xref: /linux/security/security.c (revision 7ec7fb394298c212c30e063c57e0aa895efe9439)
1 /*
2  * Security plug functions
3  *
4  * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
5  * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
6  * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
7  *
8  *	This program is free software; you can redistribute it and/or modify
9  *	it under the terms of the GNU General Public License as published by
10  *	the Free Software Foundation; either version 2 of the License, or
11  *	(at your option) any later version.
12  */
13 
14 #include <linux/capability.h>
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/kernel.h>
18 #include <linux/security.h>
19 
20 /* Boot-time LSM user choice */
21 static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1];
22 
23 /* things that live in capability.c */
24 extern struct security_operations default_security_ops;
25 extern void security_fixup_ops(struct security_operations *ops);
26 
27 struct security_operations *security_ops;	/* Initialized to NULL */
28 
29 /* amount of vm to protect from userspace access */
30 unsigned long mmap_min_addr = CONFIG_SECURITY_DEFAULT_MMAP_MIN_ADDR;
31 
32 static inline int verify(struct security_operations *ops)
33 {
34 	/* verify the security_operations structure exists */
35 	if (!ops)
36 		return -EINVAL;
37 	security_fixup_ops(ops);
38 	return 0;
39 }
40 
41 static void __init do_security_initcalls(void)
42 {
43 	initcall_t *call;
44 	call = __security_initcall_start;
45 	while (call < __security_initcall_end) {
46 		(*call) ();
47 		call++;
48 	}
49 }
50 
51 /**
52  * security_init - initializes the security framework
53  *
54  * This should be called early in the kernel initialization sequence.
55  */
56 int __init security_init(void)
57 {
58 	printk(KERN_INFO "Security Framework initialized\n");
59 
60 	security_fixup_ops(&default_security_ops);
61 	security_ops = &default_security_ops;
62 	do_security_initcalls();
63 
64 	return 0;
65 }
66 
67 /* Save user chosen LSM */
68 static int __init choose_lsm(char *str)
69 {
70 	strncpy(chosen_lsm, str, SECURITY_NAME_MAX);
71 	return 1;
72 }
73 __setup("security=", choose_lsm);
74 
75 /**
76  * security_module_enable - Load given security module on boot ?
77  * @ops: a pointer to the struct security_operations that is to be checked.
78  *
79  * Each LSM must pass this method before registering its own operations
80  * to avoid security registration races. This method may also be used
81  * to check if your LSM is currently loaded during kernel initialization.
82  *
83  * Return true if:
84  *	-The passed LSM is the one chosen by user at boot time,
85  *	-or user didn't specify a specific LSM and we're the first to ask
86  *	 for registration permission,
87  *	-or the passed LSM is currently loaded.
88  * Otherwise, return false.
89  */
90 int __init security_module_enable(struct security_operations *ops)
91 {
92 	if (!*chosen_lsm)
93 		strncpy(chosen_lsm, ops->name, SECURITY_NAME_MAX);
94 	else if (strncmp(ops->name, chosen_lsm, SECURITY_NAME_MAX))
95 		return 0;
96 
97 	return 1;
98 }
99 
100 /**
101  * register_security - registers a security framework with the kernel
102  * @ops: a pointer to the struct security_options that is to be registered
103  *
104  * This function allows a security module to register itself with the
105  * kernel security subsystem.  Some rudimentary checking is done on the @ops
106  * value passed to this function. You'll need to check first if your LSM
107  * is allowed to register its @ops by calling security_module_enable(@ops).
108  *
109  * If there is already a security module registered with the kernel,
110  * an error will be returned.  Otherwise %0 is returned on success.
