xref: /linux/security/security.c (revision 60cf7c5ed5f7087c4de87a7676b8c82d96fd166c)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Security plug functions
4  *
5  * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
6  * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
7  * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
8  * Copyright (C) 2016 Mellanox Technologies
9  */
10 
11 #define pr_fmt(fmt) "LSM: " fmt
12 
13 #include <linux/bpf.h>
14 #include <linux/capability.h>
15 #include <linux/dcache.h>
16 #include <linux/export.h>
17 #include <linux/init.h>
18 #include <linux/kernel.h>
19 #include <linux/lsm_hooks.h>
20 #include <linux/integrity.h>
21 #include <linux/ima.h>
22 #include <linux/evm.h>
23 #include <linux/fsnotify.h>
24 #include <linux/mman.h>
25 #include <linux/mount.h>
26 #include <linux/personality.h>
27 #include <linux/backing-dev.h>
28 #include <linux/string.h>
29 #include <linux/msg.h>
30 #include <net/flow.h>
31 
32 #define MAX_LSM_EVM_XATTR	2
33 
34 /* How many LSMs were built into the kernel? */
35 #define LSM_COUNT (__end_lsm_info - __start_lsm_info)
36 
37 struct security_hook_heads security_hook_heads __lsm_ro_after_init;
38 static BLOCKING_NOTIFIER_HEAD(blocking_lsm_notifier_chain);
39 
40 static struct kmem_cache *lsm_file_cache;
41 static struct kmem_cache *lsm_inode_cache;
42 
43 char *lsm_names;
44 static struct lsm_blob_sizes blob_sizes __lsm_ro_after_init;
45 
46 /* Boot-time LSM user choice */
47 static __initdata const char *chosen_lsm_order;
48 static __initdata const char *chosen_major_lsm;
49 
50 static __initconst const char * const builtin_lsm_order = CONFIG_LSM;
51 
52 /* Ordered list of LSMs to initialize. */
53 static __initdata struct lsm_info **ordered_lsms;
54 static __initdata struct lsm_info *exclusive;
55 
56 static __initdata bool debug;
57 #define init_debug(...)						\
58 	do {							\
59 		if (debug)					\
60 			pr_info(__VA_ARGS__);			\
61 	} while (0)
62 
63 static bool __init is_enabled(struct lsm_info *lsm)
64 {
65 	if (!lsm->enabled)
66 		return false;
67 
68 	return *lsm->enabled;
69 }
70 
71 /* Mark an LSM's enabled flag. */
72 static int lsm_enabled_true __initdata = 1;
73 static int lsm_enabled_false __initdata = 0;
74 static void __init set_enabled(struct lsm_info *lsm, bool enabled)
75 {
76 	/*
77 	 * When an LSM hasn't configured an enable variable, we can use
78 	 * a hard-coded location for storing the default enabled state.
79 	 */
80 	if (!lsm->enabled) {
81 		if (enabled)
82 			lsm->enabled = &lsm_enabled_true;
83 		else
84 			lsm->enabled = &lsm_enabled_false;
85 	} else if (lsm->enabled == &lsm_enabled_true) {
86 		if (!enabled)
87 			lsm->enabled = &lsm_enabled_false;
88 	} else if (lsm->enabled == &lsm_enabled_false) {
89 		if (enabled)
90 			lsm->enabled = &lsm_enabled_true;
91 	} else {
92 		*lsm->enabled = enabled;
93 	}
94 }
95 
96 /* Is an LSM already listed in the ordered LSMs list? */
97 static bool __init exists_ordered_lsm(struct lsm_info *lsm)
98 {
99 	struct lsm_info **check;
100 
101 	for (check = ordered_lsms; *check; check++)
102 		if (*check == lsm)
103 			return true;
104 
105 	return false;
106 }
107 
108 /* Append an LSM to the list of ordered LSMs to initialize. */
109 static int last_lsm __initdata;
110 static void __init append_ordered_lsm(struct lsm_info *lsm, const char *from)
111 {
112 	/* Ignore duplicate selections. */
113 	if (exists_ordered_lsm(lsm))
114 		return;
115 
116 	if (WARN(last_lsm == LSM_COUNT, "%s: out of LSM slots!?\n", from))
117 		return;
118 
119 	/* Enable this LSM, if it is not already set. */
120 	if (!lsm->enabled)
121 		lsm->enabled = &lsm_enabled_true;
122 	ordered_lsms[last_lsm++] = lsm;
123 
124 	init_debug("%s ordering: %s (%sabled)\n", from, lsm->name,
125 		   is_enabled(lsm) ? "en" : "dis");
126 }
127 
128 /* Is an LSM allowed to be initialized? */
129 static bool __init lsm_allowed(struct lsm_info *lsm)
130 {
131 	/* Skip if the LSM is disabled. */
132 	if (!is_enabled(lsm))
133 		return false;
134 
135 	/* Not allowed if another exclusive LSM already initialized. */
136 	if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && exclusive) {
137 		init_debug("exclusive disabled: %s\n", lsm->name);
138 		return false;
139 	}
140 
141 	return true;
142 }
143 
144 static void __init lsm_set_blob_size(int *need, int *lbs)
145 {
146 	int offset;
147 
148 	if (*need > 0) {
149 		offset = *lbs;
150 		*lbs += *need;
151 		*need = offset;
152 	}
153 }
154 
155 static void __init lsm_set_blob_sizes(struct lsm_blob_sizes *needed)
156 {
157 	if (!needed)
158 		return;
159 
160 	lsm_set_blob_size(&needed->lbs_cred, &blob_sizes.lbs_cred);
161 	lsm_set_blob_size(&needed->lbs_file, &blob_sizes.lbs_file);
162 	/*
163 	 * The inode blob gets an rcu_head in addition to
164 	 * what the modules might need.
165 	 */
166 	if (needed->lbs_inode && blob_sizes.lbs_inode == 0)
167 		blob_sizes.lbs_inode = sizeof(struct rcu_head);
168 	lsm_set_blob_size(&needed->lbs_inode, &blob_sizes.lbs_inode);
169 	lsm_set_blob_size(&needed->lbs_ipc, &blob_sizes.lbs_ipc);
170 	lsm_set_blob_size(&needed->lbs_msg_msg, &blob_sizes.lbs_msg_msg);
171 	lsm_set_blob_size(&needed->lbs_task, &blob_sizes.lbs_task);
172 }
173 
174 /* Prepare LSM for initialization. */
175 static void __init prepare_lsm(struct lsm_info *lsm)
176 {
177 	int enabled = lsm_allowed(lsm);
178 
179 	/* Record enablement (to handle any following exclusive LSMs). */
180 	set_enabled(lsm, enabled);
181 
182 	/* If enabled, do pre-initialization work. */
183 	if (enabled) {
184 		if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && !exclusive) {
185 			exclusive = lsm;
186 			init_debug("exclusive chosen: %s\n", lsm->name);
187 		}
188 
189 		lsm_set_blob_sizes(lsm->blobs);
190 	}
191 }
192 
193 /* Initialize a given LSM, if it is enabled. */
194 static void __init initialize_lsm(struct lsm_info *lsm)
195 {
196 	if (is_enabled(lsm)) {
197 		int ret;
198 
199 		init_debug("initializing %s\n", lsm->name);
200 		ret = lsm->init();
201 		WARN(ret, "%s failed to initialize: %d\n", lsm->name, ret);
202 	}
203 }
204 
205 /* Populate ordered LSMs list from comma-separated LSM name list. */
206 static void __init ordered_lsm_parse(const char *order, const char *origin)
207 {
208 	struct lsm_info *lsm;
209 	char *sep, *name, *next;
210 
211 	/* LSM_ORDER_FIRST is always first. */
212 	for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
213 		if (lsm->order == LSM_ORDER_FIRST)
214 			append_ordered_lsm(lsm, "first");
215 	}
216 
217 	/* Process "security=", if given. */
218 	if (chosen_major_lsm) {
219 		struct lsm_info *major;
220 
221 		/*
222 		 * To match the original "security=" behavior, this
223 		 * explicitly does NOT fallback to another Legacy Major
224 		 * if the selected one was separately disabled: disable
225 		 * all non-matching Legacy Major LSMs.
