1 /* 2 * Security plug functions 3 * 4 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com> 5 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com> 6 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com> 7 * Copyright (C) 2016 Mellanox Technologies 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License as published by 11 * the Free Software Foundation; either version 2 of the License, or 12 * (at your option) any later version. 13 */ 14 15 #define pr_fmt(fmt) "LSM: " fmt 16 17 #include <linux/bpf.h> 18 #include <linux/capability.h> 19 #include <linux/dcache.h> 20 #include <linux/export.h> 21 #include <linux/init.h> 22 #include <linux/kernel.h> 23 #include <linux/lsm_hooks.h> 24 #include <linux/integrity.h> 25 #include <linux/ima.h> 26 #include <linux/evm.h> 27 #include <linux/fsnotify.h> 28 #include <linux/mman.h> 29 #include <linux/mount.h> 30 #include <linux/personality.h> 31 #include <linux/backing-dev.h> 32 #include <linux/string.h> 33 #include <linux/msg.h> 34 #include <net/flow.h> 35 36 #define MAX_LSM_EVM_XATTR 2 37 38 /* How many LSMs were built into the kernel? */ 39 #define LSM_COUNT (__end_lsm_info - __start_lsm_info) 40 41 struct security_hook_heads security_hook_heads __lsm_ro_after_init; 42 static ATOMIC_NOTIFIER_HEAD(lsm_notifier_chain); 43 44 static struct kmem_cache *lsm_file_cache; 45 static struct kmem_cache *lsm_inode_cache; 46 47 char *lsm_names; 48 static struct lsm_blob_sizes blob_sizes __lsm_ro_after_init; 49 50 /* Boot-time LSM user choice */ 51 static __initdata const char *chosen_lsm_order; 52 static __initdata const char *chosen_major_lsm; 53 54 static __initconst const char * const builtin_lsm_order = CONFIG_LSM; 55 56 /* Ordered list of LSMs to initialize. */ 57 static __initdata struct lsm_info **ordered_lsms; 58 static __initdata struct lsm_info *exclusive; 59 60 static __initdata bool debug; 61 #define init_debug(...) \ 62 do { \ 63 if (debug) \ 64 pr_info(__VA_ARGS__); \ 65 } while (0) 66 67 static bool __init is_enabled(struct lsm_info *lsm) 68 { 69 if (!lsm->enabled) 70 return false; 71 72 return *lsm->enabled; 73 } 74 75 /* Mark an LSM's enabled flag. */ 76 static int lsm_enabled_true __initdata = 1; 77 static int lsm_enabled_false __initdata = 0; 78 static void __init set_enabled(struct lsm_info *lsm, bool enabled) 79 { 80 /* 81 * When an LSM hasn't configured an enable variable, we can use 82 * a hard-coded location for storing the default enabled state. 83 */ 84 if (!lsm->enabled) { 85 if (enabled) 86 lsm->enabled = &lsm_enabled_true; 87 else 88 lsm->enabled = &lsm_enabled_false; 89 } else if (lsm->enabled == &lsm_enabled_true) { 90 if (!enabled) 91 lsm->enabled = &lsm_enabled_false; 92 } else if (lsm->enabled == &lsm_enabled_false) { 93 if (enabled) 94 lsm->enabled = &lsm_enabled_true; 95 } else { 96 *lsm->enabled = enabled; 97 } 98 } 99 100 /* Is an LSM already listed in the ordered LSMs list? */ 101 static bool __init exists_ordered_lsm(struct lsm_info *lsm) 102 { 103 struct lsm_info **check; 104 105 for (check = ordered_lsms; *check; check++) 106 if (*check == lsm) 107 return true; 108 109 return false; 110 } 111 112 /* Append an LSM to the list of ordered LSMs to initialize. */ 113 static int last_lsm __initdata; 114 static void __init append_ordered_lsm(struct lsm_info *lsm, const char *from) 115 { 116 /* Ignore duplicate selections. */ 117 if (exists_ordered_lsm(lsm)) 118 return; 119 120 if (WARN(last_lsm == LSM_COUNT, "%s: out of LSM slots!?\n", from)) 121 return; 122 123 /* Enable this LSM, if it is not already set. */ 124 if (!lsm->enabled) 125 lsm->enabled = &lsm_enabled_true; 126 ordered_lsms[last_lsm++] = lsm; 127 128 init_debug("%s ordering: %s (%sabled)\n", from, lsm->name, 129 is_enabled(lsm) ? "en" : "dis"); 130 } 131 132 /* Is an LSM allowed to be initialized? */ 133 static bool __init lsm_allowed(struct lsm_info *lsm) 134 { 135 /* Skip if the LSM is disabled. */ 136 if (!is_enabled(lsm)) 137 return false; 138 139 /* Not allowed if another exclusive LSM already initialized. */ 140 if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && exclusive) { 141 init_debug("exclusive disabled: %s\n", lsm->name); 142 return false; 143 } 144 145 return true; 146 } 147 148 static void __init lsm_set_blob_size(int *need, int *lbs) 149 { 150 int offset; 151 152 if (*need > 0) { 153 offset = *lbs; 154 *lbs += *need; 155 *need = offset; 156 } 157 } 158 159 static void __init lsm_set_blob_sizes(struct lsm_blob_sizes *needed) 160 { 161 if (!needed) 162 return; 163 164 lsm_set_blob_size(&needed->lbs_cred, &blob_sizes.lbs_cred); 165 lsm_set_blob_size(&needed->lbs_file, &blob_sizes.lbs_file); 166 /* 167 * The inode blob gets an rcu_head in addition to 168 * what the modules might need. 169 */ 170 if (needed->lbs_inode && blob_sizes.lbs_inode == 0) 171 blob_sizes.lbs_inode = sizeof(struct rcu_head); 172 lsm_set_blob_size(&needed->lbs_inode, &blob_sizes.lbs_inode); 173 lsm_set_blob_size(&needed->lbs_ipc, &blob_sizes.lbs_ipc); 174 lsm_set_blob_size(&needed->lbs_msg_msg, &blob_sizes.lbs_msg_msg); 175 lsm_set_blob_size(&needed->lbs_task, &blob_sizes.lbs_task); 176 } 177 178 /* Prepare LSM for initialization. */ 179 static void __init prepare_lsm(struct lsm_info *lsm) 180 { 181 int enabled = lsm_allowed(lsm); 182 183 /* Record enablement (to handle any following exclusive LSMs). */ 184 set_enabled(lsm, enabled); 185 186 /* If enabled, do pre-initialization work. */ 187 if (enabled) { 188 if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && !exclusive) { 189 exclusive = lsm; 190 init_debug("exclusive chosen: %s\n", lsm->name); 191 } 192 193 lsm_set_blob_sizes(lsm->blobs); 194 } 195 } 196 197 /* Initialize a given LSM, if it is enabled. */ 198 static void __init initialize_lsm(struct lsm_info *lsm) 199 { 200 if (is_enabled(lsm)) { 201 int ret; 202 203 init_debug("initializing %s\n", lsm->name); 204 ret = lsm->init(); 205 WARN(ret, "%s failed to initialize: %d\n", lsm->name, ret); 206 } 207 } 208 209 /* Populate ordered LSMs list from comma-separated LSM name list. */ 210 static void __init ordered_lsm_parse(const char *order, const char *origin) 211 { 212 struct lsm_info *lsm; 213 char *sep, *name, *next; 214 215 /* LSM_ORDER_FIRST is always first. */ 216 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { 217 if (lsm->order == LSM_ORDER_FIRST) 218 append_ordered_lsm(lsm, "first"); 219 } 220 221 /* Process "security=", if given. */ 222 if (chosen_major_lsm) { 223 struct lsm_info *major; 224 225 /* 226 * To match the original "security=" behavior, this 227 * explicitly does NOT fallback to another Legacy Major 228 * if the selected one was separately disabled: disable 229 * all non-matching Legacy Major LSMs. 230 */ 231 for (major = __start_lsm_info; major < __end_lsm_info; 232 major++) { 233 if ((major->flags & LSM_FLAG_LEGACY_MAJOR) && 234 strcmp(major->name, chosen_major_lsm) != 0) { 235 set_enabled(major, false); 236 init_debug("security=%s disabled: %s\n", 237 chosen_major_lsm, major->name); 238 } 239 } 240 } 241 242 sep = kstrdup(order, GFP_KERNEL); 243 next = sep; 244 /* Walk the list, looking for matching LSMs. */ 245 while ((name = strsep(&next, ",")) != NULL) { 246 bool found = false; 247 248 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { 249 if (lsm->order == LSM_ORDER_MUTABLE && 250 strcmp(lsm->name, name) == 0) { 251 append_ordered_lsm(lsm, origin); 252 found = true; 253 } 254 } 255 256 if (!found) 257 init_debug("%s ignored: %s\n", origin, name); 258 } 259 260 /* Process "security=", if given. */ 261 if (chosen_major_lsm) { 262 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { 263 if (exists_ordered_lsm(lsm)) 264 continue; 265 if (strcmp(lsm->name, chosen_major_lsm) == 0) 266 append_ordered_lsm(lsm, "security="); 267 } 268 } 269 270 /* Disable all LSMs not in the ordered list. */ 271 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { 272 if (exists_ordered_lsm(lsm)) 273 continue; 274 set_enabled(lsm, false); 275 init_debug("%s disabled: %s\n", origin, lsm->name); 276 } 277 278 kfree(sep); 279 } 280 281 static void __init lsm_early_cred(struct cred *cred); 282 static void __init lsm_early_task(struct task_struct *task); 283 284 static void __init ordered_lsm_init(void) 285 { 286 struct lsm_info **lsm; 287 288 ordered_lsms = kcalloc(LSM_COUNT + 1, sizeof(*ordered_lsms), 289 GFP_KERNEL); 290 291 if (chosen_lsm_order) 292 ordered_lsm_parse(chosen_lsm_order, "cmdline"); 293 else 294 ordered_lsm_parse(builtin_lsm_order, "builtin"); 295 296 for (lsm = ordered_lsms; *lsm; lsm++) 297 prepare_lsm(*lsm); 298 299 init_debug("cred blob size = %d\n", blob_sizes.lbs_cred); 300 init_debug("file blob size = %d\n", blob_sizes.lbs_file); 301 init_debug("inode blob size = %d\n", blob_sizes.lbs_inode); 302 init_debug("ipc blob size = %d\n", blob_sizes.lbs_ipc); 303 init_debug("msg_msg blob size = %d\n", blob_sizes.lbs_msg_msg); 304 init_debug("task blob size = %d\n", blob_sizes.lbs_task); 305 306 /* 307 * Create any kmem_caches needed for blobs 308 */ 309 if (blob_sizes.lbs_file) 310 lsm_file_cache = kmem_cache_create("lsm_file_cache", 311 blob_sizes.lbs_file, 0, 312 SLAB_PANIC, NULL); 313 if (blob_sizes.lbs_inode) 314 lsm_inode_cache = kmem_cache_create("lsm_inode_cache", 315 blob_sizes.lbs_inode, 0, 316 SLAB_PANIC, NULL); 317 318 lsm_early_cred((struct cred *) current->cred); 319 lsm_early_task(current); 320 for (lsm = ordered_lsms; *lsm; lsm++) 321 initialize_lsm(*lsm); 322 323 kfree(ordered_lsms); 324 } 325 326 /** 327 * security_init - initializes the security framework 328 * 329 * This should be called early in the kernel initialization sequence. 330 */ 331 int __init security_init(void) 332 { 333 int i; 334 struct hlist_head *list = (struct hlist_head *) &security_hook_heads; 335 336 pr_info("Security Framework initializing\n"); 337 338 for (i = 0; i < sizeof(security_hook_heads) / sizeof(struct hlist_head); 339 i++) 340 INIT_HLIST_HEAD(&list[i]); 341 342 /* Load LSMs in specified order. */ 343 ordered_lsm_init(); 344 345 return 0; 346 } 347 348 /* Save user chosen LSM */ 349 static int __init choose_major_lsm(char *str) 350 { 351 chosen_major_lsm = str; 352 return 1; 353 } 354 __setup("security=", choose_major_lsm); 355 356 /* Explicitly choose LSM initialization order. */ 357 static int __init choose_lsm_order(char *str) 358 { 359 chosen_lsm_order = str; 360 return 1; 361 } 362 __setup("lsm=", choose_lsm_order); 363 364 /* Enable LSM order debugging. */ 365 static int __init enable_debug(char *str) 366 { 367 debug = true; 368 return 1; 369 } 370 __setup("lsm.debug", enable_debug); 371 372 static bool match_last_lsm(const char *list, const char *lsm) 373 { 374 const char *last; 375 376 if (WARN_ON(!list || !lsm)) 377 return false; 378 last = strrchr(list, ','); 379 if (last) 380 /* Pass the comma, strcmp() will check for '\0' */ 381 last++; 382 else 383 last = list; 384 return !strcmp(last, lsm); 385 } 386 387 static int lsm_append(char *new, char **result) 388 { 389 char *cp; 390 391 if (*result == NULL) { 392 *result = kstrdup(new, GFP_KERNEL); 393 if (*result == NULL) 394 return -ENOMEM; 395 } else { 396 /* Check if it is the last registered name */ 397 if (match_last_lsm(*result, new)) 398 return 0; 399 cp = kasprintf(GFP_KERNEL, "%s,%s", *result, new); 400 if (cp == NULL) 401 return -ENOMEM; 402 kfree(*result); 403 *result = cp; 404 } 405 return 0; 406 } 407 408 /** 409 * security_add_hooks - Add a modules hooks to the hook lists. 410 * @hooks: the hooks to add 411 * @count: the number of hooks to add 412 * @lsm: the name of the security module 413 * 414 * Each LSM has to register its hooks with the infrastructure. 415 */ 416 void __init security_add_hooks(struct security_hook_list *hooks, int count, 417 char *lsm) 418 { 419 int i; 420 421 for (i = 0; i < count; i++) { 422 hooks[i].lsm = lsm; 423 hlist_add_tail_rcu(&hooks[i].list, hooks[i].head); 424 } 425 if (lsm_append(lsm, &lsm_names) < 0) 426 panic("%s - Cannot get early memory.\n", __func__); 427 } 428 429 int call_lsm_notifier(enum lsm_event event, void *data) 430 { 431 return atomic_notifier_call_chain(&lsm_notifier_chain, event, data); 432 } 433 EXPORT_SYMBOL(call_lsm_notifier); 434 435 int register_lsm_notifier(struct notifier_block *nb) 436 { 437 return atomic_notifier_chain_register(&lsm_notifier_chain, nb); 438 } 439 EXPORT_SYMBOL(register_lsm_notifier); 440 441 int unregister_lsm_notifier(struct notifier_block *nb) 442 { 443 return atomic_notifier_chain_unregister(&lsm_notifier_chain, nb); 444 } 445 EXPORT_SYMBOL(unregister_lsm_notifier); 446 447 /** 448 * lsm_cred_alloc - allocate a composite cred blob 449 * @cred: the cred that needs a blob 450 * @gfp: allocation type 451 * 452 * Allocate the cred blob for all the modules 453 * 454 * Returns 0, or -ENOMEM if memory can't be allocated. 455 */ 456 static int lsm_cred_alloc(struct cred *cred, gfp_t gfp) 457 { 458 if (blob_sizes.lbs_cred == 0) { 459 cred->security = NULL; 460 return 0; 461 } 462 463 cred->security = kzalloc(blob_sizes.lbs_cred, gfp); 464 if (cred->security == NULL) 465 return -ENOMEM; 466 return 0; 467 } 468 469 /** 470 * lsm_early_cred - during initialization allocate a composite cred blob 471 * @cred: the cred that needs a blob 472 * 473 * Allocate the cred blob for all the modules 474 */ 475 static void __init lsm_early_cred(struct cred *cred) 476 { 477 int rc = lsm_cred_alloc(cred, GFP_KERNEL); 478 479 if (rc) 480 panic("%s: Early cred alloc failed.\n", __func__); 481 } 482 483 /** 484 * lsm_file_alloc - allocate a composite file blob 485 * @file: the file that needs a blob 486 * 487 * Allocate the file blob for all the modules 488 * 489 * Returns 0, or -ENOMEM if memory can't be allocated. 490 */ 491 static int lsm_file_alloc(struct file *file) 492 { 493 if (!lsm_file_cache) { 494 file->f_security = NULL; 495 return 0; 496 } 497 498 file->f_security = kmem_cache_zalloc(lsm_file_cache, GFP_KERNEL); 499 if (file->f_security == NULL) 500 return -ENOMEM; 501 return 0; 502 } 503 504 /** 505 * lsm_inode_alloc - allocate a composite inode blob 506 * @inode: the inode that needs a blob 507 * 508 * Allocate the inode blob for all the modules 509 * 510 * Returns 0, or -ENOMEM if memory can't be allocated. 511 */ 512 int lsm_inode_alloc(struct inode *inode) 513 { 514 if (!lsm_inode_cache) { 515 inode->i_security = NULL; 516 return 0; 517 } 518 519 inode->i_security = kmem_cache_zalloc(lsm_inode_cache, GFP_NOFS); 520 if (inode->i_security == NULL) 521 return -ENOMEM; 522 return 0; 523 } 524 525 /** 526 * lsm_task_alloc - allocate a composite task blob 527 * @task: the task that needs a blob 528 * 529 * Allocate the task blob for all the modules 530 * 531 * Returns 0, or -ENOMEM if memory can't be allocated. 532 */ 533 static int lsm_task_alloc(struct task_struct *task) 534 { 535 if (blob_sizes.lbs_task == 0) { 536 task->security = NULL; 537 return 0; 538 } 539 540 task->security = kzalloc(blob_sizes.lbs_task, GFP_KERNEL); 541 if (task->security == NULL) 542 return -ENOMEM; 543 return 0; 544 } 545 546 /** 547 * lsm_ipc_alloc - allocate a composite ipc blob 548 * @kip: the ipc that needs a blob 549 * 550 * Allocate the ipc blob for all the modules 551 * 552 * Returns 0, or -ENOMEM if memory can't be allocated. 553 */ 554 static int lsm_ipc_alloc(struct kern_ipc_perm *kip) 555 { 556 if (blob_sizes.lbs_ipc == 0) { 557 kip->security = NULL; 558 return 0; 559 } 560 561 kip->security = kzalloc(blob_sizes.lbs_ipc, GFP_KERNEL); 562 if (kip->security == NULL) 563 return -ENOMEM; 564 return 0; 565 } 566 567 /** 568 * lsm_msg_msg_alloc - allocate a composite msg_msg blob 569 * @mp: the msg_msg that needs a blob 570 * 571 * Allocate the ipc blob for all the modules 572 * 573 * Returns 0, or -ENOMEM if memory can't be allocated. 574 */ 575 static int lsm_msg_msg_alloc(struct msg_msg *mp) 576 { 577 if (blob_sizes.lbs_msg_msg == 0) { 578 mp->security = NULL; 579 return 0; 580 } 581 582 mp->security = kzalloc(blob_sizes.lbs_msg_msg, GFP_KERNEL); 583 if (mp->security == NULL) 584 return -ENOMEM; 585 return 0; 586 } 587 588 /** 589 * lsm_early_task - during initialization allocate a composite task blob 590 * @task: the task that needs a blob 591 * 592 * Allocate the task blob for all the modules 593 */ 594 static void __init lsm_early_task(struct task_struct *task) 595 { 596 int rc = lsm_task_alloc(task); 597 598 if (rc) 599 panic("%s: Early task alloc failed.\n", __func__); 600 } 601 602 /* 603 * Hook list operation macros. 604 * 605 * call_void_hook: 606 * This is a hook that does not return a value. 