1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Security plug functions 4 * 5 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com> 6 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com> 7 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com> 8 * Copyright (C) 2016 Mellanox Technologies 9 * Copyright (C) 2023 Microsoft Corporation <paul@paul-moore.com> 10 */ 11 12 #define pr_fmt(fmt) "LSM: " fmt 13 14 #include <linux/bpf.h> 15 #include <linux/capability.h> 16 #include <linux/dcache.h> 17 #include <linux/export.h> 18 #include <linux/init.h> 19 #include <linux/kernel.h> 20 #include <linux/kernel_read_file.h> 21 #include <linux/lsm_hooks.h> 22 #include <linux/integrity.h> 23 #include <linux/fsnotify.h> 24 #include <linux/mman.h> 25 #include <linux/mount.h> 26 #include <linux/personality.h> 27 #include <linux/backing-dev.h> 28 #include <linux/string.h> 29 #include <linux/xattr.h> 30 #include <linux/msg.h> 31 #include <net/flow.h> 32 33 /* How many LSMs were built into the kernel? */ 34 #define LSM_COUNT (__end_lsm_info - __start_lsm_info) 35 36 /* 37 * How many LSMs are built into the kernel as determined at 38 * build time. Used to determine fixed array sizes. 39 * The capability module is accounted for by CONFIG_SECURITY 40 */ 41 #define LSM_CONFIG_COUNT ( \ 42 (IS_ENABLED(CONFIG_SECURITY) ? 1 : 0) + \ 43 (IS_ENABLED(CONFIG_SECURITY_SELINUX) ? 1 : 0) + \ 44 (IS_ENABLED(CONFIG_SECURITY_SMACK) ? 1 : 0) + \ 45 (IS_ENABLED(CONFIG_SECURITY_TOMOYO) ? 1 : 0) + \ 46 (IS_ENABLED(CONFIG_SECURITY_APPARMOR) ? 1 : 0) + \ 47 (IS_ENABLED(CONFIG_SECURITY_YAMA) ? 1 : 0) + \ 48 (IS_ENABLED(CONFIG_SECURITY_LOADPIN) ? 1 : 0) + \ 49 (IS_ENABLED(CONFIG_SECURITY_SAFESETID) ? 1 : 0) + \ 50 (IS_ENABLED(CONFIG_SECURITY_LOCKDOWN_LSM) ? 1 : 0) + \ 51 (IS_ENABLED(CONFIG_BPF_LSM) ? 1 : 0) + \ 52 (IS_ENABLED(CONFIG_SECURITY_LANDLOCK) ? 1 : 0) + \ 53 (IS_ENABLED(CONFIG_IMA) ? 1 : 0) + \ 54 (IS_ENABLED(CONFIG_EVM) ? 1 : 0)) 55 56 /* 57 * These are descriptions of the reasons that can be passed to the 58 * security_locked_down() LSM hook. Placing this array here allows 59 * all security modules to use the same descriptions for auditing 60 * purposes. 61 */ 62 const char *const lockdown_reasons[LOCKDOWN_CONFIDENTIALITY_MAX + 1] = { 63 [LOCKDOWN_NONE] = "none", 64 [LOCKDOWN_MODULE_SIGNATURE] = "unsigned module loading", 65 [LOCKDOWN_DEV_MEM] = "/dev/mem,kmem,port", 66 [LOCKDOWN_EFI_TEST] = "/dev/efi_test access", 67 [LOCKDOWN_KEXEC] = "kexec of unsigned images", 68 [LOCKDOWN_HIBERNATION] = "hibernation", 69 [LOCKDOWN_PCI_ACCESS] = "direct PCI access", 70 [LOCKDOWN_IOPORT] = "raw io port access", 71 [LOCKDOWN_MSR] = "raw MSR access", 72 [LOCKDOWN_ACPI_TABLES] = "modifying ACPI tables", 73 [LOCKDOWN_DEVICE_TREE] = "modifying device tree contents", 74 [LOCKDOWN_PCMCIA_CIS] = "direct PCMCIA CIS storage", 75 [LOCKDOWN_TIOCSSERIAL] = "reconfiguration of serial port IO", 76 [LOCKDOWN_MODULE_PARAMETERS] = "unsafe module parameters", 77 [LOCKDOWN_MMIOTRACE] = "unsafe mmio", 78 [LOCKDOWN_DEBUGFS] = "debugfs access", 79 [LOCKDOWN_XMON_WR] = "xmon write access", 80 [LOCKDOWN_BPF_WRITE_USER] = "use of bpf to write user RAM", 81 [LOCKDOWN_DBG_WRITE_KERNEL] = "use of kgdb/kdb to write kernel RAM", 82 [LOCKDOWN_RTAS_ERROR_INJECTION] = "RTAS error injection", 83 [LOCKDOWN_INTEGRITY_MAX] = "integrity", 84 [LOCKDOWN_KCORE] = "/proc/kcore access", 85 [LOCKDOWN_KPROBES] = "use of kprobes", 86 [LOCKDOWN_BPF_READ_KERNEL] = "use of bpf to read kernel RAM", 87 [LOCKDOWN_DBG_READ_KERNEL] = "use of kgdb/kdb to read kernel RAM", 88 [LOCKDOWN_PERF] = "unsafe use of perf", 89 [LOCKDOWN_TRACEFS] = "use of tracefs", 90 [LOCKDOWN_XMON_RW] = "xmon read and write access", 91 [LOCKDOWN_XFRM_SECRET] = "xfrm SA secret", 92 [LOCKDOWN_CONFIDENTIALITY_MAX] = "confidentiality", 93 }; 94 95 struct security_hook_heads security_hook_heads __ro_after_init; 96 static BLOCKING_NOTIFIER_HEAD(blocking_lsm_notifier_chain); 97 98 static struct kmem_cache *lsm_file_cache; 99 static struct kmem_cache *lsm_inode_cache; 100 101 char *lsm_names; 102 static struct lsm_blob_sizes blob_sizes __ro_after_init; 103 104 /* Boot-time LSM user choice */ 105 static __initdata const char *chosen_lsm_order; 106 static __initdata const char *chosen_major_lsm; 107 108 static __initconst const char *const builtin_lsm_order = CONFIG_LSM; 109 110 /* Ordered list of LSMs to initialize. */ 111 static __initdata struct lsm_info **ordered_lsms; 112 static __initdata struct lsm_info *exclusive; 113 114 static __initdata bool debug; 115 #define init_debug(...) \ 116 do { \ 117 if (debug) \ 118 pr_info(__VA_ARGS__); \ 119 } while (0) 120 121 static bool __init is_enabled(struct lsm_info *lsm) 122 { 123 if (!lsm->enabled) 124 return false; 125 126 return *lsm->enabled; 127 } 128 129 /* Mark an LSM's enabled flag. */ 130 static int lsm_enabled_true __initdata = 1; 131 static int lsm_enabled_false __initdata = 0; 132 static void __init set_enabled(struct lsm_info *lsm, bool enabled) 133 { 134 /* 135 * When an LSM hasn't configured an enable variable, we can use 136 * a hard-coded location for storing the default enabled state. 137 */ 138 if (!lsm->enabled) { 139 if (enabled) 140 lsm->enabled = &lsm_enabled_true; 141 else 142 lsm->enabled = &lsm_enabled_false; 143 } else if (lsm->enabled == &lsm_enabled_true) { 144 if (!enabled) 145 lsm->enabled = &lsm_enabled_false; 146 } else if (lsm->enabled == &lsm_enabled_false) { 147 if (enabled) 148 lsm->enabled = &lsm_enabled_true; 149 } else { 150 *lsm->enabled = enabled; 151 } 152 } 153 154 /* Is an LSM already listed in the ordered LSMs list? */ 155 static bool __init exists_ordered_lsm(struct lsm_info *lsm) 156 { 157 struct lsm_info **check; 158 159 for (check = ordered_lsms; *check; check++) 160 if (*check == lsm) 161 return true; 162 163 return false; 164 } 165 166 /* Append an LSM to the list of ordered LSMs to initialize. */ 167 static int last_lsm __initdata; 168 static void __init append_ordered_lsm(struct lsm_info *lsm, const char *from) 169 { 170 /* Ignore duplicate selections. */ 171 if (exists_ordered_lsm(lsm)) 172 return; 173 174 if (WARN(last_lsm == LSM_COUNT, "%s: out of LSM slots!?\n", from)) 175 return; 176 177 /* Enable this LSM, if it is not already set. */ 178 if (!lsm->enabled) 179 lsm->enabled = &lsm_enabled_true; 180 ordered_lsms[last_lsm++] = lsm; 181 182 init_debug("%s ordered: %s (%s)\n", from, lsm->name, 183 is_enabled(lsm) ? "enabled" : "disabled"); 184 } 185 186 /* Is an LSM allowed to be initialized? */ 187 static bool __init lsm_allowed(struct lsm_info *lsm) 188 { 189 /* Skip if the LSM is disabled. */ 190 if (!is_enabled(lsm)) 191 return false; 192 193 /* Not allowed if another exclusive LSM already initialized. */ 194 if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && exclusive) { 195 init_debug("exclusive disabled: %s\n", lsm->name); 196 return false; 197 } 198 199 return true; 200 } 201 202 static void __init lsm_set_blob_size(int *need, int *lbs) 203 { 204 int offset; 205 206 if (*need <= 0) 207 return; 208 209 offset = ALIGN(*lbs, sizeof(void *)); 210 *lbs = offset + *need; 211 *need = offset; 212 } 213 214 static void __init lsm_set_blob_sizes(struct lsm_blob_sizes *needed) 215 { 216 if (!needed) 217 return; 218 219 lsm_set_blob_size(&needed->lbs_cred, &blob_sizes.lbs_cred); 220 lsm_set_blob_size(&needed->lbs_file, &blob_sizes.lbs_file); 221 /* 222 * The inode blob gets an rcu_head in addition to 223 * what the modules might need. 224 */ 225 if (needed->lbs_inode && blob_sizes.lbs_inode == 0) 226 blob_sizes.lbs_inode = sizeof(struct rcu_head); 227 lsm_set_blob_size(&needed->lbs_inode, &blob_sizes.lbs_inode); 228 lsm_set_blob_size(&needed->lbs_ipc, &blob_sizes.lbs_ipc); 229 lsm_set_blob_size(&needed->lbs_msg_msg, &blob_sizes.lbs_msg_msg); 230 lsm_set_blob_size(&needed->lbs_superblock, &blob_sizes.lbs_superblock); 231 lsm_set_blob_size(&needed->lbs_task, &blob_sizes.lbs_task); 232 lsm_set_blob_size(&needed->lbs_xattr_count, 233 &blob_sizes.lbs_xattr_count); 234 } 235 236 /* Prepare LSM for initialization. */ 237 static void __init prepare_lsm(struct lsm_info *lsm) 238 { 239 int enabled = lsm_allowed(lsm); 240 241 /* Record enablement (to handle any following exclusive LSMs). */ 242 set_enabled(lsm, enabled); 243 244 /* If enabled, do pre-initialization work. */ 245 if (enabled) { 246 if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && !exclusive) { 247 exclusive = lsm; 248 init_debug("exclusive chosen: %s\n", lsm->name); 249 } 250 251 lsm_set_blob_sizes(lsm->blobs); 252 } 253 } 254 255 /* Initialize a given LSM, if it is enabled. */ 256 static void __init initialize_lsm(struct lsm_info *lsm) 257 { 258 if (is_enabled(lsm)) { 259 int ret; 260 261 init_debug("initializing %s\n", lsm->name); 262 ret = lsm->init(); 263 WARN(ret, "%s failed to initialize: %d\n", lsm->name, ret); 264 } 265 } 266 267 /* 268 * Current index to use while initializing the lsm id list. 269 */ 270 u32 lsm_active_cnt __ro_after_init; 271 const struct lsm_id *lsm_idlist[LSM_CONFIG_COUNT]; 272 273 /* Populate ordered LSMs list from comma-separated LSM name list. */ 274 static void __init ordered_lsm_parse(const char *order, const char *origin) 275 { 276 struct lsm_info *lsm; 277 char *sep, *name, *next; 278 279 /* LSM_ORDER_FIRST is always first. */ 280 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { 281 if (lsm->order == LSM_ORDER_FIRST) 282 append_ordered_lsm(lsm, " first"); 283 } 284 285 /* Process "security=", if given. */ 286 if (chosen_major_lsm) { 287 struct lsm_info *major; 288 289 /* 290 * To match the original "security=" behavior, this 291 * explicitly does NOT fallback to another Legacy Major 292 * if the selected one was separately disabled: disable 293 * all non-matching Legacy Major LSMs. 294 */ 295 for (major = __start_lsm_info; major < __end_lsm_info; 296 major++) { 297 if ((major->flags & LSM_FLAG_LEGACY_MAJOR) && 298 strcmp(major->name, chosen_major_lsm) != 0) { 299 set_enabled(major, false); 300 init_debug("security=%s disabled: %s (only one legacy major LSM)\n", 301 chosen_major_lsm, major->name); 302 } 303 } 304 } 305 306 sep = kstrdup(order, GFP_KERNEL); 307 next = sep; 308 /* Walk the list, looking for matching LSMs. */ 309 while ((name = strsep(&next, ",")) != NULL) { 310 bool found = false; 311 312 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { 313 if (strcmp(lsm->name, name) == 0) { 314 if (lsm->order == LSM_ORDER_MUTABLE) 315 append_ordered_lsm(lsm, origin); 316 found = true; 317 } 318 } 319 320 if (!found) 321 init_debug("%s ignored: %s (not built into kernel)\n", 322 origin, name); 323 } 324 325 /* Process "security=", if given. */ 326 if (chosen_major_lsm) { 327 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { 328 if (exists_ordered_lsm(lsm)) 329 continue; 330 if (strcmp(lsm->name, chosen_major_lsm) == 0) 331 append_ordered_lsm(lsm, "security="); 332 } 333 } 334 335 /* LSM_ORDER_LAST is always last. */ 336 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { 337 if (lsm->order == LSM_ORDER_LAST) 338 append_ordered_lsm(lsm, " last"); 339 } 340 341 /* Disable all LSMs not in the ordered list. */ 342 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { 343 if (exists_ordered_lsm(lsm)) 344 continue; 345 set_enabled(lsm, false); 346 init_debug("%s skipped: %s (not in requested order)\n", 347 origin, lsm->name); 348 } 349 350 kfree(sep); 351 } 352 353 static void __init lsm_early_cred(struct cred *cred); 354 static void __init lsm_early_task(struct task_struct *task); 355 356 static int lsm_append(const char *new, char **result); 357 358 static void __init report_lsm_order(void) 359 { 360 struct lsm_info **lsm, *early; 361 int first = 0; 362 363 pr_info("initializing lsm="); 364 365 /* Report each enabled LSM name, comma separated. */ 366 for (early = __start_early_lsm_info; 367 early < __end_early_lsm_info; early++) 368 if (is_enabled(early)) 369 pr_cont("%s%s", first++ == 0 ? "" : ",", early->name); 370 for (lsm = ordered_lsms; *lsm; lsm++) 371 if (is_enabled(*lsm)) 372 pr_cont("%s%s", first++ == 0 ? "" : ",", (*lsm)->name); 373 374 pr_cont("\n"); 375 } 376 377 static void __init ordered_lsm_init(void) 378 { 379 struct lsm_info **lsm; 380 381 ordered_lsms = kcalloc(LSM_COUNT + 1, sizeof(*ordered_lsms), 382 GFP_KERNEL); 383 384 if (chosen_lsm_order) { 385 if (chosen_major_lsm) { 386 pr_warn("security=%s is ignored because it is superseded by lsm=%s\n", 387 chosen_major_lsm, chosen_lsm_order); 388 chosen_major_lsm = NULL; 389 } 390 ordered_lsm_parse(chosen_lsm_order, "cmdline"); 391 } else 392 ordered_lsm_parse(builtin_lsm_order, "builtin"); 393 394 for (lsm = ordered_lsms; *lsm; lsm++) 395 prepare_lsm(*lsm); 396 397 report_lsm_order(); 398 399 init_debug("cred blob size = %d\n", blob_sizes.lbs_cred); 400 init_debug("file blob size = %d\n", blob_sizes.lbs_file); 401 init_debug("inode blob size = %d\n", blob_sizes.lbs_inode); 402 init_debug("ipc blob size = %d\n", blob_sizes.lbs_ipc); 403 init_debug("msg_msg blob size = %d\n", blob_sizes.lbs_msg_msg); 404 init_debug("superblock blob size = %d\n", blob_sizes.lbs_superblock); 405 init_debug("task blob size = %d\n", blob_sizes.lbs_task); 406 init_debug("xattr slots = %d\n", blob_sizes.lbs_xattr_count); 407 408 /* 409 * Create any kmem_caches needed for blobs 410 */ 411 if (blob_sizes.lbs_file) 412 lsm_file_cache = kmem_cache_create("lsm_file_cache", 413 blob_sizes.lbs_file, 0, 414 SLAB_PANIC, NULL); 415 if (blob_sizes.lbs_inode) 416 lsm_inode_cache = kmem_cache_create("lsm_inode_cache", 417 blob_sizes.lbs_inode, 0, 418 SLAB_PANIC, NULL); 419 420 lsm_early_cred((struct cred *) current->cred); 421 lsm_early_task(current); 422 for (lsm = ordered_lsms; *lsm; lsm++) 423 initialize_lsm(*lsm); 424 425 kfree(ordered_lsms); 426 } 427 428 int __init early_security_init(void) 429 { 430 struct lsm_info *lsm; 431 432 #define LSM_HOOK(RET, DEFAULT, NAME, ...) \ 433 INIT_HLIST_HEAD(&security_hook_heads.NAME); 434 #include "linux/lsm_hook_defs.h" 435 #undef LSM_HOOK 436 437 for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) { 438 if (!lsm->enabled) 439 lsm->enabled = &lsm_enabled_true; 440 prepare_lsm(lsm); 441 initialize_lsm(lsm); 442 } 443 444 return 0; 445 } 446 447 /** 448 * security_init - initializes the security framework 449 * 450 * This should be called early in the kernel initialization sequence. 451 */ 452 int __init security_init(void) 453 { 454 struct lsm_info *lsm; 455 456 init_debug("legacy security=%s\n", chosen_major_lsm ? : " *unspecified*"); 457 init_debug(" CONFIG_LSM=%s\n", builtin_lsm_order); 458 init_debug("boot arg lsm=%s\n", chosen_lsm_order ? : " *unspecified*"); 459 460 /* 461 * Append the names of the early LSM modules now that kmalloc() is 462 * available 463 */ 464 for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) { 465 init_debug(" early started: %s (%s)\n", lsm->name, 466 is_enabled(lsm) ? "enabled" : "disabled"); 467 if (lsm->enabled) 468 lsm_append(lsm->name, &lsm_names); 469 } 470 471 /* Load LSMs in specified order. */ 472 ordered_lsm_init(); 473 474 return 0; 475 } 476 477 /* Save user chosen LSM */ 478 static int __init choose_major_lsm(char *str) 479 { 480 chosen_major_lsm = str; 481 return 1; 482 } 483 __setup("security=", choose_major_lsm); 484 485 /* Explicitly choose LSM initialization order. */ 486 static int __init choose_lsm_order(char *str) 487 { 488 chosen_lsm_order = str; 489 return 1; 490 } 491 __setup("lsm=", choose_lsm_order); 492 493 /* Enable LSM order debugging. */ 494 static int __init enable_debug(char *str) 495 { 496 debug = true; 497 return 1; 498 } 499 __setup("lsm.debug", enable_debug); 500 501 static bool match_last_lsm(const char *list, const char *lsm) 502 { 503 const char *last; 504 505 if (WARN_ON(!list || !lsm)) 506 return false; 507 last = strrchr(list, ','); 508 if (last) 509 /* Pass the comma, strcmp() will check for '\0' */ 510 last++; 511 else 512 last = list; 513 return !strcmp(last, lsm); 514 } 515 516 static int lsm_append(const char *new, char **result) 517 { 518 char *cp; 519 520 if (*result == NULL) { 521 *result = kstrdup(new, GFP_KERNEL); 522 if (*result == NULL) 523 return -ENOMEM; 524 } else { 525 /* Check if it is the last registered name */ 526 if (match_last_lsm(*result, new)) 527 return 0; 528 cp = kasprintf(GFP_KERNEL, "%s,%s", *result, new); 529 if (cp == NULL) 530 return -ENOMEM; 531 kfree(*result); 532 *result = cp; 533 } 534 return 0; 535 } 536 537 /** 538 * security_add_hooks - Add a modules hooks to the hook lists. 539 * @hooks: the hooks to add 540 * @count: the number of hooks to add 541 * @lsmid: the identification information for the security module 542 * 543 * Each LSM has to register its hooks with the infrastructure. 544 */ 545 void __init security_add_hooks(struct security_hook_list *hooks, int count, 546 const struct lsm_id *lsmid) 547 { 548 int i; 549 550 /* 551 * A security module may call security_add_hooks() more 552 * than once during initialization, and LSM initialization 553 * is serialized. Landlock is one such case. 554 * Look at the previous entry, if there is one, for duplication. 555 */ 556 if (lsm_active_cnt == 0 || lsm_idlist[lsm_active_cnt - 1] != lsmid) { 557 if (lsm_active_cnt >= LSM_CONFIG_COUNT) 558 panic("%s Too many LSMs registered.\n", __func__); 559 lsm_idlist[lsm_active_cnt++] = lsmid; 560 } 561 562 for (i = 0; i < count; i++) { 563 hooks[i].lsmid = lsmid; 564 hlist_add_tail_rcu(&hooks[i].list, hooks[i].head); 565 } 566 567 /* 568 * Don't try to append during early_security_init(), we'll come back 569 * and fix this up afterwards. 570 */ 571 if (slab_is_available()) { 572 if (lsm_append(lsmid->name, &lsm_names) < 0) 573 panic("%s - Cannot get early memory.\n", __func__); 574 } 575 } 576 577 int call_blocking_lsm_notifier(enum lsm_event event, void *data) 578 { 579 return blocking_notifier_call_chain(&blocking_lsm_notifier_chain, 580 event, data); 581 } 582 EXPORT_SYMBOL(call_blocking_lsm_notifier); 583 584 int register_blocking_lsm_notifier(struct notifier_block *nb) 585 { 586 return blocking_notifier_chain_register(&blocking_lsm_notifier_chain, 587 nb); 588 } 589 EXPORT_SYMBOL(register_blocking_lsm_notifier); 590 591 int unregister_blocking_lsm_notifier(struct notifier_block *nb) 592 { 593 return blocking_notifier_chain_unregister(&blocking_lsm_notifier_chain, 594 nb); 595 } 596 EXPORT_SYMBOL(unregister_blocking_lsm_notifier); 597 598 /** 599 * lsm_cred_alloc - allocate a composite cred blob 600 * @cred: the cred that needs a blob 601 * @gfp: allocation type 602 * 603 * Allocate the cred blob for all the modules 604 * 605 * Returns 0, or -ENOMEM if memory can't be allocated. 606 */ 607 static int lsm_cred_alloc(struct cred *cred, gfp_t gfp) 608 { 609 if (blob_sizes.lbs_cred == 0) { 610 cred->security = NULL; 611 return 0; 612 } 613 614 cred->security = kzalloc(blob_sizes.lbs_cred, gfp); 615 if (cred->security == NULL) 616 return -ENOMEM; 617 return 0; 618 } 619 620 /** 621 * lsm_early_cred - during initialization allocate a composite cred blob 622 * @cred: the cred that needs a blob 623 * 624 * Allocate the cred blob for all the modules 625 */ 626 static void __init lsm_early_cred(struct cred *cred) 627 { 628 int rc = lsm_cred_alloc(cred, GFP_KERNEL); 629 630 if (rc) 631 panic("%s: Early cred alloc failed.\n", __func__); 632 } 633 634 /** 635 * lsm_file_alloc - allocate a composite file blob 636 * @file: the file that needs a blob 637 * 638 * Allocate the file blob for all the modules 639 * 640 * Returns 0, or -ENOMEM if memory can't be allocated. 641 */ 642 static int lsm_file_alloc(struct file *file) 643 { 644 if (!lsm_file_cache) { 645 file->f_security = NULL; 646 return 0; 647 } 648 649 file->f_security = kmem_cache_zalloc(lsm_file_cache, GFP_KERNEL); 650 if (file->f_security == NULL) 651 return -ENOMEM; 652 return 0; 653 } 654 655 /** 656 * lsm_inode_alloc - allocate a composite inode blob 657 * @inode: the inode that needs a blob 658 * 659 * Allocate the inode blob for all the modules 660 * 661 * Returns 0, or -ENOMEM if memory can't be allocated. 662 */ 663 int lsm_inode_alloc(struct inode *inode) 664 { 665 if (!lsm_inode_cache) { 666 inode->i_security = NULL; 667 return 0; 668 } 669 670 inode->i_security = kmem_cache_zalloc(lsm_inode_cache, GFP_NOFS); 671 if (inode->i_security == NULL) 672 return -ENOMEM; 673 return 0; 674 } 675 676 /** 677 * lsm_task_alloc - allocate a composite task blob 678 * @task: the task that needs a blob 679 * 680 * Allocate the task blob for all the modules 681 * 682 * Returns 0, or -ENOMEM if memory can't be allocated. 683 */ 684 static int lsm_task_alloc(struct task_struct *task) 685 { 686 if (blob_sizes.lbs_task == 0) { 687 task->security = NULL; 688 return 0; 689 } 690 691 task->security = kzalloc(blob_sizes.lbs_task, GFP_KERNEL); 692 if (task->security == NULL) 693 return -ENOMEM; 694 return 0; 695 } 696 697 /** 698 * lsm_ipc_alloc - allocate a composite ipc blob 699 * @kip: the ipc that needs a blob 700 * 701 * Allocate the ipc blob for all the modules 702 * 703 * Returns 0, or -ENOMEM if memory can't be allocated. 704 */ 705 static int lsm_ipc_alloc(struct kern_ipc_perm *kip) 706 { 707 if (blob_sizes.lbs_ipc == 0) { 708 kip->security = NULL; 709 return 0; 710 } 711 712 kip->security = kzalloc(blob_sizes.lbs_ipc, GFP_KERNEL); 713 if (kip->security == NULL) 714 return -ENOMEM; 715 return 0; 716 } 717 718 /** 719 * lsm_msg_msg_alloc - allocate a composite msg_msg blob 720 * @mp: the msg_msg that needs a blob 721 * 722 * Allocate the ipc blob for all the modules 723 * 724 * Returns 0, or -ENOMEM if memory can't be allocated. 725 */ 726 static int lsm_msg_msg_alloc(struct msg_msg *mp) 727 { 728 if (blob_sizes.lbs_msg_msg == 0) { 729 mp->security = NULL; 730 return 0; 731 } 732 733 mp->security = kzalloc(blob_sizes.lbs_msg_msg, GFP_KERNEL); 734 if (mp->security == NULL) 735 return -ENOMEM; 736 return 0; 737 } 738 739 /** 740 * lsm_early_task - during initialization allocate a composite task blob 741 * @task: the task that needs a blob 742 * 743 * Allocate the task blob for all the modules 744 */ 745 static void __init lsm_early_task(struct task_struct *task) 746 { 747 int rc = lsm_task_alloc(task); 748 749 if (rc) 750 panic("%s: Early task alloc failed.\n", __func__); 751 } 752 753 /** 754 * lsm_superblock_alloc - allocate a composite superblock blob 755 * @sb: the superblock that needs a blob 756 * 757 * Allocate the superblock blob for all the modules 758 * 759 * Returns 0, or -ENOMEM if memory can't be allocated. 760 */ 761 static int lsm_superblock_alloc(struct super_block *sb) 762 { 763 if (blob_sizes.lbs_superblock == 0) { 764 sb->s_security = NULL; 765 return 0; 766 } 767 768 sb->s_security = kzalloc(blob_sizes.lbs_superblock, GFP_KERNEL); 769 if (sb->s_security == NULL) 770 return -ENOMEM; 771 return 0; 772 } 773 774 /** 775 * lsm_fill_user_ctx - Fill a user space lsm_ctx structure 776 * @uctx: a userspace LSM context to be filled 777 * @uctx_len: available uctx size (input), used uctx size (output) 778 * @val: the new LSM context value 779 * @val_len: the size of the new LSM context value 780 * @id: LSM id 781 * @flags: LSM defined flags 782 * 783 * Fill all of the fields in a userspace lsm_ctx structure. 784 * 785 * Returns 0 on success, -E2BIG if userspace buffer is not large enough, 786 * -EFAULT on a copyout error, -ENOMEM if memory can't be allocated. 