xref: /linux/security/security.c (revision 6c21a7fb492bf7e2c4985937082ce58ddeca84bd)
1 /*
2  * Security plug functions
3  *
4  * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
5  * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
6  * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
7  *
8  *	This program is free software; you can redistribute it and/or modify
9  *	it under the terms of the GNU General Public License as published by
10  *	the Free Software Foundation; either version 2 of the License, or
11  *	(at your option) any later version.
12  */
13 
14 #include <linux/capability.h>
15 #include <linux/module.h>
16 #include <linux/init.h>
17 #include <linux/kernel.h>
18 #include <linux/security.h>
19 #include <linux/ima.h>
20 
21 /* Boot-time LSM user choice */
22 static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1];
23 
24 /* things that live in capability.c */
25 extern struct security_operations default_security_ops;
26 extern void security_fixup_ops(struct security_operations *ops);
27 
28 struct security_operations *security_ops;	/* Initialized to NULL */
29 
30 static inline int verify(struct security_operations *ops)
31 {
32 	/* verify the security_operations structure exists */
33 	if (!ops)
34 		return -EINVAL;
35 	security_fixup_ops(ops);
36 	return 0;
37 }
38 
39 static void __init do_security_initcalls(void)
40 {
41 	initcall_t *call;
42 	call = __security_initcall_start;
43 	while (call < __security_initcall_end) {
44 		(*call) ();
45 		call++;
46 	}
47 }
48 
49 /**
50  * security_init - initializes the security framework
51  *
52  * This should be called early in the kernel initialization sequence.
53  */
54 int __init security_init(void)
55 {
56 	printk(KERN_INFO "Security Framework initialized\n");
57 
58 	security_fixup_ops(&default_security_ops);
59 	security_ops = &default_security_ops;
60 	do_security_initcalls();
61 
62 	return 0;
63 }
64 
65 /* Save user chosen LSM */
66 static int __init choose_lsm(char *str)
67 {
68 	strncpy(chosen_lsm, str, SECURITY_NAME_MAX);
69 	return 1;
70 }
71 __setup("security=", choose_lsm);
72 
73 /**
74  * security_module_enable - Load given security module on boot ?
75  * @ops: a pointer to the struct security_operations that is to be checked.
76  *
77  * Each LSM must pass this method before registering its own operations
78  * to avoid security registration races. This method may also be used
79  * to check if your LSM is currently loaded during kernel initialization.
80  *
81  * Return true if:
82  *	-The passed LSM is the one chosen by user at boot time,
83  *	-or user didn't specify a specific LSM and we're the first to ask
84  *	 for registration permission,
85  *	-or the passed LSM is currently loaded.
86  * Otherwise, return false.
87  */
88 int __init security_module_enable(struct security_operations *ops)
89 {
90 	if (!*chosen_lsm)
91 		strncpy(chosen_lsm, ops->name, SECURITY_NAME_MAX);
92 	else if (strncmp(ops->name, chosen_lsm, SECURITY_NAME_MAX))
93 		return 0;
94 
95 	return 1;
96 }
97 
98 /**
99  * register_security - registers a security framework with the kernel
100  * @ops: a pointer to the struct security_options that is to be registered
101  *
102  * This function allows a security module to register itself with the
103  * kernel security subsystem.  Some rudimentary checking is done on the @ops
104  * value passed to this function. You'll need to check first if your LSM
105  * is allowed to register its @ops by calling security_module_enable(@ops).
106  *
107  * If there is already a security module registered with the kernel,
108  * an error will be returned.  Otherwise %0 is returned on success.
109  */
110 int register_security(struct security_operations *ops)
111 {
112 	if (verify(ops)) {
113 		printk(KERN_DEBUG "%s could not verify "
114 		       "security_operations structure.\n", __func__);
115 		return -EINVAL;
116 	}
117 
118 	if (security_ops != &default_security_ops)
119 		return -EAGAIN;
120 
121 	security_ops = ops;
122 
123 	return 0;
124 }
125 
126 /* Security operations */
127 
128 int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
129 {
130 	return security_ops->ptrace_access_check(child, mode);
131 }
132 
133 int security_ptrace_traceme(struct task_struct *parent)
134 {
135 	return security_ops->ptrace_traceme(parent);
136 }
137 
138 int security_capget(struct task_struct *target,
139 		     kernel_cap_t *effective,
140 		     kernel_cap_t *inheritable,
141 		     kernel_cap_t *permitted)
142 {
143 	return security_ops->capget(target, effective, inheritable, permitted);
144 }
145 
146 int security_capset(struct cred *new, const struct cred *old,
147 		    const kernel_cap_t *effective,
148 		    const kernel_cap_t *inheritable,
149 		    const kernel_cap_t *permitted)
150 {
151 	return security_ops->capset(new, old,
152 				    effective, inheritable, permitted);
