xref: /linux/security/security.c (revision 96a6de1a541c86e9e67b9c310c14db4099bd1cbc)
1 /*
2  * Security plug functions
3  *
4  * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
5  * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
6  * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
7  * Copyright (C) 2016 Mellanox Technologies
8  *
9  *	This program is free software; you can redistribute it and/or modify
10  *	it under the terms of the GNU General Public License as published by
11  *	the Free Software Foundation; either version 2 of the License, or
12  *	(at your option) any later version.
13  */
14 
15 #define pr_fmt(fmt) "LSM: " fmt
16 
17 #include <linux/bpf.h>
18 #include <linux/capability.h>
19 #include <linux/dcache.h>
20 #include <linux/export.h>
21 #include <linux/init.h>
22 #include <linux/kernel.h>
23 #include <linux/lsm_hooks.h>
24 #include <linux/integrity.h>
25 #include <linux/ima.h>
26 #include <linux/evm.h>
27 #include <linux/fsnotify.h>
28 #include <linux/mman.h>
29 #include <linux/mount.h>
30 #include <linux/personality.h>
31 #include <linux/backing-dev.h>
32 #include <linux/string.h>
33 #include <linux/msg.h>
34 #include <net/flow.h>
35 
36 #define MAX_LSM_EVM_XATTR	2
37 
38 /* How many LSMs were built into the kernel? */
39 #define LSM_COUNT (__end_lsm_info - __start_lsm_info)
40 
41 struct security_hook_heads security_hook_heads __lsm_ro_after_init;
42 static ATOMIC_NOTIFIER_HEAD(lsm_notifier_chain);
43 
44 static struct kmem_cache *lsm_file_cache;
45 static struct kmem_cache *lsm_inode_cache;
46 
47 char *lsm_names;
48 static struct lsm_blob_sizes blob_sizes __lsm_ro_after_init;
49 
50 /* Boot-time LSM user choice */
51 static __initdata const char *chosen_lsm_order;
52 static __initdata const char *chosen_major_lsm;
53 
54 static __initconst const char * const builtin_lsm_order = CONFIG_LSM;
55 
56 /* Ordered list of LSMs to initialize. */
57 static __initdata struct lsm_info **ordered_lsms;
58 static __initdata struct lsm_info *exclusive;
59 
60 static __initdata bool debug;
61 #define init_debug(...)						\
62 	do {							\
63 		if (debug)					\
64 			pr_info(__VA_ARGS__);			\
65 	} while (0)
66 
67 static bool __init is_enabled(struct lsm_info *lsm)
68 {
69 	if (!lsm->enabled)
70 		return false;
71 
72 	return *lsm->enabled;
73 }
74 
75 /* Mark an LSM's enabled flag. */
76 static int lsm_enabled_true __initdata = 1;
77 static int lsm_enabled_false __initdata = 0;
78 static void __init set_enabled(struct lsm_info *lsm, bool enabled)
79 {
80 	/*
81 	 * When an LSM hasn't configured an enable variable, we can use
82 	 * a hard-coded location for storing the default enabled state.
83 	 */
84 	if (!lsm->enabled) {
85 		if (enabled)
86 			lsm->enabled = &lsm_enabled_true;
87 		else
88 			lsm->enabled = &lsm_enabled_false;
89 	} else if (lsm->enabled == &lsm_enabled_true) {
90 		if (!enabled)
91 			lsm->enabled = &lsm_enabled_false;
92 	} else if (lsm->enabled == &lsm_enabled_false) {
93 		if (enabled)
94 			lsm->enabled = &lsm_enabled_true;
95 	} else {
96 		*lsm->enabled = enabled;
97 	}
98 }
99 
100 /* Is an LSM already listed in the ordered LSMs list? */
101 static bool __init exists_ordered_lsm(struct lsm_info *lsm)
102 {
103 	struct lsm_info **check;
104 
105 	for (check = ordered_lsms; *check; check++)
106 		if (*check == lsm)
107 			return true;
108 
109 	return false;
110 }
111 
112 /* Append an LSM to the list of ordered LSMs to initialize. */
113 static int last_lsm __initdata;
114 static void __init append_ordered_lsm(struct lsm_info *lsm, const char *from)
115 {
116 	/* Ignore duplicate selections. */
117 	if (exists_ordered_lsm(lsm))
118 		return;
119 
120 	if (WARN(last_lsm == LSM_COUNT, "%s: out of LSM slots!?\n", from))
121 		return;
122 
123 	/* Enable this LSM, if it is not already set. */
124 	if (!lsm->enabled)
125 		lsm->enabled = &lsm_enabled_true;
126 	ordered_lsms[last_lsm++] = lsm;
127 
128 	init_debug("%s ordering: %s (%sabled)\n", from, lsm->name,
129 		   is_enabled(lsm) ? "en" : "dis");
130 }
131 
132 /* Is an LSM allowed to be initialized? */
133 static bool __init lsm_allowed(struct lsm_info *lsm)
134 {
135 	/* Skip if the LSM is disabled. */
136 	if (!is_enabled(lsm))
137 		return false;
138 
139 	/* Not allowed if another exclusive LSM already initialized. */
140 	if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && exclusive) {
141 		init_debug("exclusive disabled: %s\n", lsm->name);
142 		return false;
143 	}
144 
145 	return true;
146 }
147 
148 static void __init lsm_set_blob_size(int *need, int *lbs)
149 {
150 	int offset;
151 
152 	if (*need > 0) {
153 		offset = *lbs;
154 		*lbs += *need;
155 		*need = offset;
156 	}
157 }
158 
159 static void __init lsm_set_blob_sizes(struct lsm_blob_sizes *needed)
160 {
161 	if (!needed)
162 		return;
163 
164 	lsm_set_blob_size(&needed->lbs_cred, &blob_sizes.lbs_cred);
165 	lsm_set_blob_size(&needed->lbs_file, &blob_sizes.lbs_file);
166 	/*
167 	 * The inode blob gets an rcu_head in addition to
168 	 * what the modules might need.
169 	 */
170 	if (needed->lbs_inode && blob_sizes.lbs_inode == 0)
171 		blob_sizes.lbs_inode = sizeof(struct rcu_head);
172 	lsm_set_blob_size(&needed->lbs_inode, &blob_sizes.lbs_inode);
173 	lsm_set_blob_size(&needed->lbs_ipc, &blob_sizes.lbs_ipc);
174 	lsm_set_blob_size(&needed->lbs_msg_msg, &blob_sizes.lbs_msg_msg);
175 	lsm_set_blob_size(&needed->lbs_task, &blob_sizes.lbs_task);
176 }
177 
178 /* Prepare LSM for initialization. */
179 static void __init prepare_lsm(struct lsm_info *lsm)
180 {
181 	int enabled = lsm_allowed(lsm);
182 
183 	/* Record enablement (to handle any following exclusive LSMs). */
184 	set_enabled(lsm, enabled);
185 
186 	/* If enabled, do pre-initialization work. */
187 	if (enabled) {
188 		if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && !exclusive) {
189 			exclusive = lsm;
190 			init_debug("exclusive chosen: %s\n", lsm->name);
191 		}
192 
193 		lsm_set_blob_sizes(lsm->blobs);
194 	}
195 }
196 
197 /* Initialize a given LSM, if it is enabled. */
198 static void __init initialize_lsm(struct lsm_info *lsm)
199 {
200 	if (is_enabled(lsm)) {
201 		int ret;
202 
203 		init_debug("initializing %s\n", lsm->name);
204 		ret = lsm->init();
205 		WARN(ret, "%s failed to initialize: %d\n", lsm->name, ret);
206 	}
207 }
208 
209 /* Populate ordered LSMs list from comma-separated LSM name list. */
210 static void __init ordered_lsm_parse(const char *order, const char *origin)
211 {
212 	struct lsm_info *lsm;
213 	char *sep, *name, *next;
214 
215 	/* LSM_ORDER_FIRST is always first. */
216 	for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
217 		if (lsm->order == LSM_ORDER_FIRST)
218 			append_ordered_lsm(lsm, "first");
219 	}
220 
221 	/* Process "security=", if given. */
222 	if (chosen_major_lsm) {
223 		struct lsm_info *major;
224 
225 		/*
226 		 * To match the original "security=" behavior, this
227 		 * explicitly does NOT fallback to another Legacy Major
228 		 * if the selected one was separately disabled: disable
229 		 * all non-matching Legacy Major LSMs.
