xref: /linux/security/security.c (revision d39d0ed196aa1685bb24771e92f78633c66ac9cb)
1 /*
2  * Security plug functions
3  *
4  * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
5  * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
6  * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
7  *
8  *	This program is free software; you can redistribute it and/or modify
9  *	it under the terms of the GNU General Public License as published by
10  *	the Free Software Foundation; either version 2 of the License, or
11  *	(at your option) any later version.
12  */
13 
14 #include <linux/capability.h>
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/kernel.h>
18 #include <linux/security.h>
19 #include <linux/ima.h>
20 
21 /* Boot-time LSM user choice */
22 static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1] =
23 	CONFIG_DEFAULT_SECURITY;
24 
25 /* things that live in capability.c */
26 extern void __init security_fixup_ops(struct security_operations *ops);
27 
28 static struct security_operations *security_ops;
29 static struct security_operations default_security_ops = {
30 	.name	= "default",
31 };
32 
33 static inline int __init verify(struct security_operations *ops)
34 {
35 	/* verify the security_operations structure exists */
36 	if (!ops)
37 		return -EINVAL;
38 	security_fixup_ops(ops);
39 	return 0;
40 }
41 
42 static void __init do_security_initcalls(void)
43 {
44 	initcall_t *call;
45 	call = __security_initcall_start;
46 	while (call < __security_initcall_end) {
47 		(*call) ();
48 		call++;
49 	}
50 }
51 
52 /**
53  * security_init - initializes the security framework
54  *
55  * This should be called early in the kernel initialization sequence.
56  */
57 int __init security_init(void)
58 {
59 	printk(KERN_INFO "Security Framework initialized\n");
60 
61 	security_fixup_ops(&default_security_ops);
62 	security_ops = &default_security_ops;
63 	do_security_initcalls();
64 
65 	return 0;
66 }
67 
68 void reset_security_ops(void)
69 {
70 	security_ops = &default_security_ops;
71 }
72 
73 /* Save user chosen LSM */
74 static int __init choose_lsm(char *str)
75 {
76 	strncpy(chosen_lsm, str, SECURITY_NAME_MAX);
77 	return 1;
78 }
79 __setup("security=", choose_lsm);
80 
81 /**
82  * security_module_enable - Load given security module on boot ?
83  * @ops: a pointer to the struct security_operations that is to be checked.
84  *
85  * Each LSM must pass this method before registering its own operations
86  * to avoid security registration races. This method may also be used
87  * to check if your LSM is currently loaded during kernel initialization.
88  *
89  * Return true if:
90  *	-The passed LSM is the one chosen by user at boot time,
91  *	-or the passed LSM is configured as the default and the user did not
92  *	 choose an alternate LSM at boot time,
93  *	-or there is no default LSM set and the user didn't specify a
94  *	 specific LSM and we're the first to ask for registration permission,
95  *	-or the passed LSM is currently loaded.
96  * Otherwise, return false.
97  */
98 int __init security_module_enable(struct security_operations *ops)
99 {
100 	if (!*chosen_lsm)
101 		strncpy(chosen_lsm, ops->name, SECURITY_NAME_MAX);
102 	else if (strncmp(ops->name, chosen_lsm, SECURITY_NAME_MAX))
103 		return 0;
104 
105 	return 1;
106 }
107 
108 /**
109  * register_security - registers a security framework with the kernel
110  * @ops: a pointer to the struct security_options that is to be registered
111  *
112  * This function allows a security module to register itself with the
113  * kernel security subsystem.  Some rudimentary checking is done on the @ops
114  * value passed to this function. You'll need to check first if your LSM
115  * is allowed to register its @ops by calling security_module_enable(@ops).
116  *
117  * If there is already a security module registered with the kernel,
118  * an error will be returned.  Otherwise %0 is returned on success.
