1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Security plug functions 4 * 5 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com> 6 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com> 7 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com> 8 * Copyright (C) 2016 Mellanox Technologies 9 * Copyright (C) 2023 Microsoft Corporation <paul@paul-moore.com> 10 */ 11 12 #define pr_fmt(fmt) "LSM: " fmt 13 14 #include <linux/bpf.h> 15 #include <linux/capability.h> 16 #include <linux/dcache.h> 17 #include <linux/export.h> 18 #include <linux/init.h> 19 #include <linux/kernel.h> 20 #include <linux/kernel_read_file.h> 21 #include <linux/lsm_hooks.h> 22 #include <linux/fsnotify.h> 23 #include <linux/mman.h> 24 #include <linux/mount.h> 25 #include <linux/personality.h> 26 #include <linux/backing-dev.h> 27 #include <linux/string.h> 28 #include <linux/xattr.h> 29 #include <linux/msg.h> 30 #include <linux/overflow.h> 31 #include <net/flow.h> 32 33 /* How many LSMs were built into the kernel? */ 34 #define LSM_COUNT (__end_lsm_info - __start_lsm_info) 35 36 /* 37 * How many LSMs are built into the kernel as determined at 38 * build time. Used to determine fixed array sizes. 39 * The capability module is accounted for by CONFIG_SECURITY 40 */ 41 #define LSM_CONFIG_COUNT ( \ 42 (IS_ENABLED(CONFIG_SECURITY) ? 1 : 0) + \ 43 (IS_ENABLED(CONFIG_SECURITY_SELINUX) ? 1 : 0) + \ 44 (IS_ENABLED(CONFIG_SECURITY_SMACK) ? 1 : 0) + \ 45 (IS_ENABLED(CONFIG_SECURITY_TOMOYO) ? 1 : 0) + \ 46 (IS_ENABLED(CONFIG_SECURITY_APPARMOR) ? 1 : 0) + \ 47 (IS_ENABLED(CONFIG_SECURITY_YAMA) ? 1 : 0) + \ 48 (IS_ENABLED(CONFIG_SECURITY_LOADPIN) ? 1 : 0) + \ 49 (IS_ENABLED(CONFIG_SECURITY_SAFESETID) ? 1 : 0) + \ 50 (IS_ENABLED(CONFIG_SECURITY_LOCKDOWN_LSM) ? 1 : 0) + \ 51 (IS_ENABLED(CONFIG_BPF_LSM) ? 1 : 0) + \ 52 (IS_ENABLED(CONFIG_SECURITY_LANDLOCK) ? 1 : 0) + \ 53 (IS_ENABLED(CONFIG_IMA) ? 1 : 0) + \ 54 (IS_ENABLED(CONFIG_EVM) ? 1 : 0)) 55 56 /* 57 * These are descriptions of the reasons that can be passed to the 58 * security_locked_down() LSM hook. Placing this array here allows 59 * all security modules to use the same descriptions for auditing 60 * purposes. 61 */ 62 const char *const lockdown_reasons[LOCKDOWN_CONFIDENTIALITY_MAX + 1] = { 63 [LOCKDOWN_NONE] = "none", 64 [LOCKDOWN_MODULE_SIGNATURE] = "unsigned module loading", 65 [LOCKDOWN_DEV_MEM] = "/dev/mem,kmem,port", 66 [LOCKDOWN_EFI_TEST] = "/dev/efi_test access", 67 [LOCKDOWN_KEXEC] = "kexec of unsigned images", 68 [LOCKDOWN_HIBERNATION] = "hibernation", 69 [LOCKDOWN_PCI_ACCESS] = "direct PCI access", 70 [LOCKDOWN_IOPORT] = "raw io port access", 71 [LOCKDOWN_MSR] = "raw MSR access", 72 [LOCKDOWN_ACPI_TABLES] = "modifying ACPI tables", 73 [LOCKDOWN_DEVICE_TREE] = "modifying device tree contents", 74 [LOCKDOWN_PCMCIA_CIS] = "direct PCMCIA CIS storage", 75 [LOCKDOWN_TIOCSSERIAL] = "reconfiguration of serial port IO", 76 [LOCKDOWN_MODULE_PARAMETERS] = "unsafe module parameters", 77 [LOCKDOWN_MMIOTRACE] = "unsafe mmio", 78 [LOCKDOWN_DEBUGFS] = "debugfs access", 79 [LOCKDOWN_XMON_WR] = "xmon write access", 80 [LOCKDOWN_BPF_WRITE_USER] = "use of bpf to write user RAM", 81 [LOCKDOWN_DBG_WRITE_KERNEL] = "use of kgdb/kdb to write kernel RAM", 82 [LOCKDOWN_RTAS_ERROR_INJECTION] = "RTAS error injection", 83 [LOCKDOWN_INTEGRITY_MAX] = "integrity", 84 [LOCKDOWN_KCORE] = "/proc/kcore access", 85 [LOCKDOWN_KPROBES] = "use of kprobes", 86 [LOCKDOWN_BPF_READ_KERNEL] = "use of bpf to read kernel RAM", 87 [LOCKDOWN_DBG_READ_KERNEL] = "use of kgdb/kdb to read kernel RAM", 88 [LOCKDOWN_PERF] = "unsafe use of perf", 89 [LOCKDOWN_TRACEFS] = "use of tracefs", 90 [LOCKDOWN_XMON_RW] = "xmon read and write access", 91 [LOCKDOWN_XFRM_SECRET] = "xfrm SA secret", 92 [LOCKDOWN_CONFIDENTIALITY_MAX] = "confidentiality", 93 }; 94 95 struct security_hook_heads security_hook_heads __ro_after_init; 96 static BLOCKING_NOTIFIER_HEAD(blocking_lsm_notifier_chain); 97 98 static struct kmem_cache *lsm_file_cache; 99 static struct kmem_cache *lsm_inode_cache; 100 101 char *lsm_names; 102 static struct lsm_blob_sizes blob_sizes __ro_after_init; 103 104 /* Boot-time LSM user choice */ 105 static __initdata const char *chosen_lsm_order; 106 static __initdata const char *chosen_major_lsm; 107 108 static __initconst const char *const builtin_lsm_order = CONFIG_LSM; 109 110 /* Ordered list of LSMs to initialize. */ 111 static __initdata struct lsm_info **ordered_lsms; 112 static __initdata struct lsm_info *exclusive; 113 114 static __initdata bool debug; 115 #define init_debug(...) \ 116 do { \ 117 if (debug) \ 118 pr_info(__VA_ARGS__); \ 119 } while (0) 120 121 static bool __init is_enabled(struct lsm_info *lsm) 122 { 123 if (!lsm->enabled) 124 return false; 125 126 return *lsm->enabled; 127 } 128 129 /* Mark an LSM's enabled flag. */ 130 static int lsm_enabled_true __initdata = 1; 131 static int lsm_enabled_false __initdata = 0; 132 static void __init set_enabled(struct lsm_info *lsm, bool enabled) 133 { 134 /* 135 * When an LSM hasn't configured an enable variable, we can use 136 * a hard-coded location for storing the default enabled state. 137 */ 138 if (!lsm->enabled) { 139 if (enabled) 140 lsm->enabled = &lsm_enabled_true; 141 else 142 lsm->enabled = &lsm_enabled_false; 143 } else if (lsm->enabled == &lsm_enabled_true) { 144 if (!enabled) 145 lsm->enabled = &lsm_enabled_false; 146 } else if (lsm->enabled == &lsm_enabled_false) { 147 if (enabled) 148 lsm->enabled = &lsm_enabled_true; 149 } else { 150 *lsm->enabled = enabled; 151 } 152 } 153 154 /* Is an LSM already listed in the ordered LSMs list? */ 155 static bool __init exists_ordered_lsm(struct lsm_info *lsm) 156 { 157 struct lsm_info **check; 158 159 for (check = ordered_lsms; *check; check++) 160 if (*check == lsm) 161 return true; 162 163 return false; 164 } 165 166 /* Append an LSM to the list of ordered LSMs to initialize. */ 167 static int last_lsm __initdata; 168 static void __init append_ordered_lsm(struct lsm_info *lsm, const char *from) 169 { 170 /* Ignore duplicate selections. */ 171 if (exists_ordered_lsm(lsm)) 172 return; 173 174 if (WARN(last_lsm == LSM_COUNT, "%s: out of LSM slots!?\n", from)) 175 return; 176 177 /* Enable this LSM, if it is not already set. */ 178 if (!lsm->enabled) 179 lsm->enabled = &lsm_enabled_true; 180 ordered_lsms[last_lsm++] = lsm; 181 182 init_debug("%s ordered: %s (%s)\n", from, lsm->name, 183 is_enabled(lsm) ? "enabled" : "disabled"); 184 } 185 186 /* Is an LSM allowed to be initialized? */ 187 static bool __init lsm_allowed(struct lsm_info *lsm) 188 { 189 /* Skip if the LSM is disabled. */ 190 if (!is_enabled(lsm)) 191 return false; 192 193 /* Not allowed if another exclusive LSM already initialized. */ 194 if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && exclusive) { 195 init_debug("exclusive disabled: %s\n", lsm->name); 196 return false; 197 } 198 199 return true; 200 } 201 202 static void __init lsm_set_blob_size(int *need, int *lbs) 203 { 204 int offset; 205 206 if (*need <= 0) 207 return; 208 209 offset = ALIGN(*lbs, sizeof(void *)); 210 *lbs = offset + *need; 211 *need = offset; 212 } 213 214 static void __init lsm_set_blob_sizes(struct lsm_blob_sizes *needed) 215 { 216 if (!needed) 217 return; 218 219 lsm_set_blob_size(&needed->lbs_cred, &blob_sizes.lbs_cred); 220 lsm_set_blob_size(&needed->lbs_file, &blob_sizes.lbs_file); 221 /* 222 * The inode blob gets an rcu_head in addition to 223 * what the modules might need. 224 */ 225 if (needed->lbs_inode && blob_sizes.lbs_inode == 0) 226 blob_sizes.lbs_inode = sizeof(struct rcu_head); 227 lsm_set_blob_size(&needed->lbs_inode, &blob_sizes.lbs_inode); 228 lsm_set_blob_size(&needed->lbs_ipc, &blob_sizes.lbs_ipc); 229 lsm_set_blob_size(&needed->lbs_msg_msg, &blob_sizes.lbs_msg_msg); 230 lsm_set_blob_size(&needed->lbs_superblock, &blob_sizes.lbs_superblock); 231 lsm_set_blob_size(&needed->lbs_task, &blob_sizes.lbs_task); 232 lsm_set_blob_size(&needed->lbs_xattr_count, 233 &blob_sizes.lbs_xattr_count); 234 } 235 236 /* Prepare LSM for initialization. */ 237 static void __init prepare_lsm(struct lsm_info *lsm) 238 { 239 int enabled = lsm_allowed(lsm); 240 241 /* Record enablement (to handle any following exclusive LSMs). */ 242 set_enabled(lsm, enabled); 243 244 /* If enabled, do pre-initialization work. */ 245 if (enabled) { 246 if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && !exclusive) { 247 exclusive = lsm; 248 init_debug("exclusive chosen: %s\n", lsm->name); 249 } 250 251 lsm_set_blob_sizes(lsm->blobs); 252 } 253 } 254 255 /* Initialize a given LSM, if it is enabled. */ 256 static void __init initialize_lsm(struct lsm_info *lsm) 257 { 258 if (is_enabled(lsm)) { 259 int ret; 260 261 init_debug("initializing %s\n", lsm->name); 262 ret = lsm->init(); 263 WARN(ret, "%s failed to initialize: %d\n", lsm->name, ret); 264 } 265 } 266 267 /* 268 * Current index to use while initializing the lsm id list. 269 */ 270 u32 lsm_active_cnt __ro_after_init; 271 const struct lsm_id *lsm_idlist[LSM_CONFIG_COUNT]; 272 273 /* Populate ordered LSMs list from comma-separated LSM name list. */ 274 static void __init ordered_lsm_parse(const char *order, const char *origin) 275 { 276 struct lsm_info *lsm; 277 char *sep, *name, *next; 278 279 /* LSM_ORDER_FIRST is always first. */ 280 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { 281 if (lsm->order == LSM_ORDER_FIRST) 282 append_ordered_lsm(lsm, " first"); 283 } 284 285 /* Process "security=", if given. */ 286 if (chosen_major_lsm) { 287 struct lsm_info *major; 288 289 /* 290 * To match the original "security=" behavior, this 291 * explicitly does NOT fallback to another Legacy Major 292 * if the selected one was separately disabled: disable 293 * all non-matching Legacy Major LSMs. 294 */ 295 for (major = __start_lsm_info; major < __end_lsm_info; 296 major++) { 297 if ((major->flags & LSM_FLAG_LEGACY_MAJOR) && 298 strcmp(major->name, chosen_major_lsm) != 0) { 299 set_enabled(major, false); 300 init_debug("security=%s disabled: %s (only one legacy major LSM)\n", 301 chosen_major_lsm, major->name); 302 } 303 } 304 } 305 306 sep = kstrdup(order, GFP_KERNEL); 307 next = sep; 308 /* Walk the list, looking for matching LSMs. */ 309 while ((name = strsep(&next, ",")) != NULL) { 310 bool found = false; 311 312 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { 313 if (strcmp(lsm->name, name) == 0) { 314 if (lsm->order == LSM_ORDER_MUTABLE) 315 append_ordered_lsm(lsm, origin); 316 found = true; 317 } 318 } 319 320 if (!found) 321 init_debug("%s ignored: %s (not built into kernel)\n", 322 origin, name); 323 } 324 325 /* Process "security=", if given. */ 326 if (chosen_major_lsm) { 327 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { 328 if (exists_ordered_lsm(lsm)) 329 continue; 330 if (strcmp(lsm->name, chosen_major_lsm) == 0) 331 append_ordered_lsm(lsm, "security="); 332 } 333 } 334 335 /* LSM_ORDER_LAST is always last. */ 336 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { 337 if (lsm->order == LSM_ORDER_LAST) 338 append_ordered_lsm(lsm, " last"); 339 } 340 341 /* Disable all LSMs not in the ordered list. */ 342 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { 343 if (exists_ordered_lsm(lsm)) 344 continue; 345 set_enabled(lsm, false); 346 init_debug("%s skipped: %s (not in requested order)\n", 347 origin, lsm->name); 348 } 349 350 kfree(sep); 351 } 352 353 static void __init lsm_early_cred(struct cred *cred); 354 static void __init lsm_early_task(struct task_struct *task); 355 356 static int lsm_append(const char *new, char **result); 357 358 static void __init report_lsm_order(void) 359 { 360 struct lsm_info **lsm, *early; 361 int first = 0; 362 363 pr_info("initializing lsm="); 364 365 /* Report each enabled LSM name, comma separated. */ 366 for (early = __start_early_lsm_info; 367 early < __end_early_lsm_info; early++) 368 if (is_enabled(early)) 369 pr_cont("%s%s", first++ == 0 ? "" : ",", early->name); 370 for (lsm = ordered_lsms; *lsm; lsm++) 371 if (is_enabled(*lsm)) 372 pr_cont("%s%s", first++ == 0 ? "" : ",", (*lsm)->name); 373 374 pr_cont("\n"); 375 } 376 377 static void __init ordered_lsm_init(void) 378 { 379 struct lsm_info **lsm; 380 381 ordered_lsms = kcalloc(LSM_COUNT + 1, sizeof(*ordered_lsms), 382 GFP_KERNEL); 383 384 if (chosen_lsm_order) { 385 if (chosen_major_lsm) { 386 pr_warn("security=%s is ignored because it is superseded by lsm=%s\n", 387 chosen_major_lsm, chosen_lsm_order); 388 chosen_major_lsm = NULL; 389 } 390 ordered_lsm_parse(chosen_lsm_order, "cmdline"); 391 } else 392 ordered_lsm_parse(builtin_lsm_order, "builtin"); 393 394 for (lsm = ordered_lsms; *lsm; lsm++) 395 prepare_lsm(*lsm); 396 397 report_lsm_order(); 398 399 init_debug("cred blob size = %d\n", blob_sizes.lbs_cred); 400 init_debug("file blob size = %d\n", blob_sizes.lbs_file); 401 init_debug("inode blob size = %d\n", blob_sizes.lbs_inode); 402 init_debug("ipc blob size = %d\n", blob_sizes.lbs_ipc); 403 init_debug("msg_msg blob size = %d\n", blob_sizes.lbs_msg_msg); 404 init_debug("superblock blob size = %d\n", blob_sizes.lbs_superblock); 405 init_debug("task blob size = %d\n", blob_sizes.lbs_task); 406 init_debug("xattr slots = %d\n", blob_sizes.lbs_xattr_count); 407 408 /* 409 * Create any kmem_caches needed for blobs 410 */ 411 if (blob_sizes.lbs_file) 412 lsm_file_cache = kmem_cache_create("lsm_file_cache", 413 blob_sizes.lbs_file, 0, 414 SLAB_PANIC, NULL); 415 if (blob_sizes.lbs_inode) 416 lsm_inode_cache = kmem_cache_create("lsm_inode_cache", 417 blob_sizes.lbs_inode, 0, 418 SLAB_PANIC, NULL); 419 420 lsm_early_cred((struct cred *) current->cred); 421 lsm_early_task(current); 422 for (lsm = ordered_lsms; *lsm; lsm++) 423 initialize_lsm(*lsm); 424 425 kfree(ordered_lsms); 426 } 427 428 int __init early_security_init(void) 429 { 430 struct lsm_info *lsm; 431 432 #define LSM_HOOK(RET, DEFAULT, NAME, ...) \ 433 INIT_HLIST_HEAD(&security_hook_heads.NAME); 434 #include "linux/lsm_hook_defs.h" 435 #undef LSM_HOOK 436 437 for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) { 438 if (!lsm->enabled) 439 lsm->enabled = &lsm_enabled_true; 440 prepare_lsm(lsm); 441 initialize_lsm(lsm); 442 } 443 444 return 0; 445 } 446 447 /** 448 * security_init - initializes the security framework 449 * 450 * This should be called early in the kernel initialization sequence. 451 */ 452 int __init security_init(void) 453 { 454 struct lsm_info *lsm; 455 456 init_debug("legacy security=%s\n", chosen_major_lsm ? : " *unspecified*"); 457 init_debug(" CONFIG_LSM=%s\n", builtin_lsm_order); 458 init_debug("boot arg lsm=%s\n", chosen_lsm_order ? : " *unspecified*"); 459 460 /* 461 * Append the names of the early LSM modules now that kmalloc() is 462 * available 463 */ 464 for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) { 465 init_debug(" early started: %s (%s)\n", lsm->name, 466 is_enabled(lsm) ? "enabled" : "disabled"); 467 if (lsm->enabled) 468 lsm_append(lsm->name, &lsm_names); 469 } 470 471 /* Load LSMs in specified order. */ 472 ordered_lsm_init(); 473 474 return 0; 475 } 476 477 /* Save user chosen LSM */ 478 static int __init choose_major_lsm(char *str) 479 { 480 chosen_major_lsm = str; 481 return 1; 482 } 483 __setup("security=", choose_major_lsm); 484 485 /* Explicitly choose LSM initialization order. */ 486 static int __init choose_lsm_order(char *str) 487 { 488 chosen_lsm_order = str; 489 return 1; 490 } 491 __setup("lsm=", choose_lsm_order); 492 493 /* Enable LSM order debugging. */ 494 static int __init enable_debug(char *str) 495 { 496 debug = true; 497 return 1; 498 } 499 __setup("lsm.debug", enable_debug); 500 501 static bool match_last_lsm(const char *list, const char *lsm) 502 { 503 const char *last; 504 505 if (WARN_ON(!list || !lsm)) 506 return false; 507 last = strrchr(list, ','); 508 if (last) 509 /* Pass the comma, strcmp() will check for '\0' */ 510 last++; 511 else 512 last = list; 513 return !strcmp(last, lsm); 514 } 515 516 static int lsm_append(const char *new, char **result) 517 { 518 char *cp; 519 520 if (*result == NULL) { 521 *result = kstrdup(new, GFP_KERNEL); 522 if (*result == NULL) 523 return -ENOMEM; 524 } else { 525 /* Check if it is the last registered name */ 526 if (match_last_lsm(*result, new)) 527 return 0; 528 cp = kasprintf(GFP_KERNEL, "%s,%s", *result, new); 529 if (cp == NULL) 530 return -ENOMEM; 531 kfree(*result); 532 *result = cp; 533 } 534 return 0; 535 } 536 537 /** 538 * security_add_hooks - Add a modules hooks to the hook lists. 539 * @hooks: the hooks to add 540 * @count: the number of hooks to add 541 * @lsmid: the identification information for the security module 542 * 543 * Each LSM has to register its hooks with the infrastructure. 544 */ 545 void __init security_add_hooks(struct security_hook_list *hooks, int count, 546 const struct lsm_id *lsmid) 547 { 548 int i; 549 550 /* 551 * A security module may call security_add_hooks() more 552 * than once during initialization, and LSM initialization 553 * is serialized. Landlock is one such case. 554 * Look at the previous entry, if there is one, for duplication. 555 */ 556 if (lsm_active_cnt == 0 || lsm_idlist[lsm_active_cnt - 1] != lsmid) { 557 if (lsm_active_cnt >= LSM_CONFIG_COUNT) 558 panic("%s Too many LSMs registered.\n", __func__); 559 lsm_idlist[lsm_active_cnt++] = lsmid; 560 } 561 562 for (i = 0; i < count; i++) { 563 hooks[i].lsmid = lsmid; 564 hlist_add_tail_rcu(&hooks[i].list, hooks[i].head); 565 } 566 567 /* 568 * Don't try to append during early_security_init(), we'll come back 569 * and fix this up afterwards. 570 */ 571 if (slab_is_available()) { 572 if (lsm_append(lsmid->name, &lsm_names) < 0) 573 panic("%s - Cannot get early memory.\n", __func__); 574 } 575 } 576 577 int call_blocking_lsm_notifier(enum lsm_event event, void *data) 578 { 579 return blocking_notifier_call_chain(&blocking_lsm_notifier_chain, 580 event, data); 581 } 582 EXPORT_SYMBOL(call_blocking_lsm_notifier); 583 584 int register_blocking_lsm_notifier(struct notifier_block *nb) 585 { 586 return blocking_notifier_chain_register(&blocking_lsm_notifier_chain, 587 nb); 588 } 589 EXPORT_SYMBOL(register_blocking_lsm_notifier); 590 591 int unregister_blocking_lsm_notifier(struct notifier_block *nb) 592 { 593 return blocking_notifier_chain_unregister(&blocking_lsm_notifier_chain, 594 nb); 595 } 596 EXPORT_SYMBOL(unregister_blocking_lsm_notifier); 597 598 /** 599 * lsm_cred_alloc - allocate a composite cred blob 600 * @cred: the cred that needs a blob 601 * @gfp: allocation type 602 * 603 * Allocate the cred blob for all the modules 604 * 605 * Returns 0, or -ENOMEM if memory can't be allocated. 606 */ 607 static int lsm_cred_alloc(struct cred *cred, gfp_t gfp) 608 { 609 if (blob_sizes.lbs_cred == 0) { 610 cred->security = NULL; 611 return 0; 612 } 613 614 cred->security = kzalloc(blob_sizes.lbs_cred, gfp); 615 if (cred->security == NULL) 616 return -ENOMEM; 617 return 0; 618 } 619 620 /** 621 * lsm_early_cred - during initialization allocate a composite cred blob 622 * @cred: the cred that needs a blob 623 * 624 * Allocate the cred blob for all the modules 625 */ 626 static void __init lsm_early_cred(struct cred *cred) 627 { 628 int rc = lsm_cred_alloc(cred, GFP_KERNEL); 629 630 if (rc) 631 panic("%s: Early cred alloc failed.\n", __func__); 632 } 633 634 /** 635 * lsm_file_alloc - allocate a composite file blob 636 * @file: the file that needs a blob 637 * 638 * Allocate the file blob for all the modules 639 * 640 * Returns 0, or -ENOMEM if memory can't be allocated. 641 */ 642 static int lsm_file_alloc(struct file *file) 643 { 644 if (!lsm_file_cache) { 645 file->f_security = NULL; 646 return 0; 647 } 648 649 file->f_security = kmem_cache_zalloc(lsm_file_cache, GFP_KERNEL); 650 if (file->f_security == NULL) 651 return -ENOMEM; 652 return 0; 653 } 654 655 /** 656 * lsm_inode_alloc - allocate a composite inode blob 657 * @inode: the inode that needs a blob 658 * 659 * Allocate the inode blob for all the modules 660 * 661 * Returns 0, or -ENOMEM if memory can't be allocated. 662 */ 663 int lsm_inode_alloc(struct inode *inode) 664 { 665 if (!lsm_inode_cache) { 666 inode->i_security = NULL; 667 return 0; 668 } 669 670 inode->i_security = kmem_cache_zalloc(lsm_inode_cache, GFP_NOFS); 671 if (inode->i_security == NULL) 672 return -ENOMEM; 673 return 0; 674 } 675 676 /** 677 * lsm_task_alloc - allocate a composite task blob 678 * @task: the task that needs a blob 679 * 680 * Allocate the task blob for all the modules 681 * 682 * Returns 0, or -ENOMEM if memory can't be allocated. 683 */ 684 static int lsm_task_alloc(struct task_struct *task) 685 { 686 if (blob_sizes.lbs_task == 0) { 687 task->security = NULL; 688 return 0; 689 } 690 691 task->security = kzalloc(blob_sizes.lbs_task, GFP_KERNEL); 692 if (task->security == NULL) 693 return -ENOMEM; 694 return 0; 695 } 696 697 /** 698 * lsm_ipc_alloc - allocate a composite ipc blob 699 * @kip: the ipc that needs a blob 700 * 701 * Allocate the ipc blob for all the modules 702 * 703 * Returns 0, or -ENOMEM if memory can't be allocated. 704 */ 705 static int lsm_ipc_alloc(struct kern_ipc_perm *kip) 706 { 707 if (blob_sizes.lbs_ipc == 0) { 708 kip->security = NULL; 709 return 0; 710 } 711 712 kip->security = kzalloc(blob_sizes.lbs_ipc, GFP_KERNEL); 713 if (kip->security == NULL) 714 return -ENOMEM; 715 return 0; 716 } 717 718 /** 719 * lsm_msg_msg_alloc - allocate a composite msg_msg blob 720 * @mp: the msg_msg that needs a blob 721 * 722 * Allocate the ipc blob for all the modules 723 * 724 * Returns 0, or -ENOMEM if memory can't be allocated. 725 */ 726 static int lsm_msg_msg_alloc(struct msg_msg *mp) 727 { 728 if (blob_sizes.lbs_msg_msg == 0) { 729 mp->security = NULL; 730 return 0; 731 } 732 733 mp->security = kzalloc(blob_sizes.lbs_msg_msg, GFP_KERNEL); 734 if (mp->security == NULL) 735 return -ENOMEM; 736 return 0; 737 } 738 739 /** 740 * lsm_early_task - during initialization allocate a composite task blob 741 * @task: the task that needs a blob 742 * 743 * Allocate the task blob for all the modules 744 */ 745 static void __init lsm_early_task(struct task_struct *task) 746 { 747 int rc = lsm_task_alloc(task); 748 749 if (rc) 750 panic("%s: Early task alloc failed.\n", __func__); 751 } 752 753 /** 754 * lsm_superblock_alloc - allocate a composite superblock blob 755 * @sb: the superblock that needs a blob 756 * 757 * Allocate the superblock blob for all the modules 758 * 759 * Returns 0, or -ENOMEM if memory can't be allocated. 760 */ 761 static int lsm_superblock_alloc(struct super_block *sb) 762 { 763 if (blob_sizes.lbs_superblock == 0) { 764 sb->s_security = NULL; 765 return 0; 766 } 767 768 sb->s_security = kzalloc(blob_sizes.lbs_superblock, GFP_KERNEL); 769 if (sb->s_security == NULL) 770 return -ENOMEM; 771 return 0; 772 } 773 774 /** 775 * lsm_fill_user_ctx - Fill a user space lsm_ctx structure 776 * @uctx: a userspace LSM context to be filled 777 * @uctx_len: available uctx size (input), used uctx size (output) 778 * @val: the new LSM context value 779 * @val_len: the size of the new LSM context value 780 * @id: LSM id 781 * @flags: LSM defined flags 782 * 783 * Fill all of the fields in a userspace lsm_ctx structure. 784 * 785 * Returns 0 on success, -E2BIG if userspace buffer is not large enough, 786 * -EFAULT on a copyout error, -ENOMEM if memory can't be allocated. 