xref: /linux/security/security.c (revision 7a9b65ab0abd52ae646ba327522315d7500a7d4f)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Security plug functions
4  *
5  * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
6  * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
7  * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
8  * Copyright (C) 2016 Mellanox Technologies
9  * Copyright (C) 2023 Microsoft Corporation <paul@paul-moore.com>
10  */
11 
12 #define pr_fmt(fmt) "LSM: " fmt
13 
14 #include <linux/bpf.h>
15 #include <linux/capability.h>
16 #include <linux/dcache.h>
17 #include <linux/export.h>
18 #include <linux/init.h>
19 #include <linux/kernel.h>
20 #include <linux/kernel_read_file.h>
21 #include <linux/lsm_hooks.h>
22 #include <linux/mman.h>
23 #include <linux/mount.h>
24 #include <linux/personality.h>
25 #include <linux/backing-dev.h>
26 #include <linux/string.h>
27 #include <linux/xattr.h>
28 #include <linux/msg.h>
29 #include <linux/overflow.h>
30 #include <linux/perf_event.h>
31 #include <linux/fs.h>
32 #include <net/flow.h>
33 #include <net/sock.h>
34 
35 #define SECURITY_HOOK_ACTIVE_KEY(HOOK, IDX) security_hook_active_##HOOK##_##IDX
36 
37 /*
38  * Identifier for the LSM static calls.
39  * HOOK is an LSM hook as defined in linux/lsm_hookdefs.h
40  * IDX is the index of the static call. 0 <= NUM < MAX_LSM_COUNT
41  */
42 #define LSM_STATIC_CALL(HOOK, IDX) lsm_static_call_##HOOK##_##IDX
43 
44 /*
45  * Call the macro M for each LSM hook MAX_LSM_COUNT times.
46  */
47 #define LSM_LOOP_UNROLL(M, ...) 		\
48 do {						\
49 	UNROLL(MAX_LSM_COUNT, M, __VA_ARGS__)	\
50 } while (0)
51 
52 #define LSM_DEFINE_UNROLL(M, ...) UNROLL(MAX_LSM_COUNT, M, __VA_ARGS__)
53 
54 /*
55  * These are descriptions of the reasons that can be passed to the
56  * security_locked_down() LSM hook. Placing this array here allows
57  * all security modules to use the same descriptions for auditing
58  * purposes.
59  */
60 const char *const lockdown_reasons[LOCKDOWN_CONFIDENTIALITY_MAX + 1] = {
61 	[LOCKDOWN_NONE] = "none",
62 	[LOCKDOWN_MODULE_SIGNATURE] = "unsigned module loading",
63 	[LOCKDOWN_DEV_MEM] = "/dev/mem,kmem,port",
64 	[LOCKDOWN_EFI_TEST] = "/dev/efi_test access",
65 	[LOCKDOWN_KEXEC] = "kexec of unsigned images",
66 	[LOCKDOWN_HIBERNATION] = "hibernation",
67 	[LOCKDOWN_PCI_ACCESS] = "direct PCI access",
68 	[LOCKDOWN_IOPORT] = "raw io port access",
69 	[LOCKDOWN_MSR] = "raw MSR access",
70 	[LOCKDOWN_ACPI_TABLES] = "modifying ACPI tables",
71 	[LOCKDOWN_DEVICE_TREE] = "modifying device tree contents",
72 	[LOCKDOWN_PCMCIA_CIS] = "direct PCMCIA CIS storage",
73 	[LOCKDOWN_TIOCSSERIAL] = "reconfiguration of serial port IO",
74 	[LOCKDOWN_MODULE_PARAMETERS] = "unsafe module parameters",
75 	[LOCKDOWN_MMIOTRACE] = "unsafe mmio",
76 	[LOCKDOWN_DEBUGFS] = "debugfs access",
77 	[LOCKDOWN_XMON_WR] = "xmon write access",
78 	[LOCKDOWN_BPF_WRITE_USER] = "use of bpf to write user RAM",
79 	[LOCKDOWN_DBG_WRITE_KERNEL] = "use of kgdb/kdb to write kernel RAM",
80 	[LOCKDOWN_RTAS_ERROR_INJECTION] = "RTAS error injection",
81 	[LOCKDOWN_INTEGRITY_MAX] = "integrity",
82 	[LOCKDOWN_KCORE] = "/proc/kcore access",
83 	[LOCKDOWN_KPROBES] = "use of kprobes",
84 	[LOCKDOWN_BPF_READ_KERNEL] = "use of bpf to read kernel RAM",
85 	[LOCKDOWN_DBG_READ_KERNEL] = "use of kgdb/kdb to read kernel RAM",
86 	[LOCKDOWN_PERF] = "unsafe use of perf",
87 	[LOCKDOWN_TRACEFS] = "use of tracefs",
88 	[LOCKDOWN_XMON_RW] = "xmon read and write access",
89 	[LOCKDOWN_XFRM_SECRET] = "xfrm SA secret",
90 	[LOCKDOWN_CONFIDENTIALITY_MAX] = "confidentiality",
91 };
92 
93 static BLOCKING_NOTIFIER_HEAD(blocking_lsm_notifier_chain);
94 
95 static struct kmem_cache *lsm_file_cache;
96 static struct kmem_cache *lsm_inode_cache;
97 
98 char *lsm_names;
99 static struct lsm_blob_sizes blob_sizes __ro_after_init;
100 
101 /* Boot-time LSM user choice */
102 static __initdata const char *chosen_lsm_order;
103 static __initdata const char *chosen_major_lsm;
104 
105 static __initconst const char *const builtin_lsm_order = CONFIG_LSM;
106 
107 /* Ordered list of LSMs to initialize. */
108 static __initdata struct lsm_info *ordered_lsms[MAX_LSM_COUNT + 1];
109 static __initdata struct lsm_info *exclusive;
110 
111 #ifdef CONFIG_HAVE_STATIC_CALL
112 #define LSM_HOOK_TRAMP(NAME, NUM) \
113 	&STATIC_CALL_TRAMP(LSM_STATIC_CALL(NAME, NUM))
114 #else
115 #define LSM_HOOK_TRAMP(NAME, NUM) NULL
116 #endif
117 
118 /*
119  * Define static calls and static keys for each LSM hook.
120  */
121 #define DEFINE_LSM_STATIC_CALL(NUM, NAME, RET, ...)			\
122 	DEFINE_STATIC_CALL_NULL(LSM_STATIC_CALL(NAME, NUM),		\
123 				*((RET(*)(__VA_ARGS__))NULL));		\
124 	DEFINE_STATIC_KEY_FALSE(SECURITY_HOOK_ACTIVE_KEY(NAME, NUM));
125 
126 #define LSM_HOOK(RET, DEFAULT, NAME, ...)				\
127 	LSM_DEFINE_UNROLL(DEFINE_LSM_STATIC_CALL, NAME, RET, __VA_ARGS__)
128 #include <linux/lsm_hook_defs.h>
129 #undef LSM_HOOK
130 #undef DEFINE_LSM_STATIC_CALL
131 
132 /*
133  * Initialise a table of static calls for each LSM hook.
134  * DEFINE_STATIC_CALL_NULL invocation above generates a key (STATIC_CALL_KEY)
135  * and a trampoline (STATIC_CALL_TRAMP) which are used to call
136  * __static_call_update when updating the static call.
137  *
138  * The static calls table is used by early LSMs, some architectures can fault on
139  * unaligned accesses and the fault handling code may not be ready by then.
140  * Thus, the static calls table should be aligned to avoid any unhandled faults
141  * in early init.
142  */
143 struct lsm_static_calls_table
144 	static_calls_table __ro_after_init __aligned(sizeof(u64)) = {
145 #define INIT_LSM_STATIC_CALL(NUM, NAME)					\
146 	(struct lsm_static_call) {					\
147 		.key = &STATIC_CALL_KEY(LSM_STATIC_CALL(NAME, NUM)),	\
148 		.trampoline = LSM_HOOK_TRAMP(NAME, NUM),		\
149 		.active = &SECURITY_HOOK_ACTIVE_KEY(NAME, NUM),		\
150 	},
151 #define LSM_HOOK(RET, DEFAULT, NAME, ...)				\
152 	.NAME = {							\
153 		LSM_DEFINE_UNROLL(INIT_LSM_STATIC_CALL, NAME)		\
154 	},
155 #include <linux/lsm_hook_defs.h>
156 #undef LSM_HOOK
157 #undef INIT_LSM_STATIC_CALL
158 	};
159 
160 static __initdata bool debug;
161 #define init_debug(...)						\
162 	do {							\
163 		if (debug)					\
164 			pr_info(__VA_ARGS__);			\
165 	} while (0)
166 
167 static bool __init is_enabled(struct lsm_info *lsm)
168 {
169 	if (!lsm->enabled)
170 		return false;
171 
172 	return *lsm->enabled;
173 }
174 
175 /* Mark an LSM's enabled flag. */
176 static int lsm_enabled_true __initdata = 1;
177 static int lsm_enabled_false __initdata = 0;
178 static void __init set_enabled(struct lsm_info *lsm, bool enabled)
179 {
180 	/*
181 	 * When an LSM hasn't configured an enable variable, we can use
182 	 * a hard-coded location for storing the default enabled state.
183 	 */
184 	if (!lsm->enabled) {
185 		if (enabled)
186 			lsm->enabled = &lsm_enabled_true;
187 		else
188 			lsm->enabled = &lsm_enabled_false;
189 	} else if (lsm->enabled == &lsm_enabled_true) {
190 		if (!enabled)
191 			lsm->enabled = &lsm_enabled_false;
192 	} else if (lsm->enabled == &lsm_enabled_false) {
193 		if (enabled)
194 			lsm->enabled = &lsm_enabled_true;
195 	} else {
196 		*lsm->enabled = enabled;
197 	}
198 }
199 
200 /* Is an LSM already listed in the ordered LSMs list? */
201 static bool __init exists_ordered_lsm(struct lsm_info *lsm)
202 {
203 	struct lsm_info **check;
204 
205 	for (check = ordered_lsms; *check; check++)
206 		if (*check == lsm)
207 			return true;
208 
209 	return false;
210 }
211 
212 /* Append an LSM to the list of ordered LSMs to initialize. */
213 static int last_lsm __initdata;
214 static void __init append_ordered_lsm(struct lsm_info *lsm, const char *from)
215 {
216 	/* Ignore duplicate selections. */
217 	if (exists_ordered_lsm(lsm))
218 		return;
219 
220 	if (WARN(last_lsm == MAX_LSM_COUNT, "%s: out of LSM static calls!?\n", from))
221 		return;
222 
223 	/* Enable this LSM, if it is not already set. */
224 	if (!lsm->enabled)
225 		lsm->enabled = &lsm_enabled_true;
226 	ordered_lsms[last_lsm++] = lsm;
227 
228 	init_debug("%s ordered: %s (%s)\n", from, lsm->name,
229 		   is_enabled(lsm) ? "enabled" : "disabled");
230 }
231 
232 /* Is an LSM allowed to be initialized? */
233 static bool __init lsm_allowed(struct lsm_info *lsm)
234 {
235 	/* Skip if the LSM is disabled. */
236 	if (!is_enabled(lsm))
237 		return false;
238 
239 	/* Not allowed if another exclusive LSM already initialized. */
240 	if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && exclusive) {
241 		init_debug("exclusive disabled: %s\n", lsm->name);
242 		return false;
243 	}
244 
245 	return true;
246 }
247 
248 static void __init lsm_set_blob_size(int *need, int *lbs)
249 {
250 	int offset;
251 
252 	if (*need <= 0)
253 		return;
254 
255 	offset = ALIGN(*lbs, sizeof(void *));
256 	*lbs = offset + *need;
257 	*need = offset;
258 }
259 
260 static void __init lsm_set_blob_sizes(struct lsm_blob_sizes *needed)
261 {
262 	if (!needed)
263 		return;
264 
265 	lsm_set_blob_size(&needed->lbs_cred, &blob_sizes.lbs_cred);
266 	lsm_set_blob_size(&needed->lbs_file, &blob_sizes.lbs_file);
267 	lsm_set_blob_size(&needed->lbs_ib, &blob_sizes.lbs_ib);
268 	/*
269 	 * The inode blob gets an rcu_head in addition to
270 	 * what the modules might need.
271 	 */
272 	if (needed->lbs_inode && blob_sizes.lbs_inode == 0)
273 		blob_sizes.lbs_inode = sizeof(struct rcu_head);
274 	lsm_set_blob_size(&needed->lbs_inode, &blob_sizes.lbs_inode);
275 	lsm_set_blob_size(&needed->lbs_ipc, &blob_sizes.lbs_ipc);
276 	lsm_set_blob_size(&needed->lbs_key, &blob_sizes.lbs_key);
277 	lsm_set_blob_size(&needed->lbs_msg_msg, &blob_sizes.lbs_msg_msg);
278 	lsm_set_blob_size(&needed->lbs_perf_event, &blob_sizes.lbs_perf_event);
279 	lsm_set_blob_size(&needed->lbs_sock, &blob_sizes.lbs_sock);
280 	lsm_set_blob_size(&needed->lbs_superblock, &blob_sizes.lbs_superblock);
281 	lsm_set_blob_size(&needed->lbs_task, &blob_sizes.lbs_task);
282 	lsm_set_blob_size(&needed->lbs_tun_dev, &blob_sizes.lbs_tun_dev);
283 	lsm_set_blob_size(&needed->lbs_xattr_count,
284 			  &blob_sizes.lbs_xattr_count);
285 	lsm_set_blob_size(&needed->lbs_bdev, &blob_sizes.lbs_bdev);
286 }
287 
288 /* Prepare LSM for initialization. */
289 static void __init prepare_lsm(struct lsm_info *lsm)
290 {
291 	int enabled = lsm_allowed(lsm);
292 
293 	/* Record enablement (to handle any following exclusive LSMs). */
294 	set_enabled(lsm, enabled);
295 
296 	/* If enabled, do pre-initialization work. */
297 	if (enabled) {
298 		if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && !exclusive) {
299 			exclusive = lsm;
300 			init_debug("exclusive chosen:   %s\n", lsm->name);
301 		}
302 
303 		lsm_set_blob_sizes(lsm->blobs);
304 	}
305 }
306 
307 /* Initialize a given LSM, if it is enabled. */
308 static void __init initialize_lsm(struct lsm_info *lsm)
309 {
310 	if (is_enabled(lsm)) {
311 		int ret;
312 
313 		init_debug("initializing %s\n", lsm->name);
314 		ret = lsm->init();
315 		WARN(ret, "%s failed to initialize: %d\n", lsm->name, ret);
316 	}
317 }
318 
319 /*
320  * Current index to use while initializing the lsm id list.
321  */
322 u32 lsm_active_cnt __ro_after_init;
323 const struct lsm_id *lsm_idlist[MAX_LSM_COUNT];
324 
325 /* Populate ordered LSMs list from comma-separated LSM name list. */
326 static void __init ordered_lsm_parse(const char *order, const char *origin)
327 {
328 	struct lsm_info *lsm;
329 	char *sep, *name, *next;
330 
331 	/* LSM_ORDER_FIRST is always first. */
332 	for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
333 		if (lsm->order == LSM_ORDER_FIRST)
334 			append_ordered_lsm(lsm, "  first");
335 	}
336 
337 	/* Process "security=", if given. */
338 	if (chosen_major_lsm) {
339 		struct lsm_info *major;
340 
341 		/*
342 		 * To match the original "security=" behavior, this
343 		 * explicitly does NOT fallback to another Legacy Major
344 		 * if the selected one was separately disabled: disable
345 		 * all non-matching Legacy Major LSMs.
346 		 */
347 		for (major = __start_lsm_info; major < __end_lsm_info;
348 		     major++) {
349 			if ((major->flags & LSM_FLAG_LEGACY_MAJOR) &&
350 			    strcmp(major->name, chosen_major_lsm) != 0) {
351 				set_enabled(major, false);
352 				init_debug("security=%s disabled: %s (only one legacy major LSM)\n",
353 					   chosen_major_lsm, major->name);
354 			}
355 		}
356 	}
357 
358 	sep = kstrdup(order, GFP_KERNEL);
359 	next = sep;
360 	/* Walk the list, looking for matching LSMs. */
361 	while ((name = strsep(&next, ",")) != NULL) {
362 		bool found = false;
363 
364 		for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
365 			if (strcmp(lsm->name, name) == 0) {
366 				if (lsm->order == LSM_ORDER_MUTABLE)
367 					append_ordered_lsm(lsm, origin);
368 				found = true;
369 			}
370 		}
371 
372 		if (!found)
373 			init_debug("%s ignored: %s (not built into kernel)\n",
374 				   origin, name);
375 	}
376 
377 	/* Process "security=", if given. */
378 	if (chosen_major_lsm) {
379 		for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
380 			if (exists_ordered_lsm(lsm))
381 				continue;
382 			if (strcmp(lsm->name, chosen_major_lsm) == 0)
383 				append_ordered_lsm(lsm, "security=");
384 		}
385 	}
386 
387 	/* LSM_ORDER_LAST is always last. */
388 	for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
389 		if (lsm->order == LSM_ORDER_LAST)
390 			append_ordered_lsm(lsm, "   last");
391 	}
392 
393 	/* Disable all LSMs not in the ordered list. */
394 	for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
395 		if (exists_ordered_lsm(lsm))
396 			continue;
397 		set_enabled(lsm, false);
398 		init_debug("%s skipped: %s (not in requested order)\n",
399 			   origin, lsm->name);
400 	}
401 
402 	kfree(sep);
403 }
404 
405 static void __init lsm_static_call_init(struct security_hook_list *hl)
406 {
407 	struct lsm_static_call *scall = hl->scalls;
408 	int i;
409 
410 	for (i = 0; i < MAX_LSM_COUNT; i++) {
411 		/* Update the first static call that is not used yet */
412 		if (!scall->hl) {
413 			__static_call_update(scall->key, scall->trampoline,
414 					     hl->hook.lsm_func_addr);
415 			scall->hl = hl;
416 			static_branch_enable(scall->active);
417 			return;
418 		}
419 		scall++;
420 	}
421 	panic("%s - Ran out of static slots.\n", __func__);
422 }
423 
424 static void __init lsm_early_cred(struct cred *cred);
425 static void __init lsm_early_task(struct task_struct *task);
426 
427 static int lsm_append(const char *new, char **result);
428 
429 static void __init report_lsm_order(void)
430 {
431 	struct lsm_info **lsm, *early;
432 	int first = 0;
433 
434 	pr_info("initializing lsm=");
435 
436 	/* Report each enabled LSM name, comma separated. */
437 	for (early = __start_early_lsm_info;
438 	     early < __end_early_lsm_info; early++)
439 		if (is_enabled(early))
440 			pr_cont("%s%s", first++ == 0 ? "" : ",", early->name);
441 	for (lsm = ordered_lsms; *lsm; lsm++)
442 		if (is_enabled(*lsm))
443 			pr_cont("%s%s", first++ == 0 ? "" : ",", (*lsm)->name);
444 
445 	pr_cont("\n");
446 }
447 
448 static void __init ordered_lsm_init(void)
449 {
450 	struct lsm_info **lsm;
451 
452 	if (chosen_lsm_order) {
453 		if (chosen_major_lsm) {
454 			pr_warn("security=%s is ignored because it is superseded by lsm=%s\n",
455 				chosen_major_lsm, chosen_lsm_order);
456 			chosen_major_lsm = NULL;
457 		}
458 		ordered_lsm_parse(chosen_lsm_order, "cmdline");
459 	} else
460 		ordered_lsm_parse(builtin_lsm_order, "builtin");
461 
462 	for (lsm = ordered_lsms; *lsm; lsm++)
463 		prepare_lsm(*lsm);
464 
465 	report_lsm_order();
466 
467 	init_debug("cred blob size       = %d\n", blob_sizes.lbs_cred);
468 	init_debug("file blob size       = %d\n", blob_sizes.lbs_file);
469 	init_debug("ib blob size         = %d\n", blob_sizes.lbs_ib);
470 	init_debug("inode blob size      = %d\n", blob_sizes.lbs_inode);
471 	init_debug("ipc blob size        = %d\n", blob_sizes.lbs_ipc);
472 #ifdef CONFIG_KEYS
473 	init_debug("key blob size        = %d\n", blob_sizes.lbs_key);
474 #endif /* CONFIG_KEYS */
475 	init_debug("msg_msg blob size    = %d\n", blob_sizes.lbs_msg_msg);
476 	init_debug("sock blob size       = %d\n", blob_sizes.lbs_sock);
477 	init_debug("superblock blob size = %d\n", blob_sizes.lbs_superblock);
478 	init_debug("perf event blob size = %d\n", blob_sizes.lbs_perf_event);
479 	init_debug("task blob size       = %d\n", blob_sizes.lbs_task);
480 	init_debug("tun device blob size = %d\n", blob_sizes.lbs_tun_dev);
481 	init_debug("xattr slots          = %d\n", blob_sizes.lbs_xattr_count);
482 	init_debug("bdev blob size       = %d\n", blob_sizes.lbs_bdev);
483 
484 	/*
485 	 * Create any kmem_caches needed for blobs
486 	 */
487 	if (blob_sizes.lbs_file)
488 		lsm_file_cache = kmem_cache_create("lsm_file_cache",
489 						   blob_sizes.lbs_file, 0,
490 						   SLAB_PANIC, NULL);
491 	if (blob_sizes.lbs_inode)
492 		lsm_inode_cache = kmem_cache_create("lsm_inode_cache",
493 						    blob_sizes.lbs_inode, 0,
494 						    SLAB_PANIC, NULL);
495 
496 	lsm_early_cred((struct cred *) current->cred);
497 	lsm_early_task(current);
498 	for (lsm = ordered_lsms; *lsm; lsm++)
499 		initialize_lsm(*lsm);
500 }
501 
502 int __init early_security_init(void)
503 {
504 	struct lsm_info *lsm;
505 
506 	for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
507 		if (!lsm->enabled)
508 			lsm->enabled = &lsm_enabled_true;
509 		prepare_lsm(lsm);
510 		initialize_lsm(lsm);
511 	}
512 
513 	return 0;
514 }
515 
516 /**
517  * security_init - initializes the security framework
518  *
519  * This should be called early in the kernel initialization sequence.
520  */
521 int __init security_init(void)
522 {
523 	struct lsm_info *lsm;
524 
525 	init_debug("legacy security=%s\n", chosen_major_lsm ? : " *unspecified*");
526 	init_debug("  CONFIG_LSM=%s\n", builtin_lsm_order);
527 	init_debug("boot arg lsm=%s\n", chosen_lsm_order ? : " *unspecified*");
528 
529 	/*
530 	 * Append the names of the early LSM modules now that kmalloc() is
531 	 * available
532 	 */
533 	for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
534 		init_debug("  early started: %s (%s)\n", lsm->name,
535 			   is_enabled(lsm) ? "enabled" : "disabled");
536 		if (lsm->enabled)
537 			lsm_append(lsm->name, &lsm_names);
538 	}
539 
540 	/* Load LSMs in specified order. */
541 	ordered_lsm_init();
542 
543 	return 0;
544 }
545 
546 /* Save user chosen LSM */
547 static int __init choose_major_lsm(char *str)
548 {
549 	chosen_major_lsm = str;
550 	return 1;
551 }
552 __setup("security=", choose_major_lsm);
553 
554 /* Explicitly choose LSM initialization order. */
555 static int __init choose_lsm_order(char *str)
556 {
557 	chosen_lsm_order = str;
558 	return 1;
559 }
560 __setup("lsm=", choose_lsm_order);
561 
562 /* Enable LSM order debugging. */
563 static int __init enable_debug(char *str)
564 {
565 	debug = true;
566 	return 1;
567 }
568 __setup("lsm.debug", enable_debug);
569 
570 static bool match_last_lsm(const char *list, const char *lsm)
571 {
572 	const char *last;
573 
574 	if (WARN_ON(!list || !lsm))
575 		return false;
576 	last = strrchr(list, ',');
577 	if (last)
578 		/* Pass the comma, strcmp() will check for '\0' */
579 		last++;
580 	else
581 		last = list;
582 	return !strcmp(last, lsm);
583 }
584 
585 static int lsm_append(const char *new, char **result)
586 {
587 	char *cp;
588 
589 	if (*result == NULL) {
590 		*result = kstrdup(new, GFP_KERNEL);
591 		if (*result == NULL)
592 			return -ENOMEM;
593 	} else {
594 		/* Check if it is the last registered name */
595 		if (match_last_lsm(*result, new))
596 			return 0;
597 		cp = kasprintf(GFP_KERNEL, "%s,%s", *result, new);
598 		if (cp == NULL)
599 			return -ENOMEM;
600 		kfree(*result);
601 		*result = cp;
602 	}
603 	return 0;
604 }
605 
606 /**
607  * security_add_hooks - Add a modules hooks to the hook lists.
608  * @hooks: the hooks to add
609  * @count: the number of hooks to add
610  * @lsmid: the identification information for the security module
611  *
612  * Each LSM has to register its hooks with the infrastructure.
613  */
614 void __init security_add_hooks(struct security_hook_list *hooks, int count,
615 			       const struct lsm_id *lsmid)
616 {
617 	int i;
618 
619 	/*
620 	 * A security module may call security_add_hooks() more
621 	 * than once during initialization, and LSM initialization
622 	 * is serialized. Landlock is one such case.
623 	 * Look at the previous entry, if there is one, for duplication.
624 	 */
625 	if (lsm_active_cnt == 0 || lsm_idlist[lsm_active_cnt - 1] != lsmid) {
626 		if (lsm_active_cnt >= MAX_LSM_COUNT)
627 			panic("%s Too many LSMs registered.\n", __func__);
628 		lsm_idlist[lsm_active_cnt++] = lsmid;
629 	}
630 
631 	for (i = 0; i < count; i++) {
632 		hooks[i].lsmid = lsmid;
633 		lsm_static_call_init(&hooks[i]);
634 	}
635 
636 	/*
637 	 * Don't try to append during early_security_init(), we'll come back
638 	 * and fix this up afterwards.
639 	 */
640 	if (slab_is_available()) {
641 		if (lsm_append(lsmid->name, &lsm_names) < 0)
642 			panic("%s - Cannot get early memory.\n", __func__);
643 	}
644 }
645 
646 int call_blocking_lsm_notifier(enum lsm_event event, void *data)
647 {
648 	return blocking_notifier_call_chain(&blocking_lsm_notifier_chain,
649 					    event, data);
650 }
651 EXPORT_SYMBOL(call_blocking_lsm_notifier);
652 
653 int register_blocking_lsm_notifier(struct notifier_block *nb)
654 {
655 	return blocking_notifier_chain_register(&blocking_lsm_notifier_chain,
656 						nb);
657 }
658 EXPORT_SYMBOL(register_blocking_lsm_notifier);
659 
660 int unregister_blocking_lsm_notifier(struct notifier_block *nb)
661 {
662 	return blocking_notifier_chain_unregister(&blocking_lsm_notifier_chain,
663 						  nb);
664 }
665 EXPORT_SYMBOL(unregister_blocking_lsm_notifier);
666 
667 /**
668  * lsm_blob_alloc - allocate a composite blob
669  * @dest: the destination for the blob
670  * @size: the size of the blob
671  * @gfp: allocation type
672  *
673  * Allocate a blob for all the modules
674  *
675  * Returns 0, or -ENOMEM if memory can't be allocated.
