1 /* 2 * Security plug functions 3 * 4 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com> 5 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com> 6 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com> 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2 of the License, or 11 * (at your option) any later version. 12 */ 13 14 #include <linux/capability.h> 15 #include <linux/module.h> 16 #include <linux/init.h> 17 #include <linux/kernel.h> 18 #include <linux/security.h> 19 #include <linux/ima.h> 20 21 /* Boot-time LSM user choice */ 22 static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1] = 23 CONFIG_DEFAULT_SECURITY; 24 25 /* things that live in capability.c */ 26 extern void __init security_fixup_ops(struct security_operations *ops); 27 28 static struct security_operations *security_ops; 29 static struct security_operations default_security_ops = { 30 .name = "default", 31 }; 32 33 static inline int __init verify(struct security_operations *ops) 34 { 35 /* verify the security_operations structure exists */ 36 if (!ops) 37 return -EINVAL; 38 security_fixup_ops(ops); 39 return 0; 40 } 41 42 static void __init do_security_initcalls(void) 43 { 44 initcall_t *call; 45 call = __security_initcall_start; 46 while (call < __security_initcall_end) { 47 (*call) (); 48 call++; 49 } 50 } 51 52 /** 53 * security_init - initializes the security framework 54 * 55 * This should be called early in the kernel initialization sequence. 56 */ 57 int __init security_init(void) 58 { 59 printk(KERN_INFO "Security Framework initialized\n"); 60 61 security_fixup_ops(&default_security_ops); 62 security_ops = &default_security_ops; 63 do_security_initcalls(); 64 65 return 0; 66 } 67 68 void reset_security_ops(void) 69 { 70 security_ops = &default_security_ops; 71 } 72 73 /* Save user chosen LSM */ 74 static int __init choose_lsm(char *str) 75 { 76 strncpy(chosen_lsm, str, SECURITY_NAME_MAX); 77 return 1; 78 } 79 __setup("security=", choose_lsm); 80 81 /** 82 * security_module_enable - Load given security module on boot ? 83 * @ops: a pointer to the struct security_operations that is to be checked. 84 * 85 * Each LSM must pass this method before registering its own operations 86 * to avoid security registration races. This method may also be used 87 * to check if your LSM is currently loaded during kernel initialization. 88 * 89 * Return true if: 90 * -The passed LSM is the one chosen by user at boot time, 91 * -or the passed LSM is configured as the default and the user did not 92 * choose an alternate LSM at boot time. 93 * Otherwise, return false. 94 */ 95 int __init security_module_enable(struct security_operations *ops) 96 { 97 return !strcmp(ops->name, chosen_lsm); 98 } 99 100 /** 101 * register_security - registers a security framework with the kernel 102 * @ops: a pointer to the struct security_options that is to be registered 103 * 104 * This function allows a security module to register itself with the 105 * kernel security subsystem. Some rudimentary checking is done on the @ops 106 * value passed to this function. You'll need to check first if your LSM 107 * is allowed to register its @ops by calling security_module_enable(@ops). 108 * 109 * If there is already a security module registered with the kernel, 110 * an error will be returned. Otherwise %0 is returned on success. 111 */ 112 int __init register_security(struct security_operations *ops) 113 { 114 if (verify(ops)) { 115 printk(KERN_DEBUG "%s could not verify " 116 "security_operations structure.\n", __func__); 117 return -EINVAL; 118 } 119 120 if (security_ops != &default_security_ops) 121 return -EAGAIN; 122 123 security_ops = ops; 124 125 return 0; 126 } 127 128 /* Security operations */ 129 130 int security_ptrace_access_check(struct task_struct *child, unsigned int mode) 131 { 132 return security_ops->ptrace_access_check(child, mode); 133 } 134 135 int security_ptrace_traceme(struct task_struct *parent) 136 { 137 return security_ops->ptrace_traceme(parent); 138 } 139 140 int security_capget(struct task_struct *target, 141 kernel_cap_t *effective, 142 kernel_cap_t *inheritable, 143 kernel_cap_t *permitted) 144 { 145 return security_ops->capget(target, effective, inheritable, permitted); 146 } 147 148 int security_capset(struct cred *new, const struct cred *old, 149 const kernel_cap_t *effective, 150 const kernel_cap_t *inheritable, 151 const kernel_cap_t *permitted) 152 { 153 return security_ops->capset(new, old, 154 effective, inheritable, permitted); 155 } 156 157 int security_capable(int cap) 158 { 159 return security_ops->capable(current, current_cred(), cap, 160 SECURITY_CAP_AUDIT); 161 } 162 163 int security_real_capable(struct task_struct *tsk, int cap) 164 { 165 const struct cred *cred; 166 int ret; 167 168 cred = get_task_cred(tsk); 169 ret = security_ops->capable(tsk, cred, cap, SECURITY_CAP_AUDIT); 170 put_cred(cred); 171 return ret; 172 } 173 174 int security_real_capable_noaudit(struct task_struct *tsk, int cap) 175 { 176 const struct cred *cred; 177 int ret; 178 179 cred = get_task_cred(tsk); 180 ret = security_ops->capable(tsk, cred, cap, SECURITY_CAP_NOAUDIT); 181 put_cred(cred); 182 return ret; 183 } 184 185 int security_sysctl(struct ctl_table *table, int op) 186 { 187 return security_ops->sysctl(table, op); 188 } 189 190 int security_quotactl(int cmds, int type, int id, struct super_block *sb) 191 { 192 return security_ops->quotactl(cmds, type, id, sb); 193 } 194 195 int security_quota_on(struct dentry *dentry) 196 { 197 return security_ops->quota_on(dentry); 198 } 199 200 int security_syslog(int type) 201 { 202 return security_ops->syslog(type); 203 } 204 205 int security_settime(struct timespec *ts, struct timezone *tz) 206 { 207 return security_ops->settime(ts, tz); 208 } 209 210 int security_vm_enough_memory(long pages) 211 { 212 WARN_ON(current->mm == NULL); 213 return security_ops->vm_enough_memory(current->mm, pages); 214 } 215 216 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages) 217 { 218 WARN_ON(mm == NULL); 219 return security_ops->vm_enough_memory(mm, pages); 220 } 221 222 int security_vm_enough_memory_kern(long pages) 223 { 224 /* If current->mm is a kernel thread then we will pass NULL, 225 for this specific case that is fine */ 226 return security_ops->vm_enough_memory(current->mm, pages); 227 } 228 229 int security_bprm_set_creds(struct linux_binprm *bprm) 230 { 231 return security_ops->bprm_set_creds(bprm); 232 } 233 234 int security_bprm_check(struct linux_binprm *bprm) 235 { 236 int ret; 237 238 ret = security_ops->bprm_check_security(bprm); 239 if (ret) 240 return ret; 241 return ima_bprm_check(bprm); 242 } 243 244 void security_bprm_committing_creds(struct linux_binprm *bprm) 245 { 246 security_ops->bprm_committing_creds(bprm); 247 } 248 249 void security_bprm_committed_creds(struct linux_binprm *bprm) 250 { 251 security_ops->bprm_committed_creds(bprm); 252 } 253 254 int security_bprm_secureexec(struct linux_binprm *bprm) 255 { 256 return security_ops->bprm_secureexec(bprm); 257 } 258 259 int security_sb_alloc(struct super_block *sb) 260 { 261 return security_ops->sb_alloc_security(sb); 262 } 263 264 void security_sb_free(struct super_block *sb) 265 { 266 security_ops->sb_free_security(sb); 267 } 268 269 int security_sb_copy_data(char *orig, char *copy) 270 { 271 return security_ops->sb_copy_data(orig, copy); 272 } 273 EXPORT_SYMBOL(security_sb_copy_data); 274 275 int security_sb_kern_mount(struct super_block *sb, int flags, void *data) 276 { 277 return security_ops->sb_kern_mount(sb, flags, data); 278 } 279 280 int security_sb_show_options(struct seq_file *m, struct super_block *sb) 281 { 282 return security_ops->sb_show_options(m, sb); 283 } 284 285 int security_sb_statfs(struct dentry *dentry) 286 { 287 return security_ops->sb_statfs(dentry); 288 } 289 290 int security_sb_mount(char *dev_name, struct path *path, 291 char *type, unsigned long flags, void *data) 292 { 293 return security_ops->sb_mount(dev_name, path, type, flags, data); 294 } 295 296 int security_sb_umount(struct vfsmount *mnt, int flags) 297 { 298 return security_ops->sb_umount(mnt, flags); 299 } 300 301 int security_sb_pivotroot(struct path *old_path, struct path *new_path) 302 { 303 return security_ops->sb_pivotroot(old_path, new_path); 304 } 305 306 int security_sb_set_mnt_opts(struct super_block *sb, 307 struct security_mnt_opts *opts) 308 { 309 return security_ops->sb_set_mnt_opts(sb, opts); 310 } 311 EXPORT_SYMBOL(security_sb_set_mnt_opts); 312 313 void security_sb_clone_mnt_opts(const struct super_block *oldsb, 314 struct super_block *newsb) 315 { 316 security_ops->sb_clone_mnt_opts(oldsb, newsb); 317 } 318 EXPORT_SYMBOL(security_sb_clone_mnt_opts); 319 320 int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts) 321 { 322 return security_ops->sb_parse_opts_str(options, opts); 323 } 324 EXPORT_SYMBOL(security_sb_parse_opts_str); 325 326 int security_inode_alloc(struct inode *inode) 327 { 328 inode->i_security = NULL; 329 return security_ops->inode_alloc_security(inode); 330 } 331 332 void security_inode_free(struct inode *inode) 333 { 