1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Security plug functions 4 * 5 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com> 6 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com> 7 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com> 8 * Copyright (C) 2016 Mellanox Technologies 9 * Copyright (C) 2023 Microsoft Corporation <paul@paul-moore.com> 10 */ 11 12 #define pr_fmt(fmt) "LSM: " fmt 13 14 #include <linux/bpf.h> 15 #include <linux/capability.h> 16 #include <linux/dcache.h> 17 #include <linux/export.h> 18 #include <linux/init.h> 19 #include <linux/kernel.h> 20 #include <linux/kernel_read_file.h> 21 #include <linux/lsm_hooks.h> 22 #include <linux/integrity.h> 23 #include <linux/ima.h> 24 #include <linux/evm.h> 25 #include <linux/fsnotify.h> 26 #include <linux/mman.h> 27 #include <linux/mount.h> 28 #include <linux/personality.h> 29 #include <linux/backing-dev.h> 30 #include <linux/string.h> 31 #include <linux/msg.h> 32 #include <net/flow.h> 33 34 /* How many LSMs were built into the kernel? */ 35 #define LSM_COUNT (__end_lsm_info - __start_lsm_info) 36 37 /* 38 * How many LSMs are built into the kernel as determined at 39 * build time. Used to determine fixed array sizes. 40 * The capability module is accounted for by CONFIG_SECURITY 41 */ 42 #define LSM_CONFIG_COUNT ( \ 43 (IS_ENABLED(CONFIG_SECURITY) ? 1 : 0) + \ 44 (IS_ENABLED(CONFIG_SECURITY_SELINUX) ? 1 : 0) + \ 45 (IS_ENABLED(CONFIG_SECURITY_SMACK) ? 1 : 0) + \ 46 (IS_ENABLED(CONFIG_SECURITY_TOMOYO) ? 1 : 0) + \ 47 (IS_ENABLED(CONFIG_SECURITY_APPARMOR) ? 1 : 0) + \ 48 (IS_ENABLED(CONFIG_SECURITY_YAMA) ? 1 : 0) + \ 49 (IS_ENABLED(CONFIG_SECURITY_LOADPIN) ? 1 : 0) + \ 50 (IS_ENABLED(CONFIG_SECURITY_SAFESETID) ? 1 : 0) + \ 51 (IS_ENABLED(CONFIG_SECURITY_LOCKDOWN_LSM) ? 1 : 0) + \ 52 (IS_ENABLED(CONFIG_BPF_LSM) ? 1 : 0) + \ 53 (IS_ENABLED(CONFIG_SECURITY_LANDLOCK) ? 1 : 0) + \ 54 (IS_ENABLED(CONFIG_IMA) ? 1 : 0)) 55 56 /* 57 * These are descriptions of the reasons that can be passed to the 58 * security_locked_down() LSM hook. Placing this array here allows 59 * all security modules to use the same descriptions for auditing 60 * purposes. 61 */ 62 const char *const lockdown_reasons[LOCKDOWN_CONFIDENTIALITY_MAX + 1] = { 63 [LOCKDOWN_NONE] = "none", 64 [LOCKDOWN_MODULE_SIGNATURE] = "unsigned module loading", 65 [LOCKDOWN_DEV_MEM] = "/dev/mem,kmem,port", 66 [LOCKDOWN_EFI_TEST] = "/dev/efi_test access", 67 [LOCKDOWN_KEXEC] = "kexec of unsigned images", 68 [LOCKDOWN_HIBERNATION] = "hibernation", 69 [LOCKDOWN_PCI_ACCESS] = "direct PCI access", 70 [LOCKDOWN_IOPORT] = "raw io port access", 71 [LOCKDOWN_MSR] = "raw MSR access", 72 [LOCKDOWN_ACPI_TABLES] = "modifying ACPI tables", 73 [LOCKDOWN_DEVICE_TREE] = "modifying device tree contents", 74 [LOCKDOWN_PCMCIA_CIS] = "direct PCMCIA CIS storage", 75 [LOCKDOWN_TIOCSSERIAL] = "reconfiguration of serial port IO", 76 [LOCKDOWN_MODULE_PARAMETERS] = "unsafe module parameters", 77 [LOCKDOWN_MMIOTRACE] = "unsafe mmio", 78 [LOCKDOWN_DEBUGFS] = "debugfs access", 79 [LOCKDOWN_XMON_WR] = "xmon write access", 80 [LOCKDOWN_BPF_WRITE_USER] = "use of bpf to write user RAM", 81 [LOCKDOWN_DBG_WRITE_KERNEL] = "use of kgdb/kdb to write kernel RAM", 82 [LOCKDOWN_RTAS_ERROR_INJECTION] = "RTAS error injection", 83 [LOCKDOWN_INTEGRITY_MAX] = "integrity", 84 [LOCKDOWN_KCORE] = "/proc/kcore access", 85 [LOCKDOWN_KPROBES] = "use of kprobes", 86 [LOCKDOWN_BPF_READ_KERNEL] = "use of bpf to read kernel RAM", 87 [LOCKDOWN_DBG_READ_KERNEL] = "use of kgdb/kdb to read kernel RAM", 88 [LOCKDOWN_PERF] = "unsafe use of perf", 89 [LOCKDOWN_TRACEFS] = "use of tracefs", 90 [LOCKDOWN_XMON_RW] = "xmon read and write access", 91 [LOCKDOWN_XFRM_SECRET] = "xfrm SA secret", 92 [LOCKDOWN_CONFIDENTIALITY_MAX] = "confidentiality", 93 }; 94 95 struct security_hook_heads security_hook_heads __ro_after_init; 96 static BLOCKING_NOTIFIER_HEAD(blocking_lsm_notifier_chain); 97 98 static struct kmem_cache *lsm_file_cache; 99 static struct kmem_cache *lsm_inode_cache; 100 101 char *lsm_names; 102 static struct lsm_blob_sizes blob_sizes __ro_after_init; 103 104 /* Boot-time LSM user choice */ 105 static __initdata const char *chosen_lsm_order; 106 static __initdata const char *chosen_major_lsm; 107 108 static __initconst const char *const builtin_lsm_order = CONFIG_LSM; 109 110 /* Ordered list of LSMs to initialize. */ 111 static __initdata struct lsm_info **ordered_lsms; 112 static __initdata struct lsm_info *exclusive; 113 114 static __initdata bool debug; 115 #define init_debug(...) \ 116 do { \ 117 if (debug) \ 118 pr_info(__VA_ARGS__); \ 119 } while (0) 120 121 static bool __init is_enabled(struct lsm_info *lsm) 122 { 123 if (!lsm->enabled) 124 return false; 125 126 return *lsm->enabled; 127 } 128 129 /* Mark an LSM's enabled flag. */ 130 static int lsm_enabled_true __initdata = 1; 131 static int lsm_enabled_false __initdata = 0; 132 static void __init set_enabled(struct lsm_info *lsm, bool enabled) 133 { 134 /* 135 * When an LSM hasn't configured an enable variable, we can use 136 * a hard-coded location for storing the default enabled state. 137 */ 138 if (!lsm->enabled) { 139 if (enabled) 140 lsm->enabled = &lsm_enabled_true; 141 else 142 lsm->enabled = &lsm_enabled_false; 143 } else if (lsm->enabled == &lsm_enabled_true) { 144 if (!enabled) 145 lsm->enabled = &lsm_enabled_false; 146 } else if (lsm->enabled == &lsm_enabled_false) { 147 if (enabled) 148 lsm->enabled = &lsm_enabled_true; 149 } else { 150 *lsm->enabled = enabled; 151 } 152 } 153 154 /* Is an LSM already listed in the ordered LSMs list? */ 155 static bool __init exists_ordered_lsm(struct lsm_info *lsm) 156 { 157 struct lsm_info **check; 158 159 for (check = ordered_lsms; *check; check++) 160 if (*check == lsm) 161 return true; 162 163 return false; 164 } 165 166 /* Append an LSM to the list of ordered LSMs to initialize. */ 167 static int last_lsm __initdata; 168 static void __init append_ordered_lsm(struct lsm_info *lsm, const char *from) 169 { 170 /* Ignore duplicate selections. */ 171 if (exists_ordered_lsm(lsm)) 172 return; 173 174 if (WARN(last_lsm == LSM_COUNT, "%s: out of LSM slots!?\n", from)) 175 return; 176 177 /* Enable this LSM, if it is not already set. */ 178 if (!lsm->enabled) 179 lsm->enabled = &lsm_enabled_true; 180 ordered_lsms[last_lsm++] = lsm; 181 182 init_debug("%s ordered: %s (%s)\n", from, lsm->name, 183 is_enabled(lsm) ? "enabled" : "disabled"); 184 } 185 186 /* Is an LSM allowed to be initialized? */ 187 static bool __init lsm_allowed(struct lsm_info *lsm) 188 { 189 /* Skip if the LSM is disabled. */ 190 if (!is_enabled(lsm)) 191 return false; 192 193 /* Not allowed if another exclusive LSM already initialized. */ 194 if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && exclusive) { 195 init_debug("exclusive disabled: %s\n", lsm->name); 196 return false; 197 } 198 199 return true; 200 } 201 202 static void __init lsm_set_blob_size(int *need, int *lbs) 203 { 204 int offset; 205 206 if (*need <= 0) 207 return; 208 209 offset = ALIGN(*lbs, sizeof(void *)); 210 *lbs = offset + *need; 211 *need = offset; 212 } 213 214 static void __init lsm_set_blob_sizes(struct lsm_blob_sizes *needed) 215 { 216 if (!needed) 217 return; 218 219 lsm_set_blob_size(&needed->lbs_cred, &blob_sizes.lbs_cred); 220 lsm_set_blob_size(&needed->lbs_file, &blob_sizes.lbs_file); 221 /* 222 * The inode blob gets an rcu_head in addition to 223 * what the modules might need. 224 */ 225 if (needed->lbs_inode && blob_sizes.lbs_inode == 0) 226 blob_sizes.lbs_inode = sizeof(struct rcu_head); 227 lsm_set_blob_size(&needed->lbs_inode, &blob_sizes.lbs_inode); 228 lsm_set_blob_size(&needed->lbs_ipc, &blob_sizes.lbs_ipc); 229 lsm_set_blob_size(&needed->lbs_msg_msg, &blob_sizes.lbs_msg_msg); 230 lsm_set_blob_size(&needed->lbs_superblock, &blob_sizes.lbs_superblock); 231 lsm_set_blob_size(&needed->lbs_task, &blob_sizes.lbs_task); 232 lsm_set_blob_size(&needed->lbs_xattr_count, 233 &blob_sizes.lbs_xattr_count); 234 } 235 236 /* Prepare LSM for initialization. */ 237 static void __init prepare_lsm(struct lsm_info *lsm) 238 { 239 int enabled = lsm_allowed(lsm); 240 241 /* Record enablement (to handle any following exclusive LSMs). */ 242 set_enabled(lsm, enabled); 243 244 /* If enabled, do pre-initialization work. */ 245 if (enabled) { 246 if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && !exclusive) { 247 exclusive = lsm; 248 init_debug("exclusive chosen: %s\n", lsm->name); 249 } 250 251 lsm_set_blob_sizes(lsm->blobs); 252 } 253 } 254 255 /* Initialize a given LSM, if it is enabled. */ 256 static void __init initialize_lsm(struct lsm_info *lsm) 257 { 258 if (is_enabled(lsm)) { 259 int ret; 260 261 init_debug("initializing %s\n", lsm->name); 262 ret = lsm->init(); 263 WARN(ret, "%s failed to initialize: %d\n", lsm->name, ret); 264 } 265 } 266 267 /* 268 * Current index to use while initializing the lsm id list. 269 */ 270 u32 lsm_active_cnt __ro_after_init; 271 const struct lsm_id *lsm_idlist[LSM_CONFIG_COUNT]; 272 273 /* Populate ordered LSMs list from comma-separated LSM name list. */ 274 static void __init ordered_lsm_parse(const char *order, const char *origin) 275 { 276 struct lsm_info *lsm; 277 char *sep, *name, *next; 278 279 /* LSM_ORDER_FIRST is always first. */ 280 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { 281 if (lsm->order == LSM_ORDER_FIRST) 282 append_ordered_lsm(lsm, " first"); 283 } 284 285 /* Process "security=", if given. */ 286 if (chosen_major_lsm) { 287 struct lsm_info *major; 288 289 /* 290 * To match the original "security=" behavior, this 291 * explicitly does NOT fallback to another Legacy Major 292 * if the selected one was separately disabled: disable 293 * all non-matching Legacy Major LSMs. 294 */ 295 for (major = __start_lsm_info; major < __end_lsm_info; 296 major++) { 297 if ((major->flags & LSM_FLAG_LEGACY_MAJOR) && 298 strcmp(major->name, chosen_major_lsm) != 0) { 299 set_enabled(major, false); 300 init_debug("security=%s disabled: %s (only one legacy major LSM)\n", 301 chosen_major_lsm, major->name); 302 } 303 } 304 } 305 306 sep = kstrdup(order, GFP_KERNEL); 307 next = sep; 308 /* Walk the list, looking for matching LSMs. */ 309 while ((name = strsep(&next, ",")) != NULL) { 310 bool found = false; 311 312 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { 313 if (strcmp(lsm->name, name) == 0) { 314 if (lsm->order == LSM_ORDER_MUTABLE) 315 append_ordered_lsm(lsm, origin); 316 found = true; 317 } 318 } 319 320 if (!found) 321 init_debug("%s ignored: %s (not built into kernel)\n", 322 origin, name); 323 } 324 325 /* Process "security=", if given. */ 326 if (chosen_major_lsm) { 327 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { 328 if (exists_ordered_lsm(lsm)) 329 continue; 330 if (strcmp(lsm->name, chosen_major_lsm) == 0) 331 append_ordered_lsm(lsm, "security="); 332 } 333 } 334 335 /* LSM_ORDER_LAST is always last. */ 336 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { 337 if (lsm->order == LSM_ORDER_LAST) 338 append_ordered_lsm(lsm, " last"); 339 } 340 341 /* Disable all LSMs not in the ordered list. */ 342 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { 343 if (exists_ordered_lsm(lsm)) 344 continue; 345 set_enabled(lsm, false); 346 init_debug("%s skipped: %s (not in requested order)\n", 347 origin, lsm->name); 348 } 349 350 kfree(sep); 351 } 352 353 static void __init lsm_early_cred(struct cred *cred); 354 static void __init lsm_early_task(struct task_struct *task); 355 356 static int lsm_append(const char *new, char **result); 357 358 static void __init report_lsm_order(void) 359 { 360 struct lsm_info **lsm, *early; 361 int first = 0; 362 363 pr_info("initializing lsm="); 364 365 /* Report each enabled LSM name, comma separated. */ 366 for (early = __start_early_lsm_info; 367 early < __end_early_lsm_info; early++) 368 if (is_enabled(early)) 369 pr_cont("%s%s", first++ == 0 ? "" : ",", early->name); 370 for (lsm = ordered_lsms; *lsm; lsm++) 371 if (is_enabled(*lsm)) 372 pr_cont("%s%s", first++ == 0 ? "" : ",", (*lsm)->name); 373 374 pr_cont("\n"); 375 } 376 377 static void __init ordered_lsm_init(void) 378 { 379 struct lsm_info **lsm; 380 381 ordered_lsms = kcalloc(LSM_COUNT + 1, sizeof(*ordered_lsms), 382 GFP_KERNEL); 383 384 if (chosen_lsm_order) { 385 if (chosen_major_lsm) { 386 pr_warn("security=%s is ignored because it is superseded by lsm=%s\n", 387 chosen_major_lsm, chosen_lsm_order); 388 chosen_major_lsm = NULL; 389 } 390 ordered_lsm_parse(chosen_lsm_order, "cmdline"); 391 } else 392 ordered_lsm_parse(builtin_lsm_order, "builtin"); 393 394 for (lsm = ordered_lsms; *lsm; lsm++) 395 prepare_lsm(*lsm); 396 397 report_lsm_order(); 398 399 init_debug("cred blob size = %d\n", blob_sizes.lbs_cred); 400 init_debug("file blob size = %d\n", blob_sizes.lbs_file); 401 init_debug("inode blob size = %d\n", blob_sizes.lbs_inode); 402 init_debug("ipc blob size = %d\n", blob_sizes.lbs_ipc); 403 init_debug("msg_msg blob size = %d\n", blob_sizes.lbs_msg_msg); 404 init_debug("superblock blob size = %d\n", blob_sizes.lbs_superblock); 405 init_debug("task blob size = %d\n", blob_sizes.lbs_task); 406 init_debug("xattr slots = %d\n", blob_sizes.lbs_xattr_count); 407 408 /* 409 * Create any kmem_caches needed for blobs 410 */ 411 if (blob_sizes.lbs_file) 412 lsm_file_cache = kmem_cache_create("lsm_file_cache", 413 blob_sizes.lbs_file, 0, 414 SLAB_PANIC, NULL); 415 if (blob_sizes.lbs_inode) 416 lsm_inode_cache = kmem_cache_create("lsm_inode_cache", 417 blob_sizes.lbs_inode, 0, 418 SLAB_PANIC, NULL); 419 420 lsm_early_cred((struct cred *) current->cred); 421 lsm_early_task(current); 422 for (lsm = ordered_lsms; *lsm; lsm++) 423 initialize_lsm(*lsm); 424 425 kfree(ordered_lsms); 426 } 427 428 int __init early_security_init(void) 429 { 430 struct lsm_info *lsm; 431 432 #define LSM_HOOK(RET, DEFAULT, NAME, ...) \ 433 INIT_HLIST_HEAD(&security_hook_heads.NAME); 434 #include "linux/lsm_hook_defs.h" 435 #undef LSM_HOOK 436 437 for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) { 438 if (!lsm->enabled) 439 lsm->enabled = &lsm_enabled_true; 440 prepare_lsm(lsm); 441 initialize_lsm(lsm); 442 } 443 444 return 0; 445 } 446 447 /** 448 * security_init - initializes the security framework 449 * 450 * This should be called early in the kernel initialization sequence. 451 */ 452 int __init security_init(void) 453 { 454 struct lsm_info *lsm; 455 456 init_debug("legacy security=%s\n", chosen_major_lsm ? : " *unspecified*"); 457 init_debug(" CONFIG_LSM=%s\n", builtin_lsm_order); 458 init_debug("boot arg lsm=%s\n", chosen_lsm_order ? : " *unspecified*"); 459 460 /* 461 * Append the names of the early LSM modules now that kmalloc() is 462 * available 463 */ 464 for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) { 465 init_debug(" early started: %s (%s)\n", lsm->name, 466 is_enabled(lsm) ? "enabled" : "disabled"); 467 if (lsm->enabled) 468 lsm_append(lsm->name, &lsm_names); 469 } 470 471 /* Load LSMs in specified order. */ 472 ordered_lsm_init(); 473 474 return 0; 475 } 476 477 /* Save user chosen LSM */ 478 static int __init choose_major_lsm(char *str) 479 { 480 chosen_major_lsm = str; 481 return 1; 482 } 483 __setup("security=", choose_major_lsm); 484 485 /* Explicitly choose LSM initialization order. */ 486 static int __init choose_lsm_order(char *str) 487 { 488 chosen_lsm_order = str; 489 return 1; 490 } 491 __setup("lsm=", choose_lsm_order); 492 493 /* Enable LSM order debugging. */ 494 static int __init enable_debug(char *str) 495 { 496 debug = true; 497 return 1; 498 } 499 __setup("lsm.debug", enable_debug); 500 501 static bool match_last_lsm(const char *list, const char *lsm) 502 { 503 const char *last; 504 505 if (WARN_ON(!list || !lsm)) 506 return false; 507 last = strrchr(list, ','); 508 if (last) 509 /* Pass the comma, strcmp() will check for '\0' */ 510 last++; 511 else 512 last = list; 513 return !strcmp(last, lsm); 514 } 515 516 static int lsm_append(const char *new, char **result) 517 { 518 char *cp; 519 520 if (*result == NULL) { 521 *result = kstrdup(new, GFP_KERNEL); 522 if (*result == NULL) 523 return -ENOMEM; 524 } else { 525 /* Check if it is the last registered name */ 526 if (match_last_lsm(*result, new)) 527 return 0; 528 cp = kasprintf(GFP_KERNEL, "%s,%s", *result, new); 529 if (cp == NULL) 530 return -ENOMEM; 531 kfree(*result); 532 *result = cp; 533 } 534 return 0; 535 } 536 537 /** 538 * security_add_hooks - Add a modules hooks to the hook lists. 539 * @hooks: the hooks to add 540 * @count: the number of hooks to add 541 * @lsmid: the identification information for the security module 542 * 543 * Each LSM has to register its hooks with the infrastructure. 544 */ 545 void __init security_add_hooks(struct security_hook_list *hooks, int count, 546 const struct lsm_id *lsmid) 547 { 548 int i; 549 550 /* 551 * A security module may call security_add_hooks() more 552 * than once during initialization, and LSM initialization 553 * is serialized. Landlock is one such case. 554 * Look at the previous entry, if there is one, for duplication. 555 */ 556 if (lsm_active_cnt == 0 || lsm_idlist[lsm_active_cnt - 1] != lsmid) { 557 if (lsm_active_cnt >= LSM_CONFIG_COUNT) 558 panic("%s Too many LSMs registered.\n", __func__); 559 lsm_idlist[lsm_active_cnt++] = lsmid; 560 } 561 562 for (i = 0; i < count; i++) { 563 hooks[i].lsmid = lsmid; 564 hlist_add_tail_rcu(&hooks[i].list, hooks[i].head); 565 } 566 567 /* 568 * Don't try to append during early_security_init(), we'll come back 569 * and fix this up afterwards. 570 */ 571 if (slab_is_available()) { 572 if (lsm_append(lsmid->name, &lsm_names) < 0) 573 panic("%s - Cannot get early memory.\n", __func__); 574 } 575 } 576 577 int call_blocking_lsm_notifier(enum lsm_event event, void *data) 578 { 579 return blocking_notifier_call_chain(&blocking_lsm_notifier_chain, 580 event, data); 581 } 582 EXPORT_SYMBOL(call_blocking_lsm_notifier); 583 584 int register_blocking_lsm_notifier(struct notifier_block *nb) 585 { 586 return blocking_notifier_chain_register(&blocking_lsm_notifier_chain, 587 nb); 588 } 589 EXPORT_SYMBOL(register_blocking_lsm_notifier); 590 591 int unregister_blocking_lsm_notifier(struct notifier_block *nb) 592 { 593 return blocking_notifier_chain_unregister(&blocking_lsm_notifier_chain, 594 nb); 595 } 596 EXPORT_SYMBOL(unregister_blocking_lsm_notifier); 597 598 /** 599 * lsm_cred_alloc - allocate a composite cred blob 600 * @cred: the cred that needs a blob 601 * @gfp: allocation type 602 * 603 * Allocate the cred blob for all the modules 604 * 605 * Returns 0, or -ENOMEM if memory can't be allocated. 606 */ 607 static int lsm_cred_alloc(struct cred *cred, gfp_t gfp) 608 { 609 if (blob_sizes.lbs_cred == 0) { 610 cred->security = NULL; 611 return 0; 612 } 613 614 cred->security = kzalloc(blob_sizes.lbs_cred, gfp); 615 if (cred->security == NULL) 616 return -ENOMEM; 617 return 0; 618 } 619 620 /** 621 * lsm_early_cred - during initialization allocate a composite cred blob 622 * @cred: the cred that needs a blob 623 * 624 * Allocate the cred blob for all the modules 625 */ 626 static void __init lsm_early_cred(struct cred *cred) 627 { 628 int rc = lsm_cred_alloc(cred, GFP_KERNEL); 629 630 if (rc) 631 panic("%s: Early cred alloc failed.\n", __func__); 632 } 633 634 /** 635 * lsm_file_alloc - allocate a composite file blob 636 * @file: the file that needs a blob 637 * 638 * Allocate the file blob for all the modules 639 * 640 * Returns 0, or -ENOMEM if memory can't be allocated. 641 */ 642 static int lsm_file_alloc(struct file *file) 643 { 644 if (!lsm_file_cache) { 645 file->f_security = NULL; 646 return 0; 647 } 648 649 file->f_security = kmem_cache_zalloc(lsm_file_cache, GFP_KERNEL); 650 if (file->f_security == NULL) 651 return -ENOMEM; 652 return 0; 653 } 654 655 /** 656 * lsm_inode_alloc - allocate a composite inode blob 657 * @inode: the inode that needs a blob 658 * 659 * Allocate the inode blob for all the modules 660 * 661 * Returns 0, or -ENOMEM if memory can't be allocated. 662 */ 663 int lsm_inode_alloc(struct inode *inode) 664 { 665 if (!lsm_inode_cache) { 666 inode->i_security = NULL; 667 return 0; 668 } 669 670 inode->i_security = kmem_cache_zalloc(lsm_inode_cache, GFP_NOFS); 671 if (inode->i_security == NULL) 672 return -ENOMEM; 673 return 0; 674 } 675 676 /** 677 * lsm_task_alloc - allocate a composite task blob 678 * @task: the task that needs a blob 679 * 680 * Allocate the task blob for all the modules 681 * 682 * Returns 0, or -ENOMEM if memory can't be allocated. 683 */ 684 static int lsm_task_alloc(struct task_struct *task) 685 { 686 if (blob_sizes.lbs_task == 0) { 687 task->security = NULL; 688 return 0; 689 } 690 691 task->security = kzalloc(blob_sizes.lbs_task, GFP_KERNEL); 692 if (task->security == NULL) 693 return -ENOMEM; 694 return 0; 695 } 696 697 /** 698 * lsm_ipc_alloc - allocate a composite ipc blob 699 * @kip: the ipc that needs a blob 700 * 701 * Allocate the ipc blob for all the modules 702 * 703 * Returns 0, or -ENOMEM if memory can't be allocated. 704 */ 705 static int lsm_ipc_alloc(struct kern_ipc_perm *kip) 706 { 707 if (blob_sizes.lbs_ipc == 0) { 708 kip->security = NULL; 709 return 0; 710 } 711 712 kip->security = kzalloc(blob_sizes.lbs_ipc, GFP_KERNEL); 713 if (kip->security == NULL) 714 return -ENOMEM; 715 return 0; 716 } 717 718 /** 719 * lsm_msg_msg_alloc - allocate a composite msg_msg blob 720 * @mp: the msg_msg that needs a blob 721 * 722 * Allocate the ipc blob for all the modules 723 * 724 * Returns 0, or -ENOMEM if memory can't be allocated. 725 */ 726 static int lsm_msg_msg_alloc(struct msg_msg *mp) 727 { 728 if (blob_sizes.lbs_msg_msg == 0) { 729 mp->security = NULL; 730 return 0; 731 } 732 733 mp->security = kzalloc(blob_sizes.lbs_msg_msg, GFP_KERNEL); 734 if (mp->security == NULL) 735 return -ENOMEM; 736 return 0; 737 } 738 739 /** 740 * lsm_early_task - during initialization allocate a composite task blob 741 * @task: the task that needs a blob 742 * 743 * Allocate the task blob for all the modules 744 */ 745 static void __init lsm_early_task(struct task_struct *task) 746 { 747 int rc = lsm_task_alloc(task); 748 749 if (rc) 750 panic("%s: Early task alloc failed.\n", __func__); 751 } 752 753 /** 754 * lsm_superblock_alloc - allocate a composite superblock blob 755 * @sb: the superblock that needs a blob 756 * 757 * Allocate the superblock blob for all the modules 758 * 759 * Returns 0, or -ENOMEM if memory can't be allocated. 760 */ 761 static int lsm_superblock_alloc(struct super_block *sb) 762 { 763 if (blob_sizes.lbs_superblock == 0) { 764 sb->s_security = NULL; 765 return 0; 766 } 767 768 sb->s_security = kzalloc(blob_sizes.lbs_superblock, GFP_KERNEL); 769 if (sb->s_security == NULL) 770 return -ENOMEM; 771 return 0; 772 } 773 774 /** 775 * lsm_fill_user_ctx - Fill a user space lsm_ctx structure 776 * @uctx: a userspace LSM context to be filled 777 * @uctx_len: available uctx size (input), used uctx size (output) 778 * @val: the new LSM context value 779 * @val_len: the size of the new LSM context value 780 * @id: LSM id 781 * @flags: LSM defined flags 782 * 783 * Fill all of the fields in a userspace lsm_ctx structure. 784 * 785 * Returns 0 on success, -E2BIG if userspace buffer is not large enough, 786 * -EFAULT on a copyout error, -ENOMEM if memory can't be allocated. 