1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Security plug functions 4 * 5 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com> 6 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com> 7 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com> 8 * Copyright (C) 2016 Mellanox Technologies 9 * Copyright (C) 2023 Microsoft Corporation <paul@paul-moore.com> 10 */ 11 12 #define pr_fmt(fmt) "LSM: " fmt 13 14 #include <linux/bpf.h> 15 #include <linux/capability.h> 16 #include <linux/dcache.h> 17 #include <linux/export.h> 18 #include <linux/init.h> 19 #include <linux/kernel.h> 20 #include <linux/kernel_read_file.h> 21 #include <linux/lsm_hooks.h> 22 #include <linux/mman.h> 23 #include <linux/mount.h> 24 #include <linux/personality.h> 25 #include <linux/backing-dev.h> 26 #include <linux/string.h> 27 #include <linux/xattr.h> 28 #include <linux/msg.h> 29 #include <linux/overflow.h> 30 #include <linux/perf_event.h> 31 #include <linux/fs.h> 32 #include <net/flow.h> 33 #include <net/sock.h> 34 35 #include "lsm.h" 36 37 /* 38 * These are descriptions of the reasons that can be passed to the 39 * security_locked_down() LSM hook. Placing this array here allows 40 * all security modules to use the same descriptions for auditing 41 * purposes. 42 */ 43 const char *const lockdown_reasons[LOCKDOWN_CONFIDENTIALITY_MAX + 1] = { 44 [LOCKDOWN_NONE] = "none", 45 [LOCKDOWN_MODULE_SIGNATURE] = "unsigned module loading", 46 [LOCKDOWN_DEV_MEM] = "/dev/mem,kmem,port", 47 [LOCKDOWN_EFI_TEST] = "/dev/efi_test access", 48 [LOCKDOWN_KEXEC] = "kexec of unsigned images", 49 [LOCKDOWN_HIBERNATION] = "hibernation", 50 [LOCKDOWN_PCI_ACCESS] = "direct PCI access", 51 [LOCKDOWN_IOPORT] = "raw io port access", 52 [LOCKDOWN_MSR] = "raw MSR access", 53 [LOCKDOWN_ACPI_TABLES] = "modifying ACPI tables", 54 [LOCKDOWN_DEVICE_TREE] = "modifying device tree contents", 55 [LOCKDOWN_PCMCIA_CIS] = "direct PCMCIA CIS storage", 56 [LOCKDOWN_TIOCSSERIAL] = "reconfiguration of serial port IO", 57 [LOCKDOWN_MODULE_PARAMETERS] = "unsafe module parameters", 58 [LOCKDOWN_MMIOTRACE] = "unsafe mmio", 59 [LOCKDOWN_DEBUGFS] = "debugfs access", 60 [LOCKDOWN_XMON_WR] = "xmon write access", 61 [LOCKDOWN_BPF_WRITE_USER] = "use of bpf to write user RAM", 62 [LOCKDOWN_DBG_WRITE_KERNEL] = "use of kgdb/kdb to write kernel RAM", 63 [LOCKDOWN_RTAS_ERROR_INJECTION] = "RTAS error injection", 64 [LOCKDOWN_INTEGRITY_MAX] = "integrity", 65 [LOCKDOWN_KCORE] = "/proc/kcore access", 66 [LOCKDOWN_KPROBES] = "use of kprobes", 67 [LOCKDOWN_BPF_READ_KERNEL] = "use of bpf to read kernel RAM", 68 [LOCKDOWN_DBG_READ_KERNEL] = "use of kgdb/kdb to read kernel RAM", 69 [LOCKDOWN_PERF] = "unsafe use of perf", 70 [LOCKDOWN_TRACEFS] = "use of tracefs", 71 [LOCKDOWN_XMON_RW] = "xmon read and write access", 72 [LOCKDOWN_XFRM_SECRET] = "xfrm SA secret", 73 [LOCKDOWN_CONFIDENTIALITY_MAX] = "confidentiality", 74 }; 75 76 bool lsm_debug __ro_after_init; 77 78 unsigned int lsm_active_cnt __ro_after_init; 79 const struct lsm_id *lsm_idlist[MAX_LSM_COUNT]; 80 81 struct lsm_blob_sizes blob_sizes; 82 83 struct kmem_cache *lsm_file_cache; 84 struct kmem_cache *lsm_inode_cache; 85 86 #define SECURITY_HOOK_ACTIVE_KEY(HOOK, IDX) security_hook_active_##HOOK##_##IDX 87 88 /* 89 * Identifier for the LSM static calls. 90 * HOOK is an LSM hook as defined in linux/lsm_hookdefs.h 91 * IDX is the index of the static call. 0 <= NUM < MAX_LSM_COUNT 92 */ 93 #define LSM_STATIC_CALL(HOOK, IDX) lsm_static_call_##HOOK##_##IDX 94 95 /* 96 * Call the macro M for each LSM hook MAX_LSM_COUNT times. 97 */ 98 #define LSM_LOOP_UNROLL(M, ...) \ 99 do { \ 100 UNROLL(MAX_LSM_COUNT, M, __VA_ARGS__) \ 101 } while (0) 102 103 #define LSM_DEFINE_UNROLL(M, ...) UNROLL(MAX_LSM_COUNT, M, __VA_ARGS__) 104 105 #ifdef CONFIG_HAVE_STATIC_CALL 106 #define LSM_HOOK_TRAMP(NAME, NUM) \ 107 &STATIC_CALL_TRAMP(LSM_STATIC_CALL(NAME, NUM)) 108 #else 109 #define LSM_HOOK_TRAMP(NAME, NUM) NULL 110 #endif 111 112 /* 113 * Define static calls and static keys for each LSM hook. 114 */ 115 #define DEFINE_LSM_STATIC_CALL(NUM, NAME, RET, ...) \ 116 DEFINE_STATIC_CALL_NULL(LSM_STATIC_CALL(NAME, NUM), \ 117 *((RET(*)(__VA_ARGS__))NULL)); \ 118 DEFINE_STATIC_KEY_FALSE(SECURITY_HOOK_ACTIVE_KEY(NAME, NUM)); 119 120 #define LSM_HOOK(RET, DEFAULT, NAME, ...) \ 121 LSM_DEFINE_UNROLL(DEFINE_LSM_STATIC_CALL, NAME, RET, __VA_ARGS__) 122 #include <linux/lsm_hook_defs.h> 123 #undef LSM_HOOK 124 #undef DEFINE_LSM_STATIC_CALL 125 126 /* 127 * Initialise a table of static calls for each LSM hook. 128 * DEFINE_STATIC_CALL_NULL invocation above generates a key (STATIC_CALL_KEY) 129 * and a trampoline (STATIC_CALL_TRAMP) which are used to call 130 * __static_call_update when updating the static call. 131 * 132 * The static calls table is used by early LSMs, some architectures can fault on 133 * unaligned accesses and the fault handling code may not be ready by then. 134 * Thus, the static calls table should be aligned to avoid any unhandled faults 135 * in early init. 136 */ 137 struct lsm_static_calls_table 138 static_calls_table __ro_after_init __aligned(sizeof(u64)) = { 139 #define INIT_LSM_STATIC_CALL(NUM, NAME) \ 140 (struct lsm_static_call) { \ 141 .key = &STATIC_CALL_KEY(LSM_STATIC_CALL(NAME, NUM)), \ 142 .trampoline = LSM_HOOK_TRAMP(NAME, NUM), \ 143 .active = &SECURITY_HOOK_ACTIVE_KEY(NAME, NUM), \ 144 }, 145 #define LSM_HOOK(RET, DEFAULT, NAME, ...) \ 146 .NAME = { \ 147 LSM_DEFINE_UNROLL(INIT_LSM_STATIC_CALL, NAME) \ 148 }, 149 #include <linux/lsm_hook_defs.h> 150 #undef LSM_HOOK 151 #undef INIT_LSM_STATIC_CALL 152 }; 153 154 /** 155 * lsm_file_alloc - allocate a composite file blob 156 * @file: the file that needs a blob 157 * 158 * Allocate the file blob for all the modules 159 * 160 * Returns 0, or -ENOMEM if memory can't be allocated. 161 */ 162 static int lsm_file_alloc(struct file *file) 163 { 164 if (!lsm_file_cache) { 165 file->f_security = NULL; 166 return 0; 167 } 168 169 file->f_security = kmem_cache_zalloc(lsm_file_cache, GFP_KERNEL); 170 if (file->f_security == NULL) 171 return -ENOMEM; 172 return 0; 173 } 174 175 /** 176 * lsm_blob_alloc - allocate a composite blob 177 * @dest: the destination for the blob 178 * @size: the size of the blob 179 * @gfp: allocation type 180 * 181 * Allocate a blob for all the modules 182 * 183 * Returns 0, or -ENOMEM if memory can't be allocated. 184 */ 185 static int lsm_blob_alloc(void **dest, size_t size, gfp_t gfp) 186 { 187 if (size == 0) { 188 *dest = NULL; 189 return 0; 190 } 191 192 *dest = kzalloc(size, gfp); 193 if (*dest == NULL) 194 return -ENOMEM; 195 return 0; 196 } 197 198 /** 199 * lsm_cred_alloc - allocate a composite cred blob 200 * @cred: the cred that needs a blob 201 * @gfp: allocation type 202 * 203 * Allocate the cred blob for all the modules 204 * 205 * Returns 0, or -ENOMEM if memory can't be allocated. 206 */ 207 int lsm_cred_alloc(struct cred *cred, gfp_t gfp) 208 { 209 return lsm_blob_alloc(&cred->security, blob_sizes.lbs_cred, gfp); 210 } 211 212 /** 213 * lsm_inode_alloc - allocate a composite inode blob 214 * @inode: the inode that needs a blob 215 * @gfp: allocation flags 216 * 217 * Allocate the inode blob for all the modules 218 * 219 * Returns 0, or -ENOMEM if memory can't be allocated. 220 */ 221 static int lsm_inode_alloc(struct inode *inode, gfp_t gfp) 222 { 223 if (!lsm_inode_cache) { 224 inode->i_security = NULL; 225 return 0; 226 } 227 228 inode->i_security = kmem_cache_zalloc(lsm_inode_cache, gfp); 229 if (inode->i_security == NULL) 230 return -ENOMEM; 231 return 0; 232 } 233 234 /** 235 * lsm_task_alloc - allocate a composite task blob 236 * @task: the task that needs a blob 237 * 238 * Allocate the task blob for all the modules 239 * 240 * Returns 0, or -ENOMEM if memory can't be allocated. 241 */ 242 int lsm_task_alloc(struct task_struct *task) 243 { 244 return lsm_blob_alloc(&task->security, blob_sizes.lbs_task, GFP_KERNEL); 245 } 246 247 /** 248 * lsm_ipc_alloc - allocate a composite ipc blob 249 * @kip: the ipc that needs a blob 250 * 251 * Allocate the ipc blob for all the modules 252 * 253 * Returns 0, or -ENOMEM if memory can't be allocated. 254 */ 255 static int lsm_ipc_alloc(struct kern_ipc_perm *kip) 256 { 257 return lsm_blob_alloc(&kip->security, blob_sizes.lbs_ipc, GFP_KERNEL); 258 } 259 260 #ifdef CONFIG_KEYS 261 /** 262 * lsm_key_alloc - allocate a composite key blob 263 * @key: the key that needs a blob 264 * 265 * Allocate the key blob for all the modules 266 * 267 * Returns 0, or -ENOMEM if memory can't be allocated. 268 */ 269 static int lsm_key_alloc(struct key *key) 270 { 271 return lsm_blob_alloc(&key->security, blob_sizes.lbs_key, GFP_KERNEL); 272 } 273 #endif /* CONFIG_KEYS */ 274 275 /** 276 * lsm_msg_msg_alloc - allocate a composite msg_msg blob 277 * @mp: the msg_msg that needs a blob 278 * 279 * Allocate the ipc blob for all the modules 280 * 281 * Returns 0, or -ENOMEM if memory can't be allocated. 282 */ 283 static int lsm_msg_msg_alloc(struct msg_msg *mp) 284 { 285 return lsm_blob_alloc(&mp->security, blob_sizes.lbs_msg_msg, 286 GFP_KERNEL); 287 } 288 289 /** 290 * lsm_bdev_alloc - allocate a composite block_device blob 291 * @bdev: the block_device that needs a blob 292 * 293 * Allocate the block_device blob for all the modules 294 * 295 * Returns 0, or -ENOMEM if memory can't be allocated. 296 */ 297 static int lsm_bdev_alloc(struct block_device *bdev) 298 { 299 return lsm_blob_alloc(&bdev->bd_security, blob_sizes.lbs_bdev, 300 GFP_KERNEL); 301 } 302 303 #ifdef CONFIG_BPF_SYSCALL 304 /** 305 * lsm_bpf_map_alloc - allocate a composite bpf_map blob 306 * @map: the bpf_map that needs a blob 307 * 308 * Allocate the bpf_map blob for all the modules 309 * 310 * Returns 0, or -ENOMEM if memory can't be allocated. 311 */ 312 static int lsm_bpf_map_alloc(struct bpf_map *map) 313 { 314 return lsm_blob_alloc(&map->security, blob_sizes.lbs_bpf_map, GFP_KERNEL); 315 } 316 317 /** 318 * lsm_bpf_prog_alloc - allocate a composite bpf_prog blob 319 * @prog: the bpf_prog that needs a blob 320 * 321 * Allocate the bpf_prog blob for all the modules 322 * 323 * Returns 0, or -ENOMEM if memory can't be allocated. 324 */ 325 static int lsm_bpf_prog_alloc(struct bpf_prog *prog) 326 { 327 return lsm_blob_alloc(&prog->aux->security, blob_sizes.lbs_bpf_prog, GFP_KERNEL); 328 } 329 330 /** 331 * lsm_bpf_token_alloc - allocate a composite bpf_token blob 332 * @token: the bpf_token that needs a blob 333 * 334 * Allocate the bpf_token blob for all the modules 335 * 336 * Returns 0, or -ENOMEM if memory can't be allocated. 337 */ 338 static int lsm_bpf_token_alloc(struct bpf_token *token) 339 { 340 return lsm_blob_alloc(&token->security, blob_sizes.lbs_bpf_token, GFP_KERNEL); 341 } 342 #endif /* CONFIG_BPF_SYSCALL */ 343 344 /** 345 * lsm_superblock_alloc - allocate a composite superblock blob 346 * @sb: the superblock that needs a blob 347 * 348 * Allocate the superblock blob for all the modules 349 * 350 * Returns 0, or -ENOMEM if memory can't be allocated. 351 */ 352 static int lsm_superblock_alloc(struct super_block *sb) 353 { 354 return lsm_blob_alloc(&sb->s_security, blob_sizes.lbs_superblock, 355 GFP_KERNEL); 356 } 357 358 /** 359 * lsm_fill_user_ctx - Fill a user space lsm_ctx structure 360 * @uctx: a userspace LSM context to be filled 361 * @uctx_len: available uctx size (input), used uctx size (output) 362 * @val: the new LSM context value 363 * @val_len: the size of the new LSM context value 364 * @id: LSM id 365 * @flags: LSM defined flags 366 * 367 * Fill all of the fields in a userspace lsm_ctx structure. If @uctx is NULL 368 * simply calculate the required size to output via @utc_len and return 369 * success. 370 * 371 * Returns 0 on success, -E2BIG if userspace buffer is not large enough, 372 * -EFAULT on a copyout error, -ENOMEM if memory can't be allocated. 373 */ 374 int lsm_fill_user_ctx(struct lsm_ctx __user *uctx, u32 *uctx_len, 375 void *val, size_t val_len, 376 u64 id, u64 flags) 377 { 378 struct lsm_ctx *nctx = NULL; 379 size_t nctx_len; 380 int rc = 0; 381 382 nctx_len = ALIGN(struct_size(nctx, ctx, val_len), sizeof(void *)); 383 if (nctx_len > *uctx_len) { 384 rc = -E2BIG; 385 goto out; 386 } 387 388 /* no buffer - return success/0 and set @uctx_len to the req size */ 389 if (!uctx) 390 goto out; 391 392 nctx = kzalloc(nctx_len, GFP_KERNEL); 393 if (nctx == NULL) { 394 rc = -ENOMEM; 395 goto out; 396 } 397 nctx->id = id; 398 nctx->flags = flags; 399 nctx->len = nctx_len; 400 nctx->ctx_len = val_len; 401 memcpy(nctx->ctx, val, val_len); 402 403 if (copy_to_user(uctx, nctx, nctx_len)) 404 rc = -EFAULT; 405 406 out: 407 kfree(nctx); 408 *uctx_len = nctx_len; 409 return rc; 410 } 411 412 /* 413 * The default value of the LSM hook is defined in linux/lsm_hook_defs.h and 414 * can be accessed with: 415 * 416 * LSM_RET_DEFAULT(<hook_name>) 417 * 418 * The macros below define static constants for the default value of each 419 * LSM hook. 420 */ 421 #define LSM_RET_DEFAULT(NAME) (NAME##_default) 422 #define DECLARE_LSM_RET_DEFAULT_void(DEFAULT, NAME) 423 #define DECLARE_LSM_RET_DEFAULT_int(DEFAULT, NAME) \ 424 static const int __maybe_unused LSM_RET_DEFAULT(NAME) = (DEFAULT); 425 #define LSM_HOOK(RET, DEFAULT, NAME, ...) \ 426 DECLARE_LSM_RET_DEFAULT_##RET(DEFAULT, NAME) 427 428 #include <linux/lsm_hook_defs.h> 429 #undef LSM_HOOK 430 431 /* 432 * Hook list operation macros. 433 * 434 * call_void_hook: 435 * This is a hook that does not return a value. 436 * 437 * call_int_hook: 438 * This is a hook that returns a value. 439 */ 440 #define __CALL_STATIC_VOID(NUM, HOOK, ...) \ 441 do { \ 442 if (static_branch_unlikely(&SECURITY_HOOK_ACTIVE_KEY(HOOK, NUM))) { \ 443 static_call(LSM_STATIC_CALL(HOOK, NUM))(__VA_ARGS__); \ 444 } \ 445 } while (0); 446 447 #define call_void_hook(HOOK, ...) \ 448 do { \ 449 LSM_LOOP_UNROLL(__CALL_STATIC_VOID, HOOK, __VA_ARGS__); \ 450 } while (0) 451 452 453 #define __CALL_STATIC_INT(NUM, R, HOOK, LABEL, ...) \ 454 do { \ 455 if (static_branch_unlikely(&SECURITY_HOOK_ACTIVE_KEY(HOOK, NUM))) { \ 456 R = static_call(LSM_STATIC_CALL(HOOK, NUM))(__VA_ARGS__); \ 457 if (R != LSM_RET_DEFAULT(HOOK)) \ 458 goto LABEL; \ 459 } \ 460 } while (0); 461 462 #define call_int_hook(HOOK, ...) \ 463 ({ \ 464 __label__ OUT; \ 465 int RC = LSM_RET_DEFAULT(HOOK); \ 466 \ 467 LSM_LOOP_UNROLL(__CALL_STATIC_INT, RC, HOOK, OUT, __VA_ARGS__); \ 468 OUT: \ 469 RC; \ 470 }) 471 472 #define lsm_for_each_hook(scall, NAME) \ 473 for (scall = static_calls_table.NAME; \ 474 scall - static_calls_table.NAME < MAX_LSM_COUNT; scall++) \ 475 if (static_key_enabled(&scall->active->key)) 476 477 /* Security operations */ 478 479 /** 480 * security_binder_set_context_mgr() - Check if becoming binder ctx mgr is ok 481 * @mgr: task credentials of current binder process 482 * 483 * Check whether @mgr is allowed to be the binder context manager. 484 * 485 * Return: Return 0 if permission is granted. 486 */ 487 int security_binder_set_context_mgr(const struct cred *mgr) 488 { 489 return call_int_hook(binder_set_context_mgr, mgr); 490 } 491 492 /** 493 * security_binder_transaction() - Check if a binder transaction is allowed 494 * @from: sending process 495 * @to: receiving process 496 * 497 * Check whether @from is allowed to invoke a binder transaction call to @to. 498 * 499 * Return: Returns 0 if permission is granted. 500 */ 501 int security_binder_transaction(const struct cred *from, 502 const struct cred *to) 503 { 504 return call_int_hook(binder_transaction, from, to); 505 } 506 507 /** 508 * security_binder_transfer_binder() - Check if a binder transfer is allowed 509 * @from: sending process 510 * @to: receiving process 511 * 512 * Check whether @from is allowed to transfer a binder reference to @to. 513 * 514 * Return: Returns 0 if permission is granted. 515 */ 516 int security_binder_transfer_binder(const struct cred *from, 517 const struct cred *to) 518 { 519 return call_int_hook(binder_transfer_binder, from, to); 520 } 521 522 /** 523 * security_binder_transfer_file() - Check if a binder file xfer is allowed 524 * @from: sending process 525 * @to: receiving process 526 * @file: file being transferred 527 * 528 * Check whether @from is allowed to transfer @file to @to. 529 * 530 * Return: Returns 0 if permission is granted. 531 */ 532 int security_binder_transfer_file(const struct cred *from, 533 const struct cred *to, const struct file *file) 534 { 535 return call_int_hook(binder_transfer_file, from, to, file); 536 } 537 538 /** 539 * security_ptrace_access_check() - Check if tracing is allowed 540 * @child: target process 541 * @mode: PTRACE_MODE flags 542 * 543 * Check permission before allowing the current process to trace the @child 544 * process. Security modules may also want to perform a process tracing check 545 * during an execve in the set_security or apply_creds hooks of tracing check 546 * during an execve in the bprm_set_creds hook of binprm_security_ops if the 547 * process is being traced and its security attributes would be changed by the 548 * execve. 549 * 550 * Return: Returns 0 if permission is granted. 551 */ 552 int security_ptrace_access_check(struct task_struct *child, unsigned int mode) 553 { 554 return call_int_hook(ptrace_access_check, child, mode); 555 } 556 557 /** 558 * security_ptrace_traceme() - Check if tracing is allowed 559 * @parent: tracing process 560 * 561 * Check that the @parent process has sufficient permission to trace the 562 * current process before allowing the current process to present itself to the 563 * @parent process for tracing. 564 * 565 * Return: Returns 0 if permission is granted. 566 */ 567 int security_ptrace_traceme(struct task_struct *parent) 568 { 569 return call_int_hook(ptrace_traceme, parent); 570 } 571 572 /** 573 * security_capget() - Get the capability sets for a process 574 * @target: target process 575 * @effective: effective capability set 576 * @inheritable: inheritable capability set 577 * @permitted: permitted capability set 578 * 579 * Get the @effective, @inheritable, and @permitted capability sets for the 580 * @target process. The hook may also perform permission checking to determine 581 * if the current process is allowed to see the capability sets of the @target 582 * process. 583 * 584 * Return: Returns 0 if the capability sets were successfully obtained. 585 */ 586 int security_capget(const struct task_struct *target, 587 kernel_cap_t *effective, 588 kernel_cap_t *inheritable, 589 kernel_cap_t *permitted) 590 { 591 return call_int_hook(capget, target, effective, inheritable, permitted); 592 } 593 594 /** 595 * security_capset() - Set the capability sets for a process 596 * @new: new credentials for the target process 597 * @old: current credentials of the target process 598 * @effective: effective capability set 599 * @inheritable: inheritable capability set 600 * @permitted: permitted capability set 601 * 602 * Set the @effective, @inheritable, and @permitted capability sets for the 603 * current process. 604 * 605 * Return: Returns 0 and update @new if permission is granted. 606 */ 607 int security_capset(struct cred *new, const struct cred *old, 608 const kernel_cap_t *effective, 609 const kernel_cap_t *inheritable, 610 const kernel_cap_t *permitted) 611 { 612 return call_int_hook(capset, new, old, effective, inheritable, 613 permitted); 614 } 615 616 /** 617 * security_capable() - Check if a process has the necessary capability 618 * @cred: credentials to examine 619 * @ns: user namespace 620 * @cap: capability requested 621 * @opts: capability check options 622 * 623 * Check whether the @tsk process has the @cap capability in the indicated 624 * credentials. @cap contains the capability <include/linux/capability.h>. 625 * @opts contains options for the capable check <include/linux/security.h>. 626 * 627 * Return: Returns 0 if the capability is granted. 628 */ 629 int security_capable(const struct cred *cred, 630 struct user_namespace *ns, 631 int cap, 632 unsigned int opts) 633 { 634 return call_int_hook(capable, cred, ns, cap, opts); 635 } 636 637 /** 638 * security_quotactl() - Check if a quotactl() syscall is allowed for this fs 639 * @cmds: commands 640 * @type: type 641 * @id: id 642 * @sb: filesystem 643 * 644 * Check whether the quotactl syscall is allowed for this @sb. 645 * 646 * Return: Returns 0 if permission is granted. 647 */ 648 int security_quotactl(int cmds, int type, int id, const struct super_block *sb) 649 { 650 return call_int_hook(quotactl, cmds, type, id, sb); 651 } 652 653 /** 654 * security_quota_on() - Check if QUOTAON is allowed for a dentry 655 * @dentry: dentry 656 * 657 * Check whether QUOTAON is allowed for @dentry. 658 * 659 * Return: Returns 0 if permission is granted. 660 */ 661 int security_quota_on(struct dentry *dentry) 662 { 663 return call_int_hook(quota_on, dentry); 664 } 665 666 /** 667 * security_syslog() - Check if accessing the kernel message ring is allowed 668 * @type: SYSLOG_ACTION_* type 669 * 670 * Check permission before accessing the kernel message ring or changing 671 * logging to the console. See the syslog(2) manual page for an explanation of 672 * the @type values. 673 * 674 * Return: Return 0 if permission is granted. 675 */ 676 int security_syslog(int type) 677 { 678 return call_int_hook(syslog, type); 679 } 680 681 /** 682 * security_settime64() - Check if changing the system time is allowed 683 * @ts: new time 684 * @tz: timezone 685 * 686 * Check permission to change the system time, struct timespec64 is defined in 687 * <include/linux/time64.h> and timezone is defined in <include/linux/time.h>. 688 * 689 * Return: Returns 0 if permission is granted. 690 */ 691 int security_settime64(const struct timespec64 *ts, const struct timezone *tz) 692 { 693 return call_int_hook(settime, ts, tz); 694 } 695 696 /** 697 * security_vm_enough_memory_mm() - Check if allocating a new mem map is allowed 698 * @mm: mm struct 699 * @pages: number of pages 700 * 701 * Check permissions for allocating a new virtual mapping. If all LSMs return 702 * a positive value, __vm_enough_memory() will be called with cap_sys_admin 703 * set. If at least one LSM returns 0 or negative, __vm_enough_memory() will be 704 * called with cap_sys_admin cleared. 705 * 706 * Return: Returns 0 if permission is granted by the LSM infrastructure to the 707 * caller. 708 */ 709 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages) 710 { 711 struct lsm_static_call *scall; 712 int cap_sys_admin = 1; 713 int rc; 714 715 /* 716 * The module will respond with 0 if it thinks the __vm_enough_memory() 717 * call should be made with the cap_sys_admin set. If all of the modules 718 * agree that it should be set it will. If any module thinks it should 719 * not be set it won't. 720 */ 721 lsm_for_each_hook(scall, vm_enough_memory) { 722 rc = scall->hl->hook.vm_enough_memory(mm, pages); 723 if (rc < 0) { 724 cap_sys_admin = 0; 725 break; 726 } 727 } 728 return __vm_enough_memory(mm, pages, cap_sys_admin); 729 } 730 731 /** 732 * security_bprm_creds_for_exec() - Prepare the credentials for exec() 733 * @bprm: binary program information 734 * 735 * If the setup in prepare_exec_creds did not setup @bprm->cred->security 736 * properly for executing @bprm->file, update the LSM's portion of 737 * @bprm->cred->security to be what commit_creds needs to install for the new 738 * program. This hook may also optionally check permissions (e.g. for 739 * transitions between security domains). The hook must set @bprm->secureexec 740 * to 1 if AT_SECURE should be set to request libc enable secure mode. @bprm 741 * contains the linux_binprm structure. 