1 /* 2 * Security plug functions 3 * 4 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com> 5 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com> 6 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com> 7 * Copyright (C) 2016 Mellanox Technologies 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License as published by 11 * the Free Software Foundation; either version 2 of the License, or 12 * (at your option) any later version. 13 */ 14 15 #define pr_fmt(fmt) "LSM: " fmt 16 17 #include <linux/bpf.h> 18 #include <linux/capability.h> 19 #include <linux/dcache.h> 20 #include <linux/export.h> 21 #include <linux/init.h> 22 #include <linux/kernel.h> 23 #include <linux/lsm_hooks.h> 24 #include <linux/integrity.h> 25 #include <linux/ima.h> 26 #include <linux/evm.h> 27 #include <linux/fsnotify.h> 28 #include <linux/mman.h> 29 #include <linux/mount.h> 30 #include <linux/personality.h> 31 #include <linux/backing-dev.h> 32 #include <linux/string.h> 33 #include <linux/msg.h> 34 #include <net/flow.h> 35 36 #define MAX_LSM_EVM_XATTR 2 37 38 /* How many LSMs were built into the kernel? */ 39 #define LSM_COUNT (__end_lsm_info - __start_lsm_info) 40 41 struct security_hook_heads security_hook_heads __lsm_ro_after_init; 42 static ATOMIC_NOTIFIER_HEAD(lsm_notifier_chain); 43 44 static struct kmem_cache *lsm_file_cache; 45 static struct kmem_cache *lsm_inode_cache; 46 47 char *lsm_names; 48 static struct lsm_blob_sizes blob_sizes __lsm_ro_after_init; 49 50 /* Boot-time LSM user choice */ 51 static __initdata const char *chosen_lsm_order; 52 static __initdata const char *chosen_major_lsm; 53 54 static __initconst const char * const builtin_lsm_order = CONFIG_LSM; 55 56 /* Ordered list of LSMs to initialize. */ 57 static __initdata struct lsm_info **ordered_lsms; 58 static __initdata struct lsm_info *exclusive; 59 60 static __initdata bool debug; 61 #define init_debug(...) \ 62 do { \ 63 if (debug) \ 64 pr_info(__VA_ARGS__); \ 65 } while (0) 66 67 static bool __init is_enabled(struct lsm_info *lsm) 68 { 69 if (!lsm->enabled) 70 return false; 71 72 return *lsm->enabled; 73 } 74 75 /* Mark an LSM's enabled flag. */ 76 static int lsm_enabled_true __initdata = 1; 77 static int lsm_enabled_false __initdata = 0; 78 static void __init set_enabled(struct lsm_info *lsm, bool enabled) 79 { 80 /* 81 * When an LSM hasn't configured an enable variable, we can use 82 * a hard-coded location for storing the default enabled state. 83 */ 84 if (!lsm->enabled) { 85 if (enabled) 86 lsm->enabled = &lsm_enabled_true; 87 else 88 lsm->enabled = &lsm_enabled_false; 89 } else if (lsm->enabled == &lsm_enabled_true) { 90 if (!enabled) 91 lsm->enabled = &lsm_enabled_false; 92 } else if (lsm->enabled == &lsm_enabled_false) { 93 if (enabled) 94 lsm->enabled = &lsm_enabled_true; 95 } else { 96 *lsm->enabled = enabled; 97 } 98 } 99 100 /* Is an LSM already listed in the ordered LSMs list? */ 101 static bool __init exists_ordered_lsm(struct lsm_info *lsm) 102 { 103 struct lsm_info **check; 104 105 for (check = ordered_lsms; *check; check++) 106 if (*check == lsm) 107 return true; 108 109 return false; 110 } 111 112 /* Append an LSM to the list of ordered LSMs to initialize. */ 113 static int last_lsm __initdata; 114 static void __init append_ordered_lsm(struct lsm_info *lsm, const char *from) 115 { 116 /* Ignore duplicate selections. */ 117 if (exists_ordered_lsm(lsm)) 118 return; 119 120 if (WARN(last_lsm == LSM_COUNT, "%s: out of LSM slots!?\n", from)) 121 return; 122 123 /* Enable this LSM, if it is not already set. */ 124 if (!lsm->enabled) 125 lsm->enabled = &lsm_enabled_true; 126 ordered_lsms[last_lsm++] = lsm; 127 128 init_debug("%s ordering: %s (%sabled)\n", from, lsm->name, 129 is_enabled(lsm) ? "en" : "dis"); 130 } 131 132 /* Is an LSM allowed to be initialized? */ 133 static bool __init lsm_allowed(struct lsm_info *lsm) 134 { 135 /* Skip if the LSM is disabled. */ 136 if (!is_enabled(lsm)) 137 return false; 138 139 /* Not allowed if another exclusive LSM already initialized. */ 140 if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && exclusive) { 141 init_debug("exclusive disabled: %s\n", lsm->name); 142 return false; 143 } 144 145 return true; 146 } 147 148 static void __init lsm_set_blob_size(int *need, int *lbs) 149 { 150 int offset; 151 152 if (*need > 0) { 153 offset = *lbs; 154 *lbs += *need; 155 *need = offset; 156 } 157 } 158 159 static void __init lsm_set_blob_sizes(struct lsm_blob_sizes *needed) 160 { 161 if (!needed) 162 return; 163 164 lsm_set_blob_size(&needed->lbs_cred, &blob_sizes.lbs_cred); 165 lsm_set_blob_size(&needed->lbs_file, &blob_sizes.lbs_file); 166 /* 167 * The inode blob gets an rcu_head in addition to 168 * what the modules might need. 169 */ 170 if (needed->lbs_inode && blob_sizes.lbs_inode == 0) 171 blob_sizes.lbs_inode = sizeof(struct rcu_head); 172 lsm_set_blob_size(&needed->lbs_inode, &blob_sizes.lbs_inode); 173 lsm_set_blob_size(&needed->lbs_ipc, &blob_sizes.lbs_ipc); 174 lsm_set_blob_size(&needed->lbs_msg_msg, &blob_sizes.lbs_msg_msg); 175 lsm_set_blob_size(&needed->lbs_task, &blob_sizes.lbs_task); 176 } 177 178 /* Prepare LSM for initialization. */ 179 static void __init prepare_lsm(struct lsm_info *lsm) 180 { 181 int enabled = lsm_allowed(lsm); 182 183 /* Record enablement (to handle any following exclusive LSMs). */ 184 set_enabled(lsm, enabled); 185 186 /* If enabled, do pre-initialization work. */ 187 if (enabled) { 188 if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && !exclusive) { 189 exclusive = lsm; 190 init_debug("exclusive chosen: %s\n", lsm->name); 191 } 192 193 lsm_set_blob_sizes(lsm->blobs); 194 } 195 } 196 197 /* Initialize a given LSM, if it is enabled. */ 198 static void __init initialize_lsm(struct lsm_info *lsm) 199 { 200 if (is_enabled(lsm)) { 201 int ret; 202 203 init_debug("initializing %s\n", lsm->name); 204 ret = lsm->init(); 205 WARN(ret, "%s failed to initialize: %d\n", lsm->name, ret); 206 } 207 } 208 209 /* Populate ordered LSMs list from comma-separated LSM name list. */ 210 static void __init ordered_lsm_parse(const char *order, const char *origin) 211 { 212 struct lsm_info *lsm; 213 char *sep, *name, *next; 214 215 /* LSM_ORDER_FIRST is always first. */ 216 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { 217 if (lsm->order == LSM_ORDER_FIRST) 218 append_ordered_lsm(lsm, "first"); 219 } 220 221 /* Process "security=", if given. */ 222 if (chosen_major_lsm) { 223 struct lsm_info *major; 224 225 /* 226 * To match the original "security=" behavior, this 227 * explicitly does NOT fallback to another Legacy Major 228 * if the selected one was separately disabled: disable 229 * all non-matching Legacy Major LSMs. 230 */ 231 for (major = __start_lsm_info; major < __end_lsm_info; 232 major++) { 233 if ((major->flags & LSM_FLAG_LEGACY_MAJOR) && 234 strcmp(major->name, chosen_major_lsm) != 0) { 235 set_enabled(major, false); 236 init_debug("security=%s disabled: %s\n", 237 chosen_major_lsm, major->name); 238 } 239 } 240 } 241 242 sep = kstrdup(order, GFP_KERNEL); 243 next = sep; 244 /* Walk the list, looking for matching LSMs. */ 245 while ((name = strsep(&next, ",")) != NULL) { 246 bool found = false; 247 248 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { 249 if (lsm->order == LSM_ORDER_MUTABLE && 250 strcmp(lsm->name, name) == 0) { 251 append_ordered_lsm(lsm, origin); 252 found = true; 253 } 254 } 255 256 if (!found) 257 init_debug("%s ignored: %s\n", origin, name); 258 } 259 260 /* Process "security=", if given. */ 261 if (chosen_major_lsm) { 262 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { 263 if (exists_ordered_lsm(lsm)) 264 continue; 265 if (strcmp(lsm->name, chosen_major_lsm) == 0) 266 append_ordered_lsm(lsm, "security="); 267 } 268 } 269 270 /* Disable all LSMs not in the ordered list. */ 271 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { 272 if (exists_ordered_lsm(lsm)) 273 continue; 274 set_enabled(lsm, false); 275 init_debug("%s disabled: %s\n", origin, lsm->name); 276 } 277 278 kfree(sep); 279 } 280 281 static void __init lsm_early_cred(struct cred *cred); 282 static void __init lsm_early_task(struct task_struct *task); 283 284 static void __init ordered_lsm_init(void) 285 { 286 struct lsm_info **lsm; 287 288 ordered_lsms = kcalloc(LSM_COUNT + 1, sizeof(*ordered_lsms), 289 GFP_KERNEL); 290 291 if (chosen_lsm_order) { 292 if (chosen_major_lsm) { 293 pr_info("security= is ignored because it is superseded by lsm=\n"); 294 chosen_major_lsm = NULL; 295 } 296 ordered_lsm_parse(chosen_lsm_order, "cmdline"); 297 } else 298 ordered_lsm_parse(builtin_lsm_order, "builtin"); 299 300 for (lsm = ordered_lsms; *lsm; lsm++) 301 prepare_lsm(*lsm); 302 303 init_debug("cred blob size = %d\n", blob_sizes.lbs_cred); 304 init_debug("file blob size = %d\n", blob_sizes.lbs_file); 305 init_debug("inode blob size = %d\n", blob_sizes.lbs_inode); 306 init_debug("ipc blob size = %d\n", blob_sizes.lbs_ipc); 307 init_debug("msg_msg blob size = %d\n", blob_sizes.lbs_msg_msg); 308 init_debug("task blob size = %d\n", blob_sizes.lbs_task); 309 310 /* 311 * Create any kmem_caches needed for blobs 312 */ 313 if (blob_sizes.lbs_file) 314 lsm_file_cache = kmem_cache_create("lsm_file_cache", 315 blob_sizes.lbs_file, 0, 316 SLAB_PANIC, NULL); 317 if (blob_sizes.lbs_inode) 318 lsm_inode_cache = kmem_cache_create("lsm_inode_cache", 319 blob_sizes.lbs_inode, 0, 320 SLAB_PANIC, NULL); 321 322 lsm_early_cred((struct cred *) current->cred); 323 lsm_early_task(current); 324 for (lsm = ordered_lsms; *lsm; lsm++) 325 initialize_lsm(*lsm); 326 327 kfree(ordered_lsms); 328 } 329 330 /** 331 * security_init - initializes the security framework 332 * 333 * This should be called early in the kernel initialization sequence. 334 */ 335 int __init security_init(void) 336 { 337 int i; 338 struct hlist_head *list = (struct hlist_head *) &security_hook_heads; 339 340 pr_info("Security Framework initializing\n"); 341 342 for (i = 0; i < sizeof(security_hook_heads) / sizeof(struct hlist_head); 343 i++) 344 INIT_HLIST_HEAD(&list[i]); 345 346 /* Load LSMs in specified order. */ 347 ordered_lsm_init(); 348 349 return 0; 350 } 351 352 /* Save user chosen LSM */ 353 static int __init choose_major_lsm(char *str) 354 { 355 chosen_major_lsm = str; 356 return 1; 357 } 358 __setup("security=", choose_major_lsm); 359 360 /* Explicitly choose LSM initialization order. */ 361 static int __init choose_lsm_order(char *str) 362 { 363 chosen_lsm_order = str; 364 return 1; 365 } 366 __setup("lsm=", choose_lsm_order); 367 368 /* Enable LSM order debugging. */ 369 static int __init enable_debug(char *str) 370 { 371 debug = true; 372 return 1; 373 } 374 __setup("lsm.debug", enable_debug); 375 376 static bool match_last_lsm(const char *list, const char *lsm) 377 { 378 const char *last; 379 380 if (WARN_ON(!list || !lsm)) 381 return false; 382 last = strrchr(list, ','); 383 if (last) 384 /* Pass the comma, strcmp() will check for '\0' */ 385 last++; 386 else 387 last = list; 388 return !strcmp(last, lsm); 389 } 390 391 static int lsm_append(char *new, char **result) 392 { 393 char *cp; 394 395 if (*result == NULL) { 396 *result = kstrdup(new, GFP_KERNEL); 397 if (*result == NULL) 398 return -ENOMEM; 399 } else { 400 /* Check if it is the last registered name */ 401 if (match_last_lsm(*result, new)) 402 return 0; 403 cp = kasprintf(GFP_KERNEL, "%s,%s", *result, new); 404 if (cp == NULL) 405 return -ENOMEM; 406 kfree(*result); 407 *result = cp; 408 } 409 return 0; 410 } 411 412 /** 413 * security_add_hooks - Add a modules hooks to the hook lists. 414 * @hooks: the hooks to add 415 * @count: the number of hooks to add 416 * @lsm: the name of the security module 417 * 418 * Each LSM has to register its hooks with the infrastructure. 419 */ 420 void __init security_add_hooks(struct security_hook_list *hooks, int count, 421 char *lsm) 422 { 423 int i; 424 425 for (i = 0; i < count; i++) { 426 hooks[i].lsm = lsm; 427 hlist_add_tail_rcu(&hooks[i].list, hooks[i].head); 428 } 429 if (lsm_append(lsm, &lsm_names) < 0) 430 panic("%s - Cannot get early memory.\n", __func__); 431 } 432 433 int call_lsm_notifier(enum lsm_event event, void *data) 434 { 435 return atomic_notifier_call_chain(&lsm_notifier_chain, event, data); 436 } 437 EXPORT_SYMBOL(call_lsm_notifier); 438 439 int register_lsm_notifier(struct notifier_block *nb) 440 { 441 return atomic_notifier_chain_register(&lsm_notifier_chain, nb); 442 } 443 EXPORT_SYMBOL(register_lsm_notifier); 444 445 int unregister_lsm_notifier(struct notifier_block *nb) 446 { 447 return atomic_notifier_chain_unregister(&lsm_notifier_chain, nb); 448 } 449 EXPORT_SYMBOL(unregister_lsm_notifier); 450 451 /** 452 * lsm_cred_alloc - allocate a composite cred blob 453 * @cred: the cred that needs a blob 454 * @gfp: allocation type 455 * 456 * Allocate the cred blob for all the modules 457 * 458 * Returns 0, or -ENOMEM if memory can't be allocated. 459 */ 460 static int lsm_cred_alloc(struct cred *cred, gfp_t gfp) 461 { 462 if (blob_sizes.lbs_cred == 0) { 463 cred->security = NULL; 464 return 0; 465 } 466 467 cred->security = kzalloc(blob_sizes.lbs_cred, gfp); 468 if (cred->security == NULL) 469 return -ENOMEM; 470 return 0; 471 } 472 473 /** 474 * lsm_early_cred - during initialization allocate a composite cred blob 475 * @cred: the cred that needs a blob 476 * 477 * Allocate the cred blob for all the modules 478 */ 479 static void __init lsm_early_cred(struct cred *cred) 480 { 481 int rc = lsm_cred_alloc(cred, GFP_KERNEL); 482 483 if (rc) 484 panic("%s: Early cred alloc failed.\n", __func__); 485 } 486 487 /** 488 * lsm_file_alloc - allocate a composite file blob 489 * @file: the file that needs a blob 490 * 491 * Allocate the file blob for all the modules 492 * 493 * Returns 0, or -ENOMEM if memory can't be allocated. 494 */ 495 static int lsm_file_alloc(struct file *file) 496 { 497 if (!lsm_file_cache) { 498 file->f_security = NULL; 499 return 0; 500 } 501 502 file->f_security = kmem_cache_zalloc(lsm_file_cache, GFP_KERNEL); 503 if (file->f_security == NULL) 504 return -ENOMEM; 505 return 0; 506 } 507 508 /** 509 * lsm_inode_alloc - allocate a composite inode blob 510 * @inode: the inode that needs a blob 511 * 512 * Allocate the inode blob for all the modules 513 * 514 * Returns 0, or -ENOMEM if memory can't be allocated. 515 */ 516 int lsm_inode_alloc(struct inode *inode) 517 { 518 if (!lsm_inode_cache) { 519 inode->i_security = NULL; 520 return 0; 521 } 522 523 inode->i_security = kmem_cache_zalloc(lsm_inode_cache, GFP_NOFS); 524 if (inode->i_security == NULL) 525 return -ENOMEM; 526 return 0; 527 } 528 529 /** 530 * lsm_task_alloc - allocate a composite task blob 531 * @task: the task that needs a blob 532 * 533 * Allocate the task blob for all the modules 534 * 535 * Returns 0, or -ENOMEM if memory can't be allocated. 536 */ 537 static int lsm_task_alloc(struct task_struct *task) 538 { 539 if (blob_sizes.lbs_task == 0) { 540 task->security = NULL; 541 return 0; 542 } 543 544 task->security = kzalloc(blob_sizes.lbs_task, GFP_KERNEL); 545 if (task->security == NULL) 546 return -ENOMEM; 547 return 0; 548 } 549 550 /** 551 * lsm_ipc_alloc - allocate a composite ipc blob 552 * @kip: the ipc that needs a blob 553 * 554 * Allocate the ipc blob for all the modules 555 * 556 * Returns 0, or -ENOMEM if memory can't be allocated. 557 */ 558 static int lsm_ipc_alloc(struct kern_ipc_perm *kip) 559 { 560 if (blob_sizes.lbs_ipc == 0) { 561 kip->security = NULL; 562 return 0; 563 } 564 565 kip->security = kzalloc(blob_sizes.lbs_ipc, GFP_KERNEL); 566 if (kip->security == NULL) 567 return -ENOMEM; 568 return 0; 569 } 570 571 /** 572 * lsm_msg_msg_alloc - allocate a composite msg_msg blob 573 * @mp: the msg_msg that needs a blob 574 * 575 * Allocate the ipc blob for all the modules 576 * 577 * Returns 0, or -ENOMEM if memory can't be allocated. 578 */ 579 static int lsm_msg_msg_alloc(struct msg_msg *mp) 580 { 581 if (blob_sizes.lbs_msg_msg == 0) { 582 mp->security = NULL; 583 return 0; 584 } 585 586 mp->security = kzalloc(blob_sizes.lbs_msg_msg, GFP_KERNEL); 587 if (mp->security == NULL) 588 return -ENOMEM; 589 return 0; 590 } 591 592 /** 593 * lsm_early_task - during initialization allocate a composite task blob 594 * @task: the task that needs a blob 595 * 596 * Allocate the task blob for all the modules 597 */ 598 static void __init lsm_early_task(struct task_struct *task) 599 { 600 int rc = lsm_task_alloc(task); 601 602 if (rc) 603 panic("%s: Early task alloc failed.\n", __func__); 604 } 605 606 /* 607 * Hook list operation macros. 