1 /* 2 * Security plug functions 3 * 4 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com> 5 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com> 6 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com> 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2 of the License, or 11 * (at your option) any later version. 12 */ 13 14 #include <linux/capability.h> 15 #include <linux/module.h> 16 #include <linux/init.h> 17 #include <linux/kernel.h> 18 #include <linux/security.h> 19 #include <linux/ima.h> 20 21 /* Boot-time LSM user choice */ 22 static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1]; 23 24 /* things that live in capability.c */ 25 extern struct security_operations default_security_ops; 26 extern void security_fixup_ops(struct security_operations *ops); 27 28 struct security_operations *security_ops; /* Initialized to NULL */ 29 30 static inline int verify(struct security_operations *ops) 31 { 32 /* verify the security_operations structure exists */ 33 if (!ops) 34 return -EINVAL; 35 security_fixup_ops(ops); 36 return 0; 37 } 38 39 static void __init do_security_initcalls(void) 40 { 41 initcall_t *call; 42 call = __security_initcall_start; 43 while (call < __security_initcall_end) { 44 (*call) (); 45 call++; 46 } 47 } 48 49 /** 50 * security_init - initializes the security framework 51 * 52 * This should be called early in the kernel initialization sequence. 53 */ 54 int __init security_init(void) 55 { 56 printk(KERN_INFO "Security Framework initialized\n"); 57 58 security_fixup_ops(&default_security_ops); 59 security_ops = &default_security_ops; 60 do_security_initcalls(); 61 62 return 0; 63 } 64 65 /* Save user chosen LSM */ 66 static int __init choose_lsm(char *str) 67 { 68 strncpy(chosen_lsm, str, SECURITY_NAME_MAX); 69 return 1; 70 } 71 __setup("security=", choose_lsm); 72 73 /** 74 * security_module_enable - Load given security module on boot ? 75 * @ops: a pointer to the struct security_operations that is to be checked. 76 * 77 * Each LSM must pass this method before registering its own operations 78 * to avoid security registration races. This method may also be used 79 * to check if your LSM is currently loaded during kernel initialization. 80 * 81 * Return true if: 82 * -The passed LSM is the one chosen by user at boot time, 83 * -or user didn't specify a specific LSM and we're the first to ask 84 * for registration permission, 85 * -or the passed LSM is currently loaded. 86 * Otherwise, return false. 87 */ 88 int __init security_module_enable(struct security_operations *ops) 89 { 90 if (!*chosen_lsm) 91 strncpy(chosen_lsm, ops->name, SECURITY_NAME_MAX); 92 else if (strncmp(ops->name, chosen_lsm, SECURITY_NAME_MAX)) 93 return 0; 94 95 return 1; 96 } 97 98 /** 99 * register_security - registers a security framework with the kernel 100 * @ops: a pointer to the struct security_options that is to be registered 101 * 102 * This function allows a security module to register itself with the 103 * kernel security subsystem. Some rudimentary checking is done on the @ops 104 * value passed to this function. You'll need to check first if your LSM 105 * is allowed to register its @ops by calling security_module_enable(@ops). 106 * 107 * If there is already a security module registered with the kernel, 108 * an error will be returned. Otherwise %0 is returned on success. 109 */ 110 int register_security(struct security_operations *ops) 111 { 112 if (verify(ops)) { 113 printk(KERN_DEBUG "%s could not verify " 114 "security_operations structure.\n", __func__); 115 return -EINVAL; 116 } 117 118 if (security_ops != &default_security_ops) 119 return -EAGAIN; 120 121 security_ops = ops; 122 123 return 0; 124 } 125 126 /* Security operations */ 127 128 int security_ptrace_access_check(struct task_struct *child, unsigned int mode) 129 { 130 return security_ops->ptrace_access_check(child, mode); 131 } 132 133 int security_ptrace_traceme(struct task_struct *parent) 134 { 135 return security_ops->ptrace_traceme(parent); 136 } 137 138 int security_capget(struct task_struct *target, 139 kernel_cap_t *effective, 140 kernel_cap_t *inheritable, 141 kernel_cap_t *permitted) 142 { 143 return security_ops->capget(target, effective, inheritable, permitted); 144 } 145 146 int security_capset(struct cred *new, const struct cred *old, 147 const kernel_cap_t *effective, 148 const kernel_cap_t *inheritable, 149 const kernel_cap_t *permitted) 150 { 151 return security_ops->capset(new, old, 152 effective, inheritable, permitted); 153 } 154 155 int security_capable(int cap) 156 { 157 return security_ops->capable(current, current_cred(), cap, 158 SECURITY_CAP_AUDIT); 159 } 160 161 int security_real_capable(struct task_struct *tsk, int cap) 162 { 163 const struct cred *cred; 164 int ret; 165 166 cred = get_task_cred(tsk); 167 ret = security_ops->capable(tsk, cred, cap, SECURITY_CAP_AUDIT); 168 put_cred(cred); 169 return ret; 170 } 171 172 int security_real_capable_noaudit(struct task_struct *tsk, int cap) 173 { 174 const struct cred *cred; 175 int ret; 176 177 cred = get_task_cred(tsk); 178 ret = security_ops->capable(tsk, cred, cap, SECURITY_CAP_NOAUDIT); 179 put_cred(cred); 180 return ret; 181 } 182 183 int security_acct(struct file *file) 184 { 185 return security_ops->acct(file); 186 } 187 188 int security_sysctl(struct ctl_table *table, int op) 189 { 190 return security_ops->sysctl(table, op); 191 } 192 193 int security_quotactl(int cmds, int type, int id, struct super_block *sb) 194 { 195 return security_ops->quotactl(cmds, type, id, sb); 196 } 197 198 int security_quota_on(struct dentry *dentry) 199 { 200 return security_ops->quota_on(dentry); 201 } 202 203 int security_syslog(int type) 204 { 205 return security_ops->syslog(type); 206 } 207 208 int security_settime(struct timespec *ts, struct timezone *tz) 209 { 210 return security_ops->settime(ts, tz); 211 } 212 213 int security_vm_enough_memory(long pages) 214 { 215 WARN_ON(current->mm == NULL); 216 return security_ops->vm_enough_memory(current->mm, pages); 217 } 218 219 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages) 220 { 221 WARN_ON(mm == NULL); 222 return security_ops->vm_enough_memory(mm, pages); 223 } 224 225 int security_vm_enough_memory_kern(long pages) 226 { 227 /* If current->mm is a kernel thread then we will pass NULL, 228 for this specific case that is fine */ 229 return security_ops->vm_enough_memory(current->mm, pages); 230 } 231 232 int security_bprm_set_creds(struct linux_binprm *bprm) 233 { 234 return security_ops->bprm_set_creds(bprm); 235 } 236 237 int security_bprm_check(struct linux_binprm *bprm) 238 { 239 int ret; 240 241 ret = security_ops->bprm_check_security(bprm); 242 if (ret) 243 return ret; 244 return ima_bprm_check(bprm); 245 } 246 247 void security_bprm_committing_creds(struct linux_binprm *bprm) 248 { 249 security_ops->bprm_committing_creds(bprm); 250 } 251 252 void security_bprm_committed_creds(struct linux_binprm *bprm) 253 { 254 security_ops->bprm_committed_creds(bprm); 255 } 256 257 int security_bprm_secureexec(struct linux_binprm *bprm) 258 { 259 return security_ops->bprm_secureexec(bprm); 260 } 261 262 int security_sb_alloc(struct super_block *sb) 263 { 264 return security_ops->sb_alloc_security(sb); 265 } 266 267 void security_sb_free(struct super_block *sb) 268 { 269 security_ops->sb_free_security(sb); 270 } 271 272 int security_sb_copy_data(char *orig, char *copy) 273 { 274 return security_ops->sb_copy_data(orig, copy); 275 } 276 EXPORT_SYMBOL(security_sb_copy_data); 277 278 int security_sb_kern_mount(struct super_block *sb, int flags, void *data) 279 { 280 return security_ops->sb_kern_mount(sb, flags, data); 281 } 282 283 int security_sb_show_options(struct seq_file *m, struct super_block *sb) 284 { 285 return security_ops->sb_show_options(m, sb); 286 } 287 288 int security_sb_statfs(struct dentry *dentry) 289 { 290 return security_ops->sb_statfs(dentry); 291 } 292 293 int security_sb_mount(char *dev_name, struct path *path, 294 char *type, unsigned long flags, void *data) 295 { 296 return security_ops->sb_mount(dev_name, path, type, flags, data); 297 } 298 299 int security_sb_check_sb(struct vfsmount *mnt, struct path *path) 300 { 301 return security_ops->sb_check_sb(mnt, path); 302 } 303 304 int security_sb_umount(struct vfsmount *mnt, int flags) 305 { 306 return security_ops->sb_umount(mnt, flags); 307 } 308 309 void security_sb_umount_close(struct vfsmount *mnt) 310 { 311 security_ops->sb_umount_close(mnt); 312 } 313 314 void security_sb_umount_busy(struct vfsmount *mnt) 315 { 316 security_ops->sb_umount_busy(mnt); 317 } 318 319 void security_sb_post_remount(struct vfsmount *mnt, unsigned long flags, void *data) 320 { 321 security_ops->sb_post_remount(mnt, flags, data); 322 } 323 324 void security_sb_post_addmount(struct vfsmount *mnt, struct path *mountpoint) 325 { 326 security_ops->sb_post_addmount(mnt, mountpoint); 327 } 328 329 int security_sb_pivotroot(struct path *old_path, struct path *new_path) 330 { 331 return security_ops->sb_pivotroot(old_path, new_path); 332 } 333 334 void security_sb_post_pivotroot(struct path *old_path, struct path *new_path) 335 { 336 security_ops->sb_post_pivotroot(old_path, new_path); 337 } 338 339 int security_sb_set_mnt_opts(struct super_block *sb, 340 struct security_mnt_opts *opts) 341 { 342 return security_ops->sb_set_mnt_opts(sb, opts); 343 } 344 EXPORT_SYMBOL(security_sb_set_mnt_opts); 345 346 