042 {
1043 	return call_int_hook(binder_transfer_file, from, to, file);
1044 }
1045 
1046 /**
1047  * security_ptrace_access_check() - Check if tracing is allowed
1048  * @child: target process
1049  * @mode: PTRACE_MODE flags
1050  *
1051  * Check permission before allowing the current process to trace the @child
1052  * process.  Security modules may also want to perform a process tracing check
1053  * during an execve in the set_security or apply_creds hooks of tracing check
1054  * during an execve in the bprm_set_creds hook of binprm_security_ops if the
1055  * process is being traced and its security attributes would be changed by the
1056  * execve.
1057  *
1058  * Return: Returns 0 if permission is granted.
1059  */
1060 int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
1061 {
1062 	return call_int_hook(ptrace_access_check, child, mode);
1063 }
1064 
1065 /**
1066  * security_ptrace_traceme() - Check if tracing is allowed
1067  * @parent: tracing process
1068  *
1069  * Check that the @parent process has sufficient permission to trace the
1070  * current process before allowing the current process to present itself to the
1071  * @parent process for tracing.
1072  *
1073  * Return: Returns 0 if permission is granted.
1074  */
1075 int security_ptrace_traceme(struct task_struct *parent)
1076 {
1077 	return call_int_hook(ptrace_traceme, parent);
1078 }
1079 
1080 /**
1081  * security_capget() - Get the capability sets for a process
1082  * @target: target process
1083  * @effective: effective capability set
1084  * @inheritable: inheritable capability set
1085  * @permitted: permitted capability set
1086  *
1087  * Get the @effective, @inheritable, and @permitted capability sets for the
1088  * @target process.  The hook may also perform permission checking to determine
1089  * if the current process is allowed to see the capability sets of the @target
1090  * process.
1091  *
1092  * Return: Returns 0 if the capability sets were successfully obtained.
1093  */
1094 int security_capget(const struct task_struct *target,
1095 		    kernel_cap_t *effective,
1096 		    kernel_cap_t *inheritable,
1097 		    kernel_cap_t *permitted)
1098 {
1099 	return call_int_hook(capget, target, effective, inheritable, permitted);
1100 }
1101 
1102 /**
1103  * security_capset() - Set the capability sets for a process
1104  * @new: new credentials for the target process
1105  * @old: current credentials of the target process
1106  * @effective: effective capability set
1107  * @inheritable: inheritable capability set
1108  * @permitted: permitted capability set
1109  *
1110  * Set the @effective, @inheritable, and @permitted capability sets for the
1111  * current process.
1112  *
1113  * Return: Returns 0 and update @new if permission is granted.
1114  */
1115 int security_capset(struct cred *new, const struct cred *old,
1116 		    const kernel_cap_t *effective,
1117 		    const kernel_cap_t *inheritable,
1118 		    const kernel_cap_t *permitted)
1119 {
1120 	return call_int_hook(capset, new, old, effective, inheritable,
1121 			     permitted);
1122 }
1123 
1124 /**
1125  * security_capable() - Check if a process has the necessary capability
1126  * @cred: credentials to examine
1127  * @ns: user namespace
1128  * @cap: capability requested
1129  * @opts: capability check options
1130  *
1131  * Check whether the @tsk process has the @cap capability in the indicated
1132  * credentials.  @cap contains the capability <include/linux/capability.h>.
1133  * @opts contains options for the capable check <include/linux/security.h>.
1134  *
1135  * Return: Returns 0 if the capability is granted.
1136  */
1137 int security_capable(const struct cred *cred,
1138 		     struct user_namespace *ns,
1139 		     int cap,
1140 		     unsigned int opts)
1141 {
1142 	return call_int_hook(capable, cred, ns, cap, opts);
1143 }
1144 
1145 /**
1146  * security_quotactl() - Check if a quotactl() syscall is allowed for this fs
1147  * @cmds: commands
1148  * @type: type
1149  * @id: id
1150  * @sb: filesystem
1151  *
1152  * Check whether the quotactl syscall is allowed for this @sb.
1153  *
1154  * Return: Returns 0 if permission is granted.
1155  */
1156 int security_quotactl(int cmds, int type, int id, const struct super_block *sb)
1157 {
1158 	return call_int_hook(quotactl, cmds, type, id, sb);
1159 }
1160 
1161 /**
1162  * security_quota_on() - Check if QUOTAON is allowed for a dentry
1163  * @dentry: dentry
1164  *
1165  * Check whether QUOTAON is allowed for @dentry.
1166  *
1167  * Return: Returns 0 if permission is granted.
1168  */
1169 int security_quota_on(struct dentry *dentry)
1170 {
1171 	return call_int_hook(quota_on, dentry);
1172 }
1173 
1174 /**
1175  * security_syslog() - Check if accessing the kernel message ring is allowed
1176  * @type: SYSLOG_ACTION_* type
1177  *
1178  * Check permission before accessing the kernel message ring or changing
1179  * logging to the console.  See the syslog(2) manual page for an explanation of
1180  * the @type values.
1181  *
1182  * Return: Return 0 if permission is granted.
1183  */
1184 int security_syslog(int type)
1185 {
1186 	return call_int_hook(syslog, type);
1187 }
1188 
1189 /**
1190  * security_settime64() - Check if changing the system time is allowed
1191  * @ts: new time
1192  * @tz: timezone
1193  *
1194  * Check permission to change the system time, struct timespec64 is defined in
1195  * <include/linux/time64.h> and timezone is defined in <include/linux/time.h>.
1196  *
1197  * Return: Returns 0 if permission is granted.
1198  */
1199 int security_settime64(const struct timespec64 *ts, const struct timezone *tz)
1200 {
1201 	return call_int_hook(settime, ts, tz);
1202 }
1203 
1204 /**
1205  * security_vm_enough_memory_mm() - Check if allocating a new mem map is allowed
1206  * @mm: mm struct
1207  * @pages: number of pages
1208  *
1209  * Check permissions for allocating a new virtual mapping.  If all LSMs return
1210  * a positive value, __vm_enough_memory() will be called with cap_sys_admin
1211  * set. If at least one LSM returns 0 or negative, __vm_enough_memory() will be
1212  * called with cap_sys_admin cleared.
1213  *
1214  * Return: Returns 0 if permission is granted by the LSM infrastructure to the
1215  *         caller.
1216  */
1217 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
1218 {
1219 	struct lsm_static_call *scall;
1220 	int cap_sys_admin = 1;
1221 	int rc;
1222 
1223 	/*
1224 	 * The module will respond with 0 if it thinks the __vm_enough_memory()
1225 	 * call should be made with the cap_sys_admin set. If all of the modules
1226 	 * agree that it should be set it will. If any module thinks it should
1227 	 * not be set it won't.
1228 	 */
1229 	lsm_for_each_hook(scall, vm_enough_memory) {
1230 		rc = scall->hl->hook.vm_enough_memory(mm, pages);
1231 		if (rc < 0) {
1232 			cap_sys_admin = 0;
1233 			break;
1234 		}
1235 	}
1236 	return __vm_enough_memory(mm, pages, cap_sys_admin);
1237 }
1238 
1239 /**
1240  * security_bprm_creds_for_exec() - Prepare the credentials for exec()
1241  * @bprm: binary program information
1242  *
1243  * If the setup in prepare_exec_creds did not setup @bprm->cred->security
1244  * properly for executing @bprm->file, update the LSM's portion of
1245  * @bprm->cred->security to be what commit_creds needs to install for the new
1246  * program.  This hook may also optionally check permissions (e.g. for
1247  * transitions between security domains).  The hook must set @bprm->secureexec
1248  * to 1 if AT_SECURE should be set to request libc enable secure mode.  @bprm
1249  * contains the linux_binprm structure.
1250  *
1251  * If execveat(2) is called with the AT_EXECVE_CHECK flag, bprm->is_check is
1252  * set.  The result must be the same as without this flag even if the execution
1253  * will never really happen and @bprm will always be dropped.
1254  *
1255  * This hook must not change current->cred, only @bprm->cred.
1256  *
1257  * Return: Returns 0 if the hook is successful and permission is granted.
1258  */
1259 int security_bprm_creds_for_exec(struct linux_binprm *bprm)
1260 {
1261 	return call_int_hook(bprm_creds_for_exec, bprm);
1262 }
1263 
1264 /**
1265  * security_bprm_creds_from_file() - Update linux_binprm creds based on file
1266  * @bprm: binary program information
1267  * @file: associated file
1268  *
1269  * If @file is setpcap, suid, sgid or otherwise marked to change privilege upon
1270  * exec, update @bprm->cred to reflect that change. This is called after
1271  * finding the binary that will be executed without an interpreter.  This
1272  * ensures that the credentials will not be derived from a script that the
1273  * binary will need to reopen, which when reopend may end up being a completely
1274  * different file.  This hook may also optionally check permissions (e.g. for
1275  * transitions between security domains).  The hook must set @bprm->secureexec
1276  * to 1 if AT_SECURE should be set to request libc enable secure mode.  The
1277  * hook must add to @bprm->per_clear any personality flags that should be
1278  * cleared from current->personality.  @bprm contains the linux_binprm
1279  * structure.
1280  *
1281  * Return: Returns 0 if the hook is successful and permission is granted.
1282  */
1283 int security_bprm_creds_from_file(struct linux_binprm *bprm, const struct file *file)
1284 {
1285 	return call_int_hook(bprm_creds_from_file, bprm, file);
1286 }
1287 
1288 /**
1289  * security_bprm_check() - Mediate binary handler search
1290  * @bprm: binary program information
1291  *
1292  * This hook mediates the point when a search for a binary handler will begin.
1293  * It allows a check against the @bprm->cred->security value which was set in
1294  * the preceding creds_for_exec call.  The argv list and envp list are reliably
1295  * available in @bprm.  This hook may be called multiple times during a single
1296  * execve.  @bprm contains the linux_binprm structure.
1297  *
1298  * Return: Returns 0 if the hook is successful and permission is granted.
1299  */
1300 int security_bprm_check(struct linux_binprm *bprm)
1301 {
1302 	return call_int_hook(bprm_check_security, bprm);
1303 }
1304 
1305 /**
1306  * security_bprm_committing_creds() - Install creds for a process during exec()
1307  * @bprm: binary program information
1308  *
1309  * Prepare to install the new security attributes of a process being
1310  * transformed by an execve operation, based on the old credentials pointed to
1311  * by @current->cred and the information set in @bprm->cred by the
1312  * bprm_creds_for_exec hook.  @bprm points to the linux_binprm structure.  This
1313  * hook is a good place to perform state changes on the process such as closing
1314  * open file descriptors to which access will no longer be granted when the
1315  * attributes are changed.  This is called immediately before commit_creds().
1316  */
1317 void security_bprm_committing_creds(const struct linux_binprm *bprm)
1318 {
1319 	call_void_hook(bprm_committing_creds, bprm);
1320 }
1321 
1322 /**
1323  * security_bprm_committed_creds() - Tidy up after cred install during exec()
1324  * @bprm: binary program information
1325  *
1326  * Tidy up after the installation of the new security attributes of a process
1327  * being transformed by an execve operation.  The new credentials have, by this
1328  * point, been set to @current->cred.  @bprm points to the linux_binprm
1329  * structure.  This hook is a good place to perform state changes on the
1330  * process such as clearing out non-inheritable signal state.  This is called
1331  * immediately after commit_creds().
1332  */
1333 void security_bprm_committed_creds(const struct linux_binprm *bprm)
1334 {
1335 	call_void_hook(bprm_committed_creds, bprm);
1336 }
1337 
1338 /**
1339  * security_fs_context_submount() - Initialise fc->security
1340  * @fc: new filesystem context
1341  * @reference: dentry reference for submount/remount
1342  *
1343  * Fill out the ->security field for a new fs_context.
1344  *
1345  * Return: Returns 0 on success or negative error code on failure.
1346  */
1347 int security_fs_context_submount(struct fs_context *fc, struct super_block *reference)
1348 {
1349 	return call_int_hook(fs_context_submount, fc, reference);
1350 }
1351 
1352 /**
1353  * security_fs_context_dup() - Duplicate a fs_context LSM blob
1354  * @fc: destination filesystem context
1355  * @src_fc: source filesystem context
1356  *
1357  * Allocate and attach a security structure to sc->security.  This pointer is
1358  * initialised to NULL by the caller.  @fc indicates the new filesystem context.
1359  * @src_fc indicates the original filesystem context.
1360  *
1361  * Return: Returns 0 on success or a negative error code on failure.
1362  */
1363 int security_fs_context_dup(struct fs_context *fc, struct fs_context *src_fc)
1364 {
1365 	return call_int_hook(fs_context_dup, fc, src_fc);
1366 }
1367 
1368 /**
1369  * security_fs_context_parse_param() - Configure a filesystem context
1370  * @fc: filesystem context
1371  * @param: filesystem parameter
1372  *
1373  * Userspace provided a parameter to configure a superblock.  The LSM can
1374  * consume the parameter or return it to the caller for use elsewhere.
1375  *
1376  * Return: If the parameter is used by the LSM it should return 0, if it is
1377  *         returned to the caller -ENOPARAM is returned, otherwise a negative
1378  *         error code is returned.
1379  */
1380 int security_fs_context_parse_param(struct fs_context *fc,
1381 				    struct fs_parameter *param)
1382 {
1383 	struct lsm_static_call *scall;
1384 	int trc;
1385 	int rc = -ENOPARAM;
1386 
1387 	lsm_for_each_hook(scall, fs_context_parse_param) {
1388 		trc = scall->hl->hook.fs_context_parse_param(fc, param);
1389 		if (trc == 0)
1390 			rc = 0;
1391 		else if (trc != -ENOPARAM)
1392 			return trc;
1393 	}
1394 	return rc;
1395 }
1396 
1397 /**
1398  * security_sb_alloc() - Allocate a super_block LSM blob
1399  * @sb: filesystem superblock
1400  *
1401  * Allocate and attach a security structure to the sb->s_security field.  The
1402  * s_security field is initialized to NULL when the structure is allocated.
1403  * @sb contains the super_block structure to be modified.
1404  *
1405  * Return: Returns 0 if operation was successful.
1406  */
1407 int security_sb_alloc(struct super_block *sb)
1408 {
1409 	int rc = lsm_superblock_alloc(sb);
1410 
1411 	if (unlikely(rc))
1412 		return rc;
1413 	rc = call_int_hook(sb_alloc_security, sb);
1414 	if (unlikely(rc))
1415 		security_sb_free(sb);
1416 	return rc;
1417 }
1418 
1419 /**
1420  * security_sb_delete() - Release super_block LSM associated objects
1421  * @sb: filesystem superblock
1422  *
1423  * Release objects tied to a superblock (e.g. inodes).  @sb contains the
1424  * super_block structure being released.
1425  */
1426 void security_sb_delete(struct super_block *sb)
1427 {
1428 	call_void_hook(sb_delete, sb);
1429 }
1430 
1431 /**
1432  * security_sb_free() - Free a super_block LSM blob
1433  * @sb: filesystem superblock
1434  *
1435  * Deallocate and clear the sb->s_security field.  @sb contains the super_block
1436  * structure to be modified.
1437  */
1438 void security_sb_free(struct super_block *sb)
1439 {
1440 	call_void_hook(sb_free_security, sb);
1441 	kfree(sb->s_security);
1442 	sb->s_security = NULL;
1443 }
1444 
1445 /**
1446  * security_free_mnt_opts() - Free memory associated with mount options
1447  * @mnt_opts: LSM processed mount options
1448  *
1449  * Free memory associated with @mnt_ops.
1450  */
1451 void security_free_mnt_opts(void **mnt_opts)
1452 {
1453 	if (!*mnt_opts)
1454 		return;
1455 	call_void_hook(sb_free_mnt_opts, *mnt_opts);
1456 	*mnt_opts = NULL;
1457 }
1458 EXPORT_SYMBOL(security_free_mnt_opts);
1459 
1460 /**
1461  * security_sb_eat_lsm_opts() - Consume LSM mount options
1462  * @options: mount options
1463  * @mnt_opts: LSM processed mount options
1464  *
1465  * Eat (scan @options) and save them in @mnt_opts.
1466  *
1467  * Return: Returns 0 on success, negative values on failure.
1468  */
1469 int security_sb_eat_lsm_opts(char *options, void **mnt_opts)
1470 {
1471 	return call_int_hook(sb_eat_lsm_opts, options, mnt_opts);
1472 }
1473 EXPORT_SYMBOL(security_sb_eat_lsm_opts);
1474 
1475 /**
1476  * security_sb_mnt_opts_compat() - Check if new mount options are allowed
1477  * @sb: filesystem superblock
1478  * @mnt_opts: new mount options
1479  *
1480  * Determine if the new mount options in @mnt_opts are allowed given the
1481  * existing mounted filesystem at @sb.  @sb superblock being compared.
1482  *
1483  * Return: Returns 0 if options are compatible.
1484  */
1485 int security_sb_mnt_opts_compat(struct super_block *sb,
1486 				void *mnt_opts)
1487 {
1488 	return call_int_hook(sb_mnt_opts_compat, sb, mnt_opts);
1489 }
1490 EXPORT_SYMBOL(security_sb_mnt_opts_compat);
1491 
1492 /**
1493  * security_sb_remount() - Verify no incompatible mount changes during remount
1494  * @sb: filesystem superblock
1495  * @mnt_opts: (re)mount options
1496  *
1497  * Extracts security system specific mount options and verifies no changes are
1498  * being made to those options.
1499  *
1500  * Return: Returns 0 if permission is granted.
1501  */
1502 int security_sb_remount(struct super_block *sb,
1503 			void *mnt_opts)
1504 {
1505 	return call_int_hook(sb_remount, sb, mnt_opts);
1506 }
1507 EXPORT_SYMBOL(security_sb_remount);
1508 
1509 /**
1510  * security_sb_kern_mount() - Check if a kernel mount is allowed
1511  * @sb: filesystem superblock
1512  *
1513  * Mount this @sb if allowed by permissions.
1514  *
1515  * Return: Returns 0 if permission is granted.
1516  */
1517 int security_sb_kern_mount(const struct super_block *sb)
1518 {
1519 	return call_int_hook(sb_kern_mount, sb);
1520 }
1521 
1522 /**
1523  * security_sb_show_options() - Output the mount options for a superblock
1524  * @m: output file
1525  * @sb: filesystem superblock
1526  *
1527  * Show (print on @m) mount options for this @sb.
1528  *
1529  * Return: Returns 0 on success, negative values on failure.
1530  */
1531 int security_sb_show_options(struct seq_file *m, struct super_block *sb)
1532 {
1533 	return call_int_hook(sb_show_options, m, sb);
1534 }
1535 
1536 /**
1537  * security_sb_statfs() - Check if accessing fs stats is allowed
1538  * @dentry: superblock handle
1539  *
1540  * Check permission before obtaining filesystem statistics for the @mnt
1541  * mountpoint.  @dentry is a handle on the superblock for the filesystem.
1542  *
1543  * Return: Returns 0 if permission is granted.
1544  */
1545 int security_sb_statfs(struct dentry *dentry)
1546 {
1547 	return call_int_hook(sb_statfs, dentry);
1548 }
1549 
1550 /**
1551  * security_sb_mount() - Check permission for mounting a filesystem
1552  * @dev_name: filesystem backing device
1553  * @path: mount point
1554  * @type: filesystem type
1555  * @flags: mount flags
1556  * @data: filesystem specific data
1557  *
1558  * Check permission before an object specified by @dev_name is mounted on the
1559  * mount point named by @nd.  For an ordinary mount, @dev_name identifies a
1560  * device if the file system type requires a device.  For a remount
1561  * (@flags & MS_REMOUNT), @dev_name is irrelevant.  For a loopback/bind mount
1562  * (@flags & MS_BIND), @dev_name identifies the	pathname of the object being
1563  * mounted.
1564  *
1565  * Return: Returns 0 if permission is granted.
1566  */
1567 int security_sb_mount(const char *dev_name, const struct path *path,
1568 		      const char *type, unsigned long flags, void *data)
1569 {
1570 	return call_int_hook(sb_mount, dev_name, path, type, flags, data);
1571 }
1572 
1573 /**
1574  * security_sb_umount() - Check permission for unmounting a filesystem
1575  * @mnt: mounted filesystem
1576  * @flags: unmount flags
1577  *
1578  * Check permission before the @mnt file system is unmounted.
1579  *
1580  * Return: Returns 0 if permission is granted.
1581  */
1582 int security_sb_umount(struct vfsmount *mnt, int flags)
1583 {
1584 	return call_int_hook(sb_umount, mnt, flags);
1585 }
1586 
1587 /**
1588  * security_sb_pivotroot() - Check permissions for pivoting the rootfs
1589  * @old_path: new location for current rootfs
1590  * @new_path: location of the new rootfs
1591  *
1592  * Check permission before pivoting the root filesystem.
1593  *
1594  * Return: Returns 0 if permission is granted.
1595  */
1596 int security_sb_pivotroot(const struct path *old_path,
1597 			  const struct path *new_path)
1598 {
1599 	return call_int_hook(sb_pivotroot, old_path, new_path);
1600 }
1601 
1602 /**
1603  * security_sb_set_mnt_opts() - Set the mount options for a filesystem
1604  * @sb: filesystem superblock
1605  * @mnt_opts: binary mount options
1606  * @kern_flags: kernel flags (in)
1607  * @set_kern_flags: kernel flags (out)
1608  *
1609  * Set the security relevant mount options used for a superblock.
1610  *
1611  * Return: Returns 0 on success, error on failure.
1612  */
1613 int security_sb_set_mnt_opts(struct super_block *sb,
1614 			     void *mnt_opts,
1615 			     unsigned long kern_flags,
1616 			     unsigned long *set_kern_flags)
1617 {
1618 	struct lsm_static_call *scall;
1619 	int rc = mnt_opts ? -EOPNOTSUPP : LSM_RET_DEFAULT(sb_set_mnt_opts);
1620 
1621 	lsm_for_each_hook(scall, sb_set_mnt_opts) {
1622 		rc = scall->hl->hook.sb_set_mnt_opts(sb, mnt_opts, kern_flags,
1623 					      set_kern_flags);
1624 		if (rc != LSM_RET_DEFAULT(sb_set_mnt_opts))
1625 			break;
1626 	}
1627 	return rc;
1628 }
1629 EXPORT_SYMBOL(security_sb_set_mnt_opts);
1630 
1631 /**
1632  * security_sb_clone_mnt_opts() - Duplicate superblock mount options
1633  * @oldsb: source superblock
1634  * @newsb: destination superblock
1635  * @kern_flags: kernel flags (in)
1636  * @set_kern_flags: kernel flags (out)
1637  *
1638  * Copy all security options from a given superblock to another.
