xref: /linux/security/security.c (revision c8b90d40d5bba8e6fba457b8a7c10d3c0d467e37)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Security plug functions
4  *
5  * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
6  * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
7  * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
8  * Copyright (C) 2016 Mellanox Technologies
9  * Copyright (C) 2023 Microsoft Corporation <paul@paul-moore.com>
10  */
11 
12 #define pr_fmt(fmt) "LSM: " fmt
13 
14 #include <linux/bpf.h>
15 #include <linux/capability.h>
16 #include <linux/dcache.h>
17 #include <linux/export.h>
18 #include <linux/init.h>
19 #include <linux/kernel.h>
20 #include <linux/kernel_read_file.h>
21 #include <linux/lsm_hooks.h>
22 #include <linux/mman.h>
23 #include <linux/mount.h>
24 #include <linux/personality.h>
25 #include <linux/backing-dev.h>
26 #include <linux/string.h>
27 #include <linux/xattr.h>
28 #include <linux/msg.h>
29 #include <linux/overflow.h>
30 #include <linux/perf_event.h>
31 #include <linux/fs.h>
32 #include <net/flow.h>
33 #include <net/sock.h>
34 
35 #define SECURITY_HOOK_ACTIVE_KEY(HOOK, IDX) security_hook_active_##HOOK##_##IDX
36 
37 /*
38  * Identifier for the LSM static calls.
39  * HOOK is an LSM hook as defined in linux/lsm_hookdefs.h
40  * IDX is the index of the static call. 0 <= NUM < MAX_LSM_COUNT
41  */
42 #define LSM_STATIC_CALL(HOOK, IDX) lsm_static_call_##HOOK##_##IDX
43 
44 /*
45  * Call the macro M for each LSM hook MAX_LSM_COUNT times.
46  */
47 #define LSM_LOOP_UNROLL(M, ...) 		\
48 do {						\
49 	UNROLL(MAX_LSM_COUNT, M, __VA_ARGS__)	\
50 } while (0)
51 
52 #define LSM_DEFINE_UNROLL(M, ...) UNROLL(MAX_LSM_COUNT, M, __VA_ARGS__)
53 
54 /*
55  * These are descriptions of the reasons that can be passed to the
56  * security_locked_down() LSM hook. Placing this array here allows
57  * all security modules to use the same descriptions for auditing
58  * purposes.
59  */
60 const char *const lockdown_reasons[LOCKDOWN_CONFIDENTIALITY_MAX + 1] = {
61 	[LOCKDOWN_NONE] = "none",
62 	[LOCKDOWN_MODULE_SIGNATURE] = "unsigned module loading",
63 	[LOCKDOWN_DEV_MEM] = "/dev/mem,kmem,port",
64 	[LOCKDOWN_EFI_TEST] = "/dev/efi_test access",
65 	[LOCKDOWN_KEXEC] = "kexec of unsigned images",
66 	[LOCKDOWN_HIBERNATION] = "hibernation",
67 	[LOCKDOWN_PCI_ACCESS] = "direct PCI access",
68 	[LOCKDOWN_IOPORT] = "raw io port access",
69 	[LOCKDOWN_MSR] = "raw MSR access",
70 	[LOCKDOWN_ACPI_TABLES] = "modifying ACPI tables",
71 	[LOCKDOWN_DEVICE_TREE] = "modifying device tree contents",
72 	[LOCKDOWN_PCMCIA_CIS] = "direct PCMCIA CIS storage",
73 	[LOCKDOWN_TIOCSSERIAL] = "reconfiguration of serial port IO",
74 	[LOCKDOWN_MODULE_PARAMETERS] = "unsafe module parameters",
75 	[LOCKDOWN_MMIOTRACE] = "unsafe mmio",
76 	[LOCKDOWN_DEBUGFS] = "debugfs access",
77 	[LOCKDOWN_XMON_WR] = "xmon write access",
78 	[LOCKDOWN_BPF_WRITE_USER] = "use of bpf to write user RAM",
79 	[LOCKDOWN_DBG_WRITE_KERNEL] = "use of kgdb/kdb to write kernel RAM",
80 	[LOCKDOWN_RTAS_ERROR_INJECTION] = "RTAS error injection",
81 	[LOCKDOWN_INTEGRITY_MAX] = "integrity",
82 	[LOCKDOWN_KCORE] = "/proc/kcore access",
83 	[LOCKDOWN_KPROBES] = "use of kprobes",
84 	[LOCKDOWN_BPF_READ_KERNEL] = "use of bpf to read kernel RAM",
85 	[LOCKDOWN_DBG_READ_KERNEL] = "use of kgdb/kdb to read kernel RAM",
86 	[LOCKDOWN_PERF] = "unsafe use of perf",
87 	[LOCKDOWN_TRACEFS] = "use of tracefs",
88 	[LOCKDOWN_XMON_RW] = "xmon read and write access",
89 	[LOCKDOWN_XFRM_SECRET] = "xfrm SA secret",
90 	[LOCKDOWN_CONFIDENTIALITY_MAX] = "confidentiality",
91 };
92 
93 static BLOCKING_NOTIFIER_HEAD(blocking_lsm_notifier_chain);
94 
95 static struct kmem_cache *lsm_file_cache;
96 static struct kmem_cache *lsm_inode_cache;
97 
98 char *lsm_names;
99 static struct lsm_blob_sizes blob_sizes __ro_after_init;
100 
101 /* Boot-time LSM user choice */
102 static __initdata const char *chosen_lsm_order;
103 static __initdata const char *chosen_major_lsm;
104 
105 static __initconst const char *const builtin_lsm_order = CONFIG_LSM;
106 
107 /* Ordered list of LSMs to initialize. */
108 static __initdata struct lsm_info *ordered_lsms[MAX_LSM_COUNT + 1];
109 static __initdata struct lsm_info *exclusive;
110 
111 #ifdef CONFIG_HAVE_STATIC_CALL
112 #define LSM_HOOK_TRAMP(NAME, NUM) \
113 	&STATIC_CALL_TRAMP(LSM_STATIC_CALL(NAME, NUM))
114 #else
115 #define LSM_HOOK_TRAMP(NAME, NUM) NULL
116 #endif
117 
118 /*
119  * Define static calls and static keys for each LSM hook.
120  */
121 #define DEFINE_LSM_STATIC_CALL(NUM, NAME, RET, ...)			\
122 	DEFINE_STATIC_CALL_NULL(LSM_STATIC_CALL(NAME, NUM),		\
123 				*((RET(*)(__VA_ARGS__))NULL));		\
124 	DEFINE_STATIC_KEY_FALSE(SECURITY_HOOK_ACTIVE_KEY(NAME, NUM));
125 
126 #define LSM_HOOK(RET, DEFAULT, NAME, ...)				\
127 	LSM_DEFINE_UNROLL(DEFINE_LSM_STATIC_CALL, NAME, RET, __VA_ARGS__)
128 #include <linux/lsm_hook_defs.h>
129 #undef LSM_HOOK
130 #undef DEFINE_LSM_STATIC_CALL
131 
132 /*
133  * Initialise a table of static calls for each LSM hook.
134  * DEFINE_STATIC_CALL_NULL invocation above generates a key (STATIC_CALL_KEY)
135  * and a trampoline (STATIC_CALL_TRAMP) which are used to call
136  * __static_call_update when updating the static call.
137  *
138  * The static calls table is used by early LSMs, some architectures can fault on
139  * unaligned accesses and the fault handling code may not be ready by then.
140  * Thus, the static calls table should be aligned to avoid any unhandled faults
141  * in early init.
142  */
143 struct lsm_static_calls_table
144 	static_calls_table __ro_after_init __aligned(sizeof(u64)) = {
145 #define INIT_LSM_STATIC_CALL(NUM, NAME)					\
146 	(struct lsm_static_call) {					\
147 		.key = &STATIC_CALL_KEY(LSM_STATIC_CALL(NAME, NUM)),	\
148 		.trampoline = LSM_HOOK_TRAMP(NAME, NUM),		\
149 		.active = &SECURITY_HOOK_ACTIVE_KEY(NAME, NUM),		\
150 	},
151 #define LSM_HOOK(RET, DEFAULT, NAME, ...)				\
152 	.NAME = {							\
153 		LSM_DEFINE_UNROLL(INIT_LSM_STATIC_CALL, NAME)		\
154 	},
155 #include <linux/lsm_hook_defs.h>
156 #undef LSM_HOOK
157 #undef INIT_LSM_STATIC_CALL
158 	};
159 
160 static __initdata bool debug;
161 #define init_debug(...)						\
162 	do {							\
163 		if (debug)					\
164 			pr_info(__VA_ARGS__);			\
165 	} while (0)
166 
167 static bool __init is_enabled(struct lsm_info *lsm)
168 {
169 	if (!lsm->enabled)
170 		return false;
171 
172 	return *lsm->enabled;
173 }
174 
175 /* Mark an LSM's enabled flag. */
176 static int lsm_enabled_true __initdata = 1;
177 static int lsm_enabled_false __initdata = 0;
178 static void __init set_enabled(struct lsm_info *lsm, bool enabled)
179 {
180 	/*
181 	 * When an LSM hasn't configured an enable variable, we can use
182 	 * a hard-coded location for storing the default enabled state.
183 	 */
184 	if (!lsm->enabled) {
185 		if (enabled)
186 			lsm->enabled = &lsm_enabled_true;
187 		else
188 			lsm->enabled = &lsm_enabled_false;
189 	} else if (lsm->enabled == &lsm_enabled_true) {
190 		if (!enabled)
191 			lsm->enabled = &lsm_enabled_false;
192 	} else if (lsm->enabled == &lsm_enabled_false) {
193 		if (enabled)
194 			lsm->enabled = &lsm_enabled_true;
195 	} else {
196 		*lsm->enabled = enabled;
197 	}
198 }
199 
200 /* Is an LSM already listed in the ordered LSMs list? */
201 static bool __init exists_ordered_lsm(struct lsm_info *lsm)
202 {
203 	struct lsm_info **check;
204 
205 	for (check = ordered_lsms; *check; check++)
206 		if (*check == lsm)
207 			return true;
208 
209 	return false;
210 }
211 
212 /* Append an LSM to the list of ordered LSMs to initialize. */
213 static int last_lsm __initdata;
214 static void __init append_ordered_lsm(struct lsm_info *lsm, const char *from)
215 {
216 	/* Ignore duplicate selections. */
217 	if (exists_ordered_lsm(lsm))
218 		return;
219 
220 	if (WARN(last_lsm == MAX_LSM_COUNT, "%s: out of LSM static calls!?\n", from))
221 		return;
222 
223 	/* Enable this LSM, if it is not already set. */
224 	if (!lsm->enabled)
225 		lsm->enabled = &lsm_enabled_true;
226 	ordered_lsms[last_lsm++] = lsm;
227 
228 	init_debug("%s ordered: %s (%s)\n", from, lsm->name,
229 		   is_enabled(lsm) ? "enabled" : "disabled");
230 }
231 
232 /* Is an LSM allowed to be initialized? */
233 static bool __init lsm_allowed(struct lsm_info *lsm)
234 {
235 	/* Skip if the LSM is disabled. */
236 	if (!is_enabled(lsm))
237 		return false;
238 
239 	/* Not allowed if another exclusive LSM already initialized. */
240 	if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && exclusive) {
241 		init_debug("exclusive disabled: %s\n", lsm->name);
242 		return false;
243 	}
244 
245 	return true;
246 }
247 
248 static void __init lsm_set_blob_size(int *need, int *lbs)
249 {
250 	int offset;
251 
252 	if (*need <= 0)
253 		return;
254 
255 	offset = ALIGN(*lbs, sizeof(void *));
256 	*lbs = offset + *need;
257 	*need = offset;
258 }
259 
260 static void __init lsm_set_blob_sizes(struct lsm_blob_sizes *needed)
261 {
262 	if (!needed)
263 		return;
264 
265 	lsm_set_blob_size(&needed->lbs_cred, &blob_sizes.lbs_cred);
266 	lsm_set_blob_size(&needed->lbs_file, &blob_sizes.lbs_file);
267 	lsm_set_blob_size(&needed->lbs_ib, &blob_sizes.lbs_ib);
268 	/*
269 	 * The inode blob gets an rcu_head in addition to
270 	 * what the modules might need.
271 	 */
272 	if (needed->lbs_inode && blob_sizes.lbs_inode == 0)
273 		blob_sizes.lbs_inode = sizeof(struct rcu_head);
274 	lsm_set_blob_size(&needed->lbs_inode, &blob_sizes.lbs_inode);
275 	lsm_set_blob_size(&needed->lbs_ipc, &blob_sizes.lbs_ipc);
276 	lsm_set_blob_size(&needed->lbs_key, &blob_sizes.lbs_key);
277 	lsm_set_blob_size(&needed->lbs_msg_msg, &blob_sizes.lbs_msg_msg);
278 	lsm_set_blob_size(&needed->lbs_perf_event, &blob_sizes.lbs_perf_event);
279 	lsm_set_blob_size(&needed->lbs_sock, &blob_sizes.lbs_sock);
280 	lsm_set_blob_size(&needed->lbs_superblock, &blob_sizes.lbs_superblock);
281 	lsm_set_blob_size(&needed->lbs_task, &blob_sizes.lbs_task);
282 	lsm_set_blob_size(&needed->lbs_tun_dev, &blob_sizes.lbs_tun_dev);
283 	lsm_set_blob_size(&needed->lbs_xattr_count,
284 			  &blob_sizes.lbs_xattr_count);
285 	lsm_set_blob_size(&needed->lbs_bdev, &blob_sizes.lbs_bdev);
286 }
287 
288 /* Prepare LSM for initialization. */
289 static void __init prepare_lsm(struct lsm_info *lsm)
290 {
291 	int enabled = lsm_allowed(lsm);
292 
293 	/* Record enablement (to handle any following exclusive LSMs). */
294 	set_enabled(lsm, enabled);
295 
296 	/* If enabled, do pre-initialization work. */
297 	if (enabled) {
298 		if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && !exclusive) {
299 			exclusive = lsm;
300 			init_debug("exclusive chosen:   %s\n", lsm->name);
301 		}
302 
303 		lsm_set_blob_sizes(lsm->blobs);
304 	}
305 }
306 
307 /* Initialize a given LSM, if it is enabled. */
308 static void __init initialize_lsm(struct lsm_info *lsm)
309 {
310 	if (is_enabled(lsm)) {
311 		int ret;
312 
313 		init_debug("initializing %s\n", lsm->name);
314 		ret = lsm->init();
315 		WARN(ret, "%s failed to initialize: %d\n", lsm->name, ret);
316 	}
317 }
318 
319 /*
320  * Current index to use while initializing the lsm id list.
321  */
322 u32 lsm_active_cnt __ro_after_init;
323 const struct lsm_id *lsm_idlist[MAX_LSM_COUNT];
324 
325 /* Populate ordered LSMs list from comma-separated LSM name list. */
326 static void __init ordered_lsm_parse(const char *order, const char *origin)
327 {
328 	struct lsm_info *lsm;
329 	char *sep, *name, *next;
330 
331 	/* LSM_ORDER_FIRST is always first. */
332 	for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
333 		if (lsm->order == LSM_ORDER_FIRST)
334 			append_ordered_lsm(lsm, "  first");
335 	}
336 
337 	/* Process "security=", if given. */
338 	if (chosen_major_lsm) {
339 		struct lsm_info *major;
340 
341 		/*
342 		 * To match the original "security=" behavior, this
343 		 * explicitly does NOT fallback to another Legacy Major
344 		 * if the selected one was separately disabled: disable
345 		 * all non-matching Legacy Major LSMs.
346 		 */
347 		for (major = __start_lsm_info; major < __end_lsm_info;
348 		     major++) {
349 			if ((major->flags & LSM_FLAG_LEGACY_MAJOR) &&
350 			    strcmp(major->name, chosen_major_lsm) != 0) {
351 				set_enabled(major, false);
352 				init_debug("security=%s disabled: %s (only one legacy major LSM)\n",
353 					   chosen_major_lsm, major->name);
354 			}
355 		}
356 	}
357 
358 	sep = kstrdup(order, GFP_KERNEL);
359 	next = sep;
360 	/* Walk the list, looking for matching LSMs. */
361 	while ((name = strsep(&next, ",")) != NULL) {
362 		bool found = false;
363 
364 		for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
365 			if (strcmp(lsm->name, name) == 0) {
366 				if (lsm->order == LSM_ORDER_MUTABLE)
367 					append_ordered_lsm(lsm, origin);
368 				found = true;
369 			}
370 		}
371 
372 		if (!found)
373 			init_debug("%s ignored: %s (not built into kernel)\n",
374 				   origin, name);
375 	}
376 
377 	/* Process "security=", if given. */
378 	if (chosen_major_lsm) {
379 		for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
380 			if (exists_ordered_lsm(lsm))
381 				continue;
382 			if (strcmp(lsm->name, chosen_major_lsm) == 0)
383 				append_ordered_lsm(lsm, "security=");
384 		}
385 	}
386 
387 	/* LSM_ORDER_LAST is always last. */
388 	for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
389 		if (lsm->order == LSM_ORDER_LAST)
390 			append_ordered_lsm(lsm, "   last");
391 	}
392 
393 	/* Disable all LSMs not in the ordered list. */
394 	for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
395 		if (exists_ordered_lsm(lsm))
396 			continue;
397 		set_enabled(lsm, false);
398 		init_debug("%s skipped: %s (not in requested order)\n",
399 			   origin, lsm->name);
400 	}
401 
402 	kfree(sep);
403 }
404 
405 static void __init lsm_static_call_init(struct security_hook_list *hl)
406 {
407 	struct lsm_static_call *scall = hl->scalls;
408 	int i;
409 
410 	for (i = 0; i < MAX_LSM_COUNT; i++) {
411 		/* Update the first static call that is not used yet */
412 		if (!scall->hl) {
413 			__static_call_update(scall->key, scall->trampoline,
414 					     hl->hook.lsm_func_addr);
415 			scall->hl = hl;
416 			static_branch_enable(scall->active);
417 			return;
418 		}
419 		scall++;
420 	}
421 	panic("%s - Ran out of static slots.\n", __func__);
422 }
423 
424 static void __init lsm_early_cred(struct cred *cred);
425 static void __init lsm_early_task(struct task_struct *task);
426 
427 static int lsm_append(const char *new, char **result);
428 
429 static void __init report_lsm_order(void)
430 {
431 	struct lsm_info **lsm, *early;
432 	int first = 0;
433 
434 	pr_info("initializing lsm=");
435 
436 	/* Report each enabled LSM name, comma separated. */
437 	for (early = __start_early_lsm_info;
438 	     early < __end_early_lsm_info; early++)
439 		if (is_enabled(early))
440 			pr_cont("%s%s", first++ == 0 ? "" : ",", early->name);
441 	for (lsm = ordered_lsms; *lsm; lsm++)
442 		if (is_enabled(*lsm))
443 			pr_cont("%s%s", first++ == 0 ? "" : ",", (*lsm)->name);
444 
445 	pr_cont("\n");
446 }
447 
448 static void __init ordered_lsm_init(void)
449 {
450 	struct lsm_info **lsm;
451 
452 	if (chosen_lsm_order) {
453 		if (chosen_major_lsm) {
454 			pr_warn("security=%s is ignored because it is superseded by lsm=%s\n",
455 				chosen_major_lsm, chosen_lsm_order);
456 			chosen_major_lsm = NULL;
457 		}
458 		ordered_lsm_parse(chosen_lsm_order, "cmdline");
459 	} else
460 		ordered_lsm_parse(builtin_lsm_order, "builtin");
461 
462 	for (lsm = ordered_lsms; *lsm; lsm++)
463 		prepare_lsm(*lsm);
464 
465 	report_lsm_order();
466 
467 	init_debug("cred blob size       = %d\n", blob_sizes.lbs_cred);
468 	init_debug("file blob size       = %d\n", blob_sizes.lbs_file);
469 	init_debug("ib blob size         = %d\n", blob_sizes.lbs_ib);
470 	init_debug("inode blob size      = %d\n", blob_sizes.lbs_inode);
471 	init_debug("ipc blob size        = %d\n", blob_sizes.lbs_ipc);
472 #ifdef CONFIG_KEYS
473 	init_debug("key blob size        = %d\n", blob_sizes.lbs_key);
474 #endif /* CONFIG_KEYS */
475 	init_debug("msg_msg blob size    = %d\n", blob_sizes.lbs_msg_msg);
476 	init_debug("sock blob size       = %d\n", blob_sizes.lbs_sock);
477 	init_debug("superblock blob size = %d\n", blob_sizes.lbs_superblock);
478 	init_debug("perf event blob size = %d\n", blob_sizes.lbs_perf_event);
479 	init_debug("task blob size       = %d\n", blob_sizes.lbs_task);
480 	init_debug("tun device blob size = %d\n", blob_sizes.lbs_tun_dev);
481 	init_debug("xattr slots          = %d\n", blob_sizes.lbs_xattr_count);
482 	init_debug("bdev blob size       = %d\n", blob_sizes.lbs_bdev);
483 
484 	/*
485 	 * Create any kmem_caches needed for blobs
486 	 */
487 	if (blob_sizes.lbs_file)
488 		lsm_file_cache = kmem_cache_create("lsm_file_cache",
489 						   blob_sizes.lbs_file, 0,
490 						   SLAB_PANIC, NULL);
491 	if (blob_sizes.lbs_inode)
492 		lsm_inode_cache = kmem_cache_create("lsm_inode_cache",
493 						    blob_sizes.lbs_inode, 0,
494 						    SLAB_PANIC, NULL);
495 
496 	lsm_early_cred((struct cred *) current->cred);
497 	lsm_early_task(current);
498 	for (lsm = ordered_lsms; *lsm; lsm++)
499 		initialize_lsm(*lsm);
500 }
501 
502 int __init early_security_init(void)
503 {
504 	struct lsm_info *lsm;
505 
506 	for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
507 		if (!lsm->enabled)
508 			lsm->enabled = &lsm_enabled_true;
509 		prepare_lsm(lsm);
510 		initialize_lsm(lsm);
511 	}
512 
513 	return 0;
514 }
515 
516 /**
517  * security_init - initializes the security framework
518  *
519  * This should be called early in the kernel initialization sequence.
520  */
521 int __init security_init(void)
522 {
523 	struct lsm_info *lsm;
524 
525 	init_debug("legacy security=%s\n", chosen_major_lsm ? : " *unspecified*");
526 	init_debug("  CONFIG_LSM=%s\n", builtin_lsm_order);
527 	init_debug("boot arg lsm=%s\n", chosen_lsm_order ? : " *unspecified*");
528 
529 	/*
530 	 * Append the names of the early LSM modules now that kmalloc() is
531 	 * available
532 	 */
533 	for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
534 		init_debug("  early started: %s (%s)\n", lsm->name,
535 			   is_enabled(lsm) ? "enabled" : "disabled");
536 		if (lsm->enabled)
537 			lsm_append(lsm->name, &lsm_names);
538 	}
539 
540 	/* Load LSMs in specified order. */
541 	ordered_lsm_init();
542 
543 	return 0;
544 }
545 
546 /* Save user chosen LSM */
547 static int __init choose_major_lsm(char *str)
548 {
549 	chosen_major_lsm = str;
550 	return 1;
551 }
552 __setup("security=", choose_major_lsm);
553 
554 /* Explicitly choose LSM initialization order. */
555 static int __init choose_lsm_order(char *str)
556 {
557 	chosen_lsm_order = str;
558 	return 1;
559 }
560 __setup("lsm=", choose_lsm_order);
561 
562 /* Enable LSM order debugging. */
563 static int __init enable_debug(char *str)
564 {
565 	debug = true;
566 	return 1;
567 }
568 __setup("lsm.debug", enable_debug);
569 
570 static bool match_last_lsm(const char *list, const char *lsm)
571 {
572 	const char *last;
573 
574 	if (WARN_ON(!list || !lsm))
575 		return false;
576 	last = strrchr(list, ',');
577 	if (last)
578 		/* Pass the comma, strcmp() will check for '\0' */
579 		last++;
580 	else
581 		last = list;
582 	return !strcmp(last, lsm);
583 }
584 
585 static int lsm_append(const char *new, char **result)
586 {
587 	char *cp;
588 
589 	if (*result == NULL) {
590 		*result = kstrdup(new, GFP_KERNEL);
591 		if (*result == NULL)
592 			return -ENOMEM;
593 	} else {
594 		/* Check if it is the last registered name */
595 		if (match_last_lsm(*result, new))
596 			return 0;
597 		cp = kasprintf(GFP_KERNEL, "%s,%s", *result, new);
598 		if (cp == NULL)
599 			return -ENOMEM;
600 		kfree(*result);
601 		*result = cp;
602 	}
603 	return 0;
604 }
605 
606 /**
607  * security_add_hooks - Add a modules hooks to the hook lists.
608  * @hooks: the hooks to add
609  * @count: the number of hooks to add
610  * @lsmid: the identification information for the security module
611  *
612  * Each LSM has to register its hooks with the infrastructure.
613  */
614 void __init security_add_hooks(struct security_hook_list *hooks, int count,
615 			       const struct lsm_id *lsmid)
616 {
617 	int i;
618 
619 	/*
620 	 * A security module may call security_add_hooks() more
621 	 * than once during initialization, and LSM initialization
622 	 * is serialized. Landlock is one such case.
623 	 * Look at the previous entry, if there is one, for duplication.
624 	 */
625 	if (lsm_active_cnt == 0 || lsm_idlist[lsm_active_cnt - 1] != lsmid) {
626 		if (lsm_active_cnt >= MAX_LSM_COUNT)
627 			panic("%s Too many LSMs registered.\n", __func__);
628 		lsm_idlist[lsm_active_cnt++] = lsmid;
629 	}
630 
631 	for (i = 0; i < count; i++) {
632 		hooks[i].lsmid = lsmid;
633 		lsm_static_call_init(&hooks[i]);
634 	}
635 
636 	/*
637 	 * Don't try to append during early_security_init(), we'll come back
638 	 * and fix this up afterwards.
639 	 */
640 	if (slab_is_available()) {
641 		if (lsm_append(lsmid->name, &lsm_names) < 0)
642 			panic("%s - Cannot get early memory.\n", __func__);
643 	}
644 }
645 
646 int call_blocking_lsm_notifier(enum lsm_event event, void *data)
647 {
648 	return blocking_notifier_call_chain(&blocking_lsm_notifier_chain,
649 					    event, data);
650 }
651 EXPORT_SYMBOL(call_blocking_lsm_notifier);
652 
653 int register_blocking_lsm_notifier(struct notifier_block *nb)
654 {
655 	return blocking_notifier_chain_register(&blocking_lsm_notifier_chain,
656 						nb);
657 }
658 EXPORT_SYMBOL(register_blocking_lsm_notifier);
659 
660 int unregister_blocking_lsm_notifier(struct notifier_block *nb)
661 {
662 	return blocking_notifier_chain_unregister(&blocking_lsm_notifier_chain,
663 						  nb);
664 }
665 EXPORT_SYMBOL(unregister_blocking_lsm_notifier);
666 
667 /**
668  * lsm_blob_alloc - allocate a composite blob
669  * @dest: the destination for the blob
670  * @size: the size of the blob
671  * @gfp: allocation type
672  *
673  * Allocate a blob for all the modules
674  *
675  * Returns 0, or -ENOMEM if memory can't be allocated.