787 */ 788 int lsm_fill_user_ctx(struct lsm_ctx __user *uctx, u32 *uctx_len, 789 void *val, size_t val_len, 790 u64 id, u64 flags) 791 { 792 struct lsm_ctx *nctx = NULL; 793 size_t nctx_len; 794 int rc = 0; 795 796 nctx_len = ALIGN(struct_size(nctx, ctx, val_len), sizeof(void *)); 797 if (nctx_len > *uctx_len) { 798 rc = -E2BIG; 799 goto out; 800 } 801 802 nctx = kzalloc(nctx_len, GFP_KERNEL); 803 if (nctx == NULL) { 804 rc = -ENOMEM; 805 goto out; 806 } 807 nctx->id = id; 808 nctx->flags = flags; 809 nctx->len = nctx_len; 810 nctx->ctx_len = val_len; 811 memcpy(nctx->ctx, val, val_len); 812 813 if (copy_to_user(uctx, nctx, nctx_len)) 814 rc = -EFAULT; 815 816 out: 817 kfree(nctx); 818 *uctx_len = nctx_len; 819 return rc; 820 } 821 822 /* 823 * The default value of the LSM hook is defined in linux/lsm_hook_defs.h and 824 * can be accessed with: 825 * 826 * LSM_RET_DEFAULT(<hook_name>) 827 * 828 * The macros below define static constants for the default value of each 829 * LSM hook. 830 */ 831 #define LSM_RET_DEFAULT(NAME) (NAME##_default) 832 #define DECLARE_LSM_RET_DEFAULT_void(DEFAULT, NAME) 833 #define DECLARE_LSM_RET_DEFAULT_int(DEFAULT, NAME) \ 834 static const int __maybe_unused LSM_RET_DEFAULT(NAME) = (DEFAULT); 835 #define LSM_HOOK(RET, DEFAULT, NAME, ...) \ 836 DECLARE_LSM_RET_DEFAULT_##RET(DEFAULT, NAME) 837 838 #include <linux/lsm_hook_defs.h> 839 #undef LSM_HOOK 840 841 /* 842 * Hook list operation macros. 843 * 844 * call_void_hook: 845 * This is a hook that does not return a value. 846 * 847 * call_int_hook: 848 * This is a hook that returns a value. 849 */ 850 851 #define call_void_hook(FUNC, ...) \ 852 do { \ 853 struct security_hook_list *P; \ 854 \ 855 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) \ 856 P->hook.FUNC(__VA_ARGS__); \ 857 } while (0) 858 859 #define call_int_hook(FUNC, ...) ({ \ 860 int RC = LSM_RET_DEFAULT(FUNC); \ 861 do { \ 862 struct security_hook_list *P; \ 863 \ 864 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) { \ 865 RC = P->hook.FUNC(__VA_ARGS__); \ 866 if (RC != LSM_RET_DEFAULT(FUNC)) \ 867 break; \ 868 } \ 869 } while (0); \ 870 RC; \ 871 }) 872 873 /* Security operations */ 874 875 /** 876 * security_binder_set_context_mgr() - Check if becoming binder ctx mgr is ok 877 * @mgr: task credentials of current binder process 878 * 879 * Check whether @mgr is allowed to be the binder context manager. 880 * 881 * Return: Return 0 if permission is granted. 882 */ 883 int security_binder_set_context_mgr(const struct cred *mgr) 884 { 885 return call_int_hook(binder_set_context_mgr, mgr); 886 } 887 888 /** 889 * security_binder_transaction() - Check if a binder transaction is allowed 890 * @from: sending process 891 * @to: receiving process 892 * 893 * Check whether @from is allowed to invoke a binder transaction call to @to. 894 * 895 * Return: Returns 0 if permission is granted. 896 */ 897 int security_binder_transaction(const struct cred *from, 898 const struct cred *to) 899 { 900 return call_int_hook(binder_transaction, from, to); 901 } 902 903 /** 904 * security_binder_transfer_binder() - Check if a binder transfer is allowed 905 * @from: sending process 906 * @to: receiving process 907 * 908 * Check whether @from is allowed to transfer a binder reference to @to. 909 * 910 * Return: Returns 0 if permission is granted. 911 */ 912 int security_binder_transfer_binder(const struct cred *from, 913 const struct cred *to) 914 { 915 return call_int_hook(binder_transfer_binder, from, to); 916 } 917 918 /** 919 * security_binder_transfer_file() - Check if a binder file xfer is allowed 920 * @from: sending process 921 * @to: receiving process 922 * @file: file being transferred 923 * 924 * Check whether @from is allowed to transfer @file to @to. 925 * 926 * Return: Returns 0 if permission is granted. 927 */ 928 int security_binder_transfer_file(const struct cred *from, 929 const struct cred *to, const struct file *file) 930 { 931 return call_int_hook(binder_transfer_file, from, to, file); 932 } 933 934 /** 935 * security_ptrace_access_check() - Check if tracing is allowed 936 * @child: target process 937 * @mode: PTRACE_MODE flags 938 * 939 * Check permission before allowing the current process to trace the @child 940 * process. Security modules may also want to perform a process tracing check 941 * during an execve in the set_security or apply_creds hooks of tracing check 942 * during an execve in the bprm_set_creds hook of binprm_security_ops if the 943 * process is being traced and its security attributes would be changed by the 944 * execve. 945 * 946 * Return: Returns 0 if permission is granted. 947 */ 948 int security_ptrace_access_check(struct task_struct *child, unsigned int mode) 949 { 950 return call_int_hook(ptrace_access_check, child, mode); 951 } 952 953 /** 954 * security_ptrace_traceme() - Check if tracing is allowed 955 * @parent: tracing process 956 * 957 * Check that the @parent process has sufficient permission to trace the 958 * current process before allowing the current process to present itself to the 959 * @parent process for tracing. 960 * 961 * Return: Returns 0 if permission is granted. 962 */ 963 int security_ptrace_traceme(struct task_struct *parent) 964 { 965 return call_int_hook(ptrace_traceme, parent); 966 } 967 968 /** 969 * security_capget() - Get the capability sets for a process 970 * @target: target process 971 * @effective: effective capability set 972 * @inheritable: inheritable capability set 973 * @permitted: permitted capability set 974 * 975 * Get the @effective, @inheritable, and @permitted capability sets for the 976 * @target process. The hook may also perform permission checking to determine 977 * if the current process is allowed to see the capability sets of the @target 978 * process. 979 * 980 * Return: Returns 0 if the capability sets were successfully obtained. 981 */ 982 int security_capget(const struct task_struct *target, 983 kernel_cap_t *effective, 984 kernel_cap_t *inheritable, 985 kernel_cap_t *permitted) 986 { 987 return call_int_hook(capget, target, effective, inheritable, permitted); 988 } 989 990 /** 991 * security_capset() - Set the capability sets for a process 992 * @new: new credentials for the target process 993 * @old: current credentials of the target process 994 * @effective: effective capability set 995 * @inheritable: inheritable capability set 996 * @permitted: permitted capability set 997 * 998 * Set the @effective, @inheritable, and @permitted capability sets for the 999 * current process. 1000 * 1001 * Return: Returns 0 and update @new if permission is granted. 1002 */ 1003 int security_capset(struct cred *new, const struct cred *old, 1004 const kernel_cap_t *effective, 1005 const kernel_cap_t *inheritable, 1006 const kernel_cap_t *permitted) 1007 { 1008 return call_int_hook(capset, new, old, effective, inheritable, 1009 permitted); 1010 } 1011 1012 /** 1013 * security_capable() - Check if a process has the necessary capability 1014 * @cred: credentials to examine 1015 * @ns: user namespace 1016 * @cap: capability requested 1017 * @opts: capability check options 1018 * 1019 * Check whether the @tsk process has the @cap capability in the indicated 1020 * credentials. @cap contains the capability <include/linux/capability.h>. 1021 * @opts contains options for the capable check <include/linux/security.h>. 1022 * 1023 * Return: Returns 0 if the capability is granted. 1024 */ 1025 int security_capable(const struct cred *cred, 1026 struct user_namespace *ns, 1027 int cap, 1028 unsigned int opts) 1029 { 1030 return call_int_hook(capable, cred, ns, cap, opts); 1031 } 1032 1033 /** 1034 * security_quotactl() - Check if a quotactl() syscall is allowed for this fs 1035 * @cmds: commands 1036 * @type: type 1037 * @id: id 1038 * @sb: filesystem 1039 * 1040 * Check whether the quotactl syscall is allowed for this @sb. 1041 * 1042 * Return: Returns 0 if permission is granted. 1043 */ 1044 int security_quotactl(int cmds, int type, int id, const struct super_block *sb) 1045 { 1046 return call_int_hook(quotactl, cmds, type, id, sb); 1047 } 1048 1049 /** 1050 * security_quota_on() - Check if QUOTAON is allowed for a dentry 1051 * @dentry: dentry 1052 * 1053 * Check whether QUOTAON is allowed for @dentry. 1054 * 1055 * Return: Returns 0 if permission is granted. 1056 */ 1057 int security_quota_on(struct dentry *dentry) 1058 { 1059 return call_int_hook(quota_on, dentry); 1060 } 1061 1062 /** 1063 * security_syslog() - Check if accessing the kernel message ring is allowed 1064 * @type: SYSLOG_ACTION_* type 1065 * 1066 * Check permission before accessing the kernel message ring or changing 1067 * logging to the console. See the syslog(2) manual page for an explanation of 1068 * the @type values. 1069 * 1070 * Return: Return 0 if permission is granted. 1071 */ 1072 int security_syslog(int type) 1073 { 1074 return call_int_hook(syslog, type); 1075 } 1076 1077 /** 1078 * security_settime64() - Check if changing the system time is allowed 1079 * @ts: new time 1080 * @tz: timezone 1081 * 1082 * Check permission to change the system time, struct timespec64 is defined in 1083 * <include/linux/time64.h> and timezone is defined in <include/linux/time.h>. 1084 * 1085 * Return: Returns 0 if permission is granted. 1086 */ 1087 int security_settime64(const struct timespec64 *ts, const struct timezone *tz) 1088 { 1089 return call_int_hook(settime, ts, tz); 1090 } 1091 1092 /** 1093 * security_vm_enough_memory_mm() - Check if allocating a new mem map is allowed 1094 * @mm: mm struct 1095 * @pages: number of pages 1096 * 1097 * Check permissions for allocating a new virtual mapping. If all LSMs return 1098 * a positive value, __vm_enough_memory() will be called with cap_sys_admin 1099 * set. If at least one LSM returns 0 or negative, __vm_enough_memory() will be 1100 * called with cap_sys_admin cleared. 1101 * 1102 * Return: Returns 0 if permission is granted by the LSM infrastructure to the 1103 * caller. 1104 */ 1105 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages) 1106 { 1107 struct security_hook_list *hp; 1108 int cap_sys_admin = 1; 1109 int rc; 1110 1111 /* 1112 * The module will respond with a positive value if 1113 * it thinks the __vm_enough_memory() call should be 1114 * made with the cap_sys_admin set. If all of the modules 1115 * agree that it should be set it will. If any module 1116 * thinks it should not be set it won't. 1117 */ 1118 hlist_for_each_entry(hp, &security_hook_heads.vm_enough_memory, list) { 1119 rc = hp->hook.vm_enough_memory(mm, pages); 1120 if (rc <= 0) { 1121 cap_sys_admin = 0; 1122 break; 1123 } 1124 } 1125 return __vm_enough_memory(mm, pages, cap_sys_admin); 1126 } 1127 1128 /** 1129 * security_bprm_creds_for_exec() - Prepare the credentials for exec() 1130 * @bprm: binary program information 1131 * 1132 * If the setup in prepare_exec_creds did not setup @bprm->cred->security 1133 * properly for executing @bprm->file, update the LSM's portion of 1134 * @bprm->cred->security to be what commit_creds needs to install for the new 1135 * program. This hook may also optionally check permissions (e.g. for 1136 * transitions between security domains). The hook must set @bprm->secureexec 1137 * to 1 if AT_SECURE should be set to request libc enable secure mode. @bprm 1138 * contains the linux_binprm structure. 1139 * 1140 * Return: Returns 0 if the hook is successful and permission is granted. 1141 */ 1142 int security_bprm_creds_for_exec(struct linux_binprm *bprm) 1143 { 1144 return call_int_hook(bprm_creds_for_exec, bprm); 1145 } 1146 1147 /** 1148 * security_bprm_creds_from_file() - Update linux_binprm creds based on file 1149 * @bprm: binary program information 1150 * @file: associated file 1151 * 1152 * If @file is setpcap, suid, sgid or otherwise marked to change privilege upon 1153 * exec, update @bprm->cred to reflect that change. This is called after 1154 * finding the binary that will be executed without an interpreter. This 1155 * ensures that the credentials will not be derived from a script that the 1156 * binary will need to reopen, which when reopend may end up being a completely 1157 * different file. This hook may also optionally check permissions (e.g. for 1158 * transitions between security domains). The hook must set @bprm->secureexec 1159 * to 1 if AT_SECURE should be set to request libc enable secure mode. The 1160 * hook must add to @bprm->per_clear any personality flags that should be 1161 * cleared from current->personality. @bprm contains the linux_binprm 1162 * structure. 1163 * 1164 * Return: Returns 0 if the hook is successful and permission is granted. 1165 */ 1166 int security_bprm_creds_from_file(struct linux_binprm *bprm, const struct file *file) 1167 { 1168 return call_int_hook(bprm_creds_from_file, bprm, file); 1169 } 1170 1171 /** 1172 * security_bprm_check() - Mediate binary handler search 1173 * @bprm: binary program information 1174 * 1175 * This hook mediates the point when a search for a binary handler will begin. 1176 * It allows a check against the @bprm->cred->security value which was set in 1177 * the preceding creds_for_exec call. The argv list and envp list are reliably 1178 * available in @bprm. This hook may be called multiple times during a single 1179 * execve. @bprm contains the linux_binprm structure. 1180 * 1181 * Return: Returns 0 if the hook is successful and permission is granted. 1182 */ 1183 int security_bprm_check(struct linux_binprm *bprm) 1184 { 1185 return call_int_hook(bprm_check_security, bprm); 1186 } 1187 1188 /** 1189 * security_bprm_committing_creds() - Install creds for a process during exec() 1190 * @bprm: binary program information 1191 * 1192 * Prepare to install the new security attributes of a process being 1193 * transformed by an execve operation, based on the old credentials pointed to 1194 * by @current->cred and the information set in @bprm->cred by the 1195 * bprm_creds_for_exec hook. @bprm points to the linux_binprm structure. This 1196 * hook is a good place to perform state changes on the process such as closing 1197 * open file descriptors to which access will no longer be granted when the 1198 * attributes are changed. This is called immediately before commit_creds(). 1199 */ 1200 void security_bprm_committing_creds(const struct linux_binprm *bprm) 1201 { 1202 call_void_hook(bprm_committing_creds, bprm); 1203 } 1204 1205 /** 1206 * security_bprm_committed_creds() - Tidy up after cred install during exec() 1207 * @bprm: binary program information 1208 * 1209 * Tidy up after the installation of the new security attributes of a process 1210 * being transformed by an execve operation. The new credentials have, by this 1211 * point, been set to @current->cred. @bprm points to the linux_binprm 1212 * structure. This hook is a good place to perform state changes on the 1213 * process such as clearing out non-inheritable signal state. This is called 1214 * immediately after commit_creds(). 1215 */ 1216 void security_bprm_committed_creds(const struct linux_binprm *bprm) 1217 { 1218 call_void_hook(bprm_committed_creds, bprm); 1219 } 1220 1221 /** 1222 * security_fs_context_submount() - Initialise fc->security 1223 * @fc: new filesystem context 1224 * @reference: dentry reference for submount/remount 1225 * 1226 * Fill out the ->security field for a new fs_context. 1227 * 1228 * Return: Returns 0 on success or negative error code on failure. 1229 */ 1230 int security_fs_context_submount(struct fs_context *fc, struct super_block *reference) 1231 { 1232 return call_int_hook(fs_context_submount, fc, reference); 1233 } 1234 1235 /** 1236 * security_fs_context_dup() - Duplicate a fs_context LSM blob 1237 * @fc: destination filesystem context 1238 * @src_fc: source filesystem context 1239 * 1240 * Allocate and attach a security structure to sc->security. This pointer is 1241 * initialised to NULL by the caller. @fc indicates the new filesystem context. 1242 * @src_fc indicates the original filesystem context. 1243 * 1244 * Return: Returns 0 on success or a negative error code on failure. 1245 */ 1246 int security_fs_context_dup(struct fs_context *fc, struct fs_context *src_fc) 1247 { 1248 return call_int_hook(fs_context_dup, fc, src_fc); 1249 } 1250 1251 /** 1252 * security_fs_context_parse_param() - Configure a filesystem context 1253 * @fc: filesystem context 1254 * @param: filesystem parameter 1255 * 1256 * Userspace provided a parameter to configure a superblock. The LSM can 1257 * consume the parameter or return it to the caller for use elsewhere. 1258 * 1259 * Return: If the parameter is used by the LSM it should return 0, if it is 1260 * returned to the caller -ENOPARAM is returned, otherwise a negative 1261 * error code is returned. 1262 */ 1263 int security_fs_context_parse_param(struct fs_context *fc, 1264 struct fs_parameter *param) 1265 { 1266 struct security_hook_list *hp; 1267 int trc; 1268 int rc = -ENOPARAM; 1269 1270 hlist_for_each_entry(hp, &security_hook_heads.fs_context_parse_param, 1271 list) { 1272 trc = hp->hook.fs_context_parse_param(fc, param); 1273 if (trc == 0) 1274 rc = 0; 1275 else if (trc != -ENOPARAM) 1276 return trc; 1277 } 1278 return rc; 1279 } 1280 1281 /** 1282 * security_sb_alloc() - Allocate a super_block LSM blob 1283 * @sb: filesystem superblock 1284 * 1285 * Allocate and attach a security structure to the sb->s_security field. The 1286 * s_security field is initialized to NULL when the structure is allocated. 1287 * @sb contains the super_block structure to be modified. 1288 * 1289 * Return: Returns 0 if operation was successful. 1290 */ 1291 int security_sb_alloc(struct super_block *sb) 1292 { 1293 int rc = lsm_superblock_alloc(sb); 1294 1295 if (unlikely(rc)) 1296 return rc; 1297 rc = call_int_hook(sb_alloc_security, sb); 1298 if (unlikely(rc)) 1299 security_sb_free(sb); 1300 return rc; 1301 } 1302 1303 /** 1304 * security_sb_delete() - Release super_block LSM associated objects 1305 * @sb: filesystem superblock 1306 * 1307 * Release objects tied to a superblock (e.g. inodes). @sb contains the 1308 * super_block structure being released. 1309 */ 1310 void security_sb_delete(struct super_block *sb) 1311 { 1312 call_void_hook(sb_delete, sb); 1313 } 1314 1315 /** 1316 * security_sb_free() - Free a super_block LSM blob 1317 * @sb: filesystem superblock 1318 * 1319 * Deallocate and clear the sb->s_security field. @sb contains the super_block 1320 * structure to be modified. 1321 */ 1322 void security_sb_free(struct super_block *sb) 1323 { 1324 call_void_hook(sb_free_security, sb); 1325 kfree(sb->s_security); 1326 sb->s_security = NULL; 1327 } 1328 1329 /** 1330 * security_free_mnt_opts() - Free memory associated with mount options 1331 * @mnt_opts: LSM processed mount options 1332 * 1333 * Free memory associated with @mnt_ops. 1334 */ 1335 void security_free_mnt_opts(void **mnt_opts) 1336 { 1337 if (!*mnt_opts) 1338 return; 1339 call_void_hook(sb_free_mnt_opts, *mnt_opts); 1340 *mnt_opts = NULL; 1341 } 1342 EXPORT_SYMBOL(security_free_mnt_opts); 1343 1344 /** 1345 * security_sb_eat_lsm_opts() - Consume LSM mount options 1346 * @options: mount options 1347 * @mnt_opts: LSM processed mount options 1348 * 1349 * Eat (scan @options) and save them in @mnt_opts. 1350 * 1351 * Return: Returns 0 on success, negative values on failure. 1352 */ 1353 int security_sb_eat_lsm_opts(char *options, void **mnt_opts) 1354 { 1355 return call_int_hook(sb_eat_lsm_opts, options, mnt_opts); 1356 } 1357 EXPORT_SYMBOL(security_sb_eat_lsm_opts); 1358 1359 /** 1360 * security_sb_mnt_opts_compat() - Check if new mount options are allowed 1361 * @sb: filesystem superblock 1362 * @mnt_opts: new mount options 1363 * 1364 * Determine if the new mount options in @mnt_opts are allowed given the 1365 * existing mounted filesystem at @sb. @sb superblock being compared. 1366 * 1367 * Return: Returns 0 if options are compatible. 1368 */ 1369 int security_sb_mnt_opts_compat(struct super_block *sb, 1370 void *mnt_opts) 1371 { 1372 return call_int_hook(sb_mnt_opts_compat, sb, mnt_opts); 1373 } 1374 EXPORT_SYMBOL(security_sb_mnt_opts_compat); 1375 1376 /** 1377 * security_sb_remount() - Verify no incompatible mount changes during remount 1378 * @sb: filesystem superblock 1379 * @mnt_opts: (re)mount options 1380 * 1381 * Extracts security system specific mount options and verifies no changes are 1382 * being made to those options. 1383 * 1384 * Return: Returns 0 if permission is granted. 1385 */ 1386 int security_sb_remount(struct super_block *sb, 1387 void *mnt_opts) 1388 { 1389 return call_int_hook(sb_remount, sb, mnt_opts); 1390 } 1391 EXPORT_SYMBOL(security_sb_remount); 1392 1393 /** 1394 * security_sb_kern_mount() - Check if a kernel mount is allowed 1395 * @sb: filesystem superblock 1396 * 1397 * Mount this @sb if allowed by permissions. 1398 * 1399 * Return: Returns 0 if permission is granted. 1400 */ 1401 int security_sb_kern_mount(const struct super_block *sb) 1402 { 1403 return call_int_hook(sb_kern_mount, sb); 1404 } 1405 1406 /** 1407 * security_sb_show_options() - Output the mount options for a superblock 1408 * @m: output file 1409 * @sb: filesystem superblock 1410 * 1411 * Show (print on @m) mount options for this @sb. 1412 * 1413 * Return: Returns 0 on success, negative values on failure. 1414 */ 1415 int security_sb_show_options(struct seq_file *m, struct super_block *sb) 1416 { 1417 return call_int_hook(sb_show_options, m, sb); 1418 } 1419 1420 /** 1421 * security_sb_statfs() - Check if accessing fs stats is allowed 1422 * @dentry: superblock handle 1423 * 1424 * Check permission before obtaining filesystem statistics for the @mnt 1425 * mountpoint. @dentry is a handle on the superblock for the filesystem. 1426 * 1427 * Return: Returns 0 if permission is granted. 1428 */ 1429 int security_sb_statfs(struct dentry *dentry) 1430 { 1431 return call_int_hook(sb_statfs, dentry); 1432 } 1433 1434 /** 1435 * security_sb_mount() - Check permission for mounting a filesystem 1436 * @dev_name: filesystem backing device 1437 * @path: mount point 1438 * @type: filesystem type 1439 * @flags: mount flags 1440 * @data: filesystem specific data 1441 * 1442 * Check permission before an object specified by @dev_name is mounted on the 1443 * mount point named by @nd. For an ordinary mount, @dev_name identifies a 1444 * device if the file system type requires a device. For a remount 1445 * (@flags & MS_REMOUNT), @dev_name is irrelevant. For a loopback/bind mount 1446 * (@flags & MS_BIND), @dev_name identifies the pathname of the object being 1447 * mounted. 1448 * 1449 * Return: Returns 0 if permission is granted. 1450 */ 1451 int security_sb_mount(const char *dev_name, const struct path *path, 1452 const char *type, unsigned long flags, void *data) 1453 { 1454 return call_int_hook(sb_mount, dev_name, path, type, flags, data); 1455 } 1456 1457 /** 1458 * security_sb_umount() - Check permission for unmounting a filesystem 1459 * @mnt: mounted filesystem 1460 * @flags: unmount flags 1461 * 1462 * Check permission before the @mnt file system is unmounted. 1463 * 1464 * Return: Returns 0 if permission is granted. 