void security_sb_clone_mnt_opts(const struct super_block *oldsb, 347 struct super_block *newsb) 348 { 349 security_ops->sb_clone_mnt_opts(oldsb, newsb); 350 } 351 EXPORT_SYMBOL(security_sb_clone_mnt_opts); 352 353 int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts) 354 { 355 return security_ops->sb_parse_opts_str(options, opts); 356 } 357 EXPORT_SYMBOL(security_sb_parse_opts_str); 358 359 int security_inode_alloc(struct inode *inode) 360 { 361 int ret; 362 363 inode->i_security = NULL; 364 ret = security_ops->inode_alloc_security(inode); 365 if (ret) 366 return ret; 367 ret = ima_inode_alloc(inode); 368 if (ret) 369 security_inode_free(inode); 370 return ret; 371 } 372 373 void security_inode_free(struct inode *inode) 374 { 375 ima_inode_free(inode); 376 security_ops->inode_free_security(inode); 377 } 378 379 int security_inode_init_security(struct inode *inode, struct inode *dir, 380 char **name, void **value, size_t *len) 381 { 382 if (unlikely(IS_PRIVATE(inode))) 383 return -EOPNOTSUPP; 384 return security_ops->inode_init_security(inode, dir, name, value, len); 385 } 386 EXPORT_SYMBOL(security_inode_init_security); 387 388 #ifdef CONFIG_SECURITY_PATH 389 int security_path_mknod(struct path *path, struct dentry *dentry, int mode, 390 unsigned int dev) 391 { 392 if (unlikely(IS_PRIVATE(path->dentry->d_inode))) 393 return 0; 394 return security_ops->path_mknod(path, dentry, mode, dev); 395 } 396 EXPORT_SYMBOL(security_path_mknod); 397 398 int security_path_mkdir(struct path *path, struct dentry *dentry, int mode) 399 { 400 if (unlikely(IS_PRIVATE(path->dentry->d_inode))) 401 return 0; 402 return security_ops->path_mkdir(path, dentry, mode); 403 } 404 405 int security_path_rmdir(struct path *path, struct dentry *dentry) 406 { 407 if (unlikely(IS_PRIVATE(path->dentry->d_inode))) 408 return 0; 409 return security_ops->path_rmdir(path, dentry); 410 } 411 412 int security_path_unlink(struct path *path, struct dentry *dentry) 413 { 414 if (unlikely(IS_PRIVATE(path->dentry->d_inode))) 415 return 0; 416 return security_ops->path_unlink(path, dentry); 417 } 418 419 int security_path_symlink(struct path *path, struct dentry *dentry, 420 const char *old_name) 421 { 422 if (unlikely(IS_PRIVATE(path->dentry->d_inode))) 423 return 0; 424 return security_ops->path_symlink(path, dentry, old_name); 425 } 426 427 int security_path_link(struct dentry *old_dentry, struct path *new_dir, 428 struct dentry *new_dentry) 429 { 430 if (unlikely(IS_PRIVATE(old_dentry->d_inode))) 431 return 0; 432 return security_ops->path_link(old_dentry, new_dir, new_dentry); 433 } 434 435 int security_path_rename(struct path *old_dir, struct dentry *old_dentry, 436 struct path *new_dir, struct dentry *new_dentry) 437 { 438 if (unlikely(IS_PRIVATE(old_dentry->d_inode) || 439 (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode)))) 440 return 0; 441 return security_ops->path_rename(old_dir, old_dentry, new_dir, 442 new_dentry); 443 } 444 445 int security_path_truncate(struct path *path, loff_t length, 446 unsigned int time_attrs) 447 { 448 if (unlikely(IS_PRIVATE(path->dentry->d_inode))) 449 return 0; 450 return security_ops->path_truncate(path, length, time_attrs); 451 } 452 453 int security_path_chmod(struct dentry *dentry, struct vfsmount *mnt, 454 mode_t mode) 455 { 456 if (unlikely(IS_PRIVATE(dentry->d_inode))) 457 return 0; 458 return security_ops->path_chmod(dentry, mnt, mode); 459 } 460 461 int security_path_chown(struct path *path, uid_t uid, gid_t gid) 462 { 463 if (unlikely(IS_PRIVATE(path->dentry->d_inode))) 464 return 0; 465 return security_ops->path_chown(path, uid, gid); 466 } 467 468 int security_path_chroot(struct path *path) 469 { 470 return security_ops->path_chroot(path); 471 } 472 #endif 473 474 int security_inode_create(struct inode *dir, struct dentry *dentry, int mode) 475 { 476 if (unlikely(IS_PRIVATE(dir))) 477 return 0; 478 return security_ops->inode_create(dir, dentry, mode); 479 } 480 EXPORT_SYMBOL_GPL(security_inode_create); 481 482 int security_inode_link(struct dentry *old_dentry, struct inode *dir, 483 struct dentry *new_dentry) 484 { 485 if (unlikely(IS_PRIVATE(old_dentry->d_inode))) 486 return 0; 487 return security_ops->inode_link(old_dentry, dir, new_dentry); 488 } 489 490 int security_inode_unlink(struct inode *dir, struct dentry *dentry) 491 { 492 if (unlikely(IS_PRIVATE(dentry->d_inode))) 493 return 0; 494 return security_ops->inode_unlink(dir, dentry); 495 } 496 497 int security_inode_symlink(struct inode *dir, struct dentry *dentry, 498 const char *old_name) 499 { 500 if (unlikely(IS_PRIVATE(dir))) 501 return 0; 502 return security_ops->inode_symlink(dir, dentry, old_name); 503 } 504 505 