742 * 743 * If execveat(2) is called with the AT_EXECVE_CHECK flag, bprm->is_check is 744 * set. The result must be the same as without this flag even if the execution 745 * will never really happen and @bprm will always be dropped. 746 * 747 * This hook must not change current->cred, only @bprm->cred. 748 * 749 * Return: Returns 0 if the hook is successful and permission is granted. 750 */ 751 int security_bprm_creds_for_exec(struct linux_binprm *bprm) 752 { 753 return call_int_hook(bprm_creds_for_exec, bprm); 754 } 755 756 /** 757 * security_bprm_creds_from_file() - Update linux_binprm creds based on file 758 * @bprm: binary program information 759 * @file: associated file 760 * 761 * If @file is setpcap, suid, sgid or otherwise marked to change privilege upon 762 * exec, update @bprm->cred to reflect that change. This is called after 763 * finding the binary that will be executed without an interpreter. This 764 * ensures that the credentials will not be derived from a script that the 765 * binary will need to reopen, which when reopend may end up being a completely 766 * different file. This hook may also optionally check permissions (e.g. for 767 * transitions between security domains). The hook must set @bprm->secureexec 768 * to 1 if AT_SECURE should be set to request libc enable secure mode. The 769 * hook must add to @bprm->per_clear any personality flags that should be 770 * cleared from current->personality. @bprm contains the linux_binprm 771 * structure. 772 * 773 * Return: Returns 0 if the hook is successful and permission is granted. 774 */ 775 int security_bprm_creds_from_file(struct linux_binprm *bprm, const struct file *file) 776 { 777 return call_int_hook(bprm_creds_from_file, bprm, file); 778 } 779 780 /** 781 * security_bprm_check() - Mediate binary handler search 782 * @bprm: binary program information 783 * 784 * This hook mediates the point when a search for a binary handler will begin. 785 * It allows a check against the @bprm->cred->security value which was set in 786 * the preceding creds_for_exec call. The argv list and envp list are reliably 787 * available in @bprm. This hook may be called multiple times during a single 788 * execve. @bprm contains the linux_binprm structure. 789 * 790 * Return: Returns 0 if the hook is successful and permission is granted. 791 */ 792 int security_bprm_check(struct linux_binprm *bprm) 793 { 794 return call_int_hook(bprm_check_security, bprm); 795 } 796 797 /** 798 * security_bprm_committing_creds() - Install creds for a process during exec() 799 * @bprm: binary program information 800 * 801 * Prepare to install the new security attributes of a process being 802 * transformed by an execve operation, based on the old credentials pointed to 803 * by @current->cred and the information set in @bprm->cred by the 804 * bprm_creds_for_exec hook. @bprm points to the linux_binprm structure. This 805 * hook is a good place to perform state changes on the process such as closing 806 * open file descriptors to which access will no longer be granted when the 807 * attributes are changed. This is called immediately before commit_creds(). 808 */ 809 void security_bprm_committing_creds(const struct linux_binprm *bprm) 810 { 811 call_void_hook(bprm_committing_creds, bprm); 812 } 813 814 /** 815 * security_bprm_committed_creds() - Tidy up after cred install during exec() 816 * @bprm: binary program information 817 * 818 * Tidy up after the installation of the new security attributes of a process 819 * being transformed by an execve operation. The new credentials have, by this 820 * point, been set to @current->cred. @bprm points to the linux_binprm 821 * structure. This hook is a good place to perform state changes on the 822 * process such as clearing out non-inheritable signal state. This is called 823 * immediately after commit_creds(). 824 */ 825 void security_bprm_committed_creds(const struct linux_binprm *bprm) 826 { 827 call_void_hook(bprm_committed_creds, bprm); 828 } 829 830 /** 831 * security_fs_context_submount() - Initialise fc->security 832 * @fc: new filesystem context 833 * @reference: dentry reference for submount/remount 834 * 835 * Fill out the ->security field for a new fs_context. 836 * 837 * Return: Returns 0 on success or negative error code on failure. 838 */ 839 int security_fs_context_submount(struct fs_context *fc, struct super_block *reference) 840 { 841 return call_int_hook(fs_context_submount, fc, reference); 842 } 843 844 /** 845 * security_fs_context_dup() - Duplicate a fs_context LSM blob 846 * @fc: destination filesystem context 847 * @src_fc: source filesystem context 848 * 849 * Allocate and attach a security structure to sc->security. This pointer is 850 * initialised to NULL by the caller. @fc indicates the new filesystem context. 851 * @src_fc indicates the original filesystem context. 852 * 853 * Return: Returns 0 on success or a negative error code on failure. 854 */ 855 int security_fs_context_dup(struct fs_context *fc, struct fs_context *src_fc) 856 { 857 return call_int_hook(fs_context_dup, fc, src_fc); 858 } 859 860 /** 861 * security_fs_context_parse_param() - Configure a filesystem context 862 * @fc: filesystem context 863 * @param: filesystem parameter 864 * 865 * Userspace provided a parameter to configure a superblock. The LSM can 866 * consume the parameter or return it to the caller for use elsewhere. 867 * 868 * Return: If the parameter is used by the LSM it should return 0, if it is 869 * returned to the caller -ENOPARAM is returned, otherwise a negative 870 * error code is returned. 871 */ 872 int security_fs_context_parse_param(struct fs_context *fc, 873 struct fs_parameter *param) 874 { 875 struct lsm_static_call *scall; 876 int trc; 877 int rc = -ENOPARAM; 878 879 lsm_for_each_hook(scall, fs_context_parse_param) { 880 trc = scall->hl->hook.fs_context_parse_param(fc, param); 881 if (trc == 0) 882 rc = 0; 883 else if (trc != -ENOPARAM) 884 return trc; 885 } 886 return rc; 887 } 888 889 /** 890 * security_sb_alloc() - Allocate a super_block LSM blob 891 * @sb: filesystem superblock 892 * 893 * Allocate and attach a security structure to the sb->s_security field. The 894 * s_security field is initialized to NULL when the structure is allocated. 895 * @sb contains the super_block structure to be modified. 896 * 897 * Return: Returns 0 if operation was successful. 898 */ 899 int security_sb_alloc(struct super_block *sb) 900 { 901 int rc = lsm_superblock_alloc(sb); 902 903 if (unlikely(rc)) 904 return rc; 905 rc = call_int_hook(sb_alloc_security, sb); 906 if (unlikely(rc)) 907 security_sb_free(sb); 908 return rc; 909 } 910 911 /** 912 * security_sb_delete() - Release super_block LSM associated objects 913 * @sb: filesystem superblock 914 * 915 * Release objects tied to a superblock (e.g. inodes). @sb contains the 916 * super_block structure being released. 917 */ 918 void security_sb_delete(struct super_block *sb) 919 { 920 call_void_hook(sb_delete, sb); 921 } 922 923 /** 924 * security_sb_free() - Free a super_block LSM blob 925 * @sb: filesystem superblock 926 * 927 * Deallocate and clear the sb->s_security field. @sb contains the super_block 928 * structure to be modified. 929 */ 930 void security_sb_free(struct super_block *sb) 931 { 932 call_void_hook(sb_free_security, sb); 933 kfree(sb->s_security); 934 sb->s_security = NULL; 935 } 936 937 /** 938 * security_free_mnt_opts() - Free memory associated with mount options 939 * @mnt_opts: LSM processed mount options 940 * 941 * Free memory associated with @mnt_ops. 942 */ 943 void security_free_mnt_opts(void **mnt_opts) 944 { 945 if (!*mnt_opts) 946 return; 947 call_void_hook(sb_free_mnt_opts, *mnt_opts); 948 *mnt_opts = NULL; 949 } 950 EXPORT_SYMBOL(security_free_mnt_opts); 951 952 /** 953 * security_sb_eat_lsm_opts() - Consume LSM mount options 954 * @options: mount options 955 * @mnt_opts: LSM processed mount options 956 * 957 * Eat (scan @options) and save them in @mnt_opts. 958 * 959 * Return: Returns 0 on success, negative values on failure. 960 */ 961 int security_sb_eat_lsm_opts(char *options, void **mnt_opts) 962 { 963 return call_int_hook(sb_eat_lsm_opts, options, mnt_opts); 964 } 965 EXPORT_SYMBOL(security_sb_eat_lsm_opts); 966 967 /** 968 * security_sb_mnt_opts_compat() - Check if new mount options are allowed 969 * @sb: filesystem superblock 970 * @mnt_opts: new mount options 971 * 972 * Determine if the new mount options in @mnt_opts are allowed given the 973 * existing mounted filesystem at @sb. @sb superblock being compared. 974 * 975 * Return: Returns 0 if options are compatible. 976 */ 977 int security_sb_mnt_opts_compat(struct super_block *sb, 978 void *mnt_opts) 979 { 980 return call_int_hook(sb_mnt_opts_compat, sb, mnt_opts); 981 } 982 EXPORT_SYMBOL(security_sb_mnt_opts_compat); 983 984 /** 985 * security_sb_remount() - Verify no incompatible mount changes during remount 986 * @sb: filesystem superblock 987 * @mnt_opts: (re)mount options 988 * 989 * Extracts security system specific mount options and verifies no changes are 990 * being made to those options. 991 * 992 * Return: Returns 0 if permission is granted. 993 */ 994 int security_sb_remount(struct super_block *sb, 995 void *mnt_opts) 996 { 997 return call_int_hook(sb_remount, sb, mnt_opts); 998 } 999 EXPORT_SYMBOL(security_sb_remount); 1000 1001 /** 1002 * security_sb_kern_mount() - Check if a kernel mount is allowed 1003 * @sb: filesystem superblock 1004 * 1005 * Mount this @sb if allowed by permissions. 1006 * 1007 * Return: Returns 0 if permission is granted. 1008 */ 1009 int security_sb_kern_mount(const struct super_block *sb) 1010 { 1011 return call_int_hook(sb_kern_mount, sb); 1012 } 1013 1014 /** 1015 * security_sb_show_options() - Output the mount options for a superblock 1016 * @m: output file 1017 * @sb: filesystem superblock 1018 * 1019 * Show (print on @m) mount options for this @sb. 1020 * 1021 * Return: Returns 0 on success, negative values on failure. 1022 */ 1023 int security_sb_show_options(struct seq_file *m, struct super_block *sb) 1024 { 1025 return call_int_hook(sb_show_options, m, sb); 1026 } 1027 1028 /** 1029 * security_sb_statfs() - Check if accessing fs stats is allowed 1030 * @dentry: superblock handle 1031 * 1032 * Check permission before obtaining filesystem statistics for the @mnt 1033 * mountpoint. @dentry is a handle on the superblock for the filesystem. 1034 * 1035 * Return: Returns 0 if permission is granted. 1036 */ 1037 int security_sb_statfs(struct dentry *dentry) 1038 { 1039 return call_int_hook(sb_statfs, dentry); 1040 } 1041 1042 /** 1043 * security_sb_mount() - Check permission for mounting a filesystem 1044 * @dev_name: filesystem backing device 1045 * @path: mount point 1046 * @type: filesystem type 1047 * @flags: mount flags 1048 * @data: filesystem specific data 1049 * 1050 * Check permission before an object specified by @dev_name is mounted on the 1051 * mount point named by @nd. For an ordinary mount, @dev_name identifies a 1052 * device if the file system type requires a device. For a remount 1053 * (@flags & MS_REMOUNT), @dev_name is irrelevant. For a loopback/bind mount 1054 * (@flags & MS_BIND), @dev_name identifies the pathname of the object being 1055 * mounted. 1056 * 1057 * Return: Returns 0 if permission is granted. 1058 */ 1059 int security_sb_mount(const char *dev_name, const struct path *path, 1060 const char *type, unsigned long flags, void *data) 1061 { 1062 return call_int_hook(sb_mount, dev_name, path, type, flags, data); 1063 } 1064 1065 /** 1066 * security_sb_umount() - Check permission for unmounting a filesystem 1067 * @mnt: mounted filesystem 1068 * @flags: unmount flags 1069 * 1070 * Check permission before the @mnt file system is unmounted. 1071 * 1072 * Return: Returns 0 if permission is granted. 1073 */ 1074 int security_sb_umount(struct vfsmount *mnt, int flags) 1075 { 1076 return call_int_hook(sb_umount, mnt, flags); 1077 } 1078 1079 /** 1080 * security_sb_pivotroot() - Check permissions for pivoting the rootfs 1081 * @old_path: new location for current rootfs 1082 * @new_path: location of the new rootfs 1083 * 1084 * Check permission before pivoting the root filesystem. 1085 * 1086 * Return: Returns 0 if permission is granted. 1087 */ 1088 int security_sb_pivotroot(const struct path *old_path, 1089 const struct path *new_path) 1090 { 1091 return call_int_hook(sb_pivotroot, old_path, new_path); 1092 } 1093 1094 /** 1095 * security_sb_set_mnt_opts() - Set the mount options for a filesystem 1096 * @sb: filesystem superblock 1097 * @mnt_opts: binary mount options 1098 * @kern_flags: kernel flags (in) 1099 * @set_kern_flags: kernel flags (out) 1100 * 1101 * Set the security relevant mount options used for a superblock. 1102 * 1103 * Return: Returns 0 on success, error on failure. 1104 */ 1105 int security_sb_set_mnt_opts(struct super_block *sb, 1106 void *mnt_opts, 1107 unsigned long kern_flags, 1108 unsigned long *set_kern_flags) 1109 { 1110 struct lsm_static_call *scall; 1111 int rc = mnt_opts ? -EOPNOTSUPP : LSM_RET_DEFAULT(sb_set_mnt_opts); 1112 1113 lsm_for_each_hook(scall, sb_set_mnt_opts) { 1114 rc = scall->hl->hook.sb_set_mnt_opts(sb, mnt_opts, kern_flags, 1115 set_kern_flags); 1116 if (rc != LSM_RET_DEFAULT(sb_set_mnt_opts)) 1117 break; 1118 } 1119 return rc; 1120 } 1121 EXPORT_SYMBOL(security_sb_set_mnt_opts); 1122 1123 /** 1124 * security_sb_clone_mnt_opts() - Duplicate superblock mount options 1125 * @oldsb: source superblock 1126 * @newsb: destination superblock 1127 * @kern_flags: kernel flags (in) 1128 * @set_kern_flags: kernel flags (out) 1129 * 1130 * Copy all security options from a given superblock to another. 1131 * 1132 * Return: Returns 0 on success, error on failure. 1133 */ 1134 int security_sb_clone_mnt_opts(const struct super_block *oldsb, 1135 struct super_block *newsb, 1136 unsigned long kern_flags, 1137 unsigned long *set_kern_flags) 1138 { 1139 return call_int_hook(sb_clone_mnt_opts, oldsb, newsb, 1140 kern_flags, set_kern_flags); 1141 } 1142 EXPORT_SYMBOL(security_sb_clone_mnt_opts); 1143 1144 /** 1145 * security_move_mount() - Check permissions for moving a mount 1146 * @from_path: source mount point 1147 * @to_path: destination mount point 1148 * 1149 * Check permission before a mount is moved. 1150 * 1151 * Return: Returns 0 if permission is granted. 1152 */ 1153 int security_move_mount(const struct path *from_path, 1154 const struct path *to_path) 1155 { 1156 return call_int_hook(move_mount, from_path, to_path); 1157 } 1158 1159 /** 1160 * security_path_notify() - Check if setting a watch is allowed 1161 * @path: file path 1162 * @mask: event mask 1163 * @obj_type: file path type 1164 * 1165 * Check permissions before setting a watch on events as defined by @mask, on 1166 * an object at @path, whose type is defined by @obj_type. 1167 * 1168 * Return: Returns 0 if permission is granted. 1169 */ 1170 int security_path_notify(const struct path *path, u64 mask, 1171 unsigned int obj_type) 1172 { 1173 return call_int_hook(path_notify, path, mask, obj_type); 1174 } 1175 1176 /** 1177 * security_inode_alloc() - Allocate an inode LSM blob 1178 * @inode: the inode 1179 * @gfp: allocation flags 1180 * 1181 * Allocate and attach a security structure to @inode->i_security. The 1182 * i_security field is initialized to NULL when the inode structure is 1183 * allocated. 1184 * 1185 * Return: Return 0 if operation was successful. 1186 */ 1187 int security_inode_alloc(struct inode *inode, gfp_t gfp) 1188 { 1189 int rc = lsm_inode_alloc(inode, gfp); 1190 1191 if (unlikely(rc)) 1192 return rc; 1193 rc = call_int_hook(inode_alloc_security, inode); 1194 if (unlikely(rc)) 1195 security_inode_free(inode); 1196 return rc; 1197 } 1198 1199 static void inode_free_by_rcu(struct rcu_head *head) 1200 { 1201 /* The rcu head is at the start of the inode blob */ 1202 call_void_hook(inode_free_security_rcu, head); 1203 kmem_cache_free(lsm_inode_cache, head); 1204 } 1205 1206 /** 1207 * security_inode_free() - Free an inode's LSM blob 1208 * @inode: the inode 1209 * 1210 * Release any LSM resources associated with @inode, although due to the 1211 * inode's RCU protections it is possible that the resources will not be 1212 * fully released until after the current RCU grace period has elapsed. 1213 * 1214 * It is important for LSMs to note that despite being present in a call to 1215 * security_inode_free(), @inode may still be referenced in a VFS path walk 1216 * and calls to security_inode_permission() may be made during, or after, 1217 * a call to security_inode_free(). For this reason the inode->i_security 1218 * field is released via a call_rcu() callback and any LSMs which need to 1219 * retain inode state for use in security_inode_permission() should only 1220 * release that state in the inode_free_security_rcu() LSM hook callback. 1221 */ 1222 void security_inode_free(struct inode *inode) 1223 { 1224 call_void_hook(inode_free_security, inode); 1225 if (!inode->i_security) 1226 return; 1227 call_rcu((struct rcu_head *)inode->i_security, inode_free_by_rcu); 1228 } 1229 1230 /** 1231 * security_dentry_init_security() - Perform dentry initialization 1232 * @dentry: the dentry to initialize 1233 * @mode: mode used to determine resource type 1234 * @name: name of the last path component 1235 * @xattr_name: name of the security/LSM xattr 1236 * @lsmctx: pointer to the resulting LSM context 1237 * 1238 * Compute a context for a dentry as the inode is not yet available since NFSv4 1239 * has no label backed by an EA anyway. It is important to note that 1240 * @xattr_name does not need to be free'd by the caller, it is a static string. 1241 * 1242 * Return: Returns 0 on success, negative values on failure. 1243 */ 1244 int security_dentry_init_security(struct dentry *dentry, int mode, 1245 const struct qstr *name, 1246 const char **xattr_name, 1247 struct lsm_context *lsmctx) 1248 { 1249 return call_int_hook(dentry_init_security, dentry, mode, name, 1250 xattr_name, lsmctx); 1251 } 1252 EXPORT_SYMBOL(security_dentry_init_security); 1253 1254 /** 1255 * security_dentry_create_files_as() - Perform dentry initialization 1256 * @dentry: the dentry to initialize 1257 * @mode: mode used to determine resource type 1258 * @name: name of the last path component 1259 * @old: creds to use for LSM context calculations 1260 * @new: creds to modify 1261 * 1262 * Compute a context for a dentry as the inode is not yet available and set 1263 * that context in passed in creds so that new files are created using that 1264 * context. Context is calculated using the passed in creds and not the creds 1265 * of the caller. 1266 * 1267 * Return: Returns 0 on success, error on failure. 1268 */ 1269 int security_dentry_create_files_as(struct dentry *dentry, int mode, 1270 const struct qstr *name, 1271 const struct cred *old, struct cred *new) 1272 { 1273 return call_int_hook(dentry_create_files_as, dentry, mode, 1274 name, old, new); 1275 } 1276 EXPORT_SYMBOL(security_dentry_create_files_as); 1277 1278 /** 1279 * security_inode_init_security() - Initialize an inode's LSM context 1280 * @inode: the inode 1281 * @dir: parent directory 1282 * @qstr: last component of the pathname 1283 * @initxattrs: callback function to write xattrs 1284 * @fs_data: filesystem specific data 1285 * 1286 * Obtain the security attribute name suffix and value to set on a newly 1287 * created inode and set up the incore security field for the new inode. This 1288 * hook is called by the fs code as part of the inode creation transaction and 1289 * provides for atomic labeling of the inode, unlike the post_create/mkdir/... 1290 * hooks called by the VFS. 1291 * 1292 * The hook function is expected to populate the xattrs array, by calling 1293 * lsm_get_xattr_slot() to retrieve the slots reserved by the security module 1294 * with the lbs_xattr_count field of the lsm_blob_sizes structure. For each 1295 * slot, the hook function should set ->name to the attribute name suffix 1296 * (e.g. selinux), to allocate ->value (will be freed by the caller) and set it 1297 * to the attribute value, to set ->value_len to the length of the value. If 1298 * the security module does not use security attributes or does not wish to put 1299 * a security attribute on this particular inode, then it should return 1300 * -EOPNOTSUPP to skip this processing. 1301 * 1302 * Return: Returns 0 if the LSM successfully initialized all of the inode 1303 * security attributes that are required, negative values otherwise. 1304 */ 1305 int security_inode_init_security(struct inode *inode, struct inode *dir, 1306 const struct qstr *qstr, 1307 const initxattrs initxattrs, void *fs_data) 1308 { 1309 struct lsm_static_call *scall; 1310 struct xattr *new_xattrs = NULL; 1311 int ret = -EOPNOTSUPP, xattr_count = 0; 1312 1313 if (unlikely(IS_PRIVATE(inode))) 1314 return 0; 1315 1316 if (!blob_sizes.lbs_xattr_count) 1317 return 0; 1318 1319 if (initxattrs) { 1320 /* Allocate +1 as terminator. */ 1321 new_xattrs = kcalloc(blob_sizes.lbs_xattr_count + 1, 1322 sizeof(*new_xattrs), GFP_NOFS); 1323 if (!new_xattrs) 1324 return -ENOMEM; 1325 } 1326 1327 lsm_for_each_hook(scall, inode_init_security) { 1328 ret = scall->hl->hook.inode_init_security(inode, dir, qstr, new_xattrs, 1329 &xattr_count); 1330 if (ret && ret != -EOPNOTSUPP) 1331 goto out; 1332 /* 1333 * As documented in lsm_hooks.h, -EOPNOTSUPP in this context 1334 * means that the LSM is not willing to provide an xattr, not 1335 * that it wants to signal an error. Thus, continue to invoke 1336 * the remaining LSMs. 1337 */ 1338 } 1339 1340 /* If initxattrs() is NULL, xattr_count is zero, skip the call. */ 1341 if (!xattr_count) 1342 goto out; 1343 1344 ret = initxattrs(inode, new_xattrs, fs_data); 1345 out: 1346 for (; xattr_count > 0; xattr_count--) 1347 kfree(new_xattrs[xattr_count - 1].value); 1348 kfree(new_xattrs); 1349 return (ret == -EOPNOTSUPP) ? 0 : ret; 1350 } 1351 EXPORT_SYMBOL(security_inode_init_security); 1352 1353 /** 1354 * security_inode_init_security_anon() - Initialize an anonymous inode 1355 * @inode: the inode 1356 * @name: the anonymous inode class 1357 * @context_inode: an optional related inode 1358 * 1359 * Set up the incore security field for the new anonymous inode and return 1360 * whether the inode creation is permitted by the security module or not. 1361 * 1362 * Return: Returns 0 on success, -EACCES if the security module denies the 1363 * creation of this inode, or another -errno upon other errors. 1364 */ 1365 int security_inode_init_security_anon(struct inode *inode, 1366 const struct qstr *name, 1367 const struct inode *context_inode) 1368 { 1369 return call_int_hook(inode_init_security_anon, inode, name, 1370 context_inode); 1371 } 1372 1373 #ifdef CONFIG_SECURITY_PATH 1374 /** 1375 * security_path_mknod() - Check if creating a special file is allowed 1376 * @dir: parent directory 1377 * @dentry: new file 1378 * @mode: new file mode 1379 * @dev: device number 1380 * 1381 * Check permissions when creating a file. Note that this hook is called even 1382 * if mknod operation is being done for a regular file. 1383 * 1384 * Return: Returns 0 if permission is granted. 