xref: /linux/security/security.c (revision 64b14a184e83eb62ea0615e31a409956049d40e7)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Security plug functions
4  *
5  * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
6  * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
7  * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
8  * Copyright (C) 2016 Mellanox Technologies
9  */
10 
11 #define pr_fmt(fmt) "LSM: " fmt
12 
13 #include <linux/bpf.h>
14 #include <linux/capability.h>
15 #include <linux/dcache.h>
16 #include <linux/export.h>
17 #include <linux/init.h>
18 #include <linux/kernel.h>
19 #include <linux/kernel_read_file.h>
20 #include <linux/lsm_hooks.h>
21 #include <linux/integrity.h>
22 #include <linux/ima.h>
23 #include <linux/evm.h>
24 #include <linux/fsnotify.h>
25 #include <linux/mman.h>
26 #include <linux/mount.h>
27 #include <linux/personality.h>
28 #include <linux/backing-dev.h>
29 #include <linux/string.h>
30 #include <linux/msg.h>
31 #include <net/flow.h>
32 
33 #define MAX_LSM_EVM_XATTR	2
34 
35 /* How many LSMs were built into the kernel? */
36 #define LSM_COUNT (__end_lsm_info - __start_lsm_info)
37 
38 /*
39  * These are descriptions of the reasons that can be passed to the
40  * security_locked_down() LSM hook. Placing this array here allows
41  * all security modules to use the same descriptions for auditing
42  * purposes.
43  */
44 const char *const lockdown_reasons[LOCKDOWN_CONFIDENTIALITY_MAX+1] = {
45 	[LOCKDOWN_NONE] = "none",
46 	[LOCKDOWN_MODULE_SIGNATURE] = "unsigned module loading",
47 	[LOCKDOWN_DEV_MEM] = "/dev/mem,kmem,port",
48 	[LOCKDOWN_EFI_TEST] = "/dev/efi_test access",
49 	[LOCKDOWN_KEXEC] = "kexec of unsigned images",
50 	[LOCKDOWN_HIBERNATION] = "hibernation",
51 	[LOCKDOWN_PCI_ACCESS] = "direct PCI access",
52 	[LOCKDOWN_IOPORT] = "raw io port access",
53 	[LOCKDOWN_MSR] = "raw MSR access",
54 	[LOCKDOWN_ACPI_TABLES] = "modifying ACPI tables",
55 	[LOCKDOWN_PCMCIA_CIS] = "direct PCMCIA CIS storage",
56 	[LOCKDOWN_TIOCSSERIAL] = "reconfiguration of serial port IO",
57 	[LOCKDOWN_MODULE_PARAMETERS] = "unsafe module parameters",
58 	[LOCKDOWN_MMIOTRACE] = "unsafe mmio",
59 	[LOCKDOWN_DEBUGFS] = "debugfs access",
60 	[LOCKDOWN_XMON_WR] = "xmon write access",
61 	[LOCKDOWN_BPF_WRITE_USER] = "use of bpf to write user RAM",
62 	[LOCKDOWN_INTEGRITY_MAX] = "integrity",
63 	[LOCKDOWN_KCORE] = "/proc/kcore access",
64 	[LOCKDOWN_KPROBES] = "use of kprobes",
65 	[LOCKDOWN_BPF_READ_KERNEL] = "use of bpf to read kernel RAM",
66 	[LOCKDOWN_PERF] = "unsafe use of perf",
67 	[LOCKDOWN_TRACEFS] = "use of tracefs",
68 	[LOCKDOWN_XMON_RW] = "xmon read and write access",
69 	[LOCKDOWN_XFRM_SECRET] = "xfrm SA secret",
70 	[LOCKDOWN_CONFIDENTIALITY_MAX] = "confidentiality",
71 };
72 
73 struct security_hook_heads security_hook_heads __lsm_ro_after_init;
74 static BLOCKING_NOTIFIER_HEAD(blocking_lsm_notifier_chain);
75 
76 static struct kmem_cache *lsm_file_cache;
77 static struct kmem_cache *lsm_inode_cache;
78 
79 char *lsm_names;
80 static struct lsm_blob_sizes blob_sizes __lsm_ro_after_init;
81 
82 /* Boot-time LSM user choice */
83 static __initdata const char *chosen_lsm_order;
84 static __initdata const char *chosen_major_lsm;
85 
86 static __initconst const char * const builtin_lsm_order = CONFIG_LSM;
87 
88 /* Ordered list of LSMs to initialize. */
89 static __initdata struct lsm_info **ordered_lsms;
90 static __initdata struct lsm_info *exclusive;
91 
92 static __initdata bool debug;
93 #define init_debug(...)						\
94 	do {							\
95 		if (debug)					\
96 			pr_info(__VA_ARGS__);			\
97 	} while (0)
98 
99 static bool __init is_enabled(struct lsm_info *lsm)
100 {
101 	if (!lsm->enabled)
102 		return false;
103 
104 	return *lsm->enabled;
105 }
106 
107 /* Mark an LSM's enabled flag. */
108 static int lsm_enabled_true __initdata = 1;
109 static int lsm_enabled_false __initdata = 0;
110 static void __init set_enabled(struct lsm_info *lsm, bool enabled)
111 {
112 	/*
113 	 * When an LSM hasn't configured an enable variable, we can use
114 	 * a hard-coded location for storing the default enabled state.
115 	 */
116 	if (!lsm->enabled) {
117 		if (enabled)
118 			lsm->enabled = &lsm_enabled_true;
119 		else
120 			lsm->enabled = &lsm_enabled_false;
121 	} else if (lsm->enabled == &lsm_enabled_true) {
122 		if (!enabled)
123 			lsm->enabled = &lsm_enabled_false;
124 	} else if (lsm->enabled == &lsm_enabled_false) {
125 		if (enabled)
126 			lsm->enabled = &lsm_enabled_true;
127 	} else {
128 		*lsm->enabled = enabled;
129 	}
130 }
131 
132 /* Is an LSM already listed in the ordered LSMs list? */
133 static bool __init exists_ordered_lsm(struct lsm_info *lsm)
134 {
135 	struct lsm_info **check;
136 
137 	for (check = ordered_lsms; *check; check++)
138 		if (*check == lsm)
139 			return true;
140 
141 	return false;
142 }
143 
144 /* Append an LSM to the list of ordered LSMs to initialize. */
145 static int last_lsm __initdata;
146 static void __init append_ordered_lsm(struct lsm_info *lsm, const char *from)
147 {
148 	/* Ignore duplicate selections. */
149 	if (exists_ordered_lsm(lsm))
150 		return;
151 
152 	if (WARN(last_lsm == LSM_COUNT, "%s: out of LSM slots!?\n", from))
153 		return;
154 
155 	/* Enable this LSM, if it is not already set. */
156 	if (!lsm->enabled)
157 		lsm->enabled = &lsm_enabled_true;
158 	ordered_lsms[last_lsm++] = lsm;
159 
160 	init_debug("%s ordering: %s (%sabled)\n", from, lsm->name,
161 		   is_enabled(lsm) ? "en" : "dis");
162 }
163 
164 /* Is an LSM allowed to be initialized? */
165 static bool __init lsm_allowed(struct lsm_info *lsm)
166 {
167 	/* Skip if the LSM is disabled. */
168 	if (!is_enabled(lsm))
169 		return false;
170 
171 	/* Not allowed if another exclusive LSM already initialized. */
172 	if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && exclusive) {
173 		init_debug("exclusive disabled: %s\n", lsm->name);
174 		return false;
175 	}
176 
177 	return true;
178 }
179 
180 static void __init lsm_set_blob_size(int *need, int *lbs)
181 {
182 	int offset;
183 
184 	if (*need > 0) {
185 		offset = *lbs;
186 		*lbs += *need;
187 		*need = offset;
188 	}
189 }
190 
191 static void __init lsm_set_blob_sizes(struct lsm_blob_sizes *needed)
192 {
193 	if (!needed)
194 		return;
195 
196 	lsm_set_blob_size(&needed->lbs_cred, &blob_sizes.lbs_cred);
197 	lsm_set_blob_size(&needed->lbs_file, &blob_sizes.lbs_file);
198 	/*
199 	 * The inode blob gets an rcu_head in addition to
200 	 * what the modules might need.
201 	 */
202 	if (needed->lbs_inode && blob_sizes.lbs_inode == 0)
203 		blob_sizes.lbs_inode = sizeof(struct rcu_head);
204 	lsm_set_blob_size(&needed->lbs_inode, &blob_sizes.lbs_inode);
205 	lsm_set_blob_size(&needed->lbs_ipc, &blob_sizes.lbs_ipc);
206 	lsm_set_blob_size(&needed->lbs_msg_msg, &blob_sizes.lbs_msg_msg);
207 	lsm_set_blob_size(&needed->lbs_superblock, &blob_sizes.lbs_superblock);
208 	lsm_set_blob_size(&needed->lbs_task, &blob_sizes.lbs_task);
209 }
210 
211 /* Prepare LSM for initialization. */
212 static void __init prepare_lsm(struct lsm_info *lsm)
213 {
214 	int enabled = lsm_allowed(lsm);
215 
216 	/* Record enablement (to handle any following exclusive LSMs). */
217 	set_enabled(lsm, enabled);
218 
219 	/* If enabled, do pre-initialization work. */
220 	if (enabled) {
221 		if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && !exclusive) {
222 			exclusive = lsm;
223 			init_debug("exclusive chosen: %s\n", lsm->name);
224 		}
225 
226 		lsm_set_blob_sizes(lsm->blobs);
227 	}
228 }
229 
230 /* Initialize a given LSM, if it is enabled. */
231 static void __init initialize_lsm(struct lsm_info *lsm)
232 {
233 	if (is_enabled(lsm)) {
234 		int ret;
235 
236 		init_debug("initializing %s\n", lsm->name);
237 		ret = lsm->init();
238 		WARN(ret, "%s failed to initialize: %d\n", lsm->name, ret);
239 	}
240 }
241 
242 /* Populate ordered LSMs list from comma-separated LSM name list. */
243 static void __init ordered_lsm_parse(const char *order, const char *origin)
244 {
245 	struct lsm_info *lsm;
246 	char *sep, *name, *next;
247 
248 	/* LSM_ORDER_FIRST is always first. */
249 	for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
250 		if (lsm->order == LSM_ORDER_FIRST)
251 			append_ordered_lsm(lsm, "first");
252 	}
253 
254 	/* Process "security=", if given. */
255 	if (chosen_major_lsm) {
256 		struct lsm_info *major;
257 
258 		/*
259 		 * To match the original "security=" behavior, this
260 		 * explicitly does NOT fallback to another Legacy Major
261 		 * if the selected one was separately disabled: disable
262 		 * all non-matching Legacy Major LSMs.