787 */ 788 int lsm_fill_user_ctx(struct lsm_ctx __user *uctx, size_t *uctx_len, 789 void *val, size_t val_len, 790 u64 id, u64 flags) 791 { 792 struct lsm_ctx *nctx = NULL; 793 size_t nctx_len; 794 int rc = 0; 795 796 nctx_len = ALIGN(struct_size(nctx, ctx, val_len), sizeof(void *)); 797 if (nctx_len > *uctx_len) { 798 rc = -E2BIG; 799 goto out; 800 } 801 802 nctx = kzalloc(nctx_len, GFP_KERNEL); 803 if (nctx == NULL) { 804 rc = -ENOMEM; 805 goto out; 806 } 807 nctx->id = id; 808 nctx->flags = flags; 809 nctx->len = nctx_len; 810 nctx->ctx_len = val_len; 811 memcpy(nctx->ctx, val, val_len); 812 813 if (copy_to_user(uctx, nctx, nctx_len)) 814 rc = -EFAULT; 815 816 out: 817 kfree(nctx); 818 *uctx_len = nctx_len; 819 return rc; 820 } 821 822 /* 823 * The default value of the LSM hook is defined in linux/lsm_hook_defs.h and 824 * can be accessed with: 825 * 826 * LSM_RET_DEFAULT(<hook_name>) 827 * 828 * The macros below define static constants for the default value of each 829 * LSM hook. 830 */ 831 #define LSM_RET_DEFAULT(NAME) (NAME##_default) 832 #define DECLARE_LSM_RET_DEFAULT_void(DEFAULT, NAME) 833 #define DECLARE_LSM_RET_DEFAULT_int(DEFAULT, NAME) \ 834 static const int __maybe_unused LSM_RET_DEFAULT(NAME) = (DEFAULT); 835 #define LSM_HOOK(RET, DEFAULT, NAME, ...) \ 836 DECLARE_LSM_RET_DEFAULT_##RET(DEFAULT, NAME) 837 838 #include <linux/lsm_hook_defs.h> 839 #undef LSM_HOOK 840 841 /* 842 * Hook list operation macros. 843 * 844 * call_void_hook: 845 * This is a hook that does not return a value. 846 * 847 * call_int_hook: 848 * This is a hook that returns a value. 849 */ 850 851 #define call_void_hook(FUNC, ...) \ 852 do { \ 853 struct security_hook_list *P; \ 854 \ 855 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) \ 856 P->hook.FUNC(__VA_ARGS__); \ 857 } while (0) 858 859 #define call_int_hook(FUNC, IRC, ...) ({ \ 860 int RC = IRC; \ 861 do { \ 862 struct security_hook_list *P; \ 863 \ 864 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) { \ 865 RC = P->hook.FUNC(__VA_ARGS__); \ 866 if (RC != 0) \ 867 break; \ 868 } \ 869 } while (0); \ 870 RC; \ 871 }) 872 873 /* Security operations */ 874 875 /** 876 * security_binder_set_context_mgr() - Check if becoming binder ctx mgr is ok 877 * @mgr: task credentials of current binder process 878 * 879 * Check whether @mgr is allowed to be the binder context manager. 880 * 881 * Return: Return 0 if permission is granted. 882 */ 883 int security_binder_set_context_mgr(const struct cred *mgr) 884 { 885 return call_int_hook(binder_set_context_mgr, 0, mgr); 886 } 887 888 /** 889 * security_binder_transaction() - Check if a binder transaction is allowed 890 * @from: sending process 891 * @to: receiving process 892 * 893 * Check whether @from is allowed to invoke a binder transaction call to @to. 894 * 895 * Return: Returns 0 if permission is granted. 896 */ 897 int security_binder_transaction(const struct cred *from, 898 const struct cred *to) 899 { 900 return call_int_hook(binder_transaction, 0, from, to); 901 } 902 903 /** 904 * security_binder_transfer_binder() - Check if a binder transfer is allowed 905 * @from: sending process 906 * @to: receiving process 907 * 908 * Check whether @from is allowed to transfer a binder reference to @to. 909 * 910 * Return: Returns 0 if permission is granted. 911 */ 912 int security_binder_transfer_binder(const struct cred *from, 913 const struct cred *to) 914 { 915 return call_int_hook(binder_transfer_binder, 0, from, to); 916 } 917 918 /** 919 * security_binder_transfer_file() - Check if a binder file xfer is allowed 920 * @from: sending process 921 * @to: receiving process 922 * @file: file being transferred 923 * 924 * Check whether @from is allowed to transfer @file to @to. 925 * 926 * Return: Returns 0 if permission is granted. 927 */ 928 int security_binder_transfer_file(const struct cred *from, 929 const struct cred *to, const struct file *file) 930 { 931 return call_int_hook(binder_transfer_file, 0, from, to, file); 932 } 933 934 /** 935 * security_ptrace_access_check() - Check if tracing is allowed 936 * @child: target process 937 * @mode: PTRACE_MODE flags 938 * 939 * Check permission before allowing the current process to trace the @child 940 * process. Security modules may also want to perform a process tracing check 941 * during an execve in the set_security or apply_creds hooks of tracing check 942 * during an execve in the bprm_set_creds hook of binprm_security_ops if the 943 * process is being traced and its security attributes would be changed by the 944 * execve. 945 * 946 * Return: Returns 0 if permission is granted. 947 */ 948 int security_ptrace_access_check(struct task_struct *child, unsigned int mode) 949 { 950 return call_int_hook(ptrace_access_check, 0, child, mode); 951 } 952 953 /** 954 * security_ptrace_traceme() - Check if tracing is allowed 955 * @parent: tracing process 956 * 957 * Check that the @parent process has sufficient permission to trace the 958 * current process before allowing the current process to present itself to the 959 * @parent process for tracing. 960 * 961 * Return: Returns 0 if permission is granted. 962 */ 963 int security_ptrace_traceme(struct task_struct *parent) 964 { 965 return call_int_hook(ptrace_traceme, 0, parent); 966 } 967 968 /** 969 * security_capget() - Get the capability sets for a process 970 * @target: target process 971 * @effective: effective capability set 972 * @inheritable: inheritable capability set 973 * @permitted: permitted capability set 974 * 975 * Get the @effective, @inheritable, and @permitted capability sets for the 976 * @target process. The hook may also perform permission checking to determine 977 * if the current process is allowed to see the capability sets of the @target 978 * process. 979 * 980 * Return: Returns 0 if the capability sets were successfully obtained. 981 */ 982 int security_capget(const struct task_struct *target, 983 kernel_cap_t *effective, 984 kernel_cap_t *inheritable, 985 kernel_cap_t *permitted) 986 { 987 return call_int_hook(capget, 0, target, 988 effective, inheritable, permitted); 989 } 990 991 /** 992 * security_capset() - Set the capability sets for a process 993 * @new: new credentials for the target process 994 * @old: current credentials of the target process 995 * @effective: effective capability set 996 * @inheritable: inheritable capability set 997 * @permitted: permitted capability set 998 * 999 * Set the @effective, @inheritable, and @permitted capability sets for the 1000 * current process. 1001 * 1002 * Return: Returns 0 and update @new if permission is granted. 1003 */ 1004 int security_capset(struct cred *new, const struct cred *old, 1005 const kernel_cap_t *effective, 1006 const kernel_cap_t *inheritable, 1007 const kernel_cap_t *permitted) 1008 { 1009 return call_int_hook(capset, 0, new, old, 1010 effective, inheritable, permitted); 1011 } 1012 1013 /** 1014 * security_capable() - Check if a process has the necessary capability 1015 * @cred: credentials to examine 1016 * @ns: user namespace 1017 * @cap: capability requested 1018 * @opts: capability check options 1019 * 1020 * Check whether the @tsk process has the @cap capability in the indicated 1021 * credentials. @cap contains the capability <include/linux/capability.h>. 1022 * @opts contains options for the capable check <include/linux/security.h>. 1023 * 1024 * Return: Returns 0 if the capability is granted. 1025 */ 1026 int security_capable(const struct cred *cred, 1027 struct user_namespace *ns, 1028 int cap, 1029 unsigned int opts) 1030 { 1031 return call_int_hook(capable, 0, cred, ns, cap, opts); 1032 } 1033 1034 /** 1035 * security_quotactl() - Check if a quotactl() syscall is allowed for this fs 1036 * @cmds: commands 1037 * @type: type 1038 * @id: id 1039 * @sb: filesystem 1040 * 1041 * Check whether the quotactl syscall is allowed for this @sb. 1042 * 1043 * Return: Returns 0 if permission is granted. 1044 */ 1045 int security_quotactl(int cmds, int type, int id, const struct super_block *sb) 1046 { 1047 return call_int_hook(quotactl, 0, cmds, type, id, sb); 1048 } 1049 1050 /** 1051 * security_quota_on() - Check if QUOTAON is allowed for a dentry 1052 * @dentry: dentry 1053 * 1054 * Check whether QUOTAON is allowed for @dentry. 1055 * 1056 * Return: Returns 0 if permission is granted. 1057 */ 1058 int security_quota_on(struct dentry *dentry) 1059 { 1060 return call_int_hook(quota_on, 0, dentry); 1061 } 1062 1063 /** 1064 * security_syslog() - Check if accessing the kernel message ring is allowed 1065 * @type: SYSLOG_ACTION_* type 1066 * 1067 * Check permission before accessing the kernel message ring or changing 1068 * logging to the console. See the syslog(2) manual page for an explanation of 1069 * the @type values. 1070 * 1071 * Return: Return 0 if permission is granted. 1072 */ 1073 int security_syslog(int type) 1074 { 1075 return call_int_hook(syslog, 0, type); 1076 } 1077 1078 /** 1079 * security_settime64() - Check if changing the system time is allowed 1080 * @ts: new time 1081 * @tz: timezone 1082 * 1083 * Check permission to change the system time, struct timespec64 is defined in 1084 * <include/linux/time64.h> and timezone is defined in <include/linux/time.h>. 1085 * 1086 * Return: Returns 0 if permission is granted. 1087 */ 1088 int security_settime64(const struct timespec64 *ts, const struct timezone *tz) 1089 { 1090 return call_int_hook(settime, 0, ts, tz); 1091 } 1092 1093 /** 1094 * security_vm_enough_memory_mm() - Check if allocating a new mem map is allowed 1095 * @mm: mm struct 1096 * @pages: number of pages 1097 * 1098 * Check permissions for allocating a new virtual mapping. If all LSMs return 1099 * a positive value, __vm_enough_memory() will be called with cap_sys_admin 1100 * set. If at least one LSM returns 0 or negative, __vm_enough_memory() will be 1101 * called with cap_sys_admin cleared. 1102 * 1103 * Return: Returns 0 if permission is granted by the LSM infrastructure to the 1104 * caller. 1105 */ 1106 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages) 1107 { 1108 struct security_hook_list *hp; 1109 int cap_sys_admin = 1; 1110 int rc; 1111 1112 /* 1113 * The module will respond with a positive value if 1114 * it thinks the __vm_enough_memory() call should be 1115 * made with the cap_sys_admin set. If all of the modules 1116 * agree that it should be set it will. If any module 1117 * thinks it should not be set it won't. 1118 */ 1119 hlist_for_each_entry(hp, &security_hook_heads.vm_enough_memory, list) { 1120 rc = hp->hook.vm_enough_memory(mm, pages); 1121 if (rc <= 0) { 1122 cap_sys_admin = 0; 1123 break; 1124 } 1125 } 1126 return __vm_enough_memory(mm, pages, cap_sys_admin); 1127 } 1128 1129 /** 1130 * security_bprm_creds_for_exec() - Prepare the credentials for exec() 1131 * @bprm: binary program information 1132 * 1133 * If the setup in prepare_exec_creds did not setup @bprm->cred->security 1134 * properly for executing @bprm->file, update the LSM's portion of 1135 * @bprm->cred->security to be what commit_creds needs to install for the new 1136 * program. This hook may also optionally check permissions (e.g. for 1137 * transitions between security domains). The hook must set @bprm->secureexec 1138 * to 1 if AT_SECURE should be set to request libc enable secure mode. @bprm 1139 * contains the linux_binprm structure. 1140 * 1141 * Return: Returns 0 if the hook is successful and permission is granted. 1142 */ 1143 int security_bprm_creds_for_exec(struct linux_binprm *bprm) 1144 { 1145 return call_int_hook(bprm_creds_for_exec, 0, bprm); 1146 } 1147 1148 /** 1149 * security_bprm_creds_from_file() - Update linux_binprm creds based on file 1150 * @bprm: binary program information 1151 * @file: associated file 1152 * 1153 * If @file is setpcap, suid, sgid or otherwise marked to change privilege upon 1154 * exec, update @bprm->cred to reflect that change. This is called after 1155 * finding the binary that will be executed without an interpreter. This 1156 * ensures that the credentials will not be derived from a script that the 1157 * binary will need to reopen, which when reopend may end up being a completely 1158 * different file. This hook may also optionally check permissions (e.g. for 1159 * transitions between security domains). The hook must set @bprm->secureexec 1160 * to 1 if AT_SECURE should be set to request libc enable secure mode. The 1161 * hook must add to @bprm->per_clear any personality flags that should be 1162 * cleared from current->personality. @bprm contains the linux_binprm 1163 * structure. 1164 * 1165 * Return: Returns 0 if the hook is successful and permission is granted. 1166 */ 1167 int security_bprm_creds_from_file(struct linux_binprm *bprm, const struct file *file) 1168 { 1169 return call_int_hook(bprm_creds_from_file, 0, bprm, file); 1170 } 1171 1172 /** 1173 * security_bprm_check() - Mediate binary handler search 1174 * @bprm: binary program information 1175 * 1176 * This hook mediates the point when a search for a binary handler will begin. 1177 * It allows a check against the @bprm->cred->security value which was set in 1178 * the preceding creds_for_exec call. The argv list and envp list are reliably 1179 * available in @bprm. This hook may be called multiple times during a single 1180 * execve. @bprm contains the linux_binprm structure. 1181 * 1182 * Return: Returns 0 if the hook is successful and permission is granted. 1183 */ 1184 int security_bprm_check(struct linux_binprm *bprm) 1185 { 1186 return call_int_hook(bprm_check_security, 0, bprm); 1187 } 1188 1189 /** 1190 * security_bprm_committing_creds() - Install creds for a process during exec() 1191 * @bprm: binary program information 1192 * 1193 * Prepare to install the new security attributes of a process being 1194 * transformed by an execve operation, based on the old credentials pointed to 1195 * by @current->cred and the information set in @bprm->cred by the 1196 * bprm_creds_for_exec hook. @bprm points to the linux_binprm structure. This 1197 * hook is a good place to perform state changes on the process such as closing 1198 * open file descriptors to which access will no longer be granted when the 1199 * attributes are changed. This is called immediately before commit_creds(). 1200 */ 1201 void security_bprm_committing_creds(const struct linux_binprm *bprm) 1202 { 1203 call_void_hook(bprm_committing_creds, bprm); 1204 } 1205 1206 /** 1207 * security_bprm_committed_creds() - Tidy up after cred install during exec() 1208 * @bprm: binary program information 1209 * 1210 * Tidy up after the installation of the new security attributes of a process 1211 * being transformed by an execve operation. The new credentials have, by this 1212 * point, been set to @current->cred. @bprm points to the linux_binprm 1213 * structure. This hook is a good place to perform state changes on the 1214 * process such as clearing out non-inheritable signal state. This is called 1215 * immediately after commit_creds(). 1216 */ 1217 void security_bprm_committed_creds(const struct linux_binprm *bprm) 1218 { 1219 call_void_hook(bprm_committed_creds, bprm); 1220 } 1221 1222 /** 1223 * security_fs_context_submount() - Initialise fc->security 1224 * @fc: new filesystem context 1225 * @reference: dentry reference for submount/remount 1226 * 1227 * Fill out the ->security field for a new fs_context. 1228 * 1229 * Return: Returns 0 on success or negative error code on failure. 1230 */ 1231 int security_fs_context_submount(struct fs_context *fc, struct super_block *reference) 1232 { 1233 return call_int_hook(fs_context_submount, 0, fc, reference); 1234 } 1235 1236 /** 1237 * security_fs_context_dup() - Duplicate a fs_context LSM blob 1238 * @fc: destination filesystem context 1239 * @src_fc: source filesystem context 1240 * 1241 * Allocate and attach a security structure to sc->security. This pointer is 1242 * initialised to NULL by the caller. @fc indicates the new filesystem context. 1243 * @src_fc indicates the original filesystem context. 1244 * 1245 * Return: Returns 0 on success or a negative error code on failure. 1246 */ 1247 int security_fs_context_dup(struct fs_context *fc, struct fs_context *src_fc) 1248 { 1249 return call_int_hook(fs_context_dup, 0, fc, src_fc); 1250 } 1251 1252 /** 1253 * security_fs_context_parse_param() - Configure a filesystem context 1254 * @fc: filesystem context 1255 * @param: filesystem parameter 1256 * 1257 * Userspace provided a parameter to configure a superblock. The LSM can 1258 * consume the parameter or return it to the caller for use elsewhere. 1259 * 1260 * Return: If the parameter is used by the LSM it should return 0, if it is 1261 * returned to the caller -ENOPARAM is returned, otherwise a negative 1262 * error code is returned. 1263 */ 1264 int security_fs_context_parse_param(struct fs_context *fc, 1265 struct fs_parameter *param) 1266 { 1267 struct security_hook_list *hp; 1268 int trc; 1269 int rc = -ENOPARAM; 1270 1271 hlist_for_each_entry(hp, &security_hook_heads.fs_context_parse_param, 1272 list) { 1273 trc = hp->hook.fs_context_parse_param(fc, param); 1274 if (trc == 0) 1275 rc = 0; 1276 else if (trc != -ENOPARAM) 1277 return trc; 1278 } 1279 return rc; 1280 } 1281 1282 /** 1283 * security_sb_alloc() - Allocate a super_block LSM blob 1284 * @sb: filesystem superblock 1285 * 1286 * Allocate and attach a security structure to the sb->s_security field. The 1287 * s_security field is initialized to NULL when the structure is allocated. 1288 * @sb contains the super_block structure to be modified. 1289 * 1290 * Return: Returns 0 if operation was successful. 1291 */ 1292 int security_sb_alloc(struct super_block *sb) 1293 { 1294 int rc = lsm_superblock_alloc(sb); 1295 1296 if (unlikely(rc)) 1297 return rc; 1298 rc = call_int_hook(sb_alloc_security, 0, sb); 1299 if (unlikely(rc)) 1300 security_sb_free(sb); 1301 return rc; 1302 } 1303 1304 /** 1305 * security_sb_delete() - Release super_block LSM associated objects 1306 * @sb: filesystem superblock 1307 * 1308 * Release objects tied to a superblock (e.g. inodes). @sb contains the 1309 * super_block structure being released. 1310 */ 1311 void security_sb_delete(struct super_block *sb) 1312 { 1313 call_void_hook(sb_delete, sb); 1314 } 1315 1316 /** 1317 * security_sb_free() - Free a super_block LSM blob 1318 * @sb: filesystem superblock 1319 * 1320 * Deallocate and clear the sb->s_security field. @sb contains the super_block 1321 * structure to be modified. 1322 */ 1323 void security_sb_free(struct super_block *sb) 1324 { 1325 call_void_hook(sb_free_security, sb); 1326 kfree(sb->s_security); 1327 sb->s_security = NULL; 1328 } 1329 1330 /** 1331 * security_free_mnt_opts() - Free memory associated with mount options 1332 * @mnt_opts: LSM processed mount options 1333 * 1334 * Free memory associated with @mnt_ops. 1335 */ 1336 void security_free_mnt_opts(void **mnt_opts) 1337 { 1338 if (!*mnt_opts) 1339 return; 1340 call_void_hook(sb_free_mnt_opts, *mnt_opts); 1341 *mnt_opts = NULL; 1342 } 1343 EXPORT_SYMBOL(security_free_mnt_opts); 1344 1345 /** 1346 * security_sb_eat_lsm_opts() - Consume LSM mount options 1347 * @options: mount options 1348 * @mnt_opts: LSM processed mount options 1349 * 1350 * Eat (scan @options) and save them in @mnt_opts. 1351 * 1352 * Return: Returns 0 on success, negative values on failure. 1353 */ 1354 int security_sb_eat_lsm_opts(char *options, void **mnt_opts) 1355 { 1356 return call_int_hook(sb_eat_lsm_opts, 0, options, mnt_opts); 1357 } 1358 EXPORT_SYMBOL(security_sb_eat_lsm_opts); 1359 1360 /** 1361 * security_sb_mnt_opts_compat() - Check if new mount options are allowed 1362 * @sb: filesystem superblock 1363 * @mnt_opts: new mount options 1364 * 1365 * Determine if the new mount options in @mnt_opts are allowed given the 1366 * existing mounted filesystem at @sb. @sb superblock being compared. 1367 * 1368 * Return: Returns 0 if options are compatible. 1369 */ 1370 int security_sb_mnt_opts_compat(struct super_block *sb, 1371 void *mnt_opts) 1372 { 1373 return call_int_hook(sb_mnt_opts_compat, 0, sb, mnt_opts); 1374 } 1375 EXPORT_SYMBOL(security_sb_mnt_opts_compat); 1376 1377 /** 1378 * security_sb_remount() - Verify no incompatible mount changes during remount 1379 * @sb: filesystem superblock 1380 * @mnt_opts: (re)mount options 1381 * 1382 * Extracts security system specific mount options and verifies no changes are 1383 * being made to those options. 1384 * 1385 * Return: Returns 0 if permission is granted. 1386 */ 1387 int security_sb_remount(struct super_block *sb, 1388 void *mnt_opts) 1389 { 1390 return call_int_hook(sb_remount, 0, sb, mnt_opts); 1391 } 1392 EXPORT_SYMBOL(security_sb_remount); 1393 1394 /** 1395 * security_sb_kern_mount() - Check if a kernel mount is allowed 1396 * @sb: filesystem superblock 1397 * 1398 * Mount this @sb if allowed by permissions. 1399 * 1400 * Return: Returns 0 if permission is granted. 1401 */ 1402 int security_sb_kern_mount(const struct super_block *sb) 1403 { 1404 return call_int_hook(sb_kern_mount, 0, sb); 1405 } 1406 1407 /** 1408 * security_sb_show_options() - Output the mount options for a superblock 1409 * @m: output file 1410 * @sb: filesystem superblock 1411 * 1412 * Show (print on @m) mount options for this @sb. 1413 * 1414 * Return: Returns 0 on success, negative values on failure. 1415 */ 1416 int security_sb_show_options(struct seq_file *m, struct super_block *sb) 1417 { 1418 return call_int_hook(sb_show_options, 0, m, sb); 1419 } 1420 1421 /** 1422 * security_sb_statfs() - Check if accessing fs stats is allowed 1423 * @dentry: superblock handle 1424 * 1425 * Check permission before obtaining filesystem statistics for the @mnt 1426 * mountpoint. @dentry is a handle on the superblock for the filesystem. 1427 * 1428 * Return: Returns 0 if permission is granted. 1429 */ 1430 int security_sb_statfs(struct dentry *dentry) 1431 { 1432 return call_int_hook(sb_statfs, 0, dentry); 1433 } 1434 1435 /** 1436 * security_sb_mount() - Check permission for mounting a filesystem 1437 * @dev_name: filesystem backing device 1438 * @path: mount point 1439 * @type: filesystem type 1440 * @flags: mount flags 1441 * @data: filesystem specific data 1442 * 1443 * Check permission before an object specified by @dev_name is mounted on the 1444 * mount point named by @nd. For an ordinary mount, @dev_name identifies a 1445 * device if the file system type requires a device. For a remount 1446 * (@flags & MS_REMOUNT), @dev_name is irrelevant. For a loopback/bind mount 1447 * (@flags & MS_BIND), @dev_name identifies the pathname of the object being 1448 * mounted. 1449 * 1450 * Return: Returns 0 if permission is granted. 1451 */ 1452 int security_sb_mount(const char *dev_name, const struct path *path, 1453 const char *type, unsigned long flags, void *data) 1454 { 1455 return call_int_hook(sb_mount, 0, dev_name, path, type, flags, data); 1456 } 1457 1458 /** 1459 * security_sb_umount() - Check permission for unmounting a filesystem 1460 * @mnt: mounted filesystem 1461 * @flags: unmount flags 1462 * 1463 * Check permission before the @mnt file system is unmounted. 1464 * 1465 * Return: Returns 0 if permission is granted. 1466 */ 1467 int security_sb_umount(struct vfsmount *mnt, int flags) 1468 { 1469 return call_int_hook(sb_umount, 0, mnt, flags); 1470 } 1471 1472 /** 1473 * security_sb_pivotroot() - Check permissions for pivoting the rootfs 1474 * @old_path: new location for current rootfs 1475 * @new_path: location of the new rootfs 1476 * 1477 * Check permission before pivoting the root filesystem. 