1385 */ 1386 int security_path_mknod(const struct path *dir, struct dentry *dentry, 1387 umode_t mode, unsigned int dev) 1388 { 1389 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 1390 return 0; 1391 return call_int_hook(path_mknod, dir, dentry, mode, dev); 1392 } 1393 EXPORT_SYMBOL(security_path_mknod); 1394 1395 /** 1396 * security_path_post_mknod() - Update inode security after reg file creation 1397 * @idmap: idmap of the mount 1398 * @dentry: new file 1399 * 1400 * Update inode security field after a regular file has been created. 1401 */ 1402 void security_path_post_mknod(struct mnt_idmap *idmap, struct dentry *dentry) 1403 { 1404 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1405 return; 1406 call_void_hook(path_post_mknod, idmap, dentry); 1407 } 1408 1409 /** 1410 * security_path_mkdir() - Check if creating a new directory is allowed 1411 * @dir: parent directory 1412 * @dentry: new directory 1413 * @mode: new directory mode 1414 * 1415 * Check permissions to create a new directory in the existing directory. 1416 * 1417 * Return: Returns 0 if permission is granted. 1418 */ 1419 int security_path_mkdir(const struct path *dir, struct dentry *dentry, 1420 umode_t mode) 1421 { 1422 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 1423 return 0; 1424 return call_int_hook(path_mkdir, dir, dentry, mode); 1425 } 1426 EXPORT_SYMBOL(security_path_mkdir); 1427 1428 /** 1429 * security_path_rmdir() - Check if removing a directory is allowed 1430 * @dir: parent directory 1431 * @dentry: directory to remove 1432 * 1433 * Check the permission to remove a directory. 1434 * 1435 * Return: Returns 0 if permission is granted. 1436 */ 1437 int security_path_rmdir(const struct path *dir, struct dentry *dentry) 1438 { 1439 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 1440 return 0; 1441 return call_int_hook(path_rmdir, dir, dentry); 1442 } 1443 1444 /** 1445 * security_path_unlink() - Check if removing a hard link is allowed 1446 * @dir: parent directory 1447 * @dentry: file 1448 * 1449 * Check the permission to remove a hard link to a file. 1450 * 1451 * Return: Returns 0 if permission is granted. 1452 */ 1453 int security_path_unlink(const struct path *dir, struct dentry *dentry) 1454 { 1455 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 1456 return 0; 1457 return call_int_hook(path_unlink, dir, dentry); 1458 } 1459 EXPORT_SYMBOL(security_path_unlink); 1460 1461 /** 1462 * security_path_symlink() - Check if creating a symbolic link is allowed 1463 * @dir: parent directory 1464 * @dentry: symbolic link 1465 * @old_name: file pathname 1466 * 1467 * Check the permission to create a symbolic link to a file. 1468 * 1469 * Return: Returns 0 if permission is granted. 1470 */ 1471 int security_path_symlink(const struct path *dir, struct dentry *dentry, 1472 const char *old_name) 1473 { 1474 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 1475 return 0; 1476 return call_int_hook(path_symlink, dir, dentry, old_name); 1477 } 1478 1479 /** 1480 * security_path_link - Check if creating a hard link is allowed 1481 * @old_dentry: existing file 1482 * @new_dir: new parent directory 1483 * @new_dentry: new link 1484 * 1485 * Check permission before creating a new hard link to a file. 1486 * 1487 * Return: Returns 0 if permission is granted. 1488 */ 1489 int security_path_link(struct dentry *old_dentry, const struct path *new_dir, 1490 struct dentry *new_dentry) 1491 { 1492 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)))) 1493 return 0; 1494 return call_int_hook(path_link, old_dentry, new_dir, new_dentry); 1495 } 1496 1497 /** 1498 * security_path_rename() - Check if renaming a file is allowed 1499 * @old_dir: parent directory of the old file 1500 * @old_dentry: the old file 1501 * @new_dir: parent directory of the new file 1502 * @new_dentry: the new file 1503 * @flags: flags 1504 * 1505 * Check for permission to rename a file or directory. 1506 * 1507 * Return: Returns 0 if permission is granted. 1508 */ 1509 int security_path_rename(const struct path *old_dir, struct dentry *old_dentry, 1510 const struct path *new_dir, struct dentry *new_dentry, 1511 unsigned int flags) 1512 { 1513 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) || 1514 (d_is_positive(new_dentry) && 1515 IS_PRIVATE(d_backing_inode(new_dentry))))) 1516 return 0; 1517 1518 return call_int_hook(path_rename, old_dir, old_dentry, new_dir, 1519 new_dentry, flags); 1520 } 1521 EXPORT_SYMBOL(security_path_rename); 1522 1523 /** 1524 * security_path_truncate() - Check if truncating a file is allowed 1525 * @path: file 1526 * 1527 * Check permission before truncating the file indicated by path. Note that 1528 * truncation permissions may also be checked based on already opened files, 1529 * using the security_file_truncate() hook. 1530 * 1531 * Return: Returns 0 if permission is granted. 1532 */ 1533 int security_path_truncate(const struct path *path) 1534 { 1535 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 1536 return 0; 1537 return call_int_hook(path_truncate, path); 1538 } 1539 1540 /** 1541 * security_path_chmod() - Check if changing the file's mode is allowed 1542 * @path: file 1543 * @mode: new mode 1544 * 1545 * Check for permission to change a mode of the file @path. The new mode is 1546 * specified in @mode which is a bitmask of constants from 1547 * <include/uapi/linux/stat.h>. 1548 * 1549 * Return: Returns 0 if permission is granted. 1550 */ 1551 int security_path_chmod(const struct path *path, umode_t mode) 1552 { 1553 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 1554 return 0; 1555 return call_int_hook(path_chmod, path, mode); 1556 } 1557 1558 /** 1559 * security_path_chown() - Check if changing the file's owner/group is allowed 1560 * @path: file 1561 * @uid: file owner 1562 * @gid: file group 1563 * 1564 * Check for permission to change owner/group of a file or directory. 1565 * 1566 * Return: Returns 0 if permission is granted. 1567 */ 1568 int security_path_chown(const struct path *path, kuid_t uid, kgid_t gid) 1569 { 1570 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 1571 return 0; 1572 return call_int_hook(path_chown, path, uid, gid); 1573 } 1574 1575 /** 1576 * security_path_chroot() - Check if changing the root directory is allowed 1577 * @path: directory 1578 * 1579 * Check for permission to change root directory. 1580 * 1581 * Return: Returns 0 if permission is granted. 1582 */ 1583 int security_path_chroot(const struct path *path) 1584 { 1585 return call_int_hook(path_chroot, path); 1586 } 1587 #endif /* CONFIG_SECURITY_PATH */ 1588 1589 /** 1590 * security_inode_create() - Check if creating a file is allowed 1591 * @dir: the parent directory 1592 * @dentry: the file being created 1593 * @mode: requested file mode 1594 * 1595 * Check permission to create a regular file. 1596 * 1597 * Return: Returns 0 if permission is granted. 1598 */ 1599 int security_inode_create(struct inode *dir, struct dentry *dentry, 1600 umode_t mode) 1601 { 1602 if (unlikely(IS_PRIVATE(dir))) 1603 return 0; 1604 return call_int_hook(inode_create, dir, dentry, mode); 1605 } 1606 EXPORT_SYMBOL_GPL(security_inode_create); 1607 1608 /** 1609 * security_inode_post_create_tmpfile() - Update inode security of new tmpfile 1610 * @idmap: idmap of the mount 1611 * @inode: inode of the new tmpfile 1612 * 1613 * Update inode security data after a tmpfile has been created. 1614 */ 1615 void security_inode_post_create_tmpfile(struct mnt_idmap *idmap, 1616 struct inode *inode) 1617 { 1618 if (unlikely(IS_PRIVATE(inode))) 1619 return; 1620 call_void_hook(inode_post_create_tmpfile, idmap, inode); 1621 } 1622 1623 /** 1624 * security_inode_link() - Check if creating a hard link is allowed 1625 * @old_dentry: existing file 1626 * @dir: new parent directory 1627 * @new_dentry: new link 1628 * 1629 * Check permission before creating a new hard link to a file. 1630 * 1631 * Return: Returns 0 if permission is granted. 1632 */ 1633 int security_inode_link(struct dentry *old_dentry, struct inode *dir, 1634 struct dentry *new_dentry) 1635 { 1636 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)))) 1637 return 0; 1638 return call_int_hook(inode_link, old_dentry, dir, new_dentry); 1639 } 1640 1641 /** 1642 * security_inode_unlink() - Check if removing a hard link is allowed 1643 * @dir: parent directory 1644 * @dentry: file 1645 * 1646 * Check the permission to remove a hard link to a file. 1647 * 1648 * Return: Returns 0 if permission is granted. 1649 */ 1650 int security_inode_unlink(struct inode *dir, struct dentry *dentry) 1651 { 1652 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1653 return 0; 1654 return call_int_hook(inode_unlink, dir, dentry); 1655 } 1656 1657 /** 1658 * security_inode_symlink() - Check if creating a symbolic link is allowed 1659 * @dir: parent directory 1660 * @dentry: symbolic link 1661 * @old_name: existing filename 1662 * 1663 * Check the permission to create a symbolic link to a file. 1664 * 1665 * Return: Returns 0 if permission is granted. 1666 */ 1667 int security_inode_symlink(struct inode *dir, struct dentry *dentry, 1668 const char *old_name) 1669 { 1670 if (unlikely(IS_PRIVATE(dir))) 1671 return 0; 1672 return call_int_hook(inode_symlink, dir, dentry, old_name); 1673 } 1674 1675 /** 1676 * security_inode_mkdir() - Check if creating a new directory is allowed 1677 * @dir: parent directory 1678 * @dentry: new directory 1679 * @mode: new directory mode 1680 * 1681 * Check permissions to create a new directory in the existing directory 1682 * associated with inode structure @dir. 1683 * 1684 * Return: Returns 0 if permission is granted. 1685 */ 1686 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 1687 { 1688 if (unlikely(IS_PRIVATE(dir))) 1689 return 0; 1690 return call_int_hook(inode_mkdir, dir, dentry, mode); 1691 } 1692 EXPORT_SYMBOL_GPL(security_inode_mkdir); 1693 1694 /** 1695 * security_inode_rmdir() - Check if removing a directory is allowed 1696 * @dir: parent directory 1697 * @dentry: directory to be removed 1698 * 1699 * Check the permission to remove a directory. 1700 * 1701 * Return: Returns 0 if permission is granted. 1702 */ 1703 int security_inode_rmdir(struct inode *dir, struct dentry *dentry) 1704 { 1705 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1706 return 0; 1707 return call_int_hook(inode_rmdir, dir, dentry); 1708 } 1709 1710 /** 1711 * security_inode_mknod() - Check if creating a special file is allowed 1712 * @dir: parent directory 1713 * @dentry: new file 1714 * @mode: new file mode 1715 * @dev: device number 1716 * 1717 * Check permissions when creating a special file (or a socket or a fifo file 1718 * created via the mknod system call). Note that if mknod operation is being 1719 * done for a regular file, then the create hook will be called and not this 1720 * hook. 1721 * 1722 * Return: Returns 0 if permission is granted. 1723 */ 1724 int security_inode_mknod(struct inode *dir, struct dentry *dentry, 1725 umode_t mode, dev_t dev) 1726 { 1727 if (unlikely(IS_PRIVATE(dir))) 1728 return 0; 1729 return call_int_hook(inode_mknod, dir, dentry, mode, dev); 1730 } 1731 1732 /** 1733 * security_inode_rename() - Check if renaming a file is allowed 1734 * @old_dir: parent directory of the old file 1735 * @old_dentry: the old file 1736 * @new_dir: parent directory of the new file 1737 * @new_dentry: the new file 1738 * @flags: flags 1739 * 1740 * Check for permission to rename a file or directory. 1741 * 1742 * Return: Returns 0 if permission is granted. 1743 */ 1744 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry, 1745 struct inode *new_dir, struct dentry *new_dentry, 1746 unsigned int flags) 1747 { 1748 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) || 1749 (d_is_positive(new_dentry) && 1750 IS_PRIVATE(d_backing_inode(new_dentry))))) 1751 return 0; 1752 1753 if (flags & RENAME_EXCHANGE) { 1754 int err = call_int_hook(inode_rename, new_dir, new_dentry, 1755 old_dir, old_dentry); 1756 if (err) 1757 return err; 1758 } 1759 1760 return call_int_hook(inode_rename, old_dir, old_dentry, 1761 new_dir, new_dentry); 1762 } 1763 1764 /** 1765 * security_inode_readlink() - Check if reading a symbolic link is allowed 1766 * @dentry: link 1767 * 1768 * Check the permission to read the symbolic link. 1769 * 1770 * Return: Returns 0 if permission is granted. 1771 */ 1772 int security_inode_readlink(struct dentry *dentry) 1773 { 1774 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1775 return 0; 1776 return call_int_hook(inode_readlink, dentry); 1777 } 1778 1779 /** 1780 * security_inode_follow_link() - Check if following a symbolic link is allowed 1781 * @dentry: link dentry 1782 * @inode: link inode 1783 * @rcu: true if in RCU-walk mode 1784 * 1785 * Check permission to follow a symbolic link when looking up a pathname. If 1786 * @rcu is true, @inode is not stable. 1787 * 1788 * Return: Returns 0 if permission is granted. 1789 */ 1790 int security_inode_follow_link(struct dentry *dentry, struct inode *inode, 1791 bool rcu) 1792 { 1793 if (unlikely(IS_PRIVATE(inode))) 1794 return 0; 1795 return call_int_hook(inode_follow_link, dentry, inode, rcu); 1796 } 1797 1798 /** 1799 * security_inode_permission() - Check if accessing an inode is allowed 1800 * @inode: inode 1801 * @mask: access mask 1802 * 1803 * Check permission before accessing an inode. This hook is called by the 1804 * existing Linux permission function, so a security module can use it to 1805 * provide additional checking for existing Linux permission checks. Notice 1806 * that this hook is called when a file is opened (as well as many other 1807 * operations), whereas the file_security_ops permission hook is called when 1808 * the actual read/write operations are performed. 1809 * 1810 * Return: Returns 0 if permission is granted. 1811 */ 1812 int security_inode_permission(struct inode *inode, int mask) 1813 { 1814 if (unlikely(IS_PRIVATE(inode))) 1815 return 0; 1816 return call_int_hook(inode_permission, inode, mask); 1817 } 1818 1819 /** 1820 * security_inode_setattr() - Check if setting file attributes is allowed 1821 * @idmap: idmap of the mount 1822 * @dentry: file 1823 * @attr: new attributes 1824 * 1825 * Check permission before setting file attributes. Note that the kernel call 1826 * to notify_change is performed from several locations, whenever file 1827 * attributes change (such as when a file is truncated, chown/chmod operations, 1828 * transferring disk quotas, etc). 1829 * 1830 * Return: Returns 0 if permission is granted. 1831 */ 1832 int security_inode_setattr(struct mnt_idmap *idmap, 1833 struct dentry *dentry, struct iattr *attr) 1834 { 1835 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1836 return 0; 1837 return call_int_hook(inode_setattr, idmap, dentry, attr); 1838 } 1839 EXPORT_SYMBOL_GPL(security_inode_setattr); 1840 1841 /** 1842 * security_inode_post_setattr() - Update the inode after a setattr operation 1843 * @idmap: idmap of the mount 1844 * @dentry: file 1845 * @ia_valid: file attributes set 1846 * 1847 * Update inode security field after successful setting file attributes. 1848 */ 1849 void security_inode_post_setattr(struct mnt_idmap *idmap, struct dentry *dentry, 1850 int ia_valid) 1851 { 1852 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1853 return; 1854 call_void_hook(inode_post_setattr, idmap, dentry, ia_valid); 1855 } 1856 1857 /** 1858 * security_inode_getattr() - Check if getting file attributes is allowed 1859 * @path: file 1860 * 1861 * Check permission before obtaining file attributes. 1862 * 1863 * Return: Returns 0 if permission is granted. 1864 */ 1865 int security_inode_getattr(const struct path *path) 1866 { 1867 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 1868 return 0; 1869 return call_int_hook(inode_getattr, path); 1870 } 1871 1872 /** 1873 * security_inode_setxattr() - Check if setting file xattrs is allowed 1874 * @idmap: idmap of the mount 1875 * @dentry: file 1876 * @name: xattr name 1877 * @value: xattr value 1878 * @size: size of xattr value 1879 * @flags: flags 1880 * 1881 * This hook performs the desired permission checks before setting the extended 1882 * attributes (xattrs) on @dentry. It is important to note that we have some 1883 * additional logic before the main LSM implementation calls to detect if we 1884 * need to perform an additional capability check at the LSM layer. 1885 * 1886 * Normally we enforce a capability check prior to executing the various LSM 1887 * hook implementations, but if a LSM wants to avoid this capability check, 1888 * it can register a 'inode_xattr_skipcap' hook and return a value of 1 for 1889 * xattrs that it wants to avoid the capability check, leaving the LSM fully 1890 * responsible for enforcing the access control for the specific xattr. If all 1891 * of the enabled LSMs refrain from registering a 'inode_xattr_skipcap' hook, 1892 * or return a 0 (the default return value), the capability check is still 1893 * performed. If no 'inode_xattr_skipcap' hooks are registered the capability 1894 * check is performed. 1895 * 1896 * Return: Returns 0 if permission is granted. 1897 */ 1898 int security_inode_setxattr(struct mnt_idmap *idmap, 1899 struct dentry *dentry, const char *name, 1900 const void *value, size_t size, int flags) 1901 { 1902 int rc; 1903 1904 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1905 return 0; 1906 1907 /* enforce the capability checks at the lsm layer, if needed */ 1908 if (!call_int_hook(inode_xattr_skipcap, name)) { 1909 rc = cap_inode_setxattr(dentry, name, value, size, flags); 1910 if (rc) 1911 return rc; 1912 } 1913 1914 return call_int_hook(inode_setxattr, idmap, dentry, name, value, size, 1915 flags); 1916 } 1917 1918 /** 1919 * security_inode_set_acl() - Check if setting posix acls is allowed 1920 * @idmap: idmap of the mount 1921 * @dentry: file 1922 * @acl_name: acl name 1923 * @kacl: acl struct 1924 * 1925 * Check permission before setting posix acls, the posix acls in @kacl are 1926 * identified by @acl_name. 1927 * 1928 * Return: Returns 0 if permission is granted. 1929 */ 1930 int security_inode_set_acl(struct mnt_idmap *idmap, 1931 struct dentry *dentry, const char *acl_name, 1932 struct posix_acl *kacl) 1933 { 1934 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1935 return 0; 1936 return call_int_hook(inode_set_acl, idmap, dentry, acl_name, kacl); 1937 } 1938 1939 /** 1940 * security_inode_post_set_acl() - Update inode security from posix acls set 1941 * @dentry: file 1942 * @acl_name: acl name 1943 * @kacl: acl struct 1944 * 1945 * Update inode security data after successfully setting posix acls on @dentry. 1946 * The posix acls in @kacl are identified by @acl_name. 1947 */ 1948 void security_inode_post_set_acl(struct dentry *dentry, const char *acl_name, 1949 struct posix_acl *kacl) 1950 { 1951 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1952 return; 1953 call_void_hook(inode_post_set_acl, dentry, acl_name, kacl); 1954 } 1955 1956 /** 1957 * security_inode_get_acl() - Check if reading posix acls is allowed 1958 * @idmap: idmap of the mount 1959 * @dentry: file 1960 * @acl_name: acl name 1961 * 1962 * Check permission before getting osix acls, the posix acls are identified by 1963 * @acl_name. 1964 * 1965 * Return: Returns 0 if permission is granted. 1966 */ 1967 int security_inode_get_acl(struct mnt_idmap *idmap, 1968 struct dentry *dentry, const char *acl_name) 1969 { 1970 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1971 return 0; 1972 return call_int_hook(inode_get_acl, idmap, dentry, acl_name); 1973 } 1974 1975 /** 1976 * security_inode_remove_acl() - Check if removing a posix acl is allowed 1977 * @idmap: idmap of the mount 1978 * @dentry: file 1979 * @acl_name: acl name 1980 * 1981 * Check permission before removing posix acls, the posix acls are identified 1982 * by @acl_name. 1983 * 1984 * Return: Returns 0 if permission is granted. 1985 */ 1986 int security_inode_remove_acl(struct mnt_idmap *idmap, 1987 struct dentry *dentry, const char *acl_name) 1988 { 1989 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1990 return 0; 1991 return call_int_hook(inode_remove_acl, idmap, dentry, acl_name); 1992 } 1993 1994 /** 1995 * security_inode_post_remove_acl() - Update inode security after rm posix acls 1996 * @idmap: idmap of the mount 1997 * @dentry: file 1998 * @acl_name: acl name 1999 * 2000 * Update inode security data after successfully removing posix acls on 2001 * @dentry in @idmap. The posix acls are identified by @acl_name. 2002 */ 2003 void security_inode_post_remove_acl(struct mnt_idmap *idmap, 2004 struct dentry *dentry, const char *acl_name) 2005 { 2006 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2007 return; 2008 call_void_hook(inode_post_remove_acl, idmap, dentry, acl_name); 2009 } 2010 2011 /** 2012 * security_inode_post_setxattr() - Update the inode after a setxattr operation 2013 * @dentry: file 2014 * @name: xattr name 2015 * @value: xattr value 2016 * @size: xattr value size 2017 * @flags: flags 2018 * 2019 * Update inode security field after successful setxattr operation. 2020 */ 2021 void security_inode_post_setxattr(struct dentry *dentry, const char *name, 2022 const void *value, size_t size, int flags) 2023 { 2024 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2025 return; 2026 call_void_hook(inode_post_setxattr, dentry, name, value, size, flags); 2027 } 2028 2029 /** 2030 * security_inode_getxattr() - Check if xattr access is allowed 2031 * @dentry: file 2032 * @name: xattr name 2033 * 2034 * Check permission before obtaining the extended attributes identified by 2035 * @name for @dentry. 2036 * 2037 * Return: Returns 0 if permission is granted. 2038 */ 2039 int security_inode_getxattr(struct dentry *dentry, const char *name) 2040 { 2041 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2042 return 0; 2043 return call_int_hook(inode_getxattr, dentry, name); 2044 } 2045 2046 /** 2047 * security_inode_listxattr() - Check if listing xattrs is allowed 2048 * @dentry: file 2049 * 2050 * Check permission before obtaining the list of extended attribute names for 2051 * @dentry. 2052 * 2053 * Return: Returns 0 if permission is granted. 2054 */ 2055 int security_inode_listxattr(struct dentry *dentry) 2056 { 2057 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2058 return 0; 2059 return call_int_hook(inode_listxattr, dentry); 2060 } 2061 2062 /** 2063 * security_inode_removexattr() - Check if removing an xattr is allowed 2064 * @idmap: idmap of the mount 2065 * @dentry: file 2066 * @name: xattr name 2067 * 2068 * This hook performs the desired permission checks before setting the extended 2069 * attributes (xattrs) on @dentry. It is important to note that we have some 2070 * additional logic before the main LSM implementation calls to detect if we 2071 * need to perform an additional capability check at the LSM layer. 2072 * 2073 * Normally we enforce a capability check prior to executing the various LSM 2074 * hook implementations, but if a LSM wants to avoid this capability check, 2075 * it can register a 'inode_xattr_skipcap' hook and return a value of 1 for 2076 * xattrs that it wants to avoid the capability check, leaving the LSM fully 2077 * responsible for enforcing the access control for the specific xattr. If all 2078 * of the enabled LSMs refrain from registering a 'inode_xattr_skipcap' hook, 2079 * or return a 0 (the default return value), the capability check is still 2080 * performed. If no 'inode_xattr_skipcap' hooks are registered the capability 2081 * check is performed. 