263 		 */
264 		for (major = __start_lsm_info; major < __end_lsm_info;
265 		     major++) {
266 			if ((major->flags & LSM_FLAG_LEGACY_MAJOR) &&
267 			    strcmp(major->name, chosen_major_lsm) != 0) {
268 				set_enabled(major, false);
269 				init_debug("security=%s disabled: %s\n",
270 					   chosen_major_lsm, major->name);
271 			}
272 		}
273 	}
274 
275 	sep = kstrdup(order, GFP_KERNEL);
276 	next = sep;
277 	/* Walk the list, looking for matching LSMs. */
278 	while ((name = strsep(&next, ",")) != NULL) {
279 		bool found = false;
280 
281 		for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
282 			if (lsm->order == LSM_ORDER_MUTABLE &&
283 			    strcmp(lsm->name, name) == 0) {
284 				append_ordered_lsm(lsm, origin);
285 				found = true;
286 			}
287 		}
288 
289 		if (!found)
290 			init_debug("%s ignored: %s\n", origin, name);
291 	}
292 
293 	/* Process "security=", if given. */
294 	if (chosen_major_lsm) {
295 		for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
296 			if (exists_ordered_lsm(lsm))
297 				continue;
298 			if (strcmp(lsm->name, chosen_major_lsm) == 0)
299 				append_ordered_lsm(lsm, "security=");
300 		}
301 	}
302 
303 	/* Disable all LSMs not in the ordered list. */
304 	for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
305 		if (exists_ordered_lsm(lsm))
306 			continue;
307 		set_enabled(lsm, false);
308 		init_debug("%s disabled: %s\n", origin, lsm->name);
309 	}
310 
311 	kfree(sep);
312 }
313 
314 static void __init lsm_early_cred(struct cred *cred);
315 static void __init lsm_early_task(struct task_struct *task);
316 
317 static int lsm_append(const char *new, char **result);
318 
319 static void __init ordered_lsm_init(void)
320 {
321 	struct lsm_info **lsm;
322 
323 	ordered_lsms = kcalloc(LSM_COUNT + 1, sizeof(*ordered_lsms),
324 				GFP_KERNEL);
325 
326 	if (chosen_lsm_order) {
327 		if (chosen_major_lsm) {
328 			pr_info("security= is ignored because it is superseded by lsm=\n");
329 			chosen_major_lsm = NULL;
330 		}
331 		ordered_lsm_parse(chosen_lsm_order, "cmdline");
332 	} else
333 		ordered_lsm_parse(builtin_lsm_order, "builtin");
334 
335 	for (lsm = ordered_lsms; *lsm; lsm++)
336 		prepare_lsm(*lsm);
337 
338 	init_debug("cred blob size       = %d\n", blob_sizes.lbs_cred);
339 	init_debug("file blob size       = %d\n", blob_sizes.lbs_file);
340 	init_debug("inode blob size      = %d\n", blob_sizes.lbs_inode);
341 	init_debug("ipc blob size        = %d\n", blob_sizes.lbs_ipc);
342 	init_debug("msg_msg blob size    = %d\n", blob_sizes.lbs_msg_msg);
343 	init_debug("superblock blob size = %d\n", blob_sizes.lbs_superblock);
344 	init_debug("task blob size       = %d\n", blob_sizes.lbs_task);
345 
346 	/*
347 	 * Create any kmem_caches needed for blobs
348 	 */
349 	if (blob_sizes.lbs_file)
350 		lsm_file_cache = kmem_cache_create("lsm_file_cache",
351 						   blob_sizes.lbs_file, 0,
352 						   SLAB_PANIC, NULL);
353 	if (blob_sizes.lbs_inode)
354 		lsm_inode_cache = kmem_cache_create("lsm_inode_cache",
355 						    blob_sizes.lbs_inode, 0,
356 						    SLAB_PANIC, NULL);
357 
358 	lsm_early_cred((struct cred *) current->cred);
359 	lsm_early_task(current);
360 	for (lsm = ordered_lsms; *lsm; lsm++)
361 		initialize_lsm(*lsm);
362 
363 	kfree(ordered_lsms);
364 }
365 
366 int __init early_security_init(void)
367 {
368 	int i;
369 	struct hlist_head *list = (struct hlist_head *) &security_hook_heads;
370 	struct lsm_info *lsm;
371 
372 	for (i = 0; i < sizeof(security_hook_heads) / sizeof(struct hlist_head);
373 	     i++)
374 		INIT_HLIST_HEAD(&list[i]);
375 
376 	for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
377 		if (!lsm->enabled)
378 			lsm->enabled = &lsm_enabled_true;
379 		prepare_lsm(lsm);
380 		initialize_lsm(lsm);
381 	}
382 
383 	return 0;
384 }
385 
386 /**
387  * security_init - initializes the security framework
388  *
389  * This should be called early in the kernel initialization sequence.
390  */
391 int __init security_init(void)
392 {
393 	struct lsm_info *lsm;
394 
395 	pr_info("Security Framework initializing\n");
396 
397 	/*
398 	 * Append the names of the early LSM modules now that kmalloc() is
399 	 * available
400 	 */
401 	for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
402 		if (lsm->enabled)
403 			lsm_append(lsm->name, &lsm_names);
404 	}
405 
406 	/* Load LSMs in specified order. */
407 	ordered_lsm_init();
408 
409 	return 0;
410 }
411 
412 /* Save user chosen LSM */
413 static int __init choose_major_lsm(char *str)
414 {
415 	chosen_major_lsm = str;
416 	return 1;
417 }
418 __setup("security=", choose_major_lsm);
419 
420 /* Explicitly choose LSM initialization order. */
421 static int __init choose_lsm_order(char *str)
422 {
423 	chosen_lsm_order = str;
424 	return 1;
425 }
426 __setup("lsm=", choose_lsm_order);
427 
428 /* Enable LSM order debugging. */
429 static int __init enable_debug(char *str)
430 {
431 	debug = true;
432 	return 1;
433 }
434 __setup("lsm.debug", enable_debug);
435 
436 static bool match_last_lsm(const char *list, const char *lsm)
437 {
438 	const char *last;
439 
440 	if (WARN_ON(!list || !lsm))
441 		return false;
442 	last = strrchr(list, ',');
443 	if (last)
444 		/* Pass the comma, strcmp() will check for '\0' */
445 		last++;
446 	else
447 		last = list;
448 	return !strcmp(last, lsm);
449 }
450 
451 static int lsm_append(const char *new, char **result)
452 {
453 	char *cp;
454 
455 	if (*result == NULL) {
456 		*result = kstrdup(new, GFP_KERNEL);
457 		if (*result == NULL)
458 			return -ENOMEM;
459 	} else {
460 		/* Check if it is the last registered name */
461 		if (match_last_lsm(*result, new))
462 			return 0;
463 		cp = kasprintf(GFP_KERNEL, "%s,%s", *result, new);
464 		if (cp == NULL)
465 			return -ENOMEM;
466 		kfree(*result);
467 		*result = cp;
468 	}
469 	return 0;
470 }
471 
472 /**
473  * security_add_hooks - Add a modules hooks to the hook lists.
474  * @hooks: the hooks to add
475  * @count: the number of hooks to add
476  * @lsm: the name of the security module
477  *
478  * Each LSM has to register its hooks with the infrastructure.
479  */
480 void __init security_add_hooks(struct security_hook_list *hooks, int count,
481 				char *lsm)
482 {
483 	int i;
484 
485 	for (i = 0; i < count; i++) {
486 		hooks[i].lsm = lsm;
487 		hlist_add_tail_rcu(&hooks[i].list, hooks[i].head);
488 	}
489 
490 	/*
491 	 * Don't try to append during early_security_init(), we'll come back
492 	 * and fix this up afterwards.
493 	 */
494 	if (slab_is_available()) {
495 		if (lsm_append(lsm, &lsm_names) < 0)
496 			panic("%s - Cannot get early memory.\n", __func__);
497 	}
498 }
499 
500 int call_blocking_lsm_notifier(enum lsm_event event, void *data)
501 {
502 	return blocking_notifier_call_chain(&blocking_lsm_notifier_chain,
503 					    event, data);
504 }
505 EXPORT_SYMBOL(call_blocking_lsm_notifier);
506 
507 int register_blocking_lsm_notifier(struct notifier_block *nb)
508 {
509 	return blocking_notifier_chain_register(&blocking_lsm_notifier_chain,
510 						nb);
511 }
512 EXPORT_SYMBOL(register_blocking_lsm_notifier);
513 
514 int unregister_blocking_lsm_notifier(struct notifier_block *nb)
515 {
516 	return blocking_notifier_chain_unregister(&blocking_lsm_notifier_chain,
517 						  nb);
518 }
519 EXPORT_SYMBOL(unregister_blocking_lsm_notifier);
520 
521 /**
522  * lsm_cred_alloc - allocate a composite cred blob
523  * @cred: the cred that needs a blob
524  * @gfp: allocation type
525  *
526  * Allocate the cred blob for all the modules
527  *
528  * Returns 0, or -ENOMEM if memory can't be allocated.
529  */
530 static int lsm_cred_alloc(struct cred *cred, gfp_t gfp)
531 {
532 	if (blob_sizes.lbs_cred == 0) {
533 		cred->security = NULL;
534 		return 0;
535 	}
536 
537 	cred->security = kzalloc(blob_sizes.lbs_cred, gfp);
538 	if (cred->security == NULL)
539 		return -ENOMEM;
540 	return 0;
541 }
542 
543 /**
544  * lsm_early_cred - during initialization allocate a composite cred blob
545  * @cred: the cred that needs a blob
546  *
547  * Allocate the cred blob for all the modules
548  */
549 static void __init lsm_early_cred(struct cred *cred)
550 {
551 	int rc = lsm_cred_alloc(cred, GFP_KERNEL);
552 
553 	if (rc)
554 		panic("%s: Early cred alloc failed.\n", __func__);
555 }
556 
557 /**
558  * lsm_file_alloc - allocate a composite file blob
559  * @file: the file that needs a blob
560  *
561  * Allocate the file blob for all the modules
562  *
563  * Returns 0, or -ENOMEM if memory can't be allocated.
564  */
565 static int lsm_file_alloc(struct file *file)
566 {
567 	if (!lsm_file_cache) {
568 		file->f_security = NULL;
569 		return 0;
570 	}
571 
572 	file->f_security = kmem_cache_zalloc(lsm_file_cache, GFP_KERNEL);
573 	if (file->f_security == NULL)
574 		return -ENOMEM;
575 	return 0;
576 }
577 
578 /**
579  * lsm_inode_alloc - allocate a composite inode blob
580  * @inode: the inode that needs a blob
581  *
582  * Allocate the inode blob for all the modules
583  *
584  * Returns 0, or -ENOMEM if memory can't be allocated.
585  */
586 int lsm_inode_alloc(struct inode *inode)
587 {
588 	if (!lsm_inode_cache) {
589 		inode->i_security = NULL;
590 		return 0;
591 	}
592 
593 	inode->i_security = kmem_cache_zalloc(lsm_inode_cache, GFP_NOFS);
594 	if (inode->i_security == NULL)
595 		return -ENOMEM;
596 	return 0;
597 }
598 
599 /**
600  * lsm_task_alloc - allocate a composite task blob
601  * @task: the task that needs a blob
602  *
603  * Allocate the task blob for all the modules
604  *
605  * Returns 0, or -ENOMEM if memory can't be allocated.
606  */
607 static int lsm_task_alloc(struct task_struct *task)
608 {
609 	if (blob_sizes.lbs_task == 0) {
610 		task->security = NULL;
611 		return 0;
612 	}
613 
614 	task->security = kzalloc(blob_sizes.lbs_task, GFP_KERNEL);
615 	if (task->security == NULL)
616 		return -ENOMEM;
617 	return 0;
618 }
619 
620 /**
621  * lsm_ipc_alloc - allocate a composite ipc blob
622  * @kip: the ipc that needs a blob
623  *
624  * Allocate the ipc blob for all the modules
625  *
626  * Returns 0, or -ENOMEM if memory can't be allocated.
627  */
628 static int lsm_ipc_alloc(struct kern_ipc_perm *kip)
629 {
630 	if (blob_sizes.lbs_ipc == 0) {
631 		kip->security = NULL;
632 		return 0;
633 	}
634 
635 	kip->security = kzalloc(blob_sizes.lbs_ipc, GFP_KERNEL);
636 	if (kip->security == NULL)
637 		return -ENOMEM;
638 	return 0;
639 }
640 
641 /**
642  * lsm_msg_msg_alloc - allocate a composite msg_msg blob
643  * @mp: the msg_msg that needs a blob
644  *
645  * Allocate the ipc blob for all the modules
646  *
647  * Returns 0, or -ENOMEM if memory can't be allocated.