608 * 609 * call_void_hook: 610 * This is a hook that does not return a value. 611 * 612 * call_int_hook: 613 * This is a hook that returns a value. 614 */ 615 616 #define call_void_hook(FUNC, ...) \ 617 do { \ 618 struct security_hook_list *P; \ 619 \ 620 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) \ 621 P->hook.FUNC(__VA_ARGS__); \ 622 } while (0) 623 624 #define call_int_hook(FUNC, IRC, ...) ({ \ 625 int RC = IRC; \ 626 do { \ 627 struct security_hook_list *P; \ 628 \ 629 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) { \ 630 RC = P->hook.FUNC(__VA_ARGS__); \ 631 if (RC != 0) \ 632 break; \ 633 } \ 634 } while (0); \ 635 RC; \ 636 }) 637 638 /* Security operations */ 639 640 int security_binder_set_context_mgr(struct task_struct *mgr) 641 { 642 return call_int_hook(binder_set_context_mgr, 0, mgr); 643 } 644 645 int security_binder_transaction(struct task_struct *from, 646 struct task_struct *to) 647 { 648 return call_int_hook(binder_transaction, 0, from, to); 649 } 650 651 int security_binder_transfer_binder(struct task_struct *from, 652 struct task_struct *to) 653 { 654 return call_int_hook(binder_transfer_binder, 0, from, to); 655 } 656 657 int security_binder_transfer_file(struct task_struct *from, 658 struct task_struct *to, struct file *file) 659 { 660 return call_int_hook(binder_transfer_file, 0, from, to, file); 661 } 662 663 int security_ptrace_access_check(struct task_struct *child, unsigned int mode) 664 { 665 return call_int_hook(ptrace_access_check, 0, child, mode); 666 } 667 668 int security_ptrace_traceme(struct task_struct *parent) 669 { 670 return call_int_hook(ptrace_traceme, 0, parent); 671 } 672 673 int security_capget(struct task_struct *target, 674 kernel_cap_t *effective, 675 kernel_cap_t *inheritable, 676 kernel_cap_t *permitted) 677 { 678 return call_int_hook(capget, 0, target, 679 effective, inheritable, permitted); 680 } 681 682 int security_capset(struct cred *new, const struct cred *old, 683 const kernel_cap_t *effective, 684 const kernel_cap_t *inheritable, 685 const kernel_cap_t *permitted) 686 { 687 return call_int_hook(capset, 0, new, old, 688 effective, inheritable, permitted); 689 } 690 691 int security_capable(const struct cred *cred, 692 struct user_namespace *ns, 693 int cap, 694 unsigned int opts) 695 { 696 return call_int_hook(capable, 0, cred, ns, cap, opts); 697 } 698 699 int security_quotactl(int cmds, int type, int id, struct super_block *sb) 700 { 701 return call_int_hook(quotactl, 0, cmds, type, id, sb); 702 } 703 704 int security_quota_on(struct dentry *dentry) 705 { 706 return call_int_hook(quota_on, 0, dentry); 707 } 708 709 int security_syslog(int type) 710 { 711 return call_int_hook(syslog, 0, type); 712 } 713 714 int security_settime64(const struct timespec64 *ts, const struct timezone *tz) 715 { 716 return call_int_hook(settime, 0, ts, tz); 717 } 718 719 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages) 720 { 721 struct security_hook_list *hp; 722 int cap_sys_admin = 1; 723 int rc; 724 725 /* 726 * The module will respond with a positive value if 727 * it thinks the __vm_enough_memory() call should be 728 * made with the cap_sys_admin set. If all of the modules 729 * agree that it should be set it will. If any module 730 * thinks it should not be set it won't. 731 */ 732 hlist_for_each_entry(hp, &security_hook_heads.vm_enough_memory, list) { 733 rc = hp->hook.vm_enough_memory(mm, pages); 734 if (rc <= 0) { 735 cap_sys_admin = 0; 736 break; 737 } 738 } 739 return __vm_enough_memory(mm, pages, cap_sys_admin); 740 } 741 742 int security_bprm_set_creds(struct linux_binprm *bprm) 743 { 744 return call_int_hook(bprm_set_creds, 0, bprm); 745 } 746 747 int security_bprm_check(struct linux_binprm *bprm) 748 { 749 int ret; 750 751 ret = call_int_hook(bprm_check_security, 0, bprm); 752 if (ret) 753 return ret; 754 return ima_bprm_check(bprm); 755 } 756 757 void security_bprm_committing_creds(struct linux_binprm *bprm) 758 { 759 call_void_hook(bprm_committing_creds, bprm); 760 } 761 762 void security_bprm_committed_creds(struct linux_binprm *bprm) 763 { 764 call_void_hook(bprm_committed_creds, bprm); 765 } 766 767 int security_sb_alloc(struct super_block *sb) 768 { 769 return call_int_hook(sb_alloc_security, 0, sb); 770 } 771 772 void security_sb_free(struct super_block *sb) 773 { 774 call_void_hook(sb_free_security, sb); 775 } 776 777 void security_free_mnt_opts(void **mnt_opts) 778 { 779 if (!*mnt_opts) 780 return; 781 call_void_hook(sb_free_mnt_opts, *mnt_opts); 782 *mnt_opts = NULL; 783 } 784 EXPORT_SYMBOL(security_free_mnt_opts); 785 786 int security_sb_eat_lsm_opts(char *options, void **mnt_opts) 787 { 788 return call_int_hook(sb_eat_lsm_opts, 0, options, mnt_opts); 789 } 790 EXPORT_SYMBOL(security_sb_eat_lsm_opts); 791 792 int security_sb_remount(struct super_block *sb, 793 void *mnt_opts) 794 { 795 return call_int_hook(sb_remount, 0, sb, mnt_opts); 796 } 797 EXPORT_SYMBOL(security_sb_remount); 798 799 int security_sb_kern_mount(struct super_block *sb) 800 { 801 return call_int_hook(sb_kern_mount, 0, sb); 802 } 803 804 int security_sb_show_options(struct seq_file *m, struct super_block *sb) 805 { 806 return call_int_hook(sb_show_options, 0, m, sb); 807 } 808 809 int security_sb_statfs(struct dentry *dentry) 810 { 811 return call_int_hook(sb_statfs, 0, dentry); 812 } 813 814 int security_sb_mount(const char *dev_name, const struct path *path, 815 const char *type, unsigned long flags, void *data) 816 { 817 return call_int_hook(sb_mount, 0, dev_name, path, type, flags, data); 818 } 819 820 int security_sb_umount(struct vfsmount *mnt, int flags) 821 { 822 return call_int_hook(sb_umount, 0, mnt, flags); 823 } 824 825 int security_sb_pivotroot(const struct path *old_path, const struct path *new_path) 826 { 827 return call_int_hook(sb_pivotroot, 0, old_path, new_path); 828 } 829 830 int security_sb_set_mnt_opts(struct super_block *sb, 831 void *mnt_opts, 832 unsigned long kern_flags, 833 unsigned long *set_kern_flags) 834 { 835 return call_int_hook(sb_set_mnt_opts, 836 mnt_opts ? -EOPNOTSUPP : 0, sb, 837 mnt_opts, kern_flags, set_kern_flags); 838 } 839 EXPORT_SYMBOL(security_sb_set_mnt_opts); 840 841 int security_sb_clone_mnt_opts(const struct super_block *oldsb, 842 struct super_block *newsb, 843 unsigned long kern_flags, 844 unsigned long *set_kern_flags) 845 { 846 return call_int_hook(sb_clone_mnt_opts, 0, oldsb, newsb, 847 kern_flags, set_kern_flags); 848 } 849 EXPORT_SYMBOL(security_sb_clone_mnt_opts); 850 851 int security_add_mnt_opt(const char *option, const char *val, int len, 852 void **mnt_opts) 853 { 854 return call_int_hook(sb_add_mnt_opt, -EINVAL, 855 option, val, len, mnt_opts); 856 } 857 EXPORT_SYMBOL(security_add_mnt_opt); 858 859 int security_inode_alloc(struct inode *inode) 860 { 861 int rc = lsm_inode_alloc(inode); 862 863 if (unlikely(rc)) 864 return rc; 865 rc = call_int_hook(inode_alloc_security, 0, inode); 866 if (unlikely(rc)) 867 security_inode_free(inode); 868 return rc; 869 } 870 871 static void inode_free_by_rcu(struct rcu_head *head) 872 { 873 /* 874 * The rcu head is at the start of the inode blob 875 */ 876 kmem_cache_free(lsm_inode_cache, head); 877 } 878 879 void security_inode_free(struct inode *inode) 880 { 881 integrity_inode_free(inode); 882 call_void_hook(inode_free_security, inode); 883 /* 884 * The inode may still be referenced in a path walk and 885 * a call to security_inode_permission() can be made 886 * after inode_free_security() is called. Ideally, the VFS 887 * wouldn't do this, but fixing that is a much harder 888 * job. For now, simply free the i_security via RCU, and 889 * leave the current inode->i_security pointer intact. 