607 * 608 * call_int_hook: 609 * This is a hook that returns a value. 610 */ 611 612 #define call_void_hook(FUNC, ...) \ 613 do { \ 614 struct security_hook_list *P; \ 615 \ 616 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) \ 617 P->hook.FUNC(__VA_ARGS__); \ 618 } while (0) 619 620 #define call_int_hook(FUNC, IRC, ...) ({ \ 621 int RC = IRC; \ 622 do { \ 623 struct security_hook_list *P; \ 624 \ 625 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) { \ 626 RC = P->hook.FUNC(__VA_ARGS__); \ 627 if (RC != 0) \ 628 break; \ 629 } \ 630 } while (0); \ 631 RC; \ 632 }) 633 634 /* Security operations */ 635 636 int security_binder_set_context_mgr(struct task_struct *mgr) 637 { 638 return call_int_hook(binder_set_context_mgr, 0, mgr); 639 } 640 641 int security_binder_transaction(struct task_struct *from, 642 struct task_struct *to) 643 { 644 return call_int_hook(binder_transaction, 0, from, to); 645 } 646 647 int security_binder_transfer_binder(struct task_struct *from, 648 struct task_struct *to) 649 { 650 return call_int_hook(binder_transfer_binder, 0, from, to); 651 } 652 653 int security_binder_transfer_file(struct task_struct *from, 654 struct task_struct *to, struct file *file) 655 { 656 return call_int_hook(binder_transfer_file, 0, from, to, file); 657 } 658 659 int security_ptrace_access_check(struct task_struct *child, unsigned int mode) 660 { 661 return call_int_hook(ptrace_access_check, 0, child, mode); 662 } 663 664 int security_ptrace_traceme(struct task_struct *parent) 665 { 666 return call_int_hook(ptrace_traceme, 0, parent); 667 } 668 669 int security_capget(struct task_struct *target, 670 kernel_cap_t *effective, 671 kernel_cap_t *inheritable, 672 kernel_cap_t *permitted) 673 { 674 return call_int_hook(capget, 0, target, 675 effective, inheritable, permitted); 676 } 677 678 int security_capset(struct cred *new, const struct cred *old, 679 const kernel_cap_t *effective, 680 const kernel_cap_t *inheritable, 681 const kernel_cap_t *permitted) 682 { 683 return call_int_hook(capset, 0, new, old, 684 effective, inheritable, permitted); 685 } 686 687 int security_capable(const struct cred *cred, 688 struct user_namespace *ns, 689 int cap, 690 unsigned int opts) 691 { 692 return call_int_hook(capable, 0, cred, ns, cap, opts); 693 } 694 695 int security_quotactl(int cmds, int type, int id, struct super_block *sb) 696 { 697 return call_int_hook(quotactl, 0, cmds, type, id, sb); 698 } 699 700 int security_quota_on(struct dentry *dentry) 701 { 702 return call_int_hook(quota_on, 0, dentry); 703 } 704 705 int security_syslog(int type) 706 { 707 return call_int_hook(syslog, 0, type); 708 } 709 710 int security_settime64(const struct timespec64 *ts, const struct timezone *tz) 711 { 712 return call_int_hook(settime, 0, ts, tz); 713 } 714 715 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages) 716 { 717 struct security_hook_list *hp; 718 int cap_sys_admin = 1; 719 int rc; 720 721 /* 722 * The module will respond with a positive value if 723 * it thinks the __vm_enough_memory() call should be 724 * made with the cap_sys_admin set. If all of the modules 725 * agree that it should be set it will. If any module 726 * thinks it should not be set it won't. 727 */ 728 hlist_for_each_entry(hp, &security_hook_heads.vm_enough_memory, list) { 729 rc = hp->hook.vm_enough_memory(mm, pages); 730 if (rc <= 0) { 731 cap_sys_admin = 0; 732 break; 733 } 734 } 735 return __vm_enough_memory(mm, pages, cap_sys_admin); 736 } 737 738 int security_bprm_set_creds(struct linux_binprm *bprm) 739 { 740 return call_int_hook(bprm_set_creds, 0, bprm); 741 } 742 743 int security_bprm_check(struct linux_binprm *bprm) 744 { 745 int ret; 746 747 ret = call_int_hook(bprm_check_security, 0, bprm); 748 if (ret) 749 return ret; 750 return ima_bprm_check(bprm); 751 } 752 753 void security_bprm_committing_creds(struct linux_binprm *bprm) 754 { 755 call_void_hook(bprm_committing_creds, bprm); 756 } 757 758 void security_bprm_committed_creds(struct linux_binprm *bprm) 759 { 760 call_void_hook(bprm_committed_creds, bprm); 761 } 762 763 int security_sb_alloc(struct super_block *sb) 764 { 765 return call_int_hook(sb_alloc_security, 0, sb); 766 } 767 768 void security_sb_free(struct super_block *sb) 769 { 770 call_void_hook(sb_free_security, sb); 771 } 772 773 void security_free_mnt_opts(void **mnt_opts) 774 { 775 if (!*mnt_opts) 776 return; 777 call_void_hook(sb_free_mnt_opts, *mnt_opts); 778 *mnt_opts = NULL; 779 } 780 EXPORT_SYMBOL(security_free_mnt_opts); 781 782 int security_sb_eat_lsm_opts(char *options, void **mnt_opts) 783 { 784 return call_int_hook(sb_eat_lsm_opts, 0, options, mnt_opts); 785 } 786 EXPORT_SYMBOL(security_sb_eat_lsm_opts); 787 788 int security_sb_remount(struct super_block *sb, 789 void *mnt_opts) 790 { 791 return call_int_hook(sb_remount, 0, sb, mnt_opts); 792 } 793 EXPORT_SYMBOL(security_sb_remount); 794 795 int security_sb_kern_mount(struct super_block *sb) 796 { 797 return call_int_hook(sb_kern_mount, 0, sb); 798 } 799 800 int security_sb_show_options(struct seq_file *m, struct super_block *sb) 801 { 802 return call_int_hook(sb_show_options, 0, m, sb); 803 } 804 805 int security_sb_statfs(struct dentry *dentry) 806 { 807 return call_int_hook(sb_statfs, 0, dentry); 808 } 809 810 int security_sb_mount(const char *dev_name, const struct path *path, 811 const char *type, unsigned long flags, void *data) 812 { 813 return call_int_hook(sb_mount, 0, dev_name, path, type, flags, data); 814 } 815 816 int security_sb_umount(struct vfsmount *mnt, int flags) 817 { 818 return call_int_hook(sb_umount, 0, mnt, flags); 819 } 820 821 int security_sb_pivotroot(const struct path *old_path, const struct path *new_path) 822 { 823 return call_int_hook(sb_pivotroot, 0, old_path, new_path); 824 } 825 826 int security_sb_set_mnt_opts(struct super_block *sb, 827 void *mnt_opts, 828 unsigned long kern_flags, 829 unsigned long *set_kern_flags) 830 { 831 return call_int_hook(sb_set_mnt_opts, 832 mnt_opts ? -EOPNOTSUPP : 0, sb, 833 mnt_opts, kern_flags, set_kern_flags); 834 } 835 EXPORT_SYMBOL(security_sb_set_mnt_opts); 836 837 int security_sb_clone_mnt_opts(const struct super_block *oldsb, 838 struct super_block *newsb, 839 unsigned long kern_flags, 840 unsigned long *set_kern_flags) 841 { 842 return call_int_hook(sb_clone_mnt_opts, 0, oldsb, newsb, 843 kern_flags, set_kern_flags); 844 } 845 EXPORT_SYMBOL(security_sb_clone_mnt_opts); 846 847 int security_add_mnt_opt(const char *option, const char *val, int len, 848 void **mnt_opts) 849 { 850 return call_int_hook(sb_add_mnt_opt, -EINVAL, 851 option, val, len, mnt_opts); 852 } 853 EXPORT_SYMBOL(security_add_mnt_opt); 854 855 int security_inode_alloc(struct inode *inode) 856 { 857 int rc = lsm_inode_alloc(inode); 858 859 if (unlikely(rc)) 860 return rc; 861 rc = call_int_hook(inode_alloc_security, 0, inode); 862 if (unlikely(rc)) 863 security_inode_free(inode); 864 return rc; 865 } 866 867 static void inode_free_by_rcu(struct rcu_head *head) 868 { 869 /* 870 * The rcu head is at the start of the inode blob 871 */ 872 kmem_cache_free(lsm_inode_cache, head); 873 } 874 875 void security_inode_free(struct inode *inode) 876 { 877 integrity_inode_free(inode); 878 call_void_hook(inode_free_security, inode); 879 /* 880 * The inode may still be referenced in a path walk and 881 * a call to security_inode_permission() can be made 882 * after inode_free_security() is called. Ideally, the VFS 883 * wouldn't do this, but fixing that is a much harder 884 * job. For now, simply free the i_security via RCU, and 885 * leave the current inode->i_security pointer intact. 