648  */
649 static int lsm_msg_msg_alloc(struct msg_msg *mp)
650 {
651 	if (blob_sizes.lbs_msg_msg == 0) {
652 		mp->security = NULL;
653 		return 0;
654 	}
655 
656 	mp->security = kzalloc(blob_sizes.lbs_msg_msg, GFP_KERNEL);
657 	if (mp->security == NULL)
658 		return -ENOMEM;
659 	return 0;
660 }
661 
662 /**
663  * lsm_early_task - during initialization allocate a composite task blob
664  * @task: the task that needs a blob
665  *
666  * Allocate the task blob for all the modules
667  */
668 static void __init lsm_early_task(struct task_struct *task)
669 {
670 	int rc = lsm_task_alloc(task);
671 
672 	if (rc)
673 		panic("%s: Early task alloc failed.\n", __func__);
674 }
675 
676 /**
677  * lsm_superblock_alloc - allocate a composite superblock blob
678  * @sb: the superblock that needs a blob
679  *
680  * Allocate the superblock blob for all the modules
681  *
682  * Returns 0, or -ENOMEM if memory can't be allocated.
683  */
684 static int lsm_superblock_alloc(struct super_block *sb)
685 {
686 	if (blob_sizes.lbs_superblock == 0) {
687 		sb->s_security = NULL;
688 		return 0;
689 	}
690 
691 	sb->s_security = kzalloc(blob_sizes.lbs_superblock, GFP_KERNEL);
692 	if (sb->s_security == NULL)
693 		return -ENOMEM;
694 	return 0;
695 }
696 
697 /*
698  * The default value of the LSM hook is defined in linux/lsm_hook_defs.h and
699  * can be accessed with:
700  *
701  *	LSM_RET_DEFAULT(<hook_name>)
702  *
703  * The macros below define static constants for the default value of each
704  * LSM hook.
705  */
706 #define LSM_RET_DEFAULT(NAME) (NAME##_default)
707 #define DECLARE_LSM_RET_DEFAULT_void(DEFAULT, NAME)
708 #define DECLARE_LSM_RET_DEFAULT_int(DEFAULT, NAME) \
709 	static const int __maybe_unused LSM_RET_DEFAULT(NAME) = (DEFAULT);
710 #define LSM_HOOK(RET, DEFAULT, NAME, ...) \
711 	DECLARE_LSM_RET_DEFAULT_##RET(DEFAULT, NAME)
712 
713 #include <linux/lsm_hook_defs.h>
714 #undef LSM_HOOK
715 
716 /*
717  * Hook list operation macros.
718  *
719  * call_void_hook:
720  *	This is a hook that does not return a value.
721  *
722  * call_int_hook:
723  *	This is a hook that returns a value.
724  */
725 
726 #define call_void_hook(FUNC, ...)				\
727 	do {							\
728 		struct security_hook_list *P;			\
729 								\
730 		hlist_for_each_entry(P, &security_hook_heads.FUNC, list) \
731 			P->hook.FUNC(__VA_ARGS__);		\
732 	} while (0)
733 
734 #define call_int_hook(FUNC, IRC, ...) ({			\
735 	int RC = IRC;						\
736 	do {							\
737 		struct security_hook_list *P;			\
738 								\
739 		hlist_for_each_entry(P, &security_hook_heads.FUNC, list) { \
740 			RC = P->hook.FUNC(__VA_ARGS__);		\
741 			if (RC != 0)				\
742 				break;				\
743 		}						\
744 	} while (0);						\
745 	RC;							\
746 })
747 
748 /* Security operations */
749 
750 int security_binder_set_context_mgr(const struct cred *mgr)
751 {
752 	return call_int_hook(binder_set_context_mgr, 0, mgr);
753 }
754 
755 int security_binder_transaction(const struct cred *from,
756 				const struct cred *to)
757 {
758 	return call_int_hook(binder_transaction, 0, from, to);
759 }
760 
761 int security_binder_transfer_binder(const struct cred *from,
762 				    const struct cred *to)
763 {
764 	return call_int_hook(binder_transfer_binder, 0, from, to);
765 }
766 
767 int security_binder_transfer_file(const struct cred *from,
768 				  const struct cred *to, struct file *file)
769 {
770 	return call_int_hook(binder_transfer_file, 0, from, to, file);
771 }
772 
773 int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
774 {
775 	return call_int_hook(ptrace_access_check, 0, child, mode);
776 }
777 
778 int security_ptrace_traceme(struct task_struct *parent)
779 {
780 	return call_int_hook(ptrace_traceme, 0, parent);
781 }
782 
783 int security_capget(struct task_struct *target,
784 		     kernel_cap_t *effective,
785 		     kernel_cap_t *inheritable,
786 		     kernel_cap_t *permitted)
787 {
788 	return call_int_hook(capget, 0, target,
789 				effective, inheritable, permitted);
790 }
791 
792 int security_capset(struct cred *new, const struct cred *old,
793 		    const kernel_cap_t *effective,
794 		    const kernel_cap_t *inheritable,
795 		    const kernel_cap_t *permitted)
796 {
797 	return call_int_hook(capset, 0, new, old,
798 				effective, inheritable, permitted);
799 }
800 
801 int security_capable(const struct cred *cred,
802 		     struct user_namespace *ns,
803 		     int cap,
804 		     unsigned int opts)
805 {
806 	return call_int_hook(capable, 0, cred, ns, cap, opts);
807 }
808 
809 int security_quotactl(int cmds, int type, int id, struct super_block *sb)
810 {
811 	return call_int_hook(quotactl, 0, cmds, type, id, sb);
812 }
813 
814 int security_quota_on(struct dentry *dentry)
815 {
816 	return call_int_hook(quota_on, 0, dentry);
817 }
818 
819 int security_syslog(int type)
820 {
821 	return call_int_hook(syslog, 0, type);
822 }
823 
824 int security_settime64(const struct timespec64 *ts, const struct timezone *tz)
825 {
826 	return call_int_hook(settime, 0, ts, tz);
827 }
828 
829 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
830 {
831 	struct security_hook_list *hp;
832 	int cap_sys_admin = 1;
833 	int rc;
834 
835 	/*
836 	 * The module will respond with a positive value if
837 	 * it thinks the __vm_enough_memory() call should be
838 	 * made with the cap_sys_admin set. If all of the modules
839 	 * agree that it should be set it will. If any module
840 	 * thinks it should not be set it won't.
841 	 */
842 	hlist_for_each_entry(hp, &security_hook_heads.vm_enough_memory, list) {
843 		rc = hp->hook.vm_enough_memory(mm, pages);
844 		if (rc <= 0) {
845 			cap_sys_admin = 0;
846 			break;
847 		}
848 	}
849 	return __vm_enough_memory(mm, pages, cap_sys_admin);
850 }
851 
852 int security_bprm_creds_for_exec(struct linux_binprm *bprm)
853 {
854 	return call_int_hook(bprm_creds_for_exec, 0, bprm);
855 }
856 
857 int security_bprm_creds_from_file(struct linux_binprm *bprm, struct file *file)
858 {
859 	return call_int_hook(bprm_creds_from_file, 0, bprm, file);
860 }
861 
862 int security_bprm_check(struct linux_binprm *bprm)
863 {
864 	int ret;
865 
866 	ret = call_int_hook(bprm_check_security, 0, bprm);
867 	if (ret)
868 		return ret;
869 	return ima_bprm_check(bprm);
870 }
871 
872 void security_bprm_committing_creds(struct linux_binprm *bprm)
873 {
874 	call_void_hook(bprm_committing_creds, bprm);
875 }
876 
877 void security_bprm_committed_creds(struct linux_binprm *bprm)
878 {
879 	call_void_hook(bprm_committed_creds, bprm);
880 }
881 
882 int security_fs_context_dup(struct fs_context *fc, struct fs_context *src_fc)
883 {
884 	return call_int_hook(fs_context_dup, 0, fc, src_fc);
885 }
886 
887 int security_fs_context_parse_param(struct fs_context *fc, struct fs_parameter *param)
888 {
889 	return call_int_hook(fs_context_parse_param, -ENOPARAM, fc, param);
890 }
891 
892 int security_sb_alloc(struct super_block *sb)
893 {
894 	int rc = lsm_superblock_alloc(sb);
895 
896 	if (unlikely(rc))
897 		return rc;
898 	rc = call_int_hook(sb_alloc_security, 0, sb);
899 	if (unlikely(rc))
900 		security_sb_free(sb);
901 	return rc;
902 }
903 
904 void security_sb_delete(struct super_block *sb)
905 {
906 	call_void_hook(sb_delete, sb);
907 }
908 
909 void security_sb_free(struct super_block *sb)
910 {
911 	call_void_hook(sb_free_security, sb);
912 	kfree(sb->s_security);
913 	sb->s_security = NULL;
914 }
915 
916 void security_free_mnt_opts(void **mnt_opts)
917 {
918 	if (!*mnt_opts)
919 		return;
920 	call_void_hook(sb_free_mnt_opts, *mnt_opts);
921 	*mnt_opts = NULL;
922 }
923 EXPORT_SYMBOL(security_free_mnt_opts);
924 
925 int security_sb_eat_lsm_opts(char *options, void **mnt_opts)
926 {
927 	return call_int_hook(sb_eat_lsm_opts, 0, options, mnt_opts);
928 }
929 EXPORT_SYMBOL(security_sb_eat_lsm_opts);
930 
931 int security_sb_mnt_opts_compat(struct super_block *sb,
932 				void *mnt_opts)
933 {
934 	return call_int_hook(sb_mnt_opts_compat, 0, sb, mnt_opts);
935 }
936 EXPORT_SYMBOL(security_sb_mnt_opts_compat);
937 
938 int security_sb_remount(struct super_block *sb,
939 			void *mnt_opts)
940 {
941 	return call_int_hook(sb_remount, 0, sb, mnt_opts);
942 }
943 EXPORT_SYMBOL(security_sb_remount);
944 
945 int security_sb_kern_mount(struct super_block *sb)
946 {
947 	return call_int_hook(sb_kern_mount, 0, sb);
948 }
949 
950 int security_sb_show_options(struct seq_file *m, struct super_block *sb)
951 {
952 	return call_int_hook(sb_show_options, 0, m, sb);
953 }
954 
955 int security_sb_statfs(struct dentry *dentry)
956 {
957 	return call_int_hook(sb_statfs, 0, dentry);
958 }
959 
960 int security_sb_mount(const char *dev_name, const struct path *path,
961                        const char *type, unsigned long flags, void *data)
962 {
963 	return call_int_hook(sb_mount, 0, dev_name, path, type, flags, data);
964 }
965 
966 int security_sb_umount(struct vfsmount *mnt, int flags)
967 {
968 	return call_int_hook(sb_umount, 0, mnt, flags);
969 }
970 
971 int security_sb_pivotroot(const struct path *old_path, const struct path *new_path)
972 {
973 	return call_int_hook(sb_pivotroot, 0, old_path, new_path);
974 }
975 
976 int security_sb_set_mnt_opts(struct super_block *sb,
977 				void *mnt_opts,
978 				unsigned long kern_flags,
979 				unsigned long *set_kern_flags)
980 {
981 	return call_int_hook(sb_set_mnt_opts,
982 				mnt_opts ? -EOPNOTSUPP : 0, sb,
983 				mnt_opts, kern_flags, set_kern_flags);
984 }
985 EXPORT_SYMBOL(security_sb_set_mnt_opts);
986 
987 int security_sb_clone_mnt_opts(const struct super_block *oldsb,
988 				struct super_block *newsb,
989 				unsigned long kern_flags,
990 				unsigned long *set_kern_flags)
991 {
992 	return call_int_hook(sb_clone_mnt_opts, 0, oldsb, newsb,
993 				kern_flags, set_kern_flags);
994 }
995 EXPORT_SYMBOL(security_sb_clone_mnt_opts);
996 
997 int security_move_mount(const struct path *from_path, const struct path *to_path)
998 {
999 	return call_int_hook(move_mount, 0, from_path, to_path);
1000 }
1001 
1002 int security_path_notify(const struct path *path, u64 mask,
1003 				unsigned int obj_type)
1004 {
1005 	return call_int_hook(path_notify, 0, path, mask, obj_type);
1006 }
1007 
1008 int security_inode_alloc(struct inode *inode)
1009 {
1010 	int rc = lsm_inode_alloc(inode);
1011 
1012 	if (unlikely(rc))
1013 		return rc;
1014 	rc = call_int_hook(inode_alloc_security, 0, inode);
1015 	if (unlikely(rc))
1016 		security_inode_free(inode);
1017 	return rc;
1018 }
1019 
1020 static void inode_free_by_rcu(struct rcu_head *head)
1021 {
1022 	/*
1023 	 * The rcu head is at the start of the inode blob
1024 	 */
1025 	kmem_cache_free(lsm_inode_cache, head);
1026 }
1027 
1028 void security_inode_free(struct inode *inode)
1029 {
1030 	integrity_inode_free(inode);
1031 	call_void_hook(inode_free_security, inode);
1032 	/*
1033 	 * The inode may still be referenced in a path walk and
1034 	 * a call to security_inode_permission() can be made
1035 	 * after inode_free_security() is called. Ideally, the VFS
1036 	 * wouldn't do this, but fixing that is a much harder
1037 	 * job. For now, simply free the i_security via RCU, and
1038 	 * leave the current inode->i_security pointer intact.
