1 /* 2 * Security plug functions 3 * 4 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com> 5 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com> 6 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com> 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2 of the License, or 11 * (at your option) any later version. 12 */ 13 14 #include <linux/capability.h> 15 #include <linux/module.h> 16 #include <linux/init.h> 17 #include <linux/kernel.h> 18 #include <linux/security.h> 19 #include <linux/ima.h> 20 21 /* Boot-time LSM user choice */ 22 static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1] = 23 CONFIG_DEFAULT_SECURITY; 24 25 /* things that live in capability.c */ 26 extern void __init security_fixup_ops(struct security_operations *ops); 27 28 static struct security_operations *security_ops; 29 static struct security_operations default_security_ops = { 30 .name = "default", 31 }; 32 33 static inline int __init verify(struct security_operations *ops) 34 { 35 /* verify the security_operations structure exists */ 36 if (!ops) 37 return -EINVAL; 38 security_fixup_ops(ops); 39 return 0; 40 } 41 42 static void __init do_security_initcalls(void) 43 { 44 initcall_t *call; 45 call = __security_initcall_start; 46 while (call < __security_initcall_end) { 47 (*call) (); 48 call++; 49 } 50 } 51 52 /** 53 * security_init - initializes the security framework 54 * 55 * This should be called early in the kernel initialization sequence. 56 */ 57 int __init security_init(void) 58 { 59 printk(KERN_INFO "Security Framework initialized\n"); 60 61 security_fixup_ops(&default_security_ops); 62 security_ops = &default_security_ops; 63 do_security_initcalls(); 64 65 return 0; 66 } 67 68 void reset_security_ops(void) 69 { 70 security_ops = &default_security_ops; 71 } 72 73 /* Save user chosen LSM */ 74 static int __init choose_lsm(char *str) 75 { 76 strncpy(chosen_lsm, str, SECURITY_NAME_MAX); 77 return 1; 78 } 79 __setup("security=", choose_lsm); 80 81 /** 82 * security_module_enable - Load given security module on boot ? 83 * @ops: a pointer to the struct security_operations that is to be checked. 84 * 85 * Each LSM must pass this method before registering its own operations 86 * to avoid security registration races. This method may also be used 87 * to check if your LSM is currently loaded during kernel initialization. 88 * 89 * Return true if: 90 * -The passed LSM is the one chosen by user at boot time, 91 * -or the passed LSM is configured as the default and the user did not 92 * choose an alternate LSM at boot time, 93 * -or there is no default LSM set and the user didn't specify a 94 * specific LSM and we're the first to ask for registration permission, 95 * -or the passed LSM is currently loaded. 96 * Otherwise, return false. 97 */ 98 int __init security_module_enable(struct security_operations *ops) 99 { 100 if (!*chosen_lsm) 101 strncpy(chosen_lsm, ops->name, SECURITY_NAME_MAX); 102 else if (strncmp(ops->name, chosen_lsm, SECURITY_NAME_MAX)) 103 return 0; 104 105 return 1; 106 } 107 108 /** 109 * register_security - registers a security framework with the kernel 110 * @ops: a pointer to the struct security_options that is to be registered 111 * 112 * This function allows a security module to register itself with the 113 * kernel security subsystem. Some rudimentary checking is done on the @ops 114 * value passed to this function. You'll need to check first if your LSM 115 * is allowed to register its @ops by calling security_module_enable(@ops). 116 * 117 * If there is already a security module registered with the kernel, 118 * an error will be returned. Otherwise %0 is returned on success. 119 */ 120 int __init register_security(struct security_operations *ops) 121 { 122 if (verify(ops)) { 123 printk(KERN_DEBUG "%s could not verify " 124 "security_operations structure.\n", __func__); 125 return -EINVAL; 126 } 127 128 if (security_ops != &default_security_ops) 129 return -EAGAIN; 130 131 security_ops = ops; 132 133 return 0; 134 } 135 136 /* Security operations */ 137 138 int security_ptrace_access_check(struct task_struct *child, unsigned int mode) 139 { 140 return security_ops->ptrace_access_check(child, mode); 141 } 142 143 int security_ptrace_traceme(struct task_struct *parent) 144 { 145 return security_ops->ptrace_traceme(parent); 146 } 147 148 int security_capget(struct task_struct *target, 149 kernel_cap_t *effective, 150 kernel_cap_t *inheritable, 151 kernel_cap_t *permitted) 152 { 153 return security_ops->capget(target, effective, inheritable, permitted); 