787 */ 788 int lsm_fill_user_ctx(struct lsm_ctx __user *uctx, size_t *uctx_len, 789 void *val, size_t val_len, 790 u64 id, u64 flags) 791 { 792 struct lsm_ctx *nctx = NULL; 793 size_t nctx_len; 794 int rc = 0; 795 796 nctx_len = ALIGN(struct_size(nctx, ctx, val_len), sizeof(void *)); 797 if (nctx_len > *uctx_len) { 798 rc = -E2BIG; 799 goto out; 800 } 801 802 nctx = kzalloc(nctx_len, GFP_KERNEL); 803 if (nctx == NULL) { 804 rc = -ENOMEM; 805 goto out; 806 } 807 nctx->id = id; 808 nctx->flags = flags; 809 nctx->len = nctx_len; 810 nctx->ctx_len = val_len; 811 memcpy(nctx->ctx, val, val_len); 812 813 if (copy_to_user(uctx, nctx, nctx_len)) 814 rc = -EFAULT; 815 816 out: 817 kfree(nctx); 818 *uctx_len = nctx_len; 819 return rc; 820 } 821 822 /* 823 * The default value of the LSM hook is defined in linux/lsm_hook_defs.h and 824 * can be accessed with: 825 * 826 * LSM_RET_DEFAULT(<hook_name>) 827 * 828 * The macros below define static constants for the default value of each 829 * LSM hook. 830 */ 831 #define LSM_RET_DEFAULT(NAME) (NAME##_default) 832 #define DECLARE_LSM_RET_DEFAULT_void(DEFAULT, NAME) 833 #define DECLARE_LSM_RET_DEFAULT_int(DEFAULT, NAME) \ 834 static const int __maybe_unused LSM_RET_DEFAULT(NAME) = (DEFAULT); 835 #define LSM_HOOK(RET, DEFAULT, NAME, ...) \ 836 DECLARE_LSM_RET_DEFAULT_##RET(DEFAULT, NAME) 837 838 #include <linux/lsm_hook_defs.h> 839 #undef LSM_HOOK 840 841 /* 842 * Hook list operation macros. 843 * 844 * call_void_hook: 845 * This is a hook that does not return a value. 846 * 847 * call_int_hook: 848 * This is a hook that returns a value. 849 */ 850 851 #define call_void_hook(FUNC, ...) \ 852 do { \ 853 struct security_hook_list *P; \ 854 \ 855 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) \ 856 P->hook.FUNC(__VA_ARGS__); \ 857 } while (0) 858 859 #define call_int_hook(FUNC, IRC, ...) ({ \ 860 int RC = IRC; \ 861 do { \ 862 struct security_hook_list *P; \ 863 \ 864 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) { \ 865 RC = P->hook.FUNC(__VA_ARGS__); \ 866 if (RC != 0) \ 867 break; \ 868 } \ 869 } while (0); \ 870 RC; \ 871 }) 872 873 /* Security operations */ 874 875 /** 876 * security_binder_set_context_mgr() - Check if becoming binder ctx mgr is ok 877 * @mgr: task credentials of current binder process 878 * 879 * Check whether @mgr is allowed to be the binder context manager. 880 * 881 * Return: Return 0 if permission is granted. 882 */ 883 int security_binder_set_context_mgr(const struct cred *mgr) 884 { 885 return call_int_hook(binder_set_context_mgr, 0, mgr); 886 } 887 888 /** 889 * security_binder_transaction() - Check if a binder transaction is allowed 890 * @from: sending process 891 * @to: receiving process 892 * 893 * Check whether @from is allowed to invoke a binder transaction call to @to. 894 * 895 * Return: Returns 0 if permission is granted. 896 */ 897 int security_binder_transaction(const struct cred *from, 898 const struct cred *to) 899 { 900 return call_int_hook(binder_transaction, 0, from, to); 901 } 902 903 /** 904 * security_binder_transfer_binder() - Check if a binder transfer is allowed 905 * @from: sending process 906 * @to: receiving process 907 * 908 * Check whether @from is allowed to transfer a binder reference to @to. 909 * 910 * Return: Returns 0 if permission is granted. 911 */ 912 int security_binder_transfer_binder(const struct cred *from, 913 const struct cred *to) 914 { 915 return call_int_hook(binder_transfer_binder, 0, from, to); 916 } 917 918 /** 919 * security_binder_transfer_file() - Check if a binder file xfer is allowed 920 * @from: sending process 921 * @to: receiving process 922 * @file: file being transferred 923 * 924 * Check whether @from is allowed to transfer @file to @to. 925 * 926 * Return: Returns 0 if permission is granted. 927 */ 928 int security_binder_transfer_file(const struct cred *from, 929 const struct cred *to, const struct file *file) 930 { 931 return call_int_hook(binder_transfer_file, 0, from, to, file); 932 } 933 934 /** 935 * security_ptrace_access_check() - Check if tracing is allowed 936 * @child: target process 937 * @mode: PTRACE_MODE flags 938 * 939 * Check permission before allowing the current process to trace the @child 940 * process. Security modules may also want to perform a process tracing check 941 * during an execve in the set_security or apply_creds hooks of tracing check 942 * during an execve in the bprm_set_creds hook of binprm_security_ops if the 943 * process is being traced and its security attributes would be changed by the 944 * execve. 945 * 946 * Return: Returns 0 if permission is granted. 947 */ 948 int security_ptrace_access_check(struct task_struct *child, unsigned int mode) 949 { 950 return call_int_hook(ptrace_access_check, 0, child, mode); 951 } 952 953 /** 954 * security_ptrace_traceme() - Check if tracing is allowed 955 * @parent: tracing process 956 * 957 * Check that the @parent process has sufficient permission to trace the 958 * current process before allowing the current process to present itself to the 959 * @parent process for tracing. 960 * 961 * Return: Returns 0 if permission is granted. 962 */ 963 int security_ptrace_traceme(struct task_struct *parent) 964 { 965 return call_int_hook(ptrace_traceme, 0, parent); 966 } 967 968 /** 969 * security_capget() - Get the capability sets for a process 970 * @target: target process 971 * @effective: effective capability set 972 * @inheritable: inheritable capability set 973 * @permitted: permitted capability set 974 * 975 * Get the @effective, @inheritable, and @permitted capability sets for the 976 * @target process. The hook may also perform permission checking to determine 977 * if the current process is allowed to see the capability sets of the @target 978 * process. 979 * 980 * Return: Returns 0 if the capability sets were successfully obtained. 981 */ 982 int security_capget(const struct task_struct *target, 983 kernel_cap_t *effective, 984 kernel_cap_t *inheritable, 985 kernel_cap_t *permitted) 986 { 987 return call_int_hook(capget, 0, target, 988 effective, inheritable, permitted); 989 } 990 991 /** 992 * security_capset() - Set the capability sets for a process 993 * @new: new credentials for the target process 994 * @old: current credentials of the target process 995 * @effective: effective capability set 996 * @inheritable: inheritable capability set 997 * @permitted: permitted capability set 998 * 999 * Set the @effective, @inheritable, and @permitted capability sets for the 1000 * current process. 1001 * 1002 * Return: Returns 0 and update @new if permission is granted. 1003 */ 1004 int security_capset(struct cred *new, const struct cred *old, 1005 const kernel_cap_t *effective, 1006 const kernel_cap_t *inheritable, 1007 const kernel_cap_t *permitted) 1008 { 1009 return call_int_hook(capset, 0, new, old, 1010 effective, inheritable, permitted); 1011 } 1012 1013 /** 1014 * security_capable() - Check if a process has the necessary capability 1015 * @cred: credentials to examine 1016 * @ns: user namespace 1017 * @cap: capability requested 1018 * @opts: capability check options 1019 * 1020 * Check whether the @tsk process has the @cap capability in the indicated 1021 * credentials. @cap contains the capability <include/linux/capability.h>. 1022 * @opts contains options for the capable check <include/linux/security.h>. 1023 * 1024 * Return: Returns 0 if the capability is granted. 1025 */ 1026 int security_capable(const struct cred *cred, 1027 struct user_namespace *ns, 1028 int cap, 1029 unsigned int opts) 1030 { 1031 return call_int_hook(capable, 0, cred, ns, cap, opts); 1032 } 1033 1034 /** 1035 * security_quotactl() - Check if a quotactl() syscall is allowed for this fs 1036 * @cmds: commands 1037 * @type: type 1038 * @id: id 1039 * @sb: filesystem 1040 * 1041 * Check whether the quotactl syscall is allowed for this @sb. 1042 * 1043 * Return: Returns 0 if permission is granted. 1044 */ 1045 int security_quotactl(int cmds, int type, int id, const struct super_block *sb) 1046 { 1047 return call_int_hook(quotactl, 0, cmds, type, id, sb); 1048 } 1049 1050 /** 1051 * security_quota_on() - Check if QUOTAON is allowed for a dentry 1052 * @dentry: dentry 1053 * 1054 * Check whether QUOTAON is allowed for @dentry. 1055 * 1056 * Return: Returns 0 if permission is granted. 1057 */ 1058 int security_quota_on(struct dentry *dentry) 1059 { 1060 return call_int_hook(quota_on, 0, dentry); 1061 } 1062 1063 /** 1064 * security_syslog() - Check if accessing the kernel message ring is allowed 1065 * @type: SYSLOG_ACTION_* type 1066 * 1067 * Check permission before accessing the kernel message ring or changing 1068 * logging to the console. See the syslog(2) manual page for an explanation of 1069 * the @type values. 1070 * 1071 * Return: Return 0 if permission is granted. 1072 */ 1073 int security_syslog(int type) 1074 { 1075 return call_int_hook(syslog, 0, type); 1076 } 1077 1078 /** 1079 * security_settime64() - Check if changing the system time is allowed 1080 * @ts: new time 1081 * @tz: timezone 1082 * 1083 * Check permission to change the system time, struct timespec64 is defined in 1084 * <include/linux/time64.h> and timezone is defined in <include/linux/time.h>. 1085 * 1086 * Return: Returns 0 if permission is granted. 1087 */ 1088 int security_settime64(const struct timespec64 *ts, const struct timezone *tz) 1089 { 1090 return call_int_hook(settime, 0, ts, tz); 1091 } 1092 1093 /** 1094 * security_vm_enough_memory_mm() - Check if allocating a new mem map is allowed 1095 * @mm: mm struct 1096 * @pages: number of pages 1097 * 1098 * Check permissions for allocating a new virtual mapping. If all LSMs return 1099 * a positive value, __vm_enough_memory() will be called with cap_sys_admin 1100 * set. If at least one LSM returns 0 or negative, __vm_enough_memory() will be 1101 * called with cap_sys_admin cleared. 1102 * 1103 * Return: Returns 0 if permission is granted by the LSM infrastructure to the 1104 * caller. 1105 */ 1106 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages) 1107 { 1108 struct security_hook_list *hp; 1109 int cap_sys_admin = 1; 1110 int rc; 1111 1112 /* 1113 * The module will respond with a positive value if 1114 * it thinks the __vm_enough_memory() call should be 1115 * made with the cap_sys_admin set. If all of the modules 1116 * agree that it should be set it will. If any module 1117 * thinks it should not be set it won't. 1118 */ 1119 hlist_for_each_entry(hp, &security_hook_heads.vm_enough_memory, list) { 1120 rc = hp->hook.vm_enough_memory(mm, pages); 1121 if (rc <= 0) { 1122 cap_sys_admin = 0; 1123 break; 1124 } 1125 } 1126 return __vm_enough_memory(mm, pages, cap_sys_admin); 1127 } 1128 1129 /** 1130 * security_bprm_creds_for_exec() - Prepare the credentials for exec() 1131 * @bprm: binary program information 1132 * 1133 * If the setup in prepare_exec_creds did not setup @bprm->cred->security 1134 * properly for executing @bprm->file, update the LSM's portion of 1135 * @bprm->cred->security to be what commit_creds needs to install for the new 1136 * program. This hook may also optionally check permissions (e.g. for 1137 * transitions between security domains). The hook must set @bprm->secureexec 1138 * to 1 if AT_SECURE should be set to request libc enable secure mode. @bprm 1139 * contains the linux_binprm structure. 1140 * 1141 * Return: Returns 0 if the hook is successful and permission is granted. 1142 */ 1143 int security_bprm_creds_for_exec(struct linux_binprm *bprm) 1144 { 1145 return call_int_hook(bprm_creds_for_exec, 0, bprm); 1146 } 1147 1148 /** 1149 * security_bprm_creds_from_file() - Update linux_binprm creds based on file 1150 * @bprm: binary program information 1151 * @file: associated file 1152 * 1153 * If @file is setpcap, suid, sgid or otherwise marked to change privilege upon 1154 * exec, update @bprm->cred to reflect that change. This is called after 1155 * finding the binary that will be executed without an interpreter. This 1156 * ensures that the credentials will not be derived from a script that the 1157 * binary will need to reopen, which when reopend may end up being a completely 1158 * different file. This hook may also optionally check permissions (e.g. for 1159 * transitions between security domains). The hook must set @bprm->secureexec 1160 * to 1 if AT_SECURE should be set to request libc enable secure mode. The 1161 * hook must add to @bprm->per_clear any personality flags that should be 1162 * cleared from current->personality. @bprm contains the linux_binprm 1163 * structure. 1164 * 1165 * Return: Returns 0 if the hook is successful and permission is granted. 1166 */ 1167 int security_bprm_creds_from_file(struct linux_binprm *bprm, const struct file *file) 1168 { 1169 return call_int_hook(bprm_creds_from_file, 0, bprm, file); 1170 } 1171 1172 /** 1173 * security_bprm_check() - Mediate binary handler search 1174 * @bprm: binary program information 1175 * 1176 * This hook mediates the point when a search for a binary handler will begin. 1177 * It allows a check against the @bprm->cred->security value which was set in 1178 * the preceding creds_for_exec call. The argv list and envp list are reliably 1179 * available in @bprm. This hook may be called multiple times during a single 1180 * execve. @bprm contains the linux_binprm structure. 1181 * 1182 * Return: Returns 0 if the hook is successful and permission is granted. 1183 */ 1184 int security_bprm_check(struct linux_binprm *bprm) 1185 { 1186 return call_int_hook(bprm_check_security, 0, bprm); 1187 } 1188 1189 /** 1190 * security_bprm_committing_creds() - Install creds for a process during exec() 1191 * @bprm: binary program information 1192 * 1193 * Prepare to install the new security attributes of a process being 1194 * transformed by an execve operation, based on the old credentials pointed to 1195 * by @current->cred and the information set in @bprm->cred by the 1196 * bprm_creds_for_exec hook. @bprm points to the linux_binprm structure. This 1197 * hook is a good place to perform state changes on the process such as closing 1198 * open file descriptors to which access will no longer be granted when the 1199 * attributes are changed. This is called immediately before commit_creds(). 1200 */ 1201 void security_bprm_committing_creds(const struct linux_binprm *bprm) 1202 { 1203 call_void_hook(bprm_committing_creds, bprm); 1204 } 1205 1206 /** 1207 * security_bprm_committed_creds() - Tidy up after cred install during exec() 1208 * @bprm: binary program information 1209 * 1210 * Tidy up after the installation of the new security attributes of a process 1211 * being transformed by an execve operation. The new credentials have, by this 1212 * point, been set to @current->cred. @bprm points to the linux_binprm 1213 * structure. This hook is a good place to perform state changes on the 1214 * process such as clearing out non-inheritable signal state. This is called 1215 * immediately after commit_creds(). 1216 */ 1217 void security_bprm_committed_creds(const struct linux_binprm *bprm) 1218 { 1219 call_void_hook(bprm_committed_creds, bprm); 1220 } 1221 1222 /** 1223 * security_fs_context_submount() - Initialise fc->security 1224 * @fc: new filesystem context 1225 * @reference: dentry reference for submount/remount 1226 * 1227 * Fill out the ->security field for a new fs_context. 1228 * 1229 * Return: Returns 0 on success or negative error code on failure. 1230 */ 1231 int security_fs_context_submount(struct fs_context *fc, struct super_block *reference) 1232 { 1233 return call_int_hook(fs_context_submount, 0, fc, reference); 1234 } 1235 1236 /** 1237 * security_fs_context_dup() - Duplicate a fs_context LSM blob 1238 * @fc: destination filesystem context 1239 * @src_fc: source filesystem context 1240 * 1241 * Allocate and attach a security structure to sc->security. This pointer is 1242 * initialised to NULL by the caller. @fc indicates the new filesystem context. 1243 * @src_fc indicates the original filesystem context. 1244 * 1245 * Return: Returns 0 on success or a negative error code on failure. 1246 */ 1247 int security_fs_context_dup(struct fs_context *fc, struct fs_context *src_fc) 1248 { 1249 return call_int_hook(fs_context_dup, 0, fc, src_fc); 1250 } 1251 1252 /** 1253 * security_fs_context_parse_param() - Configure a filesystem context 1254 * @fc: filesystem context 1255 * @param: filesystem parameter 1256 * 1257 * Userspace provided a parameter to configure a superblock. The LSM can 1258 * consume the parameter or return it to the caller for use elsewhere. 1259 * 1260 * Return: If the parameter is used by the LSM it should return 0, if it is 1261 * returned to the caller -ENOPARAM is returned, otherwise a negative 1262 * error code is returned. 1263 */ 1264 int security_fs_context_parse_param(struct fs_context *fc, 1265 struct fs_parameter *param) 1266 { 1267 struct security_hook_list *hp; 1268 int trc; 1269 int rc = -ENOPARAM; 1270 1271 hlist_for_each_entry(hp, &security_hook_heads.fs_context_parse_param, 1272 list) { 1273 trc = hp->hook.fs_context_parse_param(fc, param); 1274 if (trc == 0) 1275 rc = 0; 1276 else if (trc != -ENOPARAM) 1277 return trc; 1278 } 1279 return rc; 1280 } 1281 1282 /** 1283 * security_sb_alloc() - Allocate a super_block LSM blob 1284 * @sb: filesystem superblock 1285 * 1286 * Allocate and attach a security structure to the sb->s_security field. The 1287 * s_security field is initialized to NULL when the structure is allocated. 1288 * @sb contains the super_block structure to be modified. 1289 * 1290 * Return: Returns 0 if operation was successful. 1291 */ 1292 int security_sb_alloc(struct super_block *sb) 1293 { 1294 int rc = lsm_superblock_alloc(sb); 1295 1296 if (unlikely(rc)) 1297 return rc; 1298 rc = call_int_hook(sb_alloc_security, 0, sb); 1299 if (unlikely(rc)) 1300 security_sb_free(sb); 1301 return rc; 1302 } 1303 1304 /** 1305 * security_sb_delete() - Release super_block LSM associated objects 1306 * @sb: filesystem superblock 1307 * 1308 * Release objects tied to a superblock (e.g. inodes). @sb contains the 1309 * super_block structure being released. 1310 */ 1311 void security_sb_delete(struct super_block *sb) 1312 { 1313 call_void_hook(sb_delete, sb); 1314 } 1315 1316 /** 1317 * security_sb_free() - Free a super_block LSM blob 1318 * @sb: filesystem superblock 1319 * 1320 * Deallocate and clear the sb->s_security field. @sb contains the super_block 1321 * structure to be modified. 1322 */ 1323 void security_sb_free(struct super_block *sb) 1324 { 1325 call_void_hook(sb_free_security, sb); 1326 kfree(sb->s_security); 1327 sb->s_security = NULL; 1328 } 1329 1330 /** 1331 * security_free_mnt_opts() - Free memory associated with mount options 1332 * @mnt_opts: LSM processed mount options 1333 * 1334 * Free memory associated with @mnt_ops. 1335 */ 1336 void security_free_mnt_opts(void **mnt_opts) 1337 { 1338 if (!*mnt_opts) 1339 return; 1340 call_void_hook(sb_free_mnt_opts, *mnt_opts); 1341 *mnt_opts = NULL; 1342 } 1343 EXPORT_SYMBOL(security_free_mnt_opts); 1344 1345 /** 1346 * security_sb_eat_lsm_opts() - Consume LSM mount options 1347 * @options: mount options 1348 * @mnt_opts: LSM processed mount options 1349 * 1350 * Eat (scan @options) and save them in @mnt_opts. 1351 * 1352 * Return: Returns 0 on success, negative values on failure. 1353 */ 1354 int security_sb_eat_lsm_opts(char *options, void **mnt_opts) 1355 { 1356 return call_int_hook(sb_eat_lsm_opts, 0, options, mnt_opts); 1357 } 1358 EXPORT_SYMBOL(security_sb_eat_lsm_opts); 1359 1360 /** 1361 * security_sb_mnt_opts_compat() - Check if new mount options are allowed 1362 * @sb: filesystem superblock 1363 * @mnt_opts: new mount options 1364 * 1365 * Determine if the new mount options in @mnt_opts are allowed given the 1366 * existing mounted filesystem at @sb. @sb superblock being compared. 1367 * 1368 * Return: Returns 0 if options are compatible. 1369 */ 1370 int security_sb_mnt_opts_compat(struct super_block *sb, 1371 void *mnt_opts) 1372 { 1373 return call_int_hook(sb_mnt_opts_compat, 0, sb, mnt_opts); 1374 } 1375 EXPORT_SYMBOL(security_sb_mnt_opts_compat); 1376 1377 /** 1378 * security_sb_remount() - Verify no incompatible mount changes during remount 1379 * @sb: filesystem superblock 1380 * @mnt_opts: (re)mount options 1381 * 1382 * Extracts security system specific mount options and verifies no changes are 1383 * being made to those options. 1384 * 1385 * Return: Returns 0 if permission is granted. 1386 */ 1387 int security_sb_remount(struct super_block *sb, 1388 void *mnt_opts) 1389 { 1390 return call_int_hook(sb_remount, 0, sb, mnt_opts); 1391 } 1392 EXPORT_SYMBOL(security_sb_remount); 1393 1394 /** 1395 * security_sb_kern_mount() - Check if a kernel mount is allowed 1396 * @sb: filesystem superblock 1397 * 1398 * Mount this @sb if allowed by permissions. 1399 * 1400 * Return: Returns 0 if permission is granted. 1401 */ 1402 int security_sb_kern_mount(const struct super_block *sb) 1403 { 1404 return call_int_hook(sb_kern_mount, 0, sb); 1405 } 1406 1407 /** 1408 * security_sb_show_options() - Output the mount options for a superblock 1409 * @m: output file 1410 * @sb: filesystem superblock 1411 * 1412 * Show (print on @m) mount options for this @sb. 1413 * 1414 * Return: Returns 0 on success, negative values on failure. 1415 */ 1416 int security_sb_show_options(struct seq_file *m, struct super_block *sb) 1417 { 1418 return call_int_hook(sb_show_options, 0, m, sb); 1419 } 1420 1421 /** 1422 * security_sb_statfs() - Check if accessing fs stats is allowed 1423 * @dentry: superblock handle 1424 * 1425 * Check permission before obtaining filesystem statistics for the @mnt 1426 * mountpoint. @dentry is a handle on the superblock for the filesystem. 1427 * 1428 * Return: Returns 0 if permission is granted. 1429 */ 1430 int security_sb_statfs(struct dentry *dentry) 1431 { 1432 return call_int_hook(sb_statfs, 0, dentry); 1433 } 1434 1435 /** 1436 * security_sb_mount() - Check permission for mounting a filesystem 1437 * @dev_name: filesystem backing device 1438 * @path: mount point 1439 * @type: filesystem type 1440 * @flags: mount flags 1441 * @data: filesystem specific data 1442 * 1443 * Check permission before an object specified by @dev_name is mounted on the 1444 * mount point named by @nd. For an ordinary mount, @dev_name identifies a 1445 * device if the file system type requires a device. For a remount 1446 * (@flags & MS_REMOUNT), @dev_name is irrelevant. For a loopback/bind mount 1447 * (@flags & MS_BIND), @dev_name identifies the pathname of the object being 1448 * mounted. 1449 * 1450 * Return: Returns 0 if permission is granted. 1451 */ 1452 int security_sb_mount(const char *dev_name, const struct path *path, 1453 const char *type, unsigned long flags, void *data) 1454 { 1455 return call_int_hook(sb_mount, 0, dev_name, path, type, flags, data); 1456 } 1457 1458 /** 1459 * security_sb_umount() - Check permission for unmounting a filesystem 1460 * @mnt: mounted filesystem 1461 * @flags: unmount flags 1462 * 1463 * Check permission before the @mnt file system is unmounted. 1464 * 1465 * Return: Returns 0 if permission is granted. 