1465 */ 1466 int security_sb_umount(struct vfsmount *mnt, int flags) 1467 { 1468 return call_int_hook(sb_umount, mnt, flags); 1469 } 1470 1471 /** 1472 * security_sb_pivotroot() - Check permissions for pivoting the rootfs 1473 * @old_path: new location for current rootfs 1474 * @new_path: location of the new rootfs 1475 * 1476 * Check permission before pivoting the root filesystem. 1477 * 1478 * Return: Returns 0 if permission is granted. 1479 */ 1480 int security_sb_pivotroot(const struct path *old_path, 1481 const struct path *new_path) 1482 { 1483 return call_int_hook(sb_pivotroot, old_path, new_path); 1484 } 1485 1486 /** 1487 * security_sb_set_mnt_opts() - Set the mount options for a filesystem 1488 * @sb: filesystem superblock 1489 * @mnt_opts: binary mount options 1490 * @kern_flags: kernel flags (in) 1491 * @set_kern_flags: kernel flags (out) 1492 * 1493 * Set the security relevant mount options used for a superblock. 1494 * 1495 * Return: Returns 0 on success, error on failure. 1496 */ 1497 int security_sb_set_mnt_opts(struct super_block *sb, 1498 void *mnt_opts, 1499 unsigned long kern_flags, 1500 unsigned long *set_kern_flags) 1501 { 1502 struct security_hook_list *hp; 1503 int rc = mnt_opts ? -EOPNOTSUPP : LSM_RET_DEFAULT(sb_set_mnt_opts); 1504 1505 hlist_for_each_entry(hp, &security_hook_heads.sb_set_mnt_opts, 1506 list) { 1507 rc = hp->hook.sb_set_mnt_opts(sb, mnt_opts, kern_flags, 1508 set_kern_flags); 1509 if (rc != LSM_RET_DEFAULT(sb_set_mnt_opts)) 1510 break; 1511 } 1512 return rc; 1513 } 1514 EXPORT_SYMBOL(security_sb_set_mnt_opts); 1515 1516 /** 1517 * security_sb_clone_mnt_opts() - Duplicate superblock mount options 1518 * @oldsb: source superblock 1519 * @newsb: destination superblock 1520 * @kern_flags: kernel flags (in) 1521 * @set_kern_flags: kernel flags (out) 1522 * 1523 * Copy all security options from a given superblock to another. 1524 * 1525 * Return: Returns 0 on success, error on failure. 1526 */ 1527 int security_sb_clone_mnt_opts(const struct super_block *oldsb, 1528 struct super_block *newsb, 1529 unsigned long kern_flags, 1530 unsigned long *set_kern_flags) 1531 { 1532 return call_int_hook(sb_clone_mnt_opts, oldsb, newsb, 1533 kern_flags, set_kern_flags); 1534 } 1535 EXPORT_SYMBOL(security_sb_clone_mnt_opts); 1536 1537 /** 1538 * security_move_mount() - Check permissions for moving a mount 1539 * @from_path: source mount point 1540 * @to_path: destination mount point 1541 * 1542 * Check permission before a mount is moved. 1543 * 1544 * Return: Returns 0 if permission is granted. 1545 */ 1546 int security_move_mount(const struct path *from_path, 1547 const struct path *to_path) 1548 { 1549 return call_int_hook(move_mount, from_path, to_path); 1550 } 1551 1552 /** 1553 * security_path_notify() - Check if setting a watch is allowed 1554 * @path: file path 1555 * @mask: event mask 1556 * @obj_type: file path type 1557 * 1558 * Check permissions before setting a watch on events as defined by @mask, on 1559 * an object at @path, whose type is defined by @obj_type. 1560 * 1561 * Return: Returns 0 if permission is granted. 1562 */ 1563 int security_path_notify(const struct path *path, u64 mask, 1564 unsigned int obj_type) 1565 { 1566 return call_int_hook(path_notify, path, mask, obj_type); 1567 } 1568 1569 /** 1570 * security_inode_alloc() - Allocate an inode LSM blob 1571 * @inode: the inode 1572 * 1573 * Allocate and attach a security structure to @inode->i_security. The 1574 * i_security field is initialized to NULL when the inode structure is 1575 * allocated. 1576 * 1577 * Return: Return 0 if operation was successful. 1578 */ 1579 int security_inode_alloc(struct inode *inode) 1580 { 1581 int rc = lsm_inode_alloc(inode); 1582 1583 if (unlikely(rc)) 1584 return rc; 1585 rc = call_int_hook(inode_alloc_security, inode); 1586 if (unlikely(rc)) 1587 security_inode_free(inode); 1588 return rc; 1589 } 1590 1591 static void inode_free_by_rcu(struct rcu_head *head) 1592 { 1593 /* 1594 * The rcu head is at the start of the inode blob 1595 */ 1596 kmem_cache_free(lsm_inode_cache, head); 1597 } 1598 1599 /** 1600 * security_inode_free() - Free an inode's LSM blob 1601 * @inode: the inode 1602 * 1603 * Deallocate the inode security structure and set @inode->i_security to NULL. 1604 */ 1605 void security_inode_free(struct inode *inode) 1606 { 1607 call_void_hook(inode_free_security, inode); 1608 /* 1609 * The inode may still be referenced in a path walk and 1610 * a call to security_inode_permission() can be made 1611 * after inode_free_security() is called. Ideally, the VFS 1612 * wouldn't do this, but fixing that is a much harder 1613 * job. For now, simply free the i_security via RCU, and 1614 * leave the current inode->i_security pointer intact. 1615 * The inode will be freed after the RCU grace period too. 1616 */ 1617 if (inode->i_security) 1618 call_rcu((struct rcu_head *)inode->i_security, 1619 inode_free_by_rcu); 1620 } 1621 1622 /** 1623 * security_dentry_init_security() - Perform dentry initialization 1624 * @dentry: the dentry to initialize 1625 * @mode: mode used to determine resource type 1626 * @name: name of the last path component 1627 * @xattr_name: name of the security/LSM xattr 1628 * @ctx: pointer to the resulting LSM context 1629 * @ctxlen: length of @ctx 1630 * 1631 * Compute a context for a dentry as the inode is not yet available since NFSv4 1632 * has no label backed by an EA anyway. It is important to note that 1633 * @xattr_name does not need to be free'd by the caller, it is a static string. 1634 * 1635 * Return: Returns 0 on success, negative values on failure. 1636 */ 1637 int security_dentry_init_security(struct dentry *dentry, int mode, 1638 const struct qstr *name, 1639 const char **xattr_name, void **ctx, 1640 u32 *ctxlen) 1641 { 1642 return call_int_hook(dentry_init_security, dentry, mode, name, 1643 xattr_name, ctx, ctxlen); 1644 } 1645 EXPORT_SYMBOL(security_dentry_init_security); 1646 1647 /** 1648 * security_dentry_create_files_as() - Perform dentry initialization 1649 * @dentry: the dentry to initialize 1650 * @mode: mode used to determine resource type 1651 * @name: name of the last path component 1652 * @old: creds to use for LSM context calculations 1653 * @new: creds to modify 1654 * 1655 * Compute a context for a dentry as the inode is not yet available and set 1656 * that context in passed in creds so that new files are created using that 1657 * context. Context is calculated using the passed in creds and not the creds 1658 * of the caller. 1659 * 1660 * Return: Returns 0 on success, error on failure. 1661 */ 1662 int security_dentry_create_files_as(struct dentry *dentry, int mode, 1663 struct qstr *name, 1664 const struct cred *old, struct cred *new) 1665 { 1666 return call_int_hook(dentry_create_files_as, dentry, mode, 1667 name, old, new); 1668 } 1669 EXPORT_SYMBOL(security_dentry_create_files_as); 1670 1671 /** 1672 * security_inode_init_security() - Initialize an inode's LSM context 1673 * @inode: the inode 1674 * @dir: parent directory 1675 * @qstr: last component of the pathname 1676 * @initxattrs: callback function to write xattrs 1677 * @fs_data: filesystem specific data 1678 * 1679 * Obtain the security attribute name suffix and value to set on a newly 1680 * created inode and set up the incore security field for the new inode. This 1681 * hook is called by the fs code as part of the inode creation transaction and 1682 * provides for atomic labeling of the inode, unlike the post_create/mkdir/... 1683 * hooks called by the VFS. 1684 * 1685 * The hook function is expected to populate the xattrs array, by calling 1686 * lsm_get_xattr_slot() to retrieve the slots reserved by the security module 1687 * with the lbs_xattr_count field of the lsm_blob_sizes structure. For each 1688 * slot, the hook function should set ->name to the attribute name suffix 1689 * (e.g. selinux), to allocate ->value (will be freed by the caller) and set it 1690 * to the attribute value, to set ->value_len to the length of the value. If 1691 * the security module does not use security attributes or does not wish to put 1692 * a security attribute on this particular inode, then it should return 1693 * -EOPNOTSUPP to skip this processing. 1694 * 1695 * Return: Returns 0 if the LSM successfully initialized all of the inode 1696 * security attributes that are required, negative values otherwise. 1697 */ 1698 int security_inode_init_security(struct inode *inode, struct inode *dir, 1699 const struct qstr *qstr, 1700 const initxattrs initxattrs, void *fs_data) 1701 { 1702 struct security_hook_list *hp; 1703 struct xattr *new_xattrs = NULL; 1704 int ret = -EOPNOTSUPP, xattr_count = 0; 1705 1706 if (unlikely(IS_PRIVATE(inode))) 1707 return 0; 1708 1709 if (!blob_sizes.lbs_xattr_count) 1710 return 0; 1711 1712 if (initxattrs) { 1713 /* Allocate +1 as terminator. */ 1714 new_xattrs = kcalloc(blob_sizes.lbs_xattr_count + 1, 1715 sizeof(*new_xattrs), GFP_NOFS); 1716 if (!new_xattrs) 1717 return -ENOMEM; 1718 } 1719 1720 hlist_for_each_entry(hp, &security_hook_heads.inode_init_security, 1721 list) { 1722 ret = hp->hook.inode_init_security(inode, dir, qstr, new_xattrs, 1723 &xattr_count); 1724 if (ret && ret != -EOPNOTSUPP) 1725 goto out; 1726 /* 1727 * As documented in lsm_hooks.h, -EOPNOTSUPP in this context 1728 * means that the LSM is not willing to provide an xattr, not 1729 * that it wants to signal an error. Thus, continue to invoke 1730 * the remaining LSMs. 1731 */ 1732 } 1733 1734 /* If initxattrs() is NULL, xattr_count is zero, skip the call. */ 1735 if (!xattr_count) 1736 goto out; 1737 1738 ret = initxattrs(inode, new_xattrs, fs_data); 1739 out: 1740 for (; xattr_count > 0; xattr_count--) 1741 kfree(new_xattrs[xattr_count - 1].value); 1742 kfree(new_xattrs); 1743 return (ret == -EOPNOTSUPP) ? 0 : ret; 1744 } 1745 EXPORT_SYMBOL(security_inode_init_security); 1746 1747 /** 1748 * security_inode_init_security_anon() - Initialize an anonymous inode 1749 * @inode: the inode 1750 * @name: the anonymous inode class 1751 * @context_inode: an optional related inode 1752 * 1753 * Set up the incore security field for the new anonymous inode and return 1754 * whether the inode creation is permitted by the security module or not. 1755 * 1756 * Return: Returns 0 on success, -EACCES if the security module denies the 1757 * creation of this inode, or another -errno upon other errors. 1758 */ 1759 int security_inode_init_security_anon(struct inode *inode, 1760 const struct qstr *name, 1761 const struct inode *context_inode) 1762 { 1763 return call_int_hook(inode_init_security_anon, inode, name, 1764 context_inode); 1765 } 1766 1767 #ifdef CONFIG_SECURITY_PATH 1768 /** 1769 * security_path_mknod() - Check if creating a special file is allowed 1770 * @dir: parent directory 1771 * @dentry: new file 1772 * @mode: new file mode 1773 * @dev: device number 1774 * 1775 * Check permissions when creating a file. Note that this hook is called even 1776 * if mknod operation is being done for a regular file. 1777 * 1778 * Return: Returns 0 if permission is granted. 1779 */ 1780 int security_path_mknod(const struct path *dir, struct dentry *dentry, 1781 umode_t mode, unsigned int dev) 1782 { 1783 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 1784 return 0; 1785 return call_int_hook(path_mknod, dir, dentry, mode, dev); 1786 } 1787 EXPORT_SYMBOL(security_path_mknod); 1788 1789 /** 1790 * security_path_post_mknod() - Update inode security field after file creation 1791 * @idmap: idmap of the mount 1792 * @dentry: new file 1793 * 1794 * Update inode security field after a file has been created. 1795 */ 1796 void security_path_post_mknod(struct mnt_idmap *idmap, struct dentry *dentry) 1797 { 1798 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1799 return; 1800 call_void_hook(path_post_mknod, idmap, dentry); 1801 } 1802 1803 /** 1804 * security_path_mkdir() - Check if creating a new directory is allowed 1805 * @dir: parent directory 1806 * @dentry: new directory 1807 * @mode: new directory mode 1808 * 1809 * Check permissions to create a new directory in the existing directory. 1810 * 1811 * Return: Returns 0 if permission is granted. 1812 */ 1813 int security_path_mkdir(const struct path *dir, struct dentry *dentry, 1814 umode_t mode) 1815 { 1816 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 1817 return 0; 1818 return call_int_hook(path_mkdir, dir, dentry, mode); 1819 } 1820 EXPORT_SYMBOL(security_path_mkdir); 1821 1822 /** 1823 * security_path_rmdir() - Check if removing a directory is allowed 1824 * @dir: parent directory 1825 * @dentry: directory to remove 1826 * 1827 * Check the permission to remove a directory. 1828 * 1829 * Return: Returns 0 if permission is granted. 1830 */ 1831 int security_path_rmdir(const struct path *dir, struct dentry *dentry) 1832 { 1833 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 1834 return 0; 1835 return call_int_hook(path_rmdir, dir, dentry); 1836 } 1837 1838 /** 1839 * security_path_unlink() - Check if removing a hard link is allowed 1840 * @dir: parent directory 1841 * @dentry: file 1842 * 1843 * Check the permission to remove a hard link to a file. 1844 * 1845 * Return: Returns 0 if permission is granted. 1846 */ 1847 int security_path_unlink(const struct path *dir, struct dentry *dentry) 1848 { 1849 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 1850 return 0; 1851 return call_int_hook(path_unlink, dir, dentry); 1852 } 1853 EXPORT_SYMBOL(security_path_unlink); 1854 1855 /** 1856 * security_path_symlink() - Check if creating a symbolic link is allowed 1857 * @dir: parent directory 1858 * @dentry: symbolic link 1859 * @old_name: file pathname 1860 * 1861 * Check the permission to create a symbolic link to a file. 1862 * 1863 * Return: Returns 0 if permission is granted. 1864 */ 1865 int security_path_symlink(const struct path *dir, struct dentry *dentry, 1866 const char *old_name) 1867 { 1868 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 1869 return 0; 1870 return call_int_hook(path_symlink, dir, dentry, old_name); 1871 } 1872 1873 /** 1874 * security_path_link - Check if creating a hard link is allowed 1875 * @old_dentry: existing file 1876 * @new_dir: new parent directory 1877 * @new_dentry: new link 1878 * 1879 * Check permission before creating a new hard link to a file. 1880 * 1881 * Return: Returns 0 if permission is granted. 1882 */ 1883 int security_path_link(struct dentry *old_dentry, const struct path *new_dir, 1884 struct dentry *new_dentry) 1885 { 1886 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)))) 1887 return 0; 1888 return call_int_hook(path_link, old_dentry, new_dir, new_dentry); 1889 } 1890 1891 /** 1892 * security_path_rename() - Check if renaming a file is allowed 1893 * @old_dir: parent directory of the old file 1894 * @old_dentry: the old file 1895 * @new_dir: parent directory of the new file 1896 * @new_dentry: the new file 1897 * @flags: flags 1898 * 1899 * Check for permission to rename a file or directory. 1900 * 1901 * Return: Returns 0 if permission is granted. 1902 */ 1903 int security_path_rename(const struct path *old_dir, struct dentry *old_dentry, 1904 const struct path *new_dir, struct dentry *new_dentry, 1905 unsigned int flags) 1906 { 1907 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) || 1908 (d_is_positive(new_dentry) && 1909 IS_PRIVATE(d_backing_inode(new_dentry))))) 1910 return 0; 1911 1912 return call_int_hook(path_rename, old_dir, old_dentry, new_dir, 1913 new_dentry, flags); 1914 } 1915 EXPORT_SYMBOL(security_path_rename); 1916 1917 /** 1918 * security_path_truncate() - Check if truncating a file is allowed 1919 * @path: file 1920 * 1921 * Check permission before truncating the file indicated by path. Note that 1922 * truncation permissions may also be checked based on already opened files, 1923 * using the security_file_truncate() hook. 1924 * 1925 * Return: Returns 0 if permission is granted. 1926 */ 1927 int security_path_truncate(const struct path *path) 1928 { 1929 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 1930 return 0; 1931 return call_int_hook(path_truncate, path); 1932 } 1933 1934 /** 1935 * security_path_chmod() - Check if changing the file's mode is allowed 1936 * @path: file 1937 * @mode: new mode 1938 * 1939 * Check for permission to change a mode of the file @path. The new mode is 1940 * specified in @mode which is a bitmask of constants from 1941 * <include/uapi/linux/stat.h>. 1942 * 1943 * Return: Returns 0 if permission is granted. 1944 */ 1945 int security_path_chmod(const struct path *path, umode_t mode) 1946 { 1947 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 1948 return 0; 1949 return call_int_hook(path_chmod, path, mode); 1950 } 1951 1952 /** 1953 * security_path_chown() - Check if changing the file's owner/group is allowed 1954 * @path: file 1955 * @uid: file owner 1956 * @gid: file group 1957 * 1958 * Check for permission to change owner/group of a file or directory. 1959 * 1960 * Return: Returns 0 if permission is granted. 1961 */ 1962 int security_path_chown(const struct path *path, kuid_t uid, kgid_t gid) 1963 { 1964 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 1965 return 0; 1966 return call_int_hook(path_chown, path, uid, gid); 1967 } 1968 1969 /** 1970 * security_path_chroot() - Check if changing the root directory is allowed 1971 * @path: directory 1972 * 1973 * Check for permission to change root directory. 1974 * 1975 * Return: Returns 0 if permission is granted. 1976 */ 1977 int security_path_chroot(const struct path *path) 1978 { 1979 return call_int_hook(path_chroot, path); 1980 } 1981 #endif /* CONFIG_SECURITY_PATH */ 1982 1983 /** 1984 * security_inode_create() - Check if creating a file is allowed 1985 * @dir: the parent directory 1986 * @dentry: the file being created 1987 * @mode: requested file mode 1988 * 1989 * Check permission to create a regular file. 1990 * 1991 * Return: Returns 0 if permission is granted. 1992 */ 1993 int security_inode_create(struct inode *dir, struct dentry *dentry, 1994 umode_t mode) 1995 { 1996 if (unlikely(IS_PRIVATE(dir))) 1997 return 0; 1998 return call_int_hook(inode_create, dir, dentry, mode); 1999 } 2000 EXPORT_SYMBOL_GPL(security_inode_create); 2001 2002 /** 2003 * security_inode_post_create_tmpfile() - Update inode security of new tmpfile 2004 * @idmap: idmap of the mount 2005 * @inode: inode of the new tmpfile 2006 * 2007 * Update inode security data after a tmpfile has been created. 2008 */ 2009 void security_inode_post_create_tmpfile(struct mnt_idmap *idmap, 2010 struct inode *inode) 2011 { 2012 if (unlikely(IS_PRIVATE(inode))) 2013 return; 2014 call_void_hook(inode_post_create_tmpfile, idmap, inode); 2015 } 2016 2017 /** 2018 * security_inode_link() - Check if creating a hard link is allowed 2019 * @old_dentry: existing file 2020 * @dir: new parent directory 2021 * @new_dentry: new link 2022 * 2023 * Check permission before creating a new hard link to a file. 2024 * 2025 * Return: Returns 0 if permission is granted. 2026 */ 2027 int security_inode_link(struct dentry *old_dentry, struct inode *dir, 2028 struct dentry *new_dentry) 2029 { 2030 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)))) 2031 return 0; 2032 return call_int_hook(inode_link, old_dentry, dir, new_dentry); 2033 } 2034 2035 /** 2036 * security_inode_unlink() - Check if removing a hard link is allowed 2037 * @dir: parent directory 2038 * @dentry: file 2039 * 2040 * Check the permission to remove a hard link to a file. 2041 * 2042 * Return: Returns 0 if permission is granted. 2043 */ 2044 int security_inode_unlink(struct inode *dir, struct dentry *dentry) 2045 { 2046 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2047 return 0; 2048 return call_int_hook(inode_unlink, dir, dentry); 2049 } 2050 2051 /** 2052 * security_inode_symlink() - Check if creating a symbolic link is allowed 2053 * @dir: parent directory 2054 * @dentry: symbolic link 2055 * @old_name: existing filename 2056 * 2057 * Check the permission to create a symbolic link to a file. 2058 * 2059 * Return: Returns 0 if permission is granted. 2060 */ 2061 int security_inode_symlink(struct inode *dir, struct dentry *dentry, 2062 const char *old_name) 2063 { 2064 if (unlikely(IS_PRIVATE(dir))) 2065 return 0; 2066 return call_int_hook(inode_symlink, dir, dentry, old_name); 2067 } 2068 2069 /** 2070 * security_inode_mkdir() - Check if creation a new director is allowed 2071 * @dir: parent directory 2072 * @dentry: new directory 2073 * @mode: new directory mode 2074 * 2075 * Check permissions to create a new directory in the existing directory 2076 * associated with inode structure @dir. 2077 * 2078 * Return: Returns 0 if permission is granted. 2079 */ 2080 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 2081 { 2082 if (unlikely(IS_PRIVATE(dir))) 2083 return 0; 2084 return call_int_hook(inode_mkdir, dir, dentry, mode); 2085 } 2086 EXPORT_SYMBOL_GPL(security_inode_mkdir); 2087 2088 /** 2089 * security_inode_rmdir() - Check if removing a directory is allowed 2090 * @dir: parent directory 2091 * @dentry: directory to be removed 2092 * 2093 * Check the permission to remove a directory. 2094 * 2095 * Return: Returns 0 if permission is granted. 2096 */ 2097 int security_inode_rmdir(struct inode *dir, struct dentry *dentry) 2098 { 2099 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2100 return 0; 2101 return call_int_hook(inode_rmdir, dir, dentry); 2102 } 2103 2104 /** 2105 * security_inode_mknod() - Check if creating a special file is allowed 2106 * @dir: parent directory 2107 * @dentry: new file 2108 * @mode: new file mode 2109 * @dev: device number 2110 * 2111 * Check permissions when creating a special file (or a socket or a fifo file 2112 * created via the mknod system call). Note that if mknod operation is being 2113 * done for a regular file, then the create hook will be called and not this 2114 * hook. 2115 * 2116 * Return: Returns 0 if permission is granted. 2117 */ 2118 int security_inode_mknod(struct inode *dir, struct dentry *dentry, 2119 umode_t mode, dev_t dev) 2120 { 2121 if (unlikely(IS_PRIVATE(dir))) 2122 return 0; 2123 return call_int_hook(inode_mknod, dir, dentry, mode, dev); 2124 } 2125 2126 /** 2127 * security_inode_rename() - Check if renaming a file is allowed 2128 * @old_dir: parent directory of the old file 2129 * @old_dentry: the old file 2130 * @new_dir: parent directory of the new file 2131 * @new_dentry: the new file 2132 * @flags: flags 2133 * 2134 * Check for permission to rename a file or directory. 2135 * 2136 * Return: Returns 0 if permission is granted. 2137 */ 2138 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry, 2139 struct inode *new_dir, struct dentry *new_dentry, 2140 unsigned int flags) 2141 { 2142 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) || 2143 (d_is_positive(new_dentry) && 2144 IS_PRIVATE(d_backing_inode(new_dentry))))) 2145 return 0; 2146 2147 if (flags & RENAME_EXCHANGE) { 2148 int err = call_int_hook(inode_rename, new_dir, new_dentry, 2149 old_dir, old_dentry); 2150 if (err) 2151 return err; 2152 } 2153 2154 return call_int_hook(inode_rename, old_dir, old_dentry, 2155 new_dir, new_dentry); 2156 } 2157 2158 /** 2159 * security_inode_readlink() - Check if reading a symbolic link is allowed 2160 * @dentry: link 2161 * 2162 * Check the permission to read the symbolic link. 2163 * 2164 * Return: Returns 0 if permission is granted. 