230 		 */
231 		for (major = __start_lsm_info; major < __end_lsm_info;
232 		     major++) {
233 			if ((major->flags & LSM_FLAG_LEGACY_MAJOR) &&
234 			    strcmp(major->name, chosen_major_lsm) != 0) {
235 				set_enabled(major, false);
236 				init_debug("security=%s disabled: %s\n",
237 					   chosen_major_lsm, major->name);
238 			}
239 		}
240 	}
241 
242 	sep = kstrdup(order, GFP_KERNEL);
243 	next = sep;
244 	/* Walk the list, looking for matching LSMs. */
245 	while ((name = strsep(&next, ",")) != NULL) {
246 		bool found = false;
247 
248 		for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
249 			if (lsm->order == LSM_ORDER_MUTABLE &&
250 			    strcmp(lsm->name, name) == 0) {
251 				append_ordered_lsm(lsm, origin);
252 				found = true;
253 			}
254 		}
255 
256 		if (!found)
257 			init_debug("%s ignored: %s\n", origin, name);
258 	}
259 
260 	/* Process "security=", if given. */
261 	if (chosen_major_lsm) {
262 		for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
263 			if (exists_ordered_lsm(lsm))
264 				continue;
265 			if (strcmp(lsm->name, chosen_major_lsm) == 0)
266 				append_ordered_lsm(lsm, "security=");
267 		}
268 	}
269 
270 	/* Disable all LSMs not in the ordered list. */
271 	for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
272 		if (exists_ordered_lsm(lsm))
273 			continue;
274 		set_enabled(lsm, false);
275 		init_debug("%s disabled: %s\n", origin, lsm->name);
276 	}
277 
278 	kfree(sep);
279 }
280 
281 static void __init lsm_early_cred(struct cred *cred);
282 static void __init lsm_early_task(struct task_struct *task);
283 
284 static void __init ordered_lsm_init(void)
285 {
286 	struct lsm_info **lsm;
287 
288 	ordered_lsms = kcalloc(LSM_COUNT + 1, sizeof(*ordered_lsms),
289 				GFP_KERNEL);
290 
291 	if (chosen_lsm_order) {
292 		if (chosen_major_lsm) {
293 			pr_info("security= is ignored because it is superseded by lsm=\n");
294 			chosen_major_lsm = NULL;
295 		}
296 		ordered_lsm_parse(chosen_lsm_order, "cmdline");
297 	} else
298 		ordered_lsm_parse(builtin_lsm_order, "builtin");
299 
300 	for (lsm = ordered_lsms; *lsm; lsm++)
301 		prepare_lsm(*lsm);
302 
303 	init_debug("cred blob size     = %d\n", blob_sizes.lbs_cred);
304 	init_debug("file blob size     = %d\n", blob_sizes.lbs_file);
305 	init_debug("inode blob size    = %d\n", blob_sizes.lbs_inode);
306 	init_debug("ipc blob size      = %d\n", blob_sizes.lbs_ipc);
307 	init_debug("msg_msg blob size  = %d\n", blob_sizes.lbs_msg_msg);
308 	init_debug("task blob size     = %d\n", blob_sizes.lbs_task);
309 
310 	/*
311 	 * Create any kmem_caches needed for blobs
312 	 */
313 	if (blob_sizes.lbs_file)
314 		lsm_file_cache = kmem_cache_create("lsm_file_cache",
315 						   blob_sizes.lbs_file, 0,
316 						   SLAB_PANIC, NULL);
317 	if (blob_sizes.lbs_inode)
318 		lsm_inode_cache = kmem_cache_create("lsm_inode_cache",
319 						    blob_sizes.lbs_inode, 0,
320 						    SLAB_PANIC, NULL);
321 
322 	lsm_early_cred((struct cred *) current->cred);
323 	lsm_early_task(current);
324 	for (lsm = ordered_lsms; *lsm; lsm++)
325 		initialize_lsm(*lsm);
326 
327 	kfree(ordered_lsms);
328 }
329 
330 /**
331  * security_init - initializes the security framework
332  *
333  * This should be called early in the kernel initialization sequence.
334  */
335 int __init security_init(void)
336 {
337 	int i;
338 	struct hlist_head *list = (struct hlist_head *) &security_hook_heads;
339 
340 	pr_info("Security Framework initializing\n");
341 
342 	for (i = 0; i < sizeof(security_hook_heads) / sizeof(struct hlist_head);
343 	     i++)
344 		INIT_HLIST_HEAD(&list[i]);
345 
346 	/* Load LSMs in specified order. */
347 	ordered_lsm_init();
348 
349 	return 0;
350 }
351 
352 /* Save user chosen LSM */
353 static int __init choose_major_lsm(char *str)
354 {
355 	chosen_major_lsm = str;
356 	return 1;
357 }
358 __setup("security=", choose_major_lsm);
359 
360 /* Explicitly choose LSM initialization order. */
361 static int __init choose_lsm_order(char *str)
362 {
363 	chosen_lsm_order = str;
364 	return 1;
365 }
366 __setup("lsm=", choose_lsm_order);
367 
368 /* Enable LSM order debugging. */
369 static int __init enable_debug(char *str)
370 {
371 	debug = true;
372 	return 1;
373 }
374 __setup("lsm.debug", enable_debug);
375 
376 static bool match_last_lsm(const char *list, const char *lsm)
377 {
378 	const char *last;
379 
380 	if (WARN_ON(!list || !lsm))
381 		return false;
382 	last = strrchr(list, ',');
383 	if (last)
384 		/* Pass the comma, strcmp() will check for '\0' */
385 		last++;
386 	else
387 		last = list;
388 	return !strcmp(last, lsm);
389 }
390 
391 static int lsm_append(char *new, char **result)
392 {
393 	char *cp;
394 
395 	if (*result == NULL) {
396 		*result = kstrdup(new, GFP_KERNEL);
397 		if (*result == NULL)
398 			return -ENOMEM;
399 	} else {
400 		/* Check if it is the last registered name */
401 		if (match_last_lsm(*result, new))
402 			return 0;
403 		cp = kasprintf(GFP_KERNEL, "%s,%s", *result, new);
404 		if (cp == NULL)
405 			return -ENOMEM;
406 		kfree(*result);
407 		*result = cp;
408 	}
409 	return 0;
410 }
411 
412 /**
413  * security_add_hooks - Add a modules hooks to the hook lists.
414  * @hooks: the hooks to add
415  * @count: the number of hooks to add
416  * @lsm: the name of the security module
417  *
418  * Each LSM has to register its hooks with the infrastructure.
419  */
420 void __init security_add_hooks(struct security_hook_list *hooks, int count,
421 				char *lsm)
422 {
423 	int i;
424 
425 	for (i = 0; i < count; i++) {
426 		hooks[i].lsm = lsm;
427 		hlist_add_tail_rcu(&hooks[i].list, hooks[i].head);
428 	}
429 	if (lsm_append(lsm, &lsm_names) < 0)
430 		panic("%s - Cannot get early memory.\n", __func__);
431 }
432 
433 int call_lsm_notifier(enum lsm_event event, void *data)
434 {
435 	return atomic_notifier_call_chain(&lsm_notifier_chain, event, data);
436 }
437 EXPORT_SYMBOL(call_lsm_notifier);
438 
439 int register_lsm_notifier(struct notifier_block *nb)
440 {
441 	return atomic_notifier_chain_register(&lsm_notifier_chain, nb);
442 }
443 EXPORT_SYMBOL(register_lsm_notifier);
444 
445 int unregister_lsm_notifier(struct notifier_block *nb)
446 {
447 	return atomic_notifier_chain_unregister(&lsm_notifier_chain, nb);
448 }
449 EXPORT_SYMBOL(unregister_lsm_notifier);
450 
451 /**
452  * lsm_cred_alloc - allocate a composite cred blob
453  * @cred: the cred that needs a blob
454  * @gfp: allocation type
455  *
456  * Allocate the cred blob for all the modules
457  *
458  * Returns 0, or -ENOMEM if memory can't be allocated.
459  */
460 static int lsm_cred_alloc(struct cred *cred, gfp_t gfp)
461 {
462 	if (blob_sizes.lbs_cred == 0) {
463 		cred->security = NULL;
464 		return 0;
465 	}
466 
467 	cred->security = kzalloc(blob_sizes.lbs_cred, gfp);
468 	if (cred->security == NULL)
469 		return -ENOMEM;
470 	return 0;
471 }
472 
473 /**
474  * lsm_early_cred - during initialization allocate a composite cred blob
475  * @cred: the cred that needs a blob
476  *
477  * Allocate the cred blob for all the modules
478  */
479 static void __init lsm_early_cred(struct cred *cred)
480 {
481 	int rc = lsm_cred_alloc(cred, GFP_KERNEL);
482 
483 	if (rc)
484 		panic("%s: Early cred alloc failed.\n", __func__);
485 }
486 
487 /**
488  * lsm_file_alloc - allocate a composite file blob
489  * @file: the file that needs a blob
490  *
491  * Allocate the file blob for all the modules
492  *
493  * Returns 0, or -ENOMEM if memory can't be allocated.
494  */
495 static int lsm_file_alloc(struct file *file)
496 {
497 	if (!lsm_file_cache) {
498 		file->f_security = NULL;
499 		return 0;
500 	}
501 
502 	file->f_security = kmem_cache_zalloc(lsm_file_cache, GFP_KERNEL);
503 	if (file->f_security == NULL)
504 		return -ENOMEM;
505 	return 0;
506 }
507 
508 /**
509  * lsm_inode_alloc - allocate a composite inode blob
510  * @inode: the inode that needs a blob
511  *
512  * Allocate the inode blob for all the modules
513  *
514  * Returns 0, or -ENOMEM if memory can't be allocated.
515  */
516 int lsm_inode_alloc(struct inode *inode)
517 {
518 	if (!lsm_inode_cache) {
519 		inode->i_security = NULL;
520 		return 0;
521 	}
522 
523 	inode->i_security = kmem_cache_zalloc(lsm_inode_cache, GFP_NOFS);
524 	if (inode->i_security == NULL)
525 		return -ENOMEM;
526 	return 0;
527 }
528 
529 /**
530  * lsm_task_alloc - allocate a composite task blob
531  * @task: the task that needs a blob
532  *
533  * Allocate the task blob for all the modules
534  *
535  * Returns 0, or -ENOMEM if memory can't be allocated.
536  */
537 static int lsm_task_alloc(struct task_struct *task)
538 {
539 	if (blob_sizes.lbs_task == 0) {
540 		task->security = NULL;
541 		return 0;
542 	}
543 
544 	task->security = kzalloc(blob_sizes.lbs_task, GFP_KERNEL);
545 	if (task->security == NULL)
546 		return -ENOMEM;
547 	return 0;
548 }
549 
550 /**
551  * lsm_ipc_alloc - allocate a composite ipc blob
552  * @kip: the ipc that needs a blob
553  *
554  * Allocate the ipc blob for all the modules
555  *
556  * Returns 0, or -ENOMEM if memory can't be allocated.
557  */
558 static int lsm_ipc_alloc(struct kern_ipc_perm *kip)
559 {
560 	if (blob_sizes.lbs_ipc == 0) {
561 		kip->security = NULL;
562 		return 0;
563 	}
564 
565 	kip->security = kzalloc(blob_sizes.lbs_ipc, GFP_KERNEL);
566 	if (kip->security == NULL)
567 		return -ENOMEM;
568 	return 0;
569 }
570 
571 /**
572  * lsm_msg_msg_alloc - allocate a composite msg_msg blob
573  * @mp: the msg_msg that needs a blob
574  *
575  * Allocate the ipc blob for all the modules
576  *
577  * Returns 0, or -ENOMEM if memory can't be allocated.