886 * The inode will be freed after the RCU grace period too. 887 */ 888 if (inode->i_security) 889 call_rcu((struct rcu_head *)inode->i_security, 890 inode_free_by_rcu); 891 } 892 893 int security_dentry_init_security(struct dentry *dentry, int mode, 894 const struct qstr *name, void **ctx, 895 u32 *ctxlen) 896 { 897 return call_int_hook(dentry_init_security, -EOPNOTSUPP, dentry, mode, 898 name, ctx, ctxlen); 899 } 900 EXPORT_SYMBOL(security_dentry_init_security); 901 902 int security_dentry_create_files_as(struct dentry *dentry, int mode, 903 struct qstr *name, 904 const struct cred *old, struct cred *new) 905 { 906 return call_int_hook(dentry_create_files_as, 0, dentry, mode, 907 name, old, new); 908 } 909 EXPORT_SYMBOL(security_dentry_create_files_as); 910 911 int security_inode_init_security(struct inode *inode, struct inode *dir, 912 const struct qstr *qstr, 913 const initxattrs initxattrs, void *fs_data) 914 { 915 struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1]; 916 struct xattr *lsm_xattr, *evm_xattr, *xattr; 917 int ret; 918 919 if (unlikely(IS_PRIVATE(inode))) 920 return 0; 921 922 if (!initxattrs) 923 return call_int_hook(inode_init_security, -EOPNOTSUPP, inode, 924 dir, qstr, NULL, NULL, NULL); 925 memset(new_xattrs, 0, sizeof(new_xattrs)); 926 lsm_xattr = new_xattrs; 927 ret = call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir, qstr, 928 &lsm_xattr->name, 929 &lsm_xattr->value, 930 &lsm_xattr->value_len); 931 if (ret) 932 goto out; 933 934 evm_xattr = lsm_xattr + 1; 935 ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr); 936 if (ret) 937 goto out; 938 ret = initxattrs(inode, new_xattrs, fs_data); 939 out: 940 for (xattr = new_xattrs; xattr->value != NULL; xattr++) 941 kfree(xattr->value); 942 return (ret == -EOPNOTSUPP) ? 0 : ret; 943 } 944 EXPORT_SYMBOL(security_inode_init_security); 945 946 int security_old_inode_init_security(struct inode *inode, struct inode *dir, 947 const struct qstr *qstr, const char **name, 948 void **value, size_t *len) 949 { 950 if (unlikely(IS_PRIVATE(inode))) 951 return -EOPNOTSUPP; 952 return call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir, 953 qstr, name, value, len); 954 } 955 EXPORT_SYMBOL(security_old_inode_init_security); 956 957 #ifdef CONFIG_SECURITY_PATH 958 int security_path_mknod(const struct path *dir, struct dentry *dentry, umode_t mode, 959 unsigned int dev) 960 { 961 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 962 return 0; 963 return call_int_hook(path_mknod, 0, dir, dentry, mode, dev); 964 } 965 EXPORT_SYMBOL(security_path_mknod); 966 967 int security_path_mkdir(const struct path *dir, struct dentry *dentry, umode_t mode) 968 { 969 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 970 return 0; 971 return call_int_hook(path_mkdir, 0, dir, dentry, mode); 972 } 973 EXPORT_SYMBOL(security_path_mkdir); 974 975 int security_path_rmdir(const struct path *dir, struct dentry *dentry) 976 { 977 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 978 return 0; 979 return call_int_hook(path_rmdir, 0, dir, dentry); 980 } 981 982 int security_path_unlink(const struct path *dir, struct dentry *dentry) 983 { 984 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 985 return 0; 986 return call_int_hook(path_unlink, 0, dir, dentry); 987 } 988 EXPORT_SYMBOL(security_path_unlink); 989 990 int security_path_symlink(const struct path *dir, struct dentry *dentry, 991 const char *old_name) 992 { 993 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 994 return 0; 995 return call_int_hook(path_symlink, 0, dir, dentry, old_name); 996 } 997 998 int security_path_link(struct dentry *old_dentry, const struct path *new_dir, 999 struct dentry *new_dentry) 1000 { 1001 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)))) 1002 return 0; 1003 return call_int_hook(path_link, 0, old_dentry, new_dir, new_dentry); 1004 } 1005 1006 int security_path_rename(const struct path *old_dir, struct dentry *old_dentry, 1007 const struct path *new_dir, struct dentry *new_dentry, 1008 unsigned int flags) 1009 { 1010 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) || 1011 (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry))))) 1012 return 0; 1013 1014 if (flags & RENAME_EXCHANGE) { 1015 int err = call_int_hook(path_rename, 0, new_dir, new_dentry, 1016 old_dir, old_dentry); 1017 if (err) 1018 return err; 1019 } 1020 1021 return call_int_hook(path_rename, 0, old_dir, old_dentry, new_dir, 1022 new_dentry); 1023 } 1024 EXPORT_SYMBOL(security_path_rename); 1025 1026 int security_path_truncate(const struct path *path) 1027 { 1028 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 1029 return 0; 1030 return call_int_hook(path_truncate, 0, path); 1031 } 1032 1033 int security_path_chmod(const struct path *path, umode_t mode) 1034 { 1035 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 1036 return 0; 1037 return call_int_hook(path_chmod, 0, path, mode); 1038 } 1039 1040 int security_path_chown(const struct path *path, kuid_t uid, kgid_t gid) 1041 { 1042 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 1043 return 0; 1044 return call_int_hook(path_chown, 0, path, uid, gid); 1045 } 1046 1047 int security_path_chroot(const struct path *path) 1048 { 1049 return call_int_hook(path_chroot, 0, path); 1050 } 1051 #endif 1052 1053 int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode) 1054 { 1055 if (unlikely(IS_PRIVATE(dir))) 1056 return 0; 1057 return call_int_hook(inode_create, 0, dir, dentry, mode); 1058 } 1059 EXPORT_SYMBOL_GPL(security_inode_create); 1060 1061 int security_inode_link(struct dentry *old_dentry, struct inode *dir, 1062 struct dentry *new_dentry) 1063 { 1064 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)))) 1065 return 0; 1066 return call_int_hook(inode_link, 0, old_dentry, dir, new_dentry); 1067 } 1068 1069 int security_inode_unlink(struct inode *dir, struct dentry *dentry) 1070 { 1071 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1072 return 0; 1073 return call_int_hook(inode_unlink, 0, dir, dentry); 1074 } 1075 1076 int security_inode_symlink(struct inode *dir, struct dentry *dentry, 1077 const char *old_name) 1078 { 1079 if (unlikely(IS_PRIVATE(dir))) 1080 return 0; 1081 return call_int_hook(inode_symlink, 0, dir, dentry, old_name); 1082 } 1083 1084 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 1085 { 1086 if (unlikely(IS_PRIVATE(dir))) 1087 return 0; 1088 return call_int_hook(inode_mkdir, 0, dir, dentry, mode); 1089 } 1090 EXPORT_SYMBOL_GPL(security_inode_mkdir); 1091 1092 int security_inode_rmdir(struct inode *dir, struct dentry *dentry) 1093 { 1094 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1095 return 0; 1096 return call_int_hook(inode_rmdir, 0, dir, dentry); 1097 } 1098 1099 int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) 1100 { 1101 if (unlikely(IS_PRIVATE(dir))) 1102 return 0; 1103 return call_int_hook(inode_mknod, 0, dir, dentry, mode, dev); 1104 } 1105 1106 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry, 1107 struct inode *new_dir, struct dentry *new_dentry, 1108 unsigned int flags) 1109 { 1110 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) || 1111 (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry))))) 1112 return 0; 1113 1114 if (flags & RENAME_EXCHANGE) { 1115 int err = call_int_hook(inode_rename, 0, new_dir, new_dentry, 1116 old_dir, old_dentry); 1117 if (err) 1118 return err; 1119 } 1120 1121 return call_int_hook(inode_rename, 0, old_dir, old_dentry, 1122 new_dir, new_dentry); 1123 } 1124 1125 int security_inode_readlink(struct dentry *dentry) 1126 { 1127 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1128 return 0; 1129 return call_int_hook(inode_readlink, 0, dentry); 1130 } 1131 1132 int security_inode_follow_link(struct dentry *dentry, struct inode *inode, 1133 bool rcu) 1134 { 1135 if (unlikely(IS_PRIVATE(inode))) 1136 return 0; 1137 return call_int_hook(inode_follow_link, 0, dentry, inode, rcu); 1138 } 1139 1140 int security_inode_permission(struct inode *inode, int mask) 1141 { 1142 if (unlikely(IS_PRIVATE(inode))) 1143 return 0; 1144 return call_int_hook(inode_permission, 0, inode, mask); 1145 } 1146 1147 int security_inode_setattr(struct dentry *dentry, struct iattr *attr) 1148 { 1149 int ret; 1150 1151 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1152 return 0; 1153 ret = call_int_hook(inode_setattr, 0, dentry, attr); 1154 if (ret) 1155 return ret; 1156 return evm_inode_setattr(dentry, attr); 1157 } 1158 EXPORT_SYMBOL_GPL(security_inode_setattr); 1159 1160 int security_inode_getattr(const struct path *path) 1161 { 1162 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 1163 return 0; 1164 return call_int_hook(inode_getattr, 0, path); 1165 } 1166 1167 int security_inode_setxattr(struct dentry *dentry, const char *name, 1168 const void *value, size_t size, int flags) 1169 { 1170 int ret; 1171 1172 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1173 return 