890 * The inode will be freed after the RCU grace period too. 891 */ 892 if (inode->i_security) 893 call_rcu((struct rcu_head *)inode->i_security, 894 inode_free_by_rcu); 895 } 896 897 int security_dentry_init_security(struct dentry *dentry, int mode, 898 const struct qstr *name, void **ctx, 899 u32 *ctxlen) 900 { 901 return call_int_hook(dentry_init_security, -EOPNOTSUPP, dentry, mode, 902 name, ctx, ctxlen); 903 } 904 EXPORT_SYMBOL(security_dentry_init_security); 905 906 int security_dentry_create_files_as(struct dentry *dentry, int mode, 907 struct qstr *name, 908 const struct cred *old, struct cred *new) 909 { 910 return call_int_hook(dentry_create_files_as, 0, dentry, mode, 911 name, old, new); 912 } 913 EXPORT_SYMBOL(security_dentry_create_files_as); 914 915 int security_inode_init_security(struct inode *inode, struct inode *dir, 916 const struct qstr *qstr, 917 const initxattrs initxattrs, void *fs_data) 918 { 919 struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1]; 920 struct xattr *lsm_xattr, *evm_xattr, *xattr; 921 int ret; 922 923 if (unlikely(IS_PRIVATE(inode))) 924 return 0; 925 926 if (!initxattrs) 927 return call_int_hook(inode_init_security, -EOPNOTSUPP, inode, 928 dir, qstr, NULL, NULL, NULL); 929 memset(new_xattrs, 0, sizeof(new_xattrs)); 930 lsm_xattr = new_xattrs; 931 ret = call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir, qstr, 932 &lsm_xattr->name, 933 &lsm_xattr->value, 934 &lsm_xattr->value_len); 935 if (ret) 936 goto out; 937 938 evm_xattr = lsm_xattr + 1; 939 ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr); 940 if (ret) 941 goto out; 942 ret = initxattrs(inode, new_xattrs, fs_data); 943 out: 944 for (xattr = new_xattrs; xattr->value != NULL; xattr++) 945 kfree(xattr->value); 946 return (ret == -EOPNOTSUPP) ? 0 : ret; 947 } 948 EXPORT_SYMBOL(security_inode_init_security); 949 950 int security_old_inode_init_security(struct inode *inode, struct inode *dir, 951 const struct qstr *qstr, const char **name, 952 void **value, size_t *len) 953 { 954 if (unlikely(IS_PRIVATE(inode))) 955 return -EOPNOTSUPP; 956 return call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir, 957 qstr, name, value, len); 958 } 959 EXPORT_SYMBOL(security_old_inode_init_security); 960 961 #ifdef CONFIG_SECURITY_PATH 962 int security_path_mknod(const struct path *dir, struct dentry *dentry, umode_t mode, 963 unsigned int dev) 964 { 965 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 966 return 0; 967 return call_int_hook(path_mknod, 0, dir, dentry, mode, dev); 968 } 969 EXPORT_SYMBOL(security_path_mknod); 970 971 int security_path_mkdir(const struct path *dir, struct dentry *dentry, umode_t mode) 972 { 973 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 974 return 0; 975 return call_int_hook(path_mkdir, 0, dir, dentry, mode); 976 } 977 EXPORT_SYMBOL(security_path_mkdir); 978 979 int security_path_rmdir(const struct path *dir, struct dentry *dentry) 980 { 981 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 982 return 0; 983 return call_int_hook(path_rmdir, 0, dir, dentry); 984 } 985 986 int security_path_unlink(const struct path *dir, struct dentry *dentry) 987 { 988 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 989 return 0; 990 return call_int_hook(path_unlink, 0, dir, dentry); 991 } 992 EXPORT_SYMBOL(security_path_unlink); 993 994 int security_path_symlink(const struct path *dir, struct dentry *dentry, 995 const char *old_name) 996 { 997 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 998 return 0; 999 return call_int_hook(path_symlink, 0, dir, dentry, old_name); 1000 } 1001 1002 int security_path_link(struct dentry *old_dentry, const struct path *new_dir, 1003 struct dentry *new_dentry) 1004 { 1005 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)))) 1006 return 0; 1007 return call_int_hook(path_link, 0, old_dentry, new_dir, new_dentry); 1008 } 1009 1010 int security_path_rename(const struct path *old_dir, struct dentry *old_dentry, 1011 const struct path *new_dir, struct dentry *new_dentry, 1012 unsigned int flags) 1013 { 1014 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) || 1015 (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry))))) 1016 return 0; 1017 1018 if (flags & RENAME_EXCHANGE) { 1019 int err = call_int_hook(path_rename, 0, new_dir, new_dentry, 1020 old_dir, old_dentry); 1021 if (err) 1022 return err; 1023 } 1024 1025 return call_int_hook(path_rename, 0, old_dir, old_dentry, new_dir, 1026 new_dentry); 1027 } 1028 EXPORT_SYMBOL(security_path_rename); 1029 1030 int security_path_truncate(const struct path *path) 1031 { 1032 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 1033 return 0; 1034 return call_int_hook(path_truncate, 0, path); 1035 } 1036 1037 int security_path_chmod(const struct path *path, umode_t mode) 1038 { 1039 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 1040 return 0; 1041 return call_int_hook(path_chmod, 0, path, mode); 1042 } 1043 1044 int security_path_chown(const struct path *path, kuid_t uid, kgid_t gid) 1045 { 1046 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 1047 return 0; 1048 return call_int_hook(path_chown, 0, path, uid, gid); 1049 } 1050 1051 int security_path_chroot(const struct path *path) 1052 { 1053 return call_int_hook(path_chroot, 0, path); 1054 } 1055 #endif 1056 1057 int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode) 1058 { 1059 if (unlikely(IS_PRIVATE(dir))) 1060 return 0; 1061 return call_int_hook(inode_create, 0, dir, dentry, mode); 1062 } 1063 EXPORT_SYMBOL_GPL(security_inode_create); 1064 1065 int security_inode_link(struct dentry *old_dentry, struct inode *dir, 1066 struct dentry *new_dentry) 1067 { 1068 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)))) 1069 return 0; 1070 return call_int_hook(inode_link, 0, old_dentry, dir, new_dentry); 1071 } 1072 1073 int security_inode_unlink(struct inode *dir, struct dentry *dentry) 1074 { 1075 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1076 return 0; 1077 return call_int_hook(inode_unlink, 0, dir, dentry); 1078 } 1079 1080 int security_inode_symlink(struct inode *dir, struct dentry *dentry, 1081 const char *old_name) 1082 { 1083 if (unlikely(IS_PRIVATE(dir))) 1084 return 0; 1085 return call_int_hook(inode_symlink, 0, dir, dentry, old_name); 1086 } 1087 1088 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 1089 { 1090 if (unlikely(IS_PRIVATE(dir))) 1091 return 0; 1092 return call_int_hook(inode_mkdir, 0, dir, dentry, mode); 1093 } 1094 EXPORT_SYMBOL_GPL(security_inode_mkdir); 1095 1096 int security_inode_rmdir(struct inode *dir, struct dentry *dentry) 1097 { 1098 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1099 return 0; 1100 return call_int_hook(inode_rmdir, 0, dir, dentry); 1101 } 1102 1103 int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) 1104 { 1105 if (unlikely(IS_PRIVATE(dir))) 1106 return 0; 1107 return call_int_hook(inode_mknod, 0, dir, dentry, mode, dev); 1108 } 1109 1110 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry, 1111 struct inode *new_dir, struct dentry *new_dentry, 1112 unsigned int flags) 1113 { 1114 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) || 1115 (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry))))) 1116 return 0; 1117 1118 if (flags & RENAME_EXCHANGE) { 1119 int err = call_int_hook(inode_rename, 0, new_dir, new_dentry, 1120 old_dir, old_dentry); 1121 if (err) 1122 return err; 1123 } 1124 1125 return call_int_hook(inode_rename, 0, old_dir, old_dentry, 1126 new_dir, new_dentry); 1127 } 1128 1129 int security_inode_readlink(struct dentry *dentry) 1130 { 1131 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1132 return 0; 1133 return call_int_hook(inode_readlink, 0, dentry); 1134 } 1135 1136 int security_inode_follow_link(struct dentry *dentry, struct inode *inode, 1137 bool rcu) 1138 { 1139 if (unlikely(IS_PRIVATE(inode))) 1140 return 0; 1141 return call_int_hook(inode_follow_link, 0, dentry, inode, rcu); 1142 } 1143 1144 int security_inode_permission(struct inode *inode, int mask) 1145 { 1146 if (unlikely(IS_PRIVATE(inode))) 1147 return 0; 1148 return call_int_hook(inode_permission, 0, inode, mask); 1149 } 1150 1151 int security_inode_setattr(struct dentry *dentry, struct iattr *attr) 1152 { 1153 int ret; 1154 1155 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1156 return 0; 1157 ret = call_int_hook(inode_setattr, 0, dentry, attr); 1158 if (ret) 1159 return ret; 1160 return evm_inode_setattr(dentry, attr); 1161 } 1162 EXPORT_SYMBOL_GPL(security_inode_setattr); 1163 1164 int security_inode_getattr(const struct path *path) 1165 { 1166 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 1167 return 0; 1168 return call_int_hook(inode_getattr, 0, path); 1169 } 1170 1171 int security_inode_setxattr(struct dentry *dentry, const char *name, 1172 const void *value, size_t size, int flags) 1173 { 1174 int ret; 1175 1176 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1177 return 0; 1178 /* 1179 * SELinux and Smack integrate the cap call, 1180 * so assume that all LSMs supplying this call do so. 1181 */ 1182 ret = call_int_hook(inode_setxattr, 1, dentry, name, value, size, 1183 flags); 1184 1185 if (ret == 1) 1186 ret = cap_inode_setxattr(dentry, name, value, size, flags); 1187 if (ret) 1188 return ret; 1189 ret = ima_inode_setxattr(dentry, name, value, size); 1190 if (ret) 1191 return ret; 1192 return evm_inode_setxattr(dentry, name, value, size); 1193 } 1194 1195 void security_inode_post_setxattr(struct dentry *dentry, const char *name, 1196 const void *value, size_t size, int flags) 1197 { 1198 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1199 return; 1200 call_void_hook(inode_post_setxattr, dentry, name, value, size, flags); 1201 evm_inode_post_setxattr(dentry, name, value, size); 1202 } 1203 1204 int security_inode_getxattr(struct dentry *dentry, const char *name) 1205 { 1206 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1207 return 0; 1208 return call_int_hook(inode_getxattr, 0, dentry, name); 1209 } 1210 1211 int security_inode_listxattr(struct dentry *dentry) 1212 { 1213 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1214 return 0; 1215 return call_int_hook(inode_listxattr, 0, dentry); 1216 } 1217 1218 int security_inode_removexattr(struct dentry *dentry, const char *name) 1219 { 1220 int ret; 1221 1222 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1223 return 0; 1224 /* 1225 * SELinux and Smack integrate the cap call, 1226 * so assume that all LSMs supplying this call do so. 1227 */ 1228 ret = call_int_hook(inode_removexattr, 1, dentry, name); 1229 if (ret == 1) 1230 ret = cap_inode_removexattr(dentry, name); 1231 if (ret) 1232 return ret; 1233 ret = ima_inode_removexattr(dentry, name); 1234 if (ret) 1235 return ret; 1236 return evm_inode_removexattr(dentry, name); 1237 } 1238 1239 int security_inode_need_killpriv(struct dentry *dentry) 1240 { 1241 return call_int_hook(inode_need_killpriv, 0, dentry); 1242 } 1243 1244 int security_inode_killpriv(struct dentry *dentry) 1245 { 1246 return call_int_hook(inode_killpriv, 0, dentry); 1247 } 1248 1249 int security_inode_getsecurity(struct inode *inode, const char *name, void **buffer, bool alloc) 1250 { 1251 struct security_hook_list *hp; 1252 int rc; 1253 1254 if (unlikely(IS_PRIVATE(inode))) 1255 return -EOPNOTSUPP; 1256 /* 1257 * Only one module will provide an attribute with a given name. 1258 */ 1259 hlist_for_each_entry(hp, &security_hook_heads.inode_getsecurity, list) { 1260 rc = hp->hook.inode_getsecurity(inode, name, buffer, alloc); 1261 if (rc != -EOPNOTSUPP) 1262 return rc; 1263 } 1264 return -EOPNOTSUPP; 1265 } 1266 1267 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags) 1268 { 1269 struct security_hook_list *hp; 1270 int rc; 1271 1272 if (unlikely(IS_PRIVATE(inode))) 1273 return -EOPNOTSUPP; 1274 /* 1275 * Only one module will provide an attribute with a given name. 1276 */ 1277 hlist_for_each_entry(hp, &security_hook_heads.inode_setsecurity, list) { 1278 rc = hp->hook.inode_setsecurity(inode, name, value, size, 1279 flags); 1280 if (rc != -EOPNOTSUPP) 1281 return rc; 1282 } 1283 return -EOPNOTSUPP; 1284 } 1285 1286 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size) 1287 { 1288 if (unlikely(IS_PRIVATE(inode))) 1289 return 0; 1290 return call_int_hook(inode_listsecurity, 0, inode, buffer, buffer_size); 1291 } 1292 EXPORT_SYMBOL(security_inode_listsecurity); 1293 1294 void security_inode_getsecid(struct inode *inode, u32 *secid) 1295 { 1296 call_void_hook(inode_getsecid, inode, secid); 1297 } 1298 1299 int security_inode_copy_up(struct dentry *src, struct cred **new) 1300 { 1301 return call_int_hook(inode_copy_up, 0, src, new); 1302 } 1303 EXPORT_SYMBOL(security_inode_copy_up); 1304 1305 int security_inode_copy_up_xattr(const char *name) 1306 { 1307 return call_int_hook(inode_copy_up_xattr, -EOPNOTSUPP, name); 1308 } 1309 EXPORT_SYMBOL(security_inode_copy_up_xattr); 1310 1311 int security_file_permission(struct file *file, int mask) 1312 { 1313 int ret; 1314 1315 ret = call_int_hook(file_permission, 0, file, mask); 1316 if (ret) 1317 return ret; 1318 1319 return fsnotify_perm(file, mask); 1320 } 1321 1322 int security_file_alloc(struct file *file) 1323 { 1324 int rc = lsm_file_alloc(file); 1325 1326 if (rc) 1327 return rc; 1328 rc = call_int_hook(file_alloc_security, 0, file); 1329 if (unlikely(rc)) 1330 security_file_free(file); 1331 return rc; 1332 } 1333 1334 void security_file_free(struct file *file) 1335 { 1336 void *blob; 1337 1338 call_void_hook(file_free_security, file); 1339 1340 blob = file->f_security; 1341 if (blob) { 1342 file->f_security = NULL; 1343 kmem_cache_free(lsm_file_cache, blob); 1344 } 1345 } 1346 1347 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 1348 { 1349 return call_int_hook(file_ioctl, 0, file, cmd, arg); 1350 } 1351 1352 static inline unsigned long mmap_prot(struct file *file, unsigned long prot) 1353 { 1354 /* 1355 * Does we have PROT_READ and does the application expect 1356 * it to imply PROT_EXEC? If not, nothing to talk about... 1357 */ 1358 if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ) 1359 return prot; 1360 if (!(current->personality & READ_IMPLIES_EXEC)) 1361 return prot; 1362 /* 1363 * if that's an anonymous mapping, let it. 1364 */ 1365 if (!file) 1366 return prot | PROT_EXEC; 1367 /* 1368 * ditto if it's not on noexec mount, except that on !MMU we need 1369 * NOMMU_MAP_EXEC (== VM_MAYEXEC) in this case 1370 */ 1371 if (!path_noexec(&file->f_path)) { 1372 #ifndef CONFIG_MMU 1373 if (file->f_op->mmap_capabilities) { 1374 unsigned caps = file->f_op->mmap_capabilities(file); 1375 if (!(caps & NOMMU_MAP_EXEC)) 1376 return prot; 1377 } 1378 #endif 1379 return prot | PROT_EXEC; 1380 } 1381 /* anything on noexec mount won't get PROT_EXEC */ 1382 return prot; 1383 } 1384 1385 int security_mmap_file(struct file *file, unsigned long prot, 1386 unsigned long flags) 1387 { 1388 int ret; 1389 ret = call_int_hook(mmap_file, 0, file, prot, 1390 mmap_prot(file, prot), flags); 1391 if (ret) 1392 return ret; 1393 return ima_file_mmap(file, prot); 1394 } 1395 1396 int security_mmap_addr(unsigned long addr) 1397 { 1398 return call_int_hook(mmap_addr, 0, addr); 1399 } 1400 1401 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot, 1402 unsigned long prot) 1403 { 1404 return call_int_hook(file_mprotect, 0, vma, reqprot, prot); 1405 } 1406 1407 int security_file_lock(struct file *file, unsigned int cmd) 1408 { 1409 return call_int_hook(file_lock, 0, file, cmd); 1410 } 1411 1412 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg) 1413 { 1414 return call_int_hook(file_fcntl, 0, file, cmd, arg); 1415 } 1416 1417 void security_file_set_fowner(struct file *file) 1418 { 1419 call_void_hook(file_set_fowner, file); 1420 } 1421 1422 int security_file_send_sigiotask(struct task_struct *tsk, 1423 struct fown_struct *fown, int sig) 1424 { 1425 return call_int_hook(file_send_sigiotask, 0, tsk, fown, sig); 1426 } 1427 1428 int security_file_receive(struct file *file) 1429 { 1430 return call_int_hook(file_receive, 0, file); 1431 } 1432 1433 int security_file_open(struct file *file) 1434 { 1435 int ret; 1436 1437 ret = call_int_hook(file_open, 0, file); 1438 if (ret) 1439 return ret; 1440 1441 return fsnotify_perm(file, MAY_OPEN); 1442 } 1443 1444 int security_task_alloc(struct task_struct *task, unsigned long clone_flags) 1445 { 1446 int rc = lsm_task_alloc(task); 1447 1448 if (rc) 1449 return rc; 1450 rc = call_int_hook(task_alloc, 0, task, clone_flags); 1451 if (unlikely(rc)) 1452 security_task_free(task); 1453 return rc; 1454 } 1455 1456 void security_task_free(struct task_struct *task) 1457 { 1458 call_void_hook(task_free, task); 1459 1460 kfree(task->security); 1461 task->security = NULL; 1462 } 1463 1464 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp) 1465 { 1466 int rc = lsm_cred_alloc(cred, gfp); 1467 1468 if (rc) 1469 return rc; 1470 1471 rc = call_int_hook(cred_alloc_blank, 0, cred, gfp); 1472 if (unlikely(rc)) 1473 security_cred_free(cred); 1474 return rc; 1475 } 1476 1477 void security_cred_free(struct cred *cred) 1478 { 1479 /* 1480 * There is a