1466 */ 1467 int security_sb_umount(struct vfsmount *mnt, int flags) 1468 { 1469 return call_int_hook(sb_umount, 0, mnt, flags); 1470 } 1471 1472 /** 1473 * security_sb_pivotroot() - Check permissions for pivoting the rootfs 1474 * @old_path: new location for current rootfs 1475 * @new_path: location of the new rootfs 1476 * 1477 * Check permission before pivoting the root filesystem. 1478 * 1479 * Return: Returns 0 if permission is granted. 1480 */ 1481 int security_sb_pivotroot(const struct path *old_path, 1482 const struct path *new_path) 1483 { 1484 return call_int_hook(sb_pivotroot, 0, old_path, new_path); 1485 } 1486 1487 /** 1488 * security_sb_set_mnt_opts() - Set the mount options for a filesystem 1489 * @sb: filesystem superblock 1490 * @mnt_opts: binary mount options 1491 * @kern_flags: kernel flags (in) 1492 * @set_kern_flags: kernel flags (out) 1493 * 1494 * Set the security relevant mount options used for a superblock. 1495 * 1496 * Return: Returns 0 on success, error on failure. 1497 */ 1498 int security_sb_set_mnt_opts(struct super_block *sb, 1499 void *mnt_opts, 1500 unsigned long kern_flags, 1501 unsigned long *set_kern_flags) 1502 { 1503 return call_int_hook(sb_set_mnt_opts, 1504 mnt_opts ? -EOPNOTSUPP : 0, sb, 1505 mnt_opts, kern_flags, set_kern_flags); 1506 } 1507 EXPORT_SYMBOL(security_sb_set_mnt_opts); 1508 1509 /** 1510 * security_sb_clone_mnt_opts() - Duplicate superblock mount options 1511 * @oldsb: source superblock 1512 * @newsb: destination superblock 1513 * @kern_flags: kernel flags (in) 1514 * @set_kern_flags: kernel flags (out) 1515 * 1516 * Copy all security options from a given superblock to another. 1517 * 1518 * Return: Returns 0 on success, error on failure. 1519 */ 1520 int security_sb_clone_mnt_opts(const struct super_block *oldsb, 1521 struct super_block *newsb, 1522 unsigned long kern_flags, 1523 unsigned long *set_kern_flags) 1524 { 1525 return call_int_hook(sb_clone_mnt_opts, 0, oldsb, newsb, 1526 kern_flags, set_kern_flags); 1527 } 1528 EXPORT_SYMBOL(security_sb_clone_mnt_opts); 1529 1530 /** 1531 * security_move_mount() - Check permissions for moving a mount 1532 * @from_path: source mount point 1533 * @to_path: destination mount point 1534 * 1535 * Check permission before a mount is moved. 1536 * 1537 * Return: Returns 0 if permission is granted. 1538 */ 1539 int security_move_mount(const struct path *from_path, 1540 const struct path *to_path) 1541 { 1542 return call_int_hook(move_mount, 0, from_path, to_path); 1543 } 1544 1545 /** 1546 * security_path_notify() - Check if setting a watch is allowed 1547 * @path: file path 1548 * @mask: event mask 1549 * @obj_type: file path type 1550 * 1551 * Check permissions before setting a watch on events as defined by @mask, on 1552 * an object at @path, whose type is defined by @obj_type. 1553 * 1554 * Return: Returns 0 if permission is granted. 1555 */ 1556 int security_path_notify(const struct path *path, u64 mask, 1557 unsigned int obj_type) 1558 { 1559 return call_int_hook(path_notify, 0, path, mask, obj_type); 1560 } 1561 1562 /** 1563 * security_inode_alloc() - Allocate an inode LSM blob 1564 * @inode: the inode 1565 * 1566 * Allocate and attach a security structure to @inode->i_security. The 1567 * i_security field is initialized to NULL when the inode structure is 1568 * allocated. 1569 * 1570 * Return: Return 0 if operation was successful. 1571 */ 1572 int security_inode_alloc(struct inode *inode) 1573 { 1574 int rc = lsm_inode_alloc(inode); 1575 1576 if (unlikely(rc)) 1577 return rc; 1578 rc = call_int_hook(inode_alloc_security, 0, inode); 1579 if (unlikely(rc)) 1580 security_inode_free(inode); 1581 return rc; 1582 } 1583 1584 static void inode_free_by_rcu(struct rcu_head *head) 1585 { 1586 /* 1587 * The rcu head is at the start of the inode blob 1588 */ 1589 kmem_cache_free(lsm_inode_cache, head); 1590 } 1591 1592 /** 1593 * security_inode_free() - Free an inode's LSM blob 1594 * @inode: the inode 1595 * 1596 * Deallocate the inode security structure and set @inode->i_security to NULL. 1597 */ 1598 void security_inode_free(struct inode *inode) 1599 { 1600 integrity_inode_free(inode); 1601 call_void_hook(inode_free_security, inode); 1602 /* 1603 * The inode may still be referenced in a path walk and 1604 * a call to security_inode_permission() can be made 1605 * after inode_free_security() is called. Ideally, the VFS 1606 * wouldn't do this, but fixing that is a much harder 1607 * job. For now, simply free the i_security via RCU, and 1608 * leave the current inode->i_security pointer intact. 1609 * The inode will be freed after the RCU grace period too. 1610 */ 1611 if (inode->i_security) 1612 call_rcu((struct rcu_head *)inode->i_security, 1613 inode_free_by_rcu); 1614 } 1615 1616 /** 1617 * security_dentry_init_security() - Perform dentry initialization 1618 * @dentry: the dentry to initialize 1619 * @mode: mode used to determine resource type 1620 * @name: name of the last path component 1621 * @xattr_name: name of the security/LSM xattr 1622 * @ctx: pointer to the resulting LSM context 1623 * @ctxlen: length of @ctx 1624 * 1625 * Compute a context for a dentry as the inode is not yet available since NFSv4 1626 * has no label backed by an EA anyway. It is important to note that 1627 * @xattr_name does not need to be free'd by the caller, it is a static string. 1628 * 1629 * Return: Returns 0 on success, negative values on failure. 1630 */ 1631 int security_dentry_init_security(struct dentry *dentry, int mode, 1632 const struct qstr *name, 1633 const char **xattr_name, void **ctx, 1634 u32 *ctxlen) 1635 { 1636 struct security_hook_list *hp; 1637 int rc; 1638 1639 /* 1640 * Only one module will provide a security context. 1641 */ 1642 hlist_for_each_entry(hp, &security_hook_heads.dentry_init_security, 1643 list) { 1644 rc = hp->hook.dentry_init_security(dentry, mode, name, 1645 xattr_name, ctx, ctxlen); 1646 if (rc != LSM_RET_DEFAULT(dentry_init_security)) 1647 return rc; 1648 } 1649 return LSM_RET_DEFAULT(dentry_init_security); 1650 } 1651 EXPORT_SYMBOL(security_dentry_init_security); 1652 1653 /** 1654 * security_dentry_create_files_as() - Perform dentry initialization 1655 * @dentry: the dentry to initialize 1656 * @mode: mode used to determine resource type 1657 * @name: name of the last path component 1658 * @old: creds to use for LSM context calculations 1659 * @new: creds to modify 1660 * 1661 * Compute a context for a dentry as the inode is not yet available and set 1662 * that context in passed in creds so that new files are created using that 1663 * context. Context is calculated using the passed in creds and not the creds 1664 * of the caller. 1665 * 1666 * Return: Returns 0 on success, error on failure. 1667 */ 1668 int security_dentry_create_files_as(struct dentry *dentry, int mode, 1669 struct qstr *name, 1670 const struct cred *old, struct cred *new) 1671 { 1672 return call_int_hook(dentry_create_files_as, 0, dentry, mode, 1673 name, old, new); 1674 } 1675 EXPORT_SYMBOL(security_dentry_create_files_as); 1676 1677 /** 1678 * security_inode_init_security() - Initialize an inode's LSM context 1679 * @inode: the inode 1680 * @dir: parent directory 1681 * @qstr: last component of the pathname 1682 * @initxattrs: callback function to write xattrs 1683 * @fs_data: filesystem specific data 1684 * 1685 * Obtain the security attribute name suffix and value to set on a newly 1686 * created inode and set up the incore security field for the new inode. This 1687 * hook is called by the fs code as part of the inode creation transaction and 1688 * provides for atomic labeling of the inode, unlike the post_create/mkdir/... 1689 * hooks called by the VFS. 1690 * 1691 * The hook function is expected to populate the xattrs array, by calling 1692 * lsm_get_xattr_slot() to retrieve the slots reserved by the security module 1693 * with the lbs_xattr_count field of the lsm_blob_sizes structure. For each 1694 * slot, the hook function should set ->name to the attribute name suffix 1695 * (e.g. selinux), to allocate ->value (will be freed by the caller) and set it 1696 * to the attribute value, to set ->value_len to the length of the value. If 1697 * the security module does not use security attributes or does not wish to put 1698 * a security attribute on this particular inode, then it should return 1699 * -EOPNOTSUPP to skip this processing. 1700 * 1701 * Return: Returns 0 if the LSM successfully initialized all of the inode 1702 * security attributes that are required, negative values otherwise. 1703 */ 1704 int security_inode_init_security(struct inode *inode, struct inode *dir, 1705 const struct qstr *qstr, 1706 const initxattrs initxattrs, void *fs_data) 1707 { 1708 struct security_hook_list *hp; 1709 struct xattr *new_xattrs = NULL; 1710 int ret = -EOPNOTSUPP, xattr_count = 0; 1711 1712 if (unlikely(IS_PRIVATE(inode))) 1713 return 0; 1714 1715 if (!blob_sizes.lbs_xattr_count) 1716 return 0; 1717 1718 if (initxattrs) { 1719 /* Allocate +1 for EVM and +1 as terminator. */ 1720 new_xattrs = kcalloc(blob_sizes.lbs_xattr_count + 2, 1721 sizeof(*new_xattrs), GFP_NOFS); 1722 if (!new_xattrs) 1723 return -ENOMEM; 1724 } 1725 1726 hlist_for_each_entry(hp, &security_hook_heads.inode_init_security, 1727 list) { 1728 ret = hp->hook.inode_init_security(inode, dir, qstr, new_xattrs, 1729 &xattr_count); 1730 if (ret && ret != -EOPNOTSUPP) 1731 goto out; 1732 /* 1733 * As documented in lsm_hooks.h, -EOPNOTSUPP in this context 1734 * means that the LSM is not willing to provide an xattr, not 1735 * that it wants to signal an error. Thus, continue to invoke 1736 * the remaining LSMs. 1737 */ 1738 } 1739 1740 /* If initxattrs() is NULL, xattr_count is zero, skip the call. */ 1741 if (!xattr_count) 1742 goto out; 1743 1744 ret = initxattrs(inode, new_xattrs, fs_data); 1745 out: 1746 for (; xattr_count > 0; xattr_count--) 1747 kfree(new_xattrs[xattr_count - 1].value); 1748 kfree(new_xattrs); 1749 return (ret == -EOPNOTSUPP) ? 0 : ret; 1750 } 1751 EXPORT_SYMBOL(security_inode_init_security); 1752 1753 /** 1754 * security_inode_init_security_anon() - Initialize an anonymous inode 1755 * @inode: the inode 1756 * @name: the anonymous inode class 1757 * @context_inode: an optional related inode 1758 * 1759 * Set up the incore security field for the new anonymous inode and return 1760 * whether the inode creation is permitted by the security module or not. 1761 * 1762 * Return: Returns 0 on success, -EACCES if the security module denies the 1763 * creation of this inode, or another -errno upon other errors. 1764 */ 1765 int security_inode_init_security_anon(struct inode *inode, 1766 const struct qstr *name, 1767 const struct inode *context_inode) 1768 { 1769 return call_int_hook(inode_init_security_anon, 0, inode, name, 1770 context_inode); 1771 } 1772 1773 #ifdef CONFIG_SECURITY_PATH 1774 /** 1775 * security_path_mknod() - Check if creating a special file is allowed 1776 * @dir: parent directory 1777 * @dentry: new file 1778 * @mode: new file mode 1779 * @dev: device number 1780 * 1781 * Check permissions when creating a file. Note that this hook is called even 1782 * if mknod operation is being done for a regular file. 1783 * 1784 * Return: Returns 0 if permission is granted. 1785 */ 1786 int security_path_mknod(const struct path *dir, struct dentry *dentry, 1787 umode_t mode, unsigned int dev) 1788 { 1789 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 1790 return 0; 1791 return call_int_hook(path_mknod, 0, dir, dentry, mode, dev); 1792 } 1793 EXPORT_SYMBOL(security_path_mknod); 1794 1795 /** 1796 * security_path_post_mknod() - Update inode security field after file creation 1797 * @idmap: idmap of the mount 1798 * @dentry: new file 1799 * 1800 * Update inode security field after a file has been created. 1801 */ 1802 void security_path_post_mknod(struct mnt_idmap *idmap, struct dentry *dentry) 1803 { 1804 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1805 return; 1806 call_void_hook(path_post_mknod, idmap, dentry); 1807 } 1808 1809 /** 1810 * security_path_mkdir() - Check if creating a new directory is allowed 1811 * @dir: parent directory 1812 * @dentry: new directory 1813 * @mode: new directory mode 1814 * 1815 * Check permissions to create a new directory in the existing directory. 1816 * 1817 * Return: Returns 0 if permission is granted. 1818 */ 1819 int security_path_mkdir(const struct path *dir, struct dentry *dentry, 1820 umode_t mode) 1821 { 1822 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 1823 return 0; 1824 return call_int_hook(path_mkdir, 0, dir, dentry, mode); 1825 } 1826 EXPORT_SYMBOL(security_path_mkdir); 1827 1828 /** 1829 * security_path_rmdir() - Check if removing a directory is allowed 1830 * @dir: parent directory 1831 * @dentry: directory to remove 1832 * 1833 * Check the permission to remove a directory. 1834 * 1835 * Return: Returns 0 if permission is granted. 1836 */ 1837 int security_path_rmdir(const struct path *dir, struct dentry *dentry) 1838 { 1839 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 1840 return 0; 1841 return call_int_hook(path_rmdir, 0, dir, dentry); 1842 } 1843 1844 /** 1845 * security_path_unlink() - Check if removing a hard link is allowed 1846 * @dir: parent directory 1847 * @dentry: file 1848 * 1849 * Check the permission to remove a hard link to a file. 1850 * 1851 * Return: Returns 0 if permission is granted. 1852 */ 1853 int security_path_unlink(const struct path *dir, struct dentry *dentry) 1854 { 1855 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 1856 return 0; 1857 return call_int_hook(path_unlink, 0, dir, dentry); 1858 } 1859 EXPORT_SYMBOL(security_path_unlink); 1860 1861 /** 1862 * security_path_symlink() - Check if creating a symbolic link is allowed 1863 * @dir: parent directory 1864 * @dentry: symbolic link 1865 * @old_name: file pathname 1866 * 1867 * Check the permission to create a symbolic link to a file. 1868 * 1869 * Return: Returns 0 if permission is granted. 1870 */ 1871 int security_path_symlink(const struct path *dir, struct dentry *dentry, 1872 const char *old_name) 1873 { 1874 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 1875 return 0; 1876 return call_int_hook(path_symlink, 0, dir, dentry, old_name); 1877 } 1878 1879 /** 1880 * security_path_link - Check if creating a hard link is allowed 1881 * @old_dentry: existing file 1882 * @new_dir: new parent directory 1883 * @new_dentry: new link 1884 * 1885 * Check permission before creating a new hard link to a file. 1886 * 1887 * Return: Returns 0 if permission is granted. 1888 */ 1889 int security_path_link(struct dentry *old_dentry, const struct path *new_dir, 1890 struct dentry *new_dentry) 1891 { 1892 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)))) 1893 return 0; 1894 return call_int_hook(path_link, 0, old_dentry, new_dir, new_dentry); 1895 } 1896 1897 /** 1898 * security_path_rename() - Check if renaming a file is allowed 1899 * @old_dir: parent directory of the old file 1900 * @old_dentry: the old file 1901 * @new_dir: parent directory of the new file 1902 * @new_dentry: the new file 1903 * @flags: flags 1904 * 1905 * Check for permission to rename a file or directory. 1906 * 1907 * Return: Returns 0 if permission is granted. 1908 */ 1909 int security_path_rename(const struct path *old_dir, struct dentry *old_dentry, 1910 const struct path *new_dir, struct dentry *new_dentry, 1911 unsigned int flags) 1912 { 1913 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) || 1914 (d_is_positive(new_dentry) && 1915 IS_PRIVATE(d_backing_inode(new_dentry))))) 1916 return 0; 1917 1918 return call_int_hook(path_rename, 0, old_dir, old_dentry, new_dir, 1919 new_dentry, flags); 1920 } 1921 EXPORT_SYMBOL(security_path_rename); 1922 1923 /** 1924 * security_path_truncate() - Check if truncating a file is allowed 1925 * @path: file 1926 * 1927 * Check permission before truncating the file indicated by path. Note that 1928 * truncation permissions may also be checked based on already opened files, 1929 * using the security_file_truncate() hook. 1930 * 1931 * Return: Returns 0 if permission is granted. 1932 */ 1933 int security_path_truncate(const struct path *path) 1934 { 1935 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 1936 return 0; 1937 return call_int_hook(path_truncate, 0, path); 1938 } 1939 1940 /** 1941 * security_path_chmod() - Check if changing the file's mode is allowed 1942 * @path: file 1943 * @mode: new mode 1944 * 1945 * Check for permission to change a mode of the file @path. The new mode is 1946 * specified in @mode which is a bitmask of constants from 1947 * <include/uapi/linux/stat.h>. 1948 * 1949 * Return: Returns 0 if permission is granted. 1950 */ 1951 int security_path_chmod(const struct path *path, umode_t mode) 1952 { 1953 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 1954 return 0; 1955 return call_int_hook(path_chmod, 0, path, mode); 1956 } 1957 1958 /** 1959 * security_path_chown() - Check if changing the file's owner/group is allowed 1960 * @path: file 1961 * @uid: file owner 1962 * @gid: file group 1963 * 1964 * Check for permission to change owner/group of a file or directory. 1965 * 1966 * Return: Returns 0 if permission is granted. 1967 */ 1968 int security_path_chown(const struct path *path, kuid_t uid, kgid_t gid) 1969 { 1970 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 1971 return 0; 1972 return call_int_hook(path_chown, 0, path, uid, gid); 1973 } 1974 1975 /** 1976 * security_path_chroot() - Check if changing the root directory is allowed 1977 * @path: directory 1978 * 1979 * Check for permission to change root directory. 1980 * 1981 * Return: Returns 0 if permission is granted. 1982 */ 1983 int security_path_chroot(const struct path *path) 1984 { 1985 return call_int_hook(path_chroot, 0, path); 1986 } 1987 #endif /* CONFIG_SECURITY_PATH */ 1988 1989 /** 1990 * security_inode_create() - Check if creating a file is allowed 1991 * @dir: the parent directory 1992 * @dentry: the file being created 1993 * @mode: requested file mode 1994 * 1995 * Check permission to create a regular file. 1996 * 1997 * Return: Returns 0 if permission is granted. 1998 */ 1999 int security_inode_create(struct inode *dir, struct dentry *dentry, 2000 umode_t mode) 2001 { 2002 if (unlikely(IS_PRIVATE(dir))) 2003 return 0; 2004 return call_int_hook(inode_create, 0, dir, dentry, mode); 2005 } 2006 EXPORT_SYMBOL_GPL(security_inode_create); 2007 2008 /** 2009 * security_inode_post_create_tmpfile() - Update inode security of new tmpfile 2010 * @idmap: idmap of the mount 2011 * @inode: inode of the new tmpfile 2012 * 2013 * Update inode security data after a tmpfile has been created. 2014 */ 2015 void security_inode_post_create_tmpfile(struct mnt_idmap *idmap, 2016 struct inode *inode) 2017 { 2018 if (unlikely(IS_PRIVATE(inode))) 2019 return; 2020 call_void_hook(inode_post_create_tmpfile, idmap, inode); 2021 } 2022 2023 /** 2024 * security_inode_link() - Check if creating a hard link is allowed 2025 * @old_dentry: existing file 2026 * @dir: new parent directory 2027 * @new_dentry: new link 2028 * 2029 * Check permission before creating a new hard link to a file. 2030 * 2031 * Return: Returns 0 if permission is granted. 2032 */ 2033 int security_inode_link(struct dentry *old_dentry, struct inode *dir, 2034 struct dentry *new_dentry) 2035 { 2036 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)))) 2037 return 0; 2038 return call_int_hook(inode_link, 0, old_dentry, dir, new_dentry); 2039 } 2040 2041 /** 2042 * security_inode_unlink() - Check if removing a hard link is allowed 2043 * @dir: parent directory 2044 * @dentry: file 2045 * 2046 * Check the permission to remove a hard link to a file. 2047 * 2048 * Return: Returns 0 if permission is granted. 2049 */ 2050 int security_inode_unlink(struct inode *dir, struct dentry *dentry) 2051 { 2052 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2053 return 0; 2054 return call_int_hook(inode_unlink, 0, dir, dentry); 2055 } 2056 2057 /** 2058 * security_inode_symlink() - Check if creating a symbolic link is allowed 2059 * @dir: parent directory 2060 * @dentry: symbolic link 2061 * @old_name: existing filename 2062 * 2063 * Check the permission to create a symbolic link to a file. 2064 * 2065 * Return: Returns 0 if permission is granted. 2066 */ 2067 int security_inode_symlink(struct inode *dir, struct dentry *dentry, 2068 const char *old_name) 2069 { 2070 if (unlikely(IS_PRIVATE(dir))) 2071 return 0; 2072 return call_int_hook(inode_symlink, 0, dir, dentry, old_name); 2073 } 2074 2075 /** 2076 * security_inode_mkdir() - Check if creation a new director is allowed 2077 * @dir: parent directory 2078 * @dentry: new directory 2079 * @mode: new directory mode 2080 * 2081 * Check permissions to create a new directory in the existing directory 2082 * associated with inode structure @dir. 2083 * 2084 * Return: Returns 0 if permission is granted. 2085 */ 2086 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 2087 { 2088 if (unlikely(IS_PRIVATE(dir))) 2089 return 0; 2090 return call_int_hook(inode_mkdir, 0, dir, dentry, mode); 2091 } 2092 EXPORT_SYMBOL_GPL(security_inode_mkdir); 2093 2094 /** 2095 * security_inode_rmdir() - Check if removing a directory is allowed 2096 * @dir: parent directory 2097 * @dentry: directory to be removed 2098 * 2099 * Check the permission to remove a directory. 2100 * 2101 * Return: Returns 0 if permission is granted. 2102 */ 2103 int security_inode_rmdir(struct inode *dir, struct dentry *dentry) 2104 { 2105 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2106 return 0; 2107 return call_int_hook(inode_rmdir, 0, dir, dentry); 2108 } 2109 2110 /** 2111 * security_inode_mknod() - Check if creating a special file is allowed 2112 * @dir: parent directory 2113 * @dentry: new file 2114 * @mode: new file mode 2115 * @dev: device number 2116 * 2117 * Check permissions when creating a special file (or a socket or a fifo file 2118 * created via the mknod system call). Note that if mknod operation is being 2119 * done for a regular file, then the create hook will be called and not this 2120 * hook. 2121 * 2122 * Return: Returns 0 if permission is granted. 2123 */ 2124 int security_inode_mknod(struct inode *dir, struct dentry *dentry, 2125 umode_t mode, dev_t dev) 2126 { 2127 if (unlikely(IS_PRIVATE(dir))) 2128 return 0; 2129 return call_int_hook(inode_mknod, 0, dir, dentry, mode, dev); 2130 } 2131 2132 /** 2133 * security_inode_rename() - Check if renaming a file is allowed 2134 * @old_dir: parent directory of the old file 2135 * @old_dentry: the old file 2136 * @new_dir: parent directory of the new file 2137 * @new_dentry: the new file 2138 * @flags: flags 2139 * 2140 * Check for permission to rename a file or directory. 2141 * 2142 * Return: Returns 0 if permission is granted. 2143 */ 2144 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry, 2145 struct inode *new_dir, struct dentry *new_dentry, 2146 unsigned int flags) 2147 { 2148 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) || 2149 (d_is_positive(new_dentry) && 2150 IS_PRIVATE(d_backing_inode(new_dentry))))) 2151 return 0; 2152 2153 if (flags & RENAME_EXCHANGE) { 2154 int err = call_int_hook(inode_rename, 0, new_dir, new_dentry, 2155 old_dir, old_dentry); 2156 if (err) 2157 return err; 2158 } 2159 2160 return call_int_hook(inode_rename, 0, old_dir, old_dentry, 2161 new_dir, new_dentry); 2162 } 2163 2164 /** 2165 * security_inode_readlink() - Check if reading a symbolic link is allowed 2166 * @dentry: link 2167 * 2168 * Check the permission to read the symbolic link. 2169 * 2170 * Return: Returns 0 if permission is granted. 