578  */
579 static int lsm_msg_msg_alloc(struct msg_msg *mp)
580 {
581 	if (blob_sizes.lbs_msg_msg == 0) {
582 		mp->security = NULL;
583 		return 0;
584 	}
585 
586 	mp->security = kzalloc(blob_sizes.lbs_msg_msg, GFP_KERNEL);
587 	if (mp->security == NULL)
588 		return -ENOMEM;
589 	return 0;
590 }
591 
592 /**
593  * lsm_early_task - during initialization allocate a composite task blob
594  * @task: the task that needs a blob
595  *
596  * Allocate the task blob for all the modules
597  */
598 static void __init lsm_early_task(struct task_struct *task)
599 {
600 	int rc = lsm_task_alloc(task);
601 
602 	if (rc)
603 		panic("%s: Early task alloc failed.\n", __func__);
604 }
605 
606 /*
607  * Hook list operation macros.
608  *
609  * call_void_hook:
610  *	This is a hook that does not return a value.
611  *
612  * call_int_hook:
613  *	This is a hook that returns a value.
614  */
615 
616 #define call_void_hook(FUNC, ...)				\
617 	do {							\
618 		struct security_hook_list *P;			\
619 								\
620 		hlist_for_each_entry(P, &security_hook_heads.FUNC, list) \
621 			P->hook.FUNC(__VA_ARGS__);		\
622 	} while (0)
623 
624 #define call_int_hook(FUNC, IRC, ...) ({			\
625 	int RC = IRC;						\
626 	do {							\
627 		struct security_hook_list *P;			\
628 								\
629 		hlist_for_each_entry(P, &security_hook_heads.FUNC, list) { \
630 			RC = P->hook.FUNC(__VA_ARGS__);		\
631 			if (RC != 0)				\
632 				break;				\
633 		}						\
634 	} while (0);						\
635 	RC;							\
636 })
637 
638 /* Security operations */
639 
640 int security_binder_set_context_mgr(struct task_struct *mgr)
641 {
642 	return call_int_hook(binder_set_context_mgr, 0, mgr);
643 }
644 
645 int security_binder_transaction(struct task_struct *from,
646 				struct task_struct *to)
647 {
648 	return call_int_hook(binder_transaction, 0, from, to);
649 }
650 
651 int security_binder_transfer_binder(struct task_struct *from,
652 				    struct task_struct *to)
653 {
654 	return call_int_hook(binder_transfer_binder, 0, from, to);
655 }
656 
657 int security_binder_transfer_file(struct task_struct *from,
658 				  struct task_struct *to, struct file *file)
659 {
660 	return call_int_hook(binder_transfer_file, 0, from, to, file);
661 }
662 
663 int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
664 {
665 	return call_int_hook(ptrace_access_check, 0, child, mode);
666 }
667 
668 int security_ptrace_traceme(struct task_struct *parent)
669 {
670 	return call_int_hook(ptrace_traceme, 0, parent);
671 }
672 
673 int security_capget(struct task_struct *target,
674 		     kernel_cap_t *effective,
675 		     kernel_cap_t *inheritable,
676 		     kernel_cap_t *permitted)
677 {
678 	return call_int_hook(capget, 0, target,
679 				effective, inheritable, permitted);
680 }
681 
682 int security_capset(struct cred *new, const struct cred *old,
683 		    const kernel_cap_t *effective,
684 		    const kernel_cap_t *inheritable,
685 		    const kernel_cap_t *permitted)
686 {
687 	return call_int_hook(capset, 0, new, old,
688 				effective, inheritable, permitted);
689 }
690 
691 int security_capable(const struct cred *cred,
692 		     struct user_namespace *ns,
693 		     int cap,
694 		     unsigned int opts)
695 {
696 	return call_int_hook(capable, 0, cred, ns, cap, opts);
697 }
698 
699 int security_quotactl(int cmds, int type, int id, struct super_block *sb)
700 {
701 	return call_int_hook(quotactl, 0, cmds, type, id, sb);
702 }
703 
704 int security_quota_on(struct dentry *dentry)
705 {
706 	return call_int_hook(quota_on, 0, dentry);
707 }
708 
709 int security_syslog(int type)
710 {
711 	return call_int_hook(syslog, 0, type);
712 }
713 
714 int security_settime64(const struct timespec64 *ts, const struct timezone *tz)
715 {
716 	return call_int_hook(settime, 0, ts, tz);
717 }
718 
719 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
720 {
721 	struct security_hook_list *hp;
722 	int cap_sys_admin = 1;
723 	int rc;
724 
725 	/*
726 	 * The module will respond with a positive value if
727 	 * it thinks the __vm_enough_memory() call should be
728 	 * made with the cap_sys_admin set. If all of the modules
729 	 * agree that it should be set it will. If any module
730 	 * thinks it should not be set it won't.
731 	 */
732 	hlist_for_each_entry(hp, &security_hook_heads.vm_enough_memory, list) {
733 		rc = hp->hook.vm_enough_memory(mm, pages);
734 		if (rc <= 0) {
735 			cap_sys_admin = 0;
736 			break;
737 		}
738 	}
739 	return __vm_enough_memory(mm, pages, cap_sys_admin);
740 }
741 
742 int security_bprm_set_creds(struct linux_binprm *bprm)
743 {
744 	return call_int_hook(bprm_set_creds, 0, bprm);
745 }
746 
747 int security_bprm_check(struct linux_binprm *bprm)
748 {
749 	int ret;
750 
751 	ret = call_int_hook(bprm_check_security, 0, bprm);
752 	if (ret)
753 		return ret;
754 	return ima_bprm_check(bprm);
755 }
756 
757 void security_bprm_committing_creds(struct linux_binprm *bprm)
758 {
759 	call_void_hook(bprm_committing_creds, bprm);
760 }
761 
762 void security_bprm_committed_creds(struct linux_binprm *bprm)
763 {
764 	call_void_hook(bprm_committed_creds, bprm);
765 }
766 
767 int security_sb_alloc(struct super_block *sb)
768 {
769 	return call_int_hook(sb_alloc_security, 0, sb);
770 }
771 
772 void security_sb_free(struct super_block *sb)
773 {
774 	call_void_hook(sb_free_security, sb);
775 }
776 
777 void security_free_mnt_opts(void **mnt_opts)
778 {
779 	if (!*mnt_opts)
780 		return;
781 	call_void_hook(sb_free_mnt_opts, *mnt_opts);
782 	*mnt_opts = NULL;
783 }
784 EXPORT_SYMBOL(security_free_mnt_opts);
785 
786 int security_sb_eat_lsm_opts(char *options, void **mnt_opts)
787 {
788 	return call_int_hook(sb_eat_lsm_opts, 0, options, mnt_opts);
789 }
790 EXPORT_SYMBOL(security_sb_eat_lsm_opts);
791 
792 int security_sb_remount(struct super_block *sb,
793 			void *mnt_opts)
794 {
795 	return call_int_hook(sb_remount, 0, sb, mnt_opts);
796 }
797 EXPORT_SYMBOL(security_sb_remount);
798 
799 int security_sb_kern_mount(struct super_block *sb)
800 {
801 	return call_int_hook(sb_kern_mount, 0, sb);
802 }
803 
804 int security_sb_show_options(struct seq_file *m, struct super_block *sb)
805 {
806 	return call_int_hook(sb_show_options, 0, m, sb);
807 }
808 
809 int security_sb_statfs(struct dentry *dentry)
810 {
811 	return call_int_hook(sb_statfs, 0, dentry);
812 }
813 
814 int security_sb_mount(const char *dev_name, const struct path *path,
815                        const char *type, unsigned long flags, void *data)
816 {
817 	return call_int_hook(sb_mount, 0, dev_name, path, type, flags, data);
818 }
819 
820 int security_sb_umount(struct vfsmount *mnt, int flags)
821 {
822 	return call_int_hook(sb_umount, 0, mnt, flags);
823 }
824 
825 int security_sb_pivotroot(const struct path *old_path, const struct path *new_path)
826 {
827 	return call_int_hook(sb_pivotroot, 0, old_path, new_path);
828 }
829 
830 int security_sb_set_mnt_opts(struct super_block *sb,
831 				void *mnt_opts,
832 				unsigned long kern_flags,
833 				unsigned long *set_kern_flags)
834 {
835 	return call_int_hook(sb_set_mnt_opts,
836 				mnt_opts ? -EOPNOTSUPP : 0, sb,
837 				mnt_opts, kern_flags, set_kern_flags);
838 }
839 EXPORT_SYMBOL(security_sb_set_mnt_opts);
840 
841 int security_sb_clone_mnt_opts(const struct super_block *oldsb,
842 				struct super_block *newsb,
843 				unsigned long kern_flags,
844 				unsigned long *set_kern_flags)
845 {
846 	return call_int_hook(sb_clone_mnt_opts, 0, oldsb, newsb,
847 				kern_flags, set_kern_flags);
848 }
849 EXPORT_SYMBOL(security_sb_clone_mnt_opts);
850 
851 int security_add_mnt_opt(const char *option, const char *val, int len,
852 			 void **mnt_opts)
853 {
854 	return call_int_hook(sb_add_mnt_opt, -EINVAL,
855 					option, val, len, mnt_opts);
856 }
857 EXPORT_SYMBOL(security_add_mnt_opt);
858 
859 int security_inode_alloc(struct inode *inode)
860 {
861 	int rc = lsm_inode_alloc(inode);
862 
863 	if (unlikely(rc))
864 		return rc;
865 	rc = call_int_hook(inode_alloc_security, 0, inode);
866 	if (unlikely(rc))
867 		security_inode_free(inode);
868 	return rc;
869 }
870 
871 static void inode_free_by_rcu(struct rcu_head *head)
872 {
873 	/*
874 	 * The rcu head is at the start of the inode blob
875 	 */
876 	kmem_cache_free(lsm_inode_cache, head);
877 }
878 
879 void security_inode_free(struct inode *inode)
880 {
881 	integrity_inode_free(inode);
882 	call_void_hook(inode_free_security, inode);
883 	/*
884 	 * The inode may still be referenced in a path walk and
885 	 * a call to security_inode_permission() can be made
886 	 * after inode_free_security() is called. Ideally, the VFS
887 	 * wouldn't do this, but fixing that is a much harder
888 	 * job. For now, simply free the i_security via RCU, and
889 	 * leave the current inode->i_security pointer intact.