1478 * 1479 * Return: Returns 0 if permission is granted. 1480 */ 1481 int security_sb_pivotroot(const struct path *old_path, 1482 const struct path *new_path) 1483 { 1484 return call_int_hook(sb_pivotroot, 0, old_path, new_path); 1485 } 1486 1487 /** 1488 * security_sb_set_mnt_opts() - Set the mount options for a filesystem 1489 * @sb: filesystem superblock 1490 * @mnt_opts: binary mount options 1491 * @kern_flags: kernel flags (in) 1492 * @set_kern_flags: kernel flags (out) 1493 * 1494 * Set the security relevant mount options used for a superblock. 1495 * 1496 * Return: Returns 0 on success, error on failure. 1497 */ 1498 int security_sb_set_mnt_opts(struct super_block *sb, 1499 void *mnt_opts, 1500 unsigned long kern_flags, 1501 unsigned long *set_kern_flags) 1502 { 1503 return call_int_hook(sb_set_mnt_opts, 1504 mnt_opts ? -EOPNOTSUPP : 0, sb, 1505 mnt_opts, kern_flags, set_kern_flags); 1506 } 1507 EXPORT_SYMBOL(security_sb_set_mnt_opts); 1508 1509 /** 1510 * security_sb_clone_mnt_opts() - Duplicate superblock mount options 1511 * @oldsb: source superblock 1512 * @newsb: destination superblock 1513 * @kern_flags: kernel flags (in) 1514 * @set_kern_flags: kernel flags (out) 1515 * 1516 * Copy all security options from a given superblock to another. 1517 * 1518 * Return: Returns 0 on success, error on failure. 1519 */ 1520 int security_sb_clone_mnt_opts(const struct super_block *oldsb, 1521 struct super_block *newsb, 1522 unsigned long kern_flags, 1523 unsigned long *set_kern_flags) 1524 { 1525 return call_int_hook(sb_clone_mnt_opts, 0, oldsb, newsb, 1526 kern_flags, set_kern_flags); 1527 } 1528 EXPORT_SYMBOL(security_sb_clone_mnt_opts); 1529 1530 /** 1531 * security_move_mount() - Check permissions for moving a mount 1532 * @from_path: source mount point 1533 * @to_path: destination mount point 1534 * 1535 * Check permission before a mount is moved. 1536 * 1537 * Return: Returns 0 if permission is granted. 1538 */ 1539 int security_move_mount(const struct path *from_path, 1540 const struct path *to_path) 1541 { 1542 return call_int_hook(move_mount, 0, from_path, to_path); 1543 } 1544 1545 /** 1546 * security_path_notify() - Check if setting a watch is allowed 1547 * @path: file path 1548 * @mask: event mask 1549 * @obj_type: file path type 1550 * 1551 * Check permissions before setting a watch on events as defined by @mask, on 1552 * an object at @path, whose type is defined by @obj_type. 1553 * 1554 * Return: Returns 0 if permission is granted. 1555 */ 1556 int security_path_notify(const struct path *path, u64 mask, 1557 unsigned int obj_type) 1558 { 1559 return call_int_hook(path_notify, 0, path, mask, obj_type); 1560 } 1561 1562 /** 1563 * security_inode_alloc() - Allocate an inode LSM blob 1564 * @inode: the inode 1565 * 1566 * Allocate and attach a security structure to @inode->i_security. The 1567 * i_security field is initialized to NULL when the inode structure is 1568 * allocated. 1569 * 1570 * Return: Return 0 if operation was successful. 1571 */ 1572 int security_inode_alloc(struct inode *inode) 1573 { 1574 int rc = lsm_inode_alloc(inode); 1575 1576 if (unlikely(rc)) 1577 return rc; 1578 rc = call_int_hook(inode_alloc_security, 0, inode); 1579 if (unlikely(rc)) 1580 security_inode_free(inode); 1581 return rc; 1582 } 1583 1584 static void inode_free_by_rcu(struct rcu_head *head) 1585 { 1586 /* 1587 * The rcu head is at the start of the inode blob 1588 */ 1589 kmem_cache_free(lsm_inode_cache, head); 1590 } 1591 1592 /** 1593 * security_inode_free() - Free an inode's LSM blob 1594 * @inode: the inode 1595 * 1596 * Deallocate the inode security structure and set @inode->i_security to NULL. 1597 */ 1598 void security_inode_free(struct inode *inode) 1599 { 1600 integrity_inode_free(inode); 1601 call_void_hook(inode_free_security, inode); 1602 /* 1603 * The inode may still be referenced in a path walk and 1604 * a call to security_inode_permission() can be made 1605 * after inode_free_security() is called. Ideally, the VFS 1606 * wouldn't do this, but fixing that is a much harder 1607 * job. For now, simply free the i_security via RCU, and 1608 * leave the current inode->i_security pointer intact. 1609 * The inode will be freed after the RCU grace period too. 1610 */ 1611 if (inode->i_security) 1612 call_rcu((struct rcu_head *)inode->i_security, 1613 inode_free_by_rcu); 1614 } 1615 1616 /** 1617 * security_dentry_init_security() - Perform dentry initialization 1618 * @dentry: the dentry to initialize 1619 * @mode: mode used to determine resource type 1620 * @name: name of the last path component 1621 * @xattr_name: name of the security/LSM xattr 1622 * @ctx: pointer to the resulting LSM context 1623 * @ctxlen: length of @ctx 1624 * 1625 * Compute a context for a dentry as the inode is not yet available since NFSv4 1626 * has no label backed by an EA anyway. It is important to note that 1627 * @xattr_name does not need to be free'd by the caller, it is a static string. 1628 * 1629 * Return: Returns 0 on success, negative values on failure. 1630 */ 1631 int security_dentry_init_security(struct dentry *dentry, int mode, 1632 const struct qstr *name, 1633 const char **xattr_name, void **ctx, 1634 u32 *ctxlen) 1635 { 1636 struct security_hook_list *hp; 1637 int rc; 1638 1639 /* 1640 * Only one module will provide a security context. 1641 */ 1642 hlist_for_each_entry(hp, &security_hook_heads.dentry_init_security, 1643 list) { 1644 rc = hp->hook.dentry_init_security(dentry, mode, name, 1645 xattr_name, ctx, ctxlen); 1646 if (rc != LSM_RET_DEFAULT(dentry_init_security)) 1647 return rc; 1648 } 1649 return LSM_RET_DEFAULT(dentry_init_security); 1650 } 1651 EXPORT_SYMBOL(security_dentry_init_security); 1652 1653 /** 1654 * security_dentry_create_files_as() - Perform dentry initialization 1655 * @dentry: the dentry to initialize 1656 * @mode: mode used to determine resource type 1657 * @name: name of the last path component 1658 * @old: creds to use for LSM context calculations 1659 * @new: creds to modify 1660 * 1661 * Compute a context for a dentry as the inode is not yet available and set 1662 * that context in passed in creds so that new files are created using that 1663 * context. Context is calculated using the passed in creds and not the creds 1664 * of the caller. 1665 * 1666 * Return: Returns 0 on success, error on failure. 1667 */ 1668 int security_dentry_create_files_as(struct dentry *dentry, int mode, 1669 struct qstr *name, 1670 const struct cred *old, struct cred *new) 1671 { 1672 return call_int_hook(dentry_create_files_as, 0, dentry, mode, 1673 name, old, new); 1674 } 1675 EXPORT_SYMBOL(security_dentry_create_files_as); 1676 1677 /** 1678 * security_inode_init_security() - Initialize an inode's LSM context 1679 * @inode: the inode 1680 * @dir: parent directory 1681 * @qstr: last component of the pathname 1682 * @initxattrs: callback function to write xattrs 1683 * @fs_data: filesystem specific data 1684 * 1685 * Obtain the security attribute name suffix and value to set on a newly 1686 * created inode and set up the incore security field for the new inode. This 1687 * hook is called by the fs code as part of the inode creation transaction and 1688 * provides for atomic labeling of the inode, unlike the post_create/mkdir/... 1689 * hooks called by the VFS. 1690 * 1691 * The hook function is expected to populate the xattrs array, by calling 1692 * lsm_get_xattr_slot() to retrieve the slots reserved by the security module 1693 * with the lbs_xattr_count field of the lsm_blob_sizes structure. For each 1694 * slot, the hook function should set ->name to the attribute name suffix 1695 * (e.g. selinux), to allocate ->value (will be freed by the caller) and set it 1696 * to the attribute value, to set ->value_len to the length of the value. If 1697 * the security module does not use security attributes or does not wish to put 1698 * a security attribute on this particular inode, then it should return 1699 * -EOPNOTSUPP to skip this processing. 1700 * 1701 * Return: Returns 0 if the LSM successfully initialized all of the inode 1702 * security attributes that are required, negative values otherwise. 1703 */ 1704 int security_inode_init_security(struct inode *inode, struct inode *dir, 1705 const struct qstr *qstr, 1706 const initxattrs initxattrs, void *fs_data) 1707 { 1708 struct security_hook_list *hp; 1709 struct xattr *new_xattrs = NULL; 1710 int ret = -EOPNOTSUPP, xattr_count = 0; 1711 1712 if (unlikely(IS_PRIVATE(inode))) 1713 return 0; 1714 1715 if (!blob_sizes.lbs_xattr_count) 1716 return 0; 1717 1718 if (initxattrs) { 1719 /* Allocate +1 for EVM and +1 as terminator. */ 1720 new_xattrs = kcalloc(blob_sizes.lbs_xattr_count + 2, 1721 sizeof(*new_xattrs), GFP_NOFS); 1722 if (!new_xattrs) 1723 return -ENOMEM; 1724 } 1725 1726 hlist_for_each_entry(hp, &security_hook_heads.inode_init_security, 1727 list) { 1728 ret = hp->hook.inode_init_security(inode, dir, qstr, new_xattrs, 1729 &xattr_count); 1730 if (ret && ret != -EOPNOTSUPP) 1731 goto out; 1732 /* 1733 * As documented in lsm_hooks.h, -EOPNOTSUPP in this context 1734 * means that the LSM is not willing to provide an xattr, not 1735 * that it wants to signal an error. Thus, continue to invoke 1736 * the remaining LSMs. 1737 */ 1738 } 1739 1740 /* If initxattrs() is NULL, xattr_count is zero, skip the call. */ 1741 if (!xattr_count) 1742 goto out; 1743 1744 ret = evm_inode_init_security(inode, dir, qstr, new_xattrs, 1745 &xattr_count); 1746 if (ret) 1747 goto out; 1748 ret = initxattrs(inode, new_xattrs, fs_data); 1749 out: 1750 for (; xattr_count > 0; xattr_count--) 1751 kfree(new_xattrs[xattr_count - 1].value); 1752 kfree(new_xattrs); 1753 return (ret == -EOPNOTSUPP) ? 0 : ret; 1754 } 1755 EXPORT_SYMBOL(security_inode_init_security); 1756 1757 /** 1758 * security_inode_init_security_anon() - Initialize an anonymous inode 1759 * @inode: the inode 1760 * @name: the anonymous inode class 1761 * @context_inode: an optional related inode 1762 * 1763 * Set up the incore security field for the new anonymous inode and return 1764 * whether the inode creation is permitted by the security module or not. 1765 * 1766 * Return: Returns 0 on success, -EACCES if the security module denies the 1767 * creation of this inode, or another -errno upon other errors. 1768 */ 1769 int security_inode_init_security_anon(struct inode *inode, 1770 const struct qstr *name, 1771 const struct inode *context_inode) 1772 { 1773 return call_int_hook(inode_init_security_anon, 0, inode, name, 1774 context_inode); 1775 } 1776 1777 #ifdef CONFIG_SECURITY_PATH 1778 /** 1779 * security_path_mknod() - Check if creating a special file is allowed 1780 * @dir: parent directory 1781 * @dentry: new file 1782 * @mode: new file mode 1783 * @dev: device number 1784 * 1785 * Check permissions when creating a file. Note that this hook is called even 1786 * if mknod operation is being done for a regular file. 1787 * 1788 * Return: Returns 0 if permission is granted. 1789 */ 1790 int security_path_mknod(const struct path *dir, struct dentry *dentry, 1791 umode_t mode, unsigned int dev) 1792 { 1793 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 1794 return 0; 1795 return call_int_hook(path_mknod, 0, dir, dentry, mode, dev); 1796 } 1797 EXPORT_SYMBOL(security_path_mknod); 1798 1799 /** 1800 * security_path_post_mknod() - Update inode security field after file creation 1801 * @idmap: idmap of the mount 1802 * @dentry: new file 1803 * 1804 * Update inode security field after a file has been created. 1805 */ 1806 void security_path_post_mknod(struct mnt_idmap *idmap, struct dentry *dentry) 1807 { 1808 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1809 return; 1810 call_void_hook(path_post_mknod, idmap, dentry); 1811 } 1812 1813 /** 1814 * security_path_mkdir() - Check if creating a new directory is allowed 1815 * @dir: parent directory 1816 * @dentry: new directory 1817 * @mode: new directory mode 1818 * 1819 * Check permissions to create a new directory in the existing directory. 1820 * 1821 * Return: Returns 0 if permission is granted. 1822 */ 1823 int security_path_mkdir(const struct path *dir, struct dentry *dentry, 1824 umode_t mode) 1825 { 1826 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 1827 return 0; 1828 return call_int_hook(path_mkdir, 0, dir, dentry, mode); 1829 } 1830 EXPORT_SYMBOL(security_path_mkdir); 1831 1832 /** 1833 * security_path_rmdir() - Check if removing a directory is allowed 1834 * @dir: parent directory 1835 * @dentry: directory to remove 1836 * 1837 * Check the permission to remove a directory. 1838 * 1839 * Return: Returns 0 if permission is granted. 1840 */ 1841 int security_path_rmdir(const struct path *dir, struct dentry *dentry) 1842 { 1843 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 1844 return 0; 1845 return call_int_hook(path_rmdir, 0, dir, dentry); 1846 } 1847 1848 /** 1849 * security_path_unlink() - Check if removing a hard link is allowed 1850 * @dir: parent directory 1851 * @dentry: file 1852 * 1853 * Check the permission to remove a hard link to a file. 1854 * 1855 * Return: Returns 0 if permission is granted. 1856 */ 1857 int security_path_unlink(const struct path *dir, struct dentry *dentry) 1858 { 1859 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 1860 return 0; 1861 return call_int_hook(path_unlink, 0, dir, dentry); 1862 } 1863 EXPORT_SYMBOL(security_path_unlink); 1864 1865 /** 1866 * security_path_symlink() - Check if creating a symbolic link is allowed 1867 * @dir: parent directory 1868 * @dentry: symbolic link 1869 * @old_name: file pathname 1870 * 1871 * Check the permission to create a symbolic link to a file. 1872 * 1873 * Return: Returns 0 if permission is granted. 1874 */ 1875 int security_path_symlink(const struct path *dir, struct dentry *dentry, 1876 const char *old_name) 1877 { 1878 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 1879 return 0; 1880 return call_int_hook(path_symlink, 0, dir, dentry, old_name); 1881 } 1882 1883 /** 1884 * security_path_link - Check if creating a hard link is allowed 1885 * @old_dentry: existing file 1886 * @new_dir: new parent directory 1887 * @new_dentry: new link 1888 * 1889 * Check permission before creating a new hard link to a file. 1890 * 1891 * Return: Returns 0 if permission is granted. 1892 */ 1893 int security_path_link(struct dentry *old_dentry, const struct path *new_dir, 1894 struct dentry *new_dentry) 1895 { 1896 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)))) 1897 return 0; 1898 return call_int_hook(path_link, 0, old_dentry, new_dir, new_dentry); 1899 } 1900 1901 /** 1902 * security_path_rename() - Check if renaming a file is allowed 1903 * @old_dir: parent directory of the old file 1904 * @old_dentry: the old file 1905 * @new_dir: parent directory of the new file 1906 * @new_dentry: the new file 1907 * @flags: flags 1908 * 1909 * Check for permission to rename a file or directory. 1910 * 1911 * Return: Returns 0 if permission is granted. 1912 */ 1913 int security_path_rename(const struct path *old_dir, struct dentry *old_dentry, 1914 const struct path *new_dir, struct dentry *new_dentry, 1915 unsigned int flags) 1916 { 1917 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) || 1918 (d_is_positive(new_dentry) && 1919 IS_PRIVATE(d_backing_inode(new_dentry))))) 1920 return 0; 1921 1922 return call_int_hook(path_rename, 0, old_dir, old_dentry, new_dir, 1923 new_dentry, flags); 1924 } 1925 EXPORT_SYMBOL(security_path_rename); 1926 1927 /** 1928 * security_path_truncate() - Check if truncating a file is allowed 1929 * @path: file 1930 * 1931 * Check permission before truncating the file indicated by path. Note that 1932 * truncation permissions may also be checked based on already opened files, 1933 * using the security_file_truncate() hook. 1934 * 1935 * Return: Returns 0 if permission is granted. 1936 */ 1937 int security_path_truncate(const struct path *path) 1938 { 1939 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 1940 return 0; 1941 return call_int_hook(path_truncate, 0, path); 1942 } 1943 1944 /** 1945 * security_path_chmod() - Check if changing the file's mode is allowed 1946 * @path: file 1947 * @mode: new mode 1948 * 1949 * Check for permission to change a mode of the file @path. The new mode is 1950 * specified in @mode which is a bitmask of constants from 1951 * <include/uapi/linux/stat.h>. 1952 * 1953 * Return: Returns 0 if permission is granted. 1954 */ 1955 int security_path_chmod(const struct path *path, umode_t mode) 1956 { 1957 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 1958 return 0; 1959 return call_int_hook(path_chmod, 0, path, mode); 1960 } 1961 1962 /** 1963 * security_path_chown() - Check if changing the file's owner/group is allowed 1964 * @path: file 1965 * @uid: file owner 1966 * @gid: file group 1967 * 1968 * Check for permission to change owner/group of a file or directory. 1969 * 1970 * Return: Returns 0 if permission is granted. 1971 */ 1972 int security_path_chown(const struct path *path, kuid_t uid, kgid_t gid) 1973 { 1974 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 1975 return 0; 1976 return call_int_hook(path_chown, 0, path, uid, gid); 1977 } 1978 1979 /** 1980 * security_path_chroot() - Check if changing the root directory is allowed 1981 * @path: directory 1982 * 1983 * Check for permission to change root directory. 1984 * 1985 * Return: Returns 0 if permission is granted. 1986 */ 1987 int security_path_chroot(const struct path *path) 1988 { 1989 return call_int_hook(path_chroot, 0, path); 1990 } 1991 #endif /* CONFIG_SECURITY_PATH */ 1992 1993 /** 1994 * security_inode_create() - Check if creating a file is allowed 1995 * @dir: the parent directory 1996 * @dentry: the file being created 1997 * @mode: requested file mode 1998 * 1999 * Check permission to create a regular file. 2000 * 2001 * Return: Returns 0 if permission is granted. 2002 */ 2003 int security_inode_create(struct inode *dir, struct dentry *dentry, 2004 umode_t mode) 2005 { 2006 if (unlikely(IS_PRIVATE(dir))) 2007 return 0; 2008 return call_int_hook(inode_create, 0, dir, dentry, mode); 2009 } 2010 EXPORT_SYMBOL_GPL(security_inode_create); 2011 2012 /** 2013 * security_inode_post_create_tmpfile() - Update inode security of new tmpfile 2014 * @idmap: idmap of the mount 2015 * @inode: inode of the new tmpfile 2016 * 2017 * Update inode security data after a tmpfile has been created. 2018 */ 2019 void security_inode_post_create_tmpfile(struct mnt_idmap *idmap, 2020 struct inode *inode) 2021 { 2022 if (unlikely(IS_PRIVATE(inode))) 2023 return; 2024 call_void_hook(inode_post_create_tmpfile, idmap, inode); 2025 } 2026 2027 /** 2028 * security_inode_link() - Check if creating a hard link is allowed 2029 * @old_dentry: existing file 2030 * @dir: new parent directory 2031 * @new_dentry: new link 2032 * 2033 * Check permission before creating a new hard link to a file. 2034 * 2035 * Return: Returns 0 if permission is granted. 2036 */ 2037 int security_inode_link(struct dentry *old_dentry, struct inode *dir, 2038 struct dentry *new_dentry) 2039 { 2040 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)))) 2041 return 0; 2042 return call_int_hook(inode_link, 0, old_dentry, dir, new_dentry); 2043 } 2044 2045 /** 2046 * security_inode_unlink() - Check if removing a hard link is allowed 2047 * @dir: parent directory 2048 * @dentry: file 2049 * 2050 * Check the permission to remove a hard link to a file. 2051 * 2052 * Return: Returns 0 if permission is granted. 2053 */ 2054 int security_inode_unlink(struct inode *dir, struct dentry *dentry) 2055 { 2056 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2057 return 0; 2058 return call_int_hook(inode_unlink, 0, dir, dentry); 2059 } 2060 2061 /** 2062 * security_inode_symlink() - Check if creating a symbolic link is allowed 2063 * @dir: parent directory 2064 * @dentry: symbolic link 2065 * @old_name: existing filename 2066 * 2067 * Check the permission to create a symbolic link to a file. 2068 * 2069 * Return: Returns 0 if permission is granted. 2070 */ 2071 int security_inode_symlink(struct inode *dir, struct dentry *dentry, 2072 const char *old_name) 2073 { 2074 if (unlikely(IS_PRIVATE(dir))) 2075 return 0; 2076 return call_int_hook(inode_symlink, 0, dir, dentry, old_name); 2077 } 2078 2079 /** 2080 * security_inode_mkdir() - Check if creation a new director is allowed 2081 * @dir: parent directory 2082 * @dentry: new directory 2083 * @mode: new directory mode 2084 * 2085 * Check permissions to create a new directory in the existing directory 2086 * associated with inode structure @dir. 2087 * 2088 * Return: Returns 0 if permission is granted. 2089 */ 2090 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 2091 { 2092 if (unlikely(IS_PRIVATE(dir))) 2093 return 0; 2094 return call_int_hook(inode_mkdir, 0, dir, dentry, mode); 2095 } 2096 EXPORT_SYMBOL_GPL(security_inode_mkdir); 2097 2098 /** 2099 * security_inode_rmdir() - Check if removing a directory is allowed 2100 * @dir: parent directory 2101 * @dentry: directory to be removed 2102 * 2103 * Check the permission to remove a directory. 2104 * 2105 * Return: Returns 0 if permission is granted. 2106 */ 2107 int security_inode_rmdir(struct inode *dir, struct dentry *dentry) 2108 { 2109 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2110 return 0; 2111 return call_int_hook(inode_rmdir, 0, dir, dentry); 2112 } 2113 2114 /** 2115 * security_inode_mknod() - Check if creating a special file is allowed 2116 * @dir: parent directory 2117 * @dentry: new file 2118 * @mode: new file mode 2119 * @dev: device number 2120 * 2121 * Check permissions when creating a special file (or a socket or a fifo file 2122 * created via the mknod system call). Note that if mknod operation is being 2123 * done for a regular file, then the create hook will be called and not this 2124 * hook. 2125 * 2126 * Return: Returns 0 if permission is granted. 2127 */ 2128 int security_inode_mknod(struct inode *dir, struct dentry *dentry, 2129 umode_t mode, dev_t dev) 2130 { 2131 if (unlikely(IS_PRIVATE(dir))) 2132 return 0; 2133 return call_int_hook(inode_mknod, 0, dir, dentry, mode, dev); 2134 } 2135 2136 /** 2137 * security_inode_rename() - Check if renaming a file is allowed 2138 * @old_dir: parent directory of the old file 2139 * @old_dentry: the old file 2140 * @new_dir: parent directory of the new file 2141 * @new_dentry: the new file 2142 * @flags: flags 2143 * 2144 * Check for permission to rename a file or directory. 2145 * 2146 * Return: Returns 0 if permission is granted. 2147 */ 2148 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry, 2149 struct inode *new_dir, struct dentry *new_dentry, 2150 unsigned int flags) 2151 { 2152 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) || 2153 (d_is_positive(new_dentry) && 2154 IS_PRIVATE(d_backing_inode(new_dentry))))) 2155 return 0; 2156 2157 if (flags & RENAME_EXCHANGE) { 2158 int err = call_int_hook(inode_rename, 0, new_dir, new_dentry, 2159 old_dir, old_dentry); 2160 if (err) 2161 return err; 2162 } 2163 2164 return call_int_hook(inode_rename, 0, old_dir, old_dentry, 2165 new_dir, new_dentry); 2166 } 2167 2168 /** 2169 * security_inode_readlink() - Check if reading a symbolic link is allowed 2170 * @dentry: link 2171 * 2172 * Check the permission to read the symbolic link. 2173 * 2174 * Return: Returns 0 if permission is granted. 