2165 */ 2166 int security_inode_readlink(struct dentry *dentry) 2167 { 2168 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2169 return 0; 2170 return call_int_hook(inode_readlink, dentry); 2171 } 2172 2173 /** 2174 * security_inode_follow_link() - Check if following a symbolic link is allowed 2175 * @dentry: link dentry 2176 * @inode: link inode 2177 * @rcu: true if in RCU-walk mode 2178 * 2179 * Check permission to follow a symbolic link when looking up a pathname. If 2180 * @rcu is true, @inode is not stable. 2181 * 2182 * Return: Returns 0 if permission is granted. 2183 */ 2184 int security_inode_follow_link(struct dentry *dentry, struct inode *inode, 2185 bool rcu) 2186 { 2187 if (unlikely(IS_PRIVATE(inode))) 2188 return 0; 2189 return call_int_hook(inode_follow_link, dentry, inode, rcu); 2190 } 2191 2192 /** 2193 * security_inode_permission() - Check if accessing an inode is allowed 2194 * @inode: inode 2195 * @mask: access mask 2196 * 2197 * Check permission before accessing an inode. This hook is called by the 2198 * existing Linux permission function, so a security module can use it to 2199 * provide additional checking for existing Linux permission checks. Notice 2200 * that this hook is called when a file is opened (as well as many other 2201 * operations), whereas the file_security_ops permission hook is called when 2202 * the actual read/write operations are performed. 2203 * 2204 * Return: Returns 0 if permission is granted. 2205 */ 2206 int security_inode_permission(struct inode *inode, int mask) 2207 { 2208 if (unlikely(IS_PRIVATE(inode))) 2209 return 0; 2210 return call_int_hook(inode_permission, inode, mask); 2211 } 2212 2213 /** 2214 * security_inode_setattr() - Check if setting file attributes is allowed 2215 * @idmap: idmap of the mount 2216 * @dentry: file 2217 * @attr: new attributes 2218 * 2219 * Check permission before setting file attributes. Note that the kernel call 2220 * to notify_change is performed from several locations, whenever file 2221 * attributes change (such as when a file is truncated, chown/chmod operations, 2222 * transferring disk quotas, etc). 2223 * 2224 * Return: Returns 0 if permission is granted. 2225 */ 2226 int security_inode_setattr(struct mnt_idmap *idmap, 2227 struct dentry *dentry, struct iattr *attr) 2228 { 2229 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2230 return 0; 2231 return call_int_hook(inode_setattr, idmap, dentry, attr); 2232 } 2233 EXPORT_SYMBOL_GPL(security_inode_setattr); 2234 2235 /** 2236 * security_inode_post_setattr() - Update the inode after a setattr operation 2237 * @idmap: idmap of the mount 2238 * @dentry: file 2239 * @ia_valid: file attributes set 2240 * 2241 * Update inode security field after successful setting file attributes. 2242 */ 2243 void security_inode_post_setattr(struct mnt_idmap *idmap, struct dentry *dentry, 2244 int ia_valid) 2245 { 2246 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2247 return; 2248 call_void_hook(inode_post_setattr, idmap, dentry, ia_valid); 2249 } 2250 2251 /** 2252 * security_inode_getattr() - Check if getting file attributes is allowed 2253 * @path: file 2254 * 2255 * Check permission before obtaining file attributes. 2256 * 2257 * Return: Returns 0 if permission is granted. 2258 */ 2259 int security_inode_getattr(const struct path *path) 2260 { 2261 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 2262 return 0; 2263 return call_int_hook(inode_getattr, path); 2264 } 2265 2266 /** 2267 * security_inode_setxattr() - Check if setting file xattrs is allowed 2268 * @idmap: idmap of the mount 2269 * @dentry: file 2270 * @name: xattr name 2271 * @value: xattr value 2272 * @size: size of xattr value 2273 * @flags: flags 2274 * 2275 * Check permission before setting the extended attributes. 2276 * 2277 * Return: Returns 0 if permission is granted. 2278 */ 2279 int security_inode_setxattr(struct mnt_idmap *idmap, 2280 struct dentry *dentry, const char *name, 2281 const void *value, size_t size, int flags) 2282 { 2283 int ret; 2284 2285 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2286 return 0; 2287 /* 2288 * SELinux and Smack integrate the cap call, 2289 * so assume that all LSMs supplying this call do so. 2290 */ 2291 ret = call_int_hook(inode_setxattr, idmap, dentry, name, value, size, 2292 flags); 2293 2294 if (ret == 1) 2295 ret = cap_inode_setxattr(dentry, name, value, size, flags); 2296 return ret; 2297 } 2298 2299 /** 2300 * security_inode_set_acl() - Check if setting posix acls is allowed 2301 * @idmap: idmap of the mount 2302 * @dentry: file 2303 * @acl_name: acl name 2304 * @kacl: acl struct 2305 * 2306 * Check permission before setting posix acls, the posix acls in @kacl are 2307 * identified by @acl_name. 2308 * 2309 * Return: Returns 0 if permission is granted. 2310 */ 2311 int security_inode_set_acl(struct mnt_idmap *idmap, 2312 struct dentry *dentry, const char *acl_name, 2313 struct posix_acl *kacl) 2314 { 2315 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2316 return 0; 2317 return call_int_hook(inode_set_acl, idmap, dentry, acl_name, kacl); 2318 } 2319 2320 /** 2321 * security_inode_post_set_acl() - Update inode security from posix acls set 2322 * @dentry: file 2323 * @acl_name: acl name 2324 * @kacl: acl struct 2325 * 2326 * Update inode security data after successfully setting posix acls on @dentry. 2327 * The posix acls in @kacl are identified by @acl_name. 2328 */ 2329 void security_inode_post_set_acl(struct dentry *dentry, const char *acl_name, 2330 struct posix_acl *kacl) 2331 { 2332 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2333 return; 2334 call_void_hook(inode_post_set_acl, dentry, acl_name, kacl); 2335 } 2336 2337 /** 2338 * security_inode_get_acl() - Check if reading posix acls is allowed 2339 * @idmap: idmap of the mount 2340 * @dentry: file 2341 * @acl_name: acl name 2342 * 2343 * Check permission before getting osix acls, the posix acls are identified by 2344 * @acl_name. 2345 * 2346 * Return: Returns 0 if permission is granted. 2347 */ 2348 int security_inode_get_acl(struct mnt_idmap *idmap, 2349 struct dentry *dentry, const char *acl_name) 2350 { 2351 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2352 return 0; 2353 return call_int_hook(inode_get_acl, idmap, dentry, acl_name); 2354 } 2355 2356 /** 2357 * security_inode_remove_acl() - Check if removing a posix acl is allowed 2358 * @idmap: idmap of the mount 2359 * @dentry: file 2360 * @acl_name: acl name 2361 * 2362 * Check permission before removing posix acls, the posix acls are identified 2363 * by @acl_name. 2364 * 2365 * Return: Returns 0 if permission is granted. 2366 */ 2367 int security_inode_remove_acl(struct mnt_idmap *idmap, 2368 struct dentry *dentry, const char *acl_name) 2369 { 2370 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2371 return 0; 2372 return call_int_hook(inode_remove_acl, idmap, dentry, acl_name); 2373 } 2374 2375 /** 2376 * security_inode_post_remove_acl() - Update inode security after rm posix acls 2377 * @idmap: idmap of the mount 2378 * @dentry: file 2379 * @acl_name: acl name 2380 * 2381 * Update inode security data after successfully removing posix acls on 2382 * @dentry in @idmap. The posix acls are identified by @acl_name. 2383 */ 2384 void security_inode_post_remove_acl(struct mnt_idmap *idmap, 2385 struct dentry *dentry, const char *acl_name) 2386 { 2387 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2388 return; 2389 call_void_hook(inode_post_remove_acl, idmap, dentry, acl_name); 2390 } 2391 2392 /** 2393 * security_inode_post_setxattr() - Update the inode after a setxattr operation 2394 * @dentry: file 2395 * @name: xattr name 2396 * @value: xattr value 2397 * @size: xattr value size 2398 * @flags: flags 2399 * 2400 * Update inode security field after successful setxattr operation. 2401 */ 2402 void security_inode_post_setxattr(struct dentry *dentry, const char *name, 2403 const void *value, size_t size, int flags) 2404 { 2405 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2406 return; 2407 call_void_hook(inode_post_setxattr, dentry, name, value, size, flags); 2408 } 2409 2410 /** 2411 * security_inode_getxattr() - Check if xattr access is allowed 2412 * @dentry: file 2413 * @name: xattr name 2414 * 2415 * Check permission before obtaining the extended attributes identified by 2416 * @name for @dentry. 2417 * 2418 * Return: Returns 0 if permission is granted. 2419 */ 2420 int security_inode_getxattr(struct dentry *dentry, const char *name) 2421 { 2422 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2423 return 0; 2424 return call_int_hook(inode_getxattr, dentry, name); 2425 } 2426 2427 /** 2428 * security_inode_listxattr() - Check if listing xattrs is allowed 2429 * @dentry: file 2430 * 2431 * Check permission before obtaining the list of extended attribute names for 2432 * @dentry. 2433 * 2434 * Return: Returns 0 if permission is granted. 2435 */ 2436 int security_inode_listxattr(struct dentry *dentry) 2437 { 2438 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2439 return 0; 2440 return call_int_hook(inode_listxattr, dentry); 2441 } 2442 2443 /** 2444 * security_inode_removexattr() - Check if removing an xattr is allowed 2445 * @idmap: idmap of the mount 2446 * @dentry: file 2447 * @name: xattr name 2448 * 2449 * Check permission before removing the extended attribute identified by @name 2450 * for @dentry. 2451 * 2452 * Return: Returns 0 if permission is granted. 2453 */ 2454 int security_inode_removexattr(struct mnt_idmap *idmap, 2455 struct dentry *dentry, const char *name) 2456 { 2457 int ret; 2458 2459 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2460 return 0; 2461 /* 2462 * SELinux and Smack integrate the cap call, 2463 * so assume that all LSMs supplying this call do so. 2464 */ 2465 ret = call_int_hook(inode_removexattr, idmap, dentry, name); 2466 if (ret == 1) 2467 ret = cap_inode_removexattr(idmap, dentry, name); 2468 return ret; 2469 } 2470 2471 /** 2472 * security_inode_post_removexattr() - Update the inode after a removexattr op 2473 * @dentry: file 2474 * @name: xattr name 2475 * 2476 * Update the inode after a successful removexattr operation. 2477 */ 2478 void security_inode_post_removexattr(struct dentry *dentry, const char *name) 2479 { 2480 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2481 return; 2482 call_void_hook(inode_post_removexattr, dentry, name); 2483 } 2484 2485 /** 2486 * security_inode_need_killpriv() - Check if security_inode_killpriv() required 2487 * @dentry: associated dentry 2488 * 2489 * Called when an inode has been changed to determine if 2490 * security_inode_killpriv() should be called. 2491 * 2492 * Return: Return <0 on error to abort the inode change operation, return 0 if 2493 * security_inode_killpriv() does not need to be called, return >0 if 2494 * security_inode_killpriv() does need to be called. 2495 */ 2496 int security_inode_need_killpriv(struct dentry *dentry) 2497 { 2498 return call_int_hook(inode_need_killpriv, dentry); 2499 } 2500 2501 /** 2502 * security_inode_killpriv() - The setuid bit is removed, update LSM state 2503 * @idmap: idmap of the mount 2504 * @dentry: associated dentry 2505 * 2506 * The @dentry's setuid bit is being removed. Remove similar security labels. 2507 * Called with the dentry->d_inode->i_mutex held. 2508 * 2509 * Return: Return 0 on success. If error is returned, then the operation 2510 * causing setuid bit removal is failed. 2511 */ 2512 int security_inode_killpriv(struct mnt_idmap *idmap, 2513 struct dentry *dentry) 2514 { 2515 return call_int_hook(inode_killpriv, idmap, dentry); 2516 } 2517 2518 /** 2519 * security_inode_getsecurity() - Get the xattr security label of an inode 2520 * @idmap: idmap of the mount 2521 * @inode: inode 2522 * @name: xattr name 2523 * @buffer: security label buffer 2524 * @alloc: allocation flag 2525 * 2526 * Retrieve a copy of the extended attribute representation of the security 2527 * label associated with @name for @inode via @buffer. Note that @name is the 2528 * remainder of the attribute name after the security prefix has been removed. 2529 * @alloc is used to specify if the call should return a value via the buffer 2530 * or just the value length. 2531 * 2532 * Return: Returns size of buffer on success. 2533 */ 2534 int security_inode_getsecurity(struct mnt_idmap *idmap, 2535 struct inode *inode, const char *name, 2536 void **buffer, bool alloc) 2537 { 2538 if (unlikely(IS_PRIVATE(inode))) 2539 return LSM_RET_DEFAULT(inode_getsecurity); 2540 2541 return call_int_hook(inode_getsecurity, idmap, inode, name, buffer, 2542 alloc); 2543 } 2544 2545 /** 2546 * security_inode_setsecurity() - Set the xattr security label of an inode 2547 * @inode: inode 2548 * @name: xattr name 2549 * @value: security label 2550 * @size: length of security label 2551 * @flags: flags 2552 * 2553 * Set the security label associated with @name for @inode from the extended 2554 * attribute value @value. @size indicates the size of the @value in bytes. 2555 * @flags may be XATTR_CREATE, XATTR_REPLACE, or 0. Note that @name is the 2556 * remainder of the attribute name after the security. prefix has been removed. 2557 * 2558 * Return: Returns 0 on success. 2559 */ 2560 int security_inode_setsecurity(struct inode *inode, const char *name, 2561 const void *value, size_t size, int flags) 2562 { 2563 if (unlikely(IS_PRIVATE(inode))) 2564 return LSM_RET_DEFAULT(inode_setsecurity); 2565 2566 return call_int_hook(inode_setsecurity, inode, name, value, size, 2567 flags); 2568 } 2569 2570 /** 2571 * security_inode_listsecurity() - List the xattr security label names 2572 * @inode: inode 2573 * @buffer: buffer 2574 * @buffer_size: size of buffer 2575 * 2576 * Copy the extended attribute names for the security labels associated with 2577 * @inode into @buffer. The maximum size of @buffer is specified by 2578 * @buffer_size. @buffer may be NULL to request the size of the buffer 2579 * required. 2580 * 2581 * Return: Returns number of bytes used/required on success. 2582 */ 2583 int security_inode_listsecurity(struct inode *inode, 2584 char *buffer, size_t buffer_size) 2585 { 2586 if (unlikely(IS_PRIVATE(inode))) 2587 return 0; 2588 return call_int_hook(inode_listsecurity, inode, buffer, buffer_size); 2589 } 2590 EXPORT_SYMBOL(security_inode_listsecurity); 2591 2592 /** 2593 * security_inode_getsecid() - Get an inode's secid 2594 * @inode: inode 2595 * @secid: secid to return 2596 * 2597 * Get the secid associated with the node. In case of failure, @secid will be 2598 * set to zero. 2599 */ 2600 void security_inode_getsecid(struct inode *inode, u32 *secid) 2601 { 2602 call_void_hook(inode_getsecid, inode, secid); 2603 } 2604 2605 /** 2606 * security_inode_copy_up() - Create new creds for an overlayfs copy-up op 2607 * @src: union dentry of copy-up file 2608 * @new: newly created creds 2609 * 2610 * A file is about to be copied up from lower layer to upper layer of overlay 2611 * filesystem. Security module can prepare a set of new creds and modify as 2612 * need be and return new creds. Caller will switch to new creds temporarily to 2613 * create new file and release newly allocated creds. 2614 * 2615 * Return: Returns 0 on success or a negative error code on error. 2616 */ 2617 int security_inode_copy_up(struct dentry *src, struct cred **new) 2618 { 2619 return call_int_hook(inode_copy_up, src, new); 2620 } 2621 EXPORT_SYMBOL(security_inode_copy_up); 2622 2623 /** 2624 * security_inode_copy_up_xattr() - Filter xattrs in an overlayfs copy-up op 2625 * @name: xattr name 2626 * 2627 * Filter the xattrs being copied up when a unioned file is copied up from a 2628 * lower layer to the union/overlay layer. The caller is responsible for 2629 * reading and writing the xattrs, this hook is merely a filter. 2630 * 2631 * Return: Returns 0 to accept the xattr, 1 to discard the xattr, -EOPNOTSUPP 2632 * if the security module does not know about attribute, or a negative 2633 * error code to abort the copy up. 2634 */ 2635 int security_inode_copy_up_xattr(const char *name) 2636 { 2637 int rc; 2638 2639 /* 2640 * The implementation can return 0 (accept the xattr), 1 (discard the 2641 * xattr), -EOPNOTSUPP if it does not know anything about the xattr or 2642 * any other error code in case of an error. 2643 */ 2644 rc = call_int_hook(inode_copy_up_xattr, name); 2645 if (rc != LSM_RET_DEFAULT(inode_copy_up_xattr)) 2646 return rc; 2647 2648 return LSM_RET_DEFAULT(inode_copy_up_xattr); 2649 } 2650 EXPORT_SYMBOL(security_inode_copy_up_xattr); 2651 2652 /** 2653 * security_kernfs_init_security() - Init LSM context for a kernfs node 2654 * @kn_dir: parent kernfs node 2655 * @kn: the kernfs node to initialize 2656 * 2657 * Initialize the security context of a newly created kernfs node based on its 2658 * own and its parent's attributes. 2659 * 2660 * Return: Returns 0 if permission is granted. 2661 */ 2662 int security_kernfs_init_security(struct kernfs_node *kn_dir, 2663 struct kernfs_node *kn) 2664 { 2665 return call_int_hook(kernfs_init_security, kn_dir, kn); 2666 } 2667 2668 /** 2669 * security_file_permission() - Check file permissions 2670 * @file: file 2671 * @mask: requested permissions 2672 * 2673 * Check file permissions before accessing an open file. This hook is called 2674 * by various operations that read or write files. A security module can use 2675 * this hook to perform additional checking on these operations, e.g. to 2676 * revalidate permissions on use to support privilege bracketing or policy 2677 * changes. Notice that this hook is used when the actual read/write 2678 * operations are performed, whereas the inode_security_ops hook is called when 2679 * a file is opened (as well as many other operations). Although this hook can 2680 * be used to revalidate permissions for various system call operations that 2681 * read or write files, it does not address the revalidation of permissions for 2682 * memory-mapped files. Security modules must handle this separately if they 2683 * need such revalidation. 2684 * 2685 * Return: Returns 0 if permission is granted. 2686 */ 2687 int security_file_permission(struct file *file, int mask) 2688 { 2689 return call_int_hook(file_permission, file, mask); 2690 } 2691 2692 /** 2693 * security_file_alloc() - Allocate and init a file's LSM blob 2694 * @file: the file 2695 * 2696 * Allocate and attach a security structure to the file->f_security field. The 2697 * security field is initialized to NULL when the structure is first created. 2698 * 2699 * Return: Return 0 if the hook is successful and permission is granted. 2700 */ 2701 int security_file_alloc(struct file *file) 2702 { 2703 int rc = lsm_file_alloc(file); 2704 2705 if (rc) 2706 return rc; 2707 rc = call_int_hook(file_alloc_security, file); 2708 if (unlikely(rc)) 2709 security_file_free(file); 2710 return rc; 2711 } 2712 2713 /** 2714 * security_file_release() - Perform actions before releasing the file ref 2715 * @file: the file 2716 * 2717 * Perform actions before releasing the last reference to a file. 2718 */ 2719 void security_file_release(struct file *file) 2720 { 2721 call_void_hook(file_release, file); 2722 } 2723 2724 /** 2725 * security_file_free() - Free a file's LSM blob 2726 * @file: the file 2727 * 2728 * Deallocate and free any security structures stored in file->f_security. 2729 */ 2730 void security_file_free(struct file *file) 2731 { 2732 void *blob; 2733 2734 call_void_hook(file_free_security, file); 2735 2736 blob = file->f_security; 2737 if (blob) { 2738 file->f_security = NULL; 2739 kmem_cache_free(lsm_file_cache, blob); 2740 } 2741 } 2742 2743 /** 2744 * security_file_ioctl() - Check if an ioctl is allowed 2745 * @file: associated file 2746 * @cmd: ioctl cmd 2747 * @arg: ioctl arguments 2748 * 2749 * Check permission for an ioctl operation on @file. Note that @arg sometimes 2750 * represents a user space pointer; in other cases, it may be a simple integer 2751 * value. When @arg represents a user space pointer, it should never be used 2752 * by the security module. 2753 * 2754 * Return: Returns 0 if permission is granted. 2755 */ 2756 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 2757 { 2758 return call_int_hook(file_ioctl, file, cmd, arg); 2759 } 2760 EXPORT_SYMBOL_GPL(security_file_ioctl); 2761 2762 /** 2763 * security_file_ioctl_compat() - Check if an ioctl is allowed in compat mode 2764 * @file: associated file 2765 * @cmd: ioctl cmd 2766 * @arg: ioctl arguments 2767 * 2768 * Compat version of security_file_ioctl() that correctly handles 32-bit 2769 * processes running on 64-bit kernels. 2770 * 2771 * Return: Returns 0 if permission is granted. 2772 */ 2773 int security_file_ioctl_compat(struct file *file, unsigned int cmd, 2774 unsigned long arg) 2775 { 2776 return call_int_hook(file_ioctl_compat, file, cmd, arg); 2777 } 2778 EXPORT_SYMBOL_GPL(security_file_ioctl_compat); 2779 2780 static inline unsigned long mmap_prot(struct file *file, unsigned long prot) 2781 { 2782 /* 2783 * Does we have PROT_READ and does the application expect 2784 * it to imply PROT_EXEC? If not, nothing to talk about... 2785 */ 2786 if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ) 2787 return prot; 2788 if (!(current->personality & READ_IMPLIES_EXEC)) 2789 return prot; 2790 /* 2791 * if that's an anonymous mapping, let it. 2792 */ 2793 if (!file) 2794 return prot | PROT_EXEC; 2795 /* 2796 * ditto if it's not on noexec mount, except that on !MMU we need 2797 * NOMMU_MAP_EXEC (== VM_MAYEXEC) in this case 2798 */ 2799 if (!path_noexec(&file->f_path)) { 2800 #ifndef CONFIG_MMU 2801 if (file->f_op->mmap_capabilities) { 2802 unsigned caps = file->f_op->mmap_capabilities(file); 2803 if (!(caps & NOMMU_MAP_EXEC)) 2804 return prot; 2805 } 2806 #endif 2807 return prot | PROT_EXEC; 2808 } 2809 /* anything on noexec mount won't get PROT_EXEC */ 2810 return prot; 2811 } 2812 2813 /** 2814 * security_mmap_file() - Check if mmap'ing a file is allowed 2815 * @file: file 2816 * @prot: protection applied by the kernel 2817 * @flags: flags 2818 * 2819 * Check permissions for a mmap operation. The @file may be NULL, e.g. if 2820 * mapping anonymous memory. 2821 * 2822 * Return: Returns 0 if permission is granted. 2823 */ 2824 int security_mmap_file(struct file *file, unsigned long prot, 2825 unsigned long flags) 2826 { 2827 return call_int_hook(mmap_file, file, prot, mmap_prot(file, prot), 2828 flags); 2829 } 2830 2831 /** 2832 * security_mmap_addr() - Check if mmap'ing an address is allowed 2833 * @addr: address 2834 * 2835 * Check permissions for a mmap operation at @addr. 2836 * 2837 * Return: Returns 0 if permission is granted. 2838 */ 2839 int security_mmap_addr(unsigned long addr) 2840 { 2841 return call_int_hook(mmap_addr, addr); 2842 } 2843 2844 /** 2845 * security_file_mprotect() - Check if changing memory protections is allowed 2846 * @vma: memory region 2847 * @reqprot: application requested protection 2848 * @prot: protection applied by the kernel 2849 * 2850 * Check permissions before changing memory access permissions. 2851 * 2852 * Return: Returns 0 if permission is granted. 2853 */ 2854 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot, 2855 unsigned long prot) 2856 { 2857 return call_int_hook(file_mprotect, vma, reqprot, prot); 2858 } 2859 2860 /** 2861 * security_file_lock() - Check if a file lock is allowed 2862 * @file: file 2863 * @cmd: lock operation (e.g. F_RDLCK, F_WRLCK) 2864 * 2865 * Check permission before performing file locking operations. Note the hook 2866 * mediates both flock and fcntl style locks. 