1 /* 2 * Security plug functions 3 * 4 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com> 5 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com> 6 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com> 7 * Copyright (C) 2016 Mellanox Technologies 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License as published by 11 * the Free Software Foundation; either version 2 of the License, or 12 * (at your option) any later version. 13 */ 14 15 #include <linux/bpf.h> 16 #include <linux/capability.h> 17 #include <linux/dcache.h> 18 #include <linux/module.h> 19 #include <linux/init.h> 20 #include <linux/kernel.h> 21 #include <linux/lsm_hooks.h> 22 #include <linux/integrity.h> 23 #include <linux/ima.h> 24 #include <linux/evm.h> 25 #include <linux/fsnotify.h> 26 #include <linux/mman.h> 27 #include <linux/mount.h> 28 #include <linux/personality.h> 29 #include <linux/backing-dev.h> 30 #include <linux/string.h> 31 #include <net/flow.h> 32 33 #include <trace/events/initcall.h> 34 35 #define MAX_LSM_EVM_XATTR 2 36 37 /* Maximum number of letters for an LSM name string */ 38 #define SECURITY_NAME_MAX 10 39 40 struct security_hook_heads security_hook_heads __lsm_ro_after_init; 41 static ATOMIC_NOTIFIER_HEAD(lsm_notifier_chain); 42 43 char *lsm_names; 44 /* Boot-time LSM user choice */ 45 static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1] = 46 CONFIG_DEFAULT_SECURITY; 47 48 static void __init do_security_initcalls(void) 49 { 50 int ret; 51 initcall_t call; 52 initcall_entry_t *ce; 53 54 ce = __security_initcall_start; 55 trace_initcall_level("security"); 56 while (ce < __security_initcall_end) { 57 call = initcall_from_entry(ce); 58 trace_initcall_start(call); 59 ret = call(); 60 trace_initcall_finish(call, ret); 61 ce++; 62 } 63 } 64 65 /** 66 * security_init - initializes the security framework 67 * 68 * This should be called early in the kernel initialization sequence. 69 */ 70 int __init security_init(void) 71 { 72 int i; 73 struct hlist_head *list = (struct hlist_head *) &security_hook_heads; 74 75 for (i = 0; i < sizeof(security_hook_heads) / sizeof(struct hlist_head); 76 i++) 77 INIT_HLIST_HEAD(&list[i]); 78 pr_info("Security Framework initialized\n"); 79 80 /* 81 * Load minor LSMs, with the capability module always first. 82 */ 83 capability_add_hooks(); 84 yama_add_hooks(); 85 loadpin_add_hooks(); 86 87 /* 88 * Load all the remaining security modules. 89 */ 90 do_security_initcalls(); 91 92 return 0; 93 } 94 95 /* Save user chosen LSM */ 96 static int __init choose_lsm(char *str) 97 { 98 strncpy(chosen_lsm, str, SECURITY_NAME_MAX); 99 return 1; 100 } 101 __setup("security=", choose_lsm); 102 103 static bool match_last_lsm(const char *list, const char *lsm) 104 { 105 const char *last; 106 107 if (WARN_ON(!list || !lsm)) 108 return false; 109 last = strrchr(list, ','); 110 if (last) 111 /* Pass the comma, strcmp() will check for '\0' */ 112 last++; 113 else 114 last = list; 115 return !strcmp(last, lsm); 116 } 117 118 static int lsm_append(char *new, char **result) 119 { 120 char *cp; 121 122 if (*result == NULL) { 123 *result = kstrdup(new, GFP_KERNEL); 124 if (*result == NULL) 125 return -ENOMEM; 126 } else { 127 /* Check if it is the last registered name */ 128 if (match_last_lsm(*result, new)) 129 return 0; 130 cp = kasprintf(GFP_KERNEL, "%s,%s", *result, new); 131 if (cp == NULL) 132 return -ENOMEM; 133 kfree(*result); 134 *result = cp; 135 } 136 return 0; 137 } 138 139 /** 140 * security_module_enable - Load given security module on boot ? 141 * @module: the name of the module 142 * 143 * Each LSM must pass this method before registering its own operations 144 * to avoid security registration races. This method may also be used 145 * to check if your LSM is currently loaded during kernel initialization. 146 * 147 * Returns: 148 * 149 * true if: 150 * 151 * - The passed LSM is the one chosen by user at boot time, 152 * - or the passed LSM is configured as the default and the user did not 153 * choose an alternate LSM at boot time. 154 * 155 * Otherwise, return false. 156 */ 157 int __init security_module_enable(const char *module) 158 { 159 return !strcmp(module, chosen_lsm); 160 } 161 162 /** 163 * security_add_hooks - Add a modules hooks to the hook lists. 164 * @hooks: the hooks to add 165 * @count: the number of hooks to add 166 * @lsm: the name of the security module 167 * 168 * Each LSM has to register its hooks with the infrastructure. 169 */ 170 void __init security_add_hooks(struct security_hook_list *hooks, int count, 171 char *lsm) 172 { 173 int i; 174 175 for (i = 0; i < count; i++) { 176 hooks[i].lsm = lsm; 177 hlist_add_tail_rcu(&hooks[i].list, hooks[i].head); 178 } 179 if (lsm_append(lsm, &lsm_names) < 0) 180 panic("%s - Cannot get early memory.\n", __func__); 181 } 182 183 int call_lsm_notifier(enum lsm_event event, void *data) 184 { 185 return atomic_notifier_call_chain(&lsm_notifier_chain, event, data); 186 } 187 EXPORT_SYMBOL(call_lsm_notifier); 188 189 int register_lsm_notifier(struct notifier_block *nb) 190 { 191 return atomic_notifier_chain_register(&lsm_notifier_chain, nb); 192 } 193 EXPORT_SYMBOL(register_lsm_notifier); 194 195 int unregister_lsm_notifier(struct notifier_block *nb) 196 { 197 return atomic_notifier_chain_unregister(&lsm_notifier_chain, nb); 198 } 199 EXPORT_SYMBOL(unregister_lsm_notifier); 200 201 /* 202 * Hook list operation macros. 203 * 204 * call_void_hook: 205 * This is a hook that does not return a value. 206 * 207 * call_int_hook: 208 * This is a hook that returns a value. 