1 /* 2 * Security plug functions 3 * 4 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com> 5 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com> 6 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com> 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2 of the License, or 11 * (at your option) any later version. 12 */ 13 14 #include <linux/capability.h> 15 #include <linux/module.h> 16 #include <linux/init.h> 17 #include <linux/kernel.h> 18 #include <linux/security.h> 19 20 /* Boot-time LSM user choice */ 21 static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1]; 22 23 /* things that live in capability.c */ 24 extern struct security_operations default_security_ops; 25 extern void security_fixup_ops(struct security_operations *ops); 26 27 struct security_operations *security_ops; /* Initialized to NULL */ 28 29 static inline int verify(struct security_operations *ops) 30 { 31 /* verify the security_operations structure exists */ 32 if (!ops) 33 return -EINVAL; 34 security_fixup_ops(ops); 35 return 0; 36 } 37 38 static void __init do_security_initcalls(void) 39 { 40 initcall_t *call; 41 call = __security_initcall_start; 42 while (call < __security_initcall_end) { 43 (*call) (); 44 call++; 45 } 46 } 47 48 /** 49 * security_init - initializes the security framework 50 * 51 * This should be called early in the kernel initialization sequence. 52 */ 53 int __init security_init(void) 54 { 55 printk(KERN_INFO "Security Framework initialized\n"); 56 57 security_fixup_ops(&default_security_ops); 58 security_ops = &default_security_ops; 59 do_security_initcalls(); 60 61 return 0; 62 } 63 64 /* Save user chosen LSM */ 65 static int __init choose_lsm(char *str) 66 { 67 strncpy(chosen_lsm, str, SECURITY_NAME_MAX); 68 return 1; 69 } 70 __setup("security=", choose_lsm); 71 72 /** 73 * security_module_enable - Load given security module on boot ? 74 * @ops: a pointer to the struct security_operations that is to be checked. 75 * 76 * Each LSM must pass this method before registering its own operations 77 * to avoid security registration races. This method may also be used 78 * to check if your LSM is currently loaded during kernel initialization. 79 * 80 * Return true if: 81 * -The passed LSM is the one chosen by user at boot time, 82 * -or user didn't specify a specific LSM and we're the first to ask 83 * for registration permission, 84 * -or the passed LSM is currently loaded. 85 * Otherwise, return false. 86 */ 87 int __init security_module_enable(struct security_operations *ops) 88 { 89 if (!*chosen_lsm) 90 strncpy(chosen_lsm, ops->name, SECURITY_NAME_MAX); 91 else if (strncmp(ops->name, chosen_lsm, SECURITY_NAME_MAX)) 92 return 0; 93 94 return 1; 95 } 96 97 /** 98 * register_security - registers a security framework with the kernel 99 * @ops: a pointer to the struct security_options that is to be registered 100 * 101 * This function allows a security module to register itself with the 102 * kernel security subsystem. Some rudimentary checking is done on the @ops 103 * value passed to this function. You'll need to check first if your LSM 104 * is allowed to register its @ops by calling security_module_enable(@ops). 105 * 106 * If there is already a security module registered with the kernel, 107 * an error will be returned. Otherwise %0 is returned on success. 108 */ 109 int register_security(struct security_operations *ops) 110 { 111 if (verify(ops)) { 112 printk(KERN_DEBUG "%s could not verify " 113 "security_operations structure.\n", __func__); 114 return -EINVAL; 115 } 116 117 if (security_ops != &default_security_ops) 118 return -EAGAIN; 119 120 security_ops = ops; 121 122 return 0; 123 } 124 125 /* Security operations */ 126 127 int security_ptrace_access_check(struct task_struct *child, unsigned int mode) 128 { 129 return security_ops->ptrace_access_check(child, mode); 130 } 131 132 int security_ptrace_traceme(struct task_struct *parent) 133 { 134 return security_ops->ptrace_traceme(parent); 135 } 136 137 int security_capget(struct task_struct *target, 138 kernel_cap_t *effective, 139 kernel_cap_t *inheritable, 140 kernel_cap_t *permitted) 141 { 142 return security_ops->capget(target, effective, inheritable, permitted); 143 } 144 145 int security_capset(struct cred *new, const struct cred *old, 146 const kernel_cap_t *effective, 147 const kernel_cap_t *inheritable, 148 const kernel_cap_t *permitted) 149 { 150 return security_ops->capset(new, old, 151 effective, inheritable, permitted); 152 } 153 154 int security_capable(int cap) 155 { 156 return security_ops->capable(current, current_cred(), cap, 157 SECURITY_CAP_AUDIT); 158 } 159 160 int security_real_capable(struct