1639  *
1640  * Return: Returns 0 on success, error on failure.
1641  */
1642 int security_sb_clone_mnt_opts(const struct super_block *oldsb,
1643 			       struct super_block *newsb,
1644 			       unsigned long kern_flags,
1645 			       unsigned long *set_kern_flags)
1646 {
1647 	return call_int_hook(sb_clone_mnt_opts, oldsb, newsb,
1648 			     kern_flags, set_kern_flags);
1649 }
1650 EXPORT_SYMBOL(security_sb_clone_mnt_opts);
1651 
1652 /**
1653  * security_move_mount() - Check permissions for moving a mount
1654  * @from_path: source mount point
1655  * @to_path: destination mount point
1656  *
1657  * Check permission before a mount is moved.
1658  *
1659  * Return: Returns 0 if permission is granted.
1660  */
1661 int security_move_mount(const struct path *from_path,
1662 			const struct path *to_path)
1663 {
1664 	return call_int_hook(move_mount, from_path, to_path);
1665 }
1666 
1667 /**
1668  * security_path_notify() - Check if setting a watch is allowed
1669  * @path: file path
1670  * @mask: event mask
1671  * @obj_type: file path type
1672  *
1673  * Check permissions before setting a watch on events as defined by @mask, on
1674  * an object at @path, whose type is defined by @obj_type.
1675  *
1676  * Return: Returns 0 if permission is granted.
1677  */
1678 int security_path_notify(const struct path *path, u64 mask,
1679 			 unsigned int obj_type)
1680 {
1681 	return call_int_hook(path_notify, path, mask, obj_type);
1682 }
1683 
1684 /**
1685  * security_inode_alloc() - Allocate an inode LSM blob
1686  * @inode: the inode
1687  * @gfp: allocation flags
1688  *
1689  * Allocate and attach a security structure to @inode->i_security.  The
1690  * i_security field is initialized to NULL when the inode structure is
1691  * allocated.
1692  *
1693  * Return: Return 0 if operation was successful.
1694  */
1695 int security_inode_alloc(struct inode *inode, gfp_t gfp)
1696 {
1697 	int rc = lsm_inode_alloc(inode, gfp);
1698 
1699 	if (unlikely(rc))
1700 		return rc;
1701 	rc = call_int_hook(inode_alloc_security, inode);
1702 	if (unlikely(rc))
1703 		security_inode_free(inode);
1704 	return rc;
1705 }
1706 
1707 static void inode_free_by_rcu(struct rcu_head *head)
1708 {
1709 	/* The rcu head is at the start of the inode blob */
1710 	call_void_hook(inode_free_security_rcu, head);
1711 	kmem_cache_free(lsm_inode_cache, head);
1712 }
1713 
1714 /**
1715  * security_inode_free() - Free an inode's LSM blob
1716  * @inode: the inode
1717  *
1718  * Release any LSM resources associated with @inode, although due to the
1719  * inode's RCU protections it is possible that the resources will not be
1720  * fully released until after the current RCU grace period has elapsed.
1721  *
1722  * It is important for LSMs to note that despite being present in a call to
1723  * security_inode_free(), @inode may still be referenced in a VFS path walk
1724  * and calls to security_inode_permission() may be made during, or after,
1725  * a call to security_inode_free().  For this reason the inode->i_security
1726  * field is released via a call_rcu() callback and any LSMs which need to
1727  * retain inode state for use in security_inode_permission() should only
1728  * release that state in the inode_free_security_rcu() LSM hook callback.
1729  */
1730 void security_inode_free(struct inode *inode)
1731 {
1732 	call_void_hook(inode_free_security, inode);
1733 	if (!inode->i_security)
1734 		return;
1735 	call_rcu((struct rcu_head *)inode->i_security, inode_free_by_rcu);
1736 }
1737 
1738 /**
1739  * security_dentry_init_security() - Perform dentry initialization
1740  * @dentry: the dentry to initialize
1741  * @mode: mode used to determine resource type
1742  * @name: name of the last path component
1743  * @xattr_name: name of the security/LSM xattr
1744  * @lsmctx: pointer to the resulting LSM context
1745  *
1746  * Compute a context for a dentry as the inode is not yet available since NFSv4
1747  * has no label backed by an EA anyway.  It is important to note that
1748  * @xattr_name does not need to be free'd by the caller, it is a static string.
1749  *
1750  * Return: Returns 0 on success, negative values on failure.
1751  */
1752 int security_dentry_init_security(struct dentry *dentry, int mode,
1753 				  const struct qstr *name,
1754 				  const char **xattr_name,
1755 				  struct lsm_context *lsmctx)
1756 {
1757 	return call_int_hook(dentry_init_security, dentry, mode, name,
1758 			     xattr_name, lsmctx);
1759 }
1760 EXPORT_SYMBOL(security_dentry_init_security);
1761 
1762 /**
1763  * security_dentry_create_files_as() - Perform dentry initialization
1764  * @dentry: the dentry to initialize
1765  * @mode: mode used to determine resource type
1766  * @name: name of the last path component
1767  * @old: creds to use for LSM context calculations
1768  * @new: creds to modify
1769  *
1770  * Compute a context for a dentry as the inode is not yet available and set
1771  * that context in passed in creds so that new files are created using that
1772  * context. Context is calculated using the passed in creds and not the creds
1773  * of the caller.
1774  *
1775  * Return: Returns 0 on success, error on failure.
1776  */
1777 int security_dentry_create_files_as(struct dentry *dentry, int mode,
1778 				    struct qstr *name,
1779 				    const struct cred *old, struct cred *new)
1780 {
1781 	return call_int_hook(dentry_create_files_as, dentry, mode,
1782 			     name, old, new);
1783 }
1784 EXPORT_SYMBOL(security_dentry_create_files_as);
1785 
1786 /**
1787  * security_inode_init_security() - Initialize an inode's LSM context
1788  * @inode: the inode
1789  * @dir: parent directory
1790  * @qstr: last component of the pathname
1791  * @initxattrs: callback function to write xattrs
1792  * @fs_data: filesystem specific data
1793  *
1794  * Obtain the security attribute name suffix and value to set on a newly
1795  * created inode and set up the incore security field for the new inode.  This
1796  * hook is called by the fs code as part of the inode creation transaction and
1797  * provides for atomic labeling of the inode, unlike the post_create/mkdir/...
1798  * hooks called by the VFS.
1799  *
1800  * The hook function is expected to populate the xattrs array, by calling
1801  * lsm_get_xattr_slot() to retrieve the slots reserved by the security module
1802  * with the lbs_xattr_count field of the lsm_blob_sizes structure.  For each
1803  * slot, the hook function should set ->name to the attribute name suffix
1804  * (e.g. selinux), to allocate ->value (will be freed by the caller) and set it
1805  * to the attribute value, to set ->value_len to the length of the value.  If
1806  * the security module does not use security attributes or does not wish to put
1807  * a security attribute on this particular inode, then it should return
1808  * -EOPNOTSUPP to skip this processing.
1809  *
1810  * Return: Returns 0 if the LSM successfully initialized all of the inode
1811  *         security attributes that are required, negative values otherwise.
1812  */
1813 int security_inode_init_security(struct inode *inode, struct inode *dir,
1814 				 const struct qstr *qstr,
1815 				 const initxattrs initxattrs, void *fs_data)
1816 {
1817 	struct lsm_static_call *scall;
1818 	struct xattr *new_xattrs = NULL;
1819 	int ret = -EOPNOTSUPP, xattr_count = 0;
1820 
1821 	if (unlikely(IS_PRIVATE(inode)))
1822 		return 0;
1823 
1824 	if (!blob_sizes.lbs_xattr_count)
1825 		return 0;
1826 
1827 	if (initxattrs) {
1828 		/* Allocate +1 as terminator. */
1829 		new_xattrs = kcalloc(blob_sizes.lbs_xattr_count + 1,
1830 				     sizeof(*new_xattrs), GFP_NOFS);
1831 		if (!new_xattrs)
1832 			return -ENOMEM;
1833 	}
1834 
1835 	lsm_for_each_hook(scall, inode_init_security) {
1836 		ret = scall->hl->hook.inode_init_security(inode, dir, qstr, new_xattrs,
1837 						  &xattr_count);
1838 		if (ret && ret != -EOPNOTSUPP)
1839 			goto out;
1840 		/*
1841 		 * As documented in lsm_hooks.h, -EOPNOTSUPP in this context
1842 		 * means that the LSM is not willing to provide an xattr, not
1843 		 * that it wants to signal an error. Thus, continue to invoke
1844 		 * the remaining LSMs.
1845 		 */
1846 	}
1847 
1848 	/* If initxattrs() is NULL, xattr_count is zero, skip the call. */
1849 	if (!xattr_count)
1850 		goto out;
1851 
1852 	ret = initxattrs(inode, new_xattrs, fs_data);
1853 out:
1854 	for (; xattr_count > 0; xattr_count--)
1855 		kfree(new_xattrs[xattr_count - 1].value);
1856 	kfree(new_xattrs);
1857 	return (ret == -EOPNOTSUPP) ? 0 : ret;
1858 }
1859 EXPORT_SYMBOL(security_inode_init_security);
1860 
1861 /**
1862  * security_inode_init_security_anon() - Initialize an anonymous inode
1863  * @inode: the inode
1864  * @name: the anonymous inode class
1865  * @context_inode: an optional related inode
1866  *
1867  * Set up the incore security field for the new anonymous inode and return
1868  * whether the inode creation is permitted by the security module or not.
1869  *
1870  * Return: Returns 0 on success, -EACCES if the security module denies the
1871  * creation of this inode, or another -errno upon other errors.
1872  */
1873 int security_inode_init_security_anon(struct inode *inode,
1874 				      const struct qstr *name,
1875 				      const struct inode *context_inode)
1876 {
1877 	return call_int_hook(inode_init_security_anon, inode, name,
1878 			     context_inode);
1879 }
1880 
1881 #ifdef CONFIG_SECURITY_PATH
1882 /**
1883  * security_path_mknod() - Check if creating a special file is allowed
1884  * @dir: parent directory
1885  * @dentry: new file
1886  * @mode: new file mode
1887  * @dev: device number
1888  *
1889  * Check permissions when creating a file. Note that this hook is called even
1890  * if mknod operation is being done for a regular file.
1891  *
1892  * Return: Returns 0 if permission is granted.
1893  */
1894 int security_path_mknod(const struct path *dir, struct dentry *dentry,
1895 			umode_t mode, unsigned int dev)
1896 {
1897 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1898 		return 0;
1899 	return call_int_hook(path_mknod, dir, dentry, mode, dev);
1900 }
1901 EXPORT_SYMBOL(security_path_mknod);
1902 
1903 /**
1904  * security_path_post_mknod() - Update inode security after reg file creation
1905  * @idmap: idmap of the mount
1906  * @dentry: new file
1907  *
1908  * Update inode security field after a regular file has been created.
1909  */
1910 void security_path_post_mknod(struct mnt_idmap *idmap, struct dentry *dentry)
1911 {
1912 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1913 		return;
1914 	call_void_hook(path_post_mknod, idmap, dentry);
1915 }
1916 
1917 /**
1918  * security_path_mkdir() - Check if creating a new directory is allowed
1919  * @dir: parent directory
1920  * @dentry: new directory
1921  * @mode: new directory mode
1922  *
1923  * Check permissions to create a new directory in the existing directory.
1924  *
1925  * Return: Returns 0 if permission is granted.
1926  */
1927 int security_path_mkdir(const struct path *dir, struct dentry *dentry,
1928 			umode_t mode)
1929 {
1930 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1931 		return 0;
1932 	return call_int_hook(path_mkdir, dir, dentry, mode);
1933 }
1934 EXPORT_SYMBOL(security_path_mkdir);
1935 
1936 /**
1937  * security_path_rmdir() - Check if removing a directory is allowed
1938  * @dir: parent directory
1939  * @dentry: directory to remove
1940  *
1941  * Check the permission to remove a directory.
1942  *
1943  * Return: Returns 0 if permission is granted.
1944  */
1945 int security_path_rmdir(const struct path *dir, struct dentry *dentry)
1946 {
1947 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1948 		return 0;
1949 	return call_int_hook(path_rmdir, dir, dentry);
1950 }
1951 
1952 /**
1953  * security_path_unlink() - Check if removing a hard link is allowed
1954  * @dir: parent directory
1955  * @dentry: file
1956  *
1957  * Check the permission to remove a hard link to a file.
1958  *
1959  * Return: Returns 0 if permission is granted.
1960  */
1961 int security_path_unlink(const struct path *dir, struct dentry *dentry)
1962 {
1963 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1964 		return 0;
1965 	return call_int_hook(path_unlink, dir, dentry);
1966 }
1967 EXPORT_SYMBOL(security_path_unlink);
1968 
1969 /**
1970  * security_path_symlink() - Check if creating a symbolic link is allowed
1971  * @dir: parent directory
1972  * @dentry: symbolic link
1973  * @old_name: file pathname
1974  *
1975  * Check the permission to create a symbolic link to a file.
1976  *
1977  * Return: Returns 0 if permission is granted.
1978  */
1979 int security_path_symlink(const struct path *dir, struct dentry *dentry,
1980 			  const char *old_name)
1981 {
1982 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1983 		return 0;
1984 	return call_int_hook(path_symlink, dir, dentry, old_name);
1985 }
1986 
1987 /**
1988  * security_path_link - Check if creating a hard link is allowed
1989  * @old_dentry: existing file
1990  * @new_dir: new parent directory
1991  * @new_dentry: new link
1992  *
1993  * Check permission before creating a new hard link to a file.
1994  *
1995  * Return: Returns 0 if permission is granted.
1996  */
1997 int security_path_link(struct dentry *old_dentry, const struct path *new_dir,
1998 		       struct dentry *new_dentry)
1999 {
2000 	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
2001 		return 0;
2002 	return call_int_hook(path_link, old_dentry, new_dir, new_dentry);
2003 }
2004 
2005 /**
2006  * security_path_rename() - Check if renaming a file is allowed
2007  * @old_dir: parent directory of the old file
2008  * @old_dentry: the old file
2009  * @new_dir: parent directory of the new file
2010  * @new_dentry: the new file
2011  * @flags: flags
2012  *
2013  * Check for permission to rename a file or directory.
2014  *
2015  * Return: Returns 0 if permission is granted.
2016  */
2017 int security_path_rename(const struct path *old_dir, struct dentry *old_dentry,
2018 			 const struct path *new_dir, struct dentry *new_dentry,
2019 			 unsigned int flags)
2020 {
2021 	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
2022 		     (d_is_positive(new_dentry) &&
2023 		      IS_PRIVATE(d_backing_inode(new_dentry)))))
2024 		return 0;
2025 
2026 	return call_int_hook(path_rename, old_dir, old_dentry, new_dir,
2027 			     new_dentry, flags);
2028 }
2029 EXPORT_SYMBOL(security_path_rename);
2030 
2031 /**
2032  * security_path_truncate() - Check if truncating a file is allowed
2033  * @path: file
2034  *
2035  * Check permission before truncating the file indicated by path.  Note that
2036  * truncation permissions may also be checked based on already opened files,
2037  * using the security_file_truncate() hook.
2038  *
2039  * Return: Returns 0 if permission is granted.
2040  */
2041 int security_path_truncate(const struct path *path)
2042 {
2043 	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
2044 		return 0;
2045 	return call_int_hook(path_truncate, path);
2046 }
2047 
2048 /**
2049  * security_path_chmod() - Check if changing the file's mode is allowed
2050  * @path: file
2051  * @mode: new mode
2052  *
2053  * Check for permission to change a mode of the file @path. The new mode is
2054  * specified in @mode which is a bitmask of constants from
2055  * <include/uapi/linux/stat.h>.
2056  *
2057  * Return: Returns 0 if permission is granted.
2058  */
2059 int security_path_chmod(const struct path *path, umode_t mode)
2060 {
2061 	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
2062 		return 0;
2063 	return call_int_hook(path_chmod, path, mode);
2064 }
2065 
2066 /**
2067  * security_path_chown() - Check if changing the file's owner/group is allowed
2068  * @path: file
2069  * @uid: file owner
2070  * @gid: file group
2071  *
2072  * Check for permission to change owner/group of a file or directory.
2073  *
2074  * Return: Returns 0 if permission is granted.
2075  */
2076 int security_path_chown(const struct path *path, kuid_t uid, kgid_t gid)
2077 {
2078 	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
2079 		return 0;
2080 	return call_int_hook(path_chown, path, uid, gid);
2081 }
2082 
2083 /**
2084  * security_path_chroot() - Check if changing the root directory is allowed
2085  * @path: directory
2086  *
2087  * Check for permission to change root directory.
2088  *
2089  * Return: Returns 0 if permission is granted.
2090  */
2091 int security_path_chroot(const struct path *path)
2092 {
2093 	return call_int_hook(path_chroot, path);
2094 }
2095 #endif /* CONFIG_SECURITY_PATH */
2096 
2097 /**
2098  * security_inode_create() - Check if creating a file is allowed
2099  * @dir: the parent directory
2100  * @dentry: the file being created
2101  * @mode: requested file mode
2102  *
2103  * Check permission to create a regular file.
2104  *
2105  * Return: Returns 0 if permission is granted.
2106  */
2107 int security_inode_create(struct inode *dir, struct dentry *dentry,
2108 			  umode_t mode)
2109 {
2110 	if (unlikely(IS_PRIVATE(dir)))
2111 		return 0;
2112 	return call_int_hook(inode_create, dir, dentry, mode);
2113 }
2114 EXPORT_SYMBOL_GPL(security_inode_create);
2115 
2116 /**
2117  * security_inode_post_create_tmpfile() - Update inode security of new tmpfile
2118  * @idmap: idmap of the mount
2119  * @inode: inode of the new tmpfile
2120  *
2121  * Update inode security data after a tmpfile has been created.
2122  */
2123 void security_inode_post_create_tmpfile(struct mnt_idmap *idmap,
2124 					struct inode *inode)
2125 {
2126 	if (unlikely(IS_PRIVATE(inode)))
2127 		return;
2128 	call_void_hook(inode_post_create_tmpfile, idmap, inode);
2129 }
2130 
2131 /**
2132  * security_inode_link() - Check if creating a hard link is allowed
2133  * @old_dentry: existing file
2134  * @dir: new parent directory
2135  * @new_dentry: new link
2136  *
2137  * Check permission before creating a new hard link to a file.
2138  *
2139  * Return: Returns 0 if permission is granted.
2140  */
2141 int security_inode_link(struct dentry *old_dentry, struct inode *dir,
2142 			struct dentry *new_dentry)
2143 {
2144 	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
2145 		return 0;
2146 	return call_int_hook(inode_link, old_dentry, dir, new_dentry);
2147 }
2148 
2149 /**
2150  * security_inode_unlink() - Check if removing a hard link is allowed
2151  * @dir: parent directory
2152  * @dentry: file
2153  *
2154  * Check the permission to remove a hard link to a file.
2155  *
2156  * Return: Returns 0 if permission is granted.
2157  */
2158 int security_inode_unlink(struct inode *dir, struct dentry *dentry)
2159 {
2160 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2161 		return 0;
2162 	return call_int_hook(inode_unlink, dir, dentry);
2163 }
2164 
2165 /**
2166  * security_inode_symlink() - Check if creating a symbolic link is allowed
2167  * @dir: parent directory
2168  * @dentry: symbolic link
2169  * @old_name: existing filename
2170  *
2171  * Check the permission to create a symbolic link to a file.
2172  *
2173  * Return: Returns 0 if permission is granted.
2174  */
2175 int security_inode_symlink(struct inode *dir, struct dentry *dentry,
2176 			   const char *old_name)
2177 {
2178 	if (unlikely(IS_PRIVATE(dir)))
2179 		return 0;
2180 	return call_int_hook(inode_symlink, dir, dentry, old_name);
2181 }
2182 
2183 /**
2184  * security_inode_mkdir() - Check if creation a new director is allowed
2185  * @dir: parent directory
2186  * @dentry: new directory
2187  * @mode: new directory mode
2188  *
2189  * Check permissions to create a new directory in the existing directory
2190  * associated with inode structure @dir.
2191  *
2192  * Return: Returns 0 if permission is granted.
2193  */
2194 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2195 {
2196 	if (unlikely(IS_PRIVATE(dir)))
2197 		return 0;
2198 	return call_int_hook(inode_mkdir, dir, dentry, mode);
2199 }
2200 EXPORT_SYMBOL_GPL(security_inode_mkdir);
2201 
2202 /**
2203  * security_inode_rmdir() - Check if removing a directory is allowed
2204  * @dir: parent directory
2205  * @dentry: directory to be removed
2206  *
2207  * Check the permission to remove a directory.
2208  *
2209  * Return: Returns 0 if permission is granted.
2210  */
2211 int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
2212 {
2213 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2214 		return 0;
2215 	return call_int_hook(inode_rmdir, dir, dentry);
2216 }
2217 
2218 /**
2219  * security_inode_mknod() - Check if creating a special file is allowed
2220  * @dir: parent directory
2221  * @dentry: new file
2222  * @mode: new file mode
2223  * @dev: device number
2224  *
2225  * Check permissions when creating a special file (or a socket or a fifo file
2226  * created via the mknod system call).  Note that if mknod operation is being
2227  * done for a regular file, then the create hook will be called and not this
2228  * hook.
2229  *
2230  * Return: Returns 0 if permission is granted.
2231  */
2232 int security_inode_mknod(struct inode *dir, struct dentry *dentry,
2233 			 umode_t mode, dev_t dev)
2234 {
2235 	if (unlikely(IS_PRIVATE(dir)))
2236 		return 0;
2237 	return call_int_hook(inode_mknod, dir, dentry, mode, dev);
2238 }
2239 
2240 /**
2241  * security_inode_rename() - Check if renaming a file is allowed
2242  * @old_dir: parent directory of the old file
2243  * @old_dentry: the old file
2244  * @new_dir: parent directory of the new file
2245  * @new_dentry: the new file
2246  * @flags: flags
2247  *
2248  * Check for permission to rename a file or directory.
2249  *
2250  * Return: Returns 0 if permission is granted.