209 */ 210 211 #define call_void_hook(FUNC, ...) \ 212 do { \ 213 struct security_hook_list *P; \ 214 \ 215 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) \ 216 P->hook.FUNC(__VA_ARGS__); \ 217 } while (0) 218 219 #define call_int_hook(FUNC, IRC, ...) ({ \ 220 int RC = IRC; \ 221 do { \ 222 struct security_hook_list *P; \ 223 \ 224 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) { \ 225 RC = P->hook.FUNC(__VA_ARGS__); \ 226 if (RC != 0) \ 227 break; \ 228 } \ 229 } while (0); \ 230 RC; \ 231 }) 232 233 /* Security operations */ 234 235 int security_binder_set_context_mgr(struct task_struct *mgr) 236 { 237 return call_int_hook(binder_set_context_mgr, 0, mgr); 238 } 239 240 int security_binder_transaction(struct task_struct *from, 241 struct task_struct *to) 242 { 243 return call_int_hook(binder_transaction, 0, from, to); 244 } 245 246 int security_binder_transfer_binder(struct task_struct *from, 247 struct task_struct *to) 248 { 249 return call_int_hook(binder_transfer_binder, 0, from, to); 250 } 251 252 int security_binder_transfer_file(struct task_struct *from, 253 struct task_struct *to, struct file *file) 254 { 255 return call_int_hook(binder_transfer_file, 0, from, to, file); 256 } 257 258 int security_ptrace_access_check(struct task_struct *child, unsigned int mode) 259 { 260 return call_int_hook(ptrace_access_check, 0, child, mode); 261 } 262 263 int security_ptrace_traceme(struct task_struct *parent) 264 { 265 return call_int_hook(ptrace_traceme, 0, parent); 266 } 267 268 int security_capget(struct task_struct *target, 269 kernel_cap_t *effective, 270 kernel_cap_t *inheritable, 271 kernel_cap_t *permitted) 272 { 273 return call_int_hook(capget, 0, target, 274 effective, inheritable, permitted); 275 } 276 277 int security_capset(struct cred *new, const struct cred *old, 278 const kernel_cap_t *effective, 279 const kernel_cap_t *inheritable, 280 const kernel_cap_t *permitted) 281 { 282 return call_int_hook(capset, 0, new, old, 283 effective, inheritable, permitted); 284 } 285 286 int security_capable(const struct cred *cred, struct user_namespace *ns, 287 int cap) 288 { 289 return call_int_hook(capable, 0, cred, ns, cap, SECURITY_CAP_AUDIT); 290 } 291 292 int security_capable_noaudit(const struct cred *cred, struct user_namespace *ns, 293 int cap) 294 { 295 return call_int_hook(capable, 0, cred, ns, cap, SECURITY_CAP_NOAUDIT); 296 } 297 298 int security_quotactl(int cmds, int type, int id, struct super_block *sb) 299 { 300 return call_int_hook(quotactl, 0, cmds, type, id, sb); 301 } 302 303 int security_quota_on(struct dentry *dentry) 304 { 305 return call_int_hook(quota_on, 0, dentry); 306 } 307 308 int security_syslog(int type) 309 { 310 return call_int_hook(syslog, 0, type); 311 } 312 313 int security_settime64(const struct timespec64 *ts, const struct timezone *tz) 314 { 315 return call_int_hook(settime, 0, ts, tz); 316 } 317 318 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages) 319 { 320 struct security_hook_list *hp; 321 int cap_sys_admin = 1; 322 int rc; 323 324 /* 325 * The module will respond with a positive value if 326 * it thinks the __vm_enough_memory() call should be 327 * made with the cap_sys_admin set. If all of the modules 328 * agree that it should be set it will. If any module 329 * thinks it should not be set it won't. 330 */ 331 hlist_for_each_entry(hp, &security_hook_heads.vm_enough_memory, list) { 332 rc = hp->hook.vm_enough_memory(mm, pages); 333 if (rc <= 0) { 334 cap_sys_admin = 0; 335 break; 336 } 337 } 338 return __vm_enough_memory(mm, pages, cap_sys_admin); 339 } 340 341 int security_bprm_set_creds(struct linux_binprm *bprm) 342 { 343 return call_int_hook(bprm_set_creds, 0, bprm); 344 } 345 346 int security_bprm_check(struct linux_binprm *bprm) 347 { 348 int ret; 349 350 ret = call_int_hook(bprm_check_security, 0, bprm); 351 if (ret) 352 return ret; 353 return ima_bprm_check(bprm); 354 } 355 356 void security_bprm_committing_creds(struct linux_binprm *bprm) 357 { 358 call_void_hook(bprm_committing_creds, bprm); 359 } 360 361 void security_bprm_committed_creds(struct linux_binprm *bprm) 362 { 363 call_void_hook(bprm_committed_creds, bprm); 364 } 365 366 int security_sb_alloc(struct super_block *sb) 367 { 368 return call_int_hook(sb_alloc_security, 0, sb); 369 } 370 371 void security_sb_free(struct super_block *sb) 372 { 373 call_void_hook(sb_free_security, sb); 374 } 375 376 int security_sb_copy_data(char *orig, char *copy) 377 { 378 return call_int_hook(sb_copy_data, 0, orig, copy); 379 } 380 EXPORT_SYMBOL(security_sb_copy_data); 381 382 int security_sb_remount(struct super_block *sb, void *data) 383 { 384 return call_int_hook(sb_remount, 0, sb, data); 385 } 386 387 int security_sb_kern_mount(struct super_block *sb, int flags, void *data) 388 { 389 return call_int_hook(sb_kern_mount, 0, sb, flags, data); 390 } 391 392 int security_sb_show_options(struct seq_file *m, struct super_block *sb) 393 { 394 return call_int_hook(sb_show_options, 0, m, sb); 395 } 396 397 int security_sb_statfs(struct dentry *dentry) 398 { 399 return call_int_hook(sb_statfs, 0, dentry); 400 } 401 402 int security_sb_mount(const char *dev_name, const struct path *path, 403 const char *type, unsigned long flags, void *data) 404 { 405 return call_int_hook(sb_mount, 0, dev_name, path, type, flags, data); 406 } 407 408 int security_sb_umount(struct vfsmount *mnt, int flags) 409 { 410 return call_int_hook(sb_umount, 0, mnt, flags); 411 } 412 413 int security_sb_pivotroot(const struct path *old_path, const struct path *new_path) 414 { 415 return call_int_hook(sb_pivotroot, 0, old_path, new_path); 416 } 417 418 int security_sb_set_mnt_opts(struct super_block *sb, 419 struct security_mnt_opts *opts, 420 unsigned long kern_flags, 421 unsigned long *set_kern_flags) 422 { 423 return call_int_hook(sb_set_mnt_opts, 424 opts->num_mnt_opts ? -EOPNOTSUPP : 0, sb, 425 opts, kern_flags, set_kern_flags); 426 } 427 EXPORT_SYMBOL(security_sb_set_mnt_opts); 428 429 int security_sb_clone_mnt_opts(const struct super_block *oldsb, 430 struct super_block *newsb, 431 unsigned long kern_flags, 432 unsigned long *set_kern_flags) 433 { 434 return call_int_hook(sb_clone_mnt_opts, 0, oldsb, newsb, 435 kern_flags, set_kern_flags); 436 } 437 EXPORT_SYMBOL(security_sb_clone_mnt_opts); 438 439 int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts) 440 { 441 return call_int_hook(sb_parse_opts_str, 0, options, opts); 442 } 443 EXPORT_SYMBOL(security_sb_parse_opts_str); 444 445 int security_inode_alloc(struct inode *inode) 446 { 447 inode->i_security = NULL; 448 return call_int_hook(inode_alloc_security, 0, inode); 449 } 450 451 void security_inode_free(struct inode *inode) 452 { 453 integrity_inode_free(inode); 454 call_void_hook(inode_free_security, inode); 455 } 456 457 int security_dentry_init_security(struct dentry *dentry, int mode, 458 const struct qstr *name, void **ctx, 459 u32 *ctxlen) 460 { 461 return call_int_hook(dentry_init_security, -EOPNOTSUPP, dentry, mode, 462 name, ctx, ctxlen); 463 } 464 EXPORT_SYMBOL(security_dentry_init_security); 465 466 int security_dentry_create_files_as(struct dentry *dentry, int mode, 467 struct qstr *name, 468 const struct cred *old, struct cred *new) 469 { 470 return call_int_hook(dentry_create_files_as, 0, dentry, mode, 471 name, old, new); 