1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Security plug functions 4 * 5 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com> 6 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com> 7 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com> 8 * Copyright (C) 2016 Mellanox Technologies 9 */ 10 11 #define pr_fmt(fmt) "LSM: " fmt 12 13 #include <linux/bpf.h> 14 #include <linux/capability.h> 15 #include <linux/dcache.h> 16 #include <linux/export.h> 17 #include <linux/init.h> 18 #include <linux/kernel.h> 19 #include <linux/lsm_hooks.h> 20 #include <linux/integrity.h> 21 #include <linux/ima.h> 22 #include <linux/evm.h> 23 #include <linux/fsnotify.h> 24 #include <linux/mman.h> 25 #include <linux/mount.h> 26 #include <linux/personality.h> 27 #include <linux/backing-dev.h> 28 #include <linux/string.h> 29 #include <linux/msg.h> 30 #include <net/flow.h> 31 32 #define MAX_LSM_EVM_XATTR 2 33 34 /* How many LSMs were built into the kernel? */ 35 #define LSM_COUNT (__end_lsm_info - __start_lsm_info) 36 37 struct security_hook_heads security_hook_heads __lsm_ro_after_init; 38 static BLOCKING_NOTIFIER_HEAD(blocking_lsm_notifier_chain); 39 40 static struct kmem_cache *lsm_file_cache; 41 static struct kmem_cache *lsm_inode_cache; 42 43 char *lsm_names; 44 static struct lsm_blob_sizes blob_sizes __lsm_ro_after_init; 45 46 /* Boot-time LSM user choice */ 47 static __initdata const char *chosen_lsm_order; 48 static __initdata const char *chosen_major_lsm; 49 50 static __initconst const char * const builtin_lsm_order = CONFIG_LSM; 51 52 /* Ordered list of LSMs to initialize. */ 53 static __initdata struct lsm_info **ordered_lsms; 54 static __initdata struct lsm_info *exclusive; 55 56 static __initdata bool debug; 57 #define init_debug(...) \ 58 do { \ 59 if (debug) \ 60 pr_info(__VA_ARGS__); \ 61 } while (0) 62 63 static bool __init is_enabled(struct lsm_info *lsm) 64 { 65 if (!lsm->enabled) 66 return false; 67 68 return *lsm->enabled; 69 } 70 71 /* Mark an LSM's enabled flag. */ 72 static int lsm_enabled_true __initdata = 1; 73 static int lsm_enabled_false __initdata = 0; 74 static void __init set_enabled(struct lsm_info *lsm, bool enabled) 75 { 76 /* 77 * When an LSM hasn't configured an enable variable, we can use 78 * a hard-coded location for storing the default enabled state. 79 */ 80 if (!lsm->enabled) { 81 if (enabled) 82 lsm->enabled = &lsm_enabled_true; 83 else 84 lsm->enabled = &lsm_enabled_false; 85 } else if (lsm->enabled == &lsm_enabled_true) { 86 if (!enabled) 87 lsm->enabled = &lsm_enabled_false; 88 } else if (lsm->enabled == &lsm_enabled_false) { 89 if (enabled) 90 lsm->enabled = &lsm_enabled_true; 91 } else { 92 *lsm->enabled = enabled; 93 } 94 } 95 96 /* Is an LSM already listed in the ordered LSMs list? */ 97 static bool __init exists_ordered_lsm(struct lsm_info *lsm) 98 { 99 struct lsm_info **check; 100 101 for (check = ordered_lsms; *check; check++) 102 if (*check == lsm) 103 return true; 104 105 return false; 106 } 107 108 /* Append an LSM to the list of ordered LSMs to initialize. */ 109 static int last_lsm __initdata; 110 static void __init append_ordered_lsm(struct lsm_info *lsm, const char *from) 111 { 112 /* Ignore duplicate selections. */ 113 if (exists_ordered_lsm(lsm)) 114 return; 115 116 if (WARN(last_lsm == LSM_COUNT, "%s: out of LSM slots!?\n", from)) 117 return; 118 119 /* Enable this LSM, if it is not already set. */ 120 if (!lsm->enabled) 121 lsm->enabled = &lsm_enabled_true; 122 ordered_lsms[last_lsm++] = lsm; 123 124 init_debug("%s ordering: %s (%sabled)\n", from, lsm->name, 125 is_enabled(lsm) ? "en" : "dis"); 126 } 127 128 /* Is an LSM allowed to be initialized? */ 129 static bool __init lsm_allowed(struct lsm_info *lsm) 130 { 131 /* Skip if the LSM is disabled. */ 132 if (!is_enabled(lsm)) 133 return false; 134 135 /* Not allowed if another exclusive LSM already initialized. */ 136 if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && exclusive) { 137 init_debug("exclusive disabled: %s\n", lsm->name); 138 return false; 139 } 140 141 return true; 142 } 143 144 static void __init lsm_set_blob_size(int *need, int *lbs) 145 { 146 int offset; 147 148 if (*need > 0) { 149 offset = *lbs; 150 *lbs += *need; 151 *need = offset; 152 } 153 } 154 155 static void __init lsm_set_blob_sizes(struct lsm_blob_sizes *needed) 156 { 157 if (!needed) 158 return; 159 160 lsm_set_blob_size(&needed->lbs_cred, &blob_sizes.lbs_cred); 161 lsm_set_blob_size(&needed->lbs_file, &blob_sizes.lbs_file); 162 /* 163 * The inode blob gets an rcu_head in addition to 164 * what the modules might need. 165 */ 166 if (needed->lbs_inode && blob_sizes.lbs_inode == 0) 167 blob_sizes.lbs_inode = sizeof(struct rcu_head); 168 lsm_set_blob_size(&needed->lbs_inode, &blob_sizes.lbs_inode); 169 lsm_set_blob_size(&needed->lbs_ipc, &blob_sizes.lbs_ipc); 170 lsm_set_blob_size(&needed->lbs_msg_msg, &blob_sizes.lbs_msg_msg); 171 lsm_set_blob_size(&needed->lbs_task, &blob_sizes.lbs_task); 172 } 173 174 /* Prepare LSM for initialization. */ 175 static void __init prepare_lsm(struct lsm_info *lsm) 176 { 177 int enabled = lsm_allowed(lsm); 178 179 /* Record enablement (to handle any following exclusive LSMs). */ 180 set_enabled(lsm, enabled); 181 182 /* If enabled, do pre-initialization work. */ 183 if (enabled) { 