1039 	 * The inode will be freed after the RCU grace period too.
1040 	 */
1041 	if (inode->i_security)
1042 		call_rcu((struct rcu_head *)inode->i_security,
1043 				inode_free_by_rcu);
1044 }
1045 
1046 int security_dentry_init_security(struct dentry *dentry, int mode,
1047 				  const struct qstr *name,
1048 				  const char **xattr_name, void **ctx,
1049 				  u32 *ctxlen)
1050 {
1051 	struct security_hook_list *hp;
1052 	int rc;
1053 
1054 	/*
1055 	 * Only one module will provide a security context.
1056 	 */
1057 	hlist_for_each_entry(hp, &security_hook_heads.dentry_init_security, list) {
1058 		rc = hp->hook.dentry_init_security(dentry, mode, name,
1059 						   xattr_name, ctx, ctxlen);
1060 		if (rc != LSM_RET_DEFAULT(dentry_init_security))
1061 			return rc;
1062 	}
1063 	return LSM_RET_DEFAULT(dentry_init_security);
1064 }
1065 EXPORT_SYMBOL(security_dentry_init_security);
1066 
1067 int security_dentry_create_files_as(struct dentry *dentry, int mode,
1068 				    struct qstr *name,
1069 				    const struct cred *old, struct cred *new)
1070 {
1071 	return call_int_hook(dentry_create_files_as, 0, dentry, mode,
1072 				name, old, new);
1073 }
1074 EXPORT_SYMBOL(security_dentry_create_files_as);
1075 
1076 int security_inode_init_security(struct inode *inode, struct inode *dir,
1077 				 const struct qstr *qstr,
1078 				 const initxattrs initxattrs, void *fs_data)
1079 {
1080 	struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1];
1081 	struct xattr *lsm_xattr, *evm_xattr, *xattr;
1082 	int ret;
1083 
1084 	if (unlikely(IS_PRIVATE(inode)))
1085 		return 0;
1086 
1087 	if (!initxattrs)
1088 		return call_int_hook(inode_init_security, -EOPNOTSUPP, inode,
1089 				     dir, qstr, NULL, NULL, NULL);
1090 	memset(new_xattrs, 0, sizeof(new_xattrs));
1091 	lsm_xattr = new_xattrs;
1092 	ret = call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir, qstr,
1093 						&lsm_xattr->name,
1094 						&lsm_xattr->value,
1095 						&lsm_xattr->value_len);
1096 	if (ret)
1097 		goto out;
1098 
1099 	evm_xattr = lsm_xattr + 1;
1100 	ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr);
1101 	if (ret)
1102 		goto out;
1103 	ret = initxattrs(inode, new_xattrs, fs_data);
1104 out:
1105 	for (xattr = new_xattrs; xattr->value != NULL; xattr++)
1106 		kfree(xattr->value);
1107 	return (ret == -EOPNOTSUPP) ? 0 : ret;
1108 }
1109 EXPORT_SYMBOL(security_inode_init_security);
1110 
1111 int security_inode_init_security_anon(struct inode *inode,
1112 				      const struct qstr *name,
1113 				      const struct inode *context_inode)
1114 {
1115 	return call_int_hook(inode_init_security_anon, 0, inode, name,
1116 			     context_inode);
1117 }
1118 
1119 int security_old_inode_init_security(struct inode *inode, struct inode *dir,
1120 				     const struct qstr *qstr, const char **name,
1121 				     void **value, size_t *len)
1122 {
1123 	if (unlikely(IS_PRIVATE(inode)))
1124 		return -EOPNOTSUPP;
1125 	return call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir,
1126 			     qstr, name, value, len);
1127 }
1128 EXPORT_SYMBOL(security_old_inode_init_security);
1129 
1130 #ifdef CONFIG_SECURITY_PATH
1131 int security_path_mknod(const struct path *dir, struct dentry *dentry, umode_t mode,
1132 			unsigned int dev)
1133 {
1134 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1135 		return 0;
1136 	return call_int_hook(path_mknod, 0, dir, dentry, mode, dev);
1137 }
1138 EXPORT_SYMBOL(security_path_mknod);
1139 
1140 int security_path_mkdir(const struct path *dir, struct dentry *dentry, umode_t mode)
1141 {
1142 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1143 		return 0;
1144 	return call_int_hook(path_mkdir, 0, dir, dentry, mode);
1145 }
1146 EXPORT_SYMBOL(security_path_mkdir);
1147 
1148 int security_path_rmdir(const struct path *dir, struct dentry *dentry)
1149 {
1150 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1151 		return 0;
1152 	return call_int_hook(path_rmdir, 0, dir, dentry);
1153 }
1154 
1155 int security_path_unlink(const struct path *dir, struct dentry *dentry)
1156 {
1157 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1158 		return 0;
1159 	return call_int_hook(path_unlink, 0, dir, dentry);
1160 }
1161 EXPORT_SYMBOL(security_path_unlink);
1162 
1163 int security_path_symlink(const struct path *dir, struct dentry *dentry,
1164 			  const char *old_name)
1165 {
1166 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1167 		return 0;
1168 	return call_int_hook(path_symlink, 0, dir, dentry, old_name);
1169 }
1170 
1171 int security_path_link(struct dentry *old_dentry, const struct path *new_dir,
1172 		       struct dentry *new_dentry)
1173 {
1174 	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
1175 		return 0;
1176 	return call_int_hook(path_link, 0, old_dentry, new_dir, new_dentry);
1177 }
1178 
1179 int security_path_rename(const struct path *old_dir, struct dentry *old_dentry,
1180 			 const struct path *new_dir, struct dentry *new_dentry,
1181 			 unsigned int flags)
1182 {
1183 	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
1184 		     (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
1185 		return 0;
1186 
1187 	if (flags & RENAME_EXCHANGE) {
1188 		int err = call_int_hook(path_rename, 0, new_dir, new_dentry,
1189 					old_dir, old_dentry);
1190 		if (err)
1191 			return err;
1192 	}
1193 
1194 	return call_int_hook(path_rename, 0, old_dir, old_dentry, new_dir,
1195 				new_dentry);
1196 }
1197 EXPORT_SYMBOL(security_path_rename);
1198 
1199 int security_path_truncate(const struct path *path)
1200 {
1201 	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1202 		return 0;
1203 	return call_int_hook(path_truncate, 0, path);
1204 }
1205 
1206 int security_path_chmod(const struct path *path, umode_t mode)
1207 {
1208 	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1209 		return 0;
1210 	return call_int_hook(path_chmod, 0, path, mode);
1211 }
1212 
1213 int security_path_chown(const struct path *path, kuid_t uid, kgid_t gid)
1214 {
1215 	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1216 		return 0;
1217 	return call_int_hook(path_chown, 0, path, uid, gid);
1218 }
1219 
1220 int security_path_chroot(const struct path *path)
1221 {
1222 	return call_int_hook(path_chroot, 0, path);
1223 }
1224 #endif
1225 
1226 int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
1227 {
1228 	if (unlikely(IS_PRIVATE(dir)))
1229 		return 0;
1230 	return call_int_hook(inode_create, 0, dir, dentry, mode);
1231 }
1232 EXPORT_SYMBOL_GPL(security_inode_create);
1233 
1234 int security_inode_link(struct dentry *old_dentry, struct inode *dir,
1235 			 struct dentry *new_dentry)
1236 {
1237 	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
1238 		return 0;
1239 	return call_int_hook(inode_link, 0, old_dentry, dir, new_dentry);
1240 }
1241 
1242 int security_inode_unlink(struct inode *dir, struct dentry *dentry)
1243 {
1244 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1245 		return 0;
1246 	return call_int_hook(inode_unlink, 0, dir, dentry);
1247 }
1248 
1249 int security_inode_symlink(struct inode *dir, struct dentry *dentry,
1250 			    const char *old_name)
1251 {
1252 	if (unlikely(IS_PRIVATE(dir)))
1253 		return 0;
1254 	return call_int_hook(inode_symlink, 0, dir, dentry, old_name);
1255 }
1256 
1257 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1258 {
1259 	if (unlikely(IS_PRIVATE(dir)))
1260 		return 0;
1261 	return call_int_hook(inode_mkdir, 0, dir, dentry, mode);
1262 }
1263 EXPORT_SYMBOL_GPL(security_inode_mkdir);
1264 
1265 int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
1266 {
1267 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1268 		return 0;
1269 	return call_int_hook(inode_rmdir, 0, dir, dentry);
1270 }
1271 
1272 int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1273 {
1274 	if (unlikely(IS_PRIVATE(dir)))
1275 		return 0;
1276 	return call_int_hook(inode_mknod, 0, dir, dentry, mode, dev);
1277 }
1278 
1279 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
1280 			   struct inode *new_dir, struct dentry *new_dentry,
1281 			   unsigned int flags)
1282 {
1283         if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
1284             (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
1285 		return 0;
1286 
1287 	if (flags & RENAME_EXCHANGE) {
1288 		int err = call_int_hook(inode_rename, 0, new_dir, new_dentry,
1289 						     old_dir, old_dentry);
1290 		if (err)
1291 			return err;
1292 	}
1293 
1294 	return call_int_hook(inode_rename, 0, old_dir, old_dentry,
1295 					   new_dir, new_dentry);
1296 }
1297 
1298 int security_inode_readlink(struct dentry *dentry)
1299 {
1300 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1301 		return 0;
1302 	return call_int_hook(inode_readlink, 0, dentry);
1303 }
1304 
1305 int security_inode_follow_link(struct dentry *dentry, struct inode *inode,
1306 			       bool rcu)
1307 {
1308 	if (unlikely(IS_PRIVATE(inode)))
1309 		return 0;
1310 	return call_int_hook(inode_follow_link, 0, dentry, inode, rcu);
1311 }
1312 
1313 int security_inode_permission(struct inode *inode, int mask)
1314 {
1315 	if (unlikely(IS_PRIVATE(inode)))
1316 		return 0;
1317 	return call_int_hook(inode_permission, 0, inode, mask);
1318 }
1319 
1320 int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
1321 {
1322 	int ret;
1323 
1324 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1325 		return 0;
1326 	ret = call_int_hook(inode_setattr, 0, dentry, attr);
1327 	if (ret)
1328 		return ret;
1329 	return evm_inode_setattr(dentry, attr);
1330 }
1331 EXPORT_SYMBOL_GPL(security_inode_setattr);
1332 
1333 int security_inode_getattr(const struct path *path)
1334 {
1335 	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1336 		return 0;
1337 	return call_int_hook(inode_getattr, 0, path);
1338 }
1339 
1340 int security_inode_setxattr(struct user_namespace *mnt_userns,
1341 			    struct dentry *dentry, const char *name,
1342 			    const void *value, size_t size, int flags)
1343 {
1344 	int ret;
1345 
1346 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1347 		return 0;
1348 	/*
1349 	 * SELinux and Smack integrate the cap call,
1350 	 * so assume that all LSMs supplying this call do so.