472 } 473 EXPORT_SYMBOL(security_dentry_create_files_as); 474 475 int security_inode_init_security(struct inode *inode, struct inode *dir, 476 const struct qstr *qstr, 477 const initxattrs initxattrs, void *fs_data) 478 { 479 struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1]; 480 struct xattr *lsm_xattr, *evm_xattr, *xattr; 481 int ret; 482 483 if (unlikely(IS_PRIVATE(inode))) 484 return 0; 485 486 if (!initxattrs) 487 return call_int_hook(inode_init_security, -EOPNOTSUPP, inode, 488 dir, qstr, NULL, NULL, NULL); 489 memset(new_xattrs, 0, sizeof(new_xattrs)); 490 lsm_xattr = new_xattrs; 491 ret = call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir, qstr, 492 &lsm_xattr->name, 493 &lsm_xattr->value, 494 &lsm_xattr->value_len); 495 if (ret) 496 goto out; 497 498 evm_xattr = lsm_xattr + 1; 499 ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr); 500 if (ret) 501 goto out; 502 ret = initxattrs(inode, new_xattrs, fs_data); 503 out: 504 for (xattr = new_xattrs; xattr->value != NULL; xattr++) 505 kfree(xattr->value); 506 return (ret == -EOPNOTSUPP) ? 0 : ret; 507 } 508 EXPORT_SYMBOL(security_inode_init_security); 509 510 int security_old_inode_init_security(struct inode *inode, struct inode *dir, 511 const struct qstr *qstr, const char **name, 512 void **value, size_t *len) 513 { 514 if (unlikely(IS_PRIVATE(inode))) 515 return -EOPNOTSUPP; 516 return call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir, 517 qstr, name, value, len); 518 } 519 EXPORT_SYMBOL(security_old_inode_init_security); 520 521 #ifdef CONFIG_SECURITY_PATH 522 int security_path_mknod(const struct path *dir, struct dentry *dentry, umode_t mode, 523 unsigned int dev) 524 { 525 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 526 return 0; 527 return call_int_hook(path_mknod, 0, dir, dentry, mode, dev); 528 } 529 EXPORT_SYMBOL(security_path_mknod); 530 531 int security_path_mkdir(const struct path *dir, struct dentry *dentry, umode_t mode) 532 { 533 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 534 return 0; 535 return call_int_hook(path_mkdir, 0, dir, dentry, mode); 536 } 537 EXPORT_SYMBOL(security_path_mkdir); 538 539 int security_path_rmdir(const struct path *dir, struct dentry *dentry) 540 { 541 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 542 return 0; 543 return call_int_hook(path_rmdir, 0, dir, dentry); 544 } 545 546 int security_path_unlink(const struct path *dir, struct dentry *dentry) 547 { 548 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 549 return 0; 550 return call_int_hook(path_unlink, 0, dir, dentry); 551 } 552 EXPORT_SYMBOL(security_path_unlink); 553 554 int security_path_symlink(const struct path *dir, struct dentry *dentry, 555 const char *old_name) 556 { 557 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 558 return 0; 559 return call_int_hook(path_symlink, 0, dir, dentry, old_name); 560 } 561 562 int security_path_link(struct dentry *old_dentry, const struct path *new_dir, 563 struct dentry *new_dentry) 564 { 565 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)))) 566 return 0; 567 return call_int_hook(path_link, 0, old_dentry, new_dir, new_dentry); 568 } 569 570 int security_path_rename(const struct path *old_dir, struct dentry *old_dentry, 571 const struct path *new_dir, struct dentry *new_dentry, 572 unsigned int flags) 573 { 574 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) || 575 (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry))))) 576 return 0; 577 578 if (flags & RENAME_EXCHANGE) { 579 int err = call_int_hook(path_rename, 0, new_dir, new_dentry, 580 old_dir, old_dentry); 581 if (err) 582 return err; 583 } 584 585 return call_int_hook(path_rename, 0, old_dir, old_dentry, new_dir, 586 new_dentry); 587 } 588 EXPORT_SYMBOL(security_path_rename); 589 590 int security_path_truncate(const struct path *path) 591 { 592 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 593 return 0; 594 return call_int_hook(path_truncate, 0, path); 595 } 596 597 int security_path_chmod(const struct path *path, umode_t mode) 598 { 599 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 600 return 0; 601 return call_int_hook(path_chmod, 0, path, mode); 602 } 603 604 int security_path_chown(const struct path *path, kuid_t uid, kgid_t gid) 605 { 606 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 607 return 0; 608 return call_int_hook(path_chown, 0, path, uid, gid); 609 } 610 611 int security_path_chroot(const struct path *path) 612 { 613 return call_int_hook(path_chroot, 0, path); 614 } 615 #endif 616 617 int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode) 618 { 619 if (unlikely(IS_PRIVATE(dir))) 620 return 0; 621 return call_int_hook(inode_create, 0, dir, dentry, mode); 622 } 623 EXPORT_SYMBOL_GPL(security_inode_create); 624 625 int security_inode_link(struct dentry *old_dentry, struct inode *dir, 626 struct dentry *new_dentry) 627 { 628 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)))) 629 return 0; 630 return call_int_hook(inode_link, 0, old_dentry, dir, new_dentry); 631 } 632 633 int security_inode_unlink(struct inode *dir, struct dentry *dentry) 634 { 635 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 636 return 0; 637 return call_int_hook(inode_unlink, 0, dir, dentry); 638 } 639 640 int security_inode_symlink(struct inode *dir, struct dentry *dentry, 641 const char *old_name) 642 { 643 if (unlikely(IS_PRIVATE(dir))) 644 return 0; 645 return call_int_hook(inode_symlink, 0, dir, dentry, old_name); 646 } 647 648 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 649 { 650 if (unlikely(IS_PRIVATE(dir))) 651 return 0; 652 return call_int_hook(inode_mkdir, 0, dir, dentry, mode); 653 } 654 EXPORT_SYMBOL_GPL(security_inode_mkdir); 655 656 int security_inode_rmdir(struct inode *dir, struct dentry *dentry) 657 { 658 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 659 return 0; 660 return call_int_hook(inode_rmdir, 0, dir, dentry); 661 } 662 663 int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) 664 { 665 if (unlikely(IS_PRIVATE(dir))) 666 return 0; 667 return call_int_hook(inode_mknod, 0, dir, dentry, mode, dev); 668 } 669 670 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry, 671 struct inode *new_dir, struct dentry *new_dentry, 672 unsigned int flags) 673 { 674 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) || 675 (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry))))) 676 return 0; 677 678 if (flags & RENAME_EXCHANGE) { 679 int err = call_int_hook(inode_rename, 0, new_dir, new_dentry, 680 old_dir, old_dentry); 681 if (err) 682 return err; 683 } 684 685 return call_int_hook(inode_rename, 0, old_dir, old_dentry, 686 new_dir, new_dentry); 687 } 688 689 int security_inode_readlink(struct dentry *dentry) 690 { 691 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 692 return 0; 693 return call_int_hook(inode_readlink, 0, dentry); 694 } 695 696 int security_inode_follow_link(struct dentry *dentry, struct inode *inode, 697 bool rcu) 698 { 699 if (unlikely(IS_PRIVATE(inode))) 700 return 0; 701 return call_int_hook(inode_follow_link, 0, dentry, inode, rcu); 702 } 703 704 int security_inode_permission(struct inode *inode, int mask) 705 { 706 if (unlikely(IS_PRIVATE(inode))) 707 return 0; 708 return call_int_hook(inode_permission, 0, inode, mask); 709 } 710 711 int security_inode_setattr(struct dentry *dentry, struct iattr *attr) 712 { 713 int ret; 714 715 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 716 return 0; 717 ret = call_int_hook(inode_setattr, 0, dentry, attr); 718 if (ret) 719 return ret; 720 return evm_inode_setattr(dentry, attr); 721 } 722 EXPORT_SYMBOL_GPL(security_inode_setattr); 723 724 int security_inode_getattr(const struct path *path) 725 { 726 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 727 return 0; 728 return call_int_hook(inode_getattr, 0, path); 729 } 730 731 int security_inode_setxattr(struct dentry *dentry, const char *name, 732 const void *value, size_t size, int flags) 733 { 734 int ret; 735 736 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 737 return 0; 738 /* 739 * SELinux and Smack integrate the cap call, 740 * so assume that all LSMs supplying this call do so. 741 */ 742 ret = call_int_hook(inode_setxattr, 1, dentry, name, value, size, 743 flags); 744 745 if (ret == 1) 746 ret = cap_inode_setxattr(dentry, name, value, size, flags); 747 if (ret) 748 return ret; 749 ret = ima_inode_setxattr(dentry, name, value, size); 750 if (ret) 751 return ret; 752 return evm_inode_setxattr(dentry, name, value, size); 753 } 754 755 void security_inode_post_setxattr(struct dentry *dentry, const char *name, 756 const void *value, size_t size, int flags) 757 { 758 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 759 return; 760 call_void_hook(inode_post_setxattr, dentry, name, value, size, flags); 761 evm_inode_post_setxattr(dentry, name, value, size); 762 } 763 764 int security_inode_getxattr(struct dentry *dentry, const char *name) 765 { 766 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 767 return 0; 768 return call_int_hook(inode_getxattr, 0, dentry, name); 769 } 770 771 int security_inode_listxattr(struct dentry *dentry) 772 { 773 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 774 return 0; 775 return call_int_hook(inode_listxattr, 0, dentry); 776 } 777 778 int security_inode_removexattr(struct dentry *dentry, const char *name) 779 { 780 int ret; 781 782 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 783 return 0; 784 /* 785 * SELinux and Smack integrate the cap call, 786 * so assume that all LSMs supplying this call do so. 787 */ 788 ret = call_int_hook(inode_removexattr, 1, dentry, name); 789 if (ret == 1) 790 ret = cap_inode_removexattr(dentry, name); 791 if (ret) 792 return ret; 793 ret = ima_inode_removexattr(dentry, name); 794 if (ret) 795 return ret; 796 return evm_inode_removexattr(dentry, name); 797 } 798 799 int security_inode_need_killpriv(struct dentry *dentry) 800 { 801 return call_int_hook(inode_need_killpriv, 0, dentry); 802 } 803 804 int security_inode_killpriv(struct dentry *dentry) 805 { 806 return call_int_hook(inode_killpriv, 0, dentry); 807 } 808 809 int security_inode_getsecurity(struct inode *inode, const char *name, void **buffer, bool alloc) 810 { 811 struct security_hook_list *hp; 812 int rc; 813 814 if (unlikely(IS_PRIVATE(inode))) 815 return -EOPNOTSUPP; 816 /* 817 * Only one module will provide an attribute with a given name. 818 */ 819 hlist_for_each_entry(hp, &security_hook_heads.inode_getsecurity, list) { 820 rc = hp->hook.inode_getsecurity(inode, name, buffer, alloc); 821 if (rc != -EOPNOTSUPP) 822 return rc; 823 } 824 return -EOPNOTSUPP; 825 } 826 827 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags) 828 { 829 struct security_hook_list *hp; 830 int rc; 831 832 if (unlikely(IS_PRIVATE(inode))) 833 return -EOPNOTSUPP; 834 /* 835 * Only one module will provide an attribute with a given name. 836 */ 837 hlist_for_each_entry(hp, &security_hook_heads.inode_setsecurity, list) { 838 rc = hp->hook.inode_setsecurity(inode, name, value, size, 839 flags); 840 if (rc != -EOPNOTSUPP) 841 return rc; 842 } 843 return -EOPNOTSUPP; 844 } 845 846 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size) 847 { 848 if (unlikely(IS_PRIVATE(inode))) 849 return 0; 850 return call_int_hook(inode_listsecurity, 0, inode, buffer, buffer_size); 851 } 852 EXPORT_SYMBOL(security_inode_listsecurity); 853 854 void security_inode_getsecid(struct inode *inode, u32 *secid) 855 { 856 call_void_hook(inode_getsecid, inode, secid); 857 } 858 859 int security_inode_copy_up(struct dentry *src, struct cred **new) 860 { 861 return call_int_hook(inode_copy_up, 0, src, new); 862 } 863 EXPORT_SYMBOL(security_inode_copy_up); 864 865 int security_inode_copy_up_xattr(const char *name) 866 { 867 return call_int_hook(inode_copy_up_xattr, -EOPNOTSUPP, name); 868 } 869 EXPORT_SYMBOL(security_inode_copy_up_xattr); 870 871 int security_file_permission(struct file *file, int mask) 872 { 873 int ret; 874 875 ret = call_int_hook(file_permission, 0, file, mask); 876 if (ret) 877 return ret; 878 879 return fsnotify_perm(file, mask); 880 } 881 882 int security_file_alloc(struct file *file) 883 { 884 return call_int_hook(file_alloc_security, 0, file); 885 } 886 887 void security_file_free(struct file *file) 888 { 889 call_void_hook(file_free_security, file); 890 } 891 892 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 893 { 894 return call_int_hook(file_ioctl, 0, file, cmd, arg); 895 } 896 897 static inline unsigned long mmap_prot(struct file *file, unsigned long prot) 898 { 899 /* 900 * Does we have PROT_READ and does the application expect 901 * it to imply PROT_EXEC? If not, nothing to talk about... 902 */ 903 if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ) 904 return prot; 905 if (!