1 /* 2 * Security plug functions 3 * 4 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com> 5 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com> 6 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com> 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2 of the License, or 11 * (at your option) any later version. 12 */ 13 14 #include <linux/capability.h> 15 #include <linux/module.h> 16 #include <linux/init.h> 17 #include <linux/kernel.h> 18 #include <linux/security.h> 19 #include <linux/ima.h> 20 21 /* Boot-time LSM user choice */ 22 static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1] = 23 CONFIG_DEFAULT_SECURITY; 24 25 /* things that live in capability.c */ 26 extern void __init security_fixup_ops(struct security_operations *ops); 27 28 static struct security_operations *security_ops; 29 static struct security_operations default_security_ops = { 30 .name = "default", 31 }; 32 33 static inline int __init verify(struct security_operations *ops) 34 { 35 /* verify the security_operations structure exists */ 36 if (!ops) 37 return -EINVAL; 38 security_fixup_ops(ops); 39 return 0; 40 } 41 42 static void __init do_security_initcalls(void) 43 { 44 initcall_t *call; 45 call = __security_initcall_start; 46 while (call < __security_initcall_end) { 47 (*call) (); 48 call++; 49 } 50 } 51 52 /** 53 * security_init - initializes the security framework 54 * 55 * This should be called early in the kernel initialization sequence. 56 */ 57 int __init security_init(void) 58 { 59 printk(KERN_INFO "Security Framework initialized\n"); 60 61 security_fixup_ops(&default_security_ops); 62 security_ops = &default_security_ops; 63 do_security_initcalls(); 64 65 return 0; 66 } 67 68 void reset_security_ops(void) 69 { 70 security_ops = &default_security_ops; 71 } 72 73 /* Save user chosen LSM */ 74 static int __init choose_lsm(char *str) 75 { 76 strncpy(chosen_lsm, str, SECURITY_NAME_MAX); 77 return 1; 78 } 79 __setup("security=", choose_lsm); 80 81 /** 82 * security_module_enable - Load given security module on boot ? 83 * @ops: a pointer to the struct security_operations that is to be checked. 84 * 85 * Each LSM must pass this method before registering its own operations 86 * to avoid security registration races. This method may also be used 87 * to check if your LSM is currently loaded during kernel initialization. 88 * 89 * Return true if: 90 * -The passed LSM is the one chosen by user at boot time, 91 * -or the passed LSM is configured as the default and the user did not 92 * choose an alternate LSM at boot time. 93 * Otherwise, return false. 94 */ 95 int __init security_module_enable(struct security_operations *ops) 96 { 97 return !strcmp(ops->name, chosen_lsm); 98 } 99 100 /** 101 * register_security - registers a security framework with the kernel 102 * @ops: a pointer to the struct security_options that is to be registered 103 * 104 * This function allows a security module to register itself with the 105 * kernel security subsystem. Some rudimentary checking is done on the @ops 106 * value passed to this function. You'll need to check first if your LSM 107 * is allowed to register its @ops by calling security_module_enable(@ops). 108 * 109 * If there is already a security module registered with the kernel, 110 * an error will be returned. Otherwise %0 is returned on success. 111 */ 112 int __init register_security(struct security_operations *ops) 113 { 114 if (verify(ops)) { 115 printk(KERN_DEBUG "%s could not verify " 116 "security_operations structure.\n", __func__); 117 return -EINVAL; 118 } 119 120 if (security_ops != &default_security_ops) 121 return -EAGAIN; 122 123 security_ops = ops; 124 125 return 0; 126 } 127 128 /* Security operations */ 129 130 int security_ptrace_access_check(struct task_struct *child, unsigned int mode) 131 { 132 return security_ops->ptrace_access_check(child, mode); 133 } 134 135 int security_ptrace_traceme(struct task_struct *parent) 136 { 137 return security_ops->ptrace_traceme(parent); 138 } 139 140 int security_capget(struct task_struct *target, 141 kernel_cap_t *effective, 142 kernel_cap_t *inheritable, 143 kernel_cap_t *permitted) 144 { 145 return security_ops->capget(target, effective, inheritable, permitted); 146 } 147 148 int security_capset(struct cred *new, const struct cred *old, 149 const kernel_cap_t *effective, 150 const kernel_cap_t *inheritable, 151 const kernel_cap_t *permitted) 152 { 153 return security_ops->capset(new, old, 154 effective, inheritable, permitted); 155 } 156 157 int security_capable(int cap) 