676  */
677 static int lsm_blob_alloc(void **dest, size_t size, gfp_t gfp)
678 {
679 	if (size == 0) {
680 		*dest = NULL;
681 		return 0;
682 	}
683 
684 	*dest = kzalloc(size, gfp);
685 	if (*dest == NULL)
686 		return -ENOMEM;
687 	return 0;
688 }
689 
690 /**
691  * lsm_cred_alloc - allocate a composite cred blob
692  * @cred: the cred that needs a blob
693  * @gfp: allocation type
694  *
695  * Allocate the cred blob for all the modules
696  *
697  * Returns 0, or -ENOMEM if memory can't be allocated.
698  */
699 static int lsm_cred_alloc(struct cred *cred, gfp_t gfp)
700 {
701 	return lsm_blob_alloc(&cred->security, blob_sizes.lbs_cred, gfp);
702 }
703 
704 /**
705  * lsm_early_cred - during initialization allocate a composite cred blob
706  * @cred: the cred that needs a blob
707  *
708  * Allocate the cred blob for all the modules
709  */
710 static void __init lsm_early_cred(struct cred *cred)
711 {
712 	int rc = lsm_cred_alloc(cred, GFP_KERNEL);
713 
714 	if (rc)
715 		panic("%s: Early cred alloc failed.\n", __func__);
716 }
717 
718 /**
719  * lsm_file_alloc - allocate a composite file blob
720  * @file: the file that needs a blob
721  *
722  * Allocate the file blob for all the modules
723  *
724  * Returns 0, or -ENOMEM if memory can't be allocated.
725  */
726 static int lsm_file_alloc(struct file *file)
727 {
728 	if (!lsm_file_cache) {
729 		file->f_security = NULL;
730 		return 0;
731 	}
732 
733 	file->f_security = kmem_cache_zalloc(lsm_file_cache, GFP_KERNEL);
734 	if (file->f_security == NULL)
735 		return -ENOMEM;
736 	return 0;
737 }
738 
739 /**
740  * lsm_inode_alloc - allocate a composite inode blob
741  * @inode: the inode that needs a blob
742  * @gfp: allocation flags
743  *
744  * Allocate the inode blob for all the modules
745  *
746  * Returns 0, or -ENOMEM if memory can't be allocated.
747  */
748 static int lsm_inode_alloc(struct inode *inode, gfp_t gfp)
749 {
750 	if (!lsm_inode_cache) {
751 		inode->i_security = NULL;
752 		return 0;
753 	}
754 
755 	inode->i_security = kmem_cache_zalloc(lsm_inode_cache, gfp);
756 	if (inode->i_security == NULL)
757 		return -ENOMEM;
758 	return 0;
759 }
760 
761 /**
762  * lsm_task_alloc - allocate a composite task blob
763  * @task: the task that needs a blob
764  *
765  * Allocate the task blob for all the modules
766  *
767  * Returns 0, or -ENOMEM if memory can't be allocated.
768  */
769 static int lsm_task_alloc(struct task_struct *task)
770 {
771 	return lsm_blob_alloc(&task->security, blob_sizes.lbs_task, GFP_KERNEL);
772 }
773 
774 /**
775  * lsm_ipc_alloc - allocate a composite ipc blob
776  * @kip: the ipc that needs a blob
777  *
778  * Allocate the ipc blob for all the modules
779  *
780  * Returns 0, or -ENOMEM if memory can't be allocated.
781  */
782 static int lsm_ipc_alloc(struct kern_ipc_perm *kip)
783 {
784 	return lsm_blob_alloc(&kip->security, blob_sizes.lbs_ipc, GFP_KERNEL);
785 }
786 
787 #ifdef CONFIG_KEYS
788 /**
789  * lsm_key_alloc - allocate a composite key blob
790  * @key: the key that needs a blob
791  *
792  * Allocate the key blob for all the modules
793  *
794  * Returns 0, or -ENOMEM if memory can't be allocated.
795  */
796 static int lsm_key_alloc(struct key *key)
797 {
798 	return lsm_blob_alloc(&key->security, blob_sizes.lbs_key, GFP_KERNEL);
799 }
800 #endif /* CONFIG_KEYS */
801 
802 /**
803  * lsm_msg_msg_alloc - allocate a composite msg_msg blob
804  * @mp: the msg_msg that needs a blob
805  *
806  * Allocate the ipc blob for all the modules
807  *
808  * Returns 0, or -ENOMEM if memory can't be allocated.
809  */
810 static int lsm_msg_msg_alloc(struct msg_msg *mp)
811 {
812 	return lsm_blob_alloc(&mp->security, blob_sizes.lbs_msg_msg,
813 			      GFP_KERNEL);
814 }
815 
816 /**
817  * lsm_bdev_alloc - allocate a composite block_device blob
818  * @bdev: the block_device that needs a blob
819  *
820  * Allocate the block_device blob for all the modules
821  *
822  * Returns 0, or -ENOMEM if memory can't be allocated.
823  */
824 static int lsm_bdev_alloc(struct block_device *bdev)
825 {
826 	if (blob_sizes.lbs_bdev == 0) {
827 		bdev->bd_security = NULL;
828 		return 0;
829 	}
830 
831 	bdev->bd_security = kzalloc(blob_sizes.lbs_bdev, GFP_KERNEL);
832 	if (!bdev->bd_security)
833 		return -ENOMEM;
834 
835 	return 0;
836 }
837 
838 /**
839  * lsm_early_task - during initialization allocate a composite task blob
840  * @task: the task that needs a blob
841  *
842  * Allocate the task blob for all the modules
843  */
844 static void __init lsm_early_task(struct task_struct *task)
845 {
846 	int rc = lsm_task_alloc(task);
847 
848 	if (rc)
849 		panic("%s: Early task alloc failed.\n", __func__);
850 }
851 
852 /**
853  * lsm_superblock_alloc - allocate a composite superblock blob
854  * @sb: the superblock that needs a blob
855  *
856  * Allocate the superblock blob for all the modules
857  *
858  * Returns 0, or -ENOMEM if memory can't be allocated.
859  */
860 static int lsm_superblock_alloc(struct super_block *sb)
861 {
862 	return lsm_blob_alloc(&sb->s_security, blob_sizes.lbs_superblock,
863 			      GFP_KERNEL);
864 }
865 
866 /**
867  * lsm_fill_user_ctx - Fill a user space lsm_ctx structure
868  * @uctx: a userspace LSM context to be filled
869  * @uctx_len: available uctx size (input), used uctx size (output)
870  * @val: the new LSM context value
871  * @val_len: the size of the new LSM context value
872  * @id: LSM id
873  * @flags: LSM defined flags
874  *
875  * Fill all of the fields in a userspace lsm_ctx structure.  If @uctx is NULL
876  * simply calculate the required size to output via @utc_len and return
877  * success.
878  *
879  * Returns 0 on success, -E2BIG if userspace buffer is not large enough,
880  * -EFAULT on a copyout error, -ENOMEM if memory can't be allocated.
881  */
882 int lsm_fill_user_ctx(struct lsm_ctx __user *uctx, u32 *uctx_len,
883 		      void *val, size_t val_len,
884 		      u64 id, u64 flags)
885 {
886 	struct lsm_ctx *nctx = NULL;
887 	size_t nctx_len;
888 	int rc = 0;
889 
890 	nctx_len = ALIGN(struct_size(nctx, ctx, val_len), sizeof(void *));
891 	if (nctx_len > *uctx_len) {
892 		rc = -E2BIG;
893 		goto out;
894 	}
895 
896 	/* no buffer - return success/0 and set @uctx_len to the req size */
897 	if (!uctx)
898 		goto out;
899 
900 	nctx = kzalloc(nctx_len, GFP_KERNEL);
901 	if (nctx == NULL) {
902 		rc = -ENOMEM;
903 		goto out;
904 	}
905 	nctx->id = id;
906 	nctx->flags = flags;
907 	nctx->len = nctx_len;
908 	nctx->ctx_len = val_len;
909 	memcpy(nctx->ctx, val, val_len);
910 
911 	if (copy_to_user(uctx, nctx, nctx_len))
912 		rc = -EFAULT;
913 
914 out:
915 	kfree(nctx);
916 	*uctx_len = nctx_len;
917 	return rc;
918 }
919 
920 /*
921  * The default value of the LSM hook is defined in linux/lsm_hook_defs.h and
922  * can be accessed with:
923  *
924  *	LSM_RET_DEFAULT(<hook_name>)
925  *
926  * The macros below define static constants for the default value of each
927  * LSM hook.
928  */
929 #define LSM_RET_DEFAULT(NAME) (NAME##_default)
930 #define DECLARE_LSM_RET_DEFAULT_void(DEFAULT, NAME)
931 #define DECLARE_LSM_RET_DEFAULT_int(DEFAULT, NAME) \
932 	static const int __maybe_unused LSM_RET_DEFAULT(NAME) = (DEFAULT);
933 #define LSM_HOOK(RET, DEFAULT, NAME, ...) \
934 	DECLARE_LSM_RET_DEFAULT_##RET(DEFAULT, NAME)
935 
936 #include <linux/lsm_hook_defs.h>
937 #undef LSM_HOOK
938 
939 /*
940  * Hook list operation macros.
941  *
942  * call_void_hook:
943  *	This is a hook that does not return a value.
944  *
945  * call_int_hook:
946  *	This is a hook that returns a value.
947  */
948 #define __CALL_STATIC_VOID(NUM, HOOK, ...)				     \
949 do {									     \
950 	if (static_branch_unlikely(&SECURITY_HOOK_ACTIVE_KEY(HOOK, NUM))) {    \
951 		static_call(LSM_STATIC_CALL(HOOK, NUM))(__VA_ARGS__);	     \
952 	}								     \
953 } while (0);
954 
955 #define call_void_hook(HOOK, ...)                                 \
956 	do {                                                      \
957 		LSM_LOOP_UNROLL(__CALL_STATIC_VOID, HOOK, __VA_ARGS__); \
958 	} while (0)
959 
960 
961 #define __CALL_STATIC_INT(NUM, R, HOOK, LABEL, ...)			     \
962 do {									     \
963 	if (static_branch_unlikely(&SECURITY_HOOK_ACTIVE_KEY(HOOK, NUM))) {  \
964 		R = static_call(LSM_STATIC_CALL(HOOK, NUM))(__VA_ARGS__);    \
965 		if (R != LSM_RET_DEFAULT(HOOK))				     \
966 			goto LABEL;					     \
967 	}								     \
968 } while (0);
969 
970 #define call_int_hook(HOOK, ...)					\
971 ({									\
972 	__label__ OUT;							\
973 	int RC = LSM_RET_DEFAULT(HOOK);					\
974 									\
975 	LSM_LOOP_UNROLL(__CALL_STATIC_INT, RC, HOOK, OUT, __VA_ARGS__);	\
976 OUT:									\
977 	RC;								\
978 })
979 
980 #define lsm_for_each_hook(scall, NAME)					\
981 	for (scall = static_calls_table.NAME;				\
982 	     scall - static_calls_table.NAME < MAX_LSM_COUNT; scall++)  \
983 		if (static_key_enabled(&scall->active->key))
984 
985 /* Security operations */
986 
987 /**
988  * security_binder_set_context_mgr() - Check if becoming binder ctx mgr is ok
989  * @mgr: task credentials of current binder process
990  *
991  * Check whether @mgr is allowed to be the binder context manager.
992  *
993  * Return: Return 0 if permission is granted.
994  */
995 int security_binder_set_context_mgr(const struct cred *mgr)
996 {
997 	return call_int_hook(binder_set_context_mgr, mgr);
998 }
999 
1000 /**
1001  * security_binder_transaction() - Check if a binder transaction is allowed
1002  * @from: sending process
1003  * @to: receiving process
1004  *
1005  * Check whether @from is allowed to invoke a binder transaction call to @to.
1006  *
1007  * Return: Returns 0 if permission is granted.
1008  */
1009 int security_binder_transaction(const struct cred *from,
1010 				const struct cred *to)
1011 {
1012 	return call_int_hook(binder_transaction, from, to);
1013 }
1014 
1015 /**
1016  * security_binder_transfer_binder() - Check if a binder transfer is allowed
1017  * @from: sending process
1018  * @to: receiving process
1019  *
1020  * Check whether @from is allowed to transfer a binder reference to @to.
1021  *
1022  * Return: Returns 0 if permission is granted.
1023  */
1024 int security_binder_transfer_binder(const struct cred *from,
1025 				    const struct cred *to)
1026 {
1027 	return call_int_hook(binder_transfer_binder, from, to);
1028 }
1029 
1030 /**
1031  * security_binder_transfer_file() - Check if a binder file xfer is allowed
1032  * @from: sending process
1033  * @to: receiving process
1034  * @file: file being transferred
1035  *
1036  * Check whether @from is allowed to transfer @file to @to.
1037  *
1038  * Return: Returns 0 if permission is granted.
1039  */
1040 int security_binder_transfer_file(const struct cred *from,
1041 				  const struct cred *to, const struct file *file)
1042 {
1043 	return call_int_hook(binder_transfer_file, from, to, file);
1044 }
1045 
1046 /**
1047  * security_ptrace_access_check() - Check if tracing is allowed
1048  * @child: target process
1049  * @mode: PTRACE_MODE flags
1050  *
1051  * Check permission before allowing the current process to trace the @child
1052  * process.  Security modules may also want to perform a process tracing check
1053  * during an execve in the set_security or apply_creds hooks of tracing check
1054  * during an execve in the bprm_set_creds hook of binprm_security_ops if the
1055  * process is being traced and its security attributes would be changed by the
1056  * execve.
1057  *
1058  * Return: Returns 0 if permission is granted.
1059  */
1060 int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
1061 {
1062 	return call_int_hook(ptrace_access_check, child, mode);
1063 }
1064 
1065 /**
1066  * security_ptrace_traceme() - Check if tracing is allowed
1067  * @parent: tracing process
1068  *
1069  * Check that the @parent process has sufficient permission to trace the
1070  * current process before allowing the current process to present itself to the
1071  * @parent process for tracing.
1072  *
1073  * Return: Returns 0 if permission is granted.
1074  */
1075 int security_ptrace_traceme(struct task_struct *parent)
1076 {
1077 	return call_int_hook(ptrace_traceme, parent);
1078 }
1079 
1080 /**
1081  * security_capget() - Get the capability sets for a process
1082  * @target: target process
1083  * @effective: effective capability set
1084  * @inheritable: inheritable capability set
1085  * @permitted: permitted capability set
1086  *
1087  * Get the @effective, @inheritable, and @permitted capability sets for the
1088  * @target process.  The hook may also perform permission checking to determine
1089  * if the current process is allowed to see the capability sets of the @target
1090  * process.
1091  *
1092  * Return: Returns 0 if the capability sets were successfully obtained.
1093  */
1094 int security_capget(const struct task_struct *target,
1095 		    kernel_cap_t *effective,
1096 		    kernel_cap_t *inheritable,
1097 		    kernel_cap_t *permitted)
1098 {
1099 	return call_int_hook(capget, target, effective, inheritable, permitted);
1100 }
1101 
1102 /**
1103  * security_capset() - Set the capability sets for a process
1104  * @new: new credentials for the target process
1105  * @old: current credentials of the target process
1106  * @effective: effective capability set
1107  * @inheritable: inheritable capability set
1108  * @permitted: permitted capability set
1109  *
1110  * Set the @effective, @inheritable, and @permitted capability sets for the
1111  * current process.
1112  *
1113  * Return: Returns 0 and update @new if permission is granted.
1114  */
1115 int security_capset(struct cred *new, const struct cred *old,
1116 		    const kernel_cap_t *effective,
1117 		    const kernel_cap_t *inheritable,
1118 		    const kernel_cap_t *permitted)
1119 {
1120 	return call_int_hook(capset, new, old, effective, inheritable,
1121 			     permitted);
1122 }
1123 
1124 /**
1125  * security_capable() - Check if a process has the necessary capability
1126  * @cred: credentials to examine
1127  * @ns: user namespace
1128  * @cap: capability requested
1129  * @opts: capability check options
1130  *
1131  * Check whether the @tsk process has the @cap capability in the indicated
1132  * credentials.  @cap contains the capability <include/linux/capability.h>.
1133  * @opts contains options for the capable check <include/linux/security.h>.
1134  *
1135  * Return: Returns 0 if the capability is granted.
1136  */
1137 int security_capable(const struct cred *cred,
1138 		     struct user_namespace *ns,
1139 		     int cap,
1140 		     unsigned int opts)
1141 {
1142 	return call_int_hook(capable, cred, ns, cap, opts);
1143 }
1144 
1145 /**
1146  * security_quotactl() - Check if a quotactl() syscall is allowed for this fs
1147  * @cmds: commands
1148  * @type: type
1149  * @id: id
1150  * @sb: filesystem
1151  *
1152  * Check whether the quotactl syscall is allowed for this @sb.
1153  *
1154  * Return: Returns 0 if permission is granted.
1155  */
1156 int security_quotactl(int cmds, int type, int id, const struct super_block *sb)
1157 {
1158 	return call_int_hook(quotactl, cmds, type, id, sb);
1159 }
1160 
1161 /**
1162  * security_quota_on() - Check if QUOTAON is allowed for a dentry
1163  * @dentry: dentry
1164  *
1165  * Check whether QUOTAON is allowed for @dentry.
1166  *
1167  * Return: Returns 0 if permission is granted.
1168  */
1169 int security_quota_on(struct dentry *dentry)
1170 {
1171 	return call_int_hook(quota_on, dentry);
1172 }
1173 
1174 /**
1175  * security_syslog() - Check if accessing the kernel message ring is allowed
1176  * @type: SYSLOG_ACTION_* type
1177  *
1178  * Check permission before accessing the kernel message ring or changing
1179  * logging to the console.  See the syslog(2) manual page for an explanation of
1180  * the @type values.
1181  *
1182  * Return: Return 0 if permission is granted.
1183  */
1184 int security_syslog(int type)
1185 {
1186 	return call_int_hook(syslog, type);
1187 }
1188 
1189 /**
1190  * security_settime64() - Check if changing the system time is allowed
1191  * @ts: new time
1192  * @tz: timezone
1193  *
1194  * Check permission to change the system time, struct timespec64 is defined in
1195  * <include/linux/time64.h> and timezone is defined in <include/linux/time.h>.
1196  *
1197  * Return: Returns 0 if permission is granted.
1198  */
1199 int security_settime64(const struct timespec64 *ts, const struct timezone *tz)
1200 {
1201 	return call_int_hook(settime, ts, tz);
1202 }
1203 
1204 /**
1205  * security_vm_enough_memory_mm() - Check if allocating a new mem map is allowed
1206  * @mm: mm struct
1207  * @pages: number of pages
1208  *
1209  * Check permissions for allocating a new virtual mapping.  If all LSMs return
1210  * a positive value, __vm_enough_memory() will be called with cap_sys_admin
1211  * set. If at least one LSM returns 0 or negative, __vm_enough_memory() will be
1212  * called with cap_sys_admin cleared.
1213  *
1214  * Return: Returns 0 if permission is granted by the LSM infrastructure to the
1215  *         caller.
1216  */
1217 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
1218 {
1219 	struct lsm_static_call *scall;
1220 	int cap_sys_admin = 1;
1221 	int rc;
1222 
1223 	/*
1224 	 * The module will respond with 0 if it thinks the __vm_enough_memory()
1225 	 * call should be made with the cap_sys_admin set. If all of the modules
1226 	 * agree that it should be set it will. If any module thinks it should
1227 	 * not be set it won't.
1228 	 */
1229 	lsm_for_each_hook(scall, vm_enough_memory) {
1230 		rc = scall->hl->hook.vm_enough_memory(mm, pages);
1231 		if (rc < 0) {
1232 			cap_sys_admin = 0;
1233 			break;
1234 		}
1235 	}
1236 	return __vm_enough_memory(mm, pages, cap_sys_admin);
1237 }
1238 
1239 /**
1240  * security_bprm_creds_for_exec() - Prepare the credentials for exec()
1241  * @bprm: binary program information
1242  *
1243  * If the setup in prepare_exec_creds did not setup @bprm->cred->security
1244  * properly for executing @bprm->file, update the LSM's portion of
1245  * @bprm->cred->security to be what commit_creds needs to install for the new
1246  * program.  This hook may also optionally check permissions (e.g. for
1247  * transitions between security domains).  The hook must set @bprm->secureexec
1248  * to 1 if AT_SECURE should be set to request libc enable secure mode.  @bprm
1249  * contains the linux_binprm structure.
1250  *
1251  * Return: Returns 0 if the hook is successful and permission is granted.
1252  */
1253 int security_bprm_creds_for_exec(struct linux_binprm *bprm)
1254 {
1255 	return call_int_hook(bprm_creds_for_exec, bprm);
1256 }
1257 
1258 /**
1259  * security_bprm_creds_from_file() - Update linux_binprm creds based on file
1260  * @bprm: binary program information
1261  * @file: associated file
1262  *
1263  * If @file is setpcap, suid, sgid or otherwise marked to change privilege upon
1264  * exec, update @bprm->cred to reflect that change. This is called after
1265  * finding the binary that will be executed without an interpreter.  This
1266  * ensures that the credentials will not be derived from a script that the
1267  * binary will need to reopen, which when reopend may end up being a completely
1268  * different file.  This hook may also optionally check permissions (e.g. for
1269  * transitions between security domains).  The hook must set @bprm->secureexec
1270  * to 1 if AT_SECURE should be set to request libc enable secure mode.  The
1271  * hook must add to @bprm->per_clear any personality flags that should be
1272  * cleared from current->personality.  @bprm contains the linux_binprm
1273  * structure.
1274  *
1275  * Return: Returns 0 if the hook is successful and permission is granted.
1276  */
1277 int security_bprm_creds_from_file(struct linux_binprm *bprm, const struct file *file)
1278 {
1279 	return call_int_hook(bprm_creds_from_file, bprm, file);
1280 }
1281 
1282 /**
1283  * security_bprm_check() - Mediate binary handler search
1284  * @bprm: binary program information
1285  *
1286  * This hook mediates the point when a search for a binary handler will begin.
1287  * It allows a check against the @bprm->cred->security value which was set in
1288  * the preceding creds_for_exec call.  The argv list and envp list are reliably
1289  * available in @bprm.  This hook may be called multiple times during a single
1290  * execve.  @bprm contains the linux_binprm structure.
1291  *
1292  * Return: Returns 0 if the hook is successful and permission is granted.
1293  */
1294 int security_bprm_check(struct linux_binprm *bprm)
1295 {
1296 	return call_int_hook(bprm_check_security, bprm);
1297 }
1298 
1299 /**
1300  * security_bprm_committing_creds() - Install creds for a process during exec()
1301  * @bprm: binary program information
1302  *
1303  * Prepare to install the new security attributes of a process being
1304  * transformed by an execve operation, based on the old credentials pointed to
1305  * by @current->cred and the information set in @bprm->cred by the
1306  * bprm_creds_for_exec hook.  @bprm points to the linux_binprm structure.  This
1307  * hook is a good place to perform state changes on the process such as closing
1308  * open file descriptors to which access will no longer be granted when the
1309  * attributes are changed.  This is called immediately before commit_creds().
1310  */
1311 void security_bprm_committing_creds(const struct linux_binprm *bprm)
1312 {
1313 	call_void_hook(bprm_committing_creds, bprm);
1314 }
1315 
1316 /**
1317  * security_bprm_committed_creds() - Tidy up after cred install during exec()
1318  * @bprm: binary program information
1319  *
1320  * Tidy up after the installation of the new security attributes of a process
1321  * being transformed by an execve operation.  The new credentials have, by this
1322  * point, been set to @current->cred.  @bprm points to the linux_binprm
1323  * structure.  This hook is a good place to perform state changes on the
1324  * process such as clearing out non-inheritable signal state.  This is called
1325  * immediately after commit_creds().
1326  */
1327 void security_bprm_committed_creds(const struct linux_binprm *bprm)
1328 {
1329 	call_void_hook(bprm_committed_creds, bprm);
1330 }
1331 
1332 /**
1333  * security_fs_context_submount() - Initialise fc->security
1334  * @fc: new filesystem context
1335  * @reference: dentry reference for submount/remount
1336  *
1337  * Fill out the ->security field for a new fs_context.
1338  *
1339  * Return: Returns 0 on success or negative error code on failure.
1340  */
1341 int security_fs_context_submount(struct fs_context *fc, struct super_block *reference)
1342 {
1343 	return call_int_hook(fs_context_submount, fc, reference);
1344 }
1345 
1346 /**
1347  * security_fs_context_dup() - Duplicate a fs_context LSM blob
1348  * @fc: destination filesystem context
1349  * @src_fc: source filesystem context
1350  *
1351  * Allocate and attach a security structure to sc->security.  This pointer is
1352  * initialised to NULL by the caller.  @fc indicates the new filesystem context.
1353  * @src_fc indicates the original filesystem context.
1354  *
1355  * Return: Returns 0 on success or a negative error code on failure.
1356  */
1357 int security_fs_context_dup(struct fs_context *fc, struct fs_context *src_fc)
1358 {
1359 	return call_int_hook(fs_context_dup, fc, src_fc);
1360 }
1361 
1362 /**
1363  * security_fs_context_parse_param() - Configure a filesystem context
1364  * @fc: filesystem context
1365  * @param: filesystem parameter
1366  *
1367  * Userspace provided a parameter to configure a superblock.  The LSM can
1368  * consume the parameter or return it to the caller for use elsewhere.
1369  *
1370  * Return: If the parameter is used by the LSM it should return 0, if it is
1371  *         returned to the caller -ENOPARAM is returned, otherwise a negative
1372  *         error code is returned.
1373  */
1374 int security_fs_context_parse_param(struct fs_context *fc,
1375 				    struct fs_parameter *param)
1376 {
1377 	struct lsm_static_call *scall;
1378 	int trc;
1379 	int rc = -ENOPARAM;
1380 
1381 	lsm_for_each_hook(scall, fs_context_parse_param) {
1382 		trc = scall->hl->hook.fs_context_parse_param(fc, param);
1383 		if (trc == 0)
1384 			rc = 0;
1385 		else if (trc != -ENOPARAM)
1386 			return trc;
1387 	}
1388 	return rc;
1389 }
1390 
1391 /**
1392  * security_sb_alloc() - Allocate a super_block LSM blob
1393  * @sb: filesystem superblock
1394  *
1395  * Allocate and attach a security structure to the sb->s_security field.  The
1396  * s_security field is initialized to NULL when the structure is allocated.
1397  * @sb contains the super_block structure to be modified.
1398  *
1399  * Return: Returns 0 if operation was successful.
1400  */
1401 int security_sb_alloc(struct super_block *sb)
1402 {
1403 	int rc = lsm_superblock_alloc(sb);
1404 
1405 	if (unlikely(rc))
1406 		return rc;
1407 	rc = call_int_hook(sb_alloc_security, sb);
1408 	if (unlikely(rc))
1409 		security_sb_free(sb);
1410 	return rc;
1411 }
1412 
1413 /**
1414  * security_sb_delete() - Release super_block LSM associated objects
1415  * @sb: filesystem superblock
1416  *
1417  * Release objects tied to a superblock (e.g. inodes).  @sb contains the
1418  * super_block structure being released.
1419  */
1420 void security_sb_delete(struct super_block *sb)
1421 {
1422 	call_void_hook(sb_delete, sb);
1423 }
1424 
1425 /**
1426  * security_sb_free() - Free a super_block LSM blob
1427  * @sb: filesystem superblock
1428  *
1429  * Deallocate and clear the sb->s_security field.  @sb contains the super_block
1430  * structure to be modified.