failure case in prepare_creds() that 1481 * may result in a call here with ->security being NULL. 1482 */ 1483 if (unlikely(cred->security == NULL)) 1484 return; 1485 1486 call_void_hook(cred_free, cred); 1487 1488 kfree(cred->security); 1489 cred->security = NULL; 1490 } 1491 1492 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp) 1493 { 1494 int rc = lsm_cred_alloc(new, gfp); 1495 1496 if (rc) 1497 return rc; 1498 1499 rc = call_int_hook(cred_prepare, 0, new, old, gfp); 1500 if (unlikely(rc)) 1501 security_cred_free(new); 1502 return rc; 1503 } 1504 1505 void security_transfer_creds(struct cred *new, const struct cred *old) 1506 { 1507 call_void_hook(cred_transfer, new, old); 1508 } 1509 1510 void security_cred_getsecid(const struct cred *c, u32 *secid) 1511 { 1512 *secid = 0; 1513 call_void_hook(cred_getsecid, c, secid); 1514 } 1515 EXPORT_SYMBOL(security_cred_getsecid); 1516 1517 int security_kernel_act_as(struct cred *new, u32 secid) 1518 { 1519 return call_int_hook(kernel_act_as, 0, new, secid); 1520 } 1521 1522 int security_kernel_create_files_as(struct cred *new, struct inode *inode) 1523 { 1524 return call_int_hook(kernel_create_files_as, 0, new, inode); 1525 } 1526 1527 int security_kernel_module_request(char *kmod_name) 1528 { 1529 int ret; 1530 1531 ret = call_int_hook(kernel_module_request, 0, kmod_name); 1532 if (ret) 1533 return ret; 1534 return integrity_kernel_module_request(kmod_name); 1535 } 1536 1537 int security_kernel_read_file(struct file *file, enum kernel_read_file_id id) 1538 { 1539 int ret; 1540 1541 ret = call_int_hook(kernel_read_file, 0, file, id); 1542 if (ret) 1543 return ret; 1544 return ima_read_file(file, id); 1545 } 1546 EXPORT_SYMBOL_GPL(security_kernel_read_file); 1547 1548 int security_kernel_post_read_file(struct file *file, char *buf, loff_t size, 1549 enum kernel_read_file_id id) 1550 { 1551 int ret; 1552 1553 ret = call_int_hook(kernel_post_read_file, 0, file, buf, size, id); 1554 if (ret) 1555 return ret; 1556 return ima_post_read_file(file, buf, size, id); 1557 } 1558 EXPORT_SYMBOL_GPL(security_kernel_post_read_file); 1559 1560 int security_kernel_load_data(enum kernel_load_data_id id) 1561 { 1562 int ret; 1563 1564 ret = call_int_hook(kernel_load_data, 0, id); 1565 if (ret) 1566 return ret; 1567 return ima_load_data(id); 1568 } 1569 EXPORT_SYMBOL_GPL(security_kernel_load_data); 1570 1571 int security_task_fix_setuid(struct cred *new, const struct cred *old, 1572 int flags) 1573 { 1574 return call_int_hook(task_fix_setuid, 0, new, old, flags); 1575 } 1576 1577 int security_task_setpgid(struct task_struct *p, pid_t pgid) 1578 { 1579 return call_int_hook(task_setpgid, 0, p, pgid); 1580 } 1581 1582 int security_task_getpgid(struct task_struct *p) 1583 { 1584 return call_int_hook(task_getpgid, 0, p); 1585 } 1586 1587 int security_task_getsid(struct task_struct *p) 1588 { 1589 return call_int_hook(task_getsid, 0, p); 1590 } 1591 1592 void security_task_getsecid(struct task_struct *p, u32 *secid) 1593 { 1594 *secid = 0; 1595 call_void_hook(task_getsecid, p, secid); 1596 } 1597 EXPORT_SYMBOL(security_task_getsecid); 1598 1599 int security_task_setnice(struct task_struct *p, int nice) 1600 { 1601 return call_int_hook(task_setnice, 0, p, nice); 1602 } 1603 1604 int security_task_setioprio(struct task_struct *p, int ioprio) 1605 { 1606 return call_int_hook(task_setioprio, 0, p, ioprio); 1607 } 1608 1609 int security_task_getioprio(struct task_struct *p) 1610 { 1611 return call_int_hook(task_getioprio, 0, p); 1612 } 1613 1614 int security_task_prlimit(const struct cred *cred, const struct cred *tcred, 1615 unsigned int flags) 1616 { 1617 return call_int_hook(task_prlimit, 0, cred, tcred, flags); 1618 } 1619 1620 int security_task_setrlimit(struct task_struct *p, unsigned int resource, 1621 struct rlimit *new_rlim) 1622 { 1623 return call_int_hook(task_setrlimit, 0, p, resource, new_rlim); 1624 } 1625 1626 int security_task_setscheduler(struct task_struct *p) 1627 { 1628 return call_int_hook(task_setscheduler, 0, p); 1629 } 1630 1631 int security_task_getscheduler(struct task_struct *p) 1632 { 1633 return call_int_hook(task_getscheduler, 0, p); 1634 } 1635 1636 int security_task_movememory(struct task_struct *p) 1637 { 1638 return call_int_hook(task_movememory, 0, p); 1639 } 1640 1641 int security_task_kill(struct task_struct *p, struct kernel_siginfo *info, 1642 int sig, const struct cred *cred) 1643 { 1644 return call_int_hook(task_kill, 0, p, info, sig, cred); 1645 } 1646 1647 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3, 1648 unsigned long arg4, unsigned long arg5) 1649 { 1650 int thisrc; 1651 int rc = -ENOSYS; 1652 struct security_hook_list *hp; 1653 1654 hlist_for_each_entry(hp, &security_hook_heads.task_prctl, list) { 1655 thisrc = hp->hook.task_prctl(option, arg2, arg3, arg4, arg5); 1656 if (thisrc != -ENOSYS) { 1657 rc = thisrc; 1658 if (thisrc != 0) 1659 break; 1660 } 1661 } 1662 return rc; 1663 } 1664 1665 void security_task_to_inode(struct task_struct *p, struct inode *inode) 1666 { 1667 call_void_hook(task_to_inode, p, inode); 1668 } 1669 1670 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag) 1671 { 1672 return call_int_hook(ipc_permission, 0, ipcp, flag); 1673 } 1674 1675 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid) 1676 { 1677 *secid = 0; 1678 call_void_hook(ipc_getsecid, ipcp, secid); 1679 } 1680 1681 int security_msg_msg_alloc(struct msg_msg *msg) 1682 { 1683 int rc = lsm_msg_msg_alloc(msg); 1684 1685 if (unlikely(rc)) 1686 return rc; 1687 rc = call_int_hook(msg_msg_alloc_security, 0, msg); 1688 if (unlikely(rc)) 1689 security_msg_msg_free(msg); 1690 return rc; 1691 } 1692 1693 void security_msg_msg_free(struct msg_msg *msg) 1694 { 1695 call_void_hook(msg_msg_free_security, msg); 1696 kfree(msg->security); 1697 msg->security = NULL; 1698 } 1699 1700 int security_msg_queue_alloc(struct kern_ipc_perm *msq) 1701 { 1702 int rc = lsm_ipc_alloc(msq); 1703 1704 if (unlikely(rc)) 1705 return rc; 1706 rc = call_int_hook(msg_queue_alloc_security, 0, msq); 1707 if (unlikely(rc)) 1708 security_msg_queue_free(msq); 1709 return rc; 1710 } 1711 1712 void security_msg_queue_free(struct kern_ipc_perm *msq) 1713 { 1714 call_void_hook(msg_queue_free_security, msq); 1715 kfree(msq->security); 1716 msq->security = NULL; 1717 } 1718 1719 int security_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg) 1720 { 1721 return call_int_hook(msg_queue_associate, 0, msq, msqflg); 1722 } 1723 1724 int security_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd) 1725 { 1726 return call_int_hook(msg_queue_msgctl, 0, msq, cmd); 1727 } 1728 1729 int security_msg_queue_msgsnd(struct kern_ipc_perm *msq, 1730 struct msg_msg *msg, int msqflg) 1731 { 1732 return call_int_hook(msg_queue_msgsnd, 0, msq, msg, msqflg); 1733 } 1734 1735 int security_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg, 1736 struct task_struct *target, long type, int mode) 1737 { 1738 return call_int_hook(msg_queue_msgrcv, 0, msq, msg, target, type, mode); 1739 } 1740 1741 int security_shm_alloc(struct kern_ipc_perm *shp) 1742 { 1743 int rc = lsm_ipc_alloc(shp); 1744 1745 if (unlikely(rc)) 1746 return rc; 1747 rc = call_int_hook(shm_alloc_security, 0, shp); 1748 if (unlikely(rc)) 1749 security_shm_free(shp); 1750 return rc; 1751 } 1752 1753 void security_shm_free(struct kern_ipc_perm *shp) 1754 { 1755 call_void_hook(shm_free_security, shp); 1756 kfree(shp->security); 1757 shp->security = NULL; 1758 } 1759 1760 int security_shm_associate(struct kern_ipc_perm *shp, int shmflg) 1761 { 1762 return call_int_hook(shm_associate, 0, shp, shmflg); 1763 } 1764 1765 int security_shm_shmctl(struct kern_ipc_perm *shp, int cmd) 1766 { 1767 return call_int_hook(shm_shmctl, 0, shp, cmd); 1768 } 1769 1770 int security_shm_shmat(struct kern_ipc_perm *shp, char __user *shmaddr, int shmflg) 1771 { 1772 return call_int_hook(shm_shmat, 0, shp, shmaddr, shmflg); 1773 } 1774 1775 int security_sem_alloc(struct kern_ipc_perm *sma) 1776 { 1777 int rc = lsm_ipc_alloc(sma); 1778 1779 if (unlikely(rc)) 1780 return rc; 1781 rc = call_int_hook(sem_alloc_security, 0, sma); 1782 if (unlikely(rc)) 1783 security_sem_free(sma); 1784 return rc; 1785 } 1786 1787 void security_sem_free(struct kern_ipc_perm *sma) 1788 { 1789 