153 }
154 
155 int security_capable(int cap)
156 {
157 	return security_ops->capable(current, current_cred(), cap,
158 				     SECURITY_CAP_AUDIT);
159 }
160 
161 int security_real_capable(struct task_struct *tsk, int cap)
162 {
163 	const struct cred *cred;
164 	int ret;
165 
166 	cred = get_task_cred(tsk);
167 	ret = security_ops->capable(tsk, cred, cap, SECURITY_CAP_AUDIT);
168 	put_cred(cred);
169 	return ret;
170 }
171 
172 int security_real_capable_noaudit(struct task_struct *tsk, int cap)
173 {
174 	const struct cred *cred;
175 	int ret;
176 
177 	cred = get_task_cred(tsk);
178 	ret = security_ops->capable(tsk, cred, cap, SECURITY_CAP_NOAUDIT);
179 	put_cred(cred);
180 	return ret;
181 }
182 
183 int security_acct(struct file *file)
184 {
185 	return security_ops->acct(file);
186 }
187 
188 int security_sysctl(struct ctl_table *table, int op)
189 {
190 	return security_ops->sysctl(table, op);
191 }
192 
193 int security_quotactl(int cmds, int type, int id, struct super_block *sb)
194 {
195 	return security_ops->quotactl(cmds, type, id, sb);
196 }
197 
198 int security_quota_on(struct dentry *dentry)
199 {
200 	return security_ops->quota_on(dentry);
201 }
202 
203 int security_syslog(int type)
204 {
205 	return security_ops->syslog(type);
206 }
207 
208 int security_settime(struct timespec *ts, struct timezone *tz)
209 {
210 	return security_ops->settime(ts, tz);
211 }
212 
213 int security_vm_enough_memory(long pages)
214 {
215 	WARN_ON(current->mm == NULL);
216 	return security_ops->vm_enough_memory(current->mm, pages);
217 }
218 
219 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
220 {
221 	WARN_ON(mm == NULL);
222 	return security_ops->vm_enough_memory(mm, pages);
223 }
224 
225 int security_vm_enough_memory_kern(long pages)
226 {
227 	/* If current->mm is a kernel thread then we will pass NULL,
228 	   for this specific case that is fine */
229 	return security_ops->vm_enough_memory(current->mm, pages);
230 }
231 
232 int security_bprm_set_creds(struct linux_binprm *bprm)
233 {
234 	return security_ops->bprm_set_creds(bprm);
235 }
236 
237 int security_bprm_check(struct linux_binprm *bprm)
238 {
239 	int ret;
240 
241 	ret = security_ops->bprm_check_security(bprm);
242 	if (ret)
243 		return ret;
244 	return ima_bprm_check(bprm);
245 }
246 
247 void security_bprm_committing_creds(struct linux_binprm *bprm)
248 {
249 	security_ops->bprm_committing_creds(bprm);
250 }
251 
252 void security_bprm_committed_creds(struct linux_binprm *bprm)
253 {
254 	security_ops->bprm_committed_creds(bprm);
255 }
256 
257 int security_bprm_secureexec(struct linux_binprm *bprm)
258 {
259 	return security_ops->bprm_secureexec(bprm);
260 }
261 
262 int security_sb_alloc(struct super_block *sb)
263 {
264 	return security_ops->sb_alloc_security(sb);
265 }
266 
267 void security_sb_free(struct super_block *sb)
268 {
269 	security_ops->sb_free_security(sb);
270 }
271 
272 int security_sb_copy_data(char *orig, char *copy)
273 {
274 	return security_ops->sb_copy_data(orig, copy);
275 }
276 EXPORT_SYMBOL(security_sb_copy_data);
277 
278 int security_sb_kern_mount(struct super_block *sb, int flags, void *data)
279 {
280 	return security_ops->sb_kern_mount(sb, flags, data);
281 }
282 
283 int security_sb_show_options(struct seq_file *m, struct super_block *sb)
284 {
285 	return security_ops->sb_show_options(m, sb);
286 }
287 
288 int security_sb_statfs(struct dentry *dentry)
289 {
290 	return security_ops->sb_statfs(dentry);
291 }
292 
293 int security_sb_mount(char *dev_name, struct path *path,
294                        char *type, unsigned long flags, void *data)
295 {
296 	return security_ops->sb_mount(dev_name, path, type, flags, data);
297 }
298 
299 int security_sb_check_sb(struct vfsmount *mnt, struct path *path)
300 {
301 	return security_ops->sb_check_sb(mnt, path);
302 }
303 
304 int security_sb_umount(struct vfsmount *mnt, int flags)
305 {
306 	return security_ops->sb_umount(mnt, flags);
307 }
308 
309 void security_sb_umount_close(struct vfsmount *mnt)
310 {
311 	security_ops->sb_umount_close(mnt);
312 }
313 
314 void security_sb_umount_busy(struct vfsmount *mnt)
315 {
316 	security_ops->sb_umount_busy(mnt);
317 }
318 
319 void security_sb_post_remount(struct vfsmount *mnt, unsigned long flags, void *data)
320 {
321 	security_ops->sb_post_remount(mnt, flags, data);
322 }
323 
324 void security_sb_post_addmount(struct vfsmount *mnt, struct path *mountpoint)
325 {
326 	security_ops->sb_post_addmount(mnt, mountpoint);
327 }
328 
329 int security_sb_pivotroot(struct path *old_path, struct path *new_path)
330 {
331 	return security_ops->sb_pivotroot(old_path, new_path);
332 }
333 
334 void security_sb_post_pivotroot(struct path *old_path, struct path *new_path)
335 {
336 	security_ops->sb_post_pivotroot(old_path, new_path);
337 }
338 
339 int security_sb_set_mnt_opts(struct super_block *sb,