676  */
677 static int lsm_blob_alloc(void **dest, size_t size, gfp_t gfp)
678 {
679 	if (size == 0) {
680 		*dest = NULL;
681 		return 0;
682 	}
683 
684 	*dest = kzalloc(size, gfp);
685 	if (*dest == NULL)
686 		return -ENOMEM;
687 	return 0;
688 }
689 
690 /**
691  * lsm_cred_alloc - allocate a composite cred blob
692  * @cred: the cred that needs a blob
693  * @gfp: allocation type
694  *
695  * Allocate the cred blob for all the modules
696  *
697  * Returns 0, or -ENOMEM if memory can't be allocated.
698  */
699 static int lsm_cred_alloc(struct cred *cred, gfp_t gfp)
700 {
701 	return lsm_blob_alloc(&cred->security, blob_sizes.lbs_cred, gfp);
702 }
703 
704 /**
705  * lsm_early_cred - during initialization allocate a composite cred blob
706  * @cred: the cred that needs a blob
707  *
708  * Allocate the cred blob for all the modules
709  */
710 static void __init lsm_early_cred(struct cred *cred)
711 {
712 	int rc = lsm_cred_alloc(cred, GFP_KERNEL);
713 
714 	if (rc)
715 		panic("%s: Early cred alloc failed.\n", __func__);
716 }
717 
718 /**
719  * lsm_file_alloc - allocate a composite file blob
720  * @file: the file that needs a blob
721  *
722  * Allocate the file blob for all the modules
723  *
724  * Returns 0, or -ENOMEM if memory can't be allocated.
725  */
726 static int lsm_file_alloc(struct file *file)
727 {
728 	if (!lsm_file_cache) {
729 		file->f_security = NULL;
730 		return 0;
731 	}
732 
733 	file->f_security = kmem_cache_zalloc(lsm_file_cache, GFP_KERNEL);
734 	if (file->f_security == NULL)
735 		return -ENOMEM;
736 	return 0;
737 }
738 
739 /**
740  * lsm_inode_alloc - allocate a composite inode blob
741  * @inode: the inode that needs a blob
742  * @gfp: allocation flags
743  *
744  * Allocate the inode blob for all the modules
745  *
746  * Returns 0, or -ENOMEM if memory can't be allocated.
747  */
748 static int lsm_inode_alloc(struct inode *inode, gfp_t gfp)
749 {
750 	if (!lsm_inode_cache) {
751 		inode->i_security = NULL;
752 		return 0;
753 	}
754 
755 	inode->i_security = kmem_cache_zalloc(lsm_inode_cache, gfp);
756 	if (inode->i_security == NULL)
757 		return -ENOMEM;
758 	return 0;
759 }
760 
761 /**
762  * lsm_task_alloc - allocate a composite task blob
763  * @task: the task that needs a blob
764  *
765  * Allocate the task blob for all the modules
766  *
767  * Returns 0, or -ENOMEM if memory can't be allocated.
768  */
769 static int lsm_task_alloc(struct task_struct *task)
770 {
771 	return lsm_blob_alloc(&task->security, blob_sizes.lbs_task, GFP_KERNEL);
772 }
773 
774 /**
775  * lsm_ipc_alloc - allocate a composite ipc blob
776  * @kip: the ipc that needs a blob
777  *
778  * Allocate the ipc blob for all the modules
779  *
780  * Returns 0, or -ENOMEM if memory can't be allocated.
781  */
782 static int lsm_ipc_alloc(struct kern_ipc_perm *kip)
783 {
784 	return lsm_blob_alloc(&kip->security, blob_sizes.lbs_ipc, GFP_KERNEL);
785 }
786 
787 #ifdef CONFIG_KEYS
788 /**
789  * lsm_key_alloc - allocate a composite key blob
790  * @key: the key that needs a blob
791  *
792  * Allocate the key blob for all the modules
793  *
794  * Returns 0, or -ENOMEM if memory can't be allocated.
795  */
796 static int lsm_key_alloc(struct key *key)
797 {
798 	return lsm_blob_alloc(&key->security, blob_sizes.lbs_key, GFP_KERNEL);
799 }
800 #endif /* CONFIG_KEYS */
801 
802 /**
803  * lsm_msg_msg_alloc - allocate a composite msg_msg blob
804  * @mp: the msg_msg that needs a blob
805  *
806  * Allocate the ipc blob for all the modules
807  *
808  * Returns 0, or -ENOMEM if memory can't be allocated.
809  */
810 static int lsm_msg_msg_alloc(struct msg_msg *mp)
811 {
812 	return lsm_blob_alloc(&mp->security, blob_sizes.lbs_msg_msg,
813 			      GFP_KERNEL);
814 }
815 
816 /**
817  * lsm_bdev_alloc - allocate a composite block_device blob
818  * @bdev: the block_device that needs a blob
819  *
820  * Allocate the block_device blob for all the modules
821  *
822  * Returns 0, or -ENOMEM if memory can't be allocated.
823  */
824 static int lsm_bdev_alloc(struct block_device *bdev)
825 {
826 	if (blob_sizes.lbs_bdev == 0) {
827 		bdev->bd_security = NULL;
828 		return 0;
829 	}
830 
831 	bdev->bd_security = kzalloc(blob_sizes.lbs_bdev, GFP_KERNEL);
832 	if (!bdev->bd_security)
833 		return -ENOMEM;
834 
835 	return 0;
836 }
837 
838 /**
839  * lsm_early_task - during initialization allocate a composite task blob
840  * @task: the task that needs a blob
841  *
842  * Allocate the task blob for all the modules
843  */
844 static void __init lsm_early_task(struct task_struct *task)
845 {
846 	int rc = lsm_task_alloc(task);
847 
848 	if (rc)
849 		panic("%s: Early task alloc failed.\n", __func__);
850 }
851 
852 /**
853  * lsm_superblock_alloc - allocate a composite superblock blob
854  * @sb: the superblock that needs a blob
855  *
856  * Allocate the superblock blob for all the modules
857  *
858  * Returns 0, or -ENOMEM if memory can't be allocated.
859  */
860 static int lsm_superblock_alloc(struct super_block *sb)
861 {
862 	return lsm_blob_alloc(&sb->s_security, blob_sizes.lbs_superblock,
863 			      GFP_KERNEL);
864 }
865 
866 /**
867  * lsm_fill_user_ctx - Fill a user space lsm_ctx structure
868  * @uctx: a userspace LSM context to be filled
869  * @uctx_len: available uctx size (input), used uctx size (output)
870  * @val: the new LSM context value
871  * @val_len: the size of the new LSM context value
872  * @id: LSM id
873  * @flags: LSM defined flags
874  *
875  * Fill all of the fields in a userspace lsm_ctx structure.  If @uctx is NULL
876  * simply calculate the required size to output via @utc_len and return
877  * success.
878  *
879  * Returns 0 on success, -E2BIG if userspace buffer is not large enough,
880  * -EFAULT on a copyout error, -ENOMEM if memory can't be allocated.
881  */
882 int lsm_fill_user_ctx(struct lsm_ctx __user *uctx, u32 *uctx_len,
883 		      void *val, size_t val_len,
884 		      u64 id, u64 flags)
885 {
886 	struct lsm_ctx *nctx = NULL;
887 	size_t nctx_len;
888 	int rc = 0;
889 
890 	nctx_len = ALIGN(struct_size(nctx, ctx, val_len), sizeof(void *));
891 	if (nctx_len > *uctx_len) {
892 		rc = -E2BIG;
893 		goto out;
894 	}
895 
896 	/* no buffer - return success/0 and set @uctx_len to the req size */
897 	if (!uctx)
898 		goto out;
899 
900 	nctx = kzalloc(nctx_len, GFP_KERNEL);
901 	if (nctx == NULL) {
902 		rc = -ENOMEM;
903 		goto out;
904 	}
905 	nctx->id = id;
906 	nctx->flags = flags;
907 	nctx->len = nctx_len;
908 	nctx->ctx_len = val_len;
909 	memcpy(nctx->ctx, val, val_len);
910 
911 	if (copy_to_user(uctx, nctx, nctx_len))
912 		rc = -EFAULT;
913 
914 out:
915 	kfree(nctx);
916 	*uctx_len = nctx_len;
917 	return rc;
918 }
919 
920 /*
921  * The default value of the LSM hook is defined in linux/lsm_hook_defs.h and
922  * can be accessed with:
923  *
924  *	LSM_RET_DEFAULT(<hook_name>)
925  *
926  * The macros below define static constants for the default value of each
927  * LSM hook.
928  */
929 #define LSM_RET_DEFAULT(NAME) (NAME##_default)
930 #define DECLARE_LSM_RET_DEFAULT_void(DEFAULT, NAME)
931 #define DECLARE_LSM_RET_DEFAULT_int(DEFAULT, NAME) \
932 	static const int __maybe_unused LSM_RET_DEFAULT(NAME) = (DEFAULT);
933 #define LSM_HOOK(RET, DEFAULT, NAME, ...) \
934 	DECLARE_LSM_RET_DEFAULT_##RET(DEFAULT, NAME)
935 
936 #include <linux/lsm_hook_defs.h>
937 #undef LSM_HOOK
938 
939 /*
940  * Hook list operation macros.
941  *
942  * call_void_hook:
943  *	This is a hook that does not return a value.
944  *
945  * call_int_hook:
946  *	This is a hook that returns a value.
947  */
948 #define __CALL_STATIC_VOID(NUM, HOOK, ...)				     \
949 do {									     \
950 	if (static_branch_unlikely(&SECURITY_HOOK_ACTIVE_KEY(HOOK, NUM))) {    \
951 		static_call(LSM_STATIC_CALL(HOOK, NUM))(__VA_ARGS__);	     \
952 	}								     \
953 } while (0);
954 
955 #define call_void_hook(HOOK, ...)                                 \
956 	do {                                                      \
957 		LSM_LOOP_UNROLL(__CALL_STATIC_VOID, HOOK, __VA_ARGS__); \
958 	} while (0)
959 
960 
961 #define __CALL_STATIC_INT(NUM, R, HOOK, LABEL, ...)			     \
962 do {									     \
963 	if (static_branch_unlikely(&SECURITY_HOOK_ACTIVE_KEY(HOOK, NUM))) {  \
964 		R = static_call(LSM_STATIC_CALL(HOOK, NUM))(__VA_ARGS__);    \
965 		if (R != LSM_RET_DEFAULT(HOOK))				     \
966 			goto LABEL;					     \
967 	}								     \
968 } while (0);
969 
970 #define call_int_hook(HOOK, ...)					\
971 ({									\
972 	__label__ OUT;							\
973 	int RC = LSM_RET_DEFAULT(HOOK);					\
974 									\
975 	LSM_LOOP_UNROLL(__CALL_STATIC_INT, RC, HOOK, OUT, __VA_ARGS__);	\
976 OUT:									\
977 	RC;								\
978 })
979 
980 #define lsm_for_each_hook(scall, NAME)					\
981 	for (scall = static_calls_table.NAME;				\
982 	     scall - static_calls_table.NAME < MAX_LSM_COUNT; scall++)  \
983 		if (static_key_enabled(&scall->active->key))
984 
985 /* Security operations */
986 
987 /**
988  * security_binder_set_context_mgr() - Check if becoming binder ctx mgr is ok
989  * @mgr: task credentials of current binder process
990  *
991  * Check whether @mgr is allowed to be the binder context manager.
992  *
993  * Return: Return 0 if permission is granted.
994  */
995 int security_binder_set_context_mgr(const struct cred *mgr)
996 {
997 	return call_int_hook(binder_set_context_mgr, mgr);
998 }
999 
1000 /**
1001  * security_binder_transaction() - Check if a binder transaction is allowed
1002  * @from: sending process
1003  * @to: receiving process
1004  *
1005  * Check whether @from is allowed to invoke a binder transaction call to @to.
1006  *
1007  * Return: Returns 0 if permission is granted.
1008  */
1009 int security_binder_transaction(const struct cred *from,
1010 				const struct cred *to)
1011 {
1012 	return call_int_hook(binder_transaction, from, to);
1013 }
1014 
1015 /**
1016  * security_binder_transfer_binder() - Check if a binder transfer is allowed
1017  * @from: sending process
1018  * @to: receiving process
1019  *
1020  * Check whether @from is allowed to transfer a binder reference to @to.
1021  *
1022  * Return: Returns 0 if permission is granted.
1023  */
1024 int security_binder_transfer_binder(const struct cred *from,
1025 				    const struct cred *to)
1026 {
1027 	return call_int_hook(binder_transfer_binder, from, to);
1028 }
1029 
1030 /**
1031  * security_binder_transfer_file() - Check if a binder file xfer is allowed
1032  * @from: sending process
1033  * @to: receiving process
1034  * @file: file being transferred
1035  *
1036  * Check whether @from is allowed to transfer @file to @to.
1037  *
1038  * Return: Returns 0 if permission is granted.
1039  */
1040 int security_binder_transfer_file(const struct cred *from,
1041 				  const struct cred *to, const struct file *file)
1042 {
1043 	return call_int_hook(binder_transfer_file, from, to, file);
1044 }
1045 
1046 /**
1047  * security_ptrace_access_check() - Check if tracing is allowed
1048  * @child: target process
1049  * @mode: PTRACE_MODE flags
1050  *
1051  * Check permission before allowing the current process to trace the @child
1052  * process.  Security modules may also want to perform a process tracing check
1053  * during an execve in the set_security or apply_creds hooks of tracing check
1054  * during an execve in the bprm_set_creds hook of binprm_security_ops if the
1055  * process is being traced and its security attributes would be changed by the
1056  * execve.
1057  *
1058  * Return: Returns 0 if permission is granted.
1059  */
1060 int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
1061 {
1062 	return call_int_hook(ptrace_access_check, child, mode);
1063 }
1064 
1065 /**
1066  * security_ptrace_traceme() - Check if tracing is allowed
1067  * @parent: tracing process
1068  *
1069  * Check that the @parent process has sufficient permission to trace the
1070  * current process before allowing the current process to present itself to the
1071  * @parent process for tracing.
1072  *
1073  * Return: Returns 0 if permission is granted.
1074  */
1075 int security_ptrace_traceme(struct task_struct *parent)
1076 {
1077 	return call_int_hook(ptrace_traceme, parent);
1078 }
1079 
1080 /**
1081  * security_capget() - Get the capability sets for a process
1082  * @target: target process
1083  * @effective: effective capability set
1084  * @inheritable: inheritable capability set
1085  * @permitted: permitted capability set
1086  *
1087  * Get the @effective, @inheritable, and @permitted capability sets for the
1088  * @target process.  The hook may also perform permission checking to determine
1089  * if the current process is allowed to see the capability sets of the @target
1090  * process.
1091  *
1092  * Return: Returns 0 if the capability sets were successfully obtained.
1093  */
1094 int security_capget(const struct task_struct *target,
1095 		    kernel_cap_t *effective,
1096 		    kernel_cap_t *inheritable,
1097 		    kernel_cap_t *permitted)
1098 {
1099 	return call_int_hook(capget, target, effective, inheritable, permitted);
1100 }
1101 
1102 /**
1103  * security_capset() - Set the capability sets for a process
1104  * @new: new credentials for the target process
1105  * @old: current credentials of the target process
1106  * @effective: effective capability set
1107  * @inheritable: inheritable capability set
1108  * @permitted: permitted capability set
1109  *
1110  * Set the @effective, @inheritable, and @permitted capability sets for the
1111  * current process.
1112  *
1113  * Return: Returns 0 and update @new if permission is granted.
1114  */
1115 int security_capset(struct cred *new, const struct cred *old,
1116 		    const kernel_cap_t *effective,
1117 		    const kernel_cap_t *inheritable,
1118 		    const kernel_cap_t *permitted)
1119 {
1120 	return call_int_hook(capset, new, old, effective, inheritable,
1121 			     permitted);
1122 }
1123 
1124 /**
1125  * security_capable() - Check if a process has the necessary capability
1126  * @cred: credentials to examine
1127  * @ns: user namespace
1128  * @cap: capability requested
1129  * @opts: capability check options
1130  *
1131  * Check whether the @tsk process has the @cap capability in the indicated
1132  * credentials.  @cap contains the capability <include/linux/capability.h>.
1133  * @opts contains options for the capable check <include/linux/security.h>.
1134  *
1135  * Return: Returns 0 if the capability is granted.
1136  */
1137 int security_capable(const struct cred *cred,
1138 		     struct user_namespace *ns,
1139 		     int cap,
1140 		     unsigned int opts)
1141 {
1142 	return call_int_hook(capable, cred, ns, cap, opts);
1143 }
1144 
1145 /**
1146  * security_quotactl() - Check if a quotactl() syscall is allowed for this fs
1147  * @cmds: commands
1148  * @type: type
1149  * @id: id
1150  * @sb: filesystem
1151  *
1152  * Check whether the quotactl syscall is allowed for this @sb.
1153  *
1154  * Return: Returns 0 if permission is granted.
1155  */
1156 int security_quotactl(int cmds, int type, int id, const struct super_block *sb)
1157 {
1158 	return call_int_hook(quotactl, cmds, type, id, sb);
1159 }
1160 
1161 /**
1162  * security_quota_on() - Check if QUOTAON is allowed for a dentry
1163  * @dentry: dentry
1164  *
1165  * Check whether QUOTAON is allowed for @dentry.
1166  *
1167  * Return: Returns 0 if permission is granted.
1168  */
1169 int security_quota_on(struct dentry *dentry)
1170 {
1171 	return call_int_hook(quota_on, dentry);
1172 }
1173 
1174 /**
1175  * security_syslog() - Check if accessing the kernel message ring is allowed
1176  * @type: SYSLOG_ACTION_* type
1177  *
1178  * Check permission before accessing the kernel message ring or changing
1179  * logging to the console.  See the syslog(2) manual page for an explanation of
1180  * the @type values.
1181  *
1182  * Return: Return 0 if permission is granted.
1183  */
1184 int security_syslog(int type)
1185 {
1186 	return call_int_hook(syslog, type);
1187 }
1188 
1189 /**
1190  * security_settime64() - Check if changing the system time is allowed
1191  * @ts: new time
1192  * @tz: timezone
1193  *
1194  * Check permission to change the system time, struct timespec64 is defined in
1195  * <include/linux/time64.h> and timezone is defined in <include/linux/time.h>.
1196  *
1197  * Return: Returns 0 if permission is granted.
1198  */
1199 int security_settime64(const struct timespec64 *ts, const struct timezone *tz)
1200 {
1201 	return call_int_hook(settime, ts, tz);
1202 }
1203 
1204 /**
1205  * security_vm_enough_memory_mm() - Check if allocating a new mem map is allowed
1206  * @mm: mm struct
1207  * @pages: number of pages
1208  *
1209  * Check permissions for allocating a new virtual mapping.  If all LSMs return
1210  * a positive value, __vm_enough_memory() will be called with cap_sys_admin
1211  * set. If at least one LSM returns 0 or negative, __vm_enough_memory() will be
1212  * called with cap_sys_admin cleared.
1213  *
1214  * Return: Returns 0 if permission is granted by the LSM infrastructure to the
1215  *         caller.
1216  */
1217 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
1218 {
1219 	struct lsm_static_call *scall;
1220 	int cap_sys_admin = 1;
1221 	int rc;
1222 
1223 	/*
1224 	 * The module will respond with 0 if it thinks the __vm_enough_memory()
1225 	 * call should be made with the cap_sys_admin set. If all of the modules
1226 	 * agree that it should be set it will. If any module thinks it should
1227 	 * not be set it won't.
1228 	 */
1229 	lsm_for_each_hook(scall, vm_enough_memory) {
1230 		rc = scall->hl->hook.vm_enough_memory(mm, pages);
1231 		if (rc < 0) {
1232 			cap_sys_admin = 0;
1233 			break;
1234 		}
1235 	}
1236 	return __vm_enough_memory(mm, pages, cap_sys_admin);
1237 }
1238 
1239 /**
1240  * security_bprm_creds_for_exec() - Prepare the credentials for exec()
1241  * @bprm: binary program information
1242  *
1243  * If the setup in prepare_exec_creds did not setup @bprm->cred->security
1244  * properly for executing @bprm->file, update the LSM's portion of
1245  * @bprm->cred->security to be what commit_creds needs to install for the new
1246  * program.  This hook may also optionally check permissions (e.g. for
1247  * transitions between security domains).  The hook must set @bprm->secureexec
1248  * to 1 if AT_SECURE should be set to request libc enable secure mode.  @bprm
1249  * contains the linux_binprm structure.
1250  *
1251  * Return: Returns 0 if the hook is successful and permission is granted.
1252  */
1253 int security_bprm_creds_for_exec(struct linux_binprm *bprm)
1254 {
1255 	return call_int_hook(bprm_creds_for_exec, bprm);
1256 }
1257 
1258 /**
1259  * security_bprm_creds_from_file() - Update linux_binprm creds based on file
1260  * @bprm: binary program information
1261  * @file: associated file
1262  *
1263  * If @file is setpcap, suid, sgid or otherwise marked to change privilege upon
1264  * exec, update @bprm->cred to reflect that change. This is called after
1265  * finding the binary that will be executed without an interpreter.  This
1266  * ensures that the credentials will not be derived from a script that the
1267  * binary will need to reopen, which when reopend may end up being a completely
1268  * different file.  This hook may also optionally check permissions (e.g. for
1269  * transitions between security domains).  The hook must set @bprm->secureexec
1270  * to 1 if AT_SECURE should be set to request libc enable secure mode.  The
1271  * hook must add to @bprm->per_clear any personality flags that should be
1272  * cleared from current->personality.  @bprm contains the linux_binprm
1273  * structure.
1274  *
1275  * Return: Returns 0 if the hook is successful and permission is granted.
1276  */
1277 int security_bprm_creds_from_file(struct linux_binprm *bprm, const struct file *file)
1278 {
1279 	return call_int_hook(bprm_creds_from_file, bprm, file);
1280 }
1281 
1282 /**
1283  * security_bprm_check() - Mediate binary handler search
1284  * @bprm: binary program information
1285  *
1286  * This hook mediates the point when a search for a binary handler will begin.
1287  * It allows a check against the @bprm->cred->security value which was set in
1288  * the preceding creds_for_exec call.  The argv list and envp list are reliably
1289  * available in @bprm.  This hook may be called multiple times during a single
1290  * execve.  @bprm contains the linux_binprm structure.
1291  *
1292  * Return: Returns 0 if the hook is successful and permission is granted.
1293  */
1294 int security_bprm_check(struct linux_binprm *bprm)
1295 {
1296 	return call_int_hook(bprm_check_security, bprm);
1297 }
1298 
1299 /**
1300  * security_bprm_committing_creds() - Install creds for a process during exec()
1301  * @bprm: binary program information
1302  *
1303  * Prepare to install the new security attributes of a process being
1304  * transformed by an execve operation, based on the old credentials pointed to
1305  * by @current->cred and the information set in @bprm->cred by the
1306  * bprm_creds_for_exec hook.  @bprm points to the linux_binprm structure.  This
1307  * hook is a good place to perform state changes on the process such as closing
1308  * open file descriptors to which access will no longer be granted when the
1309  * attributes are changed.  This is called immediately before commit_creds().
1310  */
1311 void security_bprm_committing_creds(const struct linux_binprm *bprm)
1312 {
1313 	call_void_hook(bprm_committing_creds, bprm);
1314 }
1315 
1316 /**
1317  * security_bprm_committed_creds() - Tidy up after cred install during exec()
1318  * @bprm: binary program information
1319  *
1320  * Tidy up after the installation of the new security attributes of a process
1321  * being transformed by an execve operation.  The new credentials have, by this
1322  * point, been set to @current->cred.  @bprm points to the linux_binprm
1323  * structure.  This hook is a good place to perform state changes on the
1324  * process such as clearing out non-inheritable signal state.  This is called
1325  * immediately after commit_creds().
1326  */
1327 void security_bprm_committed_creds(const struct linux_binprm *bprm)
1328 {
1329 	call_void_hook(bprm_committed_creds, bprm);
1330 }
1331 
1332 /**
1333  * security_fs_context_submount() - Initialise fc->security
1334  * @fc: new filesystem context
1335  * @reference: dentry reference for submount/remount
1336  *
1337  * Fill out the ->security field for a new fs_context.
1338  *
1339  * Return: Returns 0 on success or negative error code on failure.
1340  */
1341 int security_fs_context_submount(struct fs_context *fc, struct super_block *reference)
1342 {
1343 	return call_int_hook(fs_context_submount, fc, reference);
1344 }
1345 
1346 /**
1347  * security_fs_context_dup() - Duplicate a fs_context LSM blob
1348  * @fc: destination filesystem context
1349  * @src_fc: source filesystem context
1350  *
1351  * Allocate and attach a security structure to sc->security.  This pointer is
1352  * initialised to NULL by the caller.  @fc indicates the new filesystem context.
1353  * @src_fc indicates the original filesystem context.
1354  *
1355  * Return: Returns 0 on success or a negative error code on failure.
1356  */
1357 int security_fs_context_dup(struct fs_context *fc, struct fs_context *src_fc)
1358 {
1359 	return call_int_hook(fs_context_dup, fc, src_fc);
1360 }
1361 
1362 /**
1363  * security_fs_context_parse_param() - Configure a filesystem context
1364  * @fc: filesystem context
1365  * @param: filesystem parameter
1366  *
1367  * Userspace provided a parameter to configure a superblock.  The LSM can
1368  * consume the parameter or return it to the caller for use elsewhere.
1369  *
1370  * Return: If the parameter is used by the LSM it should return 0, if it is
1371  *         returned to the caller -ENOPARAM is returned, otherwise a negative
1372  *         error code is returned.
1373  */
1374 int security_fs_context_parse_param(struct fs_context *fc,
1375 				    struct fs_parameter *param)
1376 {
1377 	struct lsm_static_call *scall;
1378 	int trc;
1379 	int rc = -ENOPARAM;
1380 
1381 	lsm_for_each_hook(scall, fs_context_parse_param) {
1382 		trc = scall->hl->hook.fs_context_parse_param(fc, param);
1383 		if (trc == 0)
1384 			rc = 0;
1385 		else if (trc != -ENOPARAM)
1386 			return trc;
1387 	}
1388 	return rc;
1389 }
1390 
1391 /**
1392  * security_sb_alloc() - Allocate a super_block LSM blob
1393  * @sb: filesystem superblock
1394  *
1395  * Allocate and attach a security structure to the sb->s_security field.  The
1396  * s_security field is initialized to NULL when the structure is allocated.
1397  * @sb contains the super_block structure to be modified.
1398  *
1399  * Return: Returns 0 if operation was successful.
1400  */
1401 int security_sb_alloc(struct super_block *sb)
1402 {
1403 	int rc = lsm_superblock_alloc(sb);
1404 
1405 	if (unlikely(rc))
1406 		return rc;
1407 	rc = call_int_hook(sb_alloc_security, sb);
1408 	if (unlikely(rc))
1409 		security_sb_free(sb);
1410 	return rc;
1411 }
1412 
1413 /**
1414  * security_sb_delete() - Release super_block LSM associated objects
1415  * @sb: filesystem superblock
1416  *
1417  * Release objects tied to a superblock (e.g. inodes).  @sb contains the
1418  * super_block structure being released.
1419  */
1420 void security_sb_delete(struct super_block *sb)
1421 {
1422 	call_void_hook(sb_delete, sb);
1423 }
1424 
1425 /**
1426  * security_sb_free() - Free a super_block LSM blob
1427  * @sb: filesystem superblock
1428  *
1429  * Deallocate and clear the sb->s_security field.  @sb contains the super_block
1430  * structure to be modified.