2082 * 2083 * Return: Returns 0 if permission is granted. 2084 */ 2085 int security_inode_removexattr(struct mnt_idmap *idmap, 2086 struct dentry *dentry, const char *name) 2087 { 2088 int rc; 2089 2090 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2091 return 0; 2092 2093 /* enforce the capability checks at the lsm layer, if needed */ 2094 if (!call_int_hook(inode_xattr_skipcap, name)) { 2095 rc = cap_inode_removexattr(idmap, dentry, name); 2096 if (rc) 2097 return rc; 2098 } 2099 2100 return call_int_hook(inode_removexattr, idmap, dentry, name); 2101 } 2102 2103 /** 2104 * security_inode_post_removexattr() - Update the inode after a removexattr op 2105 * @dentry: file 2106 * @name: xattr name 2107 * 2108 * Update the inode after a successful removexattr operation. 2109 */ 2110 void security_inode_post_removexattr(struct dentry *dentry, const char *name) 2111 { 2112 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2113 return; 2114 call_void_hook(inode_post_removexattr, dentry, name); 2115 } 2116 2117 /** 2118 * security_inode_file_setattr() - check if setting fsxattr is allowed 2119 * @dentry: file to set filesystem extended attributes on 2120 * @fa: extended attributes to set on the inode 2121 * 2122 * Called when file_setattr() syscall or FS_IOC_FSSETXATTR ioctl() is called on 2123 * inode 2124 * 2125 * Return: Returns 0 if permission is granted. 2126 */ 2127 int security_inode_file_setattr(struct dentry *dentry, struct file_kattr *fa) 2128 { 2129 return call_int_hook(inode_file_setattr, dentry, fa); 2130 } 2131 2132 /** 2133 * security_inode_file_getattr() - check if retrieving fsxattr is allowed 2134 * @dentry: file to retrieve filesystem extended attributes from 2135 * @fa: extended attributes to get 2136 * 2137 * Called when file_getattr() syscall or FS_IOC_FSGETXATTR ioctl() is called on 2138 * inode 2139 * 2140 * Return: Returns 0 if permission is granted. 2141 */ 2142 int security_inode_file_getattr(struct dentry *dentry, struct file_kattr *fa) 2143 { 2144 return call_int_hook(inode_file_getattr, dentry, fa); 2145 } 2146 2147 /** 2148 * security_inode_need_killpriv() - Check if security_inode_killpriv() required 2149 * @dentry: associated dentry 2150 * 2151 * Called when an inode has been changed to determine if 2152 * security_inode_killpriv() should be called. 2153 * 2154 * Return: Return <0 on error to abort the inode change operation, return 0 if 2155 * security_inode_killpriv() does not need to be called, return >0 if 2156 * security_inode_killpriv() does need to be called. 2157 */ 2158 int security_inode_need_killpriv(struct dentry *dentry) 2159 { 2160 return call_int_hook(inode_need_killpriv, dentry); 2161 } 2162 2163 /** 2164 * security_inode_killpriv() - The setuid bit is removed, update LSM state 2165 * @idmap: idmap of the mount 2166 * @dentry: associated dentry 2167 * 2168 * The @dentry's setuid bit is being removed. Remove similar security labels. 2169 * Called with the dentry->d_inode->i_mutex held. 2170 * 2171 * Return: Return 0 on success. If error is returned, then the operation 2172 * causing setuid bit removal is failed. 2173 */ 2174 int security_inode_killpriv(struct mnt_idmap *idmap, 2175 struct dentry *dentry) 2176 { 2177 return call_int_hook(inode_killpriv, idmap, dentry); 2178 } 2179 2180 /** 2181 * security_inode_getsecurity() - Get the xattr security label of an inode 2182 * @idmap: idmap of the mount 2183 * @inode: inode 2184 * @name: xattr name 2185 * @buffer: security label buffer 2186 * @alloc: allocation flag 2187 * 2188 * Retrieve a copy of the extended attribute representation of the security 2189 * label associated with @name for @inode via @buffer. Note that @name is the 2190 * remainder of the attribute name after the security prefix has been removed. 2191 * @alloc is used to specify if the call should return a value via the buffer 2192 * or just the value length. 2193 * 2194 * Return: Returns size of buffer on success. 2195 */ 2196 int security_inode_getsecurity(struct mnt_idmap *idmap, 2197 struct inode *inode, const char *name, 2198 void **buffer, bool alloc) 2199 { 2200 if (unlikely(IS_PRIVATE(inode))) 2201 return LSM_RET_DEFAULT(inode_getsecurity); 2202 2203 return call_int_hook(inode_getsecurity, idmap, inode, name, buffer, 2204 alloc); 2205 } 2206 2207 /** 2208 * security_inode_setsecurity() - Set the xattr security label of an inode 2209 * @inode: inode 2210 * @name: xattr name 2211 * @value: security label 2212 * @size: length of security label 2213 * @flags: flags 2214 * 2215 * Set the security label associated with @name for @inode from the extended 2216 * attribute value @value. @size indicates the size of the @value in bytes. 2217 * @flags may be XATTR_CREATE, XATTR_REPLACE, or 0. Note that @name is the 2218 * remainder of the attribute name after the security. prefix has been removed. 2219 * 2220 * Return: Returns 0 on success. 2221 */ 2222 int security_inode_setsecurity(struct inode *inode, const char *name, 2223 const void *value, size_t size, int flags) 2224 { 2225 if (unlikely(IS_PRIVATE(inode))) 2226 return LSM_RET_DEFAULT(inode_setsecurity); 2227 2228 return call_int_hook(inode_setsecurity, inode, name, value, size, 2229 flags); 2230 } 2231 2232 /** 2233 * security_inode_listsecurity() - List the xattr security label names 2234 * @inode: inode 2235 * @buffer: buffer 2236 * @buffer_size: size of buffer 2237 * 2238 * Copy the extended attribute names for the security labels associated with 2239 * @inode into @buffer. The maximum size of @buffer is specified by 2240 * @buffer_size. @buffer may be NULL to request the size of the buffer 2241 * required. 2242 * 2243 * Return: Returns number of bytes used/required on success. 2244 */ 2245 int security_inode_listsecurity(struct inode *inode, 2246 char *buffer, size_t buffer_size) 2247 { 2248 if (unlikely(IS_PRIVATE(inode))) 2249 return 0; 2250 return call_int_hook(inode_listsecurity, inode, buffer, buffer_size); 2251 } 2252 EXPORT_SYMBOL(security_inode_listsecurity); 2253 2254 /** 2255 * security_inode_getlsmprop() - Get an inode's LSM data 2256 * @inode: inode 2257 * @prop: lsm specific information to return 2258 * 2259 * Get the lsm specific information associated with the node. 2260 */ 2261 void security_inode_getlsmprop(struct inode *inode, struct lsm_prop *prop) 2262 { 2263 call_void_hook(inode_getlsmprop, inode, prop); 2264 } 2265 2266 /** 2267 * security_inode_copy_up() - Create new creds for an overlayfs copy-up op 2268 * @src: union dentry of copy-up file 2269 * @new: newly created creds 2270 * 2271 * A file is about to be copied up from lower layer to upper layer of overlay 2272 * filesystem. Security module can prepare a set of new creds and modify as 2273 * need be and return new creds. Caller will switch to new creds temporarily to 2274 * create new file and release newly allocated creds. 2275 * 2276 * Return: Returns 0 on success or a negative error code on error. 2277 */ 2278 int security_inode_copy_up(struct dentry *src, struct cred **new) 2279 { 2280 return call_int_hook(inode_copy_up, src, new); 2281 } 2282 EXPORT_SYMBOL(security_inode_copy_up); 2283 2284 /** 2285 * security_inode_copy_up_xattr() - Filter xattrs in an overlayfs copy-up op 2286 * @src: union dentry of copy-up file 2287 * @name: xattr name 2288 * 2289 * Filter the xattrs being copied up when a unioned file is copied up from a 2290 * lower layer to the union/overlay layer. The caller is responsible for 2291 * reading and writing the xattrs, this hook is merely a filter. 2292 * 2293 * Return: Returns 0 to accept the xattr, -ECANCELED to discard the xattr, 2294 * -EOPNOTSUPP if the security module does not know about attribute, 2295 * or a negative error code to abort the copy up. 2296 */ 2297 int security_inode_copy_up_xattr(struct dentry *src, const char *name) 2298 { 2299 int rc; 2300 2301 rc = call_int_hook(inode_copy_up_xattr, src, name); 2302 if (rc != LSM_RET_DEFAULT(inode_copy_up_xattr)) 2303 return rc; 2304 2305 return LSM_RET_DEFAULT(inode_copy_up_xattr); 2306 } 2307 EXPORT_SYMBOL(security_inode_copy_up_xattr); 2308 2309 /** 2310 * security_inode_setintegrity() - Set the inode's integrity data 2311 * @inode: inode 2312 * @type: type of integrity, e.g. hash digest, signature, etc 2313 * @value: the integrity value 2314 * @size: size of the integrity value 2315 * 2316 * Register a verified integrity measurement of a inode with LSMs. 2317 * LSMs should free the previously saved data if @value is NULL. 2318 * 2319 * Return: Returns 0 on success, negative values on failure. 2320 */ 2321 int security_inode_setintegrity(const struct inode *inode, 2322 enum lsm_integrity_type type, const void *value, 2323 size_t size) 2324 { 2325 return call_int_hook(inode_setintegrity, inode, type, value, size); 2326 } 2327 EXPORT_SYMBOL(security_inode_setintegrity); 2328 2329 /** 2330 * security_kernfs_init_security() - Init LSM context for a kernfs node 2331 * @kn_dir: parent kernfs node 2332 * @kn: the kernfs node to initialize 2333 * 2334 * Initialize the security context of a newly created kernfs node based on its 2335 * own and its parent's attributes. 2336 * 2337 * Return: Returns 0 if permission is granted. 2338 */ 2339 int security_kernfs_init_security(struct kernfs_node *kn_dir, 2340 struct kernfs_node *kn) 2341 { 2342 return call_int_hook(kernfs_init_security, kn_dir, kn); 2343 } 2344 2345 /** 2346 * security_file_permission() - Check file permissions 2347 * @file: file 2348 * @mask: requested permissions 2349 * 2350 * Check file permissions before accessing an open file. This hook is called 2351 * by various operations that read or write files. A security module can use 2352 * this hook to perform additional checking on these operations, e.g. to 2353 * revalidate permissions on use to support privilege bracketing or policy 2354 * changes. Notice that this hook is used when the actual read/write 2355 * operations are performed, whereas the inode_security_ops hook is called when 2356 * a file is opened (as well as many other operations). Although this hook can 2357 * be used to revalidate permissions for various system call operations that 2358 * read or write files, it does not address the revalidation of permissions for 2359 * memory-mapped files. Security modules must handle this separately if they 2360 * need such revalidation. 2361 * 2362 * Return: Returns 0 if permission is granted. 2363 */ 2364 int security_file_permission(struct file *file, int mask) 2365 { 2366 return call_int_hook(file_permission, file, mask); 2367 } 2368 2369 /** 2370 * security_file_alloc() - Allocate and init a file's LSM blob 2371 * @file: the file 2372 * 2373 * Allocate and attach a security structure to the file->f_security field. The 2374 * security field is initialized to NULL when the structure is first created. 2375 * 2376 * Return: Return 0 if the hook is successful and permission is granted. 2377 */ 2378 int security_file_alloc(struct file *file) 2379 { 2380 int rc = lsm_file_alloc(file); 2381 2382 if (rc) 2383 return rc; 2384 rc = call_int_hook(file_alloc_security, file); 2385 if (unlikely(rc)) 2386 security_file_free(file); 2387 return rc; 2388 } 2389 2390 /** 2391 * security_file_release() - Perform actions before releasing the file ref 2392 * @file: the file 2393 * 2394 * Perform actions before releasing the last reference to a file. 2395 */ 2396 void security_file_release(struct file *file) 2397 { 2398 call_void_hook(file_release, file); 2399 } 2400 2401 /** 2402 * security_file_free() - Free a file's LSM blob 2403 * @file: the file 2404 * 2405 * Deallocate and free any security structures stored in file->f_security. 2406 */ 2407 void security_file_free(struct file *file) 2408 { 2409 void *blob; 2410 2411 call_void_hook(file_free_security, file); 2412 2413 blob = file->f_security; 2414 if (blob) { 2415 file->f_security = NULL; 2416 kmem_cache_free(lsm_file_cache, blob); 2417 } 2418 } 2419 2420 /** 2421 * security_file_ioctl() - Check if an ioctl is allowed 2422 * @file: associated file 2423 * @cmd: ioctl cmd 2424 * @arg: ioctl arguments 2425 * 2426 * Check permission for an ioctl operation on @file. Note that @arg sometimes 2427 * represents a user space pointer; in other cases, it may be a simple integer 2428 * value. When @arg represents a user space pointer, it should never be used 2429 * by the security module. 2430 * 2431 * Return: Returns 0 if permission is granted. 2432 */ 2433 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 2434 { 2435 return call_int_hook(file_ioctl, file, cmd, arg); 2436 } 2437 EXPORT_SYMBOL_GPL(security_file_ioctl); 2438 2439 /** 2440 * security_file_ioctl_compat() - Check if an ioctl is allowed in compat mode 2441 * @file: associated file 2442 * @cmd: ioctl cmd 2443 * @arg: ioctl arguments 2444 * 2445 * Compat version of security_file_ioctl() that correctly handles 32-bit 2446 * processes running on 64-bit kernels. 2447 * 2448 * Return: Returns 0 if permission is granted. 2449 */ 2450 int security_file_ioctl_compat(struct file *file, unsigned int cmd, 2451 unsigned long arg) 2452 { 2453 return call_int_hook(file_ioctl_compat, file, cmd, arg); 2454 } 2455 EXPORT_SYMBOL_GPL(security_file_ioctl_compat); 2456 2457 static inline unsigned long mmap_prot(struct file *file, unsigned long prot) 2458 { 2459 /* 2460 * Does we have PROT_READ and does the application expect 2461 * it to imply PROT_EXEC? If not, nothing to talk about... 2462 */ 2463 if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ) 2464 return prot; 2465 if (!(current->personality & READ_IMPLIES_EXEC)) 2466 return prot; 2467 /* 2468 * if that's an anonymous mapping, let it. 2469 */ 2470 if (!file) 2471 return prot | PROT_EXEC; 2472 /* 2473 * ditto if it's not on noexec mount, except that on !MMU we need 2474 * NOMMU_MAP_EXEC (== VM_MAYEXEC) in this case 2475 */ 2476 if (!path_noexec(&file->f_path)) { 2477 #ifndef CONFIG_MMU 2478 if (file->f_op->mmap_capabilities) { 2479 unsigned caps = file->f_op->mmap_capabilities(file); 2480 if (!(caps & NOMMU_MAP_EXEC)) 2481 return prot; 2482 } 2483 #endif 2484 return prot | PROT_EXEC; 2485 } 2486 /* anything on noexec mount won't get PROT_EXEC */ 2487 return prot; 2488 } 2489 2490 /** 2491 * security_mmap_file() - Check if mmap'ing a file is allowed 2492 * @file: file 2493 * @prot: protection applied by the kernel 2494 * @flags: flags 2495 * 2496 * Check permissions for a mmap operation. The @file may be NULL, e.g. if 2497 * mapping anonymous memory. 2498 * 2499 * Return: Returns 0 if permission is granted. 2500 */ 2501 int security_mmap_file(struct file *file, unsigned long prot, 2502 unsigned long flags) 2503 { 2504 return call_int_hook(mmap_file, file, prot, mmap_prot(file, prot), 2505 flags); 2506 } 2507 2508 /** 2509 * security_mmap_addr() - Check if mmap'ing an address is allowed 2510 * @addr: address 2511 * 2512 * Check permissions for a mmap operation at @addr. 2513 * 2514 * Return: Returns 0 if permission is granted. 2515 */ 2516 int security_mmap_addr(unsigned long addr) 2517 { 2518 return call_int_hook(mmap_addr, addr); 2519 } 2520 2521 /** 2522 * security_file_mprotect() - Check if changing memory protections is allowed 2523 * @vma: memory region 2524 * @reqprot: application requested protection 2525 * @prot: protection applied by the kernel 2526 * 2527 * Check permissions before changing memory access permissions. 2528 * 2529 * Return: Returns 0 if permission is granted. 2530 */ 2531 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot, 2532 unsigned long prot) 2533 { 2534 return call_int_hook(file_mprotect, vma, reqprot, prot); 2535 } 2536 2537 /** 2538 * security_file_lock() - Check if a file lock is allowed 2539 * @file: file 2540 * @cmd: lock operation (e.g. F_RDLCK, F_WRLCK) 2541 * 2542 * Check permission before performing file locking operations. Note the hook 2543 * mediates both flock and fcntl style locks. 2544 * 2545 * Return: Returns 0 if permission is granted. 2546 */ 2547 int security_file_lock(struct file *file, unsigned int cmd) 2548 { 2549 return call_int_hook(file_lock, file, cmd); 2550 } 2551 2552 /** 2553 * security_file_fcntl() - Check if fcntl() op is allowed 2554 * @file: file 2555 * @cmd: fcntl command 2556 * @arg: command argument 2557 * 2558 * Check permission before allowing the file operation specified by @cmd from 2559 * being performed on the file @file. Note that @arg sometimes represents a 2560 * user space pointer; in other cases, it may be a simple integer value. When 2561 * @arg represents a user space pointer, it should never be used by the 2562 * security module. 2563 * 2564 * Return: Returns 0 if permission is granted. 2565 */ 2566 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg) 2567 { 2568 return call_int_hook(file_fcntl, file, cmd, arg); 2569 } 2570 2571 /** 2572 * security_file_set_fowner() - Set the file owner info in the LSM blob 2573 * @file: the file 2574 * 2575 * Save owner security information (typically from current->security) in 2576 * file->f_security for later use by the send_sigiotask hook. 2577 * 2578 * This hook is called with file->f_owner.lock held. 2579 * 2580 * Return: Returns 0 on success. 2581 */ 2582 void security_file_set_fowner(struct file *file) 2583 { 2584 call_void_hook(file_set_fowner, file); 2585 } 2586 2587 /** 2588 * security_file_send_sigiotask() - Check if sending SIGIO/SIGURG is allowed 2589 * @tsk: target task 2590 * @fown: signal sender 2591 * @sig: signal to be sent, SIGIO is sent if 0 2592 * 2593 * Check permission for the file owner @fown to send SIGIO or SIGURG to the 2594 * process @tsk. Note that this hook is sometimes called from interrupt. Note 2595 * that the fown_struct, @fown, is never outside the context of a struct file, 2596 * so the file structure (and associated security information) can always be 2597 * obtained: container_of(fown, struct file, f_owner). 2598 * 2599 * Return: Returns 0 if permission is granted. 2600 */ 2601 int security_file_send_sigiotask(struct task_struct *tsk, 2602 struct fown_struct *fown, int sig) 2603 { 2604 return call_int_hook(file_send_sigiotask, tsk, fown, sig); 2605 } 2606 2607 /** 2608 * security_file_receive() - Check if receiving a file via IPC is allowed 2609 * @file: file being received 2610 * 2611 * This hook allows security modules to control the ability of a process to 2612 * receive an open file descriptor via socket IPC. 2613 * 2614 * Return: Returns 0 if permission is granted. 2615 */ 2616 int security_file_receive(struct file *file) 2617 { 2618 return call_int_hook(file_receive, file); 2619 } 2620 2621 /** 2622 * security_file_open() - Save open() time state for late use by the LSM 2623 * @file: 2624 * 2625 * Save open-time permission checking state for later use upon file_permission, 2626 * and recheck access if anything has changed since inode_permission. 2627 * 2628 * We can check if a file is opened for execution (e.g. execve(2) call), either 2629 * directly or indirectly (e.g. ELF's ld.so) by checking file->f_flags & 2630 * __FMODE_EXEC . 2631 * 2632 * Return: Returns 0 if permission is granted. 2633 */ 2634 int security_file_open(struct file *file) 2635 { 2636 return call_int_hook(file_open, file); 2637 } 2638 2639 /** 2640 * security_file_post_open() - Evaluate a file after it has been opened 2641 * @file: the file 2642 * @mask: access mask 2643 * 2644 * Evaluate an opened file and the access mask requested with open(). The hook 2645 * is useful for LSMs that require the file content to be available in order to 2646 * make decisions. 2647 * 2648 * Return: Returns 0 if permission is granted. 2649 */ 2650 int security_file_post_open(struct file *file, int mask) 2651 { 2652 return call_int_hook(file_post_open, file, mask); 2653 } 2654 EXPORT_SYMBOL_GPL(security_file_post_open); 2655 2656 /** 2657 * security_file_truncate() - Check if truncating a file is allowed 2658 * @file: file 2659 * 2660 * Check permission before truncating a file, i.e. using ftruncate. Note that 2661 * truncation permission may also be checked based on the path, using the 2662 * @path_truncate hook. 2663 * 2664 * Return: Returns 0 if permission is granted. 2665 */ 2666 int security_file_truncate(struct file *file) 2667 { 2668 return call_int_hook(file_truncate, file); 2669 } 2670 2671 /** 2672 * security_task_alloc() - Allocate a task's LSM blob 2673 * @task: the task 2674 * @clone_flags: flags indicating what is being shared 2675 * 2676 * Handle allocation of task-related resources. 2677 * 2678 * Return: Returns a zero on success, negative values on failure. 2679 */ 2680 int security_task_alloc(struct task_struct *task, u64 clone_flags) 2681 { 2682 int rc = lsm_task_alloc(task); 2683 2684 if (rc) 2685 return rc; 2686 rc = call_int_hook(task_alloc, task, clone_flags); 2687 if (unlikely(rc)) 2688 security_task_free(task); 2689 return rc; 2690 } 2691 2692 /** 2693 * security_task_free() - Free a task's LSM blob and related resources 2694 * @task: task 2695 * 2696 * Handle release of task-related resources. Note that this can be called from 2697 * interrupt context. 2698 */ 2699 void security_task_free(struct task_struct *task) 2700 { 2701 call_void_hook(task_free, task); 2702 2703 kfree(task->security); 2704 task->security = NULL; 2705 } 2706 2707 /** 2708 * security_cred_alloc_blank() - Allocate the min memory to allow cred_transfer 2709 * @cred: credentials 2710 * @gfp: gfp flags 2711 * 2712 * Only allocate sufficient memory and attach to @cred such that 2713 * cred_transfer() will not get ENOMEM. 2714 * 2715 * Return: Returns 0 on success, negative values on failure. 2716 */ 2717 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp) 2718 { 2719 int rc = lsm_cred_alloc(cred, gfp); 2720 2721 if (rc) 2722 return rc; 2723 2724 rc = call_int_hook(cred_alloc_blank, cred, gfp); 2725 if (unlikely(rc)) 2726 security_cred_free(cred); 2727 return rc; 2728 } 2729 2730 /** 2731 * security_cred_free() - Free the cred's LSM blob and associated resources 2732 * @cred: credentials 2733 * 2734 * Deallocate and clear the cred->security field in a set of credentials. 2735 */ 2736 void security_cred_free(struct cred *cred) 2737 { 2738 /* 2739 * There is a failure case in prepare_creds() that 2740 * may result in a call here with ->security being NULL. 2741 */ 2742 if (unlikely(cred->security == NULL)) 2743 return; 2744 2745 call_void_hook(cred_free, cred); 2746 2747 kfree(cred->security); 2748 cred->security = NULL; 2749 } 2750 2751 /** 2752 * security_prepare_creds() - Prepare a new set of credentials 2753 * @new: new credentials 2754 * @old: original credentials 2755 * @gfp: gfp flags 2756 * 2757 * Prepare a new set of credentials by copying the data from the old set. 2758 * 2759 * Return: Returns 0 on success, negative values on failure. 2760 */ 2761 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp) 2762 { 2763 int rc = lsm_cred_alloc(new, gfp); 2764 2765 if (rc) 2766 return rc; 2767 2768 rc = call_int_hook(cred_prepare, new, old, gfp); 2769 if (unlikely(rc)) 2770 security_cred_free(new); 2771 return rc; 2772 } 2773 2774 /** 2775 * security_transfer_creds() - Transfer creds 2776 * @new: target credentials 2777 * @old: original credentials 2778 * 2779 * Transfer data from original creds to new creds. 