0; 1174 /* 1175 * SELinux and Smack integrate the cap call, 1176 * so assume that all LSMs supplying this call do so. 1177 */ 1178 ret = call_int_hook(inode_setxattr, 1, dentry, name, value, size, 1179 flags); 1180 1181 if (ret == 1) 1182 ret = cap_inode_setxattr(dentry, name, value, size, flags); 1183 if (ret) 1184 return ret; 1185 ret = ima_inode_setxattr(dentry, name, value, size); 1186 if (ret) 1187 return ret; 1188 return evm_inode_setxattr(dentry, name, value, size); 1189 } 1190 1191 void security_inode_post_setxattr(struct dentry *dentry, const char *name, 1192 const void *value, size_t size, int flags) 1193 { 1194 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1195 return; 1196 call_void_hook(inode_post_setxattr, dentry, name, value, size, flags); 1197 evm_inode_post_setxattr(dentry, name, value, size); 1198 } 1199 1200 int security_inode_getxattr(struct dentry *dentry, const char *name) 1201 { 1202 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1203 return 0; 1204 return call_int_hook(inode_getxattr, 0, dentry, name); 1205 } 1206 1207 int security_inode_listxattr(struct dentry *dentry) 1208 { 1209 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1210 return 0; 1211 return call_int_hook(inode_listxattr, 0, dentry); 1212 } 1213 1214 int security_inode_removexattr(struct dentry *dentry, const char *name) 1215 { 1216 int ret; 1217 1218 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1219 return 0; 1220 /* 1221 * SELinux and Smack integrate the cap call, 1222 * so assume that all LSMs supplying this call do so. 1223 */ 1224 ret = call_int_hook(inode_removexattr, 1, dentry, name); 1225 if (ret == 1) 1226 ret = cap_inode_removexattr(dentry, name); 1227 if (ret) 1228 return ret; 1229 ret = ima_inode_removexattr(dentry, name); 1230 if (ret) 1231 return ret; 1232 return evm_inode_removexattr(dentry, name); 1233 } 1234 1235 int security_inode_need_killpriv(struct dentry *dentry) 1236 { 1237 return call_int_hook(inode_need_killpriv, 0, dentry); 1238 } 1239 1240 int security_inode_killpriv(struct dentry *dentry) 1241 { 1242 return call_int_hook(inode_killpriv, 0, dentry); 1243 } 1244 1245 int security_inode_getsecurity(struct inode *inode, const char *name, void **buffer, bool alloc) 1246 { 1247 struct security_hook_list *hp; 1248 int rc; 1249 1250 if (unlikely(IS_PRIVATE(inode))) 1251 return -EOPNOTSUPP; 1252 /* 1253 * Only one module will provide an attribute with a given name. 1254 */ 1255 hlist_for_each_entry(hp, &security_hook_heads.inode_getsecurity, list) { 1256 rc = hp->hook.inode_getsecurity(inode, name, buffer, alloc); 1257 if (rc != -EOPNOTSUPP) 1258 return rc; 1259 } 1260 return -EOPNOTSUPP; 1261 } 1262 1263 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags) 1264 { 1265 struct security_hook_list *hp; 1266 int rc; 1267 1268 if (unlikely(IS_PRIVATE(inode))) 1269 return -EOPNOTSUPP; 1270 /* 1271 * Only one module will provide an attribute with a given name. 1272 */ 1273 hlist_for_each_entry(hp, &security_hook_heads.inode_setsecurity, list) { 1274 rc = hp->hook.inode_setsecurity(inode, name, value, size, 1275 flags); 1276 if (rc != -EOPNOTSUPP) 1277 return rc; 1278 } 1279 return -EOPNOTSUPP; 1280 } 1281 1282 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size) 1283 { 1284 if (unlikely(IS_PRIVATE(inode))) 1285 return 0; 1286 return call_int_hook(inode_listsecurity, 0, inode, buffer, buffer_size); 1287 } 1288 EXPORT_SYMBOL(security_inode_listsecurity); 1289 1290 void security_inode_getsecid(struct inode *inode, u32 *secid) 1291 { 1292 call_void_hook(inode_getsecid, inode, secid); 1293 } 1294 1295 int security_inode_copy_up(struct dentry *src, struct cred **new) 1296 { 1297 return call_int_hook(inode_copy_up, 0, src, new); 1298 } 1299 EXPORT_SYMBOL(security_inode_copy_up); 1300 1301 int security_inode_copy_up_xattr(const char *name) 1302 { 1303 return call_int_hook(inode_copy_up_xattr, -EOPNOTSUPP, name); 1304 } 1305 EXPORT_SYMBOL(security_inode_copy_up_xattr); 1306 1307 int security_file_permission(struct file *file, int mask) 1308 { 1309 int ret; 1310 1311 ret = call_int_hook(file_permission, 0, file, mask); 1312 if (ret) 1313 return ret; 1314 1315 return fsnotify_perm(file, mask); 1316 } 1317 1318 int security_file_alloc(struct file *file) 1319 { 1320 int rc = lsm_file_alloc(file); 1321 1322 if (rc) 1323 return rc; 1324 rc = call_int_hook(file_alloc_security, 0, file); 1325 if (unlikely(rc)) 1326 security_file_free(file); 1327 return rc; 1328 } 1329 1330 void security_file_free(struct file *file) 1331 { 1332 void *blob; 1333 1334 call_void_hook(file_free_security, file); 1335 1336 blob = file->f_security; 1337 if (blob) { 1338 file->f_security = NULL; 1339 kmem_cache_free(lsm_file_cache, blob); 1340 } 1341 } 1342 1343 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 1344 { 1345 return call_int_hook(file_ioctl, 0, file, cmd, arg); 1346 } 1347 1348 static inline unsigned long mmap_prot(struct file *file, unsigned long prot) 1349 { 1350 /* 1351 * Does we have PROT_READ and does the application expect 1352 * it to imply PROT_EXEC? If not, nothing to talk about... 1353 */ 1354 if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ) 1355 return prot; 1356 if (!(current->personality & READ_IMPLIES_EXEC)) 1357 return prot; 1358 /* 1359 * if that's an anonymous mapping, let it. 1360 */ 1361 if (!file) 1362 return prot | PROT_EXEC; 1363 /* 1364 * ditto if it's not on noexec mount, except that on !MMU we need 1365 * NOMMU_MAP_EXEC (== VM_MAYEXEC) in this case 1366 */ 1367 if (!path_noexec(&file->f_path)) { 1368 #ifndef CONFIG_MMU 1369 if (file->f_op->mmap_capabilities) { 1370 unsigned caps = file->f_op->mmap_capabilities(file); 1371 if (!(caps & NOMMU_MAP_EXEC)) 1372 return prot; 1373 } 1374 #endif 1375 return prot | PROT_EXEC; 1376 } 1377 /* anything on noexec mount won't get PROT_EXEC */ 1378 return prot; 1379 } 1380 1381 int security_mmap_file(struct file *file, unsigned long prot, 1382 unsigned long flags) 1383 { 1384 int ret; 1385 ret = call_int_hook(mmap_file, 0, file, prot, 1386 mmap_prot(file, prot), flags); 1387 if (ret) 1388 return ret; 1389 return ima_file_mmap(file, prot); 1390 } 1391 1392 int security_mmap_addr(unsigned long addr) 1393 { 1394 return call_int_hook(mmap_addr, 0, addr); 1395 } 1396 1397 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot, 1398 unsigned long prot) 1399 { 1400 return call_int_hook(file_mprotect, 0, vma, reqprot, prot); 1401 } 1402 1403 int security_file_lock(struct file *file, unsigned int cmd) 1404 { 1405 return call_int_hook(file_lock, 0, file, cmd); 1406 } 1407 1408 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg) 1409 { 1410 return call_int_hook(file_fcntl, 0, file, cmd, arg); 1411 } 1412 1413 void security_file_set_fowner(struct file *file) 1414 { 1415 call_void_hook(file_set_fowner, file); 1416 } 1417 1418 int security_file_send_sigiotask(struct task_struct *tsk, 1419 struct fown_struct *fown, int sig) 1420 { 1421 return call_int_hook(file_send_sigiotask, 0, tsk, fown, sig); 1422 } 1423 1424 int security_file_receive(struct file *file) 1425 { 1426 return call_int_hook(file_receive, 0, file); 1427 } 1428 1429 int security_file_open(struct file *file) 1430 { 1431 int ret; 1432 1433 ret = call_int_hook(file_open, 0, file); 1434 if (ret) 1435 return ret; 1436 1437 return fsnotify_perm(file, MAY_OPEN); 1438 } 1439 1440 int security_task_alloc(struct task_struct *task, unsigned long clone_flags) 1441 { 1442 int rc = lsm_task_alloc(task); 1443 1444 if (rc) 1445 return rc; 1446 rc = call_int_hook(task_alloc, 0, task, clone_flags); 1447 if (unlikely(rc)) 1448 security_task_free(task); 1449 return rc; 1450 } 1451 1452 void security_task_free(struct task_struct *task) 1453 { 1454 call_void_hook(task_free, task); 1455 1456 kfree(task->security); 1457 task->security = NULL; 1458 } 1459 1460 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp) 1461 { 1462 int rc = lsm_cred_alloc(cred, gfp); 1463 1464 if (rc) 1465 return rc; 1466 1467 rc = call_int_hook(cred_alloc_blank, 0, cred, gfp); 1468 if (unlikely(rc)) 1469 security_cred_free(cred); 1470 return rc; 1471 } 1472 1473 void security_cred_free(struct cred *cred) 1474 { 1475 /* 1476 * There is a failure case in prepare_creds() that 1477 * may result in a call here with ->security