111  */
112 int register_security(struct security_operations *ops)
113 {
114 	if (verify(ops)) {
115 		printk(KERN_DEBUG "%s could not verify "
116 		       "security_operations structure.\n", __func__);
117 		return -EINVAL;
118 	}
119 
120 	if (security_ops != &default_security_ops)
121 		return -EAGAIN;
122 
123 	security_ops = ops;
124 
125 	return 0;
126 }
127 
128 /* Security operations */
129 
130 int security_ptrace_may_access(struct task_struct *child, unsigned int mode)
131 {
132 	return security_ops->ptrace_may_access(child, mode);
133 }
134 
135 int security_ptrace_traceme(struct task_struct *parent)
136 {
137 	return security_ops->ptrace_traceme(parent);
138 }
139 
140 int security_capget(struct task_struct *target,
141 		     kernel_cap_t *effective,
142 		     kernel_cap_t *inheritable,
143 		     kernel_cap_t *permitted)
144 {
145 	return security_ops->capget(target, effective, inheritable, permitted);
146 }
147 
148 int security_capset(struct cred *new, const struct cred *old,
149 		    const kernel_cap_t *effective,
150 		    const kernel_cap_t *inheritable,
151 		    const kernel_cap_t *permitted)
152 {
153 	return security_ops->capset(new, old,
154 				    effective, inheritable, permitted);
155 }
156 
157 int security_capable(struct task_struct *tsk, int cap)
158 {
159 	return security_ops->capable(tsk, cap, SECURITY_CAP_AUDIT);
160 }
161 
162 int security_capable_noaudit(struct task_struct *tsk, int cap)
163 {
164 	return security_ops->capable(tsk, cap, SECURITY_CAP_NOAUDIT);
165 }
166 
167 int security_acct(struct file *file)
168 {
169 	return security_ops->acct(file);
170 }
171 
172 int security_sysctl(struct ctl_table *table, int op)
173 {
174 	return security_ops->sysctl(table, op);
175 }
176 
177 int security_quotactl(int cmds, int type, int id, struct super_block *sb)
178 {
179 	return security_ops->quotactl(cmds, type, id, sb);
180 }
181 
182 int security_quota_on(struct dentry *dentry)
183 {
184 	return security_ops->quota_on(dentry);
185 }
186 
187 int security_syslog(int type)
188 {
189 	return security_ops->syslog(type);
190 }
191 
192 int security_settime(struct timespec *ts, struct timezone *tz)
193 {
194 	return security_ops->settime(ts, tz);
195 }
196 
197 int security_vm_enough_memory(long pages)
198 {
199 	WARN_ON(current->mm == NULL);
200 	return security_ops->vm_enough_memory(current->mm, pages);
201 }
202 
203 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
204 {
205 	WARN_ON(mm == NULL);
206 	return security_ops->vm_enough_memory(mm, pages);
207 }
208 
209 int security_vm_enough_memory_kern(long pages)
210 {
211 	/* If current->mm is a kernel thread then we will pass NULL,
212 	   for this specific case that is fine */
213 	return security_ops->vm_enough_memory(current->mm, pages);
214 }
215 
216 int security_bprm_set_creds(struct linux_binprm *bprm)
217 {
218 	return security_ops->bprm_set_creds(bprm);
219 }
220 
221 int security_bprm_check(struct linux_binprm *bprm)
222 {
223 	return security_ops->bprm_check_security(bprm);
224 }
225 
226 void security_bprm_committing_creds(struct linux_binprm *bprm)
227 {
228 	security_ops->bprm_committing_creds(bprm);
229 }
230 
231 void security_bprm_committed_creds(struct linux_binprm *bprm)
232 {
233 	security_ops->bprm_committed_creds(bprm);
234 }
235 
236 int security_bprm_secureexec(struct linux_binprm *bprm)
237 {
238 	return security_ops->bprm_secureexec(bprm);
239 }
240 
241 int security_sb_alloc(struct super_block *sb)
242 {
243 	return security_ops->sb_alloc_security(sb);
244 }
245 
246 void security_sb_free(struct super_block *sb)
247 {
248 	security_ops->sb_free_security(sb);
249 }
250 
251 int security_sb_copy_data(char *orig, char *copy)
252 {
253 	return security_ops->sb_copy_data(orig, copy);
254 }
255 EXPORT_SYMBOL(security_sb_copy_data);
256 
257 int security_sb_kern_mount(struct super_block *sb, int flags, void *data)
258 {
259 	return security_ops->sb_kern_mount(sb, flags, data);
260 }
261 
262 int security_sb_show_options(struct seq_file *m, struct super_block *sb)
263 {
264 	return security_ops->sb_show_options(m, sb);
265 }
266 
267 int security_sb_statfs(struct dentry *dentry)
268 {
269 	return security_ops->sb_statfs(dentry);
270 }
271 
272 int security_sb_mount(char *dev_name, struct path *path,
273                        char *type, unsigned long flags, void *data)
274 {
275 	return security_ops->sb_mount(dev_name, path, type, flags, data);
276 }
277 
278 int security_sb_check_sb(struct vfsmount *mnt, struct path *path)
279 {
280 	return security_ops->sb_check_sb(mnt, path);
281 }
282 