119  */
120 int __init register_security(struct security_operations *ops)
121 {
122 	if (verify(ops)) {
123 		printk(KERN_DEBUG "%s could not verify "
124 		       "security_operations structure.\n", __func__);
125 		return -EINVAL;
126 	}
127 
128 	if (security_ops != &default_security_ops)
129 		return -EAGAIN;
130 
131 	security_ops = ops;
132 
133 	return 0;
134 }
135 
136 /* Security operations */
137 
138 int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
139 {
140 	return security_ops->ptrace_access_check(child, mode);
141 }
142 
143 int security_ptrace_traceme(struct task_struct *parent)
144 {
145 	return security_ops->ptrace_traceme(parent);
146 }
147 
148 int security_capget(struct task_struct *target,
149 		     kernel_cap_t *effective,
150 		     kernel_cap_t *inheritable,
151 		     kernel_cap_t *permitted)
152 {
153 	return security_ops->capget(target, effective, inheritable, permitted);
154 }
155 
156 int security_capset(struct cred *new, const struct cred *old,
157 		    const kernel_cap_t *effective,
158 		    const kernel_cap_t *inheritable,
159 		    const kernel_cap_t *permitted)
160 {
161 	return security_ops->capset(new, old,
162 				    effective, inheritable, permitted);
163 }
164 
165 int security_capable(int cap)
166 {
167 	return security_ops->capable(current, current_cred(), cap,
168 				     SECURITY_CAP_AUDIT);
169 }
170 
171 int security_real_capable(struct task_struct *tsk, int cap)
172 {
173 	const struct cred *cred;
174 	int ret;
175 
176 	cred = get_task_cred(tsk);
177 	ret = security_ops->capable(tsk, cred, cap, SECURITY_CAP_AUDIT);
178 	put_cred(cred);
179 	return ret;
180 }
181 
182 int security_real_capable_noaudit(struct task_struct *tsk, int cap)
183 {
184 	const struct cred *cred;
185 	int ret;
186 
187 	cred = get_task_cred(tsk);
188 	ret = security_ops->capable(tsk, cred, cap, SECURITY_CAP_NOAUDIT);
189 	put_cred(cred);
190 	return ret;
191 }
192 
193 int security_sysctl(struct ctl_table *table, int op)
194 {
195 	return security_ops->sysctl(table, op);
196 }
197 
198 int security_quotactl(int cmds, int type, int id, struct super_block *sb)
199 {
200 	return security_ops->quotactl(cmds, type, id, sb);
201 }
202 
203 int security_quota_on(struct dentry *dentry)
204 {
205 	return security_ops->quota_on(dentry);
206 }
207 
208 int security_syslog(int type, bool from_file)
209 {
210 	return security_ops->syslog(type, from_file);
211 }
212 
213 int security_settime(struct timespec *ts, struct timezone *tz)
214 {
215 	return security_ops->settime(ts, tz);
216 }
217 
218 int security_vm_enough_memory(long pages)
219 {
220 	WARN_ON(current->mm == NULL);
221 	return security_ops->vm_enough_memory(current->mm, pages);
222 }
223 
224 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
225 {
226 	WARN_ON(mm == NULL);
227 	return security_ops->vm_enough_memory(mm, pages);
228 }
229 
230 int security_vm_enough_memory_kern(long pages)
231 {
232 	/* If current->mm is a kernel thread then we will pass NULL,
233 	   for this specific case that is fine */
234 	return security_ops->vm_enough_memory(current->mm, pages);
235 }
236 
237 int security_bprm_set_creds(struct linux_binprm *bprm)
238 {
239 	return security_ops->bprm_set_creds(bprm);
240 }
241 
242 int security_bprm_check(struct linux_binprm *bprm)
243 {
244 	int ret;
245 
246 	ret = security_ops->bprm_check_security(bprm);
247 	if (ret)
248 		return ret;
249 	return ima_bprm_check(bprm);
250 }
251 
252 void security_bprm_committing_creds(struct linux_binprm *bprm)
253 {
254 	security_ops->bprm_committing_creds(bprm);
255 }
256 
257 void security_bprm_committed_creds(struct linux_binprm *bprm)
258 {
259 	security_ops->bprm_committed_creds(bprm);
260 }
261 
262 int security_bprm_secureexec(struct linux_binprm *bprm)
263 {
264 	return security_ops->bprm_secureexec(bprm);
265 }
266 
267 int security_sb_alloc(struct super_block *sb)
268 {
269 	return security_ops->sb_alloc_security(sb);
270 }
271 
272 void security_sb_free(struct super_block *sb)
273 {
274 	security_ops->sb_free_security(sb);
275 }
276 
277 int security_sb_copy_data(char *orig, char *copy)
278 {
279 	return security_ops->sb_copy_data(orig, copy);
280 }
281 EXPORT_SYMBOL(security_sb_copy_data);
282 
283 int security_sb_kern_mount(struct super_block *sb, int flags, void *data)
284 {
285 	return security_ops->sb_kern_mount(sb, flags, data);
286 }
287 
288 int security_sb_show_options(struct seq_file *m, struct super_block *sb)
289 {
290 	return security_ops->sb_show_options(m, sb);
291 }
292 
293 int security_sb_statfs(struct dentry *dentry)
294 {
295 	return security_ops->sb_statfs(dentry);
296 }
297 
298 int security_sb_mount(char *dev_name, struct path *path,
299                        char *type, unsigned long flags, void *data)
300 {