2171 */ 2172 int security_inode_readlink(struct dentry *dentry) 2173 { 2174 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2175 return 0; 2176 return call_int_hook(inode_readlink, 0, dentry); 2177 } 2178 2179 /** 2180 * security_inode_follow_link() - Check if following a symbolic link is allowed 2181 * @dentry: link dentry 2182 * @inode: link inode 2183 * @rcu: true if in RCU-walk mode 2184 * 2185 * Check permission to follow a symbolic link when looking up a pathname. If 2186 * @rcu is true, @inode is not stable. 2187 * 2188 * Return: Returns 0 if permission is granted. 2189 */ 2190 int security_inode_follow_link(struct dentry *dentry, struct inode *inode, 2191 bool rcu) 2192 { 2193 if (unlikely(IS_PRIVATE(inode))) 2194 return 0; 2195 return call_int_hook(inode_follow_link, 0, dentry, inode, rcu); 2196 } 2197 2198 /** 2199 * security_inode_permission() - Check if accessing an inode is allowed 2200 * @inode: inode 2201 * @mask: access mask 2202 * 2203 * Check permission before accessing an inode. This hook is called by the 2204 * existing Linux permission function, so a security module can use it to 2205 * provide additional checking for existing Linux permission checks. Notice 2206 * that this hook is called when a file is opened (as well as many other 2207 * operations), whereas the file_security_ops permission hook is called when 2208 * the actual read/write operations are performed. 2209 * 2210 * Return: Returns 0 if permission is granted. 2211 */ 2212 int security_inode_permission(struct inode *inode, int mask) 2213 { 2214 if (unlikely(IS_PRIVATE(inode))) 2215 return 0; 2216 return call_int_hook(inode_permission, 0, inode, mask); 2217 } 2218 2219 /** 2220 * security_inode_setattr() - Check if setting file attributes is allowed 2221 * @idmap: idmap of the mount 2222 * @dentry: file 2223 * @attr: new attributes 2224 * 2225 * Check permission before setting file attributes. Note that the kernel call 2226 * to notify_change is performed from several locations, whenever file 2227 * attributes change (such as when a file is truncated, chown/chmod operations, 2228 * transferring disk quotas, etc). 2229 * 2230 * Return: Returns 0 if permission is granted. 2231 */ 2232 int security_inode_setattr(struct mnt_idmap *idmap, 2233 struct dentry *dentry, struct iattr *attr) 2234 { 2235 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2236 return 0; 2237 return call_int_hook(inode_setattr, 0, idmap, dentry, attr); 2238 } 2239 EXPORT_SYMBOL_GPL(security_inode_setattr); 2240 2241 /** 2242 * security_inode_post_setattr() - Update the inode after a setattr operation 2243 * @idmap: idmap of the mount 2244 * @dentry: file 2245 * @ia_valid: file attributes set 2246 * 2247 * Update inode security field after successful setting file attributes. 2248 */ 2249 void security_inode_post_setattr(struct mnt_idmap *idmap, struct dentry *dentry, 2250 int ia_valid) 2251 { 2252 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2253 return; 2254 call_void_hook(inode_post_setattr, idmap, dentry, ia_valid); 2255 } 2256 2257 /** 2258 * security_inode_getattr() - Check if getting file attributes is allowed 2259 * @path: file 2260 * 2261 * Check permission before obtaining file attributes. 2262 * 2263 * Return: Returns 0 if permission is granted. 2264 */ 2265 int security_inode_getattr(const struct path *path) 2266 { 2267 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 2268 return 0; 2269 return call_int_hook(inode_getattr, 0, path); 2270 } 2271 2272 /** 2273 * security_inode_setxattr() - Check if setting file xattrs is allowed 2274 * @idmap: idmap of the mount 2275 * @dentry: file 2276 * @name: xattr name 2277 * @value: xattr value 2278 * @size: size of xattr value 2279 * @flags: flags 2280 * 2281 * Check permission before setting the extended attributes. 2282 * 2283 * Return: Returns 0 if permission is granted. 2284 */ 2285 int security_inode_setxattr(struct mnt_idmap *idmap, 2286 struct dentry *dentry, const char *name, 2287 const void *value, size_t size, int flags) 2288 { 2289 int ret; 2290 2291 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2292 return 0; 2293 /* 2294 * SELinux and Smack integrate the cap call, 2295 * so assume that all LSMs supplying this call do so. 2296 */ 2297 ret = call_int_hook(inode_setxattr, 1, idmap, dentry, name, value, 2298 size, flags); 2299 2300 if (ret == 1) 2301 ret = cap_inode_setxattr(dentry, name, value, size, flags); 2302 return ret; 2303 } 2304 2305 /** 2306 * security_inode_set_acl() - Check if setting posix acls is allowed 2307 * @idmap: idmap of the mount 2308 * @dentry: file 2309 * @acl_name: acl name 2310 * @kacl: acl struct 2311 * 2312 * Check permission before setting posix acls, the posix acls in @kacl are 2313 * identified by @acl_name. 2314 * 2315 * Return: Returns 0 if permission is granted. 2316 */ 2317 int security_inode_set_acl(struct mnt_idmap *idmap, 2318 struct dentry *dentry, const char *acl_name, 2319 struct posix_acl *kacl) 2320 { 2321 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2322 return 0; 2323 return call_int_hook(inode_set_acl, 0, idmap, dentry, acl_name, 2324 kacl); 2325 } 2326 2327 /** 2328 * security_inode_post_set_acl() - Update inode security from posix acls set 2329 * @dentry: file 2330 * @acl_name: acl name 2331 * @kacl: acl struct 2332 * 2333 * Update inode security data after successfully setting posix acls on @dentry. 2334 * The posix acls in @kacl are identified by @acl_name. 2335 */ 2336 void security_inode_post_set_acl(struct dentry *dentry, const char *acl_name, 2337 struct posix_acl *kacl) 2338 { 2339 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2340 return; 2341 call_void_hook(inode_post_set_acl, dentry, acl_name, kacl); 2342 } 2343 2344 /** 2345 * security_inode_get_acl() - Check if reading posix acls is allowed 2346 * @idmap: idmap of the mount 2347 * @dentry: file 2348 * @acl_name: acl name 2349 * 2350 * Check permission before getting osix acls, the posix acls are identified by 2351 * @acl_name. 2352 * 2353 * Return: Returns 0 if permission is granted. 2354 */ 2355 int security_inode_get_acl(struct mnt_idmap *idmap, 2356 struct dentry *dentry, const char *acl_name) 2357 { 2358 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2359 return 0; 2360 return call_int_hook(inode_get_acl, 0, idmap, dentry, acl_name); 2361 } 2362 2363 /** 2364 * security_inode_remove_acl() - Check if removing a posix acl is allowed 2365 * @idmap: idmap of the mount 2366 * @dentry: file 2367 * @acl_name: acl name 2368 * 2369 * Check permission before removing posix acls, the posix acls are identified 2370 * by @acl_name. 2371 * 2372 * Return: Returns 0 if permission is granted. 2373 */ 2374 int security_inode_remove_acl(struct mnt_idmap *idmap, 2375 struct dentry *dentry, const char *acl_name) 2376 { 2377 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2378 return 0; 2379 return call_int_hook(inode_remove_acl, 0, idmap, dentry, acl_name); 2380 } 2381 2382 /** 2383 * security_inode_post_remove_acl() - Update inode security after rm posix acls 2384 * @idmap: idmap of the mount 2385 * @dentry: file 2386 * @acl_name: acl name 2387 * 2388 * Update inode security data after successfully removing posix acls on 2389 * @dentry in @idmap. The posix acls are identified by @acl_name. 2390 */ 2391 void security_inode_post_remove_acl(struct mnt_idmap *idmap, 2392 struct dentry *dentry, const char *acl_name) 2393 { 2394 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2395 return; 2396 call_void_hook(inode_post_remove_acl, idmap, dentry, acl_name); 2397 } 2398 2399 /** 2400 * security_inode_post_setxattr() - Update the inode after a setxattr operation 2401 * @dentry: file 2402 * @name: xattr name 2403 * @value: xattr value 2404 * @size: xattr value size 2405 * @flags: flags 2406 * 2407 * Update inode security field after successful setxattr operation. 2408 */ 2409 void security_inode_post_setxattr(struct dentry *dentry, const char *name, 2410 const void *value, size_t size, int flags) 2411 { 2412 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2413 return; 2414 call_void_hook(inode_post_setxattr, dentry, name, value, size, flags); 2415 } 2416 2417 /** 2418 * security_inode_getxattr() - Check if xattr access is allowed 2419 * @dentry: file 2420 * @name: xattr name 2421 * 2422 * Check permission before obtaining the extended attributes identified by 2423 * @name for @dentry. 2424 * 2425 * Return: Returns 0 if permission is granted. 2426 */ 2427 int security_inode_getxattr(struct dentry *dentry, const char *name) 2428 { 2429 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2430 return 0; 2431 return call_int_hook(inode_getxattr, 0, dentry, name); 2432 } 2433 2434 /** 2435 * security_inode_listxattr() - Check if listing xattrs is allowed 2436 * @dentry: file 2437 * 2438 * Check permission before obtaining the list of extended attribute names for 2439 * @dentry. 2440 * 2441 * Return: Returns 0 if permission is granted. 2442 */ 2443 int security_inode_listxattr(struct dentry *dentry) 2444 { 2445 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2446 return 0; 2447 return call_int_hook(inode_listxattr, 0, dentry); 2448 } 2449 2450 /** 2451 * security_inode_removexattr() - Check if removing an xattr is allowed 2452 * @idmap: idmap of the mount 2453 * @dentry: file 2454 * @name: xattr name 2455 * 2456 * Check permission before removing the extended attribute identified by @name 2457 * for @dentry. 2458 * 2459 * Return: Returns 0 if permission is granted. 2460 */ 2461 int security_inode_removexattr(struct mnt_idmap *idmap, 2462 struct dentry *dentry, const char *name) 2463 { 2464 int ret; 2465 2466 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2467 return 0; 2468 /* 2469 * SELinux and Smack integrate the cap call, 2470 * so assume that all LSMs supplying this call do so. 2471 */ 2472 ret = call_int_hook(inode_removexattr, 1, idmap, dentry, name); 2473 if (ret == 1) 2474 ret = cap_inode_removexattr(idmap, dentry, name); 2475 return ret; 2476 } 2477 2478 /** 2479 * security_inode_post_removexattr() - Update the inode after a removexattr op 2480 * @dentry: file 2481 * @name: xattr name 2482 * 2483 * Update the inode after a successful removexattr operation. 2484 */ 2485 void security_inode_post_removexattr(struct dentry *dentry, const char *name) 2486 { 2487 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2488 return; 2489 call_void_hook(inode_post_removexattr, dentry, name); 2490 } 2491 2492 /** 2493 * security_inode_need_killpriv() - Check if security_inode_killpriv() required 2494 * @dentry: associated dentry 2495 * 2496 * Called when an inode has been changed to determine if 2497 * security_inode_killpriv() should be called. 2498 * 2499 * Return: Return <0 on error to abort the inode change operation, return 0 if 2500 * security_inode_killpriv() does not need to be called, return >0 if 2501 * security_inode_killpriv() does need to be called. 2502 */ 2503 int security_inode_need_killpriv(struct dentry *dentry) 2504 { 2505 return call_int_hook(inode_need_killpriv, 0, dentry); 2506 } 2507 2508 /** 2509 * security_inode_killpriv() - The setuid bit is removed, update LSM state 2510 * @idmap: idmap of the mount 2511 * @dentry: associated dentry 2512 * 2513 * The @dentry's setuid bit is being removed. Remove similar security labels. 2514 * Called with the dentry->d_inode->i_mutex held. 2515 * 2516 * Return: Return 0 on success. If error is returned, then the operation 2517 * causing setuid bit removal is failed. 2518 */ 2519 int security_inode_killpriv(struct mnt_idmap *idmap, 2520 struct dentry *dentry) 2521 { 2522 return call_int_hook(inode_killpriv, 0, idmap, dentry); 2523 } 2524 2525 /** 2526 * security_inode_getsecurity() - Get the xattr security label of an inode 2527 * @idmap: idmap of the mount 2528 * @inode: inode 2529 * @name: xattr name 2530 * @buffer: security label buffer 2531 * @alloc: allocation flag 2532 * 2533 * Retrieve a copy of the extended attribute representation of the security 2534 * label associated with @name for @inode via @buffer. Note that @name is the 2535 * remainder of the attribute name after the security prefix has been removed. 2536 * @alloc is used to specify if the call should return a value via the buffer 2537 * or just the value length. 2538 * 2539 * Return: Returns size of buffer on success. 2540 */ 2541 int security_inode_getsecurity(struct mnt_idmap *idmap, 2542 struct inode *inode, const char *name, 2543 void **buffer, bool alloc) 2544 { 2545 struct security_hook_list *hp; 2546 int rc; 2547 2548 if (unlikely(IS_PRIVATE(inode))) 2549 return LSM_RET_DEFAULT(inode_getsecurity); 2550 /* 2551 * Only one module will provide an attribute with a given name. 2552 */ 2553 hlist_for_each_entry(hp, &security_hook_heads.inode_getsecurity, list) { 2554 rc = hp->hook.inode_getsecurity(idmap, inode, name, buffer, 2555 alloc); 2556 if (rc != LSM_RET_DEFAULT(inode_getsecurity)) 2557 return rc; 2558 } 2559 return LSM_RET_DEFAULT(inode_getsecurity); 2560 } 2561 2562 /** 2563 * security_inode_setsecurity() - Set the xattr security label of an inode 2564 * @inode: inode 2565 * @name: xattr name 2566 * @value: security label 2567 * @size: length of security label 2568 * @flags: flags 2569 * 2570 * Set the security label associated with @name for @inode from the extended 2571 * attribute value @value. @size indicates the size of the @value in bytes. 2572 * @flags may be XATTR_CREATE, XATTR_REPLACE, or 0. Note that @name is the 2573 * remainder of the attribute name after the security. prefix has been removed. 2574 * 2575 * Return: Returns 0 on success. 2576 */ 2577 int security_inode_setsecurity(struct inode *inode, const char *name, 2578 const void *value, size_t size, int flags) 2579 { 2580 struct security_hook_list *hp; 2581 int rc; 2582 2583 if (unlikely(IS_PRIVATE(inode))) 2584 return LSM_RET_DEFAULT(inode_setsecurity); 2585 /* 2586 * Only one module will provide an attribute with a given name. 2587 */ 2588 hlist_for_each_entry(hp, &security_hook_heads.inode_setsecurity, list) { 2589 rc = hp->hook.inode_setsecurity(inode, name, value, size, 2590 flags); 2591 if (rc != LSM_RET_DEFAULT(inode_setsecurity)) 2592 return rc; 2593 } 2594 return LSM_RET_DEFAULT(inode_setsecurity); 2595 } 2596 2597 /** 2598 * security_inode_listsecurity() - List the xattr security label names 2599 * @inode: inode 2600 * @buffer: buffer 2601 * @buffer_size: size of buffer 2602 * 2603 * Copy the extended attribute names for the security labels associated with 2604 * @inode into @buffer. The maximum size of @buffer is specified by 2605 * @buffer_size. @buffer may be NULL to request the size of the buffer 2606 * required. 2607 * 2608 * Return: Returns number of bytes used/required on success. 2609 */ 2610 int security_inode_listsecurity(struct inode *inode, 2611 char *buffer, size_t buffer_size) 2612 { 2613 if (unlikely(IS_PRIVATE(inode))) 2614 return 0; 2615 return call_int_hook(inode_listsecurity, 0, inode, buffer, buffer_size); 2616 } 2617 EXPORT_SYMBOL(security_inode_listsecurity); 2618 2619 /** 2620 * security_inode_getsecid() - Get an inode's secid 2621 * @inode: inode 2622 * @secid: secid to return 2623 * 2624 * Get the secid associated with the node. In case of failure, @secid will be 2625 * set to zero. 2626 */ 2627 void security_inode_getsecid(struct inode *inode, u32 *secid) 2628 { 2629 call_void_hook(inode_getsecid, inode, secid); 2630 } 2631 2632 /** 2633 * security_inode_copy_up() - Create new creds for an overlayfs copy-up op 2634 * @src: union dentry of copy-up file 2635 * @new: newly created creds 2636 * 2637 * A file is about to be copied up from lower layer to upper layer of overlay 2638 * filesystem. Security module can prepare a set of new creds and modify as 2639 * need be and return new creds. Caller will switch to new creds temporarily to 2640 * create new file and release newly allocated creds. 2641 * 2642 * Return: Returns 0 on success or a negative error code on error. 2643 */ 2644 int security_inode_copy_up(struct dentry *src, struct cred **new) 2645 { 2646 return call_int_hook(inode_copy_up, 0, src, new); 2647 } 2648 EXPORT_SYMBOL(security_inode_copy_up); 2649 2650 /** 2651 * security_inode_copy_up_xattr() - Filter xattrs in an overlayfs copy-up op 2652 * @name: xattr name 2653 * 2654 * Filter the xattrs being copied up when a unioned file is copied up from a 2655 * lower layer to the union/overlay layer. The caller is responsible for 2656 * reading and writing the xattrs, this hook is merely a filter. 2657 * 2658 * Return: Returns 0 to accept the xattr, 1 to discard the xattr, -EOPNOTSUPP 2659 * if the security module does not know about attribute, or a negative 2660 * error code to abort the copy up. 2661 */ 2662 int security_inode_copy_up_xattr(const char *name) 2663 { 2664 struct security_hook_list *hp; 2665 int rc; 2666 2667 /* 2668 * The implementation can return 0 (accept the xattr), 1 (discard the 2669 * xattr), -EOPNOTSUPP if it does not know anything about the xattr or 2670 * any other error code in case of an error. 2671 */ 2672 hlist_for_each_entry(hp, 2673 &security_hook_heads.inode_copy_up_xattr, list) { 2674 rc = hp->hook.inode_copy_up_xattr(name); 2675 if (rc != LSM_RET_DEFAULT(inode_copy_up_xattr)) 2676 return rc; 2677 } 2678 2679 return LSM_RET_DEFAULT(inode_copy_up_xattr); 2680 } 2681 EXPORT_SYMBOL(security_inode_copy_up_xattr); 2682 2683 /** 2684 * security_kernfs_init_security() - Init LSM context for a kernfs node 2685 * @kn_dir: parent kernfs node 2686 * @kn: the kernfs node to initialize 2687 * 2688 * Initialize the security context of a newly created kernfs node based on its 2689 * own and its parent's attributes. 2690 * 2691 * Return: Returns 0 if permission is granted. 2692 */ 2693 int security_kernfs_init_security(struct kernfs_node *kn_dir, 2694 struct kernfs_node *kn) 2695 { 2696 return call_int_hook(kernfs_init_security, 0, kn_dir, kn); 2697 } 2698 2699 /** 2700 * security_file_permission() - Check file permissions 2701 * @file: file 2702 * @mask: requested permissions 2703 * 2704 * Check file permissions before accessing an open file. This hook is called 2705 * by various operations that read or write files. A security module can use 2706 * this hook to perform additional checking on these operations, e.g. to 2707 * revalidate permissions on use to support privilege bracketing or policy 2708 * changes. Notice that this hook is used when the actual read/write 2709 * operations are performed, whereas the inode_security_ops hook is called when 2710 * a file is opened (as well as many other operations). Although this hook can 2711 * be used to revalidate permissions for various system call operations that 2712 * read or write files, it does not address the revalidation of permissions for 2713 * memory-mapped files. Security modules must handle this separately if they 2714 * need such revalidation. 2715 * 2716 * Return: Returns 0 if permission is granted. 2717 */ 2718 int security_file_permission(struct file *file, int mask) 2719 { 2720 return call_int_hook(file_permission, 0, file, mask); 2721 } 2722 2723 /** 2724 * security_file_alloc() - Allocate and init a file's LSM blob 2725 * @file: the file 2726 * 2727 * Allocate and attach a security structure to the file->f_security field. The 2728 * security field is initialized to NULL when the structure is first created. 2729 * 2730 * Return: Return 0 if the hook is successful and permission is granted. 2731 */ 2732 int security_file_alloc(struct file *file) 2733 { 2734 int rc = lsm_file_alloc(file); 2735 2736 if (rc) 2737 return rc; 2738 rc = call_int_hook(file_alloc_security, 0, file); 2739 if (unlikely(rc)) 2740 security_file_free(file); 2741 return rc; 2742 } 2743 2744 /** 2745 * security_file_release() - Perform actions before releasing the file ref 2746 * @file: the file 2747 * 2748 * Perform actions before releasing the last reference to a file. 2749 */ 2750 void security_file_release(struct file *file) 2751 { 2752 call_void_hook(file_release, file); 2753 } 2754 2755 /** 2756 * security_file_free() - Free a file's LSM blob 2757 * @file: the file 2758 * 2759 * Deallocate and free any security structures stored in file->f_security. 2760 */ 2761 void security_file_free(struct file *file) 2762 { 2763 void *blob; 2764 2765 call_void_hook(file_free_security, file); 2766 2767 blob = file->f_security; 2768 if (blob) { 2769 file->f_security = NULL; 2770 kmem_cache_free(lsm_file_cache, blob); 2771 } 2772 } 2773 2774 /** 2775 * security_file_ioctl() - Check if an ioctl is allowed 2776 * @file: associated file 2777 * @cmd: ioctl cmd 2778 * @arg: ioctl arguments 2779 * 2780 * Check permission for an ioctl operation on @file. Note that @arg sometimes 2781 * represents a user space pointer; in other cases, it may be a simple integer 2782 * value. When @arg represents a user space pointer, it should never be used 2783 * by the security module. 2784 * 2785 * Return: Returns 0 if permission is granted. 2786 */ 2787 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 2788 { 2789 return call_int_hook(file_ioctl, 0, file, cmd, arg); 2790 } 2791 EXPORT_SYMBOL_GPL(security_file_ioctl); 2792 2793 /** 2794 * security_file_ioctl_compat() - Check if an ioctl is allowed in compat mode 2795 * @file: associated file 2796 * @cmd: ioctl cmd 2797 * @arg: ioctl arguments 2798 * 2799 * Compat version of security_file_ioctl() that correctly handles 32-bit 2800 * processes running on 64-bit kernels. 2801 * 2802 * Return: Returns 0 if permission is granted. 2803 */ 2804 int security_file_ioctl_compat(struct file *file, unsigned int cmd, 2805 unsigned long arg) 2806 { 2807 return call_int_hook(file_ioctl_compat, 0, file, cmd, arg); 2808 } 2809 EXPORT_SYMBOL_GPL(security_file_ioctl_compat); 2810 2811 static inline unsigned long mmap_prot(struct file *file, unsigned long prot) 2812 { 2813 /* 2814 * Does we have PROT_READ and does the application expect 2815 * it to imply PROT_EXEC? If not, nothing to talk about... 2816 */ 2817 if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ) 2818 return prot; 2819 if (!(current->personality & READ_IMPLIES_EXEC)) 2820 return prot; 2821 /* 2822 * if that's an anonymous mapping, let it. 2823 */ 2824 if (!file) 2825 return prot | PROT_EXEC; 2826 /* 2827 * ditto if it's not on noexec mount, except that on !MMU we need 2828 * NOMMU_MAP_EXEC (== VM_MAYEXEC) in this case 2829 */ 2830 if (!path_noexec(&file->f_path)) { 2831 #ifndef CONFIG_MMU 2832 if (file->f_op->mmap_capabilities) { 2833 unsigned caps = file->f_op->mmap_capabilities(file); 2834 if (!(caps & NOMMU_MAP_EXEC)) 2835 return prot; 2836 } 2837 #endif 2838 return prot | PROT_EXEC; 2839 } 2840 /* anything on noexec mount won't get PROT_EXEC */ 2841 return prot; 2842 } 2843 2844 /** 2845 * security_mmap_file() - Check if mmap'ing a file is allowed 2846 * @file: file 2847 * @prot: protection applied by the kernel 2848 * @flags: flags 2849 * 2850 * Check permissions for a mmap operation. The @file may be NULL, e.g. if 2851 * mapping anonymous memory. 2852 * 2853 * Return: Returns 0 if permission is granted. 