1351 	 */
1352 	ret = call_int_hook(inode_setxattr, 1, mnt_userns, dentry, name, value,
1353 			    size, flags);
1354 
1355 	if (ret == 1)
1356 		ret = cap_inode_setxattr(dentry, name, value, size, flags);
1357 	if (ret)
1358 		return ret;
1359 	ret = ima_inode_setxattr(dentry, name, value, size);
1360 	if (ret)
1361 		return ret;
1362 	return evm_inode_setxattr(mnt_userns, dentry, name, value, size);
1363 }
1364 
1365 void security_inode_post_setxattr(struct dentry *dentry, const char *name,
1366 				  const void *value, size_t size, int flags)
1367 {
1368 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1369 		return;
1370 	call_void_hook(inode_post_setxattr, dentry, name, value, size, flags);
1371 	evm_inode_post_setxattr(dentry, name, value, size);
1372 }
1373 
1374 int security_inode_getxattr(struct dentry *dentry, const char *name)
1375 {
1376 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1377 		return 0;
1378 	return call_int_hook(inode_getxattr, 0, dentry, name);
1379 }
1380 
1381 int security_inode_listxattr(struct dentry *dentry)
1382 {
1383 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1384 		return 0;
1385 	return call_int_hook(inode_listxattr, 0, dentry);
1386 }
1387 
1388 int security_inode_removexattr(struct user_namespace *mnt_userns,
1389 			       struct dentry *dentry, const char *name)
1390 {
1391 	int ret;
1392 
1393 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1394 		return 0;
1395 	/*
1396 	 * SELinux and Smack integrate the cap call,
1397 	 * so assume that all LSMs supplying this call do so.
1398 	 */
1399 	ret = call_int_hook(inode_removexattr, 1, mnt_userns, dentry, name);
1400 	if (ret == 1)
1401 		ret = cap_inode_removexattr(mnt_userns, dentry, name);
1402 	if (ret)
1403 		return ret;
1404 	ret = ima_inode_removexattr(dentry, name);
1405 	if (ret)
1406 		return ret;
1407 	return evm_inode_removexattr(mnt_userns, dentry, name);
1408 }
1409 
1410 int security_inode_need_killpriv(struct dentry *dentry)
1411 {
1412 	return call_int_hook(inode_need_killpriv, 0, dentry);
1413 }
1414 
1415 int security_inode_killpriv(struct user_namespace *mnt_userns,
1416 			    struct dentry *dentry)
1417 {
1418 	return call_int_hook(inode_killpriv, 0, mnt_userns, dentry);
1419 }
1420 
1421 int security_inode_getsecurity(struct user_namespace *mnt_userns,
1422 			       struct inode *inode, const char *name,
1423 			       void **buffer, bool alloc)
1424 {
1425 	struct security_hook_list *hp;
1426 	int rc;
1427 
1428 	if (unlikely(IS_PRIVATE(inode)))
1429 		return LSM_RET_DEFAULT(inode_getsecurity);
1430 	/*
1431 	 * Only one module will provide an attribute with a given name.
1432 	 */
1433 	hlist_for_each_entry(hp, &security_hook_heads.inode_getsecurity, list) {
1434 		rc = hp->hook.inode_getsecurity(mnt_userns, inode, name, buffer, alloc);
1435 		if (rc != LSM_RET_DEFAULT(inode_getsecurity))
1436 			return rc;
1437 	}
1438 	return LSM_RET_DEFAULT(inode_getsecurity);
1439 }
1440 
1441 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
1442 {
1443 	struct security_hook_list *hp;
1444 	int rc;
1445 
1446 	if (unlikely(IS_PRIVATE(inode)))
1447 		return LSM_RET_DEFAULT(inode_setsecurity);
1448 	/*
1449 	 * Only one module will provide an attribute with a given name.
1450 	 */
1451 	hlist_for_each_entry(hp, &security_hook_heads.inode_setsecurity, list) {
1452 		rc = hp->hook.inode_setsecurity(inode, name, value, size,
1453 								flags);
1454 		if (rc != LSM_RET_DEFAULT(inode_setsecurity))
1455 			return rc;
1456 	}
1457 	return LSM_RET_DEFAULT(inode_setsecurity);
1458 }
1459 
1460 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
1461 {
1462 	if (unlikely(IS_PRIVATE(inode)))
1463 		return 0;
1464 	return call_int_hook(inode_listsecurity, 0, inode, buffer, buffer_size);
1465 }
1466 EXPORT_SYMBOL(security_inode_listsecurity);
1467 
1468 void security_inode_getsecid(struct inode *inode, u32 *secid)
1469 {
1470 	call_void_hook(inode_getsecid, inode, secid);
1471 }
1472 
1473 int security_inode_copy_up(struct dentry *src, struct cred **new)
1474 {
1475 	return call_int_hook(inode_copy_up, 0, src, new);
1476 }
1477 EXPORT_SYMBOL(security_inode_copy_up);
1478 
1479 int security_inode_copy_up_xattr(const char *name)
1480 {
1481 	struct security_hook_list *hp;
1482 	int rc;
1483 
1484 	/*
1485 	 * The implementation can return 0 (accept the xattr), 1 (discard the
1486 	 * xattr), -EOPNOTSUPP if it does not know anything about the xattr or
1487 	 * any other error code incase of an error.
1488 	 */
1489 	hlist_for_each_entry(hp,
1490 		&security_hook_heads.inode_copy_up_xattr, list) {
1491 		rc = hp->hook.inode_copy_up_xattr(name);
1492 		if (rc != LSM_RET_DEFAULT(inode_copy_up_xattr))
1493 			return rc;
1494 	}
1495 
1496 	return LSM_RET_DEFAULT(inode_copy_up_xattr);
1497 }
1498 EXPORT_SYMBOL(security_inode_copy_up_xattr);
1499 
1500 int security_kernfs_init_security(struct kernfs_node *kn_dir,
1501 				  struct kernfs_node *kn)
1502 {
1503 	return call_int_hook(kernfs_init_security, 0, kn_dir, kn);
1504 }
1505 
1506 int security_file_permission(struct file *file, int mask)
1507 {
1508 	int ret;
1509 
1510 	ret = call_int_hook(file_permission, 0, file, mask);
1511 	if (ret)
1512 		return ret;
1513 
1514 	return fsnotify_perm(file, mask);
1515 }
1516 
1517 int security_file_alloc(struct file *file)
1518 {
1519 	int rc = lsm_file_alloc(file);
1520 
1521 	if (rc)
1522 		return rc;
1523 	rc = call_int_hook(file_alloc_security, 0, file);
1524 	if (unlikely(rc))
1525 		security_file_free(file);
1526 	return rc;
1527 }
1528 
1529 void security_file_free(struct file *file)
1530 {
1531 	void *blob;
1532 
1533 	call_void_hook(file_free_security, file);
1534 
1535 	blob = file->f_security;
1536 	if (blob) {
1537 		file->f_security = NULL;
1538 		kmem_cache_free(lsm_file_cache, blob);
1539 	}
1540 }
1541 
1542 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1543 {
1544 	return call_int_hook(file_ioctl, 0, file, cmd, arg);
1545 }
1546 EXPORT_SYMBOL_GPL(security_file_ioctl);
1547 
1548 static inline unsigned long mmap_prot(struct file *file, unsigned long prot)
1549 {
1550 	/*
1551 	 * Does we have PROT_READ and does the application expect
1552 	 * it to imply PROT_EXEC?  If not, nothing to talk about...
1553 	 */
1554 	if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ)
1555 		return prot;
1556 	if (!(current->personality & READ_IMPLIES_EXEC))
1557 		return prot;
1558 	/*
1559 	 * if that's an anonymous mapping, let it.
1560 	 */
1561 	if (!file)
1562 		return prot | PROT_EXEC;
1563 	/*
1564 	 * ditto if it's not on noexec mount, except that on !MMU we need
1565 	 * NOMMU_MAP_EXEC (== VM_MAYEXEC) in this case
1566 	 */
1567 	if (!path_noexec(&file->f_path)) {
1568 #ifndef CONFIG_MMU
1569 		if (file->f_op->mmap_capabilities) {
1570 			unsigned caps = file->f_op->mmap_capabilities(file);
1571 			if (!(caps & NOMMU_MAP_EXEC))
1572 				return prot;
1573 		}
1574 #endif
1575 		return prot | PROT_EXEC;
1576 	}
1577 	/* anything on noexec mount won't get PROT_EXEC */
1578 	return prot;
1579 }
1580 
1581 int security_mmap_file(struct file *file, unsigned long prot,
1582 			unsigned long flags)
1583 {
1584 	int ret;
1585 	ret = call_int_hook(mmap_file, 0, file, prot,
1586 					mmap_prot(file, prot), flags);
1587 	if (ret)
1588 		return ret;
1589 	return ima_file_mmap(file, prot);
1590 }
1591 
1592 int security_mmap_addr(unsigned long addr)
1593 {
1594 	return call_int_hook(mmap_addr, 0, addr);
1595 }
1596 
1597 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
1598 			    unsigned long prot)
1599 {
1600 	int ret;
1601 
1602 	ret = call_int_hook(file_mprotect, 0, vma, reqprot, prot);
1603 	if (ret)
1604 		return ret;
1605 	return ima_file_mprotect(vma, prot);
1606 }
1607 
1608 int security_file_lock(struct file *file, unsigned int cmd)
1609 {
1610 	return call_int_hook(file_lock, 0, file, cmd);
1611 }
1612 
1613 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
1614 {
1615 	return call_int_hook(file_fcntl, 0, file, cmd, arg);
1616 }
1617 
1618 void security_file_set_fowner(struct file *file)
1619 {
1620 	call_void_hook(file_set_fowner, file);
1621 }
1622 
1623 int security_file_send_sigiotask(struct task_struct *tsk,
1624 				  struct fown_struct *fown, int sig)
1625 {
1626 	return call_int_hook(file_send_sigiotask, 0, tsk, fown, sig);
1627 }
1628 
1629 int security_file_receive(struct file *file)
1630 {
1631 	return call_int_hook(file_receive, 0, file);
1632 }
1633 
1634 int security_file_open(struct file *file)
1635 {
1636 	int ret;
1637 
1638 	ret = call_int_hook(file_open, 0, file);
1639 	if (ret)
1640 		return ret;
1641 
1642 	return fsnotify_perm(file, MAY_OPEN);
1643 }
1644 
1645 int security_task_alloc(struct task_struct *task, unsigned long clone_flags)
1646 {
1647 	int rc = lsm_task_alloc(task);
1648 
1649 	if (rc)
1650 		return rc;
1651 	rc = call_int_hook(task_alloc, 0, task, clone_flags);
1652 	if (unlikely(rc))
1653 		security_task_free(task);
1654 	return rc;
1655 }
1656 
1657 void security_task_free(struct task_struct *task)
1658 {
1659 	call_void_hook(task_free, task);
1660 
1661 	kfree(task->security);
1662 	task->security = NULL;
1663 }
1664 
1665 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
1666 {
1667 	int rc = lsm_cred_alloc(cred, gfp);
1668 
1669 	if (rc)
1670 		return rc;
1671 
1672 	rc = call_int_hook(cred_alloc_blank, 0, cred, gfp);
1673 	if (unlikely(rc))
1674 		security_cred_free(cred);
1675 	return rc;
1676 }
1677 
1678 void security_cred_free(struct cred *cred)
1679 {
1680 	/*
1681 	 * There is a failure case in prepare_creds() that
1682 	 * may result in a call here with ->security being NULL.