2251  */
2252 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
2253 			  struct inode *new_dir, struct dentry *new_dentry,
2254 			  unsigned int flags)
2255 {
2256 	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
2257 		     (d_is_positive(new_dentry) &&
2258 		      IS_PRIVATE(d_backing_inode(new_dentry)))))
2259 		return 0;
2260 
2261 	if (flags & RENAME_EXCHANGE) {
2262 		int err = call_int_hook(inode_rename, new_dir, new_dentry,
2263 					old_dir, old_dentry);
2264 		if (err)
2265 			return err;
2266 	}
2267 
2268 	return call_int_hook(inode_rename, old_dir, old_dentry,
2269 			     new_dir, new_dentry);
2270 }
2271 
2272 /**
2273  * security_inode_readlink() - Check if reading a symbolic link is allowed
2274  * @dentry: link
2275  *
2276  * Check the permission to read the symbolic link.
2277  *
2278  * Return: Returns 0 if permission is granted.
2279  */
2280 int security_inode_readlink(struct dentry *dentry)
2281 {
2282 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2283 		return 0;
2284 	return call_int_hook(inode_readlink, dentry);
2285 }
2286 
2287 /**
2288  * security_inode_follow_link() - Check if following a symbolic link is allowed
2289  * @dentry: link dentry
2290  * @inode: link inode
2291  * @rcu: true if in RCU-walk mode
2292  *
2293  * Check permission to follow a symbolic link when looking up a pathname.  If
2294  * @rcu is true, @inode is not stable.
2295  *
2296  * Return: Returns 0 if permission is granted.
2297  */
2298 int security_inode_follow_link(struct dentry *dentry, struct inode *inode,
2299 			       bool rcu)
2300 {
2301 	if (unlikely(IS_PRIVATE(inode)))
2302 		return 0;
2303 	return call_int_hook(inode_follow_link, dentry, inode, rcu);
2304 }
2305 
2306 /**
2307  * security_inode_permission() - Check if accessing an inode is allowed
2308  * @inode: inode
2309  * @mask: access mask
2310  *
2311  * Check permission before accessing an inode.  This hook is called by the
2312  * existing Linux permission function, so a security module can use it to
2313  * provide additional checking for existing Linux permission checks.  Notice
2314  * that this hook is called when a file is opened (as well as many other
2315  * operations), whereas the file_security_ops permission hook is called when
2316  * the actual read/write operations are performed.
2317  *
2318  * Return: Returns 0 if permission is granted.
2319  */
2320 int security_inode_permission(struct inode *inode, int mask)
2321 {
2322 	if (unlikely(IS_PRIVATE(inode)))
2323 		return 0;
2324 	return call_int_hook(inode_permission, inode, mask);
2325 }
2326 
2327 /**
2328  * security_inode_setattr() - Check if setting file attributes is allowed
2329  * @idmap: idmap of the mount
2330  * @dentry: file
2331  * @attr: new attributes
2332  *
2333  * Check permission before setting file attributes.  Note that the kernel call
2334  * to notify_change is performed from several locations, whenever file
2335  * attributes change (such as when a file is truncated, chown/chmod operations,
2336  * transferring disk quotas, etc).
2337  *
2338  * Return: Returns 0 if permission is granted.
2339  */
2340 int security_inode_setattr(struct mnt_idmap *idmap,
2341 			   struct dentry *dentry, struct iattr *attr)
2342 {
2343 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2344 		return 0;
2345 	return call_int_hook(inode_setattr, idmap, dentry, attr);
2346 }
2347 EXPORT_SYMBOL_GPL(security_inode_setattr);
2348 
2349 /**
2350  * security_inode_post_setattr() - Update the inode after a setattr operation
2351  * @idmap: idmap of the mount
2352  * @dentry: file
2353  * @ia_valid: file attributes set
2354  *
2355  * Update inode security field after successful setting file attributes.
2356  */
2357 void security_inode_post_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
2358 				 int ia_valid)
2359 {
2360 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2361 		return;
2362 	call_void_hook(inode_post_setattr, idmap, dentry, ia_valid);
2363 }
2364 
2365 /**
2366  * security_inode_getattr() - Check if getting file attributes is allowed
2367  * @path: file
2368  *
2369  * Check permission before obtaining file attributes.
2370  *
2371  * Return: Returns 0 if permission is granted.
2372  */
2373 int security_inode_getattr(const struct path *path)
2374 {
2375 	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
2376 		return 0;
2377 	return call_int_hook(inode_getattr, path);
2378 }
2379 
2380 /**
2381  * security_inode_setxattr() - Check if setting file xattrs is allowed
2382  * @idmap: idmap of the mount
2383  * @dentry: file
2384  * @name: xattr name
2385  * @value: xattr value
2386  * @size: size of xattr value
2387  * @flags: flags
2388  *
2389  * This hook performs the desired permission checks before setting the extended
2390  * attributes (xattrs) on @dentry.  It is important to note that we have some
2391  * additional logic before the main LSM implementation calls to detect if we
2392  * need to perform an additional capability check at the LSM layer.
2393  *
2394  * Normally we enforce a capability check prior to executing the various LSM
2395  * hook implementations, but if a LSM wants to avoid this capability check,
2396  * it can register a 'inode_xattr_skipcap' hook and return a value of 1 for
2397  * xattrs that it wants to avoid the capability check, leaving the LSM fully
2398  * responsible for enforcing the access control for the specific xattr.  If all
2399  * of the enabled LSMs refrain from registering a 'inode_xattr_skipcap' hook,
2400  * or return a 0 (the default return value), the capability check is still
2401  * performed.  If no 'inode_xattr_skipcap' hooks are registered the capability
2402  * check is performed.
2403  *
2404  * Return: Returns 0 if permission is granted.
2405  */
2406 int security_inode_setxattr(struct mnt_idmap *idmap,
2407 			    struct dentry *dentry, const char *name,
2408 			    const void *value, size_t size, int flags)
2409 {
2410 	int rc;
2411 
2412 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2413 		return 0;
2414 
2415 	/* enforce the capability checks at the lsm layer, if needed */
2416 	if (!call_int_hook(inode_xattr_skipcap, name)) {
2417 		rc = cap_inode_setxattr(dentry, name, value, size, flags);
2418 		if (rc)
2419 			return rc;
2420 	}
2421 
2422 	return call_int_hook(inode_setxattr, idmap, dentry, name, value, size,
2423 			     flags);
2424 }
2425 
2426 /**
2427  * security_inode_set_acl() - Check if setting posix acls is allowed
2428  * @idmap: idmap of the mount
2429  * @dentry: file
2430  * @acl_name: acl name
2431  * @kacl: acl struct
2432  *
2433  * Check permission before setting posix acls, the posix acls in @kacl are
2434  * identified by @acl_name.
2435  *
2436  * Return: Returns 0 if permission is granted.
2437  */
2438 int security_inode_set_acl(struct mnt_idmap *idmap,
2439 			   struct dentry *dentry, const char *acl_name,
2440 			   struct posix_acl *kacl)
2441 {
2442 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2443 		return 0;
2444 	return call_int_hook(inode_set_acl, idmap, dentry, acl_name, kacl);
2445 }
2446 
2447 /**
2448  * security_inode_post_set_acl() - Update inode security from posix acls set
2449  * @dentry: file
2450  * @acl_name: acl name
2451  * @kacl: acl struct
2452  *
2453  * Update inode security data after successfully setting posix acls on @dentry.
2454  * The posix acls in @kacl are identified by @acl_name.
2455  */
2456 void security_inode_post_set_acl(struct dentry *dentry, const char *acl_name,
2457 				 struct posix_acl *kacl)
2458 {
2459 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2460 		return;
2461 	call_void_hook(inode_post_set_acl, dentry, acl_name, kacl);
2462 }
2463 
2464 /**
2465  * security_inode_get_acl() - Check if reading posix acls is allowed
2466  * @idmap: idmap of the mount
2467  * @dentry: file
2468  * @acl_name: acl name
2469  *
2470  * Check permission before getting osix acls, the posix acls are identified by
2471  * @acl_name.
2472  *
2473  * Return: Returns 0 if permission is granted.
2474  */
2475 int security_inode_get_acl(struct mnt_idmap *idmap,
2476 			   struct dentry *dentry, const char *acl_name)
2477 {
2478 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2479 		return 0;
2480 	return call_int_hook(inode_get_acl, idmap, dentry, acl_name);
2481 }
2482 
2483 /**
2484  * security_inode_remove_acl() - Check if removing a posix acl is allowed
2485  * @idmap: idmap of the mount
2486  * @dentry: file
2487  * @acl_name: acl name
2488  *
2489  * Check permission before removing posix acls, the posix acls are identified
2490  * by @acl_name.
2491  *
2492  * Return: Returns 0 if permission is granted.
2493  */
2494 int security_inode_remove_acl(struct mnt_idmap *idmap,
2495 			      struct dentry *dentry, const char *acl_name)
2496 {
2497 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2498 		return 0;
2499 	return call_int_hook(inode_remove_acl, idmap, dentry, acl_name);
2500 }
2501 
2502 /**
2503  * security_inode_post_remove_acl() - Update inode security after rm posix acls
2504  * @idmap: idmap of the mount
2505  * @dentry: file
2506  * @acl_name: acl name
2507  *
2508  * Update inode security data after successfully removing posix acls on
2509  * @dentry in @idmap. The posix acls are identified by @acl_name.
2510  */
2511 void security_inode_post_remove_acl(struct mnt_idmap *idmap,
2512 				    struct dentry *dentry, const char *acl_name)
2513 {
2514 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2515 		return;
2516 	call_void_hook(inode_post_remove_acl, idmap, dentry, acl_name);
2517 }
2518 
2519 /**
2520  * security_inode_post_setxattr() - Update the inode after a setxattr operation
2521  * @dentry: file
2522  * @name: xattr name
2523  * @value: xattr value
2524  * @size: xattr value size
2525  * @flags: flags
2526  *
2527  * Update inode security field after successful setxattr operation.
2528  */
2529 void security_inode_post_setxattr(struct dentry *dentry, const char *name,
2530 				  const void *value, size_t size, int flags)
2531 {
2532 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2533 		return;
2534 	call_void_hook(inode_post_setxattr, dentry, name, value, size, flags);
2535 }
2536 
2537 /**
2538  * security_inode_getxattr() - Check if xattr access is allowed
2539  * @dentry: file
2540  * @name: xattr name
2541  *
2542  * Check permission before obtaining the extended attributes identified by
2543  * @name for @dentry.
2544  *
2545  * Return: Returns 0 if permission is granted.
2546  */
2547 int security_inode_getxattr(struct dentry *dentry, const char *name)
2548 {
2549 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2550 		return 0;
2551 	return call_int_hook(inode_getxattr, dentry, name);
2552 }
2553 
2554 /**
2555  * security_inode_listxattr() - Check if listing xattrs is allowed
2556  * @dentry: file
2557  *
2558  * Check permission before obtaining the list of extended attribute names for
2559  * @dentry.
2560  *
2561  * Return: Returns 0 if permission is granted.
2562  */
2563 int security_inode_listxattr(struct dentry *dentry)
2564 {
2565 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2566 		return 0;
2567 	return call_int_hook(inode_listxattr, dentry);
2568 }
2569 
2570 /**
2571  * security_inode_removexattr() - Check if removing an xattr is allowed
2572  * @idmap: idmap of the mount
2573  * @dentry: file
2574  * @name: xattr name
2575  *
2576  * This hook performs the desired permission checks before setting the extended
2577  * attributes (xattrs) on @dentry.  It is important to note that we have some
2578  * additional logic before the main LSM implementation calls to detect if we
2579  * need to perform an additional capability check at the LSM layer.
2580  *
2581  * Normally we enforce a capability check prior to executing the various LSM
2582  * hook implementations, but if a LSM wants to avoid this capability check,
2583  * it can register a 'inode_xattr_skipcap' hook and return a value of 1 for
2584  * xattrs that it wants to avoid the capability check, leaving the LSM fully
2585  * responsible for enforcing the access control for the specific xattr.  If all
2586  * of the enabled LSMs refrain from registering a 'inode_xattr_skipcap' hook,
2587  * or return a 0 (the default return value), the capability check is still
2588  * performed.  If no 'inode_xattr_skipcap' hooks are registered the capability
2589  * check is performed.
2590  *
2591  * Return: Returns 0 if permission is granted.
2592  */
2593 int security_inode_removexattr(struct mnt_idmap *idmap,
2594 			       struct dentry *dentry, const char *name)
2595 {
2596 	int rc;
2597 
2598 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2599 		return 0;
2600 
2601 	/* enforce the capability checks at the lsm layer, if needed */
2602 	if (!call_int_hook(inode_xattr_skipcap, name)) {
2603 		rc = cap_inode_removexattr(idmap, dentry, name);
2604 		if (rc)
2605 			return rc;
2606 	}
2607 
2608 	return call_int_hook(inode_removexattr, idmap, dentry, name);
2609 }
2610 
2611 /**
2612  * security_inode_post_removexattr() - Update the inode after a removexattr op
2613  * @dentry: file
2614  * @name: xattr name
2615  *
2616  * Update the inode after a successful removexattr operation.
2617  */
2618 void security_inode_post_removexattr(struct dentry *dentry, const char *name)
2619 {
2620 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2621 		return;
2622 	call_void_hook(inode_post_removexattr, dentry, name);
2623 }
2624 
2625 /**
2626  * security_inode_need_killpriv() - Check if security_inode_killpriv() required
2627  * @dentry: associated dentry
2628  *
2629  * Called when an inode has been changed to determine if
2630  * security_inode_killpriv() should be called.
2631  *
2632  * Return: Return <0 on error to abort the inode change operation, return 0 if
2633  *         security_inode_killpriv() does not need to be called, return >0 if
2634  *         security_inode_killpriv() does need to be called.
2635  */
2636 int security_inode_need_killpriv(struct dentry *dentry)
2637 {
2638 	return call_int_hook(inode_need_killpriv, dentry);
2639 }
2640 
2641 /**
2642  * security_inode_killpriv() - The setuid bit is removed, update LSM state
2643  * @idmap: idmap of the mount
2644  * @dentry: associated dentry
2645  *
2646  * The @dentry's setuid bit is being removed.  Remove similar security labels.
2647  * Called with the dentry->d_inode->i_mutex held.
2648  *
2649  * Return: Return 0 on success.  If error is returned, then the operation
2650  *         causing setuid bit removal is failed.
2651  */
2652 int security_inode_killpriv(struct mnt_idmap *idmap,
2653 			    struct dentry *dentry)
2654 {
2655 	return call_int_hook(inode_killpriv, idmap, dentry);
2656 }
2657 
2658 /**
2659  * security_inode_getsecurity() - Get the xattr security label of an inode
2660  * @idmap: idmap of the mount
2661  * @inode: inode
2662  * @name: xattr name
2663  * @buffer: security label buffer
2664  * @alloc: allocation flag
2665  *
2666  * Retrieve a copy of the extended attribute representation of the security
2667  * label associated with @name for @inode via @buffer.  Note that @name is the
2668  * remainder of the attribute name after the security prefix has been removed.
2669  * @alloc is used to specify if the call should return a value via the buffer
2670  * or just the value length.
2671  *
2672  * Return: Returns size of buffer on success.
2673  */
2674 int security_inode_getsecurity(struct mnt_idmap *idmap,
2675 			       struct inode *inode, const char *name,
2676 			       void **buffer, bool alloc)
2677 {
2678 	if (unlikely(IS_PRIVATE(inode)))
2679 		return LSM_RET_DEFAULT(inode_getsecurity);
2680 
2681 	return call_int_hook(inode_getsecurity, idmap, inode, name, buffer,
2682 			     alloc);
2683 }
2684 
2685 /**
2686  * security_inode_setsecurity() - Set the xattr security label of an inode
2687  * @inode: inode
2688  * @name: xattr name
2689  * @value: security label
2690  * @size: length of security label
2691  * @flags: flags
2692  *
2693  * Set the security label associated with @name for @inode from the extended
2694  * attribute value @value.  @size indicates the size of the @value in bytes.
2695  * @flags may be XATTR_CREATE, XATTR_REPLACE, or 0. Note that @name is the
2696  * remainder of the attribute name after the security. prefix has been removed.
2697  *
2698  * Return: Returns 0 on success.
2699  */
2700 int security_inode_setsecurity(struct inode *inode, const char *name,
2701 			       const void *value, size_t size, int flags)
2702 {
2703 	if (unlikely(IS_PRIVATE(inode)))
2704 		return LSM_RET_DEFAULT(inode_setsecurity);
2705 
2706 	return call_int_hook(inode_setsecurity, inode, name, value, size,
2707 			     flags);
2708 }
2709 
2710 /**
2711  * security_inode_listsecurity() - List the xattr security label names
2712  * @inode: inode
2713  * @buffer: buffer
2714  * @buffer_size: size of buffer
2715  *
2716  * Copy the extended attribute names for the security labels associated with
2717  * @inode into @buffer.  The maximum size of @buffer is specified by
2718  * @buffer_size.  @buffer may be NULL to request the size of the buffer
2719  * required.
2720  *
2721  * Return: Returns number of bytes used/required on success.
2722  */
2723 int security_inode_listsecurity(struct inode *inode,
2724 				char *buffer, size_t buffer_size)
2725 {
2726 	if (unlikely(IS_PRIVATE(inode)))
2727 		return 0;
2728 	return call_int_hook(inode_listsecurity, inode, buffer, buffer_size);
2729 }
2730 EXPORT_SYMBOL(security_inode_listsecurity);
2731 
2732 /**
2733  * security_inode_getlsmprop() - Get an inode's LSM data
2734  * @inode: inode
2735  * @prop: lsm specific information to return
2736  *
2737  * Get the lsm specific information associated with the node.
2738  */
2739 void security_inode_getlsmprop(struct inode *inode, struct lsm_prop *prop)
2740 {
2741 	call_void_hook(inode_getlsmprop, inode, prop);
2742 }
2743 
2744 /**
2745  * security_inode_copy_up() - Create new creds for an overlayfs copy-up op
2746  * @src: union dentry of copy-up file
2747  * @new: newly created creds
2748  *
2749  * A file is about to be copied up from lower layer to upper layer of overlay
2750  * filesystem. Security module can prepare a set of new creds and modify as
2751  * need be and return new creds. Caller will switch to new creds temporarily to
2752  * create new file and release newly allocated creds.
2753  *
2754  * Return: Returns 0 on success or a negative error code on error.
2755  */
2756 int security_inode_copy_up(struct dentry *src, struct cred **new)
2757 {
2758 	return call_int_hook(inode_copy_up, src, new);
2759 }
2760 EXPORT_SYMBOL(security_inode_copy_up);
2761 
2762 /**
2763  * security_inode_copy_up_xattr() - Filter xattrs in an overlayfs copy-up op
2764  * @src: union dentry of copy-up file
2765  * @name: xattr name
2766  *
2767  * Filter the xattrs being copied up when a unioned file is copied up from a
2768  * lower layer to the union/overlay layer.   The caller is responsible for
2769  * reading and writing the xattrs, this hook is merely a filter.
2770  *
2771  * Return: Returns 0 to accept the xattr, -ECANCELED to discard the xattr,
2772  *         -EOPNOTSUPP if the security module does not know about attribute,
2773  *         or a negative error code to abort the copy up.
2774  */
2775 int security_inode_copy_up_xattr(struct dentry *src, const char *name)
2776 {
2777 	int rc;
2778 
2779 	rc = call_int_hook(inode_copy_up_xattr, src, name);
2780 	if (rc != LSM_RET_DEFAULT(inode_copy_up_xattr))
2781 		return rc;
2782 
2783 	return LSM_RET_DEFAULT(inode_copy_up_xattr);
2784 }
2785 EXPORT_SYMBOL(security_inode_copy_up_xattr);
2786 
2787 /**
2788  * security_inode_setintegrity() - Set the inode's integrity data
2789  * @inode: inode
2790  * @type: type of integrity, e.g. hash digest, signature, etc
2791  * @value: the integrity value
2792  * @size: size of the integrity value
2793  *
2794  * Register a verified integrity measurement of a inode with LSMs.
2795  * LSMs should free the previously saved data if @value is NULL.
2796  *
2797  * Return: Returns 0 on success, negative values on failure.
2798  */
2799 int security_inode_setintegrity(const struct inode *inode,
2800 				enum lsm_integrity_type type, const void *value,
2801 				size_t size)
2802 {
2803 	return call_int_hook(inode_setintegrity, inode, type, value, size);
2804 }
2805 EXPORT_SYMBOL(security_inode_setintegrity);
2806 
2807 /**
2808  * security_kernfs_init_security() - Init LSM context for a kernfs node
2809  * @kn_dir: parent kernfs node
2810  * @kn: the kernfs node to initialize
2811  *
2812  * Initialize the security context of a newly created kernfs node based on its
2813  * own and its parent's attributes.
2814  *
2815  * Return: Returns 0 if permission is granted.
2816  */
2817 int security_kernfs_init_security(struct kernfs_node *kn_dir,
2818 				  struct kernfs_node *kn)
2819 {
2820 	return call_int_hook(kernfs_init_security, kn_dir, kn);
2821 }
2822 
2823 /**
2824  * security_file_permission() - Check file permissions
2825  * @file: file
2826  * @mask: requested permissions
2827  *
2828  * Check file permissions before accessing an open file.  This hook is called
2829  * by various operations that read or write files.  A security module can use
2830  * this hook to perform additional checking on these operations, e.g. to
2831  * revalidate permissions on use to support privilege bracketing or policy
2832  * changes.  Notice that this hook is used when the actual read/write
2833  * operations are performed, whereas the inode_security_ops hook is called when
2834  * a file is opened (as well as many other operations).  Although this hook can
2835  * be used to revalidate permissions for various system call operations that
2836  * read or write files, it does not address the revalidation of permissions for
2837  * memory-mapped files.  Security modules must handle this separately if they
2838  * need such revalidation.
2839  *
2840  * Return: Returns 0 if permission is granted.
2841  */
2842 int security_file_permission(struct file *file, int mask)
2843 {
2844 	return call_int_hook(file_permission, file, mask);
2845 }
2846 
2847 /**
2848  * security_file_alloc() - Allocate and init a file's LSM blob
2849  * @file: the file
2850  *
2851  * Allocate and attach a security structure to the file->f_security field.  The
2852  * security field is initialized to NULL when the structure is first created.
2853  *
2854  * Return: Return 0 if the hook is successful and permission is granted.
2855  */
2856 int security_file_alloc(struct file *file)
2857 {
2858 	int rc = lsm_file_alloc(file);
2859 
2860 	if (rc)
2861 		return rc;
2862 	rc = call_int_hook(file_alloc_security, file);
2863 	if (unlikely(rc))
2864 		security_file_free(file);
2865 	return rc;
2866 }
2867 
2868 /**
2869  * security_file_release() - Perform actions before releasing the file ref
2870  * @file: the file
2871  *
2872  * Perform actions before releasing the last reference to a file.