340 				struct security_mnt_opts *opts)
341 {
342 	return security_ops->sb_set_mnt_opts(sb, opts);
343 }
344 EXPORT_SYMBOL(security_sb_set_mnt_opts);
345 
346 void security_sb_clone_mnt_opts(const struct super_block *oldsb,
347 				struct super_block *newsb)
348 {
349 	security_ops->sb_clone_mnt_opts(oldsb, newsb);
350 }
351 EXPORT_SYMBOL(security_sb_clone_mnt_opts);
352 
353 int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts)
354 {
355 	return security_ops->sb_parse_opts_str(options, opts);
356 }
357 EXPORT_SYMBOL(security_sb_parse_opts_str);
358 
359 int security_inode_alloc(struct inode *inode)
360 {
361 	int ret;
362 
363 	inode->i_security = NULL;
364 	ret =  security_ops->inode_alloc_security(inode);
365 	if (ret)
366 		return ret;
367 	ret = ima_inode_alloc(inode);
368 	if (ret)
369 		security_inode_free(inode);
370 	return ret;
371 }
372 
373 void security_inode_free(struct inode *inode)
374 {
375 	ima_inode_free(inode);
376 	security_ops->inode_free_security(inode);
377 }
378 
379 int security_inode_init_security(struct inode *inode, struct inode *dir,
380 				  char **name, void **value, size_t *len)
381 {
382 	if (unlikely(IS_PRIVATE(inode)))
383 		return -EOPNOTSUPP;
384 	return security_ops->inode_init_security(inode, dir, name, value, len);
385 }
386 EXPORT_SYMBOL(security_inode_init_security);
387 
388 #ifdef CONFIG_SECURITY_PATH
389 int security_path_mknod(struct path *path, struct dentry *dentry, int mode,
390 			unsigned int dev)
391 {
392 	if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
393 		return 0;
394 	return security_ops->path_mknod(path, dentry, mode, dev);
395 }
396 EXPORT_SYMBOL(security_path_mknod);
397 
398 int security_path_mkdir(struct path *path, struct dentry *dentry, int mode)
399 {
400 	if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
401 		return 0;
402 	return security_ops->path_mkdir(path, dentry, mode);
403 }
404 
405 int security_path_rmdir(struct path *path, struct dentry *dentry)
406 {
407 	if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
408 		return 0;
409 	return security_ops->path_rmdir(path, dentry);
410 }
411 
412 int security_path_unlink(struct path *path, struct dentry *dentry)
413 {
414 	if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
415 		return 0;
416 	return security_ops->path_unlink(path, dentry);
417 }
418 
419 int security_path_symlink(struct path *path, struct dentry *dentry,
420 			  const char *old_name)
421 {
422 	if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
423 		return 0;
424 	return security_ops->path_symlink(path, dentry, old_name);
425 }
426 
427 int security_path_link(struct dentry *old_dentry, struct path *new_dir,
428 		       struct dentry *new_dentry)
429 {
430 	if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
431 		return 0;
432 	return security_ops->path_link(old_dentry, new_dir, new_dentry);
433 }
434 
435 int security_path_rename(struct path *old_dir, struct dentry *old_dentry,
436 			 struct path *new_dir, struct dentry *new_dentry)
437 {
438 	if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
439 		     (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
440 		return 0;
441 	return security_ops->path_rename(old_dir, old_dentry, new_dir,
442 					 new_dentry);
443 }
444 
445 int security_path_truncate(struct path *path, loff_t length,
446 			   unsigned int time_attrs)
447 {
448 	if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
449 		return 0;
450 	return security_ops->path_truncate(path, length, time_attrs);
451 }
452 
453 int security_path_chmod(struct dentry *dentry, struct vfsmount *mnt,
454 			mode_t mode)
455 {
456 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
457 		return 0;
458 	return security_ops->path_chmod(dentry, mnt, mode);
459 }
460 
461 int security_path_chown(struct path *path, uid_t uid, gid_t gid)
462 {
463 	if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
464 		return 0;
465 	return security_ops->path_chown(path, uid, gid);
466 }
467 
468 int security_path_chroot(struct path *path)
469 {
470 	return security_ops->path_chroot(path);
471 }
472 #endif
473 
474 int security_inode_create(struct inode *dir, struct dentry *dentry, int mode)
475 {
476 	if (unlikely(IS_PRIVATE(dir)))
477 		return 0;
478 	return security_ops->inode_create(dir, dentry, mode);
479 }
480 EXPORT_SYMBOL_GPL(security_inode_create);
481 
482 int security_inode_link(struct dentry *old_dentry, struct inode *dir,
483 			 struct dentry *new_dentry)
484 {
485 	if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
486 		return 0;
487 	return security_ops->inode_link(old_dentry, dir, new_dentry);
488 }
489 
490 int security_inode_unlink(struct inode *dir, struct dentry *dentry)
491 {
492 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
493 		return 0;
494 	return security_ops->inode_unlink(dir, dentry);
495 }
496 