2854 */ 2855 int security_mmap_file(struct file *file, unsigned long prot, 2856 unsigned long flags) 2857 { 2858 return call_int_hook(mmap_file, 0, file, prot, mmap_prot(file, prot), 2859 flags); 2860 } 2861 2862 /** 2863 * security_mmap_addr() - Check if mmap'ing an address is allowed 2864 * @addr: address 2865 * 2866 * Check permissions for a mmap operation at @addr. 2867 * 2868 * Return: Returns 0 if permission is granted. 2869 */ 2870 int security_mmap_addr(unsigned long addr) 2871 { 2872 return call_int_hook(mmap_addr, 0, addr); 2873 } 2874 2875 /** 2876 * security_file_mprotect() - Check if changing memory protections is allowed 2877 * @vma: memory region 2878 * @reqprot: application requested protection 2879 * @prot: protection applied by the kernel 2880 * 2881 * Check permissions before changing memory access permissions. 2882 * 2883 * Return: Returns 0 if permission is granted. 2884 */ 2885 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot, 2886 unsigned long prot) 2887 { 2888 return call_int_hook(file_mprotect, 0, vma, reqprot, prot); 2889 } 2890 2891 /** 2892 * security_file_lock() - Check if a file lock is allowed 2893 * @file: file 2894 * @cmd: lock operation (e.g. F_RDLCK, F_WRLCK) 2895 * 2896 * Check permission before performing file locking operations. Note the hook 2897 * mediates both flock and fcntl style locks. 2898 * 2899 * Return: Returns 0 if permission is granted. 2900 */ 2901 int security_file_lock(struct file *file, unsigned int cmd) 2902 { 2903 return call_int_hook(file_lock, 0, file, cmd); 2904 } 2905 2906 /** 2907 * security_file_fcntl() - Check if fcntl() op is allowed 2908 * @file: file 2909 * @cmd: fcntl command 2910 * @arg: command argument 2911 * 2912 * Check permission before allowing the file operation specified by @cmd from 2913 * being performed on the file @file. Note that @arg sometimes represents a 2914 * user space pointer; in other cases, it may be a simple integer value. When 2915 * @arg represents a user space pointer, it should never be used by the 2916 * security module. 2917 * 2918 * Return: Returns 0 if permission is granted. 2919 */ 2920 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg) 2921 { 2922 return call_int_hook(file_fcntl, 0, file, cmd, arg); 2923 } 2924 2925 /** 2926 * security_file_set_fowner() - Set the file owner info in the LSM blob 2927 * @file: the file 2928 * 2929 * Save owner security information (typically from current->security) in 2930 * file->f_security for later use by the send_sigiotask hook. 2931 * 2932 * Return: Returns 0 on success. 2933 */ 2934 void security_file_set_fowner(struct file *file) 2935 { 2936 call_void_hook(file_set_fowner, file); 2937 } 2938 2939 /** 2940 * security_file_send_sigiotask() - Check if sending SIGIO/SIGURG is allowed 2941 * @tsk: target task 2942 * @fown: signal sender 2943 * @sig: signal to be sent, SIGIO is sent if 0 2944 * 2945 * Check permission for the file owner @fown to send SIGIO or SIGURG to the 2946 * process @tsk. Note that this hook is sometimes called from interrupt. Note 2947 * that the fown_struct, @fown, is never outside the context of a struct file, 2948 * so the file structure (and associated security information) can always be 2949 * obtained: container_of(fown, struct file, f_owner). 2950 * 2951 * Return: Returns 0 if permission is granted. 2952 */ 2953 int security_file_send_sigiotask(struct task_struct *tsk, 2954 struct fown_struct *fown, int sig) 2955 { 2956 return call_int_hook(file_send_sigiotask, 0, tsk, fown, sig); 2957 } 2958 2959 /** 2960 * security_file_receive() - Check is receiving a file via IPC is allowed 2961 * @file: file being received 2962 * 2963 * This hook allows security modules to control the ability of a process to 2964 * receive an open file descriptor via socket IPC. 2965 * 2966 * Return: Returns 0 if permission is granted. 2967 */ 2968 int security_file_receive(struct file *file) 2969 { 2970 return call_int_hook(file_receive, 0, file); 2971 } 2972 2973 /** 2974 * security_file_open() - Save open() time state for late use by the LSM 2975 * @file: 2976 * 2977 * Save open-time permission checking state for later use upon file_permission, 2978 * and recheck access if anything has changed since inode_permission. 2979 * 2980 * Return: Returns 0 if permission is granted. 2981 */ 2982 int security_file_open(struct file *file) 2983 { 2984 int ret; 2985 2986 ret = call_int_hook(file_open, 0, file); 2987 if (ret) 2988 return ret; 2989 2990 return fsnotify_open_perm(file); 2991 } 2992 2993 /** 2994 * security_file_post_open() - Evaluate a file after it has been opened 2995 * @file: the file 2996 * @mask: access mask 2997 * 2998 * Evaluate an opened file and the access mask requested with open(). The hook 2999 * is useful for LSMs that require the file content to be available in order to 3000 * make decisions. 3001 * 3002 * Return: Returns 0 if permission is granted. 3003 */ 3004 int security_file_post_open(struct file *file, int mask) 3005 { 3006 return call_int_hook(file_post_open, 0, file, mask); 3007 } 3008 EXPORT_SYMBOL_GPL(security_file_post_open); 3009 3010 /** 3011 * security_file_truncate() - Check if truncating a file is allowed 3012 * @file: file 3013 * 3014 * Check permission before truncating a file, i.e. using ftruncate. Note that 3015 * truncation permission may also be checked based on the path, using the 3016 * @path_truncate hook. 3017 * 3018 * Return: Returns 0 if permission is granted. 3019 */ 3020 int security_file_truncate(struct file *file) 3021 { 3022 return call_int_hook(file_truncate, 0, file); 3023 } 3024 3025 /** 3026 * security_task_alloc() - Allocate a task's LSM blob 3027 * @task: the task 3028 * @clone_flags: flags indicating what is being shared 3029 * 3030 * Handle allocation of task-related resources. 3031 * 3032 * Return: Returns a zero on success, negative values on failure. 3033 */ 3034 int security_task_alloc(struct task_struct *task, unsigned long clone_flags) 3035 { 3036 int rc = lsm_task_alloc(task); 3037 3038 if (rc) 3039 return rc; 3040 rc = call_int_hook(task_alloc, 0, task, clone_flags); 3041 if (unlikely(rc)) 3042 security_task_free(task); 3043 return rc; 3044 } 3045 3046 /** 3047 * security_task_free() - Free a task's LSM blob and related resources 3048 * @task: task 3049 * 3050 * Handle release of task-related resources. Note that this can be called from 3051 * interrupt context. 3052 */ 3053 void security_task_free(struct task_struct *task) 3054 { 3055 call_void_hook(task_free, task); 3056 3057 kfree(task->security); 3058 task->security = NULL; 3059 } 3060 3061 /** 3062 * security_cred_alloc_blank() - Allocate the min memory to allow cred_transfer 3063 * @cred: credentials 3064 * @gfp: gfp flags 3065 * 3066 * Only allocate sufficient memory and attach to @cred such that 3067 * cred_transfer() will not get ENOMEM. 3068 * 3069 * Return: Returns 0 on success, negative values on failure. 3070 */ 3071 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp) 3072 { 3073 int rc = lsm_cred_alloc(cred, gfp); 3074 3075 if (rc) 3076 return rc; 3077 3078 rc = call_int_hook(cred_alloc_blank, 0, cred, gfp); 3079 if (unlikely(rc)) 3080 security_cred_free(cred); 3081 return rc; 3082 } 3083 3084 /** 3085 * security_cred_free() - Free the cred's LSM blob and associated resources 3086 * @cred: credentials 3087 * 3088 * Deallocate and clear the cred->security field in a set of credentials. 3089 */ 3090 void security_cred_free(struct cred *cred) 3091 { 3092 /* 3093 * There is a failure case in prepare_creds() that 3094 * may result in a call here with ->security being NULL. 3095 */ 3096 if (unlikely(cred->security == NULL)) 3097 return; 3098 3099 call_void_hook(cred_free, cred); 3100 3101 kfree(cred->security); 3102 cred->security = NULL; 3103 } 3104 3105 /** 3106 * security_prepare_creds() - Prepare a new set of credentials 3107 * @new: new credentials 3108 * @old: original credentials 3109 * @gfp: gfp flags 3110 * 3111 * Prepare a new set of credentials by copying the data from the old set. 3112 * 3113 * Return: Returns 0 on success, negative values on failure. 3114 */ 3115 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp) 3116 { 3117 int rc = lsm_cred_alloc(new, gfp); 3118 3119 if (rc) 3120 return rc; 3121 3122 rc = call_int_hook(cred_prepare, 0, new, old, gfp); 3123 if (unlikely(rc)) 3124 security_cred_free(new); 3125 return rc; 3126 } 3127 3128 /** 3129 * security_transfer_creds() - Transfer creds 3130 * @new: target credentials 3131 * @old: original credentials 3132 * 3133 * Transfer data from original creds to new creds. 3134 */ 3135 void security_transfer_creds(struct cred *new, const struct cred *old) 3136 { 3137 call_void_hook(cred_transfer, new, old); 3138 } 3139 3140 /** 3141 * security_cred_getsecid() - Get the secid from a set of credentials 3142 * @c: credentials 3143 * @secid: secid value 3144 * 3145 * Retrieve the security identifier of the cred structure @c. In case of 3146 * failure, @secid will be set to zero. 3147 */ 3148 void security_cred_getsecid(const struct cred *c, u32 *secid) 3149 { 3150 *secid = 0; 3151 call_void_hook(cred_getsecid, c, secid); 3152 } 3153 EXPORT_SYMBOL(security_cred_getsecid); 3154 3155 /** 3156 * security_kernel_act_as() - Set the kernel credentials to act as secid 3157 * @new: credentials 3158 * @secid: secid 3159 * 3160 * Set the credentials for a kernel service to act as (subjective context). 3161 * The current task must be the one that nominated @secid. 3162 * 3163 * Return: Returns 0 if successful. 3164 */ 3165 int security_kernel_act_as(struct cred *new, u32 secid) 3166 { 3167 return call_int_hook(kernel_act_as, 0, new, secid); 3168 } 3169 3170 /** 3171 * security_kernel_create_files_as() - Set file creation context using an inode 3172 * @new: target credentials 3173 * @inode: reference inode 3174 * 3175 * Set the file creation context in a set of credentials to be the same as the 3176 * objective context of the specified inode. The current task must be the one 3177 * that nominated @inode. 3178 * 3179 * Return: Returns 0 if successful. 3180 */ 3181 int security_kernel_create_files_as(struct cred *new, struct inode *inode) 3182 { 3183 return call_int_hook(kernel_create_files_as, 0, new, inode); 3184 } 3185 3186 /** 3187 * security_kernel_module_request() - Check is loading a module is allowed 3188 * @kmod_name: module name 3189 * 3190 * Ability to trigger the kernel to automatically upcall to userspace for 3191 * userspace to load a kernel module with the given name. 3192 * 3193 * Return: Returns 0 if successful. 3194 */ 3195 int security_kernel_module_request(char *kmod_name) 3196 { 3197 return call_int_hook(kernel_module_request, 0, kmod_name); 3198 } 3199 3200 /** 3201 * security_kernel_read_file() - Read a file specified by userspace 3202 * @file: file 3203 * @id: file identifier 3204 * @contents: trust if security_kernel_post_read_file() will be called 3205 * 3206 * Read a file specified by userspace. 3207 * 3208 * Return: Returns 0 if permission is granted. 3209 */ 3210 int security_kernel_read_file(struct file *file, enum kernel_read_file_id id, 3211 bool contents) 3212 { 3213 return call_int_hook(kernel_read_file, 0, file, id, contents); 3214 } 3215 EXPORT_SYMBOL_GPL(security_kernel_read_file); 3216 3217 /** 3218 * security_kernel_post_read_file() - Read a file specified by userspace 3219 * @file: file 3220 * @buf: file contents 3221 * @size: size of file contents 3222 * @id: file identifier 3223 * 3224 * Read a file specified by userspace. This must be paired with a prior call 3225 * to security_kernel_read_file() call that indicated this hook would also be 3226 * called, see security_kernel_read_file() for more information. 3227 * 3228 * Return: Returns 0 if permission is granted. 3229 */ 3230 int security_kernel_post_read_file(struct file *file, char *buf, loff_t size, 3231 enum kernel_read_file_id id) 3232 { 3233 return call_int_hook(kernel_post_read_file, 0, file, buf, size, id); 3234 } 3235 EXPORT_SYMBOL_GPL(security_kernel_post_read_file); 3236 3237 /** 3238 * security_kernel_load_data() - Load data provided by userspace 3239 * @id: data identifier 3240 * @contents: true if security_kernel_post_load_data() will be called 3241 * 3242 * Load data provided by userspace. 3243 * 3244 * Return: Returns 0 if permission is granted. 3245 */ 3246 int security_kernel_load_data(enum kernel_load_data_id id, bool contents) 3247 { 3248 return call_int_hook(kernel_load_data, 0, id, contents); 3249 } 3250 EXPORT_SYMBOL_GPL(security_kernel_load_data); 3251 3252 /** 3253 * security_kernel_post_load_data() - Load userspace data from a non-file source 3254 * @buf: data 3255 * @size: size of data 3256 * @id: data identifier 3257 * @description: text description of data, specific to the id value 3258 * 3259 * Load data provided by a non-file source (usually userspace buffer). This 3260 * must be paired with a prior security_kernel_load_data() call that indicated 3261 * this hook would also be called, see security_kernel_load_data() for more 3262 * information. 3263 * 3264 * Return: Returns 0 if permission is granted. 3265 */ 3266 int security_kernel_post_load_data(char *buf, loff_t size, 3267 enum kernel_load_data_id id, 3268 char *description) 3269 { 3270 return call_int_hook(kernel_post_load_data, 0, buf, size, id, 3271 description); 3272 } 3273 EXPORT_SYMBOL_GPL(security_kernel_post_load_data); 3274 3275 /** 3276 * security_task_fix_setuid() - Update LSM with new user id attributes 3277 * @new: updated credentials 3278 * @old: credentials being replaced 3279 * @flags: LSM_SETID_* flag values 3280 * 3281 * Update the module's state after setting one or more of the user identity 3282 * attributes of the current process. The @flags parameter indicates which of 3283 * the set*uid system calls invoked this hook. If @new is the set of 3284 * credentials that will be installed. Modifications should be made to this 3285 * rather than to @current->cred. 3286 * 3287 * Return: Returns 0 on success. 3288 */ 3289 int security_task_fix_setuid(struct cred *new, const struct cred *old, 3290 int flags) 3291 { 3292 return call_int_hook(task_fix_setuid, 0, new, old, flags); 3293 } 3294 3295 /** 3296 * security_task_fix_setgid() - Update LSM with new group id attributes 3297 * @new: updated credentials 3298 * @old: credentials being replaced 3299 * @flags: LSM_SETID_* flag value 3300 * 3301 * Update the module's state after setting one or more of the group identity 3302 * attributes of the current process. The @flags parameter indicates which of 3303 * the set*gid system calls invoked this hook. @new is the set of credentials 3304 * that will be installed. Modifications should be made to this rather than to 3305 * @current->cred. 3306 * 3307 * Return: Returns 0 on success. 3308 */ 3309 int security_task_fix_setgid(struct cred *new, const struct cred *old, 3310 int flags) 3311 { 3312 return call_int_hook(task_fix_setgid, 0, new, old, flags); 3313 } 3314 3315 /** 3316 * security_task_fix_setgroups() - Update LSM with new supplementary groups 3317 * @new: updated credentials 3318 * @old: credentials being replaced 3319 * 3320 * Update the module's state after setting the supplementary group identity 3321 * attributes of the current process. @new is the set of credentials that will 3322 * be installed. Modifications should be made to this rather than to 3323 * @current->cred. 3324 * 3325 * Return: Returns 0 on success. 3326 */ 3327 int security_task_fix_setgroups(struct cred *new, const struct cred *old) 3328 { 3329 return call_int_hook(task_fix_setgroups, 0, new, old); 3330 } 3331 3332 /** 3333 * security_task_setpgid() - Check if setting the pgid is allowed 3334 * @p: task being modified 3335 * @pgid: new pgid 3336 * 3337 * Check permission before setting the process group identifier of the process 3338 * @p to @pgid. 3339 * 3340 * Return: Returns 0 if permission is granted. 3341 */ 3342 int security_task_setpgid(struct task_struct *p, pid_t pgid) 3343 { 3344 return call_int_hook(task_setpgid, 0, p, pgid); 3345 } 3346 3347 /** 3348 * security_task_getpgid() - Check if getting the pgid is allowed 3349 * @p: task 3350 * 3351 * Check permission before getting the process group identifier of the process 3352 * @p. 3353 * 3354 * Return: Returns 0 if permission is granted. 3355 */ 3356 int security_task_getpgid(struct task_struct *p) 3357 { 3358 return call_int_hook(task_getpgid, 0, p); 3359 } 3360 3361 /** 3362 * security_task_getsid() - Check if getting the session id is allowed 3363 * @p: task 3364 * 3365 * Check permission before getting the session identifier of the process @p. 3366 * 3367 * Return: Returns 0 if permission is granted. 3368 */ 3369 int security_task_getsid(struct task_struct *p) 3370 { 3371 return call_int_hook(task_getsid, 0, p); 3372 } 3373 3374 /** 3375 * security_current_getsecid_subj() - Get the current task's subjective secid 3376 * @secid: secid value 3377 * 3378 * Retrieve the subjective security identifier of the current task and return 3379 * it in @secid. In case of failure, @secid will be set to zero. 3380 */ 3381 void security_current_getsecid_subj(u32 *secid) 3382 { 3383 *secid = 0; 3384 call_void_hook(current_getsecid_subj, secid); 3385 } 3386 EXPORT_SYMBOL(security_current_getsecid_subj); 3387 3388 /** 3389 * security_task_getsecid_obj() - Get a task's objective secid 3390 * @p: target task 3391 * @secid: secid value 3392 * 3393 * Retrieve the objective security identifier of the task_struct in @p and 3394 * return it in @secid. In case of failure, @secid will be set to zero. 3395 */ 3396 void security_task_getsecid_obj(struct task_struct *p, u32 *secid) 3397 { 3398 *secid = 0; 3399 call_void_hook(task_getsecid_obj, p, secid); 3400 } 3401 EXPORT_SYMBOL(security_task_getsecid_obj); 3402 3403 /** 3404 * security_task_setnice() - Check if setting a task's nice value is allowed 3405 * @p: target task 3406 * @nice: nice value 3407 * 3408 * Check permission before setting the nice value of @p to @nice. 3409 * 3410 * Return: Returns 0 if permission is granted. 3411 */ 3412 int security_task_setnice(struct task_struct *p, int nice) 3413 { 3414 return call_int_hook(task_setnice, 0, p, nice); 3415 } 3416 3417 /** 3418 * security_task_setioprio() - Check if setting a task's ioprio is allowed 3419 * @p: target task 3420 * @ioprio: ioprio value 3421 * 3422 * Check permission before setting the ioprio value of @p to @ioprio. 3423 * 3424 * Return: Returns 0 if permission is granted. 3425 */ 3426 int security_task_setioprio(struct task_struct *p, int ioprio) 3427 { 3428 return call_int_hook(task_setioprio, 0, p, ioprio); 3429 } 3430 3431 /** 3432 * security_task_getioprio() - Check if getting a task's ioprio is allowed 3433 * @p: task 3434 * 3435 * Check permission before getting the ioprio value of @p. 3436 * 3437 * Return: Returns 0 if permission is granted. 3438 */ 3439 int security_task_getioprio(struct task_struct *p) 3440 { 3441 return call_int_hook(task_getioprio, 0, p); 3442 } 3443 3444 /** 3445 * security_task_prlimit() - Check if get/setting resources limits is allowed 3446 * @cred: current task credentials 3447 * @tcred: target task credentials 3448 * @flags: LSM_PRLIMIT_* flag bits indicating a get/set/both 3449 * 3450 * Check permission before getting and/or setting the resource limits of 3451 * another task. 3452 * 3453 * Return: Returns 0 if permission is granted. 3454 */ 3455 int security_task_prlimit(const struct cred *cred, const struct cred *tcred, 3456 unsigned int flags) 3457 { 3458 return call_int_hook(task_prlimit, 0, cred, tcred, flags); 3459 } 3460 3461 /** 3462 * security_task_setrlimit() - Check if setting a new rlimit value is allowed 3463 * @p: target task's group leader 3464 * @resource: resource whose limit is being set 3465 * @new_rlim: new resource limit 3466 * 3467 * Check permission before setting the resource limits of process @p for 3468 * @resource to @new_rlim. The old resource limit values can be examined by 3469 * dereferencing (p->signal->rlim + resource). 3470 * 3471 * Return: Returns 0 if permission is granted. 3472 */ 3473 int security_task_setrlimit(struct task_struct *p, unsigned int resource, 3474 struct rlimit *new_rlim) 3475 { 3476 return call_int_hook(task_setrlimit, 0, p, resource, new_rlim); 3477 } 3478 3479 /** 3480 * security_task_setscheduler() - Check if setting sched policy/param is allowed 3481 * @p: target task 3482 * 3483 * Check permission before setting scheduling policy and/or parameters of 3484 * process @p. 3485 * 3486 * Return: Returns 0 if permission is granted. 3487 */ 3488 int security_task_setscheduler(struct task_struct *p) 3489 { 3490 return call_int_hook(task_setscheduler, 0, p); 3491 } 3492 3493 /** 3494 * security_task_getscheduler() - Check if getting scheduling info is allowed 3495 * @p: target task 3496 * 3497 * Check permission before obtaining scheduling information for process @p. 3498 * 3499 * Return: Returns 0 if permission is granted. 3500 */ 3501 int security_task_getscheduler(struct task_struct *p) 3502 { 3503 return call_int_hook(task_getscheduler, 0, p); 3504 } 3505 3506 /** 3507 * security_task_movememory() - Check if moving memory is allowed 3508 * @p: task 3509 * 3510 * Check permission before moving memory owned by process @p. 3511 * 3512 * Return: Returns 0 if permission is granted. 3513 */ 3514 int security_task_movememory(struct task_struct *p) 3515 { 3516 return call_int_hook(task_movememory, 0, p); 3517 } 3518 3519 /** 3520 * security_task_kill() - Check if sending a signal is allowed 3521 * @p: target process 3522 * @info: signal information 3523 * @sig: signal value 3524 * @cred: credentials of the signal sender, NULL if @current 3525 * 3526 * Check permission before sending signal @sig to @p. @info can be NULL, the 3527 * constant 1, or a pointer to a kernel_siginfo structure. If @info is 1 or 3528 * SI_FROMKERNEL(info) is true, then the signal should be viewed as coming from 3529 * the kernel and should typically be permitted. SIGIO signals are handled 3530 * separately by the send_sigiotask hook in file_security_ops. 3531 * 3532 * Return: Returns 0 if permission is granted. 3533 */ 3534 int security_task_kill(struct task_struct *p, struct kernel_siginfo *info, 3535 int sig, const struct cred *cred) 3536 { 3537 return call_int_hook(task_kill, 0, p, info, sig, cred); 3538 } 3539 3540 /** 3541 * security_task_prctl() - Check if a prctl op is allowed 3542 * @option: operation 3543 * @arg2: argument 3544 * @arg3: argument 3545 * @arg4: argument 3546 * @arg5: argument 3547 * 3548 * Check permission before performing a process control operation on the 3549 * current process. 3550 * 3551 * Return: Return -ENOSYS if no-one wanted to handle this op, any other value 3552 * to cause prctl() to return immediately with that value. 3553 */ 3554 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3, 3555 unsigned long arg4, unsigned long arg5) 3556 { 3557 int thisrc; 3558 int rc = LSM_RET_DEFAULT(task_prctl); 3559 struct security_hook_list *hp; 3560 3561 hlist_for_each_entry(hp, &security_hook_heads.task_prctl, list) { 3562 thisrc = hp->hook.task_prctl(option, arg2, arg3, arg4, arg5); 3563 if (thisrc != LSM_RET_DEFAULT(task_prctl)) { 3564 rc = thisrc; 3565 if (thisrc != 0) 3566 break; 3567 } 3568 } 3569 return rc; 3570 } 3571 3572 /** 3573 * security_task_to_inode() - Set the security attributes of a task's inode 3574 * @p: task 3575 * @inode: inode 3576 * 3577 * Set the security attributes for an inode based on an associated task's 3578 * security attributes, e.g. for /proc/pid inodes. 