2873  */
2874 void security_file_release(struct file *file)
2875 {
2876 	call_void_hook(file_release, file);
2877 }
2878 
2879 /**
2880  * security_file_free() - Free a file's LSM blob
2881  * @file: the file
2882  *
2883  * Deallocate and free any security structures stored in file->f_security.
2884  */
2885 void security_file_free(struct file *file)
2886 {
2887 	void *blob;
2888 
2889 	call_void_hook(file_free_security, file);
2890 
2891 	blob = file->f_security;
2892 	if (blob) {
2893 		file->f_security = NULL;
2894 		kmem_cache_free(lsm_file_cache, blob);
2895 	}
2896 }
2897 
2898 /**
2899  * security_file_ioctl() - Check if an ioctl is allowed
2900  * @file: associated file
2901  * @cmd: ioctl cmd
2902  * @arg: ioctl arguments
2903  *
2904  * Check permission for an ioctl operation on @file.  Note that @arg sometimes
2905  * represents a user space pointer; in other cases, it may be a simple integer
2906  * value.  When @arg represents a user space pointer, it should never be used
2907  * by the security module.
2908  *
2909  * Return: Returns 0 if permission is granted.
2910  */
2911 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2912 {
2913 	return call_int_hook(file_ioctl, file, cmd, arg);
2914 }
2915 EXPORT_SYMBOL_GPL(security_file_ioctl);
2916 
2917 /**
2918  * security_file_ioctl_compat() - Check if an ioctl is allowed in compat mode
2919  * @file: associated file
2920  * @cmd: ioctl cmd
2921  * @arg: ioctl arguments
2922  *
2923  * Compat version of security_file_ioctl() that correctly handles 32-bit
2924  * processes running on 64-bit kernels.
2925  *
2926  * Return: Returns 0 if permission is granted.
2927  */
2928 int security_file_ioctl_compat(struct file *file, unsigned int cmd,
2929 			       unsigned long arg)
2930 {
2931 	return call_int_hook(file_ioctl_compat, file, cmd, arg);
2932 }
2933 EXPORT_SYMBOL_GPL(security_file_ioctl_compat);
2934 
2935 static inline unsigned long mmap_prot(struct file *file, unsigned long prot)
2936 {
2937 	/*
2938 	 * Does we have PROT_READ and does the application expect
2939 	 * it to imply PROT_EXEC?  If not, nothing to talk about...
2940 	 */
2941 	if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ)
2942 		return prot;
2943 	if (!(current->personality & READ_IMPLIES_EXEC))
2944 		return prot;
2945 	/*
2946 	 * if that's an anonymous mapping, let it.
2947 	 */
2948 	if (!file)
2949 		return prot | PROT_EXEC;
2950 	/*
2951 	 * ditto if it's not on noexec mount, except that on !MMU we need
2952 	 * NOMMU_MAP_EXEC (== VM_MAYEXEC) in this case
2953 	 */
2954 	if (!path_noexec(&file->f_path)) {
2955 #ifndef CONFIG_MMU
2956 		if (file->f_op->mmap_capabilities) {
2957 			unsigned caps = file->f_op->mmap_capabilities(file);
2958 			if (!(caps & NOMMU_MAP_EXEC))
2959 				return prot;
2960 		}
2961 #endif
2962 		return prot | PROT_EXEC;
2963 	}
2964 	/* anything on noexec mount won't get PROT_EXEC */
2965 	return prot;
2966 }
2967 
2968 /**
2969  * security_mmap_file() - Check if mmap'ing a file is allowed
2970  * @file: file
2971  * @prot: protection applied by the kernel
2972  * @flags: flags
2973  *
2974  * Check permissions for a mmap operation.  The @file may be NULL, e.g. if
2975  * mapping anonymous memory.
2976  *
2977  * Return: Returns 0 if permission is granted.
2978  */
2979 int security_mmap_file(struct file *file, unsigned long prot,
2980 		       unsigned long flags)
2981 {
2982 	return call_int_hook(mmap_file, file, prot, mmap_prot(file, prot),
2983 			     flags);
2984 }
2985 
2986 /**
2987  * security_mmap_addr() - Check if mmap'ing an address is allowed
2988  * @addr: address
2989  *
2990  * Check permissions for a mmap operation at @addr.
2991  *
2992  * Return: Returns 0 if permission is granted.
2993  */
2994 int security_mmap_addr(unsigned long addr)
2995 {
2996 	return call_int_hook(mmap_addr, addr);
2997 }
2998 
2999 /**
3000  * security_file_mprotect() - Check if changing memory protections is allowed
3001  * @vma: memory region
3002  * @reqprot: application requested protection
3003  * @prot: protection applied by the kernel
3004  *
3005  * Check permissions before changing memory access permissions.
3006  *
3007  * Return: Returns 0 if permission is granted.
3008  */
3009 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
3010 			   unsigned long prot)
3011 {
3012 	return call_int_hook(file_mprotect, vma, reqprot, prot);
3013 }
3014 
3015 /**
3016  * security_file_lock() - Check if a file lock is allowed
3017  * @file: file
3018  * @cmd: lock operation (e.g. F_RDLCK, F_WRLCK)
3019  *
3020  * Check permission before performing file locking operations.  Note the hook
3021  * mediates both flock and fcntl style locks.
3022  *
3023  * Return: Returns 0 if permission is granted.
3024  */
3025 int security_file_lock(struct file *file, unsigned int cmd)
3026 {
3027 	return call_int_hook(file_lock, file, cmd);
3028 }
3029 
3030 /**
3031  * security_file_fcntl() - Check if fcntl() op is allowed
3032  * @file: file
3033  * @cmd: fcntl command
3034  * @arg: command argument
3035  *
3036  * Check permission before allowing the file operation specified by @cmd from
3037  * being performed on the file @file.  Note that @arg sometimes represents a
3038  * user space pointer; in other cases, it may be a simple integer value.  When
3039  * @arg represents a user space pointer, it should never be used by the
3040  * security module.
3041  *
3042  * Return: Returns 0 if permission is granted.
3043  */
3044 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
3045 {
3046 	return call_int_hook(file_fcntl, file, cmd, arg);
3047 }
3048 
3049 /**
3050  * security_file_set_fowner() - Set the file owner info in the LSM blob
3051  * @file: the file
3052  *
3053  * Save owner security information (typically from current->security) in
3054  * file->f_security for later use by the send_sigiotask hook.
3055  *
3056  * This hook is called with file->f_owner.lock held.
3057  *
3058  * Return: Returns 0 on success.
3059  */
3060 void security_file_set_fowner(struct file *file)
3061 {
3062 	call_void_hook(file_set_fowner, file);
3063 }
3064 
3065 /**
3066  * security_file_send_sigiotask() - Check if sending SIGIO/SIGURG is allowed
3067  * @tsk: target task
3068  * @fown: signal sender
3069  * @sig: signal to be sent, SIGIO is sent if 0
3070  *
3071  * Check permission for the file owner @fown to send SIGIO or SIGURG to the
3072  * process @tsk.  Note that this hook is sometimes called from interrupt.  Note
3073  * that the fown_struct, @fown, is never outside the context of a struct file,
3074  * so the file structure (and associated security information) can always be
3075  * obtained: container_of(fown, struct file, f_owner).
3076  *
3077  * Return: Returns 0 if permission is granted.
3078  */
3079 int security_file_send_sigiotask(struct task_struct *tsk,
3080 				 struct fown_struct *fown, int sig)
3081 {
3082 	return call_int_hook(file_send_sigiotask, tsk, fown, sig);
3083 }
3084 
3085 /**
3086  * security_file_receive() - Check if receiving a file via IPC is allowed
3087  * @file: file being received
3088  *
3089  * This hook allows security modules to control the ability of a process to
3090  * receive an open file descriptor via socket IPC.
3091  *
3092  * Return: Returns 0 if permission is granted.
3093  */
3094 int security_file_receive(struct file *file)
3095 {
3096 	return call_int_hook(file_receive, file);
3097 }
3098 
3099 /**
3100  * security_file_open() - Save open() time state for late use by the LSM
3101  * @file:
3102  *
3103  * Save open-time permission checking state for later use upon file_permission,
3104  * and recheck access if anything has changed since inode_permission.
3105  *
3106  * We can check if a file is opened for execution (e.g. execve(2) call), either
3107  * directly or indirectly (e.g. ELF's ld.so) by checking file->f_flags &
3108  * __FMODE_EXEC .
3109  *
3110  * Return: Returns 0 if permission is granted.
3111  */
3112 int security_file_open(struct file *file)
3113 {
3114 	return call_int_hook(file_open, file);
3115 }
3116 
3117 /**
3118  * security_file_post_open() - Evaluate a file after it has been opened
3119  * @file: the file
3120  * @mask: access mask
3121  *
3122  * Evaluate an opened file and the access mask requested with open(). The hook
3123  * is useful for LSMs that require the file content to be available in order to
3124  * make decisions.
3125  *
3126  * Return: Returns 0 if permission is granted.
3127  */
3128 int security_file_post_open(struct file *file, int mask)
3129 {
3130 	return call_int_hook(file_post_open, file, mask);
3131 }
3132 EXPORT_SYMBOL_GPL(security_file_post_open);
3133 
3134 /**
3135  * security_file_truncate() - Check if truncating a file is allowed
3136  * @file: file
3137  *
3138  * Check permission before truncating a file, i.e. using ftruncate.  Note that
3139  * truncation permission may also be checked based on the path, using the
3140  * @path_truncate hook.
3141  *
3142  * Return: Returns 0 if permission is granted.
3143  */
3144 int security_file_truncate(struct file *file)
3145 {
3146 	return call_int_hook(file_truncate, file);
3147 }
3148 
3149 /**
3150  * security_task_alloc() - Allocate a task's LSM blob
3151  * @task: the task
3152  * @clone_flags: flags indicating what is being shared
3153  *
3154  * Handle allocation of task-related resources.
3155  *
3156  * Return: Returns a zero on success, negative values on failure.
3157  */
3158 int security_task_alloc(struct task_struct *task, unsigned long clone_flags)
3159 {
3160 	int rc = lsm_task_alloc(task);
3161 
3162 	if (rc)
3163 		return rc;
3164 	rc = call_int_hook(task_alloc, task, clone_flags);
3165 	if (unlikely(rc))
3166 		security_task_free(task);
3167 	return rc;
3168 }
3169 
3170 /**
3171  * security_task_free() - Free a task's LSM blob and related resources
3172  * @task: task
3173  *
3174  * Handle release of task-related resources.  Note that this can be called from
3175  * interrupt context.
3176  */
3177 void security_task_free(struct task_struct *task)
3178 {
3179 	call_void_hook(task_free, task);
3180 
3181 	kfree(task->security);
3182 	task->security = NULL;
3183 }
3184 
3185 /**
3186  * security_cred_alloc_blank() - Allocate the min memory to allow cred_transfer
3187  * @cred: credentials
3188  * @gfp: gfp flags
3189  *
3190  * Only allocate sufficient memory and attach to @cred such that
3191  * cred_transfer() will not get ENOMEM.
3192  *
3193  * Return: Returns 0 on success, negative values on failure.
3194  */
3195 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
3196 {
3197 	int rc = lsm_cred_alloc(cred, gfp);
3198 
3199 	if (rc)
3200 		return rc;
3201 
3202 	rc = call_int_hook(cred_alloc_blank, cred, gfp);
3203 	if (unlikely(rc))
3204 		security_cred_free(cred);
3205 	return rc;
3206 }
3207 
3208 /**
3209  * security_cred_free() - Free the cred's LSM blob and associated resources
3210  * @cred: credentials
3211  *
3212  * Deallocate and clear the cred->security field in a set of credentials.
3213  */
3214 void security_cred_free(struct cred *cred)
3215 {
3216 	/*
3217 	 * There is a failure case in prepare_creds() that
3218 	 * may result in a call here with ->security being NULL.
3219 	 */
3220 	if (unlikely(cred->security == NULL))
3221 		return;
3222 
3223 	call_void_hook(cred_free, cred);
3224 
3225 	kfree(cred->security);
3226 	cred->security = NULL;
3227 }
3228 
3229 /**
3230  * security_prepare_creds() - Prepare a new set of credentials
3231  * @new: new credentials
3232  * @old: original credentials
3233  * @gfp: gfp flags
3234  *
3235  * Prepare a new set of credentials by copying the data from the old set.
3236  *
3237  * Return: Returns 0 on success, negative values on failure.
3238  */
3239 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
3240 {
3241 	int rc = lsm_cred_alloc(new, gfp);
3242 
3243 	if (rc)
3244 		return rc;
3245 
3246 	rc = call_int_hook(cred_prepare, new, old, gfp);
3247 	if (unlikely(rc))
3248 		security_cred_free(new);
3249 	return rc;
3250 }
3251 
3252 /**
3253  * security_transfer_creds() - Transfer creds
3254  * @new: target credentials
3255  * @old: original credentials
3256  *
3257  * Transfer data from original creds to new creds.
3258  */
3259 void security_transfer_creds(struct cred *new, const struct cred *old)
3260 {
3261 	call_void_hook(cred_transfer, new, old);
3262 }
3263 
3264 /**
3265  * security_cred_getsecid() - Get the secid from a set of credentials
3266  * @c: credentials
3267  * @secid: secid value
3268  *
3269  * Retrieve the security identifier of the cred structure @c.  In case of
3270  * failure, @secid will be set to zero.
3271  */
3272 void security_cred_getsecid(const struct cred *c, u32 *secid)
3273 {
3274 	*secid = 0;
3275 	call_void_hook(cred_getsecid, c, secid);
3276 }
3277 EXPORT_SYMBOL(security_cred_getsecid);
3278 
3279 /**
3280  * security_cred_getlsmprop() - Get the LSM data from a set of credentials
3281  * @c: credentials
3282  * @prop: destination for the LSM data
3283  *
3284  * Retrieve the security data of the cred structure @c.  In case of
3285  * failure, @prop will be cleared.
3286  */
3287 void security_cred_getlsmprop(const struct cred *c, struct lsm_prop *prop)
3288 {
3289 	lsmprop_init(prop);
3290 	call_void_hook(cred_getlsmprop, c, prop);
3291 }
3292 EXPORT_SYMBOL(security_cred_getlsmprop);
3293 
3294 /**
3295  * security_kernel_act_as() - Set the kernel credentials to act as secid
3296  * @new: credentials
3297  * @secid: secid
3298  *
3299  * Set the credentials for a kernel service to act as (subjective context).
3300  * The current task must be the one that nominated @secid.
3301  *
3302  * Return: Returns 0 if successful.
3303  */
3304 int security_kernel_act_as(struct cred *new, u32 secid)
3305 {
3306 	return call_int_hook(kernel_act_as, new, secid);
3307 }
3308 
3309 /**
3310  * security_kernel_create_files_as() - Set file creation context using an inode
3311  * @new: target credentials
3312  * @inode: reference inode
3313  *
3314  * Set the file creation context in a set of credentials to be the same as the
3315  * objective context of the specified inode.  The current task must be the one
3316  * that nominated @inode.
3317  *
3318  * Return: Returns 0 if successful.
3319  */
3320 int security_kernel_create_files_as(struct cred *new, struct inode *inode)
3321 {
3322 	return call_int_hook(kernel_create_files_as, new, inode);
3323 }
3324 
3325 /**
3326  * security_kernel_module_request() - Check if loading a module is allowed
3327  * @kmod_name: module name
3328  *
3329  * Ability to trigger the kernel to automatically upcall to userspace for
3330  * userspace to load a kernel module with the given name.
3331  *
3332  * Return: Returns 0 if successful.
3333  */
3334 int security_kernel_module_request(char *kmod_name)
3335 {
3336 	return call_int_hook(kernel_module_request, kmod_name);
3337 }
3338 
3339 /**
3340  * security_kernel_read_file() - Read a file specified by userspace
3341  * @file: file
3342  * @id: file identifier
3343  * @contents: trust if security_kernel_post_read_file() will be called
3344  *
3345  * Read a file specified by userspace.
3346  *
3347  * Return: Returns 0 if permission is granted.
3348  */
3349 int security_kernel_read_file(struct file *file, enum kernel_read_file_id id,
3350 			      bool contents)
3351 {
3352 	return call_int_hook(kernel_read_file, file, id, contents);
3353 }
3354 EXPORT_SYMBOL_GPL(security_kernel_read_file);
3355 
3356 /**
3357  * security_kernel_post_read_file() - Read a file specified by userspace
3358  * @file: file
3359  * @buf: file contents
3360  * @size: size of file contents
3361  * @id: file identifier
3362  *
3363  * Read a file specified by userspace.  This must be paired with a prior call
3364  * to security_kernel_read_file() call that indicated this hook would also be
3365  * called, see security_kernel_read_file() for more information.
3366  *
3367  * Return: Returns 0 if permission is granted.
3368  */
3369 int security_kernel_post_read_file(struct file *file, char *buf, loff_t size,
3370 				   enum kernel_read_file_id id)
3371 {
3372 	return call_int_hook(kernel_post_read_file, file, buf, size, id);
3373 }
3374 EXPORT_SYMBOL_GPL(security_kernel_post_read_file);
3375 
3376 /**
3377  * security_kernel_load_data() - Load data provided by userspace
3378  * @id: data identifier
3379  * @contents: true if security_kernel_post_load_data() will be called
3380  *
3381  * Load data provided by userspace.
3382  *
3383  * Return: Returns 0 if permission is granted.
3384  */
3385 int security_kernel_load_data(enum kernel_load_data_id id, bool contents)
3386 {
3387 	return call_int_hook(kernel_load_data, id, contents);
3388 }
3389 EXPORT_SYMBOL_GPL(security_kernel_load_data);
3390 
3391 /**
3392  * security_kernel_post_load_data() - Load userspace data from a non-file source
3393  * @buf: data
3394  * @size: size of data
3395  * @id: data identifier
3396  * @description: text description of data, specific to the id value
3397  *
3398  * Load data provided by a non-file source (usually userspace buffer).  This
3399  * must be paired with a prior security_kernel_load_data() call that indicated
3400  * this hook would also be called, see security_kernel_load_data() for more
3401  * information.
3402  *
3403  * Return: Returns 0 if permission is granted.
3404  */
3405 int security_kernel_post_load_data(char *buf, loff_t size,
3406 				   enum kernel_load_data_id id,
3407 				   char *description)
3408 {
3409 	return call_int_hook(kernel_post_load_data, buf, size, id, description);
3410 }
3411 EXPORT_SYMBOL_GPL(security_kernel_post_load_data);
3412 
3413 /**
3414  * security_task_fix_setuid() - Update LSM with new user id attributes
3415  * @new: updated credentials
3416  * @old: credentials being replaced
3417  * @flags: LSM_SETID_* flag values
3418  *
3419  * Update the module's state after setting one or more of the user identity
3420  * attributes of the current process.  The @flags parameter indicates which of
3421  * the set*uid system calls invoked this hook.  If @new is the set of
3422  * credentials that will be installed.  Modifications should be made to this
3423  * rather than to @current->cred.
3424  *
3425  * Return: Returns 0 on success.
3426  */
3427 int security_task_fix_setuid(struct cred *new, const struct cred *old,
3428 			     int flags)
3429 {
3430 	return call_int_hook(task_fix_setuid, new, old, flags);
3431 }
3432 
3433 /**
3434  * security_task_fix_setgid() - Update LSM with new group id attributes
3435  * @new: updated credentials
3436  * @old: credentials being replaced
3437  * @flags: LSM_SETID_* flag value
3438  *
3439  * Update the module's state after setting one or more of the group identity
3440  * attributes of the current process.  The @flags parameter indicates which of
3441  * the set*gid system calls invoked this hook.  @new is the set of credentials
3442  * that will be installed.  Modifications should be made to this rather than to
3443  * @current->cred.
3444  *
3445  * Return: Returns 0 on success.
3446  */
3447 int security_task_fix_setgid(struct cred *new, const struct cred *old,
3448 			     int flags)
3449 {
3450 	return call_int_hook(task_fix_setgid, new, old, flags);
3451 }
3452 
3453 /**
3454  * security_task_fix_setgroups() - Update LSM with new supplementary groups
3455  * @new: updated credentials
3456  * @old: credentials being replaced
3457  *
3458  * Update the module's state after setting the supplementary group identity
3459  * attributes of the current process.  @new is the set of credentials that will
3460  * be installed.  Modifications should be made to this rather than to
3461  * @current->cred.
3462  *
3463  * Return: Returns 0 on success.
3464  */
3465 int security_task_fix_setgroups(struct cred *new, const struct cred *old)
3466 {
3467 	return call_int_hook(task_fix_setgroups, new, old);
3468 }
3469 
3470 /**
3471  * security_task_setpgid() - Check if setting the pgid is allowed
3472  * @p: task being modified
3473  * @pgid: new pgid
3474  *
3475  * Check permission before setting the process group identifier of the process
3476  * @p to @pgid.
3477  *
3478  * Return: Returns 0 if permission is granted.
3479  */
3480 int security_task_setpgid(struct task_struct *p, pid_t pgid)
3481 {
3482 	return call_int_hook(task_setpgid, p, pgid);
3483 }
3484 
3485 /**
3486  * security_task_getpgid() - Check if getting the pgid is allowed
3487  * @p: task
3488  *
3489  * Check permission before getting the process group identifier of the process
3490  * @p.
3491  *
3492  * Return: Returns 0 if permission is granted.
3493  */
3494 int security_task_getpgid(struct task_struct *p)
3495 {
3496 	return call_int_hook(task_getpgid, p);
3497 }
3498 
3499 /**
3500  * security_task_getsid() - Check if getting the session id is allowed
3501  * @p: task
3502  *
3503  * Check permission before getting the session identifier of the process @p.
3504  *
3505  * Return: Returns 0 if permission is granted.
3506  */
3507 int security_task_getsid(struct task_struct *p)
3508 {
3509 	return call_int_hook(task_getsid, p);
3510 }
3511 
3512 /**
3513  * security_current_getlsmprop_subj() - Current task's subjective LSM data
3514  * @prop: lsm specific information
3515  *
3516  * Retrieve the subjective security identifier of the current task and return
3517  * it in @prop.
3518  */
3519 void security_current_getlsmprop_subj(struct lsm_prop *prop)
3520 {
3521 	lsmprop_init(prop);
3522 	call_void_hook(current_getlsmprop_subj, prop);
3523 }
3524 EXPORT_SYMBOL(security_current_getlsmprop_subj);
3525 
3526 /**
3527  * security_task_getlsmprop_obj() - Get a task's objective LSM data
3528  * @p: target task
3529  * @prop: lsm specific information
3530  *
3531  * Retrieve the objective security identifier of the task_struct in @p and
3532  * return it in @prop.