890 	 * The inode will be freed after the RCU grace period too.
891 	 */
892 	if (inode->i_security)
893 		call_rcu((struct rcu_head *)inode->i_security,
894 				inode_free_by_rcu);
895 }
896 
897 int security_dentry_init_security(struct dentry *dentry, int mode,
898 					const struct qstr *name, void **ctx,
899 					u32 *ctxlen)
900 {
901 	return call_int_hook(dentry_init_security, -EOPNOTSUPP, dentry, mode,
902 				name, ctx, ctxlen);
903 }
904 EXPORT_SYMBOL(security_dentry_init_security);
905 
906 int security_dentry_create_files_as(struct dentry *dentry, int mode,
907 				    struct qstr *name,
908 				    const struct cred *old, struct cred *new)
909 {
910 	return call_int_hook(dentry_create_files_as, 0, dentry, mode,
911 				name, old, new);
912 }
913 EXPORT_SYMBOL(security_dentry_create_files_as);
914 
915 int security_inode_init_security(struct inode *inode, struct inode *dir,
916 				 const struct qstr *qstr,
917 				 const initxattrs initxattrs, void *fs_data)
918 {
919 	struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1];
920 	struct xattr *lsm_xattr, *evm_xattr, *xattr;
921 	int ret;
922 
923 	if (unlikely(IS_PRIVATE(inode)))
924 		return 0;
925 
926 	if (!initxattrs)
927 		return call_int_hook(inode_init_security, -EOPNOTSUPP, inode,
928 				     dir, qstr, NULL, NULL, NULL);
929 	memset(new_xattrs, 0, sizeof(new_xattrs));
930 	lsm_xattr = new_xattrs;
931 	ret = call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir, qstr,
932 						&lsm_xattr->name,
933 						&lsm_xattr->value,
934 						&lsm_xattr->value_len);
935 	if (ret)
936 		goto out;
937 
938 	evm_xattr = lsm_xattr + 1;
939 	ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr);
940 	if (ret)
941 		goto out;
942 	ret = initxattrs(inode, new_xattrs, fs_data);
943 out:
944 	for (xattr = new_xattrs; xattr->value != NULL; xattr++)
945 		kfree(xattr->value);
946 	return (ret == -EOPNOTSUPP) ? 0 : ret;
947 }
948 EXPORT_SYMBOL(security_inode_init_security);
949 
950 int security_old_inode_init_security(struct inode *inode, struct inode *dir,
951 				     const struct qstr *qstr, const char **name,
952 				     void **value, size_t *len)
953 {
954 	if (unlikely(IS_PRIVATE(inode)))
955 		return -EOPNOTSUPP;
956 	return call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir,
957 			     qstr, name, value, len);
958 }
959 EXPORT_SYMBOL(security_old_inode_init_security);
960 
961 #ifdef CONFIG_SECURITY_PATH
962 int security_path_mknod(const struct path *dir, struct dentry *dentry, umode_t mode,
963 			unsigned int dev)
964 {
965 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
966 		return 0;
967 	return call_int_hook(path_mknod, 0, dir, dentry, mode, dev);
968 }
969 EXPORT_SYMBOL(security_path_mknod);
970 
971 int security_path_mkdir(const struct path *dir, struct dentry *dentry, umode_t mode)
972 {
973 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
974 		return 0;
975 	return call_int_hook(path_mkdir, 0, dir, dentry, mode);
976 }
977 EXPORT_SYMBOL(security_path_mkdir);
978 
979 int security_path_rmdir(const struct path *dir, struct dentry *dentry)
980 {
981 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
982 		return 0;
983 	return call_int_hook(path_rmdir, 0, dir, dentry);
984 }
985 
986 int security_path_unlink(const struct path *dir, struct dentry *dentry)
987 {
988 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
989 		return 0;
990 	return call_int_hook(path_unlink, 0, dir, dentry);
991 }
992 EXPORT_SYMBOL(security_path_unlink);
993 
994 int security_path_symlink(const struct path *dir, struct dentry *dentry,
995 			  const char *old_name)
996 {
997 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
998 		return 0;
999 	return call_int_hook(path_symlink, 0, dir, dentry, old_name);
1000 }
1001 
1002 int security_path_link(struct dentry *old_dentry, const struct path *new_dir,
1003 		       struct dentry *new_dentry)
1004 {
1005 	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
1006 		return 0;
1007 	return call_int_hook(path_link, 0, old_dentry, new_dir, new_dentry);
1008 }
1009 
1010 int security_path_rename(const struct path *old_dir, struct dentry *old_dentry,
1011 			 const struct path *new_dir, struct dentry *new_dentry,
1012 			 unsigned int flags)
1013 {
1014 	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
1015 		     (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
1016 		return 0;
1017 
1018 	if (flags & RENAME_EXCHANGE) {
1019 		int err = call_int_hook(path_rename, 0, new_dir, new_dentry,
1020 					old_dir, old_dentry);
1021 		if (err)
1022 			return err;
1023 	}
1024 
1025 	return call_int_hook(path_rename, 0, old_dir, old_dentry, new_dir,
1026 				new_dentry);
1027 }
1028 EXPORT_SYMBOL(security_path_rename);
1029 
1030 int security_path_truncate(const struct path *path)
1031 {
1032 	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1033 		return 0;
1034 	return call_int_hook(path_truncate, 0, path);
1035 }
1036 
1037 int security_path_chmod(const struct path *path, umode_t mode)
1038 {
1039 	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1040 		return 0;
1041 	return call_int_hook(path_chmod, 0, path, mode);
1042 }
1043 
1044 int security_path_chown(const struct path *path, kuid_t uid, kgid_t gid)
1045 {
1046 	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1047 		return 0;
1048 	return call_int_hook(path_chown, 0, path, uid, gid);
1049 }
1050 
1051 int security_path_chroot(const struct path *path)
1052 {
1053 	return call_int_hook(path_chroot, 0, path);
1054 }
1055 #endif
1056 
1057 int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
1058 {
1059 	if (unlikely(IS_PRIVATE(dir)))
1060 		return 0;
1061 	return call_int_hook(inode_create, 0, dir, dentry, mode);
1062 }
1063 EXPORT_SYMBOL_GPL(security_inode_create);
1064 
1065 int security_inode_link(struct dentry *old_dentry, struct inode *dir,
1066 			 struct dentry *new_dentry)
1067 {
1068 	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
1069 		return 0;
1070 	return call_int_hook(inode_link, 0, old_dentry, dir, new_dentry);
1071 }
1072 
1073 int security_inode_unlink(struct inode *dir, struct dentry *dentry)
1074 {
1075 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1076 		return 0;
1077 	return call_int_hook(inode_unlink, 0, dir, dentry);
1078 }
1079 
1080 int security_inode_symlink(struct inode *dir, struct dentry *dentry,
1081 			    const char *old_name)
1082 {
1083 	if (unlikely(IS_PRIVATE(dir)))
1084 		return 0;
1085 	return call_int_hook(inode_symlink, 0, dir, dentry, old_name);
1086 }
1087 
1088 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1089 {
1090 	if (unlikely(IS_PRIVATE(dir)))
1091 		return 0;
1092 	return call_int_hook(inode_mkdir, 0, dir, dentry, mode);
1093 }
1094 EXPORT_SYMBOL_GPL(security_inode_mkdir);
1095 
1096 int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
1097 {
1098 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1099 		return 0;
1100 	return call_int_hook(inode_rmdir, 0, dir, dentry);
1101 }
1102 
1103 int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1104 {
1105 	if (unlikely(IS_PRIVATE(dir)))
1106 		return 0;
1107 	return call_int_hook(inode_mknod, 0, dir, dentry, mode, dev);
1108 }
1109 
1110 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
1111 			   struct inode *new_dir, struct dentry *new_dentry,
1112 			   unsigned int flags)
1113 {
1114         if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
1115             (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
1116 		return 0;
1117 
1118 	if (flags & RENAME_EXCHANGE) {
1119 		int err = call_int_hook(inode_rename, 0, new_dir, new_dentry,
1120 						     old_dir, old_dentry);
1121 		if (err)
1122 			return err;
1123 	}
1124 
1125 	return call_int_hook(inode_rename, 0, old_dir, old_dentry,
1126 					   new_dir, new_dentry);
1127 }
1128 
1129 int security_inode_readlink(struct dentry *dentry)
1130 {
1131 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1132 		return 0;
1133 	return call_int_hook(inode_readlink, 0, dentry);
1134 }
1135 
1136 int security_inode_follow_link(struct dentry *dentry, struct inode *inode,
1137 			       bool rcu)
1138 {
1139 	if (unlikely(IS_PRIVATE(inode)))
1140 		return 0;
1141 	return call_int_hook(inode_follow_link, 0, dentry, inode, rcu);
1142 }
1143 
1144 int security_inode_permission(struct inode *inode, int mask)
1145 {
1146 	if (unlikely(IS_PRIVATE(inode)))
1147 		return 0;
1148 	return call_int_hook(inode_permission, 0, inode, mask);
1149 }
1150 
1151 int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
1152 {
1153 	int ret;
1154 
1155 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1156 		return 0;
1157 	ret = call_int_hook(inode_setattr, 0, dentry, attr);
1158 	if (ret)
1159 		return ret;
1160 	return evm_inode_setattr(dentry, attr);
1161 }
1162 EXPORT_SYMBOL_GPL(security_inode_setattr);
1163 
1164 int security_inode_getattr(const struct path *path)
1165 {
1166 	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1167 		return 0;
1168 	return call_int_hook(inode_getattr, 0, path);
1169 }
1170 
1171 int security_inode_setxattr(struct dentry *dentry, const char *name,
1172 			    const void *value, size_t size, int flags)
1173 {
1174 	int ret;
1175 
1176 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1177 		return 0;
1178 	/*
1179 	 * SELinux and Smack integrate the cap call,
1180 	 * so assume that all LSMs supplying this call do so.