task_struct *tsk, int cap) 161 { 162 const struct cred *cred; 163 int ret; 164 165 cred = get_task_cred(tsk); 166 ret = security_ops->capable(tsk, cred, cap, SECURITY_CAP_AUDIT); 167 put_cred(cred); 168 return ret; 169 } 170 171 int security_real_capable_noaudit(struct task_struct *tsk, int cap) 172 { 173 const struct cred *cred; 174 int ret; 175 176 cred = get_task_cred(tsk); 177 ret = security_ops->capable(tsk, cred, cap, SECURITY_CAP_NOAUDIT); 178 put_cred(cred); 179 return ret; 180 } 181 182 int security_acct(struct file *file) 183 { 184 return security_ops->acct(file); 185 } 186 187 int security_sysctl(struct ctl_table *table, int op) 188 { 189 return security_ops->sysctl(table, op); 190 } 191 192 int security_quotactl(int cmds, int type, int id, struct super_block *sb) 193 { 194 return security_ops->quotactl(cmds, type, id, sb); 195 } 196 197 int security_quota_on(struct dentry *dentry) 198 { 199 return security_ops->quota_on(dentry); 200 } 201 202 int security_syslog(int type) 203 { 204 return security_ops->syslog(type); 205 } 206 207 int security_settime(struct timespec *ts, struct timezone *tz) 208 { 209 return security_ops->settime(ts, tz); 210 } 211 212 int security_vm_enough_memory(long pages) 213 { 214 WARN_ON(current->mm == NULL); 215 return security_ops->vm_enough_memory(current->mm, pages); 216 } 217 218 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages) 219 { 220 WARN_ON(mm == NULL); 221 return security_ops->vm_enough_memory(mm, pages); 222 } 223 224 int security_vm_enough_memory_kern(long pages) 225 { 226 /* If current->mm is a kernel thread then we will pass NULL, 227 for this specific case that is fine */ 228 return security_ops->vm_enough_memory(current->mm, pages); 229 } 230 231 int security_bprm_set_creds(struct linux_binprm *bprm) 232 { 233 return security_ops->bprm_set_creds(bprm); 234 } 235 236 int security_bprm_check(struct linux_binprm *bprm) 237 { 238 return security_ops->bprm_check_security(bprm); 239 } 240 241 void security_bprm_committing_creds(struct linux_binprm *bprm) 242 { 243 security_ops->bprm_committing_creds(bprm); 244 } 245 246 void security_bprm_committed_creds(struct linux_binprm *bprm) 247 { 248 security_ops->bprm_committed_creds(bprm); 249 } 250 251 int security_bprm_secureexec(struct linux_binprm *bprm) 252 { 253 return security_ops->bprm_secureexec(bprm); 254 } 255 256 int security_sb_alloc(struct super_block *sb) 257 { 258 return security_ops->sb_alloc_security(sb); 259 } 260 261 void security_sb_free(struct super_block *sb) 262 { 263 security_ops->sb_free_security(sb); 264 } 265 266 int security_sb_copy_data(char *orig, char *copy) 267 { 268 return security_ops->sb_copy_data(orig, copy); 269 } 270 EXPORT_SYMBOL(security_sb_copy_data); 271 272 int security_sb_kern_mount(struct super_block *sb, int flags, void *data) 273 { 274 return security_ops->sb_kern_mount(sb, flags, data); 275 } 276 277 int security_sb_show_options(struct seq_file *m, struct super_block *sb) 278 { 279 return security_ops->sb_show_options(m, sb); 280 } 281 282 int security_sb_statfs(struct dentry *dentry) 283 { 284 return security_ops->sb_statfs(dentry); 285 } 286 287 int security_sb_mount(char *dev_name, struct path *path, 288 char *type, unsigned long flags, void *data) 289 { 290 return security_ops->sb_mount(dev_name, path, type, flags, data); 291 } 292 293 int security_sb_check_sb(struct vfsmount *mnt, struct path *path) 294 { 295 return security_ops->sb_check_sb(mnt, path); 296 } 297 298 int security_sb_umount(struct vfsmount *mnt, int flags) 299 { 300 return security_ops->sb_umount(mnt, flags); 301 } 302 303 void security_sb_umount_close(struct vfsmount *mnt) 304 { 305 security_ops->sb_umount_close(mnt); 306 } 307 308 void security_sb_umount_busy(struct vfsmount *mnt) 309 { 310 security_ops->sb_umount_busy(mnt); 311 } 312 313 void security_sb_post_remount(struct vfsmount *mnt, unsigned long flags, void *data) 314 { 315 security_ops->sb_post_remount(mnt, flags, data); 316 } 317 318 void security_sb_post_addmount(struct vfsmount *mnt, struct path *mountpoint) 319 { 320 security_ops->sb_post_addmount(mnt, mountpoint); 321 } 322 323 int security_sb_pivotroot(struct path *old_path, struct path *new_path) 324 { 325 return security_ops->sb_pivotroot(old_path, new_path); 326 } 327 328 void security_sb_post_pivotroot(struct path *old_path, struct path *new_path) 329 { 330 security_ops->sb_post_pivotroot(old_path, new_path); 331 } 332 333 int security_sb_set_mnt_opts(struct super_block *sb, 334 struct security_mnt_opts *opts) 335 { 336 return security_ops->sb_set_mnt_opts(sb, opts); 337 } 338 EXPORT_SYMBOL(security_sb_set_mnt_opts); 339 