1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Security plug functions 4 * 5 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com> 6 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com> 7 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com> 8 * Copyright (C) 2016 Mellanox Technologies 9 * Copyright (C) 2023 Microsoft Corporation <paul@paul-moore.com> 10 */ 11 12 #define pr_fmt(fmt) "LSM: " fmt 13 14 #include <linux/bpf.h> 15 #include <linux/capability.h> 16 #include <linux/dcache.h> 17 #include <linux/export.h> 18 #include <linux/init.h> 19 #include <linux/kernel.h> 20 #include <linux/kernel_read_file.h> 21 #include <linux/lsm_hooks.h> 22 #include <linux/fsnotify.h> 23 #include <linux/mman.h> 24 #include <linux/mount.h> 25 #include <linux/personality.h> 26 #include <linux/backing-dev.h> 27 #include <linux/string.h> 28 #include <linux/xattr.h> 29 #include <linux/msg.h> 30 #include <linux/overflow.h> 31 #include <net/flow.h> 32 33 /* How many LSMs were built into the kernel? */ 34 #define LSM_COUNT (__end_lsm_info - __start_lsm_info) 35 36 /* 37 * How many LSMs are built into the kernel as determined at 38 * build time. Used to determine fixed array sizes. 39 * The capability module is accounted for by CONFIG_SECURITY 40 */ 41 #define LSM_CONFIG_COUNT ( \ 42 (IS_ENABLED(CONFIG_SECURITY) ? 1 : 0) + \ 43 (IS_ENABLED(CONFIG_SECURITY_SELINUX) ? 1 : 0) + \ 44 (IS_ENABLED(CONFIG_SECURITY_SMACK) ? 1 : 0) + \ 45 (IS_ENABLED(CONFIG_SECURITY_TOMOYO) ? 1 : 0) + \ 46 (IS_ENABLED(CONFIG_SECURITY_APPARMOR) ? 1 : 0) + \ 47 (IS_ENABLED(CONFIG_SECURITY_YAMA) ? 1 : 0) + \ 48 (IS_ENABLED(CONFIG_SECURITY_LOADPIN) ? 1 : 0) + \ 49 (IS_ENABLED(CONFIG_SECURITY_SAFESETID) ? 1 : 0) + \ 50 (IS_ENABLED(CONFIG_SECURITY_LOCKDOWN_LSM) ? 1 : 0) + \ 51 (IS_ENABLED(CONFIG_BPF_LSM) ? 1 : 0) + \ 52 (IS_ENABLED(CONFIG_SECURITY_LANDLOCK) ? 1 : 0) + \ 53 (IS_ENABLED(CONFIG_IMA) ? 1 : 0) + \ 54 (IS_ENABLED(CONFIG_EVM) ? 1 : 0)) 55 56 /* 57 * These are descriptions of the reasons that can be passed to the 58 * security_locked_down() LSM hook. Placing this array here allows 59 * all security modules to use the same descriptions for auditing 60 * purposes. 61 */ 62 const char *const lockdown_reasons[LOCKDOWN_CONFIDENTIALITY_MAX + 1] = { 63 [LOCKDOWN_NONE] = "none", 64 [LOCKDOWN_MODULE_SIGNATURE] = "unsigned module loading", 65 [LOCKDOWN_DEV_MEM] = "/dev/mem,kmem,port", 66 [LOCKDOWN_EFI_TEST] = "/dev/efi_test access", 67 [LOCKDOWN_KEXEC] = "kexec of unsigned images", 68 [LOCKDOWN_HIBERNATION] = "hibernation", 69 [LOCKDOWN_PCI_ACCESS] = "direct PCI access", 70 [LOCKDOWN_IOPORT] = "raw io port access", 71 [LOCKDOWN_MSR] = "raw MSR access", 72 [LOCKDOWN_ACPI_TABLES] = "modifying ACPI tables", 73 [LOCKDOWN_DEVICE_TREE] = "modifying device tree contents", 74 [LOCKDOWN_PCMCIA_CIS] = "direct PCMCIA CIS storage", 75 [LOCKDOWN_TIOCSSERIAL] = "reconfiguration of serial port IO", 76 [LOCKDOWN_MODULE_PARAMETERS] = "unsafe module parameters", 77 [LOCKDOWN_MMIOTRACE] = "unsafe mmio", 78 [LOCKDOWN_DEBUGFS] = "debugfs access", 79 [LOCKDOWN_XMON_WR] = "xmon write access", 80 [LOCKDOWN_BPF_WRITE_USER] = "use of bpf to write user RAM", 81 [LOCKDOWN_DBG_WRITE_KERNEL] = "use of kgdb/kdb to write kernel RAM", 82 [LOCKDOWN_RTAS_ERROR_INJECTION] = "RTAS error injection", 83 [LOCKDOWN_INTEGRITY_MAX] = "integrity", 84 [LOCKDOWN_KCORE] = "/proc/kcore access", 85 [LOCKDOWN_KPROBES] = "use of kprobes", 86 [LOCKDOWN_BPF_READ_KERNEL] = "use of bpf to read kernel RAM", 87 [LOCKDOWN_DBG_READ_KERNEL] = "use of kgdb/kdb to read kernel RAM", 88 [LOCKDOWN_PERF] = "unsafe use of perf", 89 [LOCKDOWN_TRACEFS] = "use of tracefs", 90 [LOCKDOWN_XMON_RW] = "xmon read and write access", 91 [LOCKDOWN_XFRM_SECRET] = "xfrm SA secret", 92 [LOCKDOWN_CONFIDENTIALITY_MAX] = "confidentiality", 93 }; 94 95 struct security_hook_heads security_hook_heads __ro_after_init; 96 static BLOCKING_NOTIFIER_HEAD(blocking_lsm_notifier_chain); 97 98 static struct kmem_cache *lsm_file_cache; 99 static struct kmem_cache *lsm_inode_cache; 100 101 char *lsm_names; 102 static struct lsm_blob_sizes blob_sizes __ro_after_init; 103 104 /* Boot-time LSM user choice */ 105 static __initdata const char *chosen_lsm_order; 106 static __initdata const char *chosen_major_lsm; 107 108 static __initconst const char *const builtin_lsm_order = CONFIG_LSM; 109 110 /* Ordered list of LSMs to initialize. */ 111 static __initdata struct lsm_info **ordered_lsms; 112 static __initdata struct lsm_info *exclusive; 113 114 static __initdata bool debug; 115 #define init_debug(...) \ 116 do { \ 117 if (debug) \ 118 pr_info(__VA_ARGS__); \ 119 } while (0) 120 121 static bool __init is_enabled(struct lsm_info *lsm) 122 { 123 if (!lsm->enabled) 124 return false; 125 126 return *lsm->enabled; 127 } 128 129 /* Mark an LSM's enabled flag. */ 130 static int lsm_enabled_true __initdata = 1; 131 static int lsm_enabled_false __initdata = 0; 132 static void __init set_enabled(struct lsm_info *lsm, bool enabled) 133 { 134 /* 135 * When an LSM hasn't configured an enable variable, we can use 136 * a hard-coded location for storing the default enabled state. 137 */ 138 if (!lsm->enabled) { 139 if (enabled) 140 lsm->enabled = &lsm_enabled_true; 141 else 142 lsm->enabled = &lsm_enabled_false; 143 } else if (lsm->enabled == &lsm_enabled_true) { 144 if (!enabled) 145 lsm->enabled = &lsm_enabled_false; 146 } else if (lsm->enabled == &lsm_enabled_false) { 147 if (enabled) 148 lsm->enabled = &lsm_enabled_true; 149 } else { 150 *lsm->enabled = enabled; 151 } 152 } 153 154 /* Is an LSM already listed in the ordered LSMs list? */ 155 static bool __init exists_ordered_lsm(struct lsm_info *lsm) 156 { 157 struct lsm_info **check; 158 159 for (check = ordered_lsms; *check; check++) 160 if (*check == lsm) 161 return true; 162 163 return false; 164 } 165 166 /* Append an LSM to the list of ordered LSMs to initialize. */ 167 static int last_lsm __initdata; 168 static void __init append_ordered_lsm(struct lsm_info *lsm, const char *from) 169 { 170 /* Ignore duplicate selections. */ 171 if (exists_ordered_lsm(lsm)) 172 return; 173 174 if (WARN(last_lsm == LSM_COUNT, "%s: out of LSM slots!?\n", from)) 175 return; 176 177 /* Enable this LSM, if it is not already set. */ 178 if (!lsm->enabled) 179 lsm->enabled = &lsm_enabled_true; 180 ordered_lsms[last_lsm++] = lsm; 181 182 init_debug("%s ordered: %s (%s)\n", from, lsm->name, 183 is_enabled(lsm) ? "enabled" : "disabled"); 184 } 185 186 /* Is an LSM allowed to be initialized? */ 187 static bool __init lsm_allowed(struct lsm_info *lsm) 188 { 189 /* Skip if the LSM is disabled. */ 190 if (!is_enabled(lsm)) 191 return false; 192 193 /* Not allowed if another exclusive LSM already initialized. */ 194 if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && exclusive) { 195 init_debug("exclusive disabled: %s\n", lsm->name); 196 return false; 197 } 198 199 return true; 200 } 201 202 static void __init lsm_set_blob_size(int *need, int *lbs) 203 { 204 int offset; 205 206 if (*need <= 0) 207 return; 208 209 offset = ALIGN(*lbs, sizeof(void *)); 210 *lbs = offset + *need; 211 *need = offset; 212 } 213 214 static void __init lsm_set_blob_sizes(struct lsm_blob_sizes *needed) 215 { 216 if (!needed) 217 return; 218 219 lsm_set_blob_size(&needed->lbs_cred, &blob_sizes.lbs_cred); 220 lsm_set_blob_size(&needed->lbs_file, &blob_sizes.lbs_file); 221 /* 222 * The inode blob gets an rcu_head in addition to 223 * what the modules might need. 224 */ 225 if (needed->lbs_inode && blob_sizes.lbs_inode == 0) 226 blob_sizes.lbs_inode = sizeof(struct rcu_head); 227 lsm_set_blob_size(&needed->lbs_inode, &blob_sizes.lbs_inode); 228 lsm_set_blob_size(&needed->lbs_ipc, &blob_sizes.lbs_ipc); 229 lsm_set_blob_size(&needed->lbs_msg_msg, &blob_sizes.lbs_msg_msg); 230 lsm_set_blob_size(&needed->lbs_superblock, &blob_sizes.lbs_superblock); 231 lsm_set_blob_size(&needed->lbs_task, &blob_sizes.lbs_task); 232 lsm_set_blob_size(&needed->lbs_xattr_count, 233 &blob_sizes.lbs_xattr_count); 234 } 235 236 /* Prepare LSM for initialization. */ 237 static void __init prepare_lsm(struct lsm_info *lsm) 238 { 239 int enabled = lsm_allowed(lsm); 240 241 /* Record enablement (to handle any following exclusive LSMs). */ 242 set_enabled(lsm, enabled); 243 244 /* If enabled, do pre-initialization work. */ 245 if (enabled) { 246 if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && !exclusive) { 247 exclusive = lsm; 248 init_debug("exclusive chosen: %s\n", lsm->name); 249 } 250 251 lsm_set_blob_sizes(lsm->blobs); 252 } 253 } 254 255 /* Initialize a given LSM, if it is enabled. */ 256 static void __init initialize_lsm(struct lsm_info *lsm) 257 { 258 if (is_enabled(lsm)) { 259 int ret; 260 261 init_debug("initializing %s\n", lsm->name); 262 ret = lsm->init(); 263 WARN(ret, "%s failed to initialize: %d\n", lsm->name, ret); 264 } 265 } 266 267 /* 268 * Current index to use while initializing the lsm id list. 269 */ 270 u32 lsm_active_cnt __ro_after_init; 271 const struct lsm_id *lsm_idlist[LSM_CONFIG_COUNT]; 272 273 /* Populate ordered LSMs list from comma-separated LSM name list. */ 274 static void __init ordered_lsm_parse(const char *order, const char *origin) 275 { 276 struct lsm_info *lsm; 277 char *sep, *name, *next; 278 279 /* LSM_ORDER_FIRST is always first. */ 280 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { 281 if (lsm->order == LSM_ORDER_FIRST) 282 append_ordered_lsm(lsm, " first"); 283 } 284 285 /* Process "security=", if given. */ 286 if (chosen_major_lsm) { 287 struct lsm_info *major; 288 289 /* 290 * To match the original "security=" behavior, this 291 * explicitly does NOT fallback to another Legacy Major 292 * if the selected one was separately disabled: disable 293 * all non-matching Legacy Major LSMs. 294 */ 295 for (major = __start_lsm_info; major < __end_lsm_info; 296 major++) { 297 if ((major->flags & LSM_FLAG_LEGACY_MAJOR) && 298 strcmp(major->name, chosen_major_lsm) != 0) { 299 set_enabled(major, false); 300 init_debug("security=%s disabled: %s (only one legacy major LSM)\n", 301 chosen_major_lsm, major->name); 302 } 303 } 304 } 305 306 sep = kstrdup(order, GFP_KERNEL); 307 next = sep; 308 /* Walk the list, looking for matching LSMs. */ 309 while ((name = strsep(&next, ",")) != NULL) { 310 bool found = false; 311 312 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { 313 if (strcmp(lsm->name, name) == 0) { 314 if (lsm->order == LSM_ORDER_MUTABLE) 315 append_ordered_lsm(lsm, origin); 316 found = true; 317 } 318 } 319 320 if (!found) 321 init_debug("%s ignored: %s (not built into kernel)\n", 322 origin, name); 323 } 324 325 /* Process "security=", if given. */ 326 if (chosen_major_lsm) { 327 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { 328 if (exists_ordered_lsm(lsm)) 329 continue; 330 if (strcmp(lsm->name, chosen_major_lsm) == 0) 331 append_ordered_lsm(lsm, "security="); 332 } 333 } 334 335 /* LSM_ORDER_LAST is always last. */ 336 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { 337 if (lsm->order == LSM_ORDER_LAST) 338 append_ordered_lsm(lsm, " last"); 339 } 340 341 /* Disable all LSMs not in the ordered list. */ 342 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { 343 if (exists_ordered_lsm(lsm)) 344 continue; 345 set_enabled(lsm, false); 346 init_debug("%s skipped: %s (not in requested order)\n", 347 origin, lsm->name); 348 } 349 350 kfree(sep); 351 } 352 353 static void __init lsm_early_cred(struct cred *cred); 354 static void __init lsm_early_task(struct task_struct *task); 355 356 static int lsm_append(const char *new, char **result); 357 358 static void __init report_lsm_order(void) 359 { 360 struct lsm_info **lsm, *early; 361 int first = 0; 362 363 pr_info("initializing lsm="); 364 365 /* Report each enabled LSM name, comma separated. */ 366 for (early = __start_early_lsm_info; 367 early < __end_early_lsm_info; early++) 368 if (is_enabled(early)) 369 pr_cont("%s%s", first++ == 0 ? "" : ",", early->name); 370 for (lsm = ordered_lsms; *lsm; lsm++) 371 if (is_enabled(*lsm)) 372 pr_cont("%s%s", first++ == 0 ? "" : ",", (*lsm)->name); 373 374 pr_cont("\n"); 375 } 376 377 static void __init ordered_lsm_init(void) 378 { 379 struct lsm_info **lsm; 380 381 ordered_lsms = kcalloc(LSM_COUNT + 1, sizeof(*ordered_lsms), 382 GFP_KERNEL); 383 384 if (chosen_lsm_order) { 385 if (chosen_major_lsm) { 386 pr_warn("security=%s is ignored because it is superseded by lsm=%s\n", 387 chosen_major_lsm, chosen_lsm_order); 388 chosen_major_lsm = NULL; 389 } 390 ordered_lsm_parse(chosen_lsm_order, "cmdline"); 391 } else 392 ordered_lsm_parse(builtin_lsm_order, "builtin"); 393 394 for (lsm = ordered_lsms; *lsm; lsm++) 395 prepare_lsm(*lsm); 396 397 report_lsm_order(); 398 399 init_debug("cred blob size = %d\n", blob_sizes.lbs_cred); 400 init_debug("file blob size = %d\n", blob_sizes.lbs_file); 401 init_debug("inode blob size = %d\n", blob_sizes.lbs_inode); 402 init_debug("ipc blob size = %d\n", blob_sizes.lbs_ipc); 403 init_debug("msg_msg blob size = %d\n", blob_sizes.lbs_msg_msg); 404 init_debug("superblock blob size = %d\n", blob_sizes.lbs_superblock); 405 init_debug("task blob size = %d\n", blob_sizes.lbs_task); 406 init_debug("xattr slots = %d\n", blob_sizes.lbs_xattr_count); 407 408 /* 409 * Create any kmem_caches needed for blobs 410 */ 411 if (blob_sizes.lbs_file) 412 lsm_file_cache = kmem_cache_create("lsm_file_cache", 413 blob_sizes.lbs_file, 0, 414 SLAB_PANIC, NULL); 415 if (blob_sizes.lbs_inode) 416 lsm_inode_cache = kmem_cache_create("lsm_inode_cache", 417 blob_sizes.lbs_inode, 0, 418 SLAB_PANIC, NULL); 419 420 lsm_early_cred((struct cred *) current->cred); 421 lsm_early_task(current); 422 for (lsm = ordered_lsms; *lsm; lsm++) 423 initialize_lsm(*lsm); 424 425 kfree(ordered_lsms); 426 } 427 428 int __init early_security_init(void) 429 { 430 struct lsm_info *lsm; 431 432 #define LSM_HOOK(RET, DEFAULT, NAME, ...) \ 433 INIT_HLIST_HEAD(&security_hook_heads.NAME); 434 #include "linux/lsm_hook_defs.h" 435 #undef LSM_HOOK 436 437 for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) { 438 if (!lsm->enabled) 439 lsm->enabled = &lsm_enabled_true; 440 prepare_lsm(lsm); 441 initialize_lsm(lsm); 442 } 443 444 return 0; 445 } 446 447 /** 448 * security_init - initializes the security framework 449 * 450 * This should be called early in the kernel initialization sequence. 451 */ 452 int __init security_init(void) 453 { 454 struct lsm_info *lsm; 455 456 init_debug("legacy security=%s\n", chosen_major_lsm ? : " *unspecified*"); 457 init_debug(" CONFIG_LSM=%s\n", builtin_lsm_order); 458 init_debug("boot arg lsm=%s\n", chosen_lsm_order ? : " *unspecified*"); 459 460 /* 461 * Append the names of the early LSM modules now that kmalloc() is 462 * available 463 */ 464 for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) { 465 init_debug(" early started: %s (%s)\n", lsm->name, 466 is_enabled(lsm) ? "enabled" : "disabled"); 467 if (lsm->enabled) 468 lsm_append(lsm->name, &lsm_names); 469 } 470 471 /* Load LSMs in specified order. */ 472 ordered_lsm_init(); 473 474 return 0; 475 } 476 477 /* Save user chosen LSM */ 478 static int __init choose_major_lsm(char *str) 479 { 480 chosen_major_lsm = str; 481 return 1; 482 } 483 __setup("security=", choose_major_lsm); 484 485 /* Explicitly choose LSM initialization order. */ 486 static int __init choose_lsm_order(char *str) 487 { 488 chosen_lsm_order = str; 489 return 1; 490 } 491 __setup("lsm=", choose_lsm_order); 492 493 /* Enable LSM order debugging. */ 494 static int __init enable_debug(char *str) 495 { 496 debug = true; 497 return 1; 498 } 499 __setup("lsm.debug", enable_debug); 500 501 static bool match_last_lsm(const char *list, const char *lsm) 502 { 503 const char *last; 504 505 if (WARN_ON(!list || !lsm)) 506 return false; 507 last = strrchr(list, ','); 508 if (last) 509 /* Pass the comma, strcmp() will check for '\0' */ 510 last++; 511 else 512 last = list; 513 return !strcmp(last, lsm); 514 } 515 516 static int lsm_append(const char *new, char **result) 517 { 518 char *cp; 519 520 if (*result == NULL) { 521 *result = kstrdup(new, GFP_KERNEL); 522 if (*result == NULL) 523 return -ENOMEM; 524 } else { 525 /* Check if it is the last registered name */ 526 if (match_last_lsm(*result, new)) 527 return 0; 528 cp = kasprintf(GFP_KERNEL, "%s,%s", *result, new); 529 if (cp == NULL) 530 return -ENOMEM; 531 kfree(*result); 532 *result = cp; 533 } 534 return 0; 535 } 536 537 /** 538 * security_add_hooks - Add a modules hooks to the hook lists. 539 * @hooks: the hooks to add 540 * @count: the number of hooks to add 541 * @lsmid: the identification information for the security module 542 * 543 * Each LSM has to register its hooks with the infrastructure. 544 */ 545 void __init security_add_hooks(struct security_hook_list *hooks, int count, 546 const struct lsm_id *lsmid) 547 { 548 int i; 549 550 /* 551 * A security module may call security_add_hooks() more 552 * than once during initialization, and LSM initialization 553 * is serialized. Landlock is one such case. 554 * Look at the previous entry, if there is one, for duplication. 555 */ 556 if (lsm_active_cnt == 0 || lsm_idlist[lsm_active_cnt - 1] != lsmid) { 557 if (lsm_active_cnt >= LSM_CONFIG_COUNT) 558 panic("%s Too many LSMs registered.\n", __func__); 559 lsm_idlist[lsm_active_cnt++] = lsmid; 560 } 561 562 for (i = 0; i < count; i++) { 563 hooks[i].lsmid = lsmid; 564 hlist_add_tail_rcu(&hooks[i].list, hooks[i].head); 565 } 566 567 /* 568 * Don't try to append during early_security_init(), we'll come back 569 * and fix this up afterwards. 570 */ 571 if (slab_is_available()) { 572 if (lsm_append(lsmid->name, &lsm_names) < 0) 573 panic("%s - Cannot get early memory.\n", __func__); 574 } 575 } 576 577 int call_blocking_lsm_notifier(enum lsm_event event, void *data) 578 { 579 return blocking_notifier_call_chain(&blocking_lsm_notifier_chain, 580 event, data); 581 } 582 EXPORT_SYMBOL(call_blocking_lsm_notifier); 583 584 int register_blocking_lsm_notifier(struct notifier_block *nb) 585 { 586 return blocking_notifier_chain_register(&blocking_lsm_notifier_chain, 587 nb); 588 } 589 EXPORT_SYMBOL(register_blocking_lsm_notifier); 590 591 int unregister_blocking_lsm_notifier(struct notifier_block *nb) 592 { 593 return blocking_notifier_chain_unregister(&blocking_lsm_notifier_chain, 594 nb); 595 } 596 EXPORT_SYMBOL(unregister_blocking_lsm_notifier); 597 598 /** 599 * lsm_cred_alloc - allocate a composite cred blob 600 * @cred: the cred that needs a blob 601 * @gfp: allocation type 602 * 603 * Allocate the cred blob for all the modules 604 * 605 * Returns 0, or -ENOMEM if memory can't be allocated. 606 */ 607 static int lsm_cred_alloc(struct cred *cred, gfp_t gfp) 608 { 609 if (blob_sizes.lbs_cred == 0) { 610 cred->security = NULL; 611 return 0; 612 } 613 614 cred->security = kzalloc(blob_sizes.lbs_cred, gfp); 615 if (cred->security == NULL) 616 return -ENOMEM; 617 return 0; 618 } 619 620 /** 621 * lsm_early_cred - during initialization allocate a composite cred blob 622 * @cred: the cred that needs a blob 623 * 624 * Allocate the cred blob for all the modules 625 */ 626 static void __init lsm_early_cred(struct cred *cred) 627 { 628 int rc = lsm_cred_alloc(cred, GFP_KERNEL); 629 630 if (rc) 631 panic("%s: Early cred alloc failed.\n", __func__); 632 } 633 634 /** 635 * lsm_file_alloc - allocate a composite file blob 636 * @file: the file that needs a blob 637 * 638 * Allocate the file blob for all the modules 639 * 640 * Returns 0, or -ENOMEM if memory can't be allocated. 641 */ 642 static int lsm_file_alloc(struct file *file) 643 { 644 if (!lsm_file_cache) { 645 file->f_security = NULL; 646 return 0; 647 } 648 649 file->f_security = kmem_cache_zalloc(lsm_file_cache, GFP_KERNEL); 650 if (file->f_security == NULL) 651 return -ENOMEM; 652 return 0; 653 } 654 655 /** 656 * lsm_inode_alloc - allocate a composite inode blob 657 * @inode: the inode that needs a blob 658 * 659 * Allocate the inode blob for all the modules 660 * 661 * Returns 0, or -ENOMEM if memory can't be allocated. 662 */ 663 int lsm_inode_alloc(struct inode *inode) 664 { 665 if (!lsm_inode_cache) { 666 inode->i_security = NULL; 667 return 0; 668 } 669 670 inode->i_security = kmem_cache_zalloc(lsm_inode_cache, GFP_NOFS); 671 if (inode->i_security == NULL) 672 return -ENOMEM; 673 return 0; 674 } 675 676 /** 677 * lsm_task_alloc - allocate a composite task blob 678 * @task: the task that needs a blob 679 * 680 * Allocate the task blob for all the modules 681 * 682 * Returns 0, or -ENOMEM if memory can't be allocated. 683 */ 684 static int lsm_task_alloc(struct task_struct *task) 685 { 686 if (blob_sizes.lbs_task == 0) { 687 task->security = NULL; 688 return 0; 689 } 690 691 task->security = kzalloc(blob_sizes.lbs_task, GFP_KERNEL); 692 if (task->security == NULL) 693 return -ENOMEM; 694 return 0; 695 } 696 697 /** 698 * lsm_ipc_alloc - allocate a composite ipc blob 699 * @kip: the ipc that needs a blob 700 * 701 * Allocate the ipc blob for all the modules 702 * 703 * Returns 0, or -ENOMEM if memory can't be allocated. 704 */ 705 static int lsm_ipc_alloc(struct kern_ipc_perm *kip) 706 { 707 if (blob_sizes.lbs_ipc == 0) { 708 kip->security = NULL; 709 return 0; 710 } 711 712 kip->security = kzalloc(blob_sizes.lbs_ipc, GFP_KERNEL); 713 if (kip->security == NULL) 714 return -ENOMEM; 715 return 0; 716 } 717 718 /** 719 * lsm_msg_msg_alloc - allocate a composite msg_msg blob 720 * @mp: the msg_msg that needs a blob 721 * 722 * Allocate the ipc blob for all the modules 723 * 724 * Returns 0, or -ENOMEM if memory can't be allocated. 725 */ 726 static int lsm_msg_msg_alloc(struct msg_msg *mp) 727 { 728 if (blob_sizes.lbs_msg_msg == 0) { 729 mp->security = NULL; 730 return 0; 731 } 732 733 mp->security = kzalloc(blob_sizes.lbs_msg_msg, GFP_KERNEL); 734 if (mp->security == NULL) 735 return -ENOMEM; 736 return 0; 737 } 738 739 /** 740 * lsm_early_task - during initialization allocate a composite task blob 741 * @task: the task that needs a blob 742 * 743 * Allocate the task blob for all the modules 744 */ 745 static void __init lsm_early_task(struct task_struct *task) 746 { 747 int rc = lsm_task_alloc(task); 748 749 if (rc) 750 panic("%s: Early task alloc failed.\n", __func__); 751 } 752 753 /** 754 * lsm_superblock_alloc - allocate a composite superblock blob 755 * @sb: the superblock that needs a blob 756 * 757 * Allocate the superblock blob for all the modules 758 * 759 * Returns 0, or -ENOMEM if memory can't be allocated. 760 */ 761 static int lsm_superblock_alloc(struct super_block *sb) 762 { 763 if (blob_sizes.lbs_superblock == 0) { 764 sb->s_security = NULL; 765 return 0; 766 } 767 768 sb->s_security = kzalloc(blob_sizes.lbs_superblock, GFP_KERNEL); 769 if (sb->s_security == NULL) 770 return -ENOMEM; 771 return 0; 772 } 773 774 /** 775 * lsm_fill_user_ctx - Fill a user space lsm_ctx structure 776 * @uctx: a userspace LSM context to be filled 777 * @uctx_len: available uctx size (input), used uctx size (output) 778 * @val: the new LSM context value 779 * @val_len: the size of the new LSM context value 780 * @id: LSM id 781 * @flags: LSM defined flags 782 * 783 * Fill all of the fields in a userspace lsm_ctx structure. If @uctx is NULL 784 * simply calculate the required size to output via @utc_len and return 785 * success. 