3533  */
3534 void security_task_getlsmprop_obj(struct task_struct *p, struct lsm_prop *prop)
3535 {
3536 	lsmprop_init(prop);
3537 	call_void_hook(task_getlsmprop_obj, p, prop);
3538 }
3539 EXPORT_SYMBOL(security_task_getlsmprop_obj);
3540 
3541 /**
3542  * security_task_setnice() - Check if setting a task's nice value is allowed
3543  * @p: target task
3544  * @nice: nice value
3545  *
3546  * Check permission before setting the nice value of @p to @nice.
3547  *
3548  * Return: Returns 0 if permission is granted.
3549  */
3550 int security_task_setnice(struct task_struct *p, int nice)
3551 {
3552 	return call_int_hook(task_setnice, p, nice);
3553 }
3554 
3555 /**
3556  * security_task_setioprio() - Check if setting a task's ioprio is allowed
3557  * @p: target task
3558  * @ioprio: ioprio value
3559  *
3560  * Check permission before setting the ioprio value of @p to @ioprio.
3561  *
3562  * Return: Returns 0 if permission is granted.
3563  */
3564 int security_task_setioprio(struct task_struct *p, int ioprio)
3565 {
3566 	return call_int_hook(task_setioprio, p, ioprio);
3567 }
3568 
3569 /**
3570  * security_task_getioprio() - Check if getting a task's ioprio is allowed
3571  * @p: task
3572  *
3573  * Check permission before getting the ioprio value of @p.
3574  *
3575  * Return: Returns 0 if permission is granted.
3576  */
3577 int security_task_getioprio(struct task_struct *p)
3578 {
3579 	return call_int_hook(task_getioprio, p);
3580 }
3581 
3582 /**
3583  * security_task_prlimit() - Check if get/setting resources limits is allowed
3584  * @cred: current task credentials
3585  * @tcred: target task credentials
3586  * @flags: LSM_PRLIMIT_* flag bits indicating a get/set/both
3587  *
3588  * Check permission before getting and/or setting the resource limits of
3589  * another task.
3590  *
3591  * Return: Returns 0 if permission is granted.
3592  */
3593 int security_task_prlimit(const struct cred *cred, const struct cred *tcred,
3594 			  unsigned int flags)
3595 {
3596 	return call_int_hook(task_prlimit, cred, tcred, flags);
3597 }
3598 
3599 /**
3600  * security_task_setrlimit() - Check if setting a new rlimit value is allowed
3601  * @p: target task's group leader
3602  * @resource: resource whose limit is being set
3603  * @new_rlim: new resource limit
3604  *
3605  * Check permission before setting the resource limits of process @p for
3606  * @resource to @new_rlim.  The old resource limit values can be examined by
3607  * dereferencing (p->signal->rlim + resource).
3608  *
3609  * Return: Returns 0 if permission is granted.
3610  */
3611 int security_task_setrlimit(struct task_struct *p, unsigned int resource,
3612 			    struct rlimit *new_rlim)
3613 {
3614 	return call_int_hook(task_setrlimit, p, resource, new_rlim);
3615 }
3616 
3617 /**
3618  * security_task_setscheduler() - Check if setting sched policy/param is allowed
3619  * @p: target task
3620  *
3621  * Check permission before setting scheduling policy and/or parameters of
3622  * process @p.
3623  *
3624  * Return: Returns 0 if permission is granted.
3625  */
3626 int security_task_setscheduler(struct task_struct *p)
3627 {
3628 	return call_int_hook(task_setscheduler, p);
3629 }
3630 
3631 /**
3632  * security_task_getscheduler() - Check if getting scheduling info is allowed
3633  * @p: target task
3634  *
3635  * Check permission before obtaining scheduling information for process @p.
3636  *
3637  * Return: Returns 0 if permission is granted.
3638  */
3639 int security_task_getscheduler(struct task_struct *p)
3640 {
3641 	return call_int_hook(task_getscheduler, p);
3642 }
3643 
3644 /**
3645  * security_task_movememory() - Check if moving memory is allowed
3646  * @p: task
3647  *
3648  * Check permission before moving memory owned by process @p.
3649  *
3650  * Return: Returns 0 if permission is granted.
3651  */
3652 int security_task_movememory(struct task_struct *p)
3653 {
3654 	return call_int_hook(task_movememory, p);
3655 }
3656 
3657 /**
3658  * security_task_kill() - Check if sending a signal is allowed
3659  * @p: target process
3660  * @info: signal information
3661  * @sig: signal value
3662  * @cred: credentials of the signal sender, NULL if @current
3663  *
3664  * Check permission before sending signal @sig to @p.  @info can be NULL, the
3665  * constant 1, or a pointer to a kernel_siginfo structure.  If @info is 1 or
3666  * SI_FROMKERNEL(info) is true, then the signal should be viewed as coming from
3667  * the kernel and should typically be permitted.  SIGIO signals are handled
3668  * separately by the send_sigiotask hook in file_security_ops.
3669  *
3670  * Return: Returns 0 if permission is granted.
3671  */
3672 int security_task_kill(struct task_struct *p, struct kernel_siginfo *info,
3673 		       int sig, const struct cred *cred)
3674 {
3675 	return call_int_hook(task_kill, p, info, sig, cred);
3676 }
3677 
3678 /**
3679  * security_task_prctl() - Check if a prctl op is allowed
3680  * @option: operation
3681  * @arg2: argument
3682  * @arg3: argument
3683  * @arg4: argument
3684  * @arg5: argument
3685  *
3686  * Check permission before performing a process control operation on the
3687  * current process.
3688  *
3689  * Return: Return -ENOSYS if no-one wanted to handle this op, any other value
3690  *         to cause prctl() to return immediately with that value.
3691  */
3692 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
3693 			unsigned long arg4, unsigned long arg5)
3694 {
3695 	int thisrc;
3696 	int rc = LSM_RET_DEFAULT(task_prctl);
3697 	struct lsm_static_call *scall;
3698 
3699 	lsm_for_each_hook(scall, task_prctl) {
3700 		thisrc = scall->hl->hook.task_prctl(option, arg2, arg3, arg4, arg5);
3701 		if (thisrc != LSM_RET_DEFAULT(task_prctl)) {
3702 			rc = thisrc;
3703 			if (thisrc != 0)
3704 				break;
3705 		}
3706 	}
3707 	return rc;
3708 }
3709 
3710 /**
3711  * security_task_to_inode() - Set the security attributes of a task's inode
3712  * @p: task
3713  * @inode: inode
3714  *
3715  * Set the security attributes for an inode based on an associated task's
3716  * security attributes, e.g. for /proc/pid inodes.
3717  */
3718 void security_task_to_inode(struct task_struct *p, struct inode *inode)
3719 {
3720 	call_void_hook(task_to_inode, p, inode);
3721 }
3722 
3723 /**
3724  * security_create_user_ns() - Check if creating a new userns is allowed
3725  * @cred: prepared creds
3726  *
3727  * Check permission prior to creating a new user namespace.
3728  *
3729  * Return: Returns 0 if successful, otherwise < 0 error code.
3730  */
3731 int security_create_user_ns(const struct cred *cred)
3732 {
3733 	return call_int_hook(userns_create, cred);
3734 }
3735 
3736 /**
3737  * security_ipc_permission() - Check if sysv ipc access is allowed
3738  * @ipcp: ipc permission structure
3739  * @flag: requested permissions
3740  *
3741  * Check permissions for access to IPC.
3742  *
3743  * Return: Returns 0 if permission is granted.
3744  */
3745 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
3746 {
3747 	return call_int_hook(ipc_permission, ipcp, flag);
3748 }
3749 
3750 /**
3751  * security_ipc_getlsmprop() - Get the sysv ipc object LSM data
3752  * @ipcp: ipc permission structure
3753  * @prop: pointer to lsm information
3754  *
3755  * Get the lsm information associated with the ipc object.
3756  */
3757 
3758 void security_ipc_getlsmprop(struct kern_ipc_perm *ipcp, struct lsm_prop *prop)
3759 {
3760 	lsmprop_init(prop);
3761 	call_void_hook(ipc_getlsmprop, ipcp, prop);
3762 }
3763 
3764 /**
3765  * security_msg_msg_alloc() - Allocate a sysv ipc message LSM blob
3766  * @msg: message structure
3767  *
3768  * Allocate and attach a security structure to the msg->security field.  The
3769  * security field is initialized to NULL when the structure is first created.
3770  *
3771  * Return: Return 0 if operation was successful and permission is granted.
3772  */
3773 int security_msg_msg_alloc(struct msg_msg *msg)
3774 {
3775 	int rc = lsm_msg_msg_alloc(msg);
3776 
3777 	if (unlikely(rc))
3778 		return rc;
3779 	rc = call_int_hook(msg_msg_alloc_security, msg);
3780 	if (unlikely(rc))
3781 		security_msg_msg_free(msg);
3782 	return rc;
3783 }
3784 
3785 /**
3786  * security_msg_msg_free() - Free a sysv ipc message LSM blob
3787  * @msg: message structure
3788  *
3789  * Deallocate the security structure for this message.
3790  */
3791 void security_msg_msg_free(struct msg_msg *msg)
3792 {
3793 	call_void_hook(msg_msg_free_security, msg);
3794 	kfree(msg->security);
3795 	msg->security = NULL;
3796 }
3797 
3798 /**
3799  * security_msg_queue_alloc() - Allocate a sysv ipc msg queue LSM blob
3800  * @msq: sysv ipc permission structure
3801  *
3802  * Allocate and attach a security structure to @msg. The security field is
3803  * initialized to NULL when the structure is first created.
3804  *
3805  * Return: Returns 0 if operation was successful and permission is granted.
3806  */
3807 int security_msg_queue_alloc(struct kern_ipc_perm *msq)
3808 {
3809 	int rc = lsm_ipc_alloc(msq);
3810 
3811 	if (unlikely(rc))
3812 		return rc;
3813 	rc = call_int_hook(msg_queue_alloc_security, msq);
3814 	if (unlikely(rc))
3815 		security_msg_queue_free(msq);
3816 	return rc;
3817 }
3818 
3819 /**
3820  * security_msg_queue_free() - Free a sysv ipc msg queue LSM blob
3821  * @msq: sysv ipc permission structure
3822  *
3823  * Deallocate security field @perm->security for the message queue.
3824  */
3825 void security_msg_queue_free(struct kern_ipc_perm *msq)
3826 {
3827 	call_void_hook(msg_queue_free_security, msq);
3828 	kfree(msq->security);
3829 	msq->security = NULL;
3830 }
3831 
3832 /**
3833  * security_msg_queue_associate() - Check if a msg queue operation is allowed
3834  * @msq: sysv ipc permission structure
3835  * @msqflg: operation flags
3836  *
3837  * Check permission when a message queue is requested through the msgget system
3838  * call. This hook is only called when returning the message queue identifier
3839  * for an existing message queue, not when a new message queue is created.
3840  *
3841  * Return: Return 0 if permission is granted.
3842  */
3843 int security_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
3844 {
3845 	return call_int_hook(msg_queue_associate, msq, msqflg);
3846 }
3847 
3848 /**
3849  * security_msg_queue_msgctl() - Check if a msg queue operation is allowed
3850  * @msq: sysv ipc permission structure
3851  * @cmd: operation
3852  *
3853  * Check permission when a message control operation specified by @cmd is to be
3854  * performed on the message queue with permissions.
3855  *
3856  * Return: Returns 0 if permission is granted.
3857  */
3858 int security_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
3859 {
3860 	return call_int_hook(msg_queue_msgctl, msq, cmd);
3861 }
3862 
3863 /**
3864  * security_msg_queue_msgsnd() - Check if sending a sysv ipc message is allowed
3865  * @msq: sysv ipc permission structure
3866  * @msg: message
3867  * @msqflg: operation flags
3868  *
3869  * Check permission before a message, @msg, is enqueued on the message queue
3870  * with permissions specified in @msq.
3871  *
3872  * Return: Returns 0 if permission is granted.
3873  */
3874 int security_msg_queue_msgsnd(struct kern_ipc_perm *msq,
3875 			      struct msg_msg *msg, int msqflg)
3876 {
3877 	return call_int_hook(msg_queue_msgsnd, msq, msg, msqflg);
3878 }
3879 
3880 /**
3881  * security_msg_queue_msgrcv() - Check if receiving a sysv ipc msg is allowed
3882  * @msq: sysv ipc permission structure
3883  * @msg: message
3884  * @target: target task
3885  * @type: type of message requested
3886  * @mode: operation flags
3887  *
3888  * Check permission before a message, @msg, is removed from the message	queue.
3889  * The @target task structure contains a pointer to the process that will be
3890  * receiving the message (not equal to the current process when inline receives
3891  * are being performed).
3892  *
3893  * Return: Returns 0 if permission is granted.
3894  */
3895 int security_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
3896 			      struct task_struct *target, long type, int mode)
3897 {
3898 	return call_int_hook(msg_queue_msgrcv, msq, msg, target, type, mode);
3899 }
3900 
3901 /**
3902  * security_shm_alloc() - Allocate a sysv shm LSM blob
3903  * @shp: sysv ipc permission structure
3904  *
3905  * Allocate and attach a security structure to the @shp security field.  The
3906  * security field is initialized to NULL when the structure is first created.
3907  *
3908  * Return: Returns 0 if operation was successful and permission is granted.
3909  */
3910 int security_shm_alloc(struct kern_ipc_perm *shp)
3911 {
3912 	int rc = lsm_ipc_alloc(shp);
3913 
3914 	if (unlikely(rc))
3915 		return rc;
3916 	rc = call_int_hook(shm_alloc_security, shp);
3917 	if (unlikely(rc))
3918 		security_shm_free(shp);
3919 	return rc;
3920 }
3921 
3922 /**
3923  * security_shm_free() - Free a sysv shm LSM blob
3924  * @shp: sysv ipc permission structure
3925  *
3926  * Deallocate the security structure @perm->security for the memory segment.
3927  */
3928 void security_shm_free(struct kern_ipc_perm *shp)
3929 {
3930 	call_void_hook(shm_free_security, shp);
3931 	kfree(shp->security);
3932 	shp->security = NULL;
3933 }
3934 
3935 /**
3936  * security_shm_associate() - Check if a sysv shm operation is allowed
3937  * @shp: sysv ipc permission structure
3938  * @shmflg: operation flags
3939  *
3940  * Check permission when a shared memory region is requested through the shmget
3941  * system call. This hook is only called when returning the shared memory
3942  * region identifier for an existing region, not when a new shared memory
3943  * region is created.
3944  *
3945  * Return: Returns 0 if permission is granted.
3946  */
3947 int security_shm_associate(struct kern_ipc_perm *shp, int shmflg)
3948 {
3949 	return call_int_hook(shm_associate, shp, shmflg);
3950 }
3951 
3952 /**
3953  * security_shm_shmctl() - Check if a sysv shm operation is allowed
3954  * @shp: sysv ipc permission structure
3955  * @cmd: operation
3956  *
3957  * Check permission when a shared memory control operation specified by @cmd is
3958  * to be performed on the shared memory region with permissions in @shp.
3959  *
3960  * Return: Return 0 if permission is granted.
3961  */
3962 int security_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
3963 {
3964 	return call_int_hook(shm_shmctl, shp, cmd);
3965 }
3966 
3967 /**
3968  * security_shm_shmat() - Check if a sysv shm attach operation is allowed
3969  * @shp: sysv ipc permission structure
3970  * @shmaddr: address of memory region to attach
3971  * @shmflg: operation flags
3972  *
3973  * Check permissions prior to allowing the shmat system call to attach the
3974  * shared memory segment with permissions @shp to the data segment of the
3975  * calling process. The attaching address is specified by @shmaddr.
3976  *
3977  * Return: Returns 0 if permission is granted.
3978  */
3979 int security_shm_shmat(struct kern_ipc_perm *shp,
3980 		       char __user *shmaddr, int shmflg)
3981 {
3982 	return call_int_hook(shm_shmat, shp, shmaddr, shmflg);
3983 }
3984 
3985 /**
3986  * security_sem_alloc() - Allocate a sysv semaphore LSM blob
3987  * @sma: sysv ipc permission structure
3988  *
3989  * Allocate and attach a security structure to the @sma security field. The
3990  * security field is initialized to NULL when the structure is first created.
3991  *
3992  * Return: Returns 0 if operation was successful and permission is granted.
3993  */
3994 int security_sem_alloc(struct kern_ipc_perm *sma)
3995 {
3996 	int rc = lsm_ipc_alloc(sma);
3997 
3998 	if (unlikely(rc))
3999 		return rc;
4000 	rc = call_int_hook(sem_alloc_security, sma);
4001 	if (unlikely(rc))
4002 		security_sem_free(sma);
4003 	return rc;
4004 }
4005 
4006 /**
4007  * security_sem_free() - Free a sysv semaphore LSM blob
4008  * @sma: sysv ipc permission structure
4009  *
4010  * Deallocate security structure @sma->security for the semaphore.
4011  */
4012 void security_sem_free(struct kern_ipc_perm *sma)
4013 {
4014 	call_void_hook(sem_free_security, sma);
4015 	kfree(sma->security);
4016 	sma->security = NULL;
4017 }
4018 
4019 /**
4020  * security_sem_associate() - Check if a sysv semaphore operation is allowed
4021  * @sma: sysv ipc permission structure
4022  * @semflg: operation flags
4023  *
4024  * Check permission when a semaphore is requested through the semget system
4025  * call. This hook is only called when returning the semaphore identifier for
4026  * an existing semaphore, not when a new one must be created.
4027  *
4028  * Return: Returns 0 if permission is granted.
4029  */
4030 int security_sem_associate(struct kern_ipc_perm *sma, int semflg)
4031 {
4032 	return call_int_hook(sem_associate, sma, semflg);
4033 }
4034 
4035 /**
4036  * security_sem_semctl() - Check if a sysv semaphore operation is allowed
4037  * @sma: sysv ipc permission structure
4038  * @cmd: operation
4039  *
4040  * Check permission when a semaphore operation specified by @cmd is to be
4041  * performed on the semaphore.
4042  *
4043  * Return: Returns 0 if permission is granted.
4044  */
4045 int security_sem_semctl(struct kern_ipc_perm *sma, int cmd)
4046 {
4047 	return call_int_hook(sem_semctl, sma, cmd);
4048 }
4049 
4050 /**
4051  * security_sem_semop() - Check if a sysv semaphore operation is allowed
4052  * @sma: sysv ipc permission structure
4053  * @sops: operations to perform
4054  * @nsops: number of operations
4055  * @alter: flag indicating changes will be made
4056  *
4057  * Check permissions before performing operations on members of the semaphore
4058  * set. If the @alter flag is nonzero, the semaphore set may be modified.
4059  *
4060  * Return: Returns 0 if permission is granted.
4061  */
4062 int security_sem_semop(struct kern_ipc_perm *sma, struct sembuf *sops,
4063 		       unsigned nsops, int alter)
4064 {
4065 	return call_int_hook(sem_semop, sma, sops, nsops, alter);
4066 }
4067 
4068 /**
4069  * security_d_instantiate() - Populate an inode's LSM state based on a dentry
4070  * @dentry: dentry
4071  * @inode: inode
4072  *
4073  * Fill in @inode security information for a @dentry if allowed.
4074  */
4075 void security_d_instantiate(struct dentry *dentry, struct inode *inode)
4076 {
4077 	if (unlikely(inode && IS_PRIVATE(inode)))
4078 		return;
4079 	call_void_hook(d_instantiate, dentry, inode);
4080 }
4081 EXPORT_SYMBOL(security_d_instantiate);
4082 
4083 /*
4084  * Please keep this in sync with it's counterpart in security/lsm_syscalls.c
4085  */
4086 
4087 /**
4088  * security_getselfattr - Read an LSM attribute of the current process.
4089  * @attr: which attribute to return
4090  * @uctx: the user-space destination for the information, or NULL
4091  * @size: pointer to the size of space available to receive the data
4092  * @flags: special handling options. LSM_FLAG_SINGLE indicates that only
4093  * attributes associated with the LSM identified in the passed @ctx be
4094  * reported.
4095  *
4096  * A NULL value for @uctx can be used to get both the number of attributes
4097  * and the size of the data.
4098  *
4099  * Returns the number of attributes found on success, negative value
4100  * on error. @size is reset to the total size of the data.
4101  * If @size is insufficient to contain the data -E2BIG is returned.
4102  */
4103 int security_getselfattr(unsigned int attr, struct lsm_ctx __user *uctx,
4104 			 u32 __user *size, u32 flags)
4105 {
4106 	struct lsm_static_call *scall;
4107 	struct lsm_ctx lctx = { .id = LSM_ID_UNDEF, };
4108 	u8 __user *base = (u8 __user *)uctx;
4109 	u32 entrysize;
4110 	u32 total = 0;
4111 	u32 left;
4112 	bool toobig = false;
4113 	bool single = false;
4114 	int count = 0;
4115 	int rc;
4116 
4117 	if (attr == LSM_ATTR_UNDEF)
4118 		return -EINVAL;
4119 	if (size == NULL)
4120 		return -EINVAL;
4121 	if (get_user(left, size))
4122 		return -EFAULT;
4123 
4124 	if (flags) {
4125 		/*
4126 		 * Only flag supported is LSM_FLAG_SINGLE
4127 		 */
4128 		if (flags != LSM_FLAG_SINGLE || !uctx)
4129 			return -EINVAL;
4130 		if (copy_from_user(&lctx, uctx, sizeof(lctx)))
4131 			return -EFAULT;
4132 		/*
4133 		 * If the LSM ID isn't specified it is an error.
4134 		 */
4135 		if (lctx.id == LSM_ID_UNDEF)
4136 			return -EINVAL;
4137 		single = true;
4138 	}
4139 
4140 	/*
4141 	 * In the usual case gather all the data from the LSMs.
4142 	 * In the single case only get the data from the LSM specified.