340 void security_sb_clone_mnt_opts(const struct super_block *oldsb, 341 struct super_block *newsb) 342 { 343 security_ops->sb_clone_mnt_opts(oldsb, newsb); 344 } 345 EXPORT_SYMBOL(security_sb_clone_mnt_opts); 346 347 int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts) 348 { 349 return security_ops->sb_parse_opts_str(options, opts); 350 } 351 EXPORT_SYMBOL(security_sb_parse_opts_str); 352 353 int security_inode_alloc(struct inode *inode) 354 { 355 inode->i_security = NULL; 356 return security_ops->inode_alloc_security(inode); 357 } 358 359 void security_inode_free(struct inode *inode) 360 { 361 security_ops->inode_free_security(inode); 362 } 363 364 int security_inode_init_security(struct inode *inode, struct inode *dir, 365 char **name, void **value, size_t *len) 366 { 367 if (unlikely(IS_PRIVATE(inode))) 368 return -EOPNOTSUPP; 369 return security_ops->inode_init_security(inode, dir, name, value, len); 370 } 371 EXPORT_SYMBOL(security_inode_init_security); 372 373 #ifdef CONFIG_SECURITY_PATH 374 int security_path_mknod(struct path *path, struct dentry *dentry, int mode, 375 unsigned int dev) 376 { 377 if (unlikely(IS_PRIVATE(path->dentry->d_inode))) 378 return 0; 379 return security_ops->path_mknod(path, dentry, mode, dev); 380 } 381 EXPORT_SYMBOL(security_path_mknod); 382 383 int security_path_mkdir(struct path *path, struct dentry *dentry, int mode) 384 { 385 if (unlikely(IS_PRIVATE(path->dentry->d_inode))) 386 return 0; 387 return security_ops->path_mkdir(path, dentry, mode); 388 } 389 390 int security_path_rmdir(struct path *path, struct dentry *dentry) 391 { 392 if (unlikely(IS_PRIVATE(path->dentry->d_inode))) 393 return 0; 394 return security_ops->path_rmdir(path, dentry); 395 } 396 397 int security_path_unlink(struct path *path, struct dentry *dentry) 398 { 399 if (unlikely(IS_PRIVATE(path->dentry->d_inode))) 400 return 0; 401 return security_ops->path_unlink(path, dentry); 402 } 403 404 int security_path_symlink(struct path *path, struct dentry *dentry, 405 const char *old_name) 406 { 407 if (unlikely(IS_PRIVATE(path->dentry->d_inode))) 408 return 0; 409 return security_ops->path_symlink(path, dentry, old_name); 410 } 411 412 int security_path_link(struct dentry *old_dentry, struct path *new_dir, 413 struct dentry *new_dentry) 414 { 415 if (unlikely(IS_PRIVATE(old_dentry->d_inode))) 416 return 0; 417 return security_ops->path_link(old_dentry, new_dir, new_dentry); 418 } 419 420 int security_path_rename(struct path *old_dir, struct dentry *old_dentry, 421 struct path *new_dir, struct dentry *new_dentry) 422 { 423 if (unlikely(IS_PRIVATE(old_dentry->d_inode) || 424 (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode)))) 425 return 0; 426 return security_ops->path_rename(old_dir, old_dentry, new_dir, 427 new_dentry); 428 } 429 430 int security_path_truncate(struct path *path, loff_t length, 431 unsigned int time_attrs) 432 { 433 if (unlikely(IS_PRIVATE(path->dentry->d_inode))) 434 return 0; 435 return security_ops->path_truncate(path, length, time_attrs); 436 } 437 438 int security_path_chmod(struct dentry *dentry, struct vfsmount *mnt, 439 mode_t mode) 440 { 441 if (unlikely(IS_PRIVATE(dentry->d_inode))) 442 return 0; 443 return security_ops->path_chmod(dentry, mnt, mode); 444 } 445 446 int security_path_chown(struct path *path, uid_t uid, gid_t gid) 447 { 448 if (unlikely(IS_PRIVATE(path->dentry->d_inode))) 449 return 0; 450 return security_ops->path_chown(path, uid, gid); 451 } 452 453 int security_path_chroot(struct path *path) 454 { 455 return security_ops->path_chroot(path); 456 } 457 #endif 458 459 int security_inode_create(struct inode *dir, struct dentry *dentry, int mode) 460 { 461 if (unlikely(IS_PRIVATE(dir))) 462 return 0; 463 return security_ops->inode_create(dir, dentry, mode); 464 } 465 EXPORT_SYMBOL_GPL(security_inode_create); 466 467 int security_inode_link(struct dentry *old_dentry, struct inode *dir, 468 struct dentry *new_dentry) 469 { 470 if (unlikely(IS_PRIVATE(old_dentry->d_inode))) 471 return 0; 472 return security_ops->inode_link(old_dentry, dir, new_dentry); 473 } 474 475 int security_inode_unlink(struct inode *dir, struct dentry *dentry) 476 { 477 if (unlikely(IS_PRIVATE(dentry->d_inode))) 478 return 0; 479 return security_ops->inode_unlink(dir, dentry); 480 } 481 482 int security_inode_symlink(struct inode *dir, struct dentry *dentry, 483 const char *old_name) 484 { 485 if (unlikely(IS_PRIVATE(dir))) 486 return 0; 487 return security_ops->inode_symlink(dir, dentry, old_name); 488 } 489 490 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, int mode) 491 { 492 if (unlikely(IS_PRIVATE(dir))) 493 return 0; 494 return