334 ima_inode_free(inode); 335 security_ops->inode_free_security(inode); 336 } 337 338 int security_inode_init_security(struct inode *inode, struct inode *dir, 339 char **name, void **value, size_t *len) 340 { 341 if (unlikely(IS_PRIVATE(inode))) 342 return -EOPNOTSUPP; 343 return security_ops->inode_init_security(inode, dir, name, value, len); 344 } 345 EXPORT_SYMBOL(security_inode_init_security); 346 347 #ifdef CONFIG_SECURITY_PATH 348 int security_path_mknod(struct path *dir, struct dentry *dentry, int mode, 349 unsigned int dev) 350 { 351 if (unlikely(IS_PRIVATE(dir->dentry->d_inode))) 352 return 0; 353 return security_ops->path_mknod(dir, dentry, mode, dev); 354 } 355 EXPORT_SYMBOL(security_path_mknod); 356 357 int security_path_mkdir(struct path *dir, struct dentry *dentry, int mode) 358 { 359 if (unlikely(IS_PRIVATE(dir->dentry->d_inode))) 360 return 0; 361 return security_ops->path_mkdir(dir, dentry, mode); 362 } 363 364 int security_path_rmdir(struct path *dir, struct dentry *dentry) 365 { 366 if (unlikely(IS_PRIVATE(dir->dentry->d_inode))) 367 return 0; 368 return security_ops->path_rmdir(dir, dentry); 369 } 370 371 int security_path_unlink(struct path *dir, struct dentry *dentry) 372 { 373 if (unlikely(IS_PRIVATE(dir->dentry->d_inode))) 374 return 0; 375 return security_ops->path_unlink(dir, dentry); 376 } 377 378 int security_path_symlink(struct path *dir, struct dentry *dentry, 379 const char *old_name) 380 { 381 if (unlikely(IS_PRIVATE(dir->dentry->d_inode))) 382 return 0; 383 return security_ops->path_symlink(dir, dentry, old_name); 384 } 385 386 int security_path_link(struct dentry *old_dentry, struct path *new_dir, 387 struct dentry *new_dentry) 388 { 389 if (unlikely(IS_PRIVATE(old_dentry->d_inode))) 390 return 0; 391 return security_ops->path_link(old_dentry, new_dir, new_dentry); 392 } 393 394 int security_path_rename(struct path *old_dir, struct dentry *old_dentry, 395 struct path *new_dir, struct dentry *new_dentry) 396 { 397 if (unlikely(IS_PRIVATE(old_dentry->d_inode) || 398 (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode)))) 399 return 0; 400 return security_ops->path_rename(old_dir, old_dentry, new_dir, 401 new_dentry); 402 } 403 404 int security_path_truncate(struct path *path) 405 { 406 if (unlikely(IS_PRIVATE(path->dentry->d_inode))) 407 return 0; 408 return security_ops->path_truncate(path); 409 } 410 411 int security_path_chmod(struct dentry *dentry, struct vfsmount *mnt, 412 mode_t mode) 413 { 414 if (unlikely(IS_PRIVATE(dentry->d_inode))) 415 return 0; 416 return security_ops->path_chmod(dentry, mnt, mode); 417 } 418 419 int security_path_chown(struct path *path, uid_t uid, gid_t gid) 420 { 421 if (unlikely(IS_PRIVATE(path->dentry->d_inode))) 422 return 0; 423 return security_ops->path_chown(path, uid, gid); 424 } 425 426 int security_path_chroot(struct path *path) 427 { 428 return security_ops->path_chroot(path); 429 } 430 #endif 431 432 int security_inode_create(struct inode *dir, struct dentry *dentry, int mode) 433 { 434 if (unlikely(IS_PRIVATE(dir))) 435 return 0; 436 return security_ops->inode_create(dir, dentry, mode); 437 } 438 EXPORT_SYMBOL_GPL(security_inode_create); 439 440 int security_inode_link(struct dentry *old_dentry, struct inode *dir, 441 struct dentry *new_dentry) 442 { 443 if (unlikely(IS_PRIVATE(old_dentry->d_inode))) 444 return 0; 445 return security_ops->inode_link(old_dentry, dir, new_dentry); 446 } 447 448 int security_inode_unlink(struct inode *dir, struct dentry *dentry) 449 { 450 if (unlikely(IS_PRIVATE(dentry->d_inode))) 451 return 0; 452 return security_ops->inode_unlink(dir, dentry); 453 } 454 455 int security_inode_symlink(struct inode *dir, struct dentry *dentry, 456 const char *old_name) 457 { 458 if (unlikely(IS_PRIVATE(dir))) 459 return 0; 460 return security_ops->inode_symlink(dir, dentry, old_name); 461 } 462 463 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, int mode) 464 { 465 if (unlikely(IS_PRIVATE(dir))) 466 return 0; 467 return security_ops->inode_mkdir(dir, dentry, mode); 468 } 469 EXPORT_SYMBOL_GPL(security_inode_mkdir); 470 471 int security_inode_rmdir(struct inode *dir, struct dentry *dentry) 472 { 473 if (unlikely(IS_PRIVATE(dentry->d_inode))) 474 return 0; 475 return security_ops->inode_rmdir(dir, dentry); 476 } 477 478 int security_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev) 479 { 480 if (unlikely(IS_PRIVATE(dir))) 481 return 0; 482 return security_ops->inode_mknod(dir, dentry, mode, dev); 483 } 484 485 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry, 