154 } 155 156 int security_capset(struct cred *new, const struct cred *old, 157 const kernel_cap_t *effective, 158 const kernel_cap_t *inheritable, 159 const kernel_cap_t *permitted) 160 { 161 return security_ops->capset(new, old, 162 effective, inheritable, permitted); 163 } 164 165 int security_capable(int cap) 166 { 167 return security_ops->capable(current, current_cred(), cap, 168 SECURITY_CAP_AUDIT); 169 } 170 171 int security_real_capable(struct task_struct *tsk, int cap) 172 { 173 const struct cred *cred; 174 int ret; 175 176 cred = get_task_cred(tsk); 177 ret = security_ops->capable(tsk, cred, cap, SECURITY_CAP_AUDIT); 178 put_cred(cred); 179 return ret; 180 } 181 182 int security_real_capable_noaudit(struct task_struct *tsk, int cap) 183 { 184 const struct cred *cred; 185 int ret; 186 187 cred = get_task_cred(tsk); 188 ret = security_ops->capable(tsk, cred, cap, SECURITY_CAP_NOAUDIT); 189 put_cred(cred); 190 return ret; 191 } 192 193 int security_sysctl(struct ctl_table *table, int op) 194 { 195 return security_ops->sysctl(table, op); 196 } 197 198 int security_quotactl(int cmds, int type, int id, struct super_block *sb) 199 { 200 return security_ops->quotactl(cmds, type, id, sb); 201 } 202 203 int security_quota_on(struct dentry *dentry) 204 { 205 return security_ops->quota_on(dentry); 206 } 207 208 int security_syslog(int type, bool from_file) 209 { 210 return security_ops->syslog(type, from_file); 211 } 212 213 int security_settime(struct timespec *ts, struct timezone *tz) 214 { 215 return security_ops->settime(ts, tz); 216 } 217 218 int security_vm_enough_memory(long pages) 219 { 220 WARN_ON(current->mm == NULL); 221 return security_ops->vm_enough_memory(current->mm, pages); 222 } 223 224 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages) 225 { 226 WARN_ON(mm == NULL); 227 return security_ops->vm_enough_memory(mm, pages); 228 } 229 230 int security_vm_enough_memory_kern(long pages) 231 { 232 /* If current->mm is a kernel thread then we will pass NULL, 233 for this specific case that is fine */ 234 return security_ops->vm_enough_memory(current->mm, pages); 235 } 236 237 int security_bprm_set_creds(struct linux_binprm *bprm) 238 { 239 return security_ops->bprm_set_creds(bprm); 240 } 241 242 int security_bprm_check(struct linux_binprm *bprm) 243 { 244 int ret; 245 246 ret = security_ops->bprm_check_security(bprm); 247 if (ret) 248 return ret; 249 return ima_bprm_check(bprm); 250 } 251 252 void security_bprm_committing_creds(struct linux_binprm *bprm) 253 { 254 security_ops->bprm_committing_creds(bprm); 255 } 256 257 void security_bprm_committed_creds(struct linux_binprm *bprm) 258 { 259 security_ops->bprm_committed_creds(bprm); 260 } 261 262 int security_bprm_secureexec(struct linux_binprm *bprm) 263 { 264 return security_ops->bprm_secureexec(bprm); 265 } 266 267 int security_sb_alloc(struct super_block *sb) 268 { 269 return security_ops->sb_alloc_security(sb); 270 } 271 272 void security_sb_free(struct super_block *sb) 273 { 274 security_ops->sb_free_security(sb); 275 } 276 277 int security_sb_copy_data(char *orig, char *copy) 278 { 279 return security_ops->sb_copy_data(orig, copy); 280 } 281 EXPORT_SYMBOL(security_sb_copy_data); 282 283 int security_sb_kern_mount(struct super_block *sb, int flags, void *data) 284 { 285 return security_ops->sb_kern_mount(sb, flags, data); 286 } 287 288 int security_sb_show_options(struct seq_file *m, struct super_block *sb) 289 { 290 return security_ops->sb_show_options(m, sb); 291 } 292 293 int security_sb_statfs(struct dentry *dentry) 294 { 295 return security_ops->sb_statfs(dentry); 296 } 297 298 int security_sb_mount(char *dev_name, struct path *path, 299 char *type, unsigned long flags, void *data) 300 { 301 return security_ops->sb_mount(dev_name, path, type, flags, data); 302 } 303 304 int security_sb_umount(struct vfsmount *mnt, int flags) 305 { 306 return security_ops->sb_umount(mnt, flags); 307 } 308 309 int security_sb_pivotroot(struct path *old_path, struct path *new_path) 310 { 311 return security_ops->sb_pivotroot(old_path, new_path); 312 } 313 314 int security_sb_set_mnt_opts(struct super_block *sb, 315 struct security_mnt_opts *opts) 316 { 317 return security_ops->sb_set_mnt_opts(sb, opts); 318 } 319 EXPORT_SYMBOL(security_sb_set_mnt_opts); 320 321 void security_sb_clone_mnt_opts(const struct super_block *oldsb, 322 struct super_block *newsb) 323 { 324 security_ops->sb_clone_mnt_opts(oldsb, newsb); 325 } 326 EXPORT_SYMBOL(security_sb_clone_mnt_opts); 327 328 