1181 	 */
1182 	ret = call_int_hook(inode_setxattr, 1, dentry, name, value, size,
1183 				flags);
1184 
1185 	if (ret == 1)
1186 		ret = cap_inode_setxattr(dentry, name, value, size, flags);
1187 	if (ret)
1188 		return ret;
1189 	ret = ima_inode_setxattr(dentry, name, value, size);
1190 	if (ret)
1191 		return ret;
1192 	return evm_inode_setxattr(dentry, name, value, size);
1193 }
1194 
1195 void security_inode_post_setxattr(struct dentry *dentry, const char *name,
1196 				  const void *value, size_t size, int flags)
1197 {
1198 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1199 		return;
1200 	call_void_hook(inode_post_setxattr, dentry, name, value, size, flags);
1201 	evm_inode_post_setxattr(dentry, name, value, size);
1202 }
1203 
1204 int security_inode_getxattr(struct dentry *dentry, const char *name)
1205 {
1206 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1207 		return 0;
1208 	return call_int_hook(inode_getxattr, 0, dentry, name);
1209 }
1210 
1211 int security_inode_listxattr(struct dentry *dentry)
1212 {
1213 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1214 		return 0;
1215 	return call_int_hook(inode_listxattr, 0, dentry);
1216 }
1217 
1218 int security_inode_removexattr(struct dentry *dentry, const char *name)
1219 {
1220 	int ret;
1221 
1222 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1223 		return 0;
1224 	/*
1225 	 * SELinux and Smack integrate the cap call,
1226 	 * so assume that all LSMs supplying this call do so.
1227 	 */
1228 	ret = call_int_hook(inode_removexattr, 1, dentry, name);
1229 	if (ret == 1)
1230 		ret = cap_inode_removexattr(dentry, name);
1231 	if (ret)
1232 		return ret;
1233 	ret = ima_inode_removexattr(dentry, name);
1234 	if (ret)
1235 		return ret;
1236 	return evm_inode_removexattr(dentry, name);
1237 }
1238 
1239 int security_inode_need_killpriv(struct dentry *dentry)
1240 {
1241 	return call_int_hook(inode_need_killpriv, 0, dentry);
1242 }
1243 
1244 int security_inode_killpriv(struct dentry *dentry)
1245 {
1246 	return call_int_hook(inode_killpriv, 0, dentry);
1247 }
1248 
1249 int security_inode_getsecurity(struct inode *inode, const char *name, void **buffer, bool alloc)
1250 {
1251 	struct security_hook_list *hp;
1252 	int rc;
1253 
1254 	if (unlikely(IS_PRIVATE(inode)))
1255 		return -EOPNOTSUPP;
1256 	/*
1257 	 * Only one module will provide an attribute with a given name.
1258 	 */
1259 	hlist_for_each_entry(hp, &security_hook_heads.inode_getsecurity, list) {
1260 		rc = hp->hook.inode_getsecurity(inode, name, buffer, alloc);
1261 		if (rc != -EOPNOTSUPP)
1262 			return rc;
1263 	}
1264 	return -EOPNOTSUPP;
1265 }
1266 
1267 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
1268 {
1269 	struct security_hook_list *hp;
1270 	int rc;
1271 
1272 	if (unlikely(IS_PRIVATE(inode)))
1273 		return -EOPNOTSUPP;
1274 	/*
1275 	 * Only one module will provide an attribute with a given name.
1276 	 */
1277 	hlist_for_each_entry(hp, &security_hook_heads.inode_setsecurity, list) {
1278 		rc = hp->hook.inode_setsecurity(inode, name, value, size,
1279 								flags);
1280 		if (rc != -EOPNOTSUPP)
1281 			return rc;
1282 	}
1283 	return -EOPNOTSUPP;
1284 }
1285 
1286 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
1287 {
1288 	if (unlikely(IS_PRIVATE(inode)))
1289 		return 0;
1290 	return call_int_hook(inode_listsecurity, 0, inode, buffer, buffer_size);
1291 }
1292 EXPORT_SYMBOL(security_inode_listsecurity);
1293 
1294 void security_inode_getsecid(struct inode *inode, u32 *secid)
1295 {
1296 	call_void_hook(inode_getsecid, inode, secid);
1297 }
1298 
1299 int security_inode_copy_up(struct dentry *src, struct cred **new)
1300 {
1301 	return call_int_hook(inode_copy_up, 0, src, new);
1302 }
1303 EXPORT_SYMBOL(security_inode_copy_up);
1304 
1305 int security_inode_copy_up_xattr(const char *name)
1306 {
1307 	return call_int_hook(inode_copy_up_xattr, -EOPNOTSUPP, name);
1308 }
1309 EXPORT_SYMBOL(security_inode_copy_up_xattr);
1310 
1311 int security_file_permission(struct file *file, int mask)
1312 {
1313 	int ret;
1314 
1315 	ret = call_int_hook(file_permission, 0, file, mask);
1316 	if (ret)
1317 		return ret;
1318 
1319 	return fsnotify_perm(file, mask);
1320 }
1321 
1322 int security_file_alloc(struct file *file)
1323 {
1324 	int rc = lsm_file_alloc(file);
1325 
1326 	if (rc)
1327 		return rc;
1328 	rc = call_int_hook(file_alloc_security, 0, file);
1329 	if (unlikely(rc))
1330 		security_file_free(file);
1331 	return rc;
1332 }
1333 
1334 void security_file_free(struct file *file)
1335 {
1336 	void *blob;
1337 
1338 	call_void_hook(file_free_security, file);
1339 
1340 	blob = file->f_security;
1341 	if (blob) {
1342 		file->f_security = NULL;
1343 		kmem_cache_free(lsm_file_cache, blob);
1344 	}
1345 }
1346 
1347 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1348 {
1349 	return call_int_hook(file_ioctl, 0, file, cmd, arg);
1350 }
1351 
1352 static inline unsigned long mmap_prot(struct file *file, unsigned long prot)
1353 {
1354 	/*
1355 	 * Does we have PROT_READ and does the application expect
1356 	 * it to imply PROT_EXEC?  If not, nothing to talk about...
1357 	 */
1358 	if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ)
1359 		return prot;
1360 	if (!(current->personality & READ_IMPLIES_EXEC))
1361 		return prot;
1362 	/*
1363 	 * if that's an anonymous mapping, let it.
1364 	 */
1365 	if (!file)
1366 		return prot | PROT_EXEC;
1367 	/*
1368 	 * ditto if it's not on noexec mount, except that on !MMU we need
1369 	 * NOMMU_MAP_EXEC (== VM_MAYEXEC) in this case
1370 	 */
1371 	if (!path_noexec(&file->f_path)) {
1372 #ifndef CONFIG_MMU
1373 		if (file->f_op->mmap_capabilities) {
1374 			unsigned caps = file->f_op->mmap_capabilities(file);
1375 			if (!(caps & NOMMU_MAP_EXEC))
1376 				return prot;
1377 		}
1378 #endif
1379 		return prot | PROT_EXEC;
1380 	}
1381 	/* anything on noexec mount won't get PROT_EXEC */
1382 	return prot;
1383 }
1384 
1385 int security_mmap_file(struct file *file, unsigned long prot,
1386 			unsigned long flags)
1387 {
1388 	int ret;
1389 	ret = call_int_hook(mmap_file, 0, file, prot,
1390 					mmap_prot(file, prot), flags);
1391 	if (ret)
1392 		return ret;
1393 	return ima_file_mmap(file, prot);
1394 }
1395 
1396 int security_mmap_addr(unsigned long addr)
1397 {
1398 	return call_int_hook(mmap_addr, 0, addr);
1399 }
1400 
1401 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
1402 			    unsigned long prot)
1403 {
1404 	return call_int_hook(file_mprotect, 0, vma, reqprot, prot);
1405 }
1406 
1407 int security_file_lock(struct file *file, unsigned int cmd)
1408 {
1409 	return call_int_hook(file_lock, 0, file, cmd);
1410 }
1411 
1412 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
1413 {
1414 	return call_int_hook(file_fcntl, 0, file, cmd, arg);
1415 }
1416 
1417 void security_file_set_fowner(struct file *file)
1418 {
1419 	call_void_hook(file_set_fowner, file);
1420 }
1421 
1422 int security_file_send_sigiotask(struct task_struct *tsk,
1423 				  struct fown_struct *fown, int sig)
1424 {
1425 	return call_int_hook(file_send_sigiotask, 0, tsk, fown, sig);
1426 }
1427 
1428 int security_file_receive(struct file *file)
1429 {
1430 	return call_int_hook(file_receive, 0, file);
1431 }
1432 
1433 int security_file_open(struct file *file)
1434 {
1435 	int ret;
1436 
1437 	ret = call_int_hook(file_open, 0, file);
1438 	if (ret)
1439 		return ret;
1440 
1441 	return fsnotify_perm(file, MAY_OPEN);
1442 }
1443 
1444 int security_task_alloc(struct task_struct *task, unsigned long clone_flags)
1445 {
1446 	int rc = lsm_task_alloc(task);
1447 
1448 	if (rc)
1449 		return rc;
1450 	rc = call_int_hook(task_alloc, 0, task, clone_flags);
1451 	if (unlikely(rc))
1452 		security_task_free(task);
1453 	return rc;
1454 }
1455 
1456 void security_task_free(struct task_struct *task)
1457 {
1458 	call_void_hook(task_free, task);
1459 
1460 	kfree(task->security);
1461 	task->security = NULL;
1462 }
1463 
1464 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
1465 {
1466 	int rc = lsm_cred_alloc(cred, gfp);
1467 
1468 	if (rc)
1469 		return rc;
1470 
1471 	rc = call_int_hook(cred_alloc_blank, 0, cred, gfp);
1472 	if (unlikely(rc))
1473 		security_cred_free(cred);
1474 	return rc;
1475 }
1476 
1477 void security_cred_free(struct cred *cred)
1478 {
1479 	/*
1480 	 * There is a failure case in prepare_creds() that
1481 	 * may result in a call here with ->security being NULL.