being NULL. 1478 */ 1479 if (unlikely(cred->security == NULL)) 1480 return; 1481 1482 call_void_hook(cred_free, cred); 1483 1484 kfree(cred->security); 1485 cred->security = NULL; 1486 } 1487 1488 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp) 1489 { 1490 int rc = lsm_cred_alloc(new, gfp); 1491 1492 if (rc) 1493 return rc; 1494 1495 rc = call_int_hook(cred_prepare, 0, new, old, gfp); 1496 if (unlikely(rc)) 1497 security_cred_free(new); 1498 return rc; 1499 } 1500 1501 void security_transfer_creds(struct cred *new, const struct cred *old) 1502 { 1503 call_void_hook(cred_transfer, new, old); 1504 } 1505 1506 void security_cred_getsecid(const struct cred *c, u32 *secid) 1507 { 1508 *secid = 0; 1509 call_void_hook(cred_getsecid, c, secid); 1510 } 1511 EXPORT_SYMBOL(security_cred_getsecid); 1512 1513 int security_kernel_act_as(struct cred *new, u32 secid) 1514 { 1515 return call_int_hook(kernel_act_as, 0, new, secid); 1516 } 1517 1518 int security_kernel_create_files_as(struct cred *new, struct inode *inode) 1519 { 1520 return call_int_hook(kernel_create_files_as, 0, new, inode); 1521 } 1522 1523 int security_kernel_module_request(char *kmod_name) 1524 { 1525 int ret; 1526 1527 ret = call_int_hook(kernel_module_request, 0, kmod_name); 1528 if (ret) 1529 return ret; 1530 return integrity_kernel_module_request(kmod_name); 1531 } 1532 1533 int security_kernel_read_file(struct file *file, enum kernel_read_file_id id) 1534 { 1535 int ret; 1536 1537 ret = call_int_hook(kernel_read_file, 0, file, id); 1538 if (ret) 1539 return ret; 1540 return ima_read_file(file, id); 1541 } 1542 EXPORT_SYMBOL_GPL(security_kernel_read_file); 1543 1544 int security_kernel_post_read_file(struct file *file, char *buf, loff_t size, 1545 enum kernel_read_file_id id) 1546 { 1547 int ret; 1548 1549 ret = call_int_hook(kernel_post_read_file, 0, file, buf, size, id); 1550 if (ret) 1551 return ret; 1552 return ima_post_read_file(file, buf, size, id); 1553 } 1554 EXPORT_SYMBOL_GPL(security_kernel_post_read_file); 1555 1556 int security_kernel_load_data(enum kernel_load_data_id id) 1557 { 1558 int ret; 1559 1560 ret = call_int_hook(kernel_load_data, 0, id); 1561 if (ret) 1562 return ret; 1563 return ima_load_data(id); 1564 } 1565 EXPORT_SYMBOL_GPL(security_kernel_load_data); 1566 1567 int security_task_fix_setuid(struct cred *new, const struct cred *old, 1568 int flags) 1569 { 1570 return call_int_hook(task_fix_setuid, 0, new, old, flags); 1571 } 1572 1573 int security_task_setpgid(struct task_struct *p, pid_t pgid) 1574 { 1575 return call_int_hook(task_setpgid, 0, p, pgid); 1576 } 1577 1578 int security_task_getpgid(struct task_struct *p) 1579 { 1580 return call_int_hook(task_getpgid, 0, p); 1581 } 1582 1583 int security_task_getsid(struct task_struct *p) 1584 { 1585 return call_int_hook(task_getsid, 0, p); 1586 } 1587 1588 void security_task_getsecid(struct task_struct *p, u32 *secid) 1589 { 1590 *secid = 0; 1591 call_void_hook(task_getsecid, p, secid); 1592 } 1593 EXPORT_SYMBOL(security_task_getsecid); 1594 1595 int security_task_setnice(struct task_struct *p, int nice) 1596 { 1597 return call_int_hook(task_setnice, 0, p, nice); 1598 } 1599 1600 int security_task_setioprio(struct task_struct *p, int ioprio) 1601 { 1602 return call_int_hook(task_setioprio, 0, p, ioprio); 1603 } 1604 1605 int security_task_getioprio(struct task_struct *p) 1606 { 1607 return call_int_hook(task_getioprio, 0, p); 1608 } 1609 1610 int security_task_prlimit(const struct cred *cred, const struct cred *tcred, 1611 unsigned int flags) 1612 { 1613 return call_int_hook(task_prlimit, 0, cred, tcred, flags); 1614 } 1615 1616 int security_task_setrlimit(struct task_struct *p, unsigned int resource, 1617 struct rlimit *new_rlim) 1618 { 1619 return call_int_hook(task_setrlimit, 0, p, resource, new_rlim); 1620 } 1621 1622 int security_task_setscheduler(struct task_struct *p) 1623 { 1624 return call_int_hook(task_setscheduler, 0, p); 1625 } 1626 1627 int security_task_getscheduler(struct task_struct *p) 1628 { 1629 return call_int_hook(task_getscheduler, 0, p); 1630 } 1631 1632 int security_task_movememory(struct task_struct *p) 1633 { 1634 return call_int_hook(task_movememory, 0, p); 1635 } 1636 1637 int security_task_kill(struct task_struct *p, struct kernel_siginfo *info, 1638 int sig, const struct cred *cred) 1639 { 1640 return call_int_hook(task_kill, 0, p, info, sig, cred); 1641 } 1642 1643 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3, 1644 unsigned long arg4, unsigned long arg5) 1645 { 1646 int thisrc; 1647 int rc = -ENOSYS; 1648 struct security_hook_list *hp; 1649 1650 hlist_for_each_entry(hp, &security_hook_heads.task_prctl, list) { 1651 thisrc = hp->hook.task_prctl(option, arg2, arg3, arg4, arg5); 1652 if (thisrc != -ENOSYS) { 1653 rc = thisrc; 1654 if (thisrc != 0) 1655 break; 1656 } 1657 } 1658 return rc; 1659 } 1660 1661 void security_task_to_inode(struct task_struct *p, struct inode *inode) 1662 { 1663 call_void_hook(task_to_inode, p, inode); 1664 } 1665 1666 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag) 1667 { 1668 return call_int_hook(ipc_permission, 0, ipcp, flag); 1669 } 1670 1671 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid) 1672 { 1673 *secid = 0; 1674 call_void_hook(ipc_getsecid, ipcp, secid); 1675 } 1676 1677 int security_msg_msg_alloc(struct msg_msg *msg) 1678 { 1679 int rc = lsm_msg_msg_alloc(msg); 1680 1681 if (unlikely(rc)) 1682 return rc; 1683 rc = call_int_hook(msg_msg_alloc_security, 0, msg); 1684 if (unlikely(rc)) 1685 security_msg_msg_free(msg); 1686 return rc; 1687 } 1688 1689 void security_msg_msg_free(struct msg_msg *msg) 1690 { 1691 call_void_hook(msg_msg_free_security, msg); 1692 kfree(msg->security); 1693 msg->security = NULL; 1694 } 1695 1696 int security_msg_queue_alloc(struct kern_ipc_perm *msq) 1697 { 1698 int rc = lsm_ipc_alloc(msq); 1699 1700 if (unlikely(rc)) 1701 return rc; 1702 rc = call_int_hook(msg_queue_alloc_security, 0, msq); 1703 if (unlikely(rc)) 1704 security_msg_queue_free(msq); 1705 return rc; 1706 } 1707 1708 void security_msg_queue_free(struct kern_ipc_perm *msq) 1709 { 1710 call_void_hook(msg_queue_free_security, msq); 1711 kfree(msq->security); 1712 msq->security = NULL; 1713 } 1714 1715 int security_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg) 1716 { 1717 return call_int_hook(msg_queue_associate, 0, msq, msqflg); 1718 } 1719 1720 int security_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd) 1721 { 1722 return call_int_hook(msg_queue_msgctl, 0, msq, cmd); 1723 } 1724 1725 int security_msg_queue_msgsnd(struct kern_ipc_perm *msq, 1726 struct msg_msg *msg, int msqflg) 1727 { 1728 return call_int_hook(msg_queue_msgsnd, 0, msq, msg, msqflg); 1729 } 1730 1731 int security_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg, 1732 struct task_struct *target, long type, int mode) 1733 { 1734 return call_int_hook(msg_queue_msgrcv, 0, msq, msg, target, type, mode); 1735 } 1736 1737 int security_shm_alloc(struct kern_ipc_perm *shp) 1738 { 1739 int rc = lsm_ipc_alloc(shp); 1740 1741 if (unlikely(rc)) 1742 return rc; 1743 rc = call_int_hook(shm_alloc_security, 0, shp); 1744 if (unlikely(rc)) 1745 security_shm_free(shp); 1746 return rc; 1747 } 1748 1749 void security_shm_free(struct kern_ipc_perm *shp) 1750 { 1751 call_void_hook(shm_free_security, shp); 1752 kfree(shp->security); 1753 shp->security = NULL; 1754 } 1755 1756 int security_shm_associate(struct kern_ipc_perm *shp, int shmflg) 1757 { 1758 return call_int_hook(shm_associate, 0, shp, shmflg); 1759 } 1760 1761 int security_shm_shmctl(struct kern_ipc_perm *shp, int cmd) 1762 { 1763 return call_int_hook(shm_shmctl, 0, shp, cmd); 1764 } 1765 1766 int security_shm_shmat(struct kern_ipc_perm *shp, char __user *shmaddr, int shmflg) 1767 { 1768 return call_int_hook(shm_shmat, 0, shp, shmaddr, shmflg); 1769 } 1770 1771 int security_sem_alloc(struct kern_ipc_perm *sma) 1772 { 1773 int rc = lsm_ipc_alloc(sma); 1774 1775 if (unlikely(rc)) 1776 return rc; 1777 rc = call_int_hook(sem_alloc_security, 0, sma); 1778 if (unlikely(rc)) 1779 security_sem_free(sma); 1780 return rc; 1781 } 1782 1783 void security_sem_free(struct kern_ipc_perm *sma) 1784 { 1785 call_void_hook(sem_free_security, sma); 1786 kfree(sma->security); 1787 