486 struct inode *new_dir, struct dentry *new_dentry) 487 { 488 if (unlikely(IS_PRIVATE(old_dentry->d_inode) || 489 (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode)))) 490 return 0; 491 return security_ops->inode_rename(old_dir, old_dentry, 492 new_dir, new_dentry); 493 } 494 495 int security_inode_readlink(struct dentry *dentry) 496 { 497 if (unlikely(IS_PRIVATE(dentry->d_inode))) 498 return 0; 499 return security_ops->inode_readlink(dentry); 500 } 501 502 int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd) 503 { 504 if (unlikely(IS_PRIVATE(dentry->d_inode))) 505 return 0; 506 return security_ops->inode_follow_link(dentry, nd); 507 } 508 509 int security_inode_permission(struct inode *inode, int mask) 510 { 511 if (unlikely(IS_PRIVATE(inode))) 512 return 0; 513 return security_ops->inode_permission(inode, mask); 514 } 515 516 int security_inode_exec_permission(struct inode *inode, unsigned int flags) 517 { 518 if (unlikely(IS_PRIVATE(inode))) 519 return 0; 520 if (flags) 521 return -ECHILD; 522 return security_ops->inode_permission(inode, MAY_EXEC); 523 } 524 525 int security_inode_setattr(struct dentry *dentry, struct iattr *attr) 526 { 527 if (unlikely(IS_PRIVATE(dentry->d_inode))) 528 return 0; 529 return security_ops->inode_setattr(dentry, attr); 530 } 531 EXPORT_SYMBOL_GPL(security_inode_setattr); 532 533 int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry) 534 { 535 if (unlikely(IS_PRIVATE(dentry->d_inode))) 536 return 0; 537 return security_ops->inode_getattr(mnt, dentry); 538 } 539 540 int security_inode_setxattr(struct dentry *dentry, const char *name, 541 const void *value, size_t size, int flags) 542 { 543 if (unlikely(IS_PRIVATE(dentry->d_inode))) 544 return 0; 545 return security_ops->inode_setxattr(dentry, name, value, size, flags); 546 } 547 548 void security_inode_post_setxattr(struct dentry *dentry, const char *name, 549 const void *value, size_t size, int flags) 550 { 551 if (unlikely(IS_PRIVATE(dentry->d_inode))) 552 return; 553 security_ops->inode_post_setxattr(dentry, name, value, size, flags); 554 } 555 556 int security_inode_getxattr(struct dentry *dentry, const char *name) 557 { 558 if (unlikely(IS_PRIVATE(dentry->d_inode))) 559 return 0; 560 return security_ops->inode_getxattr(dentry, name); 561 } 562 563 int security_inode_listxattr(struct dentry *dentry) 564 { 565 if (unlikely(IS_PRIVATE(dentry->d_inode))) 566 return 0; 567 return security_ops->inode_listxattr(dentry); 568 } 569 570 int security_inode_removexattr(struct dentry *dentry, const char *name) 571 { 572 if (unlikely(IS_PRIVATE(dentry->d_inode))) 573 return 0; 574 return security_ops->inode_removexattr(dentry, name); 575 } 576 577 int security_inode_need_killpriv(struct dentry *dentry) 578 { 579 return security_ops->inode_need_killpriv(dentry); 580 } 581 582 int security_inode_killpriv(struct dentry *dentry) 583 { 584 return security_ops->inode_killpriv(dentry); 585 } 586 587 int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc) 588 { 589 if (unlikely(IS_PRIVATE(inode))) 590 return -EOPNOTSUPP; 591 return security_ops->inode_getsecurity(inode, name, buffer, alloc); 592 } 593 594 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags) 595 { 596 if (unlikely(IS_PRIVATE(inode))) 597 return -EOPNOTSUPP; 598 return security_ops->inode_setsecurity(inode, name, value, size, flags); 599 } 600 601 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size) 602 { 603 if (unlikely(IS_PRIVATE(inode))) 604 return 0; 605 return security_ops->inode_listsecurity(inode, buffer, buffer_size); 606 } 607 608 void security_inode_getsecid(const struct inode *inode, u32 *secid) 609 { 610 security_ops->inode_getsecid(inode, secid); 611 } 612 613 int security_file_permission(struct file *file, int mask) 614 { 615 int ret; 616 617 ret = security_ops->file_permission(file, mask); 618 if (ret) 619 return ret; 620 621 return fsnotify_perm(file, mask); 622 } 623 624 int security_file_alloc(struct file *file) 625 { 626 return security_ops->file_alloc_security(file); 627 } 628 629 void security_file_free(struct file *file) 630 { 631 security_ops->file_free_security(file); 632 } 633 634 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 635 { 636 return security_ops->file_ioctl(file, cmd, arg); 637 } 638 639 int security_file_mmap(struct file *file, unsigned long reqprot, 640 unsigned long prot, unsigned long flags, 641 unsigned long addr, unsigned long addr_only) 642 { 643 int ret; 644 645 ret = security_ops->file_mmap(file, reqprot, prot, flags, addr, addr_only); 646 if (ret) 647 return ret; 648 return ima_file_mmap(file, prot); 649 } 650 651 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot, 652 unsigned long prot) 653 { 654 return security_ops->file_mprotect(vma, reqprot, prot); 655 } 656 657 int security_file_lock(struct file *file, unsigned int cmd) 658 { 659 return security_ops->file_lock(file, cmd); 660 } 661 662 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg) 663 { 664 return security_ops->file_fcntl(file, cmd, arg); 665 } 666 667 int security_file_set_fowner(struct file *file) 668 { 669 return security_ops->file_set_fowner(file); 670 } 671 672 int security_file_send_sigiotask(struct task_struct *tsk, 673 struct fown_struct *fown, int sig) 674 { 675 return security_ops->file_send_sigiotask(tsk, fown, sig); 676 } 677 678 int security_file_receive(struct file *file) 679 { 680 return security_ops->file_receive(file); 681 } 682 683 int security_dentry_open(struct file *file, const struct cred *cred) 684 { 685 int ret; 686 687 ret = security_ops->dentry_open(file, cred); 688 if (ret) 689 return ret; 690 691 return fsnotify_perm(file, MAY_OPEN); 692 } 693 694 int security_task_create(unsigned long clone_flags) 695 { 696 return security_ops->task_create(clone_flags); 697 } 698 699 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp) 700 { 701 return security_ops->cred_alloc_blank(cred, gfp); 702 } 703 704 void security_cred_free(struct cred *cred) 705 { 706 security_ops->cred_free(cred); 707 } 708 709 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp) 710 { 711 return security_ops->cred_prepare(new, old, gfp); 712 } 713 714 void security_transfer_creds(struct cred *new, const struct cred *old) 715 { 716 security_ops->cred_transfer(new, old); 717 } 718 719 int security_kernel_act_as(struct cred *new, u32 secid) 720 { 721 return security_ops->kernel_act_as(new, secid); 722 } 723 724 int security_kernel_create_files_as(struct cred *new, struct inode *inode) 725 { 726 return security_ops->kernel_create_files_as(new, inode); 727 } 728 729 int security_kernel_module_request(char *kmod_name) 730 { 731 return security_ops->kernel_module_request(kmod_name); 732 } 733 734 int security_task_fix_setuid(struct cred *new, const struct cred *old, 735 int flags) 736 { 737 return security_ops->task_fix_setuid(new, old, flags); 738 } 739 740 int security_task_setpgid(struct task_struct *p, pid_t pgid) 741 { 742 return security_ops->task_setpgid(p, pgid); 743 } 744 745 int security_task_getpgid(struct task_struct *p) 746 { 747 return security_ops->task_getpgid(p); 748 } 749 750 int security_task_getsid(struct task_struct *p) 751 { 752 return security_ops->task_getsid(p); 753 } 754 755 void security_task_getsecid(struct task_struct *p, u32 *secid) 756 { 757 security_ops->task_getsecid(p, secid); 758 } 759 EXPORT_SYMBOL(security_task_getsecid); 760 761 int security_task_setnice(struct task_struct *p, int nice) 762 { 763 return security_ops->task_setnice(p, nice); 764 } 765 766 int security_task_setioprio(struct task_struct *p, int ioprio) 767 { 768 return security_ops->task_setioprio(p, ioprio); 769 } 770 771 int security_task_getioprio(struct task_struct *p) 772 { 773 return security_ops->task_getioprio(p); 774 } 775 776 int security_task_setrlimit(struct task_struct *p, unsigned int resource, 777 struct rlimit *new_rlim) 778 { 779 return security_ops->task_setrlimit(p, resource, new_rlim); 780 } 781 782 int security_task_setscheduler(struct task_struct *p) 783 { 784 return security_ops->task_setscheduler(p); 785 } 786 787 int security_task_getscheduler(struct task_struct *p) 788 { 789 return security_ops->task_getscheduler(p); 790 } 791 792 int security_task_movememory(struct task_struct *p) 793 { 794 return security_ops->task_movememory(p); 795 } 796 797 int security_task_kill(struct task_struct *p, struct siginfo *info, 798 int sig, u32 secid) 799 { 800 return security_ops->task_kill(p, info, sig, secid); 801 } 802 803 int security_task_wait(struct task_struct *p) 804 { 805 return security_ops->task_wait(p); 806 } 807 808 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3, 809 unsigned long arg4, unsigned long arg5) 810 { 811 return security_ops->task_prctl(option, arg2, arg3, arg4, arg5); 812 } 813 814 void security_task_to_inode(struct task_struct *p, struct inode *inode) 815 { 816 security_ops->task_to_inode(p, inode); 817 } 818 819 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag) 820 { 821 return security_ops->ipc_permission(ipcp, flag); 822 } 823 824 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid) 825 { 