158 { 159 return security_ops->capable(current, current_cred(), cap, 160 SECURITY_CAP_AUDIT); 161 } 162 163 int security_real_capable(struct task_struct *tsk, int cap) 164 { 165 const struct cred *cred; 166 int ret; 167 168 cred = get_task_cred(tsk); 169 ret = security_ops->capable(tsk, cred, cap, SECURITY_CAP_AUDIT); 170 put_cred(cred); 171 return ret; 172 } 173 174 int security_real_capable_noaudit(struct task_struct *tsk, int cap) 175 { 176 const struct cred *cred; 177 int ret; 178 179 cred = get_task_cred(tsk); 180 ret = security_ops->capable(tsk, cred, cap, SECURITY_CAP_NOAUDIT); 181 put_cred(cred); 182 return ret; 183 } 184 185 int security_sysctl(struct ctl_table *table, int op) 186 { 187 return security_ops->sysctl(table, op); 188 } 189 190 int security_quotactl(int cmds, int type, int id, struct super_block *sb) 191 { 192 return security_ops->quotactl(cmds, type, id, sb); 193 } 194 195 int security_quota_on(struct dentry *dentry) 196 { 197 return security_ops->quota_on(dentry); 198 } 199 200 int security_syslog(int type, bool from_file) 201 { 202 return security_ops->syslog(type, from_file); 203 } 204 205 int security_settime(struct timespec *ts, struct timezone *tz) 206 { 207 return security_ops->settime(ts, tz); 208 } 209 210 int security_vm_enough_memory(long pages) 211 { 212 WARN_ON(current->mm == NULL); 213 return security_ops->vm_enough_memory(current->mm, pages); 214 } 215 216 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages) 217 { 218 WARN_ON(mm == NULL); 219 return security_ops->vm_enough_memory(mm, pages); 220 } 221 222 int security_vm_enough_memory_kern(long pages) 223 { 224 /* If current->mm is a kernel thread then we will pass NULL, 225 for this specific case that is fine */ 226 return security_ops->vm_enough_memory(current->mm, pages); 227 } 228 229 int security_bprm_set_creds(struct linux_binprm *bprm) 230 { 231 return security_ops->bprm_set_creds(bprm); 232 } 233 234 int security_bprm_check(struct linux_binprm *bprm) 235 { 236 int ret; 237 238 ret = security_ops->bprm_check_security(bprm); 239 if (ret) 240 return ret; 241 return ima_bprm_check(bprm); 242 } 243 244 void security_bprm_committing_creds(struct linux_binprm *bprm) 245 { 246 security_ops->bprm_committing_creds(bprm); 247 } 248 249 void security_bprm_committed_creds(struct linux_binprm *bprm) 250 { 251 security_ops->bprm_committed_creds(bprm); 252 } 253 254 int security_bprm_secureexec(struct linux_binprm *bprm) 255 { 256 return security_ops->bprm_secureexec(bprm); 257 } 258 259 int security_sb_alloc(struct super_block *sb) 260 { 261 return security_ops->sb_alloc_security(sb); 262 } 263 264 void security_sb_free(struct super_block *sb) 265 { 266 security_ops->sb_free_security(sb); 267 } 268 269 int security_sb_copy_data(char *orig, char *copy) 270 { 271 return security_ops->sb_copy_data(orig, copy); 272 } 273 EXPORT_SYMBOL(security_sb_copy_data); 274 275 int security_sb_kern_mount(struct super_block *sb, int flags, void *data) 276 { 277 return security_ops->sb_kern_mount(sb, flags, data); 278 } 279 280 int security_sb_show_options(struct seq_file *m, struct super_block *sb) 281 { 282 return security_ops->sb_show_options(m, sb); 283 } 284 285 int security_sb_statfs(struct dentry *dentry) 286 { 287 return security_ops->sb_statfs(dentry); 288 } 289 290 int security_sb_mount(char *dev_name, struct path *path, 291 char *type, unsigned long flags, void *data) 292 { 293 return security_ops->sb_mount(dev_name, path, type, flags, data); 294 } 295 296 int security_sb_umount(struct vfsmount *mnt, int flags) 297 { 298 return security_ops->sb_umount(mnt, flags); 299 } 300 301 int security_sb_pivotroot(struct path *old_path, struct path *new_path) 302 { 303 return security_ops->sb_pivotroot(old_path, new_path); 304 } 305 306 int security_sb_set_mnt_opts(struct super_block *sb, 307 struct security_mnt_opts *opts) 308 { 309 return security_ops->sb_set_mnt_opts(sb, opts); 310 } 311 EXPORT_SYMBOL(security_sb_set_mnt_opts); 312 313 void security_sb_clone_mnt_opts(const struct super_block *oldsb, 314 struct super_block *newsb) 315 { 316 security_ops->sb_clone_mnt_opts(oldsb, newsb); 317 } 318 EXPORT_SYMBOL(security_sb_clone_mnt_opts); 319 320 int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts) 321 { 322 return security_ops->sb_parse_opts_str(options, opts); 323 } 324 EXPORT_SYMBOL(security_sb_parse_opts_str); 325 326 int security_inode_alloc(struct inode *inode) 327 { 328 int ret; 329 330 inode->i_security = NULL; 331 ret = security_ops->inode_alloc_security(inode); 332 if (ret) 