int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts) 329 { 330 return security_ops->sb_parse_opts_str(options, opts); 331 } 332 EXPORT_SYMBOL(security_sb_parse_opts_str); 333 334 int security_inode_alloc(struct inode *inode) 335 { 336 int ret; 337 338 inode->i_security = NULL; 339 ret = security_ops->inode_alloc_security(inode); 340 if (ret) 341 return ret; 342 ret = ima_inode_alloc(inode); 343 if (ret) 344 security_inode_free(inode); 345 return ret; 346 } 347 348 void security_inode_free(struct inode *inode) 349 { 350 ima_inode_free(inode); 351 security_ops->inode_free_security(inode); 352 } 353 354 int security_inode_init_security(struct inode *inode, struct inode *dir, 355 char **name, void **value, size_t *len) 356 { 357 if (unlikely(IS_PRIVATE(inode))) 358 return -EOPNOTSUPP; 359 return security_ops->inode_init_security(inode, dir, name, value, len); 360 } 361 EXPORT_SYMBOL(security_inode_init_security); 362 363 #ifdef CONFIG_SECURITY_PATH 364 int security_path_mknod(struct path *dir, struct dentry *dentry, int mode, 365 unsigned int dev) 366 { 367 if (unlikely(IS_PRIVATE(dir->dentry->d_inode))) 368 return 0; 369 return security_ops->path_mknod(dir, dentry, mode, dev); 370 } 371 EXPORT_SYMBOL(security_path_mknod); 372 373 int security_path_mkdir(struct path *dir, struct dentry *dentry, int mode) 374 { 375 if (unlikely(IS_PRIVATE(dir->dentry->d_inode))) 376 return 0; 377 return security_ops->path_mkdir(dir, dentry, mode); 378 } 379 380 int security_path_rmdir(struct path *dir, struct dentry *dentry) 381 { 382 if (unlikely(IS_PRIVATE(dir->dentry->d_inode))) 383 return 0; 384 return security_ops->path_rmdir(dir, dentry); 385 } 386 387 int security_path_unlink(struct path *dir, struct dentry *dentry) 388 { 389 if (unlikely(IS_PRIVATE(dir->dentry->d_inode))) 390 return 0; 391 return security_ops->path_unlink(dir, dentry); 392 } 393 394 int security_path_symlink(struct path *dir, struct dentry *dentry, 395 const char *old_name) 396 { 397 if (unlikely(IS_PRIVATE(dir->dentry->d_inode))) 398 return 0; 399 return security_ops->path_symlink(dir, dentry, old_name); 400 } 401 402 int security_path_link(struct dentry *old_dentry, struct path *new_dir, 403 struct dentry *new_dentry) 404 { 405 if (unlikely(IS_PRIVATE(old_dentry->d_inode))) 406 return 0; 407 return security_ops->path_link(old_dentry, new_dir, new_dentry); 408 } 409 410 int security_path_rename(struct path *old_dir, struct dentry *old_dentry, 411 struct path *new_dir, struct dentry *new_dentry) 412 { 413 if (unlikely(IS_PRIVATE(old_dentry->d_inode) || 414 (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode)))) 415 return 0; 416 return security_ops->path_rename(old_dir, old_dentry, new_dir, 417 new_dentry); 418 } 419 420 int security_path_truncate(struct path *path) 421 { 422 if (unlikely(IS_PRIVATE(path->dentry->d_inode))) 423 return 0; 424 return security_ops->path_truncate(path); 425 } 426 427 int security_path_chmod(struct dentry *dentry, struct vfsmount *mnt, 428 mode_t mode) 429 { 430 if (unlikely(IS_PRIVATE(dentry->d_inode))) 431 return 0; 432 return security_ops->path_chmod(dentry, mnt, mode); 433 } 434 435 int security_path_chown(struct path *path, uid_t uid, gid_t gid) 436 { 437 if (unlikely(IS_PRIVATE(path->dentry->d_inode))) 438 return 0; 439 return security_ops->path_chown(path, uid, gid); 440 } 441 442 int security_path_chroot(struct path *path) 443 { 444 return security_ops->path_chroot(path); 445 } 446 #endif 447 448 int security_inode_create(struct inode *dir, struct dentry *dentry, int mode) 449 { 450 if (unlikely(IS_PRIVATE(dir))) 451 return 0; 452 return security_ops->inode_create(dir, dentry, mode); 453 } 454 EXPORT_SYMBOL_GPL(security_inode_create); 455 456 int security_inode_link(struct dentry *old_dentry, struct inode *dir, 457 struct dentry *new_dentry) 458 { 459 if (unlikely(IS_PRIVATE(old_dentry->d_inode))) 460 return 0; 461 return security_ops->inode_link(old_dentry, dir, new_dentry); 462 } 463 464 int security_inode_unlink(struct inode *dir, struct dentry *dentry) 465 { 466 if (unlikely(IS_PRIVATE(dentry->d_inode))) 467 return 0; 468 return security_ops->inode_unlink(dir, dentry); 469 } 470 471 int security_inode_symlink(struct inode *dir, struct dentry *dentry, 472 const char *old_name) 473 { 474 if (unlikely(IS_PRIVATE(dir))) 475 return 0; 476 return security_ops->inode_symlink(dir, dentry, old_name); 477 } 478 479 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, int mode) 480 { 481 if (unlikely(IS_PRIVATE(dir))) 482 return 0; 483 return