security_ops->inode_mkdir(dir, dentry, mode); 495 } 496 EXPORT_SYMBOL_GPL(security_inode_mkdir); 497 498 int security_inode_rmdir(struct inode *dir, struct dentry *dentry) 499 { 500 if (unlikely(IS_PRIVATE(dentry->d_inode))) 501 return 0; 502 return security_ops->inode_rmdir(dir, dentry); 503 } 504 505 int security_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev) 506 { 507 if (unlikely(IS_PRIVATE(dir))) 508 return 0; 509 return security_ops->inode_mknod(dir, dentry, mode, dev); 510 } 511 512 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry, 513 struct inode *new_dir, struct dentry *new_dentry) 514 { 515 if (unlikely(IS_PRIVATE(old_dentry->d_inode) || 516 (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode)))) 517 return 0; 518 return security_ops->inode_rename(old_dir, old_dentry, 519 new_dir, new_dentry); 520 } 521 522 int security_inode_readlink(struct dentry *dentry) 523 { 524 if (unlikely(IS_PRIVATE(dentry->d_inode))) 525 return 0; 526 return security_ops->inode_readlink(dentry); 527 } 528 529 int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd) 530 { 531 if (unlikely(IS_PRIVATE(dentry->d_inode))) 532 return 0; 533 return security_ops->inode_follow_link(dentry, nd); 534 } 535 536 int security_inode_permission(struct inode *inode, int mask) 537 { 538 if (unlikely(IS_PRIVATE(inode))) 539 return 0; 540 return security_ops->inode_permission(inode, mask); 541 } 542 543 int security_inode_setattr(struct dentry *dentry, struct iattr *attr) 544 { 545 if (unlikely(IS_PRIVATE(dentry->d_inode))) 546 return 0; 547 return security_ops->inode_setattr(dentry, attr); 548 } 549 EXPORT_SYMBOL_GPL(security_inode_setattr); 550 551 int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry) 552 { 553 if (unlikely(IS_PRIVATE(dentry->d_inode))) 554 return 0; 555 return security_ops->inode_getattr(mnt, dentry); 556 } 557 558 void security_inode_delete(struct inode *inode) 559 { 560 if (unlikely(IS_PRIVATE(inode))) 561 return; 562 security_ops->inode_delete(inode); 563 } 564 565 int security_inode_setxattr(struct dentry *dentry, const char *name, 566 const void *value, size_t size, int flags) 567 { 568 if (unlikely(IS_PRIVATE(dentry->d_inode))) 569 return 0; 570 return security_ops->inode_setxattr(dentry, name, value, size, flags); 571 } 572 573 void security_inode_post_setxattr(struct dentry *dentry, const char *name, 574 const void *value, size_t size, int flags) 575 { 576 if (unlikely(IS_PRIVATE(dentry->d_inode))) 577 return; 578 security_ops->inode_post_setxattr(dentry, name, value, size, flags); 579 } 580 581 int security_inode_getxattr(struct dentry *dentry, const char *name) 582 { 583 if (unlikely(IS_PRIVATE(dentry->d_inode))) 584 return 0; 585 return security_ops->inode_getxattr(dentry, name); 586 } 587 588 int security_inode_listxattr(struct dentry *dentry) 589 { 590 if (unlikely(IS_PRIVATE(dentry->d_inode))) 591 return 0; 592 return security_ops->inode_listxattr(dentry); 593 } 594 595 int security_inode_removexattr(struct dentry *dentry, const char *name) 596 { 597 if (unlikely(IS_PRIVATE(dentry->d_inode))) 598 return 0; 599 return security_ops->inode_removexattr(dentry, name); 600 } 601 602 int security_inode_need_killpriv(struct dentry *dentry) 603 { 604 return security_ops->inode_need_killpriv(dentry); 605 } 606 607 int security_inode_killpriv(struct dentry *dentry) 608 { 609 return security_ops->inode_killpriv(dentry); 610 } 611 612 int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc) 613 { 614 if (unlikely(IS_PRIVATE(inode))) 615 return 0; 616 return security_ops->inode_getsecurity(inode, name, buffer, alloc); 617 } 618 619 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags) 620 { 621 if (unlikely(IS_PRIVATE(inode))) 622 return 0; 623 return security_ops->inode_setsecurity(inode, name, value, size, flags); 624 } 625 626 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size) 627 { 628 if (unlikely(IS_PRIVATE(inode))) 629 return 0; 630 return security_ops->inode_listsecurity(inode, buffer, buffer_size); 631 } 632 633 void security_inode_getsecid(const struct inode *inode, u32 *secid) 634 { 635 security_ops->inode_getsecid(inode, secid); 636 } 637 638 int security_file_permission(struct file *file, int mask) 639 { 640 return security_ops->file_permission(file, mask); 641 } 642 643 int security_file_alloc(struct file *file) 644 { 645 return security_ops->file_alloc_security(file); 646 } 647 648 void security_file_free(struct file *file) 649 { 650 security_ops->file_free_security(file); 651 } 652 653 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 654 { 655 return security_ops->file_ioctl(file, cmd, arg); 656 } 657 658 int security_file_mmap(struct