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, int mode) 506 { 507 if (unlikely(IS_PRIVATE(dir))) 508 return 0; 509 return security_ops->inode_mkdir(dir, dentry, mode); 510 } 511 EXPORT_SYMBOL_GPL(security_inode_mkdir); 512 513 int security_inode_rmdir(struct inode *dir, struct dentry *dentry) 514 { 515 if (unlikely(IS_PRIVATE(dentry->d_inode))) 516 return 0; 517 return security_ops->inode_rmdir(dir, dentry); 518 } 519 520 int security_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev) 521 { 522 if (unlikely(IS_PRIVATE(dir))) 523 return 0; 524 return security_ops->inode_mknod(dir, dentry, mode, dev); 525 } 526 527 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry, 528 struct inode *new_dir, struct dentry *new_dentry) 529 { 530 if (unlikely(IS_PRIVATE(old_dentry->d_inode) || 531 (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode)))) 532 return 0; 533 return security_ops->inode_rename(old_dir, old_dentry, 534 new_dir, new_dentry); 535 } 536 537 int security_inode_readlink(struct dentry *dentry) 538 { 539 if (unlikely(IS_PRIVATE(dentry->d_inode))) 540 return 0; 541 return security_ops->inode_readlink(dentry); 542 } 543 544 int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd) 545 { 546 if (unlikely(IS_PRIVATE(dentry->d_inode))) 547 return 0; 548 return security_ops->inode_follow_link(dentry, nd); 549 } 550 551 int security_inode_permission(struct inode *inode, int mask) 552 { 553 if (unlikely(IS_PRIVATE(inode))) 554 return 0; 555 return security_ops->inode_permission(inode, mask); 556 } 557 558 int security_inode_setattr(struct dentry *dentry, struct iattr *attr) 559 { 560 if (unlikely(IS_PRIVATE(dentry->d_inode))) 561 return 0; 562 return security_ops->inode_setattr(dentry, attr); 563 } 564 EXPORT_SYMBOL_GPL(security_inode_setattr); 565 566 int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry) 567 { 568 if (unlikely(IS_PRIVATE(dentry->d_inode))) 569 return 0; 570 return security_ops->inode_getattr(mnt, dentry); 571 } 572 573 void security_inode_delete(struct inode *inode) 574 { 575 if (unlikely(IS_PRIVATE(inode))) 576 return; 577 security_ops->inode_delete(inode); 578 } 579 580 int security_inode_setxattr(struct dentry *dentry, const char *name, 581 const void *value, size_t size, int flags) 582 { 583 if (unlikely(IS_PRIVATE(dentry->d_inode))) 584 return 0; 585 return security_ops->inode_setxattr(dentry, name, value, size, flags); 586 } 587 588 void security_inode_post_setxattr(struct dentry *dentry, const char *name, 589 const void *value, size_t size, int flags) 590 { 591 if (unlikely(IS_PRIVATE(dentry->d_inode))) 592 return; 593 security_ops->inode_post_setxattr(dentry, name, value, size, flags); 594 } 595 596 int security_inode_getxattr(struct dentry *dentry, const char *name) 597 { 598 if (unlikely(IS_PRIVATE(dentry->d_inode))) 599 return 0; 600 return security_ops->inode_getxattr(dentry, name); 601 } 602 603 int security_inode_listxattr(struct dentry *dentry) 604 { 605 if (unlikely(IS_PRIVATE(dentry->d_inode))) 606 return 0; 607 return security_ops->inode_listxattr(dentry); 608 } 609 610 int security_inode_removexattr(struct dentry *dentry, const char *name) 611 { 612 if (unlikely(IS_PRIVATE(dentry->d_inode))) 613 return 0; 614 return security_ops->inode_removexattr(dentry, name); 615 } 616 617 int security_inode_need_killpriv(struct dentry *dentry) 618 { 619 return security_ops->inode_need_killpriv(dentry); 620 } 621 622 int security_inode_killpriv(struct dentry *dentry) 623 { 624 return security_ops->inode_killpriv(dentry); 625 } 626 627 int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc) 628 { 629 if (unlikely(IS_PRIVATE(inode))) 630 return 0; 631 return security_ops->inode_getsecurity(inode, name, buffer, alloc); 632 } 633 634 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags) 635 { 636 if (unlikely(IS_PRIVATE(inode))) 637 return 0; 638 return security_ops->inode_setsecurity(inode, name, value, size, flags); 639 } 640 641 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size) 642 { 643 if (unlikely(IS_PRIVATE(inode))) 644 return 0; 645 return security_ops->inode_listsecurity(inode, buffer, buffer_size); 646 } 647 648 void security_inode_getsecid(const struct inode *inode, u32 *secid) 649 { 650 security_ops->inode_getsecid(inode, secid); 651 } 652 653 int security_file_permission(struct file *file, int mask) 654 { 655 return security_ops->file_permission(file, mask); 656 } 657 658 int security_file_alloc(struct file *file) 659 { 660 return security_ops->file_alloc_security(file); 661 } 662 663 void security_file_free(struct file *file) 664 { 665 security_ops->file_free_security(file); 666 if (file->f_dentry) 667 ima_file_free(file); 668 } 669 670 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 