333 return ret; 334 ret = ima_inode_alloc(inode); 335 if (ret) 336 security_inode_free(inode); 337 return ret; 338 } 339 340 void security_inode_free(struct inode *inode) 341 { 342 ima_inode_free(inode); 343 security_ops->inode_free_security(inode); 344 } 345 346 int security_inode_init_security(struct inode *inode, struct inode *dir, 347 char **name, void **value, size_t *len) 348 { 349 if (unlikely(IS_PRIVATE(inode))) 350 return -EOPNOTSUPP; 351 return security_ops->inode_init_security(inode, dir, name, value, len); 352 } 353 EXPORT_SYMBOL(security_inode_init_security); 354 355 #ifdef CONFIG_SECURITY_PATH 356 int security_path_mknod(struct path *dir, struct dentry *dentry, int mode, 357 unsigned int dev) 358 { 359 if (unlikely(IS_PRIVATE(dir->dentry->d_inode))) 360 return 0; 361 return security_ops->path_mknod(dir, dentry, mode, dev); 362 } 363 EXPORT_SYMBOL(security_path_mknod); 364 365 int security_path_mkdir(struct path *dir, struct dentry *dentry, int mode) 366 { 367 if (unlikely(IS_PRIVATE(dir->dentry->d_inode))) 368 return 0; 369 return security_ops->path_mkdir(dir, dentry, mode); 370 } 371 372 int security_path_rmdir(struct path *dir, struct dentry *dentry) 373 { 374 if (unlikely(IS_PRIVATE(dir->dentry->d_inode))) 375 return 0; 376 return security_ops->path_rmdir(dir, dentry); 377 } 378 379 int security_path_unlink(struct path *dir, struct dentry *dentry) 380 { 381 if (unlikely(IS_PRIVATE(dir->dentry->d_inode))) 382 return 0; 383 return security_ops->path_unlink(dir, dentry); 384 } 385 386 int security_path_symlink(struct path *dir, struct dentry *dentry, 387 const char *old_name) 388 { 389 if (unlikely(IS_PRIVATE(dir->dentry->d_inode))) 390 return 0; 391 return security_ops->path_symlink(dir, dentry, old_name); 392 } 393 394 int security_path_link(struct dentry *old_dentry, struct path *new_dir, 395 struct dentry *new_dentry) 396 { 397 if (unlikely(IS_PRIVATE(old_dentry->d_inode))) 398 return 0; 399 return security_ops->path_link(old_dentry, new_dir, new_dentry); 400 } 401 402 int security_path_rename(struct path *old_dir, struct dentry *old_dentry, 403 struct path *new_dir, struct dentry *new_dentry) 404 { 405 if (unlikely(IS_PRIVATE(old_dentry->d_inode) || 406 (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode)))) 407 return 0; 408 return security_ops->path_rename(old_dir, old_dentry, new_dir, 409 new_dentry); 410 } 411 412 int security_path_truncate(struct path *path) 413 { 414 if (unlikely(IS_PRIVATE(path->dentry->d_inode))) 415 return 0; 416 return security_ops->path_truncate(path); 417 } 418 419 int security_path_chmod(struct dentry *dentry, struct vfsmount *mnt, 420 mode_t mode) 421 { 422 if (unlikely(IS_PRIVATE(dentry->d_inode))) 423 return 0; 424 return security_ops->path_chmod(dentry, mnt, mode); 425 } 426 427 int security_path_chown(struct path *path, uid_t uid, gid_t gid) 428 { 429 if (unlikely(IS_PRIVATE(path->dentry->d_inode))) 430 return 0; 431 return security_ops->path_chown(path, uid, gid); 432 } 433 434 int security_path_chroot(struct path *path) 435 { 436 return security_ops->path_chroot(path); 437 } 438 #endif 439 440 int security_inode_create(struct inode *dir, struct dentry *dentry, int mode) 441 { 442 if (unlikely(IS_PRIVATE(dir))) 443 return 0; 444 return security_ops->inode_create(dir, dentry, mode); 445 } 446 EXPORT_SYMBOL_GPL(security_inode_create); 447 448 int security_inode_link(struct dentry *old_dentry, struct inode *dir, 449 struct dentry *new_dentry) 450 { 451 if (unlikely(IS_PRIVATE(old_dentry->d_inode))) 452 return 0; 453 return security_ops->inode_link(old_dentry, dir, new_dentry); 454 } 455 456 int security_inode_unlink(struct inode *dir, struct dentry *dentry) 457 { 458 if (unlikely(IS_PRIVATE(dentry->d_inode))) 459 return 0; 460 return security_ops->inode_unlink(dir, dentry); 461 } 462 463 int security_inode_symlink(struct inode *dir, struct dentry *dentry, 464 const char *old_name) 465 { 466 if (unlikely(IS_PRIVATE(dir))) 467 return 0; 468 return security_ops->inode_symlink(dir, dentry, old_name); 469 } 470 471 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, int mode) 472 { 473 if (unlikely(IS_PRIVATE(dir))) 474 return 0; 475 return security_ops->inode_mkdir(dir, dentry, mode); 476 } 477 EXPORT_SYMBOL_GPL(security_inode_mkdir); 478 479 int security_inode_rmdir(struct inode *dir, struct dentry *dentry) 480 { 481 if (unlikely(IS_PRIVATE(dentry->d_inode))) 482 return 0; 483 return security_ops->inode_rmdir(dir, dentry); 484 } 485 486 int security_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev) 487 { 488 if (unlikely(IS_PRIVATE(dir))) 489 return 0; 490 return security_ops->inode_mknod(dir, dentry, mode, dev); 491 } 492 493 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry, 494 struct inode *new_dir, struct dentry *new_dentry) 495 { 496 if (unlikely(IS_PRIVATE(old_dentry->d_inode) || 497 (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode)))) 498 return 0; 499 return security_ops->inode_rename(old_dir, old_dentry, 500 new_dir, new_dentry); 501 } 502 503 int security_inode_readlink(struct dentry *dentry) 504 { 505 if (unlikely(IS_PRIVATE(dentry->d_inode))) 506 return 0; 507 return security_ops->inode_readlink(dentry); 508 } 509 510 int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd) 511 { 512 if (unlikely(IS_PRIVATE(dentry->d_inode))) 513 return 0; 514 return security_ops->inode_follow_link(dentry, nd); 515 } 516 517 int security_inode_permission(struct inode *inode, int mask) 518 { 519 if (unlikely(IS_PRIVATE(inode))) 520 return 0; 521 return security_ops->inode_permission(inode, mask); 522 } 523 524 int security_inode_setattr(struct dentry *dentry, struct iattr *attr) 525 { 526 if (unlikely(IS_PRIVATE(dentry->d_inode))) 527 return 0; 528 return security_ops->inode_setattr(dentry, attr); 529 } 530 EXPORT_SYMBOL_GPL(security_inode_setattr); 531 532 int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry) 533 { 534 if (unlikely(IS_PRIVATE(dentry->d_inode))) 535 return 0; 536 return security_ops->inode_getattr(mnt, dentry); 537 } 538 539 int security_inode_setxattr(struct dentry *dentry, const char *name, 540 const void *value, size_t size, int flags) 541 { 542 if (unlikely(IS_PRIVATE(dentry->d_inode))) 543 return 0; 544 return security_ops->inode_setxattr(dentry, name, value, size, flags); 545 } 546 547 void security_inode_post_setxattr(struct dentry *dentry, const char *name, 548 const void *value, size_t size, int flags) 549 { 550 if (unlikely(IS_PRIVATE(dentry->d_inode))) 551 return; 552 security_ops->inode_post_setxattr(dentry, name, value, size, flags); 553 } 554 555 int security_inode_getxattr(struct dentry *dentry, const char *name) 556 { 557 if (unlikely(IS_PRIVATE(dentry->d_inode))) 558 return 0; 559 return security_ops->inode_getxattr(dentry, name); 560 } 561 562 int security_inode_listxattr(struct dentry *dentry) 563 { 564 if (unlikely(IS_PRIVATE(dentry->d_inode))) 565 return 0; 566 return security_ops->inode_listxattr(dentry); 567 } 568 569 int security_inode_removexattr(struct dentry *dentry, const char *name) 570 { 571 if (unlikely(IS_PRIVATE(dentry->d_inode))) 572 return 0; 573 return security_ops->inode_removexattr(dentry, name); 574 } 575 576 int security_inode_need_killpriv(struct dentry *dentry) 577 { 578 return security_ops->inode_need_killpriv(dentry); 579 } 580 581 int security_inode_killpriv(struct dentry *dentry) 582 { 583 return security_ops->inode_killpriv(dentry); 584 } 585 586 int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc) 587 { 588 if (unlikely(IS_PRIVATE(inode))) 589 return -EOPNOTSUPP; 590 return security_ops->inode_getsecurity(inode, name, buffer, alloc); 591 } 592 593 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags) 594 { 595 if (unlikely(IS_PRIVATE(inode))) 596 return -EOPNOTSUPP; 597 return security_ops->inode_setsecurity(inode, name, value, size, flags); 598 } 599 600 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size) 601 { 602 if (unlikely(IS_PRIVATE(inode))) 603 return 0; 604 return security_ops->inode_listsecurity(inode, buffer, buffer_size); 605 } 606 607 void security_inode_getsecid(const struct inode *inode, u32 *secid) 608 { 609 security_ops->inode_getsecid(inode, secid); 610 } 611 612 int security_file_permission(struct file *file, int mask) 613 { 614 int ret; 615 616 ret = security_ops->file_permission(file, mask); 617 if (ret) 618 return ret; 619 620 return fsnotify_perm(file, mask); 621 } 622 623 int security_file_alloc(struct file *file) 624 { 625 return security_ops->file_alloc_security(file); 626 } 627 628 void security_file_free(struct file *file) 629 { 630 security_ops->file_free_security(file); 631 } 632 633 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 634 { 635 return security_ops->file_ioctl(file, cmd, arg); 636 } 637 638 int security_file_mmap(struct file *file, unsigned long reqprot, 639 unsigned long prot, unsigned long flags, 640 unsigned long addr, unsigned long addr_only) 641 { 642 int ret; 643 644 ret = security_ops->file_mmap(file, reqprot, prot, flags, addr, addr_only); 645 if (ret) 646 return ret; 647 return ima_file_mmap(file, prot); 