file *file, unsigned long reqprot, 659 unsigned long prot, unsigned long flags, 660 unsigned long addr, unsigned long addr_only) 661 { 662 return security_ops->file_mmap(file, reqprot, prot, flags, addr, addr_only); 663 } 664 665 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot, 666 unsigned long prot) 667 { 668 return security_ops->file_mprotect(vma, reqprot, prot); 669 } 670 671 int security_file_lock(struct file *file, unsigned int cmd) 672 { 673 return security_ops->file_lock(file, cmd); 674 } 675 676 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg) 677 { 678 return security_ops->file_fcntl(file, cmd, arg); 679 } 680 681 int security_file_set_fowner(struct file *file) 682 { 683 return security_ops->file_set_fowner(file); 684 } 685 686 int security_file_send_sigiotask(struct task_struct *tsk, 687 struct fown_struct *fown, int sig) 688 { 689 return security_ops->file_send_sigiotask(tsk, fown, sig); 690 } 691 692 int security_file_receive(struct file *file) 693 { 694 return security_ops->file_receive(file); 695 } 696 697 int security_dentry_open(struct file *file, const struct cred *cred) 698 { 699 return security_ops->dentry_open(file, cred); 700 } 701 702 int security_task_create(unsigned long clone_flags) 703 { 704 return security_ops->task_create(clone_flags); 705 } 706 707 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp) 708 { 709 return security_ops->cred_alloc_blank(cred, gfp); 710 } 711 712 void security_cred_free(struct cred *cred) 713 { 714 security_ops->cred_free(cred); 715 } 716 717 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp) 718 { 719 return security_ops->cred_prepare(new, old, gfp); 720 } 721 722 void security_commit_creds(struct cred *new, const struct cred *old) 723 { 724 security_ops->cred_commit(new, old); 725 } 726 727 void security_transfer_creds(struct cred *new, const struct cred *old) 728 { 729 security_ops->cred_transfer(new, old); 730 } 731 732 int security_kernel_act_as(struct cred *new, u32 secid) 733 { 734 return security_ops->kernel_act_as(new, secid); 735 } 736 737 int security_kernel_create_files_as(struct cred *new, struct inode *inode) 738 { 739 return security_ops->kernel_create_files_as(new, inode); 740 } 741 742 int security_kernel_module_request(void) 743 { 744 return security_ops->kernel_module_request(); 745 } 746 747 int security_task_setuid(uid_t id0, uid_t id1, uid_t id2, int flags) 748 { 749 return security_ops->task_setuid(id0, id1, id2, flags); 750 } 751 752 int security_task_fix_setuid(struct cred *new, const struct cred *old, 753 int flags) 754 { 755 return security_ops->task_fix_setuid(new, old, flags); 756 } 757 758 int security_task_setgid(gid_t id0, gid_t id1, gid_t id2, int flags) 759 { 760 return security_ops->task_setgid(id0, id1, id2, flags); 761 } 762 763 int security_task_setpgid(struct task_struct *p, pid_t pgid) 764 { 765 return security_ops->task_setpgid(p, pgid); 766 } 767 768 int security_task_getpgid(struct task_struct *p) 769 { 770 return security_ops->task_getpgid(p); 771 } 772 773 int security_task_getsid(struct task_struct *p) 774 { 775 return security_ops->task_getsid(p); 776 } 777 778 void security_task_getsecid(struct task_struct *p, u32 *secid) 779 { 780 security_ops->task_getsecid(p, secid); 781 } 782 EXPORT_SYMBOL(security_task_getsecid); 783 784 int security_task_setgroups(struct group_info *group_info) 785 { 786 return security_ops->task_setgroups(group_info); 787 } 788 789 int security_task_setnice(struct task_struct *p, int nice) 790 { 791 return security_ops->task_setnice(p, nice); 792 } 793 794 int security_task_setioprio(struct task_struct *p, int ioprio) 795 { 796 return security_ops->task_setioprio(p, ioprio); 797 } 798 799 int security_task_getioprio(struct task_struct *p) 800 { 801 return security_ops->task_getioprio(p); 802 } 803 804 int security_task_setrlimit(unsigned int resource, struct rlimit *new_rlim) 805 { 806 return security_ops->task_setrlimit(resource, new_rlim); 807 } 808 809 int security_task_setscheduler(struct task_struct *p, 810 int policy, struct sched_param *lp) 811 { 812 return security_ops->task_setscheduler(p, policy, lp); 813 } 814 815 int security_task_getscheduler(struct task_struct *p) 816 { 817 return security_ops->task_getscheduler(p); 818 } 819 820 int security_task_movememory(struct task_struct *p) 821 { 822 return security_ops->task_movememory(p); 823 } 824 825 int security_task_kill(struct task_struct *p, struct siginfo *info, 826 int sig, u32 secid) 827 { 828 return security_ops->task_kill(p, info, sig, secid); 829 } 830 831 int security_task_wait(struct task_struct *p) 832 { 833 return security_ops->task_wait(p); 