3579 */ 3580 void security_task_to_inode(struct task_struct *p, struct inode *inode) 3581 { 3582 call_void_hook(task_to_inode, p, inode); 3583 } 3584 3585 /** 3586 * security_create_user_ns() - Check if creating a new userns is allowed 3587 * @cred: prepared creds 3588 * 3589 * Check permission prior to creating a new user namespace. 3590 * 3591 * Return: Returns 0 if successful, otherwise < 0 error code. 3592 */ 3593 int security_create_user_ns(const struct cred *cred) 3594 { 3595 return call_int_hook(userns_create, 0, cred); 3596 } 3597 3598 /** 3599 * security_ipc_permission() - Check if sysv ipc access is allowed 3600 * @ipcp: ipc permission structure 3601 * @flag: requested permissions 3602 * 3603 * Check permissions for access to IPC. 3604 * 3605 * Return: Returns 0 if permission is granted. 3606 */ 3607 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag) 3608 { 3609 return call_int_hook(ipc_permission, 0, ipcp, flag); 3610 } 3611 3612 /** 3613 * security_ipc_getsecid() - Get the sysv ipc object's secid 3614 * @ipcp: ipc permission structure 3615 * @secid: secid pointer 3616 * 3617 * Get the secid associated with the ipc object. In case of failure, @secid 3618 * will be set to zero. 3619 */ 3620 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid) 3621 { 3622 *secid = 0; 3623 call_void_hook(ipc_getsecid, ipcp, secid); 3624 } 3625 3626 /** 3627 * security_msg_msg_alloc() - Allocate a sysv ipc message LSM blob 3628 * @msg: message structure 3629 * 3630 * Allocate and attach a security structure to the msg->security field. The 3631 * security field is initialized to NULL when the structure is first created. 3632 * 3633 * Return: Return 0 if operation was successful and permission is granted. 3634 */ 3635 int security_msg_msg_alloc(struct msg_msg *msg) 3636 { 3637 int rc = lsm_msg_msg_alloc(msg); 3638 3639 if (unlikely(rc)) 3640 return rc; 3641 rc = call_int_hook(msg_msg_alloc_security, 0, msg); 3642 if (unlikely(rc)) 3643 security_msg_msg_free(msg); 3644 return rc; 3645 } 3646 3647 /** 3648 * security_msg_msg_free() - Free a sysv ipc message LSM blob 3649 * @msg: message structure 3650 * 3651 * Deallocate the security structure for this message. 3652 */ 3653 void security_msg_msg_free(struct msg_msg *msg) 3654 { 3655 call_void_hook(msg_msg_free_security, msg); 3656 kfree(msg->security); 3657 msg->security = NULL; 3658 } 3659 3660 /** 3661 * security_msg_queue_alloc() - Allocate a sysv ipc msg queue LSM blob 3662 * @msq: sysv ipc permission structure 3663 * 3664 * Allocate and attach a security structure to @msg. The security field is 3665 * initialized to NULL when the structure is first created. 3666 * 3667 * Return: Returns 0 if operation was successful and permission is granted. 3668 */ 3669 int security_msg_queue_alloc(struct kern_ipc_perm *msq) 3670 { 3671 int rc = lsm_ipc_alloc(msq); 3672 3673 if (unlikely(rc)) 3674 return rc; 3675 rc = call_int_hook(msg_queue_alloc_security, 0, msq); 3676 if (unlikely(rc)) 3677 security_msg_queue_free(msq); 3678 return rc; 3679 } 3680 3681 /** 3682 * security_msg_queue_free() - Free a sysv ipc msg queue LSM blob 3683 * @msq: sysv ipc permission structure 3684 * 3685 * Deallocate security field @perm->security for the message queue. 3686 */ 3687 void security_msg_queue_free(struct kern_ipc_perm *msq) 3688 { 3689 call_void_hook(msg_queue_free_security, msq); 3690 kfree(msq->security); 3691 msq->security = NULL; 3692 } 3693 3694 /** 3695 * security_msg_queue_associate() - Check if a msg queue operation is allowed 3696 * @msq: sysv ipc permission structure 3697 * @msqflg: operation flags 3698 * 3699 * Check permission when a message queue is requested through the msgget system 3700 * call. This hook is only called when returning the message queue identifier 3701 * for an existing message queue, not when a new message queue is created. 3702 * 3703 * Return: Return 0 if permission is granted. 3704 */ 3705 int security_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg) 3706 { 3707 return call_int_hook(msg_queue_associate, 0, msq, msqflg); 3708 } 3709 3710 /** 3711 * security_msg_queue_msgctl() - Check if a msg queue operation is allowed 3712 * @msq: sysv ipc permission structure 3713 * @cmd: operation 3714 * 3715 * Check permission when a message control operation specified by @cmd is to be 3716 * performed on the message queue with permissions. 3717 * 3718 * Return: Returns 0 if permission is granted. 3719 */ 3720 int security_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd) 3721 { 3722 return call_int_hook(msg_queue_msgctl, 0, msq, cmd); 3723 } 3724 3725 /** 3726 * security_msg_queue_msgsnd() - Check if sending a sysv ipc message is allowed 3727 * @msq: sysv ipc permission structure 3728 * @msg: message 3729 * @msqflg: operation flags 3730 * 3731 * Check permission before a message, @msg, is enqueued on the message queue 3732 * with permissions specified in @msq. 3733 * 3734 * Return: Returns 0 if permission is granted. 3735 */ 3736 int security_msg_queue_msgsnd(struct kern_ipc_perm *msq, 3737 struct msg_msg *msg, int msqflg) 3738 { 3739 return call_int_hook(msg_queue_msgsnd, 0, msq, msg, msqflg); 3740 } 3741 3742 /** 3743 * security_msg_queue_msgrcv() - Check if receiving a sysv ipc msg is allowed 3744 * @msq: sysv ipc permission structure 3745 * @msg: message 3746 * @target: target task 3747 * @type: type of message requested 3748 * @mode: operation flags 3749 * 3750 * Check permission before a message, @msg, is removed from the message queue. 3751 * The @target task structure contains a pointer to the process that will be 3752 * receiving the message (not equal to the current process when inline receives 3753 * are being performed). 3754 * 3755 * Return: Returns 0 if permission is granted. 3756 */ 3757 int security_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg, 3758 struct task_struct *target, long type, int mode) 3759 { 3760 return call_int_hook(msg_queue_msgrcv, 0, msq, msg, target, type, mode); 3761 } 3762 3763 /** 3764 * security_shm_alloc() - Allocate a sysv shm LSM blob 3765 * @shp: sysv ipc permission structure 3766 * 3767 * Allocate and attach a security structure to the @shp security field. The 3768 * security field is initialized to NULL when the structure is first created. 3769 * 3770 * Return: Returns 0 if operation was successful and permission is granted. 3771 */ 3772 int security_shm_alloc(struct kern_ipc_perm *shp) 3773 { 3774 int rc = lsm_ipc_alloc(shp); 3775 3776 if (unlikely(rc)) 3777 return rc; 3778 rc = call_int_hook(shm_alloc_security, 0, shp); 3779 if (unlikely(rc)) 3780 security_shm_free(shp); 3781 return rc; 3782 } 3783 3784 /** 3785 * security_shm_free() - Free a sysv shm LSM blob 3786 * @shp: sysv ipc permission structure 3787 * 3788 * Deallocate the security structure @perm->security for the memory segment. 3789 */ 3790 void security_shm_free(struct kern_ipc_perm *shp) 3791 { 3792 call_void_hook(shm_free_security, shp); 3793 kfree(shp->security); 3794 shp->security = NULL; 3795 } 3796 3797 /** 3798 * security_shm_associate() - Check if a sysv shm operation is allowed 3799 * @shp: sysv ipc permission structure 3800 * @shmflg: operation flags 3801 * 3802 * Check permission when a shared memory region is requested through the shmget 3803 * system call. This hook is only called when returning the shared memory 3804 * region identifier for an existing region, not when a new shared memory 3805 * region is created. 3806 * 3807 * Return: Returns 0 if permission is granted. 3808 */ 3809 int security_shm_associate(struct kern_ipc_perm *shp, int shmflg) 3810 { 3811 return call_int_hook(shm_associate, 0, shp, shmflg); 3812 } 3813 3814 /** 3815 * security_shm_shmctl() - Check if a sysv shm operation is allowed 3816 * @shp: sysv ipc permission structure 3817 * @cmd: operation 3818 * 3819 * Check permission when a shared memory control operation specified by @cmd is 3820 * to be performed on the shared memory region with permissions in @shp. 3821 * 3822 * Return: Return 0 if permission is granted. 3823 */ 3824 int security_shm_shmctl(struct kern_ipc_perm *shp, int cmd) 3825 { 3826 return call_int_hook(shm_shmctl, 0, shp, cmd); 3827 } 3828 3829 /** 3830 * security_shm_shmat() - Check if a sysv shm attach operation is allowed 3831 * @shp: sysv ipc permission structure 3832 * @shmaddr: address of memory region to attach 3833 * @shmflg: operation flags 3834 * 3835 * Check permissions prior to allowing the shmat system call to attach the 3836 * shared memory segment with permissions @shp to the data segment of the 3837 * calling process. The attaching address is specified by @shmaddr. 3838 * 3839 * Return: Returns 0 if permission is granted. 3840 */ 3841 int security_shm_shmat(struct kern_ipc_perm *shp, 3842 char __user *shmaddr, int shmflg) 3843 { 3844 return call_int_hook(shm_shmat, 0, shp, shmaddr, shmflg); 3845 } 3846 3847 /** 3848 * security_sem_alloc() - Allocate a sysv semaphore LSM blob 3849 * @sma: sysv ipc permission structure 3850 * 3851 * Allocate and attach a security structure to the @sma security field. The 3852 * security field is initialized to NULL when the structure is first created. 3853 * 3854 * Return: Returns 0 if operation was successful and permission is granted. 3855 */ 3856 int security_sem_alloc(struct kern_ipc_perm *sma) 3857 { 3858 int rc = lsm_ipc_alloc(sma); 3859 3860 if (unlikely(rc)) 3861 return rc; 3862 rc = call_int_hook(sem_alloc_security, 0, sma); 3863 if (unlikely(rc)) 3864 security_sem_free(sma); 3865 return rc; 3866 } 3867 3868 /** 3869 * security_sem_free() - Free a sysv semaphore LSM blob 3870 * @sma: sysv ipc permission structure 3871 * 3872 * Deallocate security structure @sma->security for the semaphore. 3873 */ 3874 void security_sem_free(struct kern_ipc_perm *sma) 3875 { 3876 call_void_hook(sem_free_security, sma); 3877 kfree(sma->security); 3878 sma->security = NULL; 3879 } 3880 3881 /** 3882 * security_sem_associate() - Check if a sysv semaphore operation is allowed 3883 * @sma: sysv ipc permission structure 3884 * @semflg: operation flags 3885 * 3886 * Check permission when a semaphore is requested through the semget system 3887 * call. This hook is only called when returning the semaphore identifier for 3888 * an existing semaphore, not when a new one must be created. 3889 * 3890 * Return: Returns 0 if permission is granted. 3891 */ 3892 int security_sem_associate(struct kern_ipc_perm *sma, int semflg) 3893 { 3894 return call_int_hook(sem_associate, 0, sma, semflg); 3895 } 3896 3897 /** 3898 * security_sem_semctl() - Check if a sysv semaphore operation is allowed 3899 * @sma: sysv ipc permission structure 3900 * @cmd: operation 3901 * 3902 * Check permission when a semaphore operation specified by @cmd is to be 3903 * performed on the semaphore. 3904 * 3905 * Return: Returns 0 if permission is granted. 3906 */ 3907 int security_sem_semctl(struct kern_ipc_perm *sma, int cmd) 3908 { 3909 return call_int_hook(sem_semctl, 0, sma, cmd); 3910 } 3911 3912 /** 3913 * security_sem_semop() - Check if a sysv semaphore operation is allowed 3914 * @sma: sysv ipc permission structure 3915 * @sops: operations to perform 3916 * @nsops: number of operations 3917 * @alter: flag indicating changes will be made 3918 * 3919 * Check permissions before performing operations on members of the semaphore 3920 * set. If the @alter flag is nonzero, the semaphore set may be modified. 3921 * 3922 * Return: Returns 0 if permission is granted. 3923 */ 3924 int security_sem_semop(struct kern_ipc_perm *sma, struct sembuf *sops, 3925 unsigned nsops, int alter) 3926 { 3927 return call_int_hook(sem_semop, 0, sma, sops, nsops, alter); 3928 } 3929 3930 /** 3931 * security_d_instantiate() - Populate an inode's LSM state based on a dentry 3932 * @dentry: dentry 3933 * @inode: inode 3934 * 3935 * Fill in @inode security information for a @dentry if allowed. 3936 */ 3937 void security_d_instantiate(struct dentry *dentry, struct inode *inode) 3938 { 3939 if (unlikely(inode && IS_PRIVATE(inode))) 3940 return; 3941 call_void_hook(d_instantiate, dentry, inode); 3942 } 3943 EXPORT_SYMBOL(security_d_instantiate); 3944 3945 /* 3946 * Please keep this in sync with it's counterpart in security/lsm_syscalls.c 3947 */ 3948 3949 /** 3950 * security_getselfattr - Read an LSM attribute of the current process. 3951 * @attr: which attribute to return 3952 * @uctx: the user-space destination for the information, or NULL 3953 * @size: pointer to the size of space available to receive the data 3954 * @flags: special handling options. LSM_FLAG_SINGLE indicates that only 3955 * attributes associated with the LSM identified in the passed @ctx be 3956 * reported. 3957 * 3958 * A NULL value for @uctx can be used to get both the number of attributes 3959 * and the size of the data. 3960 * 3961 * Returns the number of attributes found on success, negative value 3962 * on error. @size is reset to the total size of the data. 3963 * If @size is insufficient to contain the data -E2BIG is returned. 3964 */ 3965 int security_getselfattr(unsigned int attr, struct lsm_ctx __user *uctx, 3966 size_t __user *size, u32 flags) 3967 { 3968 struct security_hook_list *hp; 3969 struct lsm_ctx lctx = { .id = LSM_ID_UNDEF, }; 3970 u8 __user *base = (u8 __user *)uctx; 3971 size_t total = 0; 3972 size_t entrysize; 3973 size_t left; 3974 bool toobig = false; 3975 bool single = false; 3976 int count = 0; 3977 int rc; 3978 3979 if (attr == LSM_ATTR_UNDEF) 3980 return -EINVAL; 3981 if (size == NULL) 3982 return -EINVAL; 3983 if (get_user(left, size)) 3984 return -EFAULT; 3985 3986 if (flags) { 3987 /* 3988 * Only flag supported is LSM_FLAG_SINGLE 3989 */ 3990 if (flags != LSM_FLAG_SINGLE || !uctx) 3991 return -EINVAL; 3992 if (copy_from_user(&lctx, uctx, sizeof(lctx))) 3993 return -EFAULT; 3994 /* 3995 * If the LSM ID isn't specified it is an error. 3996 */ 3997 if (lctx.id == LSM_ID_UNDEF) 3998 return -EINVAL; 3999 single = true; 4000 } 4001 4002 /* 4003 * In the usual case gather all the data from the LSMs. 4004 * In the single case only get the data from the LSM specified. 4005 */ 4006 hlist_for_each_entry(hp, &security_hook_heads.getselfattr, list) { 4007 if (single && lctx.id != hp->lsmid->id) 4008 continue; 4009 entrysize = left; 4010 if (base) 4011 uctx = (struct lsm_ctx __user *)(base + total); 4012 rc = hp->hook.getselfattr(attr, uctx, &entrysize, flags); 4013 if (rc == -EOPNOTSUPP) { 4014 rc = 0; 4015 continue; 4016 } 4017 if (rc == -E2BIG) { 4018 rc = 0; 4019 left = 0; 4020 toobig = true; 4021 } else if (rc < 0) 4022 return rc; 4023 else 4024 left -= entrysize; 4025 4026 total += entrysize; 4027 count += rc; 4028 if (single) 4029 break; 4030 } 4031 if (put_user(total, size)) 4032 return -EFAULT; 4033 if (toobig) 4034 return -E2BIG; 4035 if (count == 0) 4036 return LSM_RET_DEFAULT(getselfattr); 4037 return count; 4038 } 4039 4040 /* 4041 * Please keep this in sync with it's counterpart in security/lsm_syscalls.c 4042 */ 4043 4044 /** 4045 * security_setselfattr - Set an LSM attribute on the current process. 4046 * @attr: which attribute to set 4047 * @uctx: the user-space source for the information 4048 * @size: the size of the data 4049 * @flags: reserved for future use, must be 0 4050 * 4051 * Set an LSM attribute for the current process. The LSM, attribute 4052 * and new value are included in @uctx. 4053 * 4054 * Returns 0 on success, -EINVAL if the input is inconsistent, -EFAULT 4055 * if the user buffer is inaccessible, E2BIG if size is too big, or an 4056 * LSM specific failure. 4057 */ 4058 int security_setselfattr(unsigned int attr, struct lsm_ctx __user *uctx, 4059 size_t size, u32 flags) 4060 { 4061 struct security_hook_list *hp; 4062 struct lsm_ctx *lctx; 4063 int rc = LSM_RET_DEFAULT(setselfattr); 4064 4065 if (flags) 4066 return -EINVAL; 4067 if (size < sizeof(*lctx)) 4068 return -EINVAL; 4069 if (size > PAGE_SIZE) 4070 return -E2BIG; 4071 4072 lctx = memdup_user(uctx, size); 4073 if (IS_ERR(lctx)) 4074 return PTR_ERR(lctx); 4075 4076 if (size < lctx->len || size < lctx->ctx_len + sizeof(*lctx) || 4077 lctx->len < lctx->ctx_len + sizeof(*lctx)) { 4078 rc = -EINVAL; 4079 goto free_out; 4080 } 4081 4082 hlist_for_each_entry(hp, &security_hook_heads.setselfattr, list) 4083 if ((hp->lsmid->id) == lctx->id) { 4084 rc = hp->hook.setselfattr(attr, lctx, size, flags); 4085 break; 4086 } 4087 4088 free_out: 4089 kfree(lctx); 4090 return rc; 4091 } 4092 4093 /** 4094 * security_getprocattr() - Read an attribute for a task 4095 * @p: the task 4096 * @lsmid: LSM identification 4097 * @name: attribute name 4098 * @value: attribute value 4099 * 4100 * Read attribute @name for task @p and store it into @value if allowed. 4101 * 4102 * Return: Returns the length of @value on success, a negative value otherwise. 4103 */ 4104 int security_getprocattr(struct task_struct *p, int lsmid, const char *name, 4105 char **value) 4106 { 4107 struct security_hook_list *hp; 4108 4109 hlist_for_each_entry(hp, &security_hook_heads.getprocattr, list) { 4110 if (lsmid != 0 && lsmid != hp->lsmid->id) 4111 continue; 4112 return hp->hook.getprocattr(p, name, value); 4113 } 4114 return LSM_RET_DEFAULT(getprocattr); 4115 } 4116 4117 /** 4118 * security_setprocattr() - Set an attribute for a task 4119 * @lsmid: LSM identification 4120 * @name: attribute name 4121 * @value: attribute value 4122 * @size: attribute value size 4123 * 4124 * Write (set) the current task's attribute @name to @value, size @size if 4125 * allowed. 4126 * 4127 * Return: Returns bytes written on success, a negative value otherwise. 4128 */ 4129 int security_setprocattr(int lsmid, const char *name, void *value, size_t size) 4130 { 4131 struct security_hook_list *hp; 4132 4133 hlist_for_each_entry(hp, &security_hook_heads.setprocattr, list) { 4134 if (lsmid != 0 && lsmid != hp->lsmid->id) 4135 continue; 4136 return hp->hook.setprocattr(name, value, size); 4137 } 4138 return LSM_RET_DEFAULT(setprocattr); 4139 } 4140 4141 /** 4142 * security_netlink_send() - Save info and check if netlink sending is allowed 4143 * @sk: sending socket 4144 * @skb: netlink message 4145 * 4146 * Save security information for a netlink message so that permission checking 4147 * can be performed when the message is processed. The security information 4148 * can be saved using the eff_cap field of the netlink_skb_parms structure. 4149 * Also may be used to provide fine grained control over message transmission. 4150 * 4151 * Return: Returns 0 if the information was successfully saved and message is 4152 * allowed to be transmitted. 4153 */ 4154 int security_netlink_send(struct sock *sk, struct sk_buff *skb) 4155 { 4156 return call_int_hook(netlink_send, 0, sk, skb); 4157 } 4158 4159 /** 4160 * security_ismaclabel() - Check is the named attribute is a MAC label 4161 * @name: full extended attribute name 4162 * 4163 * Check if the extended attribute specified by @name represents a MAC label. 4164 * 4165 * Return: Returns 1 if name is a MAC attribute otherwise returns 0. 4166 */ 4167 int security_ismaclabel(const char *name) 4168 { 4169 return call_int_hook(ismaclabel, 0, name); 4170 } 4171 EXPORT_SYMBOL(security_ismaclabel); 4172 4173 /** 4174 * security_secid_to_secctx() - Convert a secid to a secctx 4175 * @secid: secid 4176 * @secdata: secctx 4177 * @seclen: secctx length 4178 * 4179 * Convert secid to security context. If @secdata is NULL the length of the 4180 * result will be returned in @seclen, but no @secdata will be returned. This 4181 * does mean that the length could change between calls to check the length and 4182 * the next call which actually allocates and returns the @secdata. 4183 * 4184 * Return: Return 0 on success, error on failure. 4185 */ 4186 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen) 4187 { 4188 struct security_hook_list *hp; 4189 int rc; 4190 4191 /* 4192 * Currently, only one LSM can implement secid_to_secctx (i.e this 4193 * LSM hook is not "stackable"). 4194 */ 4195 hlist_for_each_entry(hp, &security_hook_heads.secid_to_secctx, list) { 4196 rc = hp->hook.secid_to_secctx(secid, secdata, seclen); 4197 if (rc != LSM_RET_DEFAULT(secid_to_secctx)) 4198 return rc; 4199 } 4200 4201 return LSM_RET_DEFAULT(secid_to_secctx); 4202 } 4203 EXPORT_SYMBOL(security_secid_to_secctx); 4204 4205 /** 4206 * security_secctx_to_secid() - Convert a secctx to a secid 4207 * @secdata: secctx 4208 * @seclen: length of secctx 4209 * @secid: secid 4210 * 4211 * Convert security context to secid. 4212 * 4213 * Return: Returns 0 on success, error on failure. 4214 */ 4215 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid) 4216 { 4217 *secid = 0; 4218 return call_int_hook(secctx_to_secid, 0, secdata, seclen, secid); 4219 } 4220 EXPORT_SYMBOL(security_secctx_to_secid); 4221 4222 /** 4223 * security_release_secctx() - Free a secctx buffer 4224 * @secdata: secctx 4225 * @seclen: length of secctx 4226 * 4227 * Release the security context. 4228 */ 4229 void security_release_secctx(char *secdata, u32 seclen) 4230 { 4231 call_void_hook(release_secctx, secdata, seclen); 4232 } 4233 EXPORT_SYMBOL(security_release_secctx); 4234 4235 /** 4236 * security_inode_invalidate_secctx() - Invalidate an inode's security label 4237 * @inode: inode 4238 * 4239 * Notify the security module that it must revalidate the security context of 4240 * an inode. 4241 */ 4242 void security_inode_invalidate_secctx(struct inode *inode) 4243 { 4244 call_void_hook(inode_invalidate_secctx, inode); 4245 } 4246 EXPORT_SYMBOL(security_inode_invalidate_secctx); 4247 4248 /** 4249 * security_inode_notifysecctx() - Notify the LSM of an inode's security label 4250 * @inode: inode 4251 * @ctx: secctx 4252 * @ctxlen: length of secctx 4253 * 4254 * Notify the security module of what the security context of an inode should 4255 * be. Initializes the incore security context managed by the security module 4256 * for this inode. Example usage: NFS client invokes this hook to initialize 4257 * the security context in its incore inode to the value provided by the server 4258 * for the file when the server returned the file's attributes to the client. 4259 * Must be called with inode->i_mutex locked. 4260 * 4261 * Return: Returns 0 on success, error on failure. 4262 */ 4263 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen) 4264 { 4265 return call_int_hook(inode_notifysecctx, 0, inode, ctx, ctxlen); 4266 } 4267 EXPORT_SYMBOL(security_inode_notifysecctx); 4268 4269 /** 4270 * security_inode_setsecctx() - Change the security label of an inode 4271 * @dentry: inode 4272 * @ctx: secctx 4273 * @ctxlen: length of secctx 4274 * 4275 * Change the security context of an inode. Updates the incore security 4276 * context managed by the security module and invokes the fs code as needed 4277 * (via __vfs_setxattr_noperm) to update any backing xattrs that represent the 4278 * context. Example usage: NFS server invokes this hook to change the security 4279 * context in its incore inode and on the backing filesystem to a value 4280 * provided by the client on a SETATTR operation. Must be called with 4281 * inode->i_mutex locked. 4282 * 4283 * Return: Returns 0 on success, error on failure. 