2780 */ 2781 void security_transfer_creds(struct cred *new, const struct cred *old) 2782 { 2783 call_void_hook(cred_transfer, new, old); 2784 } 2785 2786 /** 2787 * security_cred_getsecid() - Get the secid from a set of credentials 2788 * @c: credentials 2789 * @secid: secid value 2790 * 2791 * Retrieve the security identifier of the cred structure @c. In case of 2792 * failure, @secid will be set to zero. 2793 */ 2794 void security_cred_getsecid(const struct cred *c, u32 *secid) 2795 { 2796 *secid = 0; 2797 call_void_hook(cred_getsecid, c, secid); 2798 } 2799 EXPORT_SYMBOL(security_cred_getsecid); 2800 2801 /** 2802 * security_cred_getlsmprop() - Get the LSM data from a set of credentials 2803 * @c: credentials 2804 * @prop: destination for the LSM data 2805 * 2806 * Retrieve the security data of the cred structure @c. In case of 2807 * failure, @prop will be cleared. 2808 */ 2809 void security_cred_getlsmprop(const struct cred *c, struct lsm_prop *prop) 2810 { 2811 lsmprop_init(prop); 2812 call_void_hook(cred_getlsmprop, c, prop); 2813 } 2814 EXPORT_SYMBOL(security_cred_getlsmprop); 2815 2816 /** 2817 * security_kernel_act_as() - Set the kernel credentials to act as secid 2818 * @new: credentials 2819 * @secid: secid 2820 * 2821 * Set the credentials for a kernel service to act as (subjective context). 2822 * The current task must be the one that nominated @secid. 2823 * 2824 * Return: Returns 0 if successful. 2825 */ 2826 int security_kernel_act_as(struct cred *new, u32 secid) 2827 { 2828 return call_int_hook(kernel_act_as, new, secid); 2829 } 2830 2831 /** 2832 * security_kernel_create_files_as() - Set file creation context using an inode 2833 * @new: target credentials 2834 * @inode: reference inode 2835 * 2836 * Set the file creation context in a set of credentials to be the same as the 2837 * objective context of the specified inode. The current task must be the one 2838 * that nominated @inode. 2839 * 2840 * Return: Returns 0 if successful. 2841 */ 2842 int security_kernel_create_files_as(struct cred *new, struct inode *inode) 2843 { 2844 return call_int_hook(kernel_create_files_as, new, inode); 2845 } 2846 2847 /** 2848 * security_kernel_module_request() - Check if loading a module is allowed 2849 * @kmod_name: module name 2850 * 2851 * Ability to trigger the kernel to automatically upcall to userspace for 2852 * userspace to load a kernel module with the given name. 2853 * 2854 * Return: Returns 0 if successful. 2855 */ 2856 int security_kernel_module_request(char *kmod_name) 2857 { 2858 return call_int_hook(kernel_module_request, kmod_name); 2859 } 2860 2861 /** 2862 * security_kernel_read_file() - Read a file specified by userspace 2863 * @file: file 2864 * @id: file identifier 2865 * @contents: trust if security_kernel_post_read_file() will be called 2866 * 2867 * Read a file specified by userspace. 2868 * 2869 * Return: Returns 0 if permission is granted. 2870 */ 2871 int security_kernel_read_file(struct file *file, enum kernel_read_file_id id, 2872 bool contents) 2873 { 2874 return call_int_hook(kernel_read_file, file, id, contents); 2875 } 2876 EXPORT_SYMBOL_GPL(security_kernel_read_file); 2877 2878 /** 2879 * security_kernel_post_read_file() - Read a file specified by userspace 2880 * @file: file 2881 * @buf: file contents 2882 * @size: size of file contents 2883 * @id: file identifier 2884 * 2885 * Read a file specified by userspace. This must be paired with a prior call 2886 * to security_kernel_read_file() call that indicated this hook would also be 2887 * called, see security_kernel_read_file() for more information. 2888 * 2889 * Return: Returns 0 if permission is granted. 2890 */ 2891 int security_kernel_post_read_file(struct file *file, char *buf, loff_t size, 2892 enum kernel_read_file_id id) 2893 { 2894 return call_int_hook(kernel_post_read_file, file, buf, size, id); 2895 } 2896 EXPORT_SYMBOL_GPL(security_kernel_post_read_file); 2897 2898 /** 2899 * security_kernel_load_data() - Load data provided by userspace 2900 * @id: data identifier 2901 * @contents: true if security_kernel_post_load_data() will be called 2902 * 2903 * Load data provided by userspace. 2904 * 2905 * Return: Returns 0 if permission is granted. 2906 */ 2907 int security_kernel_load_data(enum kernel_load_data_id id, bool contents) 2908 { 2909 return call_int_hook(kernel_load_data, id, contents); 2910 } 2911 EXPORT_SYMBOL_GPL(security_kernel_load_data); 2912 2913 /** 2914 * security_kernel_post_load_data() - Load userspace data from a non-file source 2915 * @buf: data 2916 * @size: size of data 2917 * @id: data identifier 2918 * @description: text description of data, specific to the id value 2919 * 2920 * Load data provided by a non-file source (usually userspace buffer). This 2921 * must be paired with a prior security_kernel_load_data() call that indicated 2922 * this hook would also be called, see security_kernel_load_data() for more 2923 * information. 2924 * 2925 * Return: Returns 0 if permission is granted. 2926 */ 2927 int security_kernel_post_load_data(char *buf, loff_t size, 2928 enum kernel_load_data_id id, 2929 char *description) 2930 { 2931 return call_int_hook(kernel_post_load_data, buf, size, id, description); 2932 } 2933 EXPORT_SYMBOL_GPL(security_kernel_post_load_data); 2934 2935 /** 2936 * security_task_fix_setuid() - Update LSM with new user id attributes 2937 * @new: updated credentials 2938 * @old: credentials being replaced 2939 * @flags: LSM_SETID_* flag values 2940 * 2941 * Update the module's state after setting one or more of the user identity 2942 * attributes of the current process. The @flags parameter indicates which of 2943 * the set*uid system calls invoked this hook. If @new is the set of 2944 * credentials that will be installed. Modifications should be made to this 2945 * rather than to @current->cred. 2946 * 2947 * Return: Returns 0 on success. 2948 */ 2949 int security_task_fix_setuid(struct cred *new, const struct cred *old, 2950 int flags) 2951 { 2952 return call_int_hook(task_fix_setuid, new, old, flags); 2953 } 2954 2955 /** 2956 * security_task_fix_setgid() - Update LSM with new group id attributes 2957 * @new: updated credentials 2958 * @old: credentials being replaced 2959 * @flags: LSM_SETID_* flag value 2960 * 2961 * Update the module's state after setting one or more of the group identity 2962 * attributes of the current process. The @flags parameter indicates which of 2963 * the set*gid system calls invoked this hook. @new is the set of credentials 2964 * that will be installed. Modifications should be made to this rather than to 2965 * @current->cred. 2966 * 2967 * Return: Returns 0 on success. 2968 */ 2969 int security_task_fix_setgid(struct cred *new, const struct cred *old, 2970 int flags) 2971 { 2972 return call_int_hook(task_fix_setgid, new, old, flags); 2973 } 2974 2975 /** 2976 * security_task_fix_setgroups() - Update LSM with new supplementary groups 2977 * @new: updated credentials 2978 * @old: credentials being replaced 2979 * 2980 * Update the module's state after setting the supplementary group identity 2981 * attributes of the current process. @new is the set of credentials that will 2982 * be installed. Modifications should be made to this rather than to 2983 * @current->cred. 2984 * 2985 * Return: Returns 0 on success. 2986 */ 2987 int security_task_fix_setgroups(struct cred *new, const struct cred *old) 2988 { 2989 return call_int_hook(task_fix_setgroups, new, old); 2990 } 2991 2992 /** 2993 * security_task_setpgid() - Check if setting the pgid is allowed 2994 * @p: task being modified 2995 * @pgid: new pgid 2996 * 2997 * Check permission before setting the process group identifier of the process 2998 * @p to @pgid. 2999 * 3000 * Return: Returns 0 if permission is granted. 3001 */ 3002 int security_task_setpgid(struct task_struct *p, pid_t pgid) 3003 { 3004 return call_int_hook(task_setpgid, p, pgid); 3005 } 3006 3007 /** 3008 * security_task_getpgid() - Check if getting the pgid is allowed 3009 * @p: task 3010 * 3011 * Check permission before getting the process group identifier of the process 3012 * @p. 3013 * 3014 * Return: Returns 0 if permission is granted. 3015 */ 3016 int security_task_getpgid(struct task_struct *p) 3017 { 3018 return call_int_hook(task_getpgid, p); 3019 } 3020 3021 /** 3022 * security_task_getsid() - Check if getting the session id is allowed 3023 * @p: task 3024 * 3025 * Check permission before getting the session identifier of the process @p. 3026 * 3027 * Return: Returns 0 if permission is granted. 3028 */ 3029 int security_task_getsid(struct task_struct *p) 3030 { 3031 return call_int_hook(task_getsid, p); 3032 } 3033 3034 /** 3035 * security_current_getlsmprop_subj() - Current task's subjective LSM data 3036 * @prop: lsm specific information 3037 * 3038 * Retrieve the subjective security identifier of the current task and return 3039 * it in @prop. 3040 */ 3041 void security_current_getlsmprop_subj(struct lsm_prop *prop) 3042 { 3043 lsmprop_init(prop); 3044 call_void_hook(current_getlsmprop_subj, prop); 3045 } 3046 EXPORT_SYMBOL(security_current_getlsmprop_subj); 3047 3048 /** 3049 * security_task_getlsmprop_obj() - Get a task's objective LSM data 3050 * @p: target task 3051 * @prop: lsm specific information 3052 * 3053 * Retrieve the objective security identifier of the task_struct in @p and 3054 * return it in @prop. 3055 */ 3056 void security_task_getlsmprop_obj(struct task_struct *p, struct lsm_prop *prop) 3057 { 3058 lsmprop_init(prop); 3059 call_void_hook(task_getlsmprop_obj, p, prop); 3060 } 3061 EXPORT_SYMBOL(security_task_getlsmprop_obj); 3062 3063 /** 3064 * security_task_setnice() - Check if setting a task's nice value is allowed 3065 * @p: target task 3066 * @nice: nice value 3067 * 3068 * Check permission before setting the nice value of @p to @nice. 3069 * 3070 * Return: Returns 0 if permission is granted. 3071 */ 3072 int security_task_setnice(struct task_struct *p, int nice) 3073 { 3074 return call_int_hook(task_setnice, p, nice); 3075 } 3076 3077 /** 3078 * security_task_setioprio() - Check if setting a task's ioprio is allowed 3079 * @p: target task 3080 * @ioprio: ioprio value 3081 * 3082 * Check permission before setting the ioprio value of @p to @ioprio. 3083 * 3084 * Return: Returns 0 if permission is granted. 3085 */ 3086 int security_task_setioprio(struct task_struct *p, int ioprio) 3087 { 3088 return call_int_hook(task_setioprio, p, ioprio); 3089 } 3090 3091 /** 3092 * security_task_getioprio() - Check if getting a task's ioprio is allowed 3093 * @p: task 3094 * 3095 * Check permission before getting the ioprio value of @p. 3096 * 3097 * Return: Returns 0 if permission is granted. 3098 */ 3099 int security_task_getioprio(struct task_struct *p) 3100 { 3101 return call_int_hook(task_getioprio, p); 3102 } 3103 3104 /** 3105 * security_task_prlimit() - Check if get/setting resources limits is allowed 3106 * @cred: current task credentials 3107 * @tcred: target task credentials 3108 * @flags: LSM_PRLIMIT_* flag bits indicating a get/set/both 3109 * 3110 * Check permission before getting and/or setting the resource limits of 3111 * another task. 3112 * 3113 * Return: Returns 0 if permission is granted. 3114 */ 3115 int security_task_prlimit(const struct cred *cred, const struct cred *tcred, 3116 unsigned int flags) 3117 { 3118 return call_int_hook(task_prlimit, cred, tcred, flags); 3119 } 3120 3121 /** 3122 * security_task_setrlimit() - Check if setting a new rlimit value is allowed 3123 * @p: target task's group leader 3124 * @resource: resource whose limit is being set 3125 * @new_rlim: new resource limit 3126 * 3127 * Check permission before setting the resource limits of process @p for 3128 * @resource to @new_rlim. The old resource limit values can be examined by 3129 * dereferencing (p->signal->rlim + resource). 3130 * 3131 * Return: Returns 0 if permission is granted. 3132 */ 3133 int security_task_setrlimit(struct task_struct *p, unsigned int resource, 3134 struct rlimit *new_rlim) 3135 { 3136 return call_int_hook(task_setrlimit, p, resource, new_rlim); 3137 } 3138 3139 /** 3140 * security_task_setscheduler() - Check if setting sched policy/param is allowed 3141 * @p: target task 3142 * 3143 * Check permission before setting scheduling policy and/or parameters of 3144 * process @p. 3145 * 3146 * Return: Returns 0 if permission is granted. 3147 */ 3148 int security_task_setscheduler(struct task_struct *p) 3149 { 3150 return call_int_hook(task_setscheduler, p); 3151 } 3152 3153 /** 3154 * security_task_getscheduler() - Check if getting scheduling info is allowed 3155 * @p: target task 3156 * 3157 * Check permission before obtaining scheduling information for process @p. 3158 * 3159 * Return: Returns 0 if permission is granted. 3160 */ 3161 int security_task_getscheduler(struct task_struct *p) 3162 { 3163 return call_int_hook(task_getscheduler, p); 3164 } 3165 3166 /** 3167 * security_task_movememory() - Check if moving memory is allowed 3168 * @p: task 3169 * 3170 * Check permission before moving memory owned by process @p. 3171 * 3172 * Return: Returns 0 if permission is granted. 3173 */ 3174 int security_task_movememory(struct task_struct *p) 3175 { 3176 return call_int_hook(task_movememory, p); 3177 } 3178 3179 /** 3180 * security_task_kill() - Check if sending a signal is allowed 3181 * @p: target process 3182 * @info: signal information 3183 * @sig: signal value 3184 * @cred: credentials of the signal sender, NULL if @current 3185 * 3186 * Check permission before sending signal @sig to @p. @info can be NULL, the 3187 * constant 1, or a pointer to a kernel_siginfo structure. If @info is 1 or 3188 * SI_FROMKERNEL(info) is true, then the signal should be viewed as coming from 3189 * the kernel and should typically be permitted. SIGIO signals are handled 3190 * separately by the send_sigiotask hook in file_security_ops. 3191 * 3192 * Return: Returns 0 if permission is granted. 3193 */ 3194 int security_task_kill(struct task_struct *p, struct kernel_siginfo *info, 3195 int sig, const struct cred *cred) 3196 { 3197 return call_int_hook(task_kill, p, info, sig, cred); 3198 } 3199 3200 /** 3201 * security_task_prctl() - Check if a prctl op is allowed 3202 * @option: operation 3203 * @arg2: argument 3204 * @arg3: argument 3205 * @arg4: argument 3206 * @arg5: argument 3207 * 3208 * Check permission before performing a process control operation on the 3209 * current process. 3210 * 3211 * Return: Return -ENOSYS if no-one wanted to handle this op, any other value 3212 * to cause prctl() to return immediately with that value. 3213 */ 3214 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3, 3215 unsigned long arg4, unsigned long arg5) 3216 { 3217 int thisrc; 3218 int rc = LSM_RET_DEFAULT(task_prctl); 3219 struct lsm_static_call *scall; 3220 3221 lsm_for_each_hook(scall, task_prctl) { 3222 thisrc = scall->hl->hook.task_prctl(option, arg2, arg3, arg4, arg5); 3223 if (thisrc != LSM_RET_DEFAULT(task_prctl)) { 3224 rc = thisrc; 3225 if (thisrc != 0) 3226 break; 3227 } 3228 } 3229 return rc; 3230 } 3231 3232 /** 3233 * security_task_to_inode() - Set the security attributes of a task's inode 3234 * @p: task 3235 * @inode: inode 3236 * 3237 * Set the security attributes for an inode based on an associated task's 3238 * security attributes, e.g. for /proc/pid inodes. 3239 */ 3240 void security_task_to_inode(struct task_struct *p, struct inode *inode) 3241 { 3242 call_void_hook(task_to_inode, p, inode); 3243 } 3244 3245 /** 3246 * security_create_user_ns() - Check if creating a new userns is allowed 3247 * @cred: prepared creds 3248 * 3249 * Check permission prior to creating a new user namespace. 3250 * 3251 * Return: Returns 0 if successful, otherwise < 0 error code. 3252 */ 3253 int security_create_user_ns(const struct cred *cred) 3254 { 3255 return call_int_hook(userns_create, cred); 3256 } 3257 3258 /** 3259 * security_ipc_permission() - Check if sysv ipc access is allowed 3260 * @ipcp: ipc permission structure 3261 * @flag: requested permissions 3262 * 3263 * Check permissions for access to IPC. 3264 * 3265 * Return: Returns 0 if permission is granted. 3266 */ 3267 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag) 3268 { 3269 return call_int_hook(ipc_permission, ipcp, flag); 3270 } 3271 3272 /** 3273 * security_ipc_getlsmprop() - Get the sysv ipc object LSM data 3274 * @ipcp: ipc permission structure 3275 * @prop: pointer to lsm information 3276 * 3277 * Get the lsm information associated with the ipc object. 3278 */ 3279 3280 void security_ipc_getlsmprop(struct kern_ipc_perm *ipcp, struct lsm_prop *prop) 3281 { 3282 lsmprop_init(prop); 3283 call_void_hook(ipc_getlsmprop, ipcp, prop); 3284 } 3285 3286 /** 3287 * security_msg_msg_alloc() - Allocate a sysv ipc message LSM blob 3288 * @msg: message structure 3289 * 3290 * Allocate and attach a security structure to the msg->security field. The 3291 * security field is initialized to NULL when the structure is first created. 3292 * 3293 * Return: Return 0 if operation was successful and permission is granted. 3294 */ 3295 int security_msg_msg_alloc(struct msg_msg *msg) 3296 { 3297 int rc = lsm_msg_msg_alloc(msg); 3298 3299 if (unlikely(rc)) 3300 return rc; 3301 rc = call_int_hook(msg_msg_alloc_security, msg); 3302 if (unlikely(rc)) 3303 security_msg_msg_free(msg); 3304 return rc; 3305 } 3306 3307 /** 3308 * security_msg_msg_free() - Free a sysv ipc message LSM blob 3309 * @msg: message structure 3310 * 3311 * Deallocate the security structure for this message. 3312 */ 3313 void security_msg_msg_free(struct msg_msg *msg) 3314 { 3315 call_void_hook(msg_msg_free_security, msg); 3316 kfree(msg->security); 3317 msg->security = NULL; 3318 } 3319 3320 /** 3321 * security_msg_queue_alloc() - Allocate a sysv ipc msg queue LSM blob 3322 * @msq: sysv ipc permission structure 3323 * 3324 * Allocate and attach a security structure to @msg. The security field is 3325 * initialized to NULL when the structure is first created. 3326 * 3327 * Return: Returns 0 if operation was successful and permission is granted. 3328 */ 3329 int security_msg_queue_alloc(struct kern_ipc_perm *msq) 3330 { 3331 int rc = lsm_ipc_alloc(msq); 3332 3333 if (unlikely(rc)) 3334 return rc; 3335 rc = call_int_hook(msg_queue_alloc_security, msq); 3336 if (unlikely(rc)) 3337 security_msg_queue_free(msq); 3338 return rc; 3339 } 3340 3341 /** 3342 * security_msg_queue_free() - Free a sysv ipc msg queue LSM blob 3343 * @msq: sysv ipc permission structure 3344 * 3345 * Deallocate security field @perm->security for the message queue. 3346 */ 3347 void security_msg_queue_free(struct kern_ipc_perm *msq) 3348 { 3349 call_void_hook(msg_queue_free_security, msq); 3350 kfree(msq->security); 3351 msq->security = NULL; 3352 } 3353 3354 /** 3355 * security_msg_queue_associate() - Check if a msg queue operation is allowed 3356 * @msq: sysv ipc permission structure 3357 * @msqflg: operation flags 3358 * 3359 * Check permission when a message queue is requested through the msgget system 3360 * call. This hook is only called when returning the message queue identifier 3361 * for an existing message queue, not when a new message queue is created. 3362 * 3363 * Return: Return 0 if permission is granted. 3364 */ 3365 int security_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg) 3366 { 3367 return call_int_hook(msg_queue_associate, msq, msqflg); 3368 } 3369 3370 /** 3371 * security_msg_queue_msgctl() - Check if a msg queue operation is allowed 3372 * @msq: sysv ipc permission structure 3373 * @cmd: operation 3374 * 3375 * Check permission when a message control operation specified by @cmd is to be 3376 * performed on the message queue with permissions. 3377 * 3378 * Return: Returns 0 if permission is granted. 3379 */ 3380 int security_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd) 3381 { 3382 return call_int_hook(msg_queue_msgctl, msq, cmd); 3383 } 3384 3385 /** 3386 * security_msg_queue_msgsnd() - Check if sending a sysv ipc message is allowed 3387 * @msq: sysv ipc permission structure 3388 * @msg: message 3389 * @msqflg: operation flags 3390 * 3391 * Check permission before a message, @msg, is enqueued on the message queue 3392 * with permissions specified in @msq. 3393 * 3394 * Return: Returns 0 if permission is granted. 3395 */ 3396 int security_msg_queue_msgsnd(struct kern_ipc_perm *msq, 3397 struct msg_msg *msg, int msqflg) 3398 { 3399 return call_int_hook(msg_queue_msgsnd, msq, msg, msqflg); 3400 } 3401 3402 /** 3403 * security_msg_queue_msgrcv() - Check if receiving a sysv ipc msg is allowed 3404 * @msq: sysv ipc permission structure 3405 * @msg: message 3406 * @target: target task 3407 * @type: type of message requested 3408 * @mode: operation flags 3409 * 3410 * Check permission before a message, @msg, is removed from the message queue. 3411 * The @target task structure contains a pointer to the process that will be 3412 * receiving the message (not equal to the current process when inline receives 3413 * are being performed). 3414 * 3415 * Return: Returns 0 if permission is granted. 3416 */ 3417 int security_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg, 3418 struct task_struct *target, long type, int mode) 3419 { 3420 return call_int_hook(msg_queue_msgrcv, msq, msg, target, type, mode); 3421 } 3422 3423 /** 3424 * security_shm_alloc() - Allocate a sysv shm LSM blob 3425 * @shp: sysv ipc permission structure 3426 * 3427 * Allocate and attach a security structure to the @shp security field. The 3428 * security field is initialized to NULL when the structure is first created. 3429 * 3430 * Return: Returns 0 if operation was successful and permission is granted. 3431 */ 3432 int security_shm_alloc(struct kern_ipc_perm *shp) 3433 { 3434 int rc = lsm_ipc_alloc(shp); 3435 3436 if (unlikely(rc)) 3437 return rc; 3438 rc = call_int_hook(shm_alloc_security, shp); 3439 if (unlikely(rc)) 3440 security_shm_free(shp); 3441 return rc; 3442 } 3443 3444 /** 3445 * security_shm_free() - Free a sysv shm LSM blob 3446 * @shp: sysv ipc permission structure 3447 * 3448 * Deallocate the security structure @perm->security for the memory segment. 3449 */ 3450 void security_shm_free(struct kern_ipc_perm *shp) 3451 { 3452 call_void_hook(shm_free_security, shp); 3453 kfree(shp->security); 3454 shp->security = NULL; 3455 } 3456 3457 /** 3458 * security_shm_associate() - Check if a sysv shm operation is allowed 3459 * @shp: sysv ipc permission structure 3460 * @shmflg: operation flags 3461 * 3462 * Check permission when a shared memory region is requested through the shmget 3463 * system call. This hook is only called when returning the shared memory 3464 * region identifier for an existing region, not when a new shared memory 3465 * region is created. 3466 * 3467 * Return: Returns 0 if permission is granted. 3468 */ 3469 int security_shm_associate(struct kern_ipc_perm *shp, int shmflg) 3470 { 3471 return call_int_hook(shm_associate, shp, shmflg); 3472 } 3473 3474 /** 3475 * security_shm_shmctl() - Check if a sysv shm operation is allowed 3476 * @shp: sysv ipc permission structure 3477 * @cmd: operation 3478 * 3479 * Check permission when a shared memory control operation specified by @cmd is 3480 * to be performed on the shared memory region with permissions in @shp. 3481 * 3482 * Return: Return 0 if permission is granted. 