283 int security_sb_umount(struct vfsmount *mnt, int flags)
284 {
285 	return security_ops->sb_umount(mnt, flags);
286 }
287 
288 void security_sb_umount_close(struct vfsmount *mnt)
289 {
290 	security_ops->sb_umount_close(mnt);
291 }
292 
293 void security_sb_umount_busy(struct vfsmount *mnt)
294 {
295 	security_ops->sb_umount_busy(mnt);
296 }
297 
298 void security_sb_post_remount(struct vfsmount *mnt, unsigned long flags, void *data)
299 {
300 	security_ops->sb_post_remount(mnt, flags, data);
301 }
302 
303 void security_sb_post_addmount(struct vfsmount *mnt, struct path *mountpoint)
304 {
305 	security_ops->sb_post_addmount(mnt, mountpoint);
306 }
307 
308 int security_sb_pivotroot(struct path *old_path, struct path *new_path)
309 {
310 	return security_ops->sb_pivotroot(old_path, new_path);
311 }
312 
313 void security_sb_post_pivotroot(struct path *old_path, struct path *new_path)
314 {
315 	security_ops->sb_post_pivotroot(old_path, new_path);
316 }
317 
318 int security_sb_set_mnt_opts(struct super_block *sb,
319 				struct security_mnt_opts *opts)
320 {
321 	return security_ops->sb_set_mnt_opts(sb, opts);
322 }
323 EXPORT_SYMBOL(security_sb_set_mnt_opts);
324 
325 void security_sb_clone_mnt_opts(const struct super_block *oldsb,
326 				struct super_block *newsb)
327 {
328 	security_ops->sb_clone_mnt_opts(oldsb, newsb);
329 }
330 EXPORT_SYMBOL(security_sb_clone_mnt_opts);
331 
332 int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts)
333 {
334 	return security_ops->sb_parse_opts_str(options, opts);
335 }
336 EXPORT_SYMBOL(security_sb_parse_opts_str);
337 
338 int security_inode_alloc(struct inode *inode)
339 {
340 	inode->i_security = NULL;
341 	return security_ops->inode_alloc_security(inode);
342 }
343 
344 void security_inode_free(struct inode *inode)
345 {
346 	security_ops->inode_free_security(inode);
347 }
348 
349 int security_inode_init_security(struct inode *inode, struct inode *dir,
350 				  char **name, void **value, size_t *len)
351 {
352 	if (unlikely(IS_PRIVATE(inode)))
353 		return -EOPNOTSUPP;
354 	return security_ops->inode_init_security(inode, dir, name, value, len);
355 }
356 EXPORT_SYMBOL(security_inode_init_security);
357 
358 #ifdef CONFIG_SECURITY_PATH
359 int security_path_mknod(struct path *path, struct dentry *dentry, int mode,
360 			unsigned int dev)
361 {
362 	if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
363 		return 0;
364 	return security_ops->path_mknod(path, dentry, mode, dev);
365 }
366 EXPORT_SYMBOL(security_path_mknod);
367 
368 int security_path_mkdir(struct path *path, struct dentry *dentry, int mode)
369 {
370 	if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
371 		return 0;
372 	return security_ops->path_mkdir(path, dentry, mode);
373 }
374 
375 int security_path_rmdir(struct path *path, struct dentry *dentry)
376 {
377 	if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
378 		return 0;
379 	return security_ops->path_rmdir(path, dentry);
380 }
381 
382 int security_path_unlink(struct path *path, struct dentry *dentry)
383 {
384 	if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
385 		return 0;
386 	return security_ops->path_unlink(path, dentry);
387 }
388 
389 int security_path_symlink(struct path *path, struct dentry *dentry,
390 			  const char *old_name)
391 {
392 	if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
393 		return 0;
394 	return security_ops->path_symlink(path, dentry, old_name);
395 }
396 
397 int security_path_link(struct dentry *old_dentry, struct path *new_dir,
398 		       struct dentry *new_dentry)
399 {
400 	if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
401 		return 0;
402 	return security_ops->path_link(old_dentry, new_dir, new_dentry);
403 }
404 
405 int security_path_rename(struct path *old_dir, struct dentry *old_dentry,
406 			 struct path *new_dir, struct dentry *new_dentry)
407 {
408 	if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
409 		     (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
410 		return 0;
411 	return security_ops->path_rename(old_dir, old_dentry, new_dir,
412 					 new_dentry);
413 }
414 
415 int security_path_truncate(struct path *path, loff_t length,
416 			   unsigned int time_attrs)
417 {
418 	if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
419 		return 0;
420 	return security_ops->path_truncate(path, length, time_attrs);
421 }
422 #endif
423 
424 int security_inode_create(struct inode *dir, struct dentry *dentry, int mode)
425 {
426 	if (unlikely(IS_PRIVATE(dir)))
427 		return 0;
428 	return security_ops->inode_create(dir, dentry, mode);
429 }
430 