security_ops->inode_mkdir(dir, dentry, mode); 484 } 485 EXPORT_SYMBOL_GPL(security_inode_mkdir); 486 487 int security_inode_rmdir(struct inode *dir, struct dentry *dentry) 488 { 489 if (unlikely(IS_PRIVATE(dentry->d_inode))) 490 return 0; 491 return security_ops->inode_rmdir(dir, dentry); 492 } 493 494 int security_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev) 495 { 496 if (unlikely(IS_PRIVATE(dir))) 497 return 0; 498 return security_ops->inode_mknod(dir, dentry, mode, dev); 499 } 500 501 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry, 502 struct inode *new_dir, struct dentry *new_dentry) 503 { 504 if (unlikely(IS_PRIVATE(old_dentry->d_inode) || 505 (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode)))) 506 return 0; 507 return security_ops->inode_rename(old_dir, old_dentry, 508 new_dir, new_dentry); 509 } 510 511 int security_inode_readlink(struct dentry *dentry) 512 { 513 if (unlikely(IS_PRIVATE(dentry->d_inode))) 514 return 0; 515 return security_ops->inode_readlink(dentry); 516 } 517 518 int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd) 519 { 520 if (unlikely(IS_PRIVATE(dentry->d_inode))) 521 return 0; 522 return security_ops->inode_follow_link(dentry, nd); 523 } 524 525 int security_inode_permission(struct inode *inode, int mask) 526 { 527 if (unlikely(IS_PRIVATE(inode))) 528 return 0; 529 return security_ops->inode_permission(inode, mask); 530 } 531 532 int security_inode_setattr(struct dentry *dentry, struct iattr *attr) 533 { 534 if (unlikely(IS_PRIVATE(dentry->d_inode))) 535 return 0; 536 return security_ops->inode_setattr(dentry, attr); 537 } 538 EXPORT_SYMBOL_GPL(security_inode_setattr); 539 540 int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry) 541 { 542 if (unlikely(IS_PRIVATE(dentry->d_inode))) 543 return 0; 544 return security_ops->inode_getattr(mnt, dentry); 545 } 546 547 int security_inode_setxattr(struct dentry *dentry, const char *name, 548 const void *value, size_t size, int flags) 549 { 550 if (unlikely(IS_PRIVATE(dentry->d_inode))) 551 return 0; 552 return security_ops->inode_setxattr(dentry, name, value, size, flags); 553 } 554 555 void security_inode_post_setxattr(struct dentry *dentry, const char *name, 556 const void *value, size_t size, int flags) 557 { 558 if (unlikely(IS_PRIVATE(dentry->d_inode))) 559 return; 560 security_ops->inode_post_setxattr(dentry, name, value, size, flags); 561 } 562 563 int security_inode_getxattr(struct dentry *dentry, const char *name) 564 { 565 if (unlikely(IS_PRIVATE(dentry->d_inode))) 566 return 0; 567 return security_ops->inode_getxattr(dentry, name); 568 } 569 570 int security_inode_listxattr(struct dentry *dentry) 571 { 572 if (unlikely(IS_PRIVATE(dentry->d_inode))) 573 return 0; 574 return security_ops->inode_listxattr(dentry); 575 } 576 577 int security_inode_removexattr(struct dentry *dentry, const char *name) 578 { 579 if (unlikely(IS_PRIVATE(dentry->d_inode))) 580 return 0; 581 return security_ops->inode_removexattr(dentry, name); 582 } 583 584 int security_inode_need_killpriv(struct dentry *dentry) 585 { 586 return security_ops->inode_need_killpriv(dentry); 587 } 588 589 int security_inode_killpriv(struct dentry *dentry) 590 { 591 return security_ops->inode_killpriv(dentry); 592 } 593 594 int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc) 595 { 596 if (unlikely(IS_PRIVATE(inode))) 597 return -EOPNOTSUPP; 598 return security_ops->inode_getsecurity(inode, name, buffer, alloc); 599 } 600 601 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags) 602 { 603 if (unlikely(IS_PRIVATE(inode))) 604 return -EOPNOTSUPP; 605 return security_ops->inode_setsecurity(inode, name, value, size, flags); 606 } 607 608 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size) 609 { 610 if (unlikely(IS_PRIVATE(inode))) 611 return 0; 612 return security_ops->inode_listsecurity(inode, buffer, buffer_size); 613 } 614 615 void security_inode_getsecid(const struct inode *inode, u32 *secid) 616 { 617 security_ops->inode_getsecid(inode, secid); 618 } 619 620 int security_file_permission(struct file *file, int mask) 621 { 622 int ret; 623 624 ret = security_ops->file_permission(file, mask); 625 if (ret) 626 return ret; 627 628 return fsnotify_perm(file, mask); 629 } 630 631 int security_file_alloc(struct file *file) 632 { 633 return security_ops->file_alloc_security(file); 634 } 635 636 void security_file_free(struct file *file) 637 { 638 security_ops->file_free_security(file); 639 } 640 641 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 642 { 643 return