1431  */
1432 void security_sb_free(struct super_block *sb)
1433 {
1434 	call_void_hook(sb_free_security, sb);
1435 	kfree(sb->s_security);
1436 	sb->s_security = NULL;
1437 }
1438 
1439 /**
1440  * security_free_mnt_opts() - Free memory associated with mount options
1441  * @mnt_opts: LSM processed mount options
1442  *
1443  * Free memory associated with @mnt_ops.
1444  */
1445 void security_free_mnt_opts(void **mnt_opts)
1446 {
1447 	if (!*mnt_opts)
1448 		return;
1449 	call_void_hook(sb_free_mnt_opts, *mnt_opts);
1450 	*mnt_opts = NULL;
1451 }
1452 EXPORT_SYMBOL(security_free_mnt_opts);
1453 
1454 /**
1455  * security_sb_eat_lsm_opts() - Consume LSM mount options
1456  * @options: mount options
1457  * @mnt_opts: LSM processed mount options
1458  *
1459  * Eat (scan @options) and save them in @mnt_opts.
1460  *
1461  * Return: Returns 0 on success, negative values on failure.
1462  */
1463 int security_sb_eat_lsm_opts(char *options, void **mnt_opts)
1464 {
1465 	return call_int_hook(sb_eat_lsm_opts, options, mnt_opts);
1466 }
1467 EXPORT_SYMBOL(security_sb_eat_lsm_opts);
1468 
1469 /**
1470  * security_sb_mnt_opts_compat() - Check if new mount options are allowed
1471  * @sb: filesystem superblock
1472  * @mnt_opts: new mount options
1473  *
1474  * Determine if the new mount options in @mnt_opts are allowed given the
1475  * existing mounted filesystem at @sb.  @sb superblock being compared.
1476  *
1477  * Return: Returns 0 if options are compatible.
1478  */
1479 int security_sb_mnt_opts_compat(struct super_block *sb,
1480 				void *mnt_opts)
1481 {
1482 	return call_int_hook(sb_mnt_opts_compat, sb, mnt_opts);
1483 }
1484 EXPORT_SYMBOL(security_sb_mnt_opts_compat);
1485 
1486 /**
1487  * security_sb_remount() - Verify no incompatible mount changes during remount
1488  * @sb: filesystem superblock
1489  * @mnt_opts: (re)mount options
1490  *
1491  * Extracts security system specific mount options and verifies no changes are
1492  * being made to those options.
1493  *
1494  * Return: Returns 0 if permission is granted.
1495  */
1496 int security_sb_remount(struct super_block *sb,
1497 			void *mnt_opts)
1498 {
1499 	return call_int_hook(sb_remount, sb, mnt_opts);
1500 }
1501 EXPORT_SYMBOL(security_sb_remount);
1502 
1503 /**
1504  * security_sb_kern_mount() - Check if a kernel mount is allowed
1505  * @sb: filesystem superblock
1506  *
1507  * Mount this @sb if allowed by permissions.
1508  *
1509  * Return: Returns 0 if permission is granted.
1510  */
1511 int security_sb_kern_mount(const struct super_block *sb)
1512 {
1513 	return call_int_hook(sb_kern_mount, sb);
1514 }
1515 
1516 /**
1517  * security_sb_show_options() - Output the mount options for a superblock
1518  * @m: output file
1519  * @sb: filesystem superblock
1520  *
1521  * Show (print on @m) mount options for this @sb.
1522  *
1523  * Return: Returns 0 on success, negative values on failure.
1524  */
1525 int security_sb_show_options(struct seq_file *m, struct super_block *sb)
1526 {
1527 	return call_int_hook(sb_show_options, m, sb);
1528 }
1529 
1530 /**
1531  * security_sb_statfs() - Check if accessing fs stats is allowed
1532  * @dentry: superblock handle
1533  *
1534  * Check permission before obtaining filesystem statistics for the @mnt
1535  * mountpoint.  @dentry is a handle on the superblock for the filesystem.
1536  *
1537  * Return: Returns 0 if permission is granted.
1538  */
1539 int security_sb_statfs(struct dentry *dentry)
1540 {
1541 	return call_int_hook(sb_statfs, dentry);
1542 }
1543 
1544 /**
1545  * security_sb_mount() - Check permission for mounting a filesystem
1546  * @dev_name: filesystem backing device
1547  * @path: mount point
1548  * @type: filesystem type
1549  * @flags: mount flags
1550  * @data: filesystem specific data
1551  *
1552  * Check permission before an object specified by @dev_name is mounted on the
1553  * mount point named by @nd.  For an ordinary mount, @dev_name identifies a
1554  * device if the file system type requires a device.  For a remount
1555  * (@flags & MS_REMOUNT), @dev_name is irrelevant.  For a loopback/bind mount
1556  * (@flags & MS_BIND), @dev_name identifies the	pathname of the object being
1557  * mounted.
1558  *
1559  * Return: Returns 0 if permission is granted.
1560  */
1561 int security_sb_mount(const char *dev_name, const struct path *path,
1562 		      const char *type, unsigned long flags, void *data)
1563 {
1564 	return call_int_hook(sb_mount, dev_name, path, type, flags, data);
1565 }
1566 
1567 /**
1568  * security_sb_umount() - Check permission for unmounting a filesystem
1569  * @mnt: mounted filesystem
1570  * @flags: unmount flags
1571  *
1572  * Check permission before the @mnt file system is unmounted.
1573  *
1574  * Return: Returns 0 if permission is granted.
1575  */
1576 int security_sb_umount(struct vfsmount *mnt, int flags)
1577 {
1578 	return call_int_hook(sb_umount, mnt, flags);
1579 }
1580 
1581 /**
1582  * security_sb_pivotroot() - Check permissions for pivoting the rootfs
1583  * @old_path: new location for current rootfs
1584  * @new_path: location of the new rootfs
1585  *
1586  * Check permission before pivoting the root filesystem.
1587  *
1588  * Return: Returns 0 if permission is granted.
1589  */
1590 int security_sb_pivotroot(const struct path *old_path,
1591 			  const struct path *new_path)
1592 {
1593 	return call_int_hook(sb_pivotroot, old_path, new_path);
1594 }
1595 
1596 /**
1597  * security_sb_set_mnt_opts() - Set the mount options for a filesystem
1598  * @sb: filesystem superblock
1599  * @mnt_opts: binary mount options
1600  * @kern_flags: kernel flags (in)
1601  * @set_kern_flags: kernel flags (out)
1602  *
1603  * Set the security relevant mount options used for a superblock.
1604  *
1605  * Return: Returns 0 on success, error on failure.
1606  */
1607 int security_sb_set_mnt_opts(struct super_block *sb,
1608 			     void *mnt_opts,
1609 			     unsigned long kern_flags,
1610 			     unsigned long *set_kern_flags)
1611 {
1612 	struct lsm_static_call *scall;
1613 	int rc = mnt_opts ? -EOPNOTSUPP : LSM_RET_DEFAULT(sb_set_mnt_opts);
1614 
1615 	lsm_for_each_hook(scall, sb_set_mnt_opts) {
1616 		rc = scall->hl->hook.sb_set_mnt_opts(sb, mnt_opts, kern_flags,
1617 					      set_kern_flags);
1618 		if (rc != LSM_RET_DEFAULT(sb_set_mnt_opts))
1619 			break;
1620 	}
1621 	return rc;
1622 }
1623 EXPORT_SYMBOL(security_sb_set_mnt_opts);
1624 
1625 /**
1626  * security_sb_clone_mnt_opts() - Duplicate superblock mount options
1627  * @oldsb: source superblock
1628  * @newsb: destination superblock
1629  * @kern_flags: kernel flags (in)
1630  * @set_kern_flags: kernel flags (out)
1631  *
1632  * Copy all security options from a given superblock to another.
1633  *
1634  * Return: Returns 0 on success, error on failure.
1635  */
1636 int security_sb_clone_mnt_opts(const struct super_block *oldsb,
1637 			       struct super_block *newsb,
1638 			       unsigned long kern_flags,
1639 			       unsigned long *set_kern_flags)
1640 {
1641 	return call_int_hook(sb_clone_mnt_opts, oldsb, newsb,
1642 			     kern_flags, set_kern_flags);
1643 }
1644 EXPORT_SYMBOL(security_sb_clone_mnt_opts);
1645 
1646 /**
1647  * security_move_mount() - Check permissions for moving a mount
1648  * @from_path: source mount point
1649  * @to_path: destination mount point
1650  *
1651  * Check permission before a mount is moved.
1652  *
1653  * Return: Returns 0 if permission is granted.
1654  */
1655 int security_move_mount(const struct path *from_path,
1656 			const struct path *to_path)
1657 {
1658 	return call_int_hook(move_mount, from_path, to_path);
1659 }
1660 
1661 /**
1662  * security_path_notify() - Check if setting a watch is allowed
1663  * @path: file path
1664  * @mask: event mask
1665  * @obj_type: file path type
1666  *
1667  * Check permissions before setting a watch on events as defined by @mask, on
1668  * an object at @path, whose type is defined by @obj_type.
1669  *
1670  * Return: Returns 0 if permission is granted.
1671  */
1672 int security_path_notify(const struct path *path, u64 mask,
1673 			 unsigned int obj_type)
1674 {
1675 	return call_int_hook(path_notify, path, mask, obj_type);
1676 }
1677 
1678 /**
1679  * security_inode_alloc() - Allocate an inode LSM blob
1680  * @inode: the inode
1681  * @gfp: allocation flags
1682  *
1683  * Allocate and attach a security structure to @inode->i_security.  The
1684  * i_security field is initialized to NULL when the inode structure is
1685  * allocated.
1686  *
1687  * Return: Return 0 if operation was successful.
1688  */
1689 int security_inode_alloc(struct inode *inode, gfp_t gfp)
1690 {
1691 	int rc = lsm_inode_alloc(inode, gfp);
1692 
1693 	if (unlikely(rc))
1694 		return rc;
1695 	rc = call_int_hook(inode_alloc_security, inode);
1696 	if (unlikely(rc))
1697 		security_inode_free(inode);
1698 	return rc;
1699 }
1700 
1701 static void inode_free_by_rcu(struct rcu_head *head)
1702 {
1703 	/* The rcu head is at the start of the inode blob */
1704 	call_void_hook(inode_free_security_rcu, head);
1705 	kmem_cache_free(lsm_inode_cache, head);
1706 }
1707 
1708 /**
1709  * security_inode_free() - Free an inode's LSM blob
1710  * @inode: the inode
1711  *
1712  * Release any LSM resources associated with @inode, although due to the
1713  * inode's RCU protections it is possible that the resources will not be
1714  * fully released until after the current RCU grace period has elapsed.
1715  *
1716  * It is important for LSMs to note that despite being present in a call to
1717  * security_inode_free(), @inode may still be referenced in a VFS path walk
1718  * and calls to security_inode_permission() may be made during, or after,
1719  * a call to security_inode_free().  For this reason the inode->i_security
1720  * field is released via a call_rcu() callback and any LSMs which need to
1721  * retain inode state for use in security_inode_permission() should only
1722  * release that state in the inode_free_security_rcu() LSM hook callback.
1723  */
1724 void security_inode_free(struct inode *inode)
1725 {
1726 	call_void_hook(inode_free_security, inode);
1727 	if (!inode->i_security)
1728 		return;
1729 	call_rcu((struct rcu_head *)inode->i_security, inode_free_by_rcu);
1730 }
1731 
1732 /**
1733  * security_dentry_init_security() - Perform dentry initialization
1734  * @dentry: the dentry to initialize
1735  * @mode: mode used to determine resource type
1736  * @name: name of the last path component
1737  * @xattr_name: name of the security/LSM xattr
1738  * @ctx: pointer to the resulting LSM context
1739  * @ctxlen: length of @ctx
1740  *
1741  * Compute a context for a dentry as the inode is not yet available since NFSv4
1742  * has no label backed by an EA anyway.  It is important to note that
1743  * @xattr_name does not need to be free'd by the caller, it is a static string.
1744  *
1745  * Return: Returns 0 on success, negative values on failure.
1746  */
1747 int security_dentry_init_security(struct dentry *dentry, int mode,
1748 				  const struct qstr *name,
1749 				  const char **xattr_name, void **ctx,
1750 				  u32 *ctxlen)
1751 {
1752 	return call_int_hook(dentry_init_security, dentry, mode, name,
1753 			     xattr_name, ctx, ctxlen);
1754 }
1755 EXPORT_SYMBOL(security_dentry_init_security);
1756 
1757 /**
1758  * security_dentry_create_files_as() - Perform dentry initialization
1759  * @dentry: the dentry to initialize
1760  * @mode: mode used to determine resource type
1761  * @name: name of the last path component
1762  * @old: creds to use for LSM context calculations
1763  * @new: creds to modify
1764  *
1765  * Compute a context for a dentry as the inode is not yet available and set
1766  * that context in passed in creds so that new files are created using that
1767  * context. Context is calculated using the passed in creds and not the creds
1768  * of the caller.
1769  *
1770  * Return: Returns 0 on success, error on failure.
1771  */
1772 int security_dentry_create_files_as(struct dentry *dentry, int mode,
1773 				    struct qstr *name,
1774 				    const struct cred *old, struct cred *new)
1775 {
1776 	return call_int_hook(dentry_create_files_as, dentry, mode,
1777 			     name, old, new);
1778 }
1779 EXPORT_SYMBOL(security_dentry_create_files_as);
1780 
1781 /**
1782  * security_inode_init_security() - Initialize an inode's LSM context
1783  * @inode: the inode
1784  * @dir: parent directory
1785  * @qstr: last component of the pathname
1786  * @initxattrs: callback function to write xattrs
1787  * @fs_data: filesystem specific data
1788  *
1789  * Obtain the security attribute name suffix and value to set on a newly
1790  * created inode and set up the incore security field for the new inode.  This
1791  * hook is called by the fs code as part of the inode creation transaction and
1792  * provides for atomic labeling of the inode, unlike the post_create/mkdir/...
1793  * hooks called by the VFS.
1794  *
1795  * The hook function is expected to populate the xattrs array, by calling
1796  * lsm_get_xattr_slot() to retrieve the slots reserved by the security module
1797  * with the lbs_xattr_count field of the lsm_blob_sizes structure.  For each
1798  * slot, the hook function should set ->name to the attribute name suffix
1799  * (e.g. selinux), to allocate ->value (will be freed by the caller) and set it
1800  * to the attribute value, to set ->value_len to the length of the value.  If
1801  * the security module does not use security attributes or does not wish to put
1802  * a security attribute on this particular inode, then it should return
1803  * -EOPNOTSUPP to skip this processing.
1804  *
1805  * Return: Returns 0 if the LSM successfully initialized all of the inode
1806  *         security attributes that are required, negative values otherwise.
1807  */
1808 int security_inode_init_security(struct inode *inode, struct inode *dir,
1809 				 const struct qstr *qstr,
1810 				 const initxattrs initxattrs, void *fs_data)
1811 {
1812 	struct lsm_static_call *scall;
1813 	struct xattr *new_xattrs = NULL;
1814 	int ret = -EOPNOTSUPP, xattr_count = 0;
1815 
1816 	if (unlikely(IS_PRIVATE(inode)))
1817 		return 0;
1818 
1819 	if (!blob_sizes.lbs_xattr_count)
1820 		return 0;
1821 
1822 	if (initxattrs) {
1823 		/* Allocate +1 as terminator. */
1824 		new_xattrs = kcalloc(blob_sizes.lbs_xattr_count + 1,
1825 				     sizeof(*new_xattrs), GFP_NOFS);
1826 		if (!new_xattrs)
1827 			return -ENOMEM;
1828 	}
1829 
1830 	lsm_for_each_hook(scall, inode_init_security) {
1831 		ret = scall->hl->hook.inode_init_security(inode, dir, qstr, new_xattrs,
1832 						  &xattr_count);
1833 		if (ret && ret != -EOPNOTSUPP)
1834 			goto out;
1835 		/*
1836 		 * As documented in lsm_hooks.h, -EOPNOTSUPP in this context
1837 		 * means that the LSM is not willing to provide an xattr, not
1838 		 * that it wants to signal an error. Thus, continue to invoke
1839 		 * the remaining LSMs.
1840 		 */
1841 	}
1842 
1843 	/* If initxattrs() is NULL, xattr_count is zero, skip the call. */
1844 	if (!xattr_count)
1845 		goto out;
1846 
1847 	ret = initxattrs(inode, new_xattrs, fs_data);
1848 out:
1849 	for (; xattr_count > 0; xattr_count--)
1850 		kfree(new_xattrs[xattr_count - 1].value);
1851 	kfree(new_xattrs);
1852 	return (ret == -EOPNOTSUPP) ? 0 : ret;
1853 }
1854 EXPORT_SYMBOL(security_inode_init_security);
1855 
1856 /**
1857  * security_inode_init_security_anon() - Initialize an anonymous inode
1858  * @inode: the inode
1859  * @name: the anonymous inode class
1860  * @context_inode: an optional related inode
1861  *
1862  * Set up the incore security field for the new anonymous inode and return
1863  * whether the inode creation is permitted by the security module or not.
1864  *
1865  * Return: Returns 0 on success, -EACCES if the security module denies the
1866  * creation of this inode, or another -errno upon other errors.
1867  */
1868 int security_inode_init_security_anon(struct inode *inode,
1869 				      const struct qstr *name,
1870 				      const struct inode *context_inode)
1871 {
1872 	return call_int_hook(inode_init_security_anon, inode, name,
1873 			     context_inode);
1874 }
1875 
1876 #ifdef CONFIG_SECURITY_PATH
1877 /**
1878  * security_path_mknod() - Check if creating a special file is allowed
1879  * @dir: parent directory
1880  * @dentry: new file
1881  * @mode: new file mode
1882  * @dev: device number
1883  *
1884  * Check permissions when creating a file. Note that this hook is called even
1885  * if mknod operation is being done for a regular file.
1886  *
1887  * Return: Returns 0 if permission is granted.
1888  */
1889 int security_path_mknod(const struct path *dir, struct dentry *dentry,
1890 			umode_t mode, unsigned int dev)
1891 {
1892 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1893 		return 0;
1894 	return call_int_hook(path_mknod, dir, dentry, mode, dev);
1895 }
1896 EXPORT_SYMBOL(security_path_mknod);
1897 
1898 /**
1899  * security_path_post_mknod() - Update inode security after reg file creation
1900  * @idmap: idmap of the mount
1901  * @dentry: new file
1902  *
1903  * Update inode security field after a regular file has been created.
1904  */
1905 void security_path_post_mknod(struct mnt_idmap *idmap, struct dentry *dentry)
1906 {
1907 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1908 		return;
1909 	call_void_hook(path_post_mknod, idmap, dentry);
1910 }
1911 
1912 /**
1913  * security_path_mkdir() - Check if creating a new directory is allowed
1914  * @dir: parent directory
1915  * @dentry: new directory
1916  * @mode: new directory mode
1917  *
1918  * Check permissions to create a new directory in the existing directory.
1919  *
1920  * Return: Returns 0 if permission is granted.
1921  */
1922 int security_path_mkdir(const struct path *dir, struct dentry *dentry,
1923 			umode_t mode)
1924 {
1925 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1926 		return 0;
1927 	return call_int_hook(path_mkdir, dir, dentry, mode);
1928 }
1929 EXPORT_SYMBOL(security_path_mkdir);
1930 
1931 /**
1932  * security_path_rmdir() - Check if removing a directory is allowed
1933  * @dir: parent directory
1934  * @dentry: directory to remove
1935  *
1936  * Check the permission to remove a directory.
1937  *
1938  * Return: Returns 0 if permission is granted.
1939  */
1940 int security_path_rmdir(const struct path *dir, struct dentry *dentry)
1941 {
1942 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1943 		return 0;
1944 	return call_int_hook(path_rmdir, dir, dentry);
1945 }
1946 
1947 /**
1948  * security_path_unlink() - Check if removing a hard link is allowed
1949  * @dir: parent directory
1950  * @dentry: file
1951  *
1952  * Check the permission to remove a hard link to a file.
1953  *
1954  * Return: Returns 0 if permission is granted.
1955  */
1956 int security_path_unlink(const struct path *dir, struct dentry *dentry)
1957 {
1958 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1959 		return 0;
1960 	return call_int_hook(path_unlink, dir, dentry);
1961 }
1962 EXPORT_SYMBOL(security_path_unlink);
1963 
1964 /**
1965  * security_path_symlink() - Check if creating a symbolic link is allowed
1966  * @dir: parent directory
1967  * @dentry: symbolic link
1968  * @old_name: file pathname
1969  *
1970  * Check the permission to create a symbolic link to a file.
1971  *
1972  * Return: Returns 0 if permission is granted.
1973  */
1974 int security_path_symlink(const struct path *dir, struct dentry *dentry,
1975 			  const char *old_name)
1976 {
1977 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1978 		return 0;
1979 	return call_int_hook(path_symlink, dir, dentry, old_name);
1980 }
1981 
1982 /**
1983  * security_path_link - Check if creating a hard link is allowed
1984  * @old_dentry: existing file
1985  * @new_dir: new parent directory
1986  * @new_dentry: new link
1987  *
1988  * Check permission before creating a new hard link to a file.
1989  *
1990  * Return: Returns 0 if permission is granted.
1991  */
1992 int security_path_link(struct dentry *old_dentry, const struct path *new_dir,
1993 		       struct dentry *new_dentry)
1994 {
1995 	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
1996 		return 0;
1997 	return call_int_hook(path_link, old_dentry, new_dir, new_dentry);
1998 }
1999 
2000 /**
2001  * security_path_rename() - Check if renaming a file is allowed
2002  * @old_dir: parent directory of the old file
2003  * @old_dentry: the old file
2004  * @new_dir: parent directory of the new file
2005  * @new_dentry: the new file
2006  * @flags: flags
2007  *
2008  * Check for permission to rename a file or directory.
2009  *
2010  * Return: Returns 0 if permission is granted.
2011  */
2012 int security_path_rename(const struct path *old_dir, struct dentry *old_dentry,
2013 			 const struct path *new_dir, struct dentry *new_dentry,
2014 			 unsigned int flags)
2015 {
2016 	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
2017 		     (d_is_positive(new_dentry) &&
2018 		      IS_PRIVATE(d_backing_inode(new_dentry)))))
2019 		return 0;
2020 
2021 	return call_int_hook(path_rename, old_dir, old_dentry, new_dir,
2022 			     new_dentry, flags);
2023 }
2024 EXPORT_SYMBOL(security_path_rename);
2025 
2026 /**
2027  * security_path_truncate() - Check if truncating a file is allowed
2028  * @path: file
2029  *
2030  * Check permission before truncating the file indicated by path.  Note that
2031  * truncation permissions may also be checked based on already opened files,
2032  * using the security_file_truncate() hook.
2033  *
2034  * Return: Returns 0 if permission is granted.
2035  */
2036 int security_path_truncate(const struct path *path)
2037 {
2038 	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
2039 		return 0;
2040 	return call_int_hook(path_truncate, path);
2041 }
2042 
2043 /**
2044  * security_path_chmod() - Check if changing the file's mode is allowed
2045  * @path: file
2046  * @mode: new mode
2047  *
2048  * Check for permission to change a mode of the file @path. The new mode is
2049  * specified in @mode which is a bitmask of constants from
2050  * <include/uapi/linux/stat.h>.
2051  *
2052  * Return: Returns 0 if permission is granted.
2053  */
2054 int security_path_chmod(const struct path *path, umode_t mode)
2055 {
2056 	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
2057 		return 0;
2058 	return call_int_hook(path_chmod, path, mode);
2059 }
2060 
2061 /**
2062  * security_path_chown() - Check if changing the file's owner/group is allowed
2063  * @path: file
2064  * @uid: file owner
2065  * @gid: file group
2066  *
2067  * Check for permission to change owner/group of a file or directory.
2068  *
2069  * Return: Returns 0 if permission is granted.
2070  */
2071 int security_path_chown(const struct path *path, kuid_t uid, kgid_t gid)
2072 {
2073 	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
2074 		return 0;
2075 	return call_int_hook(path_chown, path, uid, gid);
2076 }
2077 
2078 /**
2079  * security_path_chroot() - Check if changing the root directory is allowed
2080  * @path: directory
2081  *
2082  * Check for permission to change root directory.
2083  *
2084  * Return: Returns 0 if permission is granted.
2085  */
2086 int security_path_chroot(const struct path *path)
2087 {
2088 	return call_int_hook(path_chroot, path);
2089 }
2090 #endif /* CONFIG_SECURITY_PATH */
2091 
2092 /**
2093  * security_inode_create() - Check if creating a file is allowed
2094  * @dir: the parent directory
2095  * @dentry: the file being created
2096  * @mode: requested file mode
2097  *
2098  * Check permission to create a regular file.
2099  *
2100  * Return: Returns 0 if permission is granted.
2101  */
2102 int security_inode_create(struct inode *dir, struct dentry *dentry,
2103 			  umode_t mode)
2104 {
2105 	if (unlikely(IS_PRIVATE(dir)))
2106 		return 0;
2107 	return call_int_hook(inode_create, dir, dentry, mode);
2108 }
2109 EXPORT_SYMBOL_GPL(security_inode_create);
2110 
2111 /**
2112  * security_inode_post_create_tmpfile() - Update inode security of new tmpfile
2113  * @idmap: idmap of the mount
2114  * @inode: inode of the new tmpfile
2115  *
2116  * Update inode security data after a tmpfile has been created.
2117  */
2118 void security_inode_post_create_tmpfile(struct mnt_idmap *idmap,
2119 					struct inode *inode)
2120 {
2121 	if (unlikely(IS_PRIVATE(inode)))
2122 		return;
2123 	call_void_hook(inode_post_create_tmpfile, idmap, inode);
2124 }
2125 
2126 /**
2127  * security_inode_link() - Check if creating a hard link is allowed
2128  * @old_dentry: existing file
2129  * @dir: new parent directory
2130  * @new_dentry: new link
2131  *
2132  * Check permission before creating a new hard link to a file.
2133  *
2134  * Return: Returns 0 if permission is granted.
2135  */
2136 int security_inode_link(struct dentry *old_dentry, struct inode *dir,
2137 			struct dentry *new_dentry)
2138 {
2139 	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
2140 		return 0;
2141 	return call_int_hook(inode_link, old_dentry, dir, new_dentry);
2142 }
2143 
2144 /**
2145  * security_inode_unlink() - Check if removing a hard link is allowed
2146  * @dir: parent directory
2147  * @dentry: file
2148  *
2149  * Check the permission to remove a hard link to a file.
2150  *
2151  * Return: Returns 0 if permission is granted.
2152  */
2153 int security_inode_unlink(struct inode *dir, struct dentry *dentry)
2154 {
2155 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2156 		return 0;
2157 	return call_int_hook(inode_unlink, dir, dentry);
2158 }
2159 
2160 /**
2161  * security_inode_symlink() - Check if creating a symbolic link is allowed
2162  * @dir: parent directory
2163  * @dentry: symbolic link
2164  * @old_name: existing filename
2165  *
2166  * Check the permission to create a symbolic link to a file.
2167  *
2168  * Return: Returns 0 if permission is granted.
2169  */
2170 int security_inode_symlink(struct inode *dir, struct dentry *dentry,
2171 			   const char *old_name)
2172 {
2173 	if (unlikely(IS_PRIVATE(dir)))
2174 		return 0;
2175 	return call_int_hook(inode_symlink, dir, dentry, old_name);
2176 }
2177 
2178 /**
2179  * security_inode_mkdir() - Check if creation a new director is allowed
2180  * @dir: parent directory
2181  * @dentry: new directory
2182  * @mode: new directory mode
2183  *
2184  * Check permissions to create a new directory in the existing directory
2185  * associated with inode structure @dir.