1431  */
1432 void security_sb_free(struct super_block *sb)
1433 {
1434 	call_void_hook(sb_free_security, sb);
1435 	kfree(sb->s_security);
1436 	sb->s_security = NULL;
1437 }
1438 
1439 /**
1440  * security_free_mnt_opts() - Free memory associated with mount options
1441  * @mnt_opts: LSM processed mount options
1442  *
1443  * Free memory associated with @mnt_ops.
1444  */
1445 void security_free_mnt_opts(void **mnt_opts)
1446 {
1447 	if (!*mnt_opts)
1448 		return;
1449 	call_void_hook(sb_free_mnt_opts, *mnt_opts);
1450 	*mnt_opts = NULL;
1451 }
1452 EXPORT_SYMBOL(security_free_mnt_opts);
1453 
1454 /**
1455  * security_sb_eat_lsm_opts() - Consume LSM mount options
1456  * @options: mount options
1457  * @mnt_opts: LSM processed mount options
1458  *
1459  * Eat (scan @options) and save them in @mnt_opts.
1460  *
1461  * Return: Returns 0 on success, negative values on failure.
1462  */
1463 int security_sb_eat_lsm_opts(char *options, void **mnt_opts)
1464 {
1465 	return call_int_hook(sb_eat_lsm_opts, options, mnt_opts);
1466 }
1467 EXPORT_SYMBOL(security_sb_eat_lsm_opts);
1468 
1469 /**
1470  * security_sb_mnt_opts_compat() - Check if new mount options are allowed
1471  * @sb: filesystem superblock
1472  * @mnt_opts: new mount options
1473  *
1474  * Determine if the new mount options in @mnt_opts are allowed given the
1475  * existing mounted filesystem at @sb.  @sb superblock being compared.
1476  *
1477  * Return: Returns 0 if options are compatible.
1478  */
1479 int security_sb_mnt_opts_compat(struct super_block *sb,
1480 				void *mnt_opts)
1481 {
1482 	return call_int_hook(sb_mnt_opts_compat, sb, mnt_opts);
1483 }
1484 EXPORT_SYMBOL(security_sb_mnt_opts_compat);
1485 
1486 /**
1487  * security_sb_remount() - Verify no incompatible mount changes during remount
1488  * @sb: filesystem superblock
1489  * @mnt_opts: (re)mount options
1490  *
1491  * Extracts security system specific mount options and verifies no changes are
1492  * being made to those options.
1493  *
1494  * Return: Returns 0 if permission is granted.
1495  */
1496 int security_sb_remount(struct super_block *sb,
1497 			void *mnt_opts)
1498 {
1499 	return call_int_hook(sb_remount, sb, mnt_opts);
1500 }
1501 EXPORT_SYMBOL(security_sb_remount);
1502 
1503 /**
1504  * security_sb_kern_mount() - Check if a kernel mount is allowed
1505  * @sb: filesystem superblock
1506  *
1507  * Mount this @sb if allowed by permissions.
1508  *
1509  * Return: Returns 0 if permission is granted.
1510  */
1511 int security_sb_kern_mount(const struct super_block *sb)
1512 {
1513 	return call_int_hook(sb_kern_mount, sb);
1514 }
1515 
1516 /**
1517  * security_sb_show_options() - Output the mount options for a superblock
1518  * @m: output file
1519  * @sb: filesystem superblock
1520  *
1521  * Show (print on @m) mount options for this @sb.
1522  *
1523  * Return: Returns 0 on success, negative values on failure.
1524  */
1525 int security_sb_show_options(struct seq_file *m, struct super_block *sb)
1526 {
1527 	return call_int_hook(sb_show_options, m, sb);
1528 }
1529 
1530 /**
1531  * security_sb_statfs() - Check if accessing fs stats is allowed
1532  * @dentry: superblock handle
1533  *
1534  * Check permission before obtaining filesystem statistics for the @mnt
1535  * mountpoint.  @dentry is a handle on the superblock for the filesystem.
1536  *
1537  * Return: Returns 0 if permission is granted.
1538  */
1539 int security_sb_statfs(struct dentry *dentry)
1540 {
1541 	return call_int_hook(sb_statfs, dentry);
1542 }
1543 
1544 /**
1545  * security_sb_mount() - Check permission for mounting a filesystem
1546  * @dev_name: filesystem backing device
1547  * @path: mount point
1548  * @type: filesystem type
1549  * @flags: mount flags
1550  * @data: filesystem specific data
1551  *
1552  * Check permission before an object specified by @dev_name is mounted on the
1553  * mount point named by @nd.  For an ordinary mount, @dev_name identifies a
1554  * device if the file system type requires a device.  For a remount
1555  * (@flags & MS_REMOUNT), @dev_name is irrelevant.  For a loopback/bind mount
1556  * (@flags & MS_BIND), @dev_name identifies the	pathname of the object being
1557  * mounted.
1558  *
1559  * Return: Returns 0 if permission is granted.
1560  */
1561 int security_sb_mount(const char *dev_name, const struct path *path,
1562 		      const char *type, unsigned long flags, void *data)
1563 {
1564 	return call_int_hook(sb_mount, dev_name, path, type, flags, data);
1565 }
1566 
1567 /**
1568  * security_sb_umount() - Check permission for unmounting a filesystem
1569  * @mnt: mounted filesystem
1570  * @flags: unmount flags
1571  *
1572  * Check permission before the @mnt file system is unmounted.
1573  *
1574  * Return: Returns 0 if permission is granted.
1575  */
1576 int security_sb_umount(struct vfsmount *mnt, int flags)
1577 {
1578 	return call_int_hook(sb_umount, mnt, flags);
1579 }
1580 
1581 /**
1582  * security_sb_pivotroot() - Check permissions for pivoting the rootfs
1583  * @old_path: new location for current rootfs
1584  * @new_path: location of the new rootfs
1585  *
1586  * Check permission before pivoting the root filesystem.
1587  *
1588  * Return: Returns 0 if permission is granted.
1589  */
1590 int security_sb_pivotroot(const struct path *old_path,
1591 			  const struct path *new_path)
1592 {
1593 	return call_int_hook(sb_pivotroot, old_path, new_path);
1594 }
1595 
1596 /**
1597  * security_sb_set_mnt_opts() - Set the mount options for a filesystem
1598  * @sb: filesystem superblock
1599  * @mnt_opts: binary mount options
1600  * @kern_flags: kernel flags (in)
1601  * @set_kern_flags: kernel flags (out)
1602  *
1603  * Set the security relevant mount options used for a superblock.
1604  *
1605  * Return: Returns 0 on success, error on failure.
1606  */
1607 int security_sb_set_mnt_opts(struct super_block *sb,
1608 			     void *mnt_opts,
1609 			     unsigned long kern_flags,
1610 			     unsigned long *set_kern_flags)
1611 {
1612 	struct lsm_static_call *scall;
1613 	int rc = mnt_opts ? -EOPNOTSUPP : LSM_RET_DEFAULT(sb_set_mnt_opts);
1614 
1615 	lsm_for_each_hook(scall, sb_set_mnt_opts) {
1616 		rc = scall->hl->hook.sb_set_mnt_opts(sb, mnt_opts, kern_flags,
1617 					      set_kern_flags);
1618 		if (rc != LSM_RET_DEFAULT(sb_set_mnt_opts))
1619 			break;
1620 	}
1621 	return rc;
1622 }
1623 EXPORT_SYMBOL(security_sb_set_mnt_opts);
1624 
1625 /**
1626  * security_sb_clone_mnt_opts() - Duplicate superblock mount options
1627  * @oldsb: source superblock
1628  * @newsb: destination superblock
1629  * @kern_flags: kernel flags (in)
1630  * @set_kern_flags: kernel flags (out)
1631  *
1632  * Copy all security options from a given superblock to another.
1633  *
1634  * Return: Returns 0 on success, error on failure.
1635  */
1636 int security_sb_clone_mnt_opts(const struct super_block *oldsb,
1637 			       struct super_block *newsb,
1638 			       unsigned long kern_flags,
1639 			       unsigned long *set_kern_flags)
1640 {
1641 	return call_int_hook(sb_clone_mnt_opts, oldsb, newsb,
1642 			     kern_flags, set_kern_flags);
1643 }
1644 EXPORT_SYMBOL(security_sb_clone_mnt_opts);
1645 
1646 /**
1647  * security_move_mount() - Check permissions for moving a mount
1648  * @from_path: source mount point
1649  * @to_path: destination mount point
1650  *
1651  * Check permission before a mount is moved.
1652  *
1653  * Return: Returns 0 if permission is granted.
1654  */
1655 int security_move_mount(const struct path *from_path,
1656 			const struct path *to_path)
1657 {
1658 	return call_int_hook(move_mount, from_path, to_path);
1659 }
1660 
1661 /**
1662  * security_path_notify() - Check if setting a watch is allowed
1663  * @path: file path
1664  * @mask: event mask
1665  * @obj_type: file path type
1666  *
1667  * Check permissions before setting a watch on events as defined by @mask, on
1668  * an object at @path, whose type is defined by @obj_type.
1669  *
1670  * Return: Returns 0 if permission is granted.
1671  */
1672 int security_path_notify(const struct path *path, u64 mask,
1673 			 unsigned int obj_type)
1674 {
1675 	return call_int_hook(path_notify, path, mask, obj_type);
1676 }
1677 
1678 /**
1679  * security_inode_alloc() - Allocate an inode LSM blob
1680  * @inode: the inode
1681  * @gfp: allocation flags
1682  *
1683  * Allocate and attach a security structure to @inode->i_security.  The
1684  * i_security field is initialized to NULL when the inode structure is
1685  * allocated.
1686  *
1687  * Return: Return 0 if operation was successful.
1688  */
1689 int security_inode_alloc(struct inode *inode, gfp_t gfp)
1690 {
1691 	int rc = lsm_inode_alloc(inode, gfp);
1692 
1693 	if (unlikely(rc))
1694 		return rc;
1695 	rc = call_int_hook(inode_alloc_security, inode);
1696 	if (unlikely(rc))
1697 		security_inode_free(inode);
1698 	return rc;
1699 }
1700 
1701 static void inode_free_by_rcu(struct rcu_head *head)
1702 {
1703 	/* The rcu head is at the start of the inode blob */
1704 	call_void_hook(inode_free_security_rcu, head);
1705 	kmem_cache_free(lsm_inode_cache, head);
1706 }
1707 
1708 /**
1709  * security_inode_free() - Free an inode's LSM blob
1710  * @inode: the inode
1711  *
1712  * Release any LSM resources associated with @inode, although due to the
1713  * inode's RCU protections it is possible that the resources will not be
1714  * fully released until after the current RCU grace period has elapsed.
1715  *
1716  * It is important for LSMs to note that despite being present in a call to
1717  * security_inode_free(), @inode may still be referenced in a VFS path walk
1718  * and calls to security_inode_permission() may be made during, or after,
1719  * a call to security_inode_free().  For this reason the inode->i_security
1720  * field is released via a call_rcu() callback and any LSMs which need to
1721  * retain inode state for use in security_inode_permission() should only
1722  * release that state in the inode_free_security_rcu() LSM hook callback.
1723  */
1724 void security_inode_free(struct inode *inode)
1725 {
1726 	call_void_hook(inode_free_security, inode);
1727 	if (!inode->i_security)
1728 		return;
1729 	call_rcu((struct rcu_head *)inode->i_security, inode_free_by_rcu);
1730 }
1731 
1732 /**
1733  * security_dentry_init_security() - Perform dentry initialization
1734  * @dentry: the dentry to initialize
1735  * @mode: mode used to determine resource type
1736  * @name: name of the last path component
1737  * @xattr_name: name of the security/LSM xattr
1738  * @lsmctx: pointer to the resulting LSM context
1739  *
1740  * Compute a context for a dentry as the inode is not yet available since NFSv4
1741  * has no label backed by an EA anyway.  It is important to note that
1742  * @xattr_name does not need to be free'd by the caller, it is a static string.
1743  *
1744  * Return: Returns 0 on success, negative values on failure.
1745  */
1746 int security_dentry_init_security(struct dentry *dentry, int mode,
1747 				  const struct qstr *name,
1748 				  const char **xattr_name,
1749 				  struct lsm_context *lsmctx)
1750 {
1751 	return call_int_hook(dentry_init_security, dentry, mode, name,
1752 			     xattr_name, lsmctx);
1753 }
1754 EXPORT_SYMBOL(security_dentry_init_security);
1755 
1756 /**
1757  * security_dentry_create_files_as() - Perform dentry initialization
1758  * @dentry: the dentry to initialize
1759  * @mode: mode used to determine resource type
1760  * @name: name of the last path component
1761  * @old: creds to use for LSM context calculations
1762  * @new: creds to modify
1763  *
1764  * Compute a context for a dentry as the inode is not yet available and set
1765  * that context in passed in creds so that new files are created using that
1766  * context. Context is calculated using the passed in creds and not the creds
1767  * of the caller.
1768  *
1769  * Return: Returns 0 on success, error on failure.
1770  */
1771 int security_dentry_create_files_as(struct dentry *dentry, int mode,
1772 				    struct qstr *name,
1773 				    const struct cred *old, struct cred *new)
1774 {
1775 	return call_int_hook(dentry_create_files_as, dentry, mode,
1776 			     name, old, new);
1777 }
1778 EXPORT_SYMBOL(security_dentry_create_files_as);
1779 
1780 /**
1781  * security_inode_init_security() - Initialize an inode's LSM context
1782  * @inode: the inode
1783  * @dir: parent directory
1784  * @qstr: last component of the pathname
1785  * @initxattrs: callback function to write xattrs
1786  * @fs_data: filesystem specific data
1787  *
1788  * Obtain the security attribute name suffix and value to set on a newly
1789  * created inode and set up the incore security field for the new inode.  This
1790  * hook is called by the fs code as part of the inode creation transaction and
1791  * provides for atomic labeling of the inode, unlike the post_create/mkdir/...
1792  * hooks called by the VFS.
1793  *
1794  * The hook function is expected to populate the xattrs array, by calling
1795  * lsm_get_xattr_slot() to retrieve the slots reserved by the security module
1796  * with the lbs_xattr_count field of the lsm_blob_sizes structure.  For each
1797  * slot, the hook function should set ->name to the attribute name suffix
1798  * (e.g. selinux), to allocate ->value (will be freed by the caller) and set it
1799  * to the attribute value, to set ->value_len to the length of the value.  If
1800  * the security module does not use security attributes or does not wish to put
1801  * a security attribute on this particular inode, then it should return
1802  * -EOPNOTSUPP to skip this processing.
1803  *
1804  * Return: Returns 0 if the LSM successfully initialized all of the inode
1805  *         security attributes that are required, negative values otherwise.
1806  */
1807 int security_inode_init_security(struct inode *inode, struct inode *dir,
1808 				 const struct qstr *qstr,
1809 				 const initxattrs initxattrs, void *fs_data)
1810 {
1811 	struct lsm_static_call *scall;
1812 	struct xattr *new_xattrs = NULL;
1813 	int ret = -EOPNOTSUPP, xattr_count = 0;
1814 
1815 	if (unlikely(IS_PRIVATE(inode)))
1816 		return 0;
1817 
1818 	if (!blob_sizes.lbs_xattr_count)
1819 		return 0;
1820 
1821 	if (initxattrs) {
1822 		/* Allocate +1 as terminator. */
1823 		new_xattrs = kcalloc(blob_sizes.lbs_xattr_count + 1,
1824 				     sizeof(*new_xattrs), GFP_NOFS);
1825 		if (!new_xattrs)
1826 			return -ENOMEM;
1827 	}
1828 
1829 	lsm_for_each_hook(scall, inode_init_security) {
1830 		ret = scall->hl->hook.inode_init_security(inode, dir, qstr, new_xattrs,
1831 						  &xattr_count);
1832 		if (ret && ret != -EOPNOTSUPP)
1833 			goto out;
1834 		/*
1835 		 * As documented in lsm_hooks.h, -EOPNOTSUPP in this context
1836 		 * means that the LSM is not willing to provide an xattr, not
1837 		 * that it wants to signal an error. Thus, continue to invoke
1838 		 * the remaining LSMs.
1839 		 */
1840 	}
1841 
1842 	/* If initxattrs() is NULL, xattr_count is zero, skip the call. */
1843 	if (!xattr_count)
1844 		goto out;
1845 
1846 	ret = initxattrs(inode, new_xattrs, fs_data);
1847 out:
1848 	for (; xattr_count > 0; xattr_count--)
1849 		kfree(new_xattrs[xattr_count - 1].value);
1850 	kfree(new_xattrs);
1851 	return (ret == -EOPNOTSUPP) ? 0 : ret;
1852 }
1853 EXPORT_SYMBOL(security_inode_init_security);
1854 
1855 /**
1856  * security_inode_init_security_anon() - Initialize an anonymous inode
1857  * @inode: the inode
1858  * @name: the anonymous inode class
1859  * @context_inode: an optional related inode
1860  *
1861  * Set up the incore security field for the new anonymous inode and return
1862  * whether the inode creation is permitted by the security module or not.
1863  *
1864  * Return: Returns 0 on success, -EACCES if the security module denies the
1865  * creation of this inode, or another -errno upon other errors.
1866  */
1867 int security_inode_init_security_anon(struct inode *inode,
1868 				      const struct qstr *name,
1869 				      const struct inode *context_inode)
1870 {
1871 	return call_int_hook(inode_init_security_anon, inode, name,
1872 			     context_inode);
1873 }
1874 
1875 #ifdef CONFIG_SECURITY_PATH
1876 /**
1877  * security_path_mknod() - Check if creating a special file is allowed
1878  * @dir: parent directory
1879  * @dentry: new file
1880  * @mode: new file mode
1881  * @dev: device number
1882  *
1883  * Check permissions when creating a file. Note that this hook is called even
1884  * if mknod operation is being done for a regular file.
1885  *
1886  * Return: Returns 0 if permission is granted.
1887  */
1888 int security_path_mknod(const struct path *dir, struct dentry *dentry,
1889 			umode_t mode, unsigned int dev)
1890 {
1891 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1892 		return 0;
1893 	return call_int_hook(path_mknod, dir, dentry, mode, dev);
1894 }
1895 EXPORT_SYMBOL(security_path_mknod);
1896 
1897 /**
1898  * security_path_post_mknod() - Update inode security after reg file creation
1899  * @idmap: idmap of the mount
1900  * @dentry: new file
1901  *
1902  * Update inode security field after a regular file has been created.
1903  */
1904 void security_path_post_mknod(struct mnt_idmap *idmap, struct dentry *dentry)
1905 {
1906 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1907 		return;
1908 	call_void_hook(path_post_mknod, idmap, dentry);
1909 }
1910 
1911 /**
1912  * security_path_mkdir() - Check if creating a new directory is allowed
1913  * @dir: parent directory
1914  * @dentry: new directory
1915  * @mode: new directory mode
1916  *
1917  * Check permissions to create a new directory in the existing directory.
1918  *
1919  * Return: Returns 0 if permission is granted.
1920  */
1921 int security_path_mkdir(const struct path *dir, struct dentry *dentry,
1922 			umode_t mode)
1923 {
1924 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1925 		return 0;
1926 	return call_int_hook(path_mkdir, dir, dentry, mode);
1927 }
1928 EXPORT_SYMBOL(security_path_mkdir);
1929 
1930 /**
1931  * security_path_rmdir() - Check if removing a directory is allowed
1932  * @dir: parent directory
1933  * @dentry: directory to remove
1934  *
1935  * Check the permission to remove a directory.
1936  *
1937  * Return: Returns 0 if permission is granted.
1938  */
1939 int security_path_rmdir(const struct path *dir, struct dentry *dentry)
1940 {
1941 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1942 		return 0;
1943 	return call_int_hook(path_rmdir, dir, dentry);
1944 }
1945 
1946 /**
1947  * security_path_unlink() - Check if removing a hard link is allowed
1948  * @dir: parent directory
1949  * @dentry: file
1950  *
1951  * Check the permission to remove a hard link to a file.
1952  *
1953  * Return: Returns 0 if permission is granted.
1954  */
1955 int security_path_unlink(const struct path *dir, struct dentry *dentry)
1956 {
1957 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1958 		return 0;
1959 	return call_int_hook(path_unlink, dir, dentry);
1960 }
1961 EXPORT_SYMBOL(security_path_unlink);
1962 
1963 /**
1964  * security_path_symlink() - Check if creating a symbolic link is allowed
1965  * @dir: parent directory
1966  * @dentry: symbolic link
1967  * @old_name: file pathname
1968  *
1969  * Check the permission to create a symbolic link to a file.
1970  *
1971  * Return: Returns 0 if permission is granted.
1972  */
1973 int security_path_symlink(const struct path *dir, struct dentry *dentry,
1974 			  const char *old_name)
1975 {
1976 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1977 		return 0;
1978 	return call_int_hook(path_symlink, dir, dentry, old_name);
1979 }
1980 
1981 /**
1982  * security_path_link - Check if creating a hard link is allowed
1983  * @old_dentry: existing file
1984  * @new_dir: new parent directory
1985  * @new_dentry: new link
1986  *
1987  * Check permission before creating a new hard link to a file.
1988  *
1989  * Return: Returns 0 if permission is granted.
1990  */
1991 int security_path_link(struct dentry *old_dentry, const struct path *new_dir,
1992 		       struct dentry *new_dentry)
1993 {
1994 	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
1995 		return 0;
1996 	return call_int_hook(path_link, old_dentry, new_dir, new_dentry);
1997 }
1998 
1999 /**
2000  * security_path_rename() - Check if renaming a file is allowed
2001  * @old_dir: parent directory of the old file
2002  * @old_dentry: the old file
2003  * @new_dir: parent directory of the new file
2004  * @new_dentry: the new file
2005  * @flags: flags
2006  *
2007  * Check for permission to rename a file or directory.
2008  *
2009  * Return: Returns 0 if permission is granted.
2010  */
2011 int security_path_rename(const struct path *old_dir, struct dentry *old_dentry,
2012 			 const struct path *new_dir, struct dentry *new_dentry,
2013 			 unsigned int flags)
2014 {
2015 	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
2016 		     (d_is_positive(new_dentry) &&
2017 		      IS_PRIVATE(d_backing_inode(new_dentry)))))
2018 		return 0;
2019 
2020 	return call_int_hook(path_rename, old_dir, old_dentry, new_dir,
2021 			     new_dentry, flags);
2022 }
2023 EXPORT_SYMBOL(security_path_rename);
2024 
2025 /**
2026  * security_path_truncate() - Check if truncating a file is allowed
2027  * @path: file
2028  *
2029  * Check permission before truncating the file indicated by path.  Note that
2030  * truncation permissions may also be checked based on already opened files,
2031  * using the security_file_truncate() hook.
2032  *
2033  * Return: Returns 0 if permission is granted.
2034  */
2035 int security_path_truncate(const struct path *path)
2036 {
2037 	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
2038 		return 0;
2039 	return call_int_hook(path_truncate, path);
2040 }
2041 
2042 /**
2043  * security_path_chmod() - Check if changing the file's mode is allowed
2044  * @path: file
2045  * @mode: new mode
2046  *
2047  * Check for permission to change a mode of the file @path. The new mode is
2048  * specified in @mode which is a bitmask of constants from
2049  * <include/uapi/linux/stat.h>.
2050  *
2051  * Return: Returns 0 if permission is granted.
2052  */
2053 int security_path_chmod(const struct path *path, umode_t mode)
2054 {
2055 	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
2056 		return 0;
2057 	return call_int_hook(path_chmod, path, mode);
2058 }
2059 
2060 /**
2061  * security_path_chown() - Check if changing the file's owner/group is allowed
2062  * @path: file
2063  * @uid: file owner
2064  * @gid: file group
2065  *
2066  * Check for permission to change owner/group of a file or directory.
2067  *
2068  * Return: Returns 0 if permission is granted.
2069  */
2070 int security_path_chown(const struct path *path, kuid_t uid, kgid_t gid)
2071 {
2072 	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
2073 		return 0;
2074 	return call_int_hook(path_chown, path, uid, gid);
2075 }
2076 
2077 /**
2078  * security_path_chroot() - Check if changing the root directory is allowed
2079  * @path: directory
2080  *
2081  * Check for permission to change root directory.
2082  *
2083  * Return: Returns 0 if permission is granted.
2084  */
2085 int security_path_chroot(const struct path *path)
2086 {
2087 	return call_int_hook(path_chroot, path);
2088 }
2089 #endif /* CONFIG_SECURITY_PATH */
2090 
2091 /**
2092  * security_inode_create() - Check if creating a file is allowed
2093  * @dir: the parent directory
2094  * @dentry: the file being created
2095  * @mode: requested file mode
2096  *
2097  * Check permission to create a regular file.
2098  *
2099  * Return: Returns 0 if permission is granted.
2100  */
2101 int security_inode_create(struct inode *dir, struct dentry *dentry,
2102 			  umode_t mode)
2103 {
2104 	if (unlikely(IS_PRIVATE(dir)))
2105 		return 0;
2106 	return call_int_hook(inode_create, dir, dentry, mode);
2107 }
2108 EXPORT_SYMBOL_GPL(security_inode_create);
2109 
2110 /**
2111  * security_inode_post_create_tmpfile() - Update inode security of new tmpfile
2112  * @idmap: idmap of the mount
2113  * @inode: inode of the new tmpfile
2114  *
2115  * Update inode security data after a tmpfile has been created.
2116  */
2117 void security_inode_post_create_tmpfile(struct mnt_idmap *idmap,
2118 					struct inode *inode)
2119 {
2120 	if (unlikely(IS_PRIVATE(inode)))
2121 		return;
2122 	call_void_hook(inode_post_create_tmpfile, idmap, inode);
2123 }
2124 
2125 /**
2126  * security_inode_link() - Check if creating a hard link is allowed
2127  * @old_dentry: existing file
2128  * @dir: new parent directory
2129  * @new_dentry: new link
2130  *
2131  * Check permission before creating a new hard link to a file.
2132  *
2133  * Return: Returns 0 if permission is granted.
2134  */
2135 int security_inode_link(struct dentry *old_dentry, struct inode *dir,
2136 			struct dentry *new_dentry)
2137 {
2138 	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
2139 		return 0;
2140 	return call_int_hook(inode_link, old_dentry, dir, new_dentry);
2141 }
2142 
2143 /**
2144  * security_inode_unlink() - Check if removing a hard link is allowed
2145  * @dir: parent directory
2146  * @dentry: file
2147  *
2148  * Check the permission to remove a hard link to a file.
2149  *
2150  * Return: Returns 0 if permission is granted.
2151  */
2152 int security_inode_unlink(struct inode *dir, struct dentry *dentry)
2153 {
2154 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2155 		return 0;
2156 	return call_int_hook(inode_unlink, dir, dentry);
2157 }
2158 
2159 /**
2160  * security_inode_symlink() - Check if creating a symbolic link is allowed
2161  * @dir: parent directory
2162  * @dentry: symbolic link
2163  * @old_name: existing filename
2164  *
2165  * Check the permission to create a symbolic link to a file.
2166  *
2167  * Return: Returns 0 if permission is granted.
2168  */
2169 int security_inode_symlink(struct inode *dir, struct dentry *dentry,
2170 			   const char *old_name)
2171 {
2172 	if (unlikely(IS_PRIVATE(dir)))
2173 		return 0;
2174 	return call_int_hook(inode_symlink, dir, dentry, old_name);
2175 }
2176 
2177 /**
2178  * security_inode_mkdir() - Check if creation a new director is allowed
2179  * @dir: parent directory
2180  * @dentry: new directory
2181  * @mode: new directory mode
2182  *
2183  * Check permissions to create a new directory in the existing directory
2184  * associated with inode structure @dir.