431 int security_inode_link(struct dentry *old_dentry, struct inode *dir,
432 			 struct dentry *new_dentry)
433 {
434 	if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
435 		return 0;
436 	return security_ops->inode_link(old_dentry, dir, new_dentry);
437 }
438 
439 int security_inode_unlink(struct inode *dir, struct dentry *dentry)
440 {
441 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
442 		return 0;
443 	return security_ops->inode_unlink(dir, dentry);
444 }
445 
446 int security_inode_symlink(struct inode *dir, struct dentry *dentry,
447 			    const char *old_name)
448 {
449 	if (unlikely(IS_PRIVATE(dir)))
450 		return 0;
451 	return security_ops->inode_symlink(dir, dentry, old_name);
452 }
453 
454 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, int mode)
455 {
456 	if (unlikely(IS_PRIVATE(dir)))
457 		return 0;
458 	return security_ops->inode_mkdir(dir, dentry, mode);
459 }
460 
461 int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
462 {
463 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
464 		return 0;
465 	return security_ops->inode_rmdir(dir, dentry);
466 }
467 
468 int security_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
469 {
470 	if (unlikely(IS_PRIVATE(dir)))
471 		return 0;
472 	return security_ops->inode_mknod(dir, dentry, mode, dev);
473 }
474 
475 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
476 			   struct inode *new_dir, struct dentry *new_dentry)
477 {
478         if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
479             (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
480 		return 0;
481 	return security_ops->inode_rename(old_dir, old_dentry,
482 					   new_dir, new_dentry);
483 }
484 
485 int security_inode_readlink(struct dentry *dentry)
486 {
487 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
488 		return 0;
489 	return security_ops->inode_readlink(dentry);
490 }
491 
492 int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd)
493 {
494 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
495 		return 0;
496 	return security_ops->inode_follow_link(dentry, nd);
497 }
498 
499 int security_inode_permission(struct inode *inode, int mask)
500 {
501 	if (unlikely(IS_PRIVATE(inode)))
502 		return 0;
503 	return security_ops->inode_permission(inode, mask);
504 }
505 
506 int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
507 {
508 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
509 		return 0;
510 	return security_ops->inode_setattr(dentry, attr);
511 }
512 EXPORT_SYMBOL_GPL(security_inode_setattr);
513 
514 int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
515 {
516 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
517 		return 0;
518 	return security_ops->inode_getattr(mnt, dentry);
519 }
520 
521 void security_inode_delete(struct inode *inode)
522 {
523 	if (unlikely(IS_PRIVATE(inode)))
524 		return;
525 	security_ops->inode_delete(inode);
526 }
527 
528 int security_inode_setxattr(struct dentry *dentry, const char *name,
529 			    const void *value, size_t size, int flags)
530 {
531 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
532 		return 0;
533 	return security_ops->inode_setxattr(dentry, name, value, size, flags);
534 }
535 
536 void security_inode_post_setxattr(struct dentry *dentry, const char *name,
537 				  const void *value, size_t size, int flags)
538 {
539 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
540 		return;
541 	security_ops->inode_post_setxattr(dentry, name, value, size, flags);
542 }
543 
544 int security_inode_getxattr(struct dentry *dentry, const char *name)
545 {
546 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
547 		return 0;
548 	return security_ops->inode_getxattr(dentry, name);
549 }
550 
551 int security_inode_listxattr(struct dentry *dentry)
552 {
553 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
554 		return 0;
555 	return security_ops->inode_listxattr(dentry);
556 }
557 
558 int security_inode_removexattr(struct dentry *dentry, const char *name)
559 {
560 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
561 		return 0;
562 	return security_ops->inode_removexattr(dentry, name);
563 }
564 
565 int security_inode_need_killpriv(struct dentry *dentry)
566 {
567 	return security_ops->inode_need_killpriv(dentry);
568 }
569 
570 int security_inode_killpriv(struct dentry *dentry)
571 {
572 	return security_ops->inode_killpriv(dentry);
573 }
574 
575 int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
576 {
577 	if (unlikely(IS_PRIVATE(inode)))
578 		return 0;
579 	return security_ops->inode_getsecurity(inode, name, buffer, alloc);
580 }
581 