497 int security_inode_symlink(struct inode *dir, struct dentry *dentry,
498 			    const char *old_name)
499 {
500 	if (unlikely(IS_PRIVATE(dir)))
501 		return 0;
502 	return security_ops->inode_symlink(dir, dentry, old_name);
503 }
504 
505 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, int mode)
506 {
507 	if (unlikely(IS_PRIVATE(dir)))
508 		return 0;
509 	return security_ops->inode_mkdir(dir, dentry, mode);
510 }
511 EXPORT_SYMBOL_GPL(security_inode_mkdir);
512 
513 int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
514 {
515 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
516 		return 0;
517 	return security_ops->inode_rmdir(dir, dentry);
518 }
519 
520 int security_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
521 {
522 	if (unlikely(IS_PRIVATE(dir)))
523 		return 0;
524 	return security_ops->inode_mknod(dir, dentry, mode, dev);
525 }
526 
527 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
528 			   struct inode *new_dir, struct dentry *new_dentry)
529 {
530         if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
531             (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
532 		return 0;
533 	return security_ops->inode_rename(old_dir, old_dentry,
534 					   new_dir, new_dentry);
535 }
536 
537 int security_inode_readlink(struct dentry *dentry)
538 {
539 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
540 		return 0;
541 	return security_ops->inode_readlink(dentry);
542 }
543 
544 int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd)
545 {
546 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
547 		return 0;
548 	return security_ops->inode_follow_link(dentry, nd);
549 }
550 
551 int security_inode_permission(struct inode *inode, int mask)
552 {
553 	if (unlikely(IS_PRIVATE(inode)))
554 		return 0;
555 	return security_ops->inode_permission(inode, mask);
556 }
557 
558 int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
559 {
560 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
561 		return 0;
562 	return security_ops->inode_setattr(dentry, attr);
563 }
564 EXPORT_SYMBOL_GPL(security_inode_setattr);
565 
566 int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
567 {
568 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
569 		return 0;
570 	return security_ops->inode_getattr(mnt, dentry);
571 }
572 
573 void security_inode_delete(struct inode *inode)
574 {
575 	if (unlikely(IS_PRIVATE(inode)))
576 		return;
577 	security_ops->inode_delete(inode);
578 }
579 
580 int security_inode_setxattr(struct dentry *dentry, const char *name,
581 			    const void *value, size_t size, int flags)
582 {
583 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
584 		return 0;
585 	return security_ops->inode_setxattr(dentry, name, value, size, flags);
586 }
587 
588 void security_inode_post_setxattr(struct dentry *dentry, const char *name,
589 				  const void *value, size_t size, int flags)
590 {
591 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
592 		return;
593 	security_ops->inode_post_setxattr(dentry, name, value, size, flags);
594 }
595 
596 int security_inode_getxattr(struct dentry *dentry, const char *name)
597 {
598 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
599 		return 0;
600 	return security_ops->inode_getxattr(dentry, name);
601 }
602 
603 int security_inode_listxattr(struct dentry *dentry)
604 {
605 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
606 		return 0;
607 	return security_ops->inode_listxattr(dentry);
608 }
609 
610 int security_inode_removexattr(struct dentry *dentry, const char *name)
611 {
612 	if (unlikely(IS_PRIVATE(dentry->d_inode)))
613 		return 0;
614 	return security_ops->inode_removexattr(dentry, name);
615 }
616 
617 int security_inode_need_killpriv(struct dentry *dentry)
618 {
619 	return security_ops->inode_need_killpriv(dentry);
620 }
621 
622 int security_inode_killpriv(struct dentry *dentry)
623 {
624 	return security_ops->inode_killpriv(dentry);
625 }
626 
627 int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
628 {
629 	if (unlikely(IS_PRIVATE(inode)))
630 		return 0;
631 	return security_ops->inode_getsecurity(inode, name, buffer, alloc);
632 }
633 
634 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
635 {
636 	if (unlikely(IS_PRIVATE(inode)))
637 		return 0;
638 	return security_ops->inode_setsecurity(inode, name, value, size, flags);
639 }
640 
641 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
642 {
643 	if (unlikely(IS_PRIVATE(inode)))
644 		return 0;
645 	return security_ops->inode_listsecurity(inode, buffer, buffer_size);
646 }
647 
648 void security_inode_getsecid(const struct inode *inode, u32 *secid)
649 {
650 	security_ops->inode_getsecid(inode, secid);
651 }
652 
653 int security_file_permission(struct file *file, int mask)
654 {
655 	return security_ops->file_permission(file, mask);
656 }
657 