security_ops->file_ioctl(file, cmd, arg); 644 } 645 646 int security_file_mmap(struct file *file, unsigned long reqprot, 647 unsigned long prot, unsigned long flags, 648 unsigned long addr, unsigned long addr_only) 649 { 650 int ret; 651 652 ret = security_ops->file_mmap(file, reqprot, prot, flags, addr, addr_only); 653 if (ret) 654 return ret; 655 return ima_file_mmap(file, prot); 656 } 657 658 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot, 659 unsigned long prot) 660 { 661 return security_ops->file_mprotect(vma, reqprot, prot); 662 } 663 664 int security_file_lock(struct file *file, unsigned int cmd) 665 { 666 return security_ops->file_lock(file, cmd); 667 } 668 669 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg) 670 { 671 return security_ops->file_fcntl(file, cmd, arg); 672 } 673 674 int security_file_set_fowner(struct file *file) 675 { 676 return security_ops->file_set_fowner(file); 677 } 678 679 int security_file_send_sigiotask(struct task_struct *tsk, 680 struct fown_struct *fown, int sig) 681 { 682 return security_ops->file_send_sigiotask(tsk, fown, sig); 683 } 684 685 int security_file_receive(struct file *file) 686 { 687 return security_ops->file_receive(file); 688 } 689 690 int security_dentry_open(struct file *file, const struct cred *cred) 691 { 692 int ret; 693 694 ret = security_ops->dentry_open(file, cred); 695 if (ret) 696 return ret; 697 698 return fsnotify_perm(file, MAY_OPEN); 699 } 700 701 int security_task_create(unsigned long clone_flags) 702 { 703 return security_ops->task_create(clone_flags); 704 } 705 706 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp) 707 { 708 return security_ops->cred_alloc_blank(cred, gfp); 709 } 710 711 void security_cred_free(struct cred *cred) 712 { 713 security_ops->cred_free(cred); 714 } 715 716 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp) 717 { 718 return security_ops->cred_prepare(new, old, gfp); 719 } 720 721 void security_transfer_creds(struct cred *new, const struct cred *old) 722 { 723 security_ops->cred_transfer(new, old); 724 } 725 726 int security_kernel_act_as(struct cred *new, u32 secid) 727 { 728 return security_ops->kernel_act_as(new, secid); 729 } 730 731 int security_kernel_create_files_as(struct cred *new, struct inode *inode) 732 { 733 return security_ops->kernel_create_files_as(new, inode); 734 } 735 736 int security_kernel_module_request(char *kmod_name) 737 { 738 return security_ops->kernel_module_request(kmod_name); 739 } 740 741 int security_task_fix_setuid(struct cred *new, const struct cred *old, 742 int flags) 743 { 744 return security_ops->task_fix_setuid(new, old, flags); 745 } 746 747 int security_task_setpgid(struct task_struct *p, pid_t pgid) 748 { 749 return security_ops->task_setpgid(p, pgid); 750 } 751 752 int security_task_getpgid(struct task_struct *p) 753 { 754 return security_ops->task_getpgid(p); 755 } 756 757 int security_task_getsid(struct task_struct *p) 758 { 759 return security_ops->task_getsid(p); 760 } 761 762 void security_task_getsecid(struct task_struct *p, u32 *secid) 763 { 764 security_ops->task_getsecid(p, secid); 765 } 766 EXPORT_SYMBOL(security_task_getsecid); 767 768 int security_task_setnice(struct task_struct *p, int nice) 769 { 770 return security_ops->task_setnice(p, nice); 771 } 772 773 int security_task_setioprio(struct task_struct *p, int ioprio) 774 { 775 return security_ops->task_setioprio(p, ioprio); 776 } 777 778 int security_task_getioprio(struct task_struct *p) 779 { 780 return security_ops->task_getioprio(p); 781 } 782 783 int security_task_setrlimit(struct task_struct *p, unsigned int resource, 784 struct rlimit *new_rlim) 785 { 786 return security_ops->task_setrlimit(p, resource, new_rlim); 787 } 788 789 int security_task_setscheduler(struct task_struct *p, 790 int policy, struct sched_param *lp) 791 { 792 return security_ops->task_setscheduler(p, policy, lp); 793 } 794 795 int security_task_getscheduler(struct task_struct *p) 796 { 797 return security_ops->task_getscheduler(p); 798 } 799 800 int security_task_movememory(struct task_struct *p) 801 { 802 return security_ops->task_movememory(p); 803 } 804 805 int security_task_kill(struct task_struct *p, struct siginfo *info, 806 int sig, u32 secid) 807 { 808 return security_ops->task_kill(p, info, sig, secid); 809 } 810 811 int security_task_wait(struct task_struct *p) 812 { 813 return security_ops->task_wait(p); 814 } 815 816 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3, 817 unsigned long arg4, unsigned long arg5) 818 { 819 return