786 * 787 * Returns 0 on success, -E2BIG if userspace buffer is not large enough, 788 * -EFAULT on a copyout error, -ENOMEM if memory can't be allocated. 789 */ 790 int lsm_fill_user_ctx(struct lsm_ctx __user *uctx, u32 *uctx_len, 791 void *val, size_t val_len, 792 u64 id, u64 flags) 793 { 794 struct lsm_ctx *nctx = NULL; 795 size_t nctx_len; 796 int rc = 0; 797 798 nctx_len = ALIGN(struct_size(nctx, ctx, val_len), sizeof(void *)); 799 if (nctx_len > *uctx_len) { 800 rc = -E2BIG; 801 goto out; 802 } 803 804 /* no buffer - return success/0 and set @uctx_len to the req size */ 805 if (!uctx) 806 goto out; 807 808 nctx = kzalloc(nctx_len, GFP_KERNEL); 809 if (nctx == NULL) { 810 rc = -ENOMEM; 811 goto out; 812 } 813 nctx->id = id; 814 nctx->flags = flags; 815 nctx->len = nctx_len; 816 nctx->ctx_len = val_len; 817 memcpy(nctx->ctx, val, val_len); 818 819 if (copy_to_user(uctx, nctx, nctx_len)) 820 rc = -EFAULT; 821 822 out: 823 kfree(nctx); 824 *uctx_len = nctx_len; 825 return rc; 826 } 827 828 /* 829 * The default value of the LSM hook is defined in linux/lsm_hook_defs.h and 830 * can be accessed with: 831 * 832 * LSM_RET_DEFAULT(<hook_name>) 833 * 834 * The macros below define static constants for the default value of each 835 * LSM hook. 836 */ 837 #define LSM_RET_DEFAULT(NAME) (NAME##_default) 838 #define DECLARE_LSM_RET_DEFAULT_void(DEFAULT, NAME) 839 #define DECLARE_LSM_RET_DEFAULT_int(DEFAULT, NAME) \ 840 static const int __maybe_unused LSM_RET_DEFAULT(NAME) = (DEFAULT); 841 #define LSM_HOOK(RET, DEFAULT, NAME, ...) \ 842 DECLARE_LSM_RET_DEFAULT_##RET(DEFAULT, NAME) 843 844 #include <linux/lsm_hook_defs.h> 845 #undef LSM_HOOK 846 847 /* 848 * Hook list operation macros. 849 * 850 * call_void_hook: 851 * This is a hook that does not return a value. 852 * 853 * call_int_hook: 854 * This is a hook that returns a value. 855 */ 856 857 #define call_void_hook(FUNC, ...) \ 858 do { \ 859 struct security_hook_list *P; \ 860 \ 861 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) \ 862 P->hook.FUNC(__VA_ARGS__); \ 863 } while (0) 864 865 #define call_int_hook(FUNC, ...) ({ \ 866 int RC = LSM_RET_DEFAULT(FUNC); \ 867 do { \ 868 struct security_hook_list *P; \ 869 \ 870 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) { \ 871 RC = P->hook.FUNC(__VA_ARGS__); \ 872 if (RC != LSM_RET_DEFAULT(FUNC)) \ 873 break; \ 874 } \ 875 } while (0); \ 876 RC; \ 877 }) 878 879 /* Security operations */ 880 881 /** 882 * security_binder_set_context_mgr() - Check if becoming binder ctx mgr is ok 883 * @mgr: task credentials of current binder process 884 * 885 * Check whether @mgr is allowed to be the binder context manager. 886 * 887 * Return: Return 0 if permission is granted. 888 */ 889 int security_binder_set_context_mgr(const struct cred *mgr) 890 { 891 return call_int_hook(binder_set_context_mgr, mgr); 892 } 893 894 /** 895 * security_binder_transaction() - Check if a binder transaction is allowed 896 * @from: sending process 897 * @to: receiving process 898 * 899 * Check whether @from is allowed to invoke a binder transaction call to @to. 900 * 901 * Return: Returns 0 if permission is granted. 902 */ 903 int security_binder_transaction(const struct cred *from, 904 const struct cred *to) 905 { 906 return call_int_hook(binder_transaction, from, to); 907 } 908 909 /** 910 * security_binder_transfer_binder() - Check if a binder transfer is allowed 911 * @from: sending process 912 * @to: receiving process 913 * 914 * Check whether @from is allowed to transfer a binder reference to @to. 915 * 916 * Return: Returns 0 if permission is granted. 917 */ 918 int security_binder_transfer_binder(const struct cred *from, 919 const struct cred *to) 920 { 921 return call_int_hook(binder_transfer_binder, from, to); 922 } 923 924 /** 925 * security_binder_transfer_file() - Check if a binder file xfer is allowed 926 * @from: sending process 927 * @to: receiving process 928 * @file: file being transferred 929 * 930 * Check whether @from is allowed to transfer @file to @to. 931 * 932 * Return: Returns 0 if permission is granted. 933 */ 934 int security_binder_transfer_file(const struct cred *from, 935 const struct cred *to, const struct file *file) 936 { 937 return call_int_hook(binder_transfer_file, from, to, file); 938 } 939 940 /** 941 * security_ptrace_access_check() - Check if tracing is allowed 942 * @child: target process 943 * @mode: PTRACE_MODE flags 944 * 945 * Check permission before allowing the current process to trace the @child 946 * process. Security modules may also want to perform a process tracing check 947 * during an execve in the set_security or apply_creds hooks of tracing check 948 * during an execve in the bprm_set_creds hook of binprm_security_ops if the 949 * process is being traced and its security attributes would be changed by the 950 * execve. 951 * 952 * Return: Returns 0 if permission is granted. 953 */ 954 int security_ptrace_access_check(struct task_struct *child, unsigned int mode) 955 { 956 return call_int_hook(ptrace_access_check, child, mode); 957 } 958 959 /** 960 * security_ptrace_traceme() - Check if tracing is allowed 961 * @parent: tracing process 962 * 963 * Check that the @parent process has sufficient permission to trace the 964 * current process before allowing the current process to present itself to the 965 * @parent process for tracing. 966 * 967 * Return: Returns 0 if permission is granted. 968 */ 969 int security_ptrace_traceme(struct task_struct *parent) 970 { 971 return call_int_hook(ptrace_traceme, parent); 972 } 973 974 /** 975 * security_capget() - Get the capability sets for a process 976 * @target: target process 977 * @effective: effective capability set 978 * @inheritable: inheritable capability set 979 * @permitted: permitted capability set 980 * 981 * Get the @effective, @inheritable, and @permitted capability sets for the 982 * @target process. The hook may also perform permission checking to determine 983 * if the current process is allowed to see the capability sets of the @target 984 * process. 985 * 986 * Return: Returns 0 if the capability sets were successfully obtained. 987 */ 988 int security_capget(const struct task_struct *target, 989 kernel_cap_t *effective, 990 kernel_cap_t *inheritable, 991 kernel_cap_t *permitted) 992 { 993 return call_int_hook(capget, target, effective, inheritable, permitted); 994 } 995 996 /** 997 * security_capset() - Set the capability sets for a process 998 * @new: new credentials for the target process 999 * @old: current credentials of the target process 1000 * @effective: effective capability set 1001 * @inheritable: inheritable capability set 1002 * @permitted: permitted capability set 1003 * 1004 * Set the @effective, @inheritable, and @permitted capability sets for the 1005 * current process. 1006 * 1007 * Return: Returns 0 and update @new if permission is granted. 1008 */ 1009 int security_capset(struct cred *new, const struct cred *old, 1010 const kernel_cap_t *effective, 1011 const kernel_cap_t *inheritable, 1012 const kernel_cap_t *permitted) 1013 { 1014 return call_int_hook(capset, new, old, effective, inheritable, 1015 permitted); 1016 } 1017 1018 /** 1019 * security_capable() - Check if a process has the necessary capability 1020 * @cred: credentials to examine 1021 * @ns: user namespace 1022 * @cap: capability requested 1023 * @opts: capability check options 1024 * 1025 * Check whether the @tsk process has the @cap capability in the indicated 1026 * credentials. @cap contains the capability <include/linux/capability.h>. 1027 * @opts contains options for the capable check <include/linux/security.h>. 1028 * 1029 * Return: Returns 0 if the capability is granted. 1030 */ 1031 int security_capable(const struct cred *cred, 1032 struct user_namespace *ns, 1033 int cap, 1034 unsigned int opts) 1035 { 1036 return call_int_hook(capable, cred, ns, cap, opts); 1037 } 1038 1039 /** 1040 * security_quotactl() - Check if a quotactl() syscall is allowed for this fs 1041 * @cmds: commands 1042 * @type: type 1043 * @id: id 1044 * @sb: filesystem 1045 * 1046 * Check whether the quotactl syscall is allowed for this @sb. 1047 * 1048 * Return: Returns 0 if permission is granted. 1049 */ 1050 int security_quotactl(int cmds, int type, int id, const struct super_block *sb) 1051 { 1052 return call_int_hook(quotactl, cmds, type, id, sb); 1053 } 1054 1055 /** 1056 * security_quota_on() - Check if QUOTAON is allowed for a dentry 1057 * @dentry: dentry 1058 * 1059 * Check whether QUOTAON is allowed for @dentry. 1060 * 1061 * Return: Returns 0 if permission is granted. 1062 */ 1063 int security_quota_on(struct dentry *dentry) 1064 { 1065 return call_int_hook(quota_on, dentry); 1066 } 1067 1068 /** 1069 * security_syslog() - Check if accessing the kernel message ring is allowed 1070 * @type: SYSLOG_ACTION_* type 1071 * 1072 * Check permission before accessing the kernel message ring or changing 1073 * logging to the console. See the syslog(2) manual page for an explanation of 1074 * the @type values. 1075 * 1076 * Return: Return 0 if permission is granted. 1077 */ 1078 int security_syslog(int type) 1079 { 1080 return call_int_hook(syslog, type); 1081 } 1082 1083 /** 1084 * security_settime64() - Check if changing the system time is allowed 1085 * @ts: new time 1086 * @tz: timezone 1087 * 1088 * Check permission to change the system time, struct timespec64 is defined in 1089 * <include/linux/time64.h> and timezone is defined in <include/linux/time.h>. 1090 * 1091 * Return: Returns 0 if permission is granted. 1092 */ 1093 int security_settime64(const struct timespec64 *ts, const struct timezone *tz) 1094 { 1095 return call_int_hook(settime, ts, tz); 1096 } 1097 1098 /** 1099 * security_vm_enough_memory_mm() - Check if allocating a new mem map is allowed 1100 * @mm: mm struct 1101 * @pages: number of pages 1102 * 1103 * Check permissions for allocating a new virtual mapping. If all LSMs return 1104 * a positive value, __vm_enough_memory() will be called with cap_sys_admin 1105 * set. If at least one LSM returns 0 or negative, __vm_enough_memory() will be 1106 * called with cap_sys_admin cleared. 1107 * 1108 * Return: Returns 0 if permission is granted by the LSM infrastructure to the 1109 * caller. 1110 */ 1111 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages) 1112 { 1113 struct security_hook_list *hp; 1114 int cap_sys_admin = 1; 1115 int rc; 1116 1117 /* 1118 * The module will respond with a positive value if 1119 * it thinks the __vm_enough_memory() call should be 1120 * made with the cap_sys_admin set. If all of the modules 1121 * agree that it should be set it will. If any module 1122 * thinks it should not be set it won't. 1123 */ 1124 hlist_for_each_entry(hp, &security_hook_heads.vm_enough_memory, list) { 1125 rc = hp->hook.vm_enough_memory(mm, pages); 1126 if (rc <= 0) { 1127 cap_sys_admin = 0; 1128 break; 1129 } 1130 } 1131 return __vm_enough_memory(mm, pages, cap_sys_admin); 1132 } 1133 1134 /** 1135 * security_bprm_creds_for_exec() - Prepare the credentials for exec() 1136 * @bprm: binary program information 1137 * 1138 * If the setup in prepare_exec_creds did not setup @bprm->cred->security 1139 * properly for executing @bprm->file, update the LSM's portion of 1140 * @bprm->cred->security to be what commit_creds needs to install for the new 1141 * program. This hook may also optionally check permissions (e.g. for 1142 * transitions between security domains). The hook must set @bprm->secureexec 1143 * to 1 if AT_SECURE should be set to request libc enable secure mode. @bprm 1144 * contains the linux_binprm structure. 1145 * 1146 * Return: Returns 0 if the hook is successful and permission is granted. 1147 */ 1148 int security_bprm_creds_for_exec(struct linux_binprm *bprm) 1149 { 1150 return call_int_hook(bprm_creds_for_exec, bprm); 1151 } 1152 1153 /** 1154 * security_bprm_creds_from_file() - Update linux_binprm creds based on file 1155 * @bprm: binary program information 1156 * @file: associated file 1157 * 1158 * If @file is setpcap, suid, sgid or otherwise marked to change privilege upon 1159 * exec, update @bprm->cred to reflect that change. This is called after 1160 * finding the binary that will be executed without an interpreter. This 1161 * ensures that the credentials will not be derived from a script that the 1162 * binary will need to reopen, which when reopend may end up being a completely 1163 * different file. This hook may also optionally check permissions (e.g. for 1164 * transitions between security domains). The hook must set @bprm->secureexec 1165 * to 1 if AT_SECURE should be set to request libc enable secure mode. The 1166 * hook must add to @bprm->per_clear any personality flags that should be 1167 * cleared from current->personality. @bprm contains the linux_binprm 1168 * structure. 1169 * 1170 * Return: Returns 0 if the hook is successful and permission is granted. 1171 */ 1172 int security_bprm_creds_from_file(struct linux_binprm *bprm, const struct file *file) 1173 { 1174 return call_int_hook(bprm_creds_from_file, bprm, file); 1175 } 1176 1177 /** 1178 * security_bprm_check() - Mediate binary handler search 1179 * @bprm: binary program information 1180 * 1181 * This hook mediates the point when a search for a binary handler will begin. 1182 * It allows a check against the @bprm->cred->security value which was set in 1183 * the preceding creds_for_exec call. The argv list and envp list are reliably 1184 * available in @bprm. This hook may be called multiple times during a single 1185 * execve. @bprm contains the linux_binprm structure. 1186 * 1187 * Return: Returns 0 if the hook is successful and permission is granted. 1188 */ 1189 int security_bprm_check(struct linux_binprm *bprm) 1190 { 1191 return call_int_hook(bprm_check_security, bprm); 1192 } 1193 1194 /** 1195 * security_bprm_committing_creds() - Install creds for a process during exec() 1196 * @bprm: binary program information 1197 * 1198 * Prepare to install the new security attributes of a process being 1199 * transformed by an execve operation, based on the old credentials pointed to 1200 * by @current->cred and the information set in @bprm->cred by the 1201 * bprm_creds_for_exec hook. @bprm points to the linux_binprm structure. This 1202 * hook is a good place to perform state changes on the process such as closing 1203 * open file descriptors to which access will no longer be granted when the 1204 * attributes are changed. This is called immediately before commit_creds(). 1205 */ 1206 void security_bprm_committing_creds(const struct linux_binprm *bprm) 1207 { 1208 call_void_hook(bprm_committing_creds, bprm); 1209 } 1210 1211 /** 1212 * security_bprm_committed_creds() - Tidy up after cred install during exec() 1213 * @bprm: binary program information 1214 * 1215 * Tidy up after the installation of the new security attributes of a process 1216 * being transformed by an execve operation. The new credentials have, by this 1217 * point, been set to @current->cred. @bprm points to the linux_binprm 1218 * structure. This hook is a good place to perform state changes on the 1219 * process such as clearing out non-inheritable signal state. This is called 1220 * immediately after commit_creds(). 1221 */ 1222 void security_bprm_committed_creds(const struct linux_binprm *bprm) 1223 { 1224 call_void_hook(bprm_committed_creds, bprm); 1225 } 1226 1227 /** 1228 * security_fs_context_submount() - Initialise fc->security 1229 * @fc: new filesystem context 1230 * @reference: dentry reference for submount/remount 1231 * 1232 * Fill out the ->security field for a new fs_context. 1233 * 1234 * Return: Returns 0 on success or negative error code on failure. 1235 */ 1236 int security_fs_context_submount(struct fs_context *fc, struct super_block *reference) 1237 { 1238 return call_int_hook(fs_context_submount, fc, reference); 1239 } 1240 1241 /** 1242 * security_fs_context_dup() - Duplicate a fs_context LSM blob 1243 * @fc: destination filesystem context 1244 * @src_fc: source filesystem context 1245 * 1246 * Allocate and attach a security structure to sc->security. This pointer is 1247 * initialised to NULL by the caller. @fc indicates the new filesystem context. 1248 * @src_fc indicates the original filesystem context. 1249 * 1250 * Return: Returns 0 on success or a negative error code on failure. 1251 */ 1252 int security_fs_context_dup(struct fs_context *fc, struct fs_context *src_fc) 1253 { 1254 return call_int_hook(fs_context_dup, fc, src_fc); 1255 } 1256 1257 /** 1258 * security_fs_context_parse_param() - Configure a filesystem context 1259 * @fc: filesystem context 1260 * @param: filesystem parameter 1261 * 1262 * Userspace provided a parameter to configure a superblock. The LSM can 1263 * consume the parameter or return it to the caller for use elsewhere. 1264 * 1265 * Return: If the parameter is used by the LSM it should return 0, if it is 1266 * returned to the caller -ENOPARAM is returned, otherwise a negative 1267 * error code is returned. 1268 */ 1269 int security_fs_context_parse_param(struct fs_context *fc, 1270 struct fs_parameter *param) 1271 { 1272 struct security_hook_list *hp; 1273 int trc; 1274 int rc = -ENOPARAM; 1275 1276 hlist_for_each_entry(hp, &security_hook_heads.fs_context_parse_param, 1277 list) { 1278 trc = hp->hook.fs_context_parse_param(fc, param); 1279 if (trc == 0) 1280 rc = 0; 1281 else if (trc != -ENOPARAM) 1282 return trc; 1283 } 1284 return rc; 1285 } 1286 1287 /** 1288 * security_sb_alloc() - Allocate a super_block LSM blob 1289 * @sb: filesystem superblock 1290 * 1291 * Allocate and attach a security structure to the sb->s_security field. The 1292 * s_security field is initialized to NULL when the structure is allocated. 1293 * @sb contains the super_block structure to be modified. 1294 * 1295 * Return: Returns 0 if operation was successful. 1296 */ 1297 int security_sb_alloc(struct super_block *sb) 1298 { 1299 int rc = lsm_superblock_alloc(sb); 1300 1301 if (unlikely(rc)) 1302 return rc; 1303 rc = call_int_hook(sb_alloc_security, sb); 1304 if (unlikely(rc)) 1305 security_sb_free(sb); 1306 return rc; 1307 } 1308 1309 /** 1310 * security_sb_delete() - Release super_block LSM associated objects 1311 * @sb: filesystem superblock 1312 * 1313 * Release objects tied to a superblock (e.g. inodes). @sb contains the 1314 * super_block structure being released. 1315 */ 1316 void security_sb_delete(struct super_block *sb) 1317 { 1318 call_void_hook(sb_delete, sb); 1319 } 1320 1321 /** 1322 * security_sb_free() - Free a super_block LSM blob 1323 * @sb: filesystem superblock 1324 * 1325 * Deallocate and clear the sb->s_security field. @sb contains the super_block 1326 * structure to be modified. 1327 */ 1328 void security_sb_free(struct super_block *sb) 1329 { 1330 call_void_hook(sb_free_security, sb); 1331 kfree(sb->s_security); 1332 sb->s_security = NULL; 1333 } 1334 1335 /** 1336 * security_free_mnt_opts() - Free memory associated with mount options 1337 * @mnt_opts: LSM processed mount options 1338 * 1339 * Free memory associated with @mnt_ops. 1340 */ 1341 void security_free_mnt_opts(void **mnt_opts) 1342 { 1343 if (!*mnt_opts) 1344 return; 1345 call_void_hook(sb_free_mnt_opts, *mnt_opts); 1346 *mnt_opts = NULL; 1347 } 1348 EXPORT_SYMBOL(security_free_mnt_opts); 1349 1350 /** 1351 * security_sb_eat_lsm_opts() - Consume LSM mount options 1352 * @options: mount options 1353 * @mnt_opts: LSM processed mount options 1354 * 1355 * Eat (scan @options) and save them in @mnt_opts. 1356 * 1357 * Return: Returns 0 on success, negative values on failure. 1358 */ 1359 int security_sb_eat_lsm_opts(char *options, void **mnt_opts) 1360 { 1361 return call_int_hook(sb_eat_lsm_opts, options, mnt_opts); 1362 } 1363 EXPORT_SYMBOL(security_sb_eat_lsm_opts); 1364 1365 /** 1366 * security_sb_mnt_opts_compat() - Check if new mount options are allowed 1367 * @sb: filesystem superblock 1368 * @mnt_opts: new mount options 1369 * 1370 * Determine if the new mount options in @mnt_opts are allowed given the 1371 * existing mounted filesystem at @sb. @sb superblock being compared. 1372 * 1373 * Return: Returns 0 if options are compatible. 1374 */ 1375 int security_sb_mnt_opts_compat(struct super_block *sb, 1376 void *mnt_opts) 1377 { 1378 return call_int_hook(sb_mnt_opts_compat, sb, mnt_opts); 1379 } 1380 EXPORT_SYMBOL(security_sb_mnt_opts_compat); 1381 1382 /** 1383 * security_sb_remount() - Verify no incompatible mount changes during remount 1384 * @sb: filesystem superblock 1385 * @mnt_opts: (re)mount options 1386 * 1387 * Extracts security system specific mount options and verifies no changes are 1388 * being made to those options. 1389 * 1390 * Return: Returns 0 if permission is granted. 1391 */ 1392 int security_sb_remount(struct super_block *sb, 1393 void *mnt_opts) 1394 { 1395 return call_int_hook(sb_remount, sb, mnt_opts); 1396 } 1397 EXPORT_SYMBOL(security_sb_remount); 1398 1399 /** 1400 * security_sb_kern_mount() - Check if a kernel mount is allowed 1401 * @sb: filesystem superblock 1402 * 1403 * Mount this @sb if allowed by permissions. 1404 * 1405 * Return: Returns 0 if permission is granted. 1406 */ 1407 int security_sb_kern_mount(const struct super_block *sb) 1408 { 1409 return call_int_hook(sb_kern_mount, sb); 1410 } 1411 1412 /** 1413 * security_sb_show_options() - Output the mount options for a superblock 1414 * @m: output file 1415 * @sb: filesystem superblock 1416 * 1417 * Show (print on @m) mount options for this @sb. 1418 * 1419 * Return: Returns 0 on success, negative values on failure. 1420 */ 1421 int security_sb_show_options(struct seq_file *m, struct super_block *sb) 1422 { 1423 return call_int_hook(sb_show_options, m, sb); 1424 } 1425 1426 /** 1427 * security_sb_statfs() - Check if accessing fs stats is allowed 1428 * @dentry: superblock handle 1429 * 1430 * Check permission before obtaining filesystem statistics for the @mnt 1431 * mountpoint. @dentry is a handle on the superblock for the filesystem. 1432 * 1433 * Return: Returns 0 if permission is granted. 1434 */ 1435 int security_sb_statfs(struct dentry *dentry) 1436 { 1437 return call_int_hook(sb_statfs, dentry); 1438 } 1439 1440 /** 1441 * security_sb_mount() - Check permission for mounting a filesystem 1442 * @dev_name: filesystem backing device 1443 * @path: mount point 1444 * @type: filesystem type 1445 * @flags: mount flags 1446 * @data: filesystem specific data 1447 * 1448 * Check permission before an object specified by @dev_name is mounted on the 1449 * mount point named by @nd. For an ordinary mount, @dev_name identifies a 1450 * device if the file system type requires a device. For a remount 1451 * (@flags & MS_REMOUNT), @dev_name is irrelevant. For a loopback/bind mount 1452 * (@flags & MS_BIND), @dev_name identifies the pathname of the object being 1453 * mounted. 1454 * 1455 * Return: Returns 0 if permission is granted. 1456 */ 1457 int security_sb_mount(const char *dev_name, const struct path *path, 1458 const char *type, unsigned long flags, void *data) 1459 { 1460 return call_int_hook(sb_mount, dev_name, path, type, flags, data); 1461 } 1462 1463 /** 1464 * security_sb_umount() - Check permission for unmounting a filesystem 1465 * @mnt: mounted filesystem 1466 * @flags: unmount flags 1467 * 1468 * Check permission before the @mnt file system is unmounted. 1469 * 1470 * Return: Returns 0 if permission is granted. 