3483 */ 3484 int security_shm_shmctl(struct kern_ipc_perm *shp, int cmd) 3485 { 3486 return call_int_hook(shm_shmctl, shp, cmd); 3487 } 3488 3489 /** 3490 * security_shm_shmat() - Check if a sysv shm attach operation is allowed 3491 * @shp: sysv ipc permission structure 3492 * @shmaddr: address of memory region to attach 3493 * @shmflg: operation flags 3494 * 3495 * Check permissions prior to allowing the shmat system call to attach the 3496 * shared memory segment with permissions @shp to the data segment of the 3497 * calling process. The attaching address is specified by @shmaddr. 3498 * 3499 * Return: Returns 0 if permission is granted. 3500 */ 3501 int security_shm_shmat(struct kern_ipc_perm *shp, 3502 char __user *shmaddr, int shmflg) 3503 { 3504 return call_int_hook(shm_shmat, shp, shmaddr, shmflg); 3505 } 3506 3507 /** 3508 * security_sem_alloc() - Allocate a sysv semaphore LSM blob 3509 * @sma: sysv ipc permission structure 3510 * 3511 * Allocate and attach a security structure to the @sma security field. The 3512 * security field is initialized to NULL when the structure is first created. 3513 * 3514 * Return: Returns 0 if operation was successful and permission is granted. 3515 */ 3516 int security_sem_alloc(struct kern_ipc_perm *sma) 3517 { 3518 int rc = lsm_ipc_alloc(sma); 3519 3520 if (unlikely(rc)) 3521 return rc; 3522 rc = call_int_hook(sem_alloc_security, sma); 3523 if (unlikely(rc)) 3524 security_sem_free(sma); 3525 return rc; 3526 } 3527 3528 /** 3529 * security_sem_free() - Free a sysv semaphore LSM blob 3530 * @sma: sysv ipc permission structure 3531 * 3532 * Deallocate security structure @sma->security for the semaphore. 3533 */ 3534 void security_sem_free(struct kern_ipc_perm *sma) 3535 { 3536 call_void_hook(sem_free_security, sma); 3537 kfree(sma->security); 3538 sma->security = NULL; 3539 } 3540 3541 /** 3542 * security_sem_associate() - Check if a sysv semaphore operation is allowed 3543 * @sma: sysv ipc permission structure 3544 * @semflg: operation flags 3545 * 3546 * Check permission when a semaphore is requested through the semget system 3547 * call. This hook is only called when returning the semaphore identifier for 3548 * an existing semaphore, not when a new one must be created. 3549 * 3550 * Return: Returns 0 if permission is granted. 3551 */ 3552 int security_sem_associate(struct kern_ipc_perm *sma, int semflg) 3553 { 3554 return call_int_hook(sem_associate, sma, semflg); 3555 } 3556 3557 /** 3558 * security_sem_semctl() - Check if a sysv semaphore operation is allowed 3559 * @sma: sysv ipc permission structure 3560 * @cmd: operation 3561 * 3562 * Check permission when a semaphore operation specified by @cmd is to be 3563 * performed on the semaphore. 3564 * 3565 * Return: Returns 0 if permission is granted. 3566 */ 3567 int security_sem_semctl(struct kern_ipc_perm *sma, int cmd) 3568 { 3569 return call_int_hook(sem_semctl, sma, cmd); 3570 } 3571 3572 /** 3573 * security_sem_semop() - Check if a sysv semaphore operation is allowed 3574 * @sma: sysv ipc permission structure 3575 * @sops: operations to perform 3576 * @nsops: number of operations 3577 * @alter: flag indicating changes will be made 3578 * 3579 * Check permissions before performing operations on members of the semaphore 3580 * set. If the @alter flag is nonzero, the semaphore set may be modified. 3581 * 3582 * Return: Returns 0 if permission is granted. 3583 */ 3584 int security_sem_semop(struct kern_ipc_perm *sma, struct sembuf *sops, 3585 unsigned nsops, int alter) 3586 { 3587 return call_int_hook(sem_semop, sma, sops, nsops, alter); 3588 } 3589 3590 /** 3591 * security_d_instantiate() - Populate an inode's LSM state based on a dentry 3592 * @dentry: dentry 3593 * @inode: inode 3594 * 3595 * Fill in @inode security information for a @dentry if allowed. 3596 */ 3597 void security_d_instantiate(struct dentry *dentry, struct inode *inode) 3598 { 3599 if (unlikely(inode && IS_PRIVATE(inode))) 3600 return; 3601 call_void_hook(d_instantiate, dentry, inode); 3602 } 3603 EXPORT_SYMBOL(security_d_instantiate); 3604 3605 /* 3606 * Please keep this in sync with it's counterpart in security/lsm_syscalls.c 3607 */ 3608 3609 /** 3610 * security_getselfattr - Read an LSM attribute of the current process. 3611 * @attr: which attribute to return 3612 * @uctx: the user-space destination for the information, or NULL 3613 * @size: pointer to the size of space available to receive the data 3614 * @flags: special handling options. LSM_FLAG_SINGLE indicates that only 3615 * attributes associated with the LSM identified in the passed @ctx be 3616 * reported. 3617 * 3618 * A NULL value for @uctx can be used to get both the number of attributes 3619 * and the size of the data. 3620 * 3621 * Returns the number of attributes found on success, negative value 3622 * on error. @size is reset to the total size of the data. 3623 * If @size is insufficient to contain the data -E2BIG is returned. 3624 */ 3625 int security_getselfattr(unsigned int attr, struct lsm_ctx __user *uctx, 3626 u32 __user *size, u32 flags) 3627 { 3628 struct lsm_static_call *scall; 3629 struct lsm_ctx lctx = { .id = LSM_ID_UNDEF, }; 3630 u8 __user *base = (u8 __user *)uctx; 3631 u32 entrysize; 3632 u32 total = 0; 3633 u32 left; 3634 bool toobig = false; 3635 bool single = false; 3636 int count = 0; 3637 int rc; 3638 3639 if (attr == LSM_ATTR_UNDEF) 3640 return -EINVAL; 3641 if (size == NULL) 3642 return -EINVAL; 3643 if (get_user(left, size)) 3644 return -EFAULT; 3645 3646 if (flags) { 3647 /* 3648 * Only flag supported is LSM_FLAG_SINGLE 3649 */ 3650 if (flags != LSM_FLAG_SINGLE || !uctx) 3651 return -EINVAL; 3652 if (copy_from_user(&lctx, uctx, sizeof(lctx))) 3653 return -EFAULT; 3654 /* 3655 * If the LSM ID isn't specified it is an error. 3656 */ 3657 if (lctx.id == LSM_ID_UNDEF) 3658 return -EINVAL; 3659 single = true; 3660 } 3661 3662 /* 3663 * In the usual case gather all the data from the LSMs. 3664 * In the single case only get the data from the LSM specified. 3665 */ 3666 lsm_for_each_hook(scall, getselfattr) { 3667 if (single && lctx.id != scall->hl->lsmid->id) 3668 continue; 3669 entrysize = left; 3670 if (base) 3671 uctx = (struct lsm_ctx __user *)(base + total); 3672 rc = scall->hl->hook.getselfattr(attr, uctx, &entrysize, flags); 3673 if (rc == -EOPNOTSUPP) 3674 continue; 3675 if (rc == -E2BIG) { 3676 rc = 0; 3677 left = 0; 3678 toobig = true; 3679 } else if (rc < 0) 3680 return rc; 3681 else 3682 left -= entrysize; 3683 3684 total += entrysize; 3685 count += rc; 3686 if (single) 3687 break; 3688 } 3689 if (put_user(total, size)) 3690 return -EFAULT; 3691 if (toobig) 3692 return -E2BIG; 3693 if (count == 0) 3694 return LSM_RET_DEFAULT(getselfattr); 3695 return count; 3696 } 3697 3698 /* 3699 * Please keep this in sync with it's counterpart in security/lsm_syscalls.c 3700 */ 3701 3702 /** 3703 * security_setselfattr - Set an LSM attribute on the current process. 3704 * @attr: which attribute to set 3705 * @uctx: the user-space source for the information 3706 * @size: the size of the data 3707 * @flags: reserved for future use, must be 0 3708 * 3709 * Set an LSM attribute for the current process. The LSM, attribute 3710 * and new value are included in @uctx. 3711 * 3712 * Returns 0 on success, -EINVAL if the input is inconsistent, -EFAULT 3713 * if the user buffer is inaccessible, E2BIG if size is too big, or an 3714 * LSM specific failure. 3715 */ 3716 int security_setselfattr(unsigned int attr, struct lsm_ctx __user *uctx, 3717 u32 size, u32 flags) 3718 { 3719 struct lsm_static_call *scall; 3720 struct lsm_ctx *lctx; 3721 int rc = LSM_RET_DEFAULT(setselfattr); 3722 u64 required_len; 3723 3724 if (flags) 3725 return -EINVAL; 3726 if (size < sizeof(*lctx)) 3727 return -EINVAL; 3728 if (size > PAGE_SIZE) 3729 return -E2BIG; 3730 3731 lctx = memdup_user(uctx, size); 3732 if (IS_ERR(lctx)) 3733 return PTR_ERR(lctx); 3734 3735 if (size < lctx->len || 3736 check_add_overflow(sizeof(*lctx), lctx->ctx_len, &required_len) || 3737 lctx->len < required_len) { 3738 rc = -EINVAL; 3739 goto free_out; 3740 } 3741 3742 lsm_for_each_hook(scall, setselfattr) 3743 if ((scall->hl->lsmid->id) == lctx->id) { 3744 rc = scall->hl->hook.setselfattr(attr, lctx, size, flags); 3745 break; 3746 } 3747 3748 free_out: 3749 kfree(lctx); 3750 return rc; 3751 } 3752 3753 /** 3754 * security_getprocattr() - Read an attribute for a task 3755 * @p: the task 3756 * @lsmid: LSM identification 3757 * @name: attribute name 3758 * @value: attribute value 3759 * 3760 * Read attribute @name for task @p and store it into @value if allowed. 3761 * 3762 * Return: Returns the length of @value on success, a negative value otherwise. 3763 */ 3764 int security_getprocattr(struct task_struct *p, int lsmid, const char *name, 3765 char **value) 3766 { 3767 struct lsm_static_call *scall; 3768 3769 lsm_for_each_hook(scall, getprocattr) { 3770 if (lsmid != 0 && lsmid != scall->hl->lsmid->id) 3771 continue; 3772 return scall->hl->hook.getprocattr(p, name, value); 3773 } 3774 return LSM_RET_DEFAULT(getprocattr); 3775 } 3776 3777 /** 3778 * security_setprocattr() - Set an attribute for a task 3779 * @lsmid: LSM identification 3780 * @name: attribute name 3781 * @value: attribute value 3782 * @size: attribute value size 3783 * 3784 * Write (set) the current task's attribute @name to @value, size @size if 3785 * allowed. 3786 * 3787 * Return: Returns bytes written on success, a negative value otherwise. 3788 */ 3789 int security_setprocattr(int lsmid, const char *name, void *value, size_t size) 3790 { 3791 struct lsm_static_call *scall; 3792 3793 lsm_for_each_hook(scall, setprocattr) { 3794 if (lsmid != 0 && lsmid != scall->hl->lsmid->id) 3795 continue; 3796 return scall->hl->hook.setprocattr(name, value, size); 3797 } 3798 return LSM_RET_DEFAULT(setprocattr); 3799 } 3800 3801 /** 3802 * security_ismaclabel() - Check if the named attribute is a MAC label 3803 * @name: full extended attribute name 3804 * 3805 * Check if the extended attribute specified by @name represents a MAC label. 3806 * 3807 * Return: Returns 1 if name is a MAC attribute otherwise returns 0. 3808 */ 3809 int security_ismaclabel(const char *name) 3810 { 3811 return call_int_hook(ismaclabel, name); 3812 } 3813 EXPORT_SYMBOL(security_ismaclabel); 3814 3815 /** 3816 * security_secid_to_secctx() - Convert a secid to a secctx 3817 * @secid: secid 3818 * @cp: the LSM context 3819 * 3820 * Convert secid to security context. If @cp is NULL the length of the 3821 * result will be returned, but no data will be returned. This 3822 * does mean that the length could change between calls to check the length and 3823 * the next call which actually allocates and returns the data. 3824 * 3825 * Return: Return length of data on success, error on failure. 3826 */ 3827 int security_secid_to_secctx(u32 secid, struct lsm_context *cp) 3828 { 3829 return call_int_hook(secid_to_secctx, secid, cp); 3830 } 3831 EXPORT_SYMBOL(security_secid_to_secctx); 3832 3833 /** 3834 * security_lsmprop_to_secctx() - Convert a lsm_prop to a secctx 3835 * @prop: lsm specific information 3836 * @cp: the LSM context 3837 * @lsmid: which security module to report 3838 * 3839 * Convert a @prop entry to security context. If @cp is NULL the 3840 * length of the result will be returned. This does mean that the 3841 * length could change between calls to check the length and the 3842 * next call which actually allocates and returns the @cp. 3843 * 3844 * @lsmid identifies which LSM should supply the context. 3845 * A value of LSM_ID_UNDEF indicates that the first LSM suppling 3846 * the hook should be used. This is used in cases where the 3847 * ID of the supplying LSM is unambiguous. 3848 * 3849 * Return: Return length of data on success, error on failure. 3850 */ 3851 int security_lsmprop_to_secctx(struct lsm_prop *prop, struct lsm_context *cp, 3852 int lsmid) 3853 { 3854 struct lsm_static_call *scall; 3855 3856 lsm_for_each_hook(scall, lsmprop_to_secctx) { 3857 if (lsmid != LSM_ID_UNDEF && lsmid != scall->hl->lsmid->id) 3858 continue; 3859 return scall->hl->hook.lsmprop_to_secctx(prop, cp); 3860 } 3861 return LSM_RET_DEFAULT(lsmprop_to_secctx); 3862 } 3863 EXPORT_SYMBOL(security_lsmprop_to_secctx); 3864 3865 /** 3866 * security_secctx_to_secid() - Convert a secctx to a secid 3867 * @secdata: secctx 3868 * @seclen: length of secctx 3869 * @secid: secid 3870 * 3871 * Convert security context to secid. 3872 * 3873 * Return: Returns 0 on success, error on failure. 3874 */ 3875 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid) 3876 { 3877 *secid = 0; 3878 return call_int_hook(secctx_to_secid, secdata, seclen, secid); 3879 } 3880 EXPORT_SYMBOL(security_secctx_to_secid); 3881 3882 /** 3883 * security_release_secctx() - Free a secctx buffer 3884 * @cp: the security context 3885 * 3886 * Release the security context. 3887 */ 3888 void security_release_secctx(struct lsm_context *cp) 3889 { 3890 call_void_hook(release_secctx, cp); 3891 memset(cp, 0, sizeof(*cp)); 3892 } 3893 EXPORT_SYMBOL(security_release_secctx); 3894 3895 /** 3896 * security_inode_invalidate_secctx() - Invalidate an inode's security label 3897 * @inode: inode 3898 * 3899 * Notify the security module that it must revalidate the security context of 3900 * an inode. 3901 */ 3902 void security_inode_invalidate_secctx(struct inode *inode) 3903 { 3904 call_void_hook(inode_invalidate_secctx, inode); 3905 } 3906 EXPORT_SYMBOL(security_inode_invalidate_secctx); 3907 3908 /** 3909 * security_inode_notifysecctx() - Notify the LSM of an inode's security label 3910 * @inode: inode 3911 * @ctx: secctx 3912 * @ctxlen: length of secctx 3913 * 3914 * Notify the security module of what the security context of an inode should 3915 * be. Initializes the incore security context managed by the security module 3916 * for this inode. Example usage: NFS client invokes this hook to initialize 3917 * the security context in its incore inode to the value provided by the server 3918 * for the file when the server returned the file's attributes to the client. 3919 * Must be called with inode->i_mutex locked. 3920 * 3921 * Return: Returns 0 on success, error on failure. 3922 */ 3923 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen) 3924 { 3925 return call_int_hook(inode_notifysecctx, inode, ctx, ctxlen); 3926 } 3927 EXPORT_SYMBOL(security_inode_notifysecctx); 3928 3929 /** 3930 * security_inode_setsecctx() - Change the security label of an inode 3931 * @dentry: inode 3932 * @ctx: secctx 3933 * @ctxlen: length of secctx 3934 * 3935 * Change the security context of an inode. Updates the incore security 3936 * context managed by the security module and invokes the fs code as needed 3937 * (via __vfs_setxattr_noperm) to update any backing xattrs that represent the 3938 * context. Example usage: NFS server invokes this hook to change the security 3939 * context in its incore inode and on the backing filesystem to a value 3940 * provided by the client on a SETATTR operation. Must be called with 3941 * inode->i_mutex locked. 3942 * 3943 * Return: Returns 0 on success, error on failure. 3944 */ 3945 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen) 3946 { 3947 return call_int_hook(inode_setsecctx, dentry, ctx, ctxlen); 3948 } 3949 EXPORT_SYMBOL(security_inode_setsecctx); 3950 3951 /** 3952 * security_inode_getsecctx() - Get the security label of an inode 3953 * @inode: inode 3954 * @cp: security context 3955 * 3956 * On success, returns 0 and fills out @cp with the security context 3957 * for the given @inode. 3958 * 3959 * Return: Returns 0 on success, error on failure. 3960 */ 3961 int security_inode_getsecctx(struct inode *inode, struct lsm_context *cp) 3962 { 3963 memset(cp, 0, sizeof(*cp)); 3964 return call_int_hook(inode_getsecctx, inode, cp); 3965 } 3966 EXPORT_SYMBOL(security_inode_getsecctx); 3967 3968 #ifdef CONFIG_WATCH_QUEUE 3969 /** 3970 * security_post_notification() - Check if a watch notification can be posted 3971 * @w_cred: credentials of the task that set the watch 3972 * @cred: credentials of the task which triggered the watch 3973 * @n: the notification 3974 * 3975 * Check to see if a watch notification can be posted to a particular queue. 3976 * 3977 * Return: Returns 0 if permission is granted. 3978 */ 3979 int security_post_notification(const struct cred *w_cred, 3980 const struct cred *cred, 3981 struct watch_notification *n) 3982 { 3983 return call_int_hook(post_notification, w_cred, cred, n); 3984 } 3985 #endif /* CONFIG_WATCH_QUEUE */ 3986 3987 #ifdef CONFIG_KEY_NOTIFICATIONS 3988 /** 3989 * security_watch_key() - Check if a task is allowed to watch for key events 3990 * @key: the key to watch 3991 * 3992 * Check to see if a process is allowed to watch for event notifications from 3993 * a key or keyring. 3994 * 3995 * Return: Returns 0 if permission is granted. 3996 */ 3997 int security_watch_key(struct key *key) 3998 { 3999 return call_int_hook(watch_key, key); 4000 } 4001 #endif /* CONFIG_KEY_NOTIFICATIONS */ 4002 4003 #ifdef CONFIG_SECURITY_NETWORK 4004 /** 4005 * security_netlink_send() - Save info and check if netlink sending is allowed 4006 * @sk: sending socket 4007 * @skb: netlink message 4008 * 4009 * Save security information for a netlink message so that permission checking 4010 * can be performed when the message is processed. The security information 4011 * can be saved using the eff_cap field of the netlink_skb_parms structure. 4012 * Also may be used to provide fine grained control over message transmission. 4013 * 4014 * Return: Returns 0 if the information was successfully saved and message is 4015 * allowed to be transmitted. 4016 */ 4017 int security_netlink_send(struct sock *sk, struct sk_buff *skb) 4018 { 4019 return call_int_hook(netlink_send, sk, skb); 4020 } 4021 4022 /** 4023 * security_unix_stream_connect() - Check if a AF_UNIX stream is allowed 4024 * @sock: originating sock 4025 * @other: peer sock 4026 * @newsk: new sock 4027 * 4028 * Check permissions before establishing a Unix domain stream connection 4029 * between @sock and @other. 4030 * 4031 * The @unix_stream_connect and @unix_may_send hooks were necessary because 4032 * Linux provides an alternative to the conventional file name space for Unix 4033 * domain sockets. Whereas binding and connecting to sockets in the file name 4034 * space is mediated by the typical file permissions (and caught by the mknod 4035 * and permission hooks in inode_security_ops), binding and connecting to 4036 * sockets in the abstract name space is completely unmediated. Sufficient 4037 * control of Unix domain sockets in the abstract name space isn't possible 4038 * using only the socket layer hooks, since we need to know the actual target 4039 * socket, which is not looked up until we are inside the af_unix code. 4040 * 4041 * Return: Returns 0 if permission is granted. 4042 */ 4043 int security_unix_stream_connect(struct sock *sock, struct sock *other, 4044 struct sock *newsk) 4045 { 4046 return call_int_hook(unix_stream_connect, sock, other, newsk); 4047 } 4048 EXPORT_SYMBOL(security_unix_stream_connect); 4049 4050 /** 4051 * security_unix_may_send() - Check if AF_UNIX socket can send datagrams 4052 * @sock: originating sock 4053 * @other: peer sock 4054 * 4055 * Check permissions before connecting or sending datagrams from @sock to 4056 * @other. 4057 * 4058 * The @unix_stream_connect and @unix_may_send hooks were necessary because 4059 * Linux provides an alternative to the conventional file name space for Unix 4060 * domain sockets. Whereas binding and connecting to sockets in the file name 4061 * space is mediated by the typical file permissions (and caught by the mknod 4062 * and permission hooks in inode_security_ops), binding and connecting to 4063 * sockets in the abstract name space is completely unmediated. Sufficient 4064 * control of Unix domain sockets in the abstract name space isn't possible 4065 * using only the socket layer hooks, since we need to know the actual target 4066 * socket, which is not looked up until we are inside the af_unix code. 4067 * 4068 * Return: Returns 0 if permission is granted. 4069 */ 4070 int security_unix_may_send(struct socket *sock, struct socket *other) 4071 { 4072 return call_int_hook(unix_may_send, sock, other); 4073 } 4074 EXPORT_SYMBOL(security_unix_may_send); 4075 4076 /** 4077 * security_socket_create() - Check if creating a new socket is allowed 4078 * @family: protocol family 4079 * @type: communications type 4080 * @protocol: requested protocol 4081 * @kern: set to 1 if a kernel socket is requested 4082 * 4083 * Check permissions prior to creating a new socket. 4084 * 4085 * Return: Returns 0 if permission is granted. 4086 */ 4087 int security_socket_create(int family, int type, int protocol, int kern) 4088 { 4089 return call_int_hook(socket_create, family, type, protocol, kern); 4090 } 4091 4092 /** 4093 * security_socket_post_create() - Initialize a newly created socket 4094 * @sock: socket 4095 * @family: protocol family 4096 * @type: communications type 4097 * @protocol: requested protocol 4098 * @kern: set to 1 if a kernel socket is requested 4099 * 4100 * This hook allows a module to update or allocate a per-socket security 4101 * structure. Note that the security field was not added directly to the socket 4102 * structure, but rather, the socket security information is stored in the 4103 * associated inode. Typically, the inode alloc_security hook will allocate 4104 * and attach security information to SOCK_INODE(sock)->i_security. This hook 4105 * may be used to update the SOCK_INODE(sock)->i_security field with additional 4106 * information that wasn't available when the inode was allocated. 4107 * 4108 * Return: Returns 0 if permission is granted. 4109 */ 4110 int security_socket_post_create(struct socket *sock, int family, 4111 int type, int protocol, int kern) 4112 { 4113 return call_int_hook(socket_post_create, sock, family, type, 4114 protocol, kern); 4115 } 4116 4117 /** 4118 * security_socket_socketpair() - Check if creating a socketpair is allowed 4119 * @socka: first socket 4120 * @sockb: second socket 4121 * 4122 * Check permissions before creating a fresh pair of sockets. 4123 * 4124 * Return: Returns 0 if permission is granted and the connection was 4125 * established. 4126 */ 4127 int security_socket_socketpair(struct socket *socka, struct socket *sockb) 4128 { 4129 return call_int_hook(socket_socketpair, socka, sockb); 4130 } 4131 EXPORT_SYMBOL(security_socket_socketpair); 4132 4133 /** 4134 * security_socket_bind() - Check if a socket bind operation is allowed 4135 * @sock: socket 4136 * @address: requested bind address 4137 * @addrlen: length of address 4138 * 4139 * Check permission before socket protocol layer bind operation is performed 4140 * and the socket @sock is bound to the address specified in the @address 4141 * parameter. 4142 * 4143 * Return: Returns 0 if permission is granted. 4144 */ 4145 int security_socket_bind(struct socket *sock, 4146 struct sockaddr *address, int addrlen) 4147 { 4148 return call_int_hook(socket_bind, sock, address, addrlen); 4149 } 4150 4151 /** 4152 * security_socket_connect() - Check if a socket connect operation is allowed 4153 * @sock: socket 4154 * @address: address of remote connection point 4155 * @addrlen: length of address 4156 * 4157 * Check permission before socket protocol layer connect operation attempts to 4158 * connect socket @sock to a remote address, @address. 