2186  *
2187  * Return: Returns 0 if permission is granted.
2188  */
2189 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2190 {
2191 	if (unlikely(IS_PRIVATE(dir)))
2192 		return 0;
2193 	return call_int_hook(inode_mkdir, dir, dentry, mode);
2194 }
2195 EXPORT_SYMBOL_GPL(security_inode_mkdir);
2196 
2197 /**
2198  * security_inode_rmdir() - Check if removing a directory is allowed
2199  * @dir: parent directory
2200  * @dentry: directory to be removed
2201  *
2202  * Check the permission to remove a directory.
2203  *
2204  * Return: Returns 0 if permission is granted.
2205  */
2206 int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
2207 {
2208 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2209 		return 0;
2210 	return call_int_hook(inode_rmdir, dir, dentry);
2211 }
2212 
2213 /**
2214  * security_inode_mknod() - Check if creating a special file is allowed
2215  * @dir: parent directory
2216  * @dentry: new file
2217  * @mode: new file mode
2218  * @dev: device number
2219  *
2220  * Check permissions when creating a special file (or a socket or a fifo file
2221  * created via the mknod system call).  Note that if mknod operation is being
2222  * done for a regular file, then the create hook will be called and not this
2223  * hook.
2224  *
2225  * Return: Returns 0 if permission is granted.
2226  */
2227 int security_inode_mknod(struct inode *dir, struct dentry *dentry,
2228 			 umode_t mode, dev_t dev)
2229 {
2230 	if (unlikely(IS_PRIVATE(dir)))
2231 		return 0;
2232 	return call_int_hook(inode_mknod, dir, dentry, mode, dev);
2233 }
2234 
2235 /**
2236  * security_inode_rename() - Check if renaming a file is allowed
2237  * @old_dir: parent directory of the old file
2238  * @old_dentry: the old file
2239  * @new_dir: parent directory of the new file
2240  * @new_dentry: the new file
2241  * @flags: flags
2242  *
2243  * Check for permission to rename a file or directory.
2244  *
2245  * Return: Returns 0 if permission is granted.
2246  */
2247 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
2248 			  struct inode *new_dir, struct dentry *new_dentry,
2249 			  unsigned int flags)
2250 {
2251 	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
2252 		     (d_is_positive(new_dentry) &&
2253 		      IS_PRIVATE(d_backing_inode(new_dentry)))))
2254 		return 0;
2255 
2256 	if (flags & RENAME_EXCHANGE) {
2257 		int err = call_int_hook(inode_rename, new_dir, new_dentry,
2258 					old_dir, old_dentry);
2259 		if (err)
2260 			return err;
2261 	}
2262 
2263 	return call_int_hook(inode_rename, old_dir, old_dentry,
2264 			     new_dir, new_dentry);
2265 }
2266 
2267 /**
2268  * security_inode_readlink() - Check if reading a symbolic link is allowed
2269  * @dentry: link
2270  *
2271  * Check the permission to read the symbolic link.
2272  *
2273  * Return: Returns 0 if permission is granted.
2274  */
2275 int security_inode_readlink(struct dentry *dentry)
2276 {
2277 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2278 		return 0;
2279 	return call_int_hook(inode_readlink, dentry);
2280 }
2281 
2282 /**
2283  * security_inode_follow_link() - Check if following a symbolic link is allowed
2284  * @dentry: link dentry
2285  * @inode: link inode
2286  * @rcu: true if in RCU-walk mode
2287  *
2288  * Check permission to follow a symbolic link when looking up a pathname.  If
2289  * @rcu is true, @inode is not stable.
2290  *
2291  * Return: Returns 0 if permission is granted.
2292  */
2293 int security_inode_follow_link(struct dentry *dentry, struct inode *inode,
2294 			       bool rcu)
2295 {
2296 	if (unlikely(IS_PRIVATE(inode)))
2297 		return 0;
2298 	return call_int_hook(inode_follow_link, dentry, inode, rcu);
2299 }
2300 
2301 /**
2302  * security_inode_permission() - Check if accessing an inode is allowed
2303  * @inode: inode
2304  * @mask: access mask
2305  *
2306  * Check permission before accessing an inode.  This hook is called by the
2307  * existing Linux permission function, so a security module can use it to
2308  * provide additional checking for existing Linux permission checks.  Notice
2309  * that this hook is called when a file is opened (as well as many other
2310  * operations), whereas the file_security_ops permission hook is called when
2311  * the actual read/write operations are performed.
2312  *
2313  * Return: Returns 0 if permission is granted.
2314  */
2315 int security_inode_permission(struct inode *inode, int mask)
2316 {
2317 	if (unlikely(IS_PRIVATE(inode)))
2318 		return 0;
2319 	return call_int_hook(inode_permission, inode, mask);
2320 }
2321 
2322 /**
2323  * security_inode_setattr() - Check if setting file attributes is allowed
2324  * @idmap: idmap of the mount
2325  * @dentry: file
2326  * @attr: new attributes
2327  *
2328  * Check permission before setting file attributes.  Note that the kernel call
2329  * to notify_change is performed from several locations, whenever file
2330  * attributes change (such as when a file is truncated, chown/chmod operations,
2331  * transferring disk quotas, etc).
2332  *
2333  * Return: Returns 0 if permission is granted.
2334  */
2335 int security_inode_setattr(struct mnt_idmap *idmap,
2336 			   struct dentry *dentry, struct iattr *attr)
2337 {
2338 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2339 		return 0;
2340 	return call_int_hook(inode_setattr, idmap, dentry, attr);
2341 }
2342 EXPORT_SYMBOL_GPL(security_inode_setattr);
2343 
2344 /**
2345  * security_inode_post_setattr() - Update the inode after a setattr operation
2346  * @idmap: idmap of the mount
2347  * @dentry: file
2348  * @ia_valid: file attributes set
2349  *
2350  * Update inode security field after successful setting file attributes.
2351  */
2352 void security_inode_post_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
2353 				 int ia_valid)
2354 {
2355 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2356 		return;
2357 	call_void_hook(inode_post_setattr, idmap, dentry, ia_valid);
2358 }
2359 
2360 /**
2361  * security_inode_getattr() - Check if getting file attributes is allowed
2362  * @path: file
2363  *
2364  * Check permission before obtaining file attributes.
2365  *
2366  * Return: Returns 0 if permission is granted.
2367  */
2368 int security_inode_getattr(const struct path *path)
2369 {
2370 	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
2371 		return 0;
2372 	return call_int_hook(inode_getattr, path);
2373 }
2374 
2375 /**
2376  * security_inode_setxattr() - Check if setting file xattrs is allowed
2377  * @idmap: idmap of the mount
2378  * @dentry: file
2379  * @name: xattr name
2380  * @value: xattr value
2381  * @size: size of xattr value
2382  * @flags: flags
2383  *
2384  * This hook performs the desired permission checks before setting the extended
2385  * attributes (xattrs) on @dentry.  It is important to note that we have some
2386  * additional logic before the main LSM implementation calls to detect if we
2387  * need to perform an additional capability check at the LSM layer.
2388  *
2389  * Normally we enforce a capability check prior to executing the various LSM
2390  * hook implementations, but if a LSM wants to avoid this capability check,
2391  * it can register a 'inode_xattr_skipcap' hook and return a value of 1 for
2392  * xattrs that it wants to avoid the capability check, leaving the LSM fully
2393  * responsible for enforcing the access control for the specific xattr.  If all
2394  * of the enabled LSMs refrain from registering a 'inode_xattr_skipcap' hook,
2395  * or return a 0 (the default return value), the capability check is still
2396  * performed.  If no 'inode_xattr_skipcap' hooks are registered the capability
2397  * check is performed.
2398  *
2399  * Return: Returns 0 if permission is granted.
2400  */
2401 int security_inode_setxattr(struct mnt_idmap *idmap,
2402 			    struct dentry *dentry, const char *name,
2403 			    const void *value, size_t size, int flags)
2404 {
2405 	int rc;
2406 
2407 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2408 		return 0;
2409 
2410 	/* enforce the capability checks at the lsm layer, if needed */
2411 	if (!call_int_hook(inode_xattr_skipcap, name)) {
2412 		rc = cap_inode_setxattr(dentry, name, value, size, flags);
2413 		if (rc)
2414 			return rc;
2415 	}
2416 
2417 	return call_int_hook(inode_setxattr, idmap, dentry, name, value, size,
2418 			     flags);
2419 }
2420 
2421 /**
2422  * security_inode_set_acl() - Check if setting posix acls is allowed
2423  * @idmap: idmap of the mount
2424  * @dentry: file
2425  * @acl_name: acl name
2426  * @kacl: acl struct
2427  *
2428  * Check permission before setting posix acls, the posix acls in @kacl are
2429  * identified by @acl_name.
2430  *
2431  * Return: Returns 0 if permission is granted.
2432  */
2433 int security_inode_set_acl(struct mnt_idmap *idmap,
2434 			   struct dentry *dentry, const char *acl_name,
2435 			   struct posix_acl *kacl)
2436 {
2437 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2438 		return 0;
2439 	return call_int_hook(inode_set_acl, idmap, dentry, acl_name, kacl);
2440 }
2441 
2442 /**
2443  * security_inode_post_set_acl() - Update inode security from posix acls set
2444  * @dentry: file
2445  * @acl_name: acl name
2446  * @kacl: acl struct
2447  *
2448  * Update inode security data after successfully setting posix acls on @dentry.
2449  * The posix acls in @kacl are identified by @acl_name.
2450  */
2451 void security_inode_post_set_acl(struct dentry *dentry, const char *acl_name,
2452 				 struct posix_acl *kacl)
2453 {
2454 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2455 		return;
2456 	call_void_hook(inode_post_set_acl, dentry, acl_name, kacl);
2457 }
2458 
2459 /**
2460  * security_inode_get_acl() - Check if reading posix acls is allowed
2461  * @idmap: idmap of the mount
2462  * @dentry: file
2463  * @acl_name: acl name
2464  *
2465  * Check permission before getting osix acls, the posix acls are identified by
2466  * @acl_name.
2467  *
2468  * Return: Returns 0 if permission is granted.
2469  */
2470 int security_inode_get_acl(struct mnt_idmap *idmap,
2471 			   struct dentry *dentry, const char *acl_name)
2472 {
2473 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2474 		return 0;
2475 	return call_int_hook(inode_get_acl, idmap, dentry, acl_name);
2476 }
2477 
2478 /**
2479  * security_inode_remove_acl() - Check if removing a posix acl is allowed
2480  * @idmap: idmap of the mount
2481  * @dentry: file
2482  * @acl_name: acl name
2483  *
2484  * Check permission before removing posix acls, the posix acls are identified
2485  * by @acl_name.
2486  *
2487  * Return: Returns 0 if permission is granted.
2488  */
2489 int security_inode_remove_acl(struct mnt_idmap *idmap,
2490 			      struct dentry *dentry, const char *acl_name)
2491 {
2492 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2493 		return 0;
2494 	return call_int_hook(inode_remove_acl, idmap, dentry, acl_name);
2495 }
2496 
2497 /**
2498  * security_inode_post_remove_acl() - Update inode security after rm posix acls
2499  * @idmap: idmap of the mount
2500  * @dentry: file
2501  * @acl_name: acl name
2502  *
2503  * Update inode security data after successfully removing posix acls on
2504  * @dentry in @idmap. The posix acls are identified by @acl_name.
2505  */
2506 void security_inode_post_remove_acl(struct mnt_idmap *idmap,
2507 				    struct dentry *dentry, const char *acl_name)
2508 {
2509 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2510 		return;
2511 	call_void_hook(inode_post_remove_acl, idmap, dentry, acl_name);
2512 }
2513 
2514 /**
2515  * security_inode_post_setxattr() - Update the inode after a setxattr operation
2516  * @dentry: file
2517  * @name: xattr name
2518  * @value: xattr value
2519  * @size: xattr value size
2520  * @flags: flags
2521  *
2522  * Update inode security field after successful setxattr operation.
2523  */
2524 void security_inode_post_setxattr(struct dentry *dentry, const char *name,
2525 				  const void *value, size_t size, int flags)
2526 {
2527 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2528 		return;
2529 	call_void_hook(inode_post_setxattr, dentry, name, value, size, flags);
2530 }
2531 
2532 /**
2533  * security_inode_getxattr() - Check if xattr access is allowed
2534  * @dentry: file
2535  * @name: xattr name
2536  *
2537  * Check permission before obtaining the extended attributes identified by
2538  * @name for @dentry.
2539  *
2540  * Return: Returns 0 if permission is granted.
2541  */
2542 int security_inode_getxattr(struct dentry *dentry, const char *name)
2543 {
2544 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2545 		return 0;
2546 	return call_int_hook(inode_getxattr, dentry, name);
2547 }
2548 
2549 /**
2550  * security_inode_listxattr() - Check if listing xattrs is allowed
2551  * @dentry: file
2552  *
2553  * Check permission before obtaining the list of extended attribute names for
2554  * @dentry.
2555  *
2556  * Return: Returns 0 if permission is granted.
2557  */
2558 int security_inode_listxattr(struct dentry *dentry)
2559 {
2560 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2561 		return 0;
2562 	return call_int_hook(inode_listxattr, dentry);
2563 }
2564 
2565 /**
2566  * security_inode_removexattr() - Check if removing an xattr is allowed
2567  * @idmap: idmap of the mount
2568  * @dentry: file
2569  * @name: xattr name
2570  *
2571  * This hook performs the desired permission checks before setting the extended
2572  * attributes (xattrs) on @dentry.  It is important to note that we have some
2573  * additional logic before the main LSM implementation calls to detect if we
2574  * need to perform an additional capability check at the LSM layer.
2575  *
2576  * Normally we enforce a capability check prior to executing the various LSM
2577  * hook implementations, but if a LSM wants to avoid this capability check,
2578  * it can register a 'inode_xattr_skipcap' hook and return a value of 1 for
2579  * xattrs that it wants to avoid the capability check, leaving the LSM fully
2580  * responsible for enforcing the access control for the specific xattr.  If all
2581  * of the enabled LSMs refrain from registering a 'inode_xattr_skipcap' hook,
2582  * or return a 0 (the default return value), the capability check is still
2583  * performed.  If no 'inode_xattr_skipcap' hooks are registered the capability
2584  * check is performed.
2585  *
2586  * Return: Returns 0 if permission is granted.
2587  */
2588 int security_inode_removexattr(struct mnt_idmap *idmap,
2589 			       struct dentry *dentry, const char *name)
2590 {
2591 	int rc;
2592 
2593 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2594 		return 0;
2595 
2596 	/* enforce the capability checks at the lsm layer, if needed */
2597 	if (!call_int_hook(inode_xattr_skipcap, name)) {
2598 		rc = cap_inode_removexattr(idmap, dentry, name);
2599 		if (rc)
2600 			return rc;
2601 	}
2602 
2603 	return call_int_hook(inode_removexattr, idmap, dentry, name);
2604 }
2605 
2606 /**
2607  * security_inode_post_removexattr() - Update the inode after a removexattr op
2608  * @dentry: file
2609  * @name: xattr name
2610  *
2611  * Update the inode after a successful removexattr operation.
2612  */
2613 void security_inode_post_removexattr(struct dentry *dentry, const char *name)
2614 {
2615 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2616 		return;
2617 	call_void_hook(inode_post_removexattr, dentry, name);
2618 }
2619 
2620 /**
2621  * security_inode_need_killpriv() - Check if security_inode_killpriv() required
2622  * @dentry: associated dentry
2623  *
2624  * Called when an inode has been changed to determine if
2625  * security_inode_killpriv() should be called.
2626  *
2627  * Return: Return <0 on error to abort the inode change operation, return 0 if
2628  *         security_inode_killpriv() does not need to be called, return >0 if
2629  *         security_inode_killpriv() does need to be called.
2630  */
2631 int security_inode_need_killpriv(struct dentry *dentry)
2632 {
2633 	return call_int_hook(inode_need_killpriv, dentry);
2634 }
2635 
2636 /**
2637  * security_inode_killpriv() - The setuid bit is removed, update LSM state
2638  * @idmap: idmap of the mount
2639  * @dentry: associated dentry
2640  *
2641  * The @dentry's setuid bit is being removed.  Remove similar security labels.
2642  * Called with the dentry->d_inode->i_mutex held.
2643  *
2644  * Return: Return 0 on success.  If error is returned, then the operation
2645  *         causing setuid bit removal is failed.
2646  */
2647 int security_inode_killpriv(struct mnt_idmap *idmap,
2648 			    struct dentry *dentry)
2649 {
2650 	return call_int_hook(inode_killpriv, idmap, dentry);
2651 }
2652 
2653 /**
2654  * security_inode_getsecurity() - Get the xattr security label of an inode
2655  * @idmap: idmap of the mount
2656  * @inode: inode
2657  * @name: xattr name
2658  * @buffer: security label buffer
2659  * @alloc: allocation flag
2660  *
2661  * Retrieve a copy of the extended attribute representation of the security
2662  * label associated with @name for @inode via @buffer.  Note that @name is the
2663  * remainder of the attribute name after the security prefix has been removed.
2664  * @alloc is used to specify if the call should return a value via the buffer
2665  * or just the value length.
2666  *
2667  * Return: Returns size of buffer on success.
2668  */
2669 int security_inode_getsecurity(struct mnt_idmap *idmap,
2670 			       struct inode *inode, const char *name,
2671 			       void **buffer, bool alloc)
2672 {
2673 	if (unlikely(IS_PRIVATE(inode)))
2674 		return LSM_RET_DEFAULT(inode_getsecurity);
2675 
2676 	return call_int_hook(inode_getsecurity, idmap, inode, name, buffer,
2677 			     alloc);
2678 }
2679 
2680 /**
2681  * security_inode_setsecurity() - Set the xattr security label of an inode
2682  * @inode: inode
2683  * @name: xattr name
2684  * @value: security label
2685  * @size: length of security label
2686  * @flags: flags
2687  *
2688  * Set the security label associated with @name for @inode from the extended
2689  * attribute value @value.  @size indicates the size of the @value in bytes.
2690  * @flags may be XATTR_CREATE, XATTR_REPLACE, or 0. Note that @name is the
2691  * remainder of the attribute name after the security. prefix has been removed.
2692  *
2693  * Return: Returns 0 on success.
2694  */
2695 int security_inode_setsecurity(struct inode *inode, const char *name,
2696 			       const void *value, size_t size, int flags)
2697 {
2698 	if (unlikely(IS_PRIVATE(inode)))
2699 		return LSM_RET_DEFAULT(inode_setsecurity);
2700 
2701 	return call_int_hook(inode_setsecurity, inode, name, value, size,
2702 			     flags);
2703 }
2704 
2705 /**
2706  * security_inode_listsecurity() - List the xattr security label names
2707  * @inode: inode
2708  * @buffer: buffer
2709  * @buffer_size: size of buffer
2710  *
2711  * Copy the extended attribute names for the security labels associated with
2712  * @inode into @buffer.  The maximum size of @buffer is specified by
2713  * @buffer_size.  @buffer may be NULL to request the size of the buffer
2714  * required.
2715  *
2716  * Return: Returns number of bytes used/required on success.
2717  */
2718 int security_inode_listsecurity(struct inode *inode,
2719 				char *buffer, size_t buffer_size)
2720 {
2721 	if (unlikely(IS_PRIVATE(inode)))
2722 		return 0;
2723 	return call_int_hook(inode_listsecurity, inode, buffer, buffer_size);
2724 }
2725 EXPORT_SYMBOL(security_inode_listsecurity);
2726 
2727 /**
2728  * security_inode_getlsmprop() - Get an inode's LSM data
2729  * @inode: inode
2730  * @prop: lsm specific information to return
2731  *
2732  * Get the lsm specific information associated with the node.
2733  */
2734 void security_inode_getlsmprop(struct inode *inode, struct lsm_prop *prop)
2735 {
2736 	call_void_hook(inode_getlsmprop, inode, prop);
2737 }
2738 
2739 /**
2740  * security_inode_copy_up() - Create new creds for an overlayfs copy-up op
2741  * @src: union dentry of copy-up file
2742  * @new: newly created creds
2743  *
2744  * A file is about to be copied up from lower layer to upper layer of overlay
2745  * filesystem. Security module can prepare a set of new creds and modify as
2746  * need be and return new creds. Caller will switch to new creds temporarily to
2747  * create new file and release newly allocated creds.
2748  *
2749  * Return: Returns 0 on success or a negative error code on error.
2750  */
2751 int security_inode_copy_up(struct dentry *src, struct cred **new)
2752 {
2753 	return call_int_hook(inode_copy_up, src, new);
2754 }
2755 EXPORT_SYMBOL(security_inode_copy_up);
2756 
2757 /**
2758  * security_inode_copy_up_xattr() - Filter xattrs in an overlayfs copy-up op
2759  * @src: union dentry of copy-up file
2760  * @name: xattr name
2761  *
2762  * Filter the xattrs being copied up when a unioned file is copied up from a
2763  * lower layer to the union/overlay layer.   The caller is responsible for
2764  * reading and writing the xattrs, this hook is merely a filter.
2765  *
2766  * Return: Returns 0 to accept the xattr, -ECANCELED to discard the xattr,
2767  *         -EOPNOTSUPP if the security module does not know about attribute,
2768  *         or a negative error code to abort the copy up.
2769  */
2770 int security_inode_copy_up_xattr(struct dentry *src, const char *name)
2771 {
2772 	int rc;
2773 
2774 	rc = call_int_hook(inode_copy_up_xattr, src, name);
2775 	if (rc != LSM_RET_DEFAULT(inode_copy_up_xattr))
2776 		return rc;
2777 
2778 	return LSM_RET_DEFAULT(inode_copy_up_xattr);
2779 }
2780 EXPORT_SYMBOL(security_inode_copy_up_xattr);
2781 
2782 /**
2783  * security_inode_setintegrity() - Set the inode's integrity data
2784  * @inode: inode
2785  * @type: type of integrity, e.g. hash digest, signature, etc
2786  * @value: the integrity value
2787  * @size: size of the integrity value
2788  *
2789  * Register a verified integrity measurement of a inode with LSMs.
2790  * LSMs should free the previously saved data if @value is NULL.
2791  *
2792  * Return: Returns 0 on success, negative values on failure.
2793  */
2794 int security_inode_setintegrity(const struct inode *inode,
2795 				enum lsm_integrity_type type, const void *value,
2796 				size_t size)
2797 {
2798 	return call_int_hook(inode_setintegrity, inode, type, value, size);
2799 }
2800 EXPORT_SYMBOL(security_inode_setintegrity);
2801 
2802 /**
2803  * security_kernfs_init_security() - Init LSM context for a kernfs node
2804  * @kn_dir: parent kernfs node
2805  * @kn: the kernfs node to initialize
2806  *
2807  * Initialize the security context of a newly created kernfs node based on its
2808  * own and its parent's attributes.
2809  *
2810  * Return: Returns 0 if permission is granted.
2811  */
2812 int security_kernfs_init_security(struct kernfs_node *kn_dir,
2813 				  struct kernfs_node *kn)
2814 {
2815 	return call_int_hook(kernfs_init_security, kn_dir, kn);
2816 }
2817 
2818 /**
2819  * security_file_permission() - Check file permissions
2820  * @file: file
2821  * @mask: requested permissions
2822  *
2823  * Check file permissions before accessing an open file.  This hook is called
2824  * by various operations that read or write files.  A security module can use
2825  * this hook to perform additional checking on these operations, e.g. to
2826  * revalidate permissions on use to support privilege bracketing or policy
2827  * changes.  Notice that this hook is used when the actual read/write
2828  * operations are performed, whereas the inode_security_ops hook is called when
2829  * a file is opened (as well as many other operations).  Although this hook can
2830  * be used to revalidate permissions for various system call operations that
2831  * read or write files, it does not address the revalidation of permissions for
2832  * memory-mapped files.  Security modules must handle this separately if they
2833  * need such revalidation.
2834  *
2835  * Return: Returns 0 if permission is granted.
2836  */
2837 int security_file_permission(struct file *file, int mask)
2838 {
2839 	return call_int_hook(file_permission, file, mask);
2840 }
2841 
2842 /**
2843  * security_file_alloc() - Allocate and init a file's LSM blob
2844  * @file: the file
2845  *
2846  * Allocate and attach a security structure to the file->f_security field.  The
2847  * security field is initialized to NULL when the structure is first created.
2848  *
2849  * Return: Return 0 if the hook is successful and permission is granted.
2850  */
2851 int security_file_alloc(struct file *file)
2852 {
2853 	int rc = lsm_file_alloc(file);
2854 
2855 	if (rc)
2856 		return rc;
2857 	rc = call_int_hook(file_alloc_security, file);
2858 	if (unlikely(rc))
2859 		security_file_free(file);
2860 	return rc;
2861 }
2862 
2863 /**
2864  * security_file_release() - Perform actions before releasing the file ref
2865  * @file: the file
2866  *
2867  * Perform actions before releasing the last reference to a file.
2868  */
2869 void security_file_release(struct file *file)
2870 {
2871 	call_void_hook(file_release, file);
2872 }
2873 
2874 /**
2875  * security_file_free() - Free a file's LSM blob
2876  * @file: the file
2877  *
2878  * Deallocate and free any security structures stored in file->f_security.
2879  */
2880 void security_file_free(struct file *file)
2881 {
2882 	void *blob;
2883 
2884 	call_void_hook(file_free_security, file);
2885 
2886 	blob = file->f_security;
2887 	if (blob) {
2888 		file->f_security = NULL;
2889 		kmem_cache_free(lsm_file_cache, blob);
2890 	}
2891 }
2892 
2893 /**
2894  * security_file_ioctl() - Check if an ioctl is allowed
2895  * @file: associated file
2896  * @cmd: ioctl cmd
2897  * @arg: ioctl arguments
2898  *
2899  * Check permission for an ioctl operation on @file.  Note that @arg sometimes
2900  * represents a user space pointer; in other cases, it may be a simple integer
2901  * value.  When @arg represents a user space pointer, it should never be used
2902  * by the security module.
2903  *
2904  * Return: Returns 0 if permission is granted.
2905  */
2906 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2907 {
2908 	return call_int_hook(file_ioctl, file, cmd, arg);
2909 }
2910 EXPORT_SYMBOL_GPL(security_file_ioctl);
2911 
2912 /**
2913  * security_file_ioctl_compat() - Check if an ioctl is allowed in compat mode
2914  * @file: associated file
2915  * @cmd: ioctl cmd
2916  * @arg: ioctl arguments
2917  *
2918  * Compat version of security_file_ioctl() that correctly handles 32-bit
2919  * processes running on 64-bit kernels.
2920  *
2921  * Return: Returns 0 if permission is granted.
2922  */
2923 int security_file_ioctl_compat(struct file *file, unsigned int cmd,
2924 			       unsigned long arg)
2925 {
2926 	return call_int_hook(file_ioctl_compat, file, cmd, arg);
2927 }
2928 EXPORT_SYMBOL_GPL(security_file_ioctl_compat);
2929 
2930 static inline unsigned long mmap_prot(struct file *file, unsigned long prot)
2931 {
2932 	/*
2933 	 * Does we have PROT_READ and does the application expect
2934 	 * it to imply PROT_EXEC?  If not, nothing to talk about...
2935 	 */
2936 	if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ)
2937 		return prot;
2938 	if (!(current->personality & READ_IMPLIES_EXEC))
2939 		return prot;
2940 	/*
2941 	 * if that's an anonymous mapping, let it.