1471 */ 1472 int security_sb_umount(struct vfsmount *mnt, int flags) 1473 { 1474 return call_int_hook(sb_umount, mnt, flags); 1475 } 1476 1477 /** 1478 * security_sb_pivotroot() - Check permissions for pivoting the rootfs 1479 * @old_path: new location for current rootfs 1480 * @new_path: location of the new rootfs 1481 * 1482 * Check permission before pivoting the root filesystem. 1483 * 1484 * Return: Returns 0 if permission is granted. 1485 */ 1486 int security_sb_pivotroot(const struct path *old_path, 1487 const struct path *new_path) 1488 { 1489 return call_int_hook(sb_pivotroot, old_path, new_path); 1490 } 1491 1492 /** 1493 * security_sb_set_mnt_opts() - Set the mount options for a filesystem 1494 * @sb: filesystem superblock 1495 * @mnt_opts: binary mount options 1496 * @kern_flags: kernel flags (in) 1497 * @set_kern_flags: kernel flags (out) 1498 * 1499 * Set the security relevant mount options used for a superblock. 1500 * 1501 * Return: Returns 0 on success, error on failure. 1502 */ 1503 int security_sb_set_mnt_opts(struct super_block *sb, 1504 void *mnt_opts, 1505 unsigned long kern_flags, 1506 unsigned long *set_kern_flags) 1507 { 1508 struct security_hook_list *hp; 1509 int rc = mnt_opts ? -EOPNOTSUPP : LSM_RET_DEFAULT(sb_set_mnt_opts); 1510 1511 hlist_for_each_entry(hp, &security_hook_heads.sb_set_mnt_opts, 1512 list) { 1513 rc = hp->hook.sb_set_mnt_opts(sb, mnt_opts, kern_flags, 1514 set_kern_flags); 1515 if (rc != LSM_RET_DEFAULT(sb_set_mnt_opts)) 1516 break; 1517 } 1518 return rc; 1519 } 1520 EXPORT_SYMBOL(security_sb_set_mnt_opts); 1521 1522 /** 1523 * security_sb_clone_mnt_opts() - Duplicate superblock mount options 1524 * @oldsb: source superblock 1525 * @newsb: destination superblock 1526 * @kern_flags: kernel flags (in) 1527 * @set_kern_flags: kernel flags (out) 1528 * 1529 * Copy all security options from a given superblock to another. 1530 * 1531 * Return: Returns 0 on success, error on failure. 1532 */ 1533 int security_sb_clone_mnt_opts(const struct super_block *oldsb, 1534 struct super_block *newsb, 1535 unsigned long kern_flags, 1536 unsigned long *set_kern_flags) 1537 { 1538 return call_int_hook(sb_clone_mnt_opts, oldsb, newsb, 1539 kern_flags, set_kern_flags); 1540 } 1541 EXPORT_SYMBOL(security_sb_clone_mnt_opts); 1542 1543 /** 1544 * security_move_mount() - Check permissions for moving a mount 1545 * @from_path: source mount point 1546 * @to_path: destination mount point 1547 * 1548 * Check permission before a mount is moved. 1549 * 1550 * Return: Returns 0 if permission is granted. 1551 */ 1552 int security_move_mount(const struct path *from_path, 1553 const struct path *to_path) 1554 { 1555 return call_int_hook(move_mount, from_path, to_path); 1556 } 1557 1558 /** 1559 * security_path_notify() - Check if setting a watch is allowed 1560 * @path: file path 1561 * @mask: event mask 1562 * @obj_type: file path type 1563 * 1564 * Check permissions before setting a watch on events as defined by @mask, on 1565 * an object at @path, whose type is defined by @obj_type. 1566 * 1567 * Return: Returns 0 if permission is granted. 1568 */ 1569 int security_path_notify(const struct path *path, u64 mask, 1570 unsigned int obj_type) 1571 { 1572 return call_int_hook(path_notify, path, mask, obj_type); 1573 } 1574 1575 /** 1576 * security_inode_alloc() - Allocate an inode LSM blob 1577 * @inode: the inode 1578 * 1579 * Allocate and attach a security structure to @inode->i_security. The 1580 * i_security field is initialized to NULL when the inode structure is 1581 * allocated. 1582 * 1583 * Return: Return 0 if operation was successful. 1584 */ 1585 int security_inode_alloc(struct inode *inode) 1586 { 1587 int rc = lsm_inode_alloc(inode); 1588 1589 if (unlikely(rc)) 1590 return rc; 1591 rc = call_int_hook(inode_alloc_security, inode); 1592 if (unlikely(rc)) 1593 security_inode_free(inode); 1594 return rc; 1595 } 1596 1597 static void inode_free_by_rcu(struct rcu_head *head) 1598 { 1599 /* 1600 * The rcu head is at the start of the inode blob 1601 */ 1602 kmem_cache_free(lsm_inode_cache, head); 1603 } 1604 1605 /** 1606 * security_inode_free() - Free an inode's LSM blob 1607 * @inode: the inode 1608 * 1609 * Deallocate the inode security structure and set @inode->i_security to NULL. 1610 */ 1611 void security_inode_free(struct inode *inode) 1612 { 1613 call_void_hook(inode_free_security, inode); 1614 /* 1615 * The inode may still be referenced in a path walk and 1616 * a call to security_inode_permission() can be made 1617 * after inode_free_security() is called. Ideally, the VFS 1618 * wouldn't do this, but fixing that is a much harder 1619 * job. For now, simply free the i_security via RCU, and 1620 * leave the current inode->i_security pointer intact. 1621 * The inode will be freed after the RCU grace period too. 1622 */ 1623 if (inode->i_security) 1624 call_rcu((struct rcu_head *)inode->i_security, 1625 inode_free_by_rcu); 1626 } 1627 1628 /** 1629 * security_dentry_init_security() - Perform dentry initialization 1630 * @dentry: the dentry to initialize 1631 * @mode: mode used to determine resource type 1632 * @name: name of the last path component 1633 * @xattr_name: name of the security/LSM xattr 1634 * @ctx: pointer to the resulting LSM context 1635 * @ctxlen: length of @ctx 1636 * 1637 * Compute a context for a dentry as the inode is not yet available since NFSv4 1638 * has no label backed by an EA anyway. It is important to note that 1639 * @xattr_name does not need to be free'd by the caller, it is a static string. 1640 * 1641 * Return: Returns 0 on success, negative values on failure. 1642 */ 1643 int security_dentry_init_security(struct dentry *dentry, int mode, 1644 const struct qstr *name, 1645 const char **xattr_name, void **ctx, 1646 u32 *ctxlen) 1647 { 1648 return call_int_hook(dentry_init_security, dentry, mode, name, 1649 xattr_name, ctx, ctxlen); 1650 } 1651 EXPORT_SYMBOL(security_dentry_init_security); 1652 1653 /** 1654 * security_dentry_create_files_as() - Perform dentry initialization 1655 * @dentry: the dentry to initialize 1656 * @mode: mode used to determine resource type 1657 * @name: name of the last path component 1658 * @old: creds to use for LSM context calculations 1659 * @new: creds to modify 1660 * 1661 * Compute a context for a dentry as the inode is not yet available and set 1662 * that context in passed in creds so that new files are created using that 1663 * context. Context is calculated using the passed in creds and not the creds 1664 * of the caller. 1665 * 1666 * Return: Returns 0 on success, error on failure. 1667 */ 1668 int security_dentry_create_files_as(struct dentry *dentry, int mode, 1669 struct qstr *name, 1670 const struct cred *old, struct cred *new) 1671 { 1672 return call_int_hook(dentry_create_files_as, dentry, mode, 1673 name, old, new); 1674 } 1675 EXPORT_SYMBOL(security_dentry_create_files_as); 1676 1677 /** 1678 * security_inode_init_security() - Initialize an inode's LSM context 1679 * @inode: the inode 1680 * @dir: parent directory 1681 * @qstr: last component of the pathname 1682 * @initxattrs: callback function to write xattrs 1683 * @fs_data: filesystem specific data 1684 * 1685 * Obtain the security attribute name suffix and value to set on a newly 1686 * created inode and set up the incore security field for the new inode. This 1687 * hook is called by the fs code as part of the inode creation transaction and 1688 * provides for atomic labeling of the inode, unlike the post_create/mkdir/... 1689 * hooks called by the VFS. 1690 * 1691 * The hook function is expected to populate the xattrs array, by calling 1692 * lsm_get_xattr_slot() to retrieve the slots reserved by the security module 1693 * with the lbs_xattr_count field of the lsm_blob_sizes structure. For each 1694 * slot, the hook function should set ->name to the attribute name suffix 1695 * (e.g. selinux), to allocate ->value (will be freed by the caller) and set it 1696 * to the attribute value, to set ->value_len to the length of the value. If 1697 * the security module does not use security attributes or does not wish to put 1698 * a security attribute on this particular inode, then it should return 1699 * -EOPNOTSUPP to skip this processing. 1700 * 1701 * Return: Returns 0 if the LSM successfully initialized all of the inode 1702 * security attributes that are required, negative values otherwise. 1703 */ 1704 int security_inode_init_security(struct inode *inode, struct inode *dir, 1705 const struct qstr *qstr, 1706 const initxattrs initxattrs, void *fs_data) 1707 { 1708 struct security_hook_list *hp; 1709 struct xattr *new_xattrs = NULL; 1710 int ret = -EOPNOTSUPP, xattr_count = 0; 1711 1712 if (unlikely(IS_PRIVATE(inode))) 1713 return 0; 1714 1715 if (!blob_sizes.lbs_xattr_count) 1716 return 0; 1717 1718 if (initxattrs) { 1719 /* Allocate +1 as terminator. */ 1720 new_xattrs = kcalloc(blob_sizes.lbs_xattr_count + 1, 1721 sizeof(*new_xattrs), GFP_NOFS); 1722 if (!new_xattrs) 1723 return -ENOMEM; 1724 } 1725 1726 hlist_for_each_entry(hp, &security_hook_heads.inode_init_security, 1727 list) { 1728 ret = hp->hook.inode_init_security(inode, dir, qstr, new_xattrs, 1729 &xattr_count); 1730 if (ret && ret != -EOPNOTSUPP) 1731 goto out; 1732 /* 1733 * As documented in lsm_hooks.h, -EOPNOTSUPP in this context 1734 * means that the LSM is not willing to provide an xattr, not 1735 * that it wants to signal an error. Thus, continue to invoke 1736 * the remaining LSMs. 1737 */ 1738 } 1739 1740 /* If initxattrs() is NULL, xattr_count is zero, skip the call. */ 1741 if (!xattr_count) 1742 goto out; 1743 1744 ret = initxattrs(inode, new_xattrs, fs_data); 1745 out: 1746 for (; xattr_count > 0; xattr_count--) 1747 kfree(new_xattrs[xattr_count - 1].value); 1748 kfree(new_xattrs); 1749 return (ret == -EOPNOTSUPP) ? 0 : ret; 1750 } 1751 EXPORT_SYMBOL(security_inode_init_security); 1752 1753 /** 1754 * security_inode_init_security_anon() - Initialize an anonymous inode 1755 * @inode: the inode 1756 * @name: the anonymous inode class 1757 * @context_inode: an optional related inode 1758 * 1759 * Set up the incore security field for the new anonymous inode and return 1760 * whether the inode creation is permitted by the security module or not. 1761 * 1762 * Return: Returns 0 on success, -EACCES if the security module denies the 1763 * creation of this inode, or another -errno upon other errors. 1764 */ 1765 int security_inode_init_security_anon(struct inode *inode, 1766 const struct qstr *name, 1767 const struct inode *context_inode) 1768 { 1769 return call_int_hook(inode_init_security_anon, inode, name, 1770 context_inode); 1771 } 1772 1773 #ifdef CONFIG_SECURITY_PATH 1774 /** 1775 * security_path_mknod() - Check if creating a special file is allowed 1776 * @dir: parent directory 1777 * @dentry: new file 1778 * @mode: new file mode 1779 * @dev: device number 1780 * 1781 * Check permissions when creating a file. Note that this hook is called even 1782 * if mknod operation is being done for a regular file. 1783 * 1784 * Return: Returns 0 if permission is granted. 1785 */ 1786 int security_path_mknod(const struct path *dir, struct dentry *dentry, 1787 umode_t mode, unsigned int dev) 1788 { 1789 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 1790 return 0; 1791 return call_int_hook(path_mknod, dir, dentry, mode, dev); 1792 } 1793 EXPORT_SYMBOL(security_path_mknod); 1794 1795 /** 1796 * security_path_post_mknod() - Update inode security field after file creation 1797 * @idmap: idmap of the mount 1798 * @dentry: new file 1799 * 1800 * Update inode security field after a file has been created. 1801 */ 1802 void security_path_post_mknod(struct mnt_idmap *idmap, struct dentry *dentry) 1803 { 1804 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1805 return; 1806 call_void_hook(path_post_mknod, idmap, dentry); 1807 } 1808 1809 /** 1810 * security_path_mkdir() - Check if creating a new directory is allowed 1811 * @dir: parent directory 1812 * @dentry: new directory 1813 * @mode: new directory mode 1814 * 1815 * Check permissions to create a new directory in the existing directory. 1816 * 1817 * Return: Returns 0 if permission is granted. 1818 */ 1819 int security_path_mkdir(const struct path *dir, struct dentry *dentry, 1820 umode_t mode) 1821 { 1822 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 1823 return 0; 1824 return call_int_hook(path_mkdir, dir, dentry, mode); 1825 } 1826 EXPORT_SYMBOL(security_path_mkdir); 1827 1828 /** 1829 * security_path_rmdir() - Check if removing a directory is allowed 1830 * @dir: parent directory 1831 * @dentry: directory to remove 1832 * 1833 * Check the permission to remove a directory. 1834 * 1835 * Return: Returns 0 if permission is granted. 1836 */ 1837 int security_path_rmdir(const struct path *dir, struct dentry *dentry) 1838 { 1839 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 1840 return 0; 1841 return call_int_hook(path_rmdir, dir, dentry); 1842 } 1843 1844 /** 1845 * security_path_unlink() - Check if removing a hard link is allowed 1846 * @dir: parent directory 1847 * @dentry: file 1848 * 1849 * Check the permission to remove a hard link to a file. 1850 * 1851 * Return: Returns 0 if permission is granted. 1852 */ 1853 int security_path_unlink(const struct path *dir, struct dentry *dentry) 1854 { 1855 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 1856 return 0; 1857 return call_int_hook(path_unlink, dir, dentry); 1858 } 1859 EXPORT_SYMBOL(security_path_unlink); 1860 1861 /** 1862 * security_path_symlink() - Check if creating a symbolic link is allowed 1863 * @dir: parent directory 1864 * @dentry: symbolic link 1865 * @old_name: file pathname 1866 * 1867 * Check the permission to create a symbolic link to a file. 1868 * 1869 * Return: Returns 0 if permission is granted. 1870 */ 1871 int security_path_symlink(const struct path *dir, struct dentry *dentry, 1872 const char *old_name) 1873 { 1874 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 1875 return 0; 1876 return call_int_hook(path_symlink, dir, dentry, old_name); 1877 } 1878 1879 /** 1880 * security_path_link - Check if creating a hard link is allowed 1881 * @old_dentry: existing file 1882 * @new_dir: new parent directory 1883 * @new_dentry: new link 1884 * 1885 * Check permission before creating a new hard link to a file. 1886 * 1887 * Return: Returns 0 if permission is granted. 1888 */ 1889 int security_path_link(struct dentry *old_dentry, const struct path *new_dir, 1890 struct dentry *new_dentry) 1891 { 1892 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)))) 1893 return 0; 1894 return call_int_hook(path_link, old_dentry, new_dir, new_dentry); 1895 } 1896 1897 /** 1898 * security_path_rename() - Check if renaming a file is allowed 1899 * @old_dir: parent directory of the old file 1900 * @old_dentry: the old file 1901 * @new_dir: parent directory of the new file 1902 * @new_dentry: the new file 1903 * @flags: flags 1904 * 1905 * Check for permission to rename a file or directory. 1906 * 1907 * Return: Returns 0 if permission is granted. 1908 */ 1909 int security_path_rename(const struct path *old_dir, struct dentry *old_dentry, 1910 const struct path *new_dir, struct dentry *new_dentry, 1911 unsigned int flags) 1912 { 1913 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) || 1914 (d_is_positive(new_dentry) && 1915 IS_PRIVATE(d_backing_inode(new_dentry))))) 1916 return 0; 1917 1918 return call_int_hook(path_rename, old_dir, old_dentry, new_dir, 1919 new_dentry, flags); 1920 } 1921 EXPORT_SYMBOL(security_path_rename); 1922 1923 /** 1924 * security_path_truncate() - Check if truncating a file is allowed 1925 * @path: file 1926 * 1927 * Check permission before truncating the file indicated by path. Note that 1928 * truncation permissions may also be checked based on already opened files, 1929 * using the security_file_truncate() hook. 1930 * 1931 * Return: Returns 0 if permission is granted. 1932 */ 1933 int security_path_truncate(const struct path *path) 1934 { 1935 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 1936 return 0; 1937 return call_int_hook(path_truncate, path); 1938 } 1939 1940 /** 1941 * security_path_chmod() - Check if changing the file's mode is allowed 1942 * @path: file 1943 * @mode: new mode 1944 * 1945 * Check for permission to change a mode of the file @path. The new mode is 1946 * specified in @mode which is a bitmask of constants from 1947 * <include/uapi/linux/stat.h>. 1948 * 1949 * Return: Returns 0 if permission is granted. 1950 */ 1951 int security_path_chmod(const struct path *path, umode_t mode) 1952 { 1953 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 1954 return 0; 1955 return call_int_hook(path_chmod, path, mode); 1956 } 1957 1958 /** 1959 * security_path_chown() - Check if changing the file's owner/group is allowed 1960 * @path: file 1961 * @uid: file owner 1962 * @gid: file group 1963 * 1964 * Check for permission to change owner/group of a file or directory. 1965 * 1966 * Return: Returns 0 if permission is granted. 1967 */ 1968 int security_path_chown(const struct path *path, kuid_t uid, kgid_t gid) 1969 { 1970 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 1971 return 0; 1972 return call_int_hook(path_chown, path, uid, gid); 1973 } 1974 1975 /** 1976 * security_path_chroot() - Check if changing the root directory is allowed 1977 * @path: directory 1978 * 1979 * Check for permission to change root directory. 1980 * 1981 * Return: Returns 0 if permission is granted. 1982 */ 1983 int security_path_chroot(const struct path *path) 1984 { 1985 return call_int_hook(path_chroot, path); 1986 } 1987 #endif /* CONFIG_SECURITY_PATH */ 1988 1989 /** 1990 * security_inode_create() - Check if creating a file is allowed 1991 * @dir: the parent directory 1992 * @dentry: the file being created 1993 * @mode: requested file mode 1994 * 1995 * Check permission to create a regular file. 1996 * 1997 * Return: Returns 0 if permission is granted. 1998 */ 1999 int security_inode_create(struct inode *dir, struct dentry *dentry, 2000 umode_t mode) 2001 { 2002 if (unlikely(IS_PRIVATE(dir))) 2003 return 0; 2004 return call_int_hook(inode_create, dir, dentry, mode); 2005 } 2006 EXPORT_SYMBOL_GPL(security_inode_create); 2007 2008 /** 2009 * security_inode_post_create_tmpfile() - Update inode security of new tmpfile 2010 * @idmap: idmap of the mount 2011 * @inode: inode of the new tmpfile 2012 * 2013 * Update inode security data after a tmpfile has been created. 2014 */ 2015 void security_inode_post_create_tmpfile(struct mnt_idmap *idmap, 2016 struct inode *inode) 2017 { 2018 if (unlikely(IS_PRIVATE(inode))) 2019 return; 2020 call_void_hook(inode_post_create_tmpfile, idmap, inode); 2021 } 2022 2023 /** 2024 * security_inode_link() - Check if creating a hard link is allowed 2025 * @old_dentry: existing file 2026 * @dir: new parent directory 2027 * @new_dentry: new link 2028 * 2029 * Check permission before creating a new hard link to a file. 2030 * 2031 * Return: Returns 0 if permission is granted. 2032 */ 2033 int security_inode_link(struct dentry *old_dentry, struct inode *dir, 2034 struct dentry *new_dentry) 2035 { 2036 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)))) 2037 return 0; 2038 return call_int_hook(inode_link, old_dentry, dir, new_dentry); 2039 } 2040 2041 /** 2042 * security_inode_unlink() - Check if removing a hard link is allowed 2043 * @dir: parent directory 2044 * @dentry: file 2045 * 2046 * Check the permission to remove a hard link to a file. 2047 * 2048 * Return: Returns 0 if permission is granted. 2049 */ 2050 int security_inode_unlink(struct inode *dir, struct dentry *dentry) 2051 { 2052 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2053 return 0; 2054 return call_int_hook(inode_unlink, dir, dentry); 2055 } 2056 2057 /** 2058 * security_inode_symlink() - Check if creating a symbolic link is allowed 2059 * @dir: parent directory 2060 * @dentry: symbolic link 2061 * @old_name: existing filename 2062 * 2063 * Check the permission to create a symbolic link to a file. 2064 * 2065 * Return: Returns 0 if permission is granted. 2066 */ 2067 int security_inode_symlink(struct inode *dir, struct dentry *dentry, 2068 const char *old_name) 2069 { 2070 if (unlikely(IS_PRIVATE(dir))) 2071 return 0; 2072 return call_int_hook(inode_symlink, dir, dentry, old_name); 2073 } 2074 2075 /** 2076 * security_inode_mkdir() - Check if creation a new director is allowed 2077 * @dir: parent directory 2078 * @dentry: new directory 2079 * @mode: new directory mode 2080 * 2081 * Check permissions to create a new directory in the existing directory 2082 * associated with inode structure @dir. 2083 * 2084 * Return: Returns 0 if permission is granted. 2085 */ 2086 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 2087 { 2088 if (unlikely(IS_PRIVATE(dir))) 2089 return 0; 2090 return call_int_hook(inode_mkdir, dir, dentry, mode); 2091 } 2092 EXPORT_SYMBOL_GPL(security_inode_mkdir); 2093 2094 /** 2095 * security_inode_rmdir() - Check if removing a directory is allowed 2096 * @dir: parent directory 2097 * @dentry: directory to be removed 2098 * 2099 * Check the permission to remove a directory. 2100 * 2101 * Return: Returns 0 if permission is granted. 2102 */ 2103 int security_inode_rmdir(struct inode *dir, struct dentry *dentry) 2104 { 2105 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2106 return 0; 2107 return call_int_hook(inode_rmdir, dir, dentry); 2108 } 2109 2110 /** 2111 * security_inode_mknod() - Check if creating a special file is allowed 2112 * @dir: parent directory 2113 * @dentry: new file 2114 * @mode: new file mode 2115 * @dev: device number 2116 * 2117 * Check permissions when creating a special file (or a socket or a fifo file 2118 * created via the mknod system call). Note that if mknod operation is being 2119 * done for a regular file, then the create hook will be called and not this 2120 * hook. 2121 * 2122 * Return: Returns 0 if permission is granted. 2123 */ 2124 int security_inode_mknod(struct inode *dir, struct dentry *dentry, 2125 umode_t mode, dev_t dev) 2126 { 2127 if (unlikely(IS_PRIVATE(dir))) 2128 return 0; 2129 return call_int_hook(inode_mknod, dir, dentry, mode, dev); 2130 } 2131 2132 /** 2133 * security_inode_rename() - Check if renaming a file is allowed 2134 * @old_dir: parent directory of the old file 2135 * @old_dentry: the old file 2136 * @new_dir: parent directory of the new file 2137 * @new_dentry: the new file 2138 * @flags: flags 2139 * 2140 * Check for permission to rename a file or directory. 2141 * 2142 * Return: Returns 0 if permission is granted. 2143 */ 2144 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry, 2145 struct inode *new_dir, struct dentry *new_dentry, 2146 unsigned int flags) 2147 { 2148 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) || 2149 (d_is_positive(new_dentry) && 2150 IS_PRIVATE(d_backing_inode(new_dentry))))) 2151 return 0; 2152 2153 if (flags & RENAME_EXCHANGE) { 2154 int err = call_int_hook(inode_rename, new_dir, new_dentry, 2155 old_dir, old_dentry); 2156 if (err) 2157 return err; 2158 } 2159 2160 return call_int_hook(inode_rename, old_dir, old_dentry, 2161 new_dir, new_dentry); 2162 } 2163 2164 /** 2165 * security_inode_readlink() - Check if reading a symbolic link is allowed 2166 * @dentry: link 2167 * 2168 * Check the permission to read the symbolic link. 2169 * 2170 * Return: Returns 0 if permission is granted. 