security_ops->task_prctl(option, arg2, arg3, arg4, arg5); 820 } 821 822 void security_task_to_inode(struct task_struct *p, struct inode *inode) 823 { 824 security_ops->task_to_inode(p, inode); 825 } 826 827 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag) 828 { 829 return security_ops->ipc_permission(ipcp, flag); 830 } 831 832 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid) 833 { 834 security_ops->ipc_getsecid(ipcp, secid); 835 } 836 837 int security_msg_msg_alloc(struct msg_msg *msg) 838 { 839 return security_ops->msg_msg_alloc_security(msg); 840 } 841 842 void security_msg_msg_free(struct msg_msg *msg) 843 { 844 security_ops->msg_msg_free_security(msg); 845 } 846 847 int security_msg_queue_alloc(struct msg_queue *msq) 848 { 849 return security_ops->msg_queue_alloc_security(msq); 850 } 851 852 void security_msg_queue_free(struct msg_queue *msq) 853 { 854 security_ops->msg_queue_free_security(msq); 855 } 856 857 int security_msg_queue_associate(struct msg_queue *msq, int msqflg) 858 { 859 return security_ops->msg_queue_associate(msq, msqflg); 860 } 861 862 int security_msg_queue_msgctl(struct msg_queue *msq, int cmd) 863 { 864 return security_ops->msg_queue_msgctl(msq, cmd); 865 } 866 867 int security_msg_queue_msgsnd(struct msg_queue *msq, 868 struct msg_msg *msg, int msqflg) 869 { 870 return security_ops->msg_queue_msgsnd(msq, msg, msqflg); 871 } 872 873 int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg, 874 struct task_struct *target, long type, int mode) 875 { 876 return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode); 877 } 878 879 int security_shm_alloc(struct shmid_kernel *shp) 880 { 881 return security_ops->shm_alloc_security(shp); 882 } 883 884 void security_shm_free(struct shmid_kernel *shp) 885 { 886 security_ops->shm_free_security(shp); 887 } 888 889 int security_shm_associate(struct shmid_kernel *shp, int shmflg) 890 { 891 return security_ops->shm_associate(shp, shmflg); 892 } 893 894 int security_shm_shmctl(struct shmid_kernel *shp, int cmd) 895 { 896 return security_ops->shm_shmctl(shp, cmd); 897 } 898 899 int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg) 900 { 901 return security_ops->shm_shmat(shp, shmaddr, shmflg); 902 } 903 904 int security_sem_alloc(struct sem_array *sma) 905 { 906 return security_ops->sem_alloc_security(sma); 907 } 908 909 void security_sem_free(struct sem_array *sma) 910 { 911 security_ops->sem_free_security(sma); 912 } 913 914 int security_sem_associate(struct sem_array *sma, int semflg) 915 { 916 return security_ops->sem_associate(sma, semflg); 917 } 918 919 int security_sem_semctl(struct sem_array *sma, int cmd) 920 { 921 return security_ops->sem_semctl(sma, cmd); 922 } 923 924 int security_sem_semop(struct sem_array *sma, struct sembuf *sops, 925 unsigned nsops, int alter) 926 { 927 return security_ops->sem_semop(sma, sops, nsops, alter); 928 } 929 930 void security_d_instantiate(struct dentry *dentry, struct inode *inode) 931 { 932 if (unlikely(inode && IS_PRIVATE(inode))) 933 return; 934 security_ops->d_instantiate(dentry, inode); 935 } 936 EXPORT_SYMBOL(security_d_instantiate); 937 938 int security_getprocattr(struct task_struct *p, char *name, char **value) 939 { 940 return security_ops->getprocattr(p, name, value); 941 } 942 943 int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size) 944 { 945 return security_ops->setprocattr(p, name, value, size); 946 } 947 948 int security_netlink_send(struct sock *sk, struct sk_buff *skb) 949 { 950 return security_ops->netlink_send(sk, skb); 951 } 952 953 int security_netlink_recv(struct sk_buff *skb, int cap) 954 { 955 return security_ops->netlink_recv(skb, cap); 956 } 957 EXPORT_SYMBOL(security_netlink_recv); 958 959 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen) 960 { 961 return security_ops->secid_to_secctx(secid, secdata, seclen); 962 } 963 EXPORT_SYMBOL(security_secid_to_secctx); 964 965 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid) 966 { 967 return security_ops->secctx_to_secid(secdata, seclen, secid); 968 } 969 EXPORT_SYMBOL(security_secctx_to_secid); 970 971 void security_release_secctx(char *secdata, u32 seclen) 972 { 973 security_ops->release_secctx(secdata, seclen); 974 } 975 EXPORT_SYMBOL(security_release_secctx); 976 977 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen) 978 { 979 return security_ops->inode_notifysecctx(inode, ctx, ctxlen); 980 } 981 EXPORT_SYMBOL(security_inode_notifysecctx); 982 983 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen) 984 { 985 return