301 	return security_ops->sb_mount(dev_name, path, type, flags, data);
302 }
303 
304 int security_sb_umount(struct vfsmount *mnt, int flags)
305 {
306 	return security_ops->sb_umount(mnt, flags);
307 }
308 
309 int security_sb_pivotroot(struct path *old_path, struct path *new_path)
310 {
311 	return security_ops->sb_pivotroot(old_path, new_path);
312 }
313 
314 int security_sb_set_mnt_opts(struct super_block *sb,
315 				struct security_mnt_opts *opts)
316 {
317 	return security_ops->sb_set_mnt_opts(sb, opts);
318 }
319 EXPORT_SYMBOL(security_sb_set_mnt_opts);
320 
321 void security_sb_clone_mnt_opts(const struct super_block *oldsb,
322 				struct super_block *newsb)
323 {
324 	security_ops->sb_clone_mnt_opts(oldsb, newsb);
325 }
326 EXPORT_SYMBOL(security_sb_clone_mnt_opts);
327 
328 int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts)
329 {
330 	return security_ops->sb_parse_opts_str(options, opts);
331 }
332 EXPORT_SYMBOL(security_sb_parse_opts_str);
333 
334 int security_inode_alloc(struct inode *inode)
335 {
336 	int ret;
337 
338 	inode->i_security = NULL;
339 	ret =  security_ops->inode_alloc_security(inode);
340 	if (ret)
341 		return ret;
342 	ret = ima_inode_alloc(inode);
343 	if (ret)
344 		security_inode_free(inode);
345 	return ret;
346 }
347 
348 void security_inode_free(struct inode *inode)
349 {
350 	ima_inode_free(inode);
351 	security_ops->inode_free_security(inode);
352 }
353 
354 int security_inode_init_security(struct inode *inode, struct inode *dir,
355 				  char **name, void **value, size_t *len)
356 {
357 	if (unlikely(IS_PRIVATE(inode)))
358 		return -EOPNOTSUPP;
359 	return security_ops->inode_init_security(inode, dir, name, value, len);
360 }
361 EXPORT_SYMBOL(security_inode_init_security);
362 
363 #ifdef CONFIG_SECURITY_PATH
364 int security_path_mknod(struct path *dir, struct dentry *dentry, int mode,
365 			unsigned int dev)
366 {
367 	if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
368 		return 0;
369 	return security_ops->path_mknod(dir, dentry, mode, dev);
370 }
371 EXPORT_SYMBOL(security_path_mknod);
372 
373 int security_path_mkdir(struct path *dir, struct dentry *dentry, int mode)
374 {
375 	if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
376 		return 0;
377 	return security_ops->path_mkdir(dir, dentry, mode);
378 }
379 
380 int security_path_rmdir(struct path *dir, struct dentry *dentry)
381 {
382 	if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
383 		return 0;
384 	return security_ops->path_rmdir(dir, dentry);
385 }
386 
387 int security_path_unlink(struct path *dir, struct dentry *dentry)
388 {
389 	if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
390 		return 0;
391 	return security_ops->path_unlink(dir, dentry);
392 }
393 
394 int security_path_symlink(struct path *dir, struct dentry *dentry,
395 			  const char *old_name)
396 {
397 	if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
398 		return 0;
399 	return security_ops->path_symlink(dir, dentry, old_name);
400 }
401 
402 int security_path_link(struct dentry *old_dentry, struct path *new_dir,
403 		       struct dentry *new_dentry)
404 {
405 	if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
406 		return 0;
407 	return security_ops->path_link(old_dentry, new_dir, new_dentry);
408 }
409 
410 int security_path_rename(struct path *old_dir, struct dentry *old_dentry,
411 			 struct path *new_dir, struct dentry *new_dentry)
412 {
413 	if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
414 		     (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
415 		return 0;
416 	return security_ops->path_rename(old_dir, old_dentry, new_dir,
417 					 new_dentry);
418 }
419 
420 int security_path_truncate(struct path *path)
421 {
422 	if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
423 		return 0;
424 	return security_ops->path_truncate(path);
425 }
426 
427 int security_path_chmod(struct dentry *dentry, struct vfsmount *mnt,
428 			mode_t mode)
429 {
430 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
431 		return 0;
432 	return security_ops->path_chmod(dentry, mnt, mode);
433 }
434 
435 int security_path_chown(struct path *path, uid_t uid, gid_t gid)
436 {
437 	if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
438 		return 0;
439 	return security_ops->path_chown(path, uid, gid);
440 }
441 
442 int security_path_chroot(struct path *path)
443 {
444 	return security_ops->path_chroot(path);
445 }
446 #endif
447 
448 int security_inode_create(struct inode *dir, struct dentry *dentry, int mode)
449 {
450 	if (unlikely(IS_PRIVATE(dir)))
451 		return 0;
452 	return security_ops->inode_create(dir, dentry, mode);
453 }
454 EXPORT_SYMBOL_GPL(security_inode_create);
455 
456 int security_inode_link(struct dentry *old_dentry, struct inode *dir,
457 			 struct dentry *new_dentry)