582 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
583 {
584 	if (unlikely(IS_PRIVATE(inode)))
585 		return 0;
586 	return security_ops->inode_setsecurity(inode, name, value, size, flags);
587 }
588 
589 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
590 {
591 	if (unlikely(IS_PRIVATE(inode)))
592 		return 0;
593 	return security_ops->inode_listsecurity(inode, buffer, buffer_size);
594 }
595 
596 void security_inode_getsecid(const struct inode *inode, u32 *secid)
597 {
598 	security_ops->inode_getsecid(inode, secid);
599 }
600 
601 int security_file_permission(struct file *file, int mask)
602 {
603 	return security_ops->file_permission(file, mask);
604 }
605 
606 int security_file_alloc(struct file *file)
607 {
608 	return security_ops->file_alloc_security(file);
609 }
610 
611 void security_file_free(struct file *file)
612 {
613 	security_ops->file_free_security(file);
614 }
615 
616 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
617 {
618 	return security_ops->file_ioctl(file, cmd, arg);
619 }
620 
621 int security_file_mmap(struct file *file, unsigned long reqprot,
622 			unsigned long prot, unsigned long flags,
623 			unsigned long addr, unsigned long addr_only)
624 {
625 	return security_ops->file_mmap(file, reqprot, prot, flags, addr, addr_only);
626 }
627 
628 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
629 			    unsigned long prot)
630 {
631 	return security_ops->file_mprotect(vma, reqprot, prot);
632 }
633 
634 int security_file_lock(struct file *file, unsigned int cmd)
635 {
636 	return security_ops->file_lock(file, cmd);
637 }
638 
639 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
640 {
641 	return security_ops->file_fcntl(file, cmd, arg);
642 }
643 
644 int security_file_set_fowner(struct file *file)
645 {
646 	return security_ops->file_set_fowner(file);
647 }
648 
649 int security_file_send_sigiotask(struct task_struct *tsk,
650 				  struct fown_struct *fown, int sig)
651 {
652 	return security_ops->file_send_sigiotask(tsk, fown, sig);
653 }
654 
655 int security_file_receive(struct file *file)
656 {
657 	return security_ops->file_receive(file);
658 }
659 
660 int security_dentry_open(struct file *file, const struct cred *cred)
661 {
662 	return security_ops->dentry_open(file, cred);
663 }
664 
665 int security_task_create(unsigned long clone_flags)
666 {
667 	return security_ops->task_create(clone_flags);
668 }
669 
670 void security_cred_free(struct cred *cred)
671 {
672 	security_ops->cred_free(cred);
673 }
674 
675 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
676 {
677 	return security_ops->cred_prepare(new, old, gfp);
678 }
679 
680 void security_commit_creds(struct cred *new, const struct cred *old)
681 {
682 	security_ops->cred_commit(new, old);
683 }
684 
685 int security_kernel_act_as(struct cred *new, u32 secid)
686 {
687 	return security_ops->kernel_act_as(new, secid);
688 }
689 
690 int security_kernel_create_files_as(struct cred *new, struct inode *inode)
691 {
692 	return security_ops->kernel_create_files_as(new, inode);
693 }
694 
695 int security_task_setuid(uid_t id0, uid_t id1, uid_t id2, int flags)
696 {
697 	return security_ops->task_setuid(id0, id1, id2, flags);
698 }
699 
700 int security_task_fix_setuid(struct cred *new, const struct cred *old,
701 			     int flags)
702 {
703 	return security_ops->task_fix_setuid(new, old, flags);
704 }
705 
706 int security_task_setgid(gid_t id0, gid_t id1, gid_t id2, int flags)
707 {
708 	return security_ops->task_setgid(id0, id1, id2, flags);
709 }
710 
711 int security_task_setpgid(struct task_struct *p, pid_t pgid)
712 {
713 	return security_ops->task_setpgid(p, pgid);
714 }
715 
716 int security_task_getpgid(struct task_struct *p)
717 {
718 	return security_ops->task_getpgid(p);
719 }
720 
721 int security_task_getsid(struct task_struct *p)
722 {
723 	return security_ops->task_getsid(p);
724 }
725 
726 void security_task_getsecid(struct task_struct *p, u32 *secid)
727 {
728 	security_ops->task_getsecid(p, secid);
729 }
730 EXPORT_SYMBOL(security_task_getsecid);
731 
732 int security_task_setgroups(struct group_info *group_info)
733 {
734 	return security_ops->task_setgroups(group_info);
735 }
736 
737 int security_task_setnice(struct task_struct *p, int nice)
738 {
739 	return security_ops->task_setnice(p, nice);
740 }
741 
742 int security_task_setioprio(struct task_struct *p, int ioprio)
743 {
744 	return security_ops->task_setioprio(p, ioprio);
745 }
746 
747 int security_task_getioprio(struct task_struct *p)
748 {
749 	return security_ops->task_getioprio(p);
750 }
751 