4143 	 */
4144 	lsm_for_each_hook(scall, getselfattr) {
4145 		if (single && lctx.id != scall->hl->lsmid->id)
4146 			continue;
4147 		entrysize = left;
4148 		if (base)
4149 			uctx = (struct lsm_ctx __user *)(base + total);
4150 		rc = scall->hl->hook.getselfattr(attr, uctx, &entrysize, flags);
4151 		if (rc == -EOPNOTSUPP)
4152 			continue;
4153 		if (rc == -E2BIG) {
4154 			rc = 0;
4155 			left = 0;
4156 			toobig = true;
4157 		} else if (rc < 0)
4158 			return rc;
4159 		else
4160 			left -= entrysize;
4161 
4162 		total += entrysize;
4163 		count += rc;
4164 		if (single)
4165 			break;
4166 	}
4167 	if (put_user(total, size))
4168 		return -EFAULT;
4169 	if (toobig)
4170 		return -E2BIG;
4171 	if (count == 0)
4172 		return LSM_RET_DEFAULT(getselfattr);
4173 	return count;
4174 }
4175 
4176 /*
4177  * Please keep this in sync with it's counterpart in security/lsm_syscalls.c
4178  */
4179 
4180 /**
4181  * security_setselfattr - Set an LSM attribute on the current process.
4182  * @attr: which attribute to set
4183  * @uctx: the user-space source for the information
4184  * @size: the size of the data
4185  * @flags: reserved for future use, must be 0
4186  *
4187  * Set an LSM attribute for the current process. The LSM, attribute
4188  * and new value are included in @uctx.
4189  *
4190  * Returns 0 on success, -EINVAL if the input is inconsistent, -EFAULT
4191  * if the user buffer is inaccessible, E2BIG if size is too big, or an
4192  * LSM specific failure.
4193  */
4194 int security_setselfattr(unsigned int attr, struct lsm_ctx __user *uctx,
4195 			 u32 size, u32 flags)
4196 {
4197 	struct lsm_static_call *scall;
4198 	struct lsm_ctx *lctx;
4199 	int rc = LSM_RET_DEFAULT(setselfattr);
4200 	u64 required_len;
4201 
4202 	if (flags)
4203 		return -EINVAL;
4204 	if (size < sizeof(*lctx))
4205 		return -EINVAL;
4206 	if (size > PAGE_SIZE)
4207 		return -E2BIG;
4208 
4209 	lctx = memdup_user(uctx, size);
4210 	if (IS_ERR(lctx))
4211 		return PTR_ERR(lctx);
4212 
4213 	if (size < lctx->len ||
4214 	    check_add_overflow(sizeof(*lctx), lctx->ctx_len, &required_len) ||
4215 	    lctx->len < required_len) {
4216 		rc = -EINVAL;
4217 		goto free_out;
4218 	}
4219 
4220 	lsm_for_each_hook(scall, setselfattr)
4221 		if ((scall->hl->lsmid->id) == lctx->id) {
4222 			rc = scall->hl->hook.setselfattr(attr, lctx, size, flags);
4223 			break;
4224 		}
4225 
4226 free_out:
4227 	kfree(lctx);
4228 	return rc;
4229 }
4230 
4231 /**
4232  * security_getprocattr() - Read an attribute for a task
4233  * @p: the task
4234  * @lsmid: LSM identification
4235  * @name: attribute name
4236  * @value: attribute value
4237  *
4238  * Read attribute @name for task @p and store it into @value if allowed.
4239  *
4240  * Return: Returns the length of @value on success, a negative value otherwise.
4241  */
4242 int security_getprocattr(struct task_struct *p, int lsmid, const char *name,
4243 			 char **value)
4244 {
4245 	struct lsm_static_call *scall;
4246 
4247 	lsm_for_each_hook(scall, getprocattr) {
4248 		if (lsmid != 0 && lsmid != scall->hl->lsmid->id)
4249 			continue;
4250 		return scall->hl->hook.getprocattr(p, name, value);
4251 	}
4252 	return LSM_RET_DEFAULT(getprocattr);
4253 }
4254 
4255 /**
4256  * security_setprocattr() - Set an attribute for a task
4257  * @lsmid: LSM identification
4258  * @name: attribute name
4259  * @value: attribute value
4260  * @size: attribute value size
4261  *
4262  * Write (set) the current task's attribute @name to @value, size @size if
4263  * allowed.
4264  *
4265  * Return: Returns bytes written on success, a negative value otherwise.
4266  */
4267 int security_setprocattr(int lsmid, const char *name, void *value, size_t size)
4268 {
4269 	struct lsm_static_call *scall;
4270 
4271 	lsm_for_each_hook(scall, setprocattr) {
4272 		if (lsmid != 0 && lsmid != scall->hl->lsmid->id)
4273 			continue;
4274 		return scall->hl->hook.setprocattr(name, value, size);
4275 	}
4276 	return LSM_RET_DEFAULT(setprocattr);
4277 }
4278 
4279 /**
4280  * security_netlink_send() - Save info and check if netlink sending is allowed
4281  * @sk: sending socket
4282  * @skb: netlink message
4283  *
4284  * Save security information for a netlink message so that permission checking
4285  * can be performed when the message is processed.  The security information
4286  * can be saved using the eff_cap field of the netlink_skb_parms structure.
4287  * Also may be used to provide fine grained control over message transmission.
4288  *
4289  * Return: Returns 0 if the information was successfully saved and message is
4290  *         allowed to be transmitted.
4291  */
4292 int security_netlink_send(struct sock *sk, struct sk_buff *skb)
4293 {
4294 	return call_int_hook(netlink_send, sk, skb);
4295 }
4296 
4297 /**
4298  * security_ismaclabel() - Check if the named attribute is a MAC label
4299  * @name: full extended attribute name
4300  *
4301  * Check if the extended attribute specified by @name represents a MAC label.
4302  *
4303  * Return: Returns 1 if name is a MAC attribute otherwise returns 0.
4304  */
4305 int security_ismaclabel(const char *name)
4306 {
4307 	return call_int_hook(ismaclabel, name);
4308 }
4309 EXPORT_SYMBOL(security_ismaclabel);
4310 
4311 /**
4312  * security_secid_to_secctx() - Convert a secid to a secctx
4313  * @secid: secid
4314  * @cp: the LSM context
4315  *
4316  * Convert secid to security context.  If @cp is NULL the length of the
4317  * result will be returned, but no data will be returned.  This
4318  * does mean that the length could change between calls to check the length and
4319  * the next call which actually allocates and returns the data.
4320  *
4321  * Return: Return length of data on success, error on failure.
4322  */
4323 int security_secid_to_secctx(u32 secid, struct lsm_context *cp)
4324 {
4325 	return call_int_hook(secid_to_secctx, secid, cp);
4326 }
4327 EXPORT_SYMBOL(security_secid_to_secctx);
4328 
4329 /**
4330  * security_lsmprop_to_secctx() - Convert a lsm_prop to a secctx
4331  * @prop: lsm specific information
4332  * @cp: the LSM context
4333  *
4334  * Convert a @prop entry to security context.  If @cp is NULL the
4335  * length of the result will be returned. This does mean that the
4336  * length could change between calls to check the length and the
4337  * next call which actually allocates and returns the @cp.
4338  *
4339  * Return: Return length of data on success, error on failure.
4340  */
4341 int security_lsmprop_to_secctx(struct lsm_prop *prop, struct lsm_context *cp)
4342 {
4343 	return call_int_hook(lsmprop_to_secctx, prop, cp);
4344 }
4345 EXPORT_SYMBOL(security_lsmprop_to_secctx);
4346 
4347 /**
4348  * security_secctx_to_secid() - Convert a secctx to a secid
4349  * @secdata: secctx
4350  * @seclen: length of secctx
4351  * @secid: secid
4352  *
4353  * Convert security context to secid.
4354  *
4355  * Return: Returns 0 on success, error on failure.
4356  */
4357 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
4358 {
4359 	*secid = 0;
4360 	return call_int_hook(secctx_to_secid, secdata, seclen, secid);
4361 }
4362 EXPORT_SYMBOL(security_secctx_to_secid);
4363 
4364 /**
4365  * security_release_secctx() - Free a secctx buffer
4366  * @cp: the security context
4367  *
4368  * Release the security context.
4369  */
4370 void security_release_secctx(struct lsm_context *cp)
4371 {
4372 	call_void_hook(release_secctx, cp);
4373 	memset(cp, 0, sizeof(*cp));
4374 }
4375 EXPORT_SYMBOL(security_release_secctx);
4376 
4377 /**
4378  * security_inode_invalidate_secctx() - Invalidate an inode's security label
4379  * @inode: inode
4380  *
4381  * Notify the security module that it must revalidate the security context of
4382  * an inode.
4383  */
4384 void security_inode_invalidate_secctx(struct inode *inode)
4385 {
4386 	call_void_hook(inode_invalidate_secctx, inode);
4387 }
4388 EXPORT_SYMBOL(security_inode_invalidate_secctx);
4389 
4390 /**
4391  * security_inode_notifysecctx() - Notify the LSM of an inode's security label
4392  * @inode: inode
4393  * @ctx: secctx
4394  * @ctxlen: length of secctx
4395  *
4396  * Notify the security module of what the security context of an inode should
4397  * be.  Initializes the incore security context managed by the security module
4398  * for this inode.  Example usage: NFS client invokes this hook to initialize
4399  * the security context in its incore inode to the value provided by the server
4400  * for the file when the server returned the file's attributes to the client.
4401  * Must be called with inode->i_mutex locked.
4402  *
4403  * Return: Returns 0 on success, error on failure.
4404  */
4405 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
4406 {
4407 	return call_int_hook(inode_notifysecctx, inode, ctx, ctxlen);
4408 }
4409 EXPORT_SYMBOL(security_inode_notifysecctx);
4410 
4411 /**
4412  * security_inode_setsecctx() - Change the security label of an inode
4413  * @dentry: inode
4414  * @ctx: secctx
4415  * @ctxlen: length of secctx
4416  *
4417  * Change the security context of an inode.  Updates the incore security
4418  * context managed by the security module and invokes the fs code as needed
4419  * (via __vfs_setxattr_noperm) to update any backing xattrs that represent the
4420  * context.  Example usage: NFS server invokes this hook to change the security
4421  * context in its incore inode and on the backing filesystem to a value
4422  * provided by the client on a SETATTR operation.  Must be called with
4423  * inode->i_mutex locked.
4424  *
4425  * Return: Returns 0 on success, error on failure.
4426  */
4427 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
4428 {
4429 	return call_int_hook(inode_setsecctx, dentry, ctx, ctxlen);
4430 }
4431 EXPORT_SYMBOL(security_inode_setsecctx);
4432 
4433 /**
4434  * security_inode_getsecctx() - Get the security label of an inode
4435  * @inode: inode
4436  * @cp: security context
4437  *
4438  * On success, returns 0 and fills out @cp with the security context
4439  * for the given @inode.
4440  *
4441  * Return: Returns 0 on success, error on failure.
4442  */
4443 int security_inode_getsecctx(struct inode *inode, struct lsm_context *cp)
4444 {
4445 	memset(cp, 0, sizeof(*cp));
4446 	return call_int_hook(inode_getsecctx, inode, cp);
4447 }
4448 EXPORT_SYMBOL(security_inode_getsecctx);
4449 
4450 #ifdef CONFIG_WATCH_QUEUE
4451 /**
4452  * security_post_notification() - Check if a watch notification can be posted
4453  * @w_cred: credentials of the task that set the watch
4454  * @cred: credentials of the task which triggered the watch
4455  * @n: the notification
4456  *
4457  * Check to see if a watch notification can be posted to a particular queue.
4458  *
4459  * Return: Returns 0 if permission is granted.
4460  */
4461 int security_post_notification(const struct cred *w_cred,
4462 			       const struct cred *cred,
4463 			       struct watch_notification *n)
4464 {
4465 	return call_int_hook(post_notification, w_cred, cred, n);
4466 }
4467 #endif /* CONFIG_WATCH_QUEUE */
4468 
4469 #ifdef CONFIG_KEY_NOTIFICATIONS
4470 /**
4471  * security_watch_key() - Check if a task is allowed to watch for key events
4472  * @key: the key to watch
4473  *
4474  * Check to see if a process is allowed to watch for event notifications from
4475  * a key or keyring.
4476  *
4477  * Return: Returns 0 if permission is granted.
4478  */
4479 int security_watch_key(struct key *key)
4480 {
4481 	return call_int_hook(watch_key, key);
4482 }
4483 #endif /* CONFIG_KEY_NOTIFICATIONS */
4484 
4485 #ifdef CONFIG_SECURITY_NETWORK
4486 /**
4487  * security_unix_stream_connect() - Check if a AF_UNIX stream is allowed
4488  * @sock: originating sock
4489  * @other: peer sock
4490  * @newsk: new sock
4491  *
4492  * Check permissions before establishing a Unix domain stream connection
4493  * between @sock and @other.
4494  *
4495  * The @unix_stream_connect and @unix_may_send hooks were necessary because
4496  * Linux provides an alternative to the conventional file name space for Unix
4497  * domain sockets.  Whereas binding and connecting to sockets in the file name
4498  * space is mediated by the typical file permissions (and caught by the mknod
4499  * and permission hooks in inode_security_ops), binding and connecting to
4500  * sockets in the abstract name space is completely unmediated.  Sufficient
4501  * control of Unix domain sockets in the abstract name space isn't possible
4502  * using only the socket layer hooks, since we need to know the actual target
4503  * socket, which is not looked up until we are inside the af_unix code.
4504  *
4505  * Return: Returns 0 if permission is granted.
4506  */
4507 int security_unix_stream_connect(struct sock *sock, struct sock *other,
4508 				 struct sock *newsk)
4509 {
4510 	return call_int_hook(unix_stream_connect, sock, other, newsk);
4511 }
4512 EXPORT_SYMBOL(security_unix_stream_connect);
4513 
4514 /**
4515  * security_unix_may_send() - Check if AF_UNIX socket can send datagrams
4516  * @sock: originating sock
4517  * @other: peer sock
4518  *
4519  * Check permissions before connecting or sending datagrams from @sock to
4520  * @other.
4521  *
4522  * The @unix_stream_connect and @unix_may_send hooks were necessary because
4523  * Linux provides an alternative to the conventional file name space for Unix
4524  * domain sockets.  Whereas binding and connecting to sockets in the file name
4525  * space is mediated by the typical file permissions (and caught by the mknod
4526  * and permission hooks in inode_security_ops), binding and connecting to
4527  * sockets in the abstract name space is completely unmediated.  Sufficient
4528  * control of Unix domain sockets in the abstract name space isn't possible
4529  * using only the socket layer hooks, since we need to know the actual target
4530  * socket, which is not looked up until we are inside the af_unix code.
4531  *
4532  * Return: Returns 0 if permission is granted.
4533  */
4534 int security_unix_may_send(struct socket *sock,  struct socket *other)
4535 {
4536 	return call_int_hook(unix_may_send, sock, other);
4537 }
4538 EXPORT_SYMBOL(security_unix_may_send);
4539 
4540 /**
4541  * security_socket_create() - Check if creating a new socket is allowed
4542  * @family: protocol family
4543  * @type: communications type
4544  * @protocol: requested protocol
4545  * @kern: set to 1 if a kernel socket is requested
4546  *
4547  * Check permissions prior to creating a new socket.
4548  *
4549  * Return: Returns 0 if permission is granted.
4550  */
4551 int security_socket_create(int family, int type, int protocol, int kern)
4552 {
4553 	return call_int_hook(socket_create, family, type, protocol, kern);
4554 }
4555 
4556 /**
4557  * security_socket_post_create() - Initialize a newly created socket
4558  * @sock: socket
4559  * @family: protocol family
4560  * @type: communications type
4561  * @protocol: requested protocol
4562  * @kern: set to 1 if a kernel socket is requested
4563  *
4564  * This hook allows a module to update or allocate a per-socket security
4565  * structure. Note that the security field was not added directly to the socket
4566  * structure, but rather, the socket security information is stored in the
4567  * associated inode.  Typically, the inode alloc_security hook will allocate
4568  * and attach security information to SOCK_INODE(sock)->i_security.  This hook
4569  * may be used to update the SOCK_INODE(sock)->i_security field with additional
4570  * information that wasn't available when the inode was allocated.
4571  *
4572  * Return: Returns 0 if permission is granted.
4573  */
4574 int security_socket_post_create(struct socket *sock, int family,
4575 				int type, int protocol, int kern)
4576 {
4577 	return call_int_hook(socket_post_create, sock, family, type,
4578 			     protocol, kern);
4579 }
4580 
4581 /**
4582  * security_socket_socketpair() - Check if creating a socketpair is allowed
4583  * @socka: first socket
4584  * @sockb: second socket
4585  *
4586  * Check permissions before creating a fresh pair of sockets.
4587  *
4588  * Return: Returns 0 if permission is granted and the connection was
4589  *         established.
4590  */
4591 int security_socket_socketpair(struct socket *socka, struct socket *sockb)
4592 {
4593 	return call_int_hook(socket_socketpair, socka, sockb);
4594 }
4595 EXPORT_SYMBOL(security_socket_socketpair);
4596 
4597 /**
4598  * security_socket_bind() - Check if a socket bind operation is allowed
4599  * @sock: socket
4600  * @address: requested bind address
4601  * @addrlen: length of address
4602  *
4603  * Check permission before socket protocol layer bind operation is performed
4604  * and the socket @sock is bound to the address specified in the @address
4605  * parameter.
4606  *
4607  * Return: Returns 0 if permission is granted.
4608  */
4609 int security_socket_bind(struct socket *sock,
4610 			 struct sockaddr *address, int addrlen)
4611 {
4612 	return call_int_hook(socket_bind, sock, address, addrlen);
4613 }
4614 
4615 /**
4616  * security_socket_connect() - Check if a socket connect operation is allowed
4617  * @sock: socket
4618  * @address: address of remote connection point
4619  * @addrlen: length of address
4620  *
4621  * Check permission before socket protocol layer connect operation attempts to
4622  * connect socket @sock to a remote address, @address.
4623  *
4624  * Return: Returns 0 if permission is granted.
4625  */
4626 int security_socket_connect(struct socket *sock,
4627 			    struct sockaddr *address, int addrlen)
4628 {
4629 	return call_int_hook(socket_connect, sock, address, addrlen);
4630 }
4631 
4632 /**
4633  * security_socket_listen() - Check if a socket is allowed to listen
4634  * @sock: socket
4635  * @backlog: connection queue size
4636  *
4637  * Check permission before socket protocol layer listen operation.
4638  *
4639  * Return: Returns 0 if permission is granted.
4640  */
4641 int security_socket_listen(struct socket *sock, int backlog)
4642 {
4643 	return call_int_hook(socket_listen, sock, backlog);
4644 }
4645 
4646 /**
4647  * security_socket_accept() - Check if a socket is allowed to accept connections
4648  * @sock: listening socket
4649  * @newsock: newly creation connection socket
4650  *
4651  * Check permission before accepting a new connection.  Note that the new
4652  * socket, @newsock, has been created and some information copied to it, but
4653  * the accept operation has not actually been performed.
4654  *
4655  * Return: Returns 0 if permission is granted.
4656  */
4657 int security_socket_accept(struct socket *sock, struct socket *newsock)
4658 {
4659 	return call_int_hook(socket_accept, sock, newsock);
4660 }
4661 
4662 /**
4663  * security_socket_sendmsg() - Check if sending a message is allowed
4664  * @sock: sending socket
4665  * @msg: message to send
4666  * @size: size of message
4667  *
4668  * Check permission before transmitting a message to another socket.
4669  *
4670  * Return: Returns 0 if permission is granted.
4671  */
4672 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
4673 {
4674 	return call_int_hook(socket_sendmsg, sock, msg, size);
4675 }
4676 
4677 /**
4678  * security_socket_recvmsg() - Check if receiving a message is allowed
4679  * @sock: receiving socket
4680  * @msg: message to receive
4681  * @size: size of message
4682  * @flags: operational flags
4683  *
4684  * Check permission before receiving a message from a socket.
4685  *
4686  * Return: Returns 0 if permission is granted.
4687  */
4688 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
4689 			    int size, int flags)
4690 {
4691 	return call_int_hook(socket_recvmsg, sock, msg, size, flags);
4692 }
4693 
4694 /**
4695  * security_socket_getsockname() - Check if reading the socket addr is allowed
4696  * @sock: socket
4697  *
4698  * Check permission before reading the local address (name) of the socket
4699  * object.
4700  *
4701  * Return: Returns 0 if permission is granted.
4702  */
4703 int security_socket_getsockname(struct socket *sock)
4704 {
4705 	return call_int_hook(socket_getsockname, sock);
4706 }
4707 
4708 /**
4709  * security_socket_getpeername() - Check if reading the peer's addr is allowed
4710  * @sock: socket
4711  *
4712  * Check permission before the remote address (name) of a socket object.
4713  *
4714  * Return: Returns 0 if permission is granted.
4715  */
4716 int security_socket_getpeername(struct socket *sock)
4717 {
4718 	return call_int_hook(socket_getpeername, sock);
4719 }
4720 
4721 /**
4722  * security_socket_getsockopt() - Check if reading a socket option is allowed
4723  * @sock: socket
4724  * @level: option's protocol level
4725  * @optname: option name
4726  *
4727  * Check permissions before retrieving the options associated with socket
4728  * @sock.
4729  *
4730  * Return: Returns 0 if permission is granted.
4731  */
4732 int security_socket_getsockopt(struct socket *sock, int level, int optname)
4733 {
4734 	return call_int_hook(socket_getsockopt, sock, level, optname);
4735 }
4736 
4737 /**
4738  * security_socket_setsockopt() - Check if setting a socket option is allowed
4739  * @sock: socket
4740  * @level: option's protocol level
4741  * @optname: option name
4742  *
4743  * Check permissions before setting the options associated with socket @sock.
4744  *
4745  * Return: Returns 0 if permission is granted.
4746  */
4747 int security_socket_setsockopt(struct socket *sock, int level, int optname)
4748 {
4749 	return call_int_hook(socket_setsockopt, sock, level, optname);
4750 }
4751 
4752 /**
4753  * security_socket_shutdown() - Checks if shutting down the socket is allowed
4754  * @sock: socket
4755  * @how: flag indicating how sends and receives are handled
4756  *
4757  * Checks permission before all or part of a connection on the socket @sock is
4758  * shut down.
4759  *
4760  * Return: Returns 0 if permission is granted.
4761  */
4762 int security_socket_shutdown(struct socket *sock, int how)
4763 {
4764 	return call_int_hook(socket_shutdown, sock, how);
4765 }
4766 
4767 /**
4768  * security_sock_rcv_skb() - Check if an incoming network packet is allowed
4769  * @sk: destination sock
4770  * @skb: incoming packet
4771  *
4772  * Check permissions on incoming network packets.  This hook is distinct from
4773  * Netfilter's IP input hooks since it is the first time that the incoming
4774  * sk_buff @skb has been associated with a particular socket, @sk.  Must not
4775  * sleep inside this hook because some callers hold spinlocks.
4776  *
4777  * Return: Returns 0 if permission is granted.