226 		 */
227 		for (major = __start_lsm_info; major < __end_lsm_info;
228 		     major++) {
229 			if ((major->flags & LSM_FLAG_LEGACY_MAJOR) &&
230 			    strcmp(major->name, chosen_major_lsm) != 0) {
231 				set_enabled(major, false);
232 				init_debug("security=%s disabled: %s\n",
233 					   chosen_major_lsm, major->name);
234 			}
235 		}
236 	}
237 
238 	sep = kstrdup(order, GFP_KERNEL);
239 	next = sep;
240 	/* Walk the list, looking for matching LSMs. */
241 	while ((name = strsep(&next, ",")) != NULL) {
242 		bool found = false;
243 
244 		for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
245 			if (lsm->order == LSM_ORDER_MUTABLE &&
246 			    strcmp(lsm->name, name) == 0) {
247 				append_ordered_lsm(lsm, origin);
248 				found = true;
249 			}
250 		}
251 
252 		if (!found)
253 			init_debug("%s ignored: %s\n", origin, name);
254 	}
255 
256 	/* Process "security=", if given. */
257 	if (chosen_major_lsm) {
258 		for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
259 			if (exists_ordered_lsm(lsm))
260 				continue;
261 			if (strcmp(lsm->name, chosen_major_lsm) == 0)
262 				append_ordered_lsm(lsm, "security=");
263 		}
264 	}
265 
266 	/* Disable all LSMs not in the ordered list. */
267 	for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
268 		if (exists_ordered_lsm(lsm))
269 			continue;
270 		set_enabled(lsm, false);
271 		init_debug("%s disabled: %s\n", origin, lsm->name);
272 	}
273 
274 	kfree(sep);
275 }
276 
277 static void __init lsm_early_cred(struct cred *cred);
278 static void __init lsm_early_task(struct task_struct *task);
279 
280 static int lsm_append(const char *new, char **result);
281 
282 static void __init ordered_lsm_init(void)
283 {
284 	struct lsm_info **lsm;
285 
286 	ordered_lsms = kcalloc(LSM_COUNT + 1, sizeof(*ordered_lsms),
287 				GFP_KERNEL);
288 
289 	if (chosen_lsm_order) {
290 		if (chosen_major_lsm) {
291 			pr_info("security= is ignored because it is superseded by lsm=\n");
292 			chosen_major_lsm = NULL;
293 		}
294 		ordered_lsm_parse(chosen_lsm_order, "cmdline");
295 	} else
296 		ordered_lsm_parse(builtin_lsm_order, "builtin");
297 
298 	for (lsm = ordered_lsms; *lsm; lsm++)
299 		prepare_lsm(*lsm);
300 
301 	init_debug("cred blob size     = %d\n", blob_sizes.lbs_cred);
302 	init_debug("file blob size     = %d\n", blob_sizes.lbs_file);
303 	init_debug("inode blob size    = %d\n", blob_sizes.lbs_inode);
304 	init_debug("ipc blob size      = %d\n", blob_sizes.lbs_ipc);
305 	init_debug("msg_msg blob size  = %d\n", blob_sizes.lbs_msg_msg);
306 	init_debug("task blob size     = %d\n", blob_sizes.lbs_task);
307 
308 	/*
309 	 * Create any kmem_caches needed for blobs
310 	 */
311 	if (blob_sizes.lbs_file)
312 		lsm_file_cache = kmem_cache_create("lsm_file_cache",
313 						   blob_sizes.lbs_file, 0,
314 						   SLAB_PANIC, NULL);
315 	if (blob_sizes.lbs_inode)
316 		lsm_inode_cache = kmem_cache_create("lsm_inode_cache",
317 						    blob_sizes.lbs_inode, 0,
318 						    SLAB_PANIC, NULL);
319 
320 	lsm_early_cred((struct cred *) current->cred);
321 	lsm_early_task(current);
322 	for (lsm = ordered_lsms; *lsm; lsm++)
323 		initialize_lsm(*lsm);
324 
325 	kfree(ordered_lsms);
326 }
327 
328 int __init early_security_init(void)
329 {
330 	int i;
331 	struct hlist_head *list = (struct hlist_head *) &security_hook_heads;
332 	struct lsm_info *lsm;
333 
334 	for (i = 0; i < sizeof(security_hook_heads) / sizeof(struct hlist_head);
335 	     i++)
336 		INIT_HLIST_HEAD(&list[i]);
337 
338 	for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
339 		if (!lsm->enabled)
340 			lsm->enabled = &lsm_enabled_true;
341 		prepare_lsm(lsm);
342 		initialize_lsm(lsm);
343 	}
344 
345 	return 0;
346 }
347 
348 /**
349  * security_init - initializes the security framework
350  *
351  * This should be called early in the kernel initialization sequence.
352  */
353 int __init security_init(void)
354 {
355 	struct lsm_info *lsm;
356 
357 	pr_info("Security Framework initializing\n");
358 
359 	/*
360 	 * Append the names of the early LSM modules now that kmalloc() is
361 	 * available
362 	 */
363 	for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
364 		if (lsm->enabled)
365 			lsm_append(lsm->name, &lsm_names);
366 	}
367 
368 	/* Load LSMs in specified order. */
369 	ordered_lsm_init();
370 
371 	return 0;
372 }
373 
374 /* Save user chosen LSM */
375 static int __init choose_major_lsm(char *str)
376 {
377 	chosen_major_lsm = str;
378 	return 1;
379 }
380 __setup("security=", choose_major_lsm);
381 
382 /* Explicitly choose LSM initialization order. */
383 static int __init choose_lsm_order(char *str)
384 {
385 	chosen_lsm_order = str;
386 	return 1;
387 }
388 __setup("lsm=", choose_lsm_order);
389 
390 /* Enable LSM order debugging. */
391 static int __init enable_debug(char *str)
392 {
393 	debug = true;
394 	return 1;
395 }
396 __setup("lsm.debug", enable_debug);
397 
398 static bool match_last_lsm(const char *list, const char *lsm)
399 {
400 	const char *last;
401 
402 	if (WARN_ON(!list || !lsm))
403 		return false;
404 	last = strrchr(list, ',');
405 	if (last)
406 		/* Pass the comma, strcmp() will check for '\0' */
407 		last++;
408 	else
409 		last = list;
410 	return !strcmp(last, lsm);
411 }
412 
413 static int lsm_append(const char *new, char **result)
414 {
415 	char *cp;
416 
417 	if (*result == NULL) {
418 		*result = kstrdup(new, GFP_KERNEL);
419 		if (*result == NULL)
420 			return -ENOMEM;
421 	} else {
422 		/* Check if it is the last registered name */
423 		if (match_last_lsm(*result, new))
424 			return 0;
425 		cp = kasprintf(GFP_KERNEL, "%s,%s", *result, new);
426 		if (cp == NULL)
427 			return -ENOMEM;
428 		kfree(*result);
429 		*result = cp;
430 	}
431 	return 0;
432 }
433 
434 /**
435  * security_add_hooks - Add a modules hooks to the hook lists.
436  * @hooks: the hooks to add
437  * @count: the number of hooks to add
438  * @lsm: the name of the security module
439  *
440  * Each LSM has to register its hooks with the infrastructure.
441  */
442 void __init security_add_hooks(struct security_hook_list *hooks, int count,
443 				char *lsm)
444 {
445 	int i;
446 
447 	for (i = 0; i < count; i++) {
448 		hooks[i].lsm = lsm;
449 		hlist_add_tail_rcu(&hooks[i].list, hooks[i].head);
450 	}
451 
452 	/*
453 	 * Don't try to append during early_security_init(), we'll come back
454 	 * and fix this up afterwards.
455 	 */
456 	if (slab_is_available()) {
457 		if (lsm_append(lsm, &lsm_names) < 0)
458 			panic("%s - Cannot get early memory.\n", __func__);
459 	}
460 }
461 
462 int call_blocking_lsm_notifier(enum lsm_event event, void *data)
463 {
464 	return blocking_notifier_call_chain(&blocking_lsm_notifier_chain,
465 					    event, data);
466 }
467 EXPORT_SYMBOL(call_blocking_lsm_notifier);
468 
469 int register_blocking_lsm_notifier(struct notifier_block *nb)
470 {
471 	return blocking_notifier_chain_register(&blocking_lsm_notifier_chain,
472 						nb);
473 }
474 EXPORT_SYMBOL(register_blocking_lsm_notifier);
475 
476 int unregister_blocking_lsm_notifier(struct notifier_block *nb)
477 {
478 	return blocking_notifier_chain_unregister(&blocking_lsm_notifier_chain,
479 						  nb);
480 }
481 EXPORT_SYMBOL(unregister_blocking_lsm_notifier);
482 
483 /**
484  * lsm_cred_alloc - allocate a composite cred blob
485  * @cred: the cred that needs a blob
486  * @gfp: allocation type
487  *
488  * Allocate the cred blob for all the modules
489  *
490  * Returns 0, or -ENOMEM if memory can't be allocated.
491  */
492 static int lsm_cred_alloc(struct cred *cred, gfp_t gfp)
493 {
494 	if (blob_sizes.lbs_cred == 0) {
495 		cred->security = NULL;
496 		return 0;
497 	}
498 
499 	cred->security = kzalloc(blob_sizes.lbs_cred, gfp);
500 	if (cred->security == NULL)
501 		return -ENOMEM;
502 	return 0;
503 }
504 
505 /**
506  * lsm_early_cred - during initialization allocate a composite cred blob
507  * @cred: the cred that needs a blob
508  *
509  * Allocate the cred blob for all the modules
510  */
511 static void __init lsm_early_cred(struct cred *cred)
512 {
513 	int rc = lsm_cred_alloc(cred, GFP_KERNEL);
514 
515 	if (rc)
516 		panic("%s: Early cred alloc failed.\n", __func__);
517 }
518 
519 /**
520  * lsm_file_alloc - allocate a composite file blob
521  * @file: the file that needs a blob
522  *
523  * Allocate the file blob for all the modules
524  *
525  * Returns 0, or -ENOMEM if memory can't be allocated.
526  */
527 static int lsm_file_alloc(struct file *file)
528 {
529 	if (!lsm_file_cache) {
530 		file->f_security = NULL;
531 		return 0;
532 	}
533 
534 	file->f_security = kmem_cache_zalloc(lsm_file_cache, GFP_KERNEL);
535 	if (file->f_security == NULL)
536 		return -ENOMEM;
537 	return 0;
538 }
539 
540 /**
541  * lsm_inode_alloc - allocate a composite inode blob
542  * @inode: the inode that needs a blob
543  *
544  * Allocate the inode blob for all the modules
545  *
546  * Returns 0, or -ENOMEM if memory can't be allocated.
547  */
548 int lsm_inode_alloc(struct inode *inode)
549 {
550 	if (!lsm_inode_cache) {
551 		inode->i_security = NULL;
552 		return 0;
553 	}
554 
555 	inode->i_security = kmem_cache_zalloc(lsm_inode_cache, GFP_NOFS);
556 	if (inode->i_security == NULL)
557 		return -ENOMEM;
558 	return 0;
559 }
560 
561 /**
562  * lsm_task_alloc - allocate a composite task blob
563  * @task: the task that needs a blob
564  *
565  * Allocate the task blob for all the modules
566  *
567  * Returns 0, or -ENOMEM if memory can't be allocated.
568  */
569 static int lsm_task_alloc(struct task_struct *task)
570 {
571 	if (blob_sizes.lbs_task == 0) {
572 		task->security = NULL;
573 		return 0;
574 	}
575 
576 	task->security = kzalloc(blob_sizes.lbs_task, GFP_KERNEL);
577 	if (task->security == NULL)
578 		return -ENOMEM;
579 	return 0;
580 }
581 
582 /**
583  * lsm_ipc_alloc - allocate a composite ipc blob
584  * @kip: the ipc that needs a blob
585  *
586  * Allocate the ipc blob for all the modules
587  *
588  * Returns 0, or -ENOMEM if memory can't be allocated.
589  */
590 static int lsm_ipc_alloc(struct kern_ipc_perm *kip)
591 {
592 	if (blob_sizes.lbs_ipc == 0) {
593 		kip->security = NULL;
594 		return 0;
595 	}
596 
597 	kip->security = kzalloc(blob_sizes.lbs_ipc, GFP_KERNEL);
598 	if (kip->security == NULL)
599 		return -ENOMEM;
600 	return 0;
601 }
602 
603 /**
604  * lsm_msg_msg_alloc - allocate a composite msg_msg blob
605  * @mp: the msg_msg that needs a blob
606  *
607  * Allocate the ipc blob for all the modules
608  *
609  * Returns 0, or -ENOMEM if memory can't be allocated.