184 if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && !exclusive) { 185 exclusive = lsm; 186 init_debug("exclusive chosen: %s\n", lsm->name); 187 } 188 189 lsm_set_blob_sizes(lsm->blobs); 190 } 191 } 192 193 /* Initialize a given LSM, if it is enabled. */ 194 static void __init initialize_lsm(struct lsm_info *lsm) 195 { 196 if (is_enabled(lsm)) { 197 int ret; 198 199 init_debug("initializing %s\n", lsm->name); 200 ret = lsm->init(); 201 WARN(ret, "%s failed to initialize: %d\n", lsm->name, ret); 202 } 203 } 204 205 /* Populate ordered LSMs list from comma-separated LSM name list. */ 206 static void __init ordered_lsm_parse(const char *order, const char *origin) 207 { 208 struct lsm_info *lsm; 209 char *sep, *name, *next; 210 211 /* LSM_ORDER_FIRST is always first. */ 212 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { 213 if (lsm->order == LSM_ORDER_FIRST) 214 append_ordered_lsm(lsm, "first"); 215 } 216 217 /* Process "security=", if given. */ 218 if (chosen_major_lsm) { 219 struct lsm_info *major; 220 221 /* 222 * To match the original "security=" behavior, this 223 * explicitly does NOT fallback to another Legacy Major 224 * if the selected one was separately disabled: disable 225 * all non-matching Legacy Major LSMs. 226 */ 227 for (major = __start_lsm_info; major < __end_lsm_info; 228 major++) { 229 if ((major->flags & LSM_FLAG_LEGACY_MAJOR) && 230 strcmp(major->name, chosen_major_lsm) != 0) { 231 set_enabled(major, false); 232 init_debug("security=%s disabled: %s\n", 233 chosen_major_lsm, major->name); 234 } 235 } 236 } 237 238 sep = kstrdup(order, GFP_KERNEL); 239 next = sep; 240 /* Walk the list, looking for matching LSMs. */ 241 while ((name = strsep(&next, ",")) != NULL) { 242 bool found = false; 243 244 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { 245 if (lsm->order == LSM_ORDER_MUTABLE && 246 strcmp(lsm->name, name) == 0) { 247 append_ordered_lsm(lsm, origin); 248 found = true; 249 } 250 } 251 252 if (!found) 253 init_debug("%s ignored: %s\n", origin, name); 254 } 255 256 /* Process "security=", if given. */ 257 if (chosen_major_lsm) { 258 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { 259 if (exists_ordered_lsm(lsm)) 260 continue; 261 if (strcmp(lsm->name, chosen_major_lsm) == 0) 262 append_ordered_lsm(lsm, "security="); 263 } 264 } 265 266 /* Disable all LSMs not in the ordered list. */ 267 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { 268 if (exists_ordered_lsm(lsm)) 269 continue; 270 set_enabled(lsm, false); 271 init_debug("%s disabled: %s\n", origin, lsm->name); 272 } 273 274 kfree(sep); 275 } 276 277 static void __init lsm_early_cred(struct cred *cred); 278 static void __init lsm_early_task(struct task_struct *task); 279 280 static int lsm_append(const char *new, char **result); 281 282 static void __init ordered_lsm_init(void) 283 { 284 struct lsm_info **lsm; 285 286 ordered_lsms = kcalloc(LSM_COUNT + 1, sizeof(*ordered_lsms), 287 GFP_KERNEL); 288 289 if (chosen_lsm_order) { 290 if (chosen_major_lsm) { 291 pr_info("security= is ignored because it is superseded by lsm=\n"); 292 chosen_major_lsm = NULL; 293 } 294 ordered_lsm_parse(chosen_lsm_order, "cmdline"); 295 } else 296 ordered_lsm_parse(builtin_lsm_order, "builtin"); 297 298 for (lsm = ordered_lsms; *lsm; lsm++) 299 prepare_lsm(*lsm); 300 301 init_debug("cred blob size = %d\n", blob_sizes.lbs_cred); 302 init_debug("file blob size = %d\n", blob_sizes.lbs_file); 303 init_debug("inode blob size = %d\n", blob_sizes.lbs_inode); 304 init_debug("ipc blob size = %d\n", blob_sizes.lbs_ipc); 305 init_debug("msg_msg blob size = %d\n", blob_sizes.lbs_msg_msg); 306 init_debug("task blob size = %d\n", blob_sizes.lbs_task); 307 308 /* 309 * Create any kmem_caches needed for blobs 310 */ 311 if (blob_sizes.lbs_file) 312 lsm_file_cache = kmem_cache_create("lsm_file_cache", 313 blob_sizes.lbs_file, 0, 314 SLAB_PANIC, NULL); 315 if (blob_sizes.lbs_inode) 316 lsm_inode_cache = kmem_cache_create("lsm_inode_cache", 317 blob_sizes.lbs_inode, 0, 318 SLAB_PANIC, NULL); 319 320 lsm_early_cred((struct cred *) current->cred); 321 lsm_early_task(current); 322 for (lsm = ordered_lsms; *lsm; lsm++) 323 initialize_lsm(*lsm); 324 325 kfree(ordered_lsms); 326 } 327 328 int __init early_security_init(void) 329 { 330 int i; 331 struct hlist_head *list = (struct hlist_head *) &security_hook_heads; 332 struct lsm_info *lsm; 333 334 for (i = 0; i < sizeof(security_hook_heads) / sizeof(struct hlist_head); 335 i++) 336 INIT_HLIST_HEAD(&list[i]); 337 338 for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) { 339 if (!lsm->enabled) 340 lsm->enabled = &lsm_enabled_true; 341 prepare_lsm(lsm); 342 initialize_lsm(lsm); 343 } 344 345 return 0; 346 } 347 348 /** 349 * security_init - initializes the security framework 350 * 351 * This should be called early in the kernel initialization sequence. 