834 } 835 836 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3, 837 unsigned long arg4, unsigned long arg5) 838 { 839 return security_ops->task_prctl(option, arg2, arg3, arg4, arg5); 840 } 841 842 void security_task_to_inode(struct task_struct *p, struct inode *inode) 843 { 844 security_ops->task_to_inode(p, inode); 845 } 846 847 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag) 848 { 849 return security_ops->ipc_permission(ipcp, flag); 850 } 851 852 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid) 853 { 854 security_ops->ipc_getsecid(ipcp, secid); 855 } 856 857 int security_msg_msg_alloc(struct msg_msg *msg) 858 { 859 return security_ops->msg_msg_alloc_security(msg); 860 } 861 862 void security_msg_msg_free(struct msg_msg *msg) 863 { 864 security_ops->msg_msg_free_security(msg); 865 } 866 867 int security_msg_queue_alloc(struct msg_queue *msq) 868 { 869 return security_ops->msg_queue_alloc_security(msq); 870 } 871 872 void security_msg_queue_free(struct msg_queue *msq) 873 { 874 security_ops->msg_queue_free_security(msq); 875 } 876 877 int security_msg_queue_associate(struct msg_queue *msq, int msqflg) 878 { 879 return security_ops->msg_queue_associate(msq, msqflg); 880 } 881 882 int security_msg_queue_msgctl(struct msg_queue *msq, int cmd) 883 { 884 return security_ops->msg_queue_msgctl(msq, cmd); 885 } 886 887 int security_msg_queue_msgsnd(struct msg_queue *msq, 888 struct msg_msg *msg, int msqflg) 889 { 890 return security_ops->msg_queue_msgsnd(msq, msg, msqflg); 891 } 892 893 int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg, 894 struct task_struct *target, long type, int mode) 895 { 896 return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode); 897 } 898 899 int security_shm_alloc(struct shmid_kernel *shp) 900 { 901 return security_ops->shm_alloc_security(shp); 902 } 903 904 void security_shm_free(struct shmid_kernel *shp) 905 { 906 security_ops->shm_free_security(shp); 907 } 908 909 int security_shm_associate(struct shmid_kernel *shp, int shmflg) 910 { 911 return security_ops->shm_associate(shp, shmflg); 912 } 913 914 int security_shm_shmctl(struct shmid_kernel *shp, int cmd) 915 { 916 return security_ops->shm_shmctl(shp, cmd); 917 } 918 919 int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg) 920 { 921 return security_ops->shm_shmat(shp, shmaddr, shmflg); 922 } 923 924 int security_sem_alloc(struct sem_array *sma) 925 { 926 return security_ops->sem_alloc_security(sma); 927 } 928 929 void security_sem_free(struct sem_array *sma) 930 { 931 security_ops->sem_free_security(sma); 932 } 933 934 int security_sem_associate(struct sem_array *sma, int semflg) 935 { 936 return security_ops->sem_associate(sma, semflg); 937 } 938 939 int security_sem_semctl(struct sem_array *sma, int cmd) 940 { 941 return security_ops->sem_semctl(sma, cmd); 942 } 943 944 int security_sem_semop(struct sem_array *sma, struct sembuf *sops, 945 unsigned nsops, int alter) 946 { 947 return security_ops->sem_semop(sma, sops, nsops, alter); 948 } 949 950 void security_d_instantiate(struct dentry *dentry, struct inode *inode) 951 { 952 if (unlikely(inode && IS_PRIVATE(inode))) 953 return; 954 security_ops->d_instantiate(dentry, inode); 955 } 956 EXPORT_SYMBOL(security_d_instantiate); 957 958 int security_getprocattr(struct task_struct *p, char *name, char **value) 959 { 960 return security_ops->getprocattr(p, name, value); 961 } 962 963 int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size) 964 { 965 return security_ops->setprocattr(p, name, value, size); 966 } 967 968 int security_netlink_send(struct sock *sk, struct sk_buff *skb) 969 { 970 return security_ops->netlink_send(sk, skb); 971 } 972 973 int security_netlink_recv(struct sk_buff *skb, int cap) 974 { 975 return security_ops->netlink_recv(skb, cap); 976 } 977 EXPORT_SYMBOL(security_netlink_recv); 978 979 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen) 980 { 981 return security_ops->secid_to_secctx(secid, secdata, seclen); 982 } 983 EXPORT_SYMBOL(security_secid_to_secctx); 984 985 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid) 986 { 987 return security_ops->secctx_to_secid(secdata, seclen, secid); 988 } 989 EXPORT_SYMBOL(security_secctx_to_secid); 990 991 void security_release_secctx(char *secdata, u32 seclen) 992 { 993 security_ops->release_secctx(secdata, seclen); 994 } 995 EXPORT_SYMBOL(security_release_secctx); 996 997 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen) 998 { 999 return security_ops->inode_notifysecctx(inode, ctx, ctxlen); 1000 } 1001 EXPORT_SYMBOL(security_inode_notifysecctx); 1002 1003 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen) 1004 { 1005 