1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Security plug functions 4 * 5 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com> 6 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com> 7 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com> 8 * Copyright (C) 2016 Mellanox Technologies 9 */ 10 11 #define pr_fmt(fmt) "LSM: " fmt 12 13 #include <linux/bpf.h> 14 #include <linux/capability.h> 15 #include <linux/dcache.h> 16 #include <linux/export.h> 17 #include <linux/init.h> 18 #include <linux/kernel.h> 19 #include <linux/kernel_read_file.h> 20 #include <linux/lsm_hooks.h> 21 #include <linux/integrity.h> 22 #include <linux/ima.h> 23 #include <linux/evm.h> 24 #include <linux/fsnotify.h> 25 #include <linux/mman.h> 26 #include <linux/mount.h> 27 #include <linux/personality.h> 28 #include <linux/backing-dev.h> 29 #include <linux/string.h> 30 #include <linux/msg.h> 31 #include <net/flow.h> 32 33 #define MAX_LSM_EVM_XATTR 2 34 35 /* How many LSMs were built into the kernel? */ 36 #define LSM_COUNT (__end_lsm_info - __start_lsm_info) 37 38 /* 39 * These are descriptions of the reasons that can be passed to the 40 * security_locked_down() LSM hook. Placing this array here allows 41 * all security modules to use the same descriptions for auditing 42 * purposes. 43 */ 44 const char *const lockdown_reasons[LOCKDOWN_CONFIDENTIALITY_MAX+1] = { 45 [LOCKDOWN_NONE] = "none", 46 [LOCKDOWN_MODULE_SIGNATURE] = "unsigned module loading", 47 [LOCKDOWN_DEV_MEM] = "/dev/mem,kmem,port", 48 [LOCKDOWN_EFI_TEST] = "/dev/efi_test access", 49 [LOCKDOWN_KEXEC] = "kexec of unsigned images", 50 [LOCKDOWN_HIBERNATION] = "hibernation", 51 [LOCKDOWN_PCI_ACCESS] = "direct PCI access", 52 [LOCKDOWN_IOPORT] = "raw io port access", 53 [LOCKDOWN_MSR] = "raw MSR access", 54 [LOCKDOWN_ACPI_TABLES] = "modifying ACPI tables", 55 [LOCKDOWN_PCMCIA_CIS] = "direct PCMCIA CIS storage", 56 [LOCKDOWN_TIOCSSERIAL] = "reconfiguration of serial port IO", 57 [LOCKDOWN_MODULE_PARAMETERS] = "unsafe module parameters", 58 [LOCKDOWN_MMIOTRACE] = "unsafe mmio", 59 [LOCKDOWN_DEBUGFS] = "debugfs access", 60 [LOCKDOWN_XMON_WR] = "xmon write access", 61 [LOCKDOWN_INTEGRITY_MAX] = "integrity", 62 [LOCKDOWN_KCORE] = "/proc/kcore access", 63 [LOCKDOWN_KPROBES] = "use of kprobes", 64 [LOCKDOWN_BPF_READ] = "use of bpf to read kernel RAM", 65 [LOCKDOWN_PERF] = "unsafe use of perf", 66 [LOCKDOWN_TRACEFS] = "use of tracefs", 67 [LOCKDOWN_XMON_RW] = "xmon read and write access", 68 [LOCKDOWN_XFRM_SECRET] = "xfrm SA secret", 69 [LOCKDOWN_CONFIDENTIALITY_MAX] = "confidentiality", 70 }; 71 72 struct security_hook_heads security_hook_heads __lsm_ro_after_init; 73 static BLOCKING_NOTIFIER_HEAD(blocking_lsm_notifier_chain); 74 75 static struct kmem_cache *lsm_file_cache; 76 static struct kmem_cache *lsm_inode_cache; 77 78 char *lsm_names; 79 static struct lsm_blob_sizes blob_sizes __lsm_ro_after_init; 80 81 /* Boot-time LSM user choice */ 82 static __initdata const char *chosen_lsm_order; 83 static __initdata const char *chosen_major_lsm; 84 85 static __initconst const char * const builtin_lsm_order = CONFIG_LSM; 86 87 /* Ordered list of LSMs to initialize. */ 88 static __initdata struct lsm_info **ordered_lsms; 89 static __initdata struct lsm_info *exclusive; 90 91 static __initdata bool debug; 92 #define init_debug(...) \ 93 do { \ 94 if (debug) \ 95 pr_info(__VA_ARGS__); \ 96 } while (0) 97 98 static bool __init is_enabled(struct lsm_info *lsm) 99 { 100 if (!lsm->enabled) 101 return false; 102 103 return *lsm->enabled; 104 } 105 106 /* Mark an LSM's enabled flag. */ 107 static int lsm_enabled_true __initdata = 1; 108 static int lsm_enabled_false __initdata = 0; 109 static void __init set_enabled(struct lsm_info *lsm, bool enabled) 110 { 111 /* 112 * When an LSM hasn't configured an enable variable, we can use 113 * a hard-coded location for storing the default enabled state. 114 */ 115 if (!lsm->enabled) { 116 if (enabled) 117 lsm->enabled = &lsm_enabled_true; 118 else 119 lsm->enabled = &lsm_enabled_false; 120 } else if (lsm->enabled == &lsm_enabled_true) { 121 if (!enabled) 122 lsm->enabled = &lsm_enabled_false; 123 } else if (lsm->enabled == &lsm_enabled_false) { 124 if (enabled) 125 lsm->enabled = &lsm_enabled_true; 126 } else { 127 *lsm->enabled = enabled; 128 } 129 } 130 131 /* Is an LSM already listed in the ordered LSMs list? */ 132 static bool __init exists_ordered_lsm(struct lsm_info *lsm) 133 { 134 struct lsm_info **check; 135 136 for (check = ordered_lsms; *check; check++) 137 if (*check == lsm) 138 return true; 139 140 return false; 141 } 142 143 /* Append an LSM to the list of ordered LSMs to initialize. */ 144 static int last_lsm __initdata; 145 static void __init append_ordered_lsm(struct lsm_info *lsm, const char *from) 146 { 147 /* Ignore duplicate selections. */ 148 if (exists_ordered_lsm(lsm)) 149 return; 150 151 if (WARN(last_lsm == LSM_COUNT, "%s: out of LSM slots!?\n", from)) 152 return; 153 154 /* Enable this LSM, if it is not already set. */ 155 if (!lsm->enabled) 156 lsm->enabled = &lsm_enabled_true; 157 ordered_lsms[last_lsm++] = lsm; 158 159 init_debug("%s ordering: %s (%sabled)\n", from, lsm->name, 160 is_enabled(lsm) ? "en" : "dis"); 161 } 162 163 /* Is an LSM allowed to be initialized? */ 164 static bool __init lsm_allowed(struct lsm_info *lsm) 165 { 166 /* Skip if the LSM is disabled. */ 167 if (!is_enabled(lsm)) 168 return false; 169 170 /* Not allowed if another exclusive LSM already initialized. */ 171 if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && exclusive) { 172 init_debug("exclusive disabled: %s\n", lsm->name); 173 return false; 174 } 175 176 return true; 177 } 178 179 static void __init lsm_set_blob_size(int *need, int *lbs) 180 { 181 int offset; 182 183 if (*need > 0) { 184 offset = *lbs; 185 *lbs += *need; 186 *need = offset; 187 } 188 } 189 190 static void __init lsm_set_blob_sizes(struct lsm_blob_sizes *needed) 191 { 192 if (!needed) 193 return; 194 195 lsm_set_blob_size(&needed->lbs_cred, &blob_sizes.lbs_cred); 196 lsm_set_blob_size(&needed->lbs_file, &blob_sizes.lbs_file); 197 /* 198 * The inode blob gets an rcu_head in addition to 199 * what the modules might need. 200 */ 201 if (needed->lbs_inode && blob_sizes.lbs_inode == 0) 202 blob_sizes.lbs_inode = sizeof(struct rcu_head); 203 lsm_set_blob_size(&needed->lbs_inode, &blob_sizes.lbs_inode); 204 lsm_set_blob_size(&needed->lbs_ipc, &blob_sizes.lbs_ipc); 205 lsm_set_blob_size(&needed->lbs_msg_msg, &blob_sizes.lbs_msg_msg); 206 lsm_set_blob_size(&needed->lbs_superblock, &blob_sizes.lbs_superblock); 207 lsm_set_blob_size(&needed->lbs_task, &blob_sizes.lbs_task); 208 } 209 210 /* Prepare LSM for initialization. */ 211 static void __init prepare_lsm(struct lsm_info *lsm) 212 { 213 int enabled = lsm_allowed(lsm); 214 215 /* Record enablement (to handle any following exclusive LSMs). */ 216 set_enabled(lsm, enabled); 217 218 /* If enabled, do pre-initialization work. */ 219 if (enabled) { 220 if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && !exclusive) { 221 exclusive = lsm; 222 init_debug("exclusive chosen: %s\n", lsm->name); 223 } 224 225 lsm_set_blob_sizes(lsm->blobs); 226 } 227 } 228 229 /* Initialize a given LSM, if it is enabled. */ 230 static void __init initialize_lsm(struct lsm_info *lsm) 231 { 232 if (is_enabled(lsm)) { 233 int ret; 234 235 init_debug("initializing %s\n", lsm->name); 236 ret = lsm->init(); 237 WARN(ret, "%s failed to initialize: %d\n", lsm->name, ret); 238 } 239 } 240 241 /* Populate ordered LSMs list from comma-separated LSM name list. */ 242 static void __init ordered_lsm_parse(const char *order, const char *origin) 243 { 244 struct lsm_info *lsm; 245 char *sep, *name, *next; 246 247 /* LSM_ORDER_FIRST is always first. */ 248 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { 249 if (lsm->order == LSM_ORDER_FIRST) 250 append_ordered_lsm(lsm, "first"); 251 } 252 253 /* Process "security=", if given. */ 254 if (chosen_major_lsm) { 255 struct lsm_info *major; 256 257 /* 258 * To match the original "security=" behavior, this 259 * explicitly does NOT fallback to another Legacy Major 260 * if the selected one was separately disabled: disable 261 * all non-matching Legacy Major LSMs. 262 */ 263 for (major = __start_lsm_info; major < __end_lsm_info; 264 major++) { 265 if ((major->flags & LSM_FLAG_LEGACY_MAJOR) && 266 strcmp(major->name, chosen_major_lsm) != 0) { 267 set_enabled(major, false); 268 init_debug("security=%s disabled: %s\n", 269 chosen_major_lsm, major->name); 270 } 271 } 272 } 273 274 sep = kstrdup(order, GFP_KERNEL); 275 next = sep; 276 /* Walk the list, looking for matching LSMs. */ 277 while ((name = strsep(&next, ",")) != NULL) { 278 bool found = false; 279 280 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { 281 if (lsm->order == LSM_ORDER_MUTABLE && 282 strcmp(lsm->name, name) == 0) { 283 append_ordered_lsm(lsm, origin); 284 found = true; 285 } 286 } 287 288 if (!found) 289 init_debug("%s ignored: %s\n", origin, name); 290 } 291 292 /* Process "security=", if given. */ 293 if (chosen_major_lsm) { 294 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { 295 if (exists_ordered_lsm(lsm)) 296 continue; 297 if (strcmp(lsm->name, chosen_major_lsm) == 0) 298 append_ordered_lsm(lsm, "security="); 299 } 300 } 301 302 /* Disable all LSMs not in the ordered list. */ 303 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { 304 if (exists_ordered_lsm(lsm)) 305 continue; 