610  */
611 static int lsm_msg_msg_alloc(struct msg_msg *mp)
612 {
613 	if (blob_sizes.lbs_msg_msg == 0) {
614 		mp->security = NULL;
615 		return 0;
616 	}
617 
618 	mp->security = kzalloc(blob_sizes.lbs_msg_msg, GFP_KERNEL);
619 	if (mp->security == NULL)
620 		return -ENOMEM;
621 	return 0;
622 }
623 
624 /**
625  * lsm_early_task - during initialization allocate a composite task blob
626  * @task: the task that needs a blob
627  *
628  * Allocate the task blob for all the modules
629  */
630 static void __init lsm_early_task(struct task_struct *task)
631 {
632 	int rc = lsm_task_alloc(task);
633 
634 	if (rc)
635 		panic("%s: Early task alloc failed.\n", __func__);
636 }
637 
638 /*
639  * Hook list operation macros.
640  *
641  * call_void_hook:
642  *	This is a hook that does not return a value.
643  *
644  * call_int_hook:
645  *	This is a hook that returns a value.
646  */
647 
648 #define call_void_hook(FUNC, ...)				\
649 	do {							\
650 		struct security_hook_list *P;			\
651 								\
652 		hlist_for_each_entry(P, &security_hook_heads.FUNC, list) \
653 			P->hook.FUNC(__VA_ARGS__);		\
654 	} while (0)
655 
656 #define call_int_hook(FUNC, IRC, ...) ({			\
657 	int RC = IRC;						\
658 	do {							\
659 		struct security_hook_list *P;			\
660 								\
661 		hlist_for_each_entry(P, &security_hook_heads.FUNC, list) { \
662 			RC = P->hook.FUNC(__VA_ARGS__);		\
663 			if (RC != 0)				\
664 				break;				\
665 		}						\
666 	} while (0);						\
667 	RC;							\
668 })
669 
670 /* Security operations */
671 
672 int security_binder_set_context_mgr(struct task_struct *mgr)
673 {
674 	return call_int_hook(binder_set_context_mgr, 0, mgr);
675 }
676 
677 int security_binder_transaction(struct task_struct *from,
678 				struct task_struct *to)
679 {
680 	return call_int_hook(binder_transaction, 0, from, to);
681 }
682 
683 int security_binder_transfer_binder(struct task_struct *from,
684 				    struct task_struct *to)
685 {
686 	return call_int_hook(binder_transfer_binder, 0, from, to);
687 }
688 
689 int security_binder_transfer_file(struct task_struct *from,
690 				  struct task_struct *to, struct file *file)
691 {
692 	return call_int_hook(binder_transfer_file, 0, from, to, file);
693 }
694 
695 int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
696 {
697 	return call_int_hook(ptrace_access_check, 0, child, mode);
698 }
699 
700 int security_ptrace_traceme(struct task_struct *parent)
701 {
702 	return call_int_hook(ptrace_traceme, 0, parent);
703 }
704 
705 int security_capget(struct task_struct *target,
706 		     kernel_cap_t *effective,
707 		     kernel_cap_t *inheritable,
708 		     kernel_cap_t *permitted)
709 {
710 	return call_int_hook(capget, 0, target,
711 				effective, inheritable, permitted);
712 }
713 
714 int security_capset(struct cred *new, const struct cred *old,
715 		    const kernel_cap_t *effective,
716 		    const kernel_cap_t *inheritable,
717 		    const kernel_cap_t *permitted)
718 {
719 	return call_int_hook(capset, 0, new, old,
720 				effective, inheritable, permitted);
721 }
722 
723 int security_capable(const struct cred *cred,
724 		     struct user_namespace *ns,
725 		     int cap,
726 		     unsigned int opts)
727 {
728 	return call_int_hook(capable, 0, cred, ns, cap, opts);
729 }
730 
731 int security_quotactl(int cmds, int type, int id, struct super_block *sb)
732 {
733 	return call_int_hook(quotactl, 0, cmds, type, id, sb);
734 }
735 
736 int security_quota_on(struct dentry *dentry)
737 {
738 	return call_int_hook(quota_on, 0, dentry);
739 }
740 
741 int security_syslog(int type)
742 {
743 	return call_int_hook(syslog, 0, type);
744 }
745 
746 int security_settime64(const struct timespec64 *ts, const struct timezone *tz)
747 {
748 	return call_int_hook(settime, 0, ts, tz);
749 }
750 
751 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
752 {
753 	struct security_hook_list *hp;
754 	int cap_sys_admin = 1;
755 	int rc;
756 
757 	/*
758 	 * The module will respond with a positive value if
759 	 * it thinks the __vm_enough_memory() call should be
760 	 * made with the cap_sys_admin set. If all of the modules
761 	 * agree that it should be set it will. If any module
762 	 * thinks it should not be set it won't.
763 	 */
764 	hlist_for_each_entry(hp, &security_hook_heads.vm_enough_memory, list) {
765 		rc = hp->hook.vm_enough_memory(mm, pages);
766 		if (rc <= 0) {
767 			cap_sys_admin = 0;
768 			break;
769 		}
770 	}
771 	return __vm_enough_memory(mm, pages, cap_sys_admin);
772 }
773 
774 int security_bprm_set_creds(struct linux_binprm *bprm)
775 {
776 	return call_int_hook(bprm_set_creds, 0, bprm);
777 }
778 
779 int security_bprm_check(struct linux_binprm *bprm)
780 {
781 	int ret;
782 
783 	ret = call_int_hook(bprm_check_security, 0, bprm);
784 	if (ret)
785 		return ret;
786 	return ima_bprm_check(bprm);
787 }
788 
789 void security_bprm_committing_creds(struct linux_binprm *bprm)
790 {
791 	call_void_hook(bprm_committing_creds, bprm);
792 }
793 
794 void security_bprm_committed_creds(struct linux_binprm *bprm)
795 {
796 	call_void_hook(bprm_committed_creds, bprm);
797 }
798 
799 int security_fs_context_dup(struct fs_context *fc, struct fs_context *src_fc)
800 {
801 	return call_int_hook(fs_context_dup, 0, fc, src_fc);
802 }
803 
804 int security_fs_context_parse_param(struct fs_context *fc, struct fs_parameter *param)
805 {
806 	return call_int_hook(fs_context_parse_param, -ENOPARAM, fc, param);
807 }
808 
809 int security_sb_alloc(struct super_block *sb)
810 {
811 	return call_int_hook(sb_alloc_security, 0, sb);
812 }
813 
814 void security_sb_free(struct super_block *sb)
815 {
816 	call_void_hook(sb_free_security, sb);
817 }
818 
819 void security_free_mnt_opts(void **mnt_opts)
820 {
821 	if (!*mnt_opts)
822 		return;
823 	call_void_hook(sb_free_mnt_opts, *mnt_opts);
824 	*mnt_opts = NULL;
825 }
826 EXPORT_SYMBOL(security_free_mnt_opts);
827 
828 int security_sb_eat_lsm_opts(char *options, void **mnt_opts)
829 {
830 	return call_int_hook(sb_eat_lsm_opts, 0, options, mnt_opts);
831 }
832 EXPORT_SYMBOL(security_sb_eat_lsm_opts);
833 
834 int security_sb_remount(struct super_block *sb,
835 			void *mnt_opts)
836 {
837 	return call_int_hook(sb_remount, 0, sb, mnt_opts);
838 }
839 EXPORT_SYMBOL(security_sb_remount);
840 
841 int security_sb_kern_mount(struct super_block *sb)
842 {
843 	return call_int_hook(sb_kern_mount, 0, sb);
844 }
845 
846 int security_sb_show_options(struct seq_file *m, struct super_block *sb)
847 {
848 	return call_int_hook(sb_show_options, 0, m, sb);
849 }
850 
851 int security_sb_statfs(struct dentry *dentry)
852 {
853 	return call_int_hook(sb_statfs, 0, dentry);
854 }
855 
856 int security_sb_mount(const char *dev_name, const struct path *path,
857                        const char *type, unsigned long flags, void *data)
858 {
859 	return call_int_hook(sb_mount, 0, dev_name, path, type, flags, data);
860 }
861 
862 int security_sb_umount(struct vfsmount *mnt, int flags)
863 {
864 	return call_int_hook(sb_umount, 0, mnt, flags);
865 }
866 
867 int security_sb_pivotroot(const struct path *old_path, const struct path *new_path)
868 {
869 	return call_int_hook(sb_pivotroot, 0, old_path, new_path);
870 }
871 
872 int security_sb_set_mnt_opts(struct super_block *sb,
873 				void *mnt_opts,
874 				unsigned long kern_flags,
875 				unsigned long *set_kern_flags)
876 {
877 	return call_int_hook(sb_set_mnt_opts,
878 				mnt_opts ? -EOPNOTSUPP : 0, sb,
879 				mnt_opts, kern_flags, set_kern_flags);
880 }
881 EXPORT_SYMBOL(security_sb_set_mnt_opts);
882 
883 int security_sb_clone_mnt_opts(const struct super_block *oldsb,
884 				struct super_block *newsb,
885 				unsigned long kern_flags,
886 				unsigned long *set_kern_flags)
887 {
888 	return call_int_hook(sb_clone_mnt_opts, 0, oldsb, newsb,
889 				kern_flags, set_kern_flags);
890 }
891 EXPORT_SYMBOL(security_sb_clone_mnt_opts);
892 
893 int security_add_mnt_opt(const char *option, const char *val, int len,
894 			 void **mnt_opts)
895 {
896 	return call_int_hook(sb_add_mnt_opt, -EINVAL,
897 					option, val, len, mnt_opts);
898 }
899 EXPORT_SYMBOL(security_add_mnt_opt);
900 
901 int security_move_mount(const struct path *from_path, const struct path *to_path)
902 {
903 	return call_int_hook(move_mount, 0, from_path, to_path);
904 }
905 
906 int security_path_notify(const struct path *path, u64 mask,
907 				unsigned int obj_type)
908 {
909 	return call_int_hook(path_notify, 0, path, mask, obj_type);
910 }
911 
912 int security_inode_alloc(struct inode *inode)
913 {
914 	int rc = lsm_inode_alloc(inode);
915 
916 	if (unlikely(rc))
917 		return rc;
918 	rc = call_int_hook(inode_alloc_security, 0, inode);
919 	if (unlikely(rc))
920 		security_inode_free(inode);
921 	return rc;
922 }
923 
924 static void inode_free_by_rcu(struct rcu_head *head)
925 {
926 	/*
927 	 * The rcu head is at the start of the inode blob
928 	 */
929 	kmem_cache_free(lsm_inode_cache, head);
930 }
931 
932 void security_inode_free(struct inode *inode)
933 {
934 	integrity_inode_free(inode);
935 	call_void_hook(inode_free_security, inode);
936 	/*
937 	 * The inode may still be referenced in a path walk and
938 	 * a call to security_inode_permission() can be made
939 	 * after inode_free_security() is called. Ideally, the VFS
940 	 * wouldn't do this, but fixing that is a much harder
941 	 * job. For now, simply free the i_security via RCU, and
942 	 * leave the current inode->i_security pointer intact.