2185  *
2186  * Return: Returns 0 if permission is granted.
2187  */
2188 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2189 {
2190 	if (unlikely(IS_PRIVATE(dir)))
2191 		return 0;
2192 	return call_int_hook(inode_mkdir, dir, dentry, mode);
2193 }
2194 EXPORT_SYMBOL_GPL(security_inode_mkdir);
2195 
2196 /**
2197  * security_inode_rmdir() - Check if removing a directory is allowed
2198  * @dir: parent directory
2199  * @dentry: directory to be removed
2200  *
2201  * Check the permission to remove a directory.
2202  *
2203  * Return: Returns 0 if permission is granted.
2204  */
2205 int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
2206 {
2207 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2208 		return 0;
2209 	return call_int_hook(inode_rmdir, dir, dentry);
2210 }
2211 
2212 /**
2213  * security_inode_mknod() - Check if creating a special file is allowed
2214  * @dir: parent directory
2215  * @dentry: new file
2216  * @mode: new file mode
2217  * @dev: device number
2218  *
2219  * Check permissions when creating a special file (or a socket or a fifo file
2220  * created via the mknod system call).  Note that if mknod operation is being
2221  * done for a regular file, then the create hook will be called and not this
2222  * hook.
2223  *
2224  * Return: Returns 0 if permission is granted.
2225  */
2226 int security_inode_mknod(struct inode *dir, struct dentry *dentry,
2227 			 umode_t mode, dev_t dev)
2228 {
2229 	if (unlikely(IS_PRIVATE(dir)))
2230 		return 0;
2231 	return call_int_hook(inode_mknod, dir, dentry, mode, dev);
2232 }
2233 
2234 /**
2235  * security_inode_rename() - Check if renaming a file is allowed
2236  * @old_dir: parent directory of the old file
2237  * @old_dentry: the old file
2238  * @new_dir: parent directory of the new file
2239  * @new_dentry: the new file
2240  * @flags: flags
2241  *
2242  * Check for permission to rename a file or directory.
2243  *
2244  * Return: Returns 0 if permission is granted.
2245  */
2246 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
2247 			  struct inode *new_dir, struct dentry *new_dentry,
2248 			  unsigned int flags)
2249 {
2250 	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
2251 		     (d_is_positive(new_dentry) &&
2252 		      IS_PRIVATE(d_backing_inode(new_dentry)))))
2253 		return 0;
2254 
2255 	if (flags & RENAME_EXCHANGE) {
2256 		int err = call_int_hook(inode_rename, new_dir, new_dentry,
2257 					old_dir, old_dentry);
2258 		if (err)
2259 			return err;
2260 	}
2261 
2262 	return call_int_hook(inode_rename, old_dir, old_dentry,
2263 			     new_dir, new_dentry);
2264 }
2265 
2266 /**
2267  * security_inode_readlink() - Check if reading a symbolic link is allowed
2268  * @dentry: link
2269  *
2270  * Check the permission to read the symbolic link.
2271  *
2272  * Return: Returns 0 if permission is granted.
2273  */
2274 int security_inode_readlink(struct dentry *dentry)
2275 {
2276 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2277 		return 0;
2278 	return call_int_hook(inode_readlink, dentry);
2279 }
2280 
2281 /**
2282  * security_inode_follow_link() - Check if following a symbolic link is allowed
2283  * @dentry: link dentry
2284  * @inode: link inode
2285  * @rcu: true if in RCU-walk mode
2286  *
2287  * Check permission to follow a symbolic link when looking up a pathname.  If
2288  * @rcu is true, @inode is not stable.
2289  *
2290  * Return: Returns 0 if permission is granted.
2291  */
2292 int security_inode_follow_link(struct dentry *dentry, struct inode *inode,
2293 			       bool rcu)
2294 {
2295 	if (unlikely(IS_PRIVATE(inode)))
2296 		return 0;
2297 	return call_int_hook(inode_follow_link, dentry, inode, rcu);
2298 }
2299 
2300 /**
2301  * security_inode_permission() - Check if accessing an inode is allowed
2302  * @inode: inode
2303  * @mask: access mask
2304  *
2305  * Check permission before accessing an inode.  This hook is called by the
2306  * existing Linux permission function, so a security module can use it to
2307  * provide additional checking for existing Linux permission checks.  Notice
2308  * that this hook is called when a file is opened (as well as many other
2309  * operations), whereas the file_security_ops permission hook is called when
2310  * the actual read/write operations are performed.
2311  *
2312  * Return: Returns 0 if permission is granted.
2313  */
2314 int security_inode_permission(struct inode *inode, int mask)
2315 {
2316 	if (unlikely(IS_PRIVATE(inode)))
2317 		return 0;
2318 	return call_int_hook(inode_permission, inode, mask);
2319 }
2320 
2321 /**
2322  * security_inode_setattr() - Check if setting file attributes is allowed
2323  * @idmap: idmap of the mount
2324  * @dentry: file
2325  * @attr: new attributes
2326  *
2327  * Check permission before setting file attributes.  Note that the kernel call
2328  * to notify_change is performed from several locations, whenever file
2329  * attributes change (such as when a file is truncated, chown/chmod operations,
2330  * transferring disk quotas, etc).
2331  *
2332  * Return: Returns 0 if permission is granted.
2333  */
2334 int security_inode_setattr(struct mnt_idmap *idmap,
2335 			   struct dentry *dentry, struct iattr *attr)
2336 {
2337 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2338 		return 0;
2339 	return call_int_hook(inode_setattr, idmap, dentry, attr);
2340 }
2341 EXPORT_SYMBOL_GPL(security_inode_setattr);
2342 
2343 /**
2344  * security_inode_post_setattr() - Update the inode after a setattr operation
2345  * @idmap: idmap of the mount
2346  * @dentry: file
2347  * @ia_valid: file attributes set
2348  *
2349  * Update inode security field after successful setting file attributes.
2350  */
2351 void security_inode_post_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
2352 				 int ia_valid)
2353 {
2354 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2355 		return;
2356 	call_void_hook(inode_post_setattr, idmap, dentry, ia_valid);
2357 }
2358 
2359 /**
2360  * security_inode_getattr() - Check if getting file attributes is allowed
2361  * @path: file
2362  *
2363  * Check permission before obtaining file attributes.
2364  *
2365  * Return: Returns 0 if permission is granted.
2366  */
2367 int security_inode_getattr(const struct path *path)
2368 {
2369 	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
2370 		return 0;
2371 	return call_int_hook(inode_getattr, path);
2372 }
2373 
2374 /**
2375  * security_inode_setxattr() - Check if setting file xattrs is allowed
2376  * @idmap: idmap of the mount
2377  * @dentry: file
2378  * @name: xattr name
2379  * @value: xattr value
2380  * @size: size of xattr value
2381  * @flags: flags
2382  *
2383  * This hook performs the desired permission checks before setting the extended
2384  * attributes (xattrs) on @dentry.  It is important to note that we have some
2385  * additional logic before the main LSM implementation calls to detect if we
2386  * need to perform an additional capability check at the LSM layer.
2387  *
2388  * Normally we enforce a capability check prior to executing the various LSM
2389  * hook implementations, but if a LSM wants to avoid this capability check,
2390  * it can register a 'inode_xattr_skipcap' hook and return a value of 1 for
2391  * xattrs that it wants to avoid the capability check, leaving the LSM fully
2392  * responsible for enforcing the access control for the specific xattr.  If all
2393  * of the enabled LSMs refrain from registering a 'inode_xattr_skipcap' hook,
2394  * or return a 0 (the default return value), the capability check is still
2395  * performed.  If no 'inode_xattr_skipcap' hooks are registered the capability
2396  * check is performed.
2397  *
2398  * Return: Returns 0 if permission is granted.
2399  */
2400 int security_inode_setxattr(struct mnt_idmap *idmap,
2401 			    struct dentry *dentry, const char *name,
2402 			    const void *value, size_t size, int flags)
2403 {
2404 	int rc;
2405 
2406 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2407 		return 0;
2408 
2409 	/* enforce the capability checks at the lsm layer, if needed */
2410 	if (!call_int_hook(inode_xattr_skipcap, name)) {
2411 		rc = cap_inode_setxattr(dentry, name, value, size, flags);
2412 		if (rc)
2413 			return rc;
2414 	}
2415 
2416 	return call_int_hook(inode_setxattr, idmap, dentry, name, value, size,
2417 			     flags);
2418 }
2419 
2420 /**
2421  * security_inode_set_acl() - Check if setting posix acls is allowed
2422  * @idmap: idmap of the mount
2423  * @dentry: file
2424  * @acl_name: acl name
2425  * @kacl: acl struct
2426  *
2427  * Check permission before setting posix acls, the posix acls in @kacl are
2428  * identified by @acl_name.
2429  *
2430  * Return: Returns 0 if permission is granted.
2431  */
2432 int security_inode_set_acl(struct mnt_idmap *idmap,
2433 			   struct dentry *dentry, const char *acl_name,
2434 			   struct posix_acl *kacl)
2435 {
2436 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2437 		return 0;
2438 	return call_int_hook(inode_set_acl, idmap, dentry, acl_name, kacl);
2439 }
2440 
2441 /**
2442  * security_inode_post_set_acl() - Update inode security from posix acls set
2443  * @dentry: file
2444  * @acl_name: acl name
2445  * @kacl: acl struct
2446  *
2447  * Update inode security data after successfully setting posix acls on @dentry.
2448  * The posix acls in @kacl are identified by @acl_name.
2449  */
2450 void security_inode_post_set_acl(struct dentry *dentry, const char *acl_name,
2451 				 struct posix_acl *kacl)
2452 {
2453 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2454 		return;
2455 	call_void_hook(inode_post_set_acl, dentry, acl_name, kacl);
2456 }
2457 
2458 /**
2459  * security_inode_get_acl() - Check if reading posix acls is allowed
2460  * @idmap: idmap of the mount
2461  * @dentry: file
2462  * @acl_name: acl name
2463  *
2464  * Check permission before getting osix acls, the posix acls are identified by
2465  * @acl_name.
2466  *
2467  * Return: Returns 0 if permission is granted.
2468  */
2469 int security_inode_get_acl(struct mnt_idmap *idmap,
2470 			   struct dentry *dentry, const char *acl_name)
2471 {
2472 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2473 		return 0;
2474 	return call_int_hook(inode_get_acl, idmap, dentry, acl_name);
2475 }
2476 
2477 /**
2478  * security_inode_remove_acl() - Check if removing a posix acl is allowed
2479  * @idmap: idmap of the mount
2480  * @dentry: file
2481  * @acl_name: acl name
2482  *
2483  * Check permission before removing posix acls, the posix acls are identified
2484  * by @acl_name.
2485  *
2486  * Return: Returns 0 if permission is granted.
2487  */
2488 int security_inode_remove_acl(struct mnt_idmap *idmap,
2489 			      struct dentry *dentry, const char *acl_name)
2490 {
2491 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2492 		return 0;
2493 	return call_int_hook(inode_remove_acl, idmap, dentry, acl_name);
2494 }
2495 
2496 /**
2497  * security_inode_post_remove_acl() - Update inode security after rm posix acls
2498  * @idmap: idmap of the mount
2499  * @dentry: file
2500  * @acl_name: acl name
2501  *
2502  * Update inode security data after successfully removing posix acls on
2503  * @dentry in @idmap. The posix acls are identified by @acl_name.
2504  */
2505 void security_inode_post_remove_acl(struct mnt_idmap *idmap,
2506 				    struct dentry *dentry, const char *acl_name)
2507 {
2508 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2509 		return;
2510 	call_void_hook(inode_post_remove_acl, idmap, dentry, acl_name);
2511 }
2512 
2513 /**
2514  * security_inode_post_setxattr() - Update the inode after a setxattr operation
2515  * @dentry: file
2516  * @name: xattr name
2517  * @value: xattr value
2518  * @size: xattr value size
2519  * @flags: flags
2520  *
2521  * Update inode security field after successful setxattr operation.
2522  */
2523 void security_inode_post_setxattr(struct dentry *dentry, const char *name,
2524 				  const void *value, size_t size, int flags)
2525 {
2526 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2527 		return;
2528 	call_void_hook(inode_post_setxattr, dentry, name, value, size, flags);
2529 }
2530 
2531 /**
2532  * security_inode_getxattr() - Check if xattr access is allowed
2533  * @dentry: file
2534  * @name: xattr name
2535  *
2536  * Check permission before obtaining the extended attributes identified by
2537  * @name for @dentry.
2538  *
2539  * Return: Returns 0 if permission is granted.
2540  */
2541 int security_inode_getxattr(struct dentry *dentry, const char *name)
2542 {
2543 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2544 		return 0;
2545 	return call_int_hook(inode_getxattr, dentry, name);
2546 }
2547 
2548 /**
2549  * security_inode_listxattr() - Check if listing xattrs is allowed
2550  * @dentry: file
2551  *
2552  * Check permission before obtaining the list of extended attribute names for
2553  * @dentry.
2554  *
2555  * Return: Returns 0 if permission is granted.
2556  */
2557 int security_inode_listxattr(struct dentry *dentry)
2558 {
2559 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2560 		return 0;
2561 	return call_int_hook(inode_listxattr, dentry);
2562 }
2563 
2564 /**
2565  * security_inode_removexattr() - Check if removing an xattr is allowed
2566  * @idmap: idmap of the mount
2567  * @dentry: file
2568  * @name: xattr name
2569  *
2570  * This hook performs the desired permission checks before setting the extended
2571  * attributes (xattrs) on @dentry.  It is important to note that we have some
2572  * additional logic before the main LSM implementation calls to detect if we
2573  * need to perform an additional capability check at the LSM layer.
2574  *
2575  * Normally we enforce a capability check prior to executing the various LSM
2576  * hook implementations, but if a LSM wants to avoid this capability check,
2577  * it can register a 'inode_xattr_skipcap' hook and return a value of 1 for
2578  * xattrs that it wants to avoid the capability check, leaving the LSM fully
2579  * responsible for enforcing the access control for the specific xattr.  If all
2580  * of the enabled LSMs refrain from registering a 'inode_xattr_skipcap' hook,
2581  * or return a 0 (the default return value), the capability check is still
2582  * performed.  If no 'inode_xattr_skipcap' hooks are registered the capability
2583  * check is performed.
2584  *
2585  * Return: Returns 0 if permission is granted.
2586  */
2587 int security_inode_removexattr(struct mnt_idmap *idmap,
2588 			       struct dentry *dentry, const char *name)
2589 {
2590 	int rc;
2591 
2592 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2593 		return 0;
2594 
2595 	/* enforce the capability checks at the lsm layer, if needed */
2596 	if (!call_int_hook(inode_xattr_skipcap, name)) {
2597 		rc = cap_inode_removexattr(idmap, dentry, name);
2598 		if (rc)
2599 			return rc;
2600 	}
2601 
2602 	return call_int_hook(inode_removexattr, idmap, dentry, name);
2603 }
2604 
2605 /**
2606  * security_inode_post_removexattr() - Update the inode after a removexattr op
2607  * @dentry: file
2608  * @name: xattr name
2609  *
2610  * Update the inode after a successful removexattr operation.
2611  */
2612 void security_inode_post_removexattr(struct dentry *dentry, const char *name)
2613 {
2614 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2615 		return;
2616 	call_void_hook(inode_post_removexattr, dentry, name);
2617 }
2618 
2619 /**
2620  * security_inode_need_killpriv() - Check if security_inode_killpriv() required
2621  * @dentry: associated dentry
2622  *
2623  * Called when an inode has been changed to determine if
2624  * security_inode_killpriv() should be called.
2625  *
2626  * Return: Return <0 on error to abort the inode change operation, return 0 if
2627  *         security_inode_killpriv() does not need to be called, return >0 if
2628  *         security_inode_killpriv() does need to be called.
2629  */
2630 int security_inode_need_killpriv(struct dentry *dentry)
2631 {
2632 	return call_int_hook(inode_need_killpriv, dentry);
2633 }
2634 
2635 /**
2636  * security_inode_killpriv() - The setuid bit is removed, update LSM state
2637  * @idmap: idmap of the mount
2638  * @dentry: associated dentry
2639  *
2640  * The @dentry's setuid bit is being removed.  Remove similar security labels.
2641  * Called with the dentry->d_inode->i_mutex held.
2642  *
2643  * Return: Return 0 on success.  If error is returned, then the operation
2644  *         causing setuid bit removal is failed.
2645  */
2646 int security_inode_killpriv(struct mnt_idmap *idmap,
2647 			    struct dentry *dentry)
2648 {
2649 	return call_int_hook(inode_killpriv, idmap, dentry);
2650 }
2651 
2652 /**
2653  * security_inode_getsecurity() - Get the xattr security label of an inode
2654  * @idmap: idmap of the mount
2655  * @inode: inode
2656  * @name: xattr name
2657  * @buffer: security label buffer
2658  * @alloc: allocation flag
2659  *
2660  * Retrieve a copy of the extended attribute representation of the security
2661  * label associated with @name for @inode via @buffer.  Note that @name is the
2662  * remainder of the attribute name after the security prefix has been removed.
2663  * @alloc is used to specify if the call should return a value via the buffer
2664  * or just the value length.
2665  *
2666  * Return: Returns size of buffer on success.
2667  */
2668 int security_inode_getsecurity(struct mnt_idmap *idmap,
2669 			       struct inode *inode, const char *name,
2670 			       void **buffer, bool alloc)
2671 {
2672 	if (unlikely(IS_PRIVATE(inode)))
2673 		return LSM_RET_DEFAULT(inode_getsecurity);
2674 
2675 	return call_int_hook(inode_getsecurity, idmap, inode, name, buffer,
2676 			     alloc);
2677 }
2678 
2679 /**
2680  * security_inode_setsecurity() - Set the xattr security label of an inode
2681  * @inode: inode
2682  * @name: xattr name
2683  * @value: security label
2684  * @size: length of security label
2685  * @flags: flags
2686  *
2687  * Set the security label associated with @name for @inode from the extended
2688  * attribute value @value.  @size indicates the size of the @value in bytes.
2689  * @flags may be XATTR_CREATE, XATTR_REPLACE, or 0. Note that @name is the
2690  * remainder of the attribute name after the security. prefix has been removed.
2691  *
2692  * Return: Returns 0 on success.
2693  */
2694 int security_inode_setsecurity(struct inode *inode, const char *name,
2695 			       const void *value, size_t size, int flags)
2696 {
2697 	if (unlikely(IS_PRIVATE(inode)))
2698 		return LSM_RET_DEFAULT(inode_setsecurity);
2699 
2700 	return call_int_hook(inode_setsecurity, inode, name, value, size,
2701 			     flags);
2702 }
2703 
2704 /**
2705  * security_inode_listsecurity() - List the xattr security label names
2706  * @inode: inode
2707  * @buffer: buffer
2708  * @buffer_size: size of buffer
2709  *
2710  * Copy the extended attribute names for the security labels associated with
2711  * @inode into @buffer.  The maximum size of @buffer is specified by
2712  * @buffer_size.  @buffer may be NULL to request the size of the buffer
2713  * required.
2714  *
2715  * Return: Returns number of bytes used/required on success.
2716  */
2717 int security_inode_listsecurity(struct inode *inode,
2718 				char *buffer, size_t buffer_size)
2719 {
2720 	if (unlikely(IS_PRIVATE(inode)))
2721 		return 0;
2722 	return call_int_hook(inode_listsecurity, inode, buffer, buffer_size);
2723 }
2724 EXPORT_SYMBOL(security_inode_listsecurity);
2725 
2726 /**
2727  * security_inode_getlsmprop() - Get an inode's LSM data
2728  * @inode: inode
2729  * @prop: lsm specific information to return
2730  *
2731  * Get the lsm specific information associated with the node.
2732  */
2733 void security_inode_getlsmprop(struct inode *inode, struct lsm_prop *prop)
2734 {
2735 	call_void_hook(inode_getlsmprop, inode, prop);
2736 }
2737 
2738 /**
2739  * security_inode_copy_up() - Create new creds for an overlayfs copy-up op
2740  * @src: union dentry of copy-up file
2741  * @new: newly created creds
2742  *
2743  * A file is about to be copied up from lower layer to upper layer of overlay
2744  * filesystem. Security module can prepare a set of new creds and modify as
2745  * need be and return new creds. Caller will switch to new creds temporarily to
2746  * create new file and release newly allocated creds.
2747  *
2748  * Return: Returns 0 on success or a negative error code on error.
2749  */
2750 int security_inode_copy_up(struct dentry *src, struct cred **new)
2751 {
2752 	return call_int_hook(inode_copy_up, src, new);
2753 }
2754 EXPORT_SYMBOL(security_inode_copy_up);
2755 
2756 /**
2757  * security_inode_copy_up_xattr() - Filter xattrs in an overlayfs copy-up op
2758  * @src: union dentry of copy-up file
2759  * @name: xattr name
2760  *
2761  * Filter the xattrs being copied up when a unioned file is copied up from a
2762  * lower layer to the union/overlay layer.   The caller is responsible for
2763  * reading and writing the xattrs, this hook is merely a filter.
2764  *
2765  * Return: Returns 0 to accept the xattr, -ECANCELED to discard the xattr,
2766  *         -EOPNOTSUPP if the security module does not know about attribute,
2767  *         or a negative error code to abort the copy up.
2768  */
2769 int security_inode_copy_up_xattr(struct dentry *src, const char *name)
2770 {
2771 	int rc;
2772 
2773 	rc = call_int_hook(inode_copy_up_xattr, src, name);
2774 	if (rc != LSM_RET_DEFAULT(inode_copy_up_xattr))
2775 		return rc;
2776 
2777 	return LSM_RET_DEFAULT(inode_copy_up_xattr);
2778 }
2779 EXPORT_SYMBOL(security_inode_copy_up_xattr);
2780 
2781 /**
2782  * security_inode_setintegrity() - Set the inode's integrity data
2783  * @inode: inode
2784  * @type: type of integrity, e.g. hash digest, signature, etc
2785  * @value: the integrity value
2786  * @size: size of the integrity value
2787  *
2788  * Register a verified integrity measurement of a inode with LSMs.
2789  * LSMs should free the previously saved data if @value is NULL.
2790  *
2791  * Return: Returns 0 on success, negative values on failure.
2792  */
2793 int security_inode_setintegrity(const struct inode *inode,
2794 				enum lsm_integrity_type type, const void *value,
2795 				size_t size)
2796 {
2797 	return call_int_hook(inode_setintegrity, inode, type, value, size);
2798 }
2799 EXPORT_SYMBOL(security_inode_setintegrity);
2800 
2801 /**
2802  * security_kernfs_init_security() - Init LSM context for a kernfs node
2803  * @kn_dir: parent kernfs node
2804  * @kn: the kernfs node to initialize
2805  *
2806  * Initialize the security context of a newly created kernfs node based on its
2807  * own and its parent's attributes.
2808  *
2809  * Return: Returns 0 if permission is granted.
2810  */
2811 int security_kernfs_init_security(struct kernfs_node *kn_dir,
2812 				  struct kernfs_node *kn)
2813 {
2814 	return call_int_hook(kernfs_init_security, kn_dir, kn);
2815 }
2816 
2817 /**
2818  * security_file_permission() - Check file permissions
2819  * @file: file
2820  * @mask: requested permissions
2821  *
2822  * Check file permissions before accessing an open file.  This hook is called
2823  * by various operations that read or write files.  A security module can use
2824  * this hook to perform additional checking on these operations, e.g. to
2825  * revalidate permissions on use to support privilege bracketing or policy
2826  * changes.  Notice that this hook is used when the actual read/write
2827  * operations are performed, whereas the inode_security_ops hook is called when
2828  * a file is opened (as well as many other operations).  Although this hook can
2829  * be used to revalidate permissions for various system call operations that
2830  * read or write files, it does not address the revalidation of permissions for
2831  * memory-mapped files.  Security modules must handle this separately if they
2832  * need such revalidation.
2833  *
2834  * Return: Returns 0 if permission is granted.
2835  */
2836 int security_file_permission(struct file *file, int mask)
2837 {
2838 	return call_int_hook(file_permission, file, mask);
2839 }
2840 
2841 /**
2842  * security_file_alloc() - Allocate and init a file's LSM blob
2843  * @file: the file
2844  *
2845  * Allocate and attach a security structure to the file->f_security field.  The
2846  * security field is initialized to NULL when the structure is first created.
2847  *
2848  * Return: Return 0 if the hook is successful and permission is granted.
2849  */
2850 int security_file_alloc(struct file *file)
2851 {
2852 	int rc = lsm_file_alloc(file);
2853 
2854 	if (rc)
2855 		return rc;
2856 	rc = call_int_hook(file_alloc_security, file);
2857 	if (unlikely(rc))
2858 		security_file_free(file);
2859 	return rc;
2860 }
2861 
2862 /**
2863  * security_file_release() - Perform actions before releasing the file ref
2864  * @file: the file
2865  *
2866  * Perform actions before releasing the last reference to a file.
2867  */
2868 void security_file_release(struct file *file)
2869 {
2870 	call_void_hook(file_release, file);
2871 }
2872 
2873 /**
2874  * security_file_free() - Free a file's LSM blob
2875  * @file: the file
2876  *
2877  * Deallocate and free any security structures stored in file->f_security.
2878  */
2879 void security_file_free(struct file *file)
2880 {
2881 	void *blob;
2882 
2883 	call_void_hook(file_free_security, file);
2884 
2885 	blob = file->f_security;
2886 	if (blob) {
2887 		file->f_security = NULL;
2888 		kmem_cache_free(lsm_file_cache, blob);
2889 	}
2890 }
2891 
2892 /**
2893  * security_file_ioctl() - Check if an ioctl is allowed
2894  * @file: associated file
2895  * @cmd: ioctl cmd
2896  * @arg: ioctl arguments
2897  *
2898  * Check permission for an ioctl operation on @file.  Note that @arg sometimes
2899  * represents a user space pointer; in other cases, it may be a simple integer
2900  * value.  When @arg represents a user space pointer, it should never be used
2901  * by the security module.
2902  *
2903  * Return: Returns 0 if permission is granted.
2904  */
2905 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2906 {
2907 	return call_int_hook(file_ioctl, file, cmd, arg);
2908 }
2909 EXPORT_SYMBOL_GPL(security_file_ioctl);
2910 
2911 /**
2912  * security_file_ioctl_compat() - Check if an ioctl is allowed in compat mode
2913  * @file: associated file
2914  * @cmd: ioctl cmd
2915  * @arg: ioctl arguments
2916  *
2917  * Compat version of security_file_ioctl() that correctly handles 32-bit
2918  * processes running on 64-bit kernels.
2919  *
2920  * Return: Returns 0 if permission is granted.
2921  */
2922 int security_file_ioctl_compat(struct file *file, unsigned int cmd,
2923 			       unsigned long arg)
2924 {
2925 	return call_int_hook(file_ioctl_compat, file, cmd, arg);
2926 }
2927 EXPORT_SYMBOL_GPL(security_file_ioctl_compat);
2928 
2929 static inline unsigned long mmap_prot(struct file *file, unsigned long prot)
2930 {
2931 	/*
2932 	 * Does we have PROT_READ and does the application expect
2933 	 * it to imply PROT_EXEC?  If not, nothing to talk about...
2934 	 */
2935 	if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ)
2936 		return prot;
2937 	if (!(current->personality & READ_IMPLIES_EXEC))
2938 		return prot;
2939 	/*
2940 	 * if that's an anonymous mapping, let it.