671 { 672 return security_ops->file_ioctl(file, cmd, arg); 673 } 674 675 int security_file_mmap(struct file *file, unsigned long reqprot, 676 unsigned long prot, unsigned long flags, 677 unsigned long addr, unsigned long addr_only) 678 { 679 int ret; 680 681 ret = security_ops->file_mmap(file, reqprot, prot, flags, addr, addr_only); 682 if (ret) 683 return ret; 684 return ima_file_mmap(file, prot); 685 } 686 687 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot, 688 unsigned long prot) 689 { 690 return security_ops->file_mprotect(vma, reqprot, prot); 691 } 692 693 int security_file_lock(struct file *file, unsigned int cmd) 694 { 695 return security_ops->file_lock(file, cmd); 696 } 697 698 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg) 699 { 700 return security_ops->file_fcntl(file, cmd, arg); 701 } 702 703 int security_file_set_fowner(struct file *file) 704 { 705 return security_ops->file_set_fowner(file); 706 } 707 708 int security_file_send_sigiotask(struct task_struct *tsk, 709 struct fown_struct *fown, int sig) 710 { 711 return security_ops->file_send_sigiotask(tsk, fown, sig); 712 } 713 714 int security_file_receive(struct file *file) 715 { 716 return security_ops->file_receive(file); 717 } 718 719 int security_dentry_open(struct file *file, const struct cred *cred) 720 { 721 return security_ops->dentry_open(file, cred); 722 } 723 724 int security_task_create(unsigned long clone_flags) 725 { 726 return security_ops->task_create(clone_flags); 727 } 728 729 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp) 730 { 731 return security_ops->cred_alloc_blank(cred, gfp); 732 } 733 734 void security_cred_free(struct cred *cred) 735 { 736 security_ops->cred_free(cred); 737 } 738 739 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp) 740 { 741 return security_ops->cred_prepare(new, old, gfp); 742 } 743 744 void security_commit_creds(struct cred *new, const struct cred *old) 745 { 746 security_ops->cred_commit(new, old); 747 } 748 749 void security_transfer_creds(struct cred *new, const struct cred *old) 750 { 751 security_ops->cred_transfer(new, old); 752 } 753 754 int security_kernel_act_as(struct cred *new, u32 secid) 755 { 756 return security_ops->kernel_act_as(new, secid); 757 } 758 759 int security_kernel_create_files_as(struct cred *new, struct inode *inode) 760 { 761 return security_ops->kernel_create_files_as(new, inode); 762 } 763 764 int security_kernel_module_request(void) 765 { 766 return security_ops->kernel_module_request(); 767 } 768 769 int security_task_setuid(uid_t id0, uid_t id1, uid_t id2, int flags) 770 { 771 return security_ops->task_setuid(id0, id1, id2, flags); 772 } 773 774 int security_task_fix_setuid(struct cred *new, const struct cred *old, 775 int flags) 776 { 777 return security_ops->task_fix_setuid(new, old, flags); 778 } 779 780 int security_task_setgid(gid_t id0, gid_t id1, gid_t id2, int flags) 781 { 782 return security_ops->task_setgid(id0, id1, id2, flags); 783 } 784 785 int security_task_setpgid(struct task_struct *p, pid_t pgid) 786 { 787 return security_ops->task_setpgid(p, pgid); 788 } 789 790 int security_task_getpgid(struct task_struct *p) 791 { 792 return security_ops->task_getpgid(p); 793 } 794 795 int security_task_getsid(struct task_struct *p) 796 { 797 return security_ops->task_getsid(p); 798 } 799 800 void security_task_getsecid(struct task_struct *p, u32 *secid) 801 { 802 security_ops->task_getsecid(p, secid); 803 } 804 EXPORT_SYMBOL(security_task_getsecid); 805 806 int security_task_setgroups(struct group_info *group_info) 807 { 808 return security_ops->task_setgroups(group_info); 809 } 810 811 int security_task_setnice(struct task_struct *p, int nice) 812 { 813 return security_ops->task_setnice(p, nice); 814 } 815 816 int security_task_setioprio(struct task_struct *p, int ioprio) 817 { 818 return security_ops->task_setioprio(p, ioprio); 819 } 820 821 int security_task_getioprio(struct task_struct *p) 822 { 823 return security_ops->task_getioprio(p); 824 } 825 826 int security_task_setrlimit(unsigned int resource, struct rlimit *new_rlim) 827 { 828 return security_ops->task_setrlimit(resource, new_rlim); 829 } 830 831 int security_task_setscheduler(struct task_struct *p, 832 int policy, struct sched_param *lp) 833 { 834 return security_ops->task_setscheduler(p, policy, lp); 835 } 836 837 int security_task_getscheduler(struct task_struct *p) 838 { 839 return security_ops->task_getscheduler(p); 840 } 841 842 int security_task_movememory(struct task_struct *p) 843 { 844 return security_ops->task_movememory(p); 845 } 846 847 int security_task_kill(struct task_struct *p, struct siginfo *info, 848 int sig, u32 secid) 849 { 850 return