352 */ 353 int __init security_init(void) 354 { 355 struct lsm_info *lsm; 356 357 pr_info("Security Framework initializing\n"); 358 359 /* 360 * Append the names of the early LSM modules now that kmalloc() is 361 * available 362 */ 363 for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) { 364 if (lsm->enabled) 365 lsm_append(lsm->name, &lsm_names); 366 } 367 368 /* Load LSMs in specified order. */ 369 ordered_lsm_init(); 370 371 return 0; 372 } 373 374 /* Save user chosen LSM */ 375 static int __init choose_major_lsm(char *str) 376 { 377 chosen_major_lsm = str; 378 return 1; 379 } 380 __setup("security=", choose_major_lsm); 381 382 /* Explicitly choose LSM initialization order. */ 383 static int __init choose_lsm_order(char *str) 384 { 385 chosen_lsm_order = str; 386 return 1; 387 } 388 __setup("lsm=", choose_lsm_order); 389 390 /* Enable LSM order debugging. */ 391 static int __init enable_debug(char *str) 392 { 393 debug = true; 394 return 1; 395 } 396 __setup("lsm.debug", enable_debug); 397 398 static bool match_last_lsm(const char *list, const char *lsm) 399 { 400 const char *last; 401 402 if (WARN_ON(!list || !lsm)) 403 return false; 404 last = strrchr(list, ','); 405 if (last) 406 /* Pass the comma, strcmp() will check for '\0' */ 407 last++; 408 else 409 last = list; 410 return !strcmp(last, lsm); 411 } 412 413 static int lsm_append(const char *new, char **result) 414 { 415 char *cp; 416 417 if (*result == NULL) { 418 *result = kstrdup(new, GFP_KERNEL); 419 if (*result == NULL) 420 return -ENOMEM; 421 } else { 422 /* Check if it is the last registered name */ 423 if (match_last_lsm(*result, new)) 424 return 0; 425 cp = kasprintf(GFP_KERNEL, "%s,%s", *result, new); 426 if (cp == NULL) 427 return -ENOMEM; 428 kfree(*result); 429 *result = cp; 430 } 431 return 0; 432 } 433 434 /** 435 * security_add_hooks - Add a modules hooks to the hook lists. 436 * @hooks: the hooks to add 437 * @count: the number of hooks to add 438 * @lsm: the name of the security module 439 * 440 * Each LSM has to register its hooks with the infrastructure. 441 */ 442 void __init security_add_hooks(struct security_hook_list *hooks, int count, 443 char *lsm) 444 { 445 int i; 446 447 for (i = 0; i < count; i++) { 448 hooks[i].lsm = lsm; 449 hlist_add_tail_rcu(&hooks[i].list, hooks[i].head); 450 } 451 452 /* 453 * Don't try to append during early_security_init(), we'll come back 454 * and fix this up afterwards. 455 */ 456 if (slab_is_available()) { 457 if (lsm_append(lsm, &lsm_names) < 0) 458 panic("%s - Cannot get early memory.\n", __func__); 459 } 460 } 461 462 int call_blocking_lsm_notifier(enum lsm_event event, void *data) 463 { 464 return blocking_notifier_call_chain(&blocking_lsm_notifier_chain, 465 event, data); 466 } 467 EXPORT_SYMBOL(call_blocking_lsm_notifier); 468 469 int register_blocking_lsm_notifier(struct notifier_block *nb) 470 { 471 return blocking_notifier_chain_register(&blocking_lsm_notifier_chain, 472 nb); 473 } 474 EXPORT_SYMBOL(register_blocking_lsm_notifier); 475 476 int unregister_blocking_lsm_notifier(struct notifier_block *nb) 477 { 478 return blocking_notifier_chain_unregister(&blocking_lsm_notifier_chain, 479 nb); 480 } 481 EXPORT_SYMBOL(unregister_blocking_lsm_notifier); 482 483 /** 484 * lsm_cred_alloc - allocate a composite cred blob 485 * @cred: the cred that needs a blob 486 * @gfp: allocation type 487 * 488 * Allocate the cred blob for all the modules 489 * 490 * Returns 0, or -ENOMEM if memory can't be allocated. 491 */ 492 static int lsm_cred_alloc(struct cred *cred, gfp_t gfp) 493 { 494 if (blob_sizes.lbs_cred == 0) { 495 cred->security = NULL; 496 return 0; 497 } 498 499 cred->security = kzalloc(blob_sizes.lbs_cred, gfp); 500 if (cred->security == NULL) 501 return -ENOMEM; 502 return 0; 503 } 504 505 /** 506 * lsm_early_cred - during initialization allocate a composite cred blob 507 * @cred: the cred that needs a blob 508 * 509 * Allocate the cred blob for all the modules 510 */ 511 static void __init lsm_early_cred(struct cred *cred) 512 { 513 int rc = lsm_cred_alloc(cred, GFP_KERNEL); 514 515 if (rc) 516 panic("%s: Early cred alloc failed.\n", __func__); 517 } 518 519 /** 520 * lsm_file_alloc - allocate a composite file blob 521 * @file: the file that needs a blob 522 * 523 * Allocate the file blob for all the modules 524 * 525 * Returns 0, or -ENOMEM if memory can't be allocated. 526 */ 527 static int lsm_file_alloc(struct file *file) 528 { 529 if (!lsm_file_cache) { 530 file->f_security = NULL; 531 return 0; 532 } 533 534 file->f_security = kmem_cache_zalloc(lsm_file_cache, GFP_KERNEL); 535 if (file->f_security == NULL) 536 return -ENOMEM; 537 return 0; 538 } 539 540 /** 541 * lsm_inode_alloc - allocate a composite inode blob 542 * @inode: the inode that needs a blob 543 * 544 * Allocate the inode blob for all the modules 545 * 546 * Returns 0, or -ENOMEM if memory can't be allocated. 547 */ 548 int lsm_inode_alloc(struct inode *inode) 549 { 550 if (!lsm_inode_cache) { 551 inode->i_security = NULL; 552 return 0; 553 } 554 555 inode->i_security = kmem_cache_zalloc(lsm_inode_cache, GFP_NOFS); 556 if (inode->i_security == NULL) 557 return -ENOMEM; 558 return 0; 559 } 560 561 /** 562 * lsm_task_alloc - allocate a composite task blob 563 * @task: the task that needs a blob 564 * 565 * Allocate the task blob for all the modules 566 * 567 * Returns 0, or -ENOMEM if memory can't be allocated. 568 */ 569 static int lsm_task_alloc(struct task_struct *task) 570 { 571 if (blob_sizes.lbs_task == 0) { 572 task->security = NULL; 573 return 0; 574 } 575 576 task->security = kzalloc(blob_sizes.lbs_task, GFP_KERNEL); 577 if (task->security == NULL) 578 return -ENOMEM; 579 return 0; 580 } 581 582 /** 583 * lsm_ipc_alloc - allocate a composite ipc blob 584 * @kip: the ipc that needs a blob 585 * 586 * Allocate the ipc blob for all the modules 587 * 588 * Returns 0, or -ENOMEM if memory can't be allocated. 