4159 * 4160 * Return: Returns 0 if permission is granted. 4161 */ 4162 int security_socket_connect(struct socket *sock, 4163 struct sockaddr *address, int addrlen) 4164 { 4165 return call_int_hook(socket_connect, sock, address, addrlen); 4166 } 4167 4168 /** 4169 * security_socket_listen() - Check if a socket is allowed to listen 4170 * @sock: socket 4171 * @backlog: connection queue size 4172 * 4173 * Check permission before socket protocol layer listen operation. 4174 * 4175 * Return: Returns 0 if permission is granted. 4176 */ 4177 int security_socket_listen(struct socket *sock, int backlog) 4178 { 4179 return call_int_hook(socket_listen, sock, backlog); 4180 } 4181 4182 /** 4183 * security_socket_accept() - Check if a socket is allowed to accept connections 4184 * @sock: listening socket 4185 * @newsock: newly creation connection socket 4186 * 4187 * Check permission before accepting a new connection. Note that the new 4188 * socket, @newsock, has been created and some information copied to it, but 4189 * the accept operation has not actually been performed. 4190 * 4191 * Return: Returns 0 if permission is granted. 4192 */ 4193 int security_socket_accept(struct socket *sock, struct socket *newsock) 4194 { 4195 return call_int_hook(socket_accept, sock, newsock); 4196 } 4197 4198 /** 4199 * security_socket_sendmsg() - Check if sending a message is allowed 4200 * @sock: sending socket 4201 * @msg: message to send 4202 * @size: size of message 4203 * 4204 * Check permission before transmitting a message to another socket. 4205 * 4206 * Return: Returns 0 if permission is granted. 4207 */ 4208 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size) 4209 { 4210 return call_int_hook(socket_sendmsg, sock, msg, size); 4211 } 4212 4213 /** 4214 * security_socket_recvmsg() - Check if receiving a message is allowed 4215 * @sock: receiving socket 4216 * @msg: message to receive 4217 * @size: size of message 4218 * @flags: operational flags 4219 * 4220 * Check permission before receiving a message from a socket. 4221 * 4222 * Return: Returns 0 if permission is granted. 4223 */ 4224 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg, 4225 int size, int flags) 4226 { 4227 return call_int_hook(socket_recvmsg, sock, msg, size, flags); 4228 } 4229 4230 /** 4231 * security_socket_getsockname() - Check if reading the socket addr is allowed 4232 * @sock: socket 4233 * 4234 * Check permission before reading the local address (name) of the socket 4235 * object. 4236 * 4237 * Return: Returns 0 if permission is granted. 4238 */ 4239 int security_socket_getsockname(struct socket *sock) 4240 { 4241 return call_int_hook(socket_getsockname, sock); 4242 } 4243 4244 /** 4245 * security_socket_getpeername() - Check if reading the peer's addr is allowed 4246 * @sock: socket 4247 * 4248 * Check permission before the remote address (name) of a socket object. 4249 * 4250 * Return: Returns 0 if permission is granted. 4251 */ 4252 int security_socket_getpeername(struct socket *sock) 4253 { 4254 return call_int_hook(socket_getpeername, sock); 4255 } 4256 4257 /** 4258 * security_socket_getsockopt() - Check if reading a socket option is allowed 4259 * @sock: socket 4260 * @level: option's protocol level 4261 * @optname: option name 4262 * 4263 * Check permissions before retrieving the options associated with socket 4264 * @sock. 4265 * 4266 * Return: Returns 0 if permission is granted. 4267 */ 4268 int security_socket_getsockopt(struct socket *sock, int level, int optname) 4269 { 4270 return call_int_hook(socket_getsockopt, sock, level, optname); 4271 } 4272 4273 /** 4274 * security_socket_setsockopt() - Check if setting a socket option is allowed 4275 * @sock: socket 4276 * @level: option's protocol level 4277 * @optname: option name 4278 * 4279 * Check permissions before setting the options associated with socket @sock. 4280 * 4281 * Return: Returns 0 if permission is granted. 4282 */ 4283 int security_socket_setsockopt(struct socket *sock, int level, int optname) 4284 { 4285 return call_int_hook(socket_setsockopt, sock, level, optname); 4286 } 4287 4288 /** 4289 * security_socket_shutdown() - Checks if shutting down the socket is allowed 4290 * @sock: socket 4291 * @how: flag indicating how sends and receives are handled 4292 * 4293 * Checks permission before all or part of a connection on the socket @sock is 4294 * shut down. 4295 * 4296 * Return: Returns 0 if permission is granted. 4297 */ 4298 int security_socket_shutdown(struct socket *sock, int how) 4299 { 4300 return call_int_hook(socket_shutdown, sock, how); 4301 } 4302 4303 /** 4304 * security_sock_rcv_skb() - Check if an incoming network packet is allowed 4305 * @sk: destination sock 4306 * @skb: incoming packet 4307 * 4308 * Check permissions on incoming network packets. This hook is distinct from 4309 * Netfilter's IP input hooks since it is the first time that the incoming 4310 * sk_buff @skb has been associated with a particular socket, @sk. Must not 4311 * sleep inside this hook because some callers hold spinlocks. 4312 * 4313 * Return: Returns 0 if permission is granted. 4314 */ 4315 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb) 4316 { 4317 return call_int_hook(socket_sock_rcv_skb, sk, skb); 4318 } 4319 EXPORT_SYMBOL(security_sock_rcv_skb); 4320 4321 /** 4322 * security_socket_getpeersec_stream() - Get the remote peer label 4323 * @sock: socket 4324 * @optval: destination buffer 4325 * @optlen: size of peer label copied into the buffer 4326 * @len: maximum size of the destination buffer 4327 * 4328 * This hook allows the security module to provide peer socket security state 4329 * for unix or connected tcp sockets to userspace via getsockopt SO_GETPEERSEC. 4330 * For tcp sockets this can be meaningful if the socket is associated with an 4331 * ipsec SA. 4332 * 4333 * Return: Returns 0 if all is well, otherwise, typical getsockopt return 4334 * values. 4335 */ 4336 int security_socket_getpeersec_stream(struct socket *sock, sockptr_t optval, 4337 sockptr_t optlen, unsigned int len) 4338 { 4339 return call_int_hook(socket_getpeersec_stream, sock, optval, optlen, 4340 len); 4341 } 4342 4343 /** 4344 * security_socket_getpeersec_dgram() - Get the remote peer label 4345 * @sock: socket 4346 * @skb: datagram packet 4347 * @secid: remote peer label secid 4348 * 4349 * This hook allows the security module to provide peer socket security state 4350 * for udp sockets on a per-packet basis to userspace via getsockopt 4351 * SO_GETPEERSEC. The application must first have indicated the IP_PASSSEC 4352 * option via getsockopt. It can then retrieve the security state returned by 4353 * this hook for a packet via the SCM_SECURITY ancillary message type. 4354 * 4355 * Return: Returns 0 on success, error on failure. 4356 */ 4357 int security_socket_getpeersec_dgram(struct socket *sock, 4358 struct sk_buff *skb, u32 *secid) 4359 { 4360 return call_int_hook(socket_getpeersec_dgram, sock, skb, secid); 4361 } 4362 EXPORT_SYMBOL(security_socket_getpeersec_dgram); 4363 4364 /** 4365 * lsm_sock_alloc - allocate a composite sock blob 4366 * @sock: the sock that needs a blob 4367 * @gfp: allocation mode 4368 * 4369 * Allocate the sock blob for all the modules 4370 * 4371 * Returns 0, or -ENOMEM if memory can't be allocated. 4372 */ 4373 static int lsm_sock_alloc(struct sock *sock, gfp_t gfp) 4374 { 4375 return lsm_blob_alloc(&sock->sk_security, blob_sizes.lbs_sock, gfp); 4376 } 4377 4378 /** 4379 * security_sk_alloc() - Allocate and initialize a sock's LSM blob 4380 * @sk: sock 4381 * @family: protocol family 4382 * @priority: gfp flags 4383 * 4384 * Allocate and attach a security structure to the sk->sk_security field, which 4385 * is used to copy security attributes between local stream sockets. 4386 * 4387 * Return: Returns 0 on success, error on failure. 4388 */ 4389 int security_sk_alloc(struct sock *sk, int family, gfp_t priority) 4390 { 4391 int rc = lsm_sock_alloc(sk, priority); 4392 4393 if (unlikely(rc)) 4394 return rc; 4395 rc = call_int_hook(sk_alloc_security, sk, family, priority); 4396 if (unlikely(rc)) 4397 security_sk_free(sk); 4398 return rc; 4399 } 4400 4401 /** 4402 * security_sk_free() - Free the sock's LSM blob 4403 * @sk: sock 4404 * 4405 * Deallocate security structure. 4406 */ 4407 void security_sk_free(struct sock *sk) 4408 { 4409 call_void_hook(sk_free_security, sk); 4410 kfree(sk->sk_security); 4411 sk->sk_security = NULL; 4412 } 4413 4414 /** 4415 * security_sk_clone() - Clone a sock's LSM state 4416 * @sk: original sock 4417 * @newsk: target sock 4418 * 4419 * Clone/copy security structure. 4420 */ 4421 void security_sk_clone(const struct sock *sk, struct sock *newsk) 4422 { 4423 call_void_hook(sk_clone_security, sk, newsk); 4424 } 4425 EXPORT_SYMBOL(security_sk_clone); 4426 4427 /** 4428 * security_sk_classify_flow() - Set a flow's secid based on socket 4429 * @sk: original socket 4430 * @flic: target flow 4431 * 4432 * Set the target flow's secid to socket's secid. 4433 */ 4434 void security_sk_classify_flow(const struct sock *sk, struct flowi_common *flic) 4435 { 4436 call_void_hook(sk_getsecid, sk, &flic->flowic_secid); 4437 } 4438 EXPORT_SYMBOL(security_sk_classify_flow); 4439 4440 /** 4441 * security_req_classify_flow() - Set a flow's secid based on request_sock 4442 * @req: request_sock 4443 * @flic: target flow 4444 * 4445 * Sets @flic's secid to @req's secid. 4446 */ 4447 void security_req_classify_flow(const struct request_sock *req, 4448 struct flowi_common *flic) 4449 { 4450 call_void_hook(req_classify_flow, req, flic); 4451 } 4452 EXPORT_SYMBOL(security_req_classify_flow); 4453 4454 /** 4455 * security_sock_graft() - Reconcile LSM state when grafting a sock on a socket 4456 * @sk: sock being grafted 4457 * @parent: target parent socket 4458 * 4459 * Sets @parent's inode secid to @sk's secid and update @sk with any necessary 4460 * LSM state from @parent. 4461 */ 4462 void security_sock_graft(struct sock *sk, struct socket *parent) 4463 { 4464 call_void_hook(sock_graft, sk, parent); 4465 } 4466 EXPORT_SYMBOL(security_sock_graft); 4467 4468 /** 4469 * security_inet_conn_request() - Set request_sock state using incoming connect 4470 * @sk: parent listening sock 4471 * @skb: incoming connection 4472 * @req: new request_sock 4473 * 4474 * Initialize the @req LSM state based on @sk and the incoming connect in @skb. 4475 * 4476 * Return: Returns 0 if permission is granted. 4477 */ 4478 int security_inet_conn_request(const struct sock *sk, 4479 struct sk_buff *skb, struct request_sock *req) 4480 { 4481 return call_int_hook(inet_conn_request, sk, skb, req); 4482 } 4483 EXPORT_SYMBOL(security_inet_conn_request); 4484 4485 /** 4486 * security_inet_csk_clone() - Set new sock LSM state based on request_sock 4487 * @newsk: new sock 4488 * @req: connection request_sock 4489 * 4490 * Set that LSM state of @sock using the LSM state from @req. 4491 */ 4492 void security_inet_csk_clone(struct sock *newsk, 4493 const struct request_sock *req) 4494 { 4495 call_void_hook(inet_csk_clone, newsk, req); 4496 } 4497 4498 /** 4499 * security_inet_conn_established() - Update sock's LSM state with connection 4500 * @sk: sock 4501 * @skb: connection packet 4502 * 4503 * Update @sock's LSM state to represent a new connection from @skb. 4504 */ 4505 void security_inet_conn_established(struct sock *sk, 4506 struct sk_buff *skb) 4507 { 4508 call_void_hook(inet_conn_established, sk, skb); 4509 } 4510 EXPORT_SYMBOL(security_inet_conn_established); 4511 4512 /** 4513 * security_secmark_relabel_packet() - Check if setting a secmark is allowed 4514 * @secid: new secmark value 4515 * 4516 * Check if the process should be allowed to relabel packets to @secid. 4517 * 4518 * Return: Returns 0 if permission is granted. 4519 */ 4520 int security_secmark_relabel_packet(u32 secid) 4521 { 4522 return call_int_hook(secmark_relabel_packet, secid); 4523 } 4524 EXPORT_SYMBOL(security_secmark_relabel_packet); 4525 4526 /** 4527 * security_secmark_refcount_inc() - Increment the secmark labeling rule count 4528 * 4529 * Tells the LSM to increment the number of secmark labeling rules loaded. 4530 */ 4531 void security_secmark_refcount_inc(void) 4532 { 4533 call_void_hook(secmark_refcount_inc); 4534 } 4535 EXPORT_SYMBOL(security_secmark_refcount_inc); 4536 4537 /** 4538 * security_secmark_refcount_dec() - Decrement the secmark labeling rule count 4539 * 4540 * Tells the LSM to decrement the number of secmark labeling rules loaded. 4541 */ 4542 void security_secmark_refcount_dec(void) 4543 { 4544 call_void_hook(secmark_refcount_dec); 4545 } 4546 EXPORT_SYMBOL(security_secmark_refcount_dec); 4547 4548 /** 4549 * security_tun_dev_alloc_security() - Allocate a LSM blob for a TUN device 4550 * @security: pointer to the LSM blob 4551 * 4552 * This hook allows a module to allocate a security structure for a TUN device, 4553 * returning the pointer in @security. 4554 * 4555 * Return: Returns a zero on success, negative values on failure. 4556 */ 4557 int security_tun_dev_alloc_security(void **security) 4558 { 4559 int rc; 4560 4561 rc = lsm_blob_alloc(security, blob_sizes.lbs_tun_dev, GFP_KERNEL); 4562 if (rc) 4563 return rc; 4564 4565 rc = call_int_hook(tun_dev_alloc_security, *security); 4566 if (rc) { 4567 kfree(*security); 4568 *security = NULL; 4569 } 4570 return rc; 4571 } 4572 EXPORT_SYMBOL(security_tun_dev_alloc_security); 4573 4574 /** 4575 * security_tun_dev_free_security() - Free a TUN device LSM blob 4576 * @security: LSM blob 4577 * 4578 * This hook allows a module to free the security structure for a TUN device. 4579 */ 4580 void security_tun_dev_free_security(void *security) 4581 { 4582 kfree(security); 4583 } 4584 EXPORT_SYMBOL(security_tun_dev_free_security); 4585 4586 /** 4587 * security_tun_dev_create() - Check if creating a TUN device is allowed 4588 * 4589 * Check permissions prior to creating a new TUN device. 4590 * 4591 * Return: Returns 0 if permission is granted. 4592 */ 4593 int security_tun_dev_create(void) 4594 { 4595 return call_int_hook(tun_dev_create); 4596 } 4597 EXPORT_SYMBOL(security_tun_dev_create); 4598 4599 /** 4600 * security_tun_dev_attach_queue() - Check if attaching a TUN queue is allowed 4601 * @security: TUN device LSM blob 4602 * 4603 * Check permissions prior to attaching to a TUN device queue. 4604 * 4605 * Return: Returns 0 if permission is granted. 4606 */ 4607 int security_tun_dev_attach_queue(void *security) 4608 { 4609 return call_int_hook(tun_dev_attach_queue, security); 4610 } 4611 EXPORT_SYMBOL(security_tun_dev_attach_queue); 4612 4613 /** 4614 * security_tun_dev_attach() - Update TUN device LSM state on attach 4615 * @sk: associated sock 4616 * @security: TUN device LSM blob 4617 * 4618 * This hook can be used by the module to update any security state associated 4619 * with the TUN device's sock structure. 4620 * 4621 * Return: Returns 0 if permission is granted. 4622 */ 4623 int security_tun_dev_attach(struct sock *sk, void *security) 4624 { 4625 return call_int_hook(tun_dev_attach, sk, security); 4626 } 4627 EXPORT_SYMBOL(security_tun_dev_attach); 4628 4629 /** 4630 * security_tun_dev_open() - Update TUN device LSM state on open 4631 * @security: TUN device LSM blob 4632 * 4633 * This hook can be used by the module to update any security state associated 4634 * with the TUN device's security structure. 4635 * 4636 * Return: Returns 0 if permission is granted. 4637 */ 4638 int security_tun_dev_open(void *security) 4639 { 4640 return call_int_hook(tun_dev_open, security); 4641 } 4642 EXPORT_SYMBOL(security_tun_dev_open); 4643 4644 /** 4645 * security_sctp_assoc_request() - Update the LSM on a SCTP association req 4646 * @asoc: SCTP association 4647 * @skb: packet requesting the association 4648 * 4649 * Passes the @asoc and @chunk->skb of the association INIT packet to the LSM. 4650 * 4651 * Return: Returns 0 on success, error on failure. 4652 */ 4653 int security_sctp_assoc_request(struct sctp_association *asoc, 4654 struct sk_buff *skb) 4655 { 4656 return call_int_hook(sctp_assoc_request, asoc, skb); 4657 } 4658 EXPORT_SYMBOL(security_sctp_assoc_request); 4659 4660 /** 4661 * security_sctp_bind_connect() - Validate a list of addrs for a SCTP option 4662 * @sk: socket 4663 * @optname: SCTP option to validate 4664 * @address: list of IP addresses to validate 4665 * @addrlen: length of the address list 4666 * 4667 * Validiate permissions required for each address associated with sock @sk. 4668 * Depending on @optname, the addresses will be treated as either a connect or 4669 * bind service. The @addrlen is calculated on each IPv4 and IPv6 address using 4670 * sizeof(struct sockaddr_in) or sizeof(struct sockaddr_in6). 4671 * 4672 * Return: Returns 0 on success, error on failure. 4673 */ 4674 int security_sctp_bind_connect(struct sock *sk, int optname, 4675 struct sockaddr *address, int addrlen) 4676 { 4677 return call_int_hook(sctp_bind_connect, sk, optname, address, addrlen); 4678 } 4679 EXPORT_SYMBOL(security_sctp_bind_connect); 4680 4681 /** 4682 * security_sctp_sk_clone() - Clone a SCTP sock's LSM state 4683 * @asoc: SCTP association 4684 * @sk: original sock 4685 * @newsk: target sock 4686 * 4687 * Called whenever a new socket is created by accept(2) (i.e. a TCP style 4688 * socket) or when a socket is 'peeled off' e.g userspace calls 4689 * sctp_peeloff(3). 4690 */ 4691 void security_sctp_sk_clone(struct sctp_association *asoc, struct sock *sk, 4692 struct sock *newsk) 4693 { 4694 call_void_hook(sctp_sk_clone, asoc, sk, newsk); 4695 } 4696 EXPORT_SYMBOL(security_sctp_sk_clone); 4697 4698 /** 4699 * security_sctp_assoc_established() - Update LSM state when assoc established 4700 * @asoc: SCTP association 4701 * @skb: packet establishing the association 4702 * 4703 * Passes the @asoc and @chunk->skb of the association COOKIE_ACK packet to the 4704 * security module. 4705 * 4706 * Return: Returns 0 if permission is granted. 4707 */ 4708 int security_sctp_assoc_established(struct sctp_association *asoc, 4709 struct sk_buff *skb) 4710 { 4711 return call_int_hook(sctp_assoc_established, asoc, skb); 4712 } 4713 EXPORT_SYMBOL(security_sctp_assoc_established); 4714 4715 /** 4716 * security_mptcp_add_subflow() - Inherit the LSM label from the MPTCP socket 4717 * @sk: the owning MPTCP socket 4718 * @ssk: the new subflow 4719 * 4720 * Update the labeling for the given MPTCP subflow, to match the one of the 4721 * owning MPTCP socket. This hook has to be called after the socket creation and 4722 * initialization via the security_socket_create() and 4723 * security_socket_post_create() LSM hooks. 4724 * 4725 * Return: Returns 0 on success or a negative error code on failure. 4726 */ 4727 int security_mptcp_add_subflow(struct sock *sk, struct sock *ssk) 4728 { 4729 return call_int_hook(mptcp_add_subflow, sk, ssk); 4730 } 4731 4732 #endif /* CONFIG_SECURITY_NETWORK */ 4733 4734 #ifdef CONFIG_SECURITY_INFINIBAND 4735 /** 4736 * security_ib_pkey_access() - Check if access to an IB pkey is allowed 4737 * @sec: LSM blob 4738 * @subnet_prefix: subnet prefix of the port 4739 * @pkey: IB pkey 4740 * 4741 * Check permission to access a pkey when modifying a QP. 4742 * 4743 * Return: Returns 0 if permission is granted. 4744 */ 4745 int security_ib_pkey_access(void *sec, u64 subnet_prefix, u16 pkey) 4746 { 4747 return call_int_hook(ib_pkey_access, sec, subnet_prefix, pkey); 4748 } 4749 EXPORT_SYMBOL(security_ib_pkey_access); 4750 4751 /** 4752 * security_ib_endport_manage_subnet() - Check if SMPs traffic is allowed 4753 * @sec: LSM blob 4754 * @dev_name: IB device name 4755 * @port_num: port number 4756 * 4757 * Check permissions to send and receive SMPs on a end port. 4758 * 4759 * Return: Returns 0 if permission is granted. 4760 */ 4761 int security_ib_endport_manage_subnet(void *sec, 4762 const char *dev_name, u8 port_num) 4763 { 4764 return call_int_hook(ib_endport_manage_subnet, sec, dev_name, port_num); 4765 } 4766 EXPORT_SYMBOL(security_ib_endport_manage_subnet); 4767 4768 /** 4769 * security_ib_alloc_security() - Allocate an Infiniband LSM blob 4770 * @sec: LSM blob 4771 * 4772 * Allocate a security structure for Infiniband objects. 4773 * 4774 * Return: Returns 0 on success, non-zero on failure. 4775 */ 4776 int security_ib_alloc_security(void **sec) 4777 { 4778 int rc; 4779 4780 rc = lsm_blob_alloc(sec, blob_sizes.lbs_ib, GFP_KERNEL); 4781 if (rc) 4782 return rc; 4783 4784 rc = call_int_hook(ib_alloc_security, *sec); 4785 if (rc) { 4786 kfree(*sec); 4787 *sec = NULL; 4788 } 4789 return rc; 4790 } 4791 EXPORT_SYMBOL(security_ib_alloc_security); 4792 4793 /** 4794 * security_ib_free_security() - Free an Infiniband LSM blob 4795 * @sec: LSM blob 4796 * 4797 * Deallocate an Infiniband security structure. 4798 */ 4799 void security_ib_free_security(void *sec) 4800 { 4801 kfree(sec); 4802 } 4803 EXPORT_SYMBOL(security_ib_free_security); 4804 #endif /* CONFIG_SECURITY_INFINIBAND */ 4805 4806 #ifdef CONFIG_SECURITY_NETWORK_XFRM 4807 /** 4808 * security_xfrm_policy_alloc() - Allocate a xfrm policy LSM blob 4809 * @ctxp: xfrm security context being added to the SPD 4810 * @sec_ctx: security label provided by userspace 4811 * @gfp: gfp flags 4812 * 4813 * Allocate a security structure to the xp->security field; the security field 4814 * is initialized to NULL when the xfrm_policy is allocated. 4815 * 4816 * Return: Return 0 if operation was successful. 4817 */ 4818 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, 4819 struct xfrm_user_sec_ctx *sec_ctx, 4820 gfp_t gfp) 4821 { 4822 return call_int_hook(xfrm_policy_alloc_security, ctxp, sec_ctx, gfp); 4823 } 4824 EXPORT_SYMBOL(security_xfrm_policy_alloc); 4825 4826 /** 4827 * security_xfrm_policy_clone() - Clone xfrm policy LSM state 4828 * @old_ctx: xfrm security context 4829 * @new_ctxp: target xfrm security context 4830 * 4831 * Allocate a security structure in new_ctxp that contains the information from 4832 * the old_ctx structure. 4833 * 4834 * Return: Return 0 if operation was successful. 4835 */ 4836 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx, 4837 struct xfrm_sec_ctx **new_ctxp) 4838 { 4839 return call_int_hook(xfrm_policy_clone_security, old_ctx, new_ctxp); 4840 } 4841 4842 /** 4843 * security_xfrm_policy_free() - Free a xfrm security context 4844 * @ctx: xfrm security context 4845 * 4846 * Free LSM resources associated with @ctx. 4847 */ 4848 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx) 4849 { 4850 call_void_hook(xfrm_policy_free_security, ctx); 4851 } 4852 EXPORT_SYMBOL(security_xfrm_policy_free); 4853 4854 /** 4855 * security_xfrm_policy_delete() - Check if deleting a xfrm policy is allowed 4856 * @ctx: xfrm security context 4857 * 4858 * Authorize deletion of a SPD entry. 4859 * 4860 * Return: Returns 0 if permission is granted. 4861 */ 4862 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx) 4863 { 4864 return call_int_hook(xfrm_policy_delete_security, ctx); 4865 } 4866 4867 /** 4868 * security_xfrm_state_alloc() - Allocate a xfrm state LSM blob 4869 * @x: xfrm state being added to the SAD 4870 * @sec_ctx: security label provided by userspace 4871 * 4872 * Allocate a security structure to the @x->security field; the security field 4873 * is initialized to NULL when the xfrm_state is allocated. Set the context to 4874 * correspond to @sec_ctx. 4875 * 4876 * Return: Return 0 if operation was successful. 