943 	 * The inode will be freed after the RCU grace period too.
944 	 */
945 	if (inode->i_security)
946 		call_rcu((struct rcu_head *)inode->i_security,
947 				inode_free_by_rcu);
948 }
949 
950 int security_dentry_init_security(struct dentry *dentry, int mode,
951 					const struct qstr *name, void **ctx,
952 					u32 *ctxlen)
953 {
954 	return call_int_hook(dentry_init_security, -EOPNOTSUPP, dentry, mode,
955 				name, ctx, ctxlen);
956 }
957 EXPORT_SYMBOL(security_dentry_init_security);
958 
959 int security_dentry_create_files_as(struct dentry *dentry, int mode,
960 				    struct qstr *name,
961 				    const struct cred *old, struct cred *new)
962 {
963 	return call_int_hook(dentry_create_files_as, 0, dentry, mode,
964 				name, old, new);
965 }
966 EXPORT_SYMBOL(security_dentry_create_files_as);
967 
968 int security_inode_init_security(struct inode *inode, struct inode *dir,
969 				 const struct qstr *qstr,
970 				 const initxattrs initxattrs, void *fs_data)
971 {
972 	struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1];
973 	struct xattr *lsm_xattr, *evm_xattr, *xattr;
974 	int ret;
975 
976 	if (unlikely(IS_PRIVATE(inode)))
977 		return 0;
978 
979 	if (!initxattrs)
980 		return call_int_hook(inode_init_security, -EOPNOTSUPP, inode,
981 				     dir, qstr, NULL, NULL, NULL);
982 	memset(new_xattrs, 0, sizeof(new_xattrs));
983 	lsm_xattr = new_xattrs;
984 	ret = call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir, qstr,
985 						&lsm_xattr->name,
986 						&lsm_xattr->value,
987 						&lsm_xattr->value_len);
988 	if (ret)
989 		goto out;
990 
991 	evm_xattr = lsm_xattr + 1;
992 	ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr);
993 	if (ret)
994 		goto out;
995 	ret = initxattrs(inode, new_xattrs, fs_data);
996 out:
997 	for (xattr = new_xattrs; xattr->value != NULL; xattr++)
998 		kfree(xattr->value);
999 	return (ret == -EOPNOTSUPP) ? 0 : ret;
1000 }
1001 EXPORT_SYMBOL(security_inode_init_security);
1002 
1003 int security_old_inode_init_security(struct inode *inode, struct inode *dir,
1004 				     const struct qstr *qstr, const char **name,
1005 				     void **value, size_t *len)
1006 {
1007 	if (unlikely(IS_PRIVATE(inode)))
1008 		return -EOPNOTSUPP;
1009 	return call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir,
1010 			     qstr, name, value, len);
1011 }
1012 EXPORT_SYMBOL(security_old_inode_init_security);
1013 
1014 #ifdef CONFIG_SECURITY_PATH
1015 int security_path_mknod(const struct path *dir, struct dentry *dentry, umode_t mode,
1016 			unsigned int dev)
1017 {
1018 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1019 		return 0;
1020 	return call_int_hook(path_mknod, 0, dir, dentry, mode, dev);
1021 }
1022 EXPORT_SYMBOL(security_path_mknod);
1023 
1024 int security_path_mkdir(const struct path *dir, struct dentry *dentry, umode_t mode)
1025 {
1026 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1027 		return 0;
1028 	return call_int_hook(path_mkdir, 0, dir, dentry, mode);
1029 }
1030 EXPORT_SYMBOL(security_path_mkdir);
1031 
1032 int security_path_rmdir(const struct path *dir, struct dentry *dentry)
1033 {
1034 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1035 		return 0;
1036 	return call_int_hook(path_rmdir, 0, dir, dentry);
1037 }
1038 
1039 int security_path_unlink(const struct path *dir, struct dentry *dentry)
1040 {
1041 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1042 		return 0;
1043 	return call_int_hook(path_unlink, 0, dir, dentry);
1044 }
1045 EXPORT_SYMBOL(security_path_unlink);
1046 
1047 int security_path_symlink(const struct path *dir, struct dentry *dentry,
1048 			  const char *old_name)
1049 {
1050 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1051 		return 0;
1052 	return call_int_hook(path_symlink, 0, dir, dentry, old_name);
1053 }
1054 
1055 int security_path_link(struct dentry *old_dentry, const struct path *new_dir,
1056 		       struct dentry *new_dentry)
1057 {
1058 	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
1059 		return 0;
1060 	return call_int_hook(path_link, 0, old_dentry, new_dir, new_dentry);
1061 }
1062 
1063 int security_path_rename(const struct path *old_dir, struct dentry *old_dentry,
1064 			 const struct path *new_dir, struct dentry *new_dentry,
1065 			 unsigned int flags)
1066 {
1067 	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
1068 		     (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
1069 		return 0;
1070 
1071 	if (flags & RENAME_EXCHANGE) {
1072 		int err = call_int_hook(path_rename, 0, new_dir, new_dentry,
1073 					old_dir, old_dentry);
1074 		if (err)
1075 			return err;
1076 	}
1077 
1078 	return call_int_hook(path_rename, 0, old_dir, old_dentry, new_dir,
1079 				new_dentry);
1080 }
1081 EXPORT_SYMBOL(security_path_rename);
1082 
1083 int security_path_truncate(const struct path *path)
1084 {
1085 	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1086 		return 0;
1087 	return call_int_hook(path_truncate, 0, path);
1088 }
1089 
1090 int security_path_chmod(const struct path *path, umode_t mode)
1091 {
1092 	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1093 		return 0;
1094 	return call_int_hook(path_chmod, 0, path, mode);
1095 }
1096 
1097 int security_path_chown(const struct path *path, kuid_t uid, kgid_t gid)
1098 {
1099 	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1100 		return 0;
1101 	return call_int_hook(path_chown, 0, path, uid, gid);
1102 }
1103 
1104 int security_path_chroot(const struct path *path)
1105 {
1106 	return call_int_hook(path_chroot, 0, path);
1107 }
1108 #endif
1109 
1110 int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
1111 {
1112 	if (unlikely(IS_PRIVATE(dir)))
1113 		return 0;
1114 	return call_int_hook(inode_create, 0, dir, dentry, mode);
1115 }
1116 EXPORT_SYMBOL_GPL(security_inode_create);
1117 
1118 int security_inode_link(struct dentry *old_dentry, struct inode *dir,
1119 			 struct dentry *new_dentry)
1120 {
1121 	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
1122 		return 0;
1123 	return call_int_hook(inode_link, 0, old_dentry, dir, new_dentry);
1124 }
1125 
1126 int security_inode_unlink(struct inode *dir, struct dentry *dentry)
1127 {
1128 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1129 		return 0;
1130 	return call_int_hook(inode_unlink, 0, dir, dentry);
1131 }
1132 
1133 int security_inode_symlink(struct inode *dir, struct dentry *dentry,
1134 			    const char *old_name)
1135 {
1136 	if (unlikely(IS_PRIVATE(dir)))
1137 		return 0;
1138 	return call_int_hook(inode_symlink, 0, dir, dentry, old_name);
1139 }
1140 
1141 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1142 {
1143 	if (unlikely(IS_PRIVATE(dir)))
1144 		return 0;
1145 	return call_int_hook(inode_mkdir, 0, dir, dentry, mode);
1146 }
1147 EXPORT_SYMBOL_GPL(security_inode_mkdir);
1148 
1149 int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
1150 {
1151 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1152 		return 0;
1153 	return call_int_hook(inode_rmdir, 0, dir, dentry);
1154 }
1155 
1156 int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1157 {
1158 	if (unlikely(IS_PRIVATE(dir)))
1159 		return 0;
1160 	return call_int_hook(inode_mknod, 0, dir, dentry, mode, dev);
1161 }
1162 
1163 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
1164 			   struct inode *new_dir, struct dentry *new_dentry,
1165 			   unsigned int flags)
1166 {
1167         if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
1168             (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
1169 		return 0;
1170 
1171 	if (flags & RENAME_EXCHANGE) {
1172 		int err = call_int_hook(inode_rename, 0, new_dir, new_dentry,
1173 						     old_dir, old_dentry);
1174 		if (err)
1175 			return err;
1176 	}
1177 
1178 	return call_int_hook(inode_rename, 0, old_dir, old_dentry,
1179 					   new_dir, new_dentry);
1180 }
1181 
1182 int security_inode_readlink(struct dentry *dentry)
1183 {
1184 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1185 		return 0;
1186 	return call_int_hook(inode_readlink, 0, dentry);
1187 }
1188 
1189 int security_inode_follow_link(struct dentry *dentry, struct inode *inode,
1190 			       bool rcu)
1191 {
1192 	if (unlikely(IS_PRIVATE(inode)))
1193 		return 0;
1194 	return call_int_hook(inode_follow_link, 0, dentry, inode, rcu);
1195 }
1196 
1197 int security_inode_permission(struct inode *inode, int mask)
1198 {
1199 	if (unlikely(IS_PRIVATE(inode)))
1200 		return 0;
1201 	return call_int_hook(inode_permission, 0, inode, mask);
1202 }
1203 
1204 int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
1205 {
1206 	int ret;
1207 
1208 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1209 		return 0;
1210 	ret = call_int_hook(inode_setattr, 0, dentry, attr);
1211 	if (ret)
1212 		return ret;
1213 	return evm_inode_setattr(dentry, attr);
1214 }
1215 EXPORT_SYMBOL_GPL(security_inode_setattr);
1216 
1217 int security_inode_getattr(const struct path *path)
1218 {
1219 	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1220 		return 0;
1221 	return call_int_hook(inode_getattr, 0, path);
1222 }
1223 
1224 int security_inode_setxattr(struct dentry *dentry, const char *name,
1225 			    const void *value, size_t size, int flags)
1226 {
1227 	int ret;
1228 
1229 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1230 		return 0;
1231 	/*
1232 	 * SELinux and Smack integrate the cap call,
1233 	 * so assume that all LSMs supplying this call do so.