658 int security_file_alloc(struct file *file)
659 {
660 	return security_ops->file_alloc_security(file);
661 }
662 
663 void security_file_free(struct file *file)
664 {
665 	security_ops->file_free_security(file);
666 	if (file->f_dentry)
667 		ima_file_free(file);
668 }
669 
670 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
671 {
672 	return security_ops->file_ioctl(file, cmd, arg);
673 }
674 
675 int security_file_mmap(struct file *file, unsigned long reqprot,
676 			unsigned long prot, unsigned long flags,
677 			unsigned long addr, unsigned long addr_only)
678 {
679 	int ret;
680 
681 	ret = security_ops->file_mmap(file, reqprot, prot, flags, addr, addr_only);
682 	if (ret)
683 		return ret;
684 	return ima_file_mmap(file, prot);
685 }
686 
687 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
688 			    unsigned long prot)
689 {
690 	return security_ops->file_mprotect(vma, reqprot, prot);
691 }
692 
693 int security_file_lock(struct file *file, unsigned int cmd)
694 {
695 	return security_ops->file_lock(file, cmd);
696 }
697 
698 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
699 {
700 	return security_ops->file_fcntl(file, cmd, arg);
701 }
702 
703 int security_file_set_fowner(struct file *file)
704 {
705 	return security_ops->file_set_fowner(file);
706 }
707 
708 int security_file_send_sigiotask(struct task_struct *tsk,
709 				  struct fown_struct *fown, int sig)
710 {
711 	return security_ops->file_send_sigiotask(tsk, fown, sig);
712 }
713 
714 int security_file_receive(struct file *file)
715 {
716 	return security_ops->file_receive(file);
717 }
718 
719 int security_dentry_open(struct file *file, const struct cred *cred)
720 {
721 	return security_ops->dentry_open(file, cred);
722 }
723 
724 int security_task_create(unsigned long clone_flags)
725 {
726 	return security_ops->task_create(clone_flags);
727 }
728 
729 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
730 {
731 	return security_ops->cred_alloc_blank(cred, gfp);
732 }
733 
734 void security_cred_free(struct cred *cred)
735 {
736 	security_ops->cred_free(cred);
737 }
738 
739 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
740 {
741 	return security_ops->cred_prepare(new, old, gfp);
742 }
743 
744 void security_commit_creds(struct cred *new, const struct cred *old)
745 {
746 	security_ops->cred_commit(new, old);
747 }
748 
749 void security_transfer_creds(struct cred *new, const struct cred *old)
750 {
751 	security_ops->cred_transfer(new, old);
752 }
753 
754 int security_kernel_act_as(struct cred *new, u32 secid)
755 {
756 	return security_ops->kernel_act_as(new, secid);
757 }
758 
759 int security_kernel_create_files_as(struct cred *new, struct inode *inode)
760 {
761 	return security_ops->kernel_create_files_as(new, inode);
762 }
763 
764 int security_kernel_module_request(void)
765 {
766 	return security_ops->kernel_module_request();
767 }
768 
769 int security_task_setuid(uid_t id0, uid_t id1, uid_t id2, int flags)
770 {
771 	return security_ops->task_setuid(id0, id1, id2, flags);
772 }
773 
774 int security_task_fix_setuid(struct cred *new, const struct cred *old,
775 			     int flags)
776 {
777 	return security_ops->task_fix_setuid(new, old, flags);
778 }
779 
780 int security_task_setgid(gid_t id0, gid_t id1, gid_t id2, int flags)
781 {
782 	return security_ops->task_setgid(id0, id1, id2, flags);
783 }
784 
785 int security_task_setpgid(struct task_struct *p, pid_t pgid)
786 {
787 	return security_ops->task_setpgid(p, pgid);
788 }
789 
790 int security_task_getpgid(struct task_struct *p)
791 {
792 	return security_ops->task_getpgid(p);
793 }
794 
795 int security_task_getsid(struct task_struct *p)
796 {
797 	return security_ops->task_getsid(p);
798 }
799 
800 void security_task_getsecid(struct task_struct *p, u32 *secid)
801 {
802 	security_ops->task_getsecid(p, secid);
803 }
804 EXPORT_SYMBOL(security_task_getsecid);
805 
806 int security_task_setgroups(struct group_info *group_info)
807 {
808 	return security_ops->task_setgroups(group_info);
809 }
810 
811 int security_task_setnice(struct task_struct *p, int nice)
812 {
813 	return security_ops->task_setnice(p, nice);
814 }
815 
816 int security_task_setioprio(struct task_struct *p, int ioprio)
817 {
818 	return security_ops->task_setioprio(p, ioprio);
819 }
820 
821 int security_task_getioprio(struct task_struct *p)
822 {
823 	return security_ops->task_getioprio(p);
824 }
825 
826 int security_task_setrlimit(unsigned int resource, struct rlimit *new_rlim)
827 {
828 	return security_ops->task_setrlimit(resource, new_rlim);
829 }
830 
831 int security_task_setscheduler(struct task_struct *p,
832 				int policy, struct sched_param *lp)
833 {
834 	return security_ops->task_setscheduler(p, policy, lp);
835 }
836 
837 int security_task_getscheduler(struct task_struct *p)
838 {
839 	return security_ops->task_getscheduler(p);
840 }