security_ops->task_kill(p, info, sig, secid); 851 } 852 853 int security_task_wait(struct task_struct *p) 854 { 855 return security_ops->task_wait(p); 856 } 857 858 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3, 859 unsigned long arg4, unsigned long arg5) 860 { 861 return security_ops->task_prctl(option, arg2, arg3, arg4, arg5); 862 } 863 864 void security_task_to_inode(struct task_struct *p, struct inode *inode) 865 { 866 security_ops->task_to_inode(p, inode); 867 } 868 869 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag) 870 { 871 return security_ops->ipc_permission(ipcp, flag); 872 } 873 874 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid) 875 { 876 security_ops->ipc_getsecid(ipcp, secid); 877 } 878 879 int security_msg_msg_alloc(struct msg_msg *msg) 880 { 881 return security_ops->msg_msg_alloc_security(msg); 882 } 883 884 void security_msg_msg_free(struct msg_msg *msg) 885 { 886 security_ops->msg_msg_free_security(msg); 887 } 888 889 int security_msg_queue_alloc(struct msg_queue *msq) 890 { 891 return security_ops->msg_queue_alloc_security(msq); 892 } 893 894 void security_msg_queue_free(struct msg_queue *msq) 895 { 896 security_ops->msg_queue_free_security(msq); 897 } 898 899 int security_msg_queue_associate(struct msg_queue *msq, int msqflg) 900 { 901 return security_ops->msg_queue_associate(msq, msqflg); 902 } 903 904 int security_msg_queue_msgctl(struct msg_queue *msq, int cmd) 905 { 906 return security_ops->msg_queue_msgctl(msq, cmd); 907 } 908 909 int security_msg_queue_msgsnd(struct msg_queue *msq, 910 struct msg_msg *msg, int msqflg) 911 { 912 return security_ops->msg_queue_msgsnd(msq, msg, msqflg); 913 } 914 915 int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg, 916 struct task_struct *target, long type, int mode) 917 { 918 return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode); 919 } 920 921 int security_shm_alloc(struct shmid_kernel *shp) 922 { 923 return security_ops->shm_alloc_security(shp); 924 } 925 926 void security_shm_free(struct shmid_kernel *shp) 927 { 928 security_ops->shm_free_security(shp); 929 } 930 931 int security_shm_associate(struct shmid_kernel *shp, int shmflg) 932 { 933 return security_ops->shm_associate(shp, shmflg); 934 } 935 936 int security_shm_shmctl(struct shmid_kernel *shp, int cmd) 937 { 938 return security_ops->shm_shmctl(shp, cmd); 939 } 940 941 int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg) 942 { 943 return security_ops->shm_shmat(shp, shmaddr, shmflg); 944 } 945 946 int security_sem_alloc(struct sem_array *sma) 947 { 948 return security_ops->sem_alloc_security(sma); 949 } 950 951 void security_sem_free(struct sem_array *sma) 952 { 953 security_ops->sem_free_security(sma); 954 } 955 956 int security_sem_associate(struct sem_array *sma, int semflg) 957 { 958 return security_ops->sem_associate(sma, semflg); 959 } 960 961 int security_sem_semctl(struct sem_array *sma, int cmd) 962 { 963 return security_ops->sem_semctl(sma, cmd); 964 } 965 966 int security_sem_semop(struct sem_array *sma, struct sembuf *sops, 967 unsigned nsops, int alter) 968 { 969 return security_ops->sem_semop(sma, sops, nsops, alter); 970 } 971 972 void security_d_instantiate(struct dentry *dentry, struct inode *inode) 973 { 974 if (unlikely(inode && IS_PRIVATE(inode))) 975 return; 976 security_ops->d_instantiate(dentry, inode); 977 } 978 EXPORT_SYMBOL(security_d_instantiate); 979 980 int security_getprocattr(struct task_struct *p, char *name, char **value) 981 { 982 return security_ops->getprocattr(p, name, value); 983 } 984 985 int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size) 986 { 987 return security_ops->setprocattr(p, name, value, size); 988 } 989 990 int security_netlink_send(struct sock *sk, struct sk_buff *skb) 991 { 992 return security_ops->netlink_send(sk, skb); 993 } 994 995 int security_netlink_recv(struct sk_buff *skb, int cap) 996 { 997 return security_ops->netlink_recv(skb, cap); 998 } 999 EXPORT_SYMBOL(security_netlink_recv); 1000 1001 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen) 1002 { 1003 return security_ops->secid_to_secctx(secid, secdata, seclen); 1004 } 1005 EXPORT_SYMBOL(security_secid_to_secctx); 1006 1007 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid) 1008 { 1009 return security_ops->secctx_to_secid(secdata, seclen, secid); 1010 } 1011 EXPORT_SYMBOL(security_secctx_to_secid); 1012 1013 void security_release_secctx(char *secdata, u32 seclen) 1014 { 1015 security_ops->release_secctx(secdata, seclen); 1016 } 1017 EXPORT_SYMBOL(security_release_secctx); 1018 1019 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen) 1020 { 1021 return security_ops->inode_notifysecctx(inode, ctx, ctxlen); 1022 } 1023 