4284 */ 4285 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen) 4286 { 4287 return call_int_hook(inode_setsecctx, 0, dentry, ctx, ctxlen); 4288 } 4289 EXPORT_SYMBOL(security_inode_setsecctx); 4290 4291 /** 4292 * security_inode_getsecctx() - Get the security label of an inode 4293 * @inode: inode 4294 * @ctx: secctx 4295 * @ctxlen: length of secctx 4296 * 4297 * On success, returns 0 and fills out @ctx and @ctxlen with the security 4298 * context for the given @inode. 4299 * 4300 * Return: Returns 0 on success, error on failure. 4301 */ 4302 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen) 4303 { 4304 struct security_hook_list *hp; 4305 int rc; 4306 4307 /* 4308 * Only one module will provide a security context. 4309 */ 4310 hlist_for_each_entry(hp, &security_hook_heads.inode_getsecctx, list) { 4311 rc = hp->hook.inode_getsecctx(inode, ctx, ctxlen); 4312 if (rc != LSM_RET_DEFAULT(inode_getsecctx)) 4313 return rc; 4314 } 4315 4316 return LSM_RET_DEFAULT(inode_getsecctx); 4317 } 4318 EXPORT_SYMBOL(security_inode_getsecctx); 4319 4320 #ifdef CONFIG_WATCH_QUEUE 4321 /** 4322 * security_post_notification() - Check if a watch notification can be posted 4323 * @w_cred: credentials of the task that set the watch 4324 * @cred: credentials of the task which triggered the watch 4325 * @n: the notification 4326 * 4327 * Check to see if a watch notification can be posted to a particular queue. 4328 * 4329 * Return: Returns 0 if permission is granted. 4330 */ 4331 int security_post_notification(const struct cred *w_cred, 4332 const struct cred *cred, 4333 struct watch_notification *n) 4334 { 4335 return call_int_hook(post_notification, 0, w_cred, cred, n); 4336 } 4337 #endif /* CONFIG_WATCH_QUEUE */ 4338 4339 #ifdef CONFIG_KEY_NOTIFICATIONS 4340 /** 4341 * security_watch_key() - Check if a task is allowed to watch for key events 4342 * @key: the key to watch 4343 * 4344 * Check to see if a process is allowed to watch for event notifications from 4345 * a key or keyring. 4346 * 4347 * Return: Returns 0 if permission is granted. 4348 */ 4349 int security_watch_key(struct key *key) 4350 { 4351 return call_int_hook(watch_key, 0, key); 4352 } 4353 #endif /* CONFIG_KEY_NOTIFICATIONS */ 4354 4355 #ifdef CONFIG_SECURITY_NETWORK 4356 /** 4357 * security_unix_stream_connect() - Check if a AF_UNIX stream is allowed 4358 * @sock: originating sock 4359 * @other: peer sock 4360 * @newsk: new sock 4361 * 4362 * Check permissions before establishing a Unix domain stream connection 4363 * between @sock and @other. 4364 * 4365 * The @unix_stream_connect and @unix_may_send hooks were necessary because 4366 * Linux provides an alternative to the conventional file name space for Unix 4367 * domain sockets. Whereas binding and connecting to sockets in the file name 4368 * space is mediated by the typical file permissions (and caught by the mknod 4369 * and permission hooks in inode_security_ops), binding and connecting to 4370 * sockets in the abstract name space is completely unmediated. Sufficient 4371 * control of Unix domain sockets in the abstract name space isn't possible 4372 * using only the socket layer hooks, since we need to know the actual target 4373 * socket, which is not looked up until we are inside the af_unix code. 4374 * 4375 * Return: Returns 0 if permission is granted. 4376 */ 4377 int security_unix_stream_connect(struct sock *sock, struct sock *other, 4378 struct sock *newsk) 4379 { 4380 return call_int_hook(unix_stream_connect, 0, sock, other, newsk); 4381 } 4382 EXPORT_SYMBOL(security_unix_stream_connect); 4383 4384 /** 4385 * security_unix_may_send() - Check if AF_UNIX socket can send datagrams 4386 * @sock: originating sock 4387 * @other: peer sock 4388 * 4389 * Check permissions before connecting or sending datagrams from @sock to 4390 * @other. 4391 * 4392 * The @unix_stream_connect and @unix_may_send hooks were necessary because 4393 * Linux provides an alternative to the conventional file name space for Unix 4394 * domain sockets. Whereas binding and connecting to sockets in the file name 4395 * space is mediated by the typical file permissions (and caught by the mknod 4396 * and permission hooks in inode_security_ops), binding and connecting to 4397 * sockets in the abstract name space is completely unmediated. Sufficient 4398 * control of Unix domain sockets in the abstract name space isn't possible 4399 * using only the socket layer hooks, since we need to know the actual target 4400 * socket, which is not looked up until we are inside the af_unix code. 4401 * 4402 * Return: Returns 0 if permission is granted. 4403 */ 4404 int security_unix_may_send(struct socket *sock, struct socket *other) 4405 { 4406 return call_int_hook(unix_may_send, 0, sock, other); 4407 } 4408 EXPORT_SYMBOL(security_unix_may_send); 4409 4410 /** 4411 * security_socket_create() - Check if creating a new socket is allowed 4412 * @family: protocol family 4413 * @type: communications type 4414 * @protocol: requested protocol 4415 * @kern: set to 1 if a kernel socket is requested 4416 * 4417 * Check permissions prior to creating a new socket. 4418 * 4419 * Return: Returns 0 if permission is granted. 4420 */ 4421 int security_socket_create(int family, int type, int protocol, int kern) 4422 { 4423 return call_int_hook(socket_create, 0, family, type, protocol, kern); 4424 } 4425 4426 /** 4427 * security_socket_post_create() - Initialize a newly created socket 4428 * @sock: socket 4429 * @family: protocol family 4430 * @type: communications type 4431 * @protocol: requested protocol 4432 * @kern: set to 1 if a kernel socket is requested 4433 * 4434 * This hook allows a module to update or allocate a per-socket security 4435 * structure. Note that the security field was not added directly to the socket 4436 * structure, but rather, the socket security information is stored in the 4437 * associated inode. Typically, the inode alloc_security hook will allocate 4438 * and attach security information to SOCK_INODE(sock)->i_security. This hook 4439 * may be used to update the SOCK_INODE(sock)->i_security field with additional 4440 * information that wasn't available when the inode was allocated. 4441 * 4442 * Return: Returns 0 if permission is granted. 4443 */ 4444 int security_socket_post_create(struct socket *sock, int family, 4445 int type, int protocol, int kern) 4446 { 4447 return call_int_hook(socket_post_create, 0, sock, family, type, 4448 protocol, kern); 4449 } 4450 4451 /** 4452 * security_socket_socketpair() - Check if creating a socketpair is allowed 4453 * @socka: first socket 4454 * @sockb: second socket 4455 * 4456 * Check permissions before creating a fresh pair of sockets. 4457 * 4458 * Return: Returns 0 if permission is granted and the connection was 4459 * established. 4460 */ 4461 int security_socket_socketpair(struct socket *socka, struct socket *sockb) 4462 { 4463 return call_int_hook(socket_socketpair, 0, socka, sockb); 4464 } 4465 EXPORT_SYMBOL(security_socket_socketpair); 4466 4467 /** 4468 * security_socket_bind() - Check if a socket bind operation is allowed 4469 * @sock: socket 4470 * @address: requested bind address 4471 * @addrlen: length of address 4472 * 4473 * Check permission before socket protocol layer bind operation is performed 4474 * and the socket @sock is bound to the address specified in the @address 4475 * parameter. 4476 * 4477 * Return: Returns 0 if permission is granted. 4478 */ 4479 int security_socket_bind(struct socket *sock, 4480 struct sockaddr *address, int addrlen) 4481 { 4482 return call_int_hook(socket_bind, 0, sock, address, addrlen); 4483 } 4484 4485 /** 4486 * security_socket_connect() - Check if a socket connect operation is allowed 4487 * @sock: socket 4488 * @address: address of remote connection point 4489 * @addrlen: length of address 4490 * 4491 * Check permission before socket protocol layer connect operation attempts to 4492 * connect socket @sock to a remote address, @address. 4493 * 4494 * Return: Returns 0 if permission is granted. 4495 */ 4496 int security_socket_connect(struct socket *sock, 4497 struct sockaddr *address, int addrlen) 4498 { 4499 return call_int_hook(socket_connect, 0, sock, address, addrlen); 4500 } 4501 4502 /** 4503 * security_socket_listen() - Check if a socket is allowed to listen 4504 * @sock: socket 4505 * @backlog: connection queue size 4506 * 4507 * Check permission before socket protocol layer listen operation. 4508 * 4509 * Return: Returns 0 if permission is granted. 4510 */ 4511 int security_socket_listen(struct socket *sock, int backlog) 4512 { 4513 return call_int_hook(socket_listen, 0, sock, backlog); 4514 } 4515 4516 /** 4517 * security_socket_accept() - Check if a socket is allowed to accept connections 4518 * @sock: listening socket 4519 * @newsock: newly creation connection socket 4520 * 4521 * Check permission before accepting a new connection. Note that the new 4522 * socket, @newsock, has been created and some information copied to it, but 4523 * the accept operation has not actually been performed. 4524 * 4525 * Return: Returns 0 if permission is granted. 4526 */ 4527 int security_socket_accept(struct socket *sock, struct socket *newsock) 4528 { 4529 return call_int_hook(socket_accept, 0, sock, newsock); 4530 } 4531 4532 /** 4533 * security_socket_sendmsg() - Check is sending a message is allowed 4534 * @sock: sending socket 4535 * @msg: message to send 4536 * @size: size of message 4537 * 4538 * Check permission before transmitting a message to another socket. 4539 * 4540 * Return: Returns 0 if permission is granted. 4541 */ 4542 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size) 4543 { 4544 return call_int_hook(socket_sendmsg, 0, sock, msg, size); 4545 } 4546 4547 /** 4548 * security_socket_recvmsg() - Check if receiving a message is allowed 4549 * @sock: receiving socket 4550 * @msg: message to receive 4551 * @size: size of message 4552 * @flags: operational flags 4553 * 4554 * Check permission before receiving a message from a socket. 4555 * 4556 * Return: Returns 0 if permission is granted. 4557 */ 4558 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg, 4559 int size, int flags) 4560 { 4561 return call_int_hook(socket_recvmsg, 0, sock, msg, size, flags); 4562 } 4563 4564 /** 4565 * security_socket_getsockname() - Check if reading the socket addr is allowed 4566 * @sock: socket 4567 * 4568 * Check permission before reading the local address (name) of the socket 4569 * object. 4570 * 4571 * Return: Returns 0 if permission is granted. 4572 */ 4573 int security_socket_getsockname(struct socket *sock) 4574 { 4575 return call_int_hook(socket_getsockname, 0, sock); 4576 } 4577 4578 /** 4579 * security_socket_getpeername() - Check if reading the peer's addr is allowed 4580 * @sock: socket 4581 * 4582 * Check permission before the remote address (name) of a socket object. 4583 * 4584 * Return: Returns 0 if permission is granted. 4585 */ 4586 int security_socket_getpeername(struct socket *sock) 4587 { 4588 return call_int_hook(socket_getpeername, 0, sock); 4589 } 4590 4591 /** 4592 * security_socket_getsockopt() - Check if reading a socket option is allowed 4593 * @sock: socket 4594 * @level: option's protocol level 4595 * @optname: option name 4596 * 4597 * Check permissions before retrieving the options associated with socket 4598 * @sock. 4599 * 4600 * Return: Returns 0 if permission is granted. 4601 */ 4602 int security_socket_getsockopt(struct socket *sock, int level, int optname) 4603 { 4604 return call_int_hook(socket_getsockopt, 0, sock, level, optname); 4605 } 4606 4607 /** 4608 * security_socket_setsockopt() - Check if setting a socket option is allowed 4609 * @sock: socket 4610 * @level: option's protocol level 4611 * @optname: option name 4612 * 4613 * Check permissions before setting the options associated with socket @sock. 4614 * 4615 * Return: Returns 0 if permission is granted. 4616 */ 4617 int security_socket_setsockopt(struct socket *sock, int level, int optname) 4618 { 4619 return call_int_hook(socket_setsockopt, 0, sock, level, optname); 4620 } 4621 4622 /** 4623 * security_socket_shutdown() - Checks if shutting down the socket is allowed 4624 * @sock: socket 4625 * @how: flag indicating how sends and receives are handled 4626 * 4627 * Checks permission before all or part of a connection on the socket @sock is 4628 * shut down. 4629 * 4630 * Return: Returns 0 if permission is granted. 4631 */ 4632 int security_socket_shutdown(struct socket *sock, int how) 4633 { 4634 return call_int_hook(socket_shutdown, 0, sock, how); 4635 } 4636 4637 /** 4638 * security_sock_rcv_skb() - Check if an incoming network packet is allowed 4639 * @sk: destination sock 4640 * @skb: incoming packet 4641 * 4642 * Check permissions on incoming network packets. This hook is distinct from 4643 * Netfilter's IP input hooks since it is the first time that the incoming 4644 * sk_buff @skb has been associated with a particular socket, @sk. Must not 4645 * sleep inside this hook because some callers hold spinlocks. 4646 * 4647 * Return: Returns 0 if permission is granted. 4648 */ 4649 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb) 4650 { 4651 return call_int_hook(socket_sock_rcv_skb, 0, sk, skb); 4652 } 4653 EXPORT_SYMBOL(security_sock_rcv_skb); 4654 4655 /** 4656 * security_socket_getpeersec_stream() - Get the remote peer label 4657 * @sock: socket 4658 * @optval: destination buffer 4659 * @optlen: size of peer label copied into the buffer 4660 * @len: maximum size of the destination buffer 4661 * 4662 * This hook allows the security module to provide peer socket security state 4663 * for unix or connected tcp sockets to userspace via getsockopt SO_GETPEERSEC. 4664 * For tcp sockets this can be meaningful if the socket is associated with an 4665 * ipsec SA. 4666 * 4667 * Return: Returns 0 if all is well, otherwise, typical getsockopt return 4668 * values. 4669 */ 4670 int security_socket_getpeersec_stream(struct socket *sock, sockptr_t optval, 4671 sockptr_t optlen, unsigned int len) 4672 { 4673 struct security_hook_list *hp; 4674 int rc; 4675 4676 /* 4677 * Only one module will provide a security context. 4678 */ 4679 hlist_for_each_entry(hp, &security_hook_heads.socket_getpeersec_stream, 4680 list) { 4681 rc = hp->hook.socket_getpeersec_stream(sock, optval, optlen, 4682 len); 4683 if (rc != LSM_RET_DEFAULT(socket_getpeersec_stream)) 4684 return rc; 4685 } 4686 return LSM_RET_DEFAULT(socket_getpeersec_stream); 4687 } 4688 4689 /** 4690 * security_socket_getpeersec_dgram() - Get the remote peer label 4691 * @sock: socket 4692 * @skb: datagram packet 4693 * @secid: remote peer label secid 4694 * 4695 * This hook allows the security module to provide peer socket security state 4696 * for udp sockets on a per-packet basis to userspace via getsockopt 4697 * SO_GETPEERSEC. The application must first have indicated the IP_PASSSEC 4698 * option via getsockopt. It can then retrieve the security state returned by 4699 * this hook for a packet via the SCM_SECURITY ancillary message type. 4700 * 4701 * Return: Returns 0 on success, error on failure. 4702 */ 4703 int security_socket_getpeersec_dgram(struct socket *sock, 4704 struct sk_buff *skb, u32 *secid) 4705 { 4706 struct security_hook_list *hp; 4707 int rc; 4708 4709 /* 4710 * Only one module will provide a security context. 4711 */ 4712 hlist_for_each_entry(hp, &security_hook_heads.socket_getpeersec_dgram, 4713 list) { 4714 rc = hp->hook.socket_getpeersec_dgram(sock, skb, secid); 4715 if (rc != LSM_RET_DEFAULT(socket_getpeersec_dgram)) 4716 return rc; 4717 } 4718 return LSM_RET_DEFAULT(socket_getpeersec_dgram); 4719 } 4720 EXPORT_SYMBOL(security_socket_getpeersec_dgram); 4721 4722 /** 4723 * security_sk_alloc() - Allocate and initialize a sock's LSM blob 4724 * @sk: sock 4725 * @family: protocol family 4726 * @priority: gfp flags 4727 * 4728 * Allocate and attach a security structure to the sk->sk_security field, which 4729 * is used to copy security attributes between local stream sockets. 4730 * 4731 * Return: Returns 0 on success, error on failure. 4732 */ 4733 int security_sk_alloc(struct sock *sk, int family, gfp_t priority) 4734 { 4735 return call_int_hook(sk_alloc_security, 0, sk, family, priority); 4736 } 4737 4738 /** 4739 * security_sk_free() - Free the sock's LSM blob 4740 * @sk: sock 4741 * 4742 * Deallocate security structure. 4743 */ 4744 void security_sk_free(struct sock *sk) 4745 { 4746 call_void_hook(sk_free_security, sk); 4747 } 4748 4749 /** 4750 * security_sk_clone() - Clone a sock's LSM state 4751 * @sk: original sock 4752 * @newsk: target sock 4753 * 4754 * Clone/copy security structure. 4755 */ 4756 void security_sk_clone(const struct sock *sk, struct sock *newsk) 4757 { 4758 call_void_hook(sk_clone_security, sk, newsk); 4759 } 4760 EXPORT_SYMBOL(security_sk_clone); 4761 4762 /** 4763 * security_sk_classify_flow() - Set a flow's secid based on socket 4764 * @sk: original socket 4765 * @flic: target flow 4766 * 4767 * Set the target flow's secid to socket's secid. 4768 */ 4769 void security_sk_classify_flow(const struct sock *sk, struct flowi_common *flic) 4770 { 4771 call_void_hook(sk_getsecid, sk, &flic->flowic_secid); 4772 } 4773 EXPORT_SYMBOL(security_sk_classify_flow); 4774 4775 /** 4776 * security_req_classify_flow() - Set a flow's secid based on request_sock 4777 * @req: request_sock 4778 * @flic: target flow 4779 * 4780 * Sets @flic's secid to @req's secid. 4781 */ 4782 void security_req_classify_flow(const struct request_sock *req, 4783 struct flowi_common *flic) 4784 { 4785 call_void_hook(req_classify_flow, req, flic); 4786 } 4787 EXPORT_SYMBOL(security_req_classify_flow); 4788 4789 /** 4790 * security_sock_graft() - Reconcile LSM state when grafting a sock on a socket 4791 * @sk: sock being grafted 4792 * @parent: target parent socket 4793 * 4794 * Sets @parent's inode secid to @sk's secid and update @sk with any necessary 4795 * LSM state from @parent. 4796 */ 4797 void security_sock_graft(struct sock *sk, struct socket *parent) 4798 { 4799 call_void_hook(sock_graft, sk, parent); 4800 } 4801 EXPORT_SYMBOL(security_sock_graft); 4802 4803 /** 4804 * security_inet_conn_request() - Set request_sock state using incoming connect 4805 * @sk: parent listening sock 4806 * @skb: incoming connection 4807 * @req: new request_sock 4808 * 4809 * Initialize the @req LSM state based on @sk and the incoming connect in @skb. 4810 * 4811 * Return: Returns 0 if permission is granted. 4812 */ 4813 int security_inet_conn_request(const struct sock *sk, 4814 struct sk_buff *skb, struct request_sock *req) 4815 { 4816 return call_int_hook(inet_conn_request, 0, sk, skb, req); 4817 } 4818 EXPORT_SYMBOL(security_inet_conn_request); 4819 4820 /** 4821 * security_inet_csk_clone() - Set new sock LSM state based on request_sock 4822 * @newsk: new sock 4823 * @req: connection request_sock 4824 * 4825 * Set that LSM state of @sock using the LSM state from @req. 4826 */ 4827 void security_inet_csk_clone(struct sock *newsk, 4828 const struct request_sock *req) 4829 { 4830 call_void_hook(inet_csk_clone, newsk, req); 4831 } 4832 4833 /** 4834 * security_inet_conn_established() - Update sock's LSM state with connection 4835 * @sk: sock 4836 * @skb: connection packet 4837 * 4838 * Update @sock's LSM state to represent a new connection from @skb. 4839 */ 4840 void security_inet_conn_established(struct sock *sk, 4841 struct sk_buff *skb) 4842 { 4843 call_void_hook(inet_conn_established, sk, skb); 4844 } 4845 EXPORT_SYMBOL(security_inet_conn_established); 4846 4847 /** 4848 * security_secmark_relabel_packet() - Check if setting a secmark is allowed 4849 * @secid: new secmark value 4850 * 4851 * Check if the process should be allowed to relabel packets to @secid. 4852 * 4853 * Return: Returns 0 if permission is granted. 4854 */ 4855 int security_secmark_relabel_packet(u32 secid) 4856 { 4857 return call_int_hook(secmark_relabel_packet, 0, secid); 4858 } 4859 EXPORT_SYMBOL(security_secmark_relabel_packet); 4860 4861 /** 4862 * security_secmark_refcount_inc() - Increment the secmark labeling rule count 4863 * 4864 * Tells the LSM to increment the number of secmark labeling rules loaded. 4865 */ 4866 void security_secmark_refcount_inc(void) 4867 { 4868 call_void_hook(secmark_refcount_inc); 4869 } 4870 EXPORT_SYMBOL(security_secmark_refcount_inc); 4871 4872 /** 4873 * security_secmark_refcount_dec() - Decrement the secmark labeling rule count 4874 * 4875 * Tells the LSM to decrement the number of secmark labeling rules loaded. 4876 */ 4877 void security_secmark_refcount_dec(void) 4878 { 4879 call_void_hook(secmark_refcount_dec); 4880 } 4881 EXPORT_SYMBOL(security_secmark_refcount_dec); 4882 4883 /** 4884 * security_tun_dev_alloc_security() - Allocate a LSM blob for a TUN device 4885 * @security: pointer to the LSM blob 4886 * 4887 * This hook allows a module to allocate a security structure for a TUN device, 4888 * returning the pointer in @security. 4889 * 4890 * Return: Returns a zero on success, negative values on failure. 4891 */ 4892 int security_tun_dev_alloc_security(void **security) 4893 { 4894 return call_int_hook(tun_dev_alloc_security, 0, security); 4895 } 4896 EXPORT_SYMBOL(security_tun_dev_alloc_security); 4897 4898 /** 4899 * security_tun_dev_free_security() - Free a TUN device LSM blob 4900 * @security: LSM blob 4901 * 4902 * This hook allows a module to free the security structure for a TUN device. 4903 */ 4904 void security_tun_dev_free_security(void *security) 4905 { 4906 call_void_hook(tun_dev_free_security, security); 4907 } 4908 EXPORT_SYMBOL(security_tun_dev_free_security); 4909 4910 /** 4911 * security_tun_dev_create() - Check if creating a TUN device is allowed 4912 * 4913 * Check permissions prior to creating a new TUN device. 4914 * 4915 * Return: Returns 0 if permission is granted. 4916 */ 4917 int security_tun_dev_create(void) 4918 { 4919 return call_int_hook(tun_dev_create, 0); 4920 } 4921 EXPORT_SYMBOL(security_tun_dev_create); 4922 4923 /** 4924 * security_tun_dev_attach_queue() - Check if attaching a TUN queue is allowed 4925 * @security: TUN device LSM blob 4926 * 4927 * Check permissions prior to attaching to a TUN device queue. 4928 * 4929 * Return: Returns 0 if permission is granted. 4930 */ 4931 int security_tun_dev_attach_queue(void *security) 4932 { 4933 return call_int_hook(tun_dev_attach_queue, 0, security); 4934 } 4935 EXPORT_SYMBOL(security_tun_dev_attach_queue); 4936 4937 /** 4938 * security_tun_dev_attach() - Update TUN device LSM state on attach 4939 * @sk: associated sock 4940 * @security: TUN device LSM blob 4941 * 4942 * This hook can be used by the module to update any security state associated 4943 * with the TUN device's sock structure. 4944 * 4945 * Return: Returns 0 if permission is granted. 4946 */ 4947 int security_tun_dev_attach(struct sock *sk, void *security) 4948 { 4949 return call_int_hook(tun_dev_attach, 0, sk, security); 4950 } 4951 EXPORT_SYMBOL(security_tun_dev_attach); 4952 4953 /** 4954 * security_tun_dev_open() - Update TUN device LSM state on open 4955 * @security: TUN device LSM blob 4956 * 4957 * This hook can be used by the module to update any security state associated 4958 * with the TUN device's security structure. 4959 * 4960 * Return: Returns 0 if permission is granted. 