2867 * 2868 * Return: Returns 0 if permission is granted. 2869 */ 2870 int security_file_lock(struct file *file, unsigned int cmd) 2871 { 2872 return call_int_hook(file_lock, file, cmd); 2873 } 2874 2875 /** 2876 * security_file_fcntl() - Check if fcntl() op is allowed 2877 * @file: file 2878 * @cmd: fcntl command 2879 * @arg: command argument 2880 * 2881 * Check permission before allowing the file operation specified by @cmd from 2882 * being performed on the file @file. Note that @arg sometimes represents a 2883 * user space pointer; in other cases, it may be a simple integer value. When 2884 * @arg represents a user space pointer, it should never be used by the 2885 * security module. 2886 * 2887 * Return: Returns 0 if permission is granted. 2888 */ 2889 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg) 2890 { 2891 return call_int_hook(file_fcntl, file, cmd, arg); 2892 } 2893 2894 /** 2895 * security_file_set_fowner() - Set the file owner info in the LSM blob 2896 * @file: the file 2897 * 2898 * Save owner security information (typically from current->security) in 2899 * file->f_security for later use by the send_sigiotask hook. 2900 * 2901 * Return: Returns 0 on success. 2902 */ 2903 void security_file_set_fowner(struct file *file) 2904 { 2905 call_void_hook(file_set_fowner, file); 2906 } 2907 2908 /** 2909 * security_file_send_sigiotask() - Check if sending SIGIO/SIGURG is allowed 2910 * @tsk: target task 2911 * @fown: signal sender 2912 * @sig: signal to be sent, SIGIO is sent if 0 2913 * 2914 * Check permission for the file owner @fown to send SIGIO or SIGURG to the 2915 * process @tsk. Note that this hook is sometimes called from interrupt. Note 2916 * that the fown_struct, @fown, is never outside the context of a struct file, 2917 * so the file structure (and associated security information) can always be 2918 * obtained: container_of(fown, struct file, f_owner). 2919 * 2920 * Return: Returns 0 if permission is granted. 2921 */ 2922 int security_file_send_sigiotask(struct task_struct *tsk, 2923 struct fown_struct *fown, int sig) 2924 { 2925 return call_int_hook(file_send_sigiotask, tsk, fown, sig); 2926 } 2927 2928 /** 2929 * security_file_receive() - Check if receiving a file via IPC is allowed 2930 * @file: file being received 2931 * 2932 * This hook allows security modules to control the ability of a process to 2933 * receive an open file descriptor via socket IPC. 2934 * 2935 * Return: Returns 0 if permission is granted. 2936 */ 2937 int security_file_receive(struct file *file) 2938 { 2939 return call_int_hook(file_receive, file); 2940 } 2941 2942 /** 2943 * security_file_open() - Save open() time state for late use by the LSM 2944 * @file: 2945 * 2946 * Save open-time permission checking state for later use upon file_permission, 2947 * and recheck access if anything has changed since inode_permission. 2948 * 2949 * Return: Returns 0 if permission is granted. 2950 */ 2951 int security_file_open(struct file *file) 2952 { 2953 int ret; 2954 2955 ret = call_int_hook(file_open, file); 2956 if (ret) 2957 return ret; 2958 2959 return fsnotify_open_perm(file); 2960 } 2961 2962 /** 2963 * security_file_post_open() - Evaluate a file after it has been opened 2964 * @file: the file 2965 * @mask: access mask 2966 * 2967 * Evaluate an opened file and the access mask requested with open(). The hook 2968 * is useful for LSMs that require the file content to be available in order to 2969 * make decisions. 2970 * 2971 * Return: Returns 0 if permission is granted. 2972 */ 2973 int security_file_post_open(struct file *file, int mask) 2974 { 2975 return call_int_hook(file_post_open, file, mask); 2976 } 2977 EXPORT_SYMBOL_GPL(security_file_post_open); 2978 2979 /** 2980 * security_file_truncate() - Check if truncating a file is allowed 2981 * @file: file 2982 * 2983 * Check permission before truncating a file, i.e. using ftruncate. Note that 2984 * truncation permission may also be checked based on the path, using the 2985 * @path_truncate hook. 2986 * 2987 * Return: Returns 0 if permission is granted. 2988 */ 2989 int security_file_truncate(struct file *file) 2990 { 2991 return call_int_hook(file_truncate, file); 2992 } 2993 2994 /** 2995 * security_task_alloc() - Allocate a task's LSM blob 2996 * @task: the task 2997 * @clone_flags: flags indicating what is being shared 2998 * 2999 * Handle allocation of task-related resources. 3000 * 3001 * Return: Returns a zero on success, negative values on failure. 3002 */ 3003 int security_task_alloc(struct task_struct *task, unsigned long clone_flags) 3004 { 3005 int rc = lsm_task_alloc(task); 3006 3007 if (rc) 3008 return rc; 3009 rc = call_int_hook(task_alloc, task, clone_flags); 3010 if (unlikely(rc)) 3011 security_task_free(task); 3012 return rc; 3013 } 3014 3015 /** 3016 * security_task_free() - Free a task's LSM blob and related resources 3017 * @task: task 3018 * 3019 * Handle release of task-related resources. Note that this can be called from 3020 * interrupt context. 3021 */ 3022 void security_task_free(struct task_struct *task) 3023 { 3024 call_void_hook(task_free, task); 3025 3026 kfree(task->security); 3027 task->security = NULL; 3028 } 3029 3030 /** 3031 * security_cred_alloc_blank() - Allocate the min memory to allow cred_transfer 3032 * @cred: credentials 3033 * @gfp: gfp flags 3034 * 3035 * Only allocate sufficient memory and attach to @cred such that 3036 * cred_transfer() will not get ENOMEM. 3037 * 3038 * Return: Returns 0 on success, negative values on failure. 3039 */ 3040 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp) 3041 { 3042 int rc = lsm_cred_alloc(cred, gfp); 3043 3044 if (rc) 3045 return rc; 3046 3047 rc = call_int_hook(cred_alloc_blank, cred, gfp); 3048 if (unlikely(rc)) 3049 security_cred_free(cred); 3050 return rc; 3051 } 3052 3053 /** 3054 * security_cred_free() - Free the cred's LSM blob and associated resources 3055 * @cred: credentials 3056 * 3057 * Deallocate and clear the cred->security field in a set of credentials. 3058 */ 3059 void security_cred_free(struct cred *cred) 3060 { 3061 /* 3062 * There is a failure case in prepare_creds() that 3063 * may result in a call here with ->security being NULL. 3064 */ 3065 if (unlikely(cred->security == NULL)) 3066 return; 3067 3068 call_void_hook(cred_free, cred); 3069 3070 kfree(cred->security); 3071 cred->security = NULL; 3072 } 3073 3074 /** 3075 * security_prepare_creds() - Prepare a new set of credentials 3076 * @new: new credentials 3077 * @old: original credentials 3078 * @gfp: gfp flags 3079 * 3080 * Prepare a new set of credentials by copying the data from the old set. 3081 * 3082 * Return: Returns 0 on success, negative values on failure. 3083 */ 3084 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp) 3085 { 3086 int rc = lsm_cred_alloc(new, gfp); 3087 3088 if (rc) 3089 return rc; 3090 3091 rc = call_int_hook(cred_prepare, new, old, gfp); 3092 if (unlikely(rc)) 3093 security_cred_free(new); 3094 return rc; 3095 } 3096 3097 /** 3098 * security_transfer_creds() - Transfer creds 3099 * @new: target credentials 3100 * @old: original credentials 3101 * 3102 * Transfer data from original creds to new creds. 3103 */ 3104 void security_transfer_creds(struct cred *new, const struct cred *old) 3105 { 3106 call_void_hook(cred_transfer, new, old); 3107 } 3108 3109 /** 3110 * security_cred_getsecid() - Get the secid from a set of credentials 3111 * @c: credentials 3112 * @secid: secid value 3113 * 3114 * Retrieve the security identifier of the cred structure @c. In case of 3115 * failure, @secid will be set to zero. 3116 */ 3117 void security_cred_getsecid(const struct cred *c, u32 *secid) 3118 { 3119 *secid = 0; 3120 call_void_hook(cred_getsecid, c, secid); 3121 } 3122 EXPORT_SYMBOL(security_cred_getsecid); 3123 3124 /** 3125 * security_kernel_act_as() - Set the kernel credentials to act as secid 3126 * @new: credentials 3127 * @secid: secid 3128 * 3129 * Set the credentials for a kernel service to act as (subjective context). 3130 * The current task must be the one that nominated @secid. 3131 * 3132 * Return: Returns 0 if successful. 3133 */ 3134 int security_kernel_act_as(struct cred *new, u32 secid) 3135 { 3136 return call_int_hook(kernel_act_as, new, secid); 3137 } 3138 3139 /** 3140 * security_kernel_create_files_as() - Set file creation context using an inode 3141 * @new: target credentials 3142 * @inode: reference inode 3143 * 3144 * Set the file creation context in a set of credentials to be the same as the 3145 * objective context of the specified inode. The current task must be the one 3146 * that nominated @inode. 3147 * 3148 * Return: Returns 0 if successful. 3149 */ 3150 int security_kernel_create_files_as(struct cred *new, struct inode *inode) 3151 { 3152 return call_int_hook(kernel_create_files_as, new, inode); 3153 } 3154 3155 /** 3156 * security_kernel_module_request() - Check if loading a module is allowed 3157 * @kmod_name: module name 3158 * 3159 * Ability to trigger the kernel to automatically upcall to userspace for 3160 * userspace to load a kernel module with the given name. 3161 * 3162 * Return: Returns 0 if successful. 3163 */ 3164 int security_kernel_module_request(char *kmod_name) 3165 { 3166 return call_int_hook(kernel_module_request, kmod_name); 3167 } 3168 3169 /** 3170 * security_kernel_read_file() - Read a file specified by userspace 3171 * @file: file 3172 * @id: file identifier 3173 * @contents: trust if security_kernel_post_read_file() will be called 3174 * 3175 * Read a file specified by userspace. 3176 * 3177 * Return: Returns 0 if permission is granted. 3178 */ 3179 int security_kernel_read_file(struct file *file, enum kernel_read_file_id id, 3180 bool contents) 3181 { 3182 return call_int_hook(kernel_read_file, file, id, contents); 3183 } 3184 EXPORT_SYMBOL_GPL(security_kernel_read_file); 3185 3186 /** 3187 * security_kernel_post_read_file() - Read a file specified by userspace 3188 * @file: file 3189 * @buf: file contents 3190 * @size: size of file contents 3191 * @id: file identifier 3192 * 3193 * Read a file specified by userspace. This must be paired with a prior call 3194 * to security_kernel_read_file() call that indicated this hook would also be 3195 * called, see security_kernel_read_file() for more information. 3196 * 3197 * Return: Returns 0 if permission is granted. 3198 */ 3199 int security_kernel_post_read_file(struct file *file, char *buf, loff_t size, 3200 enum kernel_read_file_id id) 3201 { 3202 return call_int_hook(kernel_post_read_file, file, buf, size, id); 3203 } 3204 EXPORT_SYMBOL_GPL(security_kernel_post_read_file); 3205 3206 /** 3207 * security_kernel_load_data() - Load data provided by userspace 3208 * @id: data identifier 3209 * @contents: true if security_kernel_post_load_data() will be called 3210 * 3211 * Load data provided by userspace. 3212 * 3213 * Return: Returns 0 if permission is granted. 3214 */ 3215 int security_kernel_load_data(enum kernel_load_data_id id, bool contents) 3216 { 3217 return call_int_hook(kernel_load_data, id, contents); 3218 } 3219 EXPORT_SYMBOL_GPL(security_kernel_load_data); 3220 3221 /** 3222 * security_kernel_post_load_data() - Load userspace data from a non-file source 3223 * @buf: data 3224 * @size: size of data 3225 * @id: data identifier 3226 * @description: text description of data, specific to the id value 3227 * 3228 * Load data provided by a non-file source (usually userspace buffer). This 3229 * must be paired with a prior security_kernel_load_data() call that indicated 3230 * this hook would also be called, see security_kernel_load_data() for more 3231 * information. 3232 * 3233 * Return: Returns 0 if permission is granted. 3234 */ 3235 int security_kernel_post_load_data(char *buf, loff_t size, 3236 enum kernel_load_data_id id, 3237 char *description) 3238 { 3239 return call_int_hook(kernel_post_load_data, buf, size, id, description); 3240 } 3241 EXPORT_SYMBOL_GPL(security_kernel_post_load_data); 3242 3243 /** 3244 * security_task_fix_setuid() - Update LSM with new user id attributes 3245 * @new: updated credentials 3246 * @old: credentials being replaced 3247 * @flags: LSM_SETID_* flag values 3248 * 3249 * Update the module's state after setting one or more of the user identity 3250 * attributes of the current process. The @flags parameter indicates which of 3251 * the set*uid system calls invoked this hook. If @new is the set of 3252 * credentials that will be installed. Modifications should be made to this 3253 * rather than to @current->cred. 3254 * 3255 * Return: Returns 0 on success. 3256 */ 3257 int security_task_fix_setuid(struct cred *new, const struct cred *old, 3258 int flags) 3259 { 3260 return call_int_hook(task_fix_setuid, new, old, flags); 3261 } 3262 3263 /** 3264 * security_task_fix_setgid() - Update LSM with new group id attributes 3265 * @new: updated credentials 3266 * @old: credentials being replaced 3267 * @flags: LSM_SETID_* flag value 3268 * 3269 * Update the module's state after setting one or more of the group identity 3270 * attributes of the current process. The @flags parameter indicates which of 3271 * the set*gid system calls invoked this hook. @new is the set of credentials 3272 * that will be installed. Modifications should be made to this rather than to 3273 * @current->cred. 3274 * 3275 * Return: Returns 0 on success. 3276 */ 3277 int security_task_fix_setgid(struct cred *new, const struct cred *old, 3278 int flags) 3279 { 3280 return call_int_hook(task_fix_setgid, new, old, flags); 3281 } 3282 3283 /** 3284 * security_task_fix_setgroups() - Update LSM with new supplementary groups 3285 * @new: updated credentials 3286 * @old: credentials being replaced 3287 * 3288 * Update the module's state after setting the supplementary group identity 3289 * attributes of the current process. @new is the set of credentials that will 3290 * be installed. Modifications should be made to this rather than to 3291 * @current->cred. 3292 * 3293 * Return: Returns 0 on success. 3294 */ 3295 int security_task_fix_setgroups(struct cred *new, const struct cred *old) 3296 { 3297 return call_int_hook(task_fix_setgroups, new, old); 3298 } 3299 3300 /** 3301 * security_task_setpgid() - Check if setting the pgid is allowed 3302 * @p: task being modified 3303 * @pgid: new pgid 3304 * 3305 * Check permission before setting the process group identifier of the process 3306 * @p to @pgid. 3307 * 3308 * Return: Returns 0 if permission is granted. 3309 */ 3310 int security_task_setpgid(struct task_struct *p, pid_t pgid) 3311 { 3312 return call_int_hook(task_setpgid, p, pgid); 3313 } 3314 3315 /** 3316 * security_task_getpgid() - Check if getting the pgid is allowed 3317 * @p: task 3318 * 3319 * Check permission before getting the process group identifier of the process 3320 * @p. 3321 * 3322 * Return: Returns 0 if permission is granted. 3323 */ 3324 int security_task_getpgid(struct task_struct *p) 3325 { 3326 return call_int_hook(task_getpgid, p); 3327 } 3328 3329 /** 3330 * security_task_getsid() - Check if getting the session id is allowed 3331 * @p: task 3332 * 3333 * Check permission before getting the session identifier of the process @p. 3334 * 3335 * Return: Returns 0 if permission is granted. 3336 */ 3337 int security_task_getsid(struct task_struct *p) 3338 { 3339 return call_int_hook(task_getsid, p); 3340 } 3341 3342 /** 3343 * security_current_getsecid_subj() - Get the current task's subjective secid 3344 * @secid: secid value 3345 * 3346 * Retrieve the subjective security identifier of the current task and return 3347 * it in @secid. In case of failure, @secid will be set to zero. 3348 */ 3349 void security_current_getsecid_subj(u32 *secid) 3350 { 3351 *secid = 0; 3352 call_void_hook(current_getsecid_subj, secid); 3353 } 3354 EXPORT_SYMBOL(security_current_getsecid_subj); 3355 3356 /** 3357 * security_task_getsecid_obj() - Get a task's objective secid 3358 * @p: target task 3359 * @secid: secid value 3360 * 3361 * Retrieve the objective security identifier of the task_struct in @p and 3362 * return it in @secid. In case of failure, @secid will be set to zero. 3363 */ 3364 void security_task_getsecid_obj(struct task_struct *p, u32 *secid) 3365 { 3366 *secid = 0; 3367 call_void_hook(task_getsecid_obj, p, secid); 3368 } 3369 EXPORT_SYMBOL(security_task_getsecid_obj); 3370 3371 /** 3372 * security_task_setnice() - Check if setting a task's nice value is allowed 3373 * @p: target task 3374 * @nice: nice value 3375 * 3376 * Check permission before setting the nice value of @p to @nice. 3377 * 3378 * Return: Returns 0 if permission is granted. 3379 */ 3380 int security_task_setnice(struct task_struct *p, int nice) 3381 { 3382 return call_int_hook(task_setnice, p, nice); 3383 } 3384 3385 /** 3386 * security_task_setioprio() - Check if setting a task's ioprio is allowed 3387 * @p: target task 3388 * @ioprio: ioprio value 3389 * 3390 * Check permission before setting the ioprio value of @p to @ioprio. 3391 * 3392 * Return: Returns 0 if permission is granted. 3393 */ 3394 int security_task_setioprio(struct task_struct *p, int ioprio) 3395 { 3396 return call_int_hook(task_setioprio, p, ioprio); 3397 } 3398 3399 /** 3400 * security_task_getioprio() - Check if getting a task's ioprio is allowed 3401 * @p: task 3402 * 3403 * Check permission before getting the ioprio value of @p. 3404 * 3405 * Return: Returns 0 if permission is granted. 3406 */ 3407 int security_task_getioprio(struct task_struct *p) 3408 { 3409 return call_int_hook(task_getioprio, p); 3410 } 3411 3412 /** 3413 * security_task_prlimit() - Check if get/setting resources limits is allowed 3414 * @cred: current task credentials 3415 * @tcred: target task credentials 3416 * @flags: LSM_PRLIMIT_* flag bits indicating a get/set/both 3417 * 3418 * Check permission before getting and/or setting the resource limits of 3419 * another task. 3420 * 3421 * Return: Returns 0 if permission is granted. 3422 */ 3423 int security_task_prlimit(const struct cred *cred, const struct cred *tcred, 3424 unsigned int flags) 3425 { 3426 return call_int_hook(task_prlimit, cred, tcred, flags); 3427 } 3428 3429 /** 3430 * security_task_setrlimit() - Check if setting a new rlimit value is allowed 3431 * @p: target task's group leader 3432 * @resource: resource whose limit is being set 3433 * @new_rlim: new resource limit 3434 * 3435 * Check permission before setting the resource limits of process @p for 3436 * @resource to @new_rlim. The old resource limit values can be examined by 3437 * dereferencing (p->signal->rlim + resource). 3438 * 3439 * Return: Returns 0 if permission is granted. 3440 */ 3441 int security_task_setrlimit(struct task_struct *p, unsigned int resource, 3442 struct rlimit *new_rlim) 3443 { 3444 return call_int_hook(task_setrlimit, p, resource, new_rlim); 3445 } 3446 3447 /** 3448 * security_task_setscheduler() - Check if setting sched policy/param is allowed 3449 * @p: target task 3450 * 3451 * Check permission before setting scheduling policy and/or parameters of 3452 * process @p. 3453 * 3454 * Return: Returns 0 if permission is granted. 3455 */ 3456 int security_task_setscheduler(struct task_struct *p) 3457 { 3458 return call_int_hook(task_setscheduler, p); 3459 } 3460 3461 /** 3462 * security_task_getscheduler() - Check if getting scheduling info is allowed 3463 * @p: target task 3464 * 3465 * Check permission before obtaining scheduling information for process @p. 3466 * 3467 * Return: Returns 0 if permission is granted. 3468 */ 3469 int security_task_getscheduler(struct task_struct *p) 3470 { 3471 return call_int_hook(task_getscheduler, p); 3472 } 3473 3474 /** 3475 * security_task_movememory() - Check if moving memory is allowed 3476 * @p: task 3477 * 3478 * Check permission before moving memory owned by process @p. 3479 * 3480 * Return: Returns 0 if permission is granted. 3481 */ 3482 int security_task_movememory(struct task_struct *p) 3483 { 3484 return call_int_hook(task_movememory, p); 3485 } 3486 3487 /** 3488 * security_task_kill() - Check if sending a signal is allowed 3489 * @p: target process 3490 * @info: signal information 3491 * @sig: signal value 3492 * @cred: credentials of the signal sender, NULL if @current 3493 * 3494 * Check permission before sending signal @sig to @p. @info can be NULL, the 3495 * constant 1, or a pointer to a kernel_siginfo structure. If @info is 1 or 3496 * SI_FROMKERNEL(info) is true, then the signal should be viewed as coming from 3497 * the kernel and should typically be permitted. SIGIO signals are handled 3498 * separately by the send_sigiotask hook in file_security_ops. 3499 * 3500 * Return: Returns 0 if permission is granted. 3501 */ 3502 int security_task_kill(struct task_struct *p, struct kernel_siginfo *info, 3503 int sig, const struct cred *cred) 3504 { 3505 return call_int_hook(task_kill, p, info, sig, cred); 3506 } 3507 3508 /** 3509 * security_task_prctl() - Check if a prctl op is allowed 3510 * @option: operation 3511 * @arg2: argument 3512 * @arg3: argument 3513 * @arg4: argument 3514 * @arg5: argument 3515 * 3516 * Check permission before performing a process control operation on the 3517 * current process. 3518 * 3519 * Return: Return -ENOSYS if no-one wanted to handle this op, any other value 3520 * to cause prctl() to return immediately with that value. 3521 */ 3522 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3, 3523 unsigned long arg4, unsigned long arg5) 3524 { 3525 int thisrc; 3526 int rc = LSM_RET_DEFAULT(task_prctl); 3527 struct security_hook_list *hp; 3528 3529 hlist_for_each_entry(hp, &security_hook_heads.task_prctl, list) { 3530 thisrc = hp->hook.task_prctl(option, arg2, arg3, arg4, arg5); 3531 if (thisrc != LSM_RET_DEFAULT(task_prctl)) { 3532 rc = thisrc; 3533 if (thisrc != 0) 3534 break; 3535 } 3536 } 3537 return rc; 3538 } 3539 3540 /** 3541 * security_task_to_inode() - Set the security attributes of a task's inode 3542 * @p: task 3543 * @inode: inode 3544 * 3545 * Set the security attributes for an inode based on an associated task's 3546 * security attributes, e.g. for /proc/pid inodes. 3547 */ 3548 void security_task_to_inode(struct task_struct *p, struct inode *inode) 3549 { 3550 call_void_hook(task_to_inode, p, inode); 3551 } 3552 3553 /** 3554 * security_create_user_ns() - Check if creating a new userns is allowed 3555 * @cred: prepared creds 3556 * 3557 * Check permission prior to creating a new user namespace. 3558 * 3559 * Return: Returns 0 if successful, otherwise < 0 error code. 3560 */ 3561 int security_create_user_ns(const struct cred *cred) 3562 { 3563 return call_int_hook(userns_create, cred); 3564 } 3565 3566 /** 3567 * security_ipc_permission() - Check if sysv ipc access is allowed 3568 * @ipcp: ipc permission structure 3569 * @flag: requested permissions 3570 * 3571 * Check permissions for access to IPC. 3572 * 3573 * Return: Returns 0 if permission is granted. 