306 set_enabled(lsm, false); 307 init_debug("%s disabled: %s\n", origin, lsm->name); 308 } 309 310 kfree(sep); 311 } 312 313 static void __init lsm_early_cred(struct cred *cred); 314 static void __init lsm_early_task(struct task_struct *task); 315 316 static int lsm_append(const char *new, char **result); 317 318 static void __init ordered_lsm_init(void) 319 { 320 struct lsm_info **lsm; 321 322 ordered_lsms = kcalloc(LSM_COUNT + 1, sizeof(*ordered_lsms), 323 GFP_KERNEL); 324 325 if (chosen_lsm_order) { 326 if (chosen_major_lsm) { 327 pr_info("security= is ignored because it is superseded by lsm=\n"); 328 chosen_major_lsm = NULL; 329 } 330 ordered_lsm_parse(chosen_lsm_order, "cmdline"); 331 } else 332 ordered_lsm_parse(builtin_lsm_order, "builtin"); 333 334 for (lsm = ordered_lsms; *lsm; lsm++) 335 prepare_lsm(*lsm); 336 337 init_debug("cred blob size = %d\n", blob_sizes.lbs_cred); 338 init_debug("file blob size = %d\n", blob_sizes.lbs_file); 339 init_debug("inode blob size = %d\n", blob_sizes.lbs_inode); 340 init_debug("ipc blob size = %d\n", blob_sizes.lbs_ipc); 341 init_debug("msg_msg blob size = %d\n", blob_sizes.lbs_msg_msg); 342 init_debug("superblock blob size = %d\n", blob_sizes.lbs_superblock); 343 init_debug("task blob size = %d\n", blob_sizes.lbs_task); 344 345 /* 346 * Create any kmem_caches needed for blobs 347 */ 348 if (blob_sizes.lbs_file) 349 lsm_file_cache = kmem_cache_create("lsm_file_cache", 350 blob_sizes.lbs_file, 0, 351 SLAB_PANIC, NULL); 352 if (blob_sizes.lbs_inode) 353 lsm_inode_cache = kmem_cache_create("lsm_inode_cache", 354 blob_sizes.lbs_inode, 0, 355 SLAB_PANIC, NULL); 356 357 lsm_early_cred((struct cred *) current->cred); 358 lsm_early_task(current); 359 for (lsm = ordered_lsms; *lsm; lsm++) 360 initialize_lsm(*lsm); 361 362 kfree(ordered_lsms); 363 } 364 365 int __init early_security_init(void) 366 { 367 int i; 368 struct hlist_head *list = (struct hlist_head *) &security_hook_heads; 369 struct lsm_info *lsm; 370 371 for (i = 0; i < sizeof(security_hook_heads) / sizeof(struct hlist_head); 372 i++) 373 INIT_HLIST_HEAD(&list[i]); 374 375 for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) { 376 if (!lsm->enabled) 377 lsm->enabled = &lsm_enabled_true; 378 prepare_lsm(lsm); 379 initialize_lsm(lsm); 380 } 381 382 return 0; 383 } 384 385 /** 386 * security_init - initializes the security framework 387 * 388 * This should be called early in the kernel initialization sequence. 389 */ 390 int __init security_init(void) 391 { 392 struct lsm_info *lsm; 393 394 pr_info("Security Framework initializing\n"); 395 396 /* 397 * Append the names of the early LSM modules now that kmalloc() is 398 * available 399 */ 400 for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) { 401 if (lsm->enabled) 402 lsm_append(lsm->name, &lsm_names); 403 } 404 405 /* Load LSMs in specified order. */ 406 ordered_lsm_init(); 407 408 return 0; 409 } 410 411 /* Save user chosen LSM */ 412 static int __init choose_major_lsm(char *str) 413 { 414 chosen_major_lsm = str; 415 return 1; 416 } 417 __setup("security=", choose_major_lsm); 418 419 /* Explicitly choose LSM initialization order. */ 420 static int __init choose_lsm_order(char *str) 421 { 422 chosen_lsm_order = str; 423 return 1; 424 } 425 __setup("lsm=", choose_lsm_order); 426 427 /* Enable LSM order debugging. */ 428 static int __init enable_debug(char *str) 429 { 430 debug = true; 431 return 1; 432 } 433 __setup("lsm.debug", enable_debug); 434 435 static bool match_last_lsm(const char *list, const char *lsm) 436 { 437 const char *last; 438 439 if (WARN_ON(!list || !lsm)) 440 return false; 441 last = strrchr(list, ','); 442 if (last) 443 /* Pass the comma, strcmp() will check for '\0' */ 444 last++; 445 else 446 last = list; 447 return !strcmp(last, lsm); 448 } 449 450 static int lsm_append(const char *new, char **result) 451 { 452 char *cp; 453 454 if (*result == NULL) { 455 *result = kstrdup(new, GFP_KERNEL); 456 if (*result == NULL) 457 return -ENOMEM; 458 } else { 459 /* Check if it is the last registered name */ 460 if (match_last_lsm(*result, new)) 461 return 0; 462 cp = kasprintf(GFP_KERNEL, "%s,%s", *result, new); 463 if (cp == NULL) 464 return -ENOMEM; 465 kfree(*result); 466 *result = cp; 467 } 468 return 0; 469 } 470 471 /** 472 * security_add_hooks - Add a modules hooks to the hook lists. 473 * @hooks: the hooks to add 474 * @count: the number of hooks to add 475 * @lsm: the name of the security module 476 * 477 * Each LSM has to register its hooks with the infrastructure. 478 */ 479 void __init security_add_hooks(struct security_hook_list *hooks, int count, 480 char *lsm) 481 { 482 int i; 483 484 for (i = 0; i < count; i++) { 485 hooks[i].lsm = lsm; 486 hlist_add_tail_rcu(&hooks[i].list, hooks[i].head); 487 } 488 489 /* 490 * Don't try to append during early_security_init(), we'll come back 491 * and fix this up afterwards. 492 */ 493 if (slab_is_available()) { 494 if (lsm_append(lsm, &lsm_names) < 0) 495 panic("%s - Cannot get early memory.\n", __func__); 496 } 497 } 498 499 int call_blocking_lsm_notifier(enum lsm_event event, void *data) 500 { 501 return blocking_notifier_call_chain(&blocking_lsm_notifier_chain, 502 event, data); 503 } 504 EXPORT_SYMBOL(call_blocking_lsm_notifier); 505 506 int register_blocking_lsm_notifier(struct notifier_block *nb) 507 { 508 return blocking_notifier_chain_register(&blocking_lsm_notifier_chain, 509 nb); 510 } 511 EXPORT_SYMBOL(register_blocking_lsm_notifier); 512 513 int unregister_blocking_lsm_notifier(struct notifier_block *nb) 514 { 515 return blocking_notifier_chain_unregister(&blocking_lsm_notifier_chain, 516 nb); 517 } 518 EXPORT_SYMBOL(unregister_blocking_lsm_notifier); 519 520 /** 521 * lsm_cred_alloc - allocate a composite cred blob 522 * @cred: the cred that needs a blob 523 * @gfp: allocation type 524 * 525 * Allocate the cred blob for all the modules 526 * 527 * Returns 0, or -ENOMEM if memory can't be allocated. 528 */ 529 static int lsm_cred_alloc(struct cred *cred, gfp_t gfp) 530 { 531 if (blob_sizes.lbs_cred == 0) { 532 cred->security = NULL; 533 return 0; 534 } 535 536 cred->security = kzalloc(blob_sizes.lbs_cred, gfp); 537 if (cred->security == NULL) 538 return -ENOMEM; 539 return 0; 540 } 541 542 /** 543 * lsm_early_cred - during initialization allocate a composite cred blob 544 * @cred: the cred that needs a blob 545 * 546 * Allocate the cred blob for all the modules 547 */ 548 static void __init lsm_early_cred(struct cred *cred) 549 { 550 int rc = lsm_cred_alloc(cred, GFP_KERNEL); 551 552 if (rc) 553 panic("%s: Early cred alloc failed.\n", __func__); 554 } 555 556 /** 557 * lsm_file_alloc - allocate a composite file blob 558 * @file: the file that needs a blob 559 * 560 * Allocate the file blob for all the modules 561 * 562 * Returns 0, or -ENOMEM if memory can't be allocated. 563 */ 564 static int lsm_file_alloc(struct file *file) 565 { 566 if (!lsm_file_cache) { 567 file->f_security = NULL; 568 return 0; 569 } 570 571 file->f_security = kmem_cache_zalloc(lsm_file_cache, GFP_KERNEL); 572 if (file->f_security == NULL) 573 return -ENOMEM; 574 return 0; 575 } 576 577 /** 578 * lsm_inode_alloc - allocate a composite inode blob 579 * @inode: the inode that needs a blob 580 * 581 * Allocate the inode blob for all the modules 582 * 583 * Returns 0, or -ENOMEM if memory can't be allocated. 584 */ 585 int lsm_inode_alloc(struct inode *inode) 586 { 587 if (!lsm_inode_cache) { 588 inode->i_security = NULL; 589 return 0; 590 } 591 592 inode->i_security = kmem_cache_zalloc(lsm_inode_cache, GFP_NOFS); 593 if (inode->i_security == NULL) 594 return -ENOMEM; 595 return 0; 596 } 597 598 /** 599 * lsm_task_alloc - allocate a composite task blob 600 * @task: the task that needs a blob 601 * 602 * Allocate the task blob for all the modules 603 * 604 * Returns 0, or -ENOMEM if memory can't be allocated. 605 */ 606 static int lsm_task_alloc(struct task_struct *task) 607 { 608 if (blob_sizes.lbs_task == 0) { 609 task->security = NULL; 610 return 0; 611 } 612 613 task->security = kzalloc(blob_sizes.lbs_task, GFP_KERNEL); 614 if (task->security == NULL) 615 return -ENOMEM; 616 return 0; 617 } 618 619 /** 620 * lsm_ipc_alloc - allocate a composite ipc blob 621 * @kip: the ipc that needs a blob 622 * 623 * Allocate the ipc blob for all the modules 624 * 625 * Returns 0, or -ENOMEM if memory can't be allocated. 626 */ 627 static int lsm_ipc_alloc(struct kern_ipc_perm *kip) 628 { 629 if (blob_sizes.lbs_ipc == 0) { 630 kip->security = NULL; 631 return 0; 632 } 633 634 kip->security = kzalloc(blob_sizes.lbs_ipc, GFP_KERNEL); 635 if (kip->security == NULL) 636 return -ENOMEM; 637 return 0; 638 } 639 640 /** 641 * lsm_msg_msg_alloc - allocate a composite msg_msg blob 642 * @mp: the msg_msg that needs a blob 643 * 644 * Allocate the ipc blob for all the modules 645 * 646 * Returns 0, or -ENOMEM if memory can't be allocated. 647 */ 648 static int lsm_msg_msg_alloc(struct msg_msg *mp) 649 { 650 if (blob_sizes.lbs_msg_msg == 0) { 651 mp->security = NULL; 652 return 0; 653 } 654 655 mp->security = kzalloc(blob_sizes.lbs_msg_msg, GFP_KERNEL); 656 if (mp->security == NULL) 657 return -ENOMEM; 658 return 0; 659 } 660 661 /** 662 * lsm_early_task - during initialization allocate a composite task blob 663 * @task: the task that needs a blob 664 * 665 * Allocate the task blob for all the modules 666 */ 667 static void __init lsm_early_task(struct task_struct *task) 668 { 669 int rc = lsm_task_alloc(task); 670 671 if (rc) 672 panic("%s: Early task alloc failed.