4961 */ 4962 int security_tun_dev_open(void *security) 4963 { 4964 return call_int_hook(tun_dev_open, 0, security); 4965 } 4966 EXPORT_SYMBOL(security_tun_dev_open); 4967 4968 /** 4969 * security_sctp_assoc_request() - Update the LSM on a SCTP association req 4970 * @asoc: SCTP association 4971 * @skb: packet requesting the association 4972 * 4973 * Passes the @asoc and @chunk->skb of the association INIT packet to the LSM. 4974 * 4975 * Return: Returns 0 on success, error on failure. 4976 */ 4977 int security_sctp_assoc_request(struct sctp_association *asoc, 4978 struct sk_buff *skb) 4979 { 4980 return call_int_hook(sctp_assoc_request, 0, asoc, skb); 4981 } 4982 EXPORT_SYMBOL(security_sctp_assoc_request); 4983 4984 /** 4985 * security_sctp_bind_connect() - Validate a list of addrs for a SCTP option 4986 * @sk: socket 4987 * @optname: SCTP option to validate 4988 * @address: list of IP addresses to validate 4989 * @addrlen: length of the address list 4990 * 4991 * Validiate permissions required for each address associated with sock @sk. 4992 * Depending on @optname, the addresses will be treated as either a connect or 4993 * bind service. The @addrlen is calculated on each IPv4 and IPv6 address using 4994 * sizeof(struct sockaddr_in) or sizeof(struct sockaddr_in6). 4995 * 4996 * Return: Returns 0 on success, error on failure. 4997 */ 4998 int security_sctp_bind_connect(struct sock *sk, int optname, 4999 struct sockaddr *address, int addrlen) 5000 { 5001 return call_int_hook(sctp_bind_connect, 0, sk, optname, 5002 address, addrlen); 5003 } 5004 EXPORT_SYMBOL(security_sctp_bind_connect); 5005 5006 /** 5007 * security_sctp_sk_clone() - Clone a SCTP sock's LSM state 5008 * @asoc: SCTP association 5009 * @sk: original sock 5010 * @newsk: target sock 5011 * 5012 * Called whenever a new socket is created by accept(2) (i.e. a TCP style 5013 * socket) or when a socket is 'peeled off' e.g userspace calls 5014 * sctp_peeloff(3). 5015 */ 5016 void security_sctp_sk_clone(struct sctp_association *asoc, struct sock *sk, 5017 struct sock *newsk) 5018 { 5019 call_void_hook(sctp_sk_clone, asoc, sk, newsk); 5020 } 5021 EXPORT_SYMBOL(security_sctp_sk_clone); 5022 5023 /** 5024 * security_sctp_assoc_established() - Update LSM state when assoc established 5025 * @asoc: SCTP association 5026 * @skb: packet establishing the association 5027 * 5028 * Passes the @asoc and @chunk->skb of the association COOKIE_ACK packet to the 5029 * security module. 5030 * 5031 * Return: Returns 0 if permission is granted. 5032 */ 5033 int security_sctp_assoc_established(struct sctp_association *asoc, 5034 struct sk_buff *skb) 5035 { 5036 return call_int_hook(sctp_assoc_established, 0, asoc, skb); 5037 } 5038 EXPORT_SYMBOL(security_sctp_assoc_established); 5039 5040 /** 5041 * security_mptcp_add_subflow() - Inherit the LSM label from the MPTCP socket 5042 * @sk: the owning MPTCP socket 5043 * @ssk: the new subflow 5044 * 5045 * Update the labeling for the given MPTCP subflow, to match the one of the 5046 * owning MPTCP socket. This hook has to be called after the socket creation and 5047 * initialization via the security_socket_create() and 5048 * security_socket_post_create() LSM hooks. 5049 * 5050 * Return: Returns 0 on success or a negative error code on failure. 5051 */ 5052 int security_mptcp_add_subflow(struct sock *sk, struct sock *ssk) 5053 { 5054 return call_int_hook(mptcp_add_subflow, 0, sk, ssk); 5055 } 5056 5057 #endif /* CONFIG_SECURITY_NETWORK */ 5058 5059 #ifdef CONFIG_SECURITY_INFINIBAND 5060 /** 5061 * security_ib_pkey_access() - Check if access to an IB pkey is allowed 5062 * @sec: LSM blob 5063 * @subnet_prefix: subnet prefix of the port 5064 * @pkey: IB pkey 5065 * 5066 * Check permission to access a pkey when modifying a QP. 5067 * 5068 * Return: Returns 0 if permission is granted. 5069 */ 5070 int security_ib_pkey_access(void *sec, u64 subnet_prefix, u16 pkey) 5071 { 5072 return call_int_hook(ib_pkey_access, 0, sec, subnet_prefix, pkey); 5073 } 5074 EXPORT_SYMBOL(security_ib_pkey_access); 5075 5076 /** 5077 * security_ib_endport_manage_subnet() - Check if SMPs traffic is allowed 5078 * @sec: LSM blob 5079 * @dev_name: IB device name 5080 * @port_num: port number 5081 * 5082 * Check permissions to send and receive SMPs on a end port. 5083 * 5084 * Return: Returns 0 if permission is granted. 5085 */ 5086 int security_ib_endport_manage_subnet(void *sec, 5087 const char *dev_name, u8 port_num) 5088 { 5089 return call_int_hook(ib_endport_manage_subnet, 0, sec, 5090 dev_name, port_num); 5091 } 5092 EXPORT_SYMBOL(security_ib_endport_manage_subnet); 5093 5094 /** 5095 * security_ib_alloc_security() - Allocate an Infiniband LSM blob 5096 * @sec: LSM blob 5097 * 5098 * Allocate a security structure for Infiniband objects. 5099 * 5100 * Return: Returns 0 on success, non-zero on failure. 5101 */ 5102 int security_ib_alloc_security(void **sec) 5103 { 5104 return call_int_hook(ib_alloc_security, 0, sec); 5105 } 5106 EXPORT_SYMBOL(security_ib_alloc_security); 5107 5108 /** 5109 * security_ib_free_security() - Free an Infiniband LSM blob 5110 * @sec: LSM blob 5111 * 5112 * Deallocate an Infiniband security structure. 5113 */ 5114 void security_ib_free_security(void *sec) 5115 { 5116 call_void_hook(ib_free_security, sec); 5117 } 5118 EXPORT_SYMBOL(security_ib_free_security); 5119 #endif /* CONFIG_SECURITY_INFINIBAND */ 5120 5121 #ifdef CONFIG_SECURITY_NETWORK_XFRM 5122 /** 5123 * security_xfrm_policy_alloc() - Allocate a xfrm policy LSM blob 5124 * @ctxp: xfrm security context being added to the SPD 5125 * @sec_ctx: security label provided by userspace 5126 * @gfp: gfp flags 5127 * 5128 * Allocate a security structure to the xp->security field; the security field 5129 * is initialized to NULL when the xfrm_policy is allocated. 5130 * 5131 * Return: Return 0 if operation was successful. 5132 */ 5133 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, 5134 struct xfrm_user_sec_ctx *sec_ctx, 5135 gfp_t gfp) 5136 { 5137 return call_int_hook(xfrm_policy_alloc_security, 0, ctxp, sec_ctx, gfp); 5138 } 5139 EXPORT_SYMBOL(security_xfrm_policy_alloc); 5140 5141 /** 5142 * security_xfrm_policy_clone() - Clone xfrm policy LSM state 5143 * @old_ctx: xfrm security context 5144 * @new_ctxp: target xfrm security context 5145 * 5146 * Allocate a security structure in new_ctxp that contains the information from 5147 * the old_ctx structure. 5148 * 5149 * Return: Return 0 if operation was successful. 5150 */ 5151 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx, 5152 struct xfrm_sec_ctx **new_ctxp) 5153 { 5154 return call_int_hook(xfrm_policy_clone_security, 0, old_ctx, new_ctxp); 5155 } 5156 5157 /** 5158 * security_xfrm_policy_free() - Free a xfrm security context 5159 * @ctx: xfrm security context 5160 * 5161 * Free LSM resources associated with @ctx. 5162 */ 5163 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx) 5164 { 5165 call_void_hook(xfrm_policy_free_security, ctx); 5166 } 5167 EXPORT_SYMBOL(security_xfrm_policy_free); 5168 5169 /** 5170 * security_xfrm_policy_delete() - Check if deleting a xfrm policy is allowed 5171 * @ctx: xfrm security context 5172 * 5173 * Authorize deletion of a SPD entry. 5174 * 5175 * Return: Returns 0 if permission is granted. 5176 */ 5177 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx) 5178 { 5179 return call_int_hook(xfrm_policy_delete_security, 0, ctx); 5180 } 5181 5182 /** 5183 * security_xfrm_state_alloc() - Allocate a xfrm state LSM blob 5184 * @x: xfrm state being added to the SAD 5185 * @sec_ctx: security label provided by userspace 5186 * 5187 * Allocate a security structure to the @x->security field; the security field 5188 * is initialized to NULL when the xfrm_state is allocated. Set the context to 5189 * correspond to @sec_ctx. 5190 * 5191 * Return: Return 0 if operation was successful. 5192 */ 5193 int security_xfrm_state_alloc(struct xfrm_state *x, 5194 struct xfrm_user_sec_ctx *sec_ctx) 5195 { 5196 return call_int_hook(xfrm_state_alloc, 0, x, sec_ctx); 5197 } 5198 EXPORT_SYMBOL(security_xfrm_state_alloc); 5199 5200 /** 5201 * security_xfrm_state_alloc_acquire() - Allocate a xfrm state LSM blob 5202 * @x: xfrm state being added to the SAD 5203 * @polsec: associated policy's security context 5204 * @secid: secid from the flow 5205 * 5206 * Allocate a security structure to the x->security field; the security field 5207 * is initialized to NULL when the xfrm_state is allocated. Set the context to 5208 * correspond to secid. 5209 * 5210 * Return: Returns 0 if operation was successful. 5211 */ 5212 int security_xfrm_state_alloc_acquire(struct xfrm_state *x, 5213 struct xfrm_sec_ctx *polsec, u32 secid) 5214 { 5215 return call_int_hook(xfrm_state_alloc_acquire, 0, x, polsec, secid); 5216 } 5217 5218 /** 5219 * security_xfrm_state_delete() - Check if deleting a xfrm state is allowed 5220 * @x: xfrm state 5221 * 5222 * Authorize deletion of x->security. 5223 * 5224 * Return: Returns 0 if permission is granted. 5225 */ 5226 int security_xfrm_state_delete(struct xfrm_state *x) 5227 { 5228 return call_int_hook(xfrm_state_delete_security, 0, x); 5229 } 5230 EXPORT_SYMBOL(security_xfrm_state_delete); 5231 5232 /** 5233 * security_xfrm_state_free() - Free a xfrm state 5234 * @x: xfrm state 5235 * 5236 * Deallocate x->security. 5237 */ 5238 void security_xfrm_state_free(struct xfrm_state *x) 5239 { 5240 call_void_hook(xfrm_state_free_security, x); 5241 } 5242 5243 /** 5244 * security_xfrm_policy_lookup() - Check if using a xfrm policy is allowed 5245 * @ctx: target xfrm security context 5246 * @fl_secid: flow secid used to authorize access 5247 * 5248 * Check permission when a flow selects a xfrm_policy for processing XFRMs on a 5249 * packet. The hook is called when selecting either a per-socket policy or a 5250 * generic xfrm policy. 5251 * 5252 * Return: Return 0 if permission is granted, -ESRCH otherwise, or -errno on 5253 * other errors. 5254 */ 5255 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid) 5256 { 5257 return call_int_hook(xfrm_policy_lookup, 0, ctx, fl_secid); 5258 } 5259 5260 /** 5261 * security_xfrm_state_pol_flow_match() - Check for a xfrm match 5262 * @x: xfrm state to match 5263 * @xp: xfrm policy to check for a match 5264 * @flic: flow to check for a match. 5265 * 5266 * Check @xp and @flic for a match with @x. 5267 * 5268 * Return: Returns 1 if there is a match. 5269 */ 5270 int security_xfrm_state_pol_flow_match(struct xfrm_state *x, 5271 struct xfrm_policy *xp, 5272 const struct flowi_common *flic) 5273 { 5274 struct security_hook_list *hp; 5275 int rc = LSM_RET_DEFAULT(xfrm_state_pol_flow_match); 5276 5277 /* 5278 * Since this function is expected to return 0 or 1, the judgment 5279 * becomes difficult if multiple LSMs supply this call. Fortunately, 5280 * we can use the first LSM's judgment because currently only SELinux 5281 * supplies this call. 5282 * 5283 * For speed optimization, we explicitly break the loop rather than 5284 * using the macro 5285 */ 5286 hlist_for_each_entry(hp, &security_hook_heads.xfrm_state_pol_flow_match, 5287 list) { 5288 rc = hp->hook.xfrm_state_pol_flow_match(x, xp, flic); 5289 break; 5290 } 5291 return rc; 5292 } 5293 5294 /** 5295 * security_xfrm_decode_session() - Determine the xfrm secid for a packet 5296 * @skb: xfrm packet 5297 * @secid: secid 5298 * 5299 * Decode the packet in @skb and return the security label in @secid. 5300 * 5301 * Return: Return 0 if all xfrms used have the same secid. 5302 */ 5303 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid) 5304 { 5305 return call_int_hook(xfrm_decode_session, 0, skb, secid, 1); 5306 } 5307 5308 void security_skb_classify_flow(struct sk_buff *skb, struct flowi_common *flic) 5309 { 5310 int rc = call_int_hook(xfrm_decode_session, 0, skb, &flic->flowic_secid, 5311 0); 5312 5313 BUG_ON(rc); 5314 } 5315 EXPORT_SYMBOL(security_skb_classify_flow); 5316 #endif /* CONFIG_SECURITY_NETWORK_XFRM */ 5317 5318 #ifdef CONFIG_KEYS 5319 /** 5320 * security_key_alloc() - Allocate and initialize a kernel key LSM blob 5321 * @key: key 5322 * @cred: credentials 5323 * @flags: allocation flags 5324 * 5325 * Permit allocation of a key and assign security data. Note that key does not 5326 * have a serial number assigned at this point. 5327 * 5328 * Return: Return 0 if permission is granted, -ve error otherwise. 5329 */ 5330 int security_key_alloc(struct key *key, const struct cred *cred, 5331 unsigned long flags) 5332 { 5333 return call_int_hook(key_alloc, 0, key, cred, flags); 5334 } 5335 5336 /** 5337 * security_key_free() - Free a kernel key LSM blob 5338 * @key: key 5339 * 5340 * Notification of destruction; free security data. 5341 */ 5342 void security_key_free(struct key *key) 5343 { 5344 call_void_hook(key_free, key); 5345 } 5346 5347 /** 5348 * security_key_permission() - Check if a kernel key operation is allowed 5349 * @key_ref: key reference 5350 * @cred: credentials of actor requesting access 5351 * @need_perm: requested permissions 5352 * 5353 * See whether a specific operational right is granted to a process on a key. 5354 * 5355 * Return: Return 0 if permission is granted, -ve error otherwise. 5356 */ 5357 int security_key_permission(key_ref_t key_ref, const struct cred *cred, 5358 enum key_need_perm need_perm) 5359 { 5360 return call_int_hook(key_permission, 0, key_ref, cred, need_perm); 5361 } 5362 5363 /** 5364 * security_key_getsecurity() - Get the key's security label 5365 * @key: key 5366 * @buffer: security label buffer 5367 * 5368 * Get a textual representation of the security context attached to a key for 5369 * the purposes of honouring KEYCTL_GETSECURITY. This function allocates the 5370 * storage for the NUL-terminated string and the caller should free it. 5371 * 5372 * Return: Returns the length of @buffer (including terminating NUL) or -ve if 5373 * an error occurs. May also return 0 (and a NULL buffer pointer) if 5374 * there is no security label assigned to the key. 5375 */ 5376 int security_key_getsecurity(struct key *key, char **buffer) 5377 { 5378 *buffer = NULL; 5379 return call_int_hook(key_getsecurity, 0, key, buffer); 5380 } 5381 5382 /** 5383 * security_key_post_create_or_update() - Notification of key create or update 5384 * @keyring: keyring to which the key is linked to 5385 * @key: created or updated key 5386 * @payload: data used to instantiate or update the key 5387 * @payload_len: length of payload 5388 * @flags: key flags 5389 * @create: flag indicating whether the key was created or updated 5390 * 5391 * Notify the caller of a key creation or update. 5392 */ 5393 void security_key_post_create_or_update(struct key *keyring, struct key *key, 5394 const void *payload, size_t payload_len, 5395 unsigned long flags, bool create) 5396 { 5397 call_void_hook(key_post_create_or_update, keyring, key, payload, 5398 payload_len, flags, create); 5399 } 5400 #endif /* CONFIG_KEYS */ 5401 5402 #ifdef CONFIG_AUDIT 5403 /** 5404 * security_audit_rule_init() - Allocate and init an LSM audit rule struct 5405 * @field: audit action 5406 * @op: rule operator 5407 * @rulestr: rule context 5408 * @lsmrule: receive buffer for audit rule struct 5409 * 5410 * Allocate and initialize an LSM audit rule structure. 5411 * 5412 * Return: Return 0 if @lsmrule has been successfully set, -EINVAL in case of 5413 * an invalid rule. 5414 */ 5415 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule) 5416 { 5417 return call_int_hook(audit_rule_init, 0, field, op, rulestr, lsmrule); 5418 } 5419 5420 /** 5421 * security_audit_rule_known() - Check if an audit rule contains LSM fields 5422 * @krule: audit rule 5423 * 5424 * Specifies whether given @krule contains any fields related to the current 5425 * LSM. 5426 * 5427 * Return: Returns 1 in case of relation found, 0 otherwise. 5428 */ 5429 int security_audit_rule_known(struct audit_krule *krule) 5430 { 5431 return call_int_hook(audit_rule_known, 0, krule); 5432 } 5433 5434 /** 5435 * security_audit_rule_free() - Free an LSM audit rule struct 5436 * @lsmrule: audit rule struct 5437 * 5438 * Deallocate the LSM audit rule structure previously allocated by 5439 * audit_rule_init(). 5440 */ 5441 void security_audit_rule_free(void *lsmrule) 5442 { 5443 call_void_hook(audit_rule_free, lsmrule); 5444 } 5445 5446 /** 5447 * security_audit_rule_match() - Check if a label matches an audit rule 5448 * @secid: security label 5449 * @field: LSM audit field 5450 * @op: matching operator 5451 * @lsmrule: audit rule 5452 * 5453 * Determine if given @secid matches a rule previously approved by 5454 * security_audit_rule_known(). 5455 * 5456 * Return: Returns 1 if secid matches the rule, 0 if it does not, -ERRNO on 5457 * failure. 5458 */ 5459 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule) 5460 { 5461 return call_int_hook(audit_rule_match, 0, secid, field, op, lsmrule); 5462 } 5463 #endif /* CONFIG_AUDIT */ 5464 5465 #ifdef CONFIG_BPF_SYSCALL 5466 /** 5467 * security_bpf() - Check if the bpf syscall operation is allowed 5468 * @cmd: command 5469 * @attr: bpf attribute 5470 * @size: size 5471 * 5472 * Do a initial check for all bpf syscalls after the attribute is copied into 5473 * the kernel. The actual security module can implement their own rules to 5474 * check the specific cmd they need. 5475 * 5476 * Return: Returns 0 if permission is granted. 5477 */ 5478 int security_bpf(int cmd, union bpf_attr *attr, unsigned int size) 5479 { 5480 return call_int_hook(bpf, 0, cmd, attr, size); 5481 } 5482 5483 /** 5484 * security_bpf_map() - Check if access to a bpf map is allowed 5485 * @map: bpf map 5486 * @fmode: mode 5487 * 5488 * Do a check when the kernel generates and returns a file descriptor for eBPF 5489 * maps. 5490 * 5491 * Return: Returns 0 if permission is granted. 5492 */ 5493 int security_bpf_map(struct bpf_map *map, fmode_t fmode) 5494 { 5495 return call_int_hook(bpf_map, 0, map, fmode); 5496 } 5497 5498 /** 5499 * security_bpf_prog() - Check if access to a bpf program is allowed 5500 * @prog: bpf program 5501 * 5502 * Do a check when the kernel generates and returns a file descriptor for eBPF 5503 * programs. 5504 * 5505 * Return: Returns 0 if permission is granted. 5506 */ 5507 int security_bpf_prog(struct bpf_prog *prog) 5508 { 5509 return call_int_hook(bpf_prog, 0, prog); 5510 } 5511 5512 /** 5513 * security_bpf_map_alloc() - Allocate a bpf map LSM blob 5514 * @map: bpf map 5515 * 5516 * Initialize the security field inside bpf map. 5517 * 5518 * Return: Returns 0 on success, error on failure. 5519 */ 5520 int security_bpf_map_alloc(struct bpf_map *map) 5521 { 5522 return call_int_hook(bpf_map_alloc_security, 0, map); 5523 } 5524 5525 /** 5526 * security_bpf_prog_alloc() - Allocate a bpf program LSM blob 5527 * @aux: bpf program aux info struct 5528 * 5529 * Initialize the security field inside bpf program. 5530 * 5531 * Return: Returns 0 on success, error on failure. 5532 */ 5533 int security_bpf_prog_alloc(struct bpf_prog_aux *aux) 5534 { 5535 return call_int_hook(bpf_prog_alloc_security, 0, aux); 5536 } 5537 5538 /** 5539 * security_bpf_map_free() - Free a bpf map's LSM blob 5540 * @map: bpf map 5541 * 5542 * Clean up the security information stored inside bpf map. 5543 */ 5544 void security_bpf_map_free(struct bpf_map *map) 5545 { 5546 call_void_hook(bpf_map_free_security, map); 5547 } 5548 5549 /** 5550 * security_bpf_prog_free() - Free a bpf program's LSM blob 5551 * @aux: bpf program aux info struct 5552 * 5553 * Clean up the security information stored inside bpf prog. 5554 */ 5555 void security_bpf_prog_free(struct bpf_prog_aux *aux) 5556 { 5557 call_void_hook(bpf_prog_free_security, aux); 5558 } 5559 #endif /* CONFIG_BPF_SYSCALL */ 5560 5561 /** 5562 * security_locked_down() - Check if a kernel feature is allowed 5563 * @what: requested kernel feature 5564 * 5565 * Determine whether a kernel feature that potentially enables arbitrary code 5566 * execution in kernel space should be permitted. 5567 * 5568 * Return: Returns 0 if permission is granted. 5569 */ 5570 int security_locked_down(enum lockdown_reason what) 5571 { 5572 return call_int_hook(locked_down, 0, what); 5573 } 5574 EXPORT_SYMBOL(security_locked_down); 5575 5576 #ifdef CONFIG_PERF_EVENTS 5577 /** 5578 * security_perf_event_open() - Check if a perf event open is allowed 5579 * @attr: perf event attribute 5580 * @type: type of event 5581 * 5582 * Check whether the @type of perf_event_open syscall is allowed. 5583 * 5584 * Return: Returns 0 if permission is granted. 5585 */ 5586 int security_perf_event_open(struct perf_event_attr *attr, int type) 5587 { 5588 return call_int_hook(perf_event_open, 0, attr, type); 5589 } 5590 5591 /** 5592 * security_perf_event_alloc() - Allocate a perf event LSM blob 5593 * @event: perf event 5594 * 5595 * Allocate and save perf_event security info. 5596 * 5597 * Return: Returns 0 on success, error on failure. 5598 */ 5599 int security_perf_event_alloc(struct perf_event *event) 5600 { 5601 return call_int_hook(perf_event_alloc, 0, event); 5602 } 5603 5604 /** 5605 * security_perf_event_free() - Free a perf event LSM blob 5606 * @event: perf event 5607 * 5608 * Release (free) perf_event security info. 5609 */ 5610 void security_perf_event_free(struct perf_event *event) 5611 { 5612 call_void_hook(perf_event_free, event); 5613 } 5614 5615 /** 5616 * security_perf_event_read() - Check if reading a perf event label is allowed 5617 * @event: perf event 5618 * 5619 * Read perf_event security info if allowed. 5620 * 5621 * Return: Returns 0 if permission is granted. 5622 */ 5623 int security_perf_event_read(struct perf_event *event) 5624 { 5625 return call_int_hook(perf_event_read, 0, event); 5626 } 5627 5628 /** 5629 * security_perf_event_write() - Check if writing a perf event label is allowed 5630 * @event: perf event 5631 * 5632 * Write perf_event security info if allowed. 5633 * 5634 * Return: Returns 0 if permission is granted. 5635 */ 5636 int security_perf_event_write(struct perf_event *event) 5637 { 5638 return call_int_hook(perf_event_write, 0, event); 5639 } 5640 #endif /* CONFIG_PERF_EVENTS */ 5641 5642 #ifdef CONFIG_IO_URING 5643 /** 5644 * security_uring_override_creds() - Check if overriding creds is allowed 5645 * @new: new credentials 5646 * 5647 * Check if the current task, executing an io_uring operation, is allowed to 5648 * override it's credentials with @new. 5649 * 5650 * Return: Returns 0 if permission is granted. 5651 */ 5652 int security_uring_override_creds(const struct cred *new) 5653 { 5654 return call_int_hook(uring_override_creds, 0, new); 5655 } 5656 5657 /** 5658 * security_uring_sqpoll() - Check if IORING_SETUP_SQPOLL is allowed 5659 * 5660 * Check whether the current task is allowed to spawn a io_uring polling thread 5661 * (IORING_SETUP_SQPOLL). 5662 * 5663 * Return: Returns 0 if permission is granted. 5664 */ 5665 int security_uring_sqpoll(void) 5666 { 5667 return call_int_hook(uring_sqpoll, 0); 5668 } 5669 5670 /** 5671 * security_uring_cmd() - Check if a io_uring passthrough command is allowed 5672 * @ioucmd: command 5673 * 5674 * Check whether the file_operations uring_cmd is allowed to run. 5675 * 5676 * Return: Returns 0 if permission is granted. 5677 */ 5678 int security_uring_cmd(struct io_uring_cmd *ioucmd) 5679 { 5680 return call_int_hook(uring_cmd, 0, ioucmd); 5681 } 5682 #endif /* CONFIG_IO_URING */ 5683