EXPORT_SYMBOL(security_inode_notifysecctx); 1024 1025 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen) 1026 { 1027 return security_ops->inode_setsecctx(dentry, ctx, ctxlen); 1028 } 1029 EXPORT_SYMBOL(security_inode_setsecctx); 1030 1031 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen) 1032 { 1033 return security_ops->inode_getsecctx(inode, ctx, ctxlen); 1034 } 1035 EXPORT_SYMBOL(security_inode_getsecctx); 1036 1037 #ifdef CONFIG_SECURITY_NETWORK 1038 1039 int security_unix_stream_connect(struct socket *sock, struct socket *other, 1040 struct sock *newsk) 1041 { 1042 return security_ops->unix_stream_connect(sock, other, newsk); 1043 } 1044 EXPORT_SYMBOL(security_unix_stream_connect); 1045 1046 int security_unix_may_send(struct socket *sock, struct socket *other) 1047 { 1048 return security_ops->unix_may_send(sock, other); 1049 } 1050 EXPORT_SYMBOL(security_unix_may_send); 1051 1052 int security_socket_create(int family, int type, int protocol, int kern) 1053 { 1054 return security_ops->socket_create(family, type, protocol, kern); 1055 } 1056 1057 int security_socket_post_create(struct socket *sock, int family, 1058 int type, int protocol, int kern) 1059 { 1060 return security_ops->socket_post_create(sock, family, type, 1061 protocol, kern); 1062 } 1063 1064 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen) 1065 { 1066 return security_ops->socket_bind(sock, address, addrlen); 1067 } 1068 1069 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen) 1070 { 1071 return security_ops->socket_connect(sock, address, addrlen); 1072 } 1073 1074 int security_socket_listen(struct socket *sock, int backlog) 1075 { 1076 return security_ops->socket_listen(sock, backlog); 1077 } 1078 1079 int security_socket_accept(struct socket *sock, struct socket *newsock) 1080 { 1081 return security_ops->socket_accept(sock, newsock); 1082 } 1083 1084 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size) 1085 { 1086 return security_ops->socket_sendmsg(sock, msg, size); 1087 } 1088 1089 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg, 1090 int size, int flags) 1091 { 1092 return security_ops->socket_recvmsg(sock, msg, size, flags); 1093 } 1094 1095 int security_socket_getsockname(struct socket *sock) 1096 { 1097 return security_ops->socket_getsockname(sock); 1098 } 1099 1100 int security_socket_getpeername(struct socket *sock) 1101 { 1102 return security_ops->socket_getpeername(sock); 1103 } 1104 1105 int security_socket_getsockopt(struct socket *sock, int level, int optname) 1106 { 1107 return security_ops->socket_getsockopt(sock, level, optname); 1108 } 1109 1110 int security_socket_setsockopt(struct socket *sock, int level, int optname) 1111 { 1112 return security_ops->socket_setsockopt(sock, level, optname); 1113 } 1114 1115 int security_socket_shutdown(struct socket *sock, int how) 1116 { 1117 return security_ops->socket_shutdown(sock, how); 1118 } 1119 1120 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb) 1121 { 1122 return security_ops->socket_sock_rcv_skb(sk, skb); 1123 } 1124 EXPORT_SYMBOL(security_sock_rcv_skb); 1125 1126 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval, 1127 int __user *optlen, unsigned len) 1128 { 1129 return security_ops->socket_getpeersec_stream(sock, optval, optlen, len); 1130 } 1131 1132 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid) 1133 { 1134 return security_ops->socket_getpeersec_dgram(sock, skb, secid); 1135 } 1136 EXPORT_SYMBOL(security_socket_getpeersec_dgram); 1137 1138 int security_sk_alloc(struct sock *sk, int family, gfp_t priority) 1139 { 1140 return security_ops->sk_alloc_security(sk, family, priority); 1141 } 1142 1143 void security_sk_free(struct sock *sk) 1144 { 1145 security_ops->sk_free_security(sk); 1146 } 1147 1148 void security_sk_clone(const struct sock *sk, struct sock *newsk) 1149 { 1150 security_ops->sk_clone_security(sk, newsk); 1151 } 1152 1153 void security_sk_classify_flow(struct sock *sk, struct flowi *fl) 1154 { 1155 security_ops->sk_getsecid(sk, &fl->secid); 1156 } 1157 EXPORT_SYMBOL(security_sk_classify_flow); 1158 1159 void security_req_classify_flow(const struct request_sock *req, struct flowi *fl) 1160 { 1161 security_ops->req_classify_flow(req, fl); 1162 } 1163 EXPORT_SYMBOL(security_req_classify_flow); 1164 1165 void security_sock_graft(struct sock *sk, struct socket *parent) 1166 { 1167 security_ops->sock_graft(sk, parent); 1168 } 1169 EXPORT_SYMBOL(security_sock_graft); 1170 1171 int security_inet_conn_request(struct sock *sk, 1172 struct sk_buff *skb, struct request_sock *req) 1173 { 1174 return security_ops->inet_conn_request(sk, skb, req); 1175 } 1176 EXPORT_SYMBOL(security_inet_conn_request); 1177 1178 void security_inet_csk_clone(struct