2942 	 */
2943 	if (!file)
2944 		return prot | PROT_EXEC;
2945 	/*
2946 	 * ditto if it's not on noexec mount, except that on !MMU we need
2947 	 * NOMMU_MAP_EXEC (== VM_MAYEXEC) in this case
2948 	 */
2949 	if (!path_noexec(&file->f_path)) {
2950 #ifndef CONFIG_MMU
2951 		if (file->f_op->mmap_capabilities) {
2952 			unsigned caps = file->f_op->mmap_capabilities(file);
2953 			if (!(caps & NOMMU_MAP_EXEC))
2954 				return prot;
2955 		}
2956 #endif
2957 		return prot | PROT_EXEC;
2958 	}
2959 	/* anything on noexec mount won't get PROT_EXEC */
2960 	return prot;
2961 }
2962 
2963 /**
2964  * security_mmap_file() - Check if mmap'ing a file is allowed
2965  * @file: file
2966  * @prot: protection applied by the kernel
2967  * @flags: flags
2968  *
2969  * Check permissions for a mmap operation.  The @file may be NULL, e.g. if
2970  * mapping anonymous memory.
2971  *
2972  * Return: Returns 0 if permission is granted.
2973  */
2974 int security_mmap_file(struct file *file, unsigned long prot,
2975 		       unsigned long flags)
2976 {
2977 	return call_int_hook(mmap_file, file, prot, mmap_prot(file, prot),
2978 			     flags);
2979 }
2980 
2981 /**
2982  * security_mmap_addr() - Check if mmap'ing an address is allowed
2983  * @addr: address
2984  *
2985  * Check permissions for a mmap operation at @addr.
2986  *
2987  * Return: Returns 0 if permission is granted.
2988  */
2989 int security_mmap_addr(unsigned long addr)
2990 {
2991 	return call_int_hook(mmap_addr, addr);
2992 }
2993 
2994 /**
2995  * security_file_mprotect() - Check if changing memory protections is allowed
2996  * @vma: memory region
2997  * @reqprot: application requested protection
2998  * @prot: protection applied by the kernel
2999  *
3000  * Check permissions before changing memory access permissions.
3001  *
3002  * Return: Returns 0 if permission is granted.
3003  */
3004 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
3005 			   unsigned long prot)
3006 {
3007 	return call_int_hook(file_mprotect, vma, reqprot, prot);
3008 }
3009 
3010 /**
3011  * security_file_lock() - Check if a file lock is allowed
3012  * @file: file
3013  * @cmd: lock operation (e.g. F_RDLCK, F_WRLCK)
3014  *
3015  * Check permission before performing file locking operations.  Note the hook
3016  * mediates both flock and fcntl style locks.
3017  *
3018  * Return: Returns 0 if permission is granted.
3019  */
3020 int security_file_lock(struct file *file, unsigned int cmd)
3021 {
3022 	return call_int_hook(file_lock, file, cmd);
3023 }
3024 
3025 /**
3026  * security_file_fcntl() - Check if fcntl() op is allowed
3027  * @file: file
3028  * @cmd: fcntl command
3029  * @arg: command argument
3030  *
3031  * Check permission before allowing the file operation specified by @cmd from
3032  * being performed on the file @file.  Note that @arg sometimes represents a
3033  * user space pointer; in other cases, it may be a simple integer value.  When
3034  * @arg represents a user space pointer, it should never be used by the
3035  * security module.
3036  *
3037  * Return: Returns 0 if permission is granted.
3038  */
3039 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
3040 {
3041 	return call_int_hook(file_fcntl, file, cmd, arg);
3042 }
3043 
3044 /**
3045  * security_file_set_fowner() - Set the file owner info in the LSM blob
3046  * @file: the file
3047  *
3048  * Save owner security information (typically from current->security) in
3049  * file->f_security for later use by the send_sigiotask hook.
3050  *
3051  * This hook is called with file->f_owner.lock held.
3052  *
3053  * Return: Returns 0 on success.
3054  */
3055 void security_file_set_fowner(struct file *file)
3056 {
3057 	call_void_hook(file_set_fowner, file);
3058 }
3059 
3060 /**
3061  * security_file_send_sigiotask() - Check if sending SIGIO/SIGURG is allowed
3062  * @tsk: target task
3063  * @fown: signal sender
3064  * @sig: signal to be sent, SIGIO is sent if 0
3065  *
3066  * Check permission for the file owner @fown to send SIGIO or SIGURG to the
3067  * process @tsk.  Note that this hook is sometimes called from interrupt.  Note
3068  * that the fown_struct, @fown, is never outside the context of a struct file,
3069  * so the file structure (and associated security information) can always be
3070  * obtained: container_of(fown, struct file, f_owner).
3071  *
3072  * Return: Returns 0 if permission is granted.
3073  */
3074 int security_file_send_sigiotask(struct task_struct *tsk,
3075 				 struct fown_struct *fown, int sig)
3076 {
3077 	return call_int_hook(file_send_sigiotask, tsk, fown, sig);
3078 }
3079 
3080 /**
3081  * security_file_receive() - Check if receiving a file via IPC is allowed
3082  * @file: file being received
3083  *
3084  * This hook allows security modules to control the ability of a process to
3085  * receive an open file descriptor via socket IPC.
3086  *
3087  * Return: Returns 0 if permission is granted.
3088  */
3089 int security_file_receive(struct file *file)
3090 {
3091 	return call_int_hook(file_receive, file);
3092 }
3093 
3094 /**
3095  * security_file_open() - Save open() time state for late use by the LSM
3096  * @file:
3097  *
3098  * Save open-time permission checking state for later use upon file_permission,
3099  * and recheck access if anything has changed since inode_permission.
3100  *
3101  * Return: Returns 0 if permission is granted.
3102  */
3103 int security_file_open(struct file *file)
3104 {
3105 	return call_int_hook(file_open, file);
3106 }
3107 
3108 /**
3109  * security_file_post_open() - Evaluate a file after it has been opened
3110  * @file: the file
3111  * @mask: access mask
3112  *
3113  * Evaluate an opened file and the access mask requested with open(). The hook
3114  * is useful for LSMs that require the file content to be available in order to
3115  * make decisions.
3116  *
3117  * Return: Returns 0 if permission is granted.
3118  */
3119 int security_file_post_open(struct file *file, int mask)
3120 {
3121 	return call_int_hook(file_post_open, file, mask);
3122 }
3123 EXPORT_SYMBOL_GPL(security_file_post_open);
3124 
3125 /**
3126  * security_file_truncate() - Check if truncating a file is allowed
3127  * @file: file
3128  *
3129  * Check permission before truncating a file, i.e. using ftruncate.  Note that
3130  * truncation permission may also be checked based on the path, using the
3131  * @path_truncate hook.
3132  *
3133  * Return: Returns 0 if permission is granted.
3134  */
3135 int security_file_truncate(struct file *file)
3136 {
3137 	return call_int_hook(file_truncate, file);
3138 }
3139 
3140 /**
3141  * security_task_alloc() - Allocate a task's LSM blob
3142  * @task: the task
3143  * @clone_flags: flags indicating what is being shared
3144  *
3145  * Handle allocation of task-related resources.
3146  *
3147  * Return: Returns a zero on success, negative values on failure.
3148  */
3149 int security_task_alloc(struct task_struct *task, unsigned long clone_flags)
3150 {
3151 	int rc = lsm_task_alloc(task);
3152 
3153 	if (rc)
3154 		return rc;
3155 	rc = call_int_hook(task_alloc, task, clone_flags);
3156 	if (unlikely(rc))
3157 		security_task_free(task);
3158 	return rc;
3159 }
3160 
3161 /**
3162  * security_task_free() - Free a task's LSM blob and related resources
3163  * @task: task
3164  *
3165  * Handle release of task-related resources.  Note that this can be called from
3166  * interrupt context.
3167  */
3168 void security_task_free(struct task_struct *task)
3169 {
3170 	call_void_hook(task_free, task);
3171 
3172 	kfree(task->security);
3173 	task->security = NULL;
3174 }
3175 
3176 /**
3177  * security_cred_alloc_blank() - Allocate the min memory to allow cred_transfer
3178  * @cred: credentials
3179  * @gfp: gfp flags
3180  *
3181  * Only allocate sufficient memory and attach to @cred such that
3182  * cred_transfer() will not get ENOMEM.
3183  *
3184  * Return: Returns 0 on success, negative values on failure.
3185  */
3186 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
3187 {
3188 	int rc = lsm_cred_alloc(cred, gfp);
3189 
3190 	if (rc)
3191 		return rc;
3192 
3193 	rc = call_int_hook(cred_alloc_blank, cred, gfp);
3194 	if (unlikely(rc))
3195 		security_cred_free(cred);
3196 	return rc;
3197 }
3198 
3199 /**
3200  * security_cred_free() - Free the cred's LSM blob and associated resources
3201  * @cred: credentials
3202  *
3203  * Deallocate and clear the cred->security field in a set of credentials.
3204  */
3205 void security_cred_free(struct cred *cred)
3206 {
3207 	/*
3208 	 * There is a failure case in prepare_creds() that
3209 	 * may result in a call here with ->security being NULL.
3210 	 */
3211 	if (unlikely(cred->security == NULL))
3212 		return;
3213 
3214 	call_void_hook(cred_free, cred);
3215 
3216 	kfree(cred->security);
3217 	cred->security = NULL;
3218 }
3219 
3220 /**
3221  * security_prepare_creds() - Prepare a new set of credentials
3222  * @new: new credentials
3223  * @old: original credentials
3224  * @gfp: gfp flags
3225  *
3226  * Prepare a new set of credentials by copying the data from the old set.
3227  *
3228  * Return: Returns 0 on success, negative values on failure.
3229  */
3230 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
3231 {
3232 	int rc = lsm_cred_alloc(new, gfp);
3233 
3234 	if (rc)
3235 		return rc;
3236 
3237 	rc = call_int_hook(cred_prepare, new, old, gfp);
3238 	if (unlikely(rc))
3239 		security_cred_free(new);
3240 	return rc;
3241 }
3242 
3243 /**
3244  * security_transfer_creds() - Transfer creds
3245  * @new: target credentials
3246  * @old: original credentials
3247  *
3248  * Transfer data from original creds to new creds.
3249  */
3250 void security_transfer_creds(struct cred *new, const struct cred *old)
3251 {
3252 	call_void_hook(cred_transfer, new, old);
3253 }
3254 
3255 /**
3256  * security_cred_getsecid() - Get the secid from a set of credentials
3257  * @c: credentials
3258  * @secid: secid value
3259  *
3260  * Retrieve the security identifier of the cred structure @c.  In case of
3261  * failure, @secid will be set to zero.
3262  */
3263 void security_cred_getsecid(const struct cred *c, u32 *secid)
3264 {
3265 	*secid = 0;
3266 	call_void_hook(cred_getsecid, c, secid);
3267 }
3268 EXPORT_SYMBOL(security_cred_getsecid);
3269 
3270 /**
3271  * security_cred_getlsmprop() - Get the LSM data from a set of credentials
3272  * @c: credentials
3273  * @prop: destination for the LSM data
3274  *
3275  * Retrieve the security data of the cred structure @c.  In case of
3276  * failure, @prop will be cleared.
3277  */
3278 void security_cred_getlsmprop(const struct cred *c, struct lsm_prop *prop)
3279 {
3280 	lsmprop_init(prop);
3281 	call_void_hook(cred_getlsmprop, c, prop);
3282 }
3283 EXPORT_SYMBOL(security_cred_getlsmprop);
3284 
3285 /**
3286  * security_kernel_act_as() - Set the kernel credentials to act as secid
3287  * @new: credentials
3288  * @secid: secid
3289  *
3290  * Set the credentials for a kernel service to act as (subjective context).
3291  * The current task must be the one that nominated @secid.
3292  *
3293  * Return: Returns 0 if successful.
3294  */
3295 int security_kernel_act_as(struct cred *new, u32 secid)
3296 {
3297 	return call_int_hook(kernel_act_as, new, secid);
3298 }
3299 
3300 /**
3301  * security_kernel_create_files_as() - Set file creation context using an inode
3302  * @new: target credentials
3303  * @inode: reference inode
3304  *
3305  * Set the file creation context in a set of credentials to be the same as the
3306  * objective context of the specified inode.  The current task must be the one
3307  * that nominated @inode.
3308  *
3309  * Return: Returns 0 if successful.
3310  */
3311 int security_kernel_create_files_as(struct cred *new, struct inode *inode)
3312 {
3313 	return call_int_hook(kernel_create_files_as, new, inode);
3314 }
3315 
3316 /**
3317  * security_kernel_module_request() - Check if loading a module is allowed
3318  * @kmod_name: module name
3319  *
3320  * Ability to trigger the kernel to automatically upcall to userspace for
3321  * userspace to load a kernel module with the given name.
3322  *
3323  * Return: Returns 0 if successful.
3324  */
3325 int security_kernel_module_request(char *kmod_name)
3326 {
3327 	return call_int_hook(kernel_module_request, kmod_name);
3328 }
3329 
3330 /**
3331  * security_kernel_read_file() - Read a file specified by userspace
3332  * @file: file
3333  * @id: file identifier
3334  * @contents: trust if security_kernel_post_read_file() will be called
3335  *
3336  * Read a file specified by userspace.
3337  *
3338  * Return: Returns 0 if permission is granted.
3339  */
3340 int security_kernel_read_file(struct file *file, enum kernel_read_file_id id,
3341 			      bool contents)
3342 {
3343 	return call_int_hook(kernel_read_file, file, id, contents);
3344 }
3345 EXPORT_SYMBOL_GPL(security_kernel_read_file);
3346 
3347 /**
3348  * security_kernel_post_read_file() - Read a file specified by userspace
3349  * @file: file
3350  * @buf: file contents
3351  * @size: size of file contents
3352  * @id: file identifier
3353  *
3354  * Read a file specified by userspace.  This must be paired with a prior call
3355  * to security_kernel_read_file() call that indicated this hook would also be
3356  * called, see security_kernel_read_file() for more information.
3357  *
3358  * Return: Returns 0 if permission is granted.
3359  */
3360 int security_kernel_post_read_file(struct file *file, char *buf, loff_t size,
3361 				   enum kernel_read_file_id id)
3362 {
3363 	return call_int_hook(kernel_post_read_file, file, buf, size, id);
3364 }
3365 EXPORT_SYMBOL_GPL(security_kernel_post_read_file);
3366 
3367 /**
3368  * security_kernel_load_data() - Load data provided by userspace
3369  * @id: data identifier
3370  * @contents: true if security_kernel_post_load_data() will be called
3371  *
3372  * Load data provided by userspace.
3373  *
3374  * Return: Returns 0 if permission is granted.
3375  */
3376 int security_kernel_load_data(enum kernel_load_data_id id, bool contents)
3377 {
3378 	return call_int_hook(kernel_load_data, id, contents);
3379 }
3380 EXPORT_SYMBOL_GPL(security_kernel_load_data);
3381 
3382 /**
3383  * security_kernel_post_load_data() - Load userspace data from a non-file source
3384  * @buf: data
3385  * @size: size of data
3386  * @id: data identifier
3387  * @description: text description of data, specific to the id value
3388  *
3389  * Load data provided by a non-file source (usually userspace buffer).  This
3390  * must be paired with a prior security_kernel_load_data() call that indicated
3391  * this hook would also be called, see security_kernel_load_data() for more
3392  * information.
3393  *
3394  * Return: Returns 0 if permission is granted.
3395  */
3396 int security_kernel_post_load_data(char *buf, loff_t size,
3397 				   enum kernel_load_data_id id,
3398 				   char *description)
3399 {
3400 	return call_int_hook(kernel_post_load_data, buf, size, id, description);
3401 }
3402 EXPORT_SYMBOL_GPL(security_kernel_post_load_data);
3403 
3404 /**
3405  * security_task_fix_setuid() - Update LSM with new user id attributes
3406  * @new: updated credentials
3407  * @old: credentials being replaced
3408  * @flags: LSM_SETID_* flag values
3409  *
3410  * Update the module's state after setting one or more of the user identity
3411  * attributes of the current process.  The @flags parameter indicates which of
3412  * the set*uid system calls invoked this hook.  If @new is the set of
3413  * credentials that will be installed.  Modifications should be made to this
3414  * rather than to @current->cred.
3415  *
3416  * Return: Returns 0 on success.
3417  */
3418 int security_task_fix_setuid(struct cred *new, const struct cred *old,
3419 			     int flags)
3420 {
3421 	return call_int_hook(task_fix_setuid, new, old, flags);
3422 }
3423 
3424 /**
3425  * security_task_fix_setgid() - Update LSM with new group id attributes
3426  * @new: updated credentials
3427  * @old: credentials being replaced
3428  * @flags: LSM_SETID_* flag value
3429  *
3430  * Update the module's state after setting one or more of the group identity
3431  * attributes of the current process.  The @flags parameter indicates which of
3432  * the set*gid system calls invoked this hook.  @new is the set of credentials
3433  * that will be installed.  Modifications should be made to this rather than to
3434  * @current->cred.
3435  *
3436  * Return: Returns 0 on success.
3437  */
3438 int security_task_fix_setgid(struct cred *new, const struct cred *old,
3439 			     int flags)
3440 {
3441 	return call_int_hook(task_fix_setgid, new, old, flags);
3442 }
3443 
3444 /**
3445  * security_task_fix_setgroups() - Update LSM with new supplementary groups
3446  * @new: updated credentials
3447  * @old: credentials being replaced
3448  *
3449  * Update the module's state after setting the supplementary group identity
3450  * attributes of the current process.  @new is the set of credentials that will
3451  * be installed.  Modifications should be made to this rather than to
3452  * @current->cred.
3453  *
3454  * Return: Returns 0 on success.
3455  */
3456 int security_task_fix_setgroups(struct cred *new, const struct cred *old)
3457 {
3458 	return call_int_hook(task_fix_setgroups, new, old);
3459 }
3460 
3461 /**
3462  * security_task_setpgid() - Check if setting the pgid is allowed
3463  * @p: task being modified
3464  * @pgid: new pgid
3465  *
3466  * Check permission before setting the process group identifier of the process
3467  * @p to @pgid.
3468  *
3469  * Return: Returns 0 if permission is granted.
3470  */
3471 int security_task_setpgid(struct task_struct *p, pid_t pgid)
3472 {
3473 	return call_int_hook(task_setpgid, p, pgid);
3474 }
3475 
3476 /**
3477  * security_task_getpgid() - Check if getting the pgid is allowed
3478  * @p: task
3479  *
3480  * Check permission before getting the process group identifier of the process
3481  * @p.
3482  *
3483  * Return: Returns 0 if permission is granted.
3484  */
3485 int security_task_getpgid(struct task_struct *p)
3486 {
3487 	return call_int_hook(task_getpgid, p);
3488 }
3489 
3490 /**
3491  * security_task_getsid() - Check if getting the session id is allowed
3492  * @p: task
3493  *
3494  * Check permission before getting the session identifier of the process @p.
3495  *
3496  * Return: Returns 0 if permission is granted.
3497  */
3498 int security_task_getsid(struct task_struct *p)
3499 {
3500 	return call_int_hook(task_getsid, p);
3501 }
3502 
3503 /**
3504  * security_current_getlsmprop_subj() - Current task's subjective LSM data
3505  * @prop: lsm specific information
3506  *
3507  * Retrieve the subjective security identifier of the current task and return
3508  * it in @prop.
3509  */
3510 void security_current_getlsmprop_subj(struct lsm_prop *prop)
3511 {
3512 	lsmprop_init(prop);
3513 	call_void_hook(current_getlsmprop_subj, prop);
3514 }
3515 EXPORT_SYMBOL(security_current_getlsmprop_subj);
3516 
3517 /**
3518  * security_task_getlsmprop_obj() - Get a task's objective LSM data
3519  * @p: target task
3520  * @prop: lsm specific information
3521  *
3522  * Retrieve the objective security identifier of the task_struct in @p and
3523  * return it in @prop.
3524  */
3525 void security_task_getlsmprop_obj(struct task_struct *p, struct lsm_prop *prop)
3526 {
3527 	lsmprop_init(prop);
3528 	call_void_hook(task_getlsmprop_obj, p, prop);
3529 }
3530 EXPORT_SYMBOL(security_task_getlsmprop_obj);
3531 
3532 /**
3533  * security_task_setnice() - Check if setting a task's nice value is allowed
3534  * @p: target task
3535  * @nice: nice value
3536  *
3537  * Check permission before setting the nice value of @p to @nice.
3538  *
3539  * Return: Returns 0 if permission is granted.
3540  */
3541 int security_task_setnice(struct task_struct *p, int nice)
3542 {
3543 	return call_int_hook(task_setnice, p, nice);
3544 }
3545 
3546 /**
3547  * security_task_setioprio() - Check if setting a task's ioprio is allowed
3548  * @p: target task
3549  * @ioprio: ioprio value
3550  *
3551  * Check permission before setting the ioprio value of @p to @ioprio.
3552  *
3553  * Return: Returns 0 if permission is granted.
3554  */
3555 int security_task_setioprio(struct task_struct *p, int ioprio)
3556 {
3557 	return call_int_hook(task_setioprio, p, ioprio);
3558 }
3559 
3560 /**
3561  * security_task_getioprio() - Check if getting a task's ioprio is allowed
3562  * @p: task
3563  *
3564  * Check permission before getting the ioprio value of @p.
3565  *
3566  * Return: Returns 0 if permission is granted.
3567  */
3568 int security_task_getioprio(struct task_struct *p)
3569 {
3570 	return call_int_hook(task_getioprio, p);
3571 }
3572 
3573 /**
3574  * security_task_prlimit() - Check if get/setting resources limits is allowed
3575  * @cred: current task credentials
3576  * @tcred: target task credentials
3577  * @flags: LSM_PRLIMIT_* flag bits indicating a get/set/both
3578  *
3579  * Check permission before getting and/or setting the resource limits of
3580  * another task.
3581  *
3582  * Return: Returns 0 if permission is granted.
3583  */
3584 int security_task_prlimit(const struct cred *cred, const struct cred *tcred,
3585 			  unsigned int flags)
3586 {
3587 	return call_int_hook(task_prlimit, cred, tcred, flags);
3588 }
3589 
3590 /**
3591  * security_task_setrlimit() - Check if setting a new rlimit value is allowed
3592  * @p: target task's group leader
3593  * @resource: resource whose limit is being set
3594  * @new_rlim: new resource limit
3595  *
3596  * Check permission before setting the resource limits of process @p for
3597  * @resource to @new_rlim.  The old resource limit values can be examined by
3598  * dereferencing (p->signal->rlim + resource).
3599  *
3600  * Return: Returns 0 if permission is granted.
3601  */
3602 int security_task_setrlimit(struct task_struct *p, unsigned int resource,
3603 			    struct rlimit *new_rlim)
3604 {
3605 	return call_int_hook(task_setrlimit, p, resource, new_rlim);
3606 }
3607 
3608 /**
3609  * security_task_setscheduler() - Check if setting sched policy/param is allowed
3610  * @p: target task
3611  *
3612  * Check permission before setting scheduling policy and/or parameters of
3613  * process @p.
3614  *
3615  * Return: Returns 0 if permission is granted.
3616  */
3617 int security_task_setscheduler(struct task_struct *p)
3618 {
3619 	return call_int_hook(task_setscheduler, p);
3620 }
3621 
3622 /**
3623  * security_task_getscheduler() - Check if getting scheduling info is allowed
3624  * @p: target task
3625  *
3626  * Check permission before obtaining scheduling information for process @p.
3627  *
3628  * Return: Returns 0 if permission is granted.
3629  */
3630 int security_task_getscheduler(struct task_struct *p)
3631 {
3632 	return call_int_hook(task_getscheduler, p);
3633 }
3634 
3635 /**
3636  * security_task_movememory() - Check if moving memory is allowed
3637  * @p: task
3638  *
3639  * Check permission before moving memory owned by process @p.
3640  *
3641  * Return: Returns 0 if permission is granted.
3642  */
3643 int security_task_movememory(struct task_struct *p)
3644 {
3645 	return call_int_hook(task_movememory, p);
3646 }
3647 
3648 /**
3649  * security_task_kill() - Check if sending a signal is allowed
3650  * @p: target process
3651  * @info: signal information
3652  * @sig: signal value
3653  * @cred: credentials of the signal sender, NULL if @current
3654  *
3655  * Check permission before sending signal @sig to @p.  @info can be NULL, the
3656  * constant 1, or a pointer to a kernel_siginfo structure.  If @info is 1 or
3657  * SI_FROMKERNEL(info) is true, then the signal should be viewed as coming from
3658  * the kernel and should typically be permitted.  SIGIO signals are handled
3659  * separately by the send_sigiotask hook in file_security_ops.
3660  *
3661  * Return: Returns 0 if permission is granted.
3662  */
3663 int security_task_kill(struct task_struct *p, struct kernel_siginfo *info,
3664 		       int sig, const struct cred *cred)
3665 {
3666 	return call_int_hook(task_kill, p, info, sig, cred);
3667 }
3668 
3669 /**
3670  * security_task_prctl() - Check if a prctl op is allowed
3671  * @option: operation
3672  * @arg2: argument
3673  * @arg3: argument
3674  * @arg4: argument
3675  * @arg5: argument
3676  *
3677  * Check permission before performing a process control operation on the
3678  * current process.
3679  *
3680  * Return: Return -ENOSYS if no-one wanted to handle this op, any other value
3681  *         to cause prctl() to return immediately with that value.
3682  */
3683 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
3684 			unsigned long arg4, unsigned long arg5)
3685 {
3686 	int thisrc;
3687 	int rc = LSM_RET_DEFAULT(task_prctl);
3688 	struct lsm_static_call *scall;
3689 
3690 	lsm_for_each_hook(scall, task_prctl) {
3691 		thisrc = scall->hl->hook.task_prctl(option, arg2, arg3, arg4, arg5);
3692 		if (thisrc != LSM_RET_DEFAULT(task_prctl)) {
3693 			rc = thisrc;
3694 			if (thisrc != 0)
3695 				break;
3696 		}
3697 	}
3698 	return rc;
3699 }
3700 
3701 /**
3702  * security_task_to_inode() - Set the security attributes of a task's inode
3703  * @p: task
3704  * @inode: inode
3705  *
3706  * Set the security attributes for an inode based on an associated task's
3707  * security attributes, e.g. for /proc/pid inodes.
3708  */
3709 void security_task_to_inode(struct task_struct *p, struct inode *inode)
3710 {
3711 	call_void_hook(task_to_inode, p, inode);
3712 }
3713 
3714 /**
3715  * security_create_user_ns() - Check if creating a new userns is allowed
3716  * @cred: prepared creds
3717  *
3718  * Check permission prior to creating a new user namespace.
3719  *
3720  * Return: Returns 0 if successful, otherwise < 0 error code.
3721  */
3722 int security_create_user_ns(const struct cred *cred)
3723 {
3724 	return call_int_hook(userns_create, cred);
3725 }
3726 
3727 /**
3728  * security_ipc_permission() - Check if sysv ipc access is allowed
3729  * @ipcp: ipc permission structure
3730  * @flag: requested permissions
3731  *
3732  * Check permissions for access to IPC.
3733  *
3734  * Return: Returns 0 if permission is granted.
3735  */
3736 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
3737 {
3738 	return call_int_hook(ipc_permission, ipcp, flag);
3739 }
3740 
3741 /**
3742  * security_ipc_getlsmprop() - Get the sysv ipc object LSM data
3743  * @ipcp: ipc permission structure
3744  * @prop: pointer to lsm information
3745  *
3746  * Get the lsm information associated with the ipc object.