4778  */
4779 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4780 {
4781 	return call_int_hook(socket_sock_rcv_skb, sk, skb);
4782 }
4783 EXPORT_SYMBOL(security_sock_rcv_skb);
4784 
4785 /**
4786  * security_socket_getpeersec_stream() - Get the remote peer label
4787  * @sock: socket
4788  * @optval: destination buffer
4789  * @optlen: size of peer label copied into the buffer
4790  * @len: maximum size of the destination buffer
4791  *
4792  * This hook allows the security module to provide peer socket security state
4793  * for unix or connected tcp sockets to userspace via getsockopt SO_GETPEERSEC.
4794  * For tcp sockets this can be meaningful if the socket is associated with an
4795  * ipsec SA.
4796  *
4797  * Return: Returns 0 if all is well, otherwise, typical getsockopt return
4798  *         values.
4799  */
4800 int security_socket_getpeersec_stream(struct socket *sock, sockptr_t optval,
4801 				      sockptr_t optlen, unsigned int len)
4802 {
4803 	return call_int_hook(socket_getpeersec_stream, sock, optval, optlen,
4804 			     len);
4805 }
4806 
4807 /**
4808  * security_socket_getpeersec_dgram() - Get the remote peer label
4809  * @sock: socket
4810  * @skb: datagram packet
4811  * @secid: remote peer label secid
4812  *
4813  * This hook allows the security module to provide peer socket security state
4814  * for udp sockets on a per-packet basis to userspace via getsockopt
4815  * SO_GETPEERSEC. The application must first have indicated the IP_PASSSEC
4816  * option via getsockopt. It can then retrieve the security state returned by
4817  * this hook for a packet via the SCM_SECURITY ancillary message type.
4818  *
4819  * Return: Returns 0 on success, error on failure.
4820  */
4821 int security_socket_getpeersec_dgram(struct socket *sock,
4822 				     struct sk_buff *skb, u32 *secid)
4823 {
4824 	return call_int_hook(socket_getpeersec_dgram, sock, skb, secid);
4825 }
4826 EXPORT_SYMBOL(security_socket_getpeersec_dgram);
4827 
4828 /**
4829  * lsm_sock_alloc - allocate a composite sock blob
4830  * @sock: the sock that needs a blob
4831  * @gfp: allocation mode
4832  *
4833  * Allocate the sock blob for all the modules
4834  *
4835  * Returns 0, or -ENOMEM if memory can't be allocated.
4836  */
4837 static int lsm_sock_alloc(struct sock *sock, gfp_t gfp)
4838 {
4839 	return lsm_blob_alloc(&sock->sk_security, blob_sizes.lbs_sock, gfp);
4840 }
4841 
4842 /**
4843  * security_sk_alloc() - Allocate and initialize a sock's LSM blob
4844  * @sk: sock
4845  * @family: protocol family
4846  * @priority: gfp flags
4847  *
4848  * Allocate and attach a security structure to the sk->sk_security field, which
4849  * is used to copy security attributes between local stream sockets.
4850  *
4851  * Return: Returns 0 on success, error on failure.
4852  */
4853 int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
4854 {
4855 	int rc = lsm_sock_alloc(sk, priority);
4856 
4857 	if (unlikely(rc))
4858 		return rc;
4859 	rc = call_int_hook(sk_alloc_security, sk, family, priority);
4860 	if (unlikely(rc))
4861 		security_sk_free(sk);
4862 	return rc;
4863 }
4864 
4865 /**
4866  * security_sk_free() - Free the sock's LSM blob
4867  * @sk: sock
4868  *
4869  * Deallocate security structure.
4870  */
4871 void security_sk_free(struct sock *sk)
4872 {
4873 	call_void_hook(sk_free_security, sk);
4874 	kfree(sk->sk_security);
4875 	sk->sk_security = NULL;
4876 }
4877 
4878 /**
4879  * security_sk_clone() - Clone a sock's LSM state
4880  * @sk: original sock
4881  * @newsk: target sock
4882  *
4883  * Clone/copy security structure.
4884  */
4885 void security_sk_clone(const struct sock *sk, struct sock *newsk)
4886 {
4887 	call_void_hook(sk_clone_security, sk, newsk);
4888 }
4889 EXPORT_SYMBOL(security_sk_clone);
4890 
4891 /**
4892  * security_sk_classify_flow() - Set a flow's secid based on socket
4893  * @sk: original socket
4894  * @flic: target flow
4895  *
4896  * Set the target flow's secid to socket's secid.
4897  */
4898 void security_sk_classify_flow(const struct sock *sk, struct flowi_common *flic)
4899 {
4900 	call_void_hook(sk_getsecid, sk, &flic->flowic_secid);
4901 }
4902 EXPORT_SYMBOL(security_sk_classify_flow);
4903 
4904 /**
4905  * security_req_classify_flow() - Set a flow's secid based on request_sock
4906  * @req: request_sock
4907  * @flic: target flow
4908  *
4909  * Sets @flic's secid to @req's secid.
4910  */
4911 void security_req_classify_flow(const struct request_sock *req,
4912 				struct flowi_common *flic)
4913 {
4914 	call_void_hook(req_classify_flow, req, flic);
4915 }
4916 EXPORT_SYMBOL(security_req_classify_flow);
4917 
4918 /**
4919  * security_sock_graft() - Reconcile LSM state when grafting a sock on a socket
4920  * @sk: sock being grafted
4921  * @parent: target parent socket
4922  *
4923  * Sets @parent's inode secid to @sk's secid and update @sk with any necessary
4924  * LSM state from @parent.
4925  */
4926 void security_sock_graft(struct sock *sk, struct socket *parent)
4927 {
4928 	call_void_hook(sock_graft, sk, parent);
4929 }
4930 EXPORT_SYMBOL(security_sock_graft);
4931 
4932 /**
4933  * security_inet_conn_request() - Set request_sock state using incoming connect
4934  * @sk: parent listening sock
4935  * @skb: incoming connection
4936  * @req: new request_sock
4937  *
4938  * Initialize the @req LSM state based on @sk and the incoming connect in @skb.
4939  *
4940  * Return: Returns 0 if permission is granted.
4941  */
4942 int security_inet_conn_request(const struct sock *sk,
4943 			       struct sk_buff *skb, struct request_sock *req)
4944 {
4945 	return call_int_hook(inet_conn_request, sk, skb, req);
4946 }
4947 EXPORT_SYMBOL(security_inet_conn_request);
4948 
4949 /**
4950  * security_inet_csk_clone() - Set new sock LSM state based on request_sock
4951  * @newsk: new sock
4952  * @req: connection request_sock
4953  *
4954  * Set that LSM state of @sock using the LSM state from @req.
4955  */
4956 void security_inet_csk_clone(struct sock *newsk,
4957 			     const struct request_sock *req)
4958 {
4959 	call_void_hook(inet_csk_clone, newsk, req);
4960 }
4961 
4962 /**
4963  * security_inet_conn_established() - Update sock's LSM state with connection
4964  * @sk: sock
4965  * @skb: connection packet
4966  *
4967  * Update @sock's LSM state to represent a new connection from @skb.
4968  */
4969 void security_inet_conn_established(struct sock *sk,
4970 				    struct sk_buff *skb)
4971 {
4972 	call_void_hook(inet_conn_established, sk, skb);
4973 }
4974 EXPORT_SYMBOL(security_inet_conn_established);
4975 
4976 /**
4977  * security_secmark_relabel_packet() - Check if setting a secmark is allowed
4978  * @secid: new secmark value
4979  *
4980  * Check if the process should be allowed to relabel packets to @secid.
4981  *
4982  * Return: Returns 0 if permission is granted.
4983  */
4984 int security_secmark_relabel_packet(u32 secid)
4985 {
4986 	return call_int_hook(secmark_relabel_packet, secid);
4987 }
4988 EXPORT_SYMBOL(security_secmark_relabel_packet);
4989 
4990 /**
4991  * security_secmark_refcount_inc() - Increment the secmark labeling rule count
4992  *
4993  * Tells the LSM to increment the number of secmark labeling rules loaded.
4994  */
4995 void security_secmark_refcount_inc(void)
4996 {
4997 	call_void_hook(secmark_refcount_inc);
4998 }
4999 EXPORT_SYMBOL(security_secmark_refcount_inc);
5000 
5001 /**
5002  * security_secmark_refcount_dec() - Decrement the secmark labeling rule count
5003  *
5004  * Tells the LSM to decrement the number of secmark labeling rules loaded.
5005  */
5006 void security_secmark_refcount_dec(void)
5007 {
5008 	call_void_hook(secmark_refcount_dec);
5009 }
5010 EXPORT_SYMBOL(security_secmark_refcount_dec);
5011 
5012 /**
5013  * security_tun_dev_alloc_security() - Allocate a LSM blob for a TUN device
5014  * @security: pointer to the LSM blob
5015  *
5016  * This hook allows a module to allocate a security structure for a TUN	device,
5017  * returning the pointer in @security.
5018  *
5019  * Return: Returns a zero on success, negative values on failure.
5020  */
5021 int security_tun_dev_alloc_security(void **security)
5022 {
5023 	int rc;
5024 
5025 	rc = lsm_blob_alloc(security, blob_sizes.lbs_tun_dev, GFP_KERNEL);
5026 	if (rc)
5027 		return rc;
5028 
5029 	rc = call_int_hook(tun_dev_alloc_security, *security);
5030 	if (rc) {
5031 		kfree(*security);
5032 		*security = NULL;
5033 	}
5034 	return rc;
5035 }
5036 EXPORT_SYMBOL(security_tun_dev_alloc_security);
5037 
5038 /**
5039  * security_tun_dev_free_security() - Free a TUN device LSM blob
5040  * @security: LSM blob
5041  *
5042  * This hook allows a module to free the security structure for a TUN device.
5043  */
5044 void security_tun_dev_free_security(void *security)
5045 {
5046 	kfree(security);
5047 }
5048 EXPORT_SYMBOL(security_tun_dev_free_security);
5049 
5050 /**
5051  * security_tun_dev_create() - Check if creating a TUN device is allowed
5052  *
5053  * Check permissions prior to creating a new TUN device.
5054  *
5055  * Return: Returns 0 if permission is granted.
5056  */
5057 int security_tun_dev_create(void)
5058 {
5059 	return call_int_hook(tun_dev_create);
5060 }
5061 EXPORT_SYMBOL(security_tun_dev_create);
5062 
5063 /**
5064  * security_tun_dev_attach_queue() - Check if attaching a TUN queue is allowed
5065  * @security: TUN device LSM blob
5066  *
5067  * Check permissions prior to attaching to a TUN device queue.
5068  *
5069  * Return: Returns 0 if permission is granted.
5070  */
5071 int security_tun_dev_attach_queue(void *security)
5072 {
5073 	return call_int_hook(tun_dev_attach_queue, security);
5074 }
5075 EXPORT_SYMBOL(security_tun_dev_attach_queue);
5076 
5077 /**
5078  * security_tun_dev_attach() - Update TUN device LSM state on attach
5079  * @sk: associated sock
5080  * @security: TUN device LSM blob
5081  *
5082  * This hook can be used by the module to update any security state associated
5083  * with the TUN device's sock structure.
5084  *
5085  * Return: Returns 0 if permission is granted.
5086  */
5087 int security_tun_dev_attach(struct sock *sk, void *security)
5088 {
5089 	return call_int_hook(tun_dev_attach, sk, security);
5090 }
5091 EXPORT_SYMBOL(security_tun_dev_attach);
5092 
5093 /**
5094  * security_tun_dev_open() - Update TUN device LSM state on open
5095  * @security: TUN device LSM blob
5096  *
5097  * This hook can be used by the module to update any security state associated
5098  * with the TUN device's security structure.
5099  *
5100  * Return: Returns 0 if permission is granted.
5101  */
5102 int security_tun_dev_open(void *security)
5103 {
5104 	return call_int_hook(tun_dev_open, security);
5105 }
5106 EXPORT_SYMBOL(security_tun_dev_open);
5107 
5108 /**
5109  * security_sctp_assoc_request() - Update the LSM on a SCTP association req
5110  * @asoc: SCTP association
5111  * @skb: packet requesting the association
5112  *
5113  * Passes the @asoc and @chunk->skb of the association INIT packet to the LSM.
5114  *
5115  * Return: Returns 0 on success, error on failure.
5116  */
5117 int security_sctp_assoc_request(struct sctp_association *asoc,
5118 				struct sk_buff *skb)
5119 {
5120 	return call_int_hook(sctp_assoc_request, asoc, skb);
5121 }
5122 EXPORT_SYMBOL(security_sctp_assoc_request);
5123 
5124 /**
5125  * security_sctp_bind_connect() - Validate a list of addrs for a SCTP option
5126  * @sk: socket
5127  * @optname: SCTP option to validate
5128  * @address: list of IP addresses to validate
5129  * @addrlen: length of the address list
5130  *
5131  * Validiate permissions required for each address associated with sock	@sk.
5132  * Depending on @optname, the addresses will be treated as either a connect or
5133  * bind service. The @addrlen is calculated on each IPv4 and IPv6 address using
5134  * sizeof(struct sockaddr_in) or sizeof(struct sockaddr_in6).
5135  *
5136  * Return: Returns 0 on success, error on failure.
5137  */
5138 int security_sctp_bind_connect(struct sock *sk, int optname,
5139 			       struct sockaddr *address, int addrlen)
5140 {
5141 	return call_int_hook(sctp_bind_connect, sk, optname, address, addrlen);
5142 }
5143 EXPORT_SYMBOL(security_sctp_bind_connect);
5144 
5145 /**
5146  * security_sctp_sk_clone() - Clone a SCTP sock's LSM state
5147  * @asoc: SCTP association
5148  * @sk: original sock
5149  * @newsk: target sock
5150  *
5151  * Called whenever a new socket is created by accept(2) (i.e. a TCP style
5152  * socket) or when a socket is 'peeled off' e.g userspace calls
5153  * sctp_peeloff(3).
5154  */
5155 void security_sctp_sk_clone(struct sctp_association *asoc, struct sock *sk,
5156 			    struct sock *newsk)
5157 {
5158 	call_void_hook(sctp_sk_clone, asoc, sk, newsk);
5159 }
5160 EXPORT_SYMBOL(security_sctp_sk_clone);
5161 
5162 /**
5163  * security_sctp_assoc_established() - Update LSM state when assoc established
5164  * @asoc: SCTP association
5165  * @skb: packet establishing the association
5166  *
5167  * Passes the @asoc and @chunk->skb of the association COOKIE_ACK packet to the
5168  * security module.
5169  *
5170  * Return: Returns 0 if permission is granted.
5171  */
5172 int security_sctp_assoc_established(struct sctp_association *asoc,
5173 				    struct sk_buff *skb)
5174 {
5175 	return call_int_hook(sctp_assoc_established, asoc, skb);
5176 }
5177 EXPORT_SYMBOL(security_sctp_assoc_established);
5178 
5179 /**
5180  * security_mptcp_add_subflow() - Inherit the LSM label from the MPTCP socket
5181  * @sk: the owning MPTCP socket
5182  * @ssk: the new subflow
5183  *
5184  * Update the labeling for the given MPTCP subflow, to match the one of the
5185  * owning MPTCP socket. This hook has to be called after the socket creation and
5186  * initialization via the security_socket_create() and
5187  * security_socket_post_create() LSM hooks.
5188  *
5189  * Return: Returns 0 on success or a negative error code on failure.
5190  */
5191 int security_mptcp_add_subflow(struct sock *sk, struct sock *ssk)
5192 {
5193 	return call_int_hook(mptcp_add_subflow, sk, ssk);
5194 }
5195 
5196 #endif	/* CONFIG_SECURITY_NETWORK */
5197 
5198 #ifdef CONFIG_SECURITY_INFINIBAND
5199 /**
5200  * security_ib_pkey_access() - Check if access to an IB pkey is allowed
5201  * @sec: LSM blob
5202  * @subnet_prefix: subnet prefix of the port
5203  * @pkey: IB pkey
5204  *
5205  * Check permission to access a pkey when modifying a QP.
5206  *
5207  * Return: Returns 0 if permission is granted.
5208  */
5209 int security_ib_pkey_access(void *sec, u64 subnet_prefix, u16 pkey)
5210 {
5211 	return call_int_hook(ib_pkey_access, sec, subnet_prefix, pkey);
5212 }
5213 EXPORT_SYMBOL(security_ib_pkey_access);
5214 
5215 /**
5216  * security_ib_endport_manage_subnet() - Check if SMPs traffic is allowed
5217  * @sec: LSM blob
5218  * @dev_name: IB device name
5219  * @port_num: port number
5220  *
5221  * Check permissions to send and receive SMPs on a end port.
5222  *
5223  * Return: Returns 0 if permission is granted.
5224  */
5225 int security_ib_endport_manage_subnet(void *sec,
5226 				      const char *dev_name, u8 port_num)
5227 {
5228 	return call_int_hook(ib_endport_manage_subnet, sec, dev_name, port_num);
5229 }
5230 EXPORT_SYMBOL(security_ib_endport_manage_subnet);
5231 
5232 /**
5233  * security_ib_alloc_security() - Allocate an Infiniband LSM blob
5234  * @sec: LSM blob
5235  *
5236  * Allocate a security structure for Infiniband objects.
5237  *
5238  * Return: Returns 0 on success, non-zero on failure.
5239  */
5240 int security_ib_alloc_security(void **sec)
5241 {
5242 	int rc;
5243 
5244 	rc = lsm_blob_alloc(sec, blob_sizes.lbs_ib, GFP_KERNEL);
5245 	if (rc)
5246 		return rc;
5247 
5248 	rc = call_int_hook(ib_alloc_security, *sec);
5249 	if (rc) {
5250 		kfree(*sec);
5251 		*sec = NULL;
5252 	}
5253 	return rc;
5254 }
5255 EXPORT_SYMBOL(security_ib_alloc_security);
5256 
5257 /**
5258  * security_ib_free_security() - Free an Infiniband LSM blob
5259  * @sec: LSM blob
5260  *
5261  * Deallocate an Infiniband security structure.
5262  */
5263 void security_ib_free_security(void *sec)
5264 {
5265 	kfree(sec);
5266 }
5267 EXPORT_SYMBOL(security_ib_free_security);
5268 #endif	/* CONFIG_SECURITY_INFINIBAND */
5269 
5270 #ifdef CONFIG_SECURITY_NETWORK_XFRM
5271 /**
5272  * security_xfrm_policy_alloc() - Allocate a xfrm policy LSM blob
5273  * @ctxp: xfrm security context being added to the SPD
5274  * @sec_ctx: security label provided by userspace
5275  * @gfp: gfp flags
5276  *
5277  * Allocate a security structure to the xp->security field; the security field
5278  * is initialized to NULL when the xfrm_policy is allocated.
5279  *
5280  * Return:  Return 0 if operation was successful.
5281  */
5282 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp,
5283 			       struct xfrm_user_sec_ctx *sec_ctx,
5284 			       gfp_t gfp)
5285 {
5286 	return call_int_hook(xfrm_policy_alloc_security, ctxp, sec_ctx, gfp);
5287 }
5288 EXPORT_SYMBOL(security_xfrm_policy_alloc);
5289 
5290 /**
5291  * security_xfrm_policy_clone() - Clone xfrm policy LSM state
5292  * @old_ctx: xfrm security context
5293  * @new_ctxp: target xfrm security context
5294  *
5295  * Allocate a security structure in new_ctxp that contains the information from
5296  * the old_ctx structure.
5297  *
5298  * Return: Return 0 if operation was successful.
5299  */
5300 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
5301 			       struct xfrm_sec_ctx **new_ctxp)
5302 {
5303 	return call_int_hook(xfrm_policy_clone_security, old_ctx, new_ctxp);
5304 }
5305 
5306 /**
5307  * security_xfrm_policy_free() - Free a xfrm security context
5308  * @ctx: xfrm security context
5309  *
5310  * Free LSM resources associated with @ctx.
5311  */
5312 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
5313 {
5314 	call_void_hook(xfrm_policy_free_security, ctx);
5315 }
5316 EXPORT_SYMBOL(security_xfrm_policy_free);
5317 
5318 /**
5319  * security_xfrm_policy_delete() - Check if deleting a xfrm policy is allowed
5320  * @ctx: xfrm security context
5321  *
5322  * Authorize deletion of a SPD entry.
5323  *
5324  * Return: Returns 0 if permission is granted.
5325  */
5326 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
5327 {
5328 	return call_int_hook(xfrm_policy_delete_security, ctx);
5329 }
5330 
5331 /**
5332  * security_xfrm_state_alloc() - Allocate a xfrm state LSM blob
5333  * @x: xfrm state being added to the SAD
5334  * @sec_ctx: security label provided by userspace
5335  *
5336  * Allocate a security structure to the @x->security field; the security field
5337  * is initialized to NULL when the xfrm_state is allocated. Set the context to
5338  * correspond to @sec_ctx.
5339  *
5340  * Return: Return 0 if operation was successful.
5341  */
5342 int security_xfrm_state_alloc(struct xfrm_state *x,
5343 			      struct xfrm_user_sec_ctx *sec_ctx)
5344 {
5345 	return call_int_hook(xfrm_state_alloc, x, sec_ctx);
5346 }
5347 EXPORT_SYMBOL(security_xfrm_state_alloc);
5348 
5349 /**
5350  * security_xfrm_state_alloc_acquire() - Allocate a xfrm state LSM blob
5351  * @x: xfrm state being added to the SAD
5352  * @polsec: associated policy's security context
5353  * @secid: secid from the flow
5354  *
5355  * Allocate a security structure to the x->security field; the security field
5356  * is initialized to NULL when the xfrm_state is allocated.  Set the context to
5357  * correspond to secid.
5358  *
5359  * Return: Returns 0 if operation was successful.
5360  */
5361 int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
5362 				      struct xfrm_sec_ctx *polsec, u32 secid)
5363 {
5364 	return call_int_hook(xfrm_state_alloc_acquire, x, polsec, secid);
5365 }
5366 
5367 /**
5368  * security_xfrm_state_delete() - Check if deleting a xfrm state is allowed
5369  * @x: xfrm state
5370  *
5371  * Authorize deletion of x->security.
5372  *
5373  * Return: Returns 0 if permission is granted.
5374  */
5375 int security_xfrm_state_delete(struct xfrm_state *x)
5376 {
5377 	return call_int_hook(xfrm_state_delete_security, x);
5378 }
5379 EXPORT_SYMBOL(security_xfrm_state_delete);
5380 
5381 /**
5382  * security_xfrm_state_free() - Free a xfrm state
5383  * @x: xfrm state
5384  *
5385  * Deallocate x->security.