1482 	 */
1483 	if (unlikely(cred->security == NULL))
1484 		return;
1485 
1486 	call_void_hook(cred_free, cred);
1487 
1488 	kfree(cred->security);
1489 	cred->security = NULL;
1490 }
1491 
1492 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
1493 {
1494 	int rc = lsm_cred_alloc(new, gfp);
1495 
1496 	if (rc)
1497 		return rc;
1498 
1499 	rc = call_int_hook(cred_prepare, 0, new, old, gfp);
1500 	if (unlikely(rc))
1501 		security_cred_free(new);
1502 	return rc;
1503 }
1504 
1505 void security_transfer_creds(struct cred *new, const struct cred *old)
1506 {
1507 	call_void_hook(cred_transfer, new, old);
1508 }
1509 
1510 void security_cred_getsecid(const struct cred *c, u32 *secid)
1511 {
1512 	*secid = 0;
1513 	call_void_hook(cred_getsecid, c, secid);
1514 }
1515 EXPORT_SYMBOL(security_cred_getsecid);
1516 
1517 int security_kernel_act_as(struct cred *new, u32 secid)
1518 {
1519 	return call_int_hook(kernel_act_as, 0, new, secid);
1520 }
1521 
1522 int security_kernel_create_files_as(struct cred *new, struct inode *inode)
1523 {
1524 	return call_int_hook(kernel_create_files_as, 0, new, inode);
1525 }
1526 
1527 int security_kernel_module_request(char *kmod_name)
1528 {
1529 	int ret;
1530 
1531 	ret = call_int_hook(kernel_module_request, 0, kmod_name);
1532 	if (ret)
1533 		return ret;
1534 	return integrity_kernel_module_request(kmod_name);
1535 }
1536 
1537 int security_kernel_read_file(struct file *file, enum kernel_read_file_id id)
1538 {
1539 	int ret;
1540 
1541 	ret = call_int_hook(kernel_read_file, 0, file, id);
1542 	if (ret)
1543 		return ret;
1544 	return ima_read_file(file, id);
1545 }
1546 EXPORT_SYMBOL_GPL(security_kernel_read_file);
1547 
1548 int security_kernel_post_read_file(struct file *file, char *buf, loff_t size,
1549 				   enum kernel_read_file_id id)
1550 {
1551 	int ret;
1552 
1553 	ret = call_int_hook(kernel_post_read_file, 0, file, buf, size, id);
1554 	if (ret)
1555 		return ret;
1556 	return ima_post_read_file(file, buf, size, id);
1557 }
1558 EXPORT_SYMBOL_GPL(security_kernel_post_read_file);
1559 
1560 int security_kernel_load_data(enum kernel_load_data_id id)
1561 {
1562 	int ret;
1563 
1564 	ret = call_int_hook(kernel_load_data, 0, id);
1565 	if (ret)
1566 		return ret;
1567 	return ima_load_data(id);
1568 }
1569 EXPORT_SYMBOL_GPL(security_kernel_load_data);
1570 
1571 int security_task_fix_setuid(struct cred *new, const struct cred *old,
1572 			     int flags)
1573 {
1574 	return call_int_hook(task_fix_setuid, 0, new, old, flags);
1575 }
1576 
1577 int security_task_setpgid(struct task_struct *p, pid_t pgid)
1578 {
1579 	return call_int_hook(task_setpgid, 0, p, pgid);
1580 }
1581 
1582 int security_task_getpgid(struct task_struct *p)
1583 {
1584 	return call_int_hook(task_getpgid, 0, p);
1585 }
1586 
1587 int security_task_getsid(struct task_struct *p)
1588 {
1589 	return call_int_hook(task_getsid, 0, p);
1590 }
1591 
1592 void security_task_getsecid(struct task_struct *p, u32 *secid)
1593 {
1594 	*secid = 0;
1595 	call_void_hook(task_getsecid, p, secid);
1596 }
1597 EXPORT_SYMBOL(security_task_getsecid);
1598 
1599 int security_task_setnice(struct task_struct *p, int nice)
1600 {
1601 	return call_int_hook(task_setnice, 0, p, nice);
1602 }
1603 
1604 int security_task_setioprio(struct task_struct *p, int ioprio)
1605 {
1606 	return call_int_hook(task_setioprio, 0, p, ioprio);
1607 }
1608 
1609 int security_task_getioprio(struct task_struct *p)
1610 {
1611 	return call_int_hook(task_getioprio, 0, p);
1612 }
1613 
1614 int security_task_prlimit(const struct cred *cred, const struct cred *tcred,
1615 			  unsigned int flags)
1616 {
1617 	return call_int_hook(task_prlimit, 0, cred, tcred, flags);
1618 }
1619 
1620 int security_task_setrlimit(struct task_struct *p, unsigned int resource,
1621 		struct rlimit *new_rlim)
1622 {
1623 	return call_int_hook(task_setrlimit, 0, p, resource, new_rlim);
1624 }
1625 
1626 int security_task_setscheduler(struct task_struct *p)
1627 {
1628 	return call_int_hook(task_setscheduler, 0, p);
1629 }
1630 
1631 int security_task_getscheduler(struct task_struct *p)
1632 {
1633 	return call_int_hook(task_getscheduler, 0, p);
1634 }
1635 
1636 int security_task_movememory(struct task_struct *p)
1637 {
1638 	return call_int_hook(task_movememory, 0, p);
1639 }
1640 
1641 int security_task_kill(struct task_struct *p, struct kernel_siginfo *info,
1642 			int sig, const struct cred *cred)
1643 {
1644 	return call_int_hook(task_kill, 0, p, info, sig, cred);
1645 }
1646 
1647 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
1648 			 unsigned long arg4, unsigned long arg5)
1649 {
1650 	int thisrc;
1651 	int rc = -ENOSYS;
1652 	struct security_hook_list *hp;
1653 
1654 	hlist_for_each_entry(hp, &security_hook_heads.task_prctl, list) {
1655 		thisrc = hp->hook.task_prctl(option, arg2, arg3, arg4, arg5);
1656 		if (thisrc != -ENOSYS) {
1657 			rc = thisrc;
1658 			if (thisrc != 0)
1659 				break;
1660 		}
1661 	}
1662 	return rc;
1663 }
1664 
1665 void security_task_to_inode(struct task_struct *p, struct inode *inode)
1666 {
1667 	call_void_hook(task_to_inode, p, inode);
1668 }
1669 
1670 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
1671 {
1672 	return call_int_hook(ipc_permission, 0, ipcp, flag);
1673 }
1674 
1675 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
1676 {
1677 	*secid = 0;
1678 	call_void_hook(ipc_getsecid, ipcp, secid);
1679 }
1680 
1681 int security_msg_msg_alloc(struct msg_msg *msg)
1682 {
1683 	int rc = lsm_msg_msg_alloc(msg);
1684 
1685 	if (unlikely(rc))
1686 		return rc;
1687 	rc = call_int_hook(msg_msg_alloc_security, 0, msg);
1688 	if (unlikely(rc))
1689 		security_msg_msg_free(msg);
1690 	return rc;
1691 }
1692 
1693 void security_msg_msg_free(struct msg_msg *msg)
1694 {
1695 	call_void_hook(msg_msg_free_security, msg);
1696 	kfree(msg->security);
1697 	msg->security = NULL;
1698 }
1699 
1700 int security_msg_queue_alloc(struct kern_ipc_perm *msq)
1701 {
1702 	int rc = lsm_ipc_alloc(msq);
1703 
1704 	if (unlikely(rc))
1705 		return rc;
1706 	rc = call_int_hook(msg_queue_alloc_security, 0, msq);
1707 	if (unlikely(rc))
1708 		security_msg_queue_free(msq);
1709 	return rc;
1710 }
1711 
1712 void security_msg_queue_free(struct kern_ipc_perm *msq)
1713 {
1714 	call_void_hook(msg_queue_free_security, msq);
1715 	kfree(msq->security);
1716 	msq->security = NULL;
1717 }
1718 
1719 int security_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
1720 {
1721 	return call_int_hook(msg_queue_associate, 0, msq, msqflg);
1722 }
1723 
1724 int security_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
1725 {
1726 	return call_int_hook(msg_queue_msgctl, 0, msq, cmd);
1727 }
1728 
1729 int security_msg_queue_msgsnd(struct kern_ipc_perm *msq,
1730 			       struct msg_msg *msg, int msqflg)
1731 {
1732 	return call_int_hook(msg_queue_msgsnd, 0, msq, msg, msqflg);
1733 }
1734 
1735 int security_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
1736 			       struct task_struct *target, long type, int mode)
1737 {
1738 	return call_int_hook(msg_queue_msgrcv, 0, msq, msg, target, type, mode);
1739 }
1740 
1741 int security_shm_alloc(struct kern_ipc_perm *shp)
1742 {
1743 	int rc = lsm_ipc_alloc(shp);
1744 
1745 	if (unlikely(rc))
1746 		return rc;
1747 	rc = call_int_hook(shm_alloc_security, 0, shp);
1748 	if (unlikely(rc))
1749 		security_shm_free(shp);
1750 	return rc;
1751 }
1752 
1753 void security_shm_free(struct kern_ipc_perm *shp)
1754 {
1755 	call_void_hook(shm_free_security, shp);
1756 	kfree(shp->security);
1757 	shp->security = NULL;
1758 }
1759 
1760 int security_shm_associate(struct kern_ipc_perm *shp, int shmflg)
1761 {
1762 	return call_int_hook(shm_associate, 0, shp, shmflg);
1763 }
1764 
1765 int security_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
1766 {
1767 	return call_int_hook(shm_shmctl, 0, shp, cmd);
1768 }
1769 
1770 int security_shm_shmat(struct kern_ipc_perm *shp, char __user *shmaddr, int shmflg)
1771 {
1772 	return call_int_hook(shm_shmat, 0, shp, shmaddr, shmflg);
1773 }
1774 
1775 int security_sem_alloc(struct kern_ipc_perm *sma)
1776 {
1777 	int rc = lsm_ipc_alloc(sma);
1778 
1779 	if (unlikely(rc))
1780 		return rc;
1781 	rc = call_int_hook(sem_alloc_security, 0, sma);
1782 	if (unlikely(rc))
1783 		security_sem_free(sma);
1784 	return rc;
1785 }
1786 
1787 void security_sem_free(struct kern_ipc_perm *sma)
1788 {
1789 	call_void_hook(sem_free_security, sma);