\n", __func__); 673 } 674 675 /** 676 * lsm_superblock_alloc - allocate a composite superblock blob 677 * @sb: the superblock that needs a blob 678 * 679 * Allocate the superblock blob for all the modules 680 * 681 * Returns 0, or -ENOMEM if memory can't be allocated. 682 */ 683 static int lsm_superblock_alloc(struct super_block *sb) 684 { 685 if (blob_sizes.lbs_superblock == 0) { 686 sb->s_security = NULL; 687 return 0; 688 } 689 690 sb->s_security = kzalloc(blob_sizes.lbs_superblock, GFP_KERNEL); 691 if (sb->s_security == NULL) 692 return -ENOMEM; 693 return 0; 694 } 695 696 /* 697 * The default value of the LSM hook is defined in linux/lsm_hook_defs.h and 698 * can be accessed with: 699 * 700 * LSM_RET_DEFAULT(<hook_name>) 701 * 702 * The macros below define static constants for the default value of each 703 * LSM hook. 704 */ 705 #define LSM_RET_DEFAULT(NAME) (NAME##_default) 706 #define DECLARE_LSM_RET_DEFAULT_void(DEFAULT, NAME) 707 #define DECLARE_LSM_RET_DEFAULT_int(DEFAULT, NAME) \ 708 static const int LSM_RET_DEFAULT(NAME) = (DEFAULT); 709 #define LSM_HOOK(RET, DEFAULT, NAME, ...) \ 710 DECLARE_LSM_RET_DEFAULT_##RET(DEFAULT, NAME) 711 712 #include <linux/lsm_hook_defs.h> 713 #undef LSM_HOOK 714 715 /* 716 * Hook list operation macros. 717 * 718 * call_void_hook: 719 * This is a hook that does not return a value. 720 * 721 * call_int_hook: 722 * This is a hook that returns a value. 723 */ 724 725 #define call_void_hook(FUNC, ...) \ 726 do { \ 727 struct security_hook_list *P; \ 728 \ 729 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) \ 730 P->hook.FUNC(__VA_ARGS__); \ 731 } while (0) 732 733 #define call_int_hook(FUNC, IRC, ...) ({ \ 734 int RC = IRC; \ 735 do { \ 736 struct security_hook_list *P; \ 737 \ 738 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) { \ 739 RC = P->hook.FUNC(__VA_ARGS__); \ 740 if (RC != 0) \ 741 break; \ 742 } \ 743 } while (0); \ 744 RC; \ 745 }) 746 747 /* Security operations */ 748 749 int security_binder_set_context_mgr(struct task_struct *mgr) 750 { 751 return call_int_hook(binder_set_context_mgr, 0, mgr); 752 } 753 754 int security_binder_transaction(struct task_struct *from, 755 struct task_struct *to) 756 { 757 return call_int_hook(binder_transaction, 0, from, to); 758 } 759 760 int security_binder_transfer_binder(struct task_struct *from, 761 struct task_struct *to) 762 { 763 return call_int_hook(binder_transfer_binder, 0, from, to); 764 } 765 766 int security_binder_transfer_file(struct task_struct *from, 767 struct task_struct *to, struct file *file) 768 { 769 return call_int_hook(binder_transfer_file, 0, from, to, file); 770 } 771 772 int security_ptrace_access_check(struct task_struct *child, unsigned int mode) 773 { 774 return call_int_hook(ptrace_access_check, 0, child, mode); 775 } 776 777 int security_ptrace_traceme(struct task_struct *parent) 778 { 779 return call_int_hook(ptrace_traceme, 0, parent); 780 } 781 782 int security_capget(struct task_struct *target, 783 kernel_cap_t *effective, 784 kernel_cap_t *inheritable, 785 kernel_cap_t *permitted) 786 { 787 return call_int_hook(capget, 0, target, 788 effective, inheritable, permitted); 789 } 790 791 int security_capset(struct cred *new, const struct cred *old, 792 const kernel_cap_t *effective, 793 const kernel_cap_t *inheritable, 794 const kernel_cap_t *permitted) 795 { 796 return call_int_hook(capset, 0, new, old, 797 effective, inheritable, permitted); 798 } 799 800 int security_capable(const struct cred *cred, 801 struct user_namespace *ns, 802 int cap, 803 unsigned int opts) 804 { 805 return call_int_hook(capable, 0, cred, ns, cap, opts); 806 } 807 808 int security_quotactl(int cmds, int type, int id, struct super_block *sb) 809 { 810 return call_int_hook(quotactl, 0, cmds, type, id, sb); 811 } 812 813 int security_quota_on(struct dentry *dentry) 814 { 815 return call_int_hook(quota_on, 0, dentry); 816 } 817 818 int security_syslog(int type) 819 { 820 return call_int_hook(syslog, 0, type); 821 } 822 823 int security_settime64(const struct timespec64 *ts, const struct timezone *tz) 824 { 825 return call_int_hook(settime, 0, ts, tz); 826 } 827 828 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages) 829 { 830 struct security_hook_list *hp; 831 int cap_sys_admin = 1; 832 int rc; 833 834 /* 835 * The module will respond with a positive value if 836 * it thinks the __vm_enough_memory() call should be 837 * made with the cap_sys_admin set. If all of the modules 838 * agree that it should be set it will. If any module 839 * thinks it should not be set it won't. 840 */ 841 hlist_for_each_entry(hp, &security_hook_heads.vm_enough_memory, list) { 842 rc = hp->hook.vm_enough_memory(mm, pages); 843 if (rc <= 0) { 844 cap_sys_admin = 0; 845 break; 846 } 847 } 848 return __vm_enough_memory(mm, pages, cap_sys_admin); 849 } 850 851 int security_bprm_creds_for_exec(struct linux_binprm *bprm) 852 { 853 return call_int_hook(bprm_creds_for_exec, 0, bprm); 854 } 855 856 int security_bprm_creds_from_file(struct linux_binprm *bprm, struct file *file) 857 { 858 return call_int_hook(bprm_creds_from_file, 0, bprm, file); 859 } 860 861 int security_bprm_check(struct linux_binprm *bprm) 862 { 863 int ret; 864 865 ret = call_int_hook(bprm_check_security, 0, bprm); 866 if (ret) 867 return ret; 868 return ima_bprm_check(bprm); 869 } 870 871 void security_bprm_committing_creds(struct linux_binprm *bprm) 872 { 873 call_void_hook(bprm_committing_creds, bprm); 874 } 875 876 void security_bprm_committed_creds(struct linux_binprm *bprm) 877 { 878 call_void_hook(bprm_committed_creds, bprm); 879 } 880 881 int security_fs_context_dup(struct fs_context *fc, struct fs_context *src_fc) 882 { 883 return call_int_hook(fs_context_dup, 0, fc, src_fc); 884 } 885 886 int security_fs_context_parse_param(struct fs_context *fc, struct fs_parameter *param) 887 { 888 return call_int_hook(fs_context_parse_param, -ENOPARAM, fc, param); 889 } 890 891 int security_sb_alloc(struct super_block *sb) 892 { 893 int rc = lsm_superblock_alloc(sb); 894 895 if (unlikely(rc)) 896 return rc; 897 rc = call_int_hook(sb_alloc_security, 0, sb); 898 if (unlikely(rc)) 899 security_sb_free(sb); 900 return rc; 901 } 902 903 void security_sb_delete(struct super_block *sb) 904 { 905 call_void_hook(sb_delete, sb); 906 } 907 908 void security_sb_free(struct super_block *sb) 909 { 910 call_void_hook(sb_free_security, sb); 911 kfree(sb->s_security); 912 sb->s_security = NULL; 913 } 914 915 void security_free_mnt_opts(void **mnt_opts) 916 { 917 if (!*mnt_opts) 918 return; 919 call_void_hook(sb_free_mnt_opts, *mnt_opts); 920 *mnt_opts = NULL; 921 } 922 EXPORT_SYMBOL(security_free_mnt_opts); 923 924 int security_sb_eat_lsm_opts(char *options, void **mnt_opts) 925 { 926 return call_int_hook(sb_eat_lsm_opts, 0, options, mnt_opts); 927 } 928 EXPORT_SYMBOL(security_sb_eat_lsm_opts); 929 930 int security_sb_mnt_opts_compat(struct super_block *sb, 931 void *mnt_opts) 932 { 933 return call_int_hook(sb_mnt_opts_compat, 0, sb, mnt_opts); 934 } 935 EXPORT_SYMBOL(security_sb_mnt_opts_compat); 936 937 int security_sb_remount(struct super_block *sb, 938 void *mnt_opts) 939 { 940 return call_int_hook(sb_remount, 0, sb, mnt_opts); 941 } 942 EXPORT_SYMBOL(security_sb_remount); 943 944 int security_sb_kern_mount(struct super_block *sb) 945 { 946 return call_int_hook(sb_kern_mount, 0, sb); 947 } 948 949 int security_sb_show_options(struct seq_file *m, struct super_block *sb) 950 { 951 return call_int_hook(sb_show_options, 0, m, sb); 952 } 953 954 int security_sb_statfs(struct dentry *dentry) 955 { 956 return call_int_hook(sb_statfs, 0, dentry); 957 } 958 959 int security_sb_mount(const char *dev_name, const struct path *path, 960 const char *type, unsigned long flags, void *data) 961 { 962 return call_int_hook(sb_mount, 0, dev_name, path, type, flags, data); 963 } 964 965 int security_sb_umount(struct vfsmount *mnt, int flags) 966 { 967 return call_int_hook(sb_umount, 0, mnt, flags); 968 } 969 970 int security_sb_pivotroot(const struct path *old_path, const struct path *new_path) 971 { 972 return call_int_hook(sb_pivotroot, 0, old_path, new_path); 973 } 974 975 int security_sb_set_mnt_opts(struct super_block *sb, 976 void *mnt_opts, 977 unsigned long kern_flags, 978 unsigned long *set_kern_flags) 979 { 980 return call_int_hook(sb_set_mnt_opts, 981 mnt_opts ? -EOPNOTSUPP : 0, sb, 982 mnt_opts, kern_flags, set_kern_flags); 983 } 984 EXPORT_SYMBOL(security_sb_set_mnt_opts); 985 986 int security_sb_clone_mnt_opts(const struct super_block *oldsb, 987 struct super_block *newsb, 988 unsigned long kern_flags, 989 unsigned long *set_kern_flags) 990 { 991 return call_int_hook(sb_clone_mnt_opts, 0, oldsb, newsb, 992 kern_flags, set_kern_flags); 993 } 994 EXPORT_SYMBOL(security_sb_clone_mnt_opts); 995 996 int security_add_mnt_opt(const char *option, const char *val, int len, 997 void **mnt_opts) 998 { 999 return call_int_hook(sb_add_mnt_opt, -EINVAL, 1000 option, val, len, mnt_opts); 1001 } 1002 EXPORT_SYMBOL(security_add_mnt_opt); 1003 1004 int security_move_mount(const struct path *from_path, const struct path *to_path) 1005 { 1006 return call_int_hook(move_mount, 0, from_path, to_path); 1007 } 1008 1009 int security_path_notify(const struct path *path, u64 mask, 1010 unsigned int obj_type) 1011 { 1012 return call_int_hook(path_notify, 0, path, mask, obj_type); 1013 } 1014 1015 int security_inode_alloc(struct inode *inode) 1016 { 1017 int rc = lsm_inode_alloc(inode); 1018 1019 if (unlikely(rc)) 1020 return rc; 1021 rc = call_int_hook(inode_alloc_security, 0, inode); 1022 if (unlikely(rc)) 1023 security_inode_free(inode); 1024 return rc; 1025 } 1026 1027 static void inode_free_by_rcu(struct rcu_head *head) 1028 { 1029 /* 1030 * The rcu head is at the start of the inode blob 1031 */ 1032 kmem_cache_free(lsm_inode_cache, head); 1033 } 1034 1035 void security_inode_free(struct inode *inode) 1036 { 1037 integrity_inode_free(inode); 1038 call_void_hook(inode_free_security, inode); 1039 /* 1040 * The inode may still be referenced in a path walk and 1041 * a call to security_inode_permission() can be made 1042 * after inode_free_security() is called. Ideally, the VFS 1043 * wouldn't do this, but fixing that is a much harder 1044 * job. For now, simply free the i_security via RCU, and 1045 * leave the current inode->i_security pointer intact. 