call_void_hook(sem_free_security, sma); 1790 kfree(sma->security); 1791 sma->security = NULL; 1792 } 1793 1794 int security_sem_associate(struct kern_ipc_perm *sma, int semflg) 1795 { 1796 return call_int_hook(sem_associate, 0, sma, semflg); 1797 } 1798 1799 int security_sem_semctl(struct kern_ipc_perm *sma, int cmd) 1800 { 1801 return call_int_hook(sem_semctl, 0, sma, cmd); 1802 } 1803 1804 int security_sem_semop(struct kern_ipc_perm *sma, struct sembuf *sops, 1805 unsigned nsops, int alter) 1806 { 1807 return call_int_hook(sem_semop, 0, sma, sops, nsops, alter); 1808 } 1809 1810 void security_d_instantiate(struct dentry *dentry, struct inode *inode) 1811 { 1812 if (unlikely(inode && IS_PRIVATE(inode))) 1813 return; 1814 call_void_hook(d_instantiate, dentry, inode); 1815 } 1816 EXPORT_SYMBOL(security_d_instantiate); 1817 1818 int security_getprocattr(struct task_struct *p, const char *lsm, char *name, 1819 char **value) 1820 { 1821 struct security_hook_list *hp; 1822 1823 hlist_for_each_entry(hp, &security_hook_heads.getprocattr, list) { 1824 if (lsm != NULL && strcmp(lsm, hp->lsm)) 1825 continue; 1826 return hp->hook.getprocattr(p, name, value); 1827 } 1828 return -EINVAL; 1829 } 1830 1831 int security_setprocattr(const char *lsm, const char *name, void *value, 1832 size_t size) 1833 { 1834 struct security_hook_list *hp; 1835 1836 hlist_for_each_entry(hp, &security_hook_heads.setprocattr, list) { 1837 if (lsm != NULL && strcmp(lsm, hp->lsm)) 1838 continue; 1839 return hp->hook.setprocattr(name, value, size); 1840 } 1841 return -EINVAL; 1842 } 1843 1844 int security_netlink_send(struct sock *sk, struct sk_buff *skb) 1845 { 1846 return call_int_hook(netlink_send, 0, sk, skb); 1847 } 1848 1849 int security_ismaclabel(const char *name) 1850 { 1851 return call_int_hook(ismaclabel, 0, name); 1852 } 1853 EXPORT_SYMBOL(security_ismaclabel); 1854 1855 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen) 1856 { 1857 return call_int_hook(secid_to_secctx, -EOPNOTSUPP, secid, secdata, 1858 seclen); 1859 } 1860 EXPORT_SYMBOL(security_secid_to_secctx); 1861 1862 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid) 1863 { 1864 *secid = 0; 1865 return call_int_hook(secctx_to_secid, 0, secdata, seclen, secid); 1866 } 1867 EXPORT_SYMBOL(security_secctx_to_secid); 1868 1869 void security_release_secctx(char *secdata, u32 seclen) 1870 { 1871 call_void_hook(release_secctx, secdata, seclen); 1872 } 1873 EXPORT_SYMBOL(security_release_secctx); 1874 1875 void security_inode_invalidate_secctx(struct inode *inode) 1876 { 1877 call_void_hook(inode_invalidate_secctx, inode); 1878 } 1879 EXPORT_SYMBOL(security_inode_invalidate_secctx); 1880 1881 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen) 1882 { 1883 return call_int_hook(inode_notifysecctx, 0, inode, ctx, ctxlen); 1884 } 1885 EXPORT_SYMBOL(security_inode_notifysecctx); 1886 1887 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen) 1888 { 1889 return call_int_hook(inode_setsecctx, 0, dentry, ctx, ctxlen); 1890 } 1891 EXPORT_SYMBOL(security_inode_setsecctx); 1892 1893 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen) 1894 { 1895 return call_int_hook(inode_getsecctx, -EOPNOTSUPP, inode, ctx, ctxlen); 1896 } 1897 EXPORT_SYMBOL(security_inode_getsecctx); 1898 1899 #ifdef CONFIG_SECURITY_NETWORK 1900 1901 int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk) 1902 { 1903 return call_int_hook(unix_stream_connect, 0, sock, other, newsk); 1904 } 1905 EXPORT_SYMBOL(security_unix_stream_connect); 1906 1907 int security_unix_may_send(struct socket *sock, struct socket *other) 1908 { 1909 return call_int_hook(unix_may_send, 0, sock, other); 1910 } 1911 EXPORT_SYMBOL(security_unix_may_send); 1912 1913 int security_socket_create(int family, int type, int protocol, int kern) 1914 { 1915 return call_int_hook(socket_create, 0, family, type, protocol, kern); 1916 } 1917 1918 int security_socket_post_create(struct socket *sock, int family, 1919 int type, int protocol, int kern) 1920 { 1921 return call_int_hook(socket_post_create, 0, sock, family, type, 1922 protocol, kern); 1923 } 1924 1925 int security_socket_socketpair(struct socket *socka, struct socket *sockb) 1926 { 1927 return call_int_hook(socket_socketpair, 0, socka, sockb); 1928 } 1929 EXPORT_SYMBOL(security_socket_socketpair); 1930 1931 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen) 1932 { 1933 return call_int_hook(socket_bind, 0, sock, address, addrlen); 1934 } 1935 1936 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen) 1937 { 1938 return call_int_hook(socket_connect, 0, sock, address, addrlen); 1939 } 1940 1941 int security_socket_listen(struct socket *sock, int backlog) 1942 { 1943 return call_int_hook(socket_listen, 0, sock, backlog); 1944 } 1945 1946 int security_socket_accept(struct socket *sock, struct socket *newsock) 1947 { 1948 return call_int_hook(socket_accept, 0, sock, newsock); 1949 } 1950 1951 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size) 1952 { 1953 return call_int_hook(socket_sendmsg, 0, sock, msg, size); 1954 } 1955 1956 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg, 1957 int size, int flags) 1958 { 1959 return call_int_hook(socket_recvmsg, 0, sock, msg, size, flags); 1960 } 1961 1962 int security_socket_getsockname(struct socket *sock) 1963 { 1964 return call_int_hook(socket_getsockname, 0, sock); 1965 } 1966 1967 int security_socket_getpeername(struct socket *sock) 1968 { 1969 return call_int_hook(socket_getpeername, 0, sock); 1970 } 1971 1972 int security_socket_getsockopt(struct socket *sock, int level, int optname) 1973 { 1974 return call_int_hook(socket_getsockopt, 0, sock, level, optname); 1975 } 1976 1977 int security_socket_setsockopt(struct socket *sock, int level, int optname) 1978 { 1979 return call_int_hook(socket_setsockopt, 0, sock, level, optname); 1980 } 1981 1982 int security_socket_shutdown(struct socket *sock, int how) 1983 { 1984 return call_int_hook(socket_shutdown, 0, sock, how); 1985 } 1986 1987 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb) 1988 { 1989 return call_int_hook(socket_sock_rcv_skb, 0, sk, skb); 1990 } 1991 EXPORT_SYMBOL(security_sock_rcv_skb); 1992 1993 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval, 1994 int __user *optlen, unsigned len) 1995 { 1996 return call_int_hook(socket_getpeersec_stream, -ENOPROTOOPT, sock, 1997 optval, optlen, len); 1998 } 1999 2000 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid) 2001 { 2002 return call_int_hook(socket_getpeersec_dgram, -ENOPROTOOPT, sock, 2003 skb, secid); 2004 } 2005 EXPORT_SYMBOL(security_socket_getpeersec_dgram); 2006 2007 int security_sk_alloc(struct sock *sk, int family, gfp_t priority) 2008 { 2009 return call_int_hook(sk_alloc_security, 0, sk, family, priority); 2010 } 2011 2012 void security_sk_free(struct sock *sk) 2013 { 2014 call_void_hook(sk_free_security, sk); 2015 } 2016 2017 void security_sk_clone(const struct sock *sk, struct sock *newsk) 2018 { 2019 call_void_hook(sk_clone_security, sk, newsk); 2020 } 2021 EXPORT_SYMBOL(security_sk_clone); 2022 2023 void security_sk_classify_flow(struct sock *sk, struct flowi *fl) 2024 { 2025 call_void_hook(sk_getsecid, sk, &fl->flowi_secid); 2026 } 2027 EXPORT_SYMBOL(security_sk_classify_flow); 2028 2029 void security_req_classify_flow(const struct request_sock *req, struct flowi *fl) 2030 { 2031 call_void_hook(req_classify_flow, req, fl); 2032 } 2033 EXPORT_SYMBOL(security_req_classify_flow); 2034 2035 void security_sock_graft(struct sock *sk, struct socket *parent) 2036 { 2037 call_void_hook(sock_graft, sk, parent); 2038 } 2039 EXPORT_SYMBOL(security_sock_graft); 2040 2041 int security_inet_conn_request(struct sock *sk, 2042 struct sk_buff *skb, struct request_sock *req) 2043 { 2044 return call_int_hook(inet_conn_request, 0, sk, skb, req); 2045 } 2046 EXPORT_SYMBOL(security_inet_conn_request); 2047 2048 void security_inet_csk_clone(struct sock *newsk, 2049 const struct request_sock *req) 2050 { 2051 call_void_hook(inet_csk_clone, newsk, req); 2052 } 2053 2054 void security_inet_conn_established(struct sock *sk, 2055 struct sk_buff *skb) 2056 { 2057 call_void_hook(inet_conn_established, sk, skb); 2058 } 2059 EXPORT_SYMBOL(security_inet_conn_established); 2060 2061 int security_secmark_relabel_packet(u32 secid) 2062 { 2063 return call_int_hook(secmark_relabel_packet, 0, secid); 2064 } 2065 EXPORT_SYMBOL(security_secmark_relabel_packet); 2066 2067 void security_secmark_refcount_inc(void) 2068 { 2069 call_void_hook(secmark_refcount_inc); 2070 } 2071 EXPORT_SYMBOL(security_secmark_refcount_inc); 2072 2073 void security_secmark_refcount_dec(void) 2074 { 2075 call_void_hook(secmark_refcount_dec); 2076 } 2077 EXPORT_SYMBOL(security_secmark_refcount_dec); 2078 2079 int security_tun_dev_alloc_security(void **security) 2080 { 2081 return call_int_hook(tun_dev_alloc_security, 0, security); 2082 } 2083 EXPORT_SYMBOL(security_tun_dev_alloc_security); 2084 2085 void security_tun_dev_free_security(void *security) 2086 { 2087 call_void_hook(tun_dev_free_security, security); 2088 } 2089 EXPORT_SYMBOL(security_tun_dev_free_security); 2090 2091 int security_tun_dev_create(void) 2092 { 2093 return call_int_hook(tun_dev_create, 0); 2094 } 2095 EXPORT_SYMBOL(security_tun_dev_create); 2096 2097 int security_tun_dev_attach_queue(void *security) 2098 { 2099 return call_int_hook(tun_dev_attach_queue, 0, security); 2100 } 2101 EXPORT_SYMBOL(security_tun_dev_attach_queue); 2102 2103 int security_tun_dev_attach(struct sock *sk, void *security) 2104 { 2105 return call_int_hook(tun_dev_attach, 0, sk, security); 2106 } 2107 EXPORT_SYMBOL(security_tun_dev_attach); 2108 2109 int security_tun_dev_open(void *security) 2110 { 2111 return call_int_hook(tun_dev_open, 0, security); 2112 } 2113 EXPORT_SYMBOL(security_tun_dev_open); 2114 2115 int security_sctp_assoc_request(struct sctp_endpoint *ep, struct sk_buff *skb) 2116 { 2117 return call_int_hook(sctp_assoc_request, 0, ep, skb); 2118 } 2119 EXPORT_SYMBOL(security_sctp_assoc_request); 2120 2121 int security_sctp_bind_connect(struct sock *sk, int optname, 2122 struct sockaddr *address, int addrlen) 2123 { 2124 return call_int_hook(sctp_bind_connect, 0, sk, optname, 2125 address, addrlen); 2126 } 2127 EXPORT_SYMBOL(security_sctp_bind_connect); 2128 2129 void security_sctp_sk_clone(struct sctp_endpoint *ep, struct sock *sk, 2130 struct sock *newsk) 2131 { 2132 call_void_hook(sctp_sk_clone, ep, sk, newsk); 2133 } 2134 EXPORT_SYMBOL(security_sctp_sk_clone); 2135 2136 #endif /* CONFIG_SECURITY_NETWORK */ 2137 2138 #ifdef CONFIG_SECURITY_INFINIBAND 2139 2140 int security_ib_pkey_access(void *sec, u64 subnet_prefix, u16 pkey) 2141 { 2142 return call_int_hook(ib_pkey_access, 0, sec, subnet_prefix, pkey); 2143 } 2144 EXPORT_SYMBOL(security_ib_pkey_access); 2145 2146 int security_ib_endport_manage_subnet(void *sec, const char *dev_name, u8 port_num) 2147 { 2148 return call_int_hook(ib_endport_manage_subnet, 0, sec, dev_name, port_num); 2149 } 2150 EXPORT_SYMBOL(security_ib_endport_manage_subnet); 2151 2152 int security_ib_alloc_security(void **sec) 2153 { 2154 return call_int_hook(ib_alloc_security, 0, sec); 2155 } 2156 EXPORT_SYMBOL(security_ib_alloc_security); 2157 2158 void security_ib_free_security(void *sec) 2159 { 2160 call_void_hook(ib_free_security, sec); 2161 } 2162 EXPORT_SYMBOL(security_ib_free_security); 2163 #endif /* CONFIG_SECURITY_INFINIBAND */ 2164 2165 #ifdef CONFIG_SECURITY_NETWORK_XFRM 2166 2167 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, 2168 struct xfrm_user_sec_ctx *sec_ctx, 2169 gfp_t gfp) 2170 { 2171 return call_int_hook(xfrm_policy_alloc_security, 0, ctxp, sec_ctx, gfp); 2172 } 2173 EXPORT_SYMBOL(security_xfrm_policy_alloc); 2174 2175 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx, 2176 struct xfrm_sec_ctx **new_ctxp) 2177 { 2178 return call_int_hook(xfrm_policy_clone_security, 0, old_ctx, new_ctxp); 2179 } 2180 2181 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx) 2182 { 2183 call_void_hook(xfrm_policy_free_security, ctx); 2184 } 2185 EXPORT_SYMBOL(security_xfrm_policy_free); 2186 2187 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx) 2188 { 2189 return call_int_hook(xfrm_policy_delete_security, 0, ctx); 2190 } 2191 2192 int security_xfrm_state_alloc(struct xfrm_state *x, 2193 struct xfrm_user_sec_ctx *sec_ctx) 2194 { 2195 return call_int_hook(xfrm_state_alloc, 0, x, sec_ctx); 2196 } 2197 EXPORT_SYMBOL(security_xfrm_state_alloc); 2198 2199 int security_xfrm_state_alloc_acquire(struct xfrm_state *x, 2200 struct xfrm_sec_ctx *polsec, u32 secid) 2201 { 2202 return call_int_hook(xfrm_state_alloc_acquire, 0, x, polsec, secid); 2203 } 2204 2205 int security_xfrm_state_delete(struct xfrm_state *x) 2206 { 2207 return call_int_hook(xfrm_state_delete_security, 0, x); 2208 } 2209 EXPORT_SYMBOL(security_xfrm_state_delete); 2210 2211 void security_xfrm_state_free(struct xfrm_state *x) 2212 { 2213 call_void_hook(xfrm_state_free_security, x); 2214 } 2215 2216 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir) 2217 { 2218 return call_int_hook(xfrm_policy_lookup, 0, ctx, fl_secid, dir); 2219 } 2220 2221 int security_xfrm_state_pol_flow_match(struct xfrm_state *x, 2222 struct xfrm_policy *xp, 2223 const struct flowi *fl) 2224 { 2225 struct security_hook_list *hp; 2226 int rc = 1; 2227 2228 /* 2229 * Since this function is expected to return 0 or 1, the judgment 2230 * becomes difficult if multiple LSMs supply this call. Fortunately, 2231 * we can use the first LSM's judgment because currently only SELinux 2232 * supplies this call. 2233 * 2234 * For speed optimization, we explicitly break the loop rather than 2235 * using the macro 2236 */ 2237 hlist_for_each_entry(hp, &security_hook_heads.xfrm_state_pol_flow_match, 2238 list) { 2239 rc = hp->hook.xfrm_state_pol_flow_match(x, xp, fl); 2240 break; 2241 } 2242 return rc; 2243 } 2244 2245 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid) 2246 { 2247 return call_int_hook(xfrm_decode_session, 0, skb, secid, 1); 2248 } 2249 2250 void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl) 2251 { 2252 int rc = call_int_hook(xfrm_decode_session, 0, skb, &fl->flowi_secid, 2253 0); 2254 2255 BUG_ON(rc); 2256 } 2257 EXPORT_SYMBOL(security_skb_classify_flow); 2258 2259 #endif /* CONFIG_SECURITY_NETWORK_XFRM */ 2260 2261 #ifdef CONFIG_KEYS 2262 2263 int security_key_alloc(struct key *key, const struct cred *cred, 2264 unsigned long flags) 2265 { 2266 return call_int_hook(key_alloc, 0, key, cred, flags); 2267 } 2268 2269 void security_key_free(struct key *key) 2270 { 2271 call_void_hook(key_free, key); 2272 } 2273 2274 int security_key_permission(key_ref_t key_ref, 2275 const struct cred *cred, unsigned perm) 2276 { 2277 return call_int_hook(key_permission, 0, key_ref, cred, perm); 2278 } 2279 2280 int security_key_getsecurity(struct key *key, char **_buffer) 2281 { 2282 *_buffer = NULL; 2283 return call_int_hook(key_getsecurity, 0, key, _buffer); 2284 } 2285 2286 #endif /* CONFIG_KEYS */ 2287 2288 #ifdef CONFIG_AUDIT 2289 2290 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule) 2291 { 2292 return call_int_hook(audit_rule_init, 0, field, op, rulestr, lsmrule); 2293 } 2294 2295 int security_audit_rule_known(struct audit_krule *krule) 2296 { 2297 return call_int_hook(audit_rule_known, 0, krule); 2298 } 2299 2300 void security_audit_rule_free(void *lsmrule) 2301 { 2302 call_void_hook(audit_rule_free, lsmrule); 2303 } 2304 2305 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule) 2306 { 2307 return call_int_hook(audit_rule_match, 0, secid, field, op, lsmrule); 2308 } 2309 #endif /* CONFIG_AUDIT */ 2310 2311 #ifdef CONFIG_BPF_SYSCALL 2312 int security_bpf(int cmd, union bpf_attr *attr, unsigned int size) 2313 { 2314 return call_int_hook(bpf, 0, cmd, attr, size); 2315 } 2316 int security_bpf_map(struct bpf_map *map, fmode_t fmode) 2317 { 2318 return call_int_hook(bpf_map, 0, map, fmode); 2319 } 2320 int security_bpf_prog(struct bpf_prog *prog) 2321 { 2322 return call_int_hook(bpf_prog, 0, prog); 2323 } 2324 int security_bpf_map_alloc(struct bpf_map *map) 2325 { 2326 return call_int_hook(bpf_map_alloc_security, 0, map); 2327 } 2328 int security_bpf_prog_alloc(struct bpf_prog_aux *aux) 2329 { 2330 return call_int_hook(bpf_prog_alloc_security, 0, aux); 2331 } 2332 void security_bpf_map_free(struct bpf_map *map) 2333 { 2334 call_void_hook(bpf_map_free_security, map); 2335 } 2336 void security_bpf_prog_free(struct bpf_prog_aux *aux) 2337 { 2338 call_void_hook(bpf_prog_free_security, aux); 2339 } 2340 #endif /* CONFIG_BPF_SYSCALL */ 2341