589 */ 590 static int lsm_ipc_alloc(struct kern_ipc_perm *kip) 591 { 592 if (blob_sizes.lbs_ipc == 0) { 593 kip->security = NULL; 594 return 0; 595 } 596 597 kip->security = kzalloc(blob_sizes.lbs_ipc, GFP_KERNEL); 598 if (kip->security == NULL) 599 return -ENOMEM; 600 return 0; 601 } 602 603 /** 604 * lsm_msg_msg_alloc - allocate a composite msg_msg blob 605 * @mp: the msg_msg that needs a blob 606 * 607 * Allocate the ipc blob for all the modules 608 * 609 * Returns 0, or -ENOMEM if memory can't be allocated. 610 */ 611 static int lsm_msg_msg_alloc(struct msg_msg *mp) 612 { 613 if (blob_sizes.lbs_msg_msg == 0) { 614 mp->security = NULL; 615 return 0; 616 } 617 618 mp->security = kzalloc(blob_sizes.lbs_msg_msg, GFP_KERNEL); 619 if (mp->security == NULL) 620 return -ENOMEM; 621 return 0; 622 } 623 624 /** 625 * lsm_early_task - during initialization allocate a composite task blob 626 * @task: the task that needs a blob 627 * 628 * Allocate the task blob for all the modules 629 */ 630 static void __init lsm_early_task(struct task_struct *task) 631 { 632 int rc = lsm_task_alloc(task); 633 634 if (rc) 635 panic("%s: Early task alloc failed.\n", __func__); 636 } 637 638 /* 639 * Hook list operation macros. 640 * 641 * call_void_hook: 642 * This is a hook that does not return a value. 643 * 644 * call_int_hook: 645 * This is a hook that returns a value. 646 */ 647 648 #define call_void_hook(FUNC, ...) \ 649 do { \ 650 struct security_hook_list *P; \ 651 \ 652 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) \ 653 P->hook.FUNC(__VA_ARGS__); \ 654 } while (0) 655 656 #define call_int_hook(FUNC, IRC, ...) ({ \ 657 int RC = IRC; \ 658 do { \ 659 struct security_hook_list *P; \ 660 \ 661 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) { \ 662 RC = P->hook.FUNC(__VA_ARGS__); \ 663 if (RC != 0) \ 664 break; \ 665 } \ 666 } while (0); \ 667 RC; \ 668 }) 669 670 /* Security operations */ 671 672 int security_binder_set_context_mgr(struct task_struct *mgr) 673 { 674 return call_int_hook(binder_set_context_mgr, 0, mgr); 675 } 676 677 int security_binder_transaction(struct task_struct *from, 678 struct task_struct *to) 679 { 680 return call_int_hook(binder_transaction, 0, from, to); 681 } 682 683 int security_binder_transfer_binder(struct task_struct *from, 684 struct task_struct *to) 685 { 686 return call_int_hook(binder_transfer_binder, 0, from, to); 687 } 688 689 int security_binder_transfer_file(struct task_struct *from, 690 struct task_struct *to, struct file *file) 691 { 692 return call_int_hook(binder_transfer_file, 0, from, to, file); 693 } 694 695 int security_ptrace_access_check(struct task_struct *child, unsigned int mode) 696 { 697 return call_int_hook(ptrace_access_check, 0, child, mode); 698 } 699 700 int security_ptrace_traceme(struct task_struct *parent) 701 { 702 return call_int_hook(ptrace_traceme, 0, parent); 703 } 704 705 int security_capget(struct task_struct *target, 706 kernel_cap_t *effective, 707 kernel_cap_t *inheritable, 708 kernel_cap_t *permitted) 709 { 710 return call_int_hook(capget, 0, target, 711 effective, inheritable, permitted); 712 } 713 714 int security_capset(struct cred *new, const struct cred *old, 715 const kernel_cap_t *effective, 716 const kernel_cap_t *inheritable, 717 const kernel_cap_t *permitted) 718 { 719 return call_int_hook(capset, 0, new, old, 720 effective, inheritable, permitted); 721 } 722 723 int security_capable(const struct cred *cred, 724 struct user_namespace *ns, 725 int cap, 726 unsigned int opts) 727 { 728 return call_int_hook(capable, 0, cred, ns, cap, opts); 729 } 730 731 int security_quotactl(int cmds, int type, int id, struct super_block *sb) 732 { 733 return call_int_hook(quotactl, 0, cmds, type, id, sb); 734 } 735 736 int security_quota_on(struct dentry *dentry) 737 { 738 return call_int_hook(quota_on, 0, dentry); 739 } 740 741 int security_syslog(int type) 742 { 743 return call_int_hook(syslog, 0, type); 744 } 745 746 int security_settime64(const struct timespec64 *ts, const struct timezone *tz) 747 { 748 return call_int_hook(settime, 0, ts, tz); 749 } 750 751 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages) 752 { 753 struct security_hook_list *hp; 754 int cap_sys_admin = 1; 755 int rc; 756 757 /* 758 * The module will respond with a positive value if 759 * it thinks the __vm_enough_memory() call should be 760 * made with the cap_sys_admin set. If all of the modules 761 * agree that it should be set it will. If any module 762 * thinks it should not be set it won't. 763 */ 764 hlist_for_each_entry(hp, &security_hook_heads.vm_enough_memory, list) { 765 rc = hp->hook.vm_enough_memory(mm, pages); 766 if (rc <= 0) { 767 cap_sys_admin = 0; 768 break; 769 } 770 } 771 return __vm_enough_memory(mm, pages, cap_sys_admin); 772 } 773 774 int security_bprm_set_creds(struct linux_binprm *bprm) 775 { 776 return call_int_hook(bprm_set_creds, 0, bprm); 777 } 778 779 int security_bprm_check(struct linux_binprm *bprm) 780 { 781 int ret; 782 783 ret = call_int_hook(bprm_check_security, 0, bprm); 784 if (ret) 785 return ret; 786 return ima_bprm_check(bprm); 787 } 788 789 