2171 */ 2172 int security_inode_readlink(struct dentry *dentry) 2173 { 2174 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2175 return 0; 2176 return call_int_hook(inode_readlink, dentry); 2177 } 2178 2179 /** 2180 * security_inode_follow_link() - Check if following a symbolic link is allowed 2181 * @dentry: link dentry 2182 * @inode: link inode 2183 * @rcu: true if in RCU-walk mode 2184 * 2185 * Check permission to follow a symbolic link when looking up a pathname. If 2186 * @rcu is true, @inode is not stable. 2187 * 2188 * Return: Returns 0 if permission is granted. 2189 */ 2190 int security_inode_follow_link(struct dentry *dentry, struct inode *inode, 2191 bool rcu) 2192 { 2193 if (unlikely(IS_PRIVATE(inode))) 2194 return 0; 2195 return call_int_hook(inode_follow_link, dentry, inode, rcu); 2196 } 2197 2198 /** 2199 * security_inode_permission() - Check if accessing an inode is allowed 2200 * @inode: inode 2201 * @mask: access mask 2202 * 2203 * Check permission before accessing an inode. This hook is called by the 2204 * existing Linux permission function, so a security module can use it to 2205 * provide additional checking for existing Linux permission checks. Notice 2206 * that this hook is called when a file is opened (as well as many other 2207 * operations), whereas the file_security_ops permission hook is called when 2208 * the actual read/write operations are performed. 2209 * 2210 * Return: Returns 0 if permission is granted. 2211 */ 2212 int security_inode_permission(struct inode *inode, int mask) 2213 { 2214 if (unlikely(IS_PRIVATE(inode))) 2215 return 0; 2216 return call_int_hook(inode_permission, inode, mask); 2217 } 2218 2219 /** 2220 * security_inode_setattr() - Check if setting file attributes is allowed 2221 * @idmap: idmap of the mount 2222 * @dentry: file 2223 * @attr: new attributes 2224 * 2225 * Check permission before setting file attributes. Note that the kernel call 2226 * to notify_change is performed from several locations, whenever file 2227 * attributes change (such as when a file is truncated, chown/chmod operations, 2228 * transferring disk quotas, etc). 2229 * 2230 * Return: Returns 0 if permission is granted. 2231 */ 2232 int security_inode_setattr(struct mnt_idmap *idmap, 2233 struct dentry *dentry, struct iattr *attr) 2234 { 2235 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2236 return 0; 2237 return call_int_hook(inode_setattr, idmap, dentry, attr); 2238 } 2239 EXPORT_SYMBOL_GPL(security_inode_setattr); 2240 2241 /** 2242 * security_inode_post_setattr() - Update the inode after a setattr operation 2243 * @idmap: idmap of the mount 2244 * @dentry: file 2245 * @ia_valid: file attributes set 2246 * 2247 * Update inode security field after successful setting file attributes. 2248 */ 2249 void security_inode_post_setattr(struct mnt_idmap *idmap, struct dentry *dentry, 2250 int ia_valid) 2251 { 2252 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2253 return; 2254 call_void_hook(inode_post_setattr, idmap, dentry, ia_valid); 2255 } 2256 2257 /** 2258 * security_inode_getattr() - Check if getting file attributes is allowed 2259 * @path: file 2260 * 2261 * Check permission before obtaining file attributes. 2262 * 2263 * Return: Returns 0 if permission is granted. 2264 */ 2265 int security_inode_getattr(const struct path *path) 2266 { 2267 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 2268 return 0; 2269 return call_int_hook(inode_getattr, path); 2270 } 2271 2272 /** 2273 * security_inode_setxattr() - Check if setting file xattrs is allowed 2274 * @idmap: idmap of the mount 2275 * @dentry: file 2276 * @name: xattr name 2277 * @value: xattr value 2278 * @size: size of xattr value 2279 * @flags: flags 2280 * 2281 * Check permission before setting the extended attributes. 2282 * 2283 * Return: Returns 0 if permission is granted. 2284 */ 2285 int security_inode_setxattr(struct mnt_idmap *idmap, 2286 struct dentry *dentry, const char *name, 2287 const void *value, size_t size, int flags) 2288 { 2289 int ret; 2290 2291 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2292 return 0; 2293 /* 2294 * SELinux and Smack integrate the cap call, 2295 * so assume that all LSMs supplying this call do so. 2296 */ 2297 ret = call_int_hook(inode_setxattr, idmap, dentry, name, value, size, 2298 flags); 2299 2300 if (ret == 1) 2301 ret = cap_inode_setxattr(dentry, name, value, size, flags); 2302 return ret; 2303 } 2304 2305 /** 2306 * security_inode_set_acl() - Check if setting posix acls is allowed 2307 * @idmap: idmap of the mount 2308 * @dentry: file 2309 * @acl_name: acl name 2310 * @kacl: acl struct 2311 * 2312 * Check permission before setting posix acls, the posix acls in @kacl are 2313 * identified by @acl_name. 2314 * 2315 * Return: Returns 0 if permission is granted. 2316 */ 2317 int security_inode_set_acl(struct mnt_idmap *idmap, 2318 struct dentry *dentry, const char *acl_name, 2319 struct posix_acl *kacl) 2320 { 2321 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2322 return 0; 2323 return call_int_hook(inode_set_acl, idmap, dentry, acl_name, kacl); 2324 } 2325 2326 /** 2327 * security_inode_post_set_acl() - Update inode security from posix acls set 2328 * @dentry: file 2329 * @acl_name: acl name 2330 * @kacl: acl struct 2331 * 2332 * Update inode security data after successfully setting posix acls on @dentry. 2333 * The posix acls in @kacl are identified by @acl_name. 2334 */ 2335 void security_inode_post_set_acl(struct dentry *dentry, const char *acl_name, 2336 struct posix_acl *kacl) 2337 { 2338 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2339 return; 2340 call_void_hook(inode_post_set_acl, dentry, acl_name, kacl); 2341 } 2342 2343 /** 2344 * security_inode_get_acl() - Check if reading posix acls is allowed 2345 * @idmap: idmap of the mount 2346 * @dentry: file 2347 * @acl_name: acl name 2348 * 2349 * Check permission before getting osix acls, the posix acls are identified by 2350 * @acl_name. 2351 * 2352 * Return: Returns 0 if permission is granted. 2353 */ 2354 int security_inode_get_acl(struct mnt_idmap *idmap, 2355 struct dentry *dentry, const char *acl_name) 2356 { 2357 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2358 return 0; 2359 return call_int_hook(inode_get_acl, idmap, dentry, acl_name); 2360 } 2361 2362 /** 2363 * security_inode_remove_acl() - Check if removing a posix acl is allowed 2364 * @idmap: idmap of the mount 2365 * @dentry: file 2366 * @acl_name: acl name 2367 * 2368 * Check permission before removing posix acls, the posix acls are identified 2369 * by @acl_name. 2370 * 2371 * Return: Returns 0 if permission is granted. 2372 */ 2373 int security_inode_remove_acl(struct mnt_idmap *idmap, 2374 struct dentry *dentry, const char *acl_name) 2375 { 2376 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2377 return 0; 2378 return call_int_hook(inode_remove_acl, idmap, dentry, acl_name); 2379 } 2380 2381 /** 2382 * security_inode_post_remove_acl() - Update inode security after rm posix acls 2383 * @idmap: idmap of the mount 2384 * @dentry: file 2385 * @acl_name: acl name 2386 * 2387 * Update inode security data after successfully removing posix acls on 2388 * @dentry in @idmap. The posix acls are identified by @acl_name. 2389 */ 2390 void security_inode_post_remove_acl(struct mnt_idmap *idmap, 2391 struct dentry *dentry, const char *acl_name) 2392 { 2393 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2394 return; 2395 call_void_hook(inode_post_remove_acl, idmap, dentry, acl_name); 2396 } 2397 2398 /** 2399 * security_inode_post_setxattr() - Update the inode after a setxattr operation 2400 * @dentry: file 2401 * @name: xattr name 2402 * @value: xattr value 2403 * @size: xattr value size 2404 * @flags: flags 2405 * 2406 * Update inode security field after successful setxattr operation. 2407 */ 2408 void security_inode_post_setxattr(struct dentry *dentry, const char *name, 2409 const void *value, size_t size, int flags) 2410 { 2411 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2412 return; 2413 call_void_hook(inode_post_setxattr, dentry, name, value, size, flags); 2414 } 2415 2416 /** 2417 * security_inode_getxattr() - Check if xattr access is allowed 2418 * @dentry: file 2419 * @name: xattr name 2420 * 2421 * Check permission before obtaining the extended attributes identified by 2422 * @name for @dentry. 2423 * 2424 * Return: Returns 0 if permission is granted. 2425 */ 2426 int security_inode_getxattr(struct dentry *dentry, const char *name) 2427 { 2428 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2429 return 0; 2430 return call_int_hook(inode_getxattr, dentry, name); 2431 } 2432 2433 /** 2434 * security_inode_listxattr() - Check if listing xattrs is allowed 2435 * @dentry: file 2436 * 2437 * Check permission before obtaining the list of extended attribute names for 2438 * @dentry. 2439 * 2440 * Return: Returns 0 if permission is granted. 2441 */ 2442 int security_inode_listxattr(struct dentry *dentry) 2443 { 2444 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2445 return 0; 2446 return call_int_hook(inode_listxattr, dentry); 2447 } 2448 2449 /** 2450 * security_inode_removexattr() - Check if removing an xattr is allowed 2451 * @idmap: idmap of the mount 2452 * @dentry: file 2453 * @name: xattr name 2454 * 2455 * Check permission before removing the extended attribute identified by @name 2456 * for @dentry. 2457 * 2458 * Return: Returns 0 if permission is granted. 2459 */ 2460 int security_inode_removexattr(struct mnt_idmap *idmap, 2461 struct dentry *dentry, const char *name) 2462 { 2463 int ret; 2464 2465 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2466 return 0; 2467 /* 2468 * SELinux and Smack integrate the cap call, 2469 * so assume that all LSMs supplying this call do so. 2470 */ 2471 ret = call_int_hook(inode_removexattr, idmap, dentry, name); 2472 if (ret == 1) 2473 ret = cap_inode_removexattr(idmap, dentry, name); 2474 return ret; 2475 } 2476 2477 /** 2478 * security_inode_post_removexattr() - Update the inode after a removexattr op 2479 * @dentry: file 2480 * @name: xattr name 2481 * 2482 * Update the inode after a successful removexattr operation. 2483 */ 2484 void security_inode_post_removexattr(struct dentry *dentry, const char *name) 2485 { 2486 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2487 return; 2488 call_void_hook(inode_post_removexattr, dentry, name); 2489 } 2490 2491 /** 2492 * security_inode_need_killpriv() - Check if security_inode_killpriv() required 2493 * @dentry: associated dentry 2494 * 2495 * Called when an inode has been changed to determine if 2496 * security_inode_killpriv() should be called. 2497 * 2498 * Return: Return <0 on error to abort the inode change operation, return 0 if 2499 * security_inode_killpriv() does not need to be called, return >0 if 2500 * security_inode_killpriv() does need to be called. 2501 */ 2502 int security_inode_need_killpriv(struct dentry *dentry) 2503 { 2504 return call_int_hook(inode_need_killpriv, dentry); 2505 } 2506 2507 /** 2508 * security_inode_killpriv() - The setuid bit is removed, update LSM state 2509 * @idmap: idmap of the mount 2510 * @dentry: associated dentry 2511 * 2512 * The @dentry's setuid bit is being removed. Remove similar security labels. 2513 * Called with the dentry->d_inode->i_mutex held. 2514 * 2515 * Return: Return 0 on success. If error is returned, then the operation 2516 * causing setuid bit removal is failed. 2517 */ 2518 int security_inode_killpriv(struct mnt_idmap *idmap, 2519 struct dentry *dentry) 2520 { 2521 return call_int_hook(inode_killpriv, idmap, dentry); 2522 } 2523 2524 /** 2525 * security_inode_getsecurity() - Get the xattr security label of an inode 2526 * @idmap: idmap of the mount 2527 * @inode: inode 2528 * @name: xattr name 2529 * @buffer: security label buffer 2530 * @alloc: allocation flag 2531 * 2532 * Retrieve a copy of the extended attribute representation of the security 2533 * label associated with @name for @inode via @buffer. Note that @name is the 2534 * remainder of the attribute name after the security prefix has been removed. 2535 * @alloc is used to specify if the call should return a value via the buffer 2536 * or just the value length. 2537 * 2538 * Return: Returns size of buffer on success. 2539 */ 2540 int security_inode_getsecurity(struct mnt_idmap *idmap, 2541 struct inode *inode, const char *name, 2542 void **buffer, bool alloc) 2543 { 2544 if (unlikely(IS_PRIVATE(inode))) 2545 return LSM_RET_DEFAULT(inode_getsecurity); 2546 2547 return call_int_hook(inode_getsecurity, idmap, inode, name, buffer, 2548 alloc); 2549 } 2550 2551 /** 2552 * security_inode_setsecurity() - Set the xattr security label of an inode 2553 * @inode: inode 2554 * @name: xattr name 2555 * @value: security label 2556 * @size: length of security label 2557 * @flags: flags 2558 * 2559 * Set the security label associated with @name for @inode from the extended 2560 * attribute value @value. @size indicates the size of the @value in bytes. 2561 * @flags may be XATTR_CREATE, XATTR_REPLACE, or 0. Note that @name is the 2562 * remainder of the attribute name after the security. prefix has been removed. 2563 * 2564 * Return: Returns 0 on success. 2565 */ 2566 int security_inode_setsecurity(struct inode *inode, const char *name, 2567 const void *value, size_t size, int flags) 2568 { 2569 if (unlikely(IS_PRIVATE(inode))) 2570 return LSM_RET_DEFAULT(inode_setsecurity); 2571 2572 return call_int_hook(inode_setsecurity, inode, name, value, size, 2573 flags); 2574 } 2575 2576 /** 2577 * security_inode_listsecurity() - List the xattr security label names 2578 * @inode: inode 2579 * @buffer: buffer 2580 * @buffer_size: size of buffer 2581 * 2582 * Copy the extended attribute names for the security labels associated with 2583 * @inode into @buffer. The maximum size of @buffer is specified by 2584 * @buffer_size. @buffer may be NULL to request the size of the buffer 2585 * required. 2586 * 2587 * Return: Returns number of bytes used/required on success. 2588 */ 2589 int security_inode_listsecurity(struct inode *inode, 2590 char *buffer, size_t buffer_size) 2591 { 2592 if (unlikely(IS_PRIVATE(inode))) 2593 return 0; 2594 return call_int_hook(inode_listsecurity, inode, buffer, buffer_size); 2595 } 2596 EXPORT_SYMBOL(security_inode_listsecurity); 2597 2598 /** 2599 * security_inode_getsecid() - Get an inode's secid 2600 * @inode: inode 2601 * @secid: secid to return 2602 * 2603 * Get the secid associated with the node. In case of failure, @secid will be 2604 * set to zero. 2605 */ 2606 void security_inode_getsecid(struct inode *inode, u32 *secid) 2607 { 2608 call_void_hook(inode_getsecid, inode, secid); 2609 } 2610 2611 /** 2612 * security_inode_copy_up() - Create new creds for an overlayfs copy-up op 2613 * @src: union dentry of copy-up file 2614 * @new: newly created creds 2615 * 2616 * A file is about to be copied up from lower layer to upper layer of overlay 2617 * filesystem. Security module can prepare a set of new creds and modify as 2618 * need be and return new creds. Caller will switch to new creds temporarily to 2619 * create new file and release newly allocated creds. 2620 * 2621 * Return: Returns 0 on success or a negative error code on error. 2622 */ 2623 int security_inode_copy_up(struct dentry *src, struct cred **new) 2624 { 2625 return call_int_hook(inode_copy_up, src, new); 2626 } 2627 EXPORT_SYMBOL(security_inode_copy_up); 2628 2629 /** 2630 * security_inode_copy_up_xattr() - Filter xattrs in an overlayfs copy-up op 2631 * @name: xattr name 2632 * 2633 * Filter the xattrs being copied up when a unioned file is copied up from a 2634 * lower layer to the union/overlay layer. The caller is responsible for 2635 * reading and writing the xattrs, this hook is merely a filter. 2636 * 2637 * Return: Returns 0 to accept the xattr, 1 to discard the xattr, -EOPNOTSUPP 2638 * if the security module does not know about attribute, or a negative 2639 * error code to abort the copy up. 2640 */ 2641 int security_inode_copy_up_xattr(const char *name) 2642 { 2643 int rc; 2644 2645 /* 2646 * The implementation can return 0 (accept the xattr), 1 (discard the 2647 * xattr), -EOPNOTSUPP if it does not know anything about the xattr or 2648 * any other error code in case of an error. 2649 */ 2650 rc = call_int_hook(inode_copy_up_xattr, name); 2651 if (rc != LSM_RET_DEFAULT(inode_copy_up_xattr)) 2652 return rc; 2653 2654 return LSM_RET_DEFAULT(inode_copy_up_xattr); 2655 } 2656 EXPORT_SYMBOL(security_inode_copy_up_xattr); 2657 2658 /** 2659 * security_kernfs_init_security() - Init LSM context for a kernfs node 2660 * @kn_dir: parent kernfs node 2661 * @kn: the kernfs node to initialize 2662 * 2663 * Initialize the security context of a newly created kernfs node based on its 2664 * own and its parent's attributes. 2665 * 2666 * Return: Returns 0 if permission is granted. 2667 */ 2668 int security_kernfs_init_security(struct kernfs_node *kn_dir, 2669 struct kernfs_node *kn) 2670 { 2671 return call_int_hook(kernfs_init_security, kn_dir, kn); 2672 } 2673 2674 /** 2675 * security_file_permission() - Check file permissions 2676 * @file: file 2677 * @mask: requested permissions 2678 * 2679 * Check file permissions before accessing an open file. This hook is called 2680 * by various operations that read or write files. A security module can use 2681 * this hook to perform additional checking on these operations, e.g. to 2682 * revalidate permissions on use to support privilege bracketing or policy 2683 * changes. Notice that this hook is used when the actual read/write 2684 * operations are performed, whereas the inode_security_ops hook is called when 2685 * a file is opened (as well as many other operations). Although this hook can 2686 * be used to revalidate permissions for various system call operations that 2687 * read or write files, it does not address the revalidation of permissions for 2688 * memory-mapped files. Security modules must handle this separately if they 2689 * need such revalidation. 2690 * 2691 * Return: Returns 0 if permission is granted. 2692 */ 2693 int security_file_permission(struct file *file, int mask) 2694 { 2695 return call_int_hook(file_permission, file, mask); 2696 } 2697 2698 /** 2699 * security_file_alloc() - Allocate and init a file's LSM blob 2700 * @file: the file 2701 * 2702 * Allocate and attach a security structure to the file->f_security field. The 2703 * security field is initialized to NULL when the structure is first created. 2704 * 2705 * Return: Return 0 if the hook is successful and permission is granted. 2706 */ 2707 int security_file_alloc(struct file *file) 2708 { 2709 int rc = lsm_file_alloc(file); 2710 2711 if (rc) 2712 return rc; 2713 rc = call_int_hook(file_alloc_security, file); 2714 if (unlikely(rc)) 2715 security_file_free(file); 2716 return rc; 2717 } 2718 2719 /** 2720 * security_file_release() - Perform actions before releasing the file ref 2721 * @file: the file 2722 * 2723 * Perform actions before releasing the last reference to a file. 2724 */ 2725 void security_file_release(struct file *file) 2726 { 2727 call_void_hook(file_release, file); 2728 } 2729 2730 /** 2731 * security_file_free() - Free a file's LSM blob 2732 * @file: the file 2733 * 2734 * Deallocate and free any security structures stored in file->f_security. 2735 */ 2736 void security_file_free(struct file *file) 2737 { 2738 void *blob; 2739 2740 call_void_hook(file_free_security, file); 2741 2742 blob = file->f_security; 2743 if (blob) { 2744 file->f_security = NULL; 2745 kmem_cache_free(lsm_file_cache, blob); 2746 } 2747 } 2748 2749 /** 2750 * security_file_ioctl() - Check if an ioctl is allowed 2751 * @file: associated file 2752 * @cmd: ioctl cmd 2753 * @arg: ioctl arguments 2754 * 2755 * Check permission for an ioctl operation on @file. Note that @arg sometimes 2756 * represents a user space pointer; in other cases, it may be a simple integer 2757 * value. When @arg represents a user space pointer, it should never be used 2758 * by the security module. 2759 * 2760 * Return: Returns 0 if permission is granted. 2761 */ 2762 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 2763 { 2764 return call_int_hook(file_ioctl, file, cmd, arg); 2765 } 2766 EXPORT_SYMBOL_GPL(security_file_ioctl); 2767 2768 /** 2769 * security_file_ioctl_compat() - Check if an ioctl is allowed in compat mode 2770 * @file: associated file 2771 * @cmd: ioctl cmd 2772 * @arg: ioctl arguments 2773 * 2774 * Compat version of security_file_ioctl() that correctly handles 32-bit 2775 * processes running on 64-bit kernels. 2776 * 2777 * Return: Returns 0 if permission is granted. 2778 */ 2779 int security_file_ioctl_compat(struct file *file, unsigned int cmd, 2780 unsigned long arg) 2781 { 2782 return call_int_hook(file_ioctl_compat, file, cmd, arg); 2783 } 2784 EXPORT_SYMBOL_GPL(security_file_ioctl_compat); 2785 2786 static inline unsigned long mmap_prot(struct file *file, unsigned long prot) 2787 { 2788 /* 2789 * Does we have PROT_READ and does the application expect 2790 * it to imply PROT_EXEC? If not, nothing to talk about... 2791 */ 2792 if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ) 2793 return prot; 2794 if (!(current->personality & READ_IMPLIES_EXEC)) 2795 return prot; 2796 /* 2797 * if that's an anonymous mapping, let it. 2798 */ 2799 if (!file) 2800 return prot | PROT_EXEC; 2801 /* 2802 * ditto if it's not on noexec mount, except that on !MMU we need 2803 * NOMMU_MAP_EXEC (== VM_MAYEXEC) in this case 2804 */ 2805 if (!path_noexec(&file->f_path)) { 2806 #ifndef CONFIG_MMU 2807 if (file->f_op->mmap_capabilities) { 2808 unsigned caps = file->f_op->mmap_capabilities(file); 2809 if (!(caps & NOMMU_MAP_EXEC)) 2810 return prot; 2811 } 2812 #endif 2813 return prot | PROT_EXEC; 2814 } 2815 /* anything on noexec mount won't get PROT_EXEC */ 2816 return prot; 2817 } 2818 2819 /** 2820 * security_mmap_file() - Check if mmap'ing a file is allowed 2821 * @file: file 2822 * @prot: protection applied by the kernel 2823 * @flags: flags 2824 * 2825 * Check permissions for a mmap operation. The @file may be NULL, e.g. if 2826 * mapping anonymous memory. 2827 * 2828 * Return: Returns 0 if permission is granted. 2829 */ 2830 int security_mmap_file(struct file *file, unsigned long prot, 2831 unsigned long flags) 2832 { 2833 return call_int_hook(mmap_file, file, prot, mmap_prot(file, prot), 2834 flags); 2835 } 2836 2837 /** 2838 * security_mmap_addr() - Check if mmap'ing an address is allowed 2839 * @addr: address 2840 * 2841 * Check permissions for a mmap operation at @addr. 2842 * 2843 * Return: Returns 0 if permission is granted. 2844 */ 2845 int security_mmap_addr(unsigned long addr) 2846 { 2847 return call_int_hook(mmap_addr, addr); 2848 } 2849 2850 /** 2851 * security_file_mprotect() - Check if changing memory protections is allowed 2852 * @vma: memory region 2853 * @reqprot: application requested protection 2854 * @prot: protection applied by the kernel 2855 * 2856 * Check permissions before changing memory access permissions. 2857 * 2858 * Return: Returns 0 if permission is granted. 