841 
842 int security_task_movememory(struct task_struct *p)
843 {
844 	return security_ops->task_movememory(p);
845 }
846 
847 int security_task_kill(struct task_struct *p, struct siginfo *info,
848 			int sig, u32 secid)
849 {
850 	return security_ops->task_kill(p, info, sig, secid);
851 }
852 
853 int security_task_wait(struct task_struct *p)
854 {
855 	return security_ops->task_wait(p);
856 }
857 
858 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
859 			 unsigned long arg4, unsigned long arg5)
860 {
861 	return security_ops->task_prctl(option, arg2, arg3, arg4, arg5);
862 }
863 
864 void security_task_to_inode(struct task_struct *p, struct inode *inode)
865 {
866 	security_ops->task_to_inode(p, inode);
867 }
868 
869 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
870 {
871 	return security_ops->ipc_permission(ipcp, flag);
872 }
873 
874 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
875 {
876 	security_ops->ipc_getsecid(ipcp, secid);
877 }
878 
879 int security_msg_msg_alloc(struct msg_msg *msg)
880 {
881 	return security_ops->msg_msg_alloc_security(msg);
882 }
883 
884 void security_msg_msg_free(struct msg_msg *msg)
885 {
886 	security_ops->msg_msg_free_security(msg);
887 }
888 
889 int security_msg_queue_alloc(struct msg_queue *msq)
890 {
891 	return security_ops->msg_queue_alloc_security(msq);
892 }
893 
894 void security_msg_queue_free(struct msg_queue *msq)
895 {
896 	security_ops->msg_queue_free_security(msq);
897 }
898 
899 int security_msg_queue_associate(struct msg_queue *msq, int msqflg)
900 {
901 	return security_ops->msg_queue_associate(msq, msqflg);
902 }
903 
904 int security_msg_queue_msgctl(struct msg_queue *msq, int cmd)
905 {
906 	return security_ops->msg_queue_msgctl(msq, cmd);
907 }
908 
909 int security_msg_queue_msgsnd(struct msg_queue *msq,
910 			       struct msg_msg *msg, int msqflg)
911 {
912 	return security_ops->msg_queue_msgsnd(msq, msg, msqflg);
913 }
914 
915 int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
916 			       struct task_struct *target, long type, int mode)
917 {
918 	return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode);
919 }
920 
921 int security_shm_alloc(struct shmid_kernel *shp)
922 {
923 	return security_ops->shm_alloc_security(shp);
924 }
925 
926 void security_shm_free(struct shmid_kernel *shp)
927 {
928 	security_ops->shm_free_security(shp);
929 }
930 
931 int security_shm_associate(struct shmid_kernel *shp, int shmflg)
932 {
933 	return security_ops->shm_associate(shp, shmflg);
934 }
935 
936 int security_shm_shmctl(struct shmid_kernel *shp, int cmd)
937 {
938 	return security_ops->shm_shmctl(shp, cmd);
939 }
940 
941 int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg)
942 {
943 	return security_ops->shm_shmat(shp, shmaddr, shmflg);
944 }
945 
946 int security_sem_alloc(struct sem_array *sma)
947 {
948 	return security_ops->sem_alloc_security(sma);
949 }
950 
951 void security_sem_free(struct sem_array *sma)
952 {
953 	security_ops->sem_free_security(sma);
954 }
955 
956 int security_sem_associate(struct sem_array *sma, int semflg)
957 {
958 	return security_ops->sem_associate(sma, semflg);
959 }
960 
961 int security_sem_semctl(struct sem_array *sma, int cmd)
962 {
963 	return security_ops->sem_semctl(sma, cmd);
964 }
965 
966 int security_sem_semop(struct sem_array *sma, struct sembuf *sops,
967 			unsigned nsops, int alter)
968 {
969 	return security_ops->sem_semop(sma, sops, nsops, alter);
970 }
971 
972 void security_d_instantiate(struct dentry *dentry, struct inode *inode)
973 {
974 	if (unlikely(inode && IS_PRIVATE(inode)))
975 		return;
976 	security_ops->d_instantiate(dentry, inode);
977 }
978 EXPORT_SYMBOL(security_d_instantiate);
979 
980 int security_getprocattr(struct task_struct *p, char *name, char **value)
981 {
982 	return security_ops->getprocattr(p, name, value);
983 }
984 
985 int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
986 {
987 	return security_ops->setprocattr(p, name, value, size);
988 }
989 
990 int security_netlink_send(struct sock *sk, struct sk_buff *skb)
991 {
992 	return security_ops->netlink_send(sk, skb);
993 }
994 
995 int security_netlink_recv(struct sk_buff *skb, int cap)
996 {
997 	return security_ops->netlink_recv(skb, cap);
998 }
999 EXPORT_SYMBOL(security_netlink_recv);
1000 
1001 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
1002 {
1003 	return security_ops->secid_to_secctx(secid, secdata, seclen);
1004 }
1005 EXPORT_SYMBOL(security_secid_to_secctx);
1006 
1007 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
1008 {
1009 	return security_ops->secctx_to_secid(secdata, seclen, secid);
1010 }
1011 EXPORT_SYMBOL(security_secctx_to_secid);
1012 
1013 void security_release_secctx(char *secdata, u32 seclen)
1014 {
1015 	security_ops->release_secctx(secdata, seclen);
1016 }
1017 EXPORT_SYMBOL(security_release_secctx);