648 } 649 650 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot, 651 unsigned long prot) 652 { 653 return security_ops->file_mprotect(vma, reqprot, prot); 654 } 655 656 int security_file_lock(struct file *file, unsigned int cmd) 657 { 658 return security_ops->file_lock(file, cmd); 659 } 660 661 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg) 662 { 663 return security_ops->file_fcntl(file, cmd, arg); 664 } 665 666 int security_file_set_fowner(struct file *file) 667 { 668 return security_ops->file_set_fowner(file); 669 } 670 671 int security_file_send_sigiotask(struct task_struct *tsk, 672 struct fown_struct *fown, int sig) 673 { 674 return security_ops->file_send_sigiotask(tsk, fown, sig); 675 } 676 677 int security_file_receive(struct file *file) 678 { 679 return security_ops->file_receive(file); 680 } 681 682 int security_dentry_open(struct file *file, const struct cred *cred) 683 { 684 int ret; 685 686 ret = security_ops->dentry_open(file, cred); 687 if (ret) 688 return ret; 689 690 return fsnotify_perm(file, MAY_OPEN); 691 } 692 693 int security_task_create(unsigned long clone_flags) 694 { 695 return security_ops->task_create(clone_flags); 696 } 697 698 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp) 699 { 700 return security_ops->cred_alloc_blank(cred, gfp); 701 } 702 703 void security_cred_free(struct cred *cred) 704 { 705 security_ops->cred_free(cred); 706 } 707 708 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp) 709 { 710 return security_ops->cred_prepare(new, old, gfp); 711 } 712 713 void security_transfer_creds(struct cred *new, const struct cred *old) 714 { 715 security_ops->cred_transfer(new, old); 716 } 717 718 int security_kernel_act_as(struct cred *new, u32 secid) 719 { 720 return security_ops->kernel_act_as(new, secid); 721 } 722 723 int security_kernel_create_files_as(struct cred *new, struct inode *inode) 724 { 725 return security_ops->kernel_create_files_as(new, inode); 726 } 727 728 int security_kernel_module_request(char *kmod_name) 729 { 730 return security_ops->kernel_module_request(kmod_name); 731 } 732 733 int security_task_fix_setuid(struct cred *new, const struct cred *old, 734 int flags) 735 { 736 return security_ops->task_fix_setuid(new, old, flags); 737 } 738 739 int security_task_setpgid(struct task_struct *p, pid_t pgid) 740 { 741 return security_ops->task_setpgid(p, pgid); 742 } 743 744 int security_task_getpgid(struct task_struct *p) 745 { 746 return security_ops->task_getpgid(p); 747 } 748 749 int security_task_getsid(struct task_struct *p) 750 { 751 return security_ops->task_getsid(p); 752 } 753 754 void security_task_getsecid(struct task_struct *p, u32 *secid) 755 { 756 security_ops->task_getsecid(p, secid); 757 } 758 EXPORT_SYMBOL(security_task_getsecid); 759 760 int security_task_setnice(struct task_struct *p, int nice) 761 { 762 return security_ops->task_setnice(p, nice); 763 } 764 765 int security_task_setioprio(struct task_struct *p, int ioprio) 766 { 767 return security_ops->task_setioprio(p, ioprio); 768 } 769 770 int security_task_getioprio(struct task_struct *p) 771 { 772 return security_ops->task_getioprio(p); 773 } 774 775 int security_task_setrlimit(struct task_struct *p, unsigned int resource, 776 struct rlimit *new_rlim) 777 { 778 return security_ops->task_setrlimit(p, resource, new_rlim); 779 } 780 781 int security_task_setscheduler(struct task_struct *p) 782 { 783 return security_ops->task_setscheduler(p); 784 } 785 786 int security_task_getscheduler(struct task_struct *p) 787 { 788 return security_ops->task_getscheduler(p); 789 } 790 791 int security_task_movememory(struct task_struct *p) 792 { 793 return security_ops->task_movememory(p); 794 } 795 796 int security_task_kill(struct task_struct *p, struct siginfo *info, 797 int sig, u32 secid) 798 { 799 return security_ops->task_kill(p, info, sig, secid); 800 } 801 802 int security_task_wait(struct task_struct *p) 803 { 804 return security_ops->task_wait(p); 805 } 806 807 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3, 808 unsigned long arg4, unsigned long arg5) 809 { 810 return security_ops->task_prctl(option, arg2, arg3, arg4, arg5); 811 } 812 813 void security_task_to_inode(struct task_struct *p, struct inode *inode) 814 { 815 security_ops->task_to_inode(p, inode); 816 } 817 818 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag) 819 { 820 return security_ops->ipc_permission(ipcp, flag); 821 } 822 823 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid) 824 { 825 security_ops->ipc_getsecid(ipcp, secid); 826 } 827 