3574 */ 3575 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag) 3576 { 3577 return call_int_hook(ipc_permission, ipcp, flag); 3578 } 3579 3580 /** 3581 * security_ipc_getsecid() - Get the sysv ipc object's secid 3582 * @ipcp: ipc permission structure 3583 * @secid: secid pointer 3584 * 3585 * Get the secid associated with the ipc object. In case of failure, @secid 3586 * will be set to zero. 3587 */ 3588 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid) 3589 { 3590 *secid = 0; 3591 call_void_hook(ipc_getsecid, ipcp, secid); 3592 } 3593 3594 /** 3595 * security_msg_msg_alloc() - Allocate a sysv ipc message LSM blob 3596 * @msg: message structure 3597 * 3598 * Allocate and attach a security structure to the msg->security field. The 3599 * security field is initialized to NULL when the structure is first created. 3600 * 3601 * Return: Return 0 if operation was successful and permission is granted. 3602 */ 3603 int security_msg_msg_alloc(struct msg_msg *msg) 3604 { 3605 int rc = lsm_msg_msg_alloc(msg); 3606 3607 if (unlikely(rc)) 3608 return rc; 3609 rc = call_int_hook(msg_msg_alloc_security, msg); 3610 if (unlikely(rc)) 3611 security_msg_msg_free(msg); 3612 return rc; 3613 } 3614 3615 /** 3616 * security_msg_msg_free() - Free a sysv ipc message LSM blob 3617 * @msg: message structure 3618 * 3619 * Deallocate the security structure for this message. 3620 */ 3621 void security_msg_msg_free(struct msg_msg *msg) 3622 { 3623 call_void_hook(msg_msg_free_security, msg); 3624 kfree(msg->security); 3625 msg->security = NULL; 3626 } 3627 3628 /** 3629 * security_msg_queue_alloc() - Allocate a sysv ipc msg queue LSM blob 3630 * @msq: sysv ipc permission structure 3631 * 3632 * Allocate and attach a security structure to @msg. The security field is 3633 * initialized to NULL when the structure is first created. 3634 * 3635 * Return: Returns 0 if operation was successful and permission is granted. 3636 */ 3637 int security_msg_queue_alloc(struct kern_ipc_perm *msq) 3638 { 3639 int rc = lsm_ipc_alloc(msq); 3640 3641 if (unlikely(rc)) 3642 return rc; 3643 rc = call_int_hook(msg_queue_alloc_security, msq); 3644 if (unlikely(rc)) 3645 security_msg_queue_free(msq); 3646 return rc; 3647 } 3648 3649 /** 3650 * security_msg_queue_free() - Free a sysv ipc msg queue LSM blob 3651 * @msq: sysv ipc permission structure 3652 * 3653 * Deallocate security field @perm->security for the message queue. 3654 */ 3655 void security_msg_queue_free(struct kern_ipc_perm *msq) 3656 { 3657 call_void_hook(msg_queue_free_security, msq); 3658 kfree(msq->security); 3659 msq->security = NULL; 3660 } 3661 3662 /** 3663 * security_msg_queue_associate() - Check if a msg queue operation is allowed 3664 * @msq: sysv ipc permission structure 3665 * @msqflg: operation flags 3666 * 3667 * Check permission when a message queue is requested through the msgget system 3668 * call. This hook is only called when returning the message queue identifier 3669 * for an existing message queue, not when a new message queue is created. 3670 * 3671 * Return: Return 0 if permission is granted. 3672 */ 3673 int security_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg) 3674 { 3675 return call_int_hook(msg_queue_associate, msq, msqflg); 3676 } 3677 3678 /** 3679 * security_msg_queue_msgctl() - Check if a msg queue operation is allowed 3680 * @msq: sysv ipc permission structure 3681 * @cmd: operation 3682 * 3683 * Check permission when a message control operation specified by @cmd is to be 3684 * performed on the message queue with permissions. 3685 * 3686 * Return: Returns 0 if permission is granted. 3687 */ 3688 int security_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd) 3689 { 3690 return call_int_hook(msg_queue_msgctl, msq, cmd); 3691 } 3692 3693 /** 3694 * security_msg_queue_msgsnd() - Check if sending a sysv ipc message is allowed 3695 * @msq: sysv ipc permission structure 3696 * @msg: message 3697 * @msqflg: operation flags 3698 * 3699 * Check permission before a message, @msg, is enqueued on the message queue 3700 * with permissions specified in @msq. 3701 * 3702 * Return: Returns 0 if permission is granted. 3703 */ 3704 int security_msg_queue_msgsnd(struct kern_ipc_perm *msq, 3705 struct msg_msg *msg, int msqflg) 3706 { 3707 return call_int_hook(msg_queue_msgsnd, msq, msg, msqflg); 3708 } 3709 3710 /** 3711 * security_msg_queue_msgrcv() - Check if receiving a sysv ipc msg is allowed 3712 * @msq: sysv ipc permission structure 3713 * @msg: message 3714 * @target: target task 3715 * @type: type of message requested 3716 * @mode: operation flags 3717 * 3718 * Check permission before a message, @msg, is removed from the message queue. 3719 * The @target task structure contains a pointer to the process that will be 3720 * receiving the message (not equal to the current process when inline receives 3721 * are being performed). 3722 * 3723 * Return: Returns 0 if permission is granted. 3724 */ 3725 int security_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg, 3726 struct task_struct *target, long type, int mode) 3727 { 3728 return call_int_hook(msg_queue_msgrcv, msq, msg, target, type, mode); 3729 } 3730 3731 /** 3732 * security_shm_alloc() - Allocate a sysv shm LSM blob 3733 * @shp: sysv ipc permission structure 3734 * 3735 * Allocate and attach a security structure to the @shp security field. The 3736 * security field is initialized to NULL when the structure is first created. 3737 * 3738 * Return: Returns 0 if operation was successful and permission is granted. 3739 */ 3740 int security_shm_alloc(struct kern_ipc_perm *shp) 3741 { 3742 int rc = lsm_ipc_alloc(shp); 3743 3744 if (unlikely(rc)) 3745 return rc; 3746 rc = call_int_hook(shm_alloc_security, shp); 3747 if (unlikely(rc)) 3748 security_shm_free(shp); 3749 return rc; 3750 } 3751 3752 /** 3753 * security_shm_free() - Free a sysv shm LSM blob 3754 * @shp: sysv ipc permission structure 3755 * 3756 * Deallocate the security structure @perm->security for the memory segment. 3757 */ 3758 void security_shm_free(struct kern_ipc_perm *shp) 3759 { 3760 call_void_hook(shm_free_security, shp); 3761 kfree(shp->security); 3762 shp->security = NULL; 3763 } 3764 3765 /** 3766 * security_shm_associate() - Check if a sysv shm operation is allowed 3767 * @shp: sysv ipc permission structure 3768 * @shmflg: operation flags 3769 * 3770 * Check permission when a shared memory region is requested through the shmget 3771 * system call. This hook is only called when returning the shared memory 3772 * region identifier for an existing region, not when a new shared memory 3773 * region is created. 3774 * 3775 * Return: Returns 0 if permission is granted. 3776 */ 3777 int security_shm_associate(struct kern_ipc_perm *shp, int shmflg) 3778 { 3779 return call_int_hook(shm_associate, shp, shmflg); 3780 } 3781 3782 /** 3783 * security_shm_shmctl() - Check if a sysv shm operation is allowed 3784 * @shp: sysv ipc permission structure 3785 * @cmd: operation 3786 * 3787 * Check permission when a shared memory control operation specified by @cmd is 3788 * to be performed on the shared memory region with permissions in @shp. 3789 * 3790 * Return: Return 0 if permission is granted. 3791 */ 3792 int security_shm_shmctl(struct kern_ipc_perm *shp, int cmd) 3793 { 3794 return call_int_hook(shm_shmctl, shp, cmd); 3795 } 3796 3797 /** 3798 * security_shm_shmat() - Check if a sysv shm attach operation is allowed 3799 * @shp: sysv ipc permission structure 3800 * @shmaddr: address of memory region to attach 3801 * @shmflg: operation flags 3802 * 3803 * Check permissions prior to allowing the shmat system call to attach the 3804 * shared memory segment with permissions @shp to the data segment of the 3805 * calling process. The attaching address is specified by @shmaddr. 3806 * 3807 * Return: Returns 0 if permission is granted. 3808 */ 3809 int security_shm_shmat(struct kern_ipc_perm *shp, 3810 char __user *shmaddr, int shmflg) 3811 { 3812 return call_int_hook(shm_shmat, shp, shmaddr, shmflg); 3813 } 3814 3815 /** 3816 * security_sem_alloc() - Allocate a sysv semaphore LSM blob 3817 * @sma: sysv ipc permission structure 3818 * 3819 * Allocate and attach a security structure to the @sma security field. The 3820 * security field is initialized to NULL when the structure is first created. 3821 * 3822 * Return: Returns 0 if operation was successful and permission is granted. 3823 */ 3824 int security_sem_alloc(struct kern_ipc_perm *sma) 3825 { 3826 int rc = lsm_ipc_alloc(sma); 3827 3828 if (unlikely(rc)) 3829 return rc; 3830 rc = call_int_hook(sem_alloc_security, sma); 3831 if (unlikely(rc)) 3832 security_sem_free(sma); 3833 return rc; 3834 } 3835 3836 /** 3837 * security_sem_free() - Free a sysv semaphore LSM blob 3838 * @sma: sysv ipc permission structure 3839 * 3840 * Deallocate security structure @sma->security for the semaphore. 3841 */ 3842 void security_sem_free(struct kern_ipc_perm *sma) 3843 { 3844 call_void_hook(sem_free_security, sma); 3845 kfree(sma->security); 3846 sma->security = NULL; 3847 } 3848 3849 /** 3850 * security_sem_associate() - Check if a sysv semaphore operation is allowed 3851 * @sma: sysv ipc permission structure 3852 * @semflg: operation flags 3853 * 3854 * Check permission when a semaphore is requested through the semget system 3855 * call. This hook is only called when returning the semaphore identifier for 3856 * an existing semaphore, not when a new one must be created. 3857 * 3858 * Return: Returns 0 if permission is granted. 3859 */ 3860 int security_sem_associate(struct kern_ipc_perm *sma, int semflg) 3861 { 3862 return call_int_hook(sem_associate, sma, semflg); 3863 } 3864 3865 /** 3866 * security_sem_semctl() - Check if a sysv semaphore operation is allowed 3867 * @sma: sysv ipc permission structure 3868 * @cmd: operation 3869 * 3870 * Check permission when a semaphore operation specified by @cmd is to be 3871 * performed on the semaphore. 3872 * 3873 * Return: Returns 0 if permission is granted. 3874 */ 3875 int security_sem_semctl(struct kern_ipc_perm *sma, int cmd) 3876 { 3877 return call_int_hook(sem_semctl, sma, cmd); 3878 } 3879 3880 /** 3881 * security_sem_semop() - Check if a sysv semaphore operation is allowed 3882 * @sma: sysv ipc permission structure 3883 * @sops: operations to perform 3884 * @nsops: number of operations 3885 * @alter: flag indicating changes will be made 3886 * 3887 * Check permissions before performing operations on members of the semaphore 3888 * set. If the @alter flag is nonzero, the semaphore set may be modified. 3889 * 3890 * Return: Returns 0 if permission is granted. 3891 */ 3892 int security_sem_semop(struct kern_ipc_perm *sma, struct sembuf *sops, 3893 unsigned nsops, int alter) 3894 { 3895 return call_int_hook(sem_semop, sma, sops, nsops, alter); 3896 } 3897 3898 /** 3899 * security_d_instantiate() - Populate an inode's LSM state based on a dentry 3900 * @dentry: dentry 3901 * @inode: inode 3902 * 3903 * Fill in @inode security information for a @dentry if allowed. 3904 */ 3905 void security_d_instantiate(struct dentry *dentry, struct inode *inode) 3906 { 3907 if (unlikely(inode && IS_PRIVATE(inode))) 3908 return; 3909 call_void_hook(d_instantiate, dentry, inode); 3910 } 3911 EXPORT_SYMBOL(security_d_instantiate); 3912 3913 /* 3914 * Please keep this in sync with it's counterpart in security/lsm_syscalls.c 3915 */ 3916 3917 /** 3918 * security_getselfattr - Read an LSM attribute of the current process. 3919 * @attr: which attribute to return 3920 * @uctx: the user-space destination for the information, or NULL 3921 * @size: pointer to the size of space available to receive the data 3922 * @flags: special handling options. LSM_FLAG_SINGLE indicates that only 3923 * attributes associated with the LSM identified in the passed @ctx be 3924 * reported. 3925 * 3926 * A NULL value for @uctx can be used to get both the number of attributes 3927 * and the size of the data. 3928 * 3929 * Returns the number of attributes found on success, negative value 3930 * on error. @size is reset to the total size of the data. 3931 * If @size is insufficient to contain the data -E2BIG is returned. 3932 */ 3933 int security_getselfattr(unsigned int attr, struct lsm_ctx __user *uctx, 3934 u32 __user *size, u32 flags) 3935 { 3936 struct security_hook_list *hp; 3937 struct lsm_ctx lctx = { .id = LSM_ID_UNDEF, }; 3938 u8 __user *base = (u8 __user *)uctx; 3939 u32 entrysize; 3940 u32 total = 0; 3941 u32 left; 3942 bool toobig = false; 3943 bool single = false; 3944 int count = 0; 3945 int rc; 3946 3947 if (attr == LSM_ATTR_UNDEF) 3948 return -EINVAL; 3949 if (size == NULL) 3950 return -EINVAL; 3951 if (get_user(left, size)) 3952 return -EFAULT; 3953 3954 if (flags) { 3955 /* 3956 * Only flag supported is LSM_FLAG_SINGLE 3957 */ 3958 if (flags != LSM_FLAG_SINGLE || !uctx) 3959 return -EINVAL; 3960 if (copy_from_user(&lctx, uctx, sizeof(lctx))) 3961 return -EFAULT; 3962 /* 3963 * If the LSM ID isn't specified it is an error. 3964 */ 3965 if (lctx.id == LSM_ID_UNDEF) 3966 return -EINVAL; 3967 single = true; 3968 } 3969 3970 /* 3971 * In the usual case gather all the data from the LSMs. 3972 * In the single case only get the data from the LSM specified. 3973 */ 3974 hlist_for_each_entry(hp, &security_hook_heads.getselfattr, list) { 3975 if (single && lctx.id != hp->lsmid->id) 3976 continue; 3977 entrysize = left; 3978 if (base) 3979 uctx = (struct lsm_ctx __user *)(base + total); 3980 rc = hp->hook.getselfattr(attr, uctx, &entrysize, flags); 3981 if (rc == -EOPNOTSUPP) { 3982 rc = 0; 3983 continue; 3984 } 3985 if (rc == -E2BIG) { 3986 rc = 0; 3987 left = 0; 3988 toobig = true; 3989 } else if (rc < 0) 3990 return rc; 3991 else 3992 left -= entrysize; 3993 3994 total += entrysize; 3995 count += rc; 3996 if (single) 3997 break; 3998 } 3999 if (put_user(total, size)) 4000 return -EFAULT; 4001 if (toobig) 4002 return -E2BIG; 4003 if (count == 0) 4004 return LSM_RET_DEFAULT(getselfattr); 4005 return count; 4006 } 4007 4008 /* 4009 * Please keep this in sync with it's counterpart in security/lsm_syscalls.c 4010 */ 4011 4012 /** 4013 * security_setselfattr - Set an LSM attribute on the current process. 4014 * @attr: which attribute to set 4015 * @uctx: the user-space source for the information 4016 * @size: the size of the data 4017 * @flags: reserved for future use, must be 0 4018 * 4019 * Set an LSM attribute for the current process. The LSM, attribute 4020 * and new value are included in @uctx. 4021 * 4022 * Returns 0 on success, -EINVAL if the input is inconsistent, -EFAULT 4023 * if the user buffer is inaccessible, E2BIG if size is too big, or an 4024 * LSM specific failure. 4025 */ 4026 int security_setselfattr(unsigned int attr, struct lsm_ctx __user *uctx, 4027 u32 size, u32 flags) 4028 { 4029 struct security_hook_list *hp; 4030 struct lsm_ctx *lctx; 4031 int rc = LSM_RET_DEFAULT(setselfattr); 4032 u64 required_len; 4033 4034 if (flags) 4035 return -EINVAL; 4036 if (size < sizeof(*lctx)) 4037 return -EINVAL; 4038 if (size > PAGE_SIZE) 4039 return -E2BIG; 4040 4041 lctx = memdup_user(uctx, size); 4042 if (IS_ERR(lctx)) 4043 return PTR_ERR(lctx); 4044 4045 if (size < lctx->len || 4046 check_add_overflow(sizeof(*lctx), lctx->ctx_len, &required_len) || 4047 lctx->len < required_len) { 4048 rc = -EINVAL; 4049 goto free_out; 4050 } 4051 4052 hlist_for_each_entry(hp, &security_hook_heads.setselfattr, list) 4053 if ((hp->lsmid->id) == lctx->id) { 4054 rc = hp->hook.setselfattr(attr, lctx, size, flags); 4055 break; 4056 } 4057 4058 free_out: 4059 kfree(lctx); 4060 return rc; 4061 } 4062 4063 /** 4064 * security_getprocattr() - Read an attribute for a task 4065 * @p: the task 4066 * @lsmid: LSM identification 4067 * @name: attribute name 4068 * @value: attribute value 4069 * 4070 * Read attribute @name for task @p and store it into @value if allowed. 4071 * 4072 * Return: Returns the length of @value on success, a negative value otherwise. 4073 */ 4074 int security_getprocattr(struct task_struct *p, int lsmid, const char *name, 4075 char **value) 4076 { 4077 struct security_hook_list *hp; 4078 4079 hlist_for_each_entry(hp, &security_hook_heads.getprocattr, list) { 4080 if (lsmid != 0 && lsmid != hp->lsmid->id) 4081 continue; 4082 return hp->hook.getprocattr(p, name, value); 4083 } 4084 return LSM_RET_DEFAULT(getprocattr); 4085 } 4086 4087 /** 4088 * security_setprocattr() - Set an attribute for a task 4089 * @lsmid: LSM identification 4090 * @name: attribute name 4091 * @value: attribute value 4092 * @size: attribute value size 4093 * 4094 * Write (set) the current task's attribute @name to @value, size @size if 4095 * allowed. 4096 * 4097 * Return: Returns bytes written on success, a negative value otherwise. 4098 */ 4099 int security_setprocattr(int lsmid, const char *name, void *value, size_t size) 4100 { 4101 struct security_hook_list *hp; 4102 4103 hlist_for_each_entry(hp, &security_hook_heads.setprocattr, list) { 4104 if (lsmid != 0 && lsmid != hp->lsmid->id) 4105 continue; 4106 return hp->hook.setprocattr(name, value, size); 4107 } 4108 return LSM_RET_DEFAULT(setprocattr); 4109 } 4110 4111 /** 4112 * security_netlink_send() - Save info and check if netlink sending is allowed 4113 * @sk: sending socket 4114 * @skb: netlink message 4115 * 4116 * Save security information for a netlink message so that permission checking 4117 * can be performed when the message is processed. The security information 4118 * can be saved using the eff_cap field of the netlink_skb_parms structure. 4119 * Also may be used to provide fine grained control over message transmission. 4120 * 4121 * Return: Returns 0 if the information was successfully saved and message is 4122 * allowed to be transmitted. 4123 */ 4124 int security_netlink_send(struct sock *sk, struct sk_buff *skb) 4125 { 4126 return call_int_hook(netlink_send, sk, skb); 4127 } 4128 4129 /** 4130 * security_ismaclabel() - Check if the named attribute is a MAC label 4131 * @name: full extended attribute name 4132 * 4133 * Check if the extended attribute specified by @name represents a MAC label. 4134 * 4135 * Return: Returns 1 if name is a MAC attribute otherwise returns 0. 4136 */ 4137 int security_ismaclabel(const char *name) 4138 { 4139 return call_int_hook(ismaclabel, name); 4140 } 4141 EXPORT_SYMBOL(security_ismaclabel); 4142 4143 /** 4144 * security_secid_to_secctx() - Convert a secid to a secctx 4145 * @secid: secid 4146 * @secdata: secctx 4147 * @seclen: secctx length 4148 * 4149 * Convert secid to security context. If @secdata is NULL the length of the 4150 * result will be returned in @seclen, but no @secdata will be returned. This 4151 * does mean that the length could change between calls to check the length and 4152 * the next call which actually allocates and returns the @secdata. 4153 * 4154 * Return: Return 0 on success, error on failure. 4155 */ 4156 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen) 4157 { 4158 return call_int_hook(secid_to_secctx, secid, secdata, seclen); 4159 } 4160 EXPORT_SYMBOL(security_secid_to_secctx); 4161 4162 /** 4163 * security_secctx_to_secid() - Convert a secctx to a secid 4164 * @secdata: secctx 4165 * @seclen: length of secctx 4166 * @secid: secid 4167 * 4168 * Convert security context to secid. 4169 * 4170 * Return: Returns 0 on success, error on failure. 4171 */ 4172 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid) 4173 { 4174 *secid = 0; 4175 return call_int_hook(secctx_to_secid, secdata, seclen, secid); 4176 } 4177 EXPORT_SYMBOL(security_secctx_to_secid); 4178 4179 /** 4180 * security_release_secctx() - Free a secctx buffer 4181 * @secdata: secctx 4182 * @seclen: length of secctx 4183 * 4184 * Release the security context. 4185 */ 4186 void security_release_secctx(char *secdata, u32 seclen) 4187 { 4188 call_void_hook(release_secctx, secdata, seclen); 4189 } 4190 EXPORT_SYMBOL(security_release_secctx); 4191 4192 /** 4193 * security_inode_invalidate_secctx() - Invalidate an inode's security label 4194 * @inode: inode 4195 * 4196 * Notify the security module that it must revalidate the security context of 4197 * an inode. 4198 */ 4199 void security_inode_invalidate_secctx(struct inode *inode) 4200 { 4201 call_void_hook(inode_invalidate_secctx, inode); 4202 } 4203 EXPORT_SYMBOL(security_inode_invalidate_secctx); 4204 4205 /** 4206 * security_inode_notifysecctx() - Notify the LSM of an inode's security label 4207 * @inode: inode 4208 * @ctx: secctx 4209 * @ctxlen: length of secctx 4210 * 4211 * Notify the security module of what the security context of an inode should 4212 * be. Initializes the incore security context managed by the security module 4213 * for this inode. Example usage: NFS client invokes this hook to initialize 4214 * the security context in its incore inode to the value provided by the server 4215 * for the file when the server returned the file's attributes to the client. 4216 * Must be called with inode->i_mutex locked. 4217 * 4218 * Return: Returns 0 on success, error on failure. 4219 */ 4220 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen) 4221 { 4222 return call_int_hook(inode_notifysecctx, inode, ctx, ctxlen); 4223 } 4224 EXPORT_SYMBOL(security_inode_notifysecctx); 4225 4226 /** 4227 * security_inode_setsecctx() - Change the security label of an inode 4228 * @dentry: inode 4229 * @ctx: secctx 4230 * @ctxlen: length of secctx 4231 * 4232 * Change the security context of an inode. Updates the incore security 4233 * context managed by the security module and invokes the fs code as needed 4234 * (via __vfs_setxattr_noperm) to update any backing xattrs that represent the 4235 * context. Example usage: NFS server invokes this hook to change the security 4236 * context in its incore inode and on the backing filesystem to a value 4237 * provided by the client on a SETATTR operation. Must be called with 4238 * inode->i_mutex locked. 4239 * 4240 * Return: Returns 0 on success, error on failure. 4241 */ 4242 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen) 4243 { 4244 return call_int_hook(inode_setsecctx, dentry, ctx, ctxlen); 4245 } 4246 EXPORT_SYMBOL(security_inode_setsecctx); 4247 4248 /** 4249 * security_inode_getsecctx() - Get the security label of an inode 4250 * @inode: inode 4251 * @ctx: secctx 4252 * @ctxlen: length of secctx 4253 * 4254 * On success, returns 0 and fills out @ctx and @ctxlen with the security 4255 * context for the given @inode. 4256 * 4257 * Return: Returns 0 on success, error on failure. 4258 */ 4259 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen) 4260 { 4261 return call_int_hook(inode_getsecctx, inode, ctx, ctxlen); 4262 } 4263 EXPORT_SYMBOL(security_inode_getsecctx); 4264 4265 #ifdef CONFIG_WATCH_QUEUE 4266 /** 4267 * security_post_notification() - Check if a watch notification can be posted 4268 * @w_cred: credentials of the task that set the watch 4269 * @cred: credentials of the task which triggered the watch 4270 * @n: the notification 4271 * 4272 * Check to see if a watch notification can be posted to a particular queue. 4273 * 4274 * Return: Returns 0 if permission is granted. 4275 */ 4276 int security_post_notification(const struct cred *w_cred, 4277 const struct cred *cred, 4278 struct watch_notification *n) 4279 { 4280 return call_int_hook(post_notification, w_cred, cred, n); 4281 } 4282 #endif /* CONFIG_WATCH_QUEUE */ 4283 4284 #ifdef CONFIG_KEY_NOTIFICATIONS 4285 /** 4286 * security_watch_key() - Check if a task is allowed to watch for key events 4287 * @key: the key to watch 4288 * 4289 * Check to see if a process is allowed to watch for event notifications from 4290 * a key or keyring. 