2941 	 */
2942 	if (!file)
2943 		return prot | PROT_EXEC;
2944 	/*
2945 	 * ditto if it's not on noexec mount, except that on !MMU we need
2946 	 * NOMMU_MAP_EXEC (== VM_MAYEXEC) in this case
2947 	 */
2948 	if (!path_noexec(&file->f_path)) {
2949 #ifndef CONFIG_MMU
2950 		if (file->f_op->mmap_capabilities) {
2951 			unsigned caps = file->f_op->mmap_capabilities(file);
2952 			if (!(caps & NOMMU_MAP_EXEC))
2953 				return prot;
2954 		}
2955 #endif
2956 		return prot | PROT_EXEC;
2957 	}
2958 	/* anything on noexec mount won't get PROT_EXEC */
2959 	return prot;
2960 }
2961 
2962 /**
2963  * security_mmap_file() - Check if mmap'ing a file is allowed
2964  * @file: file
2965  * @prot: protection applied by the kernel
2966  * @flags: flags
2967  *
2968  * Check permissions for a mmap operation.  The @file may be NULL, e.g. if
2969  * mapping anonymous memory.
2970  *
2971  * Return: Returns 0 if permission is granted.
2972  */
2973 int security_mmap_file(struct file *file, unsigned long prot,
2974 		       unsigned long flags)
2975 {
2976 	return call_int_hook(mmap_file, file, prot, mmap_prot(file, prot),
2977 			     flags);
2978 }
2979 
2980 /**
2981  * security_mmap_addr() - Check if mmap'ing an address is allowed
2982  * @addr: address
2983  *
2984  * Check permissions for a mmap operation at @addr.
2985  *
2986  * Return: Returns 0 if permission is granted.
2987  */
2988 int security_mmap_addr(unsigned long addr)
2989 {
2990 	return call_int_hook(mmap_addr, addr);
2991 }
2992 
2993 /**
2994  * security_file_mprotect() - Check if changing memory protections is allowed
2995  * @vma: memory region
2996  * @reqprot: application requested protection
2997  * @prot: protection applied by the kernel
2998  *
2999  * Check permissions before changing memory access permissions.
3000  *
3001  * Return: Returns 0 if permission is granted.
3002  */
3003 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
3004 			   unsigned long prot)
3005 {
3006 	return call_int_hook(file_mprotect, vma, reqprot, prot);
3007 }
3008 
3009 /**
3010  * security_file_lock() - Check if a file lock is allowed
3011  * @file: file
3012  * @cmd: lock operation (e.g. F_RDLCK, F_WRLCK)
3013  *
3014  * Check permission before performing file locking operations.  Note the hook
3015  * mediates both flock and fcntl style locks.
3016  *
3017  * Return: Returns 0 if permission is granted.
3018  */
3019 int security_file_lock(struct file *file, unsigned int cmd)
3020 {
3021 	return call_int_hook(file_lock, file, cmd);
3022 }
3023 
3024 /**
3025  * security_file_fcntl() - Check if fcntl() op is allowed
3026  * @file: file
3027  * @cmd: fcntl command
3028  * @arg: command argument
3029  *
3030  * Check permission before allowing the file operation specified by @cmd from
3031  * being performed on the file @file.  Note that @arg sometimes represents a
3032  * user space pointer; in other cases, it may be a simple integer value.  When
3033  * @arg represents a user space pointer, it should never be used by the
3034  * security module.
3035  *
3036  * Return: Returns 0 if permission is granted.
3037  */
3038 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
3039 {
3040 	return call_int_hook(file_fcntl, file, cmd, arg);
3041 }
3042 
3043 /**
3044  * security_file_set_fowner() - Set the file owner info in the LSM blob
3045  * @file: the file
3046  *
3047  * Save owner security information (typically from current->security) in
3048  * file->f_security for later use by the send_sigiotask hook.
3049  *
3050  * This hook is called with file->f_owner.lock held.
3051  *
3052  * Return: Returns 0 on success.
3053  */
3054 void security_file_set_fowner(struct file *file)
3055 {
3056 	call_void_hook(file_set_fowner, file);
3057 }
3058 
3059 /**
3060  * security_file_send_sigiotask() - Check if sending SIGIO/SIGURG is allowed
3061  * @tsk: target task
3062  * @fown: signal sender
3063  * @sig: signal to be sent, SIGIO is sent if 0
3064  *
3065  * Check permission for the file owner @fown to send SIGIO or SIGURG to the
3066  * process @tsk.  Note that this hook is sometimes called from interrupt.  Note
3067  * that the fown_struct, @fown, is never outside the context of a struct file,
3068  * so the file structure (and associated security information) can always be
3069  * obtained: container_of(fown, struct file, f_owner).
3070  *
3071  * Return: Returns 0 if permission is granted.
3072  */
3073 int security_file_send_sigiotask(struct task_struct *tsk,
3074 				 struct fown_struct *fown, int sig)
3075 {
3076 	return call_int_hook(file_send_sigiotask, tsk, fown, sig);
3077 }
3078 
3079 /**
3080  * security_file_receive() - Check if receiving a file via IPC is allowed
3081  * @file: file being received
3082  *
3083  * This hook allows security modules to control the ability of a process to
3084  * receive an open file descriptor via socket IPC.
3085  *
3086  * Return: Returns 0 if permission is granted.
3087  */
3088 int security_file_receive(struct file *file)
3089 {
3090 	return call_int_hook(file_receive, file);
3091 }
3092 
3093 /**
3094  * security_file_open() - Save open() time state for late use by the LSM
3095  * @file:
3096  *
3097  * Save open-time permission checking state for later use upon file_permission,
3098  * and recheck access if anything has changed since inode_permission.
3099  *
3100  * Return: Returns 0 if permission is granted.
3101  */
3102 int security_file_open(struct file *file)
3103 {
3104 	return call_int_hook(file_open, file);
3105 }
3106 
3107 /**
3108  * security_file_post_open() - Evaluate a file after it has been opened
3109  * @file: the file
3110  * @mask: access mask
3111  *
3112  * Evaluate an opened file and the access mask requested with open(). The hook
3113  * is useful for LSMs that require the file content to be available in order to
3114  * make decisions.
3115  *
3116  * Return: Returns 0 if permission is granted.
3117  */
3118 int security_file_post_open(struct file *file, int mask)
3119 {
3120 	return call_int_hook(file_post_open, file, mask);
3121 }
3122 EXPORT_SYMBOL_GPL(security_file_post_open);
3123 
3124 /**
3125  * security_file_truncate() - Check if truncating a file is allowed
3126  * @file: file
3127  *
3128  * Check permission before truncating a file, i.e. using ftruncate.  Note that
3129  * truncation permission may also be checked based on the path, using the
3130  * @path_truncate hook.
3131  *
3132  * Return: Returns 0 if permission is granted.
3133  */
3134 int security_file_truncate(struct file *file)
3135 {
3136 	return call_int_hook(file_truncate, file);
3137 }
3138 
3139 /**
3140  * security_task_alloc() - Allocate a task's LSM blob
3141  * @task: the task
3142  * @clone_flags: flags indicating what is being shared
3143  *
3144  * Handle allocation of task-related resources.
3145  *
3146  * Return: Returns a zero on success, negative values on failure.
3147  */
3148 int security_task_alloc(struct task_struct *task, unsigned long clone_flags)
3149 {
3150 	int rc = lsm_task_alloc(task);
3151 
3152 	if (rc)
3153 		return rc;
3154 	rc = call_int_hook(task_alloc, task, clone_flags);
3155 	if (unlikely(rc))
3156 		security_task_free(task);
3157 	return rc;
3158 }
3159 
3160 /**
3161  * security_task_free() - Free a task's LSM blob and related resources
3162  * @task: task
3163  *
3164  * Handle release of task-related resources.  Note that this can be called from
3165  * interrupt context.
3166  */
3167 void security_task_free(struct task_struct *task)
3168 {
3169 	call_void_hook(task_free, task);
3170 
3171 	kfree(task->security);
3172 	task->security = NULL;
3173 }
3174 
3175 /**
3176  * security_cred_alloc_blank() - Allocate the min memory to allow cred_transfer
3177  * @cred: credentials
3178  * @gfp: gfp flags
3179  *
3180  * Only allocate sufficient memory and attach to @cred such that
3181  * cred_transfer() will not get ENOMEM.
3182  *
3183  * Return: Returns 0 on success, negative values on failure.
3184  */
3185 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
3186 {
3187 	int rc = lsm_cred_alloc(cred, gfp);
3188 
3189 	if (rc)
3190 		return rc;
3191 
3192 	rc = call_int_hook(cred_alloc_blank, cred, gfp);
3193 	if (unlikely(rc))
3194 		security_cred_free(cred);
3195 	return rc;
3196 }
3197 
3198 /**
3199  * security_cred_free() - Free the cred's LSM blob and associated resources
3200  * @cred: credentials
3201  *
3202  * Deallocate and clear the cred->security field in a set of credentials.
3203  */
3204 void security_cred_free(struct cred *cred)
3205 {
3206 	/*
3207 	 * There is a failure case in prepare_creds() that
3208 	 * may result in a call here with ->security being NULL.
3209 	 */
3210 	if (unlikely(cred->security == NULL))
3211 		return;
3212 
3213 	call_void_hook(cred_free, cred);
3214 
3215 	kfree(cred->security);
3216 	cred->security = NULL;
3217 }
3218 
3219 /**
3220  * security_prepare_creds() - Prepare a new set of credentials
3221  * @new: new credentials
3222  * @old: original credentials
3223  * @gfp: gfp flags
3224  *
3225  * Prepare a new set of credentials by copying the data from the old set.
3226  *
3227  * Return: Returns 0 on success, negative values on failure.
3228  */
3229 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
3230 {
3231 	int rc = lsm_cred_alloc(new, gfp);
3232 
3233 	if (rc)
3234 		return rc;
3235 
3236 	rc = call_int_hook(cred_prepare, new, old, gfp);
3237 	if (unlikely(rc))
3238 		security_cred_free(new);
3239 	return rc;
3240 }
3241 
3242 /**
3243  * security_transfer_creds() - Transfer creds
3244  * @new: target credentials
3245  * @old: original credentials
3246  *
3247  * Transfer data from original creds to new creds.
3248  */
3249 void security_transfer_creds(struct cred *new, const struct cred *old)
3250 {
3251 	call_void_hook(cred_transfer, new, old);
3252 }
3253 
3254 /**
3255  * security_cred_getsecid() - Get the secid from a set of credentials
3256  * @c: credentials
3257  * @secid: secid value
3258  *
3259  * Retrieve the security identifier of the cred structure @c.  In case of
3260  * failure, @secid will be set to zero.
3261  */
3262 void security_cred_getsecid(const struct cred *c, u32 *secid)
3263 {
3264 	*secid = 0;
3265 	call_void_hook(cred_getsecid, c, secid);
3266 }
3267 EXPORT_SYMBOL(security_cred_getsecid);
3268 
3269 /**
3270  * security_cred_getlsmprop() - Get the LSM data from a set of credentials
3271  * @c: credentials
3272  * @prop: destination for the LSM data
3273  *
3274  * Retrieve the security data of the cred structure @c.  In case of
3275  * failure, @prop will be cleared.
3276  */
3277 void security_cred_getlsmprop(const struct cred *c, struct lsm_prop *prop)
3278 {
3279 	lsmprop_init(prop);
3280 	call_void_hook(cred_getlsmprop, c, prop);
3281 }
3282 EXPORT_SYMBOL(security_cred_getlsmprop);
3283 
3284 /**
3285  * security_kernel_act_as() - Set the kernel credentials to act as secid
3286  * @new: credentials
3287  * @secid: secid
3288  *
3289  * Set the credentials for a kernel service to act as (subjective context).
3290  * The current task must be the one that nominated @secid.
3291  *
3292  * Return: Returns 0 if successful.
3293  */
3294 int security_kernel_act_as(struct cred *new, u32 secid)
3295 {
3296 	return call_int_hook(kernel_act_as, new, secid);
3297 }
3298 
3299 /**
3300  * security_kernel_create_files_as() - Set file creation context using an inode
3301  * @new: target credentials
3302  * @inode: reference inode
3303  *
3304  * Set the file creation context in a set of credentials to be the same as the
3305  * objective context of the specified inode.  The current task must be the one
3306  * that nominated @inode.
3307  *
3308  * Return: Returns 0 if successful.
3309  */
3310 int security_kernel_create_files_as(struct cred *new, struct inode *inode)
3311 {
3312 	return call_int_hook(kernel_create_files_as, new, inode);
3313 }
3314 
3315 /**
3316  * security_kernel_module_request() - Check if loading a module is allowed
3317  * @kmod_name: module name
3318  *
3319  * Ability to trigger the kernel to automatically upcall to userspace for
3320  * userspace to load a kernel module with the given name.
3321  *
3322  * Return: Returns 0 if successful.
3323  */
3324 int security_kernel_module_request(char *kmod_name)
3325 {
3326 	return call_int_hook(kernel_module_request, kmod_name);
3327 }
3328 
3329 /**
3330  * security_kernel_read_file() - Read a file specified by userspace
3331  * @file: file
3332  * @id: file identifier
3333  * @contents: trust if security_kernel_post_read_file() will be called
3334  *
3335  * Read a file specified by userspace.
3336  *
3337  * Return: Returns 0 if permission is granted.
3338  */
3339 int security_kernel_read_file(struct file *file, enum kernel_read_file_id id,
3340 			      bool contents)
3341 {
3342 	return call_int_hook(kernel_read_file, file, id, contents);
3343 }
3344 EXPORT_SYMBOL_GPL(security_kernel_read_file);
3345 
3346 /**
3347  * security_kernel_post_read_file() - Read a file specified by userspace
3348  * @file: file
3349  * @buf: file contents
3350  * @size: size of file contents
3351  * @id: file identifier
3352  *
3353  * Read a file specified by userspace.  This must be paired with a prior call
3354  * to security_kernel_read_file() call that indicated this hook would also be
3355  * called, see security_kernel_read_file() for more information.
3356  *
3357  * Return: Returns 0 if permission is granted.
3358  */
3359 int security_kernel_post_read_file(struct file *file, char *buf, loff_t size,
3360 				   enum kernel_read_file_id id)
3361 {
3362 	return call_int_hook(kernel_post_read_file, file, buf, size, id);
3363 }
3364 EXPORT_SYMBOL_GPL(security_kernel_post_read_file);
3365 
3366 /**
3367  * security_kernel_load_data() - Load data provided by userspace
3368  * @id: data identifier
3369  * @contents: true if security_kernel_post_load_data() will be called
3370  *
3371  * Load data provided by userspace.
3372  *
3373  * Return: Returns 0 if permission is granted.
3374  */
3375 int security_kernel_load_data(enum kernel_load_data_id id, bool contents)
3376 {
3377 	return call_int_hook(kernel_load_data, id, contents);
3378 }
3379 EXPORT_SYMBOL_GPL(security_kernel_load_data);
3380 
3381 /**
3382  * security_kernel_post_load_data() - Load userspace data from a non-file source
3383  * @buf: data
3384  * @size: size of data
3385  * @id: data identifier
3386  * @description: text description of data, specific to the id value
3387  *
3388  * Load data provided by a non-file source (usually userspace buffer).  This
3389  * must be paired with a prior security_kernel_load_data() call that indicated
3390  * this hook would also be called, see security_kernel_load_data() for more
3391  * information.
3392  *
3393  * Return: Returns 0 if permission is granted.
3394  */
3395 int security_kernel_post_load_data(char *buf, loff_t size,
3396 				   enum kernel_load_data_id id,
3397 				   char *description)
3398 {
3399 	return call_int_hook(kernel_post_load_data, buf, size, id, description);
3400 }
3401 EXPORT_SYMBOL_GPL(security_kernel_post_load_data);
3402 
3403 /**
3404  * security_task_fix_setuid() - Update LSM with new user id attributes
3405  * @new: updated credentials
3406  * @old: credentials being replaced
3407  * @flags: LSM_SETID_* flag values
3408  *
3409  * Update the module's state after setting one or more of the user identity
3410  * attributes of the current process.  The @flags parameter indicates which of
3411  * the set*uid system calls invoked this hook.  If @new is the set of
3412  * credentials that will be installed.  Modifications should be made to this
3413  * rather than to @current->cred.
3414  *
3415  * Return: Returns 0 on success.
3416  */
3417 int security_task_fix_setuid(struct cred *new, const struct cred *old,
3418 			     int flags)
3419 {
3420 	return call_int_hook(task_fix_setuid, new, old, flags);
3421 }
3422 
3423 /**
3424  * security_task_fix_setgid() - Update LSM with new group id attributes
3425  * @new: updated credentials
3426  * @old: credentials being replaced
3427  * @flags: LSM_SETID_* flag value
3428  *
3429  * Update the module's state after setting one or more of the group identity
3430  * attributes of the current process.  The @flags parameter indicates which of
3431  * the set*gid system calls invoked this hook.  @new is the set of credentials
3432  * that will be installed.  Modifications should be made to this rather than to
3433  * @current->cred.
3434  *
3435  * Return: Returns 0 on success.
3436  */
3437 int security_task_fix_setgid(struct cred *new, const struct cred *old,
3438 			     int flags)
3439 {
3440 	return call_int_hook(task_fix_setgid, new, old, flags);
3441 }
3442 
3443 /**
3444  * security_task_fix_setgroups() - Update LSM with new supplementary groups
3445  * @new: updated credentials
3446  * @old: credentials being replaced
3447  *
3448  * Update the module's state after setting the supplementary group identity
3449  * attributes of the current process.  @new is the set of credentials that will
3450  * be installed.  Modifications should be made to this rather than to
3451  * @current->cred.
3452  *
3453  * Return: Returns 0 on success.
3454  */
3455 int security_task_fix_setgroups(struct cred *new, const struct cred *old)
3456 {
3457 	return call_int_hook(task_fix_setgroups, new, old);
3458 }
3459 
3460 /**
3461  * security_task_setpgid() - Check if setting the pgid is allowed
3462  * @p: task being modified
3463  * @pgid: new pgid
3464  *
3465  * Check permission before setting the process group identifier of the process
3466  * @p to @pgid.
3467  *
3468  * Return: Returns 0 if permission is granted.
3469  */
3470 int security_task_setpgid(struct task_struct *p, pid_t pgid)
3471 {
3472 	return call_int_hook(task_setpgid, p, pgid);
3473 }
3474 
3475 /**
3476  * security_task_getpgid() - Check if getting the pgid is allowed
3477  * @p: task
3478  *
3479  * Check permission before getting the process group identifier of the process
3480  * @p.
3481  *
3482  * Return: Returns 0 if permission is granted.
3483  */
3484 int security_task_getpgid(struct task_struct *p)
3485 {
3486 	return call_int_hook(task_getpgid, p);
3487 }
3488 
3489 /**
3490  * security_task_getsid() - Check if getting the session id is allowed
3491  * @p: task
3492  *
3493  * Check permission before getting the session identifier of the process @p.
3494  *
3495  * Return: Returns 0 if permission is granted.
3496  */
3497 int security_task_getsid(struct task_struct *p)
3498 {
3499 	return call_int_hook(task_getsid, p);
3500 }
3501 
3502 /**
3503  * security_current_getlsmprop_subj() - Current task's subjective LSM data
3504  * @prop: lsm specific information
3505  *
3506  * Retrieve the subjective security identifier of the current task and return
3507  * it in @prop.
3508  */
3509 void security_current_getlsmprop_subj(struct lsm_prop *prop)
3510 {
3511 	lsmprop_init(prop);
3512 	call_void_hook(current_getlsmprop_subj, prop);
3513 }
3514 EXPORT_SYMBOL(security_current_getlsmprop_subj);
3515 
3516 /**
3517  * security_task_getlsmprop_obj() - Get a task's objective LSM data
3518  * @p: target task
3519  * @prop: lsm specific information
3520  *
3521  * Retrieve the objective security identifier of the task_struct in @p and
3522  * return it in @prop.
3523  */
3524 void security_task_getlsmprop_obj(struct task_struct *p, struct lsm_prop *prop)
3525 {
3526 	lsmprop_init(prop);
3527 	call_void_hook(task_getlsmprop_obj, p, prop);
3528 }
3529 EXPORT_SYMBOL(security_task_getlsmprop_obj);
3530 
3531 /**
3532  * security_task_setnice() - Check if setting a task's nice value is allowed
3533  * @p: target task
3534  * @nice: nice value
3535  *
3536  * Check permission before setting the nice value of @p to @nice.
3537  *
3538  * Return: Returns 0 if permission is granted.
3539  */
3540 int security_task_setnice(struct task_struct *p, int nice)
3541 {
3542 	return call_int_hook(task_setnice, p, nice);
3543 }
3544 
3545 /**
3546  * security_task_setioprio() - Check if setting a task's ioprio is allowed
3547  * @p: target task
3548  * @ioprio: ioprio value
3549  *
3550  * Check permission before setting the ioprio value of @p to @ioprio.
3551  *
3552  * Return: Returns 0 if permission is granted.
3553  */
3554 int security_task_setioprio(struct task_struct *p, int ioprio)
3555 {
3556 	return call_int_hook(task_setioprio, p, ioprio);
3557 }
3558 
3559 /**
3560  * security_task_getioprio() - Check if getting a task's ioprio is allowed
3561  * @p: task
3562  *
3563  * Check permission before getting the ioprio value of @p.
3564  *
3565  * Return: Returns 0 if permission is granted.
3566  */
3567 int security_task_getioprio(struct task_struct *p)
3568 {
3569 	return call_int_hook(task_getioprio, p);
3570 }
3571 
3572 /**
3573  * security_task_prlimit() - Check if get/setting resources limits is allowed
3574  * @cred: current task credentials
3575  * @tcred: target task credentials
3576  * @flags: LSM_PRLIMIT_* flag bits indicating a get/set/both
3577  *
3578  * Check permission before getting and/or setting the resource limits of
3579  * another task.
3580  *
3581  * Return: Returns 0 if permission is granted.
3582  */
3583 int security_task_prlimit(const struct cred *cred, const struct cred *tcred,
3584 			  unsigned int flags)
3585 {
3586 	return call_int_hook(task_prlimit, cred, tcred, flags);
3587 }
3588 
3589 /**
3590  * security_task_setrlimit() - Check if setting a new rlimit value is allowed
3591  * @p: target task's group leader
3592  * @resource: resource whose limit is being set
3593  * @new_rlim: new resource limit
3594  *
3595  * Check permission before setting the resource limits of process @p for
3596  * @resource to @new_rlim.  The old resource limit values can be examined by
3597  * dereferencing (p->signal->rlim + resource).
3598  *
3599  * Return: Returns 0 if permission is granted.
3600  */
3601 int security_task_setrlimit(struct task_struct *p, unsigned int resource,
3602 			    struct rlimit *new_rlim)
3603 {
3604 	return call_int_hook(task_setrlimit, p, resource, new_rlim);
3605 }
3606 
3607 /**
3608  * security_task_setscheduler() - Check if setting sched policy/param is allowed
3609  * @p: target task
3610  *
3611  * Check permission before setting scheduling policy and/or parameters of
3612  * process @p.
3613  *
3614  * Return: Returns 0 if permission is granted.
3615  */
3616 int security_task_setscheduler(struct task_struct *p)
3617 {
3618 	return call_int_hook(task_setscheduler, p);
3619 }
3620 
3621 /**
3622  * security_task_getscheduler() - Check if getting scheduling info is allowed
3623  * @p: target task
3624  *
3625  * Check permission before obtaining scheduling information for process @p.
3626  *
3627  * Return: Returns 0 if permission is granted.
3628  */
3629 int security_task_getscheduler(struct task_struct *p)
3630 {
3631 	return call_int_hook(task_getscheduler, p);
3632 }
3633 
3634 /**
3635  * security_task_movememory() - Check if moving memory is allowed
3636  * @p: task
3637  *
3638  * Check permission before moving memory owned by process @p.
3639  *
3640  * Return: Returns 0 if permission is granted.
3641  */
3642 int security_task_movememory(struct task_struct *p)
3643 {
3644 	return call_int_hook(task_movememory, p);
3645 }
3646 
3647 /**
3648  * security_task_kill() - Check if sending a signal is allowed
3649  * @p: target process
3650  * @info: signal information
3651  * @sig: signal value
3652  * @cred: credentials of the signal sender, NULL if @current
3653  *
3654  * Check permission before sending signal @sig to @p.  @info can be NULL, the
3655  * constant 1, or a pointer to a kernel_siginfo structure.  If @info is 1 or
3656  * SI_FROMKERNEL(info) is true, then the signal should be viewed as coming from
3657  * the kernel and should typically be permitted.  SIGIO signals are handled
3658  * separately by the send_sigiotask hook in file_security_ops.
3659  *
3660  * Return: Returns 0 if permission is granted.
3661  */
3662 int security_task_kill(struct task_struct *p, struct kernel_siginfo *info,
3663 		       int sig, const struct cred *cred)
3664 {
3665 	return call_int_hook(task_kill, p, info, sig, cred);
3666 }
3667 
3668 /**
3669  * security_task_prctl() - Check if a prctl op is allowed
3670  * @option: operation
3671  * @arg2: argument
3672  * @arg3: argument
3673  * @arg4: argument
3674  * @arg5: argument
3675  *
3676  * Check permission before performing a process control operation on the
3677  * current process.
3678  *
3679  * Return: Return -ENOSYS if no-one wanted to handle this op, any other value
3680  *         to cause prctl() to return immediately with that value.
3681  */
3682 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
3683 			unsigned long arg4, unsigned long arg5)
3684 {
3685 	int thisrc;
3686 	int rc = LSM_RET_DEFAULT(task_prctl);
3687 	struct lsm_static_call *scall;
3688 
3689 	lsm_for_each_hook(scall, task_prctl) {
3690 		thisrc = scall->hl->hook.task_prctl(option, arg2, arg3, arg4, arg5);
3691 		if (thisrc != LSM_RET_DEFAULT(task_prctl)) {
3692 			rc = thisrc;
3693 			if (thisrc != 0)
3694 				break;
3695 		}
3696 	}
3697 	return rc;
3698 }
3699 
3700 /**
3701  * security_task_to_inode() - Set the security attributes of a task's inode
3702  * @p: task
3703  * @inode: inode
3704  *
3705  * Set the security attributes for an inode based on an associated task's
3706  * security attributes, e.g. for /proc/pid inodes.
3707  */
3708 void security_task_to_inode(struct task_struct *p, struct inode *inode)
3709 {
3710 	call_void_hook(task_to_inode, p, inode);
3711 }
3712 
3713 /**
3714  * security_create_user_ns() - Check if creating a new userns is allowed
3715  * @cred: prepared creds
3716  *
3717  * Check permission prior to creating a new user namespace.
3718  *
3719  * Return: Returns 0 if successful, otherwise < 0 error code.
3720  */
3721 int security_create_user_ns(const struct cred *cred)
3722 {
3723 	return call_int_hook(userns_create, cred);
3724 }
3725 
3726 /**
3727  * security_ipc_permission() - Check if sysv ipc access is allowed
3728  * @ipcp: ipc permission structure
3729  * @flag: requested permissions
3730  *
3731  * Check permissions for access to IPC.
3732  *
3733  * Return: Returns 0 if permission is granted.
3734  */
3735 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
3736 {
3737 	return call_int_hook(ipc_permission, ipcp, flag);
3738 }
3739 
3740 /**
3741  * security_ipc_getlsmprop() - Get the sysv ipc object LSM data
3742  * @ipcp: ipc permission structure
3743  * @prop: pointer to lsm information
3744  *
3745  * Get the lsm information associated with the ipc object.