2175 */ 2176 int security_inode_readlink(struct dentry *dentry) 2177 { 2178 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2179 return 0; 2180 return call_int_hook(inode_readlink, 0, dentry); 2181 } 2182 2183 /** 2184 * security_inode_follow_link() - Check if following a symbolic link is allowed 2185 * @dentry: link dentry 2186 * @inode: link inode 2187 * @rcu: true if in RCU-walk mode 2188 * 2189 * Check permission to follow a symbolic link when looking up a pathname. If 2190 * @rcu is true, @inode is not stable. 2191 * 2192 * Return: Returns 0 if permission is granted. 2193 */ 2194 int security_inode_follow_link(struct dentry *dentry, struct inode *inode, 2195 bool rcu) 2196 { 2197 if (unlikely(IS_PRIVATE(inode))) 2198 return 0; 2199 return call_int_hook(inode_follow_link, 0, dentry, inode, rcu); 2200 } 2201 2202 /** 2203 * security_inode_permission() - Check if accessing an inode is allowed 2204 * @inode: inode 2205 * @mask: access mask 2206 * 2207 * Check permission before accessing an inode. This hook is called by the 2208 * existing Linux permission function, so a security module can use it to 2209 * provide additional checking for existing Linux permission checks. Notice 2210 * that this hook is called when a file is opened (as well as many other 2211 * operations), whereas the file_security_ops permission hook is called when 2212 * the actual read/write operations are performed. 2213 * 2214 * Return: Returns 0 if permission is granted. 2215 */ 2216 int security_inode_permission(struct inode *inode, int mask) 2217 { 2218 if (unlikely(IS_PRIVATE(inode))) 2219 return 0; 2220 return call_int_hook(inode_permission, 0, inode, mask); 2221 } 2222 2223 /** 2224 * security_inode_setattr() - Check if setting file attributes is allowed 2225 * @idmap: idmap of the mount 2226 * @dentry: file 2227 * @attr: new attributes 2228 * 2229 * Check permission before setting file attributes. Note that the kernel call 2230 * to notify_change is performed from several locations, whenever file 2231 * attributes change (such as when a file is truncated, chown/chmod operations, 2232 * transferring disk quotas, etc). 2233 * 2234 * Return: Returns 0 if permission is granted. 2235 */ 2236 int security_inode_setattr(struct mnt_idmap *idmap, 2237 struct dentry *dentry, struct iattr *attr) 2238 { 2239 int ret; 2240 2241 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2242 return 0; 2243 ret = call_int_hook(inode_setattr, 0, idmap, dentry, attr); 2244 if (ret) 2245 return ret; 2246 return evm_inode_setattr(idmap, dentry, attr); 2247 } 2248 EXPORT_SYMBOL_GPL(security_inode_setattr); 2249 2250 /** 2251 * security_inode_post_setattr() - Update the inode after a setattr operation 2252 * @idmap: idmap of the mount 2253 * @dentry: file 2254 * @ia_valid: file attributes set 2255 * 2256 * Update inode security field after successful setting file attributes. 2257 */ 2258 void security_inode_post_setattr(struct mnt_idmap *idmap, struct dentry *dentry, 2259 int ia_valid) 2260 { 2261 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2262 return; 2263 call_void_hook(inode_post_setattr, idmap, dentry, ia_valid); 2264 } 2265 2266 /** 2267 * security_inode_getattr() - Check if getting file attributes is allowed 2268 * @path: file 2269 * 2270 * Check permission before obtaining file attributes. 2271 * 2272 * Return: Returns 0 if permission is granted. 2273 */ 2274 int security_inode_getattr(const struct path *path) 2275 { 2276 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 2277 return 0; 2278 return call_int_hook(inode_getattr, 0, path); 2279 } 2280 2281 /** 2282 * security_inode_setxattr() - Check if setting file xattrs is allowed 2283 * @idmap: idmap of the mount 2284 * @dentry: file 2285 * @name: xattr name 2286 * @value: xattr value 2287 * @size: size of xattr value 2288 * @flags: flags 2289 * 2290 * Check permission before setting the extended attributes. 2291 * 2292 * Return: Returns 0 if permission is granted. 2293 */ 2294 int security_inode_setxattr(struct mnt_idmap *idmap, 2295 struct dentry *dentry, const char *name, 2296 const void *value, size_t size, int flags) 2297 { 2298 int ret; 2299 2300 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2301 return 0; 2302 /* 2303 * SELinux and Smack integrate the cap call, 2304 * so assume that all LSMs supplying this call do so. 2305 */ 2306 ret = call_int_hook(inode_setxattr, 1, idmap, dentry, name, value, 2307 size, flags); 2308 2309 if (ret == 1) 2310 ret = cap_inode_setxattr(dentry, name, value, size, flags); 2311 if (ret) 2312 return ret; 2313 ret = ima_inode_setxattr(idmap, dentry, name, value, size, flags); 2314 if (ret) 2315 return ret; 2316 return evm_inode_setxattr(idmap, dentry, name, value, size, flags); 2317 } 2318 2319 /** 2320 * security_inode_set_acl() - Check if setting posix acls is allowed 2321 * @idmap: idmap of the mount 2322 * @dentry: file 2323 * @acl_name: acl name 2324 * @kacl: acl struct 2325 * 2326 * Check permission before setting posix acls, the posix acls in @kacl are 2327 * identified by @acl_name. 2328 * 2329 * Return: Returns 0 if permission is granted. 2330 */ 2331 int security_inode_set_acl(struct mnt_idmap *idmap, 2332 struct dentry *dentry, const char *acl_name, 2333 struct posix_acl *kacl) 2334 { 2335 int ret; 2336 2337 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2338 return 0; 2339 ret = call_int_hook(inode_set_acl, 0, idmap, dentry, acl_name, 2340 kacl); 2341 if (ret) 2342 return ret; 2343 ret = ima_inode_set_acl(idmap, dentry, acl_name, kacl); 2344 if (ret) 2345 return ret; 2346 return evm_inode_set_acl(idmap, dentry, acl_name, kacl); 2347 } 2348 2349 /** 2350 * security_inode_post_set_acl() - Update inode security from posix acls set 2351 * @dentry: file 2352 * @acl_name: acl name 2353 * @kacl: acl struct 2354 * 2355 * Update inode security data after successfully setting posix acls on @dentry. 2356 * The posix acls in @kacl are identified by @acl_name. 2357 */ 2358 void security_inode_post_set_acl(struct dentry *dentry, const char *acl_name, 2359 struct posix_acl *kacl) 2360 { 2361 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2362 return; 2363 call_void_hook(inode_post_set_acl, dentry, acl_name, kacl); 2364 } 2365 2366 /** 2367 * security_inode_get_acl() - Check if reading posix acls is allowed 2368 * @idmap: idmap of the mount 2369 * @dentry: file 2370 * @acl_name: acl name 2371 * 2372 * Check permission before getting osix acls, the posix acls are identified by 2373 * @acl_name. 2374 * 2375 * Return: Returns 0 if permission is granted. 2376 */ 2377 int security_inode_get_acl(struct mnt_idmap *idmap, 2378 struct dentry *dentry, const char *acl_name) 2379 { 2380 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2381 return 0; 2382 return call_int_hook(inode_get_acl, 0, idmap, dentry, acl_name); 2383 } 2384 2385 /** 2386 * security_inode_remove_acl() - Check if removing a posix acl is allowed 2387 * @idmap: idmap of the mount 2388 * @dentry: file 2389 * @acl_name: acl name 2390 * 2391 * Check permission before removing posix acls, the posix acls are identified 2392 * by @acl_name. 2393 * 2394 * Return: Returns 0 if permission is granted. 2395 */ 2396 int security_inode_remove_acl(struct mnt_idmap *idmap, 2397 struct dentry *dentry, const char *acl_name) 2398 { 2399 int ret; 2400 2401 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2402 return 0; 2403 ret = call_int_hook(inode_remove_acl, 0, idmap, dentry, acl_name); 2404 if (ret) 2405 return ret; 2406 ret = ima_inode_remove_acl(idmap, dentry, acl_name); 2407 if (ret) 2408 return ret; 2409 return evm_inode_remove_acl(idmap, dentry, acl_name); 2410 } 2411 2412 /** 2413 * security_inode_post_remove_acl() - Update inode security after rm posix acls 2414 * @idmap: idmap of the mount 2415 * @dentry: file 2416 * @acl_name: acl name 2417 * 2418 * Update inode security data after successfully removing posix acls on 2419 * @dentry in @idmap. The posix acls are identified by @acl_name. 2420 */ 2421 void security_inode_post_remove_acl(struct mnt_idmap *idmap, 2422 struct dentry *dentry, const char *acl_name) 2423 { 2424 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2425 return; 2426 call_void_hook(inode_post_remove_acl, idmap, dentry, acl_name); 2427 } 2428 2429 /** 2430 * security_inode_post_setxattr() - Update the inode after a setxattr operation 2431 * @dentry: file 2432 * @name: xattr name 2433 * @value: xattr value 2434 * @size: xattr value size 2435 * @flags: flags 2436 * 2437 * Update inode security field after successful setxattr operation. 2438 */ 2439 void security_inode_post_setxattr(struct dentry *dentry, const char *name, 2440 const void *value, size_t size, int flags) 2441 { 2442 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2443 return; 2444 call_void_hook(inode_post_setxattr, dentry, name, value, size, flags); 2445 evm_inode_post_setxattr(dentry, name, value, size, flags); 2446 } 2447 2448 /** 2449 * security_inode_getxattr() - Check if xattr access is allowed 2450 * @dentry: file 2451 * @name: xattr name 2452 * 2453 * Check permission before obtaining the extended attributes identified by 2454 * @name for @dentry. 2455 * 2456 * Return: Returns 0 if permission is granted. 2457 */ 2458 int security_inode_getxattr(struct dentry *dentry, const char *name) 2459 { 2460 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2461 return 0; 2462 return call_int_hook(inode_getxattr, 0, dentry, name); 2463 } 2464 2465 /** 2466 * security_inode_listxattr() - Check if listing xattrs is allowed 2467 * @dentry: file 2468 * 2469 * Check permission before obtaining the list of extended attribute names for 2470 * @dentry. 2471 * 2472 * Return: Returns 0 if permission is granted. 2473 */ 2474 int security_inode_listxattr(struct dentry *dentry) 2475 { 2476 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2477 return 0; 2478 return call_int_hook(inode_listxattr, 0, dentry); 2479 } 2480 2481 /** 2482 * security_inode_removexattr() - Check if removing an xattr is allowed 2483 * @idmap: idmap of the mount 2484 * @dentry: file 2485 * @name: xattr name 2486 * 2487 * Check permission before removing the extended attribute identified by @name 2488 * for @dentry. 2489 * 2490 * Return: Returns 0 if permission is granted. 2491 */ 2492 int security_inode_removexattr(struct mnt_idmap *idmap, 2493 struct dentry *dentry, const char *name) 2494 { 2495 int ret; 2496 2497 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2498 return 0; 2499 /* 2500 * SELinux and Smack integrate the cap call, 2501 * so assume that all LSMs supplying this call do so. 2502 */ 2503 ret = call_int_hook(inode_removexattr, 1, idmap, dentry, name); 2504 if (ret == 1) 2505 ret = cap_inode_removexattr(idmap, dentry, name); 2506 if (ret) 2507 return ret; 2508 ret = ima_inode_removexattr(idmap, dentry, name); 2509 if (ret) 2510 return ret; 2511 return evm_inode_removexattr(idmap, dentry, name); 2512 } 2513 2514 /** 2515 * security_inode_post_removexattr() - Update the inode after a removexattr op 2516 * @dentry: file 2517 * @name: xattr name 2518 * 2519 * Update the inode after a successful removexattr operation. 2520 */ 2521 void security_inode_post_removexattr(struct dentry *dentry, const char *name) 2522 { 2523 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2524 return; 2525 call_void_hook(inode_post_removexattr, dentry, name); 2526 } 2527 2528 /** 2529 * security_inode_need_killpriv() - Check if security_inode_killpriv() required 2530 * @dentry: associated dentry 2531 * 2532 * Called when an inode has been changed to determine if 2533 * security_inode_killpriv() should be called. 2534 * 2535 * Return: Return <0 on error to abort the inode change operation, return 0 if 2536 * security_inode_killpriv() does not need to be called, return >0 if 2537 * security_inode_killpriv() does need to be called. 2538 */ 2539 int security_inode_need_killpriv(struct dentry *dentry) 2540 { 2541 return call_int_hook(inode_need_killpriv, 0, dentry); 2542 } 2543 2544 /** 2545 * security_inode_killpriv() - The setuid bit is removed, update LSM state 2546 * @idmap: idmap of the mount 2547 * @dentry: associated dentry 2548 * 2549 * The @dentry's setuid bit is being removed. Remove similar security labels. 2550 * Called with the dentry->d_inode->i_mutex held. 2551 * 2552 * Return: Return 0 on success. If error is returned, then the operation 2553 * causing setuid bit removal is failed. 2554 */ 2555 int security_inode_killpriv(struct mnt_idmap *idmap, 2556 struct dentry *dentry) 2557 { 2558 return call_int_hook(inode_killpriv, 0, idmap, dentry); 2559 } 2560 2561 /** 2562 * security_inode_getsecurity() - Get the xattr security label of an inode 2563 * @idmap: idmap of the mount 2564 * @inode: inode 2565 * @name: xattr name 2566 * @buffer: security label buffer 2567 * @alloc: allocation flag 2568 * 2569 * Retrieve a copy of the extended attribute representation of the security 2570 * label associated with @name for @inode via @buffer. Note that @name is the 2571 * remainder of the attribute name after the security prefix has been removed. 2572 * @alloc is used to specify if the call should return a value via the buffer 2573 * or just the value length. 2574 * 2575 * Return: Returns size of buffer on success. 2576 */ 2577 int security_inode_getsecurity(struct mnt_idmap *idmap, 2578 struct inode *inode, const char *name, 2579 void **buffer, bool alloc) 2580 { 2581 struct security_hook_list *hp; 2582 int rc; 2583 2584 if (unlikely(IS_PRIVATE(inode))) 2585 return LSM_RET_DEFAULT(inode_getsecurity); 2586 /* 2587 * Only one module will provide an attribute with a given name. 2588 */ 2589 hlist_for_each_entry(hp, &security_hook_heads.inode_getsecurity, list) { 2590 rc = hp->hook.inode_getsecurity(idmap, inode, name, buffer, 2591 alloc); 2592 if (rc != LSM_RET_DEFAULT(inode_getsecurity)) 2593 return rc; 2594 } 2595 return LSM_RET_DEFAULT(inode_getsecurity); 2596 } 2597 2598 /** 2599 * security_inode_setsecurity() - Set the xattr security label of an inode 2600 * @inode: inode 2601 * @name: xattr name 2602 * @value: security label 2603 * @size: length of security label 2604 * @flags: flags 2605 * 2606 * Set the security label associated with @name for @inode from the extended 2607 * attribute value @value. @size indicates the size of the @value in bytes. 2608 * @flags may be XATTR_CREATE, XATTR_REPLACE, or 0. Note that @name is the 2609 * remainder of the attribute name after the security. prefix has been removed. 2610 * 2611 * Return: Returns 0 on success. 2612 */ 2613 int security_inode_setsecurity(struct inode *inode, const char *name, 2614 const void *value, size_t size, int flags) 2615 { 2616 struct security_hook_list *hp; 2617 int rc; 2618 2619 if (unlikely(IS_PRIVATE(inode))) 2620 return LSM_RET_DEFAULT(inode_setsecurity); 2621 /* 2622 * Only one module will provide an attribute with a given name. 2623 */ 2624 hlist_for_each_entry(hp, &security_hook_heads.inode_setsecurity, list) { 2625 rc = hp->hook.inode_setsecurity(inode, name, value, size, 2626 flags); 2627 if (rc != LSM_RET_DEFAULT(inode_setsecurity)) 2628 return rc; 2629 } 2630 return LSM_RET_DEFAULT(inode_setsecurity); 2631 } 2632 2633 /** 2634 * security_inode_listsecurity() - List the xattr security label names 2635 * @inode: inode 2636 * @buffer: buffer 2637 * @buffer_size: size of buffer 2638 * 2639 * Copy the extended attribute names for the security labels associated with 2640 * @inode into @buffer. The maximum size of @buffer is specified by 2641 * @buffer_size. @buffer may be NULL to request the size of the buffer 2642 * required. 2643 * 2644 * Return: Returns number of bytes used/required on success. 2645 */ 2646 int security_inode_listsecurity(struct inode *inode, 2647 char *buffer, size_t buffer_size) 2648 { 2649 if (unlikely(IS_PRIVATE(inode))) 2650 return 0; 2651 return call_int_hook(inode_listsecurity, 0, inode, buffer, buffer_size); 2652 } 2653 EXPORT_SYMBOL(security_inode_listsecurity); 2654 2655 /** 2656 * security_inode_getsecid() - Get an inode's secid 2657 * @inode: inode 2658 * @secid: secid to return 2659 * 2660 * Get the secid associated with the node. In case of failure, @secid will be 2661 * set to zero. 2662 */ 2663 void security_inode_getsecid(struct inode *inode, u32 *secid) 2664 { 2665 call_void_hook(inode_getsecid, inode, secid); 2666 } 2667 2668 /** 2669 * security_inode_copy_up() - Create new creds for an overlayfs copy-up op 2670 * @src: union dentry of copy-up file 2671 * @new: newly created creds 2672 * 2673 * A file is about to be copied up from lower layer to upper layer of overlay 2674 * filesystem. Security module can prepare a set of new creds and modify as 2675 * need be and return new creds. Caller will switch to new creds temporarily to 2676 * create new file and release newly allocated creds. 2677 * 2678 * Return: Returns 0 on success or a negative error code on error. 2679 */ 2680 int security_inode_copy_up(struct dentry *src, struct cred **new) 2681 { 2682 return call_int_hook(inode_copy_up, 0, src, new); 2683 } 2684 EXPORT_SYMBOL(security_inode_copy_up); 2685 2686 /** 2687 * security_inode_copy_up_xattr() - Filter xattrs in an overlayfs copy-up op 2688 * @name: xattr name 2689 * 2690 * Filter the xattrs being copied up when a unioned file is copied up from a 2691 * lower layer to the union/overlay layer. The caller is responsible for 2692 * reading and writing the xattrs, this hook is merely a filter. 2693 * 2694 * Return: Returns 0 to accept the xattr, 1 to discard the xattr, -EOPNOTSUPP 2695 * if the security module does not know about attribute, or a negative 2696 * error code to abort the copy up. 2697 */ 2698 int security_inode_copy_up_xattr(const char *name) 2699 { 2700 struct security_hook_list *hp; 2701 int rc; 2702 2703 /* 2704 * The implementation can return 0 (accept the xattr), 1 (discard the 2705 * xattr), -EOPNOTSUPP if it does not know anything about the xattr or 2706 * any other error code in case of an error. 2707 */ 2708 hlist_for_each_entry(hp, 2709 &security_hook_heads.inode_copy_up_xattr, list) { 2710 rc = hp->hook.inode_copy_up_xattr(name); 2711 if (rc != LSM_RET_DEFAULT(inode_copy_up_xattr)) 2712 return rc; 2713 } 2714 2715 return evm_inode_copy_up_xattr(name); 2716 } 2717 EXPORT_SYMBOL(security_inode_copy_up_xattr); 2718 2719 /** 2720 * security_kernfs_init_security() - Init LSM context for a kernfs node 2721 * @kn_dir: parent kernfs node 2722 * @kn: the kernfs node to initialize 2723 * 2724 * Initialize the security context of a newly created kernfs node based on its 2725 * own and its parent's attributes. 2726 * 2727 * Return: Returns 0 if permission is granted. 2728 */ 2729 int security_kernfs_init_security(struct kernfs_node *kn_dir, 2730 struct kernfs_node *kn) 2731 { 2732 return call_int_hook(kernfs_init_security, 0, kn_dir, kn); 2733 } 2734 2735 /** 2736 * security_file_permission() - Check file permissions 2737 * @file: file 2738 * @mask: requested permissions 2739 * 2740 * Check file permissions before accessing an open file. This hook is called 2741 * by various operations that read or write files. A security module can use 2742 * this hook to perform additional checking on these operations, e.g. to 2743 * revalidate permissions on use to support privilege bracketing or policy 2744 * changes. Notice that this hook is used when the actual read/write 2745 * operations are performed, whereas the inode_security_ops hook is called when 2746 * a file is opened (as well as many other operations). Although this hook can 2747 * be used to revalidate permissions for various system call operations that 2748 * read or write files, it does not address the revalidation of permissions for 2749 * memory-mapped files. Security modules must handle this separately if they 2750 * need such revalidation. 2751 * 2752 * Return: Returns 0 if permission is granted. 2753 */ 2754 int security_file_permission(struct file *file, int mask) 2755 { 2756 return call_int_hook(file_permission, 0, file, mask); 2757 } 2758 2759 /** 2760 * security_file_alloc() - Allocate and init a file's LSM blob 2761 * @file: the file 2762 * 2763 * Allocate and attach a security structure to the file->f_security field. The 2764 * security field is initialized to NULL when the structure is first created. 2765 * 2766 * Return: Return 0 if the hook is successful and permission is granted. 2767 */ 2768 int security_file_alloc(struct file *file) 2769 { 2770 int rc = lsm_file_alloc(file); 2771 2772 if (rc) 2773 return rc; 2774 rc = call_int_hook(file_alloc_security, 0, file); 2775 if (unlikely(rc)) 2776 security_file_free(file); 2777 return rc; 2778 } 2779 2780 /** 2781 * security_file_release() - Perform actions before releasing the file ref 2782 * @file: the file 2783 * 2784 * Perform actions before releasing the last reference to a file. 2785 */ 2786 void security_file_release(struct file *file) 2787 { 2788 call_void_hook(file_release, file); 2789 } 2790 2791 /** 2792 * security_file_free() - Free a file's LSM blob 2793 * @file: the file 2794 * 2795 * Deallocate and free any security structures stored in file->f_security. 2796 */ 2797 void security_file_free(struct file *file) 2798 { 2799 void *blob; 2800 2801 call_void_hook(file_free_security, file); 2802 2803 blob = file->f_security; 2804 if (blob) { 2805 file->f_security = NULL; 2806 kmem_cache_free(lsm_file_cache, blob); 2807 } 2808 } 2809 2810 /** 2811 * security_file_ioctl() - Check if an ioctl is allowed 2812 * @file: associated file 2813 * @cmd: ioctl cmd 2814 * @arg: ioctl arguments 2815 * 2816 * Check permission for an ioctl operation on @file. Note that @arg sometimes 2817 * represents a user space pointer; in other cases, it may be a simple integer 2818 * value. When @arg represents a user space pointer, it should never be used 2819 * by the security module. 2820 * 2821 * Return: Returns 0 if permission is granted. 2822 */ 2823 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 2824 { 2825 return call_int_hook(file_ioctl, 0, file, cmd, arg); 2826 } 2827 EXPORT_SYMBOL_GPL(security_file_ioctl); 2828 2829 /** 2830 * security_file_ioctl_compat() - Check if an ioctl is allowed in compat mode 2831 * @file: associated file 2832 * @cmd: ioctl cmd 2833 * @arg: ioctl arguments 2834 * 2835 * Compat version of security_file_ioctl() that correctly handles 32-bit 2836 * processes running on 64-bit kernels. 2837 * 2838 * Return: Returns 0 if permission is granted. 2839 */ 2840 int security_file_ioctl_compat(struct file *file, unsigned int cmd, 2841 unsigned long arg) 2842 { 2843 return call_int_hook(file_ioctl_compat, 0, file, cmd, arg); 2844 } 2845 EXPORT_SYMBOL_GPL(security_file_ioctl_compat); 2846 2847 static inline unsigned long mmap_prot(struct file *file, unsigned long prot) 2848 { 2849 /* 2850 * Does we have PROT_READ and does the application expect 2851 * it to imply PROT_EXEC? If not, nothing to talk about... 2852 */ 2853 if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ) 2854 return prot; 2855 if (!(current->personality & READ_IMPLIES_EXEC)) 2856 return prot; 2857 /* 2858 * if that's an anonymous mapping, let it. 2859 */ 2860 if (!file) 2861 return prot | PROT_EXEC; 2862 /* 2863 * ditto if it's not on noexec mount, except that on !MMU we need 2864 * NOMMU_MAP_EXEC (== VM_MAYEXEC) in this case 2865 */ 2866 if (!path_noexec(&file->f_path)) { 2867 #ifndef CONFIG_MMU 2868 if (file->f_op->mmap_capabilities) { 2869 unsigned caps = file->f_op->mmap_capabilities(file); 2870 if (!