826 security_ops->ipc_getsecid(ipcp, secid); 827 } 828 829 int security_msg_msg_alloc(struct msg_msg *msg) 830 { 831 return security_ops->msg_msg_alloc_security(msg); 832 } 833 834 void security_msg_msg_free(struct msg_msg *msg) 835 { 836 security_ops->msg_msg_free_security(msg); 837 } 838 839 int security_msg_queue_alloc(struct msg_queue *msq) 840 { 841 return security_ops->msg_queue_alloc_security(msq); 842 } 843 844 void security_msg_queue_free(struct msg_queue *msq) 845 { 846 security_ops->msg_queue_free_security(msq); 847 } 848 849 int security_msg_queue_associate(struct msg_queue *msq, int msqflg) 850 { 851 return security_ops->msg_queue_associate(msq, msqflg); 852 } 853 854 int security_msg_queue_msgctl(struct msg_queue *msq, int cmd) 855 { 856 return security_ops->msg_queue_msgctl(msq, cmd); 857 } 858 859 int security_msg_queue_msgsnd(struct msg_queue *msq, 860 struct msg_msg *msg, int msqflg) 861 { 862 return security_ops->msg_queue_msgsnd(msq, msg, msqflg); 863 } 864 865 int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg, 866 struct task_struct *target, long type, int mode) 867 { 868 return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode); 869 } 870 871 int security_shm_alloc(struct shmid_kernel *shp) 872 { 873 return security_ops->shm_alloc_security(shp); 874 } 875 876 void security_shm_free(struct shmid_kernel *shp) 877 { 878 security_ops->shm_free_security(shp); 879 } 880 881 int security_shm_associate(struct shmid_kernel *shp, int shmflg) 882 { 883 return security_ops->shm_associate(shp, shmflg); 884 } 885 886 int security_shm_shmctl(struct shmid_kernel *shp, int cmd) 887 { 888 return security_ops->shm_shmctl(shp, cmd); 889 } 890 891 int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg) 892 { 893 return security_ops->shm_shmat(shp, shmaddr, shmflg); 894 } 895 896 int security_sem_alloc(struct sem_array *sma) 897 { 898 return security_ops->sem_alloc_security(sma); 899 } 900 901 void security_sem_free(struct sem_array *sma) 902 { 903 security_ops->sem_free_security(sma); 904 } 905 906 int security_sem_associate(struct sem_array *sma, int semflg) 907 { 908 return security_ops->sem_associate(sma, semflg); 909 } 910 911 int security_sem_semctl(struct sem_array *sma, int cmd) 912 { 913 return security_ops->sem_semctl(sma, cmd); 914 } 915 916 int security_sem_semop(struct sem_array *sma, struct sembuf *sops, 917 unsigned nsops, int alter) 918 { 919 return security_ops->sem_semop(sma, sops, nsops, alter); 920 } 921 922 void security_d_instantiate(struct dentry *dentry, struct inode *inode) 923 { 924 if (unlikely(inode && IS_PRIVATE(inode))) 925 return; 926 security_ops->d_instantiate(dentry, inode); 927 } 928 EXPORT_SYMBOL(security_d_instantiate); 929 930 int security_getprocattr(struct task_struct *p, char *name, char **value) 931 { 932 return security_ops->getprocattr(p, name, value); 933 } 934 935 int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size) 936 { 937 return security_ops->setprocattr(p, name, value, size); 938 } 939 940 int security_netlink_send(struct sock *sk, struct sk_buff *skb) 941 { 942 return security_ops->netlink_send(sk, skb); 943 } 944 945 int security_netlink_recv(struct sk_buff *skb, int cap) 946 { 947 return security_ops->netlink_recv(skb, cap); 948 } 949 EXPORT_SYMBOL(security_netlink_recv); 950 951 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen) 952 { 953 return security_ops->secid_to_secctx(secid, secdata, seclen); 954 } 955 EXPORT_SYMBOL(security_secid_to_secctx); 956 957 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid) 958 { 959 return security_ops->secctx_to_secid(secdata, seclen, secid); 960 } 961 EXPORT_SYMBOL(security_secctx_to_secid); 962 963 void security_release_secctx(char *secdata, u32 seclen) 964 { 965 security_ops->release_secctx(secdata, seclen); 966 } 967 EXPORT_SYMBOL(security_release_secctx); 968 969 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen) 970 { 971 return security_ops->inode_notifysecctx(inode, ctx, ctxlen); 972 } 973 EXPORT_SYMBOL(security_inode_notifysecctx); 974 975 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen) 976 { 977 return security_ops->inode_setsecctx(dentry, ctx, ctxlen); 978 } 979 EXPORT_SYMBOL(security_inode_setsecctx); 980 981 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen) 982 { 983 return security_ops->inode_getsecctx(inode, ctx, ctxlen); 984 } 985 EXPORT_SYMBOL(security_inode_getsecctx); 986 987 #ifdef CONFIG_SECURITY_NETWORK 988 989 int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk) 990 { 991 return