752 int security_task_setrlimit(unsigned int resource, struct rlimit *new_rlim)
753 {
754 	return security_ops->task_setrlimit(resource, new_rlim);
755 }
756 
757 int security_task_setscheduler(struct task_struct *p,
758 				int policy, struct sched_param *lp)
759 {
760 	return security_ops->task_setscheduler(p, policy, lp);
761 }
762 
763 int security_task_getscheduler(struct task_struct *p)
764 {
765 	return security_ops->task_getscheduler(p);
766 }
767 
768 int security_task_movememory(struct task_struct *p)
769 {
770 	return security_ops->task_movememory(p);
771 }
772 
773 int security_task_kill(struct task_struct *p, struct siginfo *info,
774 			int sig, u32 secid)
775 {
776 	return security_ops->task_kill(p, info, sig, secid);
777 }
778 
779 int security_task_wait(struct task_struct *p)
780 {
781 	return security_ops->task_wait(p);
782 }
783 
784 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
785 			 unsigned long arg4, unsigned long arg5)
786 {
787 	return security_ops->task_prctl(option, arg2, arg3, arg4, arg5);
788 }
789 
790 void security_task_to_inode(struct task_struct *p, struct inode *inode)
791 {
792 	security_ops->task_to_inode(p, inode);
793 }
794 
795 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
796 {
797 	return security_ops->ipc_permission(ipcp, flag);
798 }
799 
800 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
801 {
802 	security_ops->ipc_getsecid(ipcp, secid);
803 }
804 
805 int security_msg_msg_alloc(struct msg_msg *msg)
806 {
807 	return security_ops->msg_msg_alloc_security(msg);
808 }
809 
810 void security_msg_msg_free(struct msg_msg *msg)
811 {
812 	security_ops->msg_msg_free_security(msg);
813 }
814 
815 int security_msg_queue_alloc(struct msg_queue *msq)
816 {
817 	return security_ops->msg_queue_alloc_security(msq);
818 }
819 
820 void security_msg_queue_free(struct msg_queue *msq)
821 {
822 	security_ops->msg_queue_free_security(msq);
823 }
824 
825 int security_msg_queue_associate(struct msg_queue *msq, int msqflg)
826 {
827 	return security_ops->msg_queue_associate(msq, msqflg);
828 }
829 
830 int security_msg_queue_msgctl(struct msg_queue *msq, int cmd)
831 {
832 	return security_ops->msg_queue_msgctl(msq, cmd);
833 }
834 
835 int security_msg_queue_msgsnd(struct msg_queue *msq,
836 			       struct msg_msg *msg, int msqflg)
837 {
838 	return security_ops->msg_queue_msgsnd(msq, msg, msqflg);
839 }
840 
841 int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
842 			       struct task_struct *target, long type, int mode)
843 {
844 	return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode);
845 }
846 
847 int security_shm_alloc(struct shmid_kernel *shp)
848 {
849 	return security_ops->shm_alloc_security(shp);
850 }
851 
852 void security_shm_free(struct shmid_kernel *shp)
853 {
854 	security_ops->shm_free_security(shp);
855 }
856 
857 int security_shm_associate(struct shmid_kernel *shp, int shmflg)
858 {
859 	return security_ops->shm_associate(shp, shmflg);
860 }
861 
862 int security_shm_shmctl(struct shmid_kernel *shp, int cmd)
863 {
864 	return security_ops->shm_shmctl(shp, cmd);
865 }
866 
867 int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg)
868 {
869 	return security_ops->shm_shmat(shp, shmaddr, shmflg);
870 }
871 
872 int security_sem_alloc(struct sem_array *sma)
873 {
874 	return security_ops->sem_alloc_security(sma);
875 }
876 
877 void security_sem_free(struct sem_array *sma)
878 {
879 	security_ops->sem_free_security(sma);
880 }
881 
882 int security_sem_associate(struct sem_array *sma, int semflg)
883 {
884 	return security_ops->sem_associate(sma, semflg);
885 }
886 
887 int security_sem_semctl(struct sem_array *sma, int cmd)
888 {
889 	return security_ops->sem_semctl(sma, cmd);
890 }
891 
892 int security_sem_semop(struct sem_array *sma, struct sembuf *sops,
893 			unsigned nsops, int alter)
894 {
895 	return security_ops->sem_semop(sma, sops, nsops, alter);
896 }
897 
898 void security_d_instantiate(struct dentry *dentry, struct inode *inode)
899 {
900 	if (unlikely(inode && IS_PRIVATE(inode)))
901 		return;
902 	security_ops->d_instantiate(dentry, inode);
903 }
904 EXPORT_SYMBOL(security_d_instantiate);
905 
906 int security_getprocattr(struct task_struct *p, char *name, char **value)
907 {
908 	return security_ops->getprocattr(p, name, value);
909 }
910 
911 int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
912 {
913 	return security_ops->setprocattr(p, name, value, size);
914 }
915 
916 int security_netlink_send(struct sock *sk, struct sk_buff *skb)
917 {
918 	return security_ops->netlink_send(sk, skb);
919 }
920 
921 int security_netlink_recv(struct sk_buff *skb, int cap)