828 int security_msg_msg_alloc(struct msg_msg *msg) 829 { 830 return security_ops->msg_msg_alloc_security(msg); 831 } 832 833 void security_msg_msg_free(struct msg_msg *msg) 834 { 835 security_ops->msg_msg_free_security(msg); 836 } 837 838 int security_msg_queue_alloc(struct msg_queue *msq) 839 { 840 return security_ops->msg_queue_alloc_security(msq); 841 } 842 843 void security_msg_queue_free(struct msg_queue *msq) 844 { 845 security_ops->msg_queue_free_security(msq); 846 } 847 848 int security_msg_queue_associate(struct msg_queue *msq, int msqflg) 849 { 850 return security_ops->msg_queue_associate(msq, msqflg); 851 } 852 853 int security_msg_queue_msgctl(struct msg_queue *msq, int cmd) 854 { 855 return security_ops->msg_queue_msgctl(msq, cmd); 856 } 857 858 int security_msg_queue_msgsnd(struct msg_queue *msq, 859 struct msg_msg *msg, int msqflg) 860 { 861 return security_ops->msg_queue_msgsnd(msq, msg, msqflg); 862 } 863 864 int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg, 865 struct task_struct *target, long type, int mode) 866 { 867 return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode); 868 } 869 870 int security_shm_alloc(struct shmid_kernel *shp) 871 { 872 return security_ops->shm_alloc_security(shp); 873 } 874 875 void security_shm_free(struct shmid_kernel *shp) 876 { 877 security_ops->shm_free_security(shp); 878 } 879 880 int security_shm_associate(struct shmid_kernel *shp, int shmflg) 881 { 882 return security_ops->shm_associate(shp, shmflg); 883 } 884 885 int security_shm_shmctl(struct shmid_kernel *shp, int cmd) 886 { 887 return security_ops->shm_shmctl(shp, cmd); 888 } 889 890 int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg) 891 { 892 return security_ops->shm_shmat(shp, shmaddr, shmflg); 893 } 894 895 int security_sem_alloc(struct sem_array *sma) 896 { 897 return security_ops->sem_alloc_security(sma); 898 } 899 900 void security_sem_free(struct sem_array *sma) 901 { 902 security_ops->sem_free_security(sma); 903 } 904 905 int security_sem_associate(struct sem_array *sma, int semflg) 906 { 907 return security_ops->sem_associate(sma, semflg); 908 } 909 910 int security_sem_semctl(struct sem_array *sma, int cmd) 911 { 912 return security_ops->sem_semctl(sma, cmd); 913 } 914 915 int security_sem_semop(struct sem_array *sma, struct sembuf *sops, 916 unsigned nsops, int alter) 917 { 918 return security_ops->sem_semop(sma, sops, nsops, alter); 919 } 920 921 void security_d_instantiate(struct dentry *dentry, struct inode *inode) 922 { 923 if (unlikely(inode && IS_PRIVATE(inode))) 924 return; 925 security_ops->d_instantiate(dentry, inode); 926 } 927 EXPORT_SYMBOL(security_d_instantiate); 928 929 int security_getprocattr(struct task_struct *p, char *name, char **value) 930 { 931 return security_ops->getprocattr(p, name, value); 932 } 933 934 int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size) 935 { 936 return security_ops->setprocattr(p, name, value, size); 937 } 938 939 int security_netlink_send(struct sock *sk, struct sk_buff *skb) 940 { 941 return security_ops->netlink_send(sk, skb); 942 } 943 944 int security_netlink_recv(struct sk_buff *skb, int cap) 945 { 946 return security_ops->netlink_recv(skb, cap); 947 } 948 EXPORT_SYMBOL(security_netlink_recv); 949 950 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen) 951 { 952 return security_ops->secid_to_secctx(secid, secdata, seclen); 953 } 954 EXPORT_SYMBOL(security_secid_to_secctx); 955 956 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid) 957 { 958 return security_ops->secctx_to_secid(secdata, seclen, secid); 959 } 960 EXPORT_SYMBOL(security_secctx_to_secid); 961 962 void security_release_secctx(char *secdata, u32 seclen) 963 { 964 security_ops->release_secctx(secdata, seclen); 965 } 966 EXPORT_SYMBOL(security_release_secctx); 967 968 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen) 969 { 970 return security_ops->inode_notifysecctx(inode, ctx, ctxlen); 971 } 972 EXPORT_SYMBOL(security_inode_notifysecctx); 973 974 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen) 975 { 976 return security_ops->inode_setsecctx(dentry, ctx, ctxlen); 977 } 978 EXPORT_SYMBOL(security_inode_setsecctx); 979 980 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen) 981 { 982 return security_ops->inode_getsecctx(inode, ctx, ctxlen); 983 } 984 EXPORT_SYMBOL(security_inode_getsecctx); 985 986 #ifdef CONFIG_SECURITY_NETWORK 987 988 int security_unix_stream_connect(struct socket *sock, struct socket *other, 989 struct sock *newsk) 990 { 991 return