(current->personality & READ_IMPLIES_EXEC)) 906 return prot; 907 /* 908 * if that's an anonymous mapping, let it. 909 */ 910 if (!file) 911 return prot | PROT_EXEC; 912 /* 913 * ditto if it's not on noexec mount, except that on !MMU we need 914 * NOMMU_MAP_EXEC (== VM_MAYEXEC) in this case 915 */ 916 if (!path_noexec(&file->f_path)) { 917 #ifndef CONFIG_MMU 918 if (file->f_op->mmap_capabilities) { 919 unsigned caps = file->f_op->mmap_capabilities(file); 920 if (!(caps & NOMMU_MAP_EXEC)) 921 return prot; 922 } 923 #endif 924 return prot | PROT_EXEC; 925 } 926 /* anything on noexec mount won't get PROT_EXEC */ 927 return prot; 928 } 929 930 int security_mmap_file(struct file *file, unsigned long prot, 931 unsigned long flags) 932 { 933 int ret; 934 ret = call_int_hook(mmap_file, 0, file, prot, 935 mmap_prot(file, prot), flags); 936 if (ret) 937 return ret; 938 return ima_file_mmap(file, prot); 939 } 940 941 int security_mmap_addr(unsigned long addr) 942 { 943 return call_int_hook(mmap_addr, 0, addr); 944 } 945 946 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot, 947 unsigned long prot) 948 { 949 return call_int_hook(file_mprotect, 0, vma, reqprot, prot); 950 } 951 952 int security_file_lock(struct file *file, unsigned int cmd) 953 { 954 return call_int_hook(file_lock, 0, file, cmd); 955 } 956 957 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg) 958 { 959 return call_int_hook(file_fcntl, 0, file, cmd, arg); 960 } 961 962 void security_file_set_fowner(struct file *file) 963 { 964 call_void_hook(file_set_fowner, file); 965 } 966 967 int security_file_send_sigiotask(struct task_struct *tsk, 968 struct fown_struct *fown, int sig) 969 { 970 return call_int_hook(file_send_sigiotask, 0, tsk, fown, sig); 971 } 972 973 int security_file_receive(struct file *file) 974 { 975 return call_int_hook(file_receive, 0, file); 976 } 977 978 int security_file_open(struct file *file) 979 { 980 int ret; 981 982 ret = call_int_hook(file_open, 0, file); 983 if (ret) 984 return ret; 985 986 return fsnotify_perm(file, MAY_OPEN); 987 } 988 989 int security_task_alloc(struct task_struct *task, unsigned long clone_flags) 990 { 991 return call_int_hook(task_alloc, 0, task, clone_flags); 992 } 993 994 void security_task_free(struct task_struct *task) 995 { 996 call_void_hook(task_free, task); 997 } 998 999 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp) 1000 { 1001 return call_int_hook(cred_alloc_blank, 0, cred, gfp); 1002 } 1003 1004 void security_cred_free(struct cred *cred) 1005 { 1006 call_void_hook(cred_free, cred); 1007 } 1008 1009 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp) 1010 { 1011 return call_int_hook(cred_prepare, 0, new, old, gfp); 1012 } 1013 1014 void security_transfer_creds(struct cred *new, const struct cred *old) 1015 { 1016 call_void_hook(cred_transfer, new, old); 1017 } 1018 1019 void security_cred_getsecid(const struct cred *c, u32 *secid) 1020 { 1021 *secid = 0; 1022 call_void_hook(cred_getsecid, c, secid); 1023 } 1024 EXPORT_SYMBOL(security_cred_getsecid); 1025 1026 int security_kernel_act_as(struct cred *new, u32 secid) 1027 { 1028 return call_int_hook(kernel_act_as, 0, new, secid); 1029 } 1030 1031 int security_kernel_create_files_as(struct cred *new, struct inode *inode) 1032 { 1033 return call_int_hook(kernel_create_files_as, 0, new, inode); 1034 } 1035 1036 int security_kernel_module_request(char *kmod_name) 1037 { 1038 int ret; 1039 1040 ret = call_int_hook(kernel_module_request, 0, kmod_name); 1041 if (ret) 1042 return ret; 1043 return integrity_kernel_module_request(kmod_name); 1044 } 1045 1046 int security_kernel_read_file(struct file *file, enum kernel_read_file_id id) 1047 { 1048 int ret; 1049 1050 ret = call_int_hook(kernel_read_file, 0, file, id); 1051 if (ret) 1052 return ret; 1053 return ima_read_file(file, id); 1054 } 1055 EXPORT_SYMBOL_GPL(security_kernel_read_file); 1056 1057 int security_kernel_post_read_file(struct file *file, char *buf, loff_t size, 1058 enum kernel_read_file_id id) 1059 { 1060 int ret; 1061 1062 ret = call_int_hook(kernel_post_read_file, 0, file, buf, size, id); 1063 if (ret) 1064 return ret; 1065 return ima_post_read_file(file, buf, size, id); 1066 } 1067 EXPORT_SYMBOL_GPL(security_kernel_post_read_file); 1068 1069 int security_kernel_load_data(enum kernel_load_data_id id) 1070 { 1071 int ret; 1072 1073 ret = call_int_hook(kernel_load_data, 0, id); 1074 if (ret) 1075 return ret; 1076 return ima_load_data(id); 1077 } 1078 EXPORT_SYMBOL_GPL(security_kernel_load_data); 1079 1080 int security_task_fix_setuid(struct cred *new, const struct cred *old, 1081 int flags) 1082 { 1083 return call_int_hook(task_fix_setuid, 0, new, old, flags); 1084 } 1085 1086 int security_task_setpgid(struct task_struct *p, pid_t pgid) 1087 { 1088 return call_int_hook(task_setpgid, 0, p, pgid); 1089 } 1090 1091 int security_task_getpgid(struct task_struct *p) 1092 { 1093 return call_int_hook(task_getpgid, 0, p); 1094 } 1095 1096 int security_task_getsid(struct task_struct *p) 1097 { 1098 return call_int_hook(task_getsid, 0, p); 1099 } 1100 1101 void security_task_getsecid(struct task_struct *p, u32 *secid) 1102 { 1103 *secid = 0; 1104 call_void_hook(task_getsecid, p, secid); 1105 } 1106 EXPORT_SYMBOL(security_task_getsecid); 1107 1108 int security_task_setnice(struct task_struct *p, int nice) 1109 { 1110 return call_int_hook(task_setnice, 0, p, nice); 1111 } 1112 1113 int security_task_setioprio(struct task_struct *p, int ioprio) 1114 { 1115 return call_int_hook(task_setioprio, 0, p, ioprio); 1116 } 1117 1118 int security_task_getioprio(struct task_struct *p) 1119 { 1120 return call_int_hook(task_getioprio, 0, p); 1121 } 1122 1123 int security_task_prlimit(const struct cred *cred, const struct cred *tcred, 1124 unsigned int flags) 1125 { 1126 return call_int_hook(task_prlimit, 0, cred, tcred, flags); 1127 } 1128 1129 int security_task_setrlimit(struct task_struct *p, unsigned int resource, 1130 struct rlimit *new_rlim) 1131 { 1132 return call_int_hook(task_setrlimit, 0, p, resource, new_rlim); 1133 } 1134 1135 int security_task_setscheduler(struct task_struct *p) 1136 { 1137 return call_int_hook(task_setscheduler, 0, p); 1138 } 1139 1140 int security_task_getscheduler(struct task_struct *p) 1141 { 1142 return call_int_hook(task_getscheduler, 0, p); 1143 } 1144 1145 int security_task_movememory(struct task_struct *p) 1146 { 1147 return call_int_hook(task_movememory, 0, p); 1148 } 1149 1150 int security_task_kill(struct task_struct *p, struct siginfo *info, 1151 int sig, const struct cred *cred) 1152 { 1153 return call_int_hook(task_kill, 0, p, info, sig, cred); 1154 } 1155 1156 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3, 1157 unsigned long arg4, unsigned long arg5) 1158 { 1159 int thisrc; 1160 int rc = -ENOSYS; 1161 struct security_hook_list *hp; 1162 1163 hlist_for_each_entry(hp, &security_hook_heads.task_prctl, list) { 1164 thisrc = hp->hook.task_prctl(option, arg2, arg3, arg4, arg5); 1165 if (thisrc != -ENOSYS) { 1166 rc = thisrc; 1167 if (thisrc != 0) 1168 break; 1169 } 1170 } 1171 return rc; 1172 } 1173 1174 void security_task_to_inode(struct task_struct *p, struct inode *inode) 1175 { 1176 call_void_hook(task_to_inode, p, inode); 1177 } 1178 1179 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag) 1180 { 1181 return call_int_hook(ipc_permission, 0, ipcp, flag); 1182 } 1183 1184 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid) 1185 { 1186 *secid = 0; 1187 call_void_hook(ipc_getsecid, ipcp, secid); 1188 } 1189 1190 int security_msg_msg_alloc(struct msg_msg *msg) 1191 { 1192 return call_int_hook(msg_msg_alloc_security, 0, msg); 1193 } 1194 1195 void security_msg_msg_free(struct msg_msg *msg) 1196 { 1197 call_void_hook(msg_msg_free_security, msg); 1198 } 1199 1200 int security_msg_queue_alloc(struct kern_ipc_perm *msq) 1201 { 1202 return call_int_hook(msg_queue_alloc_security, 0, msq); 1203 } 1204 1205 void security_msg_queue_free(struct kern_ipc_perm *msq) 1206 { 1207 call_void_hook(msg_queue_free_security, msq); 1208 } 1209 1210 int security_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg) 1211 { 1212 return call_int_hook(msg_queue_associate, 0, msq, msqflg); 1213 } 1214 1215 int security_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd) 1216 { 1217 return call_int_hook(msg_queue_msgctl, 0, msq, cmd); 1218 } 1219 1220 int security_msg_queue_msgsnd(struct kern_ipc_perm *msq, 1221 struct msg_msg *msg, int msqflg) 1222 { 1223 return call_int_hook(msg_queue_msgsnd, 0, msq, msg, msqflg); 1224 } 1225 1226 int security_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg, 1227 struct task_struct *target, long type, int mode) 1228 { 1229 return call_int_hook(msg_queue_msgrcv, 0, msq, msg, target, type, mode); 1230 } 1231 1232 int security_shm_alloc(struct kern_ipc_perm *shp) 1233 { 1234 return call_int_hook(shm_alloc_security, 0, shp); 1235 } 1236 1237 void security_shm_free(struct kern_ipc_perm *shp) 1238 { 1239 call_void_hook(shm_free_security, shp); 1240 } 1241 1242 int security_shm_associate(struct kern_ipc_perm *shp, int shmflg) 1243 { 1244 return call_int_hook(shm_associate, 0, shp, shmflg); 1245 } 1246 1247 int security_shm_shmctl(struct kern_ipc_perm *shp, int cmd) 1248 { 1249 return call_int_hook(shm_shmctl, 0, shp, cmd); 1250 } 1251 1252 int security_shm_shmat(struct kern_ipc_perm *shp, char __user *shmaddr, int shmflg) 1253 { 1254 return call_int_hook(shm_shmat, 0, shp, shmaddr, shmflg); 1255 } 1256 1257 int security_sem_alloc(struct kern_ipc_perm *sma) 1258 { 1259 return call_int_hook(sem_alloc_security, 0, sma); 1260 } 1261 1262 void security_sem_free(struct kern_ipc_perm *sma) 1263 { 1264 call_void_hook(sem_free_security, sma); 1265 } 1266 1267 int security_sem_associate(struct kern_ipc_perm *sma, int semflg) 1268 { 1269 return call_int_hook(sem_associate, 0, sma, semflg); 1270 } 1271 1272 int security_sem_semctl(struct kern_ipc_perm *sma, int cmd) 1273 { 1274 return call_int_hook(sem_semctl, 0, sma, cmd); 1275 } 1276 1277 int security_sem_semop(struct kern_ipc_perm *sma, struct sembuf *sops, 1278 unsigned nsops, int alter) 1279 { 1280 return call_int_hook(sem_semop, 0, sma, sops, nsops, alter); 1281 } 1282 1283 void security_d_instantiate(struct dentry *dentry, struct inode *inode) 1284 { 1285 if (unlikely(inode && IS_PRIVATE(inode))) 1286 return; 1287 call_void_hook(d_instantiate, dentry, inode); 1288 } 1289 EXPORT_SYMBOL(security_d_instantiate); 1290 1291 int security_getprocattr(struct task_struct *p, char *name, char **value) 1292 { 1293 return call_int_hook(getprocattr, -EINVAL, p, name, value); 1294 } 1295 1296 int security_setprocattr(const char *name, void *value, size_t size) 1297 { 1298 return call_int_hook(setprocattr, -EINVAL, name, value, size); 1299 } 1300 1301 int security_netlink_send(struct sock *sk, struct sk_buff *skb) 1302 { 1303 return call_int_hook(netlink_send, 0, sk, skb); 1304 } 1305 1306 int security_ismaclabel(const char *name) 1307 { 1308 return call_int_hook(ismaclabel, 0, name); 1309 } 1310 EXPORT_SYMBOL(security_ismaclabel); 1311 1312 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen) 1313 { 1314 return call_int_hook(secid_to_secctx, -EOPNOTSUPP, secid, secdata, 1315 seclen); 1316 } 1317 EXPORT_SYMBOL(security_secid_to_secctx); 1318 1319 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid) 1320 { 1321 *secid = 0; 1322 return call_int_hook(secctx_to_secid, 0, secdata, seclen, secid); 1323 } 1324 EXPORT_SYMBOL(security_secctx_to_secid); 1325 1326 void security_release_secctx(char *secdata, u32 seclen) 1327 { 1328 call_void_hook(release_secctx, secdata, seclen); 1329 } 1330 EXPORT_SYMBOL(security_release_secctx); 1331 1332 void security_inode_invalidate_secctx(struct inode *inode) 1333 { 1334 call_void_hook(inode_invalidate_secctx, inode); 1335 } 1336 EXPORT_SYMBOL(security_inode_invalidate_secctx); 1337 1338 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen) 1339 { 1340 return call_int_hook(inode_notifysecctx, 0, inode, ctx, ctxlen); 1341 } 1342 EXPORT_SYMBOL(security_inode_notifysecctx); 1343 1344 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen) 1345 { 1346 return call_int_hook(inode_setsecctx, 0, dentry, ctx, ctxlen); 1347 } 1348 EXPORT_SYMBOL(security_inode_setsecctx); 1349 1350 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen) 1351 { 1352 return call_int_hook(inode_getsecctx, -EOPNOTSUPP, inode, ctx, ctxlen); 1353 } 1354 EXPORT_SYMBOL(security_inode_getsecctx); 1355 1356 #ifdef CONFIG_SECURITY_NETWORK 1357 1358 int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk) 1359 { 1360 return call_int_hook(unix_stream_connect, 0, sock, other, newsk); 1361 } 1362 EXPORT_SYMBOL(security_unix_stream_connect); 1363 1364 int security_unix_may_send(struct socket *sock, struct socket *other) 1365 { 1366 return call_int_hook(unix_may_send, 0, sock, other); 1367 } 1368 EXPORT_SYMBOL(security_unix_may_send); 1369 1370 int security_socket_create(int