3746  */
3747 
3748 void security_ipc_getlsmprop(struct kern_ipc_perm *ipcp, struct lsm_prop *prop)
3749 {
3750 	lsmprop_init(prop);
3751 	call_void_hook(ipc_getlsmprop, ipcp, prop);
3752 }
3753 
3754 /**
3755  * security_msg_msg_alloc() - Allocate a sysv ipc message LSM blob
3756  * @msg: message structure
3757  *
3758  * Allocate and attach a security structure to the msg->security field.  The
3759  * security field is initialized to NULL when the structure is first created.
3760  *
3761  * Return: Return 0 if operation was successful and permission is granted.
3762  */
3763 int security_msg_msg_alloc(struct msg_msg *msg)
3764 {
3765 	int rc = lsm_msg_msg_alloc(msg);
3766 
3767 	if (unlikely(rc))
3768 		return rc;
3769 	rc = call_int_hook(msg_msg_alloc_security, msg);
3770 	if (unlikely(rc))
3771 		security_msg_msg_free(msg);
3772 	return rc;
3773 }
3774 
3775 /**
3776  * security_msg_msg_free() - Free a sysv ipc message LSM blob
3777  * @msg: message structure
3778  *
3779  * Deallocate the security structure for this message.
3780  */
3781 void security_msg_msg_free(struct msg_msg *msg)
3782 {
3783 	call_void_hook(msg_msg_free_security, msg);
3784 	kfree(msg->security);
3785 	msg->security = NULL;
3786 }
3787 
3788 /**
3789  * security_msg_queue_alloc() - Allocate a sysv ipc msg queue LSM blob
3790  * @msq: sysv ipc permission structure
3791  *
3792  * Allocate and attach a security structure to @msg. The security field is
3793  * initialized to NULL when the structure is first created.
3794  *
3795  * Return: Returns 0 if operation was successful and permission is granted.
3796  */
3797 int security_msg_queue_alloc(struct kern_ipc_perm *msq)
3798 {
3799 	int rc = lsm_ipc_alloc(msq);
3800 
3801 	if (unlikely(rc))
3802 		return rc;
3803 	rc = call_int_hook(msg_queue_alloc_security, msq);
3804 	if (unlikely(rc))
3805 		security_msg_queue_free(msq);
3806 	return rc;
3807 }
3808 
3809 /**
3810  * security_msg_queue_free() - Free a sysv ipc msg queue LSM blob
3811  * @msq: sysv ipc permission structure
3812  *
3813  * Deallocate security field @perm->security for the message queue.
3814  */
3815 void security_msg_queue_free(struct kern_ipc_perm *msq)
3816 {
3817 	call_void_hook(msg_queue_free_security, msq);
3818 	kfree(msq->security);
3819 	msq->security = NULL;
3820 }
3821 
3822 /**
3823  * security_msg_queue_associate() - Check if a msg queue operation is allowed
3824  * @msq: sysv ipc permission structure
3825  * @msqflg: operation flags
3826  *
3827  * Check permission when a message queue is requested through the msgget system
3828  * call. This hook is only called when returning the message queue identifier
3829  * for an existing message queue, not when a new message queue is created.
3830  *
3831  * Return: Return 0 if permission is granted.
3832  */
3833 int security_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
3834 {
3835 	return call_int_hook(msg_queue_associate, msq, msqflg);
3836 }
3837 
3838 /**
3839  * security_msg_queue_msgctl() - Check if a msg queue operation is allowed
3840  * @msq: sysv ipc permission structure
3841  * @cmd: operation
3842  *
3843  * Check permission when a message control operation specified by @cmd is to be
3844  * performed on the message queue with permissions.
3845  *
3846  * Return: Returns 0 if permission is granted.
3847  */
3848 int security_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
3849 {
3850 	return call_int_hook(msg_queue_msgctl, msq, cmd);
3851 }
3852 
3853 /**
3854  * security_msg_queue_msgsnd() - Check if sending a sysv ipc message is allowed
3855  * @msq: sysv ipc permission structure
3856  * @msg: message
3857  * @msqflg: operation flags
3858  *
3859  * Check permission before a message, @msg, is enqueued on the message queue
3860  * with permissions specified in @msq.
3861  *
3862  * Return: Returns 0 if permission is granted.
3863  */
3864 int security_msg_queue_msgsnd(struct kern_ipc_perm *msq,
3865 			      struct msg_msg *msg, int msqflg)
3866 {
3867 	return call_int_hook(msg_queue_msgsnd, msq, msg, msqflg);
3868 }
3869 
3870 /**
3871  * security_msg_queue_msgrcv() - Check if receiving a sysv ipc msg is allowed
3872  * @msq: sysv ipc permission structure
3873  * @msg: message
3874  * @target: target task
3875  * @type: type of message requested
3876  * @mode: operation flags
3877  *
3878  * Check permission before a message, @msg, is removed from the message	queue.
3879  * The @target task structure contains a pointer to the process that will be
3880  * receiving the message (not equal to the current process when inline receives
3881  * are being performed).
3882  *
3883  * Return: Returns 0 if permission is granted.
3884  */
3885 int security_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
3886 			      struct task_struct *target, long type, int mode)
3887 {
3888 	return call_int_hook(msg_queue_msgrcv, msq, msg, target, type, mode);
3889 }
3890 
3891 /**
3892  * security_shm_alloc() - Allocate a sysv shm LSM blob
3893  * @shp: sysv ipc permission structure
3894  *
3895  * Allocate and attach a security structure to the @shp security field.  The
3896  * security field is initialized to NULL when the structure is first created.
3897  *
3898  * Return: Returns 0 if operation was successful and permission is granted.
3899  */
3900 int security_shm_alloc(struct kern_ipc_perm *shp)
3901 {
3902 	int rc = lsm_ipc_alloc(shp);
3903 
3904 	if (unlikely(rc))
3905 		return rc;
3906 	rc = call_int_hook(shm_alloc_security, shp);
3907 	if (unlikely(rc))
3908 		security_shm_free(shp);
3909 	return rc;
3910 }
3911 
3912 /**
3913  * security_shm_free() - Free a sysv shm LSM blob
3914  * @shp: sysv ipc permission structure
3915  *
3916  * Deallocate the security structure @perm->security for the memory segment.
3917  */
3918 void security_shm_free(struct kern_ipc_perm *shp)
3919 {
3920 	call_void_hook(shm_free_security, shp);
3921 	kfree(shp->security);
3922 	shp->security = NULL;
3923 }
3924 
3925 /**
3926  * security_shm_associate() - Check if a sysv shm operation is allowed
3927  * @shp: sysv ipc permission structure
3928  * @shmflg: operation flags
3929  *
3930  * Check permission when a shared memory region is requested through the shmget
3931  * system call. This hook is only called when returning the shared memory
3932  * region identifier for an existing region, not when a new shared memory
3933  * region is created.
3934  *
3935  * Return: Returns 0 if permission is granted.
3936  */
3937 int security_shm_associate(struct kern_ipc_perm *shp, int shmflg)
3938 {
3939 	return call_int_hook(shm_associate, shp, shmflg);
3940 }
3941 
3942 /**
3943  * security_shm_shmctl() - Check if a sysv shm operation is allowed
3944  * @shp: sysv ipc permission structure
3945  * @cmd: operation
3946  *
3947  * Check permission when a shared memory control operation specified by @cmd is
3948  * to be performed on the shared memory region with permissions in @shp.
3949  *
3950  * Return: Return 0 if permission is granted.
3951  */
3952 int security_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
3953 {
3954 	return call_int_hook(shm_shmctl, shp, cmd);
3955 }
3956 
3957 /**
3958  * security_shm_shmat() - Check if a sysv shm attach operation is allowed
3959  * @shp: sysv ipc permission structure
3960  * @shmaddr: address of memory region to attach
3961  * @shmflg: operation flags
3962  *
3963  * Check permissions prior to allowing the shmat system call to attach the
3964  * shared memory segment with permissions @shp to the data segment of the
3965  * calling process. The attaching address is specified by @shmaddr.
3966  *
3967  * Return: Returns 0 if permission is granted.
3968  */
3969 int security_shm_shmat(struct kern_ipc_perm *shp,
3970 		       char __user *shmaddr, int shmflg)
3971 {
3972 	return call_int_hook(shm_shmat, shp, shmaddr, shmflg);
3973 }
3974 
3975 /**
3976  * security_sem_alloc() - Allocate a sysv semaphore LSM blob
3977  * @sma: sysv ipc permission structure
3978  *
3979  * Allocate and attach a security structure to the @sma security field. The
3980  * security field is initialized to NULL when the structure is first created.
3981  *
3982  * Return: Returns 0 if operation was successful and permission is granted.
3983  */
3984 int security_sem_alloc(struct kern_ipc_perm *sma)
3985 {
3986 	int rc = lsm_ipc_alloc(sma);
3987 
3988 	if (unlikely(rc))
3989 		return rc;
3990 	rc = call_int_hook(sem_alloc_security, sma);
3991 	if (unlikely(rc))
3992 		security_sem_free(sma);
3993 	return rc;
3994 }
3995 
3996 /**
3997  * security_sem_free() - Free a sysv semaphore LSM blob
3998  * @sma: sysv ipc permission structure
3999  *
4000  * Deallocate security structure @sma->security for the semaphore.
4001  */
4002 void security_sem_free(struct kern_ipc_perm *sma)
4003 {
4004 	call_void_hook(sem_free_security, sma);
4005 	kfree(sma->security);
4006 	sma->security = NULL;
4007 }
4008 
4009 /**
4010  * security_sem_associate() - Check if a sysv semaphore operation is allowed
4011  * @sma: sysv ipc permission structure
4012  * @semflg: operation flags
4013  *
4014  * Check permission when a semaphore is requested through the semget system
4015  * call. This hook is only called when returning the semaphore identifier for
4016  * an existing semaphore, not when a new one must be created.
4017  *
4018  * Return: Returns 0 if permission is granted.
4019  */
4020 int security_sem_associate(struct kern_ipc_perm *sma, int semflg)
4021 {
4022 	return call_int_hook(sem_associate, sma, semflg);
4023 }
4024 
4025 /**
4026  * security_sem_semctl() - Check if a sysv semaphore operation is allowed
4027  * @sma: sysv ipc permission structure
4028  * @cmd: operation
4029  *
4030  * Check permission when a semaphore operation specified by @cmd is to be
4031  * performed on the semaphore.
4032  *
4033  * Return: Returns 0 if permission is granted.
4034  */
4035 int security_sem_semctl(struct kern_ipc_perm *sma, int cmd)
4036 {
4037 	return call_int_hook(sem_semctl, sma, cmd);
4038 }
4039 
4040 /**
4041  * security_sem_semop() - Check if a sysv semaphore operation is allowed
4042  * @sma: sysv ipc permission structure
4043  * @sops: operations to perform
4044  * @nsops: number of operations
4045  * @alter: flag indicating changes will be made
4046  *
4047  * Check permissions before performing operations on members of the semaphore
4048  * set. If the @alter flag is nonzero, the semaphore set may be modified.
4049  *
4050  * Return: Returns 0 if permission is granted.
4051  */
4052 int security_sem_semop(struct kern_ipc_perm *sma, struct sembuf *sops,
4053 		       unsigned nsops, int alter)
4054 {
4055 	return call_int_hook(sem_semop, sma, sops, nsops, alter);
4056 }
4057 
4058 /**
4059  * security_d_instantiate() - Populate an inode's LSM state based on a dentry
4060  * @dentry: dentry
4061  * @inode: inode
4062  *
4063  * Fill in @inode security information for a @dentry if allowed.
4064  */
4065 void security_d_instantiate(struct dentry *dentry, struct inode *inode)
4066 {
4067 	if (unlikely(inode && IS_PRIVATE(inode)))
4068 		return;
4069 	call_void_hook(d_instantiate, dentry, inode);
4070 }
4071 EXPORT_SYMBOL(security_d_instantiate);
4072 
4073 /*
4074  * Please keep this in sync with it's counterpart in security/lsm_syscalls.c
4075  */
4076 
4077 /**
4078  * security_getselfattr - Read an LSM attribute of the current process.
4079  * @attr: which attribute to return
4080  * @uctx: the user-space destination for the information, or NULL
4081  * @size: pointer to the size of space available to receive the data
4082  * @flags: special handling options. LSM_FLAG_SINGLE indicates that only
4083  * attributes associated with the LSM identified in the passed @ctx be
4084  * reported.
4085  *
4086  * A NULL value for @uctx can be used to get both the number of attributes
4087  * and the size of the data.
4088  *
4089  * Returns the number of attributes found on success, negative value
4090  * on error. @size is reset to the total size of the data.
4091  * If @size is insufficient to contain the data -E2BIG is returned.
4092  */
4093 int security_getselfattr(unsigned int attr, struct lsm_ctx __user *uctx,
4094 			 u32 __user *size, u32 flags)
4095 {
4096 	struct lsm_static_call *scall;
4097 	struct lsm_ctx lctx = { .id = LSM_ID_UNDEF, };
4098 	u8 __user *base = (u8 __user *)uctx;
4099 	u32 entrysize;
4100 	u32 total = 0;
4101 	u32 left;
4102 	bool toobig = false;
4103 	bool single = false;
4104 	int count = 0;
4105 	int rc;
4106 
4107 	if (attr == LSM_ATTR_UNDEF)
4108 		return -EINVAL;
4109 	if (size == NULL)
4110 		return -EINVAL;
4111 	if (get_user(left, size))
4112 		return -EFAULT;
4113 
4114 	if (flags) {
4115 		/*
4116 		 * Only flag supported is LSM_FLAG_SINGLE
4117 		 */
4118 		if (flags != LSM_FLAG_SINGLE || !uctx)
4119 			return -EINVAL;
4120 		if (copy_from_user(&lctx, uctx, sizeof(lctx)))
4121 			return -EFAULT;
4122 		/*
4123 		 * If the LSM ID isn't specified it is an error.
4124 		 */
4125 		if (lctx.id == LSM_ID_UNDEF)
4126 			return -EINVAL;
4127 		single = true;
4128 	}
4129 
4130 	/*
4131 	 * In the usual case gather all the data from the LSMs.
4132 	 * In the single case only get the data from the LSM specified.
4133 	 */
4134 	lsm_for_each_hook(scall, getselfattr) {
4135 		if (single && lctx.id != scall->hl->lsmid->id)
4136 			continue;
4137 		entrysize = left;
4138 		if (base)
4139 			uctx = (struct lsm_ctx __user *)(base + total);
4140 		rc = scall->hl->hook.getselfattr(attr, uctx, &entrysize, flags);
4141 		if (rc == -EOPNOTSUPP) {
4142 			rc = 0;
4143 			continue;
4144 		}
4145 		if (rc == -E2BIG) {
4146 			rc = 0;
4147 			left = 0;
4148 			toobig = true;
4149 		} else if (rc < 0)
4150 			return rc;
4151 		else
4152 			left -= entrysize;
4153 
4154 		total += entrysize;
4155 		count += rc;
4156 		if (single)
4157 			break;
4158 	}
4159 	if (put_user(total, size))
4160 		return -EFAULT;
4161 	if (toobig)
4162 		return -E2BIG;
4163 	if (count == 0)
4164 		return LSM_RET_DEFAULT(getselfattr);
4165 	return count;
4166 }
4167 
4168 /*
4169  * Please keep this in sync with it's counterpart in security/lsm_syscalls.c
4170  */
4171 
4172 /**
4173  * security_setselfattr - Set an LSM attribute on the current process.
4174  * @attr: which attribute to set
4175  * @uctx: the user-space source for the information
4176  * @size: the size of the data
4177  * @flags: reserved for future use, must be 0
4178  *
4179  * Set an LSM attribute for the current process. The LSM, attribute
4180  * and new value are included in @uctx.
4181  *
4182  * Returns 0 on success, -EINVAL if the input is inconsistent, -EFAULT
4183  * if the user buffer is inaccessible, E2BIG if size is too big, or an
4184  * LSM specific failure.
4185  */
4186 int security_setselfattr(unsigned int attr, struct lsm_ctx __user *uctx,
4187 			 u32 size, u32 flags)
4188 {
4189 	struct lsm_static_call *scall;
4190 	struct lsm_ctx *lctx;
4191 	int rc = LSM_RET_DEFAULT(setselfattr);
4192 	u64 required_len;
4193 
4194 	if (flags)
4195 		return -EINVAL;
4196 	if (size < sizeof(*lctx))
4197 		return -EINVAL;
4198 	if (size > PAGE_SIZE)
4199 		return -E2BIG;
4200 
4201 	lctx = memdup_user(uctx, size);
4202 	if (IS_ERR(lctx))
4203 		return PTR_ERR(lctx);
4204 
4205 	if (size < lctx->len ||
4206 	    check_add_overflow(sizeof(*lctx), lctx->ctx_len, &required_len) ||
4207 	    lctx->len < required_len) {
4208 		rc = -EINVAL;
4209 		goto free_out;
4210 	}
4211 
4212 	lsm_for_each_hook(scall, setselfattr)
4213 		if ((scall->hl->lsmid->id) == lctx->id) {
4214 			rc = scall->hl->hook.setselfattr(attr, lctx, size, flags);
4215 			break;
4216 		}
4217 
4218 free_out:
4219 	kfree(lctx);
4220 	return rc;
4221 }
4222 
4223 /**
4224  * security_getprocattr() - Read an attribute for a task
4225  * @p: the task
4226  * @lsmid: LSM identification
4227  * @name: attribute name
4228  * @value: attribute value
4229  *
4230  * Read attribute @name for task @p and store it into @value if allowed.
4231  *
4232  * Return: Returns the length of @value on success, a negative value otherwise.
4233  */
4234 int security_getprocattr(struct task_struct *p, int lsmid, const char *name,
4235 			 char **value)
4236 {
4237 	struct lsm_static_call *scall;
4238 
4239 	lsm_for_each_hook(scall, getprocattr) {
4240 		if (lsmid != 0 && lsmid != scall->hl->lsmid->id)
4241 			continue;
4242 		return scall->hl->hook.getprocattr(p, name, value);
4243 	}
4244 	return LSM_RET_DEFAULT(getprocattr);
4245 }
4246 
4247 /**
4248  * security_setprocattr() - Set an attribute for a task
4249  * @lsmid: LSM identification
4250  * @name: attribute name
4251  * @value: attribute value
4252  * @size: attribute value size
4253  *
4254  * Write (set) the current task's attribute @name to @value, size @size if
4255  * allowed.
4256  *
4257  * Return: Returns bytes written on success, a negative value otherwise.
4258  */
4259 int security_setprocattr(int lsmid, const char *name, void *value, size_t size)
4260 {
4261 	struct lsm_static_call *scall;
4262 
4263 	lsm_for_each_hook(scall, setprocattr) {
4264 		if (lsmid != 0 && lsmid != scall->hl->lsmid->id)
4265 			continue;
4266 		return scall->hl->hook.setprocattr(name, value, size);
4267 	}
4268 	return LSM_RET_DEFAULT(setprocattr);
4269 }
4270 
4271 /**
4272  * security_netlink_send() - Save info and check if netlink sending is allowed
4273  * @sk: sending socket
4274  * @skb: netlink message
4275  *
4276  * Save security information for a netlink message so that permission checking
4277  * can be performed when the message is processed.  The security information
4278  * can be saved using the eff_cap field of the netlink_skb_parms structure.
4279  * Also may be used to provide fine grained control over message transmission.
4280  *
4281  * Return: Returns 0 if the information was successfully saved and message is
4282  *         allowed to be transmitted.
4283  */
4284 int security_netlink_send(struct sock *sk, struct sk_buff *skb)
4285 {
4286 	return call_int_hook(netlink_send, sk, skb);
4287 }
4288 
4289 /**
4290  * security_ismaclabel() - Check if the named attribute is a MAC label
4291  * @name: full extended attribute name
4292  *
4293  * Check if the extended attribute specified by @name represents a MAC label.
4294  *
4295  * Return: Returns 1 if name is a MAC attribute otherwise returns 0.
4296  */
4297 int security_ismaclabel(const char *name)
4298 {
4299 	return call_int_hook(ismaclabel, name);
4300 }
4301 EXPORT_SYMBOL(security_ismaclabel);
4302 
4303 /**
4304  * security_secid_to_secctx() - Convert a secid to a secctx
4305  * @secid: secid
4306  * @cp: the LSM context
4307  *
4308  * Convert secid to security context.  If @cp is NULL the length of the
4309  * result will be returned, but no data will be returned.  This
4310  * does mean that the length could change between calls to check the length and
4311  * the next call which actually allocates and returns the data.
4312  *
4313  * Return: Return length of data on success, error on failure.
4314  */
4315 int security_secid_to_secctx(u32 secid, struct lsm_context *cp)
4316 {
4317 	return call_int_hook(secid_to_secctx, secid, cp);
4318 }
4319 EXPORT_SYMBOL(security_secid_to_secctx);
4320 
4321 /**
4322  * security_lsmprop_to_secctx() - Convert a lsm_prop to a secctx
4323  * @prop: lsm specific information
4324  * @cp: the LSM context
4325  *
4326  * Convert a @prop entry to security context.  If @cp is NULL the
4327  * length of the result will be returned. This does mean that the
4328  * length could change between calls to check the length and the
4329  * next call which actually allocates and returns the @cp.
4330  *
4331  * Return: Return length of data on success, error on failure.
4332  */
4333 int security_lsmprop_to_secctx(struct lsm_prop *prop, struct lsm_context *cp)
4334 {
4335 	return call_int_hook(lsmprop_to_secctx, prop, cp);
4336 }
4337 EXPORT_SYMBOL(security_lsmprop_to_secctx);
4338 
4339 /**
4340  * security_secctx_to_secid() - Convert a secctx to a secid
4341  * @secdata: secctx
4342  * @seclen: length of secctx
4343  * @secid: secid
4344  *
4345  * Convert security context to secid.
4346  *
4347  * Return: Returns 0 on success, error on failure.
4348  */
4349 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
4350 {
4351 	*secid = 0;
4352 	return call_int_hook(secctx_to_secid, secdata, seclen, secid);
4353 }
4354 EXPORT_SYMBOL(security_secctx_to_secid);
4355 
4356 /**
4357  * security_release_secctx() - Free a secctx buffer
4358  * @cp: the security context
4359  *
4360  * Release the security context.
4361  */
4362 void security_release_secctx(struct lsm_context *cp)
4363 {
4364 	call_void_hook(release_secctx, cp);
4365 	memset(cp, 0, sizeof(*cp));
4366 }
4367 EXPORT_SYMBOL(security_release_secctx);
4368 
4369 /**
4370  * security_inode_invalidate_secctx() - Invalidate an inode's security label
4371  * @inode: inode
4372  *
4373  * Notify the security module that it must revalidate the security context of
4374  * an inode.
4375  */
4376 void security_inode_invalidate_secctx(struct inode *inode)
4377 {
4378 	call_void_hook(inode_invalidate_secctx, inode);
4379 }
4380 EXPORT_SYMBOL(security_inode_invalidate_secctx);
4381 
4382 /**
4383  * security_inode_notifysecctx() - Notify the LSM of an inode's security label
4384  * @inode: inode
4385  * @ctx: secctx
4386  * @ctxlen: length of secctx
4387  *
4388  * Notify the security module of what the security context of an inode should
4389  * be.  Initializes the incore security context managed by the security module
4390  * for this inode.  Example usage: NFS client invokes this hook to initialize
4391  * the security context in its incore inode to the value provided by the server
4392  * for the file when the server returned the file's attributes to the client.
4393  * Must be called with inode->i_mutex locked.
4394  *
4395  * Return: Returns 0 on success, error on failure.
4396  */
4397 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
4398 {
4399 	return call_int_hook(inode_notifysecctx, inode, ctx, ctxlen);
4400 }
4401 EXPORT_SYMBOL(security_inode_notifysecctx);
4402 
4403 /**
4404  * security_inode_setsecctx() - Change the security label of an inode
4405  * @dentry: inode
4406  * @ctx: secctx
4407  * @ctxlen: length of secctx
4408  *
4409  * Change the security context of an inode.  Updates the incore security
4410  * context managed by the security module and invokes the fs code as needed
4411  * (via __vfs_setxattr_noperm) to update any backing xattrs that represent the
4412  * context.  Example usage: NFS server invokes this hook to change the security
4413  * context in its incore inode and on the backing filesystem to a value
4414  * provided by the client on a SETATTR operation.  Must be called with
4415  * inode->i_mutex locked.
4416  *
4417  * Return: Returns 0 on success, error on failure.
4418  */
4419 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
4420 {
4421 	return call_int_hook(inode_setsecctx, dentry, ctx, ctxlen);
4422 }
4423 EXPORT_SYMBOL(security_inode_setsecctx);
4424 
4425 /**
4426  * security_inode_getsecctx() - Get the security label of an inode
4427  * @inode: inode
4428  * @cp: security context
4429  *
4430  * On success, returns 0 and fills out @cp with the security context
4431  * for the given @inode.
4432  *
4433  * Return: Returns 0 on success, error on failure.
4434  */
4435 int security_inode_getsecctx(struct inode *inode, struct lsm_context *cp)
4436 {
4437 	memset(cp, 0, sizeof(*cp));
4438 	return call_int_hook(inode_getsecctx, inode, cp);
4439 }
4440 EXPORT_SYMBOL(security_inode_getsecctx);
4441 
4442 #ifdef CONFIG_WATCH_QUEUE
4443 /**
4444  * security_post_notification() - Check if a watch notification can be posted
4445  * @w_cred: credentials of the task that set the watch
4446  * @cred: credentials of the task which triggered the watch
4447  * @n: the notification
4448  *
4449  * Check to see if a watch notification can be posted to a particular queue.
4450  *
4451  * Return: Returns 0 if permission is granted.
4452  */
4453 int security_post_notification(const struct cred *w_cred,
4454 			       const struct cred *cred,
4455 			       struct watch_notification *n)
4456 {
4457 	return call_int_hook(post_notification, w_cred, cred, n);
4458 }
4459 #endif /* CONFIG_WATCH_QUEUE */
4460 
4461 #ifdef CONFIG_KEY_NOTIFICATIONS
4462 /**
4463  * security_watch_key() - Check if a task is allowed to watch for key events
4464  * @key: the key to watch
4465  *
4466  * Check to see if a process is allowed to watch for event notifications from
4467  * a key or keyring.
4468  *
4469  * Return: Returns 0 if permission is granted.
4470  */
4471 int security_watch_key(struct key *key)
4472 {
4473 	return call_int_hook(watch_key, key);
4474 }
4475 #endif /* CONFIG_KEY_NOTIFICATIONS */
4476 
4477 #ifdef CONFIG_SECURITY_NETWORK
4478 /**
4479  * security_unix_stream_connect() - Check if a AF_UNIX stream is allowed
4480  * @sock: originating sock
4481  * @other: peer sock
4482  * @newsk: new sock
4483  *
4484  * Check permissions before establishing a Unix domain stream connection
4485  * between @sock and @other.
4486  *
4487  * The @unix_stream_connect and @unix_may_send hooks were necessary because
4488  * Linux provides an alternative to the conventional file name space for Unix
4489  * domain sockets.  Whereas binding and connecting to sockets in the file name
4490  * space is mediated by the typical file permissions (and caught by the mknod
4491  * and permission hooks in inode_security_ops), binding and connecting to
4492  * sockets in the abstract name space is completely unmediated.  Sufficient
4493  * control of Unix domain sockets in the abstract name space isn't possible
4494  * using only the socket layer hooks, since we need to know the actual target
4495  * socket, which is not looked up until we are inside the af_unix code.