4877 */ 4878 int security_xfrm_state_alloc(struct xfrm_state *x, 4879 struct xfrm_user_sec_ctx *sec_ctx) 4880 { 4881 return call_int_hook(xfrm_state_alloc, x, sec_ctx); 4882 } 4883 EXPORT_SYMBOL(security_xfrm_state_alloc); 4884 4885 /** 4886 * security_xfrm_state_alloc_acquire() - Allocate a xfrm state LSM blob 4887 * @x: xfrm state being added to the SAD 4888 * @polsec: associated policy's security context 4889 * @secid: secid from the flow 4890 * 4891 * Allocate a security structure to the x->security field; the security field 4892 * is initialized to NULL when the xfrm_state is allocated. Set the context to 4893 * correspond to secid. 4894 * 4895 * Return: Returns 0 if operation was successful. 4896 */ 4897 int security_xfrm_state_alloc_acquire(struct xfrm_state *x, 4898 struct xfrm_sec_ctx *polsec, u32 secid) 4899 { 4900 return call_int_hook(xfrm_state_alloc_acquire, x, polsec, secid); 4901 } 4902 4903 /** 4904 * security_xfrm_state_delete() - Check if deleting a xfrm state is allowed 4905 * @x: xfrm state 4906 * 4907 * Authorize deletion of x->security. 4908 * 4909 * Return: Returns 0 if permission is granted. 4910 */ 4911 int security_xfrm_state_delete(struct xfrm_state *x) 4912 { 4913 return call_int_hook(xfrm_state_delete_security, x); 4914 } 4915 EXPORT_SYMBOL(security_xfrm_state_delete); 4916 4917 /** 4918 * security_xfrm_state_free() - Free a xfrm state 4919 * @x: xfrm state 4920 * 4921 * Deallocate x->security. 4922 */ 4923 void security_xfrm_state_free(struct xfrm_state *x) 4924 { 4925 call_void_hook(xfrm_state_free_security, x); 4926 } 4927 4928 /** 4929 * security_xfrm_policy_lookup() - Check if using a xfrm policy is allowed 4930 * @ctx: target xfrm security context 4931 * @fl_secid: flow secid used to authorize access 4932 * 4933 * Check permission when a flow selects a xfrm_policy for processing XFRMs on a 4934 * packet. The hook is called when selecting either a per-socket policy or a 4935 * generic xfrm policy. 4936 * 4937 * Return: Return 0 if permission is granted, -ESRCH otherwise, or -errno on 4938 * other errors. 4939 */ 4940 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid) 4941 { 4942 return call_int_hook(xfrm_policy_lookup, ctx, fl_secid); 4943 } 4944 4945 /** 4946 * security_xfrm_state_pol_flow_match() - Check for a xfrm match 4947 * @x: xfrm state to match 4948 * @xp: xfrm policy to check for a match 4949 * @flic: flow to check for a match. 4950 * 4951 * Check @xp and @flic for a match with @x. 4952 * 4953 * Return: Returns 1 if there is a match. 4954 */ 4955 int security_xfrm_state_pol_flow_match(struct xfrm_state *x, 4956 struct xfrm_policy *xp, 4957 const struct flowi_common *flic) 4958 { 4959 struct lsm_static_call *scall; 4960 int rc = LSM_RET_DEFAULT(xfrm_state_pol_flow_match); 4961 4962 /* 4963 * Since this function is expected to return 0 or 1, the judgment 4964 * becomes difficult if multiple LSMs supply this call. Fortunately, 4965 * we can use the first LSM's judgment because currently only SELinux 4966 * supplies this call. 4967 * 4968 * For speed optimization, we explicitly break the loop rather than 4969 * using the macro 4970 */ 4971 lsm_for_each_hook(scall, xfrm_state_pol_flow_match) { 4972 rc = scall->hl->hook.xfrm_state_pol_flow_match(x, xp, flic); 4973 break; 4974 } 4975 return rc; 4976 } 4977 4978 /** 4979 * security_xfrm_decode_session() - Determine the xfrm secid for a packet 4980 * @skb: xfrm packet 4981 * @secid: secid 4982 * 4983 * Decode the packet in @skb and return the security label in @secid. 4984 * 4985 * Return: Return 0 if all xfrms used have the same secid. 4986 */ 4987 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid) 4988 { 4989 return call_int_hook(xfrm_decode_session, skb, secid, 1); 4990 } 4991 4992 void security_skb_classify_flow(struct sk_buff *skb, struct flowi_common *flic) 4993 { 4994 int rc = call_int_hook(xfrm_decode_session, skb, &flic->flowic_secid, 4995 0); 4996 4997 BUG_ON(rc); 4998 } 4999 EXPORT_SYMBOL(security_skb_classify_flow); 5000 #endif /* CONFIG_SECURITY_NETWORK_XFRM */ 5001 5002 #ifdef CONFIG_KEYS 5003 /** 5004 * security_key_alloc() - Allocate and initialize a kernel key LSM blob 5005 * @key: key 5006 * @cred: credentials 5007 * @flags: allocation flags 5008 * 5009 * Permit allocation of a key and assign security data. Note that key does not 5010 * have a serial number assigned at this point. 5011 * 5012 * Return: Return 0 if permission is granted, -ve error otherwise. 5013 */ 5014 int security_key_alloc(struct key *key, const struct cred *cred, 5015 unsigned long flags) 5016 { 5017 int rc = lsm_key_alloc(key); 5018 5019 if (unlikely(rc)) 5020 return rc; 5021 rc = call_int_hook(key_alloc, key, cred, flags); 5022 if (unlikely(rc)) 5023 security_key_free(key); 5024 return rc; 5025 } 5026 5027 /** 5028 * security_key_free() - Free a kernel key LSM blob 5029 * @key: key 5030 * 5031 * Notification of destruction; free security data. 5032 */ 5033 void security_key_free(struct key *key) 5034 { 5035 kfree(key->security); 5036 key->security = NULL; 5037 } 5038 5039 /** 5040 * security_key_permission() - Check if a kernel key operation is allowed 5041 * @key_ref: key reference 5042 * @cred: credentials of actor requesting access 5043 * @need_perm: requested permissions 5044 * 5045 * See whether a specific operational right is granted to a process on a key. 5046 * 5047 * Return: Return 0 if permission is granted, -ve error otherwise. 5048 */ 5049 int security_key_permission(key_ref_t key_ref, const struct cred *cred, 5050 enum key_need_perm need_perm) 5051 { 5052 return call_int_hook(key_permission, key_ref, cred, need_perm); 5053 } 5054 5055 /** 5056 * security_key_getsecurity() - Get the key's security label 5057 * @key: key 5058 * @buffer: security label buffer 5059 * 5060 * Get a textual representation of the security context attached to a key for 5061 * the purposes of honouring KEYCTL_GETSECURITY. This function allocates the 5062 * storage for the NUL-terminated string and the caller should free it. 5063 * 5064 * Return: Returns the length of @buffer (including terminating NUL) or -ve if 5065 * an error occurs. May also return 0 (and a NULL buffer pointer) if 5066 * there is no security label assigned to the key. 5067 */ 5068 int security_key_getsecurity(struct key *key, char **buffer) 5069 { 5070 *buffer = NULL; 5071 return call_int_hook(key_getsecurity, key, buffer); 5072 } 5073 5074 /** 5075 * security_key_post_create_or_update() - Notification of key create or update 5076 * @keyring: keyring to which the key is linked to 5077 * @key: created or updated key 5078 * @payload: data used to instantiate or update the key 5079 * @payload_len: length of payload 5080 * @flags: key flags 5081 * @create: flag indicating whether the key was created or updated 5082 * 5083 * Notify the caller of a key creation or update. 5084 */ 5085 void security_key_post_create_or_update(struct key *keyring, struct key *key, 5086 const void *payload, size_t payload_len, 5087 unsigned long flags, bool create) 5088 { 5089 call_void_hook(key_post_create_or_update, keyring, key, payload, 5090 payload_len, flags, create); 5091 } 5092 #endif /* CONFIG_KEYS */ 5093 5094 #ifdef CONFIG_AUDIT 5095 /** 5096 * security_audit_rule_init() - Allocate and init an LSM audit rule struct 5097 * @field: audit action 5098 * @op: rule operator 5099 * @rulestr: rule context 5100 * @lsmrule: receive buffer for audit rule struct 5101 * @gfp: GFP flag used for kmalloc 5102 * 5103 * Allocate and initialize an LSM audit rule structure. 5104 * 5105 * Return: Return 0 if @lsmrule has been successfully set, -EINVAL in case of 5106 * an invalid rule. 5107 */ 5108 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule, 5109 gfp_t gfp) 5110 { 5111 return call_int_hook(audit_rule_init, field, op, rulestr, lsmrule, gfp); 5112 } 5113 5114 /** 5115 * security_audit_rule_known() - Check if an audit rule contains LSM fields 5116 * @krule: audit rule 5117 * 5118 * Specifies whether given @krule contains any fields related to the current 5119 * LSM. 5120 * 5121 * Return: Returns 1 in case of relation found, 0 otherwise. 5122 */ 5123 int security_audit_rule_known(struct audit_krule *krule) 5124 { 5125 return call_int_hook(audit_rule_known, krule); 5126 } 5127 5128 /** 5129 * security_audit_rule_free() - Free an LSM audit rule struct 5130 * @lsmrule: audit rule struct 5131 * 5132 * Deallocate the LSM audit rule structure previously allocated by 5133 * audit_rule_init(). 5134 */ 5135 void security_audit_rule_free(void *lsmrule) 5136 { 5137 call_void_hook(audit_rule_free, lsmrule); 5138 } 5139 5140 /** 5141 * security_audit_rule_match() - Check if a label matches an audit rule 5142 * @prop: security label 5143 * @field: LSM audit field 5144 * @op: matching operator 5145 * @lsmrule: audit rule 5146 * 5147 * Determine if given @secid matches a rule previously approved by 5148 * security_audit_rule_known(). 5149 * 5150 * Return: Returns 1 if secid matches the rule, 0 if it does not, -ERRNO on 5151 * failure. 5152 */ 5153 int security_audit_rule_match(struct lsm_prop *prop, u32 field, u32 op, 5154 void *lsmrule) 5155 { 5156 return call_int_hook(audit_rule_match, prop, field, op, lsmrule); 5157 } 5158 #endif /* CONFIG_AUDIT */ 5159 5160 #ifdef CONFIG_BPF_SYSCALL 5161 /** 5162 * security_bpf() - Check if the bpf syscall operation is allowed 5163 * @cmd: command 5164 * @attr: bpf attribute 5165 * @size: size 5166 * @kernel: whether or not call originated from kernel 5167 * 5168 * Do a initial check for all bpf syscalls after the attribute is copied into 5169 * the kernel. The actual security module can implement their own rules to 5170 * check the specific cmd they need. 5171 * 5172 * Return: Returns 0 if permission is granted. 5173 */ 5174 int security_bpf(int cmd, union bpf_attr *attr, unsigned int size, bool kernel) 5175 { 5176 return call_int_hook(bpf, cmd, attr, size, kernel); 5177 } 5178 5179 /** 5180 * security_bpf_map() - Check if access to a bpf map is allowed 5181 * @map: bpf map 5182 * @fmode: mode 5183 * 5184 * Do a check when the kernel generates and returns a file descriptor for eBPF 5185 * maps. 5186 * 5187 * Return: Returns 0 if permission is granted. 5188 */ 5189 int security_bpf_map(struct bpf_map *map, fmode_t fmode) 5190 { 5191 return call_int_hook(bpf_map, map, fmode); 5192 } 5193 5194 /** 5195 * security_bpf_prog() - Check if access to a bpf program is allowed 5196 * @prog: bpf program 5197 * 5198 * Do a check when the kernel generates and returns a file descriptor for eBPF 5199 * programs. 5200 * 5201 * Return: Returns 0 if permission is granted. 5202 */ 5203 int security_bpf_prog(struct bpf_prog *prog) 5204 { 5205 return call_int_hook(bpf_prog, prog); 5206 } 5207 5208 /** 5209 * security_bpf_map_create() - Check if BPF map creation is allowed 5210 * @map: BPF map object 5211 * @attr: BPF syscall attributes used to create BPF map 5212 * @token: BPF token used to grant user access 5213 * @kernel: whether or not call originated from kernel 5214 * 5215 * Do a check when the kernel creates a new BPF map. This is also the 5216 * point where LSM blob is allocated for LSMs that need them. 5217 * 5218 * Return: Returns 0 on success, error on failure. 5219 */ 5220 int security_bpf_map_create(struct bpf_map *map, union bpf_attr *attr, 5221 struct bpf_token *token, bool kernel) 5222 { 5223 int rc; 5224 5225 rc = lsm_bpf_map_alloc(map); 5226 if (unlikely(rc)) 5227 return rc; 5228 5229 rc = call_int_hook(bpf_map_create, map, attr, token, kernel); 5230 if (unlikely(rc)) 5231 security_bpf_map_free(map); 5232 return rc; 5233 } 5234 5235 /** 5236 * security_bpf_prog_load() - Check if loading of BPF program is allowed 5237 * @prog: BPF program object 5238 * @attr: BPF syscall attributes used to create BPF program 5239 * @token: BPF token used to grant user access to BPF subsystem 5240 * @kernel: whether or not call originated from kernel 5241 * 5242 * Perform an access control check when the kernel loads a BPF program and 5243 * allocates associated BPF program object. This hook is also responsible for 5244 * allocating any required LSM state for the BPF program. 5245 * 5246 * Return: Returns 0 on success, error on failure. 5247 */ 5248 int security_bpf_prog_load(struct bpf_prog *prog, union bpf_attr *attr, 5249 struct bpf_token *token, bool kernel) 5250 { 5251 int rc; 5252 5253 rc = lsm_bpf_prog_alloc(prog); 5254 if (unlikely(rc)) 5255 return rc; 5256 5257 rc = call_int_hook(bpf_prog_load, prog, attr, token, kernel); 5258 if (unlikely(rc)) 5259 security_bpf_prog_free(prog); 5260 return rc; 5261 } 5262 5263 /** 5264 * security_bpf_token_create() - Check if creating of BPF token is allowed 5265 * @token: BPF token object 5266 * @attr: BPF syscall attributes used to create BPF token 5267 * @path: path pointing to BPF FS mount point from which BPF token is created 5268 * 5269 * Do a check when the kernel instantiates a new BPF token object from BPF FS 5270 * instance. This is also the point where LSM blob can be allocated for LSMs. 5271 * 5272 * Return: Returns 0 on success, error on failure. 5273 */ 5274 int security_bpf_token_create(struct bpf_token *token, union bpf_attr *attr, 5275 const struct path *path) 5276 { 5277 int rc; 5278 5279 rc = lsm_bpf_token_alloc(token); 5280 if (unlikely(rc)) 5281 return rc; 5282 5283 rc = call_int_hook(bpf_token_create, token, attr, path); 5284 if (unlikely(rc)) 5285 security_bpf_token_free(token); 5286 return rc; 5287 } 5288 5289 /** 5290 * security_bpf_token_cmd() - Check if BPF token is allowed to delegate 5291 * requested BPF syscall command 5292 * @token: BPF token object 5293 * @cmd: BPF syscall command requested to be delegated by BPF token 5294 * 5295 * Do a check when the kernel decides whether provided BPF token should allow 5296 * delegation of requested BPF syscall command. 5297 * 5298 * Return: Returns 0 on success, error on failure. 5299 */ 5300 int security_bpf_token_cmd(const struct bpf_token *token, enum bpf_cmd cmd) 5301 { 5302 return call_int_hook(bpf_token_cmd, token, cmd); 5303 } 5304 5305 /** 5306 * security_bpf_token_capable() - Check if BPF token is allowed to delegate 5307 * requested BPF-related capability 5308 * @token: BPF token object 5309 * @cap: capabilities requested to be delegated by BPF token 5310 * 5311 * Do a check when the kernel decides whether provided BPF token should allow 5312 * delegation of requested BPF-related capabilities. 5313 * 5314 * Return: Returns 0 on success, error on failure. 5315 */ 5316 int security_bpf_token_capable(const struct bpf_token *token, int cap) 5317 { 5318 return call_int_hook(bpf_token_capable, token, cap); 5319 } 5320 5321 /** 5322 * security_bpf_map_free() - Free a bpf map's LSM blob 5323 * @map: bpf map 5324 * 5325 * Clean up the security information stored inside bpf map. 5326 */ 5327 void security_bpf_map_free(struct bpf_map *map) 5328 { 5329 call_void_hook(bpf_map_free, map); 5330 kfree(map->security); 5331 map->security = NULL; 5332 } 5333 5334 /** 5335 * security_bpf_prog_free() - Free a BPF program's LSM blob 5336 * @prog: BPF program struct 5337 * 5338 * Clean up the security information stored inside BPF program. 5339 */ 5340 void security_bpf_prog_free(struct bpf_prog *prog) 5341 { 5342 call_void_hook(bpf_prog_free, prog); 5343 kfree(prog->aux->security); 5344 prog->aux->security = NULL; 5345 } 5346 5347 /** 5348 * security_bpf_token_free() - Free a BPF token's LSM blob 5349 * @token: BPF token struct 5350 * 5351 * Clean up the security information stored inside BPF token. 5352 */ 5353 void security_bpf_token_free(struct bpf_token *token) 5354 { 5355 call_void_hook(bpf_token_free, token); 5356 kfree(token->security); 5357 token->security = NULL; 5358 } 5359 #endif /* CONFIG_BPF_SYSCALL */ 5360 5361 /** 5362 * security_locked_down() - Check if a kernel feature is allowed 5363 * @what: requested kernel feature 5364 * 5365 * Determine whether a kernel feature that potentially enables arbitrary code 5366 * execution in kernel space should be permitted. 5367 * 5368 * Return: Returns 0 if permission is granted. 5369 */ 5370 int security_locked_down(enum lockdown_reason what) 5371 { 5372 return call_int_hook(locked_down, what); 5373 } 5374 EXPORT_SYMBOL(security_locked_down); 5375 5376 /** 5377 * security_bdev_alloc() - Allocate a block device LSM blob 5378 * @bdev: block device 5379 * 5380 * Allocate and attach a security structure to @bdev->bd_security. The 5381 * security field is initialized to NULL when the bdev structure is 5382 * allocated. 5383 * 5384 * Return: Return 0 if operation was successful. 5385 */ 5386 int security_bdev_alloc(struct block_device *bdev) 5387 { 5388 int rc = 0; 5389 5390 rc = lsm_bdev_alloc(bdev); 5391 if (unlikely(rc)) 5392 return rc; 5393 5394 rc = call_int_hook(bdev_alloc_security, bdev); 5395 if (unlikely(rc)) 5396 security_bdev_free(bdev); 5397 5398 return rc; 5399 } 5400 EXPORT_SYMBOL(security_bdev_alloc); 5401 5402 /** 5403 * security_bdev_free() - Free a block device's LSM blob 5404 * @bdev: block device 5405 * 5406 * Deallocate the bdev security structure and set @bdev->bd_security to NULL. 5407 */ 5408 void security_bdev_free(struct block_device *bdev) 5409 { 5410 if (!bdev->bd_security) 5411 return; 5412 5413 call_void_hook(bdev_free_security, bdev); 5414 5415 kfree(bdev->bd_security); 5416 bdev->bd_security = NULL; 5417 } 5418 EXPORT_SYMBOL(security_bdev_free); 5419 5420 /** 5421 * security_bdev_setintegrity() - Set the device's integrity data 5422 * @bdev: block device 5423 * @type: type of integrity, e.g. hash digest, signature, etc 5424 * @value: the integrity value 5425 * @size: size of the integrity value 5426 * 5427 * Register a verified integrity measurement of a bdev with LSMs. 5428 * LSMs should free the previously saved data if @value is NULL. 5429 * Please note that the new hook should be invoked every time the security 5430 * information is updated to keep these data current. For example, in dm-verity, 5431 * if the mapping table is reloaded and configured to use a different dm-verity 5432 * target with a new roothash and signing information, the previously stored 5433 * data in the LSM blob will become obsolete. It is crucial to re-invoke the 5434 * hook to refresh these data and ensure they are up to date. This necessity 5435 * arises from the design of device-mapper, where a device-mapper device is 5436 * first created, and then targets are subsequently loaded into it. These 5437 * targets can be modified multiple times during the device's lifetime. 5438 * Therefore, while the LSM blob is allocated during the creation of the block 5439 * device, its actual contents are not initialized at this stage and can change 5440 * substantially over time. This includes alterations from data that the LSMs 5441 * 'trusts' to those they do not, making it essential to handle these changes 5442 * correctly. Failure to address this dynamic aspect could potentially allow 5443 * for bypassing LSM checks. 5444 * 5445 * Return: Returns 0 on success, negative values on failure. 5446 */ 5447 int security_bdev_setintegrity(struct block_device *bdev, 5448 enum lsm_integrity_type type, const void *value, 5449 size_t size) 5450 { 5451 return call_int_hook(bdev_setintegrity, bdev, type, value, size); 5452 } 5453 EXPORT_SYMBOL(security_bdev_setintegrity); 5454 5455 #ifdef CONFIG_PERF_EVENTS 5456 /** 5457 * security_perf_event_open() - Check if a perf event open is allowed 5458 * @type: type of event 5459 * 5460 * Check whether the @type of perf_event_open syscall is allowed. 5461 * 5462 * Return: Returns 0 if permission is granted. 5463 */ 5464 int security_perf_event_open(int type) 5465 { 5466 return call_int_hook(perf_event_open, type); 5467 } 5468 5469 /** 5470 * security_perf_event_alloc() - Allocate a perf event LSM blob 5471 * @event: perf event 5472 * 5473 * Allocate and save perf_event security info. 5474 * 5475 * Return: Returns 0 on success, error on failure. 5476 */ 5477 int security_perf_event_alloc(struct perf_event *event) 5478 { 5479 int rc; 5480 5481 rc = lsm_blob_alloc(&event->security, blob_sizes.lbs_perf_event, 5482 GFP_KERNEL); 5483 if (rc) 5484 return rc; 5485 5486 rc = call_int_hook(perf_event_alloc, event); 5487 if (rc) { 5488 kfree(event->security); 5489 event->security = NULL; 5490 } 5491 return rc; 5492 } 5493 5494 /** 5495 * security_perf_event_free() - Free a perf event LSM blob 5496 * @event: perf event 5497 * 5498 * Release (free) perf_event security info. 5499 */ 5500 void security_perf_event_free(struct perf_event *event) 5501 { 5502 kfree(event->security); 5503 event->security = NULL; 5504 } 5505 5506 /** 5507 * security_perf_event_read() - Check if reading a perf event label is allowed 5508 * @event: perf event 5509 * 5510 * Read perf_event security info if allowed. 5511 * 5512 * Return: Returns 0 if permission is granted. 5513 */ 5514 int security_perf_event_read(struct perf_event *event) 5515 { 5516 return call_int_hook(perf_event_read, event); 5517 } 5518 5519 /** 5520 * security_perf_event_write() - Check if writing a perf event label is allowed 5521 * @event: perf event 5522 * 5523 * Write perf_event security info if allowed. 5524 * 5525 * Return: Returns 0 if permission is granted. 5526 */ 5527 int security_perf_event_write(struct perf_event *event) 5528 { 5529 return call_int_hook(perf_event_write, event); 5530 } 5531 #endif /* CONFIG_PERF_EVENTS */ 5532 5533 #ifdef CONFIG_IO_URING 5534 /** 5535 * security_uring_override_creds() - Check if overriding creds is allowed 5536 * @new: new credentials 5537 * 5538 * Check if the current task, executing an io_uring operation, is allowed to 5539 * override it's credentials with @new. 5540 * 5541 * Return: Returns 0 if permission is granted. 5542 */ 5543 int security_uring_override_creds(const struct cred *new) 5544 { 5545 return call_int_hook(uring_override_creds, new); 5546 } 5547 5548 /** 5549 * security_uring_sqpoll() - Check if IORING_SETUP_SQPOLL is allowed 5550 * 5551 * Check whether the current task is allowed to spawn a io_uring polling thread 5552 * (IORING_SETUP_SQPOLL). 5553 * 5554 * Return: Returns 0 if permission is granted. 5555 */ 5556 int security_uring_sqpoll(void) 5557 { 5558 return call_int_hook(uring_sqpoll); 5559 } 5560 5561 /** 5562 * security_uring_cmd() - Check if a io_uring passthrough command is allowed 5563 * @ioucmd: command 5564 * 5565 * Check whether the file_operations uring_cmd is allowed to run. 5566 * 5567 * Return: Returns 0 if permission is granted. 5568 */ 5569 int security_uring_cmd(struct io_uring_cmd *ioucmd) 5570 { 5571 return call_int_hook(uring_cmd, ioucmd); 5572 } 5573 5574 /** 5575 * security_uring_allowed() - Check if io_uring_setup() is allowed 5576 * 5577 * Check whether the current task is allowed to call io_uring_setup(). 5578 * 5579 * Return: Returns 0 if permission is granted. 5580 */ 5581 int security_uring_allowed(void) 5582 { 5583 return call_int_hook(uring_allowed); 5584 } 5585 #endif /* CONFIG_IO_URING */ 5586 5587 /** 5588 * security_initramfs_populated() - Notify LSMs that initramfs has been loaded 5589 * 5590 * Tells the LSMs the initramfs has been unpacked into the rootfs. 5591 */ 5592 void security_initramfs_populated(void) 5593 { 5594 call_void_hook(initramfs_populated); 5595 } 5596