sma->security = NULL; 1788 } 1789 1790 int security_sem_associate(struct kern_ipc_perm *sma, int semflg) 1791 { 1792 return call_int_hook(sem_associate, 0, sma, semflg); 1793 } 1794 1795 int security_sem_semctl(struct kern_ipc_perm *sma, int cmd) 1796 { 1797 return call_int_hook(sem_semctl, 0, sma, cmd); 1798 } 1799 1800 int security_sem_semop(struct kern_ipc_perm *sma, struct sembuf *sops, 1801 unsigned nsops, int alter) 1802 { 1803 return call_int_hook(sem_semop, 0, sma, sops, nsops, alter); 1804 } 1805 1806 void security_d_instantiate(struct dentry *dentry, struct inode *inode) 1807 { 1808 if (unlikely(inode && IS_PRIVATE(inode))) 1809 return; 1810 call_void_hook(d_instantiate, dentry, inode); 1811 } 1812 EXPORT_SYMBOL(security_d_instantiate); 1813 1814 int security_getprocattr(struct task_struct *p, const char *lsm, char *name, 1815 char **value) 1816 { 1817 struct security_hook_list *hp; 1818 1819 hlist_for_each_entry(hp, &security_hook_heads.getprocattr, list) { 1820 if (lsm != NULL && strcmp(lsm, hp->lsm)) 1821 continue; 1822 return hp->hook.getprocattr(p, name, value); 1823 } 1824 return -EINVAL; 1825 } 1826 1827 int security_setprocattr(const char *lsm, const char *name, void *value, 1828 size_t size) 1829 { 1830 struct security_hook_list *hp; 1831 1832 hlist_for_each_entry(hp, &security_hook_heads.setprocattr, list) { 1833 if (lsm != NULL && strcmp(lsm, hp->lsm)) 1834 continue; 1835 return hp->hook.setprocattr(name, value, size); 1836 } 1837 return -EINVAL; 1838 } 1839 1840 int security_netlink_send(struct sock *sk, struct sk_buff *skb) 1841 { 1842 return call_int_hook(netlink_send, 0, sk, skb); 1843 } 1844 1845 int security_ismaclabel(const char *name) 1846 { 1847 return call_int_hook(ismaclabel, 0, name); 1848 } 1849 EXPORT_SYMBOL(security_ismaclabel); 1850 1851 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen) 1852 { 1853 return call_int_hook(secid_to_secctx, -EOPNOTSUPP, secid, secdata, 1854 seclen); 1855 } 1856 EXPORT_SYMBOL(security_secid_to_secctx); 1857 1858 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid) 1859 { 1860 *secid = 0; 1861 return call_int_hook(secctx_to_secid, 0, secdata, seclen, secid); 1862 } 1863 EXPORT_SYMBOL(security_secctx_to_secid); 1864 1865 void security_release_secctx(char *secdata, u32 seclen) 1866 { 1867 call_void_hook(release_secctx, secdata, seclen); 1868 } 1869 EXPORT_SYMBOL(security_release_secctx); 1870 1871 void security_inode_invalidate_secctx(struct inode *inode) 1872 { 1873 call_void_hook(inode_invalidate_secctx, inode); 1874 } 1875 EXPORT_SYMBOL(security_inode_invalidate_secctx); 1876 1877 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen) 1878 { 1879 return call_int_hook(inode_notifysecctx, 0, inode, ctx, ctxlen); 1880 } 1881 EXPORT_SYMBOL(security_inode_notifysecctx); 1882 1883 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen) 1884 { 1885 return call_int_hook(inode_setsecctx, 0, dentry, ctx, ctxlen); 1886 } 1887 EXPORT_SYMBOL(security_inode_setsecctx); 1888 1889 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen) 1890 { 1891 return call_int_hook(inode_getsecctx, -EOPNOTSUPP, inode, ctx, ctxlen); 1892 } 1893 EXPORT_SYMBOL(security_inode_getsecctx); 1894 1895 #ifdef CONFIG_SECURITY_NETWORK 1896 1897 int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk) 1898 { 1899 return call_int_hook(unix_stream_connect, 0, sock, other, newsk); 1900 } 1901 EXPORT_SYMBOL(security_unix_stream_connect); 1902 1903 int security_unix_may_send(struct socket *sock, struct socket *other) 1904 { 1905 return call_int_hook(unix_may_send, 0, sock, other); 1906 } 1907 EXPORT_SYMBOL(security_unix_may_send); 1908 1909 int security_socket_create(int family, int type, int protocol, int kern) 1910 { 1911 return call_int_hook(socket_create, 0, family, type, protocol, kern); 1912 } 1913 1914 int security_socket_post_create(struct socket *sock, int family, 1915 int type, int protocol, int kern) 1916 { 1917 return call_int_hook(socket_post_create, 0, sock, family, type, 1918 protocol, kern); 1919 } 1920 1921 int security_socket_socketpair(struct socket *socka, struct socket *sockb) 1922 { 1923 return call_int_hook(socket_socketpair, 0, socka, sockb); 1924 } 1925 EXPORT_SYMBOL(security_socket_socketpair); 1926 1927 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen) 1928 { 1929 return call_int_hook(socket_bind, 0, sock, address, addrlen); 1930 } 1931 1932 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen) 1933 { 1934 return call_int_hook(socket_connect, 0, sock, address, addrlen); 1935 } 1936 1937 int security_socket_listen(struct socket *sock, int backlog) 1938 { 1939 return call_int_hook(socket_listen, 0, sock, backlog); 1940 } 1941 1942 int security_socket_accept(struct socket *sock, struct socket *newsock) 1943 { 1944 return call_int_hook(socket_accept, 0, sock, newsock); 1945 } 1946 1947 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size) 1948 { 1949 return call_int_hook(socket_sendmsg, 0, sock, msg, size); 1950 } 1951 1952 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg, 1953 int size, int flags) 1954 { 1955 return call_int_hook(socket_recvmsg, 0, sock, msg, size, flags); 1956 } 1957 1958 int security_socket_getsockname(struct socket *sock) 1959 { 1960 return call_int_hook(socket_getsockname, 0, sock); 1961 } 1962 1963 int security_socket_getpeername(struct socket *sock) 1964 { 1965 return call_int_hook(socket_getpeername, 0, sock); 1966 } 1967 1968 int security_socket_getsockopt(struct socket *sock, int level, int optname) 1969 { 1970 return call_int_hook(socket_getsockopt, 0, sock, level, optname); 1971 } 1972 1973 int security_socket_setsockopt(struct socket *sock, int level, int optname) 1974 { 1975 return call_int_hook(socket_setsockopt, 0, sock, level, optname); 1976 } 1977 1978 int security_socket_shutdown(struct socket *sock, int how) 1979 { 1980 return call_int_hook(socket_shutdown, 0, sock, how); 1981 } 1982 1983 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb) 1984 { 1985 return call_int_hook(socket_sock_rcv_skb, 0, sk, skb); 1986 } 1987 EXPORT_SYMBOL(security_sock_rcv_skb); 1988 1989 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval, 1990 int __user *optlen, unsigned len) 1991 { 1992 return call_int_hook(socket_getpeersec_stream, -ENOPROTOOPT, sock, 1993 optval, optlen, len); 1994 } 1995 1996 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid) 1997 { 1998 return call_int_hook(socket_getpeersec_dgram, -ENOPROTOOPT, sock, 1999 skb, secid); 2000 } 2001 EXPORT_SYMBOL(security_socket_getpeersec_dgram); 2002 2003 int security_sk_alloc(struct sock *sk, int family, gfp_t priority) 2004 { 2005 return call_int_hook(sk_alloc_security, 0, sk, family, priority); 2006 } 2007 2008 void security_sk_free(struct sock *sk) 2009 { 2010 call_void_hook(sk_free_security, sk); 2011 } 2012 2013 void security_sk_clone(const struct sock *sk, struct sock *newsk) 2014 { 2015 call_void_hook(sk_clone_security, sk, newsk); 2016 } 2017 EXPORT_SYMBOL(security_sk_clone); 2018 2019 void security_sk_classify_flow(struct sock *sk, struct flowi *fl) 2020 { 2021 call_void_hook(sk_getsecid, sk, &fl->flowi_secid); 2022 } 2023 EXPORT_SYMBOL(security_sk_classify_flow); 2024 2025 void security_req_classify_flow(const struct request_sock *req, struct flowi *fl) 2026 { 2027 call_void_hook(req_classify_flow, req, fl); 2028 } 2029 EXPORT_SYMBOL(security_req_classify_flow); 2030 2031 void security_sock_graft(struct sock *sk, struct socket *parent) 2032 { 2033 call_void_hook(sock_graft, sk, parent); 2034 } 2035 EXPORT_SYMBOL(security_sock_graft); 2036 2037 int security_inet_conn_request(struct sock *sk, 2038 struct sk_buff *skb, struct request_sock *req) 2039 { 2040 return call_int_hook(inet_conn_request, 0, sk, skb, req); 2041 } 2042 EXPORT_SYMBOL(security_inet_conn_request); 2043 2044 void security_inet_csk_clone(struct sock *newsk, 2045 const struct request_sock *req) 2046 { 2047 call_void_hook(inet_csk_clone, newsk, req); 2048 } 2049 2050 void security_inet_conn_established(struct sock *sk, 2051 struct sk_buff *skb) 2052 { 2053 call_void_hook(inet_conn_established, sk, skb); 2054 } 2055 EXPORT_SYMBOL(security_inet_conn_established); 2056 2057 int security_secmark_relabel_packet(u32 secid) 2058 { 2059 return call_int_hook(secmark_relabel_packet, 