family, int type, int protocol, int kern) 1371 { 1372 return call_int_hook(socket_create, 0, family, type, protocol, kern); 1373 } 1374 1375 int security_socket_post_create(struct socket *sock, int family, 1376 int type, int protocol, int kern) 1377 { 1378 return call_int_hook(socket_post_create, 0, sock, family, type, 1379 protocol, kern); 1380 } 1381 1382 int security_socket_socketpair(struct socket *socka, struct socket *sockb) 1383 { 1384 return call_int_hook(socket_socketpair, 0, socka, sockb); 1385 } 1386 EXPORT_SYMBOL(security_socket_socketpair); 1387 1388 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen) 1389 { 1390 return call_int_hook(socket_bind, 0, sock, address, addrlen); 1391 } 1392 1393 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen) 1394 { 1395 return call_int_hook(socket_connect, 0, sock, address, addrlen); 1396 } 1397 1398 int security_socket_listen(struct socket *sock, int backlog) 1399 { 1400 return call_int_hook(socket_listen, 0, sock, backlog); 1401 } 1402 1403 int security_socket_accept(struct socket *sock, struct socket *newsock) 1404 { 1405 return call_int_hook(socket_accept, 0, sock, newsock); 1406 } 1407 1408 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size) 1409 { 1410 return call_int_hook(socket_sendmsg, 0, sock, msg, size); 1411 } 1412 1413 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg, 1414 int size, int flags) 1415 { 1416 return call_int_hook(socket_recvmsg, 0, sock, msg, size, flags); 1417 } 1418 1419 int security_socket_getsockname(struct socket *sock) 1420 { 1421 return call_int_hook(socket_getsockname, 0, sock); 1422 } 1423 1424 int security_socket_getpeername(struct socket *sock) 1425 { 1426 return call_int_hook(socket_getpeername, 0, sock); 1427 } 1428 1429 int security_socket_getsockopt(struct socket *sock, int level, int optname) 1430 { 1431 return call_int_hook(socket_getsockopt, 0, sock, level, optname); 1432 } 1433 1434 int security_socket_setsockopt(struct socket *sock, int level, int optname) 1435 { 1436 return call_int_hook(socket_setsockopt, 0, sock, level, optname); 1437 } 1438 1439 int security_socket_shutdown(struct socket *sock, int how) 1440 { 1441 return call_int_hook(socket_shutdown, 0, sock, how); 1442 } 1443 1444 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb) 1445 { 1446 return call_int_hook(socket_sock_rcv_skb, 0, sk, skb); 1447 } 1448 EXPORT_SYMBOL(security_sock_rcv_skb); 1449 1450 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval, 1451 int __user *optlen, unsigned len) 1452 { 1453 return call_int_hook(socket_getpeersec_stream, -ENOPROTOOPT, sock, 1454 optval, optlen, len); 1455 } 1456 1457 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid) 1458 { 1459 return call_int_hook(socket_getpeersec_dgram, -ENOPROTOOPT, sock, 1460 skb, secid); 1461 } 1462 EXPORT_SYMBOL(security_socket_getpeersec_dgram); 1463 1464 int security_sk_alloc(struct sock *sk, int family, gfp_t priority) 1465 { 1466 return call_int_hook(sk_alloc_security, 0, sk, family, priority); 1467 } 1468 1469 void security_sk_free(struct sock *sk) 1470 { 1471 call_void_hook(sk_free_security, sk); 1472 } 1473 1474 void security_sk_clone(const struct sock *sk, struct sock *newsk) 1475 { 1476 call_void_hook(sk_clone_security, sk, newsk); 1477 } 1478 EXPORT_SYMBOL(security_sk_clone); 1479 1480 void security_sk_classify_flow(struct sock *sk, struct flowi *fl) 1481 { 1482 call_void_hook(sk_getsecid, sk, &fl->flowi_secid); 1483 } 1484 EXPORT_SYMBOL(security_sk_classify_flow); 1485 1486 void security_req_classify_flow(const struct request_sock *req, struct flowi *fl) 1487 { 1488 call_void_hook(req_classify_flow, req, fl); 1489 } 1490 EXPORT_SYMBOL(security_req_classify_flow); 1491 1492 void security_sock_graft(struct sock *sk, struct socket *parent) 1493 { 1494 call_void_hook(sock_graft, sk, parent); 1495 } 1496 EXPORT_SYMBOL(security_sock_graft); 1497 1498 int security_inet_conn_request(struct sock *sk, 1499 struct sk_buff *skb, struct request_sock *req) 1500 { 1501 return call_int_hook(inet_conn_request, 0, sk, skb, req); 1502 } 1503 EXPORT_SYMBOL(security_inet_conn_request); 1504 1505 void security_inet_csk_clone(struct sock *newsk, 1506 const struct request_sock *req) 1507 { 1508 call_void_hook(inet_csk_clone, newsk, req); 1509 } 1510 1511 void security_inet_conn_established(struct sock *sk, 1512 struct sk_buff *skb) 1513 { 1514 call_void_hook(inet_conn_established, sk, skb); 1515 } 1516 EXPORT_SYMBOL(security_inet_conn_established); 1517 1518 int security_secmark_relabel_packet(u32 secid) 1519 { 1520 return call_int_hook(secmark_relabel_packet, 0, secid); 1521 } 1522 EXPORT_SYMBOL(security_secmark_relabel_packet); 1523 1524 void security_secmark_refcount_inc(void) 1525 { 1526 call_void_hook(secmark_refcount_inc); 1527 } 1528 EXPORT_SYMBOL(security_secmark_refcount_inc); 1529 1530 void security_secmark_refcount_dec(void) 1531 { 1532 call_void_hook(secmark_refcount_dec); 1533 } 1534 EXPORT_SYMBOL(security_secmark_refcount_dec); 1535 1536 int security_tun_dev_alloc_security(void **security) 1537 { 1538 return call_int_hook(tun_dev_alloc_security, 0, security); 1539 } 1540 EXPORT_SYMBOL(security_tun_dev_alloc_security); 1541 1542 void security_tun_dev_free_security(void *security) 1543 { 1544 call_void_hook(tun_dev_free_security, security); 1545 } 1546 EXPORT_SYMBOL(security_tun_dev_free_security); 1547 1548 int security_tun_dev_create(void) 1549 { 1550 return call_int_hook(tun_dev_create, 0); 1551 } 1552 EXPORT_SYMBOL(security_tun_dev_create); 1553 1554 int security_tun_dev_attach_queue(void *security) 1555 { 1556 return call_int_hook(tun_dev_attach_queue, 0, security); 1557 } 1558 EXPORT_SYMBOL(security_tun_dev_attach_queue); 1559 1560 int security_tun_dev_attach(struct sock *sk, void *security) 1561 { 1562 return call_int_hook(tun_dev_attach, 0, sk, security); 1563 } 1564 EXPORT_SYMBOL(security_tun_dev_attach); 1565 1566 int security_tun_dev_open(void *security) 1567 { 1568 return call_int_hook(tun_dev_open, 0, security); 1569 } 1570 EXPORT_SYMBOL(security_tun_dev_open); 1571 1572 int security_sctp_assoc_request(struct sctp_endpoint *ep, struct sk_buff *skb) 1573 { 1574 return call_int_hook(sctp_assoc_request, 0, ep, skb); 1575 } 1576 EXPORT_SYMBOL(security_sctp_assoc_request); 1577 1578 int security_sctp_bind_connect(struct sock *sk, int optname, 1579 struct sockaddr *address, int addrlen) 1580 { 1581 return call_int_hook(sctp_bind_connect, 