1046 * The inode will be freed after the RCU grace period too. 1047 */ 1048 if (inode->i_security) 1049 call_rcu((struct rcu_head *)inode->i_security, 1050 inode_free_by_rcu); 1051 } 1052 1053 int security_dentry_init_security(struct dentry *dentry, int mode, 1054 const struct qstr *name, void **ctx, 1055 u32 *ctxlen) 1056 { 1057 return call_int_hook(dentry_init_security, -EOPNOTSUPP, dentry, mode, 1058 name, ctx, ctxlen); 1059 } 1060 EXPORT_SYMBOL(security_dentry_init_security); 1061 1062 int security_dentry_create_files_as(struct dentry *dentry, int mode, 1063 struct qstr *name, 1064 const struct cred *old, struct cred *new) 1065 { 1066 return call_int_hook(dentry_create_files_as, 0, dentry, mode, 1067 name, old, new); 1068 } 1069 EXPORT_SYMBOL(security_dentry_create_files_as); 1070 1071 int security_inode_init_security(struct inode *inode, struct inode *dir, 1072 const struct qstr *qstr, 1073 const initxattrs initxattrs, void *fs_data) 1074 { 1075 struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1]; 1076 struct xattr *lsm_xattr, *evm_xattr, *xattr; 1077 int ret; 1078 1079 if (unlikely(IS_PRIVATE(inode))) 1080 return 0; 1081 1082 if (!initxattrs) 1083 return call_int_hook(inode_init_security, -EOPNOTSUPP, inode, 1084 dir, qstr, NULL, NULL, NULL); 1085 memset(new_xattrs, 0, sizeof(new_xattrs)); 1086 lsm_xattr = new_xattrs; 1087 ret = call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir, qstr, 1088 &lsm_xattr->name, 1089 &lsm_xattr->value, 1090 &lsm_xattr->value_len); 1091 if (ret) 1092 goto out; 1093 1094 evm_xattr = lsm_xattr + 1; 1095 ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr); 1096 if (ret) 1097 goto out; 1098 ret = initxattrs(inode, new_xattrs, fs_data); 1099 out: 1100 for (xattr = new_xattrs; xattr->value != NULL; xattr++) 1101 kfree(xattr->value); 1102 return (ret == -EOPNOTSUPP) ? 0 : ret; 1103 } 1104 EXPORT_SYMBOL(security_inode_init_security); 1105 1106 int security_inode_init_security_anon(struct inode *inode, 1107 const struct qstr *name, 1108 const struct inode *context_inode) 1109 { 1110 return call_int_hook(inode_init_security_anon, 0, inode, name, 1111 context_inode); 1112 } 1113 1114 int security_old_inode_init_security(struct inode *inode, struct inode *dir, 1115 const struct qstr *qstr, const char **name, 1116 void **value, size_t *len) 1117 { 1118 if (unlikely(IS_PRIVATE(inode))) 1119 return -EOPNOTSUPP; 1120 return call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir, 1121 qstr, name, value, len); 1122 } 1123 EXPORT_SYMBOL(security_old_inode_init_security); 1124 1125 #ifdef CONFIG_SECURITY_PATH 1126 int security_path_mknod(const struct path *dir, struct dentry *dentry, umode_t mode, 1127 unsigned int dev) 1128 { 1129 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 1130 return 0; 1131 return call_int_hook(path_mknod, 0, dir, dentry, mode, dev); 1132 } 1133 EXPORT_SYMBOL(security_path_mknod); 1134 1135 int security_path_mkdir(const struct path *dir, struct dentry *dentry, umode_t mode) 1136 { 1137 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 1138 return 0; 1139 return call_int_hook(path_mkdir, 0, dir, dentry, mode); 1140 } 1141 EXPORT_SYMBOL(security_path_mkdir); 1142 1143 int security_path_rmdir(const struct path *dir, struct dentry *dentry) 1144 { 1145 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 1146 return 0; 1147 return call_int_hook(path_rmdir, 0, dir, dentry); 1148 } 1149 1150 int security_path_unlink(const struct path *dir, struct dentry *dentry) 1151 { 1152 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 1153 return 0; 1154 return call_int_hook(path_unlink, 0, dir, dentry); 1155 } 1156 EXPORT_SYMBOL(security_path_unlink); 1157 1158 int security_path_symlink(const struct path *dir, struct dentry *dentry, 1159 const char *old_name) 1160 { 1161 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 1162 return 0; 1163 return call_int_hook(path_symlink, 0, dir, dentry, old_name); 1164 } 1165 1166 int security_path_link(struct dentry *old_dentry, const struct path *new_dir, 1167 struct dentry *new_dentry) 1168 { 1169 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)))) 1170 return 0; 1171 return call_int_hook(path_link, 0, old_dentry, new_dir, new_dentry); 1172 } 1173 1174 int security_path_rename(const struct path *old_dir, struct dentry *old_dentry, 1175 const struct path *new_dir, struct dentry *new_dentry, 1176 unsigned int flags) 1177 { 1178 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) || 1179 (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry))))) 1180 return 0; 1181 1182 if (flags & RENAME_EXCHANGE) { 1183 int err = call_int_hook(path_rename, 0, new_dir, new_dentry, 1184 old_dir, old_dentry); 1185 if (err) 1186 return err; 1187 } 1188 1189 return call_int_hook(path_rename, 0, old_dir, old_dentry, new_dir, 1190 new_dentry); 1191 } 1192 EXPORT_SYMBOL(security_path_rename); 1193 1194 int security_path_truncate(const struct path *path) 1195 { 1196 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 1197 return 0; 1198 return call_int_hook(path_truncate, 0, path); 1199 } 1200 1201 int security_path_chmod(const struct path *path, umode_t mode) 1202 { 1203 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 1204 return 0; 1205 return call_int_hook(path_chmod, 0, path, mode); 1206 } 1207 1208 int security_path_chown(const struct path *path, kuid_t uid, kgid_t gid) 1209 { 1210 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 1211 return 0; 1212 return call_int_hook(path_chown, 0, path, uid, gid); 1213 } 1214 1215 int security_path_chroot(const struct path *path) 1216 { 1217 return call_int_hook(path_chroot, 0, path); 1218 } 1219 #endif 1220 1221 int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode) 1222 { 1223 if (unlikely(IS_PRIVATE(dir))) 1224 return 0; 1225 return call_int_hook(inode_create, 0, dir, dentry, mode); 1226 } 1227 EXPORT_SYMBOL_GPL(security_inode_create); 1228 1229 int security_inode_link(struct dentry *old_dentry, struct inode *dir, 1230 struct dentry *new_dentry) 1231 { 1232 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)))) 1233 return 0; 1234 return call_int_hook(inode_link, 0, old_dentry, dir, new_dentry); 1235 } 1236 1237 int security_inode_unlink(struct inode *dir, struct dentry *dentry) 1238 { 1239 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1240 return 0; 1241 return call_int_hook(inode_unlink, 0, dir, dentry); 1242 } 1243 1244 int security_inode_symlink(struct inode *dir, struct dentry *dentry, 1245 const char *old_name) 1246 { 1247 if (unlikely(IS_PRIVATE(dir))) 1248 return 0; 1249 return call_int_hook(inode_symlink, 0, dir, dentry, old_name); 1250 } 1251 1252 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 1253 { 1254 if (unlikely(IS_PRIVATE(dir))) 1255 return 0; 1256 return call_int_hook(inode_mkdir, 0, dir, dentry, mode); 1257 } 1258 EXPORT_SYMBOL_GPL(security_inode_mkdir); 1259 1260 int security_inode_rmdir(struct inode *dir, struct dentry *dentry) 1261 { 1262 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1263 return 0; 1264 return call_int_hook(inode_rmdir, 0, dir, dentry); 1265 } 1266 1267 int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) 1268 { 1269 if (unlikely(IS_PRIVATE(dir))) 1270 return 0; 1271 return call_int_hook(inode_mknod, 0, dir, dentry, mode, dev); 1272 } 1273 1274 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry, 1275 struct inode *new_dir, struct dentry *new_dentry, 1276 unsigned int flags) 1277 { 1278 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) || 1279 (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry))))) 1280 return 0; 1281 1282 if (flags & RENAME_EXCHANGE) { 1283 int err = call_int_hook(inode_rename, 0, new_dir, new_dentry, 1284 old_dir, old_dentry); 1285 if (err) 1286 return err; 1287 } 1288 1289 return call_int_hook(inode_rename, 0, old_dir, old_dentry, 1290 new_dir, new_dentry); 1291 } 1292 1293 int security_inode_readlink(struct dentry *dentry) 1294 { 1295 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1296 return 0; 1297 return call_int_hook(inode_readlink, 0, dentry); 1298 } 1299 1300 int security_inode_follow_link(struct dentry *dentry, struct inode *inode, 1301 bool rcu) 1302 { 1303 if (unlikely(IS_PRIVATE(inode))) 1304 return 0; 1305 return call_int_hook(inode_follow_link, 0, dentry, inode, rcu); 1306 } 1307 1308 int security_inode_permission(struct inode *inode, int mask) 1309 { 1310 if (unlikely(IS_PRIVATE(inode))) 1311 return 0; 1312 return