4496  *
4497  * Return: Returns 0 if permission is granted.
4498  */
4499 int security_unix_stream_connect(struct sock *sock, struct sock *other,
4500 				 struct sock *newsk)
4501 {
4502 	return call_int_hook(unix_stream_connect, sock, other, newsk);
4503 }
4504 EXPORT_SYMBOL(security_unix_stream_connect);
4505 
4506 /**
4507  * security_unix_may_send() - Check if AF_UNIX socket can send datagrams
4508  * @sock: originating sock
4509  * @other: peer sock
4510  *
4511  * Check permissions before connecting or sending datagrams from @sock to
4512  * @other.
4513  *
4514  * The @unix_stream_connect and @unix_may_send hooks were necessary because
4515  * Linux provides an alternative to the conventional file name space for Unix
4516  * domain sockets.  Whereas binding and connecting to sockets in the file name
4517  * space is mediated by the typical file permissions (and caught by the mknod
4518  * and permission hooks in inode_security_ops), binding and connecting to
4519  * sockets in the abstract name space is completely unmediated.  Sufficient
4520  * control of Unix domain sockets in the abstract name space isn't possible
4521  * using only the socket layer hooks, since we need to know the actual target
4522  * socket, which is not looked up until we are inside the af_unix code.
4523  *
4524  * Return: Returns 0 if permission is granted.
4525  */
4526 int security_unix_may_send(struct socket *sock,  struct socket *other)
4527 {
4528 	return call_int_hook(unix_may_send, sock, other);
4529 }
4530 EXPORT_SYMBOL(security_unix_may_send);
4531 
4532 /**
4533  * security_socket_create() - Check if creating a new socket is allowed
4534  * @family: protocol family
4535  * @type: communications type
4536  * @protocol: requested protocol
4537  * @kern: set to 1 if a kernel socket is requested
4538  *
4539  * Check permissions prior to creating a new socket.
4540  *
4541  * Return: Returns 0 if permission is granted.
4542  */
4543 int security_socket_create(int family, int type, int protocol, int kern)
4544 {
4545 	return call_int_hook(socket_create, family, type, protocol, kern);
4546 }
4547 
4548 /**
4549  * security_socket_post_create() - Initialize a newly created socket
4550  * @sock: socket
4551  * @family: protocol family
4552  * @type: communications type
4553  * @protocol: requested protocol
4554  * @kern: set to 1 if a kernel socket is requested
4555  *
4556  * This hook allows a module to update or allocate a per-socket security
4557  * structure. Note that the security field was not added directly to the socket
4558  * structure, but rather, the socket security information is stored in the
4559  * associated inode.  Typically, the inode alloc_security hook will allocate
4560  * and attach security information to SOCK_INODE(sock)->i_security.  This hook
4561  * may be used to update the SOCK_INODE(sock)->i_security field with additional
4562  * information that wasn't available when the inode was allocated.
4563  *
4564  * Return: Returns 0 if permission is granted.
4565  */
4566 int security_socket_post_create(struct socket *sock, int family,
4567 				int type, int protocol, int kern)
4568 {
4569 	return call_int_hook(socket_post_create, sock, family, type,
4570 			     protocol, kern);
4571 }
4572 
4573 /**
4574  * security_socket_socketpair() - Check if creating a socketpair is allowed
4575  * @socka: first socket
4576  * @sockb: second socket
4577  *
4578  * Check permissions before creating a fresh pair of sockets.
4579  *
4580  * Return: Returns 0 if permission is granted and the connection was
4581  *         established.
4582  */
4583 int security_socket_socketpair(struct socket *socka, struct socket *sockb)
4584 {
4585 	return call_int_hook(socket_socketpair, socka, sockb);
4586 }
4587 EXPORT_SYMBOL(security_socket_socketpair);
4588 
4589 /**
4590  * security_socket_bind() - Check if a socket bind operation is allowed
4591  * @sock: socket
4592  * @address: requested bind address
4593  * @addrlen: length of address
4594  *
4595  * Check permission before socket protocol layer bind operation is performed
4596  * and the socket @sock is bound to the address specified in the @address
4597  * parameter.
4598  *
4599  * Return: Returns 0 if permission is granted.
4600  */
4601 int security_socket_bind(struct socket *sock,
4602 			 struct sockaddr *address, int addrlen)
4603 {
4604 	return call_int_hook(socket_bind, sock, address, addrlen);
4605 }
4606 
4607 /**
4608  * security_socket_connect() - Check if a socket connect operation is allowed
4609  * @sock: socket
4610  * @address: address of remote connection point
4611  * @addrlen: length of address
4612  *
4613  * Check permission before socket protocol layer connect operation attempts to
4614  * connect socket @sock to a remote address, @address.
4615  *
4616  * Return: Returns 0 if permission is granted.
4617  */
4618 int security_socket_connect(struct socket *sock,
4619 			    struct sockaddr *address, int addrlen)
4620 {
4621 	return call_int_hook(socket_connect, sock, address, addrlen);
4622 }
4623 
4624 /**
4625  * security_socket_listen() - Check if a socket is allowed to listen
4626  * @sock: socket
4627  * @backlog: connection queue size
4628  *
4629  * Check permission before socket protocol layer listen operation.
4630  *
4631  * Return: Returns 0 if permission is granted.
4632  */
4633 int security_socket_listen(struct socket *sock, int backlog)
4634 {
4635 	return call_int_hook(socket_listen, sock, backlog);
4636 }
4637 
4638 /**
4639  * security_socket_accept() - Check if a socket is allowed to accept connections
4640  * @sock: listening socket
4641  * @newsock: newly creation connection socket
4642  *
4643  * Check permission before accepting a new connection.  Note that the new
4644  * socket, @newsock, has been created and some information copied to it, but
4645  * the accept operation has not actually been performed.
4646  *
4647  * Return: Returns 0 if permission is granted.
4648  */
4649 int security_socket_accept(struct socket *sock, struct socket *newsock)
4650 {
4651 	return call_int_hook(socket_accept, sock, newsock);
4652 }
4653 
4654 /**
4655  * security_socket_sendmsg() - Check if sending a message is allowed
4656  * @sock: sending socket
4657  * @msg: message to send
4658  * @size: size of message
4659  *
4660  * Check permission before transmitting a message to another socket.
4661  *
4662  * Return: Returns 0 if permission is granted.
4663  */
4664 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
4665 {
4666 	return call_int_hook(socket_sendmsg, sock, msg, size);
4667 }
4668 
4669 /**
4670  * security_socket_recvmsg() - Check if receiving a message is allowed
4671  * @sock: receiving socket
4672  * @msg: message to receive
4673  * @size: size of message
4674  * @flags: operational flags
4675  *
4676  * Check permission before receiving a message from a socket.
4677  *
4678  * Return: Returns 0 if permission is granted.
4679  */
4680 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
4681 			    int size, int flags)
4682 {
4683 	return call_int_hook(socket_recvmsg, sock, msg, size, flags);
4684 }
4685 
4686 /**
4687  * security_socket_getsockname() - Check if reading the socket addr is allowed
4688  * @sock: socket
4689  *
4690  * Check permission before reading the local address (name) of the socket
4691  * object.
4692  *
4693  * Return: Returns 0 if permission is granted.
4694  */
4695 int security_socket_getsockname(struct socket *sock)
4696 {
4697 	return call_int_hook(socket_getsockname, sock);
4698 }
4699 
4700 /**
4701  * security_socket_getpeername() - Check if reading the peer's addr is allowed
4702  * @sock: socket
4703  *
4704  * Check permission before the remote address (name) of a socket object.
4705  *
4706  * Return: Returns 0 if permission is granted.
4707  */
4708 int security_socket_getpeername(struct socket *sock)
4709 {
4710 	return call_int_hook(socket_getpeername, sock);
4711 }
4712 
4713 /**
4714  * security_socket_getsockopt() - Check if reading a socket option is allowed
4715  * @sock: socket
4716  * @level: option's protocol level
4717  * @optname: option name
4718  *
4719  * Check permissions before retrieving the options associated with socket
4720  * @sock.
4721  *
4722  * Return: Returns 0 if permission is granted.
4723  */
4724 int security_socket_getsockopt(struct socket *sock, int level, int optname)
4725 {
4726 	return call_int_hook(socket_getsockopt, sock, level, optname);
4727 }
4728 
4729 /**
4730  * security_socket_setsockopt() - Check if setting a socket option is allowed
4731  * @sock: socket
4732  * @level: option's protocol level
4733  * @optname: option name
4734  *
4735  * Check permissions before setting the options associated with socket @sock.
4736  *
4737  * Return: Returns 0 if permission is granted.
4738  */
4739 int security_socket_setsockopt(struct socket *sock, int level, int optname)
4740 {
4741 	return call_int_hook(socket_setsockopt, sock, level, optname);
4742 }
4743 
4744 /**
4745  * security_socket_shutdown() - Checks if shutting down the socket is allowed
4746  * @sock: socket
4747  * @how: flag indicating how sends and receives are handled
4748  *
4749  * Checks permission before all or part of a connection on the socket @sock is
4750  * shut down.
4751  *
4752  * Return: Returns 0 if permission is granted.
4753  */
4754 int security_socket_shutdown(struct socket *sock, int how)
4755 {
4756 	return call_int_hook(socket_shutdown, sock, how);
4757 }
4758 
4759 /**
4760  * security_sock_rcv_skb() - Check if an incoming network packet is allowed
4761  * @sk: destination sock
4762  * @skb: incoming packet
4763  *
4764  * Check permissions on incoming network packets.  This hook is distinct from
4765  * Netfilter's IP input hooks since it is the first time that the incoming
4766  * sk_buff @skb has been associated with a particular socket, @sk.  Must not
4767  * sleep inside this hook because some callers hold spinlocks.
4768  *
4769  * Return: Returns 0 if permission is granted.
4770  */
4771 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4772 {
4773 	return call_int_hook(socket_sock_rcv_skb, sk, skb);
4774 }
4775 EXPORT_SYMBOL(security_sock_rcv_skb);
4776 
4777 /**
4778  * security_socket_getpeersec_stream() - Get the remote peer label
4779  * @sock: socket
4780  * @optval: destination buffer
4781  * @optlen: size of peer label copied into the buffer
4782  * @len: maximum size of the destination buffer
4783  *
4784  * This hook allows the security module to provide peer socket security state
4785  * for unix or connected tcp sockets to userspace via getsockopt SO_GETPEERSEC.
4786  * For tcp sockets this can be meaningful if the socket is associated with an
4787  * ipsec SA.
4788  *
4789  * Return: Returns 0 if all is well, otherwise, typical getsockopt return
4790  *         values.
4791  */
4792 int security_socket_getpeersec_stream(struct socket *sock, sockptr_t optval,
4793 				      sockptr_t optlen, unsigned int len)
4794 {
4795 	return call_int_hook(socket_getpeersec_stream, sock, optval, optlen,
4796 			     len);
4797 }
4798 
4799 /**
4800  * security_socket_getpeersec_dgram() - Get the remote peer label
4801  * @sock: socket
4802  * @skb: datagram packet
4803  * @secid: remote peer label secid
4804  *
4805  * This hook allows the security module to provide peer socket security state
4806  * for udp sockets on a per-packet basis to userspace via getsockopt
4807  * SO_GETPEERSEC. The application must first have indicated the IP_PASSSEC
4808  * option via getsockopt. It can then retrieve the security state returned by
4809  * this hook for a packet via the SCM_SECURITY ancillary message type.
4810  *
4811  * Return: Returns 0 on success, error on failure.
4812  */
4813 int security_socket_getpeersec_dgram(struct socket *sock,
4814 				     struct sk_buff *skb, u32 *secid)
4815 {
4816 	return call_int_hook(socket_getpeersec_dgram, sock, skb, secid);
4817 }
4818 EXPORT_SYMBOL(security_socket_getpeersec_dgram);
4819 
4820 /**
4821  * lsm_sock_alloc - allocate a composite sock blob
4822  * @sock: the sock that needs a blob
4823  * @gfp: allocation mode
4824  *
4825  * Allocate the sock blob for all the modules
4826  *
4827  * Returns 0, or -ENOMEM if memory can't be allocated.
4828  */
4829 static int lsm_sock_alloc(struct sock *sock, gfp_t gfp)
4830 {
4831 	return lsm_blob_alloc(&sock->sk_security, blob_sizes.lbs_sock, gfp);
4832 }
4833 
4834 /**
4835  * security_sk_alloc() - Allocate and initialize a sock's LSM blob
4836  * @sk: sock
4837  * @family: protocol family
4838  * @priority: gfp flags
4839  *
4840  * Allocate and attach a security structure to the sk->sk_security field, which
4841  * is used to copy security attributes between local stream sockets.
4842  *
4843  * Return: Returns 0 on success, error on failure.
4844  */
4845 int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
4846 {
4847 	int rc = lsm_sock_alloc(sk, priority);
4848 
4849 	if (unlikely(rc))
4850 		return rc;
4851 	rc = call_int_hook(sk_alloc_security, sk, family, priority);
4852 	if (unlikely(rc))
4853 		security_sk_free(sk);
4854 	return rc;
4855 }
4856 
4857 /**
4858  * security_sk_free() - Free the sock's LSM blob
4859  * @sk: sock
4860  *
4861  * Deallocate security structure.
4862  */
4863 void security_sk_free(struct sock *sk)
4864 {
4865 	call_void_hook(sk_free_security, sk);
4866 	kfree(sk->sk_security);
4867 	sk->sk_security = NULL;
4868 }
4869 
4870 /**
4871  * security_sk_clone() - Clone a sock's LSM state
4872  * @sk: original sock
4873  * @newsk: target sock
4874  *
4875  * Clone/copy security structure.
4876  */
4877 void security_sk_clone(const struct sock *sk, struct sock *newsk)
4878 {
4879 	call_void_hook(sk_clone_security, sk, newsk);
4880 }
4881 EXPORT_SYMBOL(security_sk_clone);
4882 
4883 /**
4884  * security_sk_classify_flow() - Set a flow's secid based on socket
4885  * @sk: original socket
4886  * @flic: target flow
4887  *
4888  * Set the target flow's secid to socket's secid.
4889  */
4890 void security_sk_classify_flow(const struct sock *sk, struct flowi_common *flic)
4891 {
4892 	call_void_hook(sk_getsecid, sk, &flic->flowic_secid);
4893 }
4894 EXPORT_SYMBOL(security_sk_classify_flow);
4895 
4896 /**
4897  * security_req_classify_flow() - Set a flow's secid based on request_sock
4898  * @req: request_sock
4899  * @flic: target flow
4900  *
4901  * Sets @flic's secid to @req's secid.
4902  */
4903 void security_req_classify_flow(const struct request_sock *req,
4904 				struct flowi_common *flic)
4905 {
4906 	call_void_hook(req_classify_flow, req, flic);
4907 }
4908 EXPORT_SYMBOL(security_req_classify_flow);
4909 
4910 /**
4911  * security_sock_graft() - Reconcile LSM state when grafting a sock on a socket
4912  * @sk: sock being grafted
4913  * @parent: target parent socket
4914  *
4915  * Sets @parent's inode secid to @sk's secid and update @sk with any necessary
4916  * LSM state from @parent.
4917  */
4918 void security_sock_graft(struct sock *sk, struct socket *parent)
4919 {
4920 	call_void_hook(sock_graft, sk, parent);
4921 }
4922 EXPORT_SYMBOL(security_sock_graft);
4923 
4924 /**
4925  * security_inet_conn_request() - Set request_sock state using incoming connect
4926  * @sk: parent listening sock
4927  * @skb: incoming connection
4928  * @req: new request_sock
4929  *
4930  * Initialize the @req LSM state based on @sk and the incoming connect in @skb.
4931  *
4932  * Return: Returns 0 if permission is granted.
4933  */
4934 int security_inet_conn_request(const struct sock *sk,
4935 			       struct sk_buff *skb, struct request_sock *req)
4936 {
4937 	return call_int_hook(inet_conn_request, sk, skb, req);
4938 }
4939 EXPORT_SYMBOL(security_inet_conn_request);
4940 
4941 /**
4942  * security_inet_csk_clone() - Set new sock LSM state based on request_sock
4943  * @newsk: new sock
4944  * @req: connection request_sock
4945  *
4946  * Set that LSM state of @sock using the LSM state from @req.
4947  */
4948 void security_inet_csk_clone(struct sock *newsk,
4949 			     const struct request_sock *req)
4950 {
4951 	call_void_hook(inet_csk_clone, newsk, req);
4952 }
4953 
4954 /**
4955  * security_inet_conn_established() - Update sock's LSM state with connection
4956  * @sk: sock
4957  * @skb: connection packet
4958  *
4959  * Update @sock's LSM state to represent a new connection from @skb.
4960  */
4961 void security_inet_conn_established(struct sock *sk,
4962 				    struct sk_buff *skb)
4963 {
4964 	call_void_hook(inet_conn_established, sk, skb);
4965 }
4966 EXPORT_SYMBOL(security_inet_conn_established);
4967 
4968 /**
4969  * security_secmark_relabel_packet() - Check if setting a secmark is allowed
4970  * @secid: new secmark value
4971  *
4972  * Check if the process should be allowed to relabel packets to @secid.
4973  *
4974  * Return: Returns 0 if permission is granted.
4975  */
4976 int security_secmark_relabel_packet(u32 secid)
4977 {
4978 	return call_int_hook(secmark_relabel_packet, secid);
4979 }
4980 EXPORT_SYMBOL(security_secmark_relabel_packet);
4981 
4982 /**
4983  * security_secmark_refcount_inc() - Increment the secmark labeling rule count
4984  *
4985  * Tells the LSM to increment the number of secmark labeling rules loaded.
4986  */
4987 void security_secmark_refcount_inc(void)
4988 {
4989 	call_void_hook(secmark_refcount_inc);
4990 }
4991 EXPORT_SYMBOL(security_secmark_refcount_inc);
4992 
4993 /**
4994  * security_secmark_refcount_dec() - Decrement the secmark labeling rule count
4995  *
4996  * Tells the LSM to decrement the number of secmark labeling rules loaded.
4997  */
4998 void security_secmark_refcount_dec(void)
4999 {
5000 	call_void_hook(secmark_refcount_dec);
5001 }
5002 EXPORT_SYMBOL(security_secmark_refcount_dec);
5003 
5004 /**
5005  * security_tun_dev_alloc_security() - Allocate a LSM blob for a TUN device
5006  * @security: pointer to the LSM blob
5007  *
5008  * This hook allows a module to allocate a security structure for a TUN	device,
5009  * returning the pointer in @security.
5010  *
5011  * Return: Returns a zero on success, negative values on failure.
5012  */
5013 int security_tun_dev_alloc_security(void **security)
5014 {
5015 	int rc;
5016 
5017 	rc = lsm_blob_alloc(security, blob_sizes.lbs_tun_dev, GFP_KERNEL);
5018 	if (rc)
5019 		return rc;
5020 
5021 	rc = call_int_hook(tun_dev_alloc_security, *security);
5022 	if (rc) {
5023 		kfree(*security);
5024 		*security = NULL;
5025 	}
5026 	return rc;
5027 }
5028 EXPORT_SYMBOL(security_tun_dev_alloc_security);
5029 
5030 /**
5031  * security_tun_dev_free_security() - Free a TUN device LSM blob
5032  * @security: LSM blob
5033  *
5034  * This hook allows a module to free the security structure for a TUN device.
5035  */
5036 void security_tun_dev_free_security(void *security)
5037 {
5038 	kfree(security);
5039 }
5040 EXPORT_SYMBOL(security_tun_dev_free_security);
5041 
5042 /**
5043  * security_tun_dev_create() - Check if creating a TUN device is allowed
5044  *
5045  * Check permissions prior to creating a new TUN device.
5046  *
5047  * Return: Returns 0 if permission is granted.
5048  */
5049 int security_tun_dev_create(void)
5050 {
5051 	return call_int_hook(tun_dev_create);
5052 }
5053 EXPORT_SYMBOL(security_tun_dev_create);
5054 
5055 /**
5056  * security_tun_dev_attach_queue() - Check if attaching a TUN queue is allowed
5057  * @security: TUN device LSM blob
5058  *
5059  * Check permissions prior to attaching to a TUN device queue.
5060  *
5061  * Return: Returns 0 if permission is granted.
5062  */
5063 int security_tun_dev_attach_queue(void *security)
5064 {
5065 	return call_int_hook(tun_dev_attach_queue, security);
5066 }
5067 EXPORT_SYMBOL(security_tun_dev_attach_queue);
5068 
5069 /**
5070  * security_tun_dev_attach() - Update TUN device LSM state on attach
5071  * @sk: associated sock
5072  * @security: TUN device LSM blob
5073  *
5074  * This hook can be used by the module to update any security state associated
5075  * with the TUN device's sock structure.
5076  *
5077  * Return: Returns 0 if permission is granted.
5078  */
5079 int security_tun_dev_attach(struct sock *sk, void *security)
5080 {
5081 	return call_int_hook(tun_dev_attach, sk, security);
5082 }
5083 EXPORT_SYMBOL(security_tun_dev_attach);
5084 
5085 /**
5086  * security_tun_dev_open() - Update TUN device LSM state on open
5087  * @security: TUN device LSM blob
5088  *
5089  * This hook can be used by the module to update any security state associated
5090  * with the TUN device's security structure.
5091  *
5092  * Return: Returns 0 if permission is granted.
5093  */
5094 int security_tun_dev_open(void *security)
5095 {
5096 	return call_int_hook(tun_dev_open, security);
5097 }
5098 EXPORT_SYMBOL(security_tun_dev_open);
5099 
5100 /**
5101  * security_sctp_assoc_request() - Update the LSM on a SCTP association req
5102  * @asoc: SCTP association
5103  * @skb: packet requesting the association
5104  *
5105  * Passes the @asoc and @chunk->skb of the association INIT packet to the LSM.
5106  *
5107  * Return: Returns 0 on success, error on failure.
5108  */
5109 int security_sctp_assoc_request(struct sctp_association *asoc,
5110 				struct sk_buff *skb)
5111 {
5112 	return call_int_hook(sctp_assoc_request, asoc, skb);
5113 }
5114 EXPORT_SYMBOL(security_sctp_assoc_request);
5115 
5116 /**
5117  * security_sctp_bind_connect() - Validate a list of addrs for a SCTP option
5118  * @sk: socket
5119  * @optname: SCTP option to validate
5120  * @address: list of IP addresses to validate
5121  * @addrlen: length of the address list
5122  *
5123  * Validiate permissions required for each address associated with sock	@sk.
5124  * Depending on @optname, the addresses will be treated as either a connect or
5125  * bind service. The @addrlen is calculated on each IPv4 and IPv6 address using
5126  * sizeof(struct sockaddr_in) or sizeof(struct sockaddr_in6).
5127  *
5128  * Return: Returns 0 on success, error on failure.
5129  */
5130 int security_sctp_bind_connect(struct sock *sk, int optname,
5131 			       struct sockaddr *address, int addrlen)
5132 {
5133 	return call_int_hook(sctp_bind_connect, sk, optname, address, addrlen);
5134 }
5135 EXPORT_SYMBOL(security_sctp_bind_connect);
5136 
5137 /**
5138  * security_sctp_sk_clone() - Clone a SCTP sock's LSM state
5139  * @asoc: SCTP association
5140  * @sk: original sock
5141  * @newsk: target sock
5142  *
5143  * Called whenever a new socket is created by accept(2) (i.e. a TCP style
5144  * socket) or when a socket is 'peeled off' e.g userspace calls
5145  * sctp_peeloff(3).
5146  */
5147 void security_sctp_sk_clone(struct sctp_association *asoc, struct sock *sk,
5148 			    struct sock *newsk)
5149 {
5150 	call_void_hook(sctp_sk_clone, asoc, sk, newsk);
5151 }
5152 EXPORT_SYMBOL(security_sctp_sk_clone);
5153 
5154 /**
5155  * security_sctp_assoc_established() - Update LSM state when assoc established
5156  * @asoc: SCTP association
5157  * @skb: packet establishing the association
5158  *
5159  * Passes the @asoc and @chunk->skb of the association COOKIE_ACK packet to the
5160  * security module.
5161  *
5162  * Return: Returns 0 if permission is granted.
5163  */
5164 int security_sctp_assoc_established(struct sctp_association *asoc,
5165 				    struct sk_buff *skb)
5166 {
5167 	return call_int_hook(sctp_assoc_established, asoc, skb);
5168 }
5169 EXPORT_SYMBOL(security_sctp_assoc_established);
5170 
5171 /**
5172  * security_mptcp_add_subflow() - Inherit the LSM label from the MPTCP socket
5173  * @sk: the owning MPTCP socket
5174  * @ssk: the new subflow
5175  *
5176  * Update the labeling for the given MPTCP subflow, to match the one of the
5177  * owning MPTCP socket. This hook has to be called after the socket creation and
5178  * initialization via the security_socket_create() and
5179  * security_socket_post_create() LSM hooks.
5180  *
5181  * Return: Returns 0 on success or a negative error code on failure.
5182  */
5183 int security_mptcp_add_subflow(struct sock *sk, struct sock *ssk)
5184 {
5185 	return call_int_hook(mptcp_add_subflow, sk, ssk);
5186 }
5187 
5188 #endif	/* CONFIG_SECURITY_NETWORK */
5189 
5190 #ifdef CONFIG_SECURITY_INFINIBAND
5191 /**
5192  * security_ib_pkey_access() - Check if access to an IB pkey is allowed
5193  * @sec: LSM blob
5194  * @subnet_prefix: subnet prefix of the port
5195  * @pkey: IB pkey
5196  *
5197  * Check permission to access a pkey when modifying a QP.
5198  *
5199  * Return: Returns 0 if permission is granted.
5200  */
5201 int security_ib_pkey_access(void *sec, u64 subnet_prefix, u16 pkey)
5202 {
5203 	return call_int_hook(ib_pkey_access, sec, subnet_prefix, pkey);
5204 }
5205 EXPORT_SYMBOL(security_ib_pkey_access);
5206 
5207 /**
5208  * security_ib_endport_manage_subnet() - Check if SMPs traffic is allowed
5209  * @sec: LSM blob
5210  * @dev_name: IB device name
5211  * @port_num: port number
5212  *
5213  * Check permissions to send and receive SMPs on a end port.
5214  *
5215  * Return: Returns 0 if permission is granted.
5216  */
5217 int security_ib_endport_manage_subnet(void *sec,
5218 				      const char *dev_name, u8 port_num)
5219 {
5220 	return call_int_hook(ib_endport_manage_subnet, sec, dev_name, port_num);
5221 }
5222 EXPORT_SYMBOL(security_ib_endport_manage_subnet);
5223 
5224 /**
5225  * security_ib_alloc_security() - Allocate an Infiniband LSM blob
5226  * @sec: LSM blob
5227  *
5228  * Allocate a security structure for Infiniband objects.
5229  *
5230  * Return: Returns 0 on success, non-zero on failure.