458 {
459 	if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
460 		return 0;
461 	return security_ops->inode_link(old_dentry, dir, new_dentry);
462 }
463 
464 int security_inode_unlink(struct inode *dir, struct dentry *dentry)
465 {
466 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
467 		return 0;
468 	return security_ops->inode_unlink(dir, dentry);
469 }
470 
471 int security_inode_symlink(struct inode *dir, struct dentry *dentry,
472 			    const char *old_name)
473 {
474 	if (unlikely(IS_PRIVATE(dir)))
475 		return 0;
476 	return security_ops->inode_symlink(dir, dentry, old_name);
477 }
478 
479 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, int mode)
480 {
481 	if (unlikely(IS_PRIVATE(dir)))
482 		return 0;
483 	return security_ops->inode_mkdir(dir, dentry, mode);
484 }
485 EXPORT_SYMBOL_GPL(security_inode_mkdir);
486 
487 int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
488 {
489 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
490 		return 0;
491 	return security_ops->inode_rmdir(dir, dentry);
492 }
493 
494 int security_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
495 {
496 	if (unlikely(IS_PRIVATE(dir)))
497 		return 0;
498 	return security_ops->inode_mknod(dir, dentry, mode, dev);
499 }
500 
501 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
502 			   struct inode *new_dir, struct dentry *new_dentry)
503 {
504         if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
505             (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
506 		return 0;
507 	return security_ops->inode_rename(old_dir, old_dentry,
508 					   new_dir, new_dentry);
509 }
510 
511 int security_inode_readlink(struct dentry *dentry)
512 {
513 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
514 		return 0;
515 	return security_ops->inode_readlink(dentry);
516 }
517 
518 int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd)
519 {
520 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
521 		return 0;
522 	return security_ops->inode_follow_link(dentry, nd);
523 }
524 
525 int security_inode_permission(struct inode *inode, int mask)
526 {
527 	if (unlikely(IS_PRIVATE(inode)))
528 		return 0;
529 	return security_ops->inode_permission(inode, mask);
530 }
531 
532 int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
533 {
534 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
535 		return 0;
536 	return security_ops->inode_setattr(dentry, attr);
537 }
538 EXPORT_SYMBOL_GPL(security_inode_setattr);
539 
540 int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
541 {
542 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
543 		return 0;
544 	return security_ops->inode_getattr(mnt, dentry);
545 }
546 
547 int security_inode_setxattr(struct dentry *dentry, const char *name,
548 			    const void *value, size_t size, int flags)
549 {
550 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
551 		return 0;
552 	return security_ops->inode_setxattr(dentry, name, value, size, flags);
553 }
554 
555 void security_inode_post_setxattr(struct dentry *dentry, const char *name,
556 				  const void *value, size_t size, int flags)
557 {
558 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
559 		return;
560 	security_ops->inode_post_setxattr(dentry, name, value, size, flags);
561 }
562 
563 int security_inode_getxattr(struct dentry *dentry, const char *name)
564 {
565 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
566 		return 0;
567 	return security_ops->inode_getxattr(dentry, name);
568 }
569 
570 int security_inode_listxattr(struct dentry *dentry)
571 {
572 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
573 		return 0;
574 	return security_ops->inode_listxattr(dentry);
575 }
576 
577 int security_inode_removexattr(struct dentry *dentry, const char *name)
578 {
579 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
580 		return 0;
581 	return security_ops->inode_removexattr(dentry, name);
582 }
583 
584 int security_inode_need_killpriv(struct dentry *dentry)
585 {
586 	return security_ops->inode_need_killpriv(dentry);
587 }
588 
589 int security_inode_killpriv(struct dentry *dentry)
590 {
591 	return security_ops->inode_killpriv(dentry);
592 }
593 
594 int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
595 {
596 	if (unlikely(IS_PRIVATE(inode)))
597 		return -EOPNOTSUPP;
598 	return security_ops->inode_getsecurity(inode, name, buffer, alloc);
599 }
600 
601 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
602 {
603 	if (unlikely(IS_PRIVATE(inode)))
604 		return -EOPNOTSUPP;
605 	return security_ops->inode_setsecurity(inode, name, value, size, flags);
606 }
607 
608 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
609 {
610 	if (unlikely(IS_PRIVATE(inode)))
611 		return 0;