1234 	 */
1235 	ret = call_int_hook(inode_setxattr, 1, dentry, name, value, size,
1236 				flags);
1237 
1238 	if (ret == 1)
1239 		ret = cap_inode_setxattr(dentry, name, value, size, flags);
1240 	if (ret)
1241 		return ret;
1242 	ret = ima_inode_setxattr(dentry, name, value, size);
1243 	if (ret)
1244 		return ret;
1245 	return evm_inode_setxattr(dentry, name, value, size);
1246 }
1247 
1248 void security_inode_post_setxattr(struct dentry *dentry, const char *name,
1249 				  const void *value, size_t size, int flags)
1250 {
1251 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1252 		return;
1253 	call_void_hook(inode_post_setxattr, dentry, name, value, size, flags);
1254 	evm_inode_post_setxattr(dentry, name, value, size);
1255 }
1256 
1257 int security_inode_getxattr(struct dentry *dentry, const char *name)
1258 {
1259 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1260 		return 0;
1261 	return call_int_hook(inode_getxattr, 0, dentry, name);
1262 }
1263 
1264 int security_inode_listxattr(struct dentry *dentry)
1265 {
1266 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1267 		return 0;
1268 	return call_int_hook(inode_listxattr, 0, dentry);
1269 }
1270 
1271 int security_inode_removexattr(struct dentry *dentry, const char *name)
1272 {
1273 	int ret;
1274 
1275 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1276 		return 0;
1277 	/*
1278 	 * SELinux and Smack integrate the cap call,
1279 	 * so assume that all LSMs supplying this call do so.
1280 	 */
1281 	ret = call_int_hook(inode_removexattr, 1, dentry, name);
1282 	if (ret == 1)
1283 		ret = cap_inode_removexattr(dentry, name);
1284 	if (ret)
1285 		return ret;
1286 	ret = ima_inode_removexattr(dentry, name);
1287 	if (ret)
1288 		return ret;
1289 	return evm_inode_removexattr(dentry, name);
1290 }
1291 
1292 int security_inode_need_killpriv(struct dentry *dentry)
1293 {
1294 	return call_int_hook(inode_need_killpriv, 0, dentry);
1295 }
1296 
1297 int security_inode_killpriv(struct dentry *dentry)
1298 {
1299 	return call_int_hook(inode_killpriv, 0, dentry);
1300 }
1301 
1302 int security_inode_getsecurity(struct inode *inode, const char *name, void **buffer, bool alloc)
1303 {
1304 	struct security_hook_list *hp;
1305 	int rc;
1306 
1307 	if (unlikely(IS_PRIVATE(inode)))
1308 		return -EOPNOTSUPP;
1309 	/*
1310 	 * Only one module will provide an attribute with a given name.
1311 	 */
1312 	hlist_for_each_entry(hp, &security_hook_heads.inode_getsecurity, list) {
1313 		rc = hp->hook.inode_getsecurity(inode, name, buffer, alloc);
1314 		if (rc != -EOPNOTSUPP)
1315 			return rc;
1316 	}
1317 	return -EOPNOTSUPP;
1318 }
1319 
1320 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
1321 {
1322 	struct security_hook_list *hp;
1323 	int rc;
1324 
1325 	if (unlikely(IS_PRIVATE(inode)))
1326 		return -EOPNOTSUPP;
1327 	/*
1328 	 * Only one module will provide an attribute with a given name.
1329 	 */
1330 	hlist_for_each_entry(hp, &security_hook_heads.inode_setsecurity, list) {
1331 		rc = hp->hook.inode_setsecurity(inode, name, value, size,
1332 								flags);
1333 		if (rc != -EOPNOTSUPP)
1334 			return rc;
1335 	}
1336 	return -EOPNOTSUPP;
1337 }
1338 
1339 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
1340 {
1341 	if (unlikely(IS_PRIVATE(inode)))
1342 		return 0;
1343 	return call_int_hook(inode_listsecurity, 0, inode, buffer, buffer_size);
1344 }
1345 EXPORT_SYMBOL(security_inode_listsecurity);
1346 
1347 void security_inode_getsecid(struct inode *inode, u32 *secid)
1348 {
1349 	call_void_hook(inode_getsecid, inode, secid);
1350 }
1351 
1352 int security_inode_copy_up(struct dentry *src, struct cred **new)
1353 {
1354 	return call_int_hook(inode_copy_up, 0, src, new);
1355 }
1356 EXPORT_SYMBOL(security_inode_copy_up);
1357 
1358 int security_inode_copy_up_xattr(const char *name)
1359 {
1360 	return call_int_hook(inode_copy_up_xattr, -EOPNOTSUPP, name);
1361 }
1362 EXPORT_SYMBOL(security_inode_copy_up_xattr);
1363 
1364 int security_kernfs_init_security(struct kernfs_node *kn_dir,
1365 				  struct kernfs_node *kn)
1366 {
1367 	return call_int_hook(kernfs_init_security, 0, kn_dir, kn);
1368 }
1369 
1370 int security_file_permission(struct file *file, int mask)
1371 {
1372 	int ret;
1373 
1374 	ret = call_int_hook(file_permission, 0, file, mask);
1375 	if (ret)
1376 		return ret;
1377 
1378 	return fsnotify_perm(file, mask);
1379 }
1380 
1381 int security_file_alloc(struct file *file)
1382 {
1383 	int rc = lsm_file_alloc(file);
1384 
1385 	if (rc)
1386 		return rc;
1387 	rc = call_int_hook(file_alloc_security, 0, file);
1388 	if (unlikely(rc))
1389 		security_file_free(file);
1390 	return rc;
1391 }
1392 
1393 void security_file_free(struct file *file)
1394 {
1395 	void *blob;
1396 
1397 	call_void_hook(file_free_security, file);
1398 
1399 	blob = file->f_security;
1400 	if (blob) {
1401 		file->f_security = NULL;
1402 		kmem_cache_free(lsm_file_cache, blob);
1403 	}
1404 }
1405 
1406 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1407 {
1408 	return call_int_hook(file_ioctl, 0, file, cmd, arg);
1409 }
1410 
1411 static inline unsigned long mmap_prot(struct file *file, unsigned long prot)
1412 {
1413 	/*
1414 	 * Does we have PROT_READ and does the application expect
1415 	 * it to imply PROT_EXEC?  If not, nothing to talk about...
1416 	 */
1417 	if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ)
1418 		return prot;
1419 	if (!(current->personality & READ_IMPLIES_EXEC))
1420 		return prot;
1421 	/*
1422 	 * if that's an anonymous mapping, let it.
1423 	 */
1424 	if (!file)
1425 		return prot | PROT_EXEC;
1426 	/*
1427 	 * ditto if it's not on noexec mount, except that on !MMU we need
1428 	 * NOMMU_MAP_EXEC (== VM_MAYEXEC) in this case
1429 	 */
1430 	if (!path_noexec(&file->f_path)) {
1431 #ifndef CONFIG_MMU
1432 		if (file->f_op->mmap_capabilities) {
1433 			unsigned caps = file->f_op->mmap_capabilities(file);
1434 			if (!(caps & NOMMU_MAP_EXEC))
1435 				return prot;
1436 		}
1437 #endif
1438 		return prot | PROT_EXEC;
1439 	}
1440 	/* anything on noexec mount won't get PROT_EXEC */
1441 	return prot;
1442 }
1443 
1444 int security_mmap_file(struct file *file, unsigned long prot,
1445 			unsigned long flags)
1446 {
1447 	int ret;
1448 	ret = call_int_hook(mmap_file, 0, file, prot,
1449 					mmap_prot(file, prot), flags);
1450 	if (ret)
1451 		return ret;
1452 	return ima_file_mmap(file, prot);
1453 }
1454 
1455 int security_mmap_addr(unsigned long addr)
1456 {
1457 	return call_int_hook(mmap_addr, 0, addr);
1458 }
1459 
1460 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
1461 			    unsigned long prot)
1462 {
1463 	return call_int_hook(file_mprotect, 0, vma, reqprot, prot);
1464 }
1465 
1466 int security_file_lock(struct file *file, unsigned int cmd)
1467 {
1468 	return call_int_hook(file_lock, 0, file, cmd);
1469 }
1470 
1471 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
1472 {
1473 	return call_int_hook(file_fcntl, 0, file, cmd, arg);
1474 }
1475 
1476 void security_file_set_fowner(struct file *file)
1477 {
1478 	call_void_hook(file_set_fowner, file);
1479 }
1480 
1481 int security_file_send_sigiotask(struct task_struct *tsk,
1482 				  struct fown_struct *fown, int sig)
1483 {
1484 	return call_int_hook(file_send_sigiotask, 0, tsk, fown, sig);
1485 }
1486 
1487 int security_file_receive(struct file *file)
1488 {
1489 	return call_int_hook(file_receive, 0, file);
1490 }
1491 
1492 int security_file_open(struct file *file)
1493 {
1494 	int ret;
1495 
1496 	ret = call_int_hook(file_open, 0, file);
1497 	if (ret)
1498 		return ret;
1499 
1500 	return fsnotify_perm(file, MAY_OPEN);
1501 }
1502 
1503 int security_task_alloc(struct task_struct *task, unsigned long clone_flags)
1504 {
1505 	int rc = lsm_task_alloc(task);
1506 
1507 	if (rc)
1508 		return rc;
1509 	rc = call_int_hook(task_alloc, 0, task, clone_flags);
1510 	if (unlikely(rc))
1511 		security_task_free(task);
1512 	return rc;
1513 }
1514 
1515 void security_task_free(struct task_struct *task)
1516 {
1517 	call_void_hook(task_free, task);
1518 
1519 	kfree(task->security);
1520 	task->security = NULL;
1521 }
1522 
1523 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
1524 {
1525 	int rc = lsm_cred_alloc(cred, gfp);
1526 
1527 	if (rc)
1528 		return rc;
1529 
1530 	rc = call_int_hook(cred_alloc_blank, 0, cred, gfp);
1531 	if (unlikely(rc))
1532 		security_cred_free(cred);
1533 	return rc;
1534 }
1535 
1536 void security_cred_free(struct cred *cred)
1537 {
1538 	/*
1539 	 * There is a failure case in prepare_creds() that
1540 	 * may result in a call here with ->security being NULL.