2859 */ 2860 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot, 2861 unsigned long prot) 2862 { 2863 return call_int_hook(file_mprotect, vma, reqprot, prot); 2864 } 2865 2866 /** 2867 * security_file_lock() - Check if a file lock is allowed 2868 * @file: file 2869 * @cmd: lock operation (e.g. F_RDLCK, F_WRLCK) 2870 * 2871 * Check permission before performing file locking operations. Note the hook 2872 * mediates both flock and fcntl style locks. 2873 * 2874 * Return: Returns 0 if permission is granted. 2875 */ 2876 int security_file_lock(struct file *file, unsigned int cmd) 2877 { 2878 return call_int_hook(file_lock, file, cmd); 2879 } 2880 2881 /** 2882 * security_file_fcntl() - Check if fcntl() op is allowed 2883 * @file: file 2884 * @cmd: fcntl command 2885 * @arg: command argument 2886 * 2887 * Check permission before allowing the file operation specified by @cmd from 2888 * being performed on the file @file. Note that @arg sometimes represents a 2889 * user space pointer; in other cases, it may be a simple integer value. When 2890 * @arg represents a user space pointer, it should never be used by the 2891 * security module. 2892 * 2893 * Return: Returns 0 if permission is granted. 2894 */ 2895 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg) 2896 { 2897 return call_int_hook(file_fcntl, file, cmd, arg); 2898 } 2899 2900 /** 2901 * security_file_set_fowner() - Set the file owner info in the LSM blob 2902 * @file: the file 2903 * 2904 * Save owner security information (typically from current->security) in 2905 * file->f_security for later use by the send_sigiotask hook. 2906 * 2907 * Return: Returns 0 on success. 2908 */ 2909 void security_file_set_fowner(struct file *file) 2910 { 2911 call_void_hook(file_set_fowner, file); 2912 } 2913 2914 /** 2915 * security_file_send_sigiotask() - Check if sending SIGIO/SIGURG is allowed 2916 * @tsk: target task 2917 * @fown: signal sender 2918 * @sig: signal to be sent, SIGIO is sent if 0 2919 * 2920 * Check permission for the file owner @fown to send SIGIO or SIGURG to the 2921 * process @tsk. Note that this hook is sometimes called from interrupt. Note 2922 * that the fown_struct, @fown, is never outside the context of a struct file, 2923 * so the file structure (and associated security information) can always be 2924 * obtained: container_of(fown, struct file, f_owner). 2925 * 2926 * Return: Returns 0 if permission is granted. 2927 */ 2928 int security_file_send_sigiotask(struct task_struct *tsk, 2929 struct fown_struct *fown, int sig) 2930 { 2931 return call_int_hook(file_send_sigiotask, tsk, fown, sig); 2932 } 2933 2934 /** 2935 * security_file_receive() - Check if receiving a file via IPC is allowed 2936 * @file: file being received 2937 * 2938 * This hook allows security modules to control the ability of a process to 2939 * receive an open file descriptor via socket IPC. 2940 * 2941 * Return: Returns 0 if permission is granted. 2942 */ 2943 int security_file_receive(struct file *file) 2944 { 2945 return call_int_hook(file_receive, file); 2946 } 2947 2948 /** 2949 * security_file_open() - Save open() time state for late use by the LSM 2950 * @file: 2951 * 2952 * Save open-time permission checking state for later use upon file_permission, 2953 * and recheck access if anything has changed since inode_permission. 2954 * 2955 * Return: Returns 0 if permission is granted. 2956 */ 2957 int security_file_open(struct file *file) 2958 { 2959 int ret; 2960 2961 ret = call_int_hook(file_open, file); 2962 if (ret) 2963 return ret; 2964 2965 return fsnotify_open_perm(file); 2966 } 2967 2968 /** 2969 * security_file_post_open() - Evaluate a file after it has been opened 2970 * @file: the file 2971 * @mask: access mask 2972 * 2973 * Evaluate an opened file and the access mask requested with open(). The hook 2974 * is useful for LSMs that require the file content to be available in order to 2975 * make decisions. 2976 * 2977 * Return: Returns 0 if permission is granted. 2978 */ 2979 int security_file_post_open(struct file *file, int mask) 2980 { 2981 return call_int_hook(file_post_open, file, mask); 2982 } 2983 EXPORT_SYMBOL_GPL(security_file_post_open); 2984 2985 /** 2986 * security_file_truncate() - Check if truncating a file is allowed 2987 * @file: file 2988 * 2989 * Check permission before truncating a file, i.e. using ftruncate. Note that 2990 * truncation permission may also be checked based on the path, using the 2991 * @path_truncate hook. 2992 * 2993 * Return: Returns 0 if permission is granted. 2994 */ 2995 int security_file_truncate(struct file *file) 2996 { 2997 return call_int_hook(file_truncate, file); 2998 } 2999 3000 /** 3001 * security_task_alloc() - Allocate a task's LSM blob 3002 * @task: the task 3003 * @clone_flags: flags indicating what is being shared 3004 * 3005 * Handle allocation of task-related resources. 3006 * 3007 * Return: Returns a zero on success, negative values on failure. 3008 */ 3009 int security_task_alloc(struct task_struct *task, unsigned long clone_flags) 3010 { 3011 int rc = lsm_task_alloc(task); 3012 3013 if (rc) 3014 return rc; 3015 rc = call_int_hook(task_alloc, task, clone_flags); 3016 if (unlikely(rc)) 3017 security_task_free(task); 3018 return rc; 3019 } 3020 3021 /** 3022 * security_task_free() - Free a task's LSM blob and related resources 3023 * @task: task 3024 * 3025 * Handle release of task-related resources. Note that this can be called from 3026 * interrupt context. 3027 */ 3028 void security_task_free(struct task_struct *task) 3029 { 3030 call_void_hook(task_free, task); 3031 3032 kfree(task->security); 3033 task->security = NULL; 3034 } 3035 3036 /** 3037 * security_cred_alloc_blank() - Allocate the min memory to allow cred_transfer 3038 * @cred: credentials 3039 * @gfp: gfp flags 3040 * 3041 * Only allocate sufficient memory and attach to @cred such that 3042 * cred_transfer() will not get ENOMEM. 3043 * 3044 * Return: Returns 0 on success, negative values on failure. 3045 */ 3046 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp) 3047 { 3048 int rc = lsm_cred_alloc(cred, gfp); 3049 3050 if (rc) 3051 return rc; 3052 3053 rc = call_int_hook(cred_alloc_blank, cred, gfp); 3054 if (unlikely(rc)) 3055 security_cred_free(cred); 3056 return rc; 3057 } 3058 3059 /** 3060 * security_cred_free() - Free the cred's LSM blob and associated resources 3061 * @cred: credentials 3062 * 3063 * Deallocate and clear the cred->security field in a set of credentials. 3064 */ 3065 void security_cred_free(struct cred *cred) 3066 { 3067 /* 3068 * There is a failure case in prepare_creds() that 3069 * may result in a call here with ->security being NULL. 3070 */ 3071 if (unlikely(cred->security == NULL)) 3072 return; 3073 3074 call_void_hook(cred_free, cred); 3075 3076 kfree(cred->security); 3077 cred->security = NULL; 3078 } 3079 3080 /** 3081 * security_prepare_creds() - Prepare a new set of credentials 3082 * @new: new credentials 3083 * @old: original credentials 3084 * @gfp: gfp flags 3085 * 3086 * Prepare a new set of credentials by copying the data from the old set. 3087 * 3088 * Return: Returns 0 on success, negative values on failure. 3089 */ 3090 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp) 3091 { 3092 int rc = lsm_cred_alloc(new, gfp); 3093 3094 if (rc) 3095 return rc; 3096 3097 rc = call_int_hook(cred_prepare, new, old, gfp); 3098 if (unlikely(rc)) 3099 security_cred_free(new); 3100 return rc; 3101 } 3102 3103 /** 3104 * security_transfer_creds() - Transfer creds 3105 * @new: target credentials 3106 * @old: original credentials 3107 * 3108 * Transfer data from original creds to new creds. 3109 */ 3110 void security_transfer_creds(struct cred *new, const struct cred *old) 3111 { 3112 call_void_hook(cred_transfer, new, old); 3113 } 3114 3115 /** 3116 * security_cred_getsecid() - Get the secid from a set of credentials 3117 * @c: credentials 3118 * @secid: secid value 3119 * 3120 * Retrieve the security identifier of the cred structure @c. In case of 3121 * failure, @secid will be set to zero. 3122 */ 3123 void security_cred_getsecid(const struct cred *c, u32 *secid) 3124 { 3125 *secid = 0; 3126 call_void_hook(cred_getsecid, c, secid); 3127 } 3128 EXPORT_SYMBOL(security_cred_getsecid); 3129 3130 /** 3131 * security_kernel_act_as() - Set the kernel credentials to act as secid 3132 * @new: credentials 3133 * @secid: secid 3134 * 3135 * Set the credentials for a kernel service to act as (subjective context). 3136 * The current task must be the one that nominated @secid. 3137 * 3138 * Return: Returns 0 if successful. 3139 */ 3140 int security_kernel_act_as(struct cred *new, u32 secid) 3141 { 3142 return call_int_hook(kernel_act_as, new, secid); 3143 } 3144 3145 /** 3146 * security_kernel_create_files_as() - Set file creation context using an inode 3147 * @new: target credentials 3148 * @inode: reference inode 3149 * 3150 * Set the file creation context in a set of credentials to be the same as the 3151 * objective context of the specified inode. The current task must be the one 3152 * that nominated @inode. 3153 * 3154 * Return: Returns 0 if successful. 3155 */ 3156 int security_kernel_create_files_as(struct cred *new, struct inode *inode) 3157 { 3158 return call_int_hook(kernel_create_files_as, new, inode); 3159 } 3160 3161 /** 3162 * security_kernel_module_request() - Check if loading a module is allowed 3163 * @kmod_name: module name 3164 * 3165 * Ability to trigger the kernel to automatically upcall to userspace for 3166 * userspace to load a kernel module with the given name. 3167 * 3168 * Return: Returns 0 if successful. 3169 */ 3170 int security_kernel_module_request(char *kmod_name) 3171 { 3172 return call_int_hook(kernel_module_request, kmod_name); 3173 } 3174 3175 /** 3176 * security_kernel_read_file() - Read a file specified by userspace 3177 * @file: file 3178 * @id: file identifier 3179 * @contents: trust if security_kernel_post_read_file() will be called 3180 * 3181 * Read a file specified by userspace. 3182 * 3183 * Return: Returns 0 if permission is granted. 3184 */ 3185 int security_kernel_read_file(struct file *file, enum kernel_read_file_id id, 3186 bool contents) 3187 { 3188 return call_int_hook(kernel_read_file, file, id, contents); 3189 } 3190 EXPORT_SYMBOL_GPL(security_kernel_read_file); 3191 3192 /** 3193 * security_kernel_post_read_file() - Read a file specified by userspace 3194 * @file: file 3195 * @buf: file contents 3196 * @size: size of file contents 3197 * @id: file identifier 3198 * 3199 * Read a file specified by userspace. This must be paired with a prior call 3200 * to security_kernel_read_file() call that indicated this hook would also be 3201 * called, see security_kernel_read_file() for more information. 3202 * 3203 * Return: Returns 0 if permission is granted. 3204 */ 3205 int security_kernel_post_read_file(struct file *file, char *buf, loff_t size, 3206 enum kernel_read_file_id id) 3207 { 3208 return call_int_hook(kernel_post_read_file, file, buf, size, id); 3209 } 3210 EXPORT_SYMBOL_GPL(security_kernel_post_read_file); 3211 3212 /** 3213 * security_kernel_load_data() - Load data provided by userspace 3214 * @id: data identifier 3215 * @contents: true if security_kernel_post_load_data() will be called 3216 * 3217 * Load data provided by userspace. 3218 * 3219 * Return: Returns 0 if permission is granted. 3220 */ 3221 int security_kernel_load_data(enum kernel_load_data_id id, bool contents) 3222 { 3223 return call_int_hook(kernel_load_data, id, contents); 3224 } 3225 EXPORT_SYMBOL_GPL(security_kernel_load_data); 3226 3227 /** 3228 * security_kernel_post_load_data() - Load userspace data from a non-file source 3229 * @buf: data 3230 * @size: size of data 3231 * @id: data identifier 3232 * @description: text description of data, specific to the id value 3233 * 3234 * Load data provided by a non-file source (usually userspace buffer). This 3235 * must be paired with a prior security_kernel_load_data() call that indicated 3236 * this hook would also be called, see security_kernel_load_data() for more 3237 * information. 3238 * 3239 * Return: Returns 0 if permission is granted. 3240 */ 3241 int security_kernel_post_load_data(char *buf, loff_t size, 3242 enum kernel_load_data_id id, 3243 char *description) 3244 { 3245 return call_int_hook(kernel_post_load_data, buf, size, id, description); 3246 } 3247 EXPORT_SYMBOL_GPL(security_kernel_post_load_data); 3248 3249 /** 3250 * security_task_fix_setuid() - Update LSM with new user id attributes 3251 * @new: updated credentials 3252 * @old: credentials being replaced 3253 * @flags: LSM_SETID_* flag values 3254 * 3255 * Update the module's state after setting one or more of the user identity 3256 * attributes of the current process. The @flags parameter indicates which of 3257 * the set*uid system calls invoked this hook. If @new is the set of 3258 * credentials that will be installed. Modifications should be made to this 3259 * rather than to @current->cred. 3260 * 3261 * Return: Returns 0 on success. 3262 */ 3263 int security_task_fix_setuid(struct cred *new, const struct cred *old, 3264 int flags) 3265 { 3266 return call_int_hook(task_fix_setuid, new, old, flags); 3267 } 3268 3269 /** 3270 * security_task_fix_setgid() - Update LSM with new group id attributes 3271 * @new: updated credentials 3272 * @old: credentials being replaced 3273 * @flags: LSM_SETID_* flag value 3274 * 3275 * Update the module's state after setting one or more of the group identity 3276 * attributes of the current process. The @flags parameter indicates which of 3277 * the set*gid system calls invoked this hook. @new is the set of credentials 3278 * that will be installed. Modifications should be made to this rather than to 3279 * @current->cred. 3280 * 3281 * Return: Returns 0 on success. 3282 */ 3283 int security_task_fix_setgid(struct cred *new, const struct cred *old, 3284 int flags) 3285 { 3286 return call_int_hook(task_fix_setgid, new, old, flags); 3287 } 3288 3289 /** 3290 * security_task_fix_setgroups() - Update LSM with new supplementary groups 3291 * @new: updated credentials 3292 * @old: credentials being replaced 3293 * 3294 * Update the module's state after setting the supplementary group identity 3295 * attributes of the current process. @new is the set of credentials that will 3296 * be installed. Modifications should be made to this rather than to 3297 * @current->cred. 3298 * 3299 * Return: Returns 0 on success. 3300 */ 3301 int security_task_fix_setgroups(struct cred *new, const struct cred *old) 3302 { 3303 return call_int_hook(task_fix_setgroups, new, old); 3304 } 3305 3306 /** 3307 * security_task_setpgid() - Check if setting the pgid is allowed 3308 * @p: task being modified 3309 * @pgid: new pgid 3310 * 3311 * Check permission before setting the process group identifier of the process 3312 * @p to @pgid. 3313 * 3314 * Return: Returns 0 if permission is granted. 3315 */ 3316 int security_task_setpgid(struct task_struct *p, pid_t pgid) 3317 { 3318 return call_int_hook(task_setpgid, p, pgid); 3319 } 3320 3321 /** 3322 * security_task_getpgid() - Check if getting the pgid is allowed 3323 * @p: task 3324 * 3325 * Check permission before getting the process group identifier of the process 3326 * @p. 3327 * 3328 * Return: Returns 0 if permission is granted. 3329 */ 3330 int security_task_getpgid(struct task_struct *p) 3331 { 3332 return call_int_hook(task_getpgid, p); 3333 } 3334 3335 /** 3336 * security_task_getsid() - Check if getting the session id is allowed 3337 * @p: task 3338 * 3339 * Check permission before getting the session identifier of the process @p. 3340 * 3341 * Return: Returns 0 if permission is granted. 3342 */ 3343 int security_task_getsid(struct task_struct *p) 3344 { 3345 return call_int_hook(task_getsid, p); 3346 } 3347 3348 /** 3349 * security_current_getsecid_subj() - Get the current task's subjective secid 3350 * @secid: secid value 3351 * 3352 * Retrieve the subjective security identifier of the current task and return 3353 * it in @secid. In case of failure, @secid will be set to zero. 3354 */ 3355 void security_current_getsecid_subj(u32 *secid) 3356 { 3357 *secid = 0; 3358 call_void_hook(current_getsecid_subj, secid); 3359 } 3360 EXPORT_SYMBOL(security_current_getsecid_subj); 3361 3362 /** 3363 * security_task_getsecid_obj() - Get a task's objective secid 3364 * @p: target task 3365 * @secid: secid value 3366 * 3367 * Retrieve the objective security identifier of the task_struct in @p and 3368 * return it in @secid. In case of failure, @secid will be set to zero. 3369 */ 3370 void security_task_getsecid_obj(struct task_struct *p, u32 *secid) 3371 { 3372 *secid = 0; 3373 call_void_hook(task_getsecid_obj, p, secid); 3374 } 3375 EXPORT_SYMBOL(security_task_getsecid_obj); 3376 3377 /** 3378 * security_task_setnice() - Check if setting a task's nice value is allowed 3379 * @p: target task 3380 * @nice: nice value 3381 * 3382 * Check permission before setting the nice value of @p to @nice. 3383 * 3384 * Return: Returns 0 if permission is granted. 3385 */ 3386 int security_task_setnice(struct task_struct *p, int nice) 3387 { 3388 return call_int_hook(task_setnice, p, nice); 3389 } 3390 3391 /** 3392 * security_task_setioprio() - Check if setting a task's ioprio is allowed 3393 * @p: target task 3394 * @ioprio: ioprio value 3395 * 3396 * Check permission before setting the ioprio value of @p to @ioprio. 3397 * 3398 * Return: Returns 0 if permission is granted. 3399 */ 3400 int security_task_setioprio(struct task_struct *p, int ioprio) 3401 { 3402 return call_int_hook(task_setioprio, p, ioprio); 3403 } 3404 3405 /** 3406 * security_task_getioprio() - Check if getting a task's ioprio is allowed 3407 * @p: task 3408 * 3409 * Check permission before getting the ioprio value of @p. 3410 * 3411 * Return: Returns 0 if permission is granted. 3412 */ 3413 int security_task_getioprio(struct task_struct *p) 3414 { 3415 return call_int_hook(task_getioprio, p); 3416 } 3417 3418 /** 3419 * security_task_prlimit() - Check if get/setting resources limits is allowed 3420 * @cred: current task credentials 3421 * @tcred: target task credentials 3422 * @flags: LSM_PRLIMIT_* flag bits indicating a get/set/both 3423 * 3424 * Check permission before getting and/or setting the resource limits of 3425 * another task. 3426 * 3427 * Return: Returns 0 if permission is granted. 3428 */ 3429 int security_task_prlimit(const struct cred *cred, const struct cred *tcred, 3430 unsigned int flags) 3431 { 3432 return call_int_hook(task_prlimit, cred, tcred, flags); 3433 } 3434 3435 /** 3436 * security_task_setrlimit() - Check if setting a new rlimit value is allowed 3437 * @p: target task's group leader 3438 * @resource: resource whose limit is being set 3439 * @new_rlim: new resource limit 3440 * 3441 * Check permission before setting the resource limits of process @p for 3442 * @resource to @new_rlim. The old resource limit values can be examined by 3443 * dereferencing (p->signal->rlim + resource). 3444 * 3445 * Return: Returns 0 if permission is granted. 3446 */ 3447 int security_task_setrlimit(struct task_struct *p, unsigned int resource, 3448 struct rlimit *new_rlim) 3449 { 3450 return call_int_hook(task_setrlimit, p, resource, new_rlim); 3451 } 3452 3453 /** 3454 * security_task_setscheduler() - Check if setting sched policy/param is allowed 3455 * @p: target task 3456 * 3457 * Check permission before setting scheduling policy and/or parameters of 3458 * process @p. 3459 * 3460 * Return: Returns 0 if permission is granted. 3461 */ 3462 int security_task_setscheduler(struct task_struct *p) 3463 { 3464 return call_int_hook(task_setscheduler, p); 3465 } 3466 3467 /** 3468 * security_task_getscheduler() - Check if getting scheduling info is allowed 3469 * @p: target task 3470 * 3471 * Check permission before obtaining scheduling information for process @p. 3472 * 3473 * Return: Returns 0 if permission is granted. 3474 */ 3475 int security_task_getscheduler(struct task_struct *p) 3476 { 3477 return call_int_hook(task_getscheduler, p); 3478 } 3479 3480 /** 3481 * security_task_movememory() - Check if moving memory is allowed 3482 * @p: task 3483 * 3484 * Check permission before moving memory owned by process @p. 3485 * 3486 * Return: Returns 0 if permission is granted. 3487 */ 3488 int security_task_movememory(struct task_struct *p) 3489 { 3490 return call_int_hook(task_movememory, p); 3491 } 3492 3493 /** 3494 * security_task_kill() - Check if sending a signal is allowed 3495 * @p: target process 3496 * @info: signal information 3497 * @sig: signal value 3498 * @cred: credentials of the signal sender, NULL if @current 3499 * 3500 * Check permission before sending signal @sig to @p. @info can be NULL, the 3501 * constant 1, or a pointer to a kernel_siginfo structure. If @info is 1 or 3502 * SI_FROMKERNEL(info) is true, then the signal should be viewed as coming from 3503 * the kernel and should typically be permitted. SIGIO signals are handled 3504 * separately by the send_sigiotask hook in file_security_ops. 3505 * 3506 * Return: Returns 0 if permission is granted. 3507 */ 3508 int security_task_kill(struct task_struct *p, struct kernel_siginfo *info, 3509 int sig, const struct cred *cred) 3510 { 3511 return call_int_hook(task_kill, p, info, sig, cred); 3512 } 3513 3514 /** 3515 * security_task_prctl() - Check if a prctl op is allowed 3516 * @option: operation 3517 * @arg2: argument 3518 * @arg3: argument 3519 * @arg4: argument 3520 * @arg5: argument 3521 * 3522 * Check permission before performing a process control operation on the 3523 * current process. 3524 * 3525 * Return: Return -ENOSYS if no-one wanted to handle this op, any other value 3526 * to cause prctl() to return immediately with that value. 3527 */ 3528 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3, 3529 unsigned long arg4, unsigned long arg5) 3530 { 3531 int thisrc; 3532 int rc = LSM_RET_DEFAULT(task_prctl); 3533 struct security_hook_list *hp; 3534 3535 hlist_for_each_entry(hp, &security_hook_heads.task_prctl, list) { 3536 thisrc = hp->hook.task_prctl(option, arg2, arg3, arg4, arg5); 3537 if (thisrc != LSM_RET_DEFAULT(task_prctl)) { 3538 rc = thisrc; 3539 if (thisrc != 0) 3540 break; 3541 } 3542 } 3543 return rc; 3544 } 3545 3546 /** 3547 * security_task_to_inode() - Set the security attributes of a task's inode 3548 * @p: task 3549 * @inode: inode 3550 * 3551 * Set the security attributes for an inode based on an associated task's 3552 * security attributes, e.g. for /proc/pid inodes. 3553 */ 3554 void security_task_to_inode(struct task_struct *p, struct inode *inode) 3555 { 3556 call_void_hook(task_to_inode, p, inode); 3557 } 3558 3559 /** 3560 * security_create_user_ns() - Check if creating a new userns is allowed 3561 * @cred: prepared creds 3562 * 3563 * Check permission prior to creating a new user namespace. 3564 * 3565 * Return: Returns 0 if successful, otherwise < 0 error code. 3566 */ 3567 int security_create_user_ns(const struct cred *cred) 3568 { 3569 return call_int_hook(userns_create, cred); 3570 } 3571 3572 /** 3573 * security_ipc_permission() - Check if sysv ipc access is allowed 3574 * @ipcp: ipc permission structure 3575 * @flag: requested permissions 3576 * 3577 * Check permissions for access to IPC. 3578 * 3579 * Return: Returns 0 if permission is granted. 