(caps & NOMMU_MAP_EXEC)) 2871 return prot; 2872 } 2873 #endif 2874 return prot | PROT_EXEC; 2875 } 2876 /* anything on noexec mount won't get PROT_EXEC */ 2877 return prot; 2878 } 2879 2880 /** 2881 * security_mmap_file() - Check if mmap'ing a file is allowed 2882 * @file: file 2883 * @prot: protection applied by the kernel 2884 * @flags: flags 2885 * 2886 * Check permissions for a mmap operation. The @file may be NULL, e.g. if 2887 * mapping anonymous memory. 2888 * 2889 * Return: Returns 0 if permission is granted. 2890 */ 2891 int security_mmap_file(struct file *file, unsigned long prot, 2892 unsigned long flags) 2893 { 2894 return call_int_hook(mmap_file, 0, file, prot, mmap_prot(file, prot), 2895 flags); 2896 } 2897 2898 /** 2899 * security_mmap_addr() - Check if mmap'ing an address is allowed 2900 * @addr: address 2901 * 2902 * Check permissions for a mmap operation at @addr. 2903 * 2904 * Return: Returns 0 if permission is granted. 2905 */ 2906 int security_mmap_addr(unsigned long addr) 2907 { 2908 return call_int_hook(mmap_addr, 0, addr); 2909 } 2910 2911 /** 2912 * security_file_mprotect() - Check if changing memory protections is allowed 2913 * @vma: memory region 2914 * @reqprot: application requested protection 2915 * @prot: protection applied by the kernel 2916 * 2917 * Check permissions before changing memory access permissions. 2918 * 2919 * Return: Returns 0 if permission is granted. 2920 */ 2921 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot, 2922 unsigned long prot) 2923 { 2924 return call_int_hook(file_mprotect, 0, vma, reqprot, prot); 2925 } 2926 2927 /** 2928 * security_file_lock() - Check if a file lock is allowed 2929 * @file: file 2930 * @cmd: lock operation (e.g. F_RDLCK, F_WRLCK) 2931 * 2932 * Check permission before performing file locking operations. Note the hook 2933 * mediates both flock and fcntl style locks. 2934 * 2935 * Return: Returns 0 if permission is granted. 2936 */ 2937 int security_file_lock(struct file *file, unsigned int cmd) 2938 { 2939 return call_int_hook(file_lock, 0, file, cmd); 2940 } 2941 2942 /** 2943 * security_file_fcntl() - Check if fcntl() op is allowed 2944 * @file: file 2945 * @cmd: fcntl command 2946 * @arg: command argument 2947 * 2948 * Check permission before allowing the file operation specified by @cmd from 2949 * being performed on the file @file. Note that @arg sometimes represents a 2950 * user space pointer; in other cases, it may be a simple integer value. When 2951 * @arg represents a user space pointer, it should never be used by the 2952 * security module. 2953 * 2954 * Return: Returns 0 if permission is granted. 2955 */ 2956 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg) 2957 { 2958 return call_int_hook(file_fcntl, 0, file, cmd, arg); 2959 } 2960 2961 /** 2962 * security_file_set_fowner() - Set the file owner info in the LSM blob 2963 * @file: the file 2964 * 2965 * Save owner security information (typically from current->security) in 2966 * file->f_security for later use by the send_sigiotask hook. 2967 * 2968 * Return: Returns 0 on success. 2969 */ 2970 void security_file_set_fowner(struct file *file) 2971 { 2972 call_void_hook(file_set_fowner, file); 2973 } 2974 2975 /** 2976 * security_file_send_sigiotask() - Check if sending SIGIO/SIGURG is allowed 2977 * @tsk: target task 2978 * @fown: signal sender 2979 * @sig: signal to be sent, SIGIO is sent if 0 2980 * 2981 * Check permission for the file owner @fown to send SIGIO or SIGURG to the 2982 * process @tsk. Note that this hook is sometimes called from interrupt. Note 2983 * that the fown_struct, @fown, is never outside the context of a struct file, 2984 * so the file structure (and associated security information) can always be 2985 * obtained: container_of(fown, struct file, f_owner). 2986 * 2987 * Return: Returns 0 if permission is granted. 2988 */ 2989 int security_file_send_sigiotask(struct task_struct *tsk, 2990 struct fown_struct *fown, int sig) 2991 { 2992 return call_int_hook(file_send_sigiotask, 0, tsk, fown, sig); 2993 } 2994 2995 /** 2996 * security_file_receive() - Check is receiving a file via IPC is allowed 2997 * @file: file being received 2998 * 2999 * This hook allows security modules to control the ability of a process to 3000 * receive an open file descriptor via socket IPC. 3001 * 3002 * Return: Returns 0 if permission is granted. 3003 */ 3004 int security_file_receive(struct file *file) 3005 { 3006 return call_int_hook(file_receive, 0, file); 3007 } 3008 3009 /** 3010 * security_file_open() - Save open() time state for late use by the LSM 3011 * @file: 3012 * 3013 * Save open-time permission checking state for later use upon file_permission, 3014 * and recheck access if anything has changed since inode_permission. 3015 * 3016 * Return: Returns 0 if permission is granted. 3017 */ 3018 int security_file_open(struct file *file) 3019 { 3020 int ret; 3021 3022 ret = call_int_hook(file_open, 0, file); 3023 if (ret) 3024 return ret; 3025 3026 return fsnotify_open_perm(file); 3027 } 3028 3029 /** 3030 * security_file_post_open() - Evaluate a file after it has been opened 3031 * @file: the file 3032 * @mask: access mask 3033 * 3034 * Evaluate an opened file and the access mask requested with open(). The hook 3035 * is useful for LSMs that require the file content to be available in order to 3036 * make decisions. 3037 * 3038 * Return: Returns 0 if permission is granted. 3039 */ 3040 int security_file_post_open(struct file *file, int mask) 3041 { 3042 return call_int_hook(file_post_open, 0, file, mask); 3043 } 3044 EXPORT_SYMBOL_GPL(security_file_post_open); 3045 3046 /** 3047 * security_file_truncate() - Check if truncating a file is allowed 3048 * @file: file 3049 * 3050 * Check permission before truncating a file, i.e. using ftruncate. Note that 3051 * truncation permission may also be checked based on the path, using the 3052 * @path_truncate hook. 3053 * 3054 * Return: Returns 0 if permission is granted. 3055 */ 3056 int security_file_truncate(struct file *file) 3057 { 3058 return call_int_hook(file_truncate, 0, file); 3059 } 3060 3061 /** 3062 * security_task_alloc() - Allocate a task's LSM blob 3063 * @task: the task 3064 * @clone_flags: flags indicating what is being shared 3065 * 3066 * Handle allocation of task-related resources. 3067 * 3068 * Return: Returns a zero on success, negative values on failure. 3069 */ 3070 int security_task_alloc(struct task_struct *task, unsigned long clone_flags) 3071 { 3072 int rc = lsm_task_alloc(task); 3073 3074 if (rc) 3075 return rc; 3076 rc = call_int_hook(task_alloc, 0, task, clone_flags); 3077 if (unlikely(rc)) 3078 security_task_free(task); 3079 return rc; 3080 } 3081 3082 /** 3083 * security_task_free() - Free a task's LSM blob and related resources 3084 * @task: task 3085 * 3086 * Handle release of task-related resources. Note that this can be called from 3087 * interrupt context. 3088 */ 3089 void security_task_free(struct task_struct *task) 3090 { 3091 call_void_hook(task_free, task); 3092 3093 kfree(task->security); 3094 task->security = NULL; 3095 } 3096 3097 /** 3098 * security_cred_alloc_blank() - Allocate the min memory to allow cred_transfer 3099 * @cred: credentials 3100 * @gfp: gfp flags 3101 * 3102 * Only allocate sufficient memory and attach to @cred such that 3103 * cred_transfer() will not get ENOMEM. 3104 * 3105 * Return: Returns 0 on success, negative values on failure. 3106 */ 3107 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp) 3108 { 3109 int rc = lsm_cred_alloc(cred, gfp); 3110 3111 if (rc) 3112 return rc; 3113 3114 rc = call_int_hook(cred_alloc_blank, 0, cred, gfp); 3115 if (unlikely(rc)) 3116 security_cred_free(cred); 3117 return rc; 3118 } 3119 3120 /** 3121 * security_cred_free() - Free the cred's LSM blob and associated resources 3122 * @cred: credentials 3123 * 3124 * Deallocate and clear the cred->security field in a set of credentials. 3125 */ 3126 void security_cred_free(struct cred *cred) 3127 { 3128 /* 3129 * There is a failure case in prepare_creds() that 3130 * may result in a call here with ->security being NULL. 3131 */ 3132 if (unlikely(cred->security == NULL)) 3133 return; 3134 3135 call_void_hook(cred_free, cred); 3136 3137 kfree(cred->security); 3138 cred->security = NULL; 3139 } 3140 3141 /** 3142 * security_prepare_creds() - Prepare a new set of credentials 3143 * @new: new credentials 3144 * @old: original credentials 3145 * @gfp: gfp flags 3146 * 3147 * Prepare a new set of credentials by copying the data from the old set. 3148 * 3149 * Return: Returns 0 on success, negative values on failure. 3150 */ 3151 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp) 3152 { 3153 int rc = lsm_cred_alloc(new, gfp); 3154 3155 if (rc) 3156 return rc; 3157 3158 rc = call_int_hook(cred_prepare, 0, new, old, gfp); 3159 if (unlikely(rc)) 3160 security_cred_free(new); 3161 return rc; 3162 } 3163 3164 /** 3165 * security_transfer_creds() - Transfer creds 3166 * @new: target credentials 3167 * @old: original credentials 3168 * 3169 * Transfer data from original creds to new creds. 3170 */ 3171 void security_transfer_creds(struct cred *new, const struct cred *old) 3172 { 3173 call_void_hook(cred_transfer, new, old); 3174 } 3175 3176 /** 3177 * security_cred_getsecid() - Get the secid from a set of credentials 3178 * @c: credentials 3179 * @secid: secid value 3180 * 3181 * Retrieve the security identifier of the cred structure @c. In case of 3182 * failure, @secid will be set to zero. 3183 */ 3184 void security_cred_getsecid(const struct cred *c, u32 *secid) 3185 { 3186 *secid = 0; 3187 call_void_hook(cred_getsecid, c, secid); 3188 } 3189 EXPORT_SYMBOL(security_cred_getsecid); 3190 3191 /** 3192 * security_kernel_act_as() - Set the kernel credentials to act as secid 3193 * @new: credentials 3194 * @secid: secid 3195 * 3196 * Set the credentials for a kernel service to act as (subjective context). 3197 * The current task must be the one that nominated @secid. 3198 * 3199 * Return: Returns 0 if successful. 3200 */ 3201 int security_kernel_act_as(struct cred *new, u32 secid) 3202 { 3203 return call_int_hook(kernel_act_as, 0, new, secid); 3204 } 3205 3206 /** 3207 * security_kernel_create_files_as() - Set file creation context using an inode 3208 * @new: target credentials 3209 * @inode: reference inode 3210 * 3211 * Set the file creation context in a set of credentials to be the same as the 3212 * objective context of the specified inode. The current task must be the one 3213 * that nominated @inode. 3214 * 3215 * Return: Returns 0 if successful. 3216 */ 3217 int security_kernel_create_files_as(struct cred *new, struct inode *inode) 3218 { 3219 return call_int_hook(kernel_create_files_as, 0, new, inode); 3220 } 3221 3222 /** 3223 * security_kernel_module_request() - Check is loading a module is allowed 3224 * @kmod_name: module name 3225 * 3226 * Ability to trigger the kernel to automatically upcall to userspace for 3227 * userspace to load a kernel module with the given name. 3228 * 3229 * Return: Returns 0 if successful. 3230 */ 3231 int security_kernel_module_request(char *kmod_name) 3232 { 3233 return call_int_hook(kernel_module_request, 0, kmod_name); 3234 } 3235 3236 /** 3237 * security_kernel_read_file() - Read a file specified by userspace 3238 * @file: file 3239 * @id: file identifier 3240 * @contents: trust if security_kernel_post_read_file() will be called 3241 * 3242 * Read a file specified by userspace. 3243 * 3244 * Return: Returns 0 if permission is granted. 3245 */ 3246 int security_kernel_read_file(struct file *file, enum kernel_read_file_id id, 3247 bool contents) 3248 { 3249 return call_int_hook(kernel_read_file, 0, file, id, contents); 3250 } 3251 EXPORT_SYMBOL_GPL(security_kernel_read_file); 3252 3253 /** 3254 * security_kernel_post_read_file() - Read a file specified by userspace 3255 * @file: file 3256 * @buf: file contents 3257 * @size: size of file contents 3258 * @id: file identifier 3259 * 3260 * Read a file specified by userspace. This must be paired with a prior call 3261 * to security_kernel_read_file() call that indicated this hook would also be 3262 * called, see security_kernel_read_file() for more information. 3263 * 3264 * Return: Returns 0 if permission is granted. 3265 */ 3266 int security_kernel_post_read_file(struct file *file, char *buf, loff_t size, 3267 enum kernel_read_file_id id) 3268 { 3269 return call_int_hook(kernel_post_read_file, 0, file, buf, size, id); 3270 } 3271 EXPORT_SYMBOL_GPL(security_kernel_post_read_file); 3272 3273 /** 3274 * security_kernel_load_data() - Load data provided by userspace 3275 * @id: data identifier 3276 * @contents: true if security_kernel_post_load_data() will be called 3277 * 3278 * Load data provided by userspace. 3279 * 3280 * Return: Returns 0 if permission is granted. 3281 */ 3282 int security_kernel_load_data(enum kernel_load_data_id id, bool contents) 3283 { 3284 return call_int_hook(kernel_load_data, 0, id, contents); 3285 } 3286 EXPORT_SYMBOL_GPL(security_kernel_load_data); 3287 3288 /** 3289 * security_kernel_post_load_data() - Load userspace data from a non-file source 3290 * @buf: data 3291 * @size: size of data 3292 * @id: data identifier 3293 * @description: text description of data, specific to the id value 3294 * 3295 * Load data provided by a non-file source (usually userspace buffer). This 3296 * must be paired with a prior security_kernel_load_data() call that indicated 3297 * this hook would also be called, see security_kernel_load_data() for more 3298 * information. 3299 * 3300 * Return: Returns 0 if permission is granted. 3301 */ 3302 int security_kernel_post_load_data(char *buf, loff_t size, 3303 enum kernel_load_data_id id, 3304 char *description) 3305 { 3306 return call_int_hook(kernel_post_load_data, 0, buf, size, id, 3307 description); 3308 } 3309 EXPORT_SYMBOL_GPL(security_kernel_post_load_data); 3310 3311 /** 3312 * security_task_fix_setuid() - Update LSM with new user id attributes 3313 * @new: updated credentials 3314 * @old: credentials being replaced 3315 * @flags: LSM_SETID_* flag values 3316 * 3317 * Update the module's state after setting one or more of the user identity 3318 * attributes of the current process. The @flags parameter indicates which of 3319 * the set*uid system calls invoked this hook. If @new is the set of 3320 * credentials that will be installed. Modifications should be made to this 3321 * rather than to @current->cred. 3322 * 3323 * Return: Returns 0 on success. 3324 */ 3325 int security_task_fix_setuid(struct cred *new, const struct cred *old, 3326 int flags) 3327 { 3328 return call_int_hook(task_fix_setuid, 0, new, old, flags); 3329 } 3330 3331 /** 3332 * security_task_fix_setgid() - Update LSM with new group id attributes 3333 * @new: updated credentials 3334 * @old: credentials being replaced 3335 * @flags: LSM_SETID_* flag value 3336 * 3337 * Update the module's state after setting one or more of the group identity 3338 * attributes of the current process. The @flags parameter indicates which of 3339 * the set*gid system calls invoked this hook. @new is the set of credentials 3340 * that will be installed. Modifications should be made to this rather than to 3341 * @current->cred. 3342 * 3343 * Return: Returns 0 on success. 3344 */ 3345 int security_task_fix_setgid(struct cred *new, const struct cred *old, 3346 int flags) 3347 { 3348 return call_int_hook(task_fix_setgid, 0, new, old, flags); 3349 } 3350 3351 /** 3352 * security_task_fix_setgroups() - Update LSM with new supplementary groups 3353 * @new: updated credentials 3354 * @old: credentials being replaced 3355 * 3356 * Update the module's state after setting the supplementary group identity 3357 * attributes of the current process. @new is the set of credentials that will 3358 * be installed. Modifications should be made to this rather than to 3359 * @current->cred. 3360 * 3361 * Return: Returns 0 on success. 3362 */ 3363 int security_task_fix_setgroups(struct cred *new, const struct cred *old) 3364 { 3365 return call_int_hook(task_fix_setgroups, 0, new, old); 3366 } 3367 3368 /** 3369 * security_task_setpgid() - Check if setting the pgid is allowed 3370 * @p: task being modified 3371 * @pgid: new pgid 3372 * 3373 * Check permission before setting the process group identifier of the process 3374 * @p to @pgid. 3375 * 3376 * Return: Returns 0 if permission is granted. 3377 */ 3378 int security_task_setpgid(struct task_struct *p, pid_t pgid) 3379 { 3380 return call_int_hook(task_setpgid, 0, p, pgid); 3381 } 3382 3383 /** 3384 * security_task_getpgid() - Check if getting the pgid is allowed 3385 * @p: task 3386 * 3387 * Check permission before getting the process group identifier of the process 3388 * @p. 3389 * 3390 * Return: Returns 0 if permission is granted. 3391 */ 3392 int security_task_getpgid(struct task_struct *p) 3393 { 3394 return call_int_hook(task_getpgid, 0, p); 3395 } 3396 3397 /** 3398 * security_task_getsid() - Check if getting the session id is allowed 3399 * @p: task 3400 * 3401 * Check permission before getting the session identifier of the process @p. 3402 * 3403 * Return: Returns 0 if permission is granted. 3404 */ 3405 int security_task_getsid(struct task_struct *p) 3406 { 3407 return call_int_hook(task_getsid, 0, p); 3408 } 3409 3410 /** 3411 * security_current_getsecid_subj() - Get the current task's subjective secid 3412 * @secid: secid value 3413 * 3414 * Retrieve the subjective security identifier of the current task and return 3415 * it in @secid. In case of failure, @secid will be set to zero. 3416 */ 3417 void security_current_getsecid_subj(u32 *secid) 3418 { 3419 *secid = 0; 3420 call_void_hook(current_getsecid_subj, secid); 3421 } 3422 EXPORT_SYMBOL(security_current_getsecid_subj); 3423 3424 /** 3425 * security_task_getsecid_obj() - Get a task's objective secid 3426 * @p: target task 3427 * @secid: secid value 3428 * 3429 * Retrieve the objective security identifier of the task_struct in @p and 3430 * return it in @secid. In case of failure, @secid will be set to zero. 3431 */ 3432 void security_task_getsecid_obj(struct task_struct *p, u32 *secid) 3433 { 3434 *secid = 0; 3435 call_void_hook(task_getsecid_obj, p, secid); 3436 } 3437 EXPORT_SYMBOL(security_task_getsecid_obj); 3438 3439 /** 3440 * security_task_setnice() - Check if setting a task's nice value is allowed 3441 * @p: target task 3442 * @nice: nice value 3443 * 3444 * Check permission before setting the nice value of @p to @nice. 3445 * 3446 * Return: Returns 0 if permission is granted. 3447 */ 3448 int security_task_setnice(struct task_struct *p, int nice) 3449 { 3450 return call_int_hook(task_setnice, 0, p, nice); 3451 } 3452 3453 /** 3454 * security_task_setioprio() - Check if setting a task's ioprio is allowed 3455 * @p: target task 3456 * @ioprio: ioprio value 3457 * 3458 * Check permission before setting the ioprio value of @p to @ioprio. 3459 * 3460 * Return: Returns 0 if permission is granted. 3461 */ 3462 int security_task_setioprio(struct task_struct *p, int ioprio) 3463 { 3464 return call_int_hook(task_setioprio, 0, p, ioprio); 3465 } 3466 3467 /** 3468 * security_task_getioprio() - Check if getting a task's ioprio is allowed 3469 * @p: task 3470 * 3471 * Check permission before getting the ioprio value of @p. 3472 * 3473 * Return: Returns 0 if permission is granted. 3474 */ 3475 int security_task_getioprio(struct task_struct *p) 3476 { 3477 return call_int_hook(task_getioprio, 0, p); 3478 } 3479 3480 /** 3481 * security_task_prlimit() - Check if get/setting resources limits is allowed 3482 * @cred: current task credentials 3483 * @tcred: target task credentials 3484 * @flags: LSM_PRLIMIT_* flag bits indicating a get/set/both 3485 * 3486 * Check permission before getting and/or setting the resource limits of 3487 * another task. 3488 * 3489 * Return: Returns 0 if permission is granted. 3490 */ 3491 int security_task_prlimit(const struct cred *cred, const struct cred *tcred, 3492 unsigned int flags) 3493 { 3494 return call_int_hook(task_prlimit, 0, cred, tcred, flags); 3495 } 3496 3497 /** 3498 * security_task_setrlimit() - Check if setting a new rlimit value is allowed 3499 * @p: target task's group leader 3500 * @resource: resource whose limit is being set 3501 * @new_rlim: new resource limit 3502 * 3503 * Check permission before setting the resource limits of process @p for 3504 * @resource to @new_rlim. The old resource limit values can be examined by 3505 * dereferencing (p->signal->rlim + resource). 3506 * 3507 * Return: Returns 0 if permission is granted. 3508 */ 3509 int security_task_setrlimit(struct task_struct *p, unsigned int resource, 3510 struct rlimit *new_rlim) 3511 { 3512 return call_int_hook(task_setrlimit, 0, p, resource, new_rlim); 3513 } 3514 3515 /** 3516 * security_task_setscheduler() - Check if setting sched policy/param is allowed 3517 * @p: target task 3518 * 3519 * Check permission before setting scheduling policy and/or parameters of 3520 * process @p. 3521 * 3522 * Return: Returns 0 if permission is granted. 3523 */ 3524 int security_task_setscheduler(struct task_struct *p) 3525 { 3526 return call_int_hook(task_setscheduler, 0, p); 3527 } 3528 3529 /** 3530 * security_task_getscheduler() - Check if getting scheduling info is allowed 3531 * @p: target task 3532 * 3533 * Check permission before obtaining scheduling information for process @p. 3534 * 3535 * Return: Returns 0 if permission is granted. 3536 */ 3537 int security_task_getscheduler(struct task_struct *p) 3538 { 3539 return call_int_hook(task_getscheduler, 0, p); 3540 } 3541 3542 /** 3543 * security_task_movememory() - Check if moving memory is allowed 3544 * @p: task 3545 * 3546 * Check permission before moving memory owned by process @p. 3547 * 3548 * Return: Returns 0 if permission is granted. 3549 */ 3550 int security_task_movememory(struct task_struct *p) 3551 { 3552 return call_int_hook(task_movememory, 0, p); 3553 } 3554 3555 /** 3556 * security_task_kill() - Check if sending a signal is allowed 3557 * @p: target process 3558 * @info: signal information 3559 * @sig: signal value 3560 * @cred: credentials of the signal sender, NULL if @current 3561 * 3562 * Check permission before sending signal @sig to @p. @info can be NULL, the 3563 * constant 1, or a pointer to a kernel_siginfo structure. If @info is 1 or 3564 * SI_FROMKERNEL(info) is true, then the signal should be viewed as coming from 3565 * the kernel and should typically be permitted. SIGIO signals are handled 3566 * separately by the send_sigiotask hook in file_security_ops. 3567 * 3568 * Return: Returns 0 if permission is granted. 3569 */ 3570 int security_task_kill(struct task_struct *p, struct kernel_siginfo *info, 3571 int sig, const struct cred *cred) 3572 { 3573 return call_int_hook(task_kill, 0, p, info, sig, cred); 3574 } 3575 3576 /** 3577 * security_task_prctl() - Check if a prctl op is allowed 3578 * @option: operation 3579 * @arg2: argument 3580 * @arg3: argument 3581 * @arg4: argument 3582 * @arg5: argument 3583 * 3584 * Check permission before performing a process control operation on the 3585 * current process. 3586 * 3587 * Return: Return -ENOSYS if no-one wanted to handle this op, any other value 3588 * to cause prctl() to return immediately with that value. 