612 	return security_ops->inode_listsecurity(inode, buffer, buffer_size);
613 }
614 
615 void security_inode_getsecid(const struct inode *inode, u32 *secid)
616 {
617 	security_ops->inode_getsecid(inode, secid);
618 }
619 
620 int security_file_permission(struct file *file, int mask)
621 {
622 	int ret;
623 
624 	ret = security_ops->file_permission(file, mask);
625 	if (ret)
626 		return ret;
627 
628 	return fsnotify_perm(file, mask);
629 }
630 
631 int security_file_alloc(struct file *file)
632 {
633 	return security_ops->file_alloc_security(file);
634 }
635 
636 void security_file_free(struct file *file)
637 {
638 	security_ops->file_free_security(file);
639 }
640 
641 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
642 {
643 	return security_ops->file_ioctl(file, cmd, arg);
644 }
645 
646 int security_file_mmap(struct file *file, unsigned long reqprot,
647 			unsigned long prot, unsigned long flags,
648 			unsigned long addr, unsigned long addr_only)
649 {
650 	int ret;
651 
652 	ret = security_ops->file_mmap(file, reqprot, prot, flags, addr, addr_only);
653 	if (ret)
654 		return ret;
655 	return ima_file_mmap(file, prot);
656 }
657 
658 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
659 			    unsigned long prot)
660 {
661 	return security_ops->file_mprotect(vma, reqprot, prot);
662 }
663 
664 int security_file_lock(struct file *file, unsigned int cmd)
665 {
666 	return security_ops->file_lock(file, cmd);
667 }
668 
669 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
670 {
671 	return security_ops->file_fcntl(file, cmd, arg);
672 }
673 
674 int security_file_set_fowner(struct file *file)
675 {
676 	return security_ops->file_set_fowner(file);
677 }
678 
679 int security_file_send_sigiotask(struct task_struct *tsk,
680 				  struct fown_struct *fown, int sig)
681 {
682 	return security_ops->file_send_sigiotask(tsk, fown, sig);
683 }
684 
685 int security_file_receive(struct file *file)
686 {
687 	return security_ops->file_receive(file);
688 }
689 
690 int security_dentry_open(struct file *file, const struct cred *cred)
691 {
692 	int ret;
693 
694 	ret = security_ops->dentry_open(file, cred);
695 	if (ret)
696 		return ret;
697 
698 	return fsnotify_perm(file, MAY_OPEN);
699 }
700 
701 int security_task_create(unsigned long clone_flags)
702 {
703 	return security_ops->task_create(clone_flags);
704 }
705 
706 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
707 {
708 	return security_ops->cred_alloc_blank(cred, gfp);
709 }
710 
711 void security_cred_free(struct cred *cred)
712 {
713 	security_ops->cred_free(cred);
714 }
715 
716 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
717 {
718 	return security_ops->cred_prepare(new, old, gfp);
719 }
720 
721 void security_transfer_creds(struct cred *new, const struct cred *old)
722 {
723 	security_ops->cred_transfer(new, old);
724 }
725 
726 int security_kernel_act_as(struct cred *new, u32 secid)
727 {
728 	return security_ops->kernel_act_as(new, secid);
729 }
730 
731 int security_kernel_create_files_as(struct cred *new, struct inode *inode)
732 {
733 	return security_ops->kernel_create_files_as(new, inode);
734 }
735 
736 int security_kernel_module_request(char *kmod_name)
737 {
738 	return security_ops->kernel_module_request(kmod_name);
739 }
740 
741 int security_task_fix_setuid(struct cred *new, const struct cred *old,
742 			     int flags)
743 {
744 	return security_ops->task_fix_setuid(new, old, flags);
745 }
746 
747 int security_task_setpgid(struct task_struct *p, pid_t pgid)
748 {
749 	return security_ops->task_setpgid(p, pgid);
750 }
751 
752 int security_task_getpgid(struct task_struct *p)
753 {
754 	return security_ops->task_getpgid(p);
755 }
756 
757 int security_task_getsid(struct task_struct *p)
758 {
759 	return security_ops->task_getsid(p);
760 }
761 
762 void security_task_getsecid(struct task_struct *p, u32 *secid)
763 {
764 	security_ops->task_getsecid(p, secid);
765 }
766 EXPORT_SYMBOL(security_task_getsecid);
767 
768 int security_task_setnice(struct task_struct *p, int nice)
769 {
770 	return security_ops->task_setnice(p, nice);
771 }
772 
773 int security_task_setioprio(struct task_struct *p, int ioprio)
774 {
775 	return security_ops->task_setioprio(p, ioprio);
776 }
777 
778 int security_task_getioprio(struct task_struct *p)
779 {
780 	return security_ops->task_getioprio(p);
781 }
782 
783 int security_task_setrlimit(struct task_struct *p, unsigned int resource,
784 		struct rlimit *new_rlim)
785 {
786 	return security_ops->task_setrlimit(p, resource, new_rlim);
787 }
788 
789 int security_task_setscheduler(struct task_struct *p,
790 				int policy, struct sched_param *lp)
791 {
792 	return security_ops->task_setscheduler(p, policy, lp);
793 }
794 
795 int security_task_getscheduler(struct task_struct *p)
796 {