security_ops->inode_setsecctx(dentry, ctx, ctxlen); 986 } 987 EXPORT_SYMBOL(security_inode_setsecctx); 988 989 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen) 990 { 991 return security_ops->inode_getsecctx(inode, ctx, ctxlen); 992 } 993 EXPORT_SYMBOL(security_inode_getsecctx); 994 995 #ifdef CONFIG_SECURITY_NETWORK 996 997 int security_unix_stream_connect(struct socket *sock, struct socket *other, 998 struct sock *newsk) 999 { 1000 return security_ops->unix_stream_connect(sock, other, newsk); 1001 } 1002 EXPORT_SYMBOL(security_unix_stream_connect); 1003 1004 int security_unix_may_send(struct socket *sock, struct socket *other) 1005 { 1006 return security_ops->unix_may_send(sock, other); 1007 } 1008 EXPORT_SYMBOL(security_unix_may_send); 1009 1010 int security_socket_create(int family, int type, int protocol, int kern) 1011 { 1012 return security_ops->socket_create(family, type, protocol, kern); 1013 } 1014 1015 int security_socket_post_create(struct socket *sock, int family, 1016 int type, int protocol, int kern) 1017 { 1018 return security_ops->socket_post_create(sock, family, type, 1019 protocol, kern); 1020 } 1021 1022 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen) 1023 { 1024 return security_ops->socket_bind(sock, address, addrlen); 1025 } 1026 1027 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen) 1028 { 1029 return security_ops->socket_connect(sock, address, addrlen); 1030 } 1031 1032 int security_socket_listen(struct socket *sock, int backlog) 1033 { 1034 return security_ops->socket_listen(sock, backlog); 1035 } 1036 1037 int security_socket_accept(struct socket *sock, struct socket *newsock) 1038 { 1039 return security_ops->socket_accept(sock, newsock); 1040 } 1041 1042 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size) 1043 { 1044 return security_ops->socket_sendmsg(sock, msg, size); 1045 } 1046 1047 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg, 1048 int size, int flags) 1049 { 1050 return security_ops->socket_recvmsg(sock, msg, size, flags); 1051 } 1052 1053 int security_socket_getsockname(struct socket *sock) 1054 { 1055 return security_ops->socket_getsockname(sock); 1056 } 1057 1058 int security_socket_getpeername(struct socket *sock) 1059 { 1060 return security_ops->socket_getpeername(sock); 1061 } 1062 1063 int security_socket_getsockopt(struct socket *sock, int level, int optname) 1064 { 1065 return security_ops->socket_getsockopt(sock, level, optname); 1066 } 1067 1068 int security_socket_setsockopt(struct socket *sock, int level, int optname) 1069 { 1070 return security_ops->socket_setsockopt(sock, level, optname); 1071 } 1072 1073 int security_socket_shutdown(struct socket *sock, int how) 1074 { 1075 return security_ops->socket_shutdown(sock, how); 1076 } 1077 1078 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb) 1079 { 1080 return security_ops->socket_sock_rcv_skb(sk, skb); 1081 } 1082 EXPORT_SYMBOL(security_sock_rcv_skb); 1083 1084 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval, 1085 int __user *optlen, unsigned len) 1086 { 1087 return security_ops->socket_getpeersec_stream(sock, optval, optlen, len); 1088 } 1089 1090 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid) 1091 { 1092 return security_ops->socket_getpeersec_dgram(sock, skb, secid); 1093 } 1094 EXPORT_SYMBOL(security_socket_getpeersec_dgram); 1095 1096 int security_sk_alloc(struct sock *sk, int family, gfp_t priority) 1097 { 1098 return security_ops->sk_alloc_security(sk, family, priority); 1099 } 1100 1101 void security_sk_free(struct sock *sk) 1102 { 1103 security_ops->sk_free_security(sk); 1104 } 1105 1106 void security_sk_clone(const struct sock *sk, struct sock *newsk) 1107 { 1108 security_ops->sk_clone_security(sk, newsk); 1109 } 1110 1111 void security_sk_classify_flow(struct sock *sk, struct flowi *fl) 1112 { 1113 security_ops->sk_getsecid(sk, &fl->secid); 1114 } 1115 EXPORT_SYMBOL(security_sk_classify_flow); 1116 1117 void security_req_classify_flow(const struct request_sock *req, struct flowi *fl) 1118 { 1119 security_ops->req_classify_flow(req, fl); 1120 } 1121 EXPORT_SYMBOL(security_req_classify_flow); 1122 1123 void security_sock_graft(struct sock *sk, struct socket *parent) 1124 { 1125 security_ops->sock_graft(sk, parent); 1126 } 1127 EXPORT_SYMBOL(security_sock_graft); 1128 1129 int security_inet_conn_request(struct sock *sk, 1130 struct sk_buff *skb, struct request_sock *req) 1131 { 1132 return security_ops->inet_conn_request(sk, skb, req); 1133 } 1134 EXPORT_SYMBOL(security_inet_conn_request); 1135 