call_int_hook(inode_permission, 0, inode, mask); 1313 } 1314 1315 int security_inode_setattr(struct dentry *dentry, struct iattr *attr) 1316 { 1317 int ret; 1318 1319 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1320 return 0; 1321 ret = call_int_hook(inode_setattr, 0, dentry, attr); 1322 if (ret) 1323 return ret; 1324 return evm_inode_setattr(dentry, attr); 1325 } 1326 EXPORT_SYMBOL_GPL(security_inode_setattr); 1327 1328 int security_inode_getattr(const struct path *path) 1329 { 1330 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 1331 return 0; 1332 return call_int_hook(inode_getattr, 0, path); 1333 } 1334 1335 int security_inode_setxattr(struct user_namespace *mnt_userns, 1336 struct dentry *dentry, const char *name, 1337 const void *value, size_t size, int flags) 1338 { 1339 int ret; 1340 1341 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1342 return 0; 1343 /* 1344 * SELinux and Smack integrate the cap call, 1345 * so assume that all LSMs supplying this call do so. 1346 */ 1347 ret = call_int_hook(inode_setxattr, 1, mnt_userns, dentry, name, value, 1348 size, flags); 1349 1350 if (ret == 1) 1351 ret = cap_inode_setxattr(dentry, name, value, size, flags); 1352 if (ret) 1353 return ret; 1354 ret = ima_inode_setxattr(dentry, name, value, size); 1355 if (ret) 1356 return ret; 1357 return evm_inode_setxattr(dentry, name, value, size); 1358 } 1359 1360 void security_inode_post_setxattr(struct dentry *dentry, const char *name, 1361 const void *value, size_t size, int flags) 1362 { 1363 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1364 return; 1365 call_void_hook(inode_post_setxattr, dentry, name, value, size, flags); 1366 evm_inode_post_setxattr(dentry, name, value, size); 1367 } 1368 1369 int security_inode_getxattr(struct dentry *dentry, const char *name) 1370 { 1371 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1372 return 0; 1373 return call_int_hook(inode_getxattr, 0, dentry, name); 1374 } 1375 1376 int security_inode_listxattr(struct dentry *dentry) 1377 { 1378 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1379 return 0; 1380 return call_int_hook(inode_listxattr, 0, dentry); 1381 } 1382 1383 int security_inode_removexattr(struct user_namespace *mnt_userns, 1384 struct dentry *dentry, const char *name) 1385 { 1386 int ret; 1387 1388 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1389 return 0; 1390 /* 1391 * SELinux and Smack integrate the cap call, 1392 * so assume that all LSMs supplying this call do so. 1393 */ 1394 ret = call_int_hook(inode_removexattr, 1, mnt_userns, dentry, name); 1395 if (ret == 1) 1396 ret = cap_inode_removexattr(mnt_userns, dentry, name); 1397 if (ret) 1398 return ret; 1399 ret = ima_inode_removexattr(dentry, name); 1400 if (ret) 1401 return ret; 1402 return evm_inode_removexattr(dentry, name); 1403 } 1404 1405 int security_inode_need_killpriv(struct dentry *dentry) 1406 { 1407 return call_int_hook(inode_need_killpriv, 0, dentry); 1408 } 1409 1410 int security_inode_killpriv(struct user_namespace *mnt_userns, 1411 struct dentry *dentry) 1412 { 1413 return call_int_hook(inode_killpriv, 0, mnt_userns, dentry); 1414 } 1415 1416 int security_inode_getsecurity(struct user_namespace *mnt_userns, 1417 struct inode *inode, const char *name, 1418 void **buffer, bool alloc) 1419 { 1420 struct security_hook_list *hp; 1421 int rc; 1422 1423 if (unlikely(IS_PRIVATE(inode))) 1424 return LSM_RET_DEFAULT(inode_getsecurity); 1425 /* 1426 * Only one module will provide an attribute with a given name. 1427 */ 1428 hlist_for_each_entry(hp, &security_hook_heads.inode_getsecurity, list) { 1429 rc = hp->hook.inode_getsecurity(mnt_userns, inode, name, buffer, alloc); 1430 if (rc != LSM_RET_DEFAULT(inode_getsecurity)) 1431 return rc; 1432 } 1433 return LSM_RET_DEFAULT(inode_getsecurity); 1434 } 1435 1436 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags) 1437 { 1438 struct security_hook_list *hp; 1439 int rc; 1440 1441 if (unlikely(IS_PRIVATE(inode))) 1442 return LSM_RET_DEFAULT(inode_setsecurity); 1443 /* 1444 * Only one module will provide an attribute with a given name. 1445 */ 1446 hlist_for_each_entry(hp, &security_hook_heads.inode_setsecurity, list) { 1447 rc = hp->hook.inode_setsecurity(inode, name, value, size, 1448 flags); 1449 if (rc != LSM_RET_DEFAULT(inode_setsecurity)) 1450 return rc; 1451 } 1452 return LSM_RET_DEFAULT(inode_setsecurity); 1453 } 1454 1455 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size) 1456 { 1457 if (unlikely(IS_PRIVATE(inode))) 1458 return 0; 1459 return call_int_hook(inode_listsecurity, 0, inode, buffer, buffer_size); 1460 } 1461 EXPORT_SYMBOL(security_inode_listsecurity); 1462 1463 void security_inode_getsecid(struct inode *inode, u32 *secid) 1464 { 1465 call_void_hook(inode_getsecid, inode, secid); 1466 } 1467 1468 int security_inode_copy_up(struct dentry *src, struct cred **new) 1469 { 1470 return call_int_hook(inode_copy_up, 0, src, new); 1471 } 1472 EXPORT_SYMBOL(security_inode_copy_up); 1473 1474 int security_inode_copy_up_xattr(const char *name) 1475 { 1476 struct security_hook_list *hp; 1477 int rc; 1478 1479 /* 1480 * The implementation can return 0 (accept the xattr), 1 (discard the 1481 * xattr), -EOPNOTSUPP if it does not know anything about the xattr or 1482 * any other error code incase of an error. 1483 */ 1484 hlist_for_each_entry(hp, 1485 &security_hook_heads.inode_copy_up_xattr, list) { 1486 rc = hp->hook.inode_copy_up_xattr(name); 1487 if (rc != LSM_RET_DEFAULT(inode_copy_up_xattr)) 1488 return rc; 1489 } 1490 1491 return LSM_RET_DEFAULT(inode_copy_up_xattr); 1492 } 1493 EXPORT_SYMBOL(security_inode_copy_up_xattr); 1494 1495 int security_kernfs_init_security(struct kernfs_node *kn_dir, 1496 struct kernfs_node *kn) 1497 { 1498 return call_int_hook(kernfs_init_security, 0, kn_dir, kn); 1499 } 1500 1501 int security_file_permission(struct file *file, int mask) 1502 { 1503 int ret; 1504 1505 ret = call_int_hook(file_permission, 0, file, mask); 1506 if (ret) 1507 return ret; 1508 1509 return fsnotify_perm(file, mask); 1510 } 1511 1512 int security_file_alloc(struct file *file) 1513 { 1514 int rc = lsm_file_alloc(file); 1515 1516 if (rc) 1517 return rc; 1518 rc = call_int_hook(file_alloc_security, 0, file); 1519 if (unlikely(rc)) 1520 security_file_free(file); 1521 return rc; 1522 } 1523 1524 void security_file_free(struct file *file) 1525 { 1526 void *blob; 1527 1528 call_void_hook(file_free_security, file); 1529 1530 blob = file->f_security; 1531 if (blob) { 1532 file->f_security = NULL; 1533 kmem_cache_free(lsm_file_cache, blob); 1534 } 1535 } 1536 1537 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 1538 { 1539 return call_int_hook(file_ioctl, 0, file, cmd, arg); 1540 } 1541 EXPORT_SYMBOL_GPL(security_file_ioctl); 1542 1543 static inline unsigned long mmap_prot(struct file *file, unsigned long prot) 1544 { 1545 /* 1546 * Does we have PROT_READ and does the application expect 1547 * it to imply PROT_EXEC? If not, nothing to talk about... 1548 */ 1549 if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ) 1550 return prot; 1551 if (!(current->personality & READ_IMPLIES_EXEC)) 1552 return prot; 1553 /* 1554 * if that's an anonymous mapping, let it. 1555 */ 1556 if (!file) 1557 return prot | PROT_EXEC; 1558 /* 1559 * ditto if it's not on noexec mount, except that on !MMU we need 1560 * NOMMU_MAP_EXEC (== VM_MAYEXEC) in this case 1561 */ 1562 if (!path_noexec(&file->f_path)) { 1563 #ifndef CONFIG_MMU 1564 if (file->f_op->mmap_capabilities) { 1565 unsigned caps = file->f_op->mmap_capabilities(file); 1566 if (!(caps & NOMMU_MAP_EXEC)) 1567 return prot; 1568 } 1569 #endif 1570 return prot | PROT_EXEC; 1571 } 1572 /* anything on noexec mount won't get PROT_EXEC */ 1573 return prot; 1574 } 1575 1576 int security_mmap_file(struct file *file, unsigned long prot, 1577 unsigned long flags) 1578 { 1579 int ret; 1580 ret = call_int_hook(mmap_file, 0, file, prot, 1581 mmap_prot(file, prot), flags); 1582 if (ret) 1583 return ret; 1584 return ima_file_mmap(file, prot); 1585 } 1586 1587 int security_mmap_addr(unsigned long addr) 1588 { 1589 return call_int_hook(mmap_addr, 0, addr); 1590 } 1591 1592 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot, 1593 unsigned long prot) 1594 { 1595 int ret; 1596 1597 ret = call_int_hook(file_mprotect, 0, vma, reqprot, prot); 1598 if (ret) 1599 return ret; 1600 return ima_file_mprotect(vma, prot); 1601 } 1602 1603 int security_file_lock(struct file *file, unsigned int cmd) 1604 { 1605 return call_int_hook(file_lock, 0, file, cmd); 1606 } 1607 1608 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg) 1609 { 1610 return call_int_hook(file_fcntl, 0, file, cmd, arg); 1611 } 1612 1613 void security_file_set_fowner(struct file *file) 1614 { 1615 call_void_hook(file_set_fowner, file); 1616 } 1617 1618 int security_file_send_sigiotask(struct task_struct *tsk, 1619 struct fown_struct *fown, int sig) 1620 { 1621 return call_int_hook(file_send_sigiotask, 0, tsk, fown, sig); 1622 } 1623 1624 int security_file_receive(struct file *file) 1625 { 1626 return call_int_hook(file_receive, 0, file); 1627 } 1628 1629 int security_file_open(struct file *file) 1630 { 1631 int ret; 1632 1633 ret = call_int_hook(file_open, 0, file); 1634 if (ret) 1635 return ret; 1636 1637 return fsnotify_perm(file, MAY_OPEN); 1638 } 1639 1640 int security_task_alloc(struct task_struct *task, unsigned long clone_flags) 1641 { 1642 int rc = lsm_task_alloc(task); 