4291 * 4292 * Return: Returns 0 if permission is granted. 4293 */ 4294 int security_watch_key(struct key *key) 4295 { 4296 return call_int_hook(watch_key, key); 4297 } 4298 #endif /* CONFIG_KEY_NOTIFICATIONS */ 4299 4300 #ifdef CONFIG_SECURITY_NETWORK 4301 /** 4302 * security_unix_stream_connect() - Check if a AF_UNIX stream is allowed 4303 * @sock: originating sock 4304 * @other: peer sock 4305 * @newsk: new sock 4306 * 4307 * Check permissions before establishing a Unix domain stream connection 4308 * between @sock and @other. 4309 * 4310 * The @unix_stream_connect and @unix_may_send hooks were necessary because 4311 * Linux provides an alternative to the conventional file name space for Unix 4312 * domain sockets. Whereas binding and connecting to sockets in the file name 4313 * space is mediated by the typical file permissions (and caught by the mknod 4314 * and permission hooks in inode_security_ops), binding and connecting to 4315 * sockets in the abstract name space is completely unmediated. Sufficient 4316 * control of Unix domain sockets in the abstract name space isn't possible 4317 * using only the socket layer hooks, since we need to know the actual target 4318 * socket, which is not looked up until we are inside the af_unix code. 4319 * 4320 * Return: Returns 0 if permission is granted. 4321 */ 4322 int security_unix_stream_connect(struct sock *sock, struct sock *other, 4323 struct sock *newsk) 4324 { 4325 return call_int_hook(unix_stream_connect, sock, other, newsk); 4326 } 4327 EXPORT_SYMBOL(security_unix_stream_connect); 4328 4329 /** 4330 * security_unix_may_send() - Check if AF_UNIX socket can send datagrams 4331 * @sock: originating sock 4332 * @other: peer sock 4333 * 4334 * Check permissions before connecting or sending datagrams from @sock to 4335 * @other. 4336 * 4337 * The @unix_stream_connect and @unix_may_send hooks were necessary because 4338 * Linux provides an alternative to the conventional file name space for Unix 4339 * domain sockets. Whereas binding and connecting to sockets in the file name 4340 * space is mediated by the typical file permissions (and caught by the mknod 4341 * and permission hooks in inode_security_ops), binding and connecting to 4342 * sockets in the abstract name space is completely unmediated. Sufficient 4343 * control of Unix domain sockets in the abstract name space isn't possible 4344 * using only the socket layer hooks, since we need to know the actual target 4345 * socket, which is not looked up until we are inside the af_unix code. 4346 * 4347 * Return: Returns 0 if permission is granted. 4348 */ 4349 int security_unix_may_send(struct socket *sock, struct socket *other) 4350 { 4351 return call_int_hook(unix_may_send, sock, other); 4352 } 4353 EXPORT_SYMBOL(security_unix_may_send); 4354 4355 /** 4356 * security_socket_create() - Check if creating a new socket is allowed 4357 * @family: protocol family 4358 * @type: communications type 4359 * @protocol: requested protocol 4360 * @kern: set to 1 if a kernel socket is requested 4361 * 4362 * Check permissions prior to creating a new socket. 4363 * 4364 * Return: Returns 0 if permission is granted. 4365 */ 4366 int security_socket_create(int family, int type, int protocol, int kern) 4367 { 4368 return call_int_hook(socket_create, family, type, protocol, kern); 4369 } 4370 4371 /** 4372 * security_socket_post_create() - Initialize a newly created socket 4373 * @sock: socket 4374 * @family: protocol family 4375 * @type: communications type 4376 * @protocol: requested protocol 4377 * @kern: set to 1 if a kernel socket is requested 4378 * 4379 * This hook allows a module to update or allocate a per-socket security 4380 * structure. Note that the security field was not added directly to the socket 4381 * structure, but rather, the socket security information is stored in the 4382 * associated inode. Typically, the inode alloc_security hook will allocate 4383 * and attach security information to SOCK_INODE(sock)->i_security. This hook 4384 * may be used to update the SOCK_INODE(sock)->i_security field with additional 4385 * information that wasn't available when the inode was allocated. 4386 * 4387 * Return: Returns 0 if permission is granted. 4388 */ 4389 int security_socket_post_create(struct socket *sock, int family, 4390 int type, int protocol, int kern) 4391 { 4392 return call_int_hook(socket_post_create, sock, family, type, 4393 protocol, kern); 4394 } 4395 4396 /** 4397 * security_socket_socketpair() - Check if creating a socketpair is allowed 4398 * @socka: first socket 4399 * @sockb: second socket 4400 * 4401 * Check permissions before creating a fresh pair of sockets. 4402 * 4403 * Return: Returns 0 if permission is granted and the connection was 4404 * established. 4405 */ 4406 int security_socket_socketpair(struct socket *socka, struct socket *sockb) 4407 { 4408 return call_int_hook(socket_socketpair, socka, sockb); 4409 } 4410 EXPORT_SYMBOL(security_socket_socketpair); 4411 4412 /** 4413 * security_socket_bind() - Check if a socket bind operation is allowed 4414 * @sock: socket 4415 * @address: requested bind address 4416 * @addrlen: length of address 4417 * 4418 * Check permission before socket protocol layer bind operation is performed 4419 * and the socket @sock is bound to the address specified in the @address 4420 * parameter. 4421 * 4422 * Return: Returns 0 if permission is granted. 4423 */ 4424 int security_socket_bind(struct socket *sock, 4425 struct sockaddr *address, int addrlen) 4426 { 4427 return call_int_hook(socket_bind, sock, address, addrlen); 4428 } 4429 4430 /** 4431 * security_socket_connect() - Check if a socket connect operation is allowed 4432 * @sock: socket 4433 * @address: address of remote connection point 4434 * @addrlen: length of address 4435 * 4436 * Check permission before socket protocol layer connect operation attempts to 4437 * connect socket @sock to a remote address, @address. 4438 * 4439 * Return: Returns 0 if permission is granted. 4440 */ 4441 int security_socket_connect(struct socket *sock, 4442 struct sockaddr *address, int addrlen) 4443 { 4444 return call_int_hook(socket_connect, sock, address, addrlen); 4445 } 4446 4447 /** 4448 * security_socket_listen() - Check if a socket is allowed to listen 4449 * @sock: socket 4450 * @backlog: connection queue size 4451 * 4452 * Check permission before socket protocol layer listen operation. 4453 * 4454 * Return: Returns 0 if permission is granted. 4455 */ 4456 int security_socket_listen(struct socket *sock, int backlog) 4457 { 4458 return call_int_hook(socket_listen, sock, backlog); 4459 } 4460 4461 /** 4462 * security_socket_accept() - Check if a socket is allowed to accept connections 4463 * @sock: listening socket 4464 * @newsock: newly creation connection socket 4465 * 4466 * Check permission before accepting a new connection. Note that the new 4467 * socket, @newsock, has been created and some information copied to it, but 4468 * the accept operation has not actually been performed. 4469 * 4470 * Return: Returns 0 if permission is granted. 4471 */ 4472 int security_socket_accept(struct socket *sock, struct socket *newsock) 4473 { 4474 return call_int_hook(socket_accept, sock, newsock); 4475 } 4476 4477 /** 4478 * security_socket_sendmsg() - Check if sending a message is allowed 4479 * @sock: sending socket 4480 * @msg: message to send 4481 * @size: size of message 4482 * 4483 * Check permission before transmitting a message to another socket. 4484 * 4485 * Return: Returns 0 if permission is granted. 4486 */ 4487 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size) 4488 { 4489 return call_int_hook(socket_sendmsg, sock, msg, size); 4490 } 4491 4492 /** 4493 * security_socket_recvmsg() - Check if receiving a message is allowed 4494 * @sock: receiving socket 4495 * @msg: message to receive 4496 * @size: size of message 4497 * @flags: operational flags 4498 * 4499 * Check permission before receiving a message from a socket. 4500 * 4501 * Return: Returns 0 if permission is granted. 4502 */ 4503 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg, 4504 int size, int flags) 4505 { 4506 return call_int_hook(socket_recvmsg, sock, msg, size, flags); 4507 } 4508 4509 /** 4510 * security_socket_getsockname() - Check if reading the socket addr is allowed 4511 * @sock: socket 4512 * 4513 * Check permission before reading the local address (name) of the socket 4514 * object. 4515 * 4516 * Return: Returns 0 if permission is granted. 4517 */ 4518 int security_socket_getsockname(struct socket *sock) 4519 { 4520 return call_int_hook(socket_getsockname, sock); 4521 } 4522 4523 /** 4524 * security_socket_getpeername() - Check if reading the peer's addr is allowed 4525 * @sock: socket 4526 * 4527 * Check permission before the remote address (name) of a socket object. 4528 * 4529 * Return: Returns 0 if permission is granted. 4530 */ 4531 int security_socket_getpeername(struct socket *sock) 4532 { 4533 return call_int_hook(socket_getpeername, sock); 4534 } 4535 4536 /** 4537 * security_socket_getsockopt() - Check if reading a socket option is allowed 4538 * @sock: socket 4539 * @level: option's protocol level 4540 * @optname: option name 4541 * 4542 * Check permissions before retrieving the options associated with socket 4543 * @sock. 4544 * 4545 * Return: Returns 0 if permission is granted. 4546 */ 4547 int security_socket_getsockopt(struct socket *sock, int level, int optname) 4548 { 4549 return call_int_hook(socket_getsockopt, sock, level, optname); 4550 } 4551 4552 /** 4553 * security_socket_setsockopt() - Check if setting a socket option is allowed 4554 * @sock: socket 4555 * @level: option's protocol level 4556 * @optname: option name 4557 * 4558 * Check permissions before setting the options associated with socket @sock. 4559 * 4560 * Return: Returns 0 if permission is granted. 4561 */ 4562 int security_socket_setsockopt(struct socket *sock, int level, int optname) 4563 { 4564 return call_int_hook(socket_setsockopt, sock, level, optname); 4565 } 4566 4567 /** 4568 * security_socket_shutdown() - Checks if shutting down the socket is allowed 4569 * @sock: socket 4570 * @how: flag indicating how sends and receives are handled 4571 * 4572 * Checks permission before all or part of a connection on the socket @sock is 4573 * shut down. 4574 * 4575 * Return: Returns 0 if permission is granted. 4576 */ 4577 int security_socket_shutdown(struct socket *sock, int how) 4578 { 4579 return call_int_hook(socket_shutdown, sock, how); 4580 } 4581 4582 /** 4583 * security_sock_rcv_skb() - Check if an incoming network packet is allowed 4584 * @sk: destination sock 4585 * @skb: incoming packet 4586 * 4587 * Check permissions on incoming network packets. This hook is distinct from 4588 * Netfilter's IP input hooks since it is the first time that the incoming 4589 * sk_buff @skb has been associated with a particular socket, @sk. Must not 4590 * sleep inside this hook because some callers hold spinlocks. 4591 * 4592 * Return: Returns 0 if permission is granted. 4593 */ 4594 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb) 4595 { 4596 return call_int_hook(socket_sock_rcv_skb, sk, skb); 4597 } 4598 EXPORT_SYMBOL(security_sock_rcv_skb); 4599 4600 /** 4601 * security_socket_getpeersec_stream() - Get the remote peer label 4602 * @sock: socket 4603 * @optval: destination buffer 4604 * @optlen: size of peer label copied into the buffer 4605 * @len: maximum size of the destination buffer 4606 * 4607 * This hook allows the security module to provide peer socket security state 4608 * for unix or connected tcp sockets to userspace via getsockopt SO_GETPEERSEC. 4609 * For tcp sockets this can be meaningful if the socket is associated with an 4610 * ipsec SA. 4611 * 4612 * Return: Returns 0 if all is well, otherwise, typical getsockopt return 4613 * values. 4614 */ 4615 int security_socket_getpeersec_stream(struct socket *sock, sockptr_t optval, 4616 sockptr_t optlen, unsigned int len) 4617 { 4618 return call_int_hook(socket_getpeersec_stream, sock, optval, optlen, 4619 len); 4620 } 4621 4622 /** 4623 * security_socket_getpeersec_dgram() - Get the remote peer label 4624 * @sock: socket 4625 * @skb: datagram packet 4626 * @secid: remote peer label secid 4627 * 4628 * This hook allows the security module to provide peer socket security state 4629 * for udp sockets on a per-packet basis to userspace via getsockopt 4630 * SO_GETPEERSEC. The application must first have indicated the IP_PASSSEC 4631 * option via getsockopt. It can then retrieve the security state returned by 4632 * this hook for a packet via the SCM_SECURITY ancillary message type. 4633 * 4634 * Return: Returns 0 on success, error on failure. 4635 */ 4636 int security_socket_getpeersec_dgram(struct socket *sock, 4637 struct sk_buff *skb, u32 *secid) 4638 { 4639 return call_int_hook(socket_getpeersec_dgram, sock, skb, secid); 4640 } 4641 EXPORT_SYMBOL(security_socket_getpeersec_dgram); 4642 4643 /** 4644 * security_sk_alloc() - Allocate and initialize a sock's LSM blob 4645 * @sk: sock 4646 * @family: protocol family 4647 * @priority: gfp flags 4648 * 4649 * Allocate and attach a security structure to the sk->sk_security field, which 4650 * is used to copy security attributes between local stream sockets. 4651 * 4652 * Return: Returns 0 on success, error on failure. 4653 */ 4654 int security_sk_alloc(struct sock *sk, int family, gfp_t priority) 4655 { 4656 return call_int_hook(sk_alloc_security, sk, family, priority); 4657 } 4658 4659 /** 4660 * security_sk_free() - Free the sock's LSM blob 4661 * @sk: sock 4662 * 4663 * Deallocate security structure. 4664 */ 4665 void security_sk_free(struct sock *sk) 4666 { 4667 call_void_hook(sk_free_security, sk); 4668 } 4669 4670 /** 4671 * security_sk_clone() - Clone a sock's LSM state 4672 * @sk: original sock 4673 * @newsk: target sock 4674 * 4675 * Clone/copy security structure. 4676 */ 4677 void security_sk_clone(const struct sock *sk, struct sock *newsk) 4678 { 4679 call_void_hook(sk_clone_security, sk, newsk); 4680 } 4681 EXPORT_SYMBOL(security_sk_clone); 4682 4683 /** 4684 * security_sk_classify_flow() - Set a flow's secid based on socket 4685 * @sk: original socket 4686 * @flic: target flow 4687 * 4688 * Set the target flow's secid to socket's secid. 4689 */ 4690 void security_sk_classify_flow(const struct sock *sk, struct flowi_common *flic) 4691 { 4692 call_void_hook(sk_getsecid, sk, &flic->flowic_secid); 4693 } 4694 EXPORT_SYMBOL(security_sk_classify_flow); 4695 4696 /** 4697 * security_req_classify_flow() - Set a flow's secid based on request_sock 4698 * @req: request_sock 4699 * @flic: target flow 4700 * 4701 * Sets @flic's secid to @req's secid. 4702 */ 4703 void security_req_classify_flow(const struct request_sock *req, 4704 struct flowi_common *flic) 4705 { 4706 call_void_hook(req_classify_flow, req, flic); 4707 } 4708 EXPORT_SYMBOL(security_req_classify_flow); 4709 4710 /** 4711 * security_sock_graft() - Reconcile LSM state when grafting a sock on a socket 4712 * @sk: sock being grafted 4713 * @parent: target parent socket 4714 * 4715 * Sets @parent's inode secid to @sk's secid and update @sk with any necessary 4716 * LSM state from @parent. 4717 */ 4718 void security_sock_graft(struct sock *sk, struct socket *parent) 4719 { 4720 call_void_hook(sock_graft, sk, parent); 4721 } 4722 EXPORT_SYMBOL(security_sock_graft); 4723 4724 /** 4725 * security_inet_conn_request() - Set request_sock state using incoming connect 4726 * @sk: parent listening sock 4727 * @skb: incoming connection 4728 * @req: new request_sock 4729 * 4730 * Initialize the @req LSM state based on @sk and the incoming connect in @skb. 4731 * 4732 * Return: Returns 0 if permission is granted. 4733 */ 4734 int security_inet_conn_request(const struct sock *sk, 4735 struct sk_buff *skb, struct request_sock *req) 4736 { 4737 return call_int_hook(inet_conn_request, sk, skb, req); 4738 } 4739 EXPORT_SYMBOL(security_inet_conn_request); 4740 4741 /** 4742 * security_inet_csk_clone() - Set new sock LSM state based on request_sock 4743 * @newsk: new sock 4744 * @req: connection request_sock 4745 * 4746 * Set that LSM state of @sock using the LSM state from @req. 4747 */ 4748 void security_inet_csk_clone(struct sock *newsk, 4749 const struct request_sock *req) 4750 { 4751 call_void_hook(inet_csk_clone, newsk, req); 4752 } 4753 4754 /** 4755 * security_inet_conn_established() - Update sock's LSM state with connection 4756 * @sk: sock 4757 * @skb: connection packet 4758 * 4759 * Update @sock's LSM state to represent a new connection from @skb. 4760 */ 4761 void security_inet_conn_established(struct sock *sk, 4762 struct sk_buff *skb) 4763 { 4764 call_void_hook(inet_conn_established, sk, skb); 4765 } 4766 EXPORT_SYMBOL(security_inet_conn_established); 4767 4768 /** 4769 * security_secmark_relabel_packet() - Check if setting a secmark is allowed 4770 * @secid: new secmark value 4771 * 4772 * Check if the process should be allowed to relabel packets to @secid. 4773 * 4774 * Return: Returns 0 if permission is granted. 4775 */ 4776 int security_secmark_relabel_packet(u32 secid) 4777 { 4778 return call_int_hook(secmark_relabel_packet, secid); 4779 } 4780 EXPORT_SYMBOL(security_secmark_relabel_packet); 4781 4782 /** 4783 * security_secmark_refcount_inc() - Increment the secmark labeling rule count 4784 * 4785 * Tells the LSM to increment the number of secmark labeling rules loaded. 4786 */ 4787 void security_secmark_refcount_inc(void) 4788 { 4789 call_void_hook(secmark_refcount_inc); 4790 } 4791 EXPORT_SYMBOL(security_secmark_refcount_inc); 4792 4793 /** 4794 * security_secmark_refcount_dec() - Decrement the secmark labeling rule count 4795 * 4796 * Tells the LSM to decrement the number of secmark labeling rules loaded. 4797 */ 4798 void security_secmark_refcount_dec(void) 4799 { 4800 call_void_hook(secmark_refcount_dec); 4801 } 4802 EXPORT_SYMBOL(security_secmark_refcount_dec); 4803 4804 /** 4805 * security_tun_dev_alloc_security() - Allocate a LSM blob for a TUN device 4806 * @security: pointer to the LSM blob 4807 * 4808 * This hook allows a module to allocate a security structure for a TUN device, 4809 * returning the pointer in @security. 4810 * 4811 * Return: Returns a zero on success, negative values on failure. 4812 */ 4813 int security_tun_dev_alloc_security(void **security) 4814 { 4815 return call_int_hook(tun_dev_alloc_security, security); 4816 } 4817 EXPORT_SYMBOL(security_tun_dev_alloc_security); 4818 4819 /** 4820 * security_tun_dev_free_security() - Free a TUN device LSM blob 4821 * @security: LSM blob 4822 * 4823 * This hook allows a module to free the security structure for a TUN device. 4824 */ 4825 void security_tun_dev_free_security(void *security) 4826 { 4827 call_void_hook(tun_dev_free_security, security); 4828 } 4829 EXPORT_SYMBOL(security_tun_dev_free_security); 4830 4831 /** 4832 * security_tun_dev_create() - Check if creating a TUN device is allowed 4833 * 4834 * Check permissions prior to creating a new TUN device. 4835 * 4836 * Return: Returns 0 if permission is granted. 4837 */ 4838 int security_tun_dev_create(void) 4839 { 4840 return call_int_hook(tun_dev_create); 4841 } 4842 EXPORT_SYMBOL(security_tun_dev_create); 4843 4844 /** 4845 * security_tun_dev_attach_queue() - Check if attaching a TUN queue is allowed 4846 * @security: TUN device LSM blob 4847 * 4848 * Check permissions prior to attaching to a TUN device queue. 4849 * 4850 * Return: Returns 0 if permission is granted. 4851 */ 4852 int security_tun_dev_attach_queue(void *security) 4853 { 4854 return call_int_hook(tun_dev_attach_queue, security); 4855 } 4856 EXPORT_SYMBOL(security_tun_dev_attach_queue); 4857 4858 /** 4859 * security_tun_dev_attach() - Update TUN device LSM state on attach 4860 * @sk: associated sock 4861 * @security: TUN device LSM blob 4862 * 4863 * This hook can be used by the module to update any security state associated 4864 * with the TUN device's sock structure. 4865 * 4866 * Return: Returns 0 if permission is granted. 4867 */ 4868 int security_tun_dev_attach(struct sock *sk, void *security) 4869 { 4870 return call_int_hook(tun_dev_attach, sk, security); 4871 } 4872 EXPORT_SYMBOL(security_tun_dev_attach); 4873 4874 /** 4875 * security_tun_dev_open() - Update TUN device LSM state on open 4876 * @security: TUN device LSM blob 4877 * 4878 * This hook can be used by the module to update any security state associated 4879 * with the TUN device's security structure. 4880 * 4881 * Return: Returns 0 if permission is granted. 4882 */ 4883 int security_tun_dev_open(void *security) 4884 { 4885 return call_int_hook(tun_dev_open, security); 4886 } 4887 EXPORT_SYMBOL(security_tun_dev_open); 4888 4889 /** 4890 * security_sctp_assoc_request() - Update the LSM on a SCTP association req 4891 * @asoc: SCTP association 4892 * @skb: packet requesting the association 4893 * 4894 * Passes the @asoc and @chunk->skb of the association INIT packet to the LSM. 4895 * 4896 * Return: Returns 0 on success, error on failure. 4897 */ 4898 int security_sctp_assoc_request(struct sctp_association *asoc, 4899 struct sk_buff *skb) 4900 { 4901 return call_int_hook(sctp_assoc_request, asoc, skb); 4902 } 4903 EXPORT_SYMBOL(security_sctp_assoc_request); 4904 4905 /** 4906 * security_sctp_bind_connect() - Validate a list of addrs for a SCTP option 4907 * @sk: socket 4908 * @optname: SCTP option to validate 4909 * @address: list of IP addresses to validate 4910 * @addrlen: length of the address list 4911 * 4912 * Validiate permissions required for each address associated with sock @sk. 4913 * Depending on @optname, the addresses will be treated as either a connect or 4914 * bind service. The @addrlen is calculated on each IPv4 and IPv6 address using 4915 * sizeof(struct sockaddr_in) or sizeof(struct sockaddr_in6). 4916 * 4917 * Return: Returns 0 on success, error on failure. 4918 */ 4919 int security_sctp_bind_connect(struct sock *sk, int optname, 4920 struct sockaddr *address, int addrlen) 4921 { 4922 return call_int_hook(sctp_bind_connect, sk, optname, address, addrlen); 4923 } 4924 EXPORT_SYMBOL(security_sctp_bind_connect); 4925 4926 /** 4927 * security_sctp_sk_clone() - Clone a SCTP sock's LSM state 4928 * @asoc: SCTP association 4929 * @sk: original sock 4930 * @newsk: target sock 4931 * 4932 * Called whenever a new socket is created by accept(2) (i.e. a TCP style 4933 * socket) or when a socket is 'peeled off' e.g userspace calls 4934 * sctp_peeloff(3). 4935 */ 4936 void security_sctp_sk_clone(struct sctp_association *asoc, struct sock *sk, 4937 struct sock *newsk) 4938 { 4939 call_void_hook(sctp_sk_clone, asoc, sk, newsk); 4940 } 4941 EXPORT_SYMBOL(security_sctp_sk_clone); 4942 4943 /** 4944 * security_sctp_assoc_established() - Update LSM state when assoc established 4945 * @asoc: SCTP association 4946 * @skb: packet establishing the association 4947 * 4948 * Passes the @asoc and @chunk->skb of the association COOKIE_ACK packet to the 4949 * security module. 4950 * 4951 * Return: Returns 0 if permission is granted. 