3589 */ 3590 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3, 3591 unsigned long arg4, unsigned long arg5) 3592 { 3593 int thisrc; 3594 int rc = LSM_RET_DEFAULT(task_prctl); 3595 struct security_hook_list *hp; 3596 3597 hlist_for_each_entry(hp, &security_hook_heads.task_prctl, list) { 3598 thisrc = hp->hook.task_prctl(option, arg2, arg3, arg4, arg5); 3599 if (thisrc != LSM_RET_DEFAULT(task_prctl)) { 3600 rc = thisrc; 3601 if (thisrc != 0) 3602 break; 3603 } 3604 } 3605 return rc; 3606 } 3607 3608 /** 3609 * security_task_to_inode() - Set the security attributes of a task's inode 3610 * @p: task 3611 * @inode: inode 3612 * 3613 * Set the security attributes for an inode based on an associated task's 3614 * security attributes, e.g. for /proc/pid inodes. 3615 */ 3616 void security_task_to_inode(struct task_struct *p, struct inode *inode) 3617 { 3618 call_void_hook(task_to_inode, p, inode); 3619 } 3620 3621 /** 3622 * security_create_user_ns() - Check if creating a new userns is allowed 3623 * @cred: prepared creds 3624 * 3625 * Check permission prior to creating a new user namespace. 3626 * 3627 * Return: Returns 0 if successful, otherwise < 0 error code. 3628 */ 3629 int security_create_user_ns(const struct cred *cred) 3630 { 3631 return call_int_hook(userns_create, 0, cred); 3632 } 3633 3634 /** 3635 * security_ipc_permission() - Check if sysv ipc access is allowed 3636 * @ipcp: ipc permission structure 3637 * @flag: requested permissions 3638 * 3639 * Check permissions for access to IPC. 3640 * 3641 * Return: Returns 0 if permission is granted. 3642 */ 3643 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag) 3644 { 3645 return call_int_hook(ipc_permission, 0, ipcp, flag); 3646 } 3647 3648 /** 3649 * security_ipc_getsecid() - Get the sysv ipc object's secid 3650 * @ipcp: ipc permission structure 3651 * @secid: secid pointer 3652 * 3653 * Get the secid associated with the ipc object. In case of failure, @secid 3654 * will be set to zero. 3655 */ 3656 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid) 3657 { 3658 *secid = 0; 3659 call_void_hook(ipc_getsecid, ipcp, secid); 3660 } 3661 3662 /** 3663 * security_msg_msg_alloc() - Allocate a sysv ipc message LSM blob 3664 * @msg: message structure 3665 * 3666 * Allocate and attach a security structure to the msg->security field. The 3667 * security field is initialized to NULL when the structure is first created. 3668 * 3669 * Return: Return 0 if operation was successful and permission is granted. 3670 */ 3671 int security_msg_msg_alloc(struct msg_msg *msg) 3672 { 3673 int rc = lsm_msg_msg_alloc(msg); 3674 3675 if (unlikely(rc)) 3676 return rc; 3677 rc = call_int_hook(msg_msg_alloc_security, 0, msg); 3678 if (unlikely(rc)) 3679 security_msg_msg_free(msg); 3680 return rc; 3681 } 3682 3683 /** 3684 * security_msg_msg_free() - Free a sysv ipc message LSM blob 3685 * @msg: message structure 3686 * 3687 * Deallocate the security structure for this message. 3688 */ 3689 void security_msg_msg_free(struct msg_msg *msg) 3690 { 3691 call_void_hook(msg_msg_free_security, msg); 3692 kfree(msg->security); 3693 msg->security = NULL; 3694 } 3695 3696 /** 3697 * security_msg_queue_alloc() - Allocate a sysv ipc msg queue LSM blob 3698 * @msq: sysv ipc permission structure 3699 * 3700 * Allocate and attach a security structure to @msg. The security field is 3701 * initialized to NULL when the structure is first created. 3702 * 3703 * Return: Returns 0 if operation was successful and permission is granted. 3704 */ 3705 int security_msg_queue_alloc(struct kern_ipc_perm *msq) 3706 { 3707 int rc = lsm_ipc_alloc(msq); 3708 3709 if (unlikely(rc)) 3710 return rc; 3711 rc = call_int_hook(msg_queue_alloc_security, 0, msq); 3712 if (unlikely(rc)) 3713 security_msg_queue_free(msq); 3714 return rc; 3715 } 3716 3717 /** 3718 * security_msg_queue_free() - Free a sysv ipc msg queue LSM blob 3719 * @msq: sysv ipc permission structure 3720 * 3721 * Deallocate security field @perm->security for the message queue. 3722 */ 3723 void security_msg_queue_free(struct kern_ipc_perm *msq) 3724 { 3725 call_void_hook(msg_queue_free_security, msq); 3726 kfree(msq->security); 3727 msq->security = NULL; 3728 } 3729 3730 /** 3731 * security_msg_queue_associate() - Check if a msg queue operation is allowed 3732 * @msq: sysv ipc permission structure 3733 * @msqflg: operation flags 3734 * 3735 * Check permission when a message queue is requested through the msgget system 3736 * call. This hook is only called when returning the message queue identifier 3737 * for an existing message queue, not when a new message queue is created. 3738 * 3739 * Return: Return 0 if permission is granted. 3740 */ 3741 int security_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg) 3742 { 3743 return call_int_hook(msg_queue_associate, 0, msq, msqflg); 3744 } 3745 3746 /** 3747 * security_msg_queue_msgctl() - Check if a msg queue operation is allowed 3748 * @msq: sysv ipc permission structure 3749 * @cmd: operation 3750 * 3751 * Check permission when a message control operation specified by @cmd is to be 3752 * performed on the message queue with permissions. 3753 * 3754 * Return: Returns 0 if permission is granted. 3755 */ 3756 int security_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd) 3757 { 3758 return call_int_hook(msg_queue_msgctl, 0, msq, cmd); 3759 } 3760 3761 /** 3762 * security_msg_queue_msgsnd() - Check if sending a sysv ipc message is allowed 3763 * @msq: sysv ipc permission structure 3764 * @msg: message 3765 * @msqflg: operation flags 3766 * 3767 * Check permission before a message, @msg, is enqueued on the message queue 3768 * with permissions specified in @msq. 3769 * 3770 * Return: Returns 0 if permission is granted. 3771 */ 3772 int security_msg_queue_msgsnd(struct kern_ipc_perm *msq, 3773 struct msg_msg *msg, int msqflg) 3774 { 3775 return call_int_hook(msg_queue_msgsnd, 0, msq, msg, msqflg); 3776 } 3777 3778 /** 3779 * security_msg_queue_msgrcv() - Check if receiving a sysv ipc msg is allowed 3780 * @msq: sysv ipc permission structure 3781 * @msg: message 3782 * @target: target task 3783 * @type: type of message requested 3784 * @mode: operation flags 3785 * 3786 * Check permission before a message, @msg, is removed from the message queue. 3787 * The @target task structure contains a pointer to the process that will be 3788 * receiving the message (not equal to the current process when inline receives 3789 * are being performed). 3790 * 3791 * Return: Returns 0 if permission is granted. 3792 */ 3793 int security_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg, 3794 struct task_struct *target, long type, int mode) 3795 { 3796 return call_int_hook(msg_queue_msgrcv, 0, msq, msg, target, type, mode); 3797 } 3798 3799 /** 3800 * security_shm_alloc() - Allocate a sysv shm LSM blob 3801 * @shp: sysv ipc permission structure 3802 * 3803 * Allocate and attach a security structure to the @shp security field. The 3804 * security field is initialized to NULL when the structure is first created. 3805 * 3806 * Return: Returns 0 if operation was successful and permission is granted. 3807 */ 3808 int security_shm_alloc(struct kern_ipc_perm *shp) 3809 { 3810 int rc = lsm_ipc_alloc(shp); 3811 3812 if (unlikely(rc)) 3813 return rc; 3814 rc = call_int_hook(shm_alloc_security, 0, shp); 3815 if (unlikely(rc)) 3816 security_shm_free(shp); 3817 return rc; 3818 } 3819 3820 /** 3821 * security_shm_free() - Free a sysv shm LSM blob 3822 * @shp: sysv ipc permission structure 3823 * 3824 * Deallocate the security structure @perm->security for the memory segment. 3825 */ 3826 void security_shm_free(struct kern_ipc_perm *shp) 3827 { 3828 call_void_hook(shm_free_security, shp); 3829 kfree(shp->security); 3830 shp->security = NULL; 3831 } 3832 3833 /** 3834 * security_shm_associate() - Check if a sysv shm operation is allowed 3835 * @shp: sysv ipc permission structure 3836 * @shmflg: operation flags 3837 * 3838 * Check permission when a shared memory region is requested through the shmget 3839 * system call. This hook is only called when returning the shared memory 3840 * region identifier for an existing region, not when a new shared memory 3841 * region is created. 3842 * 3843 * Return: Returns 0 if permission is granted. 3844 */ 3845 int security_shm_associate(struct kern_ipc_perm *shp, int shmflg) 3846 { 3847 return call_int_hook(shm_associate, 0, shp, shmflg); 3848 } 3849 3850 /** 3851 * security_shm_shmctl() - Check if a sysv shm operation is allowed 3852 * @shp: sysv ipc permission structure 3853 * @cmd: operation 3854 * 3855 * Check permission when a shared memory control operation specified by @cmd is 3856 * to be performed on the shared memory region with permissions in @shp. 3857 * 3858 * Return: Return 0 if permission is granted. 3859 */ 3860 int security_shm_shmctl(struct kern_ipc_perm *shp, int cmd) 3861 { 3862 return call_int_hook(shm_shmctl, 0, shp, cmd); 3863 } 3864 3865 /** 3866 * security_shm_shmat() - Check if a sysv shm attach operation is allowed 3867 * @shp: sysv ipc permission structure 3868 * @shmaddr: address of memory region to attach 3869 * @shmflg: operation flags 3870 * 3871 * Check permissions prior to allowing the shmat system call to attach the 3872 * shared memory segment with permissions @shp to the data segment of the 3873 * calling process. The attaching address is specified by @shmaddr. 3874 * 3875 * Return: Returns 0 if permission is granted. 3876 */ 3877 int security_shm_shmat(struct kern_ipc_perm *shp, 3878 char __user *shmaddr, int shmflg) 3879 { 3880 return call_int_hook(shm_shmat, 0, shp, shmaddr, shmflg); 3881 } 3882 3883 /** 3884 * security_sem_alloc() - Allocate a sysv semaphore LSM blob 3885 * @sma: sysv ipc permission structure 3886 * 3887 * Allocate and attach a security structure to the @sma security field. The 3888 * security field is initialized to NULL when the structure is first created. 3889 * 3890 * Return: Returns 0 if operation was successful and permission is granted. 3891 */ 3892 int security_sem_alloc(struct kern_ipc_perm *sma) 3893 { 3894 int rc = lsm_ipc_alloc(sma); 3895 3896 if (unlikely(rc)) 3897 return rc; 3898 rc = call_int_hook(sem_alloc_security, 0, sma); 3899 if (unlikely(rc)) 3900 security_sem_free(sma); 3901 return rc; 3902 } 3903 3904 /** 3905 * security_sem_free() - Free a sysv semaphore LSM blob 3906 * @sma: sysv ipc permission structure 3907 * 3908 * Deallocate security structure @sma->security for the semaphore. 3909 */ 3910 void security_sem_free(struct kern_ipc_perm *sma) 3911 { 3912 call_void_hook(sem_free_security, sma); 3913 kfree(sma->security); 3914 sma->security = NULL; 3915 } 3916 3917 /** 3918 * security_sem_associate() - Check if a sysv semaphore operation is allowed 3919 * @sma: sysv ipc permission structure 3920 * @semflg: operation flags 3921 * 3922 * Check permission when a semaphore is requested through the semget system 3923 * call. This hook is only called when returning the semaphore identifier for 3924 * an existing semaphore, not when a new one must be created. 3925 * 3926 * Return: Returns 0 if permission is granted. 3927 */ 3928 int security_sem_associate(struct kern_ipc_perm *sma, int semflg) 3929 { 3930 return call_int_hook(sem_associate, 0, sma, semflg); 3931 } 3932 3933 /** 3934 * security_sem_semctl() - Check if a sysv semaphore operation is allowed 3935 * @sma: sysv ipc permission structure 3936 * @cmd: operation 3937 * 3938 * Check permission when a semaphore operation specified by @cmd is to be 3939 * performed on the semaphore. 3940 * 3941 * Return: Returns 0 if permission is granted. 3942 */ 3943 int security_sem_semctl(struct kern_ipc_perm *sma, int cmd) 3944 { 3945 return call_int_hook(sem_semctl, 0, sma, cmd); 3946 } 3947 3948 /** 3949 * security_sem_semop() - Check if a sysv semaphore operation is allowed 3950 * @sma: sysv ipc permission structure 3951 * @sops: operations to perform 3952 * @nsops: number of operations 3953 * @alter: flag indicating changes will be made 3954 * 3955 * Check permissions before performing operations on members of the semaphore 3956 * set. If the @alter flag is nonzero, the semaphore set may be modified. 3957 * 3958 * Return: Returns 0 if permission is granted. 3959 */ 3960 int security_sem_semop(struct kern_ipc_perm *sma, struct sembuf *sops, 3961 unsigned nsops, int alter) 3962 { 3963 return call_int_hook(sem_semop, 0, sma, sops, nsops, alter); 3964 } 3965 3966 /** 3967 * security_d_instantiate() - Populate an inode's LSM state based on a dentry 3968 * @dentry: dentry 3969 * @inode: inode 3970 * 3971 * Fill in @inode security information for a @dentry if allowed. 3972 */ 3973 void security_d_instantiate(struct dentry *dentry, struct inode *inode) 3974 { 3975 if (unlikely(inode && IS_PRIVATE(inode))) 3976 return; 3977 call_void_hook(d_instantiate, dentry, inode); 3978 } 3979 EXPORT_SYMBOL(security_d_instantiate); 3980 3981 /* 3982 * Please keep this in sync with it's counterpart in security/lsm_syscalls.c 3983 */ 3984 3985 /** 3986 * security_getselfattr - Read an LSM attribute of the current process. 3987 * @attr: which attribute to return 3988 * @uctx: the user-space destination for the information, or NULL 3989 * @size: pointer to the size of space available to receive the data 3990 * @flags: special handling options. LSM_FLAG_SINGLE indicates that only 3991 * attributes associated with the LSM identified in the passed @ctx be 3992 * reported. 3993 * 3994 * A NULL value for @uctx can be used to get both the number of attributes 3995 * and the size of the data. 3996 * 3997 * Returns the number of attributes found on success, negative value 3998 * on error. @size is reset to the total size of the data. 3999 * If @size is insufficient to contain the data -E2BIG is returned. 4000 */ 4001 int security_getselfattr(unsigned int attr, struct lsm_ctx __user *uctx, 4002 size_t __user *size, u32 flags) 4003 { 4004 struct security_hook_list *hp; 4005 struct lsm_ctx lctx = { .id = LSM_ID_UNDEF, }; 4006 u8 __user *base = (u8 __user *)uctx; 4007 size_t total = 0; 4008 size_t entrysize; 4009 size_t left; 4010 bool toobig = false; 4011 bool single = false; 4012 int count = 0; 4013 int rc; 4014 4015 if (attr == LSM_ATTR_UNDEF) 4016 return -EINVAL; 4017 if (size == NULL) 4018 return -EINVAL; 4019 if (get_user(left, size)) 4020 return -EFAULT; 4021 4022 if (flags) { 4023 /* 4024 * Only flag supported is LSM_FLAG_SINGLE 4025 */ 4026 if (flags != LSM_FLAG_SINGLE || !uctx) 4027 return -EINVAL; 4028 if (copy_from_user(&lctx, uctx, sizeof(lctx))) 4029 return -EFAULT; 4030 /* 4031 * If the LSM ID isn't specified it is an error. 4032 */ 4033 if (lctx.id == LSM_ID_UNDEF) 4034 return -EINVAL; 4035 single = true; 4036 } 4037 4038 /* 4039 * In the usual case gather all the data from the LSMs. 4040 * In the single case only get the data from the LSM specified. 4041 */ 4042 hlist_for_each_entry(hp, &security_hook_heads.getselfattr, list) { 4043 if (single && lctx.id != hp->lsmid->id) 4044 continue; 4045 entrysize = left; 4046 if (base) 4047 uctx = (struct lsm_ctx __user *)(base + total); 4048 rc = hp->hook.getselfattr(attr, uctx, &entrysize, flags); 4049 if (rc == -EOPNOTSUPP) { 4050 rc = 0; 4051 continue; 4052 } 4053 if (rc == -E2BIG) { 4054 rc = 0; 4055 left = 0; 4056 toobig = true; 4057 } else if (rc < 0) 4058 return rc; 4059 else 4060 left -= entrysize; 4061 4062 total += entrysize; 4063 count += rc; 4064 if (single) 4065 break; 4066 } 4067 if (put_user(total, size)) 4068 return -EFAULT; 4069 if (toobig) 4070 return -E2BIG; 4071 if (count == 0) 4072 return LSM_RET_DEFAULT(getselfattr); 4073 return count; 4074 } 4075 4076 /* 4077 * Please keep this in sync with it's counterpart in security/lsm_syscalls.c 4078 */ 4079 4080 /** 4081 * security_setselfattr - Set an LSM attribute on the current process. 4082 * @attr: which attribute to set 4083 * @uctx: the user-space source for the information 4084 * @size: the size of the data 4085 * @flags: reserved for future use, must be 0 4086 * 4087 * Set an LSM attribute for the current process. The LSM, attribute 4088 * and new value are included in @uctx. 4089 * 4090 * Returns 0 on success, -EINVAL if the input is inconsistent, -EFAULT 4091 * if the user buffer is inaccessible, E2BIG if size is too big, or an 4092 * LSM specific failure. 4093 */ 4094 int security_setselfattr(unsigned int attr, struct lsm_ctx __user *uctx, 4095 size_t size, u32 flags) 4096 { 4097 struct security_hook_list *hp; 4098 struct lsm_ctx *lctx; 4099 int rc = LSM_RET_DEFAULT(setselfattr); 4100 4101 if (flags) 4102 return -EINVAL; 4103 if (size < sizeof(*lctx)) 4104 return -EINVAL; 4105 if (size > PAGE_SIZE) 4106 return -E2BIG; 4107 4108 lctx = memdup_user(uctx, size); 4109 if (IS_ERR(lctx)) 4110 return PTR_ERR(lctx); 4111 4112 if (size < lctx->len || size < lctx->ctx_len + sizeof(*lctx) || 4113 lctx->len < lctx->ctx_len + sizeof(*lctx)) { 4114 rc = -EINVAL; 4115 goto free_out; 4116 } 4117 4118 hlist_for_each_entry(hp, &security_hook_heads.setselfattr, list) 4119 if ((hp->lsmid->id) == lctx->id) { 4120 rc = hp->hook.setselfattr(attr, lctx, size, flags); 4121 break; 4122 } 4123 4124 free_out: 4125 kfree(lctx); 4126 return rc; 4127 } 4128 4129 /** 4130 * security_getprocattr() - Read an attribute for a task 4131 * @p: the task 4132 * @lsmid: LSM identification 4133 * @name: attribute name 4134 * @value: attribute value 4135 * 4136 * Read attribute @name for task @p and store it into @value if allowed. 4137 * 4138 * Return: Returns the length of @value on success, a negative value otherwise. 4139 */ 4140 int security_getprocattr(struct task_struct *p, int lsmid, const char *name, 4141 char **value) 4142 { 4143 struct security_hook_list *hp; 4144 4145 hlist_for_each_entry(hp, &security_hook_heads.getprocattr, list) { 4146 if (lsmid != 0 && lsmid != hp->lsmid->id) 4147 continue; 4148 return hp->hook.getprocattr(p, name, value); 4149 } 4150 return LSM_RET_DEFAULT(getprocattr); 4151 } 4152 4153 /** 4154 * security_setprocattr() - Set an attribute for a task 4155 * @lsmid: LSM identification 4156 * @name: attribute name 4157 * @value: attribute value 4158 * @size: attribute value size 4159 * 4160 * Write (set) the current task's attribute @name to @value, size @size if 4161 * allowed. 4162 * 4163 * Return: Returns bytes written on success, a negative value otherwise. 4164 */ 4165 int security_setprocattr(int lsmid, const char *name, void *value, size_t size) 4166 { 4167 struct security_hook_list *hp; 4168 4169 hlist_for_each_entry(hp, &security_hook_heads.setprocattr, list) { 4170 if (lsmid != 0 && lsmid != hp->lsmid->id) 4171 continue; 4172 return hp->hook.setprocattr(name, value, size); 4173 } 4174 return LSM_RET_DEFAULT(setprocattr); 4175 } 4176 4177 /** 4178 * security_netlink_send() - Save info and check if netlink sending is allowed 4179 * @sk: sending socket 4180 * @skb: netlink message 4181 * 4182 * Save security information for a netlink message so that permission checking 4183 * can be performed when the message is processed. The security information 4184 * can be saved using the eff_cap field of the netlink_skb_parms structure. 4185 * Also may be used to provide fine grained control over message transmission. 4186 * 4187 * Return: Returns 0 if the information was successfully saved and message is 4188 * allowed to be transmitted. 4189 */ 4190 int security_netlink_send(struct sock *sk, struct sk_buff *skb) 4191 { 4192 return call_int_hook(netlink_send, 0, sk, skb); 4193 } 4194 4195 /** 4196 * security_ismaclabel() - Check is the named attribute is a MAC label 4197 * @name: full extended attribute name 4198 * 4199 * Check if the extended attribute specified by @name represents a MAC label. 4200 * 4201 * Return: Returns 1 if name is a MAC attribute otherwise returns 0. 4202 */ 4203 int security_ismaclabel(const char *name) 4204 { 4205 return call_int_hook(ismaclabel, 0, name); 4206 } 4207 EXPORT_SYMBOL(security_ismaclabel); 4208 4209 /** 4210 * security_secid_to_secctx() - Convert a secid to a secctx 4211 * @secid: secid 4212 * @secdata: secctx 4213 * @seclen: secctx length 4214 * 4215 * Convert secid to security context. If @secdata is NULL the length of the 4216 * result will be returned in @seclen, but no @secdata will be returned. This 4217 * does mean that the length could change between calls to check the length and 4218 * the next call which actually allocates and returns the @secdata. 4219 * 4220 * Return: Return 0 on success, error on failure. 4221 */ 4222 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen) 4223 { 4224 struct security_hook_list *hp; 4225 int rc; 4226 4227 /* 4228 * Currently, only one LSM can implement secid_to_secctx (i.e this 4229 * LSM hook is not "stackable"). 4230 */ 4231 hlist_for_each_entry(hp, &security_hook_heads.secid_to_secctx, list) { 4232 rc = hp->hook.secid_to_secctx(secid, secdata, seclen); 4233 if (rc != LSM_RET_DEFAULT(secid_to_secctx)) 4234 return rc; 4235 } 4236 4237 return LSM_RET_DEFAULT(secid_to_secctx); 4238 } 4239 EXPORT_SYMBOL(security_secid_to_secctx); 4240 4241 /** 4242 * security_secctx_to_secid() - Convert a secctx to a secid 4243 * @secdata: secctx 4244 * @seclen: length of secctx 4245 * @secid: secid 4246 * 4247 * Convert security context to secid. 4248 * 4249 * Return: Returns 0 on success, error on failure. 4250 */ 4251 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid) 4252 { 4253 *secid = 0; 4254 return call_int_hook(secctx_to_secid, 0, secdata, seclen, secid); 4255 } 4256 EXPORT_SYMBOL(security_secctx_to_secid); 4257 4258 /** 4259 * security_release_secctx() - Free a secctx buffer 4260 * @secdata: secctx 4261 * @seclen: length of secctx 4262 * 4263 * Release the security context. 4264 */ 4265 void security_release_secctx(char *secdata, u32 seclen) 4266 { 4267 call_void_hook(release_secctx, secdata, seclen); 4268 } 4269 EXPORT_SYMBOL(security_release_secctx); 4270 4271 /** 4272 * security_inode_invalidate_secctx() - Invalidate an inode's security label 4273 * @inode: inode 4274 * 4275 * Notify the security module that it must revalidate the security context of 4276 * an inode. 4277 */ 4278 void security_inode_invalidate_secctx(struct inode *inode) 4279 { 4280 call_void_hook(inode_invalidate_secctx, inode); 4281 } 4282 EXPORT_SYMBOL(security_inode_invalidate_secctx); 4283 4284 /** 4285 * security_inode_notifysecctx() - Notify the LSM of an inode's security label 4286 * @inode: inode 4287 * @ctx: secctx 4288 * @ctxlen: length of secctx 4289 * 4290 * Notify the security module of what the security context of an inode should 4291 * be. Initializes the incore security context managed by the security module 4292 * for this inode. Example usage: NFS client invokes this hook to initialize 4293 * the security context in its incore inode to the value provided by the server 4294 * for the file when the server returned the file's attributes to the client. 4295 * Must be called with inode->i_mutex locked. 4296 * 4297 * Return: Returns 0 on success, error on failure. 4298 */ 4299 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen) 4300 { 4301 return call_int_hook(inode_notifysecctx, 0, inode, ctx, ctxlen); 4302 } 4303 EXPORT_SYMBOL(security_inode_notifysecctx); 4304 4305 /** 4306 * security_inode_setsecctx() - Change the security label of an inode 4307 * @dentry: inode 4308 * @ctx: secctx 4309 * @ctxlen: length of secctx 4310 * 4311 * Change the security context of an inode. Updates the incore security 4312 * context managed by the security module and invokes the fs code as needed 4313 * (via __vfs_setxattr_noperm) to update any backing xattrs that represent the 4314 * context. Example usage: NFS server invokes this hook to change the security 4315 * context in its incore inode and on the backing filesystem to a value 4316 * provided by the client on a SETATTR operation. Must be called with 4317 * inode->i_mutex locked. 