1018 
1019 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
1020 {
1021 	return security_ops->inode_notifysecctx(inode, ctx, ctxlen);
1022 }
1023 EXPORT_SYMBOL(security_inode_notifysecctx);
1024 
1025 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
1026 {
1027 	return security_ops->inode_setsecctx(dentry, ctx, ctxlen);
1028 }
1029 EXPORT_SYMBOL(security_inode_setsecctx);
1030 
1031 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
1032 {
1033 	return security_ops->inode_getsecctx(inode, ctx, ctxlen);
1034 }
1035 EXPORT_SYMBOL(security_inode_getsecctx);
1036 
1037 #ifdef CONFIG_SECURITY_NETWORK
1038 
1039 int security_unix_stream_connect(struct socket *sock, struct socket *other,
1040 				 struct sock *newsk)
1041 {
1042 	return security_ops->unix_stream_connect(sock, other, newsk);
1043 }
1044 EXPORT_SYMBOL(security_unix_stream_connect);
1045 
1046 int security_unix_may_send(struct socket *sock,  struct socket *other)
1047 {
1048 	return security_ops->unix_may_send(sock, other);
1049 }
1050 EXPORT_SYMBOL(security_unix_may_send);
1051 
1052 int security_socket_create(int family, int type, int protocol, int kern)
1053 {
1054 	return security_ops->socket_create(family, type, protocol, kern);
1055 }
1056 
1057 int security_socket_post_create(struct socket *sock, int family,
1058 				int type, int protocol, int kern)
1059 {
1060 	return security_ops->socket_post_create(sock, family, type,
1061 						protocol, kern);
1062 }
1063 
1064 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
1065 {
1066 	return security_ops->socket_bind(sock, address, addrlen);
1067 }
1068 
1069 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
1070 {
1071 	return security_ops->socket_connect(sock, address, addrlen);
1072 }
1073 
1074 int security_socket_listen(struct socket *sock, int backlog)
1075 {
1076 	return security_ops->socket_listen(sock, backlog);
1077 }
1078 
1079 int security_socket_accept(struct socket *sock, struct socket *newsock)
1080 {
1081 	return security_ops->socket_accept(sock, newsock);
1082 }
1083 
1084 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
1085 {
1086 	return security_ops->socket_sendmsg(sock, msg, size);
1087 }
1088 
1089 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
1090 			    int size, int flags)
1091 {
1092 	return security_ops->socket_recvmsg(sock, msg, size, flags);
1093 }
1094 
1095 int security_socket_getsockname(struct socket *sock)
1096 {
1097 	return security_ops->socket_getsockname(sock);
1098 }
1099 
1100 int security_socket_getpeername(struct socket *sock)
1101 {
1102 	return security_ops->socket_getpeername(sock);
1103 }
1104 
1105 int security_socket_getsockopt(struct socket *sock, int level, int optname)
1106 {
1107 	return security_ops->socket_getsockopt(sock, level, optname);
1108 }
1109 
1110 int security_socket_setsockopt(struct socket *sock, int level, int optname)
1111 {
1112 	return security_ops->socket_setsockopt(sock, level, optname);
1113 }
1114 
1115 int security_socket_shutdown(struct socket *sock, int how)
1116 {
1117 	return security_ops->socket_shutdown(sock, how);
1118 }
1119 
1120 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
1121 {
1122 	return security_ops->socket_sock_rcv_skb(sk, skb);
1123 }
1124 EXPORT_SYMBOL(security_sock_rcv_skb);
1125 
1126 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
1127 				      int __user *optlen, unsigned len)
1128 {
1129 	return security_ops->socket_getpeersec_stream(sock, optval, optlen, len);
1130 }
1131 
1132 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
1133 {
1134 	return security_ops->socket_getpeersec_dgram(sock, skb, secid);
1135 }
1136 EXPORT_SYMBOL(security_socket_getpeersec_dgram);
1137 
1138 int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
1139 {
1140 	return security_ops->sk_alloc_security(sk, family, priority);
1141 }
1142 
1143 void security_sk_free(struct sock *sk)
1144 {
1145 	security_ops->sk_free_security(sk);
1146 }
1147 
1148 void security_sk_clone(const struct sock *sk, struct sock *newsk)
1149 {
1150 	security_ops->sk_clone_security(sk, newsk);
1151 }
1152 
1153 void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
1154 {
1155 	security_ops->sk_getsecid(sk, &fl->secid);
1156 }
1157 EXPORT_SYMBOL(security_sk_classify_flow);
1158 
1159 void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
1160 {
1161 	security_ops->req_classify_flow(req, fl);
1162 }
1163 EXPORT_SYMBOL(security_req_classify_flow);
1164 
1165 void security_sock_graft(struct sock *sk, struct socket *parent)
1166 {
1167 	security_ops->sock_graft(sk, parent);
1168 }
1169 EXPORT_SYMBOL(security_sock_graft);
1170 
1171 int security_inet_conn_request(struct sock *sk,
1172 			struct sk_buff *skb, struct request_sock *req)
1173 {
1174 	return security_ops->inet_conn_request(sk, skb, req);
1175 }
1176 EXPORT_SYMBOL(security_inet_conn_request);
1177 