security_ops->unix_stream_connect(sock, other, newsk); 992 } 993 EXPORT_SYMBOL(security_unix_stream_connect); 994 995 int security_unix_may_send(struct socket *sock, struct socket *other) 996 { 997 return security_ops->unix_may_send(sock, other); 998 } 999 EXPORT_SYMBOL(security_unix_may_send); 1000 1001 int security_socket_create(int family, int type, int protocol, int kern) 1002 { 1003 return security_ops->socket_create(family, type, protocol, kern); 1004 } 1005 1006 int security_socket_post_create(struct socket *sock, int family, 1007 int type, int protocol, int kern) 1008 { 1009 return security_ops->socket_post_create(sock, family, type, 1010 protocol, kern); 1011 } 1012 1013 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen) 1014 { 1015 return security_ops->socket_bind(sock, address, addrlen); 1016 } 1017 1018 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen) 1019 { 1020 return security_ops->socket_connect(sock, address, addrlen); 1021 } 1022 1023 int security_socket_listen(struct socket *sock, int backlog) 1024 { 1025 return security_ops->socket_listen(sock, backlog); 1026 } 1027 1028 int security_socket_accept(struct socket *sock, struct socket *newsock) 1029 { 1030 return security_ops->socket_accept(sock, newsock); 1031 } 1032 1033 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size) 1034 { 1035 return security_ops->socket_sendmsg(sock, msg, size); 1036 } 1037 1038 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg, 1039 int size, int flags) 1040 { 1041 return security_ops->socket_recvmsg(sock, msg, size, flags); 1042 } 1043 1044 int security_socket_getsockname(struct socket *sock) 1045 { 1046 return security_ops->socket_getsockname(sock); 1047 } 1048 1049 int security_socket_getpeername(struct socket *sock) 1050 { 1051 return security_ops->socket_getpeername(sock); 1052 } 1053 1054 int security_socket_getsockopt(struct socket *sock, int level, int optname) 1055 { 1056 return security_ops->socket_getsockopt(sock, level, optname); 1057 } 1058 1059 int security_socket_setsockopt(struct socket *sock, int level, int optname) 1060 { 1061 return security_ops->socket_setsockopt(sock, level, optname); 1062 } 1063 1064 int security_socket_shutdown(struct socket *sock, int how) 1065 { 1066 return security_ops->socket_shutdown(sock, how); 1067 } 1068 1069 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb) 1070 { 1071 return security_ops->socket_sock_rcv_skb(sk, skb); 1072 } 1073 EXPORT_SYMBOL(security_sock_rcv_skb); 1074 1075 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval, 1076 int __user *optlen, unsigned len) 1077 { 1078 return security_ops->socket_getpeersec_stream(sock, optval, optlen, len); 1079 } 1080 1081 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid) 1082 { 1083 return security_ops->socket_getpeersec_dgram(sock, skb, secid); 1084 } 1085 EXPORT_SYMBOL(security_socket_getpeersec_dgram); 1086 1087 int security_sk_alloc(struct sock *sk, int family, gfp_t priority) 1088 { 1089 return security_ops->sk_alloc_security(sk, family, priority); 1090 } 1091 1092 void security_sk_free(struct sock *sk) 1093 { 1094 security_ops->sk_free_security(sk); 1095 } 1096 1097 void security_sk_clone(const struct sock *sk, struct sock *newsk) 1098 { 1099 security_ops->sk_clone_security(sk, newsk); 1100 } 1101 1102 void security_sk_classify_flow(struct sock *sk, struct flowi *fl) 1103 { 1104 security_ops->sk_getsecid(sk, &fl->secid); 1105 } 1106 EXPORT_SYMBOL(security_sk_classify_flow); 1107 1108 void security_req_classify_flow(const struct request_sock *req, struct flowi *fl) 1109 { 1110 security_ops->req_classify_flow(req, fl); 1111 } 1112 EXPORT_SYMBOL(security_req_classify_flow); 1113 1114 void security_sock_graft(struct sock *sk, struct socket *parent) 1115 { 1116 security_ops->sock_graft(sk, parent); 1117 } 1118 EXPORT_SYMBOL(security_sock_graft); 1119 1120 int security_inet_conn_request(struct sock *sk, 1121 struct sk_buff *skb, struct request_sock *req) 1122 { 1123 return security_ops->inet_conn_request(sk, skb, req); 1124 } 1125 EXPORT_SYMBOL(security_inet_conn_request); 1126 1127 void security_inet_csk_clone(struct sock *newsk, 1128 const struct request_sock *req) 1129 { 1130 security_ops->inet_csk_clone(newsk, req); 1131 } 1132 1133 void security_inet_conn_established(struct sock *sk, 1134 struct sk_buff *skb) 1135 { 1136 security_ops->inet_conn_established(sk, skb); 1137 } 1138 1139 int security_secmark_relabel_packet(u32 secid) 1140 { 1141 return security_ops->secmark_relabel_packet(secid); 1142 } 1143 EXPORT_SYMBOL(security_secmark_relabel_packet); 