797 	return security_ops->task_getscheduler(p);
798 }
799 
800 int security_task_movememory(struct task_struct *p)
801 {
802 	return security_ops->task_movememory(p);
803 }
804 
805 int security_task_kill(struct task_struct *p, struct siginfo *info,
806 			int sig, u32 secid)
807 {
808 	return security_ops->task_kill(p, info, sig, secid);
809 }
810 
811 int security_task_wait(struct task_struct *p)
812 {
813 	return security_ops->task_wait(p);
814 }
815 
816 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
817 			 unsigned long arg4, unsigned long arg5)
818 {
819 	return security_ops->task_prctl(option, arg2, arg3, arg4, arg5);
820 }
821 
822 void security_task_to_inode(struct task_struct *p, struct inode *inode)
823 {
824 	security_ops->task_to_inode(p, inode);
825 }
826 
827 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
828 {
829 	return security_ops->ipc_permission(ipcp, flag);
830 }
831 
832 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
833 {
834 	security_ops->ipc_getsecid(ipcp, secid);
835 }
836 
837 int security_msg_msg_alloc(struct msg_msg *msg)
838 {
839 	return security_ops->msg_msg_alloc_security(msg);
840 }
841 
842 void security_msg_msg_free(struct msg_msg *msg)
843 {
844 	security_ops->msg_msg_free_security(msg);
845 }
846 
847 int security_msg_queue_alloc(struct msg_queue *msq)
848 {
849 	return security_ops->msg_queue_alloc_security(msq);
850 }
851 
852 void security_msg_queue_free(struct msg_queue *msq)
853 {
854 	security_ops->msg_queue_free_security(msq);
855 }
856 
857 int security_msg_queue_associate(struct msg_queue *msq, int msqflg)
858 {
859 	return security_ops->msg_queue_associate(msq, msqflg);
860 }
861 
862 int security_msg_queue_msgctl(struct msg_queue *msq, int cmd)
863 {
864 	return security_ops->msg_queue_msgctl(msq, cmd);
865 }
866 
867 int security_msg_queue_msgsnd(struct msg_queue *msq,
868 			       struct msg_msg *msg, int msqflg)
869 {
870 	return security_ops->msg_queue_msgsnd(msq, msg, msqflg);
871 }
872 
873 int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
874 			       struct task_struct *target, long type, int mode)
875 {
876 	return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode);
877 }
878 
879 int security_shm_alloc(struct shmid_kernel *shp)
880 {
881 	return security_ops->shm_alloc_security(shp);
882 }
883 
884 void security_shm_free(struct shmid_kernel *shp)
885 {
886 	security_ops->shm_free_security(shp);
887 }
888 
889 int security_shm_associate(struct shmid_kernel *shp, int shmflg)
890 {
891 	return security_ops->shm_associate(shp, shmflg);
892 }
893 
894 int security_shm_shmctl(struct shmid_kernel *shp, int cmd)
895 {
896 	return security_ops->shm_shmctl(shp, cmd);
897 }
898 
899 int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg)
900 {
901 	return security_ops->shm_shmat(shp, shmaddr, shmflg);
902 }
903 
904 int security_sem_alloc(struct sem_array *sma)
905 {
906 	return security_ops->sem_alloc_security(sma);
907 }
908 
909 void security_sem_free(struct sem_array *sma)
910 {
911 	security_ops->sem_free_security(sma);
912 }
913 
914 int security_sem_associate(struct sem_array *sma, int semflg)
915 {
916 	return security_ops->sem_associate(sma, semflg);
917 }
918 
919 int security_sem_semctl(struct sem_array *sma, int cmd)
920 {
921 	return security_ops->sem_semctl(sma, cmd);
922 }
923 
924 int security_sem_semop(struct sem_array *sma, struct sembuf *sops,
925 			unsigned nsops, int alter)
926 {
927 	return security_ops->sem_semop(sma, sops, nsops, alter);
928 }
929 
930 void security_d_instantiate(struct dentry *dentry, struct inode *inode)
931 {
932 	if (unlikely(inode && IS_PRIVATE(inode)))
933 		return;
934 	security_ops->d_instantiate(dentry, inode);
935 }
936 EXPORT_SYMBOL(security_d_instantiate);
937 
938 int security_getprocattr(struct task_struct *p, char *name, char **value)
939 {
940 	return security_ops->getprocattr(p, name, value);
941 }
942 
943 int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
944 {
945 	return security_ops->setprocattr(p, name, value, size);
946 }
947 
948 int security_netlink_send(struct sock *sk, struct sk_buff *skb)
949 {
950 	return security_ops->netlink_send(sk, skb);
951 }
952 
953 int security_netlink_recv(struct sk_buff *skb, int cap)
954 {
955 	return security_ops->netlink_recv(skb, cap);
956 }
957 EXPORT_SYMBOL(security_netlink_recv);
958 
959 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
960 {
961 	return security_ops->secid_to_secctx(secid, secdata, seclen);
962 }
963 EXPORT_SYMBOL(security_secid_to_secctx);
964 
965 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
966 {
967 	return security_ops->secctx_to_secid(secdata, seclen, secid);
968 }
969 EXPORT_SYMBOL(security_secctx_to_secid);
970 
971 void security_release_secctx(char *secdata, u32 seclen)
972 {