1790 	kfree(sma->security);
1791 	sma->security = NULL;
1792 }
1793 
1794 int security_sem_associate(struct kern_ipc_perm *sma, int semflg)
1795 {
1796 	return call_int_hook(sem_associate, 0, sma, semflg);
1797 }
1798 
1799 int security_sem_semctl(struct kern_ipc_perm *sma, int cmd)
1800 {
1801 	return call_int_hook(sem_semctl, 0, sma, cmd);
1802 }
1803 
1804 int security_sem_semop(struct kern_ipc_perm *sma, struct sembuf *sops,
1805 			unsigned nsops, int alter)
1806 {
1807 	return call_int_hook(sem_semop, 0, sma, sops, nsops, alter);
1808 }
1809 
1810 void security_d_instantiate(struct dentry *dentry, struct inode *inode)
1811 {
1812 	if (unlikely(inode && IS_PRIVATE(inode)))
1813 		return;
1814 	call_void_hook(d_instantiate, dentry, inode);
1815 }
1816 EXPORT_SYMBOL(security_d_instantiate);
1817 
1818 int security_getprocattr(struct task_struct *p, const char *lsm, char *name,
1819 				char **value)
1820 {
1821 	struct security_hook_list *hp;
1822 
1823 	hlist_for_each_entry(hp, &security_hook_heads.getprocattr, list) {
1824 		if (lsm != NULL && strcmp(lsm, hp->lsm))
1825 			continue;
1826 		return hp->hook.getprocattr(p, name, value);
1827 	}
1828 	return -EINVAL;
1829 }
1830 
1831 int security_setprocattr(const char *lsm, const char *name, void *value,
1832 			 size_t size)
1833 {
1834 	struct security_hook_list *hp;
1835 
1836 	hlist_for_each_entry(hp, &security_hook_heads.setprocattr, list) {
1837 		if (lsm != NULL && strcmp(lsm, hp->lsm))
1838 			continue;
1839 		return hp->hook.setprocattr(name, value, size);
1840 	}
1841 	return -EINVAL;
1842 }
1843 
1844 int security_netlink_send(struct sock *sk, struct sk_buff *skb)
1845 {
1846 	return call_int_hook(netlink_send, 0, sk, skb);
1847 }
1848 
1849 int security_ismaclabel(const char *name)
1850 {
1851 	return call_int_hook(ismaclabel, 0, name);
1852 }
1853 EXPORT_SYMBOL(security_ismaclabel);
1854 
1855 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
1856 {
1857 	return call_int_hook(secid_to_secctx, -EOPNOTSUPP, secid, secdata,
1858 				seclen);
1859 }
1860 EXPORT_SYMBOL(security_secid_to_secctx);
1861 
1862 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
1863 {
1864 	*secid = 0;
1865 	return call_int_hook(secctx_to_secid, 0, secdata, seclen, secid);
1866 }
1867 EXPORT_SYMBOL(security_secctx_to_secid);
1868 
1869 void security_release_secctx(char *secdata, u32 seclen)
1870 {
1871 	call_void_hook(release_secctx, secdata, seclen);
1872 }
1873 EXPORT_SYMBOL(security_release_secctx);
1874 
1875 void security_inode_invalidate_secctx(struct inode *inode)
1876 {
1877 	call_void_hook(inode_invalidate_secctx, inode);
1878 }
1879 EXPORT_SYMBOL(security_inode_invalidate_secctx);
1880 
1881 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
1882 {
1883 	return call_int_hook(inode_notifysecctx, 0, inode, ctx, ctxlen);
1884 }
1885 EXPORT_SYMBOL(security_inode_notifysecctx);
1886 
1887 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
1888 {
1889 	return call_int_hook(inode_setsecctx, 0, dentry, ctx, ctxlen);
1890 }
1891 EXPORT_SYMBOL(security_inode_setsecctx);
1892 
1893 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
1894 {
1895 	return call_int_hook(inode_getsecctx, -EOPNOTSUPP, inode, ctx, ctxlen);
1896 }
1897 EXPORT_SYMBOL(security_inode_getsecctx);
1898 
1899 #ifdef CONFIG_SECURITY_NETWORK
1900 
1901 int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk)
1902 {
1903 	return call_int_hook(unix_stream_connect, 0, sock, other, newsk);
1904 }
1905 EXPORT_SYMBOL(security_unix_stream_connect);
1906 
1907 int security_unix_may_send(struct socket *sock,  struct socket *other)
1908 {
1909 	return call_int_hook(unix_may_send, 0, sock, other);
1910 }
1911 EXPORT_SYMBOL(security_unix_may_send);
1912 
1913 int security_socket_create(int family, int type, int protocol, int kern)
1914 {
1915 	return call_int_hook(socket_create, 0, family, type, protocol, kern);
1916 }
1917 
1918 int security_socket_post_create(struct socket *sock, int family,
1919 				int type, int protocol, int kern)
1920 {
1921 	return call_int_hook(socket_post_create, 0, sock, family, type,
1922 						protocol, kern);
1923 }
1924 
1925 int security_socket_socketpair(struct socket *socka, struct socket *sockb)
1926 {
1927 	return call_int_hook(socket_socketpair, 0, socka, sockb);
1928 }
1929 EXPORT_SYMBOL(security_socket_socketpair);
1930 
1931 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
1932 {
1933 	return call_int_hook(socket_bind, 0, sock, address, addrlen);
1934 }
1935 
1936 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
1937 {
1938 	return call_int_hook(socket_connect, 0, sock, address, addrlen);
1939 }
1940 
1941 int security_socket_listen(struct socket *sock, int backlog)
1942 {
1943 	return call_int_hook(socket_listen, 0, sock, backlog);
1944 }
1945 
1946 int security_socket_accept(struct socket *sock, struct socket *newsock)
1947 {
1948 	return call_int_hook(socket_accept, 0, sock, newsock);
1949 }
1950 
1951 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
1952 {
1953 	return call_int_hook(socket_sendmsg, 0, sock, msg, size);
1954 }
1955 
1956 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
1957 			    int size, int flags)
1958 {
1959 	return call_int_hook(socket_recvmsg, 0, sock, msg, size, flags);
1960 }
1961 
1962 int security_socket_getsockname(struct socket *sock)
1963 {
1964 	return call_int_hook(socket_getsockname, 0, sock);
1965 }
1966 
1967 int security_socket_getpeername(struct socket *sock)
1968 {
1969 	return call_int_hook(socket_getpeername, 0, sock);
1970 }
1971 
1972 int security_socket_getsockopt(struct socket *sock, int level, int optname)
1973 {
1974 	return call_int_hook(socket_getsockopt, 0, sock, level, optname);
1975 }
1976 
1977 int security_socket_setsockopt(struct socket *sock, int level, int optname)
1978 {
1979 	return call_int_hook(socket_setsockopt, 0, sock, level, optname);
1980 }
1981 
1982 int security_socket_shutdown(struct socket *sock, int how)
1983 {
1984 	return call_int_hook(socket_shutdown, 0, sock, how);
1985 }
1986 
1987 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
1988 {
1989 	return call_int_hook(socket_sock_rcv_skb, 0, sk, skb);
1990 }
1991 EXPORT_SYMBOL(security_sock_rcv_skb);
1992 
1993 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
1994 				      int __user *optlen, unsigned len)
1995 {
1996 	return call_int_hook(socket_getpeersec_stream, -ENOPROTOOPT, sock,
1997 				optval, optlen, len);
1998 }
1999 
2000 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
2001 {
2002 	return call_int_hook(socket_getpeersec_dgram, -ENOPROTOOPT, sock,
2003 			     skb, secid);
2004 }
2005 EXPORT_SYMBOL(security_socket_getpeersec_dgram);
2006 
2007 int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
2008 {
2009 	return call_int_hook(sk_alloc_security, 0, sk, family, priority);
2010 }
2011 
2012 void security_sk_free(struct sock *sk)
2013 {
2014 	call_void_hook(sk_free_security, sk);
2015 }
2016 
2017 void security_sk_clone(const struct sock *sk, struct sock *newsk)
2018 {
2019 	call_void_hook(sk_clone_security, sk, newsk);
2020 }
2021 EXPORT_SYMBOL(security_sk_clone);
2022 
2023 void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
2024 {
2025 	call_void_hook(sk_getsecid, sk, &fl->flowi_secid);
2026 }
2027 EXPORT_SYMBOL(security_sk_classify_flow);
2028 
2029 void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
2030 {
2031 	call_void_hook(req_classify_flow, req, fl);
2032 }
2033 EXPORT_SYMBOL(security_req_classify_flow);
2034 
2035 void security_sock_graft(struct sock *sk, struct socket *parent)
2036 {
2037 	call_void_hook(sock_graft, sk, parent);
2038 }
2039 EXPORT_SYMBOL(security_sock_graft);
2040 
2041 int security_inet_conn_request(struct sock *sk,
2042 			struct sk_buff *skb, struct request_sock *req)
2043 {
2044 	return call_int_hook(inet_conn_request, 0, sk, skb, req);
2045 }
2046 EXPORT_SYMBOL(security_inet_conn_request);
2047 
2048 void security_inet_csk_clone(struct sock *newsk,
2049 			const struct request_sock *req)
2050 {
2051 	call_void_hook(inet_csk_clone, newsk, req);
2052 }
2053 
2054 void security_inet_conn_established(struct sock *sk,
2055 			struct sk_buff *skb)
2056 {
2057 	call_void_hook(inet_conn_established, sk, skb);
2058 }
2059 EXPORT_SYMBOL(security_inet_conn_established);
2060 
2061 int security_secmark_relabel_packet(u32 secid)
2062 {
2063 	return call_int_hook(secmark_relabel_packet, 0, secid);