1178 void security_inet_csk_clone(struct sock *newsk,
1179 			const struct request_sock *req)
1180 {
1181 	security_ops->inet_csk_clone(newsk, req);
1182 }
1183 
1184 void security_inet_conn_established(struct sock *sk,
1185 			struct sk_buff *skb)
1186 {
1187 	security_ops->inet_conn_established(sk, skb);
1188 }
1189 
1190 int security_tun_dev_create(void)
1191 {
1192 	return security_ops->tun_dev_create();
1193 }
1194 EXPORT_SYMBOL(security_tun_dev_create);
1195 
1196 void security_tun_dev_post_create(struct sock *sk)
1197 {
1198 	return security_ops->tun_dev_post_create(sk);
1199 }
1200 EXPORT_SYMBOL(security_tun_dev_post_create);
1201 
1202 int security_tun_dev_attach(struct sock *sk)
1203 {
1204 	return security_ops->tun_dev_attach(sk);
1205 }
1206 EXPORT_SYMBOL(security_tun_dev_attach);
1207 
1208 #endif	/* CONFIG_SECURITY_NETWORK */
1209 
1210 #ifdef CONFIG_SECURITY_NETWORK_XFRM
1211 
1212 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct xfrm_user_sec_ctx *sec_ctx)
1213 {
1214 	return security_ops->xfrm_policy_alloc_security(ctxp, sec_ctx);
1215 }
1216 EXPORT_SYMBOL(security_xfrm_policy_alloc);
1217 
1218 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
1219 			      struct xfrm_sec_ctx **new_ctxp)
1220 {
1221 	return security_ops->xfrm_policy_clone_security(old_ctx, new_ctxp);
1222 }
1223 
1224 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
1225 {
1226 	security_ops->xfrm_policy_free_security(ctx);
1227 }
1228 EXPORT_SYMBOL(security_xfrm_policy_free);
1229 
1230 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
1231 {
1232 	return security_ops->xfrm_policy_delete_security(ctx);
1233 }
1234 
1235 int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx)
1236 {
1237 	return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0);
1238 }
1239 EXPORT_SYMBOL(security_xfrm_state_alloc);
1240 
1241 int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
1242 				      struct xfrm_sec_ctx *polsec, u32 secid)
1243 {
1244 	if (!polsec)
1245 		return 0;
1246 	/*
1247 	 * We want the context to be taken from secid which is usually
1248 	 * from the sock.
1249 	 */
1250 	return security_ops->xfrm_state_alloc_security(x, NULL, secid);
1251 }
1252 
1253 int security_xfrm_state_delete(struct xfrm_state *x)
1254 {
1255 	return security_ops->xfrm_state_delete_security(x);
1256 }
1257 EXPORT_SYMBOL(security_xfrm_state_delete);
1258 
1259 void security_xfrm_state_free(struct xfrm_state *x)
1260 {
1261 	security_ops->xfrm_state_free_security(x);
1262 }
1263 
1264 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
1265 {
1266 	return security_ops->xfrm_policy_lookup(ctx, fl_secid, dir);
1267 }
1268 
1269 int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
1270 				       struct xfrm_policy *xp, struct flowi *fl)
1271 {
1272 	return security_ops->xfrm_state_pol_flow_match(x, xp, fl);
1273 }
1274 
1275 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
1276 {
1277 	return security_ops->xfrm_decode_session(skb, secid, 1);
1278 }
1279 
1280 void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
1281 {
1282 	int rc = security_ops->xfrm_decode_session(skb, &fl->secid, 0);
1283 
1284 	BUG_ON(rc);
1285 }
1286 EXPORT_SYMBOL(security_skb_classify_flow);
1287 
1288 #endif	/* CONFIG_SECURITY_NETWORK_XFRM */
1289 
1290 #ifdef CONFIG_KEYS
1291 
1292 int security_key_alloc(struct key *key, const struct cred *cred,
1293 		       unsigned long flags)
1294 {
1295 	return security_ops->key_alloc(key, cred, flags);
1296 }
1297 
1298 void security_key_free(struct key *key)
1299 {
1300 	security_ops->key_free(key);
1301 }
1302 
1303 int security_key_permission(key_ref_t key_ref,
1304 			    const struct cred *cred, key_perm_t perm)
1305 {
1306 	return security_ops->key_permission(key_ref, cred, perm);
1307 }
1308 
1309 int security_key_getsecurity(struct key *key, char **_buffer)
1310 {
1311 	return security_ops->key_getsecurity(key, _buffer);
1312 }
1313 
1314 int security_key_session_to_parent(const struct cred *cred,
1315 				   const struct cred *parent_cred,
1316 				   struct key *key)
1317 {
1318 	return security_ops->key_session_to_parent(cred, parent_cred, key);
1319 }
1320 
1321 #endif	/* CONFIG_KEYS */
1322 
1323 #ifdef CONFIG_AUDIT
1324 
1325 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
1326 {
1327 	return security_ops->audit_rule_init(field, op, rulestr, lsmrule);
1328 }
1329 
1330 int security_audit_rule_known(struct audit_krule *krule)
1331 {
1332 	return security_ops->audit_rule_known(krule);
1333 }
1334 
1335 void security_audit_rule_free(void *lsmrule)
1336 {
1337 	security_ops->audit_rule_free(lsmrule);
1338 }
1339 
1340 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule,
1341 			      struct audit_context *actx)
1342 {
1343 	return security_ops->audit_rule_match(secid, field, op, lsmrule, actx);
1344 }
1345 
1346 #endif /* CONFIG_AUDIT */
1347