973 	security_ops->release_secctx(secdata, seclen);
974 }
975 EXPORT_SYMBOL(security_release_secctx);
976 
977 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
978 {
979 	return security_ops->inode_notifysecctx(inode, ctx, ctxlen);
980 }
981 EXPORT_SYMBOL(security_inode_notifysecctx);
982 
983 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
984 {
985 	return security_ops->inode_setsecctx(dentry, ctx, ctxlen);
986 }
987 EXPORT_SYMBOL(security_inode_setsecctx);
988 
989 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
990 {
991 	return security_ops->inode_getsecctx(inode, ctx, ctxlen);
992 }
993 EXPORT_SYMBOL(security_inode_getsecctx);
994 
995 #ifdef CONFIG_SECURITY_NETWORK
996 
997 int security_unix_stream_connect(struct socket *sock, struct socket *other,
998 				 struct sock *newsk)
999 {
1000 	return security_ops->unix_stream_connect(sock, other, newsk);
1001 }
1002 EXPORT_SYMBOL(security_unix_stream_connect);
1003 
1004 int security_unix_may_send(struct socket *sock,  struct socket *other)
1005 {
1006 	return security_ops->unix_may_send(sock, other);
1007 }
1008 EXPORT_SYMBOL(security_unix_may_send);
1009 
1010 int security_socket_create(int family, int type, int protocol, int kern)
1011 {
1012 	return security_ops->socket_create(family, type, protocol, kern);
1013 }
1014 
1015 int security_socket_post_create(struct socket *sock, int family,
1016 				int type, int protocol, int kern)
1017 {
1018 	return security_ops->socket_post_create(sock, family, type,
1019 						protocol, kern);
1020 }
1021 
1022 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
1023 {
1024 	return security_ops->socket_bind(sock, address, addrlen);
1025 }
1026 
1027 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
1028 {
1029 	return security_ops->socket_connect(sock, address, addrlen);
1030 }
1031 
1032 int security_socket_listen(struct socket *sock, int backlog)
1033 {
1034 	return security_ops->socket_listen(sock, backlog);
1035 }
1036 
1037 int security_socket_accept(struct socket *sock, struct socket *newsock)
1038 {
1039 	return security_ops->socket_accept(sock, newsock);
1040 }
1041 
1042 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
1043 {
1044 	return security_ops->socket_sendmsg(sock, msg, size);
1045 }
1046 
1047 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
1048 			    int size, int flags)
1049 {
1050 	return security_ops->socket_recvmsg(sock, msg, size, flags);
1051 }
1052 
1053 int security_socket_getsockname(struct socket *sock)
1054 {
1055 	return security_ops->socket_getsockname(sock);
1056 }
1057 
1058 int security_socket_getpeername(struct socket *sock)
1059 {
1060 	return security_ops->socket_getpeername(sock);
1061 }
1062 
1063 int security_socket_getsockopt(struct socket *sock, int level, int optname)
1064 {
1065 	return security_ops->socket_getsockopt(sock, level, optname);
1066 }
1067 
1068 int security_socket_setsockopt(struct socket *sock, int level, int optname)
1069 {
1070 	return security_ops->socket_setsockopt(sock, level, optname);
1071 }
1072 
1073 int security_socket_shutdown(struct socket *sock, int how)
1074 {
1075 	return security_ops->socket_shutdown(sock, how);
1076 }
1077 
1078 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
1079 {
1080 	return security_ops->socket_sock_rcv_skb(sk, skb);
1081 }
1082 EXPORT_SYMBOL(security_sock_rcv_skb);
1083 
1084 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
1085 				      int __user *optlen, unsigned len)
1086 {
1087 	return security_ops->socket_getpeersec_stream(sock, optval, optlen, len);
1088 }
1089 
1090 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
1091 {
1092 	return security_ops->socket_getpeersec_dgram(sock, skb, secid);
1093 }
1094 EXPORT_SYMBOL(security_socket_getpeersec_dgram);
1095 
1096 int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
1097 {
1098 	return security_ops->sk_alloc_security(sk, family, priority);
1099 }
1100 
1101 void security_sk_free(struct sock *sk)
1102 {
1103 	security_ops->sk_free_security(sk);
1104 }
1105 
1106 void security_sk_clone(const struct sock *sk, struct sock *newsk)
1107 {
1108 	security_ops->sk_clone_security(sk, newsk);
1109 }
1110 
1111 void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
1112 {
1113 	security_ops->sk_getsecid(sk, &fl->secid);
1114 }
1115 EXPORT_SYMBOL(security_sk_classify_flow);
1116 
1117 void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
1118 {
1119 	security_ops->req_classify_flow(req, fl);
1120 }
1121 EXPORT_SYMBOL(security_req_classify_flow);
1122 
1123 void security_sock_graft(struct sock *sk, struct socket *parent)
1124 {
1125 	security_ops->sock_graft(sk, parent);
1126 }
1127 EXPORT_SYMBOL(security_sock_graft);
1128 
1129 int security_inet_conn_request(struct sock *sk,
1130 			struct sk_buff *skb, struct request_sock *req)