0, secid); 2060 } 2061 EXPORT_SYMBOL(security_secmark_relabel_packet); 2062 2063 void security_secmark_refcount_inc(void) 2064 { 2065 call_void_hook(secmark_refcount_inc); 2066 } 2067 EXPORT_SYMBOL(security_secmark_refcount_inc); 2068 2069 void security_secmark_refcount_dec(void) 2070 { 2071 call_void_hook(secmark_refcount_dec); 2072 } 2073 EXPORT_SYMBOL(security_secmark_refcount_dec); 2074 2075 int security_tun_dev_alloc_security(void **security) 2076 { 2077 return call_int_hook(tun_dev_alloc_security, 0, security); 2078 } 2079 EXPORT_SYMBOL(security_tun_dev_alloc_security); 2080 2081 void security_tun_dev_free_security(void *security) 2082 { 2083 call_void_hook(tun_dev_free_security, security); 2084 } 2085 EXPORT_SYMBOL(security_tun_dev_free_security); 2086 2087 int security_tun_dev_create(void) 2088 { 2089 return call_int_hook(tun_dev_create, 0); 2090 } 2091 EXPORT_SYMBOL(security_tun_dev_create); 2092 2093 int security_tun_dev_attach_queue(void *security) 2094 { 2095 return call_int_hook(tun_dev_attach_queue, 0, security); 2096 } 2097 EXPORT_SYMBOL(security_tun_dev_attach_queue); 2098 2099 int security_tun_dev_attach(struct sock *sk, void *security) 2100 { 2101 return call_int_hook(tun_dev_attach, 0, sk, security); 2102 } 2103 EXPORT_SYMBOL(security_tun_dev_attach); 2104 2105 int security_tun_dev_open(void *security) 2106 { 2107 return call_int_hook(tun_dev_open, 0, security); 2108 } 2109 EXPORT_SYMBOL(security_tun_dev_open); 2110 2111 int security_sctp_assoc_request(struct sctp_endpoint *ep, struct sk_buff *skb) 2112 { 2113 return call_int_hook(sctp_assoc_request, 0, ep, skb); 2114 } 2115 EXPORT_SYMBOL(security_sctp_assoc_request); 2116 2117 int security_sctp_bind_connect(struct sock *sk, int optname, 2118 struct sockaddr *address, int addrlen) 2119 { 2120 return call_int_hook(sctp_bind_connect, 0, sk, optname, 2121 address, addrlen); 2122 } 2123 EXPORT_SYMBOL(security_sctp_bind_connect); 2124 2125 void security_sctp_sk_clone(struct sctp_endpoint *ep, struct sock *sk, 2126 struct sock *newsk) 2127 { 2128 call_void_hook(sctp_sk_clone, ep, sk, newsk); 2129 } 2130 EXPORT_SYMBOL(security_sctp_sk_clone); 2131 2132 #endif /* CONFIG_SECURITY_NETWORK */ 2133 2134 #ifdef CONFIG_SECURITY_INFINIBAND 2135 2136 int security_ib_pkey_access(void *sec, u64 subnet_prefix, u16 pkey) 2137 { 2138 return call_int_hook(ib_pkey_access, 0, sec, subnet_prefix, pkey); 2139 } 2140 EXPORT_SYMBOL(security_ib_pkey_access); 2141 2142 int security_ib_endport_manage_subnet(void *sec, const char *dev_name, u8 port_num) 2143 { 2144 return call_int_hook(ib_endport_manage_subnet, 0, sec, dev_name, port_num); 2145 } 2146 EXPORT_SYMBOL(security_ib_endport_manage_subnet); 2147 2148 int security_ib_alloc_security(void **sec) 2149 { 2150 return call_int_hook(ib_alloc_security, 0, sec); 2151 } 2152 EXPORT_SYMBOL(security_ib_alloc_security); 2153 2154 void security_ib_free_security(void *sec) 2155 { 2156 call_void_hook(ib_free_security, sec); 2157 } 2158 EXPORT_SYMBOL(security_ib_free_security); 2159 #endif /* CONFIG_SECURITY_INFINIBAND */ 2160 2161 #ifdef CONFIG_SECURITY_NETWORK_XFRM 2162 2163 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, 2164 struct xfrm_user_sec_ctx *sec_ctx, 2165 gfp_t gfp) 2166 { 2167 return call_int_hook(xfrm_policy_alloc_security, 0, ctxp, sec_ctx, gfp); 2168 } 2169 EXPORT_SYMBOL(security_xfrm_policy_alloc); 2170 2171 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx, 2172 struct xfrm_sec_ctx **new_ctxp) 2173 { 2174 return call_int_hook(xfrm_policy_clone_security, 0, old_ctx, new_ctxp); 2175 } 2176 2177 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx) 2178 { 2179 call_void_hook(xfrm_policy_free_security, ctx); 2180 } 2181 EXPORT_SYMBOL(security_xfrm_policy_free); 2182 2183 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx) 2184 { 2185 return call_int_hook(xfrm_policy_delete_security, 0, ctx); 2186 } 2187 2188 int security_xfrm_state_alloc(struct xfrm_state *x, 2189 struct xfrm_user_sec_ctx *sec_ctx) 2190 { 2191 return call_int_hook(xfrm_state_alloc, 0, x, sec_ctx); 2192 } 2193 EXPORT_SYMBOL(security_xfrm_state_alloc); 2194 2195 int security_xfrm_state_alloc_acquire(struct xfrm_state *x, 2196 struct xfrm_sec_ctx *polsec, u32 secid) 2197 { 2198 return call_int_hook(xfrm_state_alloc_acquire, 0, x, polsec, secid); 2199 } 2200 2201 int security_xfrm_state_delete(struct xfrm_state *x) 2202 { 2203 return call_int_hook(xfrm_state_delete_security, 0, x); 2204 } 2205 EXPORT_SYMBOL(security_xfrm_state_delete); 2206 2207 void security_xfrm_state_free(struct xfrm_state *x) 2208 { 2209 call_void_hook(xfrm_state_free_security, x); 2210 } 2211 2212 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir) 2213 { 2214 return call_int_hook(xfrm_policy_lookup, 0, ctx, fl_secid, dir); 2215 } 2216 2217 int security_xfrm_state_pol_flow_match(struct xfrm_state *x, 2218 struct xfrm_policy *xp, 2219 const struct flowi *fl) 2220 { 2221 struct security_hook_list *hp; 2222 int rc = 1; 2223 2224 /* 2225 * Since this function is expected to return 0 or 1, the judgment 2226 * becomes difficult if multiple LSMs supply this call. Fortunately, 2227 * we can use the first LSM's judgment because currently only SELinux 2228 * supplies this call. 2229 * 2230 * For speed optimization, we explicitly break the loop rather than 2231 * using the macro 2232 */ 2233 hlist_for_each_entry(hp, &security_hook_heads.xfrm_state_pol_flow_match, 2234 list) { 2235 rc = hp->hook.xfrm_state_pol_flow_match(x, xp, fl); 2236 break; 2237 } 2238 return rc; 2239 } 2240 2241 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid) 2242 { 2243 return call_int_hook(xfrm_decode_session, 0, skb, secid, 1); 2244 } 2245 2246 void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl) 2247 { 2248 int rc = call_int_hook(xfrm_decode_session, 0, skb, &fl->flowi_secid, 2249 0); 2250 2251 BUG_ON(rc); 2252 } 2253 EXPORT_SYMBOL(security_skb_classify_flow); 2254 2255 #endif /* CONFIG_SECURITY_NETWORK_XFRM */ 2256 2257 #ifdef CONFIG_KEYS 2258 2259 int security_key_alloc(struct key *key, const struct cred *cred, 2260 unsigned long flags) 2261 { 2262 return call_int_hook(key_alloc, 0, key, cred, flags); 2263 } 2264 2265 void security_key_free(struct key *key) 2266 { 2267 call_void_hook(key_free, key); 2268 } 2269 2270 int security_key_permission(key_ref_t key_ref, 2271 const struct cred *cred, unsigned perm) 2272 { 2273 return call_int_hook(key_permission, 0, key_ref, cred, perm); 2274 } 2275 2276 int security_key_getsecurity(struct key *key, char **_buffer) 2277 { 2278 *_buffer = NULL; 2279 return call_int_hook(key_getsecurity, 0, key, _buffer); 2280 } 2281 2282 #endif /* CONFIG_KEYS */ 2283 2284 #ifdef CONFIG_AUDIT 2285 2286 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule) 2287 { 2288 return call_int_hook(audit_rule_init, 0, field, op, rulestr, lsmrule); 2289 } 2290 2291 int security_audit_rule_known(struct audit_krule *krule) 2292 { 2293 return call_int_hook(audit_rule_known, 0, krule); 2294 } 2295 2296 void security_audit_rule_free(void *lsmrule) 2297 { 2298 call_void_hook(audit_rule_free, lsmrule); 2299 } 2300 2301 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule, 2302 struct audit_context *actx) 2303 { 2304 return call_int_hook(audit_rule_match, 0, secid, field, op, lsmrule, 2305 actx); 2306 } 2307 #endif /* CONFIG_AUDIT */ 2308 2309 #ifdef CONFIG_BPF_SYSCALL 2310 int security_bpf(int cmd, union bpf_attr *attr, unsigned int size) 2311 { 2312 return call_int_hook(bpf, 0, cmd, attr, size); 2313 } 2314 int security_bpf_map(struct bpf_map *map, fmode_t fmode) 2315 { 2316 return call_int_hook(bpf_map, 0, map, fmode); 2317 } 2318 int security_bpf_prog(struct bpf_prog *prog) 2319 { 2320 return call_int_hook(bpf_prog, 0, prog); 2321 } 2322 int security_bpf_map_alloc(struct bpf_map *map) 2323 { 2324 return call_int_hook(bpf_map_alloc_security, 0, map); 2325 } 2326 int security_bpf_prog_alloc(struct bpf_prog_aux *aux) 2327 { 2328 return call_int_hook(bpf_prog_alloc_security, 0, aux); 2329 } 2330 void security_bpf_map_free(struct bpf_map *map) 2331 { 2332 call_void_hook(bpf_map_free_security, map); 2333 } 2334 void security_bpf_prog_free(struct bpf_prog_aux *aux) 2335 { 2336 call_void_hook(bpf_prog_free_security, aux); 2337 } 2338 #endif /* CONFIG_BPF_SYSCALL */ 2339