4952 */ 4953 int security_sctp_assoc_established(struct sctp_association *asoc, 4954 struct sk_buff *skb) 4955 { 4956 return call_int_hook(sctp_assoc_established, asoc, skb); 4957 } 4958 EXPORT_SYMBOL(security_sctp_assoc_established); 4959 4960 /** 4961 * security_mptcp_add_subflow() - Inherit the LSM label from the MPTCP socket 4962 * @sk: the owning MPTCP socket 4963 * @ssk: the new subflow 4964 * 4965 * Update the labeling for the given MPTCP subflow, to match the one of the 4966 * owning MPTCP socket. This hook has to be called after the socket creation and 4967 * initialization via the security_socket_create() and 4968 * security_socket_post_create() LSM hooks. 4969 * 4970 * Return: Returns 0 on success or a negative error code on failure. 4971 */ 4972 int security_mptcp_add_subflow(struct sock *sk, struct sock *ssk) 4973 { 4974 return call_int_hook(mptcp_add_subflow, sk, ssk); 4975 } 4976 4977 #endif /* CONFIG_SECURITY_NETWORK */ 4978 4979 #ifdef CONFIG_SECURITY_INFINIBAND 4980 /** 4981 * security_ib_pkey_access() - Check if access to an IB pkey is allowed 4982 * @sec: LSM blob 4983 * @subnet_prefix: subnet prefix of the port 4984 * @pkey: IB pkey 4985 * 4986 * Check permission to access a pkey when modifying a QP. 4987 * 4988 * Return: Returns 0 if permission is granted. 4989 */ 4990 int security_ib_pkey_access(void *sec, u64 subnet_prefix, u16 pkey) 4991 { 4992 return call_int_hook(ib_pkey_access, sec, subnet_prefix, pkey); 4993 } 4994 EXPORT_SYMBOL(security_ib_pkey_access); 4995 4996 /** 4997 * security_ib_endport_manage_subnet() - Check if SMPs traffic is allowed 4998 * @sec: LSM blob 4999 * @dev_name: IB device name 5000 * @port_num: port number 5001 * 5002 * Check permissions to send and receive SMPs on a end port. 5003 * 5004 * Return: Returns 0 if permission is granted. 5005 */ 5006 int security_ib_endport_manage_subnet(void *sec, 5007 const char *dev_name, u8 port_num) 5008 { 5009 return call_int_hook(ib_endport_manage_subnet, sec, dev_name, port_num); 5010 } 5011 EXPORT_SYMBOL(security_ib_endport_manage_subnet); 5012 5013 /** 5014 * security_ib_alloc_security() - Allocate an Infiniband LSM blob 5015 * @sec: LSM blob 5016 * 5017 * Allocate a security structure for Infiniband objects. 5018 * 5019 * Return: Returns 0 on success, non-zero on failure. 5020 */ 5021 int security_ib_alloc_security(void **sec) 5022 { 5023 return call_int_hook(ib_alloc_security, sec); 5024 } 5025 EXPORT_SYMBOL(security_ib_alloc_security); 5026 5027 /** 5028 * security_ib_free_security() - Free an Infiniband LSM blob 5029 * @sec: LSM blob 5030 * 5031 * Deallocate an Infiniband security structure. 5032 */ 5033 void security_ib_free_security(void *sec) 5034 { 5035 call_void_hook(ib_free_security, sec); 5036 } 5037 EXPORT_SYMBOL(security_ib_free_security); 5038 #endif /* CONFIG_SECURITY_INFINIBAND */ 5039 5040 #ifdef CONFIG_SECURITY_NETWORK_XFRM 5041 /** 5042 * security_xfrm_policy_alloc() - Allocate a xfrm policy LSM blob 5043 * @ctxp: xfrm security context being added to the SPD 5044 * @sec_ctx: security label provided by userspace 5045 * @gfp: gfp flags 5046 * 5047 * Allocate a security structure to the xp->security field; the security field 5048 * is initialized to NULL when the xfrm_policy is allocated. 5049 * 5050 * Return: Return 0 if operation was successful. 5051 */ 5052 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, 5053 struct xfrm_user_sec_ctx *sec_ctx, 5054 gfp_t gfp) 5055 { 5056 return call_int_hook(xfrm_policy_alloc_security, ctxp, sec_ctx, gfp); 5057 } 5058 EXPORT_SYMBOL(security_xfrm_policy_alloc); 5059 5060 /** 5061 * security_xfrm_policy_clone() - Clone xfrm policy LSM state 5062 * @old_ctx: xfrm security context 5063 * @new_ctxp: target xfrm security context 5064 * 5065 * Allocate a security structure in new_ctxp that contains the information from 5066 * the old_ctx structure. 5067 * 5068 * Return: Return 0 if operation was successful. 5069 */ 5070 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx, 5071 struct xfrm_sec_ctx **new_ctxp) 5072 { 5073 return call_int_hook(xfrm_policy_clone_security, old_ctx, new_ctxp); 5074 } 5075 5076 /** 5077 * security_xfrm_policy_free() - Free a xfrm security context 5078 * @ctx: xfrm security context 5079 * 5080 * Free LSM resources associated with @ctx. 5081 */ 5082 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx) 5083 { 5084 call_void_hook(xfrm_policy_free_security, ctx); 5085 } 5086 EXPORT_SYMBOL(security_xfrm_policy_free); 5087 5088 /** 5089 * security_xfrm_policy_delete() - Check if deleting a xfrm policy is allowed 5090 * @ctx: xfrm security context 5091 * 5092 * Authorize deletion of a SPD entry. 5093 * 5094 * Return: Returns 0 if permission is granted. 5095 */ 5096 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx) 5097 { 5098 return call_int_hook(xfrm_policy_delete_security, ctx); 5099 } 5100 5101 /** 5102 * security_xfrm_state_alloc() - Allocate a xfrm state LSM blob 5103 * @x: xfrm state being added to the SAD 5104 * @sec_ctx: security label provided by userspace 5105 * 5106 * Allocate a security structure to the @x->security field; the security field 5107 * is initialized to NULL when the xfrm_state is allocated. Set the context to 5108 * correspond to @sec_ctx. 5109 * 5110 * Return: Return 0 if operation was successful. 5111 */ 5112 int security_xfrm_state_alloc(struct xfrm_state *x, 5113 struct xfrm_user_sec_ctx *sec_ctx) 5114 { 5115 return call_int_hook(xfrm_state_alloc, x, sec_ctx); 5116 } 5117 EXPORT_SYMBOL(security_xfrm_state_alloc); 5118 5119 /** 5120 * security_xfrm_state_alloc_acquire() - Allocate a xfrm state LSM blob 5121 * @x: xfrm state being added to the SAD 5122 * @polsec: associated policy's security context 5123 * @secid: secid from the flow 5124 * 5125 * Allocate a security structure to the x->security field; the security field 5126 * is initialized to NULL when the xfrm_state is allocated. Set the context to 5127 * correspond to secid. 5128 * 5129 * Return: Returns 0 if operation was successful. 5130 */ 5131 int security_xfrm_state_alloc_acquire(struct xfrm_state *x, 5132 struct xfrm_sec_ctx *polsec, u32 secid) 5133 { 5134 return call_int_hook(xfrm_state_alloc_acquire, x, polsec, secid); 5135 } 5136 5137 /** 5138 * security_xfrm_state_delete() - Check if deleting a xfrm state is allowed 5139 * @x: xfrm state 5140 * 5141 * Authorize deletion of x->security. 5142 * 5143 * Return: Returns 0 if permission is granted. 5144 */ 5145 int security_xfrm_state_delete(struct xfrm_state *x) 5146 { 5147 return call_int_hook(xfrm_state_delete_security, x); 5148 } 5149 EXPORT_SYMBOL(security_xfrm_state_delete); 5150 5151 /** 5152 * security_xfrm_state_free() - Free a xfrm state 5153 * @x: xfrm state 5154 * 5155 * Deallocate x->security. 5156 */ 5157 void security_xfrm_state_free(struct xfrm_state *x) 5158 { 5159 call_void_hook(xfrm_state_free_security, x); 5160 } 5161 5162 /** 5163 * security_xfrm_policy_lookup() - Check if using a xfrm policy is allowed 5164 * @ctx: target xfrm security context 5165 * @fl_secid: flow secid used to authorize access 5166 * 5167 * Check permission when a flow selects a xfrm_policy for processing XFRMs on a 5168 * packet. The hook is called when selecting either a per-socket policy or a 5169 * generic xfrm policy. 5170 * 5171 * Return: Return 0 if permission is granted, -ESRCH otherwise, or -errno on 5172 * other errors. 5173 */ 5174 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid) 5175 { 5176 return call_int_hook(xfrm_policy_lookup, ctx, fl_secid); 5177 } 5178 5179 /** 5180 * security_xfrm_state_pol_flow_match() - Check for a xfrm match 5181 * @x: xfrm state to match 5182 * @xp: xfrm policy to check for a match 5183 * @flic: flow to check for a match. 5184 * 5185 * Check @xp and @flic for a match with @x. 5186 * 5187 * Return: Returns 1 if there is a match. 5188 */ 5189 int security_xfrm_state_pol_flow_match(struct xfrm_state *x, 5190 struct xfrm_policy *xp, 5191 const struct flowi_common *flic) 5192 { 5193 struct security_hook_list *hp; 5194 int rc = LSM_RET_DEFAULT(xfrm_state_pol_flow_match); 5195 5196 /* 5197 * Since this function is expected to return 0 or 1, the judgment 5198 * becomes difficult if multiple LSMs supply this call. Fortunately, 5199 * we can use the first LSM's judgment because currently only SELinux 5200 * supplies this call. 5201 * 5202 * For speed optimization, we explicitly break the loop rather than 5203 * using the macro 5204 */ 5205 hlist_for_each_entry(hp, &security_hook_heads.xfrm_state_pol_flow_match, 5206 list) { 5207 rc = hp->hook.xfrm_state_pol_flow_match(x, xp, flic); 5208 break; 5209 } 5210 return rc; 5211 } 5212 5213 /** 5214 * security_xfrm_decode_session() - Determine the xfrm secid for a packet 5215 * @skb: xfrm packet 5216 * @secid: secid 5217 * 5218 * Decode the packet in @skb and return the security label in @secid. 5219 * 5220 * Return: Return 0 if all xfrms used have the same secid. 5221 */ 5222 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid) 5223 { 5224 return call_int_hook(xfrm_decode_session, skb, secid, 1); 5225 } 5226 5227 void security_skb_classify_flow(struct sk_buff *skb, struct flowi_common *flic) 5228 { 5229 int rc = call_int_hook(xfrm_decode_session, skb, &flic->flowic_secid, 5230 0); 5231 5232 BUG_ON(rc); 5233 } 5234 EXPORT_SYMBOL(security_skb_classify_flow); 5235 #endif /* CONFIG_SECURITY_NETWORK_XFRM */ 5236 5237 #ifdef CONFIG_KEYS 5238 /** 5239 * security_key_alloc() - Allocate and initialize a kernel key LSM blob 5240 * @key: key 5241 * @cred: credentials 5242 * @flags: allocation flags 5243 * 5244 * Permit allocation of a key and assign security data. Note that key does not 5245 * have a serial number assigned at this point. 5246 * 5247 * Return: Return 0 if permission is granted, -ve error otherwise. 5248 */ 5249 int security_key_alloc(struct key *key, const struct cred *cred, 5250 unsigned long flags) 5251 { 5252 return call_int_hook(key_alloc, key, cred, flags); 5253 } 5254 5255 /** 5256 * security_key_free() - Free a kernel key LSM blob 5257 * @key: key 5258 * 5259 * Notification of destruction; free security data. 5260 */ 5261 void security_key_free(struct key *key) 5262 { 5263 call_void_hook(key_free, key); 5264 } 5265 5266 /** 5267 * security_key_permission() - Check if a kernel key operation is allowed 5268 * @key_ref: key reference 5269 * @cred: credentials of actor requesting access 5270 * @need_perm: requested permissions 5271 * 5272 * See whether a specific operational right is granted to a process on a key. 5273 * 5274 * Return: Return 0 if permission is granted, -ve error otherwise. 5275 */ 5276 int security_key_permission(key_ref_t key_ref, const struct cred *cred, 5277 enum key_need_perm need_perm) 5278 { 5279 return call_int_hook(key_permission, key_ref, cred, need_perm); 5280 } 5281 5282 /** 5283 * security_key_getsecurity() - Get the key's security label 5284 * @key: key 5285 * @buffer: security label buffer 5286 * 5287 * Get a textual representation of the security context attached to a key for 5288 * the purposes of honouring KEYCTL_GETSECURITY. This function allocates the 5289 * storage for the NUL-terminated string and the caller should free it. 5290 * 5291 * Return: Returns the length of @buffer (including terminating NUL) or -ve if 5292 * an error occurs. May also return 0 (and a NULL buffer pointer) if 5293 * there is no security label assigned to the key. 5294 */ 5295 int security_key_getsecurity(struct key *key, char **buffer) 5296 { 5297 *buffer = NULL; 5298 return call_int_hook(key_getsecurity, key, buffer); 5299 } 5300 5301 /** 5302 * security_key_post_create_or_update() - Notification of key create or update 5303 * @keyring: keyring to which the key is linked to 5304 * @key: created or updated key 5305 * @payload: data used to instantiate or update the key 5306 * @payload_len: length of payload 5307 * @flags: key flags 5308 * @create: flag indicating whether the key was created or updated 5309 * 5310 * Notify the caller of a key creation or update. 5311 */ 5312 void security_key_post_create_or_update(struct key *keyring, struct key *key, 5313 const void *payload, size_t payload_len, 5314 unsigned long flags, bool create) 5315 { 5316 call_void_hook(key_post_create_or_update, keyring, key, payload, 5317 payload_len, flags, create); 5318 } 5319 #endif /* CONFIG_KEYS */ 5320 5321 #ifdef CONFIG_AUDIT 5322 /** 5323 * security_audit_rule_init() - Allocate and init an LSM audit rule struct 5324 * @field: audit action 5325 * @op: rule operator 5326 * @rulestr: rule context 5327 * @lsmrule: receive buffer for audit rule struct 5328 * 5329 * Allocate and initialize an LSM audit rule structure. 5330 * 5331 * Return: Return 0 if @lsmrule has been successfully set, -EINVAL in case of 5332 * an invalid rule. 5333 */ 5334 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule) 5335 { 5336 return call_int_hook(audit_rule_init, field, op, rulestr, lsmrule); 5337 } 5338 5339 /** 5340 * security_audit_rule_known() - Check if an audit rule contains LSM fields 5341 * @krule: audit rule 5342 * 5343 * Specifies whether given @krule contains any fields related to the current 5344 * LSM. 5345 * 5346 * Return: Returns 1 in case of relation found, 0 otherwise. 5347 */ 5348 int security_audit_rule_known(struct audit_krule *krule) 5349 { 5350 return call_int_hook(audit_rule_known, krule); 5351 } 5352 5353 /** 5354 * security_audit_rule_free() - Free an LSM audit rule struct 5355 * @lsmrule: audit rule struct 5356 * 5357 * Deallocate the LSM audit rule structure previously allocated by 5358 * audit_rule_init(). 5359 */ 5360 void security_audit_rule_free(void *lsmrule) 5361 { 5362 call_void_hook(audit_rule_free, lsmrule); 5363 } 5364 5365 /** 5366 * security_audit_rule_match() - Check if a label matches an audit rule 5367 * @secid: security label 5368 * @field: LSM audit field 5369 * @op: matching operator 5370 * @lsmrule: audit rule 5371 * 5372 * Determine if given @secid matches a rule previously approved by 5373 * security_audit_rule_known(). 5374 * 5375 * Return: Returns 1 if secid matches the rule, 0 if it does not, -ERRNO on 5376 * failure. 5377 */ 5378 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule) 5379 { 5380 return call_int_hook(audit_rule_match, secid, field, op, lsmrule); 5381 } 5382 #endif /* CONFIG_AUDIT */ 5383 5384 #ifdef CONFIG_BPF_SYSCALL 5385 /** 5386 * security_bpf() - Check if the bpf syscall operation is allowed 5387 * @cmd: command 5388 * @attr: bpf attribute 5389 * @size: size 5390 * 5391 * Do a initial check for all bpf syscalls after the attribute is copied into 5392 * the kernel. The actual security module can implement their own rules to 5393 * check the specific cmd they need. 5394 * 5395 * Return: Returns 0 if permission is granted. 5396 */ 5397 int security_bpf(int cmd, union bpf_attr *attr, unsigned int size) 5398 { 5399 return call_int_hook(bpf, cmd, attr, size); 5400 } 5401 5402 /** 5403 * security_bpf_map() - Check if access to a bpf map is allowed 5404 * @map: bpf map 5405 * @fmode: mode 5406 * 5407 * Do a check when the kernel generates and returns a file descriptor for eBPF 5408 * maps. 5409 * 5410 * Return: Returns 0 if permission is granted. 5411 */ 5412 int security_bpf_map(struct bpf_map *map, fmode_t fmode) 5413 { 5414 return call_int_hook(bpf_map, map, fmode); 5415 } 5416 5417 /** 5418 * security_bpf_prog() - Check if access to a bpf program is allowed 5419 * @prog: bpf program 5420 * 5421 * Do a check when the kernel generates and returns a file descriptor for eBPF 5422 * programs. 5423 * 5424 * Return: Returns 0 if permission is granted. 5425 */ 5426 int security_bpf_prog(struct bpf_prog *prog) 5427 { 5428 return call_int_hook(bpf_prog, prog); 5429 } 5430 5431 /** 5432 * security_bpf_map_create() - Check if BPF map creation is allowed 5433 * @map: BPF map object 5434 * @attr: BPF syscall attributes used to create BPF map 5435 * @token: BPF token used to grant user access 5436 * 5437 * Do a check when the kernel creates a new BPF map. This is also the 5438 * point where LSM blob is allocated for LSMs that need them. 5439 * 5440 * Return: Returns 0 on success, error on failure. 5441 */ 5442 int security_bpf_map_create(struct bpf_map *map, union bpf_attr *attr, 5443 struct bpf_token *token) 5444 { 5445 return call_int_hook(bpf_map_create, map, attr, token); 5446 } 5447 5448 /** 5449 * security_bpf_prog_load() - Check if loading of BPF program is allowed 5450 * @prog: BPF program object 5451 * @attr: BPF syscall attributes used to create BPF program 5452 * @token: BPF token used to grant user access to BPF subsystem 5453 * 5454 * Perform an access control check when the kernel loads a BPF program and 5455 * allocates associated BPF program object. This hook is also responsible for 5456 * allocating any required LSM state for the BPF program. 5457 * 5458 * Return: Returns 0 on success, error on failure. 5459 */ 5460 int security_bpf_prog_load(struct bpf_prog *prog, union bpf_attr *attr, 5461 struct bpf_token *token) 5462 { 5463 return call_int_hook(bpf_prog_load, prog, attr, token); 5464 } 5465 5466 /** 5467 * security_bpf_token_create() - Check if creating of BPF token is allowed 5468 * @token: BPF token object 5469 * @attr: BPF syscall attributes used to create BPF token 5470 * @path: path pointing to BPF FS mount point from which BPF token is created 5471 * 5472 * Do a check when the kernel instantiates a new BPF token object from BPF FS 5473 * instance. This is also the point where LSM blob can be allocated for LSMs. 5474 * 5475 * Return: Returns 0 on success, error on failure. 5476 */ 5477 int security_bpf_token_create(struct bpf_token *token, union bpf_attr *attr, 5478 struct path *path) 5479 { 5480 return call_int_hook(bpf_token_create, token, attr, path); 5481 } 5482 5483 /** 5484 * security_bpf_token_cmd() - Check if BPF token is allowed to delegate 5485 * requested BPF syscall command 5486 * @token: BPF token object 5487 * @cmd: BPF syscall command requested to be delegated by BPF token 5488 * 5489 * Do a check when the kernel decides whether provided BPF token should allow 5490 * delegation of requested BPF syscall command. 5491 * 5492 * Return: Returns 0 on success, error on failure. 5493 */ 5494 int security_bpf_token_cmd(const struct bpf_token *token, enum bpf_cmd cmd) 5495 { 5496 return call_int_hook(bpf_token_cmd, token, cmd); 5497 } 5498 5499 /** 5500 * security_bpf_token_capable() - Check if BPF token is allowed to delegate 5501 * requested BPF-related capability 5502 * @token: BPF token object 5503 * @cap: capabilities requested to be delegated by BPF token 5504 * 5505 * Do a check when the kernel decides whether provided BPF token should allow 5506 * delegation of requested BPF-related capabilities. 5507 * 5508 * Return: Returns 0 on success, error on failure. 5509 */ 5510 int security_bpf_token_capable(const struct bpf_token *token, int cap) 5511 { 5512 return call_int_hook(bpf_token_capable, token, cap); 5513 } 5514 5515 /** 5516 * security_bpf_map_free() - Free a bpf map's LSM blob 5517 * @map: bpf map 5518 * 5519 * Clean up the security information stored inside bpf map. 5520 */ 5521 void security_bpf_map_free(struct bpf_map *map) 5522 { 5523 call_void_hook(bpf_map_free, map); 5524 } 5525 5526 /** 5527 * security_bpf_prog_free() - Free a BPF program's LSM blob 5528 * @prog: BPF program struct 5529 * 5530 * Clean up the security information stored inside BPF program. 5531 */ 5532 void security_bpf_prog_free(struct bpf_prog *prog) 5533 { 5534 call_void_hook(bpf_prog_free, prog); 5535 } 5536 5537 /** 5538 * security_bpf_token_free() - Free a BPF token's LSM blob 5539 * @token: BPF token struct 5540 * 5541 * Clean up the security information stored inside BPF token. 5542 */ 5543 void security_bpf_token_free(struct bpf_token *token) 5544 { 5545 call_void_hook(bpf_token_free, token); 5546 } 5547 #endif /* CONFIG_BPF_SYSCALL */ 5548 5549 /** 5550 * security_locked_down() - Check if a kernel feature is allowed 5551 * @what: requested kernel feature 5552 * 5553 * Determine whether a kernel feature that potentially enables arbitrary code 5554 * execution in kernel space should be permitted. 5555 * 5556 * Return: Returns 0 if permission is granted. 5557 */ 5558 int security_locked_down(enum lockdown_reason what) 5559 { 5560 return call_int_hook(locked_down, what); 5561 } 5562 EXPORT_SYMBOL(security_locked_down); 5563 5564 #ifdef CONFIG_PERF_EVENTS 5565 /** 5566 * security_perf_event_open() - Check if a perf event open is allowed 5567 * @attr: perf event attribute 5568 * @type: type of event 5569 * 5570 * Check whether the @type of perf_event_open syscall is allowed. 5571 * 5572 * Return: Returns 0 if permission is granted. 5573 */ 5574 int security_perf_event_open(struct perf_event_attr *attr, int type) 5575 { 5576 return call_int_hook(perf_event_open, attr, type); 5577 } 5578 5579 /** 5580 * security_perf_event_alloc() - Allocate a perf event LSM blob 5581 * @event: perf event 5582 * 5583 * Allocate and save perf_event security info. 5584 * 5585 * Return: Returns 0 on success, error on failure. 5586 */ 5587 int security_perf_event_alloc(struct perf_event *event) 5588 { 5589 return call_int_hook(perf_event_alloc, event); 5590 } 5591 5592 /** 5593 * security_perf_event_free() - Free a perf event LSM blob 5594 * @event: perf event 5595 * 5596 * Release (free) perf_event security info. 5597 */ 5598 void security_perf_event_free(struct perf_event *event) 5599 { 5600 call_void_hook(perf_event_free, event); 5601 } 5602 5603 /** 5604 * security_perf_event_read() - Check if reading a perf event label is allowed 5605 * @event: perf event 5606 * 5607 * Read perf_event security info if allowed. 5608 * 5609 * Return: Returns 0 if permission is granted. 5610 */ 5611 int security_perf_event_read(struct perf_event *event) 5612 { 5613 return call_int_hook(perf_event_read, event); 5614 } 5615 5616 /** 5617 * security_perf_event_write() - Check if writing a perf event label is allowed 5618 * @event: perf event 5619 * 5620 * Write perf_event security info if allowed. 5621 * 5622 * Return: Returns 0 if permission is granted. 5623 */ 5624 int security_perf_event_write(struct perf_event *event) 5625 { 5626 return call_int_hook(perf_event_write, event); 5627 } 5628 #endif /* CONFIG_PERF_EVENTS */ 5629 5630 #ifdef CONFIG_IO_URING 5631 /** 5632 * security_uring_override_creds() - Check if overriding creds is allowed 5633 * @new: new credentials 5634 * 5635 * Check if the current task, executing an io_uring operation, is allowed to 5636 * override it's credentials with @new. 5637 * 5638 * Return: Returns 0 if permission is granted. 5639 */ 5640 int security_uring_override_creds(const struct cred *new) 5641 { 5642 return call_int_hook(uring_override_creds, new); 5643 } 5644 5645 /** 5646 * security_uring_sqpoll() - Check if IORING_SETUP_SQPOLL is allowed 5647 * 5648 * Check whether the current task is allowed to spawn a io_uring polling thread 5649 * (IORING_SETUP_SQPOLL). 5650 * 5651 * Return: Returns 0 if permission is granted. 5652 */ 5653 int security_uring_sqpoll(void) 5654 { 5655 return call_int_hook(uring_sqpoll); 5656 } 5657 5658 /** 5659 * security_uring_cmd() - Check if a io_uring passthrough command is allowed 5660 * @ioucmd: command 5661 * 5662 * Check whether the file_operations uring_cmd is allowed to run. 5663 * 5664 * Return: Returns 0 if permission is granted. 5665 */ 5666 int security_uring_cmd(struct io_uring_cmd *ioucmd) 5667 { 5668 return call_int_hook(uring_cmd, ioucmd); 5669 } 5670 #endif /* CONFIG_IO_URING */ 5671