1683 	 */
1684 	if (unlikely(cred->security == NULL))
1685 		return;
1686 
1687 	call_void_hook(cred_free, cred);
1688 
1689 	kfree(cred->security);
1690 	cred->security = NULL;
1691 }
1692 
1693 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
1694 {
1695 	int rc = lsm_cred_alloc(new, gfp);
1696 
1697 	if (rc)
1698 		return rc;
1699 
1700 	rc = call_int_hook(cred_prepare, 0, new, old, gfp);
1701 	if (unlikely(rc))
1702 		security_cred_free(new);
1703 	return rc;
1704 }
1705 
1706 void security_transfer_creds(struct cred *new, const struct cred *old)
1707 {
1708 	call_void_hook(cred_transfer, new, old);
1709 }
1710 
1711 void security_cred_getsecid(const struct cred *c, u32 *secid)
1712 {
1713 	*secid = 0;
1714 	call_void_hook(cred_getsecid, c, secid);
1715 }
1716 EXPORT_SYMBOL(security_cred_getsecid);
1717 
1718 int security_kernel_act_as(struct cred *new, u32 secid)
1719 {
1720 	return call_int_hook(kernel_act_as, 0, new, secid);
1721 }
1722 
1723 int security_kernel_create_files_as(struct cred *new, struct inode *inode)
1724 {
1725 	return call_int_hook(kernel_create_files_as, 0, new, inode);
1726 }
1727 
1728 int security_kernel_module_request(char *kmod_name)
1729 {
1730 	int ret;
1731 
1732 	ret = call_int_hook(kernel_module_request, 0, kmod_name);
1733 	if (ret)
1734 		return ret;
1735 	return integrity_kernel_module_request(kmod_name);
1736 }
1737 
1738 int security_kernel_read_file(struct file *file, enum kernel_read_file_id id,
1739 			      bool contents)
1740 {
1741 	int ret;
1742 
1743 	ret = call_int_hook(kernel_read_file, 0, file, id, contents);
1744 	if (ret)
1745 		return ret;
1746 	return ima_read_file(file, id, contents);
1747 }
1748 EXPORT_SYMBOL_GPL(security_kernel_read_file);
1749 
1750 int security_kernel_post_read_file(struct file *file, char *buf, loff_t size,
1751 				   enum kernel_read_file_id id)
1752 {
1753 	int ret;
1754 
1755 	ret = call_int_hook(kernel_post_read_file, 0, file, buf, size, id);
1756 	if (ret)
1757 		return ret;
1758 	return ima_post_read_file(file, buf, size, id);
1759 }
1760 EXPORT_SYMBOL_GPL(security_kernel_post_read_file);
1761 
1762 int security_kernel_load_data(enum kernel_load_data_id id, bool contents)
1763 {
1764 	int ret;
1765 
1766 	ret = call_int_hook(kernel_load_data, 0, id, contents);
1767 	if (ret)
1768 		return ret;
1769 	return ima_load_data(id, contents);
1770 }
1771 EXPORT_SYMBOL_GPL(security_kernel_load_data);
1772 
1773 int security_kernel_post_load_data(char *buf, loff_t size,
1774 				   enum kernel_load_data_id id,
1775 				   char *description)
1776 {
1777 	int ret;
1778 
1779 	ret = call_int_hook(kernel_post_load_data, 0, buf, size, id,
1780 			    description);
1781 	if (ret)
1782 		return ret;
1783 	return ima_post_load_data(buf, size, id, description);
1784 }
1785 EXPORT_SYMBOL_GPL(security_kernel_post_load_data);
1786 
1787 int security_task_fix_setuid(struct cred *new, const struct cred *old,
1788 			     int flags)
1789 {
1790 	return call_int_hook(task_fix_setuid, 0, new, old, flags);
1791 }
1792 
1793 int security_task_fix_setgid(struct cred *new, const struct cred *old,
1794 				 int flags)
1795 {
1796 	return call_int_hook(task_fix_setgid, 0, new, old, flags);
1797 }
1798 
1799 int security_task_setpgid(struct task_struct *p, pid_t pgid)
1800 {
1801 	return call_int_hook(task_setpgid, 0, p, pgid);
1802 }
1803 
1804 int security_task_getpgid(struct task_struct *p)
1805 {
1806 	return call_int_hook(task_getpgid, 0, p);
1807 }
1808 
1809 int security_task_getsid(struct task_struct *p)
1810 {
1811 	return call_int_hook(task_getsid, 0, p);
1812 }
1813 
1814 void security_current_getsecid_subj(u32 *secid)
1815 {
1816 	*secid = 0;
1817 	call_void_hook(current_getsecid_subj, secid);
1818 }
1819 EXPORT_SYMBOL(security_current_getsecid_subj);
1820 
1821 void security_task_getsecid_obj(struct task_struct *p, u32 *secid)
1822 {
1823 	*secid = 0;
1824 	call_void_hook(task_getsecid_obj, p, secid);
1825 }
1826 EXPORT_SYMBOL(security_task_getsecid_obj);
1827 
1828 int security_task_setnice(struct task_struct *p, int nice)
1829 {
1830 	return call_int_hook(task_setnice, 0, p, nice);
1831 }
1832 
1833 int security_task_setioprio(struct task_struct *p, int ioprio)
1834 {
1835 	return call_int_hook(task_setioprio, 0, p, ioprio);
1836 }
1837 
1838 int security_task_getioprio(struct task_struct *p)
1839 {
1840 	return call_int_hook(task_getioprio, 0, p);
1841 }
1842 
1843 int security_task_prlimit(const struct cred *cred, const struct cred *tcred,
1844 			  unsigned int flags)
1845 {
1846 	return call_int_hook(task_prlimit, 0, cred, tcred, flags);
1847 }
1848 
1849 int security_task_setrlimit(struct task_struct *p, unsigned int resource,
1850 		struct rlimit *new_rlim)
1851 {
1852 	return call_int_hook(task_setrlimit, 0, p, resource, new_rlim);
1853 }
1854 
1855 int security_task_setscheduler(struct task_struct *p)
1856 {
1857 	return call_int_hook(task_setscheduler, 0, p);
1858 }
1859 
1860 int security_task_getscheduler(struct task_struct *p)
1861 {
1862 	return call_int_hook(task_getscheduler, 0, p);
1863 }
1864 
1865 int security_task_movememory(struct task_struct *p)
1866 {
1867 	return call_int_hook(task_movememory, 0, p);
1868 }
1869 
1870 int security_task_kill(struct task_struct *p, struct kernel_siginfo *info,
1871 			int sig, const struct cred *cred)
1872 {
1873 	return call_int_hook(task_kill, 0, p, info, sig, cred);
1874 }
1875 
1876 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
1877 			 unsigned long arg4, unsigned long arg5)
1878 {
1879 	int thisrc;
1880 	int rc = LSM_RET_DEFAULT(task_prctl);
1881 	struct security_hook_list *hp;
1882 
1883 	hlist_for_each_entry(hp, &security_hook_heads.task_prctl, list) {
1884 		thisrc = hp->hook.task_prctl(option, arg2, arg3, arg4, arg5);
1885 		if (thisrc != LSM_RET_DEFAULT(task_prctl)) {
1886 			rc = thisrc;
1887 			if (thisrc != 0)
1888 				break;
1889 		}
1890 	}
1891 	return rc;
1892 }
1893 
1894 void security_task_to_inode(struct task_struct *p, struct inode *inode)
1895 {
1896 	call_void_hook(task_to_inode, p, inode);
1897 }
1898 
1899 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
1900 {
1901 	return call_int_hook(ipc_permission, 0, ipcp, flag);
1902 }
1903 
1904 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
1905 {
1906 	*secid = 0;
1907 	call_void_hook(ipc_getsecid, ipcp, secid);
1908 }
1909 
1910 int security_msg_msg_alloc(struct msg_msg *msg)
1911 {
1912 	int rc = lsm_msg_msg_alloc(msg);
1913 
1914 	if (unlikely(rc))
1915 		return rc;
1916 	rc = call_int_hook(msg_msg_alloc_security, 0, msg);
1917 	if (unlikely(rc))
1918 		security_msg_msg_free(msg);
1919 	return rc;
1920 }
1921 
1922 void security_msg_msg_free(struct msg_msg *msg)
1923 {
1924 	call_void_hook(msg_msg_free_security, msg);
1925 	kfree(msg->security);
1926 	msg->security = NULL;
1927 }
1928 
1929 int security_msg_queue_alloc(struct kern_ipc_perm *msq)
1930 {
1931 	int rc = lsm_ipc_alloc(msq);
1932 
1933 	if (unlikely(rc))
1934 		return rc;
1935 	rc = call_int_hook(msg_queue_alloc_security, 0, msq);
1936 	if (unlikely(rc))
1937 		security_msg_queue_free(msq);
1938 	return rc;
1939 }
1940 
1941 void security_msg_queue_free(struct kern_ipc_perm *msq)
1942 {
1943 	call_void_hook(msg_queue_free_security, msq);
1944 	kfree(msq->security);
1945 	msq->security = NULL;
1946 }
1947 
1948 int security_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
1949 {
1950 	return call_int_hook(msg_queue_associate, 0, msq, msqflg);
1951 }
1952 
1953 int security_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
1954 {
1955 	return call_int_hook(msg_queue_msgctl, 0, msq, cmd);
1956 }
1957 
1958 int security_msg_queue_msgsnd(struct kern_ipc_perm *msq,
1959 			       struct msg_msg *msg, int msqflg)
1960 {
1961 	return call_int_hook(msg_queue_msgsnd, 0, msq, msg, msqflg);
1962 }
1963 
1964 int security_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
1965 			       struct task_struct *target, long type, int mode)
1966 {
1967 	return call_int_hook(msg_queue_msgrcv, 0, msq, msg, target, type, mode);
1968 }
1969 
1970 int security_shm_alloc(struct kern_ipc_perm *shp)
1971 {
1972 	int rc = lsm_ipc_alloc(shp);
1973 
1974 	if (unlikely(rc))
1975 		return rc;
1976 	rc = call_int_hook(shm_alloc_security, 0, shp);
1977 	if (unlikely(rc))
1978 		security_shm_free(shp);
1979 	return rc;
1980 }
1981 
1982 void security_shm_free(struct kern_ipc_perm *shp)
1983 {
1984 	call_void_hook(shm_free_security, shp);
1985 	kfree(shp->security);
1986 	shp->security = NULL;
1987 }
1988 
1989 int security_shm_associate(struct kern_ipc_perm *shp, int shmflg)
1990 {
1991 	return call_int_hook(shm_associate, 0, shp, shmflg);
1992 }
1993 
1994 int security_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
1995 {
1996 	return call_int_hook(shm_shmctl, 0, shp, cmd);
1997 }
1998 
1999 int security_shm_shmat(struct kern_ipc_perm *shp, char __user *shmaddr, int shmflg)
2000 {
2001 	return call_int_hook(shm_shmat, 0, shp, shmaddr, shmflg);
2002 }
2003 
2004 int security_sem_alloc(struct kern_ipc_perm *sma)
2005 {
2006 	int rc = lsm_ipc_alloc(sma);
2007 
2008 	if (unlikely(rc))
2009 		return rc;
2010 	rc = call_int_hook(sem_alloc_security, 0, sma);
2011 	if (unlikely(rc))
2012 		security_sem_free(sma);
2013 	return rc;
2014 }
2015 
2016 void security_sem_free(struct kern_ipc_perm *sma)
2017 {
2018 	call_void_hook(sem_free_security, sma);
2019 	kfree(sma->security);
2020 	sma->security = NULL;
2021 }
2022 
2023 int security_sem_associate(struct kern_ipc_perm *sma, int semflg)
2024 {
2025 	return call_int_hook(sem_associate, 0, sma, semflg);
2026 }
2027 
2028 int security_sem_semctl(struct kern_ipc_perm *sma, int cmd)
2029 {
2030 	return call_int_hook(sem_semctl, 0, sma, cmd);
2031 }
2032 
2033 int security_sem_semop(struct kern_ipc_perm *sma, struct sembuf *sops,
2034 			unsigned nsops, int alter)
2035 {
2036 	return call_int_hook(sem_semop, 0, sma, sops, nsops, alter);
2037 }
2038 
2039 void security_d_instantiate(struct dentry *dentry, struct inode *inode)
2040 {
2041 	if (unlikely(inode && IS_PRIVATE(inode)))
2042 		return;
2043 	call_void_hook(d_instantiate, dentry, inode);
2044 }
2045 EXPORT_SYMBOL(security_d_instantiate);
2046 
2047 int security_getprocattr(struct task_struct *p, const char *lsm, char *name,
2048 				char **value)
2049 {
2050 	struct security_hook_list *hp;
2051 
2052 	hlist_for_each_entry(hp, &security_hook_heads.getprocattr, list) {
2053 		if (lsm != NULL && strcmp(lsm, hp->lsm))
2054 			continue;
2055 		return hp->hook.getprocattr(p, name, value);
2056 	}
2057 	return LSM_RET_DEFAULT(getprocattr);
2058 }
2059 
2060 int security_setprocattr(const char *lsm, const char *name, void *value,
2061 			 size_t size)
2062 {
2063 	struct security_hook_list *hp;
2064 
2065 	hlist_for_each_entry(hp, &security_hook_heads.setprocattr, list) {
2066 		if (lsm != NULL && strcmp(lsm, hp->lsm))
2067 			continue;
2068 		return hp->hook.setprocattr(name, value, size);
2069 	}
2070 	return LSM_RET_DEFAULT(setprocattr);
2071 }
2072 
2073 int security_netlink_send(struct sock *sk, struct sk_buff *skb)
2074 {
2075 	return call_int_hook(netlink_send, 0, sk, skb);
2076 }
2077 
2078 int security_ismaclabel(const char *name)
2079 {
2080 	return call_int_hook(ismaclabel, 0, name);
2081 }
2082 EXPORT_SYMBOL(security_ismaclabel);
2083 
2084 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
2085 {
2086 	struct security_hook_list *hp;
2087 	int rc;
2088 
2089 	/*
2090 	 * Currently, only one LSM can implement secid_to_secctx (i.e this
2091 	 * LSM hook is not "stackable").