1643 1644 if (rc) 1645 return rc; 1646 rc = call_int_hook(task_alloc, 0, task, clone_flags); 1647 if (unlikely(rc)) 1648 security_task_free(task); 1649 return rc; 1650 } 1651 1652 void security_task_free(struct task_struct *task) 1653 { 1654 call_void_hook(task_free, task); 1655 1656 kfree(task->security); 1657 task->security = NULL; 1658 } 1659 1660 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp) 1661 { 1662 int rc = lsm_cred_alloc(cred, gfp); 1663 1664 if (rc) 1665 return rc; 1666 1667 rc = call_int_hook(cred_alloc_blank, 0, cred, gfp); 1668 if (unlikely(rc)) 1669 security_cred_free(cred); 1670 return rc; 1671 } 1672 1673 void security_cred_free(struct cred *cred) 1674 { 1675 /* 1676 * There is a failure case in prepare_creds() that 1677 * may result in a call here with ->security being NULL. 1678 */ 1679 if (unlikely(cred->security == NULL)) 1680 return; 1681 1682 call_void_hook(cred_free, cred); 1683 1684 kfree(cred->security); 1685 cred->security = NULL; 1686 } 1687 1688 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp) 1689 { 1690 int rc = lsm_cred_alloc(new, gfp); 1691 1692 if (rc) 1693 return rc; 1694 1695 rc = call_int_hook(cred_prepare, 0, new, old, gfp); 1696 if (unlikely(rc)) 1697 security_cred_free(new); 1698 return rc; 1699 } 1700 1701 void security_transfer_creds(struct cred *new, const struct cred *old) 1702 { 1703 call_void_hook(cred_transfer, new, old); 1704 } 1705 1706 void security_cred_getsecid(const struct cred *c, u32 *secid) 1707 { 1708 *secid = 0; 1709 call_void_hook(cred_getsecid, c, secid); 1710 } 1711 EXPORT_SYMBOL(security_cred_getsecid); 1712 1713 int security_kernel_act_as(struct cred *new, u32 secid) 1714 { 1715 return call_int_hook(kernel_act_as, 0, new, secid); 1716 } 1717 1718 int security_kernel_create_files_as(struct cred *new, struct inode *inode) 1719 { 1720 return call_int_hook(kernel_create_files_as, 0, new, inode); 1721 } 1722 1723 int security_kernel_module_request(char *kmod_name) 1724 { 1725 int ret; 1726 1727 ret = call_int_hook(kernel_module_request, 0, kmod_name); 1728 if (ret) 1729 return ret; 1730 return integrity_kernel_module_request(kmod_name); 1731 } 1732 1733 int security_kernel_read_file(struct file *file, enum kernel_read_file_id id, 1734 bool contents) 1735 { 1736 int ret; 1737 1738 ret = call_int_hook(kernel_read_file, 0, file, id, contents); 1739 if (ret) 1740 return ret; 1741 return ima_read_file(file, id, contents); 1742 } 1743 EXPORT_SYMBOL_GPL(security_kernel_read_file); 1744 1745 int security_kernel_post_read_file(struct file *file, char *buf, loff_t size, 1746 enum kernel_read_file_id id) 1747 { 1748 int ret; 1749 1750 ret = call_int_hook(kernel_post_read_file, 0, file, buf, size, id); 1751 if (ret) 1752 return ret; 1753 return ima_post_read_file(file, buf, size, id); 1754 } 1755 EXPORT_SYMBOL_GPL(security_kernel_post_read_file); 1756 1757 int security_kernel_load_data(enum kernel_load_data_id id, bool contents) 1758 { 1759 int ret; 1760 1761 ret = call_int_hook(kernel_load_data, 0, id, contents); 1762 if (ret) 1763 return ret; 1764 return ima_load_data(id, contents); 1765 } 1766 EXPORT_SYMBOL_GPL(security_kernel_load_data); 1767 1768 int security_kernel_post_load_data(char *buf, loff_t size, 1769 enum kernel_load_data_id id, 1770 char *description) 1771 { 1772 int ret; 1773 1774 ret = call_int_hook(kernel_post_load_data, 0, buf, size, id, 1775 description); 1776 if (ret) 1777 return ret; 1778 return ima_post_load_data(buf, size, id, description); 1779 } 1780 EXPORT_SYMBOL_GPL(security_kernel_post_load_data); 1781 1782 int security_task_fix_setuid(struct cred *new, const struct cred *old, 1783 int flags) 1784 { 1785 return call_int_hook(task_fix_setuid, 0, new, old, flags); 1786 } 1787 1788 int security_task_fix_setgid(struct cred *new, const struct cred *old, 1789 int flags) 1790 { 1791 return call_int_hook(task_fix_setgid, 0, new, old, flags); 1792 } 1793 1794 int security_task_setpgid(struct task_struct *p, pid_t pgid) 1795 { 1796 return call_int_hook(task_setpgid, 0, p, pgid); 1797 } 1798 1799 int security_task_getpgid(struct task_struct *p) 1800 { 1801 return call_int_hook(task_getpgid, 0, p); 1802 } 1803 1804 int security_task_getsid(struct task_struct *p) 1805 { 1806 return call_int_hook(task_getsid, 0, p); 1807 } 1808 1809 void security_task_getsecid_subj(struct task_struct *p, u32 *secid) 1810 { 1811 *secid = 0; 1812 call_void_hook(task_getsecid_subj, p, secid); 1813 } 1814 EXPORT_SYMBOL(security_task_getsecid_subj); 1815 1816 void security_task_getsecid_obj(struct task_struct *p, u32 *secid) 1817 { 1818 *secid = 0; 1819 call_void_hook(task_getsecid_obj, p, secid); 1820 } 1821 EXPORT_SYMBOL(security_task_getsecid_obj); 1822 1823 int security_task_setnice(struct task_struct *p, int nice) 1824 { 1825 return call_int_hook(task_setnice, 0, p, nice); 1826 } 1827 1828 int security_task_setioprio(struct task_struct *p, int ioprio) 1829 { 1830 return call_int_hook(task_setioprio, 0, p, ioprio); 1831 } 1832 1833 int security_task_getioprio(struct task_struct *p) 1834 { 1835 return call_int_hook(task_getioprio, 0, p); 1836 } 1837 1838 int security_task_prlimit(const struct cred *cred, const struct cred *tcred, 1839 unsigned int flags) 1840 { 1841 return call_int_hook(task_prlimit, 0, cred, tcred, flags); 1842 } 1843 1844 int security_task_setrlimit(struct task_struct *p, unsigned int resource, 1845 struct rlimit *new_rlim) 1846 { 1847 return call_int_hook(task_setrlimit, 0, p, resource, new_rlim); 1848 } 1849 1850 int security_task_setscheduler(struct task_struct *p) 1851 { 1852 return call_int_hook(task_setscheduler, 0, p); 1853 } 1854 1855 int security_task_getscheduler(struct task_struct *p) 1856 { 1857 return call_int_hook(task_getscheduler, 0, p); 1858 } 1859 1860 int security_task_movememory(struct task_struct *p) 1861 { 1862 return call_int_hook(task_movememory, 0, p); 1863 } 1864 1865 int security_task_kill(struct task_struct *p, struct kernel_siginfo *info, 1866 int sig, const struct cred *cred) 1867 { 1868 return call_int_hook(task_kill, 0, p, info, sig, cred); 1869 } 1870 1871 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3, 1872 unsigned long arg4, unsigned long arg5) 1873 { 1874 int thisrc; 1875 int rc = LSM_RET_DEFAULT(task_prctl); 1876 struct security_hook_list *hp; 1877 1878 hlist_for_each_entry(hp, &security_hook_heads.task_prctl, list) { 1879 thisrc = hp->hook.task_prctl(option, arg2, arg3, arg4, arg5); 1880 if (thisrc != LSM_RET_DEFAULT(task_prctl)) { 1881 rc = thisrc; 1882 if (thisrc != 0) 1883 break; 1884 } 1885 } 1886 return rc; 1887 } 1888 1889 void security_task_to_inode(struct task_struct *p, struct inode *inode) 1890 { 1891 call_void_hook(task_to_inode, p, inode); 1892 } 1893 1894 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag) 1895 { 1896 return call_int_hook(ipc_permission, 0, ipcp, flag); 1897 } 1898 1899 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid) 1900 { 1901 *secid = 0; 1902 call_void_hook(ipc_getsecid, ipcp, secid); 1903 } 1904 1905 int security_msg_msg_alloc(struct msg_msg *msg) 1906 { 1907 int rc = lsm_msg_msg_alloc(msg); 1908 1909 if (unlikely(rc)) 1910 return rc; 1911 rc = call_int_hook(msg_msg_alloc_security, 0, msg); 1912 if (unlikely(rc)) 1913 security_msg_msg_free(msg); 1914 return rc; 1915 } 1916 1917 void security_msg_msg_free(struct msg_msg *msg) 1918 { 1919 call_void_hook(msg_msg_free_security, msg); 1920 kfree(msg->security); 1921 msg->security = NULL; 1922 } 1923 1924 int security_msg_queue_alloc(struct kern_ipc_perm *msq) 1925 { 1926 int rc = lsm_ipc_alloc(msq); 1927 1928 if (unlikely(rc)) 1929 return rc; 1930 rc = call_int_hook(msg_queue_alloc_security, 0, msq); 1931 if (unlikely(rc)) 1932 security_msg_queue_free(msq); 1933 return rc; 1934 } 1935 1936 void security_msg_queue_free(struct kern_ipc_perm *msq) 1937 { 1938 call_void_hook(msg_queue_free_security, msq); 1939 kfree(msq->security); 1940 msq->security = NULL; 1941 } 1942 1943 int security_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg) 1944 { 1945 return call_int_hook(msg_queue_associate, 0, msq, msqflg); 1946 } 1947 1948 int security_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd) 1949 { 1950 return call_int_hook(msg_queue_msgctl, 0, msq, cmd); 1951 } 1952 1953 int security_msg_queue_msgsnd(struct kern_ipc_perm *msq, 1954 struct msg_msg *msg, int msqflg) 1955 { 1956 return call_int_hook(msg_queue_msgsnd, 0, msq, msg, msqflg); 1957 } 1958 1959 int security_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg, 1960 struct task_struct *target, long type, int mode) 1961 { 1962 return call_int_hook(msg_queue_msgrcv, 0, msq, msg, target, type, mode); 1963 } 1964 1965 int security_shm_alloc(struct kern_ipc_perm *shp) 1966 { 1967 int rc = lsm_ipc_alloc(shp); 1968 1969 if (unlikely(rc)) 1970 return rc; 1971 rc = call_int_hook(shm_alloc_security, 0, shp); 1972 if (unlikely(rc)) 1973 security_shm_free(shp); 1974 return rc; 1975 } 1976 1977 void security_shm_free(struct kern_ipc_perm *shp) 1978 { 1979 call_void_hook(shm_free_security, shp); 1980 kfree(shp->security); 1981 shp->security = NULL; 1982 } 1983 1984 int security_shm_associate(struct kern_ipc_perm *shp, int shmflg) 1985 { 1986 return call_int_hook(shm_associate, 0, shp, shmflg); 1987 } 1988 1989 int security_shm_shmctl(struct kern_ipc_perm *shp, int cmd) 1990 { 1991 return call_int_hook(shm_shmctl, 0, shp, cmd); 1992 } 1993 1994 int security_shm_shmat(struct kern_ipc_perm *shp, char __user *shmaddr, int shmflg) 1995 { 1996 return call_int_hook(shm_shmat, 0, shp, shmaddr, shmflg); 1997 } 1998 1999 int security_sem_alloc(struct kern_ipc_perm *sma) 2000 { 2001 int rc = lsm_ipc_alloc(sma); 2002 2003 if (unlikely(rc)) 2004 return rc; 2005 rc = call_int_hook(sem_alloc_security, 0, sma); 2006 if (unlikely(rc)) 2007 security_sem_free(sma); 2008 return rc; 2009 } 2010 2011 void security_sem_free(struct kern_ipc_perm *sma) 2012 { 2013 call_void_hook(sem_free_security, sma); 2014 kfree(sma->security); 2015 sma->security = NULL; 2016 } 2017 2018 int security_sem_associate(struct kern_ipc_perm *sma, int semflg) 2019 { 2020 return call_int_hook(sem_associate, 0, sma, semflg); 2021 } 2022 2023 int security_sem_semctl(struct kern_ipc_perm *sma, int cmd) 2024 { 2025 return call_int_hook(sem_semctl, 0, sma, cmd); 2026 } 2027 2028 int security_sem_semop(struct kern_ipc_perm *sma, struct sembuf *sops, 2029 unsigned nsops, int alter) 2030 { 2031 return call_int_hook(sem_semop, 0, sma, sops, nsops, alter); 2032 } 2033 2034 void security_d_instantiate(struct dentry *dentry, struct inode *inode) 2035 { 2036 if (unlikely(inode && IS_PRIVATE(inode))) 2037 return; 2038 call_void_hook(d_instantiate, dentry, inode); 2039 } 2040 EXPORT_SYMBOL(security_d_instantiate); 2041 2042 int security_getprocattr(struct task_struct *p, const char *lsm, char *name, 2043 char **value) 2044 { 2045 struct security_hook_list *hp; 2046 2047 hlist_for_each_entry(hp, &security_hook_heads.getprocattr, list) { 2048 if (lsm != NULL && strcmp(lsm, hp->lsm)) 2049 continue; 2050 return hp->hook.getprocattr(p, name, value); 2051 } 2052 return LSM_RET_DEFAULT(getprocattr); 2053 } 2054 2055 int security_setprocattr(const char *lsm, const char *name, void *value, 2056 size_t size) 2057 { 2058 struct security_hook_list *hp; 2059 2060 hlist_for_each_entry(hp, &security_hook_heads.setprocattr, list) { 2061 if (lsm != NULL && strcmp(lsm, hp->lsm)) 2062 continue; 2063 return hp->hook.setprocattr(name, value, size); 2064 } 2065 return LSM_RET_DEFAULT(setprocattr); 2066 } 2067 2068 int security_netlink_send(struct sock *sk, struct sk_buff *skb) 2069 { 2070 return call_int_hook(netlink_send, 0, sk, skb); 2071 } 2072 2073 int security_ismaclabel(const char *name) 2074 { 2075 return call_int_hook(ismaclabel, 0, name); 2076 } 2077 EXPORT_SYMBOL(security_ismaclabel); 2078 2079 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen) 2080 { 2081 struct security_hook_list *hp; 2082 int rc; 2083 2084 /* 2085 * Currently, only one LSM can implement secid_to_secctx (i.e this 2086 * LSM hook is not "stackable"). 2087 */ 2088 hlist_for_each_entry(hp, &security_hook_heads.secid_to_secctx, list) { 2089 rc = hp->hook.secid_to_secctx(secid, secdata, seclen); 2090 if (rc != LSM_RET_DEFAULT(secid_to_secctx)) 2091 return rc; 2092 } 2093 2094 return LSM_RET_DEFAULT(secid_to_secctx); 2095 } 2096 EXPORT_SYMBOL(security_secid_to_secctx); 2097 2098 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid) 2099 { 2100 *secid = 0; 2101 return call_int_hook(secctx_to_secid, 0, secdata, seclen, secid); 2102 } 2103 EXPORT_SYMBOL(security_secctx_to_secid); 2104 2105 void security_release_secctx(char *secdata, u32 seclen) 2106 { 2107 call_void_hook(release_secctx, secdata, seclen); 2108 } 2109 EXPORT_SYMBOL(security_release_secctx); 2110 2111 void security_inode_invalidate_secctx(struct inode *inode) 2112 { 2113 call_void_hook(inode_invalidate_secctx, inode); 2114 } 2115 EXPORT_SYMBOL(security_inode_invalidate_secctx); 2116 2117 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen) 2118 { 2119 return call_int_hook(inode_notifysecctx, 0, inode, ctx, ctxlen); 2120 } 2121 EXPORT_SYMBOL(security_inode_notifysecctx); 2122 2123 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen) 2124 { 2125 return call_int_hook(inode_setsecctx, 0, dentry, ctx, ctxlen); 2126 } 2127 EXPORT_SYMBOL(security_inode_setsecctx); 2128 2129 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen) 2130 { 2131 return call_int_hook(inode_getsecctx, -EOPNOTSUPP, inode, ctx, ctxlen); 2132 } 2133 EXPORT_SYMBOL(security_inode_getsecctx); 2134 2135 #ifdef CONFIG_WATCH_QUEUE 2136 int security_post_notification(const struct cred *w_cred, 2137 const struct cred *cred, 2138 struct watch_notification *n) 2139 { 2140 return call_int_hook(post_notification, 0, w_cred, cred, n); 2141 } 2142 #endif /* CONFIG_WATCH_QUEUE */ 2143 2144 #ifdef CONFIG_KEY_NOTIFICATIONS 2145 int security_watch_key(struct key *key) 2146 { 2147 return call_int_hook(watch_key, 0, key); 2148 } 2149 #endif 2150 2151 #ifdef CONFIG_SECURITY_NETWORK 2152 2153 int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk) 2154 { 2155 return call_int_hook(unix_stream_connect, 0, sock, other, newsk); 2156 } 2157 EXPORT_SYMBOL(security_unix_stream_connect); 2158 2159 int security_unix_may_send(struct socket *sock, struct socket *other) 2160 { 2161 return call_int_hook(unix_may_send, 0, sock, other); 2162 } 2163 EXPORT_SYMBOL(security_unix_may_send); 2164 2165 int security_socket_create(int family, int type, int protocol, int kern) 2166 { 2167 return call_int_hook(socket_create, 0, family, type, protocol, kern); 2168 } 2169 2170 int security_socket_post_create(struct socket *sock, int family, 2171 int type, int protocol, int kern) 2172 { 2173 return call_int_hook(socket_post_create, 0, sock, family, type, 2174 protocol, kern); 2175 } 2176 2177 int security_socket_socketpair(struct socket *socka, struct socket *sockb) 2178 { 2179 return call_int_hook(socket_socketpair, 0, socka, sockb); 2180 } 2181 EXPORT_SYMBOL(security_socket_socketpair); 2182 2183 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen) 2184 { 2185 return call_int_hook(socket_bind, 0, sock, address, addrlen); 2186 } 2187 2188 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen) 2189 { 2190 return call_int_hook(socket_connect, 0, sock, address, addrlen); 2191 } 2192 2193 int security_socket_listen(struct socket *sock, int backlog) 2194 { 2195 return call_int_hook(socket_listen, 0, sock, backlog); 2196 } 2197 2198 int security_socket_accept(struct socket *sock, struct socket *newsock) 2199 { 2200 return call_int_hook(socket_accept, 0, sock, newsock); 2201 } 2202 2203 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size) 2204 { 2205 return call_int_hook(socket_sendmsg, 0, sock, msg, size); 2206 } 2207 2208 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg, 2209 int size, int flags) 2210 { 2211 return call_int_hook(socket_recvmsg, 0, sock, msg, size, flags); 2212 } 2213 2214 int security_socket_getsockname(struct socket *sock) 2215 { 2216 return call_int_hook(socket_getsockname, 0, sock); 2217 } 2218 2219 int security_socket_getpeername(struct socket *sock) 2220 { 2221 return call_int_hook(socket_getpeername, 0, sock); 2222 } 2223 2224 int security_socket_getsockopt(struct socket *sock, int level, int optname) 2225 { 2226 return call_int_hook(socket_getsockopt, 0, sock, level, optname); 2227 } 2228 2229 int security_socket_setsockopt(struct socket *sock, int level, int optname) 2230 { 2231 return call_int_hook(socket_setsockopt, 0, sock, level, optname); 2232 } 2233 2234 int security_socket_shutdown(struct socket *sock, int how) 2235 { 2236 return call_int_hook(socket_shutdown, 0, sock, how); 2237 } 2238 2239 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb) 2240 { 2241 return call_int_hook(socket_sock_rcv_skb, 0, sk, skb); 2242 } 2243 EXPORT_SYMBOL(security_sock_rcv_skb); 2244 2245 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval, 2246 int __user *optlen, unsigned len) 2247 { 2248 return call_int_hook(socket_getpeersec_stream, -ENOPROTOOPT, sock, 2249 optval, optlen, len); 2250 } 2251 2252 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid) 2253 { 2254 return call_int_hook(socket_getpeersec_dgram, -ENOPROTOOPT, sock, 2255 skb, secid); 2256 } 2257 EXPORT_SYMBOL(security_socket_getpeersec_dgram); 2258 2259 int security_sk_alloc(struct sock *sk, int family, gfp_t priority) 2260 { 2261 return call_int_hook(sk_alloc_security, 0, sk, family, priority); 2262 } 2263 2264 void security_sk_free(struct sock *sk) 2265 { 2266 call_void_hook(sk_free_security, sk); 2267 } 2268 2269 void security_sk_clone(const struct sock *sk, struct sock *newsk) 2270 { 2271 call_void_hook(sk_clone_security, sk, newsk); 2272 } 2273 EXPORT_SYMBOL(security_sk_clone); 2274 2275 void security_sk_classify_flow(struct sock *sk, struct flowi_common *flic) 2276 { 2277 call_void_hook(sk_getsecid, sk, &flic->flowic_secid); 2278 } 2279 EXPORT_SYMBOL(security_sk_classify_flow); 2280 2281 void security_req_classify_flow(const struct request_sock *req, 2282 struct flowi_common *flic) 2283 { 2284 call_void_hook(req_classify_flow, req, flic); 2285 } 2286 EXPORT_SYMBOL(security_req_classify_flow); 2287 2288 void security_sock_graft(struct sock *sk, struct socket *parent) 2289 { 2290 call_void_hook(sock_graft, sk, parent); 2291 } 2292 EXPORT_SYMBOL(security_sock_graft); 2293 2294 int security_inet_conn_request(const struct sock *sk, 2295 struct sk_buff *skb, struct request_sock *req) 2296 { 2297 return call_int_hook(inet_conn_request, 0, sk, skb, req); 2298 } 2299 EXPORT_SYMBOL(security_inet_conn_request); 2300 2301 void security_inet_csk_clone(struct sock *newsk, 2302 const struct request_sock *req) 2303 { 2304 call_void_hook(inet_csk_clone, newsk, req); 2305 } 2306 2307 void security_inet_conn_established(struct sock *sk, 2308 struct sk_buff *skb) 2309 { 2310 