0, sk, optname, 1582 address, addrlen); 1583 } 1584 EXPORT_SYMBOL(security_sctp_bind_connect); 1585 1586 void security_sctp_sk_clone(struct sctp_endpoint *ep, struct sock *sk, 1587 struct sock *newsk) 1588 { 1589 call_void_hook(sctp_sk_clone, ep, sk, newsk); 1590 } 1591 EXPORT_SYMBOL(security_sctp_sk_clone); 1592 1593 #endif /* CONFIG_SECURITY_NETWORK */ 1594 1595 #ifdef CONFIG_SECURITY_INFINIBAND 1596 1597 int security_ib_pkey_access(void *sec, u64 subnet_prefix, u16 pkey) 1598 { 1599 return call_int_hook(ib_pkey_access, 0, sec, subnet_prefix, pkey); 1600 } 1601 EXPORT_SYMBOL(security_ib_pkey_access); 1602 1603 int security_ib_endport_manage_subnet(void *sec, const char *dev_name, u8 port_num) 1604 { 1605 return call_int_hook(ib_endport_manage_subnet, 0, sec, dev_name, port_num); 1606 } 1607 EXPORT_SYMBOL(security_ib_endport_manage_subnet); 1608 1609 int security_ib_alloc_security(void **sec) 1610 { 1611 return call_int_hook(ib_alloc_security, 0, sec); 1612 } 1613 EXPORT_SYMBOL(security_ib_alloc_security); 1614 1615 void security_ib_free_security(void *sec) 1616 { 1617 call_void_hook(ib_free_security, sec); 1618 } 1619 EXPORT_SYMBOL(security_ib_free_security); 1620 #endif /* CONFIG_SECURITY_INFINIBAND */ 1621 1622 #ifdef CONFIG_SECURITY_NETWORK_XFRM 1623 1624 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, 1625 struct xfrm_user_sec_ctx *sec_ctx, 1626 gfp_t gfp) 1627 { 1628 return call_int_hook(xfrm_policy_alloc_security, 0, ctxp, sec_ctx, gfp); 1629 } 1630 EXPORT_SYMBOL(security_xfrm_policy_alloc); 1631 1632 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx, 1633 struct xfrm_sec_ctx **new_ctxp) 1634 { 1635 return call_int_hook(xfrm_policy_clone_security, 0, old_ctx, new_ctxp); 1636 } 1637 1638 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx) 1639 { 1640 call_void_hook(xfrm_policy_free_security, ctx); 1641 } 1642 EXPORT_SYMBOL(security_xfrm_policy_free); 1643 1644 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx) 1645 { 1646 return call_int_hook(xfrm_policy_delete_security, 0, ctx); 1647 } 1648 1649 int security_xfrm_state_alloc(struct xfrm_state *x, 1650 struct xfrm_user_sec_ctx *sec_ctx) 1651 { 1652 return call_int_hook(xfrm_state_alloc, 0, x, sec_ctx); 1653 } 1654 EXPORT_SYMBOL(security_xfrm_state_alloc); 1655 1656 int security_xfrm_state_alloc_acquire(struct xfrm_state *x, 1657 struct xfrm_sec_ctx *polsec, u32 secid) 1658 { 1659 return call_int_hook(xfrm_state_alloc_acquire, 0, x, polsec, secid); 1660 } 1661 1662 int security_xfrm_state_delete(struct xfrm_state *x) 1663 { 1664 return call_int_hook(xfrm_state_delete_security, 0, x); 1665 } 1666 EXPORT_SYMBOL(security_xfrm_state_delete); 1667 1668 void security_xfrm_state_free(struct xfrm_state *x) 1669 { 1670 call_void_hook(xfrm_state_free_security, x); 1671 } 1672 1673 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir) 1674 { 1675 return call_int_hook(xfrm_policy_lookup, 0, ctx, fl_secid, dir); 1676 } 1677 1678 int security_xfrm_state_pol_flow_match(struct xfrm_state *x, 1679 struct xfrm_policy *xp, 1680 const struct flowi *fl) 1681 { 1682 struct security_hook_list *hp; 1683 int rc = 1; 1684 1685 /* 1686 * Since this function is expected to return 0 or 1, the judgment 1687 * becomes difficult if multiple LSMs supply this call. Fortunately, 1688 * we can use the first LSM's judgment because currently only SELinux 1689 * supplies this call. 1690 * 1691 * For speed optimization, we explicitly break the loop rather than 1692 * using the macro 1693 */ 1694 hlist_for_each_entry(hp, &security_hook_heads.xfrm_state_pol_flow_match, 1695 list) { 1696 rc = hp->hook.xfrm_state_pol_flow_match(x, xp, fl); 1697 break; 1698 } 1699 return rc; 1700 } 1701 1702 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid) 1703 { 1704 return call_int_hook(xfrm_decode_session, 0, skb, secid, 1); 1705 } 1706 1707 void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl) 1708 { 1709 int rc = call_int_hook(xfrm_decode_session, 0, skb, &fl->flowi_secid, 1710 0); 1711 1712 BUG_ON(rc); 1713 } 1714 EXPORT_SYMBOL(security_skb_classify_flow); 1715 1716 #endif /* CONFIG_SECURITY_NETWORK_XFRM */ 1717 1718 #ifdef CONFIG_KEYS 1719 1720 int security_key_alloc(struct key *key, const struct cred *cred, 1721 unsigned long flags) 1722 { 1723 return call_int_hook(key_alloc, 0, key, cred, flags); 1724 } 1725 1726 void security_key_free(struct key *key) 1727 { 1728 call_void_hook(key_free, key); 1729 } 1730 1731 int security_key_permission(key_ref_t key_ref, 1732 const struct cred *cred, unsigned perm) 1733 { 1734 return call_int_hook(key_permission, 0, key_ref, cred, perm); 1735 } 1736 1737 int security_key_getsecurity(struct key *key, char **_buffer) 1738 { 1739 *_buffer = NULL; 1740 return call_int_hook(key_getsecurity, 0, key, _buffer); 1741 } 1742 1743 #endif /* CONFIG_KEYS */ 1744 1745 #ifdef CONFIG_AUDIT 1746 1747 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule) 1748 { 1749 return call_int_hook(audit_rule_init, 0, field, op, rulestr, lsmrule); 1750 } 1751 1752 int security_audit_rule_known(struct audit_krule *krule) 1753 { 1754 return call_int_hook(audit_rule_known, 0, krule); 1755 } 1756 1757 void security_audit_rule_free(void *lsmrule) 1758 { 1759 call_void_hook(audit_rule_free, lsmrule); 1760 } 1761 1762 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule, 1763 struct audit_context *actx) 1764 { 1765 return call_int_hook(audit_rule_match, 0, secid, field, op, lsmrule, 1766 actx); 1767 } 1768 #endif /* CONFIG_AUDIT */ 1769 1770 #ifdef CONFIG_BPF_SYSCALL 1771 int security_bpf(int cmd, union bpf_attr *attr, unsigned int size) 1772 { 1773 return call_int_hook(bpf, 0, cmd, attr, size); 1774 } 1775 int security_bpf_map(struct bpf_map *map, fmode_t fmode) 1776 { 1777 return call_int_hook(bpf_map, 0, map, fmode); 1778 } 1779 int security_bpf_prog(struct bpf_prog *prog) 1780 { 1781 return call_int_hook(bpf_prog, 0, prog); 1782 } 1783 int security_bpf_map_alloc(struct bpf_map *map) 1784 { 1785 return call_int_hook(bpf_map_alloc_security, 0, map); 1786 } 1787 int security_bpf_prog_alloc(struct bpf_prog_aux *aux) 1788 { 1789 return call_int_hook(bpf_prog_alloc_security, 0, aux); 1790 } 1791 void security_bpf_map_free(struct bpf_map *map) 1792 { 1793 call_void_hook(bpf_map_free_security, map); 1794 } 1795 void security_bpf_prog_free(struct bpf_prog_aux *aux) 1796 { 1797 call_void_hook(bpf_prog_free_security, aux); 1798 } 1799 #endif /* CONFIG_BPF_SYSCALL */ 1800