1541 	 */
1542 	if (unlikely(cred->security == NULL))
1543 		return;
1544 
1545 	call_void_hook(cred_free, cred);
1546 
1547 	kfree(cred->security);
1548 	cred->security = NULL;
1549 }
1550 
1551 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
1552 {
1553 	int rc = lsm_cred_alloc(new, gfp);
1554 
1555 	if (rc)
1556 		return rc;
1557 
1558 	rc = call_int_hook(cred_prepare, 0, new, old, gfp);
1559 	if (unlikely(rc))
1560 		security_cred_free(new);
1561 	return rc;
1562 }
1563 
1564 void security_transfer_creds(struct cred *new, const struct cred *old)
1565 {
1566 	call_void_hook(cred_transfer, new, old);
1567 }
1568 
1569 void security_cred_getsecid(const struct cred *c, u32 *secid)
1570 {
1571 	*secid = 0;
1572 	call_void_hook(cred_getsecid, c, secid);
1573 }
1574 EXPORT_SYMBOL(security_cred_getsecid);
1575 
1576 int security_kernel_act_as(struct cred *new, u32 secid)
1577 {
1578 	return call_int_hook(kernel_act_as, 0, new, secid);
1579 }
1580 
1581 int security_kernel_create_files_as(struct cred *new, struct inode *inode)
1582 {
1583 	return call_int_hook(kernel_create_files_as, 0, new, inode);
1584 }
1585 
1586 int security_kernel_module_request(char *kmod_name)
1587 {
1588 	int ret;
1589 
1590 	ret = call_int_hook(kernel_module_request, 0, kmod_name);
1591 	if (ret)
1592 		return ret;
1593 	return integrity_kernel_module_request(kmod_name);
1594 }
1595 
1596 int security_kernel_read_file(struct file *file, enum kernel_read_file_id id)
1597 {
1598 	int ret;
1599 
1600 	ret = call_int_hook(kernel_read_file, 0, file, id);
1601 	if (ret)
1602 		return ret;
1603 	return ima_read_file(file, id);
1604 }
1605 EXPORT_SYMBOL_GPL(security_kernel_read_file);
1606 
1607 int security_kernel_post_read_file(struct file *file, char *buf, loff_t size,
1608 				   enum kernel_read_file_id id)
1609 {
1610 	int ret;
1611 
1612 	ret = call_int_hook(kernel_post_read_file, 0, file, buf, size, id);
1613 	if (ret)
1614 		return ret;
1615 	return ima_post_read_file(file, buf, size, id);
1616 }
1617 EXPORT_SYMBOL_GPL(security_kernel_post_read_file);
1618 
1619 int security_kernel_load_data(enum kernel_load_data_id id)
1620 {
1621 	int ret;
1622 
1623 	ret = call_int_hook(kernel_load_data, 0, id);
1624 	if (ret)
1625 		return ret;
1626 	return ima_load_data(id);
1627 }
1628 EXPORT_SYMBOL_GPL(security_kernel_load_data);
1629 
1630 int security_task_fix_setuid(struct cred *new, const struct cred *old,
1631 			     int flags)
1632 {
1633 	return call_int_hook(task_fix_setuid, 0, new, old, flags);
1634 }
1635 
1636 int security_task_setpgid(struct task_struct *p, pid_t pgid)
1637 {
1638 	return call_int_hook(task_setpgid, 0, p, pgid);
1639 }
1640 
1641 int security_task_getpgid(struct task_struct *p)
1642 {
1643 	return call_int_hook(task_getpgid, 0, p);
1644 }
1645 
1646 int security_task_getsid(struct task_struct *p)
1647 {
1648 	return call_int_hook(task_getsid, 0, p);
1649 }
1650 
1651 void security_task_getsecid(struct task_struct *p, u32 *secid)
1652 {
1653 	*secid = 0;
1654 	call_void_hook(task_getsecid, p, secid);
1655 }
1656 EXPORT_SYMBOL(security_task_getsecid);
1657 
1658 int security_task_setnice(struct task_struct *p, int nice)
1659 {
1660 	return call_int_hook(task_setnice, 0, p, nice);
1661 }
1662 
1663 int security_task_setioprio(struct task_struct *p, int ioprio)
1664 {
1665 	return call_int_hook(task_setioprio, 0, p, ioprio);
1666 }
1667 
1668 int security_task_getioprio(struct task_struct *p)
1669 {
1670 	return call_int_hook(task_getioprio, 0, p);
1671 }
1672 
1673 int security_task_prlimit(const struct cred *cred, const struct cred *tcred,
1674 			  unsigned int flags)
1675 {
1676 	return call_int_hook(task_prlimit, 0, cred, tcred, flags);
1677 }
1678 
1679 int security_task_setrlimit(struct task_struct *p, unsigned int resource,
1680 		struct rlimit *new_rlim)
1681 {
1682 	return call_int_hook(task_setrlimit, 0, p, resource, new_rlim);
1683 }
1684 
1685 int security_task_setscheduler(struct task_struct *p)
1686 {
1687 	return call_int_hook(task_setscheduler, 0, p);
1688 }
1689 
1690 int security_task_getscheduler(struct task_struct *p)
1691 {
1692 	return call_int_hook(task_getscheduler, 0, p);
1693 }
1694 
1695 int security_task_movememory(struct task_struct *p)
1696 {
1697 	return call_int_hook(task_movememory, 0, p);
1698 }
1699 
1700 int security_task_kill(struct task_struct *p, struct kernel_siginfo *info,
1701 			int sig, const struct cred *cred)
1702 {
1703 	return call_int_hook(task_kill, 0, p, info, sig, cred);
1704 }
1705 
1706 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
1707 			 unsigned long arg4, unsigned long arg5)
1708 {
1709 	int thisrc;
1710 	int rc = -ENOSYS;
1711 	struct security_hook_list *hp;
1712 
1713 	hlist_for_each_entry(hp, &security_hook_heads.task_prctl, list) {
1714 		thisrc = hp->hook.task_prctl(option, arg2, arg3, arg4, arg5);
1715 		if (thisrc != -ENOSYS) {
1716 			rc = thisrc;
1717 			if (thisrc != 0)
1718 				break;
1719 		}
1720 	}
1721 	return rc;
1722 }
1723 
1724 void security_task_to_inode(struct task_struct *p, struct inode *inode)
1725 {
1726 	call_void_hook(task_to_inode, p, inode);
1727 }
1728 
1729 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
1730 {
1731 	return call_int_hook(ipc_permission, 0, ipcp, flag);
1732 }
1733 
1734 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
1735 {
1736 	*secid = 0;
1737 	call_void_hook(ipc_getsecid, ipcp, secid);
1738 }
1739 
1740 int security_msg_msg_alloc(struct msg_msg *msg)
1741 {
1742 	int rc = lsm_msg_msg_alloc(msg);
1743 
1744 	if (unlikely(rc))
1745 		return rc;
1746 	rc = call_int_hook(msg_msg_alloc_security, 0, msg);
1747 	if (unlikely(rc))
1748 		security_msg_msg_free(msg);
1749 	return rc;
1750 }
1751 
1752 void security_msg_msg_free(struct msg_msg *msg)
1753 {
1754 	call_void_hook(msg_msg_free_security, msg);
1755 	kfree(msg->security);
1756 	msg->security = NULL;
1757 }
1758 
1759 int security_msg_queue_alloc(struct kern_ipc_perm *msq)
1760 {
1761 	int rc = lsm_ipc_alloc(msq);
1762 
1763 	if (unlikely(rc))
1764 		return rc;
1765 	rc = call_int_hook(msg_queue_alloc_security, 0, msq);
1766 	if (unlikely(rc))
1767 		security_msg_queue_free(msq);
1768 	return rc;
1769 }
1770 
1771 void security_msg_queue_free(struct kern_ipc_perm *msq)
1772 {
1773 	call_void_hook(msg_queue_free_security, msq);
1774 	kfree(msq->security);
1775 	msq->security = NULL;
1776 }
1777 
1778 int security_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
1779 {
1780 	return call_int_hook(msg_queue_associate, 0, msq, msqflg);
1781 }
1782 
1783 int security_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
1784 {
1785 	return call_int_hook(msg_queue_msgctl, 0, msq, cmd);
1786 }
1787 
1788 int security_msg_queue_msgsnd(struct kern_ipc_perm *msq,
1789 			       struct msg_msg *msg, int msqflg)
1790 {
1791 	return call_int_hook(msg_queue_msgsnd, 0, msq, msg, msqflg);
1792 }
1793 
1794 int security_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
1795 			       struct task_struct *target, long type, int mode)
1796 {
1797 	return call_int_hook(msg_queue_msgrcv, 0, msq, msg, target, type, mode);
1798 }
1799 
1800 int security_shm_alloc(struct kern_ipc_perm *shp)
1801 {
1802 	int rc = lsm_ipc_alloc(shp);
1803 
1804 	if (unlikely(rc))
1805 		return rc;
1806 	rc = call_int_hook(shm_alloc_security, 0, shp);
1807 	if (unlikely(rc))
1808 		security_shm_free(shp);
1809 	return rc;
1810 }
1811 
1812 void security_shm_free(struct kern_ipc_perm *shp)
1813 {
1814 	call_void_hook(shm_free_security, shp);
1815 	kfree(shp->security);
1816 	shp->security = NULL;
1817 }
1818 
1819 int security_shm_associate(struct kern_ipc_perm *shp, int shmflg)
1820 {
1821 	return call_int_hook(shm_associate, 0, shp, shmflg);
1822 }
1823 
1824 int security_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
1825 {
1826 	return call_int_hook(shm_shmctl, 0, shp, cmd);
1827 }
1828 
1829 int security_shm_shmat(struct kern_ipc_perm *shp, char __user *shmaddr, int shmflg)
1830 {
1831 	return call_int_hook(shm_shmat, 0, shp, shmaddr, shmflg);
1832 }
1833 
1834 int security_sem_alloc(struct kern_ipc_perm *sma)
1835 {
1836 	int rc = lsm_ipc_alloc(sma);
1837 
1838 	if (unlikely(rc))
1839 		return rc;
1840 	rc = call_int_hook(sem_alloc_security, 0, sma);
1841 	if (unlikely(rc))
1842 		security_sem_free(sma);
1843 	return rc;
1844 }
1845 
1846 void security_sem_free(struct kern_ipc_perm *sma)
1847 {
1848 	call_void_hook(sem_free_security, sma);
1849 	kfree(sma->security);