call_void_hook(inet_conn_established, sk, skb); 2311 } 2312 EXPORT_SYMBOL(security_inet_conn_established); 2313 2314 int security_secmark_relabel_packet(u32 secid) 2315 { 2316 return call_int_hook(secmark_relabel_packet, 0, secid); 2317 } 2318 EXPORT_SYMBOL(security_secmark_relabel_packet); 2319 2320 void security_secmark_refcount_inc(void) 2321 { 2322 call_void_hook(secmark_refcount_inc); 2323 } 2324 EXPORT_SYMBOL(security_secmark_refcount_inc); 2325 2326 void security_secmark_refcount_dec(void) 2327 { 2328 call_void_hook(secmark_refcount_dec); 2329 } 2330 EXPORT_SYMBOL(security_secmark_refcount_dec); 2331 2332 int security_tun_dev_alloc_security(void **security) 2333 { 2334 return call_int_hook(tun_dev_alloc_security, 0, security); 2335 } 2336 EXPORT_SYMBOL(security_tun_dev_alloc_security); 2337 2338 void security_tun_dev_free_security(void *security) 2339 { 2340 call_void_hook(tun_dev_free_security, security); 2341 } 2342 EXPORT_SYMBOL(security_tun_dev_free_security); 2343 2344 int security_tun_dev_create(void) 2345 { 2346 return call_int_hook(tun_dev_create, 0); 2347 } 2348 EXPORT_SYMBOL(security_tun_dev_create); 2349 2350 int security_tun_dev_attach_queue(void *security) 2351 { 2352 return call_int_hook(tun_dev_attach_queue, 0, security); 2353 } 2354 EXPORT_SYMBOL(security_tun_dev_attach_queue); 2355 2356 int security_tun_dev_attach(struct sock *sk, void *security) 2357 { 2358 return call_int_hook(tun_dev_attach, 0, sk, security); 2359 } 2360 EXPORT_SYMBOL(security_tun_dev_attach); 2361 2362 int security_tun_dev_open(void *security) 2363 { 2364 return call_int_hook(tun_dev_open, 0, security); 2365 } 2366 EXPORT_SYMBOL(security_tun_dev_open); 2367 2368 int security_sctp_assoc_request(struct sctp_endpoint *ep, struct sk_buff *skb) 2369 { 2370 return call_int_hook(sctp_assoc_request, 0, ep, skb); 2371 } 2372 EXPORT_SYMBOL(security_sctp_assoc_request); 2373 2374 int security_sctp_bind_connect(struct sock *sk, int optname, 2375 struct sockaddr *address, int addrlen) 2376 { 2377 return call_int_hook(sctp_bind_connect, 0, sk, optname, 2378 address, addrlen); 2379 } 2380 EXPORT_SYMBOL(security_sctp_bind_connect); 2381 2382 void security_sctp_sk_clone(struct sctp_endpoint *ep, struct sock *sk, 2383 struct sock *newsk) 2384 { 2385 call_void_hook(sctp_sk_clone, ep, sk, newsk); 2386 } 2387 EXPORT_SYMBOL(security_sctp_sk_clone); 2388 2389 #endif /* CONFIG_SECURITY_NETWORK */ 2390 2391 #ifdef CONFIG_SECURITY_INFINIBAND 2392 2393 int security_ib_pkey_access(void *sec, u64 subnet_prefix, u16 pkey) 2394 { 2395 return call_int_hook(ib_pkey_access, 0, sec, subnet_prefix, pkey); 2396 } 2397 EXPORT_SYMBOL(security_ib_pkey_access); 2398 2399 int security_ib_endport_manage_subnet(void *sec, const char *dev_name, u8 port_num) 2400 { 2401 return call_int_hook(ib_endport_manage_subnet, 0, sec, dev_name, port_num); 2402 } 2403 EXPORT_SYMBOL(security_ib_endport_manage_subnet); 2404 2405 int security_ib_alloc_security(void **sec) 2406 { 2407 return call_int_hook(ib_alloc_security, 0, sec); 2408 } 2409 EXPORT_SYMBOL(security_ib_alloc_security); 2410 2411 void security_ib_free_security(void *sec) 2412 { 2413 call_void_hook(ib_free_security, sec); 2414 } 2415 EXPORT_SYMBOL(security_ib_free_security); 2416 #endif /* CONFIG_SECURITY_INFINIBAND */ 2417 2418 #ifdef CONFIG_SECURITY_NETWORK_XFRM 2419 2420 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, 2421 struct xfrm_user_sec_ctx *sec_ctx, 2422 gfp_t gfp) 2423 { 2424 return call_int_hook(xfrm_policy_alloc_security, 0, ctxp, sec_ctx, gfp); 2425 } 2426 EXPORT_SYMBOL(security_xfrm_policy_alloc); 2427 2428 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx, 2429 struct xfrm_sec_ctx **new_ctxp) 2430 { 2431 return call_int_hook(xfrm_policy_clone_security, 0, old_ctx, new_ctxp); 2432 } 2433 2434 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx) 2435 { 2436 call_void_hook(xfrm_policy_free_security, ctx); 2437 } 2438 EXPORT_SYMBOL(security_xfrm_policy_free); 2439 2440 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx) 2441 { 2442 return call_int_hook(xfrm_policy_delete_security, 0, ctx); 2443 } 2444 2445 int security_xfrm_state_alloc(struct xfrm_state *x, 2446 struct xfrm_user_sec_ctx *sec_ctx) 2447 { 2448 return call_int_hook(xfrm_state_alloc, 0, x, sec_ctx); 2449 } 2450 EXPORT_SYMBOL(security_xfrm_state_alloc); 2451 2452 int security_xfrm_state_alloc_acquire(struct xfrm_state *x, 2453 struct xfrm_sec_ctx *polsec, u32 secid) 2454 { 2455 return call_int_hook(xfrm_state_alloc_acquire, 0, x, polsec, secid); 2456 } 2457 2458 int security_xfrm_state_delete(struct xfrm_state *x) 2459 { 2460 return call_int_hook(xfrm_state_delete_security, 0, x); 2461 } 2462 EXPORT_SYMBOL(security_xfrm_state_delete); 2463 2464 void security_xfrm_state_free(struct xfrm_state *x) 2465 { 2466 call_void_hook(xfrm_state_free_security, x); 2467 } 2468 2469 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir) 2470 { 2471 return call_int_hook(xfrm_policy_lookup, 0, ctx, fl_secid, dir); 2472 } 2473 2474 int security_xfrm_state_pol_flow_match(struct xfrm_state *x, 2475 struct xfrm_policy *xp, 2476 const struct flowi_common *flic) 2477 { 2478 struct security_hook_list *hp; 2479 int rc = LSM_RET_DEFAULT(xfrm_state_pol_flow_match); 2480 2481 /* 2482 * Since this function is expected to return 0 or 1, the judgment 2483 * becomes difficult if multiple LSMs supply this call. Fortunately, 2484 * we can use the first LSM's judgment because currently only SELinux 2485 * supplies this call. 2486 * 2487 * For speed optimization, we explicitly break the loop rather than 2488 * using the macro 2489 */ 2490 hlist_for_each_entry(hp, &security_hook_heads.xfrm_state_pol_flow_match, 2491 list) { 2492 rc = hp->hook.xfrm_state_pol_flow_match(x, xp, flic); 2493 break; 2494 } 2495 return rc; 2496 } 2497 2498 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid) 2499 { 2500 return call_int_hook(xfrm_decode_session, 0, skb, secid, 1); 2501 } 2502 2503 void security_skb_classify_flow(struct sk_buff *skb, struct flowi_common *flic) 2504 { 2505 int rc = call_int_hook(xfrm_decode_session, 0, skb, &flic->flowic_secid, 2506 0); 2507 2508 BUG_ON(rc); 2509 } 2510 EXPORT_SYMBOL(security_skb_classify_flow); 2511 2512 #endif /* CONFIG_SECURITY_NETWORK_XFRM */ 2513 2514 #ifdef CONFIG_KEYS 2515 2516 int security_key_alloc(struct key *key, const struct cred *cred, 2517 unsigned long flags) 2518 { 2519 return call_int_hook(key_alloc, 0, key, cred, flags); 2520 } 2521 2522 void security_key_free(struct key *key) 2523 { 2524 call_void_hook(key_free, key); 2525 } 2526 2527 int security_key_permission(key_ref_t key_ref, const struct cred *cred, 2528 enum key_need_perm need_perm) 2529 { 2530 return call_int_hook(key_permission, 0, key_ref, cred, need_perm); 2531 } 2532 2533 int security_key_getsecurity(struct key *key, char **_buffer) 2534 { 2535 *_buffer = NULL; 2536 return call_int_hook(key_getsecurity, 0, key, _buffer); 2537 } 2538 2539 #endif /* CONFIG_KEYS */ 2540 2541 #ifdef CONFIG_AUDIT 2542 2543 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule) 2544 { 2545 return call_int_hook(audit_rule_init, 0, field, op, rulestr, lsmrule); 2546 } 2547 2548 int security_audit_rule_known(struct audit_krule *krule) 2549 { 2550 return call_int_hook(audit_rule_known, 0, krule); 2551 } 2552 2553 void security_audit_rule_free(void *lsmrule) 2554 { 2555 call_void_hook(audit_rule_free, lsmrule); 2556 } 2557 2558 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule) 2559 { 2560 return call_int_hook(audit_rule_match, 0, secid, field, op, lsmrule); 2561 } 2562 #endif /* CONFIG_AUDIT */ 2563 2564 #ifdef CONFIG_BPF_SYSCALL 2565 int security_bpf(int cmd, union bpf_attr *attr, unsigned int size) 2566 { 2567 return call_int_hook(bpf, 0, cmd, attr, size); 2568 } 2569 int security_bpf_map(struct bpf_map *map, fmode_t fmode) 2570 { 2571 return call_int_hook(bpf_map, 0, map, fmode); 2572 } 2573 int security_bpf_prog(struct bpf_prog *prog) 2574 { 2575 return call_int_hook(bpf_prog, 0, prog); 2576 } 2577 int security_bpf_map_alloc(struct bpf_map *map) 2578 { 2579 return call_int_hook(bpf_map_alloc_security, 0, map); 2580 } 2581 int security_bpf_prog_alloc(struct bpf_prog_aux *aux) 2582 { 2583 return call_int_hook(bpf_prog_alloc_security, 0, aux); 2584 } 2585 void security_bpf_map_free(struct bpf_map *map) 2586 { 2587 call_void_hook(bpf_map_free_security, map); 2588 } 2589 void security_bpf_prog_free(struct bpf_prog_aux *aux) 2590 { 2591 call_void_hook(bpf_prog_free_security, aux); 2592 } 2593 #endif /* CONFIG_BPF_SYSCALL */ 2594 2595 int security_locked_down(enum lockdown_reason what) 2596 { 2597 return call_int_hook(locked_down, 0, what); 2598 } 2599 EXPORT_SYMBOL(security_locked_down); 2600 2601 #ifdef CONFIG_PERF_EVENTS 2602 int security_perf_event_open(struct perf_event_attr *attr, int type) 2603 { 2604 return call_int_hook(perf_event_open, 0, attr, type); 2605 } 2606 2607 int security_perf_event_alloc(struct perf_event *event) 2608 { 2609 return call_int_hook(perf_event_alloc, 0, event); 2610 } 2611 2612 void security_perf_event_free(struct perf_event *event) 2613 { 2614 call_void_hook(perf_event_free, event); 2615 } 2616 2617 int security_perf_event_read(struct perf_event *event) 2618 { 2619 return call_int_hook(perf_event_read, 0, event); 2620 } 2621 2622 int security_perf_event_write(struct perf_event *event) 2623 { 2624 return call_int_hook(perf_event_write, 0, event); 2625 } 2626 #endif /* CONFIG_PERF_EVENTS */ 2627