void security_bprm_committing_creds(struct linux_binprm *bprm) 790 { 791 call_void_hook(bprm_committing_creds, bprm); 792 } 793 794 void security_bprm_committed_creds(struct linux_binprm *bprm) 795 { 796 call_void_hook(bprm_committed_creds, bprm); 797 } 798 799 int security_fs_context_dup(struct fs_context *fc, struct fs_context *src_fc) 800 { 801 return call_int_hook(fs_context_dup, 0, fc, src_fc); 802 } 803 804 int security_fs_context_parse_param(struct fs_context *fc, struct fs_parameter *param) 805 { 806 return call_int_hook(fs_context_parse_param, -ENOPARAM, fc, param); 807 } 808 809 int security_sb_alloc(struct super_block *sb) 810 { 811 return call_int_hook(sb_alloc_security, 0, sb); 812 } 813 814 void security_sb_free(struct super_block *sb) 815 { 816 call_void_hook(sb_free_security, sb); 817 } 818 819 void security_free_mnt_opts(void **mnt_opts) 820 { 821 if (!*mnt_opts) 822 return; 823 call_void_hook(sb_free_mnt_opts, *mnt_opts); 824 *mnt_opts = NULL; 825 } 826 EXPORT_SYMBOL(security_free_mnt_opts); 827 828 int security_sb_eat_lsm_opts(char *options, void **mnt_opts) 829 { 830 return call_int_hook(sb_eat_lsm_opts, 0, options, mnt_opts); 831 } 832 EXPORT_SYMBOL(security_sb_eat_lsm_opts); 833 834 int security_sb_remount(struct super_block *sb, 835 void *mnt_opts) 836 { 837 return call_int_hook(sb_remount, 0, sb, mnt_opts); 838 } 839 EXPORT_SYMBOL(security_sb_remount); 840 841 int security_sb_kern_mount(struct super_block *sb) 842 { 843 return call_int_hook(sb_kern_mount, 0, sb); 844 } 845 846 int security_sb_show_options(struct seq_file *m, struct super_block *sb) 847 { 848 return call_int_hook(sb_show_options, 0, m, sb); 849 } 850 851 int security_sb_statfs(struct dentry *dentry) 852 { 853 return call_int_hook(sb_statfs, 0, dentry); 854 } 855 856 int security_sb_mount(const char *dev_name, const struct path *path, 857 const char *type, unsigned long flags, void *data) 858 { 859 return call_int_hook(sb_mount, 0, dev_name, path, type, flags, data); 860 } 861 862 int security_sb_umount(struct vfsmount *mnt, int flags) 863 { 864 return call_int_hook(sb_umount, 0, mnt, flags); 865 } 866 867 int security_sb_pivotroot(const struct path *old_path, const struct path *new_path) 868 { 869 return call_int_hook(sb_pivotroot, 0, old_path, new_path); 870 } 871 872 int security_sb_set_mnt_opts(struct super_block *sb, 873 void *mnt_opts, 874 unsigned long kern_flags, 875 unsigned long *set_kern_flags) 876 { 877 return call_int_hook(sb_set_mnt_opts, 878 mnt_opts ? -EOPNOTSUPP : 0, sb, 879 mnt_opts, kern_flags, set_kern_flags); 880 } 881 EXPORT_SYMBOL(security_sb_set_mnt_opts); 882 883 int security_sb_clone_mnt_opts(const struct super_block *oldsb, 884 struct super_block *newsb, 885 unsigned long kern_flags, 886 unsigned long *set_kern_flags) 887 { 888 return call_int_hook(sb_clone_mnt_opts, 0, oldsb, newsb, 889 kern_flags, set_kern_flags); 890 } 891 EXPORT_SYMBOL(security_sb_clone_mnt_opts); 892 893 int security_add_mnt_opt(const char *option, const char *val, int len, 894 void **mnt_opts) 895 { 896 return call_int_hook(sb_add_mnt_opt, -EINVAL, 897 option, val, len, mnt_opts); 898 } 899 EXPORT_SYMBOL(security_add_mnt_opt); 900 901 int security_move_mount(const struct path *from_path, const struct path *to_path) 902 { 903 return call_int_hook(move_mount, 0, from_path, to_path); 904 } 905 906 int security_path_notify(const struct path *path, u64 mask, 907 unsigned int obj_type) 908 { 909 return call_int_hook(path_notify, 0, path, mask, obj_type); 910 } 911 912 int security_inode_alloc(struct inode *inode) 913 { 914 int rc = lsm_inode_alloc(inode); 915 916 if (unlikely(rc)) 917 return rc; 918 rc = call_int_hook(inode_alloc_security, 0, inode); 919 if (unlikely(rc)) 920 security_inode_free(inode); 921 return rc; 922 } 923 924 static void inode_free_by_rcu(struct rcu_head *head) 925 { 926 /* 927 * The rcu head is at the start of the inode blob 928 */ 929 kmem_cache_free(lsm_inode_cache, head); 930 } 931 932 void security_inode_free(struct inode *inode) 933 { 934 integrity_inode_free(inode); 935 call_void_hook(inode_free_security, inode); 936 /* 937 * The inode may still be referenced in a path walk and 938 * a call to security_inode_permission() can be made 939 * after inode_free_security() is called. Ideally, the VFS 940 * wouldn't do this, but fixing that is a much harder 941 * job. For now, simply free the i_security via RCU, and 942 * leave the current inode->i_security pointer intact. 943 * The inode will be freed after the RCU grace period too. 944 */ 945 if (inode->i_security) 946 call_rcu((struct rcu_head *)inode->i_security, 947 inode_free_by_rcu); 948 } 949 950 int security_dentry_init_security(struct dentry *dentry, int mode, 951 const struct qstr *name, void **ctx, 952 u32 *ctxlen) 953 { 954 return call_int_hook(dentry_init_security, -EOPNOTSUPP, dentry, mode, 955 name, ctx, ctxlen); 956 } 957 EXPORT_SYMBOL(security_dentry_init_security); 958 959 int security_dentry_create_files_as(struct dentry *dentry, int mode, 960 struct qstr *name, 961 const struct cred *old, struct cred *new) 962 { 963 return call_int_hook(dentry_create_files_as, 0, dentry, mode, 964 name, old, new); 965 } 966 EXPORT_SYMBOL(security_dentry_create_files_as); 967 968 int security_inode_init_security(struct inode *inode, struct inode *dir, 969 const struct qstr *qstr, 970 const initxattrs initxattrs, void *fs_data) 971 { 972 struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1]; 973 struct xattr *lsm_xattr, *evm_xattr, *xattr; 974 int ret; 975 976 if (unlikely(IS_PRIVATE(inode))) 977 return 0; 978 979 if (!initxattrs) 980 return call_int_hook(inode_init_security, -EOPNOTSUPP, inode, 981 dir, qstr, NULL, NULL, NULL); 982 memset(new_xattrs, 0, sizeof(new_xattrs)); 983 lsm_xattr = new_xattrs; 984 ret = call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir, qstr, 985 &lsm_xattr->name, 986 &lsm_xattr->value, 987 &lsm_xattr->value_len); 988 if (ret) 989 goto out; 990 991 evm_xattr = lsm_xattr + 1; 992 ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr); 993 if (ret) 994 goto out; 995 ret = initxattrs(inode, new_xattrs, fs_data); 996 out: 997 for (xattr = new_xattrs; xattr->value != NULL; xattr++) 998 kfree(xattr->value); 999 return (ret == -EOPNOTSUPP) ? 0 : ret; 1000 } 1001 EXPORT_SYMBOL(security_inode_init_security); 1002 1003 int security_old_inode_init_security(struct inode *inode, struct inode *dir, 1004 const struct qstr *qstr, const char **name, 1005 void **value, size_t *len) 1006 { 1007 if (unlikely(IS_PRIVATE(inode))) 1008 return -EOPNOTSUPP; 1009 return call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir, 1010 qstr, name, value, len); 1011 } 1012 EXPORT_SYMBOL(security_old_inode_init_security); 1013 1014 #ifdef CONFIG_SECURITY_PATH 1015 int security_path_mknod(const struct path *dir, struct dentry *dentry, umode_t mode, 1016 unsigned int dev) 1017 { 1018 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 1019 return 0; 1020 return call_int_hook(path_mknod, 0, dir, dentry, mode, dev); 1021 } 1022 EXPORT_SYMBOL(security_path_mknod); 1023 1024 int security_path_mkdir(const struct path *dir, struct dentry *dentry, umode_t mode) 1025 { 1026 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 1027 return 0; 1028 return call_int_hook(path_mkdir, 0, dir, dentry, mode); 1029 } 1030 EXPORT_SYMBOL(security_path_mkdir); 1031 1032 int security_path_rmdir(const struct path *dir, struct dentry *dentry) 1033 { 1034 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 1035 return 0; 1036 return call_int_hook(path_rmdir, 0, dir, dentry); 1037 } 1038 1039 int security_path_unlink(const struct path *dir, struct dentry *dentry) 1040 { 1041 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 1042 return 0; 1043 return call_int_hook(path_unlink, 0, dir, dentry); 1044 } 1045 EXPORT_SYMBOL(security_path_unlink); 1046 1047 int security_path_symlink(const struct path *dir, struct dentry *dentry, 1048 const char *old_name) 1049 { 1050 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 1051 return 0; 1052 return call_int_hook(path_symlink, 0, dir, dentry, old_name); 1053 } 1054 1055 int security_path_link(struct dentry *old_dentry, const struct path *new_dir, 1056 struct dentry *new_dentry) 1057 { 1058 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)))) 1059 return 0; 1060 return call_int_hook(path_link, 0, old_dentry, new_dir, new_dentry); 1061 } 1062 1063 int security_path_rename(const struct path *old_dir, struct dentry *old_dentry, 1064 const struct path *new_dir, struct dentry *new_dentry, 1065 unsigned int flags) 1066 { 1067 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) || 1068 (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry))))) 1069 return 0; 1070 1071 if (flags & RENAME_EXCHANGE) { 1072 int err = call_int_hook(path_rename, 0, new_dir, new_dentry, 1073 old_dir, old_dentry); 1074 if (err) 1075 return err; 1076 } 1077 1078 return call_int_hook(path_rename, 0, old_dir, old_dentry, new_dir, 1079 new_dentry); 1080 } 1081 EXPORT_SYMBOL(security_path_rename); 1082 1083 int security_path_truncate(const struct path *path) 1084 { 1085 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 1086 return 0; 1087 return call_int_hook(path_truncate, 0, path); 1088 } 1089 1090 int security_path_chmod(const struct path *path, umode_t mode) 1091 { 1092 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 1093 return 0; 1094 return call_int_hook(path_chmod, 0, path, mode); 1095 } 1096 1097 int security_path_chown(const struct path *path, kuid_t uid, kgid_t gid) 1098 { 1099 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 1100 return 0; 1101 return call_int_hook(path_chown, 0, path, uid, gid); 1102 } 1103 1104 int security_path_chroot(const struct path *path) 1105 { 1106 return call_int_hook(path_chroot, 0, path); 1107 } 1108 #endif 1109 1110 int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode) 1111 { 1112 if (unlikely(IS_PRIVATE(dir))) 1113 return 0; 1114 return call_int_hook(inode_create, 0, dir, dentry, mode); 1115 } 1116 EXPORT_SYMBOL_GPL(security_inode_create); 1117 1118 int security_inode_link(struct dentry *old_dentry, struct inode *dir, 1119 struct dentry *new_dentry) 1120 { 1121 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)))) 1122 return 0; 1123 return call_int_hook(inode_link, 0, old_dentry, dir, new_dentry); 1124 } 1125 1126 int security_inode_unlink(struct inode *dir, struct dentry *dentry) 1127 { 1128 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1129 return 0; 1130 return call_int_hook(inode_unlink, 0, dir, dentry); 1131 } 1132 1133 int security_inode_symlink(struct