5231  */
5232 int security_ib_alloc_security(void **sec)
5233 {
5234 	int rc;
5235 
5236 	rc = lsm_blob_alloc(sec, blob_sizes.lbs_ib, GFP_KERNEL);
5237 	if (rc)
5238 		return rc;
5239 
5240 	rc = call_int_hook(ib_alloc_security, *sec);
5241 	if (rc) {
5242 		kfree(*sec);
5243 		*sec = NULL;
5244 	}
5245 	return rc;
5246 }
5247 EXPORT_SYMBOL(security_ib_alloc_security);
5248 
5249 /**
5250  * security_ib_free_security() - Free an Infiniband LSM blob
5251  * @sec: LSM blob
5252  *
5253  * Deallocate an Infiniband security structure.
5254  */
5255 void security_ib_free_security(void *sec)
5256 {
5257 	kfree(sec);
5258 }
5259 EXPORT_SYMBOL(security_ib_free_security);
5260 #endif	/* CONFIG_SECURITY_INFINIBAND */
5261 
5262 #ifdef CONFIG_SECURITY_NETWORK_XFRM
5263 /**
5264  * security_xfrm_policy_alloc() - Allocate a xfrm policy LSM blob
5265  * @ctxp: xfrm security context being added to the SPD
5266  * @sec_ctx: security label provided by userspace
5267  * @gfp: gfp flags
5268  *
5269  * Allocate a security structure to the xp->security field; the security field
5270  * is initialized to NULL when the xfrm_policy is allocated.
5271  *
5272  * Return:  Return 0 if operation was successful.
5273  */
5274 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp,
5275 			       struct xfrm_user_sec_ctx *sec_ctx,
5276 			       gfp_t gfp)
5277 {
5278 	return call_int_hook(xfrm_policy_alloc_security, ctxp, sec_ctx, gfp);
5279 }
5280 EXPORT_SYMBOL(security_xfrm_policy_alloc);
5281 
5282 /**
5283  * security_xfrm_policy_clone() - Clone xfrm policy LSM state
5284  * @old_ctx: xfrm security context
5285  * @new_ctxp: target xfrm security context
5286  *
5287  * Allocate a security structure in new_ctxp that contains the information from
5288  * the old_ctx structure.
5289  *
5290  * Return: Return 0 if operation was successful.
5291  */
5292 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
5293 			       struct xfrm_sec_ctx **new_ctxp)
5294 {
5295 	return call_int_hook(xfrm_policy_clone_security, old_ctx, new_ctxp);
5296 }
5297 
5298 /**
5299  * security_xfrm_policy_free() - Free a xfrm security context
5300  * @ctx: xfrm security context
5301  *
5302  * Free LSM resources associated with @ctx.
5303  */
5304 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
5305 {
5306 	call_void_hook(xfrm_policy_free_security, ctx);
5307 }
5308 EXPORT_SYMBOL(security_xfrm_policy_free);
5309 
5310 /**
5311  * security_xfrm_policy_delete() - Check if deleting a xfrm policy is allowed
5312  * @ctx: xfrm security context
5313  *
5314  * Authorize deletion of a SPD entry.
5315  *
5316  * Return: Returns 0 if permission is granted.
5317  */
5318 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
5319 {
5320 	return call_int_hook(xfrm_policy_delete_security, ctx);
5321 }
5322 
5323 /**
5324  * security_xfrm_state_alloc() - Allocate a xfrm state LSM blob
5325  * @x: xfrm state being added to the SAD
5326  * @sec_ctx: security label provided by userspace
5327  *
5328  * Allocate a security structure to the @x->security field; the security field
5329  * is initialized to NULL when the xfrm_state is allocated. Set the context to
5330  * correspond to @sec_ctx.
5331  *
5332  * Return: Return 0 if operation was successful.
5333  */
5334 int security_xfrm_state_alloc(struct xfrm_state *x,
5335 			      struct xfrm_user_sec_ctx *sec_ctx)
5336 {
5337 	return call_int_hook(xfrm_state_alloc, x, sec_ctx);
5338 }
5339 EXPORT_SYMBOL(security_xfrm_state_alloc);
5340 
5341 /**
5342  * security_xfrm_state_alloc_acquire() - Allocate a xfrm state LSM blob
5343  * @x: xfrm state being added to the SAD
5344  * @polsec: associated policy's security context
5345  * @secid: secid from the flow
5346  *
5347  * Allocate a security structure to the x->security field; the security field
5348  * is initialized to NULL when the xfrm_state is allocated.  Set the context to
5349  * correspond to secid.
5350  *
5351  * Return: Returns 0 if operation was successful.
5352  */
5353 int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
5354 				      struct xfrm_sec_ctx *polsec, u32 secid)
5355 {
5356 	return call_int_hook(xfrm_state_alloc_acquire, x, polsec, secid);
5357 }
5358 
5359 /**
5360  * security_xfrm_state_delete() - Check if deleting a xfrm state is allowed
5361  * @x: xfrm state
5362  *
5363  * Authorize deletion of x->security.
5364  *
5365  * Return: Returns 0 if permission is granted.
5366  */
5367 int security_xfrm_state_delete(struct xfrm_state *x)
5368 {
5369 	return call_int_hook(xfrm_state_delete_security, x);
5370 }
5371 EXPORT_SYMBOL(security_xfrm_state_delete);
5372 
5373 /**
5374  * security_xfrm_state_free() - Free a xfrm state
5375  * @x: xfrm state
5376  *
5377  * Deallocate x->security.
5378  */
5379 void security_xfrm_state_free(struct xfrm_state *x)
5380 {
5381 	call_void_hook(xfrm_state_free_security, x);
5382 }
5383 
5384 /**
5385  * security_xfrm_policy_lookup() - Check if using a xfrm policy is allowed
5386  * @ctx: target xfrm security context
5387  * @fl_secid: flow secid used to authorize access
5388  *
5389  * Check permission when a flow selects a xfrm_policy for processing XFRMs on a
5390  * packet.  The hook is called when selecting either a per-socket policy or a
5391  * generic xfrm policy.
5392  *
5393  * Return: Return 0 if permission is granted, -ESRCH otherwise, or -errno on
5394  *         other errors.
5395  */
5396 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid)
5397 {
5398 	return call_int_hook(xfrm_policy_lookup, ctx, fl_secid);
5399 }
5400 
5401 /**
5402  * security_xfrm_state_pol_flow_match() - Check for a xfrm match
5403  * @x: xfrm state to match
5404  * @xp: xfrm policy to check for a match
5405  * @flic: flow to check for a match.
5406  *
5407  * Check @xp and @flic for a match with @x.
5408  *
5409  * Return: Returns 1 if there is a match.
5410  */
5411 int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
5412 				       struct xfrm_policy *xp,
5413 				       const struct flowi_common *flic)
5414 {
5415 	struct lsm_static_call *scall;
5416 	int rc = LSM_RET_DEFAULT(xfrm_state_pol_flow_match);
5417 
5418 	/*
5419 	 * Since this function is expected to return 0 or 1, the judgment
5420 	 * becomes difficult if multiple LSMs supply this call. Fortunately,
5421 	 * we can use the first LSM's judgment because currently only SELinux
5422 	 * supplies this call.
5423 	 *
5424 	 * For speed optimization, we explicitly break the loop rather than
5425 	 * using the macro
5426 	 */
5427 	lsm_for_each_hook(scall, xfrm_state_pol_flow_match) {
5428 		rc = scall->hl->hook.xfrm_state_pol_flow_match(x, xp, flic);
5429 		break;
5430 	}
5431 	return rc;
5432 }
5433 
5434 /**
5435  * security_xfrm_decode_session() - Determine the xfrm secid for a packet
5436  * @skb: xfrm packet
5437  * @secid: secid
5438  *
5439  * Decode the packet in @skb and return the security label in @secid.
5440  *
5441  * Return: Return 0 if all xfrms used have the same secid.
5442  */
5443 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
5444 {
5445 	return call_int_hook(xfrm_decode_session, skb, secid, 1);
5446 }
5447 
5448 void security_skb_classify_flow(struct sk_buff *skb, struct flowi_common *flic)
5449 {
5450 	int rc = call_int_hook(xfrm_decode_session, skb, &flic->flowic_secid,
5451 			       0);
5452 
5453 	BUG_ON(rc);
5454 }
5455 EXPORT_SYMBOL(security_skb_classify_flow);
5456 #endif	/* CONFIG_SECURITY_NETWORK_XFRM */
5457 
5458 #ifdef CONFIG_KEYS
5459 /**
5460  * security_key_alloc() - Allocate and initialize a kernel key LSM blob
5461  * @key: key
5462  * @cred: credentials
5463  * @flags: allocation flags
5464  *
5465  * Permit allocation of a key and assign security data. Note that key does not
5466  * have a serial number assigned at this point.
5467  *
5468  * Return: Return 0 if permission is granted, -ve error otherwise.
5469  */
5470 int security_key_alloc(struct key *key, const struct cred *cred,
5471 		       unsigned long flags)
5472 {
5473 	int rc = lsm_key_alloc(key);
5474 
5475 	if (unlikely(rc))
5476 		return rc;
5477 	rc = call_int_hook(key_alloc, key, cred, flags);
5478 	if (unlikely(rc))
5479 		security_key_free(key);
5480 	return rc;
5481 }
5482 
5483 /**
5484  * security_key_free() - Free a kernel key LSM blob
5485  * @key: key
5486  *
5487  * Notification of destruction; free security data.
5488  */
5489 void security_key_free(struct key *key)
5490 {
5491 	kfree(key->security);
5492 	key->security = NULL;
5493 }
5494 
5495 /**
5496  * security_key_permission() - Check if a kernel key operation is allowed
5497  * @key_ref: key reference
5498  * @cred: credentials of actor requesting access
5499  * @need_perm: requested permissions
5500  *
5501  * See whether a specific operational right is granted to a process on a key.
5502  *
5503  * Return: Return 0 if permission is granted, -ve error otherwise.
5504  */
5505 int security_key_permission(key_ref_t key_ref, const struct cred *cred,
5506 			    enum key_need_perm need_perm)
5507 {
5508 	return call_int_hook(key_permission, key_ref, cred, need_perm);
5509 }
5510 
5511 /**
5512  * security_key_getsecurity() - Get the key's security label
5513  * @key: key
5514  * @buffer: security label buffer
5515  *
5516  * Get a textual representation of the security context attached to a key for
5517  * the purposes of honouring KEYCTL_GETSECURITY.  This function allocates the
5518  * storage for the NUL-terminated string and the caller should free it.
5519  *
5520  * Return: Returns the length of @buffer (including terminating NUL) or -ve if
5521  *         an error occurs.  May also return 0 (and a NULL buffer pointer) if
5522  *         there is no security label assigned to the key.
5523  */
5524 int security_key_getsecurity(struct key *key, char **buffer)
5525 {
5526 	*buffer = NULL;
5527 	return call_int_hook(key_getsecurity, key, buffer);
5528 }
5529 
5530 /**
5531  * security_key_post_create_or_update() - Notification of key create or update
5532  * @keyring: keyring to which the key is linked to
5533  * @key: created or updated key
5534  * @payload: data used to instantiate or update the key
5535  * @payload_len: length of payload
5536  * @flags: key flags
5537  * @create: flag indicating whether the key was created or updated
5538  *
5539  * Notify the caller of a key creation or update.
5540  */
5541 void security_key_post_create_or_update(struct key *keyring, struct key *key,
5542 					const void *payload, size_t payload_len,
5543 					unsigned long flags, bool create)
5544 {
5545 	call_void_hook(key_post_create_or_update, keyring, key, payload,
5546 		       payload_len, flags, create);
5547 }
5548 #endif	/* CONFIG_KEYS */
5549 
5550 #ifdef CONFIG_AUDIT
5551 /**
5552  * security_audit_rule_init() - Allocate and init an LSM audit rule struct
5553  * @field: audit action
5554  * @op: rule operator
5555  * @rulestr: rule context
5556  * @lsmrule: receive buffer for audit rule struct
5557  * @gfp: GFP flag used for kmalloc
5558  *
5559  * Allocate and initialize an LSM audit rule structure.
5560  *
5561  * Return: Return 0 if @lsmrule has been successfully set, -EINVAL in case of
5562  *         an invalid rule.
5563  */
5564 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule,
5565 			     gfp_t gfp)
5566 {
5567 	return call_int_hook(audit_rule_init, field, op, rulestr, lsmrule, gfp);
5568 }
5569 
5570 /**
5571  * security_audit_rule_known() - Check if an audit rule contains LSM fields
5572  * @krule: audit rule
5573  *
5574  * Specifies whether given @krule contains any fields related to the current
5575  * LSM.
5576  *
5577  * Return: Returns 1 in case of relation found, 0 otherwise.
5578  */
5579 int security_audit_rule_known(struct audit_krule *krule)
5580 {
5581 	return call_int_hook(audit_rule_known, krule);
5582 }
5583 
5584 /**
5585  * security_audit_rule_free() - Free an LSM audit rule struct
5586  * @lsmrule: audit rule struct
5587  *
5588  * Deallocate the LSM audit rule structure previously allocated by
5589  * audit_rule_init().
5590  */
5591 void security_audit_rule_free(void *lsmrule)
5592 {
5593 	call_void_hook(audit_rule_free, lsmrule);
5594 }
5595 
5596 /**
5597  * security_audit_rule_match() - Check if a label matches an audit rule
5598  * @prop: security label
5599  * @field: LSM audit field
5600  * @op: matching operator
5601  * @lsmrule: audit rule
5602  *
5603  * Determine if given @secid matches a rule previously approved by
5604  * security_audit_rule_known().
5605  *
5606  * Return: Returns 1 if secid matches the rule, 0 if it does not, -ERRNO on
5607  *         failure.
5608  */
5609 int security_audit_rule_match(struct lsm_prop *prop, u32 field, u32 op,
5610 			      void *lsmrule)
5611 {
5612 	return call_int_hook(audit_rule_match, prop, field, op, lsmrule);
5613 }
5614 #endif /* CONFIG_AUDIT */
5615 
5616 #ifdef CONFIG_BPF_SYSCALL
5617 /**
5618  * security_bpf() - Check if the bpf syscall operation is allowed
5619  * @cmd: command
5620  * @attr: bpf attribute
5621  * @size: size
5622  *
5623  * Do a initial check for all bpf syscalls after the attribute is copied into
5624  * the kernel. The actual security module can implement their own rules to
5625  * check the specific cmd they need.
5626  *
5627  * Return: Returns 0 if permission is granted.
5628  */
5629 int security_bpf(int cmd, union bpf_attr *attr, unsigned int size)
5630 {
5631 	return call_int_hook(bpf, cmd, attr, size);
5632 }
5633 
5634 /**
5635  * security_bpf_map() - Check if access to a bpf map is allowed
5636  * @map: bpf map
5637  * @fmode: mode
5638  *
5639  * Do a check when the kernel generates and returns a file descriptor for eBPF
5640  * maps.
5641  *
5642  * Return: Returns 0 if permission is granted.
5643  */
5644 int security_bpf_map(struct bpf_map *map, fmode_t fmode)
5645 {
5646 	return call_int_hook(bpf_map, map, fmode);
5647 }
5648 
5649 /**
5650  * security_bpf_prog() - Check if access to a bpf program is allowed
5651  * @prog: bpf program
5652  *
5653  * Do a check when the kernel generates and returns a file descriptor for eBPF
5654  * programs.
5655  *
5656  * Return: Returns 0 if permission is granted.
5657  */
5658 int security_bpf_prog(struct bpf_prog *prog)
5659 {
5660 	return call_int_hook(bpf_prog, prog);
5661 }
5662 
5663 /**
5664  * security_bpf_map_create() - Check if BPF map creation is allowed
5665  * @map: BPF map object
5666  * @attr: BPF syscall attributes used to create BPF map
5667  * @token: BPF token used to grant user access
5668  *
5669  * Do a check when the kernel creates a new BPF map. This is also the
5670  * point where LSM blob is allocated for LSMs that need them.
5671  *
5672  * Return: Returns 0 on success, error on failure.
5673  */
5674 int security_bpf_map_create(struct bpf_map *map, union bpf_attr *attr,
5675 			    struct bpf_token *token)
5676 {
5677 	return call_int_hook(bpf_map_create, map, attr, token);
5678 }
5679 
5680 /**
5681  * security_bpf_prog_load() - Check if loading of BPF program is allowed
5682  * @prog: BPF program object
5683  * @attr: BPF syscall attributes used to create BPF program
5684  * @token: BPF token used to grant user access to BPF subsystem
5685  *
5686  * Perform an access control check when the kernel loads a BPF program and
5687  * allocates associated BPF program object. This hook is also responsible for
5688  * allocating any required LSM state for the BPF program.
5689  *
5690  * Return: Returns 0 on success, error on failure.
5691  */
5692 int security_bpf_prog_load(struct bpf_prog *prog, union bpf_attr *attr,
5693 			   struct bpf_token *token)
5694 {
5695 	return call_int_hook(bpf_prog_load, prog, attr, token);
5696 }
5697 
5698 /**
5699  * security_bpf_token_create() - Check if creating of BPF token is allowed
5700  * @token: BPF token object
5701  * @attr: BPF syscall attributes used to create BPF token
5702  * @path: path pointing to BPF FS mount point from which BPF token is created
5703  *
5704  * Do a check when the kernel instantiates a new BPF token object from BPF FS
5705  * instance. This is also the point where LSM blob can be allocated for LSMs.
5706  *
5707  * Return: Returns 0 on success, error on failure.
5708  */
5709 int security_bpf_token_create(struct bpf_token *token, union bpf_attr *attr,
5710 			      const struct path *path)
5711 {
5712 	return call_int_hook(bpf_token_create, token, attr, path);
5713 }
5714 
5715 /**
5716  * security_bpf_token_cmd() - Check if BPF token is allowed to delegate
5717  * requested BPF syscall command
5718  * @token: BPF token object
5719  * @cmd: BPF syscall command requested to be delegated by BPF token
5720  *
5721  * Do a check when the kernel decides whether provided BPF token should allow
5722  * delegation of requested BPF syscall command.
5723  *
5724  * Return: Returns 0 on success, error on failure.
5725  */
5726 int security_bpf_token_cmd(const struct bpf_token *token, enum bpf_cmd cmd)
5727 {
5728 	return call_int_hook(bpf_token_cmd, token, cmd);
5729 }
5730 
5731 /**
5732  * security_bpf_token_capable() - Check if BPF token is allowed to delegate
5733  * requested BPF-related capability
5734  * @token: BPF token object
5735  * @cap: capabilities requested to be delegated by BPF token
5736  *
5737  * Do a check when the kernel decides whether provided BPF token should allow
5738  * delegation of requested BPF-related capabilities.
5739  *
5740  * Return: Returns 0 on success, error on failure.
5741  */
5742 int security_bpf_token_capable(const struct bpf_token *token, int cap)
5743 {
5744 	return call_int_hook(bpf_token_capable, token, cap);
5745 }
5746 
5747 /**
5748  * security_bpf_map_free() - Free a bpf map's LSM blob
5749  * @map: bpf map
5750  *
5751  * Clean up the security information stored inside bpf map.
5752  */
5753 void security_bpf_map_free(struct bpf_map *map)
5754 {
5755 	call_void_hook(bpf_map_free, map);
5756 }
5757 
5758 /**
5759  * security_bpf_prog_free() - Free a BPF program's LSM blob
5760  * @prog: BPF program struct
5761  *
5762  * Clean up the security information stored inside BPF program.
5763  */
5764 void security_bpf_prog_free(struct bpf_prog *prog)
5765 {
5766 	call_void_hook(bpf_prog_free, prog);
5767 }
5768 
5769 /**
5770  * security_bpf_token_free() - Free a BPF token's LSM blob
5771  * @token: BPF token struct
5772  *
5773  * Clean up the security information stored inside BPF token.
5774  */
5775 void security_bpf_token_free(struct bpf_token *token)
5776 {
5777 	call_void_hook(bpf_token_free, token);
5778 }
5779 #endif /* CONFIG_BPF_SYSCALL */
5780 
5781 /**
5782  * security_locked_down() - Check if a kernel feature is allowed
5783  * @what: requested kernel feature
5784  *
5785  * Determine whether a kernel feature that potentially enables arbitrary code
5786  * execution in kernel space should be permitted.
5787  *
5788  * Return: Returns 0 if permission is granted.
5789  */
5790 int security_locked_down(enum lockdown_reason what)
5791 {
5792 	return call_int_hook(locked_down, what);
5793 }
5794 EXPORT_SYMBOL(security_locked_down);
5795 
5796 /**
5797  * security_bdev_alloc() - Allocate a block device LSM blob
5798  * @bdev: block device
5799  *
5800  * Allocate and attach a security structure to @bdev->bd_security.  The
5801  * security field is initialized to NULL when the bdev structure is
5802  * allocated.
5803  *
5804  * Return: Return 0 if operation was successful.
5805  */
5806 int security_bdev_alloc(struct block_device *bdev)
5807 {
5808 	int rc = 0;
5809 
5810 	rc = lsm_bdev_alloc(bdev);
5811 	if (unlikely(rc))
5812 		return rc;
5813 
5814 	rc = call_int_hook(bdev_alloc_security, bdev);
5815 	if (unlikely(rc))
5816 		security_bdev_free(bdev);
5817 
5818 	return rc;
5819 }
5820 EXPORT_SYMBOL(security_bdev_alloc);
5821 
5822 /**
5823  * security_bdev_free() - Free a block device's LSM blob
5824  * @bdev: block device
5825  *
5826  * Deallocate the bdev security structure and set @bdev->bd_security to NULL.
5827  */
5828 void security_bdev_free(struct block_device *bdev)
5829 {
5830 	if (!bdev->bd_security)
5831 		return;
5832 
5833 	call_void_hook(bdev_free_security, bdev);
5834 
5835 	kfree(bdev->bd_security);
5836 	bdev->bd_security = NULL;
5837 }
5838 EXPORT_SYMBOL(security_bdev_free);
5839 
5840 /**
5841  * security_bdev_setintegrity() - Set the device's integrity data
5842  * @bdev: block device
5843  * @type: type of integrity, e.g. hash digest, signature, etc
5844  * @value: the integrity value
5845  * @size: size of the integrity value
5846  *
5847  * Register a verified integrity measurement of a bdev with LSMs.
5848  * LSMs should free the previously saved data if @value is NULL.
5849  * Please note that the new hook should be invoked every time the security
5850  * information is updated to keep these data current. For example, in dm-verity,
5851  * if the mapping table is reloaded and configured to use a different dm-verity
5852  * target with a new roothash and signing information, the previously stored
5853  * data in the LSM blob will become obsolete. It is crucial to re-invoke the
5854  * hook to refresh these data and ensure they are up to date. This necessity
5855  * arises from the design of device-mapper, where a device-mapper device is
5856  * first created, and then targets are subsequently loaded into it. These
5857  * targets can be modified multiple times during the device's lifetime.
5858  * Therefore, while the LSM blob is allocated during the creation of the block
5859  * device, its actual contents are not initialized at this stage and can change
5860  * substantially over time. This includes alterations from data that the LSMs
5861  * 'trusts' to those they do not, making it essential to handle these changes
5862  * correctly. Failure to address this dynamic aspect could potentially allow
5863  * for bypassing LSM checks.
5864  *
5865  * Return: Returns 0 on success, negative values on failure.
5866  */
5867 int security_bdev_setintegrity(struct block_device *bdev,
5868 			       enum lsm_integrity_type type, const void *value,
5869 			       size_t size)
5870 {
5871 	return call_int_hook(bdev_setintegrity, bdev, type, value, size);
5872 }
5873 EXPORT_SYMBOL(security_bdev_setintegrity);
5874 
5875 #ifdef CONFIG_PERF_EVENTS
5876 /**
5877  * security_perf_event_open() - Check if a perf event open is allowed
5878  * @attr: perf event attribute
5879  * @type: type of event
5880  *
5881  * Check whether the @type of perf_event_open syscall is allowed.
5882  *
5883  * Return: Returns 0 if permission is granted.
5884  */
5885 int security_perf_event_open(struct perf_event_attr *attr, int type)
5886 {
5887 	return call_int_hook(perf_event_open, attr, type);
5888 }
5889 
5890 /**
5891  * security_perf_event_alloc() - Allocate a perf event LSM blob
5892  * @event: perf event
5893  *
5894  * Allocate and save perf_event security info.
5895  *
5896  * Return: Returns 0 on success, error on failure.
5897  */
5898 int security_perf_event_alloc(struct perf_event *event)
5899 {
5900 	int rc;
5901 
5902 	rc = lsm_blob_alloc(&event->security, blob_sizes.lbs_perf_event,
5903 			    GFP_KERNEL);
5904 	if (rc)
5905 		return rc;
5906 
5907 	rc = call_int_hook(perf_event_alloc, event);
5908 	if (rc) {
5909 		kfree(event->security);
5910 		event->security = NULL;
5911 	}
5912 	return rc;
5913 }
5914 
5915 /**
5916  * security_perf_event_free() - Free a perf event LSM blob
5917  * @event: perf event
5918  *
5919  * Release (free) perf_event security info.
5920  */
5921 void security_perf_event_free(struct perf_event *event)
5922 {
5923 	kfree(event->security);
5924 	event->security = NULL;
5925 }
5926 
5927 /**
5928  * security_perf_event_read() - Check if reading a perf event label is allowed
5929  * @event: perf event
5930  *
5931  * Read perf_event security info if allowed.
5932  *
5933  * Return: Returns 0 if permission is granted.
5934  */
5935 int security_perf_event_read(struct perf_event *event)
5936 {
5937 	return call_int_hook(perf_event_read, event);
5938 }
5939 
5940 /**
5941  * security_perf_event_write() - Check if writing a perf event label is allowed
5942  * @event: perf event
5943  *
5944  * Write perf_event security info if allowed.
5945  *
5946  * Return: Returns 0 if permission is granted.
5947  */
5948 int security_perf_event_write(struct perf_event *event)
5949 {
5950 	return call_int_hook(perf_event_write, event);
5951 }
5952 #endif /* CONFIG_PERF_EVENTS */
5953 
5954 #ifdef CONFIG_IO_URING
5955 /**
5956  * security_uring_override_creds() - Check if overriding creds is allowed
5957  * @new: new credentials
5958  *
5959  * Check if the current task, executing an io_uring operation, is allowed to
5960  * override it's credentials with @new.
5961  *
5962  * Return: Returns 0 if permission is granted.
5963  */
5964 int security_uring_override_creds(const struct cred *new)
5965 {
5966 	return call_int_hook(uring_override_creds, new);
5967 }
5968 
5969 /**
5970  * security_uring_sqpoll() - Check if IORING_SETUP_SQPOLL is allowed
5971  *
5972  * Check whether the current task is allowed to spawn a io_uring polling thread
5973  * (IORING_SETUP_SQPOLL).
5974  *
5975  * Return: Returns 0 if permission is granted.
5976  */
5977 int security_uring_sqpoll(void)
5978 {
5979 	return call_int_hook(uring_sqpoll);
5980 }
5981 
5982 /**
5983  * security_uring_cmd() - Check if a io_uring passthrough command is allowed
5984  * @ioucmd: command
5985  *
5986  * Check whether the file_operations uring_cmd is allowed to run.
5987  *
5988  * Return: Returns 0 if permission is granted.
5989  */
5990 int security_uring_cmd(struct io_uring_cmd *ioucmd)
5991 {
5992 	return call_int_hook(uring_cmd, ioucmd);
5993 }
5994 #endif /* CONFIG_IO_URING */
5995 
5996 /**
5997  * security_initramfs_populated() - Notify LSMs that initramfs has been loaded
5998  *
5999  * Tells the LSMs the initramfs has been unpacked into the rootfs.
6000  */
6001 void security_initramfs_populated(void)
6002 {
6003 	call_void_hook(initramfs_populated);
6004 }
6005