922 {
923 	return security_ops->netlink_recv(skb, cap);
924 }
925 EXPORT_SYMBOL(security_netlink_recv);
926 
927 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
928 {
929 	return security_ops->secid_to_secctx(secid, secdata, seclen);
930 }
931 EXPORT_SYMBOL(security_secid_to_secctx);
932 
933 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
934 {
935 	return security_ops->secctx_to_secid(secdata, seclen, secid);
936 }
937 EXPORT_SYMBOL(security_secctx_to_secid);
938 
939 void security_release_secctx(char *secdata, u32 seclen)
940 {
941 	security_ops->release_secctx(secdata, seclen);
942 }
943 EXPORT_SYMBOL(security_release_secctx);
944 
945 #ifdef CONFIG_SECURITY_NETWORK
946 
947 int security_unix_stream_connect(struct socket *sock, struct socket *other,
948 				 struct sock *newsk)
949 {
950 	return security_ops->unix_stream_connect(sock, other, newsk);
951 }
952 EXPORT_SYMBOL(security_unix_stream_connect);
953 
954 int security_unix_may_send(struct socket *sock,  struct socket *other)
955 {
956 	return security_ops->unix_may_send(sock, other);
957 }
958 EXPORT_SYMBOL(security_unix_may_send);
959 
960 int security_socket_create(int family, int type, int protocol, int kern)
961 {
962 	return security_ops->socket_create(family, type, protocol, kern);
963 }
964 
965 int security_socket_post_create(struct socket *sock, int family,
966 				int type, int protocol, int kern)
967 {
968 	return security_ops->socket_post_create(sock, family, type,
969 						protocol, kern);
970 }
971 
972 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
973 {
974 	return security_ops->socket_bind(sock, address, addrlen);
975 }
976 
977 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
978 {
979 	return security_ops->socket_connect(sock, address, addrlen);
980 }
981 
982 int security_socket_listen(struct socket *sock, int backlog)
983 {
984 	return security_ops->socket_listen(sock, backlog);
985 }
986 
987 int security_socket_accept(struct socket *sock, struct socket *newsock)
988 {
989 	return security_ops->socket_accept(sock, newsock);
990 }
991 
992 void security_socket_post_accept(struct socket *sock, struct socket *newsock)
993 {
994 	security_ops->socket_post_accept(sock, newsock);
995 }
996 
997 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
998 {
999 	return security_ops->socket_sendmsg(sock, msg, size);
1000 }
1001 
1002 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
1003 			    int size, int flags)
1004 {
1005 	return security_ops->socket_recvmsg(sock, msg, size, flags);
1006 }
1007 
1008 int security_socket_getsockname(struct socket *sock)
1009 {
1010 	return security_ops->socket_getsockname(sock);
1011 }
1012 
1013 int security_socket_getpeername(struct socket *sock)
1014 {
1015 	return security_ops->socket_getpeername(sock);
1016 }
1017 
1018 int security_socket_getsockopt(struct socket *sock, int level, int optname)
1019 {
1020 	return security_ops->socket_getsockopt(sock, level, optname);
1021 }
1022 
1023 int security_socket_setsockopt(struct socket *sock, int level, int optname)
1024 {
1025 	return security_ops->socket_setsockopt(sock, level, optname);
1026 }
1027 
1028 int security_socket_shutdown(struct socket *sock, int how)
1029 {
1030 	return security_ops->socket_shutdown(sock, how);
1031 }
1032 
1033 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
1034 {
1035 	return security_ops->socket_sock_rcv_skb(sk, skb);
1036 }
1037 EXPORT_SYMBOL(security_sock_rcv_skb);
1038 
1039 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
1040 				      int __user *optlen, unsigned len)
1041 {
1042 	return security_ops->socket_getpeersec_stream(sock, optval, optlen, len);
1043 }
1044 
1045 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
1046 {
1047 	return security_ops->socket_getpeersec_dgram(sock, skb, secid);
1048 }
1049 EXPORT_SYMBOL(security_socket_getpeersec_dgram);
1050 
1051 int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
1052 {
1053 	return security_ops->sk_alloc_security(sk, family, priority);
1054 }
1055 
1056 void security_sk_free(struct sock *sk)
1057 {
1058 	security_ops->sk_free_security(sk);
1059 }
1060 
1061 void security_sk_clone(const struct sock *sk, struct sock *newsk)
1062 {
1063 	security_ops->sk_clone_security(sk, newsk);
1064 }
1065 
1066 void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
1067 {
1068 	security_ops->sk_getsecid(sk, &fl->secid);
1069 }
1070 EXPORT_SYMBOL(security_sk_classify_flow);
1071 
1072 void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
1073 {
1074 	security_ops->req_classify_flow(req, fl);
1075 }