return security_ops->inode_setsecctx(dentry, ctx, ctxlen); 1006 } 1007 EXPORT_SYMBOL(security_inode_setsecctx); 1008 1009 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen) 1010 { 1011 return security_ops->inode_getsecctx(inode, ctx, ctxlen); 1012 } 1013 EXPORT_SYMBOL(security_inode_getsecctx); 1014 1015 #ifdef CONFIG_SECURITY_NETWORK 1016 1017 int security_unix_stream_connect(struct socket *sock, struct socket *other, 1018 struct sock *newsk) 1019 { 1020 return security_ops->unix_stream_connect(sock, other, newsk); 1021 } 1022 EXPORT_SYMBOL(security_unix_stream_connect); 1023 1024 int security_unix_may_send(struct socket *sock, struct socket *other) 1025 { 1026 return security_ops->unix_may_send(sock, other); 1027 } 1028 EXPORT_SYMBOL(security_unix_may_send); 1029 1030 int security_socket_create(int family, int type, int protocol, int kern) 1031 { 1032 return security_ops->socket_create(family, type, protocol, kern); 1033 } 1034 1035 int security_socket_post_create(struct socket *sock, int family, 1036 int type, int protocol, int kern) 1037 { 1038 return security_ops->socket_post_create(sock, family, type, 1039 protocol, kern); 1040 } 1041 1042 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen) 1043 { 1044 return security_ops->socket_bind(sock, address, addrlen); 1045 } 1046 1047 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen) 1048 { 1049 return security_ops->socket_connect(sock, address, addrlen); 1050 } 1051 1052 int security_socket_listen(struct socket *sock, int backlog) 1053 { 1054 return security_ops->socket_listen(sock, backlog); 1055 } 1056 1057 int security_socket_accept(struct socket *sock, struct socket *newsock) 1058 { 1059 return security_ops->socket_accept(sock, newsock); 1060 } 1061 1062 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size) 1063 { 1064 return security_ops->socket_sendmsg(sock, msg, size); 1065 } 1066 1067 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg, 1068 int size, int flags) 1069 { 1070 return security_ops->socket_recvmsg(sock, msg, size, flags); 1071 } 1072 1073 int security_socket_getsockname(struct socket *sock) 1074 { 1075 return security_ops->socket_getsockname(sock); 1076 } 1077 1078 int security_socket_getpeername(struct socket *sock) 1079 { 1080 return security_ops->socket_getpeername(sock); 1081 } 1082 1083 int security_socket_getsockopt(struct socket *sock, int level, int optname) 1084 { 1085 return security_ops->socket_getsockopt(sock, level, optname); 1086 } 1087 1088 int security_socket_setsockopt(struct socket *sock, int level, int optname) 1089 { 1090 return security_ops->socket_setsockopt(sock, level, optname); 1091 } 1092 1093 int security_socket_shutdown(struct socket *sock, int how) 1094 { 1095 return security_ops->socket_shutdown(sock, how); 1096 } 1097 1098 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb) 1099 { 1100 return security_ops->socket_sock_rcv_skb(sk, skb); 1101 } 1102 EXPORT_SYMBOL(security_sock_rcv_skb); 1103 1104 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval, 1105 int __user *optlen, unsigned len) 1106 { 1107 return security_ops->socket_getpeersec_stream(sock, optval, optlen, len); 1108 } 1109 1110 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid) 1111 { 1112 return security_ops->socket_getpeersec_dgram(sock, skb, secid); 1113 } 1114 EXPORT_SYMBOL(security_socket_getpeersec_dgram); 1115 1116 int security_sk_alloc(struct sock *sk, int family, gfp_t priority) 1117 { 1118 return security_ops->sk_alloc_security(sk, family, priority); 1119 } 1120 1121 void security_sk_free(struct sock *sk) 1122 { 1123 security_ops->sk_free_security(sk); 1124 } 1125 1126 void security_sk_clone(const struct sock *sk, struct sock *newsk) 1127 { 1128 security_ops->sk_clone_security(sk, newsk); 1129 } 1130 1131 void security_sk_classify_flow(struct sock *sk, struct flowi *fl) 1132 { 1133 security_ops->sk_getsecid(sk, &fl->secid); 1134 } 1135 EXPORT_SYMBOL(security_sk_classify_flow); 1136 1137 void security_req_classify_flow(const struct request_sock *req, struct flowi *fl) 1138 { 1139 security_ops->req_classify_flow(req, fl); 1140 } 1141 EXPORT_SYMBOL(security_req_classify_flow); 1142 1143 void security_sock_graft(struct sock *sk, struct socket *parent) 1144 { 1145 security_ops->sock_graft(sk, parent); 1146 } 1147 EXPORT_SYMBOL(security_sock_graft); 1148 1149 int security_inet_conn_request(struct sock *sk, 1150 struct sk_buff *skb, struct request_sock *req) 1151 { 1152 return security_ops->inet_conn_request(sk, skb, req); 1153 } 1154 EXPORT_SYMBOL(security_inet_conn_request); 1155 1156 void security_inet_csk_clone(struct sock *newsk, 1157 const struct request_sock *req) 