sock *newsk, 1179 const struct request_sock *req) 1180 { 1181 security_ops->inet_csk_clone(newsk, req); 1182 } 1183 1184 void security_inet_conn_established(struct sock *sk, 1185 struct sk_buff *skb) 1186 { 1187 security_ops->inet_conn_established(sk, skb); 1188 } 1189 1190 int security_tun_dev_create(void) 1191 { 1192 return security_ops->tun_dev_create(); 1193 } 1194 EXPORT_SYMBOL(security_tun_dev_create); 1195 1196 void security_tun_dev_post_create(struct sock *sk) 1197 { 1198 return security_ops->tun_dev_post_create(sk); 1199 } 1200 EXPORT_SYMBOL(security_tun_dev_post_create); 1201 1202 int security_tun_dev_attach(struct sock *sk) 1203 { 1204 return security_ops->tun_dev_attach(sk); 1205 } 1206 EXPORT_SYMBOL(security_tun_dev_attach); 1207 1208 #endif /* CONFIG_SECURITY_NETWORK */ 1209 1210 #ifdef CONFIG_SECURITY_NETWORK_XFRM 1211 1212 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct xfrm_user_sec_ctx *sec_ctx) 1213 { 1214 return security_ops->xfrm_policy_alloc_security(ctxp, sec_ctx); 1215 } 1216 EXPORT_SYMBOL(security_xfrm_policy_alloc); 1217 1218 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx, 1219 struct xfrm_sec_ctx **new_ctxp) 1220 { 1221 return security_ops->xfrm_policy_clone_security(old_ctx, new_ctxp); 1222 } 1223 1224 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx) 1225 { 1226 security_ops->xfrm_policy_free_security(ctx); 1227 } 1228 EXPORT_SYMBOL(security_xfrm_policy_free); 1229 1230 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx) 1231 { 1232 return security_ops->xfrm_policy_delete_security(ctx); 1233 } 1234 1235 int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx) 1236 { 1237 return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0); 1238 } 1239 EXPORT_SYMBOL(security_xfrm_state_alloc); 1240 1241 int security_xfrm_state_alloc_acquire(struct xfrm_state *x, 1242 struct xfrm_sec_ctx *polsec, u32 secid) 1243 { 1244 if (!polsec) 1245 return 0; 1246 /* 1247 * We want the context to be taken from secid which is usually 1248 * from the sock. 1249 */ 1250 return security_ops->xfrm_state_alloc_security(x, NULL, secid); 1251 } 1252 1253 int security_xfrm_state_delete(struct xfrm_state *x) 1254 { 1255 return security_ops->xfrm_state_delete_security(x); 1256 } 1257 EXPORT_SYMBOL(security_xfrm_state_delete); 1258 1259 void security_xfrm_state_free(struct xfrm_state *x) 1260 { 1261 security_ops->xfrm_state_free_security(x); 1262 } 1263 1264 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir) 1265 { 1266 return security_ops->xfrm_policy_lookup(ctx, fl_secid, dir); 1267 } 1268 1269 int security_xfrm_state_pol_flow_match(struct xfrm_state *x, 1270 struct xfrm_policy *xp, struct flowi *fl) 1271 { 1272 return security_ops->xfrm_state_pol_flow_match(x, xp, fl); 1273 } 1274 1275 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid) 1276 { 1277 return security_ops->xfrm_decode_session(skb, secid, 1); 1278 } 1279 1280 void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl) 1281 { 1282 int rc = security_ops->xfrm_decode_session(skb, &fl->secid, 0); 1283 1284 BUG_ON(rc); 1285 } 1286 EXPORT_SYMBOL(security_skb_classify_flow); 1287 1288 #endif /* CONFIG_SECURITY_NETWORK_XFRM */ 1289 1290 #ifdef CONFIG_KEYS 1291 1292 int security_key_alloc(struct key *key, const struct cred *cred, 1293 unsigned long flags) 1294 { 1295 return security_ops->key_alloc(key, cred, flags); 1296 } 1297 1298 void security_key_free(struct key *key) 1299 { 1300 security_ops->key_free(key); 1301 } 1302 1303 int security_key_permission(key_ref_t key_ref, 1304 const struct cred *cred, key_perm_t perm) 1305 { 1306 return security_ops->key_permission(key_ref, cred, perm); 1307 } 1308 1309 int security_key_getsecurity(struct key *key, char **_buffer) 1310 { 1311 return security_ops->key_getsecurity(key, _buffer); 1312 } 1313 1314 int security_key_session_to_parent(const struct cred *cred, 1315 const struct cred *parent_cred, 1316 struct key *key) 1317 { 1318 return security_ops->key_session_to_parent(cred, parent_cred, key); 1319 } 1320 1321 #endif /* CONFIG_KEYS */ 1322 1323 #ifdef CONFIG_AUDIT 1324 1325 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule) 1326 { 1327 return security_ops->audit_rule_init(field, op, rulestr, lsmrule); 1328 } 1329 1330 int security_audit_rule_known(struct audit_krule *krule) 1331 { 1332 return security_ops->audit_rule_known(krule); 1333 } 1334 1335 void security_audit_rule_free(void *lsmrule) 1336 { 1337 security_ops->audit_rule_free(lsmrule); 1338 } 1339 1340 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule, 1341 struct audit_context *actx) 1342 { 1343 return security_ops->audit_rule_match(secid, field, op, lsmrule, actx); 1344 } 1345 1346 #endif /* CONFIG_AUDIT */ 1347