3747  */
3748 
3749 void security_ipc_getlsmprop(struct kern_ipc_perm *ipcp, struct lsm_prop *prop)
3750 {
3751 	lsmprop_init(prop);
3752 	call_void_hook(ipc_getlsmprop, ipcp, prop);
3753 }
3754 
3755 /**
3756  * security_msg_msg_alloc() - Allocate a sysv ipc message LSM blob
3757  * @msg: message structure
3758  *
3759  * Allocate and attach a security structure to the msg->security field.  The
3760  * security field is initialized to NULL when the structure is first created.
3761  *
3762  * Return: Return 0 if operation was successful and permission is granted.
3763  */
3764 int security_msg_msg_alloc(struct msg_msg *msg)
3765 {
3766 	int rc = lsm_msg_msg_alloc(msg);
3767 
3768 	if (unlikely(rc))
3769 		return rc;
3770 	rc = call_int_hook(msg_msg_alloc_security, msg);
3771 	if (unlikely(rc))
3772 		security_msg_msg_free(msg);
3773 	return rc;
3774 }
3775 
3776 /**
3777  * security_msg_msg_free() - Free a sysv ipc message LSM blob
3778  * @msg: message structure
3779  *
3780  * Deallocate the security structure for this message.
3781  */
3782 void security_msg_msg_free(struct msg_msg *msg)
3783 {
3784 	call_void_hook(msg_msg_free_security, msg);
3785 	kfree(msg->security);
3786 	msg->security = NULL;
3787 }
3788 
3789 /**
3790  * security_msg_queue_alloc() - Allocate a sysv ipc msg queue LSM blob
3791  * @msq: sysv ipc permission structure
3792  *
3793  * Allocate and attach a security structure to @msg. The security field is
3794  * initialized to NULL when the structure is first created.
3795  *
3796  * Return: Returns 0 if operation was successful and permission is granted.
3797  */
3798 int security_msg_queue_alloc(struct kern_ipc_perm *msq)
3799 {
3800 	int rc = lsm_ipc_alloc(msq);
3801 
3802 	if (unlikely(rc))
3803 		return rc;
3804 	rc = call_int_hook(msg_queue_alloc_security, msq);
3805 	if (unlikely(rc))
3806 		security_msg_queue_free(msq);
3807 	return rc;
3808 }
3809 
3810 /**
3811  * security_msg_queue_free() - Free a sysv ipc msg queue LSM blob
3812  * @msq: sysv ipc permission structure
3813  *
3814  * Deallocate security field @perm->security for the message queue.
3815  */
3816 void security_msg_queue_free(struct kern_ipc_perm *msq)
3817 {
3818 	call_void_hook(msg_queue_free_security, msq);
3819 	kfree(msq->security);
3820 	msq->security = NULL;
3821 }
3822 
3823 /**
3824  * security_msg_queue_associate() - Check if a msg queue operation is allowed
3825  * @msq: sysv ipc permission structure
3826  * @msqflg: operation flags
3827  *
3828  * Check permission when a message queue is requested through the msgget system
3829  * call. This hook is only called when returning the message queue identifier
3830  * for an existing message queue, not when a new message queue is created.
3831  *
3832  * Return: Return 0 if permission is granted.
3833  */
3834 int security_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
3835 {
3836 	return call_int_hook(msg_queue_associate, msq, msqflg);
3837 }
3838 
3839 /**
3840  * security_msg_queue_msgctl() - Check if a msg queue operation is allowed
3841  * @msq: sysv ipc permission structure
3842  * @cmd: operation
3843  *
3844  * Check permission when a message control operation specified by @cmd is to be
3845  * performed on the message queue with permissions.
3846  *
3847  * Return: Returns 0 if permission is granted.
3848  */
3849 int security_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
3850 {
3851 	return call_int_hook(msg_queue_msgctl, msq, cmd);
3852 }
3853 
3854 /**
3855  * security_msg_queue_msgsnd() - Check if sending a sysv ipc message is allowed
3856  * @msq: sysv ipc permission structure
3857  * @msg: message
3858  * @msqflg: operation flags
3859  *
3860  * Check permission before a message, @msg, is enqueued on the message queue
3861  * with permissions specified in @msq.
3862  *
3863  * Return: Returns 0 if permission is granted.
3864  */
3865 int security_msg_queue_msgsnd(struct kern_ipc_perm *msq,
3866 			      struct msg_msg *msg, int msqflg)
3867 {
3868 	return call_int_hook(msg_queue_msgsnd, msq, msg, msqflg);
3869 }
3870 
3871 /**
3872  * security_msg_queue_msgrcv() - Check if receiving a sysv ipc msg is allowed
3873  * @msq: sysv ipc permission structure
3874  * @msg: message
3875  * @target: target task
3876  * @type: type of message requested
3877  * @mode: operation flags
3878  *
3879  * Check permission before a message, @msg, is removed from the message	queue.
3880  * The @target task structure contains a pointer to the process that will be
3881  * receiving the message (not equal to the current process when inline receives
3882  * are being performed).
3883  *
3884  * Return: Returns 0 if permission is granted.
3885  */
3886 int security_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
3887 			      struct task_struct *target, long type, int mode)
3888 {
3889 	return call_int_hook(msg_queue_msgrcv, msq, msg, target, type, mode);
3890 }
3891 
3892 /**
3893  * security_shm_alloc() - Allocate a sysv shm LSM blob
3894  * @shp: sysv ipc permission structure
3895  *
3896  * Allocate and attach a security structure to the @shp security field.  The
3897  * security field is initialized to NULL when the structure is first created.
3898  *
3899  * Return: Returns 0 if operation was successful and permission is granted.
3900  */
3901 int security_shm_alloc(struct kern_ipc_perm *shp)
3902 {
3903 	int rc = lsm_ipc_alloc(shp);
3904 
3905 	if (unlikely(rc))
3906 		return rc;
3907 	rc = call_int_hook(shm_alloc_security, shp);
3908 	if (unlikely(rc))
3909 		security_shm_free(shp);
3910 	return rc;
3911 }
3912 
3913 /**
3914  * security_shm_free() - Free a sysv shm LSM blob
3915  * @shp: sysv ipc permission structure
3916  *
3917  * Deallocate the security structure @perm->security for the memory segment.
3918  */
3919 void security_shm_free(struct kern_ipc_perm *shp)
3920 {
3921 	call_void_hook(shm_free_security, shp);
3922 	kfree(shp->security);
3923 	shp->security = NULL;
3924 }
3925 
3926 /**
3927  * security_shm_associate() - Check if a sysv shm operation is allowed
3928  * @shp: sysv ipc permission structure
3929  * @shmflg: operation flags
3930  *
3931  * Check permission when a shared memory region is requested through the shmget
3932  * system call. This hook is only called when returning the shared memory
3933  * region identifier for an existing region, not when a new shared memory
3934  * region is created.
3935  *
3936  * Return: Returns 0 if permission is granted.
3937  */
3938 int security_shm_associate(struct kern_ipc_perm *shp, int shmflg)
3939 {
3940 	return call_int_hook(shm_associate, shp, shmflg);
3941 }
3942 
3943 /**
3944  * security_shm_shmctl() - Check if a sysv shm operation is allowed
3945  * @shp: sysv ipc permission structure
3946  * @cmd: operation
3947  *
3948  * Check permission when a shared memory control operation specified by @cmd is
3949  * to be performed on the shared memory region with permissions in @shp.
3950  *
3951  * Return: Return 0 if permission is granted.
3952  */
3953 int security_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
3954 {
3955 	return call_int_hook(shm_shmctl, shp, cmd);
3956 }
3957 
3958 /**
3959  * security_shm_shmat() - Check if a sysv shm attach operation is allowed
3960  * @shp: sysv ipc permission structure
3961  * @shmaddr: address of memory region to attach
3962  * @shmflg: operation flags
3963  *
3964  * Check permissions prior to allowing the shmat system call to attach the
3965  * shared memory segment with permissions @shp to the data segment of the
3966  * calling process. The attaching address is specified by @shmaddr.
3967  *
3968  * Return: Returns 0 if permission is granted.
3969  */
3970 int security_shm_shmat(struct kern_ipc_perm *shp,
3971 		       char __user *shmaddr, int shmflg)
3972 {
3973 	return call_int_hook(shm_shmat, shp, shmaddr, shmflg);
3974 }
3975 
3976 /**
3977  * security_sem_alloc() - Allocate a sysv semaphore LSM blob
3978  * @sma: sysv ipc permission structure
3979  *
3980  * Allocate and attach a security structure to the @sma security field. The
3981  * security field is initialized to NULL when the structure is first created.
3982  *
3983  * Return: Returns 0 if operation was successful and permission is granted.
3984  */
3985 int security_sem_alloc(struct kern_ipc_perm *sma)
3986 {
3987 	int rc = lsm_ipc_alloc(sma);
3988 
3989 	if (unlikely(rc))
3990 		return rc;
3991 	rc = call_int_hook(sem_alloc_security, sma);
3992 	if (unlikely(rc))
3993 		security_sem_free(sma);
3994 	return rc;
3995 }
3996 
3997 /**
3998  * security_sem_free() - Free a sysv semaphore LSM blob
3999  * @sma: sysv ipc permission structure
4000  *
4001  * Deallocate security structure @sma->security for the semaphore.
4002  */
4003 void security_sem_free(struct kern_ipc_perm *sma)
4004 {
4005 	call_void_hook(sem_free_security, sma);
4006 	kfree(sma->security);
4007 	sma->security = NULL;
4008 }
4009 
4010 /**
4011  * security_sem_associate() - Check if a sysv semaphore operation is allowed
4012  * @sma: sysv ipc permission structure
4013  * @semflg: operation flags
4014  *
4015  * Check permission when a semaphore is requested through the semget system
4016  * call. This hook is only called when returning the semaphore identifier for
4017  * an existing semaphore, not when a new one must be created.
4018  *
4019  * Return: Returns 0 if permission is granted.
4020  */
4021 int security_sem_associate(struct kern_ipc_perm *sma, int semflg)
4022 {
4023 	return call_int_hook(sem_associate, sma, semflg);
4024 }
4025 
4026 /**
4027  * security_sem_semctl() - Check if a sysv semaphore operation is allowed
4028  * @sma: sysv ipc permission structure
4029  * @cmd: operation
4030  *
4031  * Check permission when a semaphore operation specified by @cmd is to be
4032  * performed on the semaphore.
4033  *
4034  * Return: Returns 0 if permission is granted.
4035  */
4036 int security_sem_semctl(struct kern_ipc_perm *sma, int cmd)
4037 {
4038 	return call_int_hook(sem_semctl, sma, cmd);
4039 }
4040 
4041 /**
4042  * security_sem_semop() - Check if a sysv semaphore operation is allowed
4043  * @sma: sysv ipc permission structure
4044  * @sops: operations to perform
4045  * @nsops: number of operations
4046  * @alter: flag indicating changes will be made
4047  *
4048  * Check permissions before performing operations on members of the semaphore
4049  * set. If the @alter flag is nonzero, the semaphore set may be modified.
4050  *
4051  * Return: Returns 0 if permission is granted.
4052  */
4053 int security_sem_semop(struct kern_ipc_perm *sma, struct sembuf *sops,
4054 		       unsigned nsops, int alter)
4055 {
4056 	return call_int_hook(sem_semop, sma, sops, nsops, alter);
4057 }
4058 
4059 /**
4060  * security_d_instantiate() - Populate an inode's LSM state based on a dentry
4061  * @dentry: dentry
4062  * @inode: inode
4063  *
4064  * Fill in @inode security information for a @dentry if allowed.
4065  */
4066 void security_d_instantiate(struct dentry *dentry, struct inode *inode)
4067 {
4068 	if (unlikely(inode && IS_PRIVATE(inode)))
4069 		return;
4070 	call_void_hook(d_instantiate, dentry, inode);
4071 }
4072 EXPORT_SYMBOL(security_d_instantiate);
4073 
4074 /*
4075  * Please keep this in sync with it's counterpart in security/lsm_syscalls.c
4076  */
4077 
4078 /**
4079  * security_getselfattr - Read an LSM attribute of the current process.
4080  * @attr: which attribute to return
4081  * @uctx: the user-space destination for the information, or NULL
4082  * @size: pointer to the size of space available to receive the data
4083  * @flags: special handling options. LSM_FLAG_SINGLE indicates that only
4084  * attributes associated with the LSM identified in the passed @ctx be
4085  * reported.
4086  *
4087  * A NULL value for @uctx can be used to get both the number of attributes
4088  * and the size of the data.
4089  *
4090  * Returns the number of attributes found on success, negative value
4091  * on error. @size is reset to the total size of the data.
4092  * If @size is insufficient to contain the data -E2BIG is returned.
4093  */
4094 int security_getselfattr(unsigned int attr, struct lsm_ctx __user *uctx,
4095 			 u32 __user *size, u32 flags)
4096 {
4097 	struct lsm_static_call *scall;
4098 	struct lsm_ctx lctx = { .id = LSM_ID_UNDEF, };
4099 	u8 __user *base = (u8 __user *)uctx;
4100 	u32 entrysize;
4101 	u32 total = 0;
4102 	u32 left;
4103 	bool toobig = false;
4104 	bool single = false;
4105 	int count = 0;
4106 	int rc;
4107 
4108 	if (attr == LSM_ATTR_UNDEF)
4109 		return -EINVAL;
4110 	if (size == NULL)
4111 		return -EINVAL;
4112 	if (get_user(left, size))
4113 		return -EFAULT;
4114 
4115 	if (flags) {
4116 		/*
4117 		 * Only flag supported is LSM_FLAG_SINGLE
4118 		 */
4119 		if (flags != LSM_FLAG_SINGLE || !uctx)
4120 			return -EINVAL;
4121 		if (copy_from_user(&lctx, uctx, sizeof(lctx)))
4122 			return -EFAULT;
4123 		/*
4124 		 * If the LSM ID isn't specified it is an error.
4125 		 */
4126 		if (lctx.id == LSM_ID_UNDEF)
4127 			return -EINVAL;
4128 		single = true;
4129 	}
4130 
4131 	/*
4132 	 * In the usual case gather all the data from the LSMs.
4133 	 * In the single case only get the data from the LSM specified.
4134 	 */
4135 	lsm_for_each_hook(scall, getselfattr) {
4136 		if (single && lctx.id != scall->hl->lsmid->id)
4137 			continue;
4138 		entrysize = left;
4139 		if (base)
4140 			uctx = (struct lsm_ctx __user *)(base + total);
4141 		rc = scall->hl->hook.getselfattr(attr, uctx, &entrysize, flags);
4142 		if (rc == -EOPNOTSUPP) {
4143 			rc = 0;
4144 			continue;
4145 		}
4146 		if (rc == -E2BIG) {
4147 			rc = 0;
4148 			left = 0;
4149 			toobig = true;
4150 		} else if (rc < 0)
4151 			return rc;
4152 		else
4153 			left -= entrysize;
4154 
4155 		total += entrysize;
4156 		count += rc;
4157 		if (single)
4158 			break;
4159 	}
4160 	if (put_user(total, size))
4161 		return -EFAULT;
4162 	if (toobig)
4163 		return -E2BIG;
4164 	if (count == 0)
4165 		return LSM_RET_DEFAULT(getselfattr);
4166 	return count;
4167 }
4168 
4169 /*
4170  * Please keep this in sync with it's counterpart in security/lsm_syscalls.c
4171  */
4172 
4173 /**
4174  * security_setselfattr - Set an LSM attribute on the current process.
4175  * @attr: which attribute to set
4176  * @uctx: the user-space source for the information
4177  * @size: the size of the data
4178  * @flags: reserved for future use, must be 0
4179  *
4180  * Set an LSM attribute for the current process. The LSM, attribute
4181  * and new value are included in @uctx.
4182  *
4183  * Returns 0 on success, -EINVAL if the input is inconsistent, -EFAULT
4184  * if the user buffer is inaccessible, E2BIG if size is too big, or an
4185  * LSM specific failure.
4186  */
4187 int security_setselfattr(unsigned int attr, struct lsm_ctx __user *uctx,
4188 			 u32 size, u32 flags)
4189 {
4190 	struct lsm_static_call *scall;
4191 	struct lsm_ctx *lctx;
4192 	int rc = LSM_RET_DEFAULT(setselfattr);
4193 	u64 required_len;
4194 
4195 	if (flags)
4196 		return -EINVAL;
4197 	if (size < sizeof(*lctx))
4198 		return -EINVAL;
4199 	if (size > PAGE_SIZE)
4200 		return -E2BIG;
4201 
4202 	lctx = memdup_user(uctx, size);
4203 	if (IS_ERR(lctx))
4204 		return PTR_ERR(lctx);
4205 
4206 	if (size < lctx->len ||
4207 	    check_add_overflow(sizeof(*lctx), lctx->ctx_len, &required_len) ||
4208 	    lctx->len < required_len) {
4209 		rc = -EINVAL;
4210 		goto free_out;
4211 	}
4212 
4213 	lsm_for_each_hook(scall, setselfattr)
4214 		if ((scall->hl->lsmid->id) == lctx->id) {
4215 			rc = scall->hl->hook.setselfattr(attr, lctx, size, flags);
4216 			break;
4217 		}
4218 
4219 free_out:
4220 	kfree(lctx);
4221 	return rc;
4222 }
4223 
4224 /**
4225  * security_getprocattr() - Read an attribute for a task
4226  * @p: the task
4227  * @lsmid: LSM identification
4228  * @name: attribute name
4229  * @value: attribute value
4230  *
4231  * Read attribute @name for task @p and store it into @value if allowed.
4232  *
4233  * Return: Returns the length of @value on success, a negative value otherwise.
4234  */
4235 int security_getprocattr(struct task_struct *p, int lsmid, const char *name,
4236 			 char **value)
4237 {
4238 	struct lsm_static_call *scall;
4239 
4240 	lsm_for_each_hook(scall, getprocattr) {
4241 		if (lsmid != 0 && lsmid != scall->hl->lsmid->id)
4242 			continue;
4243 		return scall->hl->hook.getprocattr(p, name, value);
4244 	}
4245 	return LSM_RET_DEFAULT(getprocattr);
4246 }
4247 
4248 /**
4249  * security_setprocattr() - Set an attribute for a task
4250  * @lsmid: LSM identification
4251  * @name: attribute name
4252  * @value: attribute value
4253  * @size: attribute value size
4254  *
4255  * Write (set) the current task's attribute @name to @value, size @size if
4256  * allowed.
4257  *
4258  * Return: Returns bytes written on success, a negative value otherwise.
4259  */
4260 int security_setprocattr(int lsmid, const char *name, void *value, size_t size)
4261 {
4262 	struct lsm_static_call *scall;
4263 
4264 	lsm_for_each_hook(scall, setprocattr) {
4265 		if (lsmid != 0 && lsmid != scall->hl->lsmid->id)
4266 			continue;
4267 		return scall->hl->hook.setprocattr(name, value, size);
4268 	}
4269 	return LSM_RET_DEFAULT(setprocattr);
4270 }
4271 
4272 /**
4273  * security_netlink_send() - Save info and check if netlink sending is allowed
4274  * @sk: sending socket
4275  * @skb: netlink message
4276  *
4277  * Save security information for a netlink message so that permission checking
4278  * can be performed when the message is processed.  The security information
4279  * can be saved using the eff_cap field of the netlink_skb_parms structure.
4280  * Also may be used to provide fine grained control over message transmission.
4281  *
4282  * Return: Returns 0 if the information was successfully saved and message is
4283  *         allowed to be transmitted.
4284  */
4285 int security_netlink_send(struct sock *sk, struct sk_buff *skb)
4286 {
4287 	return call_int_hook(netlink_send, sk, skb);
4288 }
4289 
4290 /**
4291  * security_ismaclabel() - Check if the named attribute is a MAC label
4292  * @name: full extended attribute name
4293  *
4294  * Check if the extended attribute specified by @name represents a MAC label.
4295  *
4296  * Return: Returns 1 if name is a MAC attribute otherwise returns 0.
4297  */
4298 int security_ismaclabel(const char *name)
4299 {
4300 	return call_int_hook(ismaclabel, name);
4301 }
4302 EXPORT_SYMBOL(security_ismaclabel);
4303 
4304 /**
4305  * security_secid_to_secctx() - Convert a secid to a secctx
4306  * @secid: secid
4307  * @secdata: secctx
4308  * @seclen: secctx length
4309  *
4310  * Convert secid to security context.  If @secdata is NULL the length of the
4311  * result will be returned in @seclen, but no @secdata will be returned.  This
4312  * does mean that the length could change between calls to check the length and
4313  * the next call which actually allocates and returns the @secdata.
4314  *
4315  * Return: Return 0 on success, error on failure.
4316  */
4317 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
4318 {
4319 	return call_int_hook(secid_to_secctx, secid, secdata, seclen);
4320 }
4321 EXPORT_SYMBOL(security_secid_to_secctx);
4322 
4323 /**
4324  * security_lsmprop_to_secctx() - Convert a lsm_prop to a secctx
4325  * @prop: lsm specific information
4326  * @secdata: secctx
4327  * @seclen: secctx length
4328  *
4329  * Convert a @prop entry to security context.  If @secdata is NULL the
4330  * length of the result will be returned in @seclen, but no @secdata
4331  * will be returned.  This does mean that the length could change between
4332  * calls to check the length and the next call which actually allocates
4333  * and returns the @secdata.
4334  *
4335  * Return: Return 0 on success, error on failure.
4336  */
4337 int security_lsmprop_to_secctx(struct lsm_prop *prop, char **secdata,
4338 			       u32 *seclen)
4339 {
4340 	return call_int_hook(lsmprop_to_secctx, prop, secdata, seclen);
4341 }
4342 EXPORT_SYMBOL(security_lsmprop_to_secctx);
4343 
4344 /**
4345  * security_secctx_to_secid() - Convert a secctx to a secid
4346  * @secdata: secctx
4347  * @seclen: length of secctx
4348  * @secid: secid
4349  *
4350  * Convert security context to secid.
4351  *
4352  * Return: Returns 0 on success, error on failure.
4353  */
4354 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
4355 {
4356 	*secid = 0;
4357 	return call_int_hook(secctx_to_secid, secdata, seclen, secid);
4358 }
4359 EXPORT_SYMBOL(security_secctx_to_secid);
4360 
4361 /**
4362  * security_release_secctx() - Free a secctx buffer
4363  * @secdata: secctx
4364  * @seclen: length of secctx
4365  *
4366  * Release the security context.
4367  */
4368 void security_release_secctx(char *secdata, u32 seclen)
4369 {
4370 	call_void_hook(release_secctx, secdata, seclen);
4371 }
4372 EXPORT_SYMBOL(security_release_secctx);
4373 
4374 /**
4375  * security_inode_invalidate_secctx() - Invalidate an inode's security label
4376  * @inode: inode
4377  *
4378  * Notify the security module that it must revalidate the security context of
4379  * an inode.
4380  */
4381 void security_inode_invalidate_secctx(struct inode *inode)
4382 {
4383 	call_void_hook(inode_invalidate_secctx, inode);
4384 }
4385 EXPORT_SYMBOL(security_inode_invalidate_secctx);
4386 
4387 /**
4388  * security_inode_notifysecctx() - Notify the LSM of an inode's security label
4389  * @inode: inode
4390  * @ctx: secctx
4391  * @ctxlen: length of secctx
4392  *
4393  * Notify the security module of what the security context of an inode should
4394  * be.  Initializes the incore security context managed by the security module
4395  * for this inode.  Example usage: NFS client invokes this hook to initialize
4396  * the security context in its incore inode to the value provided by the server
4397  * for the file when the server returned the file's attributes to the client.
4398  * Must be called with inode->i_mutex locked.
4399  *
4400  * Return: Returns 0 on success, error on failure.
4401  */
4402 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
4403 {
4404 	return call_int_hook(inode_notifysecctx, inode, ctx, ctxlen);
4405 }
4406 EXPORT_SYMBOL(security_inode_notifysecctx);
4407 
4408 /**
4409  * security_inode_setsecctx() - Change the security label of an inode
4410  * @dentry: inode
4411  * @ctx: secctx
4412  * @ctxlen: length of secctx
4413  *
4414  * Change the security context of an inode.  Updates the incore security
4415  * context managed by the security module and invokes the fs code as needed
4416  * (via __vfs_setxattr_noperm) to update any backing xattrs that represent the
4417  * context.  Example usage: NFS server invokes this hook to change the security
4418  * context in its incore inode and on the backing filesystem to a value
4419  * provided by the client on a SETATTR operation.  Must be called with
4420  * inode->i_mutex locked.
4421  *
4422  * Return: Returns 0 on success, error on failure.
4423  */
4424 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
4425 {
4426 	return call_int_hook(inode_setsecctx, dentry, ctx, ctxlen);
4427 }
4428 EXPORT_SYMBOL(security_inode_setsecctx);
4429 
4430 /**
4431  * security_inode_getsecctx() - Get the security label of an inode
4432  * @inode: inode
4433  * @ctx: secctx
4434  * @ctxlen: length of secctx
4435  *
4436  * On success, returns 0 and fills out @ctx and @ctxlen with the security
4437  * context for the given @inode.
4438  *
4439  * Return: Returns 0 on success, error on failure.
4440  */
4441 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
4442 {
4443 	return call_int_hook(inode_getsecctx, inode, ctx, ctxlen);
4444 }
4445 EXPORT_SYMBOL(security_inode_getsecctx);
4446 
4447 #ifdef CONFIG_WATCH_QUEUE
4448 /**
4449  * security_post_notification() - Check if a watch notification can be posted
4450  * @w_cred: credentials of the task that set the watch
4451  * @cred: credentials of the task which triggered the watch
4452  * @n: the notification
4453  *
4454  * Check to see if a watch notification can be posted to a particular queue.
4455  *
4456  * Return: Returns 0 if permission is granted.
4457  */
4458 int security_post_notification(const struct cred *w_cred,
4459 			       const struct cred *cred,
4460 			       struct watch_notification *n)
4461 {
4462 	return call_int_hook(post_notification, w_cred, cred, n);
4463 }
4464 #endif /* CONFIG_WATCH_QUEUE */
4465 
4466 #ifdef CONFIG_KEY_NOTIFICATIONS
4467 /**
4468  * security_watch_key() - Check if a task is allowed to watch for key events
4469  * @key: the key to watch
4470  *
4471  * Check to see if a process is allowed to watch for event notifications from
4472  * a key or keyring.
4473  *
4474  * Return: Returns 0 if permission is granted.
4475  */
4476 int security_watch_key(struct key *key)
4477 {
4478 	return call_int_hook(watch_key, key);
4479 }
4480 #endif /* CONFIG_KEY_NOTIFICATIONS */
4481 
4482 #ifdef CONFIG_SECURITY_NETWORK
4483 /**
4484  * security_unix_stream_connect() - Check if a AF_UNIX stream is allowed
4485  * @sock: originating sock
4486  * @other: peer sock
4487  * @newsk: new sock
4488  *
4489  * Check permissions before establishing a Unix domain stream connection
4490  * between @sock and @other.
4491  *
4492  * The @unix_stream_connect and @unix_may_send hooks were necessary because
4493  * Linux provides an alternative to the conventional file name space for Unix
4494  * domain sockets.  Whereas binding and connecting to sockets in the file name
4495  * space is mediated by the typical file permissions (and caught by the mknod
4496  * and permission hooks in inode_security_ops), binding and connecting to
4497  * sockets in the abstract name space is completely unmediated.  Sufficient
4498  * control of Unix domain sockets in the abstract name space isn't possible
4499  * using only the socket layer hooks, since we need to know the actual target
4500  * socket, which is not looked up until we are inside the af_unix code.