3580 */ 3581 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag) 3582 { 3583 return call_int_hook(ipc_permission, ipcp, flag); 3584 } 3585 3586 /** 3587 * security_ipc_getsecid() - Get the sysv ipc object's secid 3588 * @ipcp: ipc permission structure 3589 * @secid: secid pointer 3590 * 3591 * Get the secid associated with the ipc object. In case of failure, @secid 3592 * will be set to zero. 3593 */ 3594 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid) 3595 { 3596 *secid = 0; 3597 call_void_hook(ipc_getsecid, ipcp, secid); 3598 } 3599 3600 /** 3601 * security_msg_msg_alloc() - Allocate a sysv ipc message LSM blob 3602 * @msg: message structure 3603 * 3604 * Allocate and attach a security structure to the msg->security field. The 3605 * security field is initialized to NULL when the structure is first created. 3606 * 3607 * Return: Return 0 if operation was successful and permission is granted. 3608 */ 3609 int security_msg_msg_alloc(struct msg_msg *msg) 3610 { 3611 int rc = lsm_msg_msg_alloc(msg); 3612 3613 if (unlikely(rc)) 3614 return rc; 3615 rc = call_int_hook(msg_msg_alloc_security, msg); 3616 if (unlikely(rc)) 3617 security_msg_msg_free(msg); 3618 return rc; 3619 } 3620 3621 /** 3622 * security_msg_msg_free() - Free a sysv ipc message LSM blob 3623 * @msg: message structure 3624 * 3625 * Deallocate the security structure for this message. 3626 */ 3627 void security_msg_msg_free(struct msg_msg *msg) 3628 { 3629 call_void_hook(msg_msg_free_security, msg); 3630 kfree(msg->security); 3631 msg->security = NULL; 3632 } 3633 3634 /** 3635 * security_msg_queue_alloc() - Allocate a sysv ipc msg queue LSM blob 3636 * @msq: sysv ipc permission structure 3637 * 3638 * Allocate and attach a security structure to @msg. The security field is 3639 * initialized to NULL when the structure is first created. 3640 * 3641 * Return: Returns 0 if operation was successful and permission is granted. 3642 */ 3643 int security_msg_queue_alloc(struct kern_ipc_perm *msq) 3644 { 3645 int rc = lsm_ipc_alloc(msq); 3646 3647 if (unlikely(rc)) 3648 return rc; 3649 rc = call_int_hook(msg_queue_alloc_security, msq); 3650 if (unlikely(rc)) 3651 security_msg_queue_free(msq); 3652 return rc; 3653 } 3654 3655 /** 3656 * security_msg_queue_free() - Free a sysv ipc msg queue LSM blob 3657 * @msq: sysv ipc permission structure 3658 * 3659 * Deallocate security field @perm->security for the message queue. 3660 */ 3661 void security_msg_queue_free(struct kern_ipc_perm *msq) 3662 { 3663 call_void_hook(msg_queue_free_security, msq); 3664 kfree(msq->security); 3665 msq->security = NULL; 3666 } 3667 3668 /** 3669 * security_msg_queue_associate() - Check if a msg queue operation is allowed 3670 * @msq: sysv ipc permission structure 3671 * @msqflg: operation flags 3672 * 3673 * Check permission when a message queue is requested through the msgget system 3674 * call. This hook is only called when returning the message queue identifier 3675 * for an existing message queue, not when a new message queue is created. 3676 * 3677 * Return: Return 0 if permission is granted. 3678 */ 3679 int security_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg) 3680 { 3681 return call_int_hook(msg_queue_associate, msq, msqflg); 3682 } 3683 3684 /** 3685 * security_msg_queue_msgctl() - Check if a msg queue operation is allowed 3686 * @msq: sysv ipc permission structure 3687 * @cmd: operation 3688 * 3689 * Check permission when a message control operation specified by @cmd is to be 3690 * performed on the message queue with permissions. 3691 * 3692 * Return: Returns 0 if permission is granted. 3693 */ 3694 int security_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd) 3695 { 3696 return call_int_hook(msg_queue_msgctl, msq, cmd); 3697 } 3698 3699 /** 3700 * security_msg_queue_msgsnd() - Check if sending a sysv ipc message is allowed 3701 * @msq: sysv ipc permission structure 3702 * @msg: message 3703 * @msqflg: operation flags 3704 * 3705 * Check permission before a message, @msg, is enqueued on the message queue 3706 * with permissions specified in @msq. 3707 * 3708 * Return: Returns 0 if permission is granted. 3709 */ 3710 int security_msg_queue_msgsnd(struct kern_ipc_perm *msq, 3711 struct msg_msg *msg, int msqflg) 3712 { 3713 return call_int_hook(msg_queue_msgsnd, msq, msg, msqflg); 3714 } 3715 3716 /** 3717 * security_msg_queue_msgrcv() - Check if receiving a sysv ipc msg is allowed 3718 * @msq: sysv ipc permission structure 3719 * @msg: message 3720 * @target: target task 3721 * @type: type of message requested 3722 * @mode: operation flags 3723 * 3724 * Check permission before a message, @msg, is removed from the message queue. 3725 * The @target task structure contains a pointer to the process that will be 3726 * receiving the message (not equal to the current process when inline receives 3727 * are being performed). 3728 * 3729 * Return: Returns 0 if permission is granted. 3730 */ 3731 int security_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg, 3732 struct task_struct *target, long type, int mode) 3733 { 3734 return call_int_hook(msg_queue_msgrcv, msq, msg, target, type, mode); 3735 } 3736 3737 /** 3738 * security_shm_alloc() - Allocate a sysv shm LSM blob 3739 * @shp: sysv ipc permission structure 3740 * 3741 * Allocate and attach a security structure to the @shp security field. The 3742 * security field is initialized to NULL when the structure is first created. 3743 * 3744 * Return: Returns 0 if operation was successful and permission is granted. 3745 */ 3746 int security_shm_alloc(struct kern_ipc_perm *shp) 3747 { 3748 int rc = lsm_ipc_alloc(shp); 3749 3750 if (unlikely(rc)) 3751 return rc; 3752 rc = call_int_hook(shm_alloc_security, shp); 3753 if (unlikely(rc)) 3754 security_shm_free(shp); 3755 return rc; 3756 } 3757 3758 /** 3759 * security_shm_free() - Free a sysv shm LSM blob 3760 * @shp: sysv ipc permission structure 3761 * 3762 * Deallocate the security structure @perm->security for the memory segment. 3763 */ 3764 void security_shm_free(struct kern_ipc_perm *shp) 3765 { 3766 call_void_hook(shm_free_security, shp); 3767 kfree(shp->security); 3768 shp->security = NULL; 3769 } 3770 3771 /** 3772 * security_shm_associate() - Check if a sysv shm operation is allowed 3773 * @shp: sysv ipc permission structure 3774 * @shmflg: operation flags 3775 * 3776 * Check permission when a shared memory region is requested through the shmget 3777 * system call. This hook is only called when returning the shared memory 3778 * region identifier for an existing region, not when a new shared memory 3779 * region is created. 3780 * 3781 * Return: Returns 0 if permission is granted. 3782 */ 3783 int security_shm_associate(struct kern_ipc_perm *shp, int shmflg) 3784 { 3785 return call_int_hook(shm_associate, shp, shmflg); 3786 } 3787 3788 /** 3789 * security_shm_shmctl() - Check if a sysv shm operation is allowed 3790 * @shp: sysv ipc permission structure 3791 * @cmd: operation 3792 * 3793 * Check permission when a shared memory control operation specified by @cmd is 3794 * to be performed on the shared memory region with permissions in @shp. 3795 * 3796 * Return: Return 0 if permission is granted. 3797 */ 3798 int security_shm_shmctl(struct kern_ipc_perm *shp, int cmd) 3799 { 3800 return call_int_hook(shm_shmctl, shp, cmd); 3801 } 3802 3803 /** 3804 * security_shm_shmat() - Check if a sysv shm attach operation is allowed 3805 * @shp: sysv ipc permission structure 3806 * @shmaddr: address of memory region to attach 3807 * @shmflg: operation flags 3808 * 3809 * Check permissions prior to allowing the shmat system call to attach the 3810 * shared memory segment with permissions @shp to the data segment of the 3811 * calling process. The attaching address is specified by @shmaddr. 3812 * 3813 * Return: Returns 0 if permission is granted. 3814 */ 3815 int security_shm_shmat(struct kern_ipc_perm *shp, 3816 char __user *shmaddr, int shmflg) 3817 { 3818 return call_int_hook(shm_shmat, shp, shmaddr, shmflg); 3819 } 3820 3821 /** 3822 * security_sem_alloc() - Allocate a sysv semaphore LSM blob 3823 * @sma: sysv ipc permission structure 3824 * 3825 * Allocate and attach a security structure to the @sma security field. The 3826 * security field is initialized to NULL when the structure is first created. 3827 * 3828 * Return: Returns 0 if operation was successful and permission is granted. 3829 */ 3830 int security_sem_alloc(struct kern_ipc_perm *sma) 3831 { 3832 int rc = lsm_ipc_alloc(sma); 3833 3834 if (unlikely(rc)) 3835 return rc; 3836 rc = call_int_hook(sem_alloc_security, sma); 3837 if (unlikely(rc)) 3838 security_sem_free(sma); 3839 return rc; 3840 } 3841 3842 /** 3843 * security_sem_free() - Free a sysv semaphore LSM blob 3844 * @sma: sysv ipc permission structure 3845 * 3846 * Deallocate security structure @sma->security for the semaphore. 3847 */ 3848 void security_sem_free(struct kern_ipc_perm *sma) 3849 { 3850 call_void_hook(sem_free_security, sma); 3851 kfree(sma->security); 3852 sma->security = NULL; 3853 } 3854 3855 /** 3856 * security_sem_associate() - Check if a sysv semaphore operation is allowed 3857 * @sma: sysv ipc permission structure 3858 * @semflg: operation flags 3859 * 3860 * Check permission when a semaphore is requested through the semget system 3861 * call. This hook is only called when returning the semaphore identifier for 3862 * an existing semaphore, not when a new one must be created. 3863 * 3864 * Return: Returns 0 if permission is granted. 3865 */ 3866 int security_sem_associate(struct kern_ipc_perm *sma, int semflg) 3867 { 3868 return call_int_hook(sem_associate, sma, semflg); 3869 } 3870 3871 /** 3872 * security_sem_semctl() - Check if a sysv semaphore operation is allowed 3873 * @sma: sysv ipc permission structure 3874 * @cmd: operation 3875 * 3876 * Check permission when a semaphore operation specified by @cmd is to be 3877 * performed on the semaphore. 3878 * 3879 * Return: Returns 0 if permission is granted. 3880 */ 3881 int security_sem_semctl(struct kern_ipc_perm *sma, int cmd) 3882 { 3883 return call_int_hook(sem_semctl, sma, cmd); 3884 } 3885 3886 /** 3887 * security_sem_semop() - Check if a sysv semaphore operation is allowed 3888 * @sma: sysv ipc permission structure 3889 * @sops: operations to perform 3890 * @nsops: number of operations 3891 * @alter: flag indicating changes will be made 3892 * 3893 * Check permissions before performing operations on members of the semaphore 3894 * set. If the @alter flag is nonzero, the semaphore set may be modified. 3895 * 3896 * Return: Returns 0 if permission is granted. 3897 */ 3898 int security_sem_semop(struct kern_ipc_perm *sma, struct sembuf *sops, 3899 unsigned nsops, int alter) 3900 { 3901 return call_int_hook(sem_semop, sma, sops, nsops, alter); 3902 } 3903 3904 /** 3905 * security_d_instantiate() - Populate an inode's LSM state based on a dentry 3906 * @dentry: dentry 3907 * @inode: inode 3908 * 3909 * Fill in @inode security information for a @dentry if allowed. 3910 */ 3911 void security_d_instantiate(struct dentry *dentry, struct inode *inode) 3912 { 3913 if (unlikely(inode && IS_PRIVATE(inode))) 3914 return; 3915 call_void_hook(d_instantiate, dentry, inode); 3916 } 3917 EXPORT_SYMBOL(security_d_instantiate); 3918 3919 /* 3920 * Please keep this in sync with it's counterpart in security/lsm_syscalls.c 3921 */ 3922 3923 /** 3924 * security_getselfattr - Read an LSM attribute of the current process. 3925 * @attr: which attribute to return 3926 * @uctx: the user-space destination for the information, or NULL 3927 * @size: pointer to the size of space available to receive the data 3928 * @flags: special handling options. LSM_FLAG_SINGLE indicates that only 3929 * attributes associated with the LSM identified in the passed @ctx be 3930 * reported. 3931 * 3932 * A NULL value for @uctx can be used to get both the number of attributes 3933 * and the size of the data. 3934 * 3935 * Returns the number of attributes found on success, negative value 3936 * on error. @size is reset to the total size of the data. 3937 * If @size is insufficient to contain the data -E2BIG is returned. 3938 */ 3939 int security_getselfattr(unsigned int attr, struct lsm_ctx __user *uctx, 3940 u32 __user *size, u32 flags) 3941 { 3942 struct security_hook_list *hp; 3943 struct lsm_ctx lctx = { .id = LSM_ID_UNDEF, }; 3944 u8 __user *base = (u8 __user *)uctx; 3945 u32 entrysize; 3946 u32 total = 0; 3947 u32 left; 3948 bool toobig = false; 3949 bool single = false; 3950 int count = 0; 3951 int rc; 3952 3953 if (attr == LSM_ATTR_UNDEF) 3954 return -EINVAL; 3955 if (size == NULL) 3956 return -EINVAL; 3957 if (get_user(left, size)) 3958 return -EFAULT; 3959 3960 if (flags) { 3961 /* 3962 * Only flag supported is LSM_FLAG_SINGLE 3963 */ 3964 if (flags != LSM_FLAG_SINGLE || !uctx) 3965 return -EINVAL; 3966 if (copy_from_user(&lctx, uctx, sizeof(lctx))) 3967 return -EFAULT; 3968 /* 3969 * If the LSM ID isn't specified it is an error. 3970 */ 3971 if (lctx.id == LSM_ID_UNDEF) 3972 return -EINVAL; 3973 single = true; 3974 } 3975 3976 /* 3977 * In the usual case gather all the data from the LSMs. 3978 * In the single case only get the data from the LSM specified. 3979 */ 3980 hlist_for_each_entry(hp, &security_hook_heads.getselfattr, list) { 3981 if (single && lctx.id != hp->lsmid->id) 3982 continue; 3983 entrysize = left; 3984 if (base) 3985 uctx = (struct lsm_ctx __user *)(base + total); 3986 rc = hp->hook.getselfattr(attr, uctx, &entrysize, flags); 3987 if (rc == -EOPNOTSUPP) { 3988 rc = 0; 3989 continue; 3990 } 3991 if (rc == -E2BIG) { 3992 rc = 0; 3993 left = 0; 3994 toobig = true; 3995 } else if (rc < 0) 3996 return rc; 3997 else 3998 left -= entrysize; 3999 4000 total += entrysize; 4001 count += rc; 4002 if (single) 4003 break; 4004 } 4005 if (put_user(total, size)) 4006 return -EFAULT; 4007 if (toobig) 4008 return -E2BIG; 4009 if (count == 0) 4010 return LSM_RET_DEFAULT(getselfattr); 4011 return count; 4012 } 4013 4014 /* 4015 * Please keep this in sync with it's counterpart in security/lsm_syscalls.c 4016 */ 4017 4018 /** 4019 * security_setselfattr - Set an LSM attribute on the current process. 4020 * @attr: which attribute to set 4021 * @uctx: the user-space source for the information 4022 * @size: the size of the data 4023 * @flags: reserved for future use, must be 0 4024 * 4025 * Set an LSM attribute for the current process. The LSM, attribute 4026 * and new value are included in @uctx. 4027 * 4028 * Returns 0 on success, -EINVAL if the input is inconsistent, -EFAULT 4029 * if the user buffer is inaccessible, E2BIG if size is too big, or an 4030 * LSM specific failure. 4031 */ 4032 int security_setselfattr(unsigned int attr, struct lsm_ctx __user *uctx, 4033 u32 size, u32 flags) 4034 { 4035 struct security_hook_list *hp; 4036 struct lsm_ctx *lctx; 4037 int rc = LSM_RET_DEFAULT(setselfattr); 4038 u64 required_len; 4039 4040 if (flags) 4041 return -EINVAL; 4042 if (size < sizeof(*lctx)) 4043 return -EINVAL; 4044 if (size > PAGE_SIZE) 4045 return -E2BIG; 4046 4047 lctx = memdup_user(uctx, size); 4048 if (IS_ERR(lctx)) 4049 return PTR_ERR(lctx); 4050 4051 if (size < lctx->len || 4052 check_add_overflow(sizeof(*lctx), lctx->ctx_len, &required_len) || 4053 lctx->len < required_len) { 4054 rc = -EINVAL; 4055 goto free_out; 4056 } 4057 4058 hlist_for_each_entry(hp, &security_hook_heads.setselfattr, list) 4059 if ((hp->lsmid->id) == lctx->id) { 4060 rc = hp->hook.setselfattr(attr, lctx, size, flags); 4061 break; 4062 } 4063 4064 free_out: 4065 kfree(lctx); 4066 return rc; 4067 } 4068 4069 /** 4070 * security_getprocattr() - Read an attribute for a task 4071 * @p: the task 4072 * @lsmid: LSM identification 4073 * @name: attribute name 4074 * @value: attribute value 4075 * 4076 * Read attribute @name for task @p and store it into @value if allowed. 4077 * 4078 * Return: Returns the length of @value on success, a negative value otherwise. 4079 */ 4080 int security_getprocattr(struct task_struct *p, int lsmid, const char *name, 4081 char **value) 4082 { 4083 struct security_hook_list *hp; 4084 4085 hlist_for_each_entry(hp, &security_hook_heads.getprocattr, list) { 4086 if (lsmid != 0 && lsmid != hp->lsmid->id) 4087 continue; 4088 return hp->hook.getprocattr(p, name, value); 4089 } 4090 return LSM_RET_DEFAULT(getprocattr); 4091 } 4092 4093 /** 4094 * security_setprocattr() - Set an attribute for a task 4095 * @lsmid: LSM identification 4096 * @name: attribute name 4097 * @value: attribute value 4098 * @size: attribute value size 4099 * 4100 * Write (set) the current task's attribute @name to @value, size @size if 4101 * allowed. 4102 * 4103 * Return: Returns bytes written on success, a negative value otherwise. 4104 */ 4105 int security_setprocattr(int lsmid, const char *name, void *value, size_t size) 4106 { 4107 struct security_hook_list *hp; 4108 4109 hlist_for_each_entry(hp, &security_hook_heads.setprocattr, list) { 4110 if (lsmid != 0 && lsmid != hp->lsmid->id) 4111 continue; 4112 return hp->hook.setprocattr(name, value, size); 4113 } 4114 return LSM_RET_DEFAULT(setprocattr); 4115 } 4116 4117 /** 4118 * security_netlink_send() - Save info and check if netlink sending is allowed 4119 * @sk: sending socket 4120 * @skb: netlink message 4121 * 4122 * Save security information for a netlink message so that permission checking 4123 * can be performed when the message is processed. The security information 4124 * can be saved using the eff_cap field of the netlink_skb_parms structure. 4125 * Also may be used to provide fine grained control over message transmission. 4126 * 4127 * Return: Returns 0 if the information was successfully saved and message is 4128 * allowed to be transmitted. 4129 */ 4130 int security_netlink_send(struct sock *sk, struct sk_buff *skb) 4131 { 4132 return call_int_hook(netlink_send, sk, skb); 4133 } 4134 4135 /** 4136 * security_ismaclabel() - Check if the named attribute is a MAC label 4137 * @name: full extended attribute name 4138 * 4139 * Check if the extended attribute specified by @name represents a MAC label. 4140 * 4141 * Return: Returns 1 if name is a MAC attribute otherwise returns 0. 4142 */ 4143 int security_ismaclabel(const char *name) 4144 { 4145 return call_int_hook(ismaclabel, name); 4146 } 4147 EXPORT_SYMBOL(security_ismaclabel); 4148 4149 /** 4150 * security_secid_to_secctx() - Convert a secid to a secctx 4151 * @secid: secid 4152 * @secdata: secctx 4153 * @seclen: secctx length 4154 * 4155 * Convert secid to security context. If @secdata is NULL the length of the 4156 * result will be returned in @seclen, but no @secdata will be returned. This 4157 * does mean that the length could change between calls to check the length and 4158 * the next call which actually allocates and returns the @secdata. 4159 * 4160 * Return: Return 0 on success, error on failure. 4161 */ 4162 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen) 4163 { 4164 return call_int_hook(secid_to_secctx, secid, secdata, seclen); 4165 } 4166 EXPORT_SYMBOL(security_secid_to_secctx); 4167 4168 /** 4169 * security_secctx_to_secid() - Convert a secctx to a secid 4170 * @secdata: secctx 4171 * @seclen: length of secctx 4172 * @secid: secid 4173 * 4174 * Convert security context to secid. 4175 * 4176 * Return: Returns 0 on success, error on failure. 4177 */ 4178 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid) 4179 { 4180 *secid = 0; 4181 return call_int_hook(secctx_to_secid, secdata, seclen, secid); 4182 } 4183 EXPORT_SYMBOL(security_secctx_to_secid); 4184 4185 /** 4186 * security_release_secctx() - Free a secctx buffer 4187 * @secdata: secctx 4188 * @seclen: length of secctx 4189 * 4190 * Release the security context. 4191 */ 4192 void security_release_secctx(char *secdata, u32 seclen) 4193 { 4194 call_void_hook(release_secctx, secdata, seclen); 4195 } 4196 EXPORT_SYMBOL(security_release_secctx); 4197 4198 /** 4199 * security_inode_invalidate_secctx() - Invalidate an inode's security label 4200 * @inode: inode 4201 * 4202 * Notify the security module that it must revalidate the security context of 4203 * an inode. 4204 */ 4205 void security_inode_invalidate_secctx(struct inode *inode) 4206 { 4207 call_void_hook(inode_invalidate_secctx, inode); 4208 } 4209 EXPORT_SYMBOL(security_inode_invalidate_secctx); 4210 4211 /** 4212 * security_inode_notifysecctx() - Notify the LSM of an inode's security label 4213 * @inode: inode 4214 * @ctx: secctx 4215 * @ctxlen: length of secctx 4216 * 4217 * Notify the security module of what the security context of an inode should 4218 * be. Initializes the incore security context managed by the security module 4219 * for this inode. Example usage: NFS client invokes this hook to initialize 4220 * the security context in its incore inode to the value provided by the server 4221 * for the file when the server returned the file's attributes to the client. 4222 * Must be called with inode->i_mutex locked. 4223 * 4224 * Return: Returns 0 on success, error on failure. 4225 */ 4226 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen) 4227 { 4228 return call_int_hook(inode_notifysecctx, inode, ctx, ctxlen); 4229 } 4230 EXPORT_SYMBOL(security_inode_notifysecctx); 4231 4232 /** 4233 * security_inode_setsecctx() - Change the security label of an inode 4234 * @dentry: inode 4235 * @ctx: secctx 4236 * @ctxlen: length of secctx 4237 * 4238 * Change the security context of an inode. Updates the incore security 4239 * context managed by the security module and invokes the fs code as needed 4240 * (via __vfs_setxattr_noperm) to update any backing xattrs that represent the 4241 * context. Example usage: NFS server invokes this hook to change the security 4242 * context in its incore inode and on the backing filesystem to a value 4243 * provided by the client on a SETATTR operation. Must be called with 4244 * inode->i_mutex locked. 4245 * 4246 * Return: Returns 0 on success, error on failure. 4247 */ 4248 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen) 4249 { 4250 return call_int_hook(inode_setsecctx, dentry, ctx, ctxlen); 4251 } 4252 EXPORT_SYMBOL(security_inode_setsecctx); 4253 4254 /** 4255 * security_inode_getsecctx() - Get the security label of an inode 4256 * @inode: inode 4257 * @ctx: secctx 4258 * @ctxlen: length of secctx 4259 * 4260 * On success, returns 0 and fills out @ctx and @ctxlen with the security 4261 * context for the given @inode. 4262 * 4263 * Return: Returns 0 on success, error on failure. 4264 */ 4265 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen) 4266 { 4267 return call_int_hook(inode_getsecctx, inode, ctx, ctxlen); 4268 } 4269 EXPORT_SYMBOL(security_inode_getsecctx); 4270 4271 #ifdef CONFIG_WATCH_QUEUE 4272 /** 4273 * security_post_notification() - Check if a watch notification can be posted 4274 * @w_cred: credentials of the task that set the watch 4275 * @cred: credentials of the task which triggered the watch 4276 * @n: the notification 4277 * 4278 * Check to see if a watch notification can be posted to a particular queue. 4279 * 4280 * Return: Returns 0 if permission is granted. 4281 */ 4282 int security_post_notification(const struct cred *w_cred, 4283 const struct cred *cred, 4284 struct watch_notification *n) 4285 { 4286 return call_int_hook(post_notification, w_cred, cred, n); 4287 } 4288 #endif /* CONFIG_WATCH_QUEUE */ 4289 4290 #ifdef CONFIG_KEY_NOTIFICATIONS 4291 /** 4292 * security_watch_key() - Check if a task is allowed to watch for key events 4293 * @key: the key to watch 4294 * 4295 * Check to see if a process is allowed to watch for event notifications from 4296 * a key or keyring. 