1076 EXPORT_SYMBOL(security_req_classify_flow);
1077 
1078 void security_sock_graft(struct sock *sk, struct socket *parent)
1079 {
1080 	security_ops->sock_graft(sk, parent);
1081 }
1082 EXPORT_SYMBOL(security_sock_graft);
1083 
1084 int security_inet_conn_request(struct sock *sk,
1085 			struct sk_buff *skb, struct request_sock *req)
1086 {
1087 	return security_ops->inet_conn_request(sk, skb, req);
1088 }
1089 EXPORT_SYMBOL(security_inet_conn_request);
1090 
1091 void security_inet_csk_clone(struct sock *newsk,
1092 			const struct request_sock *req)
1093 {
1094 	security_ops->inet_csk_clone(newsk, req);
1095 }
1096 
1097 void security_inet_conn_established(struct sock *sk,
1098 			struct sk_buff *skb)
1099 {
1100 	security_ops->inet_conn_established(sk, skb);
1101 }
1102 
1103 #endif	/* CONFIG_SECURITY_NETWORK */
1104 
1105 #ifdef CONFIG_SECURITY_NETWORK_XFRM
1106 
1107 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct xfrm_user_sec_ctx *sec_ctx)
1108 {
1109 	return security_ops->xfrm_policy_alloc_security(ctxp, sec_ctx);
1110 }
1111 EXPORT_SYMBOL(security_xfrm_policy_alloc);
1112 
1113 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
1114 			      struct xfrm_sec_ctx **new_ctxp)
1115 {
1116 	return security_ops->xfrm_policy_clone_security(old_ctx, new_ctxp);
1117 }
1118 
1119 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
1120 {
1121 	security_ops->xfrm_policy_free_security(ctx);
1122 }
1123 EXPORT_SYMBOL(security_xfrm_policy_free);
1124 
1125 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
1126 {
1127 	return security_ops->xfrm_policy_delete_security(ctx);
1128 }
1129 
1130 int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx)
1131 {
1132 	return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0);
1133 }
1134 EXPORT_SYMBOL(security_xfrm_state_alloc);
1135 
1136 int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
1137 				      struct xfrm_sec_ctx *polsec, u32 secid)
1138 {
1139 	if (!polsec)
1140 		return 0;
1141 	/*
1142 	 * We want the context to be taken from secid which is usually
1143 	 * from the sock.
1144 	 */
1145 	return security_ops->xfrm_state_alloc_security(x, NULL, secid);
1146 }
1147 
1148 int security_xfrm_state_delete(struct xfrm_state *x)
1149 {
1150 	return security_ops->xfrm_state_delete_security(x);
1151 }
1152 EXPORT_SYMBOL(security_xfrm_state_delete);
1153 
1154 void security_xfrm_state_free(struct xfrm_state *x)
1155 {
1156 	security_ops->xfrm_state_free_security(x);
1157 }
1158 
1159 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
1160 {
1161 	return security_ops->xfrm_policy_lookup(ctx, fl_secid, dir);
1162 }
1163 
1164 int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
1165 				       struct xfrm_policy *xp, struct flowi *fl)
1166 {
1167 	return security_ops->xfrm_state_pol_flow_match(x, xp, fl);
1168 }
1169 
1170 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
1171 {
1172 	return security_ops->xfrm_decode_session(skb, secid, 1);
1173 }
1174 
1175 void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
1176 {
1177 	int rc = security_ops->xfrm_decode_session(skb, &fl->secid, 0);
1178 
1179 	BUG_ON(rc);
1180 }
1181 EXPORT_SYMBOL(security_skb_classify_flow);
1182 
1183 #endif	/* CONFIG_SECURITY_NETWORK_XFRM */
1184 
1185 #ifdef CONFIG_KEYS
1186 
1187 int security_key_alloc(struct key *key, const struct cred *cred,
1188 		       unsigned long flags)
1189 {
1190 	return security_ops->key_alloc(key, cred, flags);
1191 }
1192 
1193 void security_key_free(struct key *key)
1194 {
1195 	security_ops->key_free(key);
1196 }
1197 
1198 int security_key_permission(key_ref_t key_ref,
1199 			    const struct cred *cred, key_perm_t perm)
1200 {
1201 	return security_ops->key_permission(key_ref, cred, perm);
1202 }
1203 
1204 int security_key_getsecurity(struct key *key, char **_buffer)
1205 {
1206 	return security_ops->key_getsecurity(key, _buffer);
1207 }
1208 
1209 #endif	/* CONFIG_KEYS */
1210 
1211 #ifdef CONFIG_AUDIT
1212 
1213 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
1214 {
1215 	return security_ops->audit_rule_init(field, op, rulestr, lsmrule);
1216 }
1217 
1218 int security_audit_rule_known(struct audit_krule *krule)
1219 {
1220 	return security_ops->audit_rule_known(krule);
1221 }
1222 
1223 void security_audit_rule_free(void *lsmrule)
1224 {
1225 	security_ops->audit_rule_free(lsmrule);
1226 }
1227 
1228 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule,
1229 			      struct audit_context *actx)
1230 {
1231 	return security_ops->audit_rule_match(secid, field, op, lsmrule, actx);
1232 }
1233 
1234 #endif /* CONFIG_AUDIT */
1235