4318 * 4319 * Return: Returns 0 on success, error on failure. 4320 */ 4321 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen) 4322 { 4323 return call_int_hook(inode_setsecctx, 0, dentry, ctx, ctxlen); 4324 } 4325 EXPORT_SYMBOL(security_inode_setsecctx); 4326 4327 /** 4328 * security_inode_getsecctx() - Get the security label of an inode 4329 * @inode: inode 4330 * @ctx: secctx 4331 * @ctxlen: length of secctx 4332 * 4333 * On success, returns 0 and fills out @ctx and @ctxlen with the security 4334 * context for the given @inode. 4335 * 4336 * Return: Returns 0 on success, error on failure. 4337 */ 4338 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen) 4339 { 4340 struct security_hook_list *hp; 4341 int rc; 4342 4343 /* 4344 * Only one module will provide a security context. 4345 */ 4346 hlist_for_each_entry(hp, &security_hook_heads.inode_getsecctx, list) { 4347 rc = hp->hook.inode_getsecctx(inode, ctx, ctxlen); 4348 if (rc != LSM_RET_DEFAULT(inode_getsecctx)) 4349 return rc; 4350 } 4351 4352 return LSM_RET_DEFAULT(inode_getsecctx); 4353 } 4354 EXPORT_SYMBOL(security_inode_getsecctx); 4355 4356 #ifdef CONFIG_WATCH_QUEUE 4357 /** 4358 * security_post_notification() - Check if a watch notification can be posted 4359 * @w_cred: credentials of the task that set the watch 4360 * @cred: credentials of the task which triggered the watch 4361 * @n: the notification 4362 * 4363 * Check to see if a watch notification can be posted to a particular queue. 4364 * 4365 * Return: Returns 0 if permission is granted. 4366 */ 4367 int security_post_notification(const struct cred *w_cred, 4368 const struct cred *cred, 4369 struct watch_notification *n) 4370 { 4371 return call_int_hook(post_notification, 0, w_cred, cred, n); 4372 } 4373 #endif /* CONFIG_WATCH_QUEUE */ 4374 4375 #ifdef CONFIG_KEY_NOTIFICATIONS 4376 /** 4377 * security_watch_key() - Check if a task is allowed to watch for key events 4378 * @key: the key to watch 4379 * 4380 * Check to see if a process is allowed to watch for event notifications from 4381 * a key or keyring. 4382 * 4383 * Return: Returns 0 if permission is granted. 4384 */ 4385 int security_watch_key(struct key *key) 4386 { 4387 return call_int_hook(watch_key, 0, key); 4388 } 4389 #endif /* CONFIG_KEY_NOTIFICATIONS */ 4390 4391 #ifdef CONFIG_SECURITY_NETWORK 4392 /** 4393 * security_unix_stream_connect() - Check if a AF_UNIX stream is allowed 4394 * @sock: originating sock 4395 * @other: peer sock 4396 * @newsk: new sock 4397 * 4398 * Check permissions before establishing a Unix domain stream connection 4399 * between @sock and @other. 4400 * 4401 * The @unix_stream_connect and @unix_may_send hooks were necessary because 4402 * Linux provides an alternative to the conventional file name space for Unix 4403 * domain sockets. Whereas binding and connecting to sockets in the file name 4404 * space is mediated by the typical file permissions (and caught by the mknod 4405 * and permission hooks in inode_security_ops), binding and connecting to 4406 * sockets in the abstract name space is completely unmediated. Sufficient 4407 * control of Unix domain sockets in the abstract name space isn't possible 4408 * using only the socket layer hooks, since we need to know the actual target 4409 * socket, which is not looked up until we are inside the af_unix code. 4410 * 4411 * Return: Returns 0 if permission is granted. 4412 */ 4413 int security_unix_stream_connect(struct sock *sock, struct sock *other, 4414 struct sock *newsk) 4415 { 4416 return call_int_hook(unix_stream_connect, 0, sock, other, newsk); 4417 } 4418 EXPORT_SYMBOL(security_unix_stream_connect); 4419 4420 /** 4421 * security_unix_may_send() - Check if AF_UNIX socket can send datagrams 4422 * @sock: originating sock 4423 * @other: peer sock 4424 * 4425 * Check permissions before connecting or sending datagrams from @sock to 4426 * @other. 4427 * 4428 * The @unix_stream_connect and @unix_may_send hooks were necessary because 4429 * Linux provides an alternative to the conventional file name space for Unix 4430 * domain sockets. Whereas binding and connecting to sockets in the file name 4431 * space is mediated by the typical file permissions (and caught by the mknod 4432 * and permission hooks in inode_security_ops), binding and connecting to 4433 * sockets in the abstract name space is completely unmediated. Sufficient 4434 * control of Unix domain sockets in the abstract name space isn't possible 4435 * using only the socket layer hooks, since we need to know the actual target 4436 * socket, which is not looked up until we are inside the af_unix code. 4437 * 4438 * Return: Returns 0 if permission is granted. 4439 */ 4440 int security_unix_may_send(struct socket *sock, struct socket *other) 4441 { 4442 return call_int_hook(unix_may_send, 0, sock, other); 4443 } 4444 EXPORT_SYMBOL(security_unix_may_send); 4445 4446 /** 4447 * security_socket_create() - Check if creating a new socket is allowed 4448 * @family: protocol family 4449 * @type: communications type 4450 * @protocol: requested protocol 4451 * @kern: set to 1 if a kernel socket is requested 4452 * 4453 * Check permissions prior to creating a new socket. 4454 * 4455 * Return: Returns 0 if permission is granted. 4456 */ 4457 int security_socket_create(int family, int type, int protocol, int kern) 4458 { 4459 return call_int_hook(socket_create, 0, family, type, protocol, kern); 4460 } 4461 4462 /** 4463 * security_socket_post_create() - Initialize a newly created socket 4464 * @sock: socket 4465 * @family: protocol family 4466 * @type: communications type 4467 * @protocol: requested protocol 4468 * @kern: set to 1 if a kernel socket is requested 4469 * 4470 * This hook allows a module to update or allocate a per-socket security 4471 * structure. Note that the security field was not added directly to the socket 4472 * structure, but rather, the socket security information is stored in the 4473 * associated inode. Typically, the inode alloc_security hook will allocate 4474 * and attach security information to SOCK_INODE(sock)->i_security. This hook 4475 * may be used to update the SOCK_INODE(sock)->i_security field with additional 4476 * information that wasn't available when the inode was allocated. 4477 * 4478 * Return: Returns 0 if permission is granted. 4479 */ 4480 int security_socket_post_create(struct socket *sock, int family, 4481 int type, int protocol, int kern) 4482 { 4483 return call_int_hook(socket_post_create, 0, sock, family, type, 4484 protocol, kern); 4485 } 4486 4487 /** 4488 * security_socket_socketpair() - Check if creating a socketpair is allowed 4489 * @socka: first socket 4490 * @sockb: second socket 4491 * 4492 * Check permissions before creating a fresh pair of sockets. 4493 * 4494 * Return: Returns 0 if permission is granted and the connection was 4495 * established. 4496 */ 4497 int security_socket_socketpair(struct socket *socka, struct socket *sockb) 4498 { 4499 return call_int_hook(socket_socketpair, 0, socka, sockb); 4500 } 4501 EXPORT_SYMBOL(security_socket_socketpair); 4502 4503 /** 4504 * security_socket_bind() - Check if a socket bind operation is allowed 4505 * @sock: socket 4506 * @address: requested bind address 4507 * @addrlen: length of address 4508 * 4509 * Check permission before socket protocol layer bind operation is performed 4510 * and the socket @sock is bound to the address specified in the @address 4511 * parameter. 4512 * 4513 * Return: Returns 0 if permission is granted. 4514 */ 4515 int security_socket_bind(struct socket *sock, 4516 struct sockaddr *address, int addrlen) 4517 { 4518 return call_int_hook(socket_bind, 0, sock, address, addrlen); 4519 } 4520 4521 /** 4522 * security_socket_connect() - Check if a socket connect operation is allowed 4523 * @sock: socket 4524 * @address: address of remote connection point 4525 * @addrlen: length of address 4526 * 4527 * Check permission before socket protocol layer connect operation attempts to 4528 * connect socket @sock to a remote address, @address. 4529 * 4530 * Return: Returns 0 if permission is granted. 4531 */ 4532 int security_socket_connect(struct socket *sock, 4533 struct sockaddr *address, int addrlen) 4534 { 4535 return call_int_hook(socket_connect, 0, sock, address, addrlen); 4536 } 4537 4538 /** 4539 * security_socket_listen() - Check if a socket is allowed to listen 4540 * @sock: socket 4541 * @backlog: connection queue size 4542 * 4543 * Check permission before socket protocol layer listen operation. 4544 * 4545 * Return: Returns 0 if permission is granted. 4546 */ 4547 int security_socket_listen(struct socket *sock, int backlog) 4548 { 4549 return call_int_hook(socket_listen, 0, sock, backlog); 4550 } 4551 4552 /** 4553 * security_socket_accept() - Check if a socket is allowed to accept connections 4554 * @sock: listening socket 4555 * @newsock: newly creation connection socket 4556 * 4557 * Check permission before accepting a new connection. Note that the new 4558 * socket, @newsock, has been created and some information copied to it, but 4559 * the accept operation has not actually been performed. 4560 * 4561 * Return: Returns 0 if permission is granted. 4562 */ 4563 int security_socket_accept(struct socket *sock, struct socket *newsock) 4564 { 4565 return call_int_hook(socket_accept, 0, sock, newsock); 4566 } 4567 4568 /** 4569 * security_socket_sendmsg() - Check is sending a message is allowed 4570 * @sock: sending socket 4571 * @msg: message to send 4572 * @size: size of message 4573 * 4574 * Check permission before transmitting a message to another socket. 4575 * 4576 * Return: Returns 0 if permission is granted. 4577 */ 4578 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size) 4579 { 4580 return call_int_hook(socket_sendmsg, 0, sock, msg, size); 4581 } 4582 4583 /** 4584 * security_socket_recvmsg() - Check if receiving a message is allowed 4585 * @sock: receiving socket 4586 * @msg: message to receive 4587 * @size: size of message 4588 * @flags: operational flags 4589 * 4590 * Check permission before receiving a message from a socket. 4591 * 4592 * Return: Returns 0 if permission is granted. 4593 */ 4594 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg, 4595 int size, int flags) 4596 { 4597 return call_int_hook(socket_recvmsg, 0, sock, msg, size, flags); 4598 } 4599 4600 /** 4601 * security_socket_getsockname() - Check if reading the socket addr is allowed 4602 * @sock: socket 4603 * 4604 * Check permission before reading the local address (name) of the socket 4605 * object. 4606 * 4607 * Return: Returns 0 if permission is granted. 4608 */ 4609 int security_socket_getsockname(struct socket *sock) 4610 { 4611 return call_int_hook(socket_getsockname, 0, sock); 4612 } 4613 4614 /** 4615 * security_socket_getpeername() - Check if reading the peer's addr is allowed 4616 * @sock: socket 4617 * 4618 * Check permission before the remote address (name) of a socket object. 4619 * 4620 * Return: Returns 0 if permission is granted. 4621 */ 4622 int security_socket_getpeername(struct socket *sock) 4623 { 4624 return call_int_hook(socket_getpeername, 0, sock); 4625 } 4626 4627 /** 4628 * security_socket_getsockopt() - Check if reading a socket option is allowed 4629 * @sock: socket 4630 * @level: option's protocol level 4631 * @optname: option name 4632 * 4633 * Check permissions before retrieving the options associated with socket 4634 * @sock. 4635 * 4636 * Return: Returns 0 if permission is granted. 4637 */ 4638 int security_socket_getsockopt(struct socket *sock, int level, int optname) 4639 { 4640 return call_int_hook(socket_getsockopt, 0, sock, level, optname); 4641 } 4642 4643 /** 4644 * security_socket_setsockopt() - Check if setting a socket option is allowed 4645 * @sock: socket 4646 * @level: option's protocol level 4647 * @optname: option name 4648 * 4649 * Check permissions before setting the options associated with socket @sock. 4650 * 4651 * Return: Returns 0 if permission is granted. 4652 */ 4653 int security_socket_setsockopt(struct socket *sock, int level, int optname) 4654 { 4655 return call_int_hook(socket_setsockopt, 0, sock, level, optname); 4656 } 4657 4658 /** 4659 * security_socket_shutdown() - Checks if shutting down the socket is allowed 4660 * @sock: socket 4661 * @how: flag indicating how sends and receives are handled 4662 * 4663 * Checks permission before all or part of a connection on the socket @sock is 4664 * shut down. 4665 * 4666 * Return: Returns 0 if permission is granted. 4667 */ 4668 int security_socket_shutdown(struct socket *sock, int how) 4669 { 4670 return call_int_hook(socket_shutdown, 0, sock, how); 4671 } 4672 4673 /** 4674 * security_sock_rcv_skb() - Check if an incoming network packet is allowed 4675 * @sk: destination sock 4676 * @skb: incoming packet 4677 * 4678 * Check permissions on incoming network packets. This hook is distinct from 4679 * Netfilter's IP input hooks since it is the first time that the incoming 4680 * sk_buff @skb has been associated with a particular socket, @sk. Must not 4681 * sleep inside this hook because some callers hold spinlocks. 4682 * 4683 * Return: Returns 0 if permission is granted. 4684 */ 4685 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb) 4686 { 4687 return call_int_hook(socket_sock_rcv_skb, 0, sk, skb); 4688 } 4689 EXPORT_SYMBOL(security_sock_rcv_skb); 4690 4691 /** 4692 * security_socket_getpeersec_stream() - Get the remote peer label 4693 * @sock: socket 4694 * @optval: destination buffer 4695 * @optlen: size of peer label copied into the buffer 4696 * @len: maximum size of the destination buffer 4697 * 4698 * This hook allows the security module to provide peer socket security state 4699 * for unix or connected tcp sockets to userspace via getsockopt SO_GETPEERSEC. 4700 * For tcp sockets this can be meaningful if the socket is associated with an 4701 * ipsec SA. 4702 * 4703 * Return: Returns 0 if all is well, otherwise, typical getsockopt return 4704 * values. 4705 */ 4706 int security_socket_getpeersec_stream(struct socket *sock, sockptr_t optval, 4707 sockptr_t optlen, unsigned int len) 4708 { 4709 struct security_hook_list *hp; 4710 int rc; 4711 4712 /* 4713 * Only one module will provide a security context. 4714 */ 4715 hlist_for_each_entry(hp, &security_hook_heads.socket_getpeersec_stream, 4716 list) { 4717 rc = hp->hook.socket_getpeersec_stream(sock, optval, optlen, 4718 len); 4719 if (rc != LSM_RET_DEFAULT(socket_getpeersec_stream)) 4720 return rc; 4721 } 4722 return LSM_RET_DEFAULT(socket_getpeersec_stream); 4723 } 4724 4725 /** 4726 * security_socket_getpeersec_dgram() - Get the remote peer label 4727 * @sock: socket 4728 * @skb: datagram packet 4729 * @secid: remote peer label secid 4730 * 4731 * This hook allows the security module to provide peer socket security state 4732 * for udp sockets on a per-packet basis to userspace via getsockopt 4733 * SO_GETPEERSEC. The application must first have indicated the IP_PASSSEC 4734 * option via getsockopt. It can then retrieve the security state returned by 4735 * this hook for a packet via the SCM_SECURITY ancillary message type. 4736 * 4737 * Return: Returns 0 on success, error on failure. 4738 */ 4739 int security_socket_getpeersec_dgram(struct socket *sock, 4740 struct sk_buff *skb, u32 *secid) 4741 { 4742 struct security_hook_list *hp; 4743 int rc; 4744 4745 /* 4746 * Only one module will provide a security context. 4747 */ 4748 hlist_for_each_entry(hp, &security_hook_heads.socket_getpeersec_dgram, 4749 list) { 4750 rc = hp->hook.socket_getpeersec_dgram(sock, skb, secid); 4751 if (rc != LSM_RET_DEFAULT(socket_getpeersec_dgram)) 4752 return rc; 4753 } 4754 return LSM_RET_DEFAULT(socket_getpeersec_dgram); 4755 } 4756 EXPORT_SYMBOL(security_socket_getpeersec_dgram); 4757 4758 /** 4759 * security_sk_alloc() - Allocate and initialize a sock's LSM blob 4760 * @sk: sock 4761 * @family: protocol family 4762 * @priority: gfp flags 4763 * 4764 * Allocate and attach a security structure to the sk->sk_security field, which 4765 * is used to copy security attributes between local stream sockets. 4766 * 4767 * Return: Returns 0 on success, error on failure. 4768 */ 4769 int security_sk_alloc(struct sock *sk, int family, gfp_t priority) 4770 { 4771 return call_int_hook(sk_alloc_security, 0, sk, family, priority); 4772 } 4773 4774 /** 4775 * security_sk_free() - Free the sock's LSM blob 4776 * @sk: sock 4777 * 4778 * Deallocate security structure. 4779 */ 4780 void security_sk_free(struct sock *sk) 4781 { 4782 call_void_hook(sk_free_security, sk); 4783 } 4784 4785 /** 4786 * security_sk_clone() - Clone a sock's LSM state 4787 * @sk: original sock 4788 * @newsk: target sock 4789 * 4790 * Clone/copy security structure. 4791 */ 4792 void security_sk_clone(const struct sock *sk, struct sock *newsk) 4793 { 4794 call_void_hook(sk_clone_security, sk, newsk); 4795 } 4796 EXPORT_SYMBOL(security_sk_clone); 4797 4798 /** 4799 * security_sk_classify_flow() - Set a flow's secid based on socket 4800 * @sk: original socket 4801 * @flic: target flow 4802 * 4803 * Set the target flow's secid to socket's secid. 4804 */ 4805 void security_sk_classify_flow(const struct sock *sk, struct flowi_common *flic) 4806 { 4807 call_void_hook(sk_getsecid, sk, &flic->flowic_secid); 4808 } 4809 EXPORT_SYMBOL(security_sk_classify_flow); 4810 4811 /** 4812 * security_req_classify_flow() - Set a flow's secid based on request_sock 4813 * @req: request_sock 4814 * @flic: target flow 4815 * 4816 * Sets @flic's secid to @req's secid. 4817 */ 4818 void security_req_classify_flow(const struct request_sock *req, 4819 struct flowi_common *flic) 4820 { 4821 call_void_hook(req_classify_flow, req, flic); 4822 } 4823 EXPORT_SYMBOL(security_req_classify_flow); 4824 4825 /** 4826 * security_sock_graft() - Reconcile LSM state when grafting a sock on a socket 4827 * @sk: sock being grafted 4828 * @parent: target parent socket 4829 * 4830 * Sets @parent's inode secid to @sk's secid and update @sk with any necessary 4831 * LSM state from @parent. 4832 */ 4833 void security_sock_graft(struct sock *sk, struct socket *parent) 4834 { 4835 call_void_hook(sock_graft, sk, parent); 4836 } 4837 EXPORT_SYMBOL(security_sock_graft); 4838 4839 /** 4840 * security_inet_conn_request() - Set request_sock state using incoming connect 4841 * @sk: parent listening sock 4842 * @skb: incoming connection 4843 * @req: new request_sock 4844 * 4845 * Initialize the @req LSM state based on @sk and the incoming connect in @skb. 4846 * 4847 * Return: Returns 0 if permission is granted. 4848 */ 4849 int security_inet_conn_request(const struct sock *sk, 4850 struct sk_buff *skb, struct request_sock *req) 4851 { 4852 return call_int_hook(inet_conn_request, 0, sk, skb, req); 4853 } 4854 EXPORT_SYMBOL(security_inet_conn_request); 4855 4856 /** 4857 * security_inet_csk_clone() - Set new sock LSM state based on request_sock 4858 * @newsk: new sock 4859 * @req: connection request_sock 4860 * 4861 * Set that LSM state of @sock using the LSM state from @req. 4862 */ 4863 void security_inet_csk_clone(struct sock *newsk, 4864 const struct request_sock *req) 4865 { 4866 call_void_hook(inet_csk_clone, newsk, req); 4867 } 4868 4869 /** 4870 * security_inet_conn_established() - Update sock's LSM state with connection 4871 * @sk: sock 4872 * @skb: connection packet 4873 * 4874 * Update @sock's LSM state to represent a new connection from @skb. 4875 */ 4876 void security_inet_conn_established(struct sock *sk, 4877 struct sk_buff *skb) 4878 { 4879 call_void_hook(inet_conn_established, sk, skb); 4880 } 4881 EXPORT_SYMBOL(security_inet_conn_established); 4882 4883 /** 4884 * security_secmark_relabel_packet() - Check if setting a secmark is allowed 4885 * @secid: new secmark value 4886 * 4887 * Check if the process should be allowed to relabel packets to @secid. 4888 * 4889 * Return: Returns 0 if permission is granted. 4890 */ 4891 int security_secmark_relabel_packet(u32 secid) 4892 { 4893 return call_int_hook(secmark_relabel_packet, 0, secid); 4894 } 4895 EXPORT_SYMBOL(security_secmark_relabel_packet); 4896 4897 /** 4898 * security_secmark_refcount_inc() - Increment the secmark labeling rule count 4899 * 4900 * Tells the LSM to increment the number of secmark labeling rules loaded. 4901 */ 4902 void security_secmark_refcount_inc(void) 4903 { 4904 call_void_hook(secmark_refcount_inc); 4905 } 4906 EXPORT_SYMBOL(security_secmark_refcount_inc); 4907 4908 /** 4909 * security_secmark_refcount_dec() - Decrement the secmark labeling rule count 4910 * 4911 * Tells the LSM to decrement the number of secmark labeling rules loaded. 4912 */ 4913 void security_secmark_refcount_dec(void) 4914 { 4915 call_void_hook(secmark_refcount_dec); 4916 } 4917 EXPORT_SYMBOL(security_secmark_refcount_dec); 4918 4919 /** 4920 * security_tun_dev_alloc_security() - Allocate a LSM blob for a TUN device 4921 * @security: pointer to the LSM blob 4922 * 4923 * This hook allows a module to allocate a security structure for a TUN device, 4924 * returning the pointer in @security. 4925 * 4926 * Return: Returns a zero on success, negative values on failure. 4927 */ 4928 int security_tun_dev_alloc_security(void **security) 4929 { 4930 return call_int_hook(tun_dev_alloc_security, 0, security); 4931 } 4932 EXPORT_SYMBOL(security_tun_dev_alloc_security); 4933 4934 /** 4935 * security_tun_dev_free_security() - Free a TUN device LSM blob 4936 * @security: LSM blob 4937 * 4938 * This hook allows a module to free the security structure for a TUN device. 4939 */ 4940 void security_tun_dev_free_security(void *security) 4941 { 4942 call_void_hook(tun_dev_free_security, security); 4943 } 4944 EXPORT_SYMBOL(security_tun_dev_free_security); 4945 4946 /** 4947 * security_tun_dev_create() - Check if creating a TUN device is allowed 4948 * 4949 * Check permissions prior to creating a new TUN device. 4950 * 4951 * Return: Returns 0 if permission is granted. 4952 */ 4953 int security_tun_dev_create(void) 4954 { 4955 return call_int_hook(tun_dev_create, 0); 4956 } 4957 EXPORT_SYMBOL(security_tun_dev_create); 4958 4959 /** 4960 * security_tun_dev_attach_queue() - Check if attaching a TUN queue is allowed 4961 * @security: TUN device LSM blob 4962 * 4963 * Check permissions prior to attaching to a TUN device queue. 4964 * 4965 * Return: Returns 0 if permission is granted. 4966 */ 4967 int security_tun_dev_attach_queue(void *security) 4968 { 4969 return call_int_hook(tun_dev_attach_queue, 0, security); 4970 } 4971 EXPORT_SYMBOL(security_tun_dev_attach_queue); 4972 4973 /** 4974 * security_tun_dev_attach() - Update TUN device LSM state on attach 4975 * @sk: associated sock 4976 * @security: TUN device LSM blob 4977 * 4978 * This hook can be used by the module to update any security state associated 4979 * with the TUN device's sock structure. 4980 * 4981 * Return: Returns 0 if permission is granted. 4982 */ 4983 int security_tun_dev_attach(struct sock *sk, void *security) 4984 { 4985 return call_int_hook(tun_dev_attach, 0, sk, security); 4986 } 4987 EXPORT_SYMBOL(security_tun_dev_attach); 4988 4989 /** 4990 * security_tun_dev_open() - Update TUN device LSM state on open 4991 * @security: TUN device LSM blob 4992 * 4993 * This hook can be used by the module to update any security state associated 4994 * with the TUN device's security structure. 