4297 * 4298 * Return: Returns 0 if permission is granted. 4299 */ 4300 int security_watch_key(struct key *key) 4301 { 4302 return call_int_hook(watch_key, key); 4303 } 4304 #endif /* CONFIG_KEY_NOTIFICATIONS */ 4305 4306 #ifdef CONFIG_SECURITY_NETWORK 4307 /** 4308 * security_unix_stream_connect() - Check if a AF_UNIX stream is allowed 4309 * @sock: originating sock 4310 * @other: peer sock 4311 * @newsk: new sock 4312 * 4313 * Check permissions before establishing a Unix domain stream connection 4314 * between @sock and @other. 4315 * 4316 * The @unix_stream_connect and @unix_may_send hooks were necessary because 4317 * Linux provides an alternative to the conventional file name space for Unix 4318 * domain sockets. Whereas binding and connecting to sockets in the file name 4319 * space is mediated by the typical file permissions (and caught by the mknod 4320 * and permission hooks in inode_security_ops), binding and connecting to 4321 * sockets in the abstract name space is completely unmediated. Sufficient 4322 * control of Unix domain sockets in the abstract name space isn't possible 4323 * using only the socket layer hooks, since we need to know the actual target 4324 * socket, which is not looked up until we are inside the af_unix code. 4325 * 4326 * Return: Returns 0 if permission is granted. 4327 */ 4328 int security_unix_stream_connect(struct sock *sock, struct sock *other, 4329 struct sock *newsk) 4330 { 4331 return call_int_hook(unix_stream_connect, sock, other, newsk); 4332 } 4333 EXPORT_SYMBOL(security_unix_stream_connect); 4334 4335 /** 4336 * security_unix_may_send() - Check if AF_UNIX socket can send datagrams 4337 * @sock: originating sock 4338 * @other: peer sock 4339 * 4340 * Check permissions before connecting or sending datagrams from @sock to 4341 * @other. 4342 * 4343 * The @unix_stream_connect and @unix_may_send hooks were necessary because 4344 * Linux provides an alternative to the conventional file name space for Unix 4345 * domain sockets. Whereas binding and connecting to sockets in the file name 4346 * space is mediated by the typical file permissions (and caught by the mknod 4347 * and permission hooks in inode_security_ops), binding and connecting to 4348 * sockets in the abstract name space is completely unmediated. Sufficient 4349 * control of Unix domain sockets in the abstract name space isn't possible 4350 * using only the socket layer hooks, since we need to know the actual target 4351 * socket, which is not looked up until we are inside the af_unix code. 4352 * 4353 * Return: Returns 0 if permission is granted. 4354 */ 4355 int security_unix_may_send(struct socket *sock, struct socket *other) 4356 { 4357 return call_int_hook(unix_may_send, sock, other); 4358 } 4359 EXPORT_SYMBOL(security_unix_may_send); 4360 4361 /** 4362 * security_socket_create() - Check if creating a new socket is allowed 4363 * @family: protocol family 4364 * @type: communications type 4365 * @protocol: requested protocol 4366 * @kern: set to 1 if a kernel socket is requested 4367 * 4368 * Check permissions prior to creating a new socket. 4369 * 4370 * Return: Returns 0 if permission is granted. 4371 */ 4372 int security_socket_create(int family, int type, int protocol, int kern) 4373 { 4374 return call_int_hook(socket_create, family, type, protocol, kern); 4375 } 4376 4377 /** 4378 * security_socket_post_create() - Initialize a newly created socket 4379 * @sock: socket 4380 * @family: protocol family 4381 * @type: communications type 4382 * @protocol: requested protocol 4383 * @kern: set to 1 if a kernel socket is requested 4384 * 4385 * This hook allows a module to update or allocate a per-socket security 4386 * structure. Note that the security field was not added directly to the socket 4387 * structure, but rather, the socket security information is stored in the 4388 * associated inode. Typically, the inode alloc_security hook will allocate 4389 * and attach security information to SOCK_INODE(sock)->i_security. This hook 4390 * may be used to update the SOCK_INODE(sock)->i_security field with additional 4391 * information that wasn't available when the inode was allocated. 4392 * 4393 * Return: Returns 0 if permission is granted. 4394 */ 4395 int security_socket_post_create(struct socket *sock, int family, 4396 int type, int protocol, int kern) 4397 { 4398 return call_int_hook(socket_post_create, sock, family, type, 4399 protocol, kern); 4400 } 4401 4402 /** 4403 * security_socket_socketpair() - Check if creating a socketpair is allowed 4404 * @socka: first socket 4405 * @sockb: second socket 4406 * 4407 * Check permissions before creating a fresh pair of sockets. 4408 * 4409 * Return: Returns 0 if permission is granted and the connection was 4410 * established. 4411 */ 4412 int security_socket_socketpair(struct socket *socka, struct socket *sockb) 4413 { 4414 return call_int_hook(socket_socketpair, socka, sockb); 4415 } 4416 EXPORT_SYMBOL(security_socket_socketpair); 4417 4418 /** 4419 * security_socket_bind() - Check if a socket bind operation is allowed 4420 * @sock: socket 4421 * @address: requested bind address 4422 * @addrlen: length of address 4423 * 4424 * Check permission before socket protocol layer bind operation is performed 4425 * and the socket @sock is bound to the address specified in the @address 4426 * parameter. 4427 * 4428 * Return: Returns 0 if permission is granted. 4429 */ 4430 int security_socket_bind(struct socket *sock, 4431 struct sockaddr *address, int addrlen) 4432 { 4433 return call_int_hook(socket_bind, sock, address, addrlen); 4434 } 4435 4436 /** 4437 * security_socket_connect() - Check if a socket connect operation is allowed 4438 * @sock: socket 4439 * @address: address of remote connection point 4440 * @addrlen: length of address 4441 * 4442 * Check permission before socket protocol layer connect operation attempts to 4443 * connect socket @sock to a remote address, @address. 4444 * 4445 * Return: Returns 0 if permission is granted. 4446 */ 4447 int security_socket_connect(struct socket *sock, 4448 struct sockaddr *address, int addrlen) 4449 { 4450 return call_int_hook(socket_connect, sock, address, addrlen); 4451 } 4452 4453 /** 4454 * security_socket_listen() - Check if a socket is allowed to listen 4455 * @sock: socket 4456 * @backlog: connection queue size 4457 * 4458 * Check permission before socket protocol layer listen operation. 4459 * 4460 * Return: Returns 0 if permission is granted. 4461 */ 4462 int security_socket_listen(struct socket *sock, int backlog) 4463 { 4464 return call_int_hook(socket_listen, sock, backlog); 4465 } 4466 4467 /** 4468 * security_socket_accept() - Check if a socket is allowed to accept connections 4469 * @sock: listening socket 4470 * @newsock: newly creation connection socket 4471 * 4472 * Check permission before accepting a new connection. Note that the new 4473 * socket, @newsock, has been created and some information copied to it, but 4474 * the accept operation has not actually been performed. 4475 * 4476 * Return: Returns 0 if permission is granted. 4477 */ 4478 int security_socket_accept(struct socket *sock, struct socket *newsock) 4479 { 4480 return call_int_hook(socket_accept, sock, newsock); 4481 } 4482 4483 /** 4484 * security_socket_sendmsg() - Check if sending a message is allowed 4485 * @sock: sending socket 4486 * @msg: message to send 4487 * @size: size of message 4488 * 4489 * Check permission before transmitting a message to another socket. 4490 * 4491 * Return: Returns 0 if permission is granted. 4492 */ 4493 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size) 4494 { 4495 return call_int_hook(socket_sendmsg, sock, msg, size); 4496 } 4497 4498 /** 4499 * security_socket_recvmsg() - Check if receiving a message is allowed 4500 * @sock: receiving socket 4501 * @msg: message to receive 4502 * @size: size of message 4503 * @flags: operational flags 4504 * 4505 * Check permission before receiving a message from a socket. 4506 * 4507 * Return: Returns 0 if permission is granted. 4508 */ 4509 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg, 4510 int size, int flags) 4511 { 4512 return call_int_hook(socket_recvmsg, sock, msg, size, flags); 4513 } 4514 4515 /** 4516 * security_socket_getsockname() - Check if reading the socket addr is allowed 4517 * @sock: socket 4518 * 4519 * Check permission before reading the local address (name) of the socket 4520 * object. 4521 * 4522 * Return: Returns 0 if permission is granted. 4523 */ 4524 int security_socket_getsockname(struct socket *sock) 4525 { 4526 return call_int_hook(socket_getsockname, sock); 4527 } 4528 4529 /** 4530 * security_socket_getpeername() - Check if reading the peer's addr is allowed 4531 * @sock: socket 4532 * 4533 * Check permission before the remote address (name) of a socket object. 4534 * 4535 * Return: Returns 0 if permission is granted. 4536 */ 4537 int security_socket_getpeername(struct socket *sock) 4538 { 4539 return call_int_hook(socket_getpeername, sock); 4540 } 4541 4542 /** 4543 * security_socket_getsockopt() - Check if reading a socket option is allowed 4544 * @sock: socket 4545 * @level: option's protocol level 4546 * @optname: option name 4547 * 4548 * Check permissions before retrieving the options associated with socket 4549 * @sock. 4550 * 4551 * Return: Returns 0 if permission is granted. 4552 */ 4553 int security_socket_getsockopt(struct socket *sock, int level, int optname) 4554 { 4555 return call_int_hook(socket_getsockopt, sock, level, optname); 4556 } 4557 4558 /** 4559 * security_socket_setsockopt() - Check if setting a socket option is allowed 4560 * @sock: socket 4561 * @level: option's protocol level 4562 * @optname: option name 4563 * 4564 * Check permissions before setting the options associated with socket @sock. 4565 * 4566 * Return: Returns 0 if permission is granted. 4567 */ 4568 int security_socket_setsockopt(struct socket *sock, int level, int optname) 4569 { 4570 return call_int_hook(socket_setsockopt, sock, level, optname); 4571 } 4572 4573 /** 4574 * security_socket_shutdown() - Checks if shutting down the socket is allowed 4575 * @sock: socket 4576 * @how: flag indicating how sends and receives are handled 4577 * 4578 * Checks permission before all or part of a connection on the socket @sock is 4579 * shut down. 4580 * 4581 * Return: Returns 0 if permission is granted. 4582 */ 4583 int security_socket_shutdown(struct socket *sock, int how) 4584 { 4585 return call_int_hook(socket_shutdown, sock, how); 4586 } 4587 4588 /** 4589 * security_sock_rcv_skb() - Check if an incoming network packet is allowed 4590 * @sk: destination sock 4591 * @skb: incoming packet 4592 * 4593 * Check permissions on incoming network packets. This hook is distinct from 4594 * Netfilter's IP input hooks since it is the first time that the incoming 4595 * sk_buff @skb has been associated with a particular socket, @sk. Must not 4596 * sleep inside this hook because some callers hold spinlocks. 4597 * 4598 * Return: Returns 0 if permission is granted. 4599 */ 4600 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb) 4601 { 4602 return call_int_hook(socket_sock_rcv_skb, sk, skb); 4603 } 4604 EXPORT_SYMBOL(security_sock_rcv_skb); 4605 4606 /** 4607 * security_socket_getpeersec_stream() - Get the remote peer label 4608 * @sock: socket 4609 * @optval: destination buffer 4610 * @optlen: size of peer label copied into the buffer 4611 * @len: maximum size of the destination buffer 4612 * 4613 * This hook allows the security module to provide peer socket security state 4614 * for unix or connected tcp sockets to userspace via getsockopt SO_GETPEERSEC. 4615 * For tcp sockets this can be meaningful if the socket is associated with an 4616 * ipsec SA. 4617 * 4618 * Return: Returns 0 if all is well, otherwise, typical getsockopt return 4619 * values. 4620 */ 4621 int security_socket_getpeersec_stream(struct socket *sock, sockptr_t optval, 4622 sockptr_t optlen, unsigned int len) 4623 { 4624 return call_int_hook(socket_getpeersec_stream, sock, optval, optlen, 4625 len); 4626 } 4627 4628 /** 4629 * security_socket_getpeersec_dgram() - Get the remote peer label 4630 * @sock: socket 4631 * @skb: datagram packet 4632 * @secid: remote peer label secid 4633 * 4634 * This hook allows the security module to provide peer socket security state 4635 * for udp sockets on a per-packet basis to userspace via getsockopt 4636 * SO_GETPEERSEC. The application must first have indicated the IP_PASSSEC 4637 * option via getsockopt. It can then retrieve the security state returned by 4638 * this hook for a packet via the SCM_SECURITY ancillary message type. 4639 * 4640 * Return: Returns 0 on success, error on failure. 4641 */ 4642 int security_socket_getpeersec_dgram(struct socket *sock, 4643 struct sk_buff *skb, u32 *secid) 4644 { 4645 return call_int_hook(socket_getpeersec_dgram, sock, skb, secid); 4646 } 4647 EXPORT_SYMBOL(security_socket_getpeersec_dgram); 4648 4649 /** 4650 * security_sk_alloc() - Allocate and initialize a sock's LSM blob 4651 * @sk: sock 4652 * @family: protocol family 4653 * @priority: gfp flags 4654 * 4655 * Allocate and attach a security structure to the sk->sk_security field, which 4656 * is used to copy security attributes between local stream sockets. 4657 * 4658 * Return: Returns 0 on success, error on failure. 4659 */ 4660 int security_sk_alloc(struct sock *sk, int family, gfp_t priority) 4661 { 4662 return call_int_hook(sk_alloc_security, sk, family, priority); 4663 } 4664 4665 /** 4666 * security_sk_free() - Free the sock's LSM blob 4667 * @sk: sock 4668 * 4669 * Deallocate security structure. 4670 */ 4671 void security_sk_free(struct sock *sk) 4672 { 4673 call_void_hook(sk_free_security, sk); 4674 } 4675 4676 /** 4677 * security_sk_clone() - Clone a sock's LSM state 4678 * @sk: original sock 4679 * @newsk: target sock 4680 * 4681 * Clone/copy security structure. 4682 */ 4683 void security_sk_clone(const struct sock *sk, struct sock *newsk) 4684 { 4685 call_void_hook(sk_clone_security, sk, newsk); 4686 } 4687 EXPORT_SYMBOL(security_sk_clone); 4688 4689 /** 4690 * security_sk_classify_flow() - Set a flow's secid based on socket 4691 * @sk: original socket 4692 * @flic: target flow 4693 * 4694 * Set the target flow's secid to socket's secid. 4695 */ 4696 void security_sk_classify_flow(const struct sock *sk, struct flowi_common *flic) 4697 { 4698 call_void_hook(sk_getsecid, sk, &flic->flowic_secid); 4699 } 4700 EXPORT_SYMBOL(security_sk_classify_flow); 4701 4702 /** 4703 * security_req_classify_flow() - Set a flow's secid based on request_sock 4704 * @req: request_sock 4705 * @flic: target flow 4706 * 4707 * Sets @flic's secid to @req's secid. 4708 */ 4709 void security_req_classify_flow(const struct request_sock *req, 4710 struct flowi_common *flic) 4711 { 4712 call_void_hook(req_classify_flow, req, flic); 4713 } 4714 EXPORT_SYMBOL(security_req_classify_flow); 4715 4716 /** 4717 * security_sock_graft() - Reconcile LSM state when grafting a sock on a socket 4718 * @sk: sock being grafted 4719 * @parent: target parent socket 4720 * 4721 * Sets @parent's inode secid to @sk's secid and update @sk with any necessary 4722 * LSM state from @parent. 4723 */ 4724 void security_sock_graft(struct sock *sk, struct socket *parent) 4725 { 4726 call_void_hook(sock_graft, sk, parent); 4727 } 4728 EXPORT_SYMBOL(security_sock_graft); 4729 4730 /** 4731 * security_inet_conn_request() - Set request_sock state using incoming connect 4732 * @sk: parent listening sock 4733 * @skb: incoming connection 4734 * @req: new request_sock 4735 * 4736 * Initialize the @req LSM state based on @sk and the incoming connect in @skb. 4737 * 4738 * Return: Returns 0 if permission is granted. 4739 */ 4740 int security_inet_conn_request(const struct sock *sk, 4741 struct sk_buff *skb, struct request_sock *req) 4742 { 4743 return call_int_hook(inet_conn_request, sk, skb, req); 4744 } 4745 EXPORT_SYMBOL(security_inet_conn_request); 4746 4747 /** 4748 * security_inet_csk_clone() - Set new sock LSM state based on request_sock 4749 * @newsk: new sock 4750 * @req: connection request_sock 4751 * 4752 * Set that LSM state of @sock using the LSM state from @req. 4753 */ 4754 void security_inet_csk_clone(struct sock *newsk, 4755 const struct request_sock *req) 4756 { 4757 call_void_hook(inet_csk_clone, newsk, req); 4758 } 4759 4760 /** 4761 * security_inet_conn_established() - Update sock's LSM state with connection 4762 * @sk: sock 4763 * @skb: connection packet 4764 * 4765 * Update @sock's LSM state to represent a new connection from @skb. 4766 */ 4767 void security_inet_conn_established(struct sock *sk, 4768 struct sk_buff *skb) 4769 { 4770 call_void_hook(inet_conn_established, sk, skb); 4771 } 4772 EXPORT_SYMBOL(security_inet_conn_established); 4773 4774 /** 4775 * security_secmark_relabel_packet() - Check if setting a secmark is allowed 4776 * @secid: new secmark value 4777 * 4778 * Check if the process should be allowed to relabel packets to @secid. 4779 * 4780 * Return: Returns 0 if permission is granted. 4781 */ 4782 int security_secmark_relabel_packet(u32 secid) 4783 { 4784 return call_int_hook(secmark_relabel_packet, secid); 4785 } 4786 EXPORT_SYMBOL(security_secmark_relabel_packet); 4787 4788 /** 4789 * security_secmark_refcount_inc() - Increment the secmark labeling rule count 4790 * 4791 * Tells the LSM to increment the number of secmark labeling rules loaded. 4792 */ 4793 void security_secmark_refcount_inc(void) 4794 { 4795 call_void_hook(secmark_refcount_inc); 4796 } 4797 EXPORT_SYMBOL(security_secmark_refcount_inc); 4798 4799 /** 4800 * security_secmark_refcount_dec() - Decrement the secmark labeling rule count 4801 * 4802 * Tells the LSM to decrement the number of secmark labeling rules loaded. 4803 */ 4804 void security_secmark_refcount_dec(void) 4805 { 4806 call_void_hook(secmark_refcount_dec); 4807 } 4808 EXPORT_SYMBOL(security_secmark_refcount_dec); 4809 4810 /** 4811 * security_tun_dev_alloc_security() - Allocate a LSM blob for a TUN device 4812 * @security: pointer to the LSM blob 4813 * 4814 * This hook allows a module to allocate a security structure for a TUN device, 4815 * returning the pointer in @security. 4816 * 4817 * Return: Returns a zero on success, negative values on failure. 4818 */ 4819 int security_tun_dev_alloc_security(void **security) 4820 { 4821 return call_int_hook(tun_dev_alloc_security, security); 4822 } 4823 EXPORT_SYMBOL(security_tun_dev_alloc_security); 4824 4825 /** 4826 * security_tun_dev_free_security() - Free a TUN device LSM blob 4827 * @security: LSM blob 4828 * 4829 * This hook allows a module to free the security structure for a TUN device. 4830 */ 4831 void security_tun_dev_free_security(void *security) 4832 { 4833 call_void_hook(tun_dev_free_security, security); 4834 } 4835 EXPORT_SYMBOL(security_tun_dev_free_security); 4836 4837 /** 4838 * security_tun_dev_create() - Check if creating a TUN device is allowed 4839 * 4840 * Check permissions prior to creating a new TUN device. 4841 * 4842 * Return: Returns 0 if permission is granted. 4843 */ 4844 int security_tun_dev_create(void) 4845 { 4846 return call_int_hook(tun_dev_create); 4847 } 4848 EXPORT_SYMBOL(security_tun_dev_create); 4849 4850 /** 4851 * security_tun_dev_attach_queue() - Check if attaching a TUN queue is allowed 4852 * @security: TUN device LSM blob 4853 * 4854 * Check permissions prior to attaching to a TUN device queue. 4855 * 4856 * Return: Returns 0 if permission is granted. 4857 */ 4858 int security_tun_dev_attach_queue(void *security) 4859 { 4860 return call_int_hook(tun_dev_attach_queue, security); 4861 } 4862 EXPORT_SYMBOL(security_tun_dev_attach_queue); 4863 4864 /** 4865 * security_tun_dev_attach() - Update TUN device LSM state on attach 4866 * @sk: associated sock 4867 * @security: TUN device LSM blob 4868 * 4869 * This hook can be used by the module to update any security state associated 4870 * with the TUN device's sock structure. 4871 * 4872 * Return: Returns 0 if permission is granted. 4873 */ 4874 int security_tun_dev_attach(struct sock *sk, void *security) 4875 { 4876 return call_int_hook(tun_dev_attach, sk, security); 4877 } 4878 EXPORT_SYMBOL(security_tun_dev_attach); 4879 4880 /** 4881 * security_tun_dev_open() - Update TUN device LSM state on open 4882 * @security: TUN device LSM blob 4883 * 4884 * This hook can be used by the module to update any security state associated 4885 * with the TUN device's security structure. 4886 * 4887 * Return: Returns 0 if permission is granted. 4888 */ 4889 int security_tun_dev_open(void *security) 4890 { 4891 return call_int_hook(tun_dev_open, security); 4892 } 4893 EXPORT_SYMBOL(security_tun_dev_open); 4894 4895 /** 4896 * security_sctp_assoc_request() - Update the LSM on a SCTP association req 4897 * @asoc: SCTP association 4898 * @skb: packet requesting the association 4899 * 4900 * Passes the @asoc and @chunk->skb of the association INIT packet to the LSM. 4901 * 4902 * Return: Returns 0 on success, error on failure. 4903 */ 4904 int security_sctp_assoc_request(struct sctp_association *asoc, 4905 struct sk_buff *skb) 4906 { 4907 return call_int_hook(sctp_assoc_request, asoc, skb); 4908 } 4909 EXPORT_SYMBOL(security_sctp_assoc_request); 4910 4911 /** 4912 * security_sctp_bind_connect() - Validate a list of addrs for a SCTP option 4913 * @sk: socket 4914 * @optname: SCTP option to validate 4915 * @address: list of IP addresses to validate 4916 * @addrlen: length of the address list 4917 * 4918 * Validiate permissions required for each address associated with sock @sk. 4919 * Depending on @optname, the addresses will be treated as either a connect or 4920 * bind service. The @addrlen is calculated on each IPv4 and IPv6 address using 4921 * sizeof(struct sockaddr_in) or sizeof(struct sockaddr_in6). 4922 * 4923 * Return: Returns 0 on success, error on failure. 4924 */ 4925 int security_sctp_bind_connect(struct sock *sk, int optname, 4926 struct sockaddr *address, int addrlen) 4927 { 4928 return call_int_hook(sctp_bind_connect, sk, optname, address, addrlen); 4929 } 4930 EXPORT_SYMBOL(security_sctp_bind_connect); 4931 4932 /** 4933 * security_sctp_sk_clone() - Clone a SCTP sock's LSM state 4934 * @asoc: SCTP association 4935 * @sk: original sock 4936 * @newsk: target sock 4937 * 4938 * Called whenever a new socket is created by accept(2) (i.e. a TCP style 4939 * socket) or when a socket is 'peeled off' e.g userspace calls 4940 * sctp_peeloff(3). 4941 */ 4942 void security_sctp_sk_clone(struct sctp_association *asoc, struct sock *sk, 4943 struct sock *newsk) 4944 { 4945 call_void_hook(sctp_sk_clone, asoc, sk, newsk); 4946 } 4947 EXPORT_SYMBOL(security_sctp_sk_clone); 4948 4949 /** 4950 * security_sctp_assoc_established() - Update LSM state when assoc established 4951 * @asoc: SCTP association 4952 * @skb: packet establishing the association 4953 * 4954 * Passes the @asoc and @chunk->skb of the association COOKIE_ACK packet to the 4955 * security module. 4956 * 4957 * Return: Returns 0 if permission is granted. 