1131 {
1132 	return security_ops->inet_conn_request(sk, skb, req);
1133 }
1134 EXPORT_SYMBOL(security_inet_conn_request);
1135 
1136 void security_inet_csk_clone(struct sock *newsk,
1137 			const struct request_sock *req)
1138 {
1139 	security_ops->inet_csk_clone(newsk, req);
1140 }
1141 
1142 void security_inet_conn_established(struct sock *sk,
1143 			struct sk_buff *skb)
1144 {
1145 	security_ops->inet_conn_established(sk, skb);
1146 }
1147 
1148 int security_tun_dev_create(void)
1149 {
1150 	return security_ops->tun_dev_create();
1151 }
1152 EXPORT_SYMBOL(security_tun_dev_create);
1153 
1154 void security_tun_dev_post_create(struct sock *sk)
1155 {
1156 	return security_ops->tun_dev_post_create(sk);
1157 }
1158 EXPORT_SYMBOL(security_tun_dev_post_create);
1159 
1160 int security_tun_dev_attach(struct sock *sk)
1161 {
1162 	return security_ops->tun_dev_attach(sk);
1163 }
1164 EXPORT_SYMBOL(security_tun_dev_attach);
1165 
1166 #endif	/* CONFIG_SECURITY_NETWORK */
1167 
1168 #ifdef CONFIG_SECURITY_NETWORK_XFRM
1169 
1170 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct xfrm_user_sec_ctx *sec_ctx)
1171 {
1172 	return security_ops->xfrm_policy_alloc_security(ctxp, sec_ctx);
1173 }
1174 EXPORT_SYMBOL(security_xfrm_policy_alloc);
1175 
1176 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
1177 			      struct xfrm_sec_ctx **new_ctxp)
1178 {
1179 	return security_ops->xfrm_policy_clone_security(old_ctx, new_ctxp);
1180 }
1181 
1182 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
1183 {
1184 	security_ops->xfrm_policy_free_security(ctx);
1185 }
1186 EXPORT_SYMBOL(security_xfrm_policy_free);
1187 
1188 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
1189 {
1190 	return security_ops->xfrm_policy_delete_security(ctx);
1191 }
1192 
1193 int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx)
1194 {
1195 	return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0);
1196 }
1197 EXPORT_SYMBOL(security_xfrm_state_alloc);
1198 
1199 int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
1200 				      struct xfrm_sec_ctx *polsec, u32 secid)
1201 {
1202 	if (!polsec)
1203 		return 0;
1204 	/*
1205 	 * We want the context to be taken from secid which is usually
1206 	 * from the sock.
1207 	 */
1208 	return security_ops->xfrm_state_alloc_security(x, NULL, secid);
1209 }
1210 
1211 int security_xfrm_state_delete(struct xfrm_state *x)
1212 {
1213 	return security_ops->xfrm_state_delete_security(x);
1214 }
1215 EXPORT_SYMBOL(security_xfrm_state_delete);
1216 
1217 void security_xfrm_state_free(struct xfrm_state *x)
1218 {
1219 	security_ops->xfrm_state_free_security(x);
1220 }
1221 
1222 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
1223 {
1224 	return security_ops->xfrm_policy_lookup(ctx, fl_secid, dir);
1225 }
1226 
1227 int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
1228 				       struct xfrm_policy *xp, struct flowi *fl)
1229 {
1230 	return security_ops->xfrm_state_pol_flow_match(x, xp, fl);
1231 }
1232 
1233 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
1234 {
1235 	return security_ops->xfrm_decode_session(skb, secid, 1);
1236 }
1237 
1238 void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
1239 {
1240 	int rc = security_ops->xfrm_decode_session(skb, &fl->secid, 0);
1241 
1242 	BUG_ON(rc);
1243 }
1244 EXPORT_SYMBOL(security_skb_classify_flow);
1245 
1246 #endif	/* CONFIG_SECURITY_NETWORK_XFRM */
1247 
1248 #ifdef CONFIG_KEYS
1249 
1250 int security_key_alloc(struct key *key, const struct cred *cred,
1251 		       unsigned long flags)
1252 {
1253 	return security_ops->key_alloc(key, cred, flags);
1254 }
1255 
1256 void security_key_free(struct key *key)
1257 {
1258 	security_ops->key_free(key);
1259 }
1260 
1261 int security_key_permission(key_ref_t key_ref,
1262 			    const struct cred *cred, key_perm_t perm)
1263 {
1264 	return security_ops->key_permission(key_ref, cred, perm);
1265 }
1266 
1267 int security_key_getsecurity(struct key *key, char **_buffer)
1268 {
1269 	return security_ops->key_getsecurity(key, _buffer);
1270 }
1271 
1272 #endif	/* CONFIG_KEYS */
1273 
1274 #ifdef CONFIG_AUDIT
1275 
1276 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
1277 {
1278 	return security_ops->audit_rule_init(field, op, rulestr, lsmrule);
1279 }
1280 
1281 int security_audit_rule_known(struct audit_krule *krule)
1282 {
1283 	return security_ops->audit_rule_known(krule);
1284 }
1285 
1286 void security_audit_rule_free(void *lsmrule)
1287 {
1288 	security_ops->audit_rule_free(lsmrule);
1289 }
1290 
1291 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule,
1292 			      struct audit_context *actx)
1293 {
1294 	return security_ops->audit_rule_match(secid, field, op, lsmrule, actx);
1295 }
1296 
1297 #endif /* CONFIG_AUDIT */
1298