4501  *
4502  * Return: Returns 0 if permission is granted.
4503  */
4504 int security_unix_stream_connect(struct sock *sock, struct sock *other,
4505 				 struct sock *newsk)
4506 {
4507 	return call_int_hook(unix_stream_connect, sock, other, newsk);
4508 }
4509 EXPORT_SYMBOL(security_unix_stream_connect);
4510 
4511 /**
4512  * security_unix_may_send() - Check if AF_UNIX socket can send datagrams
4513  * @sock: originating sock
4514  * @other: peer sock
4515  *
4516  * Check permissions before connecting or sending datagrams from @sock to
4517  * @other.
4518  *
4519  * The @unix_stream_connect and @unix_may_send hooks were necessary because
4520  * Linux provides an alternative to the conventional file name space for Unix
4521  * domain sockets.  Whereas binding and connecting to sockets in the file name
4522  * space is mediated by the typical file permissions (and caught by the mknod
4523  * and permission hooks in inode_security_ops), binding and connecting to
4524  * sockets in the abstract name space is completely unmediated.  Sufficient
4525  * control of Unix domain sockets in the abstract name space isn't possible
4526  * using only the socket layer hooks, since we need to know the actual target
4527  * socket, which is not looked up until we are inside the af_unix code.
4528  *
4529  * Return: Returns 0 if permission is granted.
4530  */
4531 int security_unix_may_send(struct socket *sock,  struct socket *other)
4532 {
4533 	return call_int_hook(unix_may_send, sock, other);
4534 }
4535 EXPORT_SYMBOL(security_unix_may_send);
4536 
4537 /**
4538  * security_socket_create() - Check if creating a new socket is allowed
4539  * @family: protocol family
4540  * @type: communications type
4541  * @protocol: requested protocol
4542  * @kern: set to 1 if a kernel socket is requested
4543  *
4544  * Check permissions prior to creating a new socket.
4545  *
4546  * Return: Returns 0 if permission is granted.
4547  */
4548 int security_socket_create(int family, int type, int protocol, int kern)
4549 {
4550 	return call_int_hook(socket_create, family, type, protocol, kern);
4551 }
4552 
4553 /**
4554  * security_socket_post_create() - Initialize a newly created socket
4555  * @sock: socket
4556  * @family: protocol family
4557  * @type: communications type
4558  * @protocol: requested protocol
4559  * @kern: set to 1 if a kernel socket is requested
4560  *
4561  * This hook allows a module to update or allocate a per-socket security
4562  * structure. Note that the security field was not added directly to the socket
4563  * structure, but rather, the socket security information is stored in the
4564  * associated inode.  Typically, the inode alloc_security hook will allocate
4565  * and attach security information to SOCK_INODE(sock)->i_security.  This hook
4566  * may be used to update the SOCK_INODE(sock)->i_security field with additional
4567  * information that wasn't available when the inode was allocated.
4568  *
4569  * Return: Returns 0 if permission is granted.
4570  */
4571 int security_socket_post_create(struct socket *sock, int family,
4572 				int type, int protocol, int kern)
4573 {
4574 	return call_int_hook(socket_post_create, sock, family, type,
4575 			     protocol, kern);
4576 }
4577 
4578 /**
4579  * security_socket_socketpair() - Check if creating a socketpair is allowed
4580  * @socka: first socket
4581  * @sockb: second socket
4582  *
4583  * Check permissions before creating a fresh pair of sockets.
4584  *
4585  * Return: Returns 0 if permission is granted and the connection was
4586  *         established.
4587  */
4588 int security_socket_socketpair(struct socket *socka, struct socket *sockb)
4589 {
4590 	return call_int_hook(socket_socketpair, socka, sockb);
4591 }
4592 EXPORT_SYMBOL(security_socket_socketpair);
4593 
4594 /**
4595  * security_socket_bind() - Check if a socket bind operation is allowed
4596  * @sock: socket
4597  * @address: requested bind address
4598  * @addrlen: length of address
4599  *
4600  * Check permission before socket protocol layer bind operation is performed
4601  * and the socket @sock is bound to the address specified in the @address
4602  * parameter.
4603  *
4604  * Return: Returns 0 if permission is granted.
4605  */
4606 int security_socket_bind(struct socket *sock,
4607 			 struct sockaddr *address, int addrlen)
4608 {
4609 	return call_int_hook(socket_bind, sock, address, addrlen);
4610 }
4611 
4612 /**
4613  * security_socket_connect() - Check if a socket connect operation is allowed
4614  * @sock: socket
4615  * @address: address of remote connection point
4616  * @addrlen: length of address
4617  *
4618  * Check permission before socket protocol layer connect operation attempts to
4619  * connect socket @sock to a remote address, @address.
4620  *
4621  * Return: Returns 0 if permission is granted.
4622  */
4623 int security_socket_connect(struct socket *sock,
4624 			    struct sockaddr *address, int addrlen)
4625 {
4626 	return call_int_hook(socket_connect, sock, address, addrlen);
4627 }
4628 
4629 /**
4630  * security_socket_listen() - Check if a socket is allowed to listen
4631  * @sock: socket
4632  * @backlog: connection queue size
4633  *
4634  * Check permission before socket protocol layer listen operation.
4635  *
4636  * Return: Returns 0 if permission is granted.
4637  */
4638 int security_socket_listen(struct socket *sock, int backlog)
4639 {
4640 	return call_int_hook(socket_listen, sock, backlog);
4641 }
4642 
4643 /**
4644  * security_socket_accept() - Check if a socket is allowed to accept connections
4645  * @sock: listening socket
4646  * @newsock: newly creation connection socket
4647  *
4648  * Check permission before accepting a new connection.  Note that the new
4649  * socket, @newsock, has been created and some information copied to it, but
4650  * the accept operation has not actually been performed.
4651  *
4652  * Return: Returns 0 if permission is granted.
4653  */
4654 int security_socket_accept(struct socket *sock, struct socket *newsock)
4655 {
4656 	return call_int_hook(socket_accept, sock, newsock);
4657 }
4658 
4659 /**
4660  * security_socket_sendmsg() - Check if sending a message is allowed
4661  * @sock: sending socket
4662  * @msg: message to send
4663  * @size: size of message
4664  *
4665  * Check permission before transmitting a message to another socket.
4666  *
4667  * Return: Returns 0 if permission is granted.
4668  */
4669 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
4670 {
4671 	return call_int_hook(socket_sendmsg, sock, msg, size);
4672 }
4673 
4674 /**
4675  * security_socket_recvmsg() - Check if receiving a message is allowed
4676  * @sock: receiving socket
4677  * @msg: message to receive
4678  * @size: size of message
4679  * @flags: operational flags
4680  *
4681  * Check permission before receiving a message from a socket.
4682  *
4683  * Return: Returns 0 if permission is granted.
4684  */
4685 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
4686 			    int size, int flags)
4687 {
4688 	return call_int_hook(socket_recvmsg, sock, msg, size, flags);
4689 }
4690 
4691 /**
4692  * security_socket_getsockname() - Check if reading the socket addr is allowed
4693  * @sock: socket
4694  *
4695  * Check permission before reading the local address (name) of the socket
4696  * object.
4697  *
4698  * Return: Returns 0 if permission is granted.
4699  */
4700 int security_socket_getsockname(struct socket *sock)
4701 {
4702 	return call_int_hook(socket_getsockname, sock);
4703 }
4704 
4705 /**
4706  * security_socket_getpeername() - Check if reading the peer's addr is allowed
4707  * @sock: socket
4708  *
4709  * Check permission before the remote address (name) of a socket object.
4710  *
4711  * Return: Returns 0 if permission is granted.
4712  */
4713 int security_socket_getpeername(struct socket *sock)
4714 {
4715 	return call_int_hook(socket_getpeername, sock);
4716 }
4717 
4718 /**
4719  * security_socket_getsockopt() - Check if reading a socket option is allowed
4720  * @sock: socket
4721  * @level: option's protocol level
4722  * @optname: option name
4723  *
4724  * Check permissions before retrieving the options associated with socket
4725  * @sock.
4726  *
4727  * Return: Returns 0 if permission is granted.
4728  */
4729 int security_socket_getsockopt(struct socket *sock, int level, int optname)
4730 {
4731 	return call_int_hook(socket_getsockopt, sock, level, optname);
4732 }
4733 
4734 /**
4735  * security_socket_setsockopt() - Check if setting a socket option is allowed
4736  * @sock: socket
4737  * @level: option's protocol level
4738  * @optname: option name
4739  *
4740  * Check permissions before setting the options associated with socket @sock.
4741  *
4742  * Return: Returns 0 if permission is granted.
4743  */
4744 int security_socket_setsockopt(struct socket *sock, int level, int optname)
4745 {
4746 	return call_int_hook(socket_setsockopt, sock, level, optname);
4747 }
4748 
4749 /**
4750  * security_socket_shutdown() - Checks if shutting down the socket is allowed
4751  * @sock: socket
4752  * @how: flag indicating how sends and receives are handled
4753  *
4754  * Checks permission before all or part of a connection on the socket @sock is
4755  * shut down.
4756  *
4757  * Return: Returns 0 if permission is granted.
4758  */
4759 int security_socket_shutdown(struct socket *sock, int how)
4760 {
4761 	return call_int_hook(socket_shutdown, sock, how);
4762 }
4763 
4764 /**
4765  * security_sock_rcv_skb() - Check if an incoming network packet is allowed
4766  * @sk: destination sock
4767  * @skb: incoming packet
4768  *
4769  * Check permissions on incoming network packets.  This hook is distinct from
4770  * Netfilter's IP input hooks since it is the first time that the incoming
4771  * sk_buff @skb has been associated with a particular socket, @sk.  Must not
4772  * sleep inside this hook because some callers hold spinlocks.
4773  *
4774  * Return: Returns 0 if permission is granted.
4775  */
4776 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4777 {
4778 	return call_int_hook(socket_sock_rcv_skb, sk, skb);
4779 }
4780 EXPORT_SYMBOL(security_sock_rcv_skb);
4781 
4782 /**
4783  * security_socket_getpeersec_stream() - Get the remote peer label
4784  * @sock: socket
4785  * @optval: destination buffer
4786  * @optlen: size of peer label copied into the buffer
4787  * @len: maximum size of the destination buffer
4788  *
4789  * This hook allows the security module to provide peer socket security state
4790  * for unix or connected tcp sockets to userspace via getsockopt SO_GETPEERSEC.
4791  * For tcp sockets this can be meaningful if the socket is associated with an
4792  * ipsec SA.
4793  *
4794  * Return: Returns 0 if all is well, otherwise, typical getsockopt return
4795  *         values.
4796  */
4797 int security_socket_getpeersec_stream(struct socket *sock, sockptr_t optval,
4798 				      sockptr_t optlen, unsigned int len)
4799 {
4800 	return call_int_hook(socket_getpeersec_stream, sock, optval, optlen,
4801 			     len);
4802 }
4803 
4804 /**
4805  * security_socket_getpeersec_dgram() - Get the remote peer label
4806  * @sock: socket
4807  * @skb: datagram packet
4808  * @secid: remote peer label secid
4809  *
4810  * This hook allows the security module to provide peer socket security state
4811  * for udp sockets on a per-packet basis to userspace via getsockopt
4812  * SO_GETPEERSEC. The application must first have indicated the IP_PASSSEC
4813  * option via getsockopt. It can then retrieve the security state returned by
4814  * this hook for a packet via the SCM_SECURITY ancillary message type.
4815  *
4816  * Return: Returns 0 on success, error on failure.
4817  */
4818 int security_socket_getpeersec_dgram(struct socket *sock,
4819 				     struct sk_buff *skb, u32 *secid)
4820 {
4821 	return call_int_hook(socket_getpeersec_dgram, sock, skb, secid);
4822 }
4823 EXPORT_SYMBOL(security_socket_getpeersec_dgram);
4824 
4825 /**
4826  * lsm_sock_alloc - allocate a composite sock blob
4827  * @sock: the sock that needs a blob
4828  * @gfp: allocation mode
4829  *
4830  * Allocate the sock blob for all the modules
4831  *
4832  * Returns 0, or -ENOMEM if memory can't be allocated.
4833  */
4834 static int lsm_sock_alloc(struct sock *sock, gfp_t gfp)
4835 {
4836 	return lsm_blob_alloc(&sock->sk_security, blob_sizes.lbs_sock, gfp);
4837 }
4838 
4839 /**
4840  * security_sk_alloc() - Allocate and initialize a sock's LSM blob
4841  * @sk: sock
4842  * @family: protocol family
4843  * @priority: gfp flags
4844  *
4845  * Allocate and attach a security structure to the sk->sk_security field, which
4846  * is used to copy security attributes between local stream sockets.
4847  *
4848  * Return: Returns 0 on success, error on failure.
4849  */
4850 int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
4851 {
4852 	int rc = lsm_sock_alloc(sk, priority);
4853 
4854 	if (unlikely(rc))
4855 		return rc;
4856 	rc = call_int_hook(sk_alloc_security, sk, family, priority);
4857 	if (unlikely(rc))
4858 		security_sk_free(sk);
4859 	return rc;
4860 }
4861 
4862 /**
4863  * security_sk_free() - Free the sock's LSM blob
4864  * @sk: sock
4865  *
4866  * Deallocate security structure.
4867  */
4868 void security_sk_free(struct sock *sk)
4869 {
4870 	call_void_hook(sk_free_security, sk);
4871 	kfree(sk->sk_security);
4872 	sk->sk_security = NULL;
4873 }
4874 
4875 /**
4876  * security_sk_clone() - Clone a sock's LSM state
4877  * @sk: original sock
4878  * @newsk: target sock
4879  *
4880  * Clone/copy security structure.
4881  */
4882 void security_sk_clone(const struct sock *sk, struct sock *newsk)
4883 {
4884 	call_void_hook(sk_clone_security, sk, newsk);
4885 }
4886 EXPORT_SYMBOL(security_sk_clone);
4887 
4888 /**
4889  * security_sk_classify_flow() - Set a flow's secid based on socket
4890  * @sk: original socket
4891  * @flic: target flow
4892  *
4893  * Set the target flow's secid to socket's secid.
4894  */
4895 void security_sk_classify_flow(const struct sock *sk, struct flowi_common *flic)
4896 {
4897 	call_void_hook(sk_getsecid, sk, &flic->flowic_secid);
4898 }
4899 EXPORT_SYMBOL(security_sk_classify_flow);
4900 
4901 /**
4902  * security_req_classify_flow() - Set a flow's secid based on request_sock
4903  * @req: request_sock
4904  * @flic: target flow
4905  *
4906  * Sets @flic's secid to @req's secid.
4907  */
4908 void security_req_classify_flow(const struct request_sock *req,
4909 				struct flowi_common *flic)
4910 {
4911 	call_void_hook(req_classify_flow, req, flic);
4912 }
4913 EXPORT_SYMBOL(security_req_classify_flow);
4914 
4915 /**
4916  * security_sock_graft() - Reconcile LSM state when grafting a sock on a socket
4917  * @sk: sock being grafted
4918  * @parent: target parent socket
4919  *
4920  * Sets @parent's inode secid to @sk's secid and update @sk with any necessary
4921  * LSM state from @parent.
4922  */
4923 void security_sock_graft(struct sock *sk, struct socket *parent)
4924 {
4925 	call_void_hook(sock_graft, sk, parent);
4926 }
4927 EXPORT_SYMBOL(security_sock_graft);
4928 
4929 /**
4930  * security_inet_conn_request() - Set request_sock state using incoming connect
4931  * @sk: parent listening sock
4932  * @skb: incoming connection
4933  * @req: new request_sock
4934  *
4935  * Initialize the @req LSM state based on @sk and the incoming connect in @skb.
4936  *
4937  * Return: Returns 0 if permission is granted.
4938  */
4939 int security_inet_conn_request(const struct sock *sk,
4940 			       struct sk_buff *skb, struct request_sock *req)
4941 {
4942 	return call_int_hook(inet_conn_request, sk, skb, req);
4943 }
4944 EXPORT_SYMBOL(security_inet_conn_request);
4945 
4946 /**
4947  * security_inet_csk_clone() - Set new sock LSM state based on request_sock
4948  * @newsk: new sock
4949  * @req: connection request_sock
4950  *
4951  * Set that LSM state of @sock using the LSM state from @req.
4952  */
4953 void security_inet_csk_clone(struct sock *newsk,
4954 			     const struct request_sock *req)
4955 {
4956 	call_void_hook(inet_csk_clone, newsk, req);
4957 }
4958 
4959 /**
4960  * security_inet_conn_established() - Update sock's LSM state with connection
4961  * @sk: sock
4962  * @skb: connection packet
4963  *
4964  * Update @sock's LSM state to represent a new connection from @skb.
4965  */
4966 void security_inet_conn_established(struct sock *sk,
4967 				    struct sk_buff *skb)
4968 {
4969 	call_void_hook(inet_conn_established, sk, skb);
4970 }
4971 EXPORT_SYMBOL(security_inet_conn_established);
4972 
4973 /**
4974  * security_secmark_relabel_packet() - Check if setting a secmark is allowed
4975  * @secid: new secmark value
4976  *
4977  * Check if the process should be allowed to relabel packets to @secid.
4978  *
4979  * Return: Returns 0 if permission is granted.
4980  */
4981 int security_secmark_relabel_packet(u32 secid)
4982 {
4983 	return call_int_hook(secmark_relabel_packet, secid);
4984 }
4985 EXPORT_SYMBOL(security_secmark_relabel_packet);
4986 
4987 /**
4988  * security_secmark_refcount_inc() - Increment the secmark labeling rule count
4989  *
4990  * Tells the LSM to increment the number of secmark labeling rules loaded.
4991  */
4992 void security_secmark_refcount_inc(void)
4993 {
4994 	call_void_hook(secmark_refcount_inc);
4995 }
4996 EXPORT_SYMBOL(security_secmark_refcount_inc);
4997 
4998 /**
4999  * security_secmark_refcount_dec() - Decrement the secmark labeling rule count
5000  *
5001  * Tells the LSM to decrement the number of secmark labeling rules loaded.
5002  */
5003 void security_secmark_refcount_dec(void)
5004 {
5005 	call_void_hook(secmark_refcount_dec);
5006 }
5007 EXPORT_SYMBOL(security_secmark_refcount_dec);
5008 
5009 /**
5010  * security_tun_dev_alloc_security() - Allocate a LSM blob for a TUN device
5011  * @security: pointer to the LSM blob
5012  *
5013  * This hook allows a module to allocate a security structure for a TUN	device,
5014  * returning the pointer in @security.
5015  *
5016  * Return: Returns a zero on success, negative values on failure.
5017  */
5018 int security_tun_dev_alloc_security(void **security)
5019 {
5020 	int rc;
5021 
5022 	rc = lsm_blob_alloc(security, blob_sizes.lbs_tun_dev, GFP_KERNEL);
5023 	if (rc)
5024 		return rc;
5025 
5026 	rc = call_int_hook(tun_dev_alloc_security, *security);
5027 	if (rc) {
5028 		kfree(*security);
5029 		*security = NULL;
5030 	}
5031 	return rc;
5032 }
5033 EXPORT_SYMBOL(security_tun_dev_alloc_security);
5034 
5035 /**
5036  * security_tun_dev_free_security() - Free a TUN device LSM blob
5037  * @security: LSM blob
5038  *
5039  * This hook allows a module to free the security structure for a TUN device.
5040  */
5041 void security_tun_dev_free_security(void *security)
5042 {
5043 	kfree(security);
5044 }
5045 EXPORT_SYMBOL(security_tun_dev_free_security);
5046 
5047 /**
5048  * security_tun_dev_create() - Check if creating a TUN device is allowed
5049  *
5050  * Check permissions prior to creating a new TUN device.
5051  *
5052  * Return: Returns 0 if permission is granted.
5053  */
5054 int security_tun_dev_create(void)
5055 {
5056 	return call_int_hook(tun_dev_create);
5057 }
5058 EXPORT_SYMBOL(security_tun_dev_create);
5059 
5060 /**
5061  * security_tun_dev_attach_queue() - Check if attaching a TUN queue is allowed
5062  * @security: TUN device LSM blob
5063  *
5064  * Check permissions prior to attaching to a TUN device queue.
5065  *
5066  * Return: Returns 0 if permission is granted.
5067  */
5068 int security_tun_dev_attach_queue(void *security)
5069 {
5070 	return call_int_hook(tun_dev_attach_queue, security);
5071 }
5072 EXPORT_SYMBOL(security_tun_dev_attach_queue);
5073 
5074 /**
5075  * security_tun_dev_attach() - Update TUN device LSM state on attach
5076  * @sk: associated sock
5077  * @security: TUN device LSM blob
5078  *
5079  * This hook can be used by the module to update any security state associated
5080  * with the TUN device's sock structure.
5081  *
5082  * Return: Returns 0 if permission is granted.
5083  */
5084 int security_tun_dev_attach(struct sock *sk, void *security)
5085 {
5086 	return call_int_hook(tun_dev_attach, sk, security);
5087 }
5088 EXPORT_SYMBOL(security_tun_dev_attach);
5089 
5090 /**
5091  * security_tun_dev_open() - Update TUN device LSM state on open
5092  * @security: TUN device LSM blob
5093  *
5094  * This hook can be used by the module to update any security state associated
5095  * with the TUN device's security structure.
5096  *
5097  * Return: Returns 0 if permission is granted.
5098  */
5099 int security_tun_dev_open(void *security)
5100 {
5101 	return call_int_hook(tun_dev_open, security);
5102 }
5103 EXPORT_SYMBOL(security_tun_dev_open);
5104 
5105 /**
5106  * security_sctp_assoc_request() - Update the LSM on a SCTP association req
5107  * @asoc: SCTP association
5108  * @skb: packet requesting the association
5109  *
5110  * Passes the @asoc and @chunk->skb of the association INIT packet to the LSM.
5111  *
5112  * Return: Returns 0 on success, error on failure.
5113  */
5114 int security_sctp_assoc_request(struct sctp_association *asoc,
5115 				struct sk_buff *skb)
5116 {
5117 	return call_int_hook(sctp_assoc_request, asoc, skb);
5118 }
5119 EXPORT_SYMBOL(security_sctp_assoc_request);
5120 
5121 /**
5122  * security_sctp_bind_connect() - Validate a list of addrs for a SCTP option
5123  * @sk: socket
5124  * @optname: SCTP option to validate
5125  * @address: list of IP addresses to validate
5126  * @addrlen: length of the address list
5127  *
5128  * Validiate permissions required for each address associated with sock	@sk.
5129  * Depending on @optname, the addresses will be treated as either a connect or
5130  * bind service. The @addrlen is calculated on each IPv4 and IPv6 address using
5131  * sizeof(struct sockaddr_in) or sizeof(struct sockaddr_in6).
5132  *
5133  * Return: Returns 0 on success, error on failure.
5134  */
5135 int security_sctp_bind_connect(struct sock *sk, int optname,
5136 			       struct sockaddr *address, int addrlen)
5137 {
5138 	return call_int_hook(sctp_bind_connect, sk, optname, address, addrlen);
5139 }
5140 EXPORT_SYMBOL(security_sctp_bind_connect);
5141 
5142 /**
5143  * security_sctp_sk_clone() - Clone a SCTP sock's LSM state
5144  * @asoc: SCTP association
5145  * @sk: original sock
5146  * @newsk: target sock
5147  *
5148  * Called whenever a new socket is created by accept(2) (i.e. a TCP style
5149  * socket) or when a socket is 'peeled off' e.g userspace calls
5150  * sctp_peeloff(3).
5151  */
5152 void security_sctp_sk_clone(struct sctp_association *asoc, struct sock *sk,
5153 			    struct sock *newsk)
5154 {
5155 	call_void_hook(sctp_sk_clone, asoc, sk, newsk);
5156 }
5157 EXPORT_SYMBOL(security_sctp_sk_clone);
5158 
5159 /**
5160  * security_sctp_assoc_established() - Update LSM state when assoc established
5161  * @asoc: SCTP association
5162  * @skb: packet establishing the association
5163  *
5164  * Passes the @asoc and @chunk->skb of the association COOKIE_ACK packet to the
5165  * security module.
5166  *
5167  * Return: Returns 0 if permission is granted.
5168  */
5169 int security_sctp_assoc_established(struct sctp_association *asoc,
5170 				    struct sk_buff *skb)
5171 {
5172 	return call_int_hook(sctp_assoc_established, asoc, skb);
5173 }
5174 EXPORT_SYMBOL(security_sctp_assoc_established);
5175 
5176 /**
5177  * security_mptcp_add_subflow() - Inherit the LSM label from the MPTCP socket
5178  * @sk: the owning MPTCP socket
5179  * @ssk: the new subflow
5180  *
5181  * Update the labeling for the given MPTCP subflow, to match the one of the
5182  * owning MPTCP socket. This hook has to be called after the socket creation and
5183  * initialization via the security_socket_create() and
5184  * security_socket_post_create() LSM hooks.
5185  *
5186  * Return: Returns 0 on success or a negative error code on failure.
5187  */
5188 int security_mptcp_add_subflow(struct sock *sk, struct sock *ssk)
5189 {
5190 	return call_int_hook(mptcp_add_subflow, sk, ssk);
5191 }
5192 
5193 #endif	/* CONFIG_SECURITY_NETWORK */
5194 
5195 #ifdef CONFIG_SECURITY_INFINIBAND
5196 /**
5197  * security_ib_pkey_access() - Check if access to an IB pkey is allowed
5198  * @sec: LSM blob
5199  * @subnet_prefix: subnet prefix of the port
5200  * @pkey: IB pkey
5201  *
5202  * Check permission to access a pkey when modifying a QP.
5203  *
5204  * Return: Returns 0 if permission is granted.
5205  */
5206 int security_ib_pkey_access(void *sec, u64 subnet_prefix, u16 pkey)
5207 {
5208 	return call_int_hook(ib_pkey_access, sec, subnet_prefix, pkey);
5209 }
5210 EXPORT_SYMBOL(security_ib_pkey_access);
5211 
5212 /**
5213  * security_ib_endport_manage_subnet() - Check if SMPs traffic is allowed
5214  * @sec: LSM blob
5215  * @dev_name: IB device name
5216  * @port_num: port number
5217  *
5218  * Check permissions to send and receive SMPs on a end port.
5219  *
5220  * Return: Returns 0 if permission is granted.
5221  */
5222 int security_ib_endport_manage_subnet(void *sec,
5223 				      const char *dev_name, u8 port_num)
5224 {
5225 	return call_int_hook(ib_endport_manage_subnet, sec, dev_name, port_num);
5226 }
5227 EXPORT_SYMBOL(security_ib_endport_manage_subnet);
5228 
5229 /**
5230  * security_ib_alloc_security() - Allocate an Infiniband LSM blob
5231  * @sec: LSM blob
5232  *
5233  * Allocate a security structure for Infiniband objects.
5234  *
5235  * Return: Returns 0 on success, non-zero on failure.