2092 	 */
2093 	hlist_for_each_entry(hp, &security_hook_heads.secid_to_secctx, list) {
2094 		rc = hp->hook.secid_to_secctx(secid, secdata, seclen);
2095 		if (rc != LSM_RET_DEFAULT(secid_to_secctx))
2096 			return rc;
2097 	}
2098 
2099 	return LSM_RET_DEFAULT(secid_to_secctx);
2100 }
2101 EXPORT_SYMBOL(security_secid_to_secctx);
2102 
2103 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
2104 {
2105 	*secid = 0;
2106 	return call_int_hook(secctx_to_secid, 0, secdata, seclen, secid);
2107 }
2108 EXPORT_SYMBOL(security_secctx_to_secid);
2109 
2110 void security_release_secctx(char *secdata, u32 seclen)
2111 {
2112 	call_void_hook(release_secctx, secdata, seclen);
2113 }
2114 EXPORT_SYMBOL(security_release_secctx);
2115 
2116 void security_inode_invalidate_secctx(struct inode *inode)
2117 {
2118 	call_void_hook(inode_invalidate_secctx, inode);
2119 }
2120 EXPORT_SYMBOL(security_inode_invalidate_secctx);
2121 
2122 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
2123 {
2124 	return call_int_hook(inode_notifysecctx, 0, inode, ctx, ctxlen);
2125 }
2126 EXPORT_SYMBOL(security_inode_notifysecctx);
2127 
2128 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
2129 {
2130 	return call_int_hook(inode_setsecctx, 0, dentry, ctx, ctxlen);
2131 }
2132 EXPORT_SYMBOL(security_inode_setsecctx);
2133 
2134 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
2135 {
2136 	return call_int_hook(inode_getsecctx, -EOPNOTSUPP, inode, ctx, ctxlen);
2137 }
2138 EXPORT_SYMBOL(security_inode_getsecctx);
2139 
2140 #ifdef CONFIG_WATCH_QUEUE
2141 int security_post_notification(const struct cred *w_cred,
2142 			       const struct cred *cred,
2143 			       struct watch_notification *n)
2144 {
2145 	return call_int_hook(post_notification, 0, w_cred, cred, n);
2146 }
2147 #endif /* CONFIG_WATCH_QUEUE */
2148 
2149 #ifdef CONFIG_KEY_NOTIFICATIONS
2150 int security_watch_key(struct key *key)
2151 {
2152 	return call_int_hook(watch_key, 0, key);
2153 }
2154 #endif
2155 
2156 #ifdef CONFIG_SECURITY_NETWORK
2157 
2158 int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk)
2159 {
2160 	return call_int_hook(unix_stream_connect, 0, sock, other, newsk);
2161 }
2162 EXPORT_SYMBOL(security_unix_stream_connect);
2163 
2164 int security_unix_may_send(struct socket *sock,  struct socket *other)
2165 {
2166 	return call_int_hook(unix_may_send, 0, sock, other);
2167 }
2168 EXPORT_SYMBOL(security_unix_may_send);
2169 
2170 int security_socket_create(int family, int type, int protocol, int kern)
2171 {
2172 	return call_int_hook(socket_create, 0, family, type, protocol, kern);
2173 }
2174 
2175 int security_socket_post_create(struct socket *sock, int family,
2176 				int type, int protocol, int kern)
2177 {
2178 	return call_int_hook(socket_post_create, 0, sock, family, type,
2179 						protocol, kern);
2180 }
2181 
2182 int security_socket_socketpair(struct socket *socka, struct socket *sockb)
2183 {
2184 	return call_int_hook(socket_socketpair, 0, socka, sockb);
2185 }
2186 EXPORT_SYMBOL(security_socket_socketpair);
2187 
2188 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
2189 {
2190 	return call_int_hook(socket_bind, 0, sock, address, addrlen);
2191 }
2192 
2193 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
2194 {
2195 	return call_int_hook(socket_connect, 0, sock, address, addrlen);
2196 }
2197 
2198 int security_socket_listen(struct socket *sock, int backlog)
2199 {
2200 	return call_int_hook(socket_listen, 0, sock, backlog);
2201 }
2202 
2203 int security_socket_accept(struct socket *sock, struct socket *newsock)
2204 {
2205 	return call_int_hook(socket_accept, 0, sock, newsock);
2206 }
2207 
2208 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
2209 {
2210 	return call_int_hook(socket_sendmsg, 0, sock, msg, size);
2211 }
2212 
2213 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
2214 			    int size, int flags)
2215 {
2216 	return call_int_hook(socket_recvmsg, 0, sock, msg, size, flags);
2217 }
2218 
2219 int security_socket_getsockname(struct socket *sock)
2220 {
2221 	return call_int_hook(socket_getsockname, 0, sock);
2222 }
2223 
2224 int security_socket_getpeername(struct socket *sock)
2225 {
2226 	return call_int_hook(socket_getpeername, 0, sock);
2227 }
2228 
2229 int security_socket_getsockopt(struct socket *sock, int level, int optname)
2230 {
2231 	return call_int_hook(socket_getsockopt, 0, sock, level, optname);
2232 }
2233 
2234 int security_socket_setsockopt(struct socket *sock, int level, int optname)
2235 {
2236 	return call_int_hook(socket_setsockopt, 0, sock, level, optname);
2237 }
2238 
2239 int security_socket_shutdown(struct socket *sock, int how)
2240 {
2241 	return call_int_hook(socket_shutdown, 0, sock, how);
2242 }
2243 
2244 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
2245 {
2246 	return call_int_hook(socket_sock_rcv_skb, 0, sk, skb);
2247 }
2248 EXPORT_SYMBOL(security_sock_rcv_skb);
2249 
2250 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
2251 				      int __user *optlen, unsigned len)
2252 {
2253 	return call_int_hook(socket_getpeersec_stream, -ENOPROTOOPT, sock,
2254 				optval, optlen, len);
2255 }
2256 
2257 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
2258 {
2259 	return call_int_hook(socket_getpeersec_dgram, -ENOPROTOOPT, sock,
2260 			     skb, secid);
2261 }
2262 EXPORT_SYMBOL(security_socket_getpeersec_dgram);
2263 
2264 int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
2265 {
2266 	return call_int_hook(sk_alloc_security, 0, sk, family, priority);
2267 }
2268 
2269 void security_sk_free(struct sock *sk)
2270 {
2271 	call_void_hook(sk_free_security, sk);
2272 }
2273 
2274 void security_sk_clone(const struct sock *sk, struct sock *newsk)
2275 {
2276 	call_void_hook(sk_clone_security, sk, newsk);
2277 }
2278 EXPORT_SYMBOL(security_sk_clone);
2279 
2280 void security_sk_classify_flow(struct sock *sk, struct flowi_common *flic)
2281 {
2282 	call_void_hook(sk_getsecid, sk, &flic->flowic_secid);
2283 }
2284 EXPORT_SYMBOL(security_sk_classify_flow);
2285 
2286 void security_req_classify_flow(const struct request_sock *req,
2287 				struct flowi_common *flic)
2288 {
2289 	call_void_hook(req_classify_flow, req, flic);
2290 }
2291 EXPORT_SYMBOL(security_req_classify_flow);
2292 
2293 void security_sock_graft(struct sock *sk, struct socket *parent)
2294 {
2295 	call_void_hook(sock_graft, sk, parent);
2296 }
2297 EXPORT_SYMBOL(security_sock_graft);
2298 
2299 int security_inet_conn_request(const struct sock *sk,
2300 			struct sk_buff *skb, struct request_sock *req)
2301 {
2302 	return call_int_hook(inet_conn_request, 0, sk, skb, req);
2303 }
2304 EXPORT_SYMBOL(security_inet_conn_request);
2305 
2306 void security_inet_csk_clone(struct sock *newsk,
2307 			const struct request_sock *req)
2308 {
2309 	call_void_hook(inet_csk_clone, newsk, req);
2310 }
2311 
2312 void security_inet_conn_established(struct sock *sk,
2313 			struct sk_buff *skb)
2314 {
2315 	call_void_hook(inet_conn_established, sk, skb);
2316 }
2317 EXPORT_SYMBOL(security_inet_conn_established);
2318 
2319 int security_secmark_relabel_packet(u32 secid)
2320 {
2321 	return call_int_hook(secmark_relabel_packet, 0, secid);
2322 }
2323 EXPORT_SYMBOL(security_secmark_relabel_packet);
2324 
2325 void security_secmark_refcount_inc(void)
2326 {
2327 	call_void_hook(secmark_refcount_inc);
2328 }
2329 EXPORT_SYMBOL(security_secmark_refcount_inc);
2330 
2331 void security_secmark_refcount_dec(void)
2332 {
2333 	call_void_hook(secmark_refcount_dec);
2334 }
2335 EXPORT_SYMBOL(security_secmark_refcount_dec);
2336 
2337 int security_tun_dev_alloc_security(void **security)
2338 {
2339 	return call_int_hook(tun_dev_alloc_security, 0, security);
2340 }
2341 EXPORT_SYMBOL(security_tun_dev_alloc_security);
2342 
2343 void security_tun_dev_free_security(void *security)
2344 {
2345 	call_void_hook(tun_dev_free_security, security);
2346 }
2347 EXPORT_SYMBOL(security_tun_dev_free_security);
2348 
2349 int security_tun_dev_create(void)
2350 {
2351 	return call_int_hook(tun_dev_create, 0);
2352 }
2353 EXPORT_SYMBOL(security_tun_dev_create);
2354 
2355 int security_tun_dev_attach_queue(void *security)
2356 {
2357 	return call_int_hook(tun_dev_attach_queue, 0, security);
2358 }
2359 EXPORT_SYMBOL(security_tun_dev_attach_queue);
2360 
2361 int security_tun_dev_attach(struct sock *sk, void *security)
2362 {
2363 	return call_int_hook(tun_dev_attach, 0, sk, security);
2364 }
2365 EXPORT_SYMBOL(security_tun_dev_attach);