4995 * 4996 * Return: Returns 0 if permission is granted. 4997 */ 4998 int security_tun_dev_open(void *security) 4999 { 5000 return call_int_hook(tun_dev_open, 0, security); 5001 } 5002 EXPORT_SYMBOL(security_tun_dev_open); 5003 5004 /** 5005 * security_sctp_assoc_request() - Update the LSM on a SCTP association req 5006 * @asoc: SCTP association 5007 * @skb: packet requesting the association 5008 * 5009 * Passes the @asoc and @chunk->skb of the association INIT packet to the LSM. 5010 * 5011 * Return: Returns 0 on success, error on failure. 5012 */ 5013 int security_sctp_assoc_request(struct sctp_association *asoc, 5014 struct sk_buff *skb) 5015 { 5016 return call_int_hook(sctp_assoc_request, 0, asoc, skb); 5017 } 5018 EXPORT_SYMBOL(security_sctp_assoc_request); 5019 5020 /** 5021 * security_sctp_bind_connect() - Validate a list of addrs for a SCTP option 5022 * @sk: socket 5023 * @optname: SCTP option to validate 5024 * @address: list of IP addresses to validate 5025 * @addrlen: length of the address list 5026 * 5027 * Validiate permissions required for each address associated with sock @sk. 5028 * Depending on @optname, the addresses will be treated as either a connect or 5029 * bind service. The @addrlen is calculated on each IPv4 and IPv6 address using 5030 * sizeof(struct sockaddr_in) or sizeof(struct sockaddr_in6). 5031 * 5032 * Return: Returns 0 on success, error on failure. 5033 */ 5034 int security_sctp_bind_connect(struct sock *sk, int optname, 5035 struct sockaddr *address, int addrlen) 5036 { 5037 return call_int_hook(sctp_bind_connect, 0, sk, optname, 5038 address, addrlen); 5039 } 5040 EXPORT_SYMBOL(security_sctp_bind_connect); 5041 5042 /** 5043 * security_sctp_sk_clone() - Clone a SCTP sock's LSM state 5044 * @asoc: SCTP association 5045 * @sk: original sock 5046 * @newsk: target sock 5047 * 5048 * Called whenever a new socket is created by accept(2) (i.e. a TCP style 5049 * socket) or when a socket is 'peeled off' e.g userspace calls 5050 * sctp_peeloff(3). 5051 */ 5052 void security_sctp_sk_clone(struct sctp_association *asoc, struct sock *sk, 5053 struct sock *newsk) 5054 { 5055 call_void_hook(sctp_sk_clone, asoc, sk, newsk); 5056 } 5057 EXPORT_SYMBOL(security_sctp_sk_clone); 5058 5059 /** 5060 * security_sctp_assoc_established() - Update LSM state when assoc established 5061 * @asoc: SCTP association 5062 * @skb: packet establishing the association 5063 * 5064 * Passes the @asoc and @chunk->skb of the association COOKIE_ACK packet to the 5065 * security module. 5066 * 5067 * Return: Returns 0 if permission is granted. 5068 */ 5069 int security_sctp_assoc_established(struct sctp_association *asoc, 5070 struct sk_buff *skb) 5071 { 5072 return call_int_hook(sctp_assoc_established, 0, asoc, skb); 5073 } 5074 EXPORT_SYMBOL(security_sctp_assoc_established); 5075 5076 /** 5077 * security_mptcp_add_subflow() - Inherit the LSM label from the MPTCP socket 5078 * @sk: the owning MPTCP socket 5079 * @ssk: the new subflow 5080 * 5081 * Update the labeling for the given MPTCP subflow, to match the one of the 5082 * owning MPTCP socket. This hook has to be called after the socket creation and 5083 * initialization via the security_socket_create() and 5084 * security_socket_post_create() LSM hooks. 5085 * 5086 * Return: Returns 0 on success or a negative error code on failure. 5087 */ 5088 int security_mptcp_add_subflow(struct sock *sk, struct sock *ssk) 5089 { 5090 return call_int_hook(mptcp_add_subflow, 0, sk, ssk); 5091 } 5092 5093 #endif /* CONFIG_SECURITY_NETWORK */ 5094 5095 #ifdef CONFIG_SECURITY_INFINIBAND 5096 /** 5097 * security_ib_pkey_access() - Check if access to an IB pkey is allowed 5098 * @sec: LSM blob 5099 * @subnet_prefix: subnet prefix of the port 5100 * @pkey: IB pkey 5101 * 5102 * Check permission to access a pkey when modifying a QP. 5103 * 5104 * Return: Returns 0 if permission is granted. 5105 */ 5106 int security_ib_pkey_access(void *sec, u64 subnet_prefix, u16 pkey) 5107 { 5108 return call_int_hook(ib_pkey_access, 0, sec, subnet_prefix, pkey); 5109 } 5110 EXPORT_SYMBOL(security_ib_pkey_access); 5111 5112 /** 5113 * security_ib_endport_manage_subnet() - Check if SMPs traffic is allowed 5114 * @sec: LSM blob 5115 * @dev_name: IB device name 5116 * @port_num: port number 5117 * 5118 * Check permissions to send and receive SMPs on a end port. 5119 * 5120 * Return: Returns 0 if permission is granted. 5121 */ 5122 int security_ib_endport_manage_subnet(void *sec, 5123 const char *dev_name, u8 port_num) 5124 { 5125 return call_int_hook(ib_endport_manage_subnet, 0, sec, 5126 dev_name, port_num); 5127 } 5128 EXPORT_SYMBOL(security_ib_endport_manage_subnet); 5129 5130 /** 5131 * security_ib_alloc_security() - Allocate an Infiniband LSM blob 5132 * @sec: LSM blob 5133 * 5134 * Allocate a security structure for Infiniband objects. 5135 * 5136 * Return: Returns 0 on success, non-zero on failure. 5137 */ 5138 int security_ib_alloc_security(void **sec) 5139 { 5140 return call_int_hook(ib_alloc_security, 0, sec); 5141 } 5142 EXPORT_SYMBOL(security_ib_alloc_security); 5143 5144 /** 5145 * security_ib_free_security() - Free an Infiniband LSM blob 5146 * @sec: LSM blob 5147 * 5148 * Deallocate an Infiniband security structure. 5149 */ 5150 void security_ib_free_security(void *sec) 5151 { 5152 call_void_hook(ib_free_security, sec); 5153 } 5154 EXPORT_SYMBOL(security_ib_free_security); 5155 #endif /* CONFIG_SECURITY_INFINIBAND */ 5156 5157 #ifdef CONFIG_SECURITY_NETWORK_XFRM 5158 /** 5159 * security_xfrm_policy_alloc() - Allocate a xfrm policy LSM blob 5160 * @ctxp: xfrm security context being added to the SPD 5161 * @sec_ctx: security label provided by userspace 5162 * @gfp: gfp flags 5163 * 5164 * Allocate a security structure to the xp->security field; the security field 5165 * is initialized to NULL when the xfrm_policy is allocated. 5166 * 5167 * Return: Return 0 if operation was successful. 5168 */ 5169 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, 5170 struct xfrm_user_sec_ctx *sec_ctx, 5171 gfp_t gfp) 5172 { 5173 return call_int_hook(xfrm_policy_alloc_security, 0, ctxp, sec_ctx, gfp); 5174 } 5175 EXPORT_SYMBOL(security_xfrm_policy_alloc); 5176 5177 /** 5178 * security_xfrm_policy_clone() - Clone xfrm policy LSM state 5179 * @old_ctx: xfrm security context 5180 * @new_ctxp: target xfrm security context 5181 * 5182 * Allocate a security structure in new_ctxp that contains the information from 5183 * the old_ctx structure. 5184 * 5185 * Return: Return 0 if operation was successful. 5186 */ 5187 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx, 5188 struct xfrm_sec_ctx **new_ctxp) 5189 { 5190 return call_int_hook(xfrm_policy_clone_security, 0, old_ctx, new_ctxp); 5191 } 5192 5193 /** 5194 * security_xfrm_policy_free() - Free a xfrm security context 5195 * @ctx: xfrm security context 5196 * 5197 * Free LSM resources associated with @ctx. 5198 */ 5199 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx) 5200 { 5201 call_void_hook(xfrm_policy_free_security, ctx); 5202 } 5203 EXPORT_SYMBOL(security_xfrm_policy_free); 5204 5205 /** 5206 * security_xfrm_policy_delete() - Check if deleting a xfrm policy is allowed 5207 * @ctx: xfrm security context 5208 * 5209 * Authorize deletion of a SPD entry. 5210 * 5211 * Return: Returns 0 if permission is granted. 5212 */ 5213 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx) 5214 { 5215 return call_int_hook(xfrm_policy_delete_security, 0, ctx); 5216 } 5217 5218 /** 5219 * security_xfrm_state_alloc() - Allocate a xfrm state LSM blob 5220 * @x: xfrm state being added to the SAD 5221 * @sec_ctx: security label provided by userspace 5222 * 5223 * Allocate a security structure to the @x->security field; the security field 5224 * is initialized to NULL when the xfrm_state is allocated. Set the context to 5225 * correspond to @sec_ctx. 5226 * 5227 * Return: Return 0 if operation was successful. 5228 */ 5229 int security_xfrm_state_alloc(struct xfrm_state *x, 5230 struct xfrm_user_sec_ctx *sec_ctx) 5231 { 5232 return call_int_hook(xfrm_state_alloc, 0, x, sec_ctx); 5233 } 5234 EXPORT_SYMBOL(security_xfrm_state_alloc); 5235 5236 /** 5237 * security_xfrm_state_alloc_acquire() - Allocate a xfrm state LSM blob 5238 * @x: xfrm state being added to the SAD 5239 * @polsec: associated policy's security context 5240 * @secid: secid from the flow 5241 * 5242 * Allocate a security structure to the x->security field; the security field 5243 * is initialized to NULL when the xfrm_state is allocated. Set the context to 5244 * correspond to secid. 5245 * 5246 * Return: Returns 0 if operation was successful. 5247 */ 5248 int security_xfrm_state_alloc_acquire(struct xfrm_state *x, 5249 struct xfrm_sec_ctx *polsec, u32 secid) 5250 { 5251 return call_int_hook(xfrm_state_alloc_acquire, 0, x, polsec, secid); 5252 } 5253 5254 /** 5255 * security_xfrm_state_delete() - Check if deleting a xfrm state is allowed 5256 * @x: xfrm state 5257 * 5258 * Authorize deletion of x->security. 5259 * 5260 * Return: Returns 0 if permission is granted. 5261 */ 5262 int security_xfrm_state_delete(struct xfrm_state *x) 5263 { 5264 return call_int_hook(xfrm_state_delete_security, 0, x); 5265 } 5266 EXPORT_SYMBOL(security_xfrm_state_delete); 5267 5268 /** 5269 * security_xfrm_state_free() - Free a xfrm state 5270 * @x: xfrm state 5271 * 5272 * Deallocate x->security. 5273 */ 5274 void security_xfrm_state_free(struct xfrm_state *x) 5275 { 5276 call_void_hook(xfrm_state_free_security, x); 5277 } 5278 5279 /** 5280 * security_xfrm_policy_lookup() - Check if using a xfrm policy is allowed 5281 * @ctx: target xfrm security context 5282 * @fl_secid: flow secid used to authorize access 5283 * 5284 * Check permission when a flow selects a xfrm_policy for processing XFRMs on a 5285 * packet. The hook is called when selecting either a per-socket policy or a 5286 * generic xfrm policy. 5287 * 5288 * Return: Return 0 if permission is granted, -ESRCH otherwise, or -errno on 5289 * other errors. 5290 */ 5291 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid) 5292 { 5293 return call_int_hook(xfrm_policy_lookup, 0, ctx, fl_secid); 5294 } 5295 5296 /** 5297 * security_xfrm_state_pol_flow_match() - Check for a xfrm match 5298 * @x: xfrm state to match 5299 * @xp: xfrm policy to check for a match 5300 * @flic: flow to check for a match. 5301 * 5302 * Check @xp and @flic for a match with @x. 5303 * 5304 * Return: Returns 1 if there is a match. 5305 */ 5306 int security_xfrm_state_pol_flow_match(struct xfrm_state *x, 5307 struct xfrm_policy *xp, 5308 const struct flowi_common *flic) 5309 { 5310 struct security_hook_list *hp; 5311 int rc = LSM_RET_DEFAULT(xfrm_state_pol_flow_match); 5312 5313 /* 5314 * Since this function is expected to return 0 or 1, the judgment 5315 * becomes difficult if multiple LSMs supply this call. Fortunately, 5316 * we can use the first LSM's judgment because currently only SELinux 5317 * supplies this call. 5318 * 5319 * For speed optimization, we explicitly break the loop rather than 5320 * using the macro 5321 */ 5322 hlist_for_each_entry(hp, &security_hook_heads.xfrm_state_pol_flow_match, 5323 list) { 5324 rc = hp->hook.xfrm_state_pol_flow_match(x, xp, flic); 5325 break; 5326 } 5327 return rc; 5328 } 5329 5330 /** 5331 * security_xfrm_decode_session() - Determine the xfrm secid for a packet 5332 * @skb: xfrm packet 5333 * @secid: secid 5334 * 5335 * Decode the packet in @skb and return the security label in @secid. 5336 * 5337 * Return: Return 0 if all xfrms used have the same secid. 5338 */ 5339 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid) 5340 { 5341 return call_int_hook(xfrm_decode_session, 0, skb, secid, 1); 5342 } 5343 5344 void security_skb_classify_flow(struct sk_buff *skb, struct flowi_common *flic) 5345 { 5346 int rc = call_int_hook(xfrm_decode_session, 0, skb, &flic->flowic_secid, 5347 0); 5348 5349 BUG_ON(rc); 5350 } 5351 EXPORT_SYMBOL(security_skb_classify_flow); 5352 #endif /* CONFIG_SECURITY_NETWORK_XFRM */ 5353 5354 #ifdef CONFIG_KEYS 5355 /** 5356 * security_key_alloc() - Allocate and initialize a kernel key LSM blob 5357 * @key: key 5358 * @cred: credentials 5359 * @flags: allocation flags 5360 * 5361 * Permit allocation of a key and assign security data. Note that key does not 5362 * have a serial number assigned at this point. 5363 * 5364 * Return: Return 0 if permission is granted, -ve error otherwise. 5365 */ 5366 int security_key_alloc(struct key *key, const struct cred *cred, 5367 unsigned long flags) 5368 { 5369 return call_int_hook(key_alloc, 0, key, cred, flags); 5370 } 5371 5372 /** 5373 * security_key_free() - Free a kernel key LSM blob 5374 * @key: key 5375 * 5376 * Notification of destruction; free security data. 5377 */ 5378 void security_key_free(struct key *key) 5379 { 5380 call_void_hook(key_free, key); 5381 } 5382 5383 /** 5384 * security_key_permission() - Check if a kernel key operation is allowed 5385 * @key_ref: key reference 5386 * @cred: credentials of actor requesting access 5387 * @need_perm: requested permissions 5388 * 5389 * See whether a specific operational right is granted to a process on a key. 5390 * 5391 * Return: Return 0 if permission is granted, -ve error otherwise. 5392 */ 5393 int security_key_permission(key_ref_t key_ref, const struct cred *cred, 5394 enum key_need_perm need_perm) 5395 { 5396 return call_int_hook(key_permission, 0, key_ref, cred, need_perm); 5397 } 5398 5399 /** 5400 * security_key_getsecurity() - Get the key's security label 5401 * @key: key 5402 * @buffer: security label buffer 5403 * 5404 * Get a textual representation of the security context attached to a key for 5405 * the purposes of honouring KEYCTL_GETSECURITY. This function allocates the 5406 * storage for the NUL-terminated string and the caller should free it. 5407 * 5408 * Return: Returns the length of @buffer (including terminating NUL) or -ve if 5409 * an error occurs. May also return 0 (and a NULL buffer pointer) if 5410 * there is no security label assigned to the key. 5411 */ 5412 int security_key_getsecurity(struct key *key, char **buffer) 5413 { 5414 *buffer = NULL; 5415 return call_int_hook(key_getsecurity, 0, key, buffer); 5416 } 5417 5418 /** 5419 * security_key_post_create_or_update() - Notification of key create or update 5420 * @keyring: keyring to which the key is linked to 5421 * @key: created or updated key 5422 * @payload: data used to instantiate or update the key 5423 * @payload_len: length of payload 5424 * @flags: key flags 5425 * @create: flag indicating whether the key was created or updated 5426 * 5427 * Notify the caller of a key creation or update. 5428 */ 5429 void security_key_post_create_or_update(struct key *keyring, struct key *key, 5430 const void *payload, size_t payload_len, 5431 unsigned long flags, bool create) 5432 { 5433 call_void_hook(key_post_create_or_update, keyring, key, payload, 5434 payload_len, flags, create); 5435 } 5436 #endif /* CONFIG_KEYS */ 5437 5438 #ifdef CONFIG_AUDIT 5439 /** 5440 * security_audit_rule_init() - Allocate and init an LSM audit rule struct 5441 * @field: audit action 5442 * @op: rule operator 5443 * @rulestr: rule context 5444 * @lsmrule: receive buffer for audit rule struct 5445 * 5446 * Allocate and initialize an LSM audit rule structure. 5447 * 5448 * Return: Return 0 if @lsmrule has been successfully set, -EINVAL in case of 5449 * an invalid rule. 5450 */ 5451 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule) 5452 { 5453 return call_int_hook(audit_rule_init, 0, field, op, rulestr, lsmrule); 5454 } 5455 5456 /** 5457 * security_audit_rule_known() - Check if an audit rule contains LSM fields 5458 * @krule: audit rule 5459 * 5460 * Specifies whether given @krule contains any fields related to the current 5461 * LSM. 5462 * 5463 * Return: Returns 1 in case of relation found, 0 otherwise. 5464 */ 5465 int security_audit_rule_known(struct audit_krule *krule) 5466 { 5467 return call_int_hook(audit_rule_known, 0, krule); 5468 } 5469 5470 /** 5471 * security_audit_rule_free() - Free an LSM audit rule struct 5472 * @lsmrule: audit rule struct 5473 * 5474 * Deallocate the LSM audit rule structure previously allocated by 5475 * audit_rule_init(). 5476 */ 5477 void security_audit_rule_free(void *lsmrule) 5478 { 5479 call_void_hook(audit_rule_free, lsmrule); 5480 } 5481 5482 /** 5483 * security_audit_rule_match() - Check if a label matches an audit rule 5484 * @secid: security label 5485 * @field: LSM audit field 5486 * @op: matching operator 5487 * @lsmrule: audit rule 5488 * 5489 * Determine if given @secid matches a rule previously approved by 5490 * security_audit_rule_known(). 5491 * 5492 * Return: Returns 1 if secid matches the rule, 0 if it does not, -ERRNO on 5493 * failure. 5494 */ 5495 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule) 5496 { 5497 return call_int_hook(audit_rule_match, 0, secid, field, op, lsmrule); 5498 } 5499 #endif /* CONFIG_AUDIT */ 5500 5501 #ifdef CONFIG_BPF_SYSCALL 5502 /** 5503 * security_bpf() - Check if the bpf syscall operation is allowed 5504 * @cmd: command 5505 * @attr: bpf attribute 5506 * @size: size 5507 * 5508 * Do a initial check for all bpf syscalls after the attribute is copied into 5509 * the kernel. The actual security module can implement their own rules to 5510 * check the specific cmd they need. 5511 * 5512 * Return: Returns 0 if permission is granted. 5513 */ 5514 int security_bpf(int cmd, union bpf_attr *attr, unsigned int size) 5515 { 5516 return call_int_hook(bpf, 0, cmd, attr, size); 5517 } 5518 5519 /** 5520 * security_bpf_map() - Check if access to a bpf map is allowed 5521 * @map: bpf map 5522 * @fmode: mode 5523 * 5524 * Do a check when the kernel generates and returns a file descriptor for eBPF 5525 * maps. 5526 * 5527 * Return: Returns 0 if permission is granted. 5528 */ 5529 int security_bpf_map(struct bpf_map *map, fmode_t fmode) 5530 { 5531 return call_int_hook(bpf_map, 0, map, fmode); 5532 } 5533 5534 /** 5535 * security_bpf_prog() - Check if access to a bpf program is allowed 5536 * @prog: bpf program 5537 * 5538 * Do a check when the kernel generates and returns a file descriptor for eBPF 5539 * programs. 5540 * 5541 * Return: Returns 0 if permission is granted. 5542 */ 5543 int security_bpf_prog(struct bpf_prog *prog) 5544 { 5545 return call_int_hook(bpf_prog, 0, prog); 5546 } 5547 5548 /** 5549 * security_bpf_map_alloc() - Allocate a bpf map LSM blob 5550 * @map: bpf map 5551 * 5552 * Initialize the security field inside bpf map. 5553 * 5554 * Return: Returns 0 on success, error on failure. 5555 */ 5556 int security_bpf_map_alloc(struct bpf_map *map) 5557 { 5558 return call_int_hook(bpf_map_alloc_security, 0, map); 5559 } 5560 5561 /** 5562 * security_bpf_prog_alloc() - Allocate a bpf program LSM blob 5563 * @aux: bpf program aux info struct 5564 * 5565 * Initialize the security field inside bpf program. 5566 * 5567 * Return: Returns 0 on success, error on failure. 5568 */ 5569 int security_bpf_prog_alloc(struct bpf_prog_aux *aux) 5570 { 5571 return call_int_hook(bpf_prog_alloc_security, 0, aux); 5572 } 5573 5574 /** 5575 * security_bpf_map_free() - Free a bpf map's LSM blob 5576 * @map: bpf map 5577 * 5578 * Clean up the security information stored inside bpf map. 5579 */ 5580 void security_bpf_map_free(struct bpf_map *map) 5581 { 5582 call_void_hook(bpf_map_free_security, map); 5583 } 5584 5585 /** 5586 * security_bpf_prog_free() - Free a bpf program's LSM blob 5587 * @aux: bpf program aux info struct 5588 * 5589 * Clean up the security information stored inside bpf prog. 5590 */ 5591 void security_bpf_prog_free(struct bpf_prog_aux *aux) 5592 { 5593 call_void_hook(bpf_prog_free_security, aux); 5594 } 5595 #endif /* CONFIG_BPF_SYSCALL */ 5596 5597 /** 5598 * security_locked_down() - Check if a kernel feature is allowed 5599 * @what: requested kernel feature 5600 * 5601 * Determine whether a kernel feature that potentially enables arbitrary code 5602 * execution in kernel space should be permitted. 5603 * 5604 * Return: Returns 0 if permission is granted. 5605 */ 5606 int security_locked_down(enum lockdown_reason what) 5607 { 5608 return call_int_hook(locked_down, 0, what); 5609 } 5610 EXPORT_SYMBOL(security_locked_down); 5611 5612 #ifdef CONFIG_PERF_EVENTS 5613 /** 5614 * security_perf_event_open() - Check if a perf event open is allowed 5615 * @attr: perf event attribute 5616 * @type: type of event 5617 * 5618 * Check whether the @type of perf_event_open syscall is allowed. 5619 * 5620 * Return: Returns 0 if permission is granted. 5621 */ 5622 int security_perf_event_open(struct perf_event_attr *attr, int type) 5623 { 5624 return call_int_hook(perf_event_open, 0, attr, type); 5625 } 5626 5627 /** 5628 * security_perf_event_alloc() - Allocate a perf event LSM blob 5629 * @event: perf event 5630 * 5631 * Allocate and save perf_event security info. 5632 * 5633 * Return: Returns 0 on success, error on failure. 5634 */ 5635 int security_perf_event_alloc(struct perf_event *event) 5636 { 5637 return call_int_hook(perf_event_alloc, 0, event); 5638 } 5639 5640 /** 5641 * security_perf_event_free() - Free a perf event LSM blob 5642 * @event: perf event 5643 * 5644 * Release (free) perf_event security info. 5645 */ 5646 void security_perf_event_free(struct perf_event *event) 5647 { 5648 call_void_hook(perf_event_free, event); 5649 } 5650 5651 /** 5652 * security_perf_event_read() - Check if reading a perf event label is allowed 5653 * @event: perf event 5654 * 5655 * Read perf_event security info if allowed. 5656 * 5657 * Return: Returns 0 if permission is granted. 5658 */ 5659 int security_perf_event_read(struct perf_event *event) 5660 { 5661 return call_int_hook(perf_event_read, 0, event); 5662 } 5663 5664 /** 5665 * security_perf_event_write() - Check if writing a perf event label is allowed 5666 * @event: perf event 5667 * 5668 * Write perf_event security info if allowed. 5669 * 5670 * Return: Returns 0 if permission is granted. 5671 */ 5672 int security_perf_event_write(struct perf_event *event) 5673 { 5674 return call_int_hook(perf_event_write, 0, event); 5675 } 5676 #endif /* CONFIG_PERF_EVENTS */ 5677 5678 #ifdef CONFIG_IO_URING 5679 /** 5680 * security_uring_override_creds() - Check if overriding creds is allowed 5681 * @new: new credentials 5682 * 5683 * Check if the current task, executing an io_uring operation, is allowed to 5684 * override it's credentials with @new. 5685 * 5686 * Return: Returns 0 if permission is granted. 5687 */ 5688 int security_uring_override_creds(const struct cred *new) 5689 { 5690 return call_int_hook(uring_override_creds, 0, new); 5691 } 5692 5693 /** 5694 * security_uring_sqpoll() - Check if IORING_SETUP_SQPOLL is allowed 5695 * 5696 * Check whether the current task is allowed to spawn a io_uring polling thread 5697 * (IORING_SETUP_SQPOLL). 5698 * 5699 * Return: Returns 0 if permission is granted. 5700 */ 5701 int security_uring_sqpoll(void) 5702 { 5703 return call_int_hook(uring_sqpoll, 0); 5704 } 5705 5706 /** 5707 * security_uring_cmd() - Check if a io_uring passthrough command is allowed 5708 * @ioucmd: command 5709 * 5710 * Check whether the file_operations uring_cmd is allowed to run. 5711 * 5712 * Return: Returns 0 if permission is granted. 5713 */ 5714 int security_uring_cmd(struct io_uring_cmd *ioucmd) 5715 { 5716 return call_int_hook(uring_cmd, 0, ioucmd); 5717 } 5718 #endif /* CONFIG_IO_URING */ 5719