1850 	sma->security = NULL;
1851 }
1852 
1853 int security_sem_associate(struct kern_ipc_perm *sma, int semflg)
1854 {
1855 	return call_int_hook(sem_associate, 0, sma, semflg);
1856 }
1857 
1858 int security_sem_semctl(struct kern_ipc_perm *sma, int cmd)
1859 {
1860 	return call_int_hook(sem_semctl, 0, sma, cmd);
1861 }
1862 
1863 int security_sem_semop(struct kern_ipc_perm *sma, struct sembuf *sops,
1864 			unsigned nsops, int alter)
1865 {
1866 	return call_int_hook(sem_semop, 0, sma, sops, nsops, alter);
1867 }
1868 
1869 void security_d_instantiate(struct dentry *dentry, struct inode *inode)
1870 {
1871 	if (unlikely(inode && IS_PRIVATE(inode)))
1872 		return;
1873 	call_void_hook(d_instantiate, dentry, inode);
1874 }
1875 EXPORT_SYMBOL(security_d_instantiate);
1876 
1877 int security_getprocattr(struct task_struct *p, const char *lsm, char *name,
1878 				char **value)
1879 {
1880 	struct security_hook_list *hp;
1881 
1882 	hlist_for_each_entry(hp, &security_hook_heads.getprocattr, list) {
1883 		if (lsm != NULL && strcmp(lsm, hp->lsm))
1884 			continue;
1885 		return hp->hook.getprocattr(p, name, value);
1886 	}
1887 	return -EINVAL;
1888 }
1889 
1890 int security_setprocattr(const char *lsm, const char *name, void *value,
1891 			 size_t size)
1892 {
1893 	struct security_hook_list *hp;
1894 
1895 	hlist_for_each_entry(hp, &security_hook_heads.setprocattr, list) {
1896 		if (lsm != NULL && strcmp(lsm, hp->lsm))
1897 			continue;
1898 		return hp->hook.setprocattr(name, value, size);
1899 	}
1900 	return -EINVAL;
1901 }
1902 
1903 int security_netlink_send(struct sock *sk, struct sk_buff *skb)
1904 {
1905 	return call_int_hook(netlink_send, 0, sk, skb);
1906 }
1907 
1908 int security_ismaclabel(const char *name)
1909 {
1910 	return call_int_hook(ismaclabel, 0, name);
1911 }
1912 EXPORT_SYMBOL(security_ismaclabel);
1913 
1914 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
1915 {
1916 	return call_int_hook(secid_to_secctx, -EOPNOTSUPP, secid, secdata,
1917 				seclen);
1918 }
1919 EXPORT_SYMBOL(security_secid_to_secctx);
1920 
1921 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
1922 {
1923 	*secid = 0;
1924 	return call_int_hook(secctx_to_secid, 0, secdata, seclen, secid);
1925 }
1926 EXPORT_SYMBOL(security_secctx_to_secid);
1927 
1928 void security_release_secctx(char *secdata, u32 seclen)
1929 {
1930 	call_void_hook(release_secctx, secdata, seclen);
1931 }
1932 EXPORT_SYMBOL(security_release_secctx);
1933 
1934 void security_inode_invalidate_secctx(struct inode *inode)
1935 {
1936 	call_void_hook(inode_invalidate_secctx, inode);
1937 }
1938 EXPORT_SYMBOL(security_inode_invalidate_secctx);
1939 
1940 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
1941 {
1942 	return call_int_hook(inode_notifysecctx, 0, inode, ctx, ctxlen);
1943 }
1944 EXPORT_SYMBOL(security_inode_notifysecctx);
1945 
1946 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
1947 {
1948 	return call_int_hook(inode_setsecctx, 0, dentry, ctx, ctxlen);
1949 }
1950 EXPORT_SYMBOL(security_inode_setsecctx);
1951 
1952 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
1953 {
1954 	return call_int_hook(inode_getsecctx, -EOPNOTSUPP, inode, ctx, ctxlen);
1955 }
1956 EXPORT_SYMBOL(security_inode_getsecctx);
1957 
1958 #ifdef CONFIG_SECURITY_NETWORK
1959 
1960 int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk)
1961 {
1962 	return call_int_hook(unix_stream_connect, 0, sock, other, newsk);
1963 }
1964 EXPORT_SYMBOL(security_unix_stream_connect);
1965 
1966 int security_unix_may_send(struct socket *sock,  struct socket *other)
1967 {
1968 	return call_int_hook(unix_may_send, 0, sock, other);
1969 }
1970 EXPORT_SYMBOL(security_unix_may_send);
1971 
1972 int security_socket_create(int family, int type, int protocol, int kern)
1973 {
1974 	return call_int_hook(socket_create, 0, family, type, protocol, kern);
1975 }
1976 
1977 int security_socket_post_create(struct socket *sock, int family,
1978 				int type, int protocol, int kern)
1979 {
1980 	return call_int_hook(socket_post_create, 0, sock, family, type,
1981 						protocol, kern);
1982 }
1983 
1984 int security_socket_socketpair(struct socket *socka, struct socket *sockb)
1985 {
1986 	return call_int_hook(socket_socketpair, 0, socka, sockb);
1987 }
1988 EXPORT_SYMBOL(security_socket_socketpair);
1989 
1990 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
1991 {
1992 	return call_int_hook(socket_bind, 0, sock, address, addrlen);
1993 }
1994 
1995 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
1996 {
1997 	return call_int_hook(socket_connect, 0, sock, address, addrlen);
1998 }
1999 
2000 int security_socket_listen(struct socket *sock, int backlog)
2001 {
2002 	return call_int_hook(socket_listen, 0, sock, backlog);
2003 }
2004 
2005 int security_socket_accept(struct socket *sock, struct socket *newsock)
2006 {
2007 	return call_int_hook(socket_accept, 0, sock, newsock);
2008 }
2009 
2010 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
2011 {
2012 	return call_int_hook(socket_sendmsg, 0, sock, msg, size);
2013 }
2014 
2015 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
2016 			    int size, int flags)
2017 {
2018 	return call_int_hook(socket_recvmsg, 0, sock, msg, size, flags);
2019 }
2020 
2021 int security_socket_getsockname(struct socket *sock)
2022 {
2023 	return call_int_hook(socket_getsockname, 0, sock);
2024 }
2025 
2026 int security_socket_getpeername(struct socket *sock)
2027 {
2028 	return call_int_hook(socket_getpeername, 0, sock);
2029 }
2030 
2031 int security_socket_getsockopt(struct socket *sock, int level, int optname)
2032 {
2033 	return call_int_hook(socket_getsockopt, 0, sock, level, optname);
2034 }
2035 
2036 int security_socket_setsockopt(struct socket *sock, int level, int optname)
2037 {
2038 	return call_int_hook(socket_setsockopt, 0, sock, level, optname);
2039 }
2040 
2041 int security_socket_shutdown(struct socket *sock, int how)
2042 {
2043 	return call_int_hook(socket_shutdown, 0, sock, how);
2044 }
2045 
2046 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
2047 {
2048 	return call_int_hook(socket_sock_rcv_skb, 0, sk, skb);
2049 }
2050 EXPORT_SYMBOL(security_sock_rcv_skb);
2051 
2052 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
2053 				      int __user *optlen, unsigned len)
2054 {
2055 	return call_int_hook(socket_getpeersec_stream, -ENOPROTOOPT, sock,
2056 				optval, optlen, len);
2057 }
2058 
2059 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
2060 {
2061 	return call_int_hook(socket_getpeersec_dgram, -ENOPROTOOPT, sock,
2062 			     skb, secid);
2063 }
2064 EXPORT_SYMBOL(security_socket_getpeersec_dgram);
2065 
2066 int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
2067 {
2068 	return call_int_hook(sk_alloc_security, 0, sk, family, priority);
2069 }
2070 
2071 void security_sk_free(struct sock *sk)
2072 {
2073 	call_void_hook(sk_free_security, sk);
2074 }
2075 
2076 void security_sk_clone(const struct sock *sk, struct sock *newsk)
2077 {
2078 	call_void_hook(sk_clone_security, sk, newsk);
2079 }
2080 EXPORT_SYMBOL(security_sk_clone);
2081 
2082 void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
2083 {
2084 	call_void_hook(sk_getsecid, sk, &fl->flowi_secid);
2085 }
2086 EXPORT_SYMBOL(security_sk_classify_flow);
2087 
2088 void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
2089 {
2090 	call_void_hook(req_classify_flow, req, fl);
2091 }
2092 EXPORT_SYMBOL(security_req_classify_flow);
2093 
2094 void security_sock_graft(struct sock *sk, struct socket *parent)
2095 {
2096 	call_void_hook(sock_graft, sk, parent);
2097 }
2098 EXPORT_SYMBOL(security_sock_graft);
2099 
2100 int security_inet_conn_request(struct sock *sk,
2101 			struct sk_buff *skb, struct request_sock *req)
2102 {
2103 	return call_int_hook(inet_conn_request, 0, sk, skb, req);
2104 }
2105 EXPORT_SYMBOL(security_inet_conn_request);
2106 
2107 void security_inet_csk_clone(struct sock *newsk,
2108 			const struct request_sock *req)
2109 {
2110 	call_void_hook(inet_csk_clone, newsk, req);
2111 }
2112 
2113 void security_inet_conn_established(struct sock *sk,
2114 			struct sk_buff *skb)
2115 {
2116 	call_void_hook(inet_conn_established, sk, skb);
2117 }
2118 EXPORT_SYMBOL(security_inet_conn_established);
2119 
2120 int security_secmark_relabel_packet(u32 secid)
2121 {
2122 	return call_int_hook(secmark_relabel_packet, 0, secid);
2123 }
2124 EXPORT_SYMBOL(security_secmark_relabel_packet);
2125 
2126 void security_secmark_refcount_inc(void)