1158 { 1159 security_ops->inet_csk_clone(newsk, req); 1160 } 1161 1162 void security_inet_conn_established(struct sock *sk, 1163 struct sk_buff *skb) 1164 { 1165 security_ops->inet_conn_established(sk, skb); 1166 } 1167 1168 int security_tun_dev_create(void) 1169 { 1170 return security_ops->tun_dev_create(); 1171 } 1172 EXPORT_SYMBOL(security_tun_dev_create); 1173 1174 void security_tun_dev_post_create(struct sock *sk) 1175 { 1176 return security_ops->tun_dev_post_create(sk); 1177 } 1178 EXPORT_SYMBOL(security_tun_dev_post_create); 1179 1180 int security_tun_dev_attach(struct sock *sk) 1181 { 1182 return security_ops->tun_dev_attach(sk); 1183 } 1184 EXPORT_SYMBOL(security_tun_dev_attach); 1185 1186 #endif /* CONFIG_SECURITY_NETWORK */ 1187 1188 #ifdef CONFIG_SECURITY_NETWORK_XFRM 1189 1190 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct xfrm_user_sec_ctx *sec_ctx) 1191 { 1192 return security_ops->xfrm_policy_alloc_security(ctxp, sec_ctx); 1193 } 1194 EXPORT_SYMBOL(security_xfrm_policy_alloc); 1195 1196 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx, 1197 struct xfrm_sec_ctx **new_ctxp) 1198 { 1199 return security_ops->xfrm_policy_clone_security(old_ctx, new_ctxp); 1200 } 1201 1202 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx) 1203 { 1204 security_ops->xfrm_policy_free_security(ctx); 1205 } 1206 EXPORT_SYMBOL(security_xfrm_policy_free); 1207 1208 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx) 1209 { 1210 return security_ops->xfrm_policy_delete_security(ctx); 1211 } 1212 1213 int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx) 1214 { 1215 return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0); 1216 } 1217 EXPORT_SYMBOL(security_xfrm_state_alloc); 1218 1219 int security_xfrm_state_alloc_acquire(struct xfrm_state *x, 1220 struct xfrm_sec_ctx *polsec, u32 secid) 1221 { 1222 if (!polsec) 1223 return 0; 1224 /* 1225 * We want the context to be taken from secid which is usually 1226 * from the sock. 1227 */ 1228 return security_ops->xfrm_state_alloc_security(x, NULL, secid); 1229 } 1230 1231 int security_xfrm_state_delete(struct xfrm_state *x) 1232 { 1233 return security_ops->xfrm_state_delete_security(x); 1234 } 1235 EXPORT_SYMBOL(security_xfrm_state_delete); 1236 1237 void security_xfrm_state_free(struct xfrm_state *x) 1238 { 1239 security_ops->xfrm_state_free_security(x); 1240 } 1241 1242 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir) 1243 { 1244 return security_ops->xfrm_policy_lookup(ctx, fl_secid, dir); 1245 } 1246 1247 int security_xfrm_state_pol_flow_match(struct xfrm_state *x, 1248 struct xfrm_policy *xp, struct flowi *fl) 1249 { 1250 return security_ops->xfrm_state_pol_flow_match(x, xp, fl); 1251 } 1252 1253 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid) 1254 { 1255 return security_ops->xfrm_decode_session(skb, secid, 1); 1256 } 1257 1258 void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl) 1259 { 1260 int rc = security_ops->xfrm_decode_session(skb, &fl->secid, 0); 1261 1262 BUG_ON(rc); 1263 } 1264 EXPORT_SYMBOL(security_skb_classify_flow); 1265 1266 #endif /* CONFIG_SECURITY_NETWORK_XFRM */ 1267 1268 #ifdef CONFIG_KEYS 1269 1270 int security_key_alloc(struct key *key, const struct cred *cred, 1271 unsigned long flags) 1272 { 1273 return security_ops->key_alloc(key, cred, flags); 1274 } 1275 1276 void security_key_free(struct key *key) 1277 { 1278 security_ops->key_free(key); 1279 } 1280 1281 int security_key_permission(key_ref_t key_ref, 1282 const struct cred *cred, key_perm_t perm) 1283 { 1284 return security_ops->key_permission(key_ref, cred, perm); 1285 } 1286 1287 int security_key_getsecurity(struct key *key, char **_buffer) 1288 { 1289 return security_ops->key_getsecurity(key, _buffer); 1290 } 1291 1292 int security_key_session_to_parent(const struct cred *cred, 1293 const struct cred *parent_cred, 1294 struct key *key) 1295 { 1296 return security_ops->key_session_to_parent(cred, parent_cred, key); 1297 } 1298 1299 #endif /* CONFIG_KEYS */ 1300 1301 #ifdef CONFIG_AUDIT 1302 1303 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule) 1304 { 1305 return security_ops->audit_rule_init(field, op, rulestr, lsmrule); 1306 } 1307 1308 int security_audit_rule_known(struct audit_krule *krule) 1309 { 1310 return security_ops->audit_rule_known(krule); 1311 } 1312 1313 void security_audit_rule_free(void *lsmrule) 1314 { 1315 security_ops->audit_rule_free(lsmrule); 1316 } 1317 1318 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule, 1319 struct audit_context *actx) 1320 { 1321 return security_ops->audit_rule_match(secid, field, op, lsmrule, actx); 1322 } 1323 1324 #endif /* CONFIG_AUDIT */ 1325