security_ops->unix_stream_connect(sock, other, newsk); 992 } 993 EXPORT_SYMBOL(security_unix_stream_connect); 994 995 int security_unix_may_send(struct socket *sock, struct socket *other) 996 { 997 return security_ops->unix_may_send(sock, other); 998 } 999 EXPORT_SYMBOL(security_unix_may_send); 1000 1001 int security_socket_create(int family, int type, int protocol, int kern) 1002 { 1003 return security_ops->socket_create(family, type, protocol, kern); 1004 } 1005 1006 int security_socket_post_create(struct socket *sock, int family, 1007 int type, int protocol, int kern) 1008 { 1009 return security_ops->socket_post_create(sock, family, type, 1010 protocol, kern); 1011 } 1012 1013 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen) 1014 { 1015 return security_ops->socket_bind(sock, address, addrlen); 1016 } 1017 1018 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen) 1019 { 1020 return security_ops->socket_connect(sock, address, addrlen); 1021 } 1022 1023 int security_socket_listen(struct socket *sock, int backlog) 1024 { 1025 return security_ops->socket_listen(sock, backlog); 1026 } 1027 1028 int security_socket_accept(struct socket *sock, struct socket *newsock) 1029 { 1030 return security_ops->socket_accept(sock, newsock); 1031 } 1032 1033 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size) 1034 { 1035 return security_ops->socket_sendmsg(sock, msg, size); 1036 } 1037 1038 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg, 1039 int size, int flags) 1040 { 1041 return security_ops->socket_recvmsg(sock, msg, size, flags); 1042 } 1043 1044 int security_socket_getsockname(struct socket *sock) 1045 { 1046 return security_ops->socket_getsockname(sock); 1047 } 1048 1049 int security_socket_getpeername(struct socket *sock) 1050 { 1051 return security_ops->socket_getpeername(sock); 1052 } 1053 1054 int security_socket_getsockopt(struct socket *sock, int level, int optname) 1055 { 1056 return security_ops->socket_getsockopt(sock, level, optname); 1057 } 1058 1059 int security_socket_setsockopt(struct socket *sock, int level, int optname) 1060 { 1061 return security_ops->socket_setsockopt(sock, level, optname); 1062 } 1063 1064 int security_socket_shutdown(struct socket *sock, int how) 1065 { 1066 return security_ops->socket_shutdown(sock, how); 1067 } 1068 1069 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb) 1070 { 1071 return security_ops->socket_sock_rcv_skb(sk, skb); 1072 } 1073 EXPORT_SYMBOL(security_sock_rcv_skb); 1074 1075 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval, 1076 int __user *optlen, unsigned len) 1077 { 1078 return security_ops->socket_getpeersec_stream(sock, optval, optlen, len); 1079 } 1080 1081 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid) 1082 { 1083 return security_ops->socket_getpeersec_dgram(sock, skb, secid); 1084 } 1085 EXPORT_SYMBOL(security_socket_getpeersec_dgram); 1086 1087 int security_sk_alloc(struct sock *sk, int family, gfp_t priority) 1088 { 1089 return security_ops->sk_alloc_security(sk, family, priority); 1090 } 1091 1092 void security_sk_free(struct sock *sk) 1093 { 1094 security_ops->sk_free_security(sk); 1095 } 1096 1097 void security_sk_clone(const struct sock *sk, struct sock *newsk) 1098 { 1099 security_ops->sk_clone_security(sk, newsk); 1100 } 1101 1102 void security_sk_classify_flow(struct sock *sk, struct flowi *fl) 1103 { 1104 security_ops->sk_getsecid(sk, &fl->secid); 1105 } 1106 EXPORT_SYMBOL(security_sk_classify_flow); 1107 1108 void security_req_classify_flow(const struct request_sock *req, struct flowi *fl) 1109 { 1110 security_ops->req_classify_flow(req, fl); 1111 } 1112 EXPORT_SYMBOL(security_req_classify_flow); 1113 1114 void security_sock_graft(struct sock *sk, struct socket *parent) 1115 { 1116 security_ops->sock_graft(sk, parent); 1117 } 1118 EXPORT_SYMBOL(security_sock_graft); 1119 1120 int security_inet_conn_request(struct sock *sk, 1121 struct sk_buff *skb, struct request_sock *req) 1122 { 1123 return security_ops->inet_conn_request(sk, skb, req); 1124 } 1125 EXPORT_SYMBOL(security_inet_conn_request); 1126 1127 void security_inet_csk_clone(struct sock *newsk, 1128 const struct request_sock *req) 1129 { 1130 security_ops->inet_csk_clone(newsk, req); 1131 } 1132 1133 void security_inet_conn_established(struct sock *sk, 1134 struct sk_buff *skb) 1135 { 1136 security_ops->inet_conn_established(sk, skb); 1137 } 1138 1139 int security_secmark_relabel_packet(u32 secid) 1140 { 1141 return security_ops->secmark_relabel_packet(secid); 1142 } 1143 EXPORT_SYMBOL(security_secmark_relabel_packet); 