4958 */ 4959 int security_sctp_assoc_established(struct sctp_association *asoc, 4960 struct sk_buff *skb) 4961 { 4962 return call_int_hook(sctp_assoc_established, asoc, skb); 4963 } 4964 EXPORT_SYMBOL(security_sctp_assoc_established); 4965 4966 /** 4967 * security_mptcp_add_subflow() - Inherit the LSM label from the MPTCP socket 4968 * @sk: the owning MPTCP socket 4969 * @ssk: the new subflow 4970 * 4971 * Update the labeling for the given MPTCP subflow, to match the one of the 4972 * owning MPTCP socket. This hook has to be called after the socket creation and 4973 * initialization via the security_socket_create() and 4974 * security_socket_post_create() LSM hooks. 4975 * 4976 * Return: Returns 0 on success or a negative error code on failure. 4977 */ 4978 int security_mptcp_add_subflow(struct sock *sk, struct sock *ssk) 4979 { 4980 return call_int_hook(mptcp_add_subflow, sk, ssk); 4981 } 4982 4983 #endif /* CONFIG_SECURITY_NETWORK */ 4984 4985 #ifdef CONFIG_SECURITY_INFINIBAND 4986 /** 4987 * security_ib_pkey_access() - Check if access to an IB pkey is allowed 4988 * @sec: LSM blob 4989 * @subnet_prefix: subnet prefix of the port 4990 * @pkey: IB pkey 4991 * 4992 * Check permission to access a pkey when modifying a QP. 4993 * 4994 * Return: Returns 0 if permission is granted. 4995 */ 4996 int security_ib_pkey_access(void *sec, u64 subnet_prefix, u16 pkey) 4997 { 4998 return call_int_hook(ib_pkey_access, sec, subnet_prefix, pkey); 4999 } 5000 EXPORT_SYMBOL(security_ib_pkey_access); 5001 5002 /** 5003 * security_ib_endport_manage_subnet() - Check if SMPs traffic is allowed 5004 * @sec: LSM blob 5005 * @dev_name: IB device name 5006 * @port_num: port number 5007 * 5008 * Check permissions to send and receive SMPs on a end port. 5009 * 5010 * Return: Returns 0 if permission is granted. 5011 */ 5012 int security_ib_endport_manage_subnet(void *sec, 5013 const char *dev_name, u8 port_num) 5014 { 5015 return call_int_hook(ib_endport_manage_subnet, sec, dev_name, port_num); 5016 } 5017 EXPORT_SYMBOL(security_ib_endport_manage_subnet); 5018 5019 /** 5020 * security_ib_alloc_security() - Allocate an Infiniband LSM blob 5021 * @sec: LSM blob 5022 * 5023 * Allocate a security structure for Infiniband objects. 5024 * 5025 * Return: Returns 0 on success, non-zero on failure. 5026 */ 5027 int security_ib_alloc_security(void **sec) 5028 { 5029 return call_int_hook(ib_alloc_security, sec); 5030 } 5031 EXPORT_SYMBOL(security_ib_alloc_security); 5032 5033 /** 5034 * security_ib_free_security() - Free an Infiniband LSM blob 5035 * @sec: LSM blob 5036 * 5037 * Deallocate an Infiniband security structure. 5038 */ 5039 void security_ib_free_security(void *sec) 5040 { 5041 call_void_hook(ib_free_security, sec); 5042 } 5043 EXPORT_SYMBOL(security_ib_free_security); 5044 #endif /* CONFIG_SECURITY_INFINIBAND */ 5045 5046 #ifdef CONFIG_SECURITY_NETWORK_XFRM 5047 /** 5048 * security_xfrm_policy_alloc() - Allocate a xfrm policy LSM blob 5049 * @ctxp: xfrm security context being added to the SPD 5050 * @sec_ctx: security label provided by userspace 5051 * @gfp: gfp flags 5052 * 5053 * Allocate a security structure to the xp->security field; the security field 5054 * is initialized to NULL when the xfrm_policy is allocated. 5055 * 5056 * Return: Return 0 if operation was successful. 5057 */ 5058 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, 5059 struct xfrm_user_sec_ctx *sec_ctx, 5060 gfp_t gfp) 5061 { 5062 return call_int_hook(xfrm_policy_alloc_security, ctxp, sec_ctx, gfp); 5063 } 5064 EXPORT_SYMBOL(security_xfrm_policy_alloc); 5065 5066 /** 5067 * security_xfrm_policy_clone() - Clone xfrm policy LSM state 5068 * @old_ctx: xfrm security context 5069 * @new_ctxp: target xfrm security context 5070 * 5071 * Allocate a security structure in new_ctxp that contains the information from 5072 * the old_ctx structure. 5073 * 5074 * Return: Return 0 if operation was successful. 5075 */ 5076 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx, 5077 struct xfrm_sec_ctx **new_ctxp) 5078 { 5079 return call_int_hook(xfrm_policy_clone_security, old_ctx, new_ctxp); 5080 } 5081 5082 /** 5083 * security_xfrm_policy_free() - Free a xfrm security context 5084 * @ctx: xfrm security context 5085 * 5086 * Free LSM resources associated with @ctx. 5087 */ 5088 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx) 5089 { 5090 call_void_hook(xfrm_policy_free_security, ctx); 5091 } 5092 EXPORT_SYMBOL(security_xfrm_policy_free); 5093 5094 /** 5095 * security_xfrm_policy_delete() - Check if deleting a xfrm policy is allowed 5096 * @ctx: xfrm security context 5097 * 5098 * Authorize deletion of a SPD entry. 5099 * 5100 * Return: Returns 0 if permission is granted. 5101 */ 5102 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx) 5103 { 5104 return call_int_hook(xfrm_policy_delete_security, ctx); 5105 } 5106 5107 /** 5108 * security_xfrm_state_alloc() - Allocate a xfrm state LSM blob 5109 * @x: xfrm state being added to the SAD 5110 * @sec_ctx: security label provided by userspace 5111 * 5112 * Allocate a security structure to the @x->security field; the security field 5113 * is initialized to NULL when the xfrm_state is allocated. Set the context to 5114 * correspond to @sec_ctx. 5115 * 5116 * Return: Return 0 if operation was successful. 5117 */ 5118 int security_xfrm_state_alloc(struct xfrm_state *x, 5119 struct xfrm_user_sec_ctx *sec_ctx) 5120 { 5121 return call_int_hook(xfrm_state_alloc, x, sec_ctx); 5122 } 5123 EXPORT_SYMBOL(security_xfrm_state_alloc); 5124 5125 /** 5126 * security_xfrm_state_alloc_acquire() - Allocate a xfrm state LSM blob 5127 * @x: xfrm state being added to the SAD 5128 * @polsec: associated policy's security context 5129 * @secid: secid from the flow 5130 * 5131 * Allocate a security structure to the x->security field; the security field 5132 * is initialized to NULL when the xfrm_state is allocated. Set the context to 5133 * correspond to secid. 5134 * 5135 * Return: Returns 0 if operation was successful. 5136 */ 5137 int security_xfrm_state_alloc_acquire(struct xfrm_state *x, 5138 struct xfrm_sec_ctx *polsec, u32 secid) 5139 { 5140 return call_int_hook(xfrm_state_alloc_acquire, x, polsec, secid); 5141 } 5142 5143 /** 5144 * security_xfrm_state_delete() - Check if deleting a xfrm state is allowed 5145 * @x: xfrm state 5146 * 5147 * Authorize deletion of x->security. 5148 * 5149 * Return: Returns 0 if permission is granted. 5150 */ 5151 int security_xfrm_state_delete(struct xfrm_state *x) 5152 { 5153 return call_int_hook(xfrm_state_delete_security, x); 5154 } 5155 EXPORT_SYMBOL(security_xfrm_state_delete); 5156 5157 /** 5158 * security_xfrm_state_free() - Free a xfrm state 5159 * @x: xfrm state 5160 * 5161 * Deallocate x->security. 5162 */ 5163 void security_xfrm_state_free(struct xfrm_state *x) 5164 { 5165 call_void_hook(xfrm_state_free_security, x); 5166 } 5167 5168 /** 5169 * security_xfrm_policy_lookup() - Check if using a xfrm policy is allowed 5170 * @ctx: target xfrm security context 5171 * @fl_secid: flow secid used to authorize access 5172 * 5173 * Check permission when a flow selects a xfrm_policy for processing XFRMs on a 5174 * packet. The hook is called when selecting either a per-socket policy or a 5175 * generic xfrm policy. 5176 * 5177 * Return: Return 0 if permission is granted, -ESRCH otherwise, or -errno on 5178 * other errors. 5179 */ 5180 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid) 5181 { 5182 return call_int_hook(xfrm_policy_lookup, ctx, fl_secid); 5183 } 5184 5185 /** 5186 * security_xfrm_state_pol_flow_match() - Check for a xfrm match 5187 * @x: xfrm state to match 5188 * @xp: xfrm policy to check for a match 5189 * @flic: flow to check for a match. 5190 * 5191 * Check @xp and @flic for a match with @x. 5192 * 5193 * Return: Returns 1 if there is a match. 5194 */ 5195 int security_xfrm_state_pol_flow_match(struct xfrm_state *x, 5196 struct xfrm_policy *xp, 5197 const struct flowi_common *flic) 5198 { 5199 struct security_hook_list *hp; 5200 int rc = LSM_RET_DEFAULT(xfrm_state_pol_flow_match); 5201 5202 /* 5203 * Since this function is expected to return 0 or 1, the judgment 5204 * becomes difficult if multiple LSMs supply this call. Fortunately, 5205 * we can use the first LSM's judgment because currently only SELinux 5206 * supplies this call. 5207 * 5208 * For speed optimization, we explicitly break the loop rather than 5209 * using the macro 5210 */ 5211 hlist_for_each_entry(hp, &security_hook_heads.xfrm_state_pol_flow_match, 5212 list) { 5213 rc = hp->hook.xfrm_state_pol_flow_match(x, xp, flic); 5214 break; 5215 } 5216 return rc; 5217 } 5218 5219 /** 5220 * security_xfrm_decode_session() - Determine the xfrm secid for a packet 5221 * @skb: xfrm packet 5222 * @secid: secid 5223 * 5224 * Decode the packet in @skb and return the security label in @secid. 5225 * 5226 * Return: Return 0 if all xfrms used have the same secid. 5227 */ 5228 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid) 5229 { 5230 return call_int_hook(xfrm_decode_session, skb, secid, 1); 5231 } 5232 5233 void security_skb_classify_flow(struct sk_buff *skb, struct flowi_common *flic) 5234 { 5235 int rc = call_int_hook(xfrm_decode_session, skb, &flic->flowic_secid, 5236 0); 5237 5238 BUG_ON(rc); 5239 } 5240 EXPORT_SYMBOL(security_skb_classify_flow); 5241 #endif /* CONFIG_SECURITY_NETWORK_XFRM */ 5242 5243 #ifdef CONFIG_KEYS 5244 /** 5245 * security_key_alloc() - Allocate and initialize a kernel key LSM blob 5246 * @key: key 5247 * @cred: credentials 5248 * @flags: allocation flags 5249 * 5250 * Permit allocation of a key and assign security data. Note that key does not 5251 * have a serial number assigned at this point. 5252 * 5253 * Return: Return 0 if permission is granted, -ve error otherwise. 5254 */ 5255 int security_key_alloc(struct key *key, const struct cred *cred, 5256 unsigned long flags) 5257 { 5258 return call_int_hook(key_alloc, key, cred, flags); 5259 } 5260 5261 /** 5262 * security_key_free() - Free a kernel key LSM blob 5263 * @key: key 5264 * 5265 * Notification of destruction; free security data. 5266 */ 5267 void security_key_free(struct key *key) 5268 { 5269 call_void_hook(key_free, key); 5270 } 5271 5272 /** 5273 * security_key_permission() - Check if a kernel key operation is allowed 5274 * @key_ref: key reference 5275 * @cred: credentials of actor requesting access 5276 * @need_perm: requested permissions 5277 * 5278 * See whether a specific operational right is granted to a process on a key. 5279 * 5280 * Return: Return 0 if permission is granted, -ve error otherwise. 5281 */ 5282 int security_key_permission(key_ref_t key_ref, const struct cred *cred, 5283 enum key_need_perm need_perm) 5284 { 5285 return call_int_hook(key_permission, key_ref, cred, need_perm); 5286 } 5287 5288 /** 5289 * security_key_getsecurity() - Get the key's security label 5290 * @key: key 5291 * @buffer: security label buffer 5292 * 5293 * Get a textual representation of the security context attached to a key for 5294 * the purposes of honouring KEYCTL_GETSECURITY. This function allocates the 5295 * storage for the NUL-terminated string and the caller should free it. 5296 * 5297 * Return: Returns the length of @buffer (including terminating NUL) or -ve if 5298 * an error occurs. May also return 0 (and a NULL buffer pointer) if 5299 * there is no security label assigned to the key. 5300 */ 5301 int security_key_getsecurity(struct key *key, char **buffer) 5302 { 5303 *buffer = NULL; 5304 return call_int_hook(key_getsecurity, key, buffer); 5305 } 5306 5307 /** 5308 * security_key_post_create_or_update() - Notification of key create or update 5309 * @keyring: keyring to which the key is linked to 5310 * @key: created or updated key 5311 * @payload: data used to instantiate or update the key 5312 * @payload_len: length of payload 5313 * @flags: key flags 5314 * @create: flag indicating whether the key was created or updated 5315 * 5316 * Notify the caller of a key creation or update. 5317 */ 5318 void security_key_post_create_or_update(struct key *keyring, struct key *key, 5319 const void *payload, size_t payload_len, 5320 unsigned long flags, bool create) 5321 { 5322 call_void_hook(key_post_create_or_update, keyring, key, payload, 5323 payload_len, flags, create); 5324 } 5325 #endif /* CONFIG_KEYS */ 5326 5327 #ifdef CONFIG_AUDIT 5328 /** 5329 * security_audit_rule_init() - Allocate and init an LSM audit rule struct 5330 * @field: audit action 5331 * @op: rule operator 5332 * @rulestr: rule context 5333 * @lsmrule: receive buffer for audit rule struct 5334 * 5335 * Allocate and initialize an LSM audit rule structure. 5336 * 5337 * Return: Return 0 if @lsmrule has been successfully set, -EINVAL in case of 5338 * an invalid rule. 5339 */ 5340 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule) 5341 { 5342 return call_int_hook(audit_rule_init, field, op, rulestr, lsmrule); 5343 } 5344 5345 /** 5346 * security_audit_rule_known() - Check if an audit rule contains LSM fields 5347 * @krule: audit rule 5348 * 5349 * Specifies whether given @krule contains any fields related to the current 5350 * LSM. 5351 * 5352 * Return: Returns 1 in case of relation found, 0 otherwise. 5353 */ 5354 int security_audit_rule_known(struct audit_krule *krule) 5355 { 5356 return call_int_hook(audit_rule_known, krule); 5357 } 5358 5359 /** 5360 * security_audit_rule_free() - Free an LSM audit rule struct 5361 * @lsmrule: audit rule struct 5362 * 5363 * Deallocate the LSM audit rule structure previously allocated by 5364 * audit_rule_init(). 5365 */ 5366 void security_audit_rule_free(void *lsmrule) 5367 { 5368 call_void_hook(audit_rule_free, lsmrule); 5369 } 5370 5371 /** 5372 * security_audit_rule_match() - Check if a label matches an audit rule 5373 * @secid: security label 5374 * @field: LSM audit field 5375 * @op: matching operator 5376 * @lsmrule: audit rule 5377 * 5378 * Determine if given @secid matches a rule previously approved by 5379 * security_audit_rule_known(). 5380 * 5381 * Return: Returns 1 if secid matches the rule, 0 if it does not, -ERRNO on 5382 * failure. 5383 */ 5384 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule) 5385 { 5386 return call_int_hook(audit_rule_match, secid, field, op, lsmrule); 5387 } 5388 #endif /* CONFIG_AUDIT */ 5389 5390 #ifdef CONFIG_BPF_SYSCALL 5391 /** 5392 * security_bpf() - Check if the bpf syscall operation is allowed 5393 * @cmd: command 5394 * @attr: bpf attribute 5395 * @size: size 5396 * 5397 * Do a initial check for all bpf syscalls after the attribute is copied into 5398 * the kernel. The actual security module can implement their own rules to 5399 * check the specific cmd they need. 5400 * 5401 * Return: Returns 0 if permission is granted. 5402 */ 5403 int security_bpf(int cmd, union bpf_attr *attr, unsigned int size) 5404 { 5405 return call_int_hook(bpf, cmd, attr, size); 5406 } 5407 5408 /** 5409 * security_bpf_map() - Check if access to a bpf map is allowed 5410 * @map: bpf map 5411 * @fmode: mode 5412 * 5413 * Do a check when the kernel generates and returns a file descriptor for eBPF 5414 * maps. 5415 * 5416 * Return: Returns 0 if permission is granted. 5417 */ 5418 int security_bpf_map(struct bpf_map *map, fmode_t fmode) 5419 { 5420 return call_int_hook(bpf_map, map, fmode); 5421 } 5422 5423 /** 5424 * security_bpf_prog() - Check if access to a bpf program is allowed 5425 * @prog: bpf program 5426 * 5427 * Do a check when the kernel generates and returns a file descriptor for eBPF 5428 * programs. 5429 * 5430 * Return: Returns 0 if permission is granted. 5431 */ 5432 int security_bpf_prog(struct bpf_prog *prog) 5433 { 5434 return call_int_hook(bpf_prog, prog); 5435 } 5436 5437 /** 5438 * security_bpf_map_create() - Check if BPF map creation is allowed 5439 * @map: BPF map object 5440 * @attr: BPF syscall attributes used to create BPF map 5441 * @token: BPF token used to grant user access 5442 * 5443 * Do a check when the kernel creates a new BPF map. This is also the 5444 * point where LSM blob is allocated for LSMs that need them. 5445 * 5446 * Return: Returns 0 on success, error on failure. 5447 */ 5448 int security_bpf_map_create(struct bpf_map *map, union bpf_attr *attr, 5449 struct bpf_token *token) 5450 { 5451 return call_int_hook(bpf_map_create, map, attr, token); 5452 } 5453 5454 /** 5455 * security_bpf_prog_load() - Check if loading of BPF program is allowed 5456 * @prog: BPF program object 5457 * @attr: BPF syscall attributes used to create BPF program 5458 * @token: BPF token used to grant user access to BPF subsystem 5459 * 5460 * Perform an access control check when the kernel loads a BPF program and 5461 * allocates associated BPF program object. This hook is also responsible for 5462 * allocating any required LSM state for the BPF program. 5463 * 5464 * Return: Returns 0 on success, error on failure. 5465 */ 5466 int security_bpf_prog_load(struct bpf_prog *prog, union bpf_attr *attr, 5467 struct bpf_token *token) 5468 { 5469 return call_int_hook(bpf_prog_load, prog, attr, token); 5470 } 5471 5472 /** 5473 * security_bpf_token_create() - Check if creating of BPF token is allowed 5474 * @token: BPF token object 5475 * @attr: BPF syscall attributes used to create BPF token 5476 * @path: path pointing to BPF FS mount point from which BPF token is created 5477 * 5478 * Do a check when the kernel instantiates a new BPF token object from BPF FS 5479 * instance. This is also the point where LSM blob can be allocated for LSMs. 5480 * 5481 * Return: Returns 0 on success, error on failure. 5482 */ 5483 int security_bpf_token_create(struct bpf_token *token, union bpf_attr *attr, 5484 struct path *path) 5485 { 5486 return call_int_hook(bpf_token_create, token, attr, path); 5487 } 5488 5489 /** 5490 * security_bpf_token_cmd() - Check if BPF token is allowed to delegate 5491 * requested BPF syscall command 5492 * @token: BPF token object 5493 * @cmd: BPF syscall command requested to be delegated by BPF token 5494 * 5495 * Do a check when the kernel decides whether provided BPF token should allow 5496 * delegation of requested BPF syscall command. 5497 * 5498 * Return: Returns 0 on success, error on failure. 5499 */ 5500 int security_bpf_token_cmd(const struct bpf_token *token, enum bpf_cmd cmd) 5501 { 5502 return call_int_hook(bpf_token_cmd, token, cmd); 5503 } 5504 5505 /** 5506 * security_bpf_token_capable() - Check if BPF token is allowed to delegate 5507 * requested BPF-related capability 5508 * @token: BPF token object 5509 * @cap: capabilities requested to be delegated by BPF token 5510 * 5511 * Do a check when the kernel decides whether provided BPF token should allow 5512 * delegation of requested BPF-related capabilities. 5513 * 5514 * Return: Returns 0 on success, error on failure. 5515 */ 5516 int security_bpf_token_capable(const struct bpf_token *token, int cap) 5517 { 5518 return call_int_hook(bpf_token_capable, token, cap); 5519 } 5520 5521 /** 5522 * security_bpf_map_free() - Free a bpf map's LSM blob 5523 * @map: bpf map 5524 * 5525 * Clean up the security information stored inside bpf map. 5526 */ 5527 void security_bpf_map_free(struct bpf_map *map) 5528 { 5529 call_void_hook(bpf_map_free, map); 5530 } 5531 5532 /** 5533 * security_bpf_prog_free() - Free a BPF program's LSM blob 5534 * @prog: BPF program struct 5535 * 5536 * Clean up the security information stored inside BPF program. 5537 */ 5538 void security_bpf_prog_free(struct bpf_prog *prog) 5539 { 5540 call_void_hook(bpf_prog_free, prog); 5541 } 5542 5543 /** 5544 * security_bpf_token_free() - Free a BPF token's LSM blob 5545 * @token: BPF token struct 5546 * 5547 * Clean up the security information stored inside BPF token. 5548 */ 5549 void security_bpf_token_free(struct bpf_token *token) 5550 { 5551 call_void_hook(bpf_token_free, token); 5552 } 5553 #endif /* CONFIG_BPF_SYSCALL */ 5554 5555 /** 5556 * security_locked_down() - Check if a kernel feature is allowed 5557 * @what: requested kernel feature 5558 * 5559 * Determine whether a kernel feature that potentially enables arbitrary code 5560 * execution in kernel space should be permitted. 5561 * 5562 * Return: Returns 0 if permission is granted. 5563 */ 5564 int security_locked_down(enum lockdown_reason what) 5565 { 5566 return call_int_hook(locked_down, what); 5567 } 5568 EXPORT_SYMBOL(security_locked_down); 5569 5570 #ifdef CONFIG_PERF_EVENTS 5571 /** 5572 * security_perf_event_open() - Check if a perf event open is allowed 5573 * @attr: perf event attribute 5574 * @type: type of event 5575 * 5576 * Check whether the @type of perf_event_open syscall is allowed. 5577 * 5578 * Return: Returns 0 if permission is granted. 5579 */ 5580 int security_perf_event_open(struct perf_event_attr *attr, int type) 5581 { 5582 return call_int_hook(perf_event_open, attr, type); 5583 } 5584 5585 /** 5586 * security_perf_event_alloc() - Allocate a perf event LSM blob 5587 * @event: perf event 5588 * 5589 * Allocate and save perf_event security info. 5590 * 5591 * Return: Returns 0 on success, error on failure. 5592 */ 5593 int security_perf_event_alloc(struct perf_event *event) 5594 { 5595 return call_int_hook(perf_event_alloc, event); 5596 } 5597 5598 /** 5599 * security_perf_event_free() - Free a perf event LSM blob 5600 * @event: perf event 5601 * 5602 * Release (free) perf_event security info. 5603 */ 5604 void security_perf_event_free(struct perf_event *event) 5605 { 5606 call_void_hook(perf_event_free, event); 5607 } 5608 5609 /** 5610 * security_perf_event_read() - Check if reading a perf event label is allowed 5611 * @event: perf event 5612 * 5613 * Read perf_event security info if allowed. 5614 * 5615 * Return: Returns 0 if permission is granted. 5616 */ 5617 int security_perf_event_read(struct perf_event *event) 5618 { 5619 return call_int_hook(perf_event_read, event); 5620 } 5621 5622 /** 5623 * security_perf_event_write() - Check if writing a perf event label is allowed 5624 * @event: perf event 5625 * 5626 * Write perf_event security info if allowed. 5627 * 5628 * Return: Returns 0 if permission is granted. 5629 */ 5630 int security_perf_event_write(struct perf_event *event) 5631 { 5632 return call_int_hook(perf_event_write, event); 5633 } 5634 #endif /* CONFIG_PERF_EVENTS */ 5635 5636 #ifdef CONFIG_IO_URING 5637 /** 5638 * security_uring_override_creds() - Check if overriding creds is allowed 5639 * @new: new credentials 5640 * 5641 * Check if the current task, executing an io_uring operation, is allowed to 5642 * override it's credentials with @new. 5643 * 5644 * Return: Returns 0 if permission is granted. 5645 */ 5646 int security_uring_override_creds(const struct cred *new) 5647 { 5648 return call_int_hook(uring_override_creds, new); 5649 } 5650 5651 /** 5652 * security_uring_sqpoll() - Check if IORING_SETUP_SQPOLL is allowed 5653 * 5654 * Check whether the current task is allowed to spawn a io_uring polling thread 5655 * (IORING_SETUP_SQPOLL). 5656 * 5657 * Return: Returns 0 if permission is granted. 5658 */ 5659 int security_uring_sqpoll(void) 5660 { 5661 return call_int_hook(uring_sqpoll); 5662 } 5663 5664 /** 5665 * security_uring_cmd() - Check if a io_uring passthrough command is allowed 5666 * @ioucmd: command 5667 * 5668 * Check whether the file_operations uring_cmd is allowed to run. 5669 * 5670 * Return: Returns 0 if permission is granted. 5671 */ 5672 int security_uring_cmd(struct io_uring_cmd *ioucmd) 5673 { 5674 return call_int_hook(uring_cmd, ioucmd); 5675 } 5676 #endif /* CONFIG_IO_URING */ 5677