5236  */
5237 int security_ib_alloc_security(void **sec)
5238 {
5239 	int rc;
5240 
5241 	rc = lsm_blob_alloc(sec, blob_sizes.lbs_ib, GFP_KERNEL);
5242 	if (rc)
5243 		return rc;
5244 
5245 	rc = call_int_hook(ib_alloc_security, *sec);
5246 	if (rc) {
5247 		kfree(*sec);
5248 		*sec = NULL;
5249 	}
5250 	return rc;
5251 }
5252 EXPORT_SYMBOL(security_ib_alloc_security);
5253 
5254 /**
5255  * security_ib_free_security() - Free an Infiniband LSM blob
5256  * @sec: LSM blob
5257  *
5258  * Deallocate an Infiniband security structure.
5259  */
5260 void security_ib_free_security(void *sec)
5261 {
5262 	kfree(sec);
5263 }
5264 EXPORT_SYMBOL(security_ib_free_security);
5265 #endif	/* CONFIG_SECURITY_INFINIBAND */
5266 
5267 #ifdef CONFIG_SECURITY_NETWORK_XFRM
5268 /**
5269  * security_xfrm_policy_alloc() - Allocate a xfrm policy LSM blob
5270  * @ctxp: xfrm security context being added to the SPD
5271  * @sec_ctx: security label provided by userspace
5272  * @gfp: gfp flags
5273  *
5274  * Allocate a security structure to the xp->security field; the security field
5275  * is initialized to NULL when the xfrm_policy is allocated.
5276  *
5277  * Return:  Return 0 if operation was successful.
5278  */
5279 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp,
5280 			       struct xfrm_user_sec_ctx *sec_ctx,
5281 			       gfp_t gfp)
5282 {
5283 	return call_int_hook(xfrm_policy_alloc_security, ctxp, sec_ctx, gfp);
5284 }
5285 EXPORT_SYMBOL(security_xfrm_policy_alloc);
5286 
5287 /**
5288  * security_xfrm_policy_clone() - Clone xfrm policy LSM state
5289  * @old_ctx: xfrm security context
5290  * @new_ctxp: target xfrm security context
5291  *
5292  * Allocate a security structure in new_ctxp that contains the information from
5293  * the old_ctx structure.
5294  *
5295  * Return: Return 0 if operation was successful.
5296  */
5297 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
5298 			       struct xfrm_sec_ctx **new_ctxp)
5299 {
5300 	return call_int_hook(xfrm_policy_clone_security, old_ctx, new_ctxp);
5301 }
5302 
5303 /**
5304  * security_xfrm_policy_free() - Free a xfrm security context
5305  * @ctx: xfrm security context
5306  *
5307  * Free LSM resources associated with @ctx.
5308  */
5309 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
5310 {
5311 	call_void_hook(xfrm_policy_free_security, ctx);
5312 }
5313 EXPORT_SYMBOL(security_xfrm_policy_free);
5314 
5315 /**
5316  * security_xfrm_policy_delete() - Check if deleting a xfrm policy is allowed
5317  * @ctx: xfrm security context
5318  *
5319  * Authorize deletion of a SPD entry.
5320  *
5321  * Return: Returns 0 if permission is granted.
5322  */
5323 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
5324 {
5325 	return call_int_hook(xfrm_policy_delete_security, ctx);
5326 }
5327 
5328 /**
5329  * security_xfrm_state_alloc() - Allocate a xfrm state LSM blob
5330  * @x: xfrm state being added to the SAD
5331  * @sec_ctx: security label provided by userspace
5332  *
5333  * Allocate a security structure to the @x->security field; the security field
5334  * is initialized to NULL when the xfrm_state is allocated. Set the context to
5335  * correspond to @sec_ctx.
5336  *
5337  * Return: Return 0 if operation was successful.
5338  */
5339 int security_xfrm_state_alloc(struct xfrm_state *x,
5340 			      struct xfrm_user_sec_ctx *sec_ctx)
5341 {
5342 	return call_int_hook(xfrm_state_alloc, x, sec_ctx);
5343 }
5344 EXPORT_SYMBOL(security_xfrm_state_alloc);
5345 
5346 /**
5347  * security_xfrm_state_alloc_acquire() - Allocate a xfrm state LSM blob
5348  * @x: xfrm state being added to the SAD
5349  * @polsec: associated policy's security context
5350  * @secid: secid from the flow
5351  *
5352  * Allocate a security structure to the x->security field; the security field
5353  * is initialized to NULL when the xfrm_state is allocated.  Set the context to
5354  * correspond to secid.
5355  *
5356  * Return: Returns 0 if operation was successful.
5357  */
5358 int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
5359 				      struct xfrm_sec_ctx *polsec, u32 secid)
5360 {
5361 	return call_int_hook(xfrm_state_alloc_acquire, x, polsec, secid);
5362 }
5363 
5364 /**
5365  * security_xfrm_state_delete() - Check if deleting a xfrm state is allowed
5366  * @x: xfrm state
5367  *
5368  * Authorize deletion of x->security.
5369  *
5370  * Return: Returns 0 if permission is granted.
5371  */
5372 int security_xfrm_state_delete(struct xfrm_state *x)
5373 {
5374 	return call_int_hook(xfrm_state_delete_security, x);
5375 }
5376 EXPORT_SYMBOL(security_xfrm_state_delete);
5377 
5378 /**
5379  * security_xfrm_state_free() - Free a xfrm state
5380  * @x: xfrm state
5381  *
5382  * Deallocate x->security.
5383  */
5384 void security_xfrm_state_free(struct xfrm_state *x)
5385 {
5386 	call_void_hook(xfrm_state_free_security, x);
5387 }
5388 
5389 /**
5390  * security_xfrm_policy_lookup() - Check if using a xfrm policy is allowed
5391  * @ctx: target xfrm security context
5392  * @fl_secid: flow secid used to authorize access
5393  *
5394  * Check permission when a flow selects a xfrm_policy for processing XFRMs on a
5395  * packet.  The hook is called when selecting either a per-socket policy or a
5396  * generic xfrm policy.
5397  *
5398  * Return: Return 0 if permission is granted, -ESRCH otherwise, or -errno on
5399  *         other errors.
5400  */
5401 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid)
5402 {
5403 	return call_int_hook(xfrm_policy_lookup, ctx, fl_secid);
5404 }
5405 
5406 /**
5407  * security_xfrm_state_pol_flow_match() - Check for a xfrm match
5408  * @x: xfrm state to match
5409  * @xp: xfrm policy to check for a match
5410  * @flic: flow to check for a match.
5411  *
5412  * Check @xp and @flic for a match with @x.
5413  *
5414  * Return: Returns 1 if there is a match.
5415  */
5416 int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
5417 				       struct xfrm_policy *xp,
5418 				       const struct flowi_common *flic)
5419 {
5420 	struct lsm_static_call *scall;
5421 	int rc = LSM_RET_DEFAULT(xfrm_state_pol_flow_match);
5422 
5423 	/*
5424 	 * Since this function is expected to return 0 or 1, the judgment
5425 	 * becomes difficult if multiple LSMs supply this call. Fortunately,
5426 	 * we can use the first LSM's judgment because currently only SELinux
5427 	 * supplies this call.
5428 	 *
5429 	 * For speed optimization, we explicitly break the loop rather than
5430 	 * using the macro
5431 	 */
5432 	lsm_for_each_hook(scall, xfrm_state_pol_flow_match) {
5433 		rc = scall->hl->hook.xfrm_state_pol_flow_match(x, xp, flic);
5434 		break;
5435 	}
5436 	return rc;
5437 }
5438 
5439 /**
5440  * security_xfrm_decode_session() - Determine the xfrm secid for a packet
5441  * @skb: xfrm packet
5442  * @secid: secid
5443  *
5444  * Decode the packet in @skb and return the security label in @secid.
5445  *
5446  * Return: Return 0 if all xfrms used have the same secid.
5447  */
5448 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
5449 {
5450 	return call_int_hook(xfrm_decode_session, skb, secid, 1);
5451 }
5452 
5453 void security_skb_classify_flow(struct sk_buff *skb, struct flowi_common *flic)
5454 {
5455 	int rc = call_int_hook(xfrm_decode_session, skb, &flic->flowic_secid,
5456 			       0);
5457 
5458 	BUG_ON(rc);
5459 }
5460 EXPORT_SYMBOL(security_skb_classify_flow);
5461 #endif	/* CONFIG_SECURITY_NETWORK_XFRM */
5462 
5463 #ifdef CONFIG_KEYS
5464 /**
5465  * security_key_alloc() - Allocate and initialize a kernel key LSM blob
5466  * @key: key
5467  * @cred: credentials
5468  * @flags: allocation flags
5469  *
5470  * Permit allocation of a key and assign security data. Note that key does not
5471  * have a serial number assigned at this point.
5472  *
5473  * Return: Return 0 if permission is granted, -ve error otherwise.
5474  */
5475 int security_key_alloc(struct key *key, const struct cred *cred,
5476 		       unsigned long flags)
5477 {
5478 	int rc = lsm_key_alloc(key);
5479 
5480 	if (unlikely(rc))
5481 		return rc;
5482 	rc = call_int_hook(key_alloc, key, cred, flags);
5483 	if (unlikely(rc))
5484 		security_key_free(key);
5485 	return rc;
5486 }
5487 
5488 /**
5489  * security_key_free() - Free a kernel key LSM blob
5490  * @key: key
5491  *
5492  * Notification of destruction; free security data.
5493  */
5494 void security_key_free(struct key *key)
5495 {
5496 	kfree(key->security);
5497 	key->security = NULL;
5498 }
5499 
5500 /**
5501  * security_key_permission() - Check if a kernel key operation is allowed
5502  * @key_ref: key reference
5503  * @cred: credentials of actor requesting access
5504  * @need_perm: requested permissions
5505  *
5506  * See whether a specific operational right is granted to a process on a key.
5507  *
5508  * Return: Return 0 if permission is granted, -ve error otherwise.
5509  */
5510 int security_key_permission(key_ref_t key_ref, const struct cred *cred,
5511 			    enum key_need_perm need_perm)
5512 {
5513 	return call_int_hook(key_permission, key_ref, cred, need_perm);
5514 }
5515 
5516 /**
5517  * security_key_getsecurity() - Get the key's security label
5518  * @key: key
5519  * @buffer: security label buffer
5520  *
5521  * Get a textual representation of the security context attached to a key for
5522  * the purposes of honouring KEYCTL_GETSECURITY.  This function allocates the
5523  * storage for the NUL-terminated string and the caller should free it.
5524  *
5525  * Return: Returns the length of @buffer (including terminating NUL) or -ve if
5526  *         an error occurs.  May also return 0 (and a NULL buffer pointer) if
5527  *         there is no security label assigned to the key.
5528  */
5529 int security_key_getsecurity(struct key *key, char **buffer)
5530 {
5531 	*buffer = NULL;
5532 	return call_int_hook(key_getsecurity, key, buffer);
5533 }
5534 
5535 /**
5536  * security_key_post_create_or_update() - Notification of key create or update
5537  * @keyring: keyring to which the key is linked to
5538  * @key: created or updated key
5539  * @payload: data used to instantiate or update the key
5540  * @payload_len: length of payload
5541  * @flags: key flags
5542  * @create: flag indicating whether the key was created or updated
5543  *
5544  * Notify the caller of a key creation or update.
5545  */
5546 void security_key_post_create_or_update(struct key *keyring, struct key *key,
5547 					const void *payload, size_t payload_len,
5548 					unsigned long flags, bool create)
5549 {
5550 	call_void_hook(key_post_create_or_update, keyring, key, payload,
5551 		       payload_len, flags, create);
5552 }
5553 #endif	/* CONFIG_KEYS */
5554 
5555 #ifdef CONFIG_AUDIT
5556 /**
5557  * security_audit_rule_init() - Allocate and init an LSM audit rule struct
5558  * @field: audit action
5559  * @op: rule operator
5560  * @rulestr: rule context
5561  * @lsmrule: receive buffer for audit rule struct
5562  * @gfp: GFP flag used for kmalloc
5563  *
5564  * Allocate and initialize an LSM audit rule structure.
5565  *
5566  * Return: Return 0 if @lsmrule has been successfully set, -EINVAL in case of
5567  *         an invalid rule.
5568  */
5569 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule,
5570 			     gfp_t gfp)
5571 {
5572 	return call_int_hook(audit_rule_init, field, op, rulestr, lsmrule, gfp);
5573 }
5574 
5575 /**
5576  * security_audit_rule_known() - Check if an audit rule contains LSM fields
5577  * @krule: audit rule
5578  *
5579  * Specifies whether given @krule contains any fields related to the current
5580  * LSM.
5581  *
5582  * Return: Returns 1 in case of relation found, 0 otherwise.
5583  */
5584 int security_audit_rule_known(struct audit_krule *krule)
5585 {
5586 	return call_int_hook(audit_rule_known, krule);
5587 }
5588 
5589 /**
5590  * security_audit_rule_free() - Free an LSM audit rule struct
5591  * @lsmrule: audit rule struct
5592  *
5593  * Deallocate the LSM audit rule structure previously allocated by
5594  * audit_rule_init().
5595  */
5596 void security_audit_rule_free(void *lsmrule)
5597 {
5598 	call_void_hook(audit_rule_free, lsmrule);
5599 }
5600 
5601 /**
5602  * security_audit_rule_match() - Check if a label matches an audit rule
5603  * @prop: security label
5604  * @field: LSM audit field
5605  * @op: matching operator
5606  * @lsmrule: audit rule
5607  *
5608  * Determine if given @secid matches a rule previously approved by
5609  * security_audit_rule_known().
5610  *
5611  * Return: Returns 1 if secid matches the rule, 0 if it does not, -ERRNO on
5612  *         failure.
5613  */
5614 int security_audit_rule_match(struct lsm_prop *prop, u32 field, u32 op,
5615 			      void *lsmrule)
5616 {
5617 	return call_int_hook(audit_rule_match, prop, field, op, lsmrule);
5618 }
5619 #endif /* CONFIG_AUDIT */
5620 
5621 #ifdef CONFIG_BPF_SYSCALL
5622 /**
5623  * security_bpf() - Check if the bpf syscall operation is allowed
5624  * @cmd: command
5625  * @attr: bpf attribute
5626  * @size: size
5627  *
5628  * Do a initial check for all bpf syscalls after the attribute is copied into
5629  * the kernel. The actual security module can implement their own rules to
5630  * check the specific cmd they need.
5631  *
5632  * Return: Returns 0 if permission is granted.
5633  */
5634 int security_bpf(int cmd, union bpf_attr *attr, unsigned int size)
5635 {
5636 	return call_int_hook(bpf, cmd, attr, size);
5637 }
5638 
5639 /**
5640  * security_bpf_map() - Check if access to a bpf map is allowed
5641  * @map: bpf map
5642  * @fmode: mode
5643  *
5644  * Do a check when the kernel generates and returns a file descriptor for eBPF
5645  * maps.
5646  *
5647  * Return: Returns 0 if permission is granted.
5648  */
5649 int security_bpf_map(struct bpf_map *map, fmode_t fmode)
5650 {
5651 	return call_int_hook(bpf_map, map, fmode);
5652 }
5653 
5654 /**
5655  * security_bpf_prog() - Check if access to a bpf program is allowed
5656  * @prog: bpf program
5657  *
5658  * Do a check when the kernel generates and returns a file descriptor for eBPF
5659  * programs.
5660  *
5661  * Return: Returns 0 if permission is granted.
5662  */
5663 int security_bpf_prog(struct bpf_prog *prog)
5664 {
5665 	return call_int_hook(bpf_prog, prog);
5666 }
5667 
5668 /**
5669  * security_bpf_map_create() - Check if BPF map creation is allowed
5670  * @map: BPF map object
5671  * @attr: BPF syscall attributes used to create BPF map
5672  * @token: BPF token used to grant user access
5673  *
5674  * Do a check when the kernel creates a new BPF map. This is also the
5675  * point where LSM blob is allocated for LSMs that need them.
5676  *
5677  * Return: Returns 0 on success, error on failure.
5678  */
5679 int security_bpf_map_create(struct bpf_map *map, union bpf_attr *attr,
5680 			    struct bpf_token *token)
5681 {
5682 	return call_int_hook(bpf_map_create, map, attr, token);
5683 }
5684 
5685 /**
5686  * security_bpf_prog_load() - Check if loading of BPF program is allowed
5687  * @prog: BPF program object
5688  * @attr: BPF syscall attributes used to create BPF program
5689  * @token: BPF token used to grant user access to BPF subsystem
5690  *
5691  * Perform an access control check when the kernel loads a BPF program and
5692  * allocates associated BPF program object. This hook is also responsible for
5693  * allocating any required LSM state for the BPF program.
5694  *
5695  * Return: Returns 0 on success, error on failure.
5696  */
5697 int security_bpf_prog_load(struct bpf_prog *prog, union bpf_attr *attr,
5698 			   struct bpf_token *token)
5699 {
5700 	return call_int_hook(bpf_prog_load, prog, attr, token);
5701 }
5702 
5703 /**
5704  * security_bpf_token_create() - Check if creating of BPF token is allowed
5705  * @token: BPF token object
5706  * @attr: BPF syscall attributes used to create BPF token
5707  * @path: path pointing to BPF FS mount point from which BPF token is created
5708  *
5709  * Do a check when the kernel instantiates a new BPF token object from BPF FS
5710  * instance. This is also the point where LSM blob can be allocated for LSMs.
5711  *
5712  * Return: Returns 0 on success, error on failure.
5713  */
5714 int security_bpf_token_create(struct bpf_token *token, union bpf_attr *attr,
5715 			      const struct path *path)
5716 {
5717 	return call_int_hook(bpf_token_create, token, attr, path);
5718 }
5719 
5720 /**
5721  * security_bpf_token_cmd() - Check if BPF token is allowed to delegate
5722  * requested BPF syscall command
5723  * @token: BPF token object
5724  * @cmd: BPF syscall command requested to be delegated by BPF token
5725  *
5726  * Do a check when the kernel decides whether provided BPF token should allow
5727  * delegation of requested BPF syscall command.
5728  *
5729  * Return: Returns 0 on success, error on failure.
5730  */
5731 int security_bpf_token_cmd(const struct bpf_token *token, enum bpf_cmd cmd)
5732 {
5733 	return call_int_hook(bpf_token_cmd, token, cmd);
5734 }
5735 
5736 /**
5737  * security_bpf_token_capable() - Check if BPF token is allowed to delegate
5738  * requested BPF-related capability
5739  * @token: BPF token object
5740  * @cap: capabilities requested to be delegated by BPF token
5741  *
5742  * Do a check when the kernel decides whether provided BPF token should allow
5743  * delegation of requested BPF-related capabilities.
5744  *
5745  * Return: Returns 0 on success, error on failure.
5746  */
5747 int security_bpf_token_capable(const struct bpf_token *token, int cap)
5748 {
5749 	return call_int_hook(bpf_token_capable, token, cap);
5750 }
5751 
5752 /**
5753  * security_bpf_map_free() - Free a bpf map's LSM blob
5754  * @map: bpf map
5755  *
5756  * Clean up the security information stored inside bpf map.
5757  */
5758 void security_bpf_map_free(struct bpf_map *map)
5759 {
5760 	call_void_hook(bpf_map_free, map);
5761 }
5762 
5763 /**
5764  * security_bpf_prog_free() - Free a BPF program's LSM blob
5765  * @prog: BPF program struct
5766  *
5767  * Clean up the security information stored inside BPF program.
5768  */
5769 void security_bpf_prog_free(struct bpf_prog *prog)
5770 {
5771 	call_void_hook(bpf_prog_free, prog);
5772 }
5773 
5774 /**
5775  * security_bpf_token_free() - Free a BPF token's LSM blob
5776  * @token: BPF token struct
5777  *
5778  * Clean up the security information stored inside BPF token.
5779  */
5780 void security_bpf_token_free(struct bpf_token *token)
5781 {
5782 	call_void_hook(bpf_token_free, token);
5783 }
5784 #endif /* CONFIG_BPF_SYSCALL */
5785 
5786 /**
5787  * security_locked_down() - Check if a kernel feature is allowed
5788  * @what: requested kernel feature
5789  *
5790  * Determine whether a kernel feature that potentially enables arbitrary code
5791  * execution in kernel space should be permitted.
5792  *
5793  * Return: Returns 0 if permission is granted.
5794  */
5795 int security_locked_down(enum lockdown_reason what)
5796 {
5797 	return call_int_hook(locked_down, what);
5798 }
5799 EXPORT_SYMBOL(security_locked_down);
5800 
5801 /**
5802  * security_bdev_alloc() - Allocate a block device LSM blob
5803  * @bdev: block device
5804  *
5805  * Allocate and attach a security structure to @bdev->bd_security.  The
5806  * security field is initialized to NULL when the bdev structure is
5807  * allocated.
5808  *
5809  * Return: Return 0 if operation was successful.
5810  */
5811 int security_bdev_alloc(struct block_device *bdev)
5812 {
5813 	int rc = 0;
5814 
5815 	rc = lsm_bdev_alloc(bdev);
5816 	if (unlikely(rc))
5817 		return rc;
5818 
5819 	rc = call_int_hook(bdev_alloc_security, bdev);
5820 	if (unlikely(rc))
5821 		security_bdev_free(bdev);
5822 
5823 	return rc;
5824 }
5825 EXPORT_SYMBOL(security_bdev_alloc);
5826 
5827 /**
5828  * security_bdev_free() - Free a block device's LSM blob
5829  * @bdev: block device
5830  *
5831  * Deallocate the bdev security structure and set @bdev->bd_security to NULL.
5832  */
5833 void security_bdev_free(struct block_device *bdev)
5834 {
5835 	if (!bdev->bd_security)
5836 		return;
5837 
5838 	call_void_hook(bdev_free_security, bdev);
5839 
5840 	kfree(bdev->bd_security);
5841 	bdev->bd_security = NULL;
5842 }
5843 EXPORT_SYMBOL(security_bdev_free);
5844 
5845 /**
5846  * security_bdev_setintegrity() - Set the device's integrity data
5847  * @bdev: block device
5848  * @type: type of integrity, e.g. hash digest, signature, etc
5849  * @value: the integrity value
5850  * @size: size of the integrity value
5851  *
5852  * Register a verified integrity measurement of a bdev with LSMs.
5853  * LSMs should free the previously saved data if @value is NULL.
5854  * Please note that the new hook should be invoked every time the security
5855  * information is updated to keep these data current. For example, in dm-verity,
5856  * if the mapping table is reloaded and configured to use a different dm-verity
5857  * target with a new roothash and signing information, the previously stored
5858  * data in the LSM blob will become obsolete. It is crucial to re-invoke the
5859  * hook to refresh these data and ensure they are up to date. This necessity
5860  * arises from the design of device-mapper, where a device-mapper device is
5861  * first created, and then targets are subsequently loaded into it. These
5862  * targets can be modified multiple times during the device's lifetime.
5863  * Therefore, while the LSM blob is allocated during the creation of the block
5864  * device, its actual contents are not initialized at this stage and can change
5865  * substantially over time. This includes alterations from data that the LSMs
5866  * 'trusts' to those they do not, making it essential to handle these changes
5867  * correctly. Failure to address this dynamic aspect could potentially allow
5868  * for bypassing LSM checks.
5869  *
5870  * Return: Returns 0 on success, negative values on failure.
5871  */
5872 int security_bdev_setintegrity(struct block_device *bdev,
5873 			       enum lsm_integrity_type type, const void *value,
5874 			       size_t size)
5875 {
5876 	return call_int_hook(bdev_setintegrity, bdev, type, value, size);
5877 }
5878 EXPORT_SYMBOL(security_bdev_setintegrity);
5879 
5880 #ifdef CONFIG_PERF_EVENTS
5881 /**
5882  * security_perf_event_open() - Check if a perf event open is allowed
5883  * @attr: perf event attribute
5884  * @type: type of event
5885  *
5886  * Check whether the @type of perf_event_open syscall is allowed.
5887  *
5888  * Return: Returns 0 if permission is granted.
5889  */
5890 int security_perf_event_open(struct perf_event_attr *attr, int type)
5891 {
5892 	return call_int_hook(perf_event_open, attr, type);
5893 }
5894 
5895 /**
5896  * security_perf_event_alloc() - Allocate a perf event LSM blob
5897  * @event: perf event
5898  *
5899  * Allocate and save perf_event security info.
5900  *
5901  * Return: Returns 0 on success, error on failure.
5902  */
5903 int security_perf_event_alloc(struct perf_event *event)
5904 {
5905 	int rc;
5906 
5907 	rc = lsm_blob_alloc(&event->security, blob_sizes.lbs_perf_event,
5908 			    GFP_KERNEL);
5909 	if (rc)
5910 		return rc;
5911 
5912 	rc = call_int_hook(perf_event_alloc, event);
5913 	if (rc) {
5914 		kfree(event->security);
5915 		event->security = NULL;
5916 	}
5917 	return rc;
5918 }
5919 
5920 /**
5921  * security_perf_event_free() - Free a perf event LSM blob
5922  * @event: perf event
5923  *
5924  * Release (free) perf_event security info.
5925  */
5926 void security_perf_event_free(struct perf_event *event)
5927 {
5928 	kfree(event->security);
5929 	event->security = NULL;
5930 }
5931 
5932 /**
5933  * security_perf_event_read() - Check if reading a perf event label is allowed
5934  * @event: perf event
5935  *
5936  * Read perf_event security info if allowed.
5937  *
5938  * Return: Returns 0 if permission is granted.
5939  */
5940 int security_perf_event_read(struct perf_event *event)
5941 {
5942 	return call_int_hook(perf_event_read, event);
5943 }
5944 
5945 /**
5946  * security_perf_event_write() - Check if writing a perf event label is allowed
5947  * @event: perf event
5948  *
5949  * Write perf_event security info if allowed.
5950  *
5951  * Return: Returns 0 if permission is granted.
5952  */
5953 int security_perf_event_write(struct perf_event *event)
5954 {
5955 	return call_int_hook(perf_event_write, event);
5956 }
5957 #endif /* CONFIG_PERF_EVENTS */
5958 
5959 #ifdef CONFIG_IO_URING
5960 /**
5961  * security_uring_override_creds() - Check if overriding creds is allowed
5962  * @new: new credentials
5963  *
5964  * Check if the current task, executing an io_uring operation, is allowed to
5965  * override it's credentials with @new.
5966  *
5967  * Return: Returns 0 if permission is granted.
5968  */
5969 int security_uring_override_creds(const struct cred *new)
5970 {
5971 	return call_int_hook(uring_override_creds, new);
5972 }
5973 
5974 /**
5975  * security_uring_sqpoll() - Check if IORING_SETUP_SQPOLL is allowed
5976  *
5977  * Check whether the current task is allowed to spawn a io_uring polling thread
5978  * (IORING_SETUP_SQPOLL).
5979  *
5980  * Return: Returns 0 if permission is granted.
5981  */
5982 int security_uring_sqpoll(void)
5983 {
5984 	return call_int_hook(uring_sqpoll);
5985 }
5986 
5987 /**
5988  * security_uring_cmd() - Check if a io_uring passthrough command is allowed
5989  * @ioucmd: command
5990  *
5991  * Check whether the file_operations uring_cmd is allowed to run.
5992  *
5993  * Return: Returns 0 if permission is granted.
5994  */
5995 int security_uring_cmd(struct io_uring_cmd *ioucmd)
5996 {
5997 	return call_int_hook(uring_cmd, ioucmd);
5998 }
5999 #endif /* CONFIG_IO_URING */
6000 
6001 /**
6002  * security_initramfs_populated() - Notify LSMs that initramfs has been loaded
6003  *
6004  * Tells the LSMs the initramfs has been unpacked into the rootfs.
6005  */
6006 void security_initramfs_populated(void)
6007 {
6008 	call_void_hook(initramfs_populated);
6009 }
6010