5386  */
5387 void security_xfrm_state_free(struct xfrm_state *x)
5388 {
5389 	call_void_hook(xfrm_state_free_security, x);
5390 }
5391 
5392 /**
5393  * security_xfrm_policy_lookup() - Check if using a xfrm policy is allowed
5394  * @ctx: target xfrm security context
5395  * @fl_secid: flow secid used to authorize access
5396  *
5397  * Check permission when a flow selects a xfrm_policy for processing XFRMs on a
5398  * packet.  The hook is called when selecting either a per-socket policy or a
5399  * generic xfrm policy.
5400  *
5401  * Return: Return 0 if permission is granted, -ESRCH otherwise, or -errno on
5402  *         other errors.
5403  */
5404 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid)
5405 {
5406 	return call_int_hook(xfrm_policy_lookup, ctx, fl_secid);
5407 }
5408 
5409 /**
5410  * security_xfrm_state_pol_flow_match() - Check for a xfrm match
5411  * @x: xfrm state to match
5412  * @xp: xfrm policy to check for a match
5413  * @flic: flow to check for a match.
5414  *
5415  * Check @xp and @flic for a match with @x.
5416  *
5417  * Return: Returns 1 if there is a match.
5418  */
5419 int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
5420 				       struct xfrm_policy *xp,
5421 				       const struct flowi_common *flic)
5422 {
5423 	struct lsm_static_call *scall;
5424 	int rc = LSM_RET_DEFAULT(xfrm_state_pol_flow_match);
5425 
5426 	/*
5427 	 * Since this function is expected to return 0 or 1, the judgment
5428 	 * becomes difficult if multiple LSMs supply this call. Fortunately,
5429 	 * we can use the first LSM's judgment because currently only SELinux
5430 	 * supplies this call.
5431 	 *
5432 	 * For speed optimization, we explicitly break the loop rather than
5433 	 * using the macro
5434 	 */
5435 	lsm_for_each_hook(scall, xfrm_state_pol_flow_match) {
5436 		rc = scall->hl->hook.xfrm_state_pol_flow_match(x, xp, flic);
5437 		break;
5438 	}
5439 	return rc;
5440 }
5441 
5442 /**
5443  * security_xfrm_decode_session() - Determine the xfrm secid for a packet
5444  * @skb: xfrm packet
5445  * @secid: secid
5446  *
5447  * Decode the packet in @skb and return the security label in @secid.
5448  *
5449  * Return: Return 0 if all xfrms used have the same secid.
5450  */
5451 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
5452 {
5453 	return call_int_hook(xfrm_decode_session, skb, secid, 1);
5454 }
5455 
5456 void security_skb_classify_flow(struct sk_buff *skb, struct flowi_common *flic)
5457 {
5458 	int rc = call_int_hook(xfrm_decode_session, skb, &flic->flowic_secid,
5459 			       0);
5460 
5461 	BUG_ON(rc);
5462 }
5463 EXPORT_SYMBOL(security_skb_classify_flow);
5464 #endif	/* CONFIG_SECURITY_NETWORK_XFRM */
5465 
5466 #ifdef CONFIG_KEYS
5467 /**
5468  * security_key_alloc() - Allocate and initialize a kernel key LSM blob
5469  * @key: key
5470  * @cred: credentials
5471  * @flags: allocation flags
5472  *
5473  * Permit allocation of a key and assign security data. Note that key does not
5474  * have a serial number assigned at this point.
5475  *
5476  * Return: Return 0 if permission is granted, -ve error otherwise.
5477  */
5478 int security_key_alloc(struct key *key, const struct cred *cred,
5479 		       unsigned long flags)
5480 {
5481 	int rc = lsm_key_alloc(key);
5482 
5483 	if (unlikely(rc))
5484 		return rc;
5485 	rc = call_int_hook(key_alloc, key, cred, flags);
5486 	if (unlikely(rc))
5487 		security_key_free(key);
5488 	return rc;
5489 }
5490 
5491 /**
5492  * security_key_free() - Free a kernel key LSM blob
5493  * @key: key
5494  *
5495  * Notification of destruction; free security data.
5496  */
5497 void security_key_free(struct key *key)
5498 {
5499 	kfree(key->security);
5500 	key->security = NULL;
5501 }
5502 
5503 /**
5504  * security_key_permission() - Check if a kernel key operation is allowed
5505  * @key_ref: key reference
5506  * @cred: credentials of actor requesting access
5507  * @need_perm: requested permissions
5508  *
5509  * See whether a specific operational right is granted to a process on a key.
5510  *
5511  * Return: Return 0 if permission is granted, -ve error otherwise.
5512  */
5513 int security_key_permission(key_ref_t key_ref, const struct cred *cred,
5514 			    enum key_need_perm need_perm)
5515 {
5516 	return call_int_hook(key_permission, key_ref, cred, need_perm);
5517 }
5518 
5519 /**
5520  * security_key_getsecurity() - Get the key's security label
5521  * @key: key
5522  * @buffer: security label buffer
5523  *
5524  * Get a textual representation of the security context attached to a key for
5525  * the purposes of honouring KEYCTL_GETSECURITY.  This function allocates the
5526  * storage for the NUL-terminated string and the caller should free it.
5527  *
5528  * Return: Returns the length of @buffer (including terminating NUL) or -ve if
5529  *         an error occurs.  May also return 0 (and a NULL buffer pointer) if
5530  *         there is no security label assigned to the key.
5531  */
5532 int security_key_getsecurity(struct key *key, char **buffer)
5533 {
5534 	*buffer = NULL;
5535 	return call_int_hook(key_getsecurity, key, buffer);
5536 }
5537 
5538 /**
5539  * security_key_post_create_or_update() - Notification of key create or update
5540  * @keyring: keyring to which the key is linked to
5541  * @key: created or updated key
5542  * @payload: data used to instantiate or update the key
5543  * @payload_len: length of payload
5544  * @flags: key flags
5545  * @create: flag indicating whether the key was created or updated
5546  *
5547  * Notify the caller of a key creation or update.
5548  */
5549 void security_key_post_create_or_update(struct key *keyring, struct key *key,
5550 					const void *payload, size_t payload_len,
5551 					unsigned long flags, bool create)
5552 {
5553 	call_void_hook(key_post_create_or_update, keyring, key, payload,
5554 		       payload_len, flags, create);
5555 }
5556 #endif	/* CONFIG_KEYS */
5557 
5558 #ifdef CONFIG_AUDIT
5559 /**
5560  * security_audit_rule_init() - Allocate and init an LSM audit rule struct
5561  * @field: audit action
5562  * @op: rule operator
5563  * @rulestr: rule context
5564  * @lsmrule: receive buffer for audit rule struct
5565  * @gfp: GFP flag used for kmalloc
5566  *
5567  * Allocate and initialize an LSM audit rule structure.
5568  *
5569  * Return: Return 0 if @lsmrule has been successfully set, -EINVAL in case of
5570  *         an invalid rule.
5571  */
5572 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule,
5573 			     gfp_t gfp)
5574 {
5575 	return call_int_hook(audit_rule_init, field, op, rulestr, lsmrule, gfp);
5576 }
5577 
5578 /**
5579  * security_audit_rule_known() - Check if an audit rule contains LSM fields
5580  * @krule: audit rule
5581  *
5582  * Specifies whether given @krule contains any fields related to the current
5583  * LSM.
5584  *
5585  * Return: Returns 1 in case of relation found, 0 otherwise.
5586  */
5587 int security_audit_rule_known(struct audit_krule *krule)
5588 {
5589 	return call_int_hook(audit_rule_known, krule);
5590 }
5591 
5592 /**
5593  * security_audit_rule_free() - Free an LSM audit rule struct
5594  * @lsmrule: audit rule struct
5595  *
5596  * Deallocate the LSM audit rule structure previously allocated by
5597  * audit_rule_init().
5598  */
5599 void security_audit_rule_free(void *lsmrule)
5600 {
5601 	call_void_hook(audit_rule_free, lsmrule);
5602 }
5603 
5604 /**
5605  * security_audit_rule_match() - Check if a label matches an audit rule
5606  * @prop: security label
5607  * @field: LSM audit field
5608  * @op: matching operator
5609  * @lsmrule: audit rule
5610  *
5611  * Determine if given @secid matches a rule previously approved by
5612  * security_audit_rule_known().
5613  *
5614  * Return: Returns 1 if secid matches the rule, 0 if it does not, -ERRNO on
5615  *         failure.
5616  */
5617 int security_audit_rule_match(struct lsm_prop *prop, u32 field, u32 op,
5618 			      void *lsmrule)
5619 {
5620 	return call_int_hook(audit_rule_match, prop, field, op, lsmrule);
5621 }
5622 #endif /* CONFIG_AUDIT */
5623 
5624 #ifdef CONFIG_BPF_SYSCALL
5625 /**
5626  * security_bpf() - Check if the bpf syscall operation is allowed
5627  * @cmd: command
5628  * @attr: bpf attribute
5629  * @size: size
5630  *
5631  * Do a initial check for all bpf syscalls after the attribute is copied into
5632  * the kernel. The actual security module can implement their own rules to
5633  * check the specific cmd they need.
5634  *
5635  * Return: Returns 0 if permission is granted.
5636  */
5637 int security_bpf(int cmd, union bpf_attr *attr, unsigned int size)
5638 {
5639 	return call_int_hook(bpf, cmd, attr, size);
5640 }
5641 
5642 /**
5643  * security_bpf_map() - Check if access to a bpf map is allowed
5644  * @map: bpf map
5645  * @fmode: mode
5646  *
5647  * Do a check when the kernel generates and returns a file descriptor for eBPF
5648  * maps.
5649  *
5650  * Return: Returns 0 if permission is granted.
5651  */
5652 int security_bpf_map(struct bpf_map *map, fmode_t fmode)
5653 {
5654 	return call_int_hook(bpf_map, map, fmode);
5655 }
5656 
5657 /**
5658  * security_bpf_prog() - Check if access to a bpf program is allowed
5659  * @prog: bpf program
5660  *
5661  * Do a check when the kernel generates and returns a file descriptor for eBPF
5662  * programs.
5663  *
5664  * Return: Returns 0 if permission is granted.
5665  */
5666 int security_bpf_prog(struct bpf_prog *prog)
5667 {
5668 	return call_int_hook(bpf_prog, prog);
5669 }
5670 
5671 /**
5672  * security_bpf_map_create() - Check if BPF map creation is allowed
5673  * @map: BPF map object
5674  * @attr: BPF syscall attributes used to create BPF map
5675  * @token: BPF token used to grant user access
5676  *
5677  * Do a check when the kernel creates a new BPF map. This is also the
5678  * point where LSM blob is allocated for LSMs that need them.
5679  *
5680  * Return: Returns 0 on success, error on failure.
5681  */
5682 int security_bpf_map_create(struct bpf_map *map, union bpf_attr *attr,
5683 			    struct bpf_token *token)
5684 {
5685 	return call_int_hook(bpf_map_create, map, attr, token);
5686 }
5687 
5688 /**
5689  * security_bpf_prog_load() - Check if loading of BPF program is allowed
5690  * @prog: BPF program object
5691  * @attr: BPF syscall attributes used to create BPF program
5692  * @token: BPF token used to grant user access to BPF subsystem
5693  *
5694  * Perform an access control check when the kernel loads a BPF program and
5695  * allocates associated BPF program object. This hook is also responsible for
5696  * allocating any required LSM state for the BPF program.
5697  *
5698  * Return: Returns 0 on success, error on failure.
5699  */
5700 int security_bpf_prog_load(struct bpf_prog *prog, union bpf_attr *attr,
5701 			   struct bpf_token *token)
5702 {
5703 	return call_int_hook(bpf_prog_load, prog, attr, token);
5704 }
5705 
5706 /**
5707  * security_bpf_token_create() - Check if creating of BPF token is allowed
5708  * @token: BPF token object
5709  * @attr: BPF syscall attributes used to create BPF token
5710  * @path: path pointing to BPF FS mount point from which BPF token is created
5711  *
5712  * Do a check when the kernel instantiates a new BPF token object from BPF FS
5713  * instance. This is also the point where LSM blob can be allocated for LSMs.
5714  *
5715  * Return: Returns 0 on success, error on failure.
5716  */
5717 int security_bpf_token_create(struct bpf_token *token, union bpf_attr *attr,
5718 			      const struct path *path)
5719 {
5720 	return call_int_hook(bpf_token_create, token, attr, path);
5721 }
5722 
5723 /**
5724  * security_bpf_token_cmd() - Check if BPF token is allowed to delegate
5725  * requested BPF syscall command
5726  * @token: BPF token object
5727  * @cmd: BPF syscall command requested to be delegated by BPF token
5728  *
5729  * Do a check when the kernel decides whether provided BPF token should allow
5730  * delegation of requested BPF syscall command.
5731  *
5732  * Return: Returns 0 on success, error on failure.
5733  */
5734 int security_bpf_token_cmd(const struct bpf_token *token, enum bpf_cmd cmd)
5735 {
5736 	return call_int_hook(bpf_token_cmd, token, cmd);
5737 }
5738 
5739 /**
5740  * security_bpf_token_capable() - Check if BPF token is allowed to delegate
5741  * requested BPF-related capability
5742  * @token: BPF token object
5743  * @cap: capabilities requested to be delegated by BPF token
5744  *
5745  * Do a check when the kernel decides whether provided BPF token should allow
5746  * delegation of requested BPF-related capabilities.
5747  *
5748  * Return: Returns 0 on success, error on failure.
5749  */
5750 int security_bpf_token_capable(const struct bpf_token *token, int cap)
5751 {
5752 	return call_int_hook(bpf_token_capable, token, cap);
5753 }
5754 
5755 /**
5756  * security_bpf_map_free() - Free a bpf map's LSM blob
5757  * @map: bpf map
5758  *
5759  * Clean up the security information stored inside bpf map.
5760  */
5761 void security_bpf_map_free(struct bpf_map *map)
5762 {
5763 	call_void_hook(bpf_map_free, map);
5764 }
5765 
5766 /**
5767  * security_bpf_prog_free() - Free a BPF program's LSM blob
5768  * @prog: BPF program struct
5769  *
5770  * Clean up the security information stored inside BPF program.
5771  */
5772 void security_bpf_prog_free(struct bpf_prog *prog)
5773 {
5774 	call_void_hook(bpf_prog_free, prog);
5775 }
5776 
5777 /**
5778  * security_bpf_token_free() - Free a BPF token's LSM blob
5779  * @token: BPF token struct
5780  *
5781  * Clean up the security information stored inside BPF token.
5782  */
5783 void security_bpf_token_free(struct bpf_token *token)
5784 {
5785 	call_void_hook(bpf_token_free, token);
5786 }
5787 #endif /* CONFIG_BPF_SYSCALL */
5788 
5789 /**
5790  * security_locked_down() - Check if a kernel feature is allowed
5791  * @what: requested kernel feature
5792  *
5793  * Determine whether a kernel feature that potentially enables arbitrary code
5794  * execution in kernel space should be permitted.
5795  *
5796  * Return: Returns 0 if permission is granted.
5797  */
5798 int security_locked_down(enum lockdown_reason what)
5799 {
5800 	return call_int_hook(locked_down, what);
5801 }
5802 EXPORT_SYMBOL(security_locked_down);
5803 
5804 /**
5805  * security_bdev_alloc() - Allocate a block device LSM blob
5806  * @bdev: block device
5807  *
5808  * Allocate and attach a security structure to @bdev->bd_security.  The
5809  * security field is initialized to NULL when the bdev structure is
5810  * allocated.
5811  *
5812  * Return: Return 0 if operation was successful.
5813  */
5814 int security_bdev_alloc(struct block_device *bdev)
5815 {
5816 	int rc = 0;
5817 
5818 	rc = lsm_bdev_alloc(bdev);
5819 	if (unlikely(rc))
5820 		return rc;
5821 
5822 	rc = call_int_hook(bdev_alloc_security, bdev);
5823 	if (unlikely(rc))
5824 		security_bdev_free(bdev);
5825 
5826 	return rc;
5827 }
5828 EXPORT_SYMBOL(security_bdev_alloc);
5829 
5830 /**
5831  * security_bdev_free() - Free a block device's LSM blob
5832  * @bdev: block device
5833  *
5834  * Deallocate the bdev security structure and set @bdev->bd_security to NULL.
5835  */
5836 void security_bdev_free(struct block_device *bdev)
5837 {
5838 	if (!bdev->bd_security)
5839 		return;
5840 
5841 	call_void_hook(bdev_free_security, bdev);
5842 
5843 	kfree(bdev->bd_security);
5844 	bdev->bd_security = NULL;
5845 }
5846 EXPORT_SYMBOL(security_bdev_free);
5847 
5848 /**
5849  * security_bdev_setintegrity() - Set the device's integrity data
5850  * @bdev: block device
5851  * @type: type of integrity, e.g. hash digest, signature, etc
5852  * @value: the integrity value
5853  * @size: size of the integrity value
5854  *
5855  * Register a verified integrity measurement of a bdev with LSMs.
5856  * LSMs should free the previously saved data if @value is NULL.
5857  * Please note that the new hook should be invoked every time the security
5858  * information is updated to keep these data current. For example, in dm-verity,
5859  * if the mapping table is reloaded and configured to use a different dm-verity
5860  * target with a new roothash and signing information, the previously stored
5861  * data in the LSM blob will become obsolete. It is crucial to re-invoke the
5862  * hook to refresh these data and ensure they are up to date. This necessity
5863  * arises from the design of device-mapper, where a device-mapper device is
5864  * first created, and then targets are subsequently loaded into it. These
5865  * targets can be modified multiple times during the device's lifetime.
5866  * Therefore, while the LSM blob is allocated during the creation of the block
5867  * device, its actual contents are not initialized at this stage and can change
5868  * substantially over time. This includes alterations from data that the LSMs
5869  * 'trusts' to those they do not, making it essential to handle these changes
5870  * correctly. Failure to address this dynamic aspect could potentially allow
5871  * for bypassing LSM checks.
5872  *
5873  * Return: Returns 0 on success, negative values on failure.
5874  */
5875 int security_bdev_setintegrity(struct block_device *bdev,
5876 			       enum lsm_integrity_type type, const void *value,
5877 			       size_t size)
5878 {
5879 	return call_int_hook(bdev_setintegrity, bdev, type, value, size);
5880 }
5881 EXPORT_SYMBOL(security_bdev_setintegrity);
5882 
5883 #ifdef CONFIG_PERF_EVENTS
5884 /**
5885  * security_perf_event_open() - Check if a perf event open is allowed
5886  * @attr: perf event attribute
5887  * @type: type of event
5888  *
5889  * Check whether the @type of perf_event_open syscall is allowed.
5890  *
5891  * Return: Returns 0 if permission is granted.
5892  */
5893 int security_perf_event_open(struct perf_event_attr *attr, int type)
5894 {
5895 	return call_int_hook(perf_event_open, attr, type);
5896 }
5897 
5898 /**
5899  * security_perf_event_alloc() - Allocate a perf event LSM blob
5900  * @event: perf event
5901  *
5902  * Allocate and save perf_event security info.
5903  *
5904  * Return: Returns 0 on success, error on failure.
5905  */
5906 int security_perf_event_alloc(struct perf_event *event)
5907 {
5908 	int rc;
5909 
5910 	rc = lsm_blob_alloc(&event->security, blob_sizes.lbs_perf_event,
5911 			    GFP_KERNEL);
5912 	if (rc)
5913 		return rc;
5914 
5915 	rc = call_int_hook(perf_event_alloc, event);
5916 	if (rc) {
5917 		kfree(event->security);
5918 		event->security = NULL;
5919 	}
5920 	return rc;
5921 }
5922 
5923 /**
5924  * security_perf_event_free() - Free a perf event LSM blob
5925  * @event: perf event
5926  *
5927  * Release (free) perf_event security info.
5928  */
5929 void security_perf_event_free(struct perf_event *event)
5930 {
5931 	kfree(event->security);
5932 	event->security = NULL;
5933 }
5934 
5935 /**
5936  * security_perf_event_read() - Check if reading a perf event label is allowed
5937  * @event: perf event
5938  *
5939  * Read perf_event security info if allowed.
5940  *
5941  * Return: Returns 0 if permission is granted.
5942  */
5943 int security_perf_event_read(struct perf_event *event)
5944 {
5945 	return call_int_hook(perf_event_read, event);
5946 }
5947 
5948 /**
5949  * security_perf_event_write() - Check if writing a perf event label is allowed
5950  * @event: perf event
5951  *
5952  * Write perf_event security info if allowed.
5953  *
5954  * Return: Returns 0 if permission is granted.
5955  */
5956 int security_perf_event_write(struct perf_event *event)
5957 {
5958 	return call_int_hook(perf_event_write, event);
5959 }
5960 #endif /* CONFIG_PERF_EVENTS */
5961 
5962 #ifdef CONFIG_IO_URING
5963 /**
5964  * security_uring_override_creds() - Check if overriding creds is allowed
5965  * @new: new credentials
5966  *
5967  * Check if the current task, executing an io_uring operation, is allowed to
5968  * override it's credentials with @new.
5969  *
5970  * Return: Returns 0 if permission is granted.
5971  */
5972 int security_uring_override_creds(const struct cred *new)
5973 {
5974 	return call_int_hook(uring_override_creds, new);
5975 }
5976 
5977 /**
5978  * security_uring_sqpoll() - Check if IORING_SETUP_SQPOLL is allowed
5979  *
5980  * Check whether the current task is allowed to spawn a io_uring polling thread
5981  * (IORING_SETUP_SQPOLL).
5982  *
5983  * Return: Returns 0 if permission is granted.
5984  */
5985 int security_uring_sqpoll(void)
5986 {
5987 	return call_int_hook(uring_sqpoll);
5988 }
5989 
5990 /**
5991  * security_uring_cmd() - Check if a io_uring passthrough command is allowed
5992  * @ioucmd: command
5993  *
5994  * Check whether the file_operations uring_cmd is allowed to run.
5995  *
5996  * Return: Returns 0 if permission is granted.
5997  */
5998 int security_uring_cmd(struct io_uring_cmd *ioucmd)
5999 {
6000 	return call_int_hook(uring_cmd, ioucmd);
6001 }
6002 #endif /* CONFIG_IO_URING */
6003 
6004 /**
6005  * security_initramfs_populated() - Notify LSMs that initramfs has been loaded
6006  *
6007  * Tells the LSMs the initramfs has been unpacked into the rootfs.
6008  */
6009 void security_initramfs_populated(void)
6010 {
6011 	call_void_hook(initramfs_populated);
6012 }
6013