inode *dir, struct dentry *dentry, 1134 const char *old_name) 1135 { 1136 if (unlikely(IS_PRIVATE(dir))) 1137 return 0; 1138 return call_int_hook(inode_symlink, 0, dir, dentry, old_name); 1139 } 1140 1141 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 1142 { 1143 if (unlikely(IS_PRIVATE(dir))) 1144 return 0; 1145 return call_int_hook(inode_mkdir, 0, dir, dentry, mode); 1146 } 1147 EXPORT_SYMBOL_GPL(security_inode_mkdir); 1148 1149 int security_inode_rmdir(struct inode *dir, struct dentry *dentry) 1150 { 1151 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1152 return 0; 1153 return call_int_hook(inode_rmdir, 0, dir, dentry); 1154 } 1155 1156 int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev) 1157 { 1158 if (unlikely(IS_PRIVATE(dir))) 1159 return 0; 1160 return call_int_hook(inode_mknod, 0, dir, dentry, mode, dev); 1161 } 1162 1163 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry, 1164 struct inode *new_dir, struct dentry *new_dentry, 1165 unsigned int flags) 1166 { 1167 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) || 1168 (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry))))) 1169 return 0; 1170 1171 if (flags & RENAME_EXCHANGE) { 1172 int err = call_int_hook(inode_rename, 0, new_dir, new_dentry, 1173 old_dir, old_dentry); 1174 if (err) 1175 return err; 1176 } 1177 1178 return call_int_hook(inode_rename, 0, old_dir, old_dentry, 1179 new_dir, new_dentry); 1180 } 1181 1182 int security_inode_readlink(struct dentry *dentry) 1183 { 1184 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1185 return 0; 1186 return call_int_hook(inode_readlink, 0, dentry); 1187 } 1188 1189 int security_inode_follow_link(struct dentry *dentry, struct inode *inode, 1190 bool rcu) 1191 { 1192 if (unlikely(IS_PRIVATE(inode))) 1193 return 0; 1194 return call_int_hook(inode_follow_link, 0, dentry, inode, rcu); 1195 } 1196 1197 int security_inode_permission(struct inode *inode, int mask) 1198 { 1199 if (unlikely(IS_PRIVATE(inode))) 1200 return 0; 1201 return call_int_hook(inode_permission, 0, inode, mask); 1202 } 1203 1204 int security_inode_setattr(struct dentry *dentry, struct iattr *attr) 1205 { 1206 int ret; 1207 1208 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1209 return 0; 1210 ret = call_int_hook(inode_setattr, 0, dentry, attr); 1211 if (ret) 1212 return ret; 1213 return evm_inode_setattr(dentry, attr); 1214 } 1215 EXPORT_SYMBOL_GPL(security_inode_setattr); 1216 1217 int security_inode_getattr(const struct path *path) 1218 { 1219 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 1220 return 0; 1221 return call_int_hook(inode_getattr, 0, path); 1222 } 1223 1224 int security_inode_setxattr(struct dentry *dentry, const char *name, 1225 const void *value, size_t size, int flags) 1226 { 1227 int ret; 1228 1229 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1230 return 0; 1231 /* 1232 * SELinux and Smack integrate the cap call, 1233 * so assume that all LSMs supplying this call do so. 1234 */ 1235 ret = call_int_hook(inode_setxattr, 1, dentry, name, value, size, 1236 flags); 1237 1238 if (ret == 1) 1239 ret = cap_inode_setxattr(dentry, name, value, size, flags); 1240 if (ret) 1241 return ret; 1242 ret = ima_inode_setxattr(dentry, name, value, size); 1243 if (ret) 1244 return ret; 1245 return evm_inode_setxattr(dentry, name, value, size); 1246 } 1247 1248 void security_inode_post_setxattr(struct dentry *dentry, const char *name, 1249 const void *value, size_t size, int flags) 1250 { 1251 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1252 return; 1253 call_void_hook(inode_post_setxattr, dentry, name, value, size, flags); 1254 evm_inode_post_setxattr(dentry, name, value, size); 1255 } 1256 1257 int security_inode_getxattr(struct dentry *dentry, const char *name) 1258 { 1259 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1260 return 0; 1261 return call_int_hook(inode_getxattr, 0, dentry, name); 1262 } 1263 1264 int security_inode_listxattr(struct dentry *dentry) 1265 { 1266 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1267 return 0; 1268 return call_int_hook(inode_listxattr, 0, dentry); 1269 } 1270 1271 int security_inode_removexattr(struct dentry *dentry, const char *name) 1272 { 1273 int ret; 1274 1275 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1276 return 0; 1277 /* 1278 * SELinux and Smack integrate the cap call, 1279 * so assume that all LSMs supplying this call do so. 1280 */ 1281 ret = call_int_hook(inode_removexattr, 1, dentry, name); 1282 if (ret == 1) 1283 ret = cap_inode_removexattr(dentry, name); 1284 if (ret) 1285 return ret; 1286 ret = ima_inode_removexattr(dentry, name); 1287 if (ret) 1288 return ret; 1289 return evm_inode_removexattr(dentry, name); 1290 } 1291 1292 int security_inode_need_killpriv(struct dentry *dentry) 1293 { 1294 return call_int_hook(inode_need_killpriv, 0, dentry); 1295 } 1296 1297 int security_inode_killpriv(struct dentry *dentry) 1298 { 1299 return call_int_hook(inode_killpriv, 0, dentry); 1300 } 1301 1302 int security_inode_getsecurity(struct inode *inode, const char *name, void **buffer, bool alloc) 1303 { 1304 struct security_hook_list *hp; 1305 int rc; 1306 1307 if (unlikely(IS_PRIVATE(inode))) 1308 return -EOPNOTSUPP; 1309 /* 1310 * Only one module will provide an attribute with a given name. 