2366 
2367 int security_tun_dev_open(void *security)
2368 {
2369 	return call_int_hook(tun_dev_open, 0, security);
2370 }
2371 EXPORT_SYMBOL(security_tun_dev_open);
2372 
2373 int security_sctp_assoc_request(struct sctp_association *asoc, struct sk_buff *skb)
2374 {
2375 	return call_int_hook(sctp_assoc_request, 0, asoc, skb);
2376 }
2377 EXPORT_SYMBOL(security_sctp_assoc_request);
2378 
2379 int security_sctp_bind_connect(struct sock *sk, int optname,
2380 			       struct sockaddr *address, int addrlen)
2381 {
2382 	return call_int_hook(sctp_bind_connect, 0, sk, optname,
2383 			     address, addrlen);
2384 }
2385 EXPORT_SYMBOL(security_sctp_bind_connect);
2386 
2387 void security_sctp_sk_clone(struct sctp_association *asoc, struct sock *sk,
2388 			    struct sock *newsk)
2389 {
2390 	call_void_hook(sctp_sk_clone, asoc, sk, newsk);
2391 }
2392 EXPORT_SYMBOL(security_sctp_sk_clone);
2393 
2394 #endif	/* CONFIG_SECURITY_NETWORK */
2395 
2396 #ifdef CONFIG_SECURITY_INFINIBAND
2397 
2398 int security_ib_pkey_access(void *sec, u64 subnet_prefix, u16 pkey)
2399 {
2400 	return call_int_hook(ib_pkey_access, 0, sec, subnet_prefix, pkey);
2401 }
2402 EXPORT_SYMBOL(security_ib_pkey_access);
2403 
2404 int security_ib_endport_manage_subnet(void *sec, const char *dev_name, u8 port_num)
2405 {
2406 	return call_int_hook(ib_endport_manage_subnet, 0, sec, dev_name, port_num);
2407 }
2408 EXPORT_SYMBOL(security_ib_endport_manage_subnet);
2409 
2410 int security_ib_alloc_security(void **sec)
2411 {
2412 	return call_int_hook(ib_alloc_security, 0, sec);
2413 }
2414 EXPORT_SYMBOL(security_ib_alloc_security);
2415 
2416 void security_ib_free_security(void *sec)
2417 {
2418 	call_void_hook(ib_free_security, sec);
2419 }
2420 EXPORT_SYMBOL(security_ib_free_security);
2421 #endif	/* CONFIG_SECURITY_INFINIBAND */
2422 
2423 #ifdef CONFIG_SECURITY_NETWORK_XFRM
2424 
2425 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp,
2426 			       struct xfrm_user_sec_ctx *sec_ctx,
2427 			       gfp_t gfp)
2428 {
2429 	return call_int_hook(xfrm_policy_alloc_security, 0, ctxp, sec_ctx, gfp);
2430 }
2431 EXPORT_SYMBOL(security_xfrm_policy_alloc);
2432 
2433 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
2434 			      struct xfrm_sec_ctx **new_ctxp)
2435 {
2436 	return call_int_hook(xfrm_policy_clone_security, 0, old_ctx, new_ctxp);
2437 }
2438 
2439 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
2440 {
2441 	call_void_hook(xfrm_policy_free_security, ctx);
2442 }
2443 EXPORT_SYMBOL(security_xfrm_policy_free);
2444 
2445 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
2446 {
2447 	return call_int_hook(xfrm_policy_delete_security, 0, ctx);
2448 }
2449 
2450 int security_xfrm_state_alloc(struct xfrm_state *x,
2451 			      struct xfrm_user_sec_ctx *sec_ctx)
2452 {
2453 	return call_int_hook(xfrm_state_alloc, 0, x, sec_ctx);
2454 }
2455 EXPORT_SYMBOL(security_xfrm_state_alloc);
2456 
2457 int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
2458 				      struct xfrm_sec_ctx *polsec, u32 secid)
2459 {
2460 	return call_int_hook(xfrm_state_alloc_acquire, 0, x, polsec, secid);
2461 }
2462 
2463 int security_xfrm_state_delete(struct xfrm_state *x)
2464 {
2465 	return call_int_hook(xfrm_state_delete_security, 0, x);
2466 }
2467 EXPORT_SYMBOL(security_xfrm_state_delete);
2468 
2469 void security_xfrm_state_free(struct xfrm_state *x)
2470 {
2471 	call_void_hook(xfrm_state_free_security, x);
2472 }
2473 
2474 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid)
2475 {
2476 	return call_int_hook(xfrm_policy_lookup, 0, ctx, fl_secid);
2477 }
2478 
2479 int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
2480 				       struct xfrm_policy *xp,
2481 				       const struct flowi_common *flic)
2482 {
2483 	struct security_hook_list *hp;
2484 	int rc = LSM_RET_DEFAULT(xfrm_state_pol_flow_match);
2485 
2486 	/*
2487 	 * Since this function is expected to return 0 or 1, the judgment
2488 	 * becomes difficult if multiple LSMs supply this call. Fortunately,
2489 	 * we can use the first LSM's judgment because currently only SELinux
2490 	 * supplies this call.
2491 	 *
2492 	 * For speed optimization, we explicitly break the loop rather than
2493 	 * using the macro
2494 	 */
2495 	hlist_for_each_entry(hp, &security_hook_heads.xfrm_state_pol_flow_match,
2496 				list) {
2497 		rc = hp->hook.xfrm_state_pol_flow_match(x, xp, flic);
2498 		break;
2499 	}
2500 	return rc;
2501 }
2502 
2503 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
2504 {
2505 	return call_int_hook(xfrm_decode_session, 0, skb, secid, 1);
2506 }
2507 
2508 void security_skb_classify_flow(struct sk_buff *skb, struct flowi_common *flic)
2509 {
2510 	int rc = call_int_hook(xfrm_decode_session, 0, skb, &flic->flowic_secid,
2511 				0);
2512 
2513 	BUG_ON(rc);
2514 }
2515 EXPORT_SYMBOL(security_skb_classify_flow);
2516 
2517 #endif	/* CONFIG_SECURITY_NETWORK_XFRM */
2518 
2519 #ifdef CONFIG_KEYS
2520 
2521 int security_key_alloc(struct key *key, const struct cred *cred,
2522 		       unsigned long flags)
2523 {
2524 	return call_int_hook(key_alloc, 0, key, cred, flags);
2525 }
2526 
2527 void security_key_free(struct key *key)
2528 {
2529 	call_void_hook(key_free, key);
2530 }
2531 
2532 int security_key_permission(key_ref_t key_ref, const struct cred *cred,
2533 			    enum key_need_perm need_perm)
2534 {
2535 	return call_int_hook(key_permission, 0, key_ref, cred, need_perm);
2536 }
2537 
2538 int security_key_getsecurity(struct key *key, char **_buffer)
2539 {
2540 	*_buffer = NULL;
2541 	return call_int_hook(key_getsecurity, 0, key, _buffer);
2542 }
2543 
2544 #endif	/* CONFIG_KEYS */
2545 
2546 #ifdef CONFIG_AUDIT
2547 
2548 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
2549 {
2550 	return call_int_hook(audit_rule_init, 0, field, op, rulestr, lsmrule);
2551 }
2552 
2553 int security_audit_rule_known(struct audit_krule *krule)
2554 {
2555 	return call_int_hook(audit_rule_known, 0, krule);
2556 }
2557 
2558 void security_audit_rule_free(void *lsmrule)
2559 {
2560 	call_void_hook(audit_rule_free, lsmrule);
2561 }
2562 
2563 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule)
2564 {
2565 	return call_int_hook(audit_rule_match, 0, secid, field, op, lsmrule);
2566 }
2567 #endif /* CONFIG_AUDIT */
2568 
2569 #ifdef CONFIG_BPF_SYSCALL
2570 int security_bpf(int cmd, union bpf_attr *attr, unsigned int size)
2571 {
2572 	return call_int_hook(bpf, 0, cmd, attr, size);
2573 }
2574 int security_bpf_map(struct bpf_map *map, fmode_t fmode)
2575 {
2576 	return call_int_hook(bpf_map, 0, map, fmode);
2577 }
2578 int security_bpf_prog(struct bpf_prog *prog)
2579 {
2580 	return call_int_hook(bpf_prog, 0, prog);
2581 }
2582 int security_bpf_map_alloc(struct bpf_map *map)
2583 {
2584 	return call_int_hook(bpf_map_alloc_security, 0, map);
2585 }
2586 int security_bpf_prog_alloc(struct bpf_prog_aux *aux)
2587 {
2588 	return call_int_hook(bpf_prog_alloc_security, 0, aux);
2589 }
2590 void security_bpf_map_free(struct bpf_map *map)
2591 {
2592 	call_void_hook(bpf_map_free_security, map);
2593 }
2594 void security_bpf_prog_free(struct bpf_prog_aux *aux)
2595 {
2596 	call_void_hook(bpf_prog_free_security, aux);
2597 }
2598 #endif /* CONFIG_BPF_SYSCALL */
2599 
2600 int security_locked_down(enum lockdown_reason what)
2601 {
2602 	return call_int_hook(locked_down, 0, what);
2603 }
2604 EXPORT_SYMBOL(security_locked_down);
2605 
2606 #ifdef CONFIG_PERF_EVENTS
2607 int security_perf_event_open(struct perf_event_attr *attr, int type)
2608 {
2609 	return call_int_hook(perf_event_open, 0, attr, type);
2610 }
2611 
2612 int security_perf_event_alloc(struct perf_event *event)
2613 {
2614 	return call_int_hook(perf_event_alloc, 0, event);
2615 }
2616 
2617 void security_perf_event_free(struct perf_event *event)
2618 {
2619 	call_void_hook(perf_event_free, event);
2620 }
2621 
2622 int security_perf_event_read(struct perf_event *event)
2623 {
2624 	return call_int_hook(perf_event_read, 0, event);
2625 }
2626 
2627 int security_perf_event_write(struct perf_event *event)
2628 {
2629 	return call_int_hook(perf_event_write, 0, event);
2630 }
2631 #endif /* CONFIG_PERF_EVENTS */
2632 
2633 #ifdef CONFIG_IO_URING
2634 int security_uring_override_creds(const struct cred *new)
2635 {
2636 	return call_int_hook(uring_override_creds, 0, new);
2637 }
2638 
2639 int security_uring_sqpoll(void)
2640 {
2641 	return call_int_hook(uring_sqpoll, 0);
2642 }
2643 #endif /* CONFIG_IO_URING */
2644