2064 }
2065 EXPORT_SYMBOL(security_secmark_relabel_packet);
2066 
2067 void security_secmark_refcount_inc(void)
2068 {
2069 	call_void_hook(secmark_refcount_inc);
2070 }
2071 EXPORT_SYMBOL(security_secmark_refcount_inc);
2072 
2073 void security_secmark_refcount_dec(void)
2074 {
2075 	call_void_hook(secmark_refcount_dec);
2076 }
2077 EXPORT_SYMBOL(security_secmark_refcount_dec);
2078 
2079 int security_tun_dev_alloc_security(void **security)
2080 {
2081 	return call_int_hook(tun_dev_alloc_security, 0, security);
2082 }
2083 EXPORT_SYMBOL(security_tun_dev_alloc_security);
2084 
2085 void security_tun_dev_free_security(void *security)
2086 {
2087 	call_void_hook(tun_dev_free_security, security);
2088 }
2089 EXPORT_SYMBOL(security_tun_dev_free_security);
2090 
2091 int security_tun_dev_create(void)
2092 {
2093 	return call_int_hook(tun_dev_create, 0);
2094 }
2095 EXPORT_SYMBOL(security_tun_dev_create);
2096 
2097 int security_tun_dev_attach_queue(void *security)
2098 {
2099 	return call_int_hook(tun_dev_attach_queue, 0, security);
2100 }
2101 EXPORT_SYMBOL(security_tun_dev_attach_queue);
2102 
2103 int security_tun_dev_attach(struct sock *sk, void *security)
2104 {
2105 	return call_int_hook(tun_dev_attach, 0, sk, security);
2106 }
2107 EXPORT_SYMBOL(security_tun_dev_attach);
2108 
2109 int security_tun_dev_open(void *security)
2110 {
2111 	return call_int_hook(tun_dev_open, 0, security);
2112 }
2113 EXPORT_SYMBOL(security_tun_dev_open);
2114 
2115 int security_sctp_assoc_request(struct sctp_endpoint *ep, struct sk_buff *skb)
2116 {
2117 	return call_int_hook(sctp_assoc_request, 0, ep, skb);
2118 }
2119 EXPORT_SYMBOL(security_sctp_assoc_request);
2120 
2121 int security_sctp_bind_connect(struct sock *sk, int optname,
2122 			       struct sockaddr *address, int addrlen)
2123 {
2124 	return call_int_hook(sctp_bind_connect, 0, sk, optname,
2125 			     address, addrlen);
2126 }
2127 EXPORT_SYMBOL(security_sctp_bind_connect);
2128 
2129 void security_sctp_sk_clone(struct sctp_endpoint *ep, struct sock *sk,
2130 			    struct sock *newsk)
2131 {
2132 	call_void_hook(sctp_sk_clone, ep, sk, newsk);
2133 }
2134 EXPORT_SYMBOL(security_sctp_sk_clone);
2135 
2136 #endif	/* CONFIG_SECURITY_NETWORK */
2137 
2138 #ifdef CONFIG_SECURITY_INFINIBAND
2139 
2140 int security_ib_pkey_access(void *sec, u64 subnet_prefix, u16 pkey)
2141 {
2142 	return call_int_hook(ib_pkey_access, 0, sec, subnet_prefix, pkey);
2143 }
2144 EXPORT_SYMBOL(security_ib_pkey_access);
2145 
2146 int security_ib_endport_manage_subnet(void *sec, const char *dev_name, u8 port_num)
2147 {
2148 	return call_int_hook(ib_endport_manage_subnet, 0, sec, dev_name, port_num);
2149 }
2150 EXPORT_SYMBOL(security_ib_endport_manage_subnet);
2151 
2152 int security_ib_alloc_security(void **sec)
2153 {
2154 	return call_int_hook(ib_alloc_security, 0, sec);
2155 }
2156 EXPORT_SYMBOL(security_ib_alloc_security);
2157 
2158 void security_ib_free_security(void *sec)
2159 {
2160 	call_void_hook(ib_free_security, sec);
2161 }
2162 EXPORT_SYMBOL(security_ib_free_security);
2163 #endif	/* CONFIG_SECURITY_INFINIBAND */
2164 
2165 #ifdef CONFIG_SECURITY_NETWORK_XFRM
2166 
2167 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp,
2168 			       struct xfrm_user_sec_ctx *sec_ctx,
2169 			       gfp_t gfp)
2170 {
2171 	return call_int_hook(xfrm_policy_alloc_security, 0, ctxp, sec_ctx, gfp);
2172 }
2173 EXPORT_SYMBOL(security_xfrm_policy_alloc);
2174 
2175 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
2176 			      struct xfrm_sec_ctx **new_ctxp)
2177 {
2178 	return call_int_hook(xfrm_policy_clone_security, 0, old_ctx, new_ctxp);
2179 }
2180 
2181 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
2182 {
2183 	call_void_hook(xfrm_policy_free_security, ctx);
2184 }
2185 EXPORT_SYMBOL(security_xfrm_policy_free);
2186 
2187 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
2188 {
2189 	return call_int_hook(xfrm_policy_delete_security, 0, ctx);
2190 }
2191 
2192 int security_xfrm_state_alloc(struct xfrm_state *x,
2193 			      struct xfrm_user_sec_ctx *sec_ctx)
2194 {
2195 	return call_int_hook(xfrm_state_alloc, 0, x, sec_ctx);
2196 }
2197 EXPORT_SYMBOL(security_xfrm_state_alloc);
2198 
2199 int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
2200 				      struct xfrm_sec_ctx *polsec, u32 secid)
2201 {
2202 	return call_int_hook(xfrm_state_alloc_acquire, 0, x, polsec, secid);
2203 }
2204 
2205 int security_xfrm_state_delete(struct xfrm_state *x)
2206 {
2207 	return call_int_hook(xfrm_state_delete_security, 0, x);
2208 }
2209 EXPORT_SYMBOL(security_xfrm_state_delete);
2210 
2211 void security_xfrm_state_free(struct xfrm_state *x)
2212 {
2213 	call_void_hook(xfrm_state_free_security, x);
2214 }
2215 
2216 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
2217 {
2218 	return call_int_hook(xfrm_policy_lookup, 0, ctx, fl_secid, dir);
2219 }
2220 
2221 int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
2222 				       struct xfrm_policy *xp,
2223 				       const struct flowi *fl)
2224 {
2225 	struct security_hook_list *hp;
2226 	int rc = 1;
2227 
2228 	/*
2229 	 * Since this function is expected to return 0 or 1, the judgment
2230 	 * becomes difficult if multiple LSMs supply this call. Fortunately,
2231 	 * we can use the first LSM's judgment because currently only SELinux
2232 	 * supplies this call.
2233 	 *
2234 	 * For speed optimization, we explicitly break the loop rather than
2235 	 * using the macro
2236 	 */
2237 	hlist_for_each_entry(hp, &security_hook_heads.xfrm_state_pol_flow_match,
2238 				list) {
2239 		rc = hp->hook.xfrm_state_pol_flow_match(x, xp, fl);
2240 		break;
2241 	}
2242 	return rc;
2243 }
2244 
2245 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
2246 {
2247 	return call_int_hook(xfrm_decode_session, 0, skb, secid, 1);
2248 }
2249 
2250 void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
2251 {
2252 	int rc = call_int_hook(xfrm_decode_session, 0, skb, &fl->flowi_secid,
2253 				0);
2254 
2255 	BUG_ON(rc);
2256 }
2257 EXPORT_SYMBOL(security_skb_classify_flow);
2258 
2259 #endif	/* CONFIG_SECURITY_NETWORK_XFRM */
2260 
2261 #ifdef CONFIG_KEYS
2262 
2263 int security_key_alloc(struct key *key, const struct cred *cred,
2264 		       unsigned long flags)
2265 {
2266 	return call_int_hook(key_alloc, 0, key, cred, flags);
2267 }
2268 
2269 void security_key_free(struct key *key)
2270 {
2271 	call_void_hook(key_free, key);
2272 }
2273 
2274 int security_key_permission(key_ref_t key_ref,
2275 			    const struct cred *cred, unsigned perm)
2276 {
2277 	return call_int_hook(key_permission, 0, key_ref, cred, perm);
2278 }
2279 
2280 int security_key_getsecurity(struct key *key, char **_buffer)
2281 {
2282 	*_buffer = NULL;
2283 	return call_int_hook(key_getsecurity, 0, key, _buffer);
2284 }
2285 
2286 #endif	/* CONFIG_KEYS */
2287 
2288 #ifdef CONFIG_AUDIT
2289 
2290 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
2291 {
2292 	return call_int_hook(audit_rule_init, 0, field, op, rulestr, lsmrule);
2293 }
2294 
2295 int security_audit_rule_known(struct audit_krule *krule)
2296 {
2297 	return call_int_hook(audit_rule_known, 0, krule);
2298 }
2299 
2300 void security_audit_rule_free(void *lsmrule)
2301 {
2302 	call_void_hook(audit_rule_free, lsmrule);
2303 }
2304 
2305 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule)
2306 {
2307 	return call_int_hook(audit_rule_match, 0, secid, field, op, lsmrule);
2308 }
2309 #endif /* CONFIG_AUDIT */
2310 
2311 #ifdef CONFIG_BPF_SYSCALL
2312 int security_bpf(int cmd, union bpf_attr *attr, unsigned int size)
2313 {
2314 	return call_int_hook(bpf, 0, cmd, attr, size);
2315 }
2316 int security_bpf_map(struct bpf_map *map, fmode_t fmode)
2317 {
2318 	return call_int_hook(bpf_map, 0, map, fmode);
2319 }
2320 int security_bpf_prog(struct bpf_prog *prog)
2321 {
2322 	return call_int_hook(bpf_prog, 0, prog);
2323 }
2324 int security_bpf_map_alloc(struct bpf_map *map)
2325 {
2326 	return call_int_hook(bpf_map_alloc_security, 0, map);
2327 }
2328 int security_bpf_prog_alloc(struct bpf_prog_aux *aux)
2329 {
2330 	return call_int_hook(bpf_prog_alloc_security, 0, aux);
2331 }
2332 void security_bpf_map_free(struct bpf_map *map)
2333 {
2334 	call_void_hook(bpf_map_free_security, map);
2335 }
2336 void security_bpf_prog_free(struct bpf_prog_aux *aux)
2337 {
2338 	call_void_hook(bpf_prog_free_security, aux);
2339 }
2340 #endif /* CONFIG_BPF_SYSCALL */
2341