1136 void security_inet_csk_clone(struct sock *newsk, 1137 const struct request_sock *req) 1138 { 1139 security_ops->inet_csk_clone(newsk, req); 1140 } 1141 1142 void security_inet_conn_established(struct sock *sk, 1143 struct sk_buff *skb) 1144 { 1145 security_ops->inet_conn_established(sk, skb); 1146 } 1147 1148 int security_tun_dev_create(void) 1149 { 1150 return security_ops->tun_dev_create(); 1151 } 1152 EXPORT_SYMBOL(security_tun_dev_create); 1153 1154 void security_tun_dev_post_create(struct sock *sk) 1155 { 1156 return security_ops->tun_dev_post_create(sk); 1157 } 1158 EXPORT_SYMBOL(security_tun_dev_post_create); 1159 1160 int security_tun_dev_attach(struct sock *sk) 1161 { 1162 return security_ops->tun_dev_attach(sk); 1163 } 1164 EXPORT_SYMBOL(security_tun_dev_attach); 1165 1166 #endif /* CONFIG_SECURITY_NETWORK */ 1167 1168 #ifdef CONFIG_SECURITY_NETWORK_XFRM 1169 1170 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct xfrm_user_sec_ctx *sec_ctx) 1171 { 1172 return security_ops->xfrm_policy_alloc_security(ctxp, sec_ctx); 1173 } 1174 EXPORT_SYMBOL(security_xfrm_policy_alloc); 1175 1176 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx, 1177 struct xfrm_sec_ctx **new_ctxp) 1178 { 1179 return security_ops->xfrm_policy_clone_security(old_ctx, new_ctxp); 1180 } 1181 1182 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx) 1183 { 1184 security_ops->xfrm_policy_free_security(ctx); 1185 } 1186 EXPORT_SYMBOL(security_xfrm_policy_free); 1187 1188 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx) 1189 { 1190 return security_ops->xfrm_policy_delete_security(ctx); 1191 } 1192 1193 int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx) 1194 { 1195 return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0); 1196 } 1197 EXPORT_SYMBOL(security_xfrm_state_alloc); 1198 1199 int security_xfrm_state_alloc_acquire(struct xfrm_state *x, 1200 struct xfrm_sec_ctx *polsec, u32 secid) 1201 { 1202 if (!polsec) 1203 return 0; 1204 /* 1205 * We want the context to be taken from secid which is usually 1206 * from the sock. 1207 */ 1208 return security_ops->xfrm_state_alloc_security(x, NULL, secid); 1209 } 1210 1211 int security_xfrm_state_delete(struct xfrm_state *x) 1212 { 1213 return security_ops->xfrm_state_delete_security(x); 1214 } 1215 EXPORT_SYMBOL(security_xfrm_state_delete); 1216 1217 void security_xfrm_state_free(struct xfrm_state *x) 1218 { 1219 security_ops->xfrm_state_free_security(x); 1220 } 1221 1222 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir) 1223 { 1224 return security_ops->xfrm_policy_lookup(ctx, fl_secid, dir); 1225 } 1226 1227 int security_xfrm_state_pol_flow_match(struct xfrm_state *x, 1228 struct xfrm_policy *xp, struct flowi *fl) 1229 { 1230 return security_ops->xfrm_state_pol_flow_match(x, xp, fl); 1231 } 1232 1233 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid) 1234 { 1235 return security_ops->xfrm_decode_session(skb, secid, 1); 1236 } 1237 1238 void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl) 1239 { 1240 int rc = security_ops->xfrm_decode_session(skb, &fl->secid, 0); 1241 1242 BUG_ON(rc); 1243 } 1244 EXPORT_SYMBOL(security_skb_classify_flow); 1245 1246 #endif /* CONFIG_SECURITY_NETWORK_XFRM */ 1247 1248 #ifdef CONFIG_KEYS 1249 1250 int security_key_alloc(struct key *key, const struct cred *cred, 1251 unsigned long flags) 1252 { 1253 return security_ops->key_alloc(key, cred, flags); 1254 } 1255 1256 void security_key_free(struct key *key) 1257 { 1258 security_ops->key_free(key); 1259 } 1260 1261 int security_key_permission(key_ref_t key_ref, 1262 const struct cred *cred, key_perm_t perm) 1263 { 1264 return security_ops->key_permission(key_ref, cred, perm); 1265 } 1266 1267 int security_key_getsecurity(struct key *key, char **_buffer) 1268 { 1269 return security_ops->key_getsecurity(key, _buffer); 1270 } 1271 1272 #endif /* CONFIG_KEYS */ 1273 1274 #ifdef CONFIG_AUDIT 1275 1276 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule) 1277 { 1278 return security_ops->audit_rule_init(field, op, rulestr, lsmrule); 1279 } 1280 1281 int security_audit_rule_known(struct audit_krule *krule) 1282 { 1283 return security_ops->audit_rule_known(krule); 1284 } 1285 1286 void security_audit_rule_free(void *lsmrule) 1287 { 1288 security_ops->audit_rule_free(lsmrule); 1289 } 1290 1291 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule, 1292 struct audit_context *actx) 1293 { 1294 return security_ops->audit_rule_match(secid, field, op, lsmrule, actx); 1295 } 1296 1297 #endif /* CONFIG_AUDIT */ 1298