1144 1145 void security_secmark_refcount_inc(void) 1146 { 1147 security_ops->secmark_refcount_inc(); 1148 } 1149 EXPORT_SYMBOL(security_secmark_refcount_inc); 1150 1151 void security_secmark_refcount_dec(void) 1152 { 1153 security_ops->secmark_refcount_dec(); 1154 } 1155 EXPORT_SYMBOL(security_secmark_refcount_dec); 1156 1157 int security_tun_dev_create(void) 1158 { 1159 return security_ops->tun_dev_create(); 1160 } 1161 EXPORT_SYMBOL(security_tun_dev_create); 1162 1163 void security_tun_dev_post_create(struct sock *sk) 1164 { 1165 return security_ops->tun_dev_post_create(sk); 1166 } 1167 EXPORT_SYMBOL(security_tun_dev_post_create); 1168 1169 int security_tun_dev_attach(struct sock *sk) 1170 { 1171 return security_ops->tun_dev_attach(sk); 1172 } 1173 EXPORT_SYMBOL(security_tun_dev_attach); 1174 1175 #endif /* CONFIG_SECURITY_NETWORK */ 1176 1177 #ifdef CONFIG_SECURITY_NETWORK_XFRM 1178 1179 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct xfrm_user_sec_ctx *sec_ctx) 1180 { 1181 return security_ops->xfrm_policy_alloc_security(ctxp, sec_ctx); 1182 } 1183 EXPORT_SYMBOL(security_xfrm_policy_alloc); 1184 1185 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx, 1186 struct xfrm_sec_ctx **new_ctxp) 1187 { 1188 return security_ops->xfrm_policy_clone_security(old_ctx, new_ctxp); 1189 } 1190 1191 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx) 1192 { 1193 security_ops->xfrm_policy_free_security(ctx); 1194 } 1195 EXPORT_SYMBOL(security_xfrm_policy_free); 1196 1197 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx) 1198 { 1199 return security_ops->xfrm_policy_delete_security(ctx); 1200 } 1201 1202 int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx) 1203 { 1204 return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0); 1205 } 1206 EXPORT_SYMBOL(security_xfrm_state_alloc); 1207 1208 int security_xfrm_state_alloc_acquire(struct xfrm_state *x, 1209 struct xfrm_sec_ctx *polsec, u32 secid) 1210 { 1211 if (!polsec) 1212 return 0; 1213 /* 1214 * We want the context to be taken from secid which is usually 1215 * from the sock. 1216 */ 1217 return security_ops->xfrm_state_alloc_security(x, NULL, secid); 1218 } 1219 1220 int security_xfrm_state_delete(struct xfrm_state *x) 1221 { 1222 return security_ops->xfrm_state_delete_security(x); 1223 } 1224 EXPORT_SYMBOL(security_xfrm_state_delete); 1225 1226 void security_xfrm_state_free(struct xfrm_state *x) 1227 { 1228 security_ops->xfrm_state_free_security(x); 1229 } 1230 1231 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir) 1232 { 1233 return security_ops->xfrm_policy_lookup(ctx, fl_secid, dir); 1234 } 1235 1236 int security_xfrm_state_pol_flow_match(struct xfrm_state *x, 1237 struct xfrm_policy *xp, struct flowi *fl) 1238 { 1239 return security_ops->xfrm_state_pol_flow_match(x, xp, fl); 1240 } 1241 1242 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid) 1243 { 1244 return security_ops->xfrm_decode_session(skb, secid, 1); 1245 } 1246 1247 void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl) 1248 { 1249 int rc = security_ops->xfrm_decode_session(skb, &fl->secid, 0); 1250 1251 BUG_ON(rc); 1252 } 1253 EXPORT_SYMBOL(security_skb_classify_flow); 1254 1255 #endif /* CONFIG_SECURITY_NETWORK_XFRM */ 1256 1257 #ifdef CONFIG_KEYS 1258 1259 int security_key_alloc(struct key *key, const struct cred *cred, 1260 unsigned long flags) 1261 { 1262 return security_ops->key_alloc(key, cred, flags); 1263 } 1264 1265 void security_key_free(struct key *key) 1266 { 1267 security_ops->key_free(key); 1268 } 1269 1270 int security_key_permission(key_ref_t key_ref, 1271 const struct cred *cred, key_perm_t perm) 1272 { 1273 return security_ops->key_permission(key_ref, cred, perm); 1274 } 1275 1276 int security_key_getsecurity(struct key *key, char **_buffer) 1277 { 1278 return security_ops->key_getsecurity(key, _buffer); 1279 } 1280 1281 #endif /* CONFIG_KEYS */ 1282 1283 #ifdef CONFIG_AUDIT 1284 1285 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule) 1286 { 1287 return security_ops->audit_rule_init(field, op, rulestr, lsmrule); 1288 } 1289 1290 int security_audit_rule_known(struct audit_krule *krule) 1291 { 1292 return security_ops->audit_rule_known(krule); 1293 } 1294 1295 void security_audit_rule_free(void *lsmrule) 1296 { 1297 security_ops->audit_rule_free(lsmrule); 1298 } 1299 1300 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule, 1301 struct audit_context *actx) 1302 { 1303 return security_ops->audit_rule_match(secid, field, op, lsmrule, actx); 1304 } 1305 1306 #endif /* CONFIG_AUDIT */ 1307