2127 {
2128 	call_void_hook(secmark_refcount_inc);
2129 }
2130 EXPORT_SYMBOL(security_secmark_refcount_inc);
2131 
2132 void security_secmark_refcount_dec(void)
2133 {
2134 	call_void_hook(secmark_refcount_dec);
2135 }
2136 EXPORT_SYMBOL(security_secmark_refcount_dec);
2137 
2138 int security_tun_dev_alloc_security(void **security)
2139 {
2140 	return call_int_hook(tun_dev_alloc_security, 0, security);
2141 }
2142 EXPORT_SYMBOL(security_tun_dev_alloc_security);
2143 
2144 void security_tun_dev_free_security(void *security)
2145 {
2146 	call_void_hook(tun_dev_free_security, security);
2147 }
2148 EXPORT_SYMBOL(security_tun_dev_free_security);
2149 
2150 int security_tun_dev_create(void)
2151 {
2152 	return call_int_hook(tun_dev_create, 0);
2153 }
2154 EXPORT_SYMBOL(security_tun_dev_create);
2155 
2156 int security_tun_dev_attach_queue(void *security)
2157 {
2158 	return call_int_hook(tun_dev_attach_queue, 0, security);
2159 }
2160 EXPORT_SYMBOL(security_tun_dev_attach_queue);
2161 
2162 int security_tun_dev_attach(struct sock *sk, void *security)
2163 {
2164 	return call_int_hook(tun_dev_attach, 0, sk, security);
2165 }
2166 EXPORT_SYMBOL(security_tun_dev_attach);
2167 
2168 int security_tun_dev_open(void *security)
2169 {
2170 	return call_int_hook(tun_dev_open, 0, security);
2171 }
2172 EXPORT_SYMBOL(security_tun_dev_open);
2173 
2174 int security_sctp_assoc_request(struct sctp_endpoint *ep, struct sk_buff *skb)
2175 {
2176 	return call_int_hook(sctp_assoc_request, 0, ep, skb);
2177 }
2178 EXPORT_SYMBOL(security_sctp_assoc_request);
2179 
2180 int security_sctp_bind_connect(struct sock *sk, int optname,
2181 			       struct sockaddr *address, int addrlen)
2182 {
2183 	return call_int_hook(sctp_bind_connect, 0, sk, optname,
2184 			     address, addrlen);
2185 }
2186 EXPORT_SYMBOL(security_sctp_bind_connect);
2187 
2188 void security_sctp_sk_clone(struct sctp_endpoint *ep, struct sock *sk,
2189 			    struct sock *newsk)
2190 {
2191 	call_void_hook(sctp_sk_clone, ep, sk, newsk);
2192 }
2193 EXPORT_SYMBOL(security_sctp_sk_clone);
2194 
2195 #endif	/* CONFIG_SECURITY_NETWORK */
2196 
2197 #ifdef CONFIG_SECURITY_INFINIBAND
2198 
2199 int security_ib_pkey_access(void *sec, u64 subnet_prefix, u16 pkey)
2200 {
2201 	return call_int_hook(ib_pkey_access, 0, sec, subnet_prefix, pkey);
2202 }
2203 EXPORT_SYMBOL(security_ib_pkey_access);
2204 
2205 int security_ib_endport_manage_subnet(void *sec, const char *dev_name, u8 port_num)
2206 {
2207 	return call_int_hook(ib_endport_manage_subnet, 0, sec, dev_name, port_num);
2208 }
2209 EXPORT_SYMBOL(security_ib_endport_manage_subnet);
2210 
2211 int security_ib_alloc_security(void **sec)
2212 {
2213 	return call_int_hook(ib_alloc_security, 0, sec);
2214 }
2215 EXPORT_SYMBOL(security_ib_alloc_security);
2216 
2217 void security_ib_free_security(void *sec)
2218 {
2219 	call_void_hook(ib_free_security, sec);
2220 }
2221 EXPORT_SYMBOL(security_ib_free_security);
2222 #endif	/* CONFIG_SECURITY_INFINIBAND */
2223 
2224 #ifdef CONFIG_SECURITY_NETWORK_XFRM
2225 
2226 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp,
2227 			       struct xfrm_user_sec_ctx *sec_ctx,
2228 			       gfp_t gfp)
2229 {
2230 	return call_int_hook(xfrm_policy_alloc_security, 0, ctxp, sec_ctx, gfp);
2231 }
2232 EXPORT_SYMBOL(security_xfrm_policy_alloc);
2233 
2234 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
2235 			      struct xfrm_sec_ctx **new_ctxp)
2236 {
2237 	return call_int_hook(xfrm_policy_clone_security, 0, old_ctx, new_ctxp);
2238 }
2239 
2240 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
2241 {
2242 	call_void_hook(xfrm_policy_free_security, ctx);
2243 }
2244 EXPORT_SYMBOL(security_xfrm_policy_free);
2245 
2246 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
2247 {
2248 	return call_int_hook(xfrm_policy_delete_security, 0, ctx);
2249 }
2250 
2251 int security_xfrm_state_alloc(struct xfrm_state *x,
2252 			      struct xfrm_user_sec_ctx *sec_ctx)
2253 {
2254 	return call_int_hook(xfrm_state_alloc, 0, x, sec_ctx);
2255 }
2256 EXPORT_SYMBOL(security_xfrm_state_alloc);
2257 
2258 int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
2259 				      struct xfrm_sec_ctx *polsec, u32 secid)
2260 {
2261 	return call_int_hook(xfrm_state_alloc_acquire, 0, x, polsec, secid);
2262 }
2263 
2264 int security_xfrm_state_delete(struct xfrm_state *x)
2265 {
2266 	return call_int_hook(xfrm_state_delete_security, 0, x);
2267 }
2268 EXPORT_SYMBOL(security_xfrm_state_delete);
2269 
2270 void security_xfrm_state_free(struct xfrm_state *x)
2271 {
2272 	call_void_hook(xfrm_state_free_security, x);
2273 }
2274 
2275 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
2276 {
2277 	return call_int_hook(xfrm_policy_lookup, 0, ctx, fl_secid, dir);
2278 }
2279 
2280 int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
2281 				       struct xfrm_policy *xp,
2282 				       const struct flowi *fl)
2283 {
2284 	struct security_hook_list *hp;
2285 	int rc = 1;
2286 
2287 	/*
2288 	 * Since this function is expected to return 0 or 1, the judgment
2289 	 * becomes difficult if multiple LSMs supply this call. Fortunately,
2290 	 * we can use the first LSM's judgment because currently only SELinux
2291 	 * supplies this call.
2292 	 *
2293 	 * For speed optimization, we explicitly break the loop rather than
2294 	 * using the macro
2295 	 */
2296 	hlist_for_each_entry(hp, &security_hook_heads.xfrm_state_pol_flow_match,
2297 				list) {
2298 		rc = hp->hook.xfrm_state_pol_flow_match(x, xp, fl);
2299 		break;
2300 	}
2301 	return rc;
2302 }
2303 
2304 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
2305 {
2306 	return call_int_hook(xfrm_decode_session, 0, skb, secid, 1);
2307 }
2308 
2309 void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
2310 {
2311 	int rc = call_int_hook(xfrm_decode_session, 0, skb, &fl->flowi_secid,
2312 				0);
2313 
2314 	BUG_ON(rc);
2315 }
2316 EXPORT_SYMBOL(security_skb_classify_flow);
2317 
2318 #endif	/* CONFIG_SECURITY_NETWORK_XFRM */
2319 
2320 #ifdef CONFIG_KEYS
2321 
2322 int security_key_alloc(struct key *key, const struct cred *cred,
2323 		       unsigned long flags)
2324 {
2325 	return call_int_hook(key_alloc, 0, key, cred, flags);
2326 }
2327 
2328 void security_key_free(struct key *key)
2329 {
2330 	call_void_hook(key_free, key);
2331 }
2332 
2333 int security_key_permission(key_ref_t key_ref,
2334 			    const struct cred *cred, unsigned perm)
2335 {
2336 	return call_int_hook(key_permission, 0, key_ref, cred, perm);
2337 }
2338 
2339 int security_key_getsecurity(struct key *key, char **_buffer)
2340 {
2341 	*_buffer = NULL;
2342 	return call_int_hook(key_getsecurity, 0, key, _buffer);
2343 }
2344 
2345 #endif	/* CONFIG_KEYS */
2346 
2347 #ifdef CONFIG_AUDIT
2348 
2349 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
2350 {
2351 	return call_int_hook(audit_rule_init, 0, field, op, rulestr, lsmrule);
2352 }
2353 
2354 int security_audit_rule_known(struct audit_krule *krule)
2355 {
2356 	return call_int_hook(audit_rule_known, 0, krule);
2357 }
2358 
2359 void security_audit_rule_free(void *lsmrule)
2360 {
2361 	call_void_hook(audit_rule_free, lsmrule);
2362 }
2363 
2364 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule)
2365 {
2366 	return call_int_hook(audit_rule_match, 0, secid, field, op, lsmrule);
2367 }
2368 #endif /* CONFIG_AUDIT */
2369 
2370 #ifdef CONFIG_BPF_SYSCALL
2371 int security_bpf(int cmd, union bpf_attr *attr, unsigned int size)
2372 {
2373 	return call_int_hook(bpf, 0, cmd, attr, size);
2374 }
2375 int security_bpf_map(struct bpf_map *map, fmode_t fmode)
2376 {
2377 	return call_int_hook(bpf_map, 0, map, fmode);
2378 }
2379 int security_bpf_prog(struct bpf_prog *prog)
2380 {
2381 	return call_int_hook(bpf_prog, 0, prog);
2382 }
2383 int security_bpf_map_alloc(struct bpf_map *map)
2384 {
2385 	return call_int_hook(bpf_map_alloc_security, 0, map);
2386 }
2387 int security_bpf_prog_alloc(struct bpf_prog_aux *aux)
2388 {
2389 	return call_int_hook(bpf_prog_alloc_security, 0, aux);
2390 }
2391 void security_bpf_map_free(struct bpf_map *map)
2392 {
2393 	call_void_hook(bpf_map_free_security, map);
2394 }
2395 void security_bpf_prog_free(struct bpf_prog_aux *aux)
2396 {
2397 	call_void_hook(bpf_prog_free_security, aux);
2398 }
2399 #endif /* CONFIG_BPF_SYSCALL */
2400 
2401 int security_locked_down(enum lockdown_reason what)
2402 {
2403 	return call_int_hook(locked_down, 0, what);
2404 }
2405 EXPORT_SYMBOL(security_locked_down);
2406