1144 1145 void security_secmark_refcount_inc(void) 1146 { 1147 security_ops->secmark_refcount_inc(); 1148 } 1149 EXPORT_SYMBOL(security_secmark_refcount_inc); 1150 1151 void security_secmark_refcount_dec(void) 1152 { 1153 security_ops->secmark_refcount_dec(); 1154 } 1155 EXPORT_SYMBOL(security_secmark_refcount_dec); 1156 1157 int security_tun_dev_create(void) 1158 { 1159 return security_ops->tun_dev_create(); 1160 } 1161 EXPORT_SYMBOL(security_tun_dev_create); 1162 1163 void security_tun_dev_post_create(struct sock *sk) 1164 { 1165 return security_ops->tun_dev_post_create(sk); 1166 } 1167 EXPORT_SYMBOL(security_tun_dev_post_create); 1168 1169 int security_tun_dev_attach(struct sock *sk) 1170 { 1171 return security_ops->tun_dev_attach(sk); 1172 } 1173 EXPORT_SYMBOL(security_tun_dev_attach); 1174 1175 #endif /* CONFIG_SECURITY_NETWORK */ 1176 1177 #ifdef CONFIG_SECURITY_NETWORK_XFRM 1178 1179 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct xfrm_user_sec_ctx *sec_ctx) 1180 { 1181 return security_ops->xfrm_policy_alloc_security(ctxp, sec_ctx); 1182 } 1183 EXPORT_SYMBOL(security_xfrm_policy_alloc); 1184 1185 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx, 1186 struct xfrm_sec_ctx **new_ctxp) 1187 { 1188 return security_ops->xfrm_policy_clone_security(old_ctx, new_ctxp); 1189 } 1190 1191 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx) 1192 { 1193 security_ops->xfrm_policy_free_security(ctx); 1194 } 1195 EXPORT_SYMBOL(security_xfrm_policy_free); 1196 1197 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx) 1198 { 1199 return security_ops->xfrm_policy_delete_security(ctx); 1200 } 1201 1202 int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx) 1203 { 1204 return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0); 1205 } 1206 EXPORT_SYMBOL(security_xfrm_state_alloc); 1207 1208 int security_xfrm_state_alloc_acquire(struct xfrm_state *x, 1209 struct xfrm_sec_ctx *polsec, u32 secid) 1210 { 1211 if (!polsec) 1212 return 0; 1213 /* 1214 * We want the context to be taken from secid which is usually 1215 * from the sock. 1216 */ 1217 return security_ops->xfrm_state_alloc_security(x, NULL, secid); 1218 } 1219 1220 int security_xfrm_state_delete(struct xfrm_state *x) 1221 { 1222 return security_ops->xfrm_state_delete_security(x); 1223 } 1224 EXPORT_SYMBOL(security_xfrm_state_delete); 1225 1226 void security_xfrm_state_free(struct xfrm_state *x) 1227 { 1228 security_ops->xfrm_state_free_security(x); 1229 } 1230 1231 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir) 1232 { 1233 return security_ops->xfrm_policy_lookup(ctx, fl_secid, dir); 1234 } 1235 1236 int security_xfrm_state_pol_flow_match(struct xfrm_state *x, 1237 struct xfrm_policy *xp, struct flowi *fl) 1238 { 1239 return security_ops->xfrm_state_pol_flow_match(x, xp, fl); 1240 } 1241 1242 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid) 1243 { 1244 return security_ops->xfrm_decode_session(skb, secid, 1); 1245 } 1246 1247 void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl) 1248 { 1249 int rc = security_ops->xfrm_decode_session(skb, &fl->secid, 0); 1250 1251 BUG_ON(rc); 1252 } 1253 EXPORT_SYMBOL(security_skb_classify_flow); 1254 1255 #endif /* CONFIG_SECURITY_NETWORK_XFRM */ 1256 1257 #ifdef CONFIG_KEYS 1258 1259 int security_key_alloc(struct key *key, const struct cred *cred, 1260 unsigned long flags) 1261 { 1262 return security_ops->key_alloc(key, cred, flags); 1263 } 1264 1265 void security_key_free(struct key *key) 1266 { 1267 security_ops->key_free(key); 1268 } 1269 1270 int security_key_permission(key_ref_t key_ref, 1271 const struct cred *cred, key_perm_t perm) 1272 { 1273 return security_ops->key_permission(key_ref, cred, perm); 1274 } 1275 1276 int security_key_getsecurity(struct key *key, char **_buffer) 1277 { 1278 return security_ops->key_getsecurity(key, _buffer); 1279 } 1280 1281 #endif /* CONFIG_KEYS */ 1282 1283 #ifdef CONFIG_AUDIT 1284 1285 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule) 1286 { 1287 return security_ops->audit_rule_init(field, op, rulestr, lsmrule); 1288 } 1289 1290 int security_audit_rule_known(struct audit_krule *krule) 1291 { 1292 return security_ops->audit_rule_known(krule); 1293 } 1294 1295 void security_audit_rule_free(void *lsmrule) 1296 { 1297 security_ops->audit_rule_free(lsmrule); 1298 } 1299 1300 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule, 1301 struct audit_context *actx) 1302 { 1303 return security_ops->audit_rule_match(secid, field, op, lsmrule, actx); 1304 } 1305 1306 #endif /* CONFIG_AUDIT */ 1307