1311 */ 1312 hlist_for_each_entry(hp, &security_hook_heads.inode_getsecurity, list) { 1313 rc = hp->hook.inode_getsecurity(inode, name, buffer, alloc); 1314 if (rc != -EOPNOTSUPP) 1315 return rc; 1316 } 1317 return -EOPNOTSUPP; 1318 } 1319 1320 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags) 1321 { 1322 struct security_hook_list *hp; 1323 int rc; 1324 1325 if (unlikely(IS_PRIVATE(inode))) 1326 return -EOPNOTSUPP; 1327 /* 1328 * Only one module will provide an attribute with a given name. 1329 */ 1330 hlist_for_each_entry(hp, &security_hook_heads.inode_setsecurity, list) { 1331 rc = hp->hook.inode_setsecurity(inode, name, value, size, 1332 flags); 1333 if (rc != -EOPNOTSUPP) 1334 return rc; 1335 } 1336 return -EOPNOTSUPP; 1337 } 1338 1339 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size) 1340 { 1341 if (unlikely(IS_PRIVATE(inode))) 1342 return 0; 1343 return call_int_hook(inode_listsecurity, 0, inode, buffer, buffer_size); 1344 } 1345 EXPORT_SYMBOL(security_inode_listsecurity); 1346 1347 void security_inode_getsecid(struct inode *inode, u32 *secid) 1348 { 1349 call_void_hook(inode_getsecid, inode, secid); 1350 } 1351 1352 int security_inode_copy_up(struct dentry *src, struct cred **new) 1353 { 1354 return call_int_hook(inode_copy_up, 0, src, new); 1355 } 1356 EXPORT_SYMBOL(security_inode_copy_up); 1357 1358 int security_inode_copy_up_xattr(const char *name) 1359 { 1360 return call_int_hook(inode_copy_up_xattr, -EOPNOTSUPP, name); 1361 } 1362 EXPORT_SYMBOL(security_inode_copy_up_xattr); 1363 1364 int security_kernfs_init_security(struct kernfs_node *kn_dir, 1365 struct kernfs_node *kn) 1366 { 1367 return call_int_hook(kernfs_init_security, 0, kn_dir, kn); 1368 } 1369 1370 int security_file_permission(struct file *file, int mask) 1371 { 1372 int ret; 1373 1374 ret = call_int_hook(file_permission, 0, file, mask); 1375 if (ret) 1376 return ret; 1377 1378 return fsnotify_perm(file, mask); 1379 } 1380 1381 int security_file_alloc(struct file *file) 1382 { 1383 int rc = lsm_file_alloc(file); 1384 1385 if (rc) 1386 return rc; 1387 rc = call_int_hook(file_alloc_security, 0, file); 1388 if (unlikely(rc)) 1389 security_file_free(file); 1390 return rc; 1391 } 1392 1393 void security_file_free(struct file *file) 1394 { 1395 void *blob; 1396 1397 call_void_hook(file_free_security, file); 1398 1399 blob = file->f_security; 1400 if (blob) { 1401 file->f_security = NULL; 1402 kmem_cache_free(lsm_file_cache, blob); 1403 } 1404 } 1405 1406 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 1407 { 1408 return call_int_hook(file_ioctl, 0, file, cmd, arg); 1409 } 1410 1411 static inline unsigned long mmap_prot(struct file *file, unsigned long prot) 1412 { 1413 /* 1414 * Does we have PROT_READ and does the application expect 1415 * it to imply PROT_EXEC? If not, nothing to talk about... 1416 */ 1417 if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ) 1418 return prot; 1419 if (!(current->personality & READ_IMPLIES_EXEC)) 1420 return prot; 1421 /* 1422 * if that's an anonymous mapping, let it. 1423 */ 1424 if (!file) 1425 return prot | PROT_EXEC; 1426 /* 1427 * ditto if it's not on noexec mount, except that on !MMU we need 1428 * NOMMU_MAP_EXEC (== VM_MAYEXEC) in this case 1429 */ 1430 if (!path_noexec(&file->f_path)) { 1431 #ifndef CONFIG_MMU 1432 if (file->f_op->mmap_capabilities) { 1433 unsigned caps = file->f_op->mmap_capabilities(file); 1434 if (!(caps & NOMMU_MAP_EXEC)) 1435 return prot; 1436 } 1437 #endif 1438 return prot | PROT_EXEC; 1439 } 1440 /* anything on noexec mount won't get PROT_EXEC */ 1441 return prot; 1442 } 1443 1444 int security_mmap_file(struct file *file, unsigned long prot, 1445 unsigned long flags) 1446 { 1447 int ret; 1448 ret = call_int_hook(mmap_file, 0, file, prot, 1449 mmap_prot(file, prot), flags); 1450 if (ret) 1451 return ret; 1452 return ima_file_mmap(file, prot); 1453 } 1454 1455 int security_mmap_addr(unsigned long addr) 1456 { 1457 return call_int_hook(mmap_addr, 0, addr); 1458 } 1459 1460 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot, 1461 unsigned long prot) 1462 { 1463 return call_int_hook(file_mprotect, 0, vma, reqprot, prot); 1464 } 1465 1466 int security_file_lock(struct file *file, unsigned int cmd) 1467 { 1468 return call_int_hook(file_lock, 0, file, cmd); 1469 } 1470 1471 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg) 1472 { 1473 return call_int_hook(file_fcntl, 0, file, cmd, arg); 1474 } 1475 1476 void security_file_set_fowner(struct file *file) 1477 { 1478 call_void_hook(file_set_fowner, file); 1479 } 1480 1481 int security_file_send_sigiotask(struct task_struct *tsk, 1482 struct fown_struct *fown, int sig) 1483 { 1484 return call_int_hook(file_send_sigiotask, 0, tsk, fown, sig); 1485 } 1486 1487 int security_file_receive(struct file *file) 1488 { 1489 return call_int_hook(file_receive, 0, file); 1490 } 1491 1492 int security_file_open(struct file *file) 1493 { 1494 int ret; 1495 1496 ret = call_int_hook(file_open, 0, file); 1497 if (ret) 1498 return ret; 1499 1500 return fsnotify_perm(file, MAY_OPEN); 1501 } 1502 1503 int security_task_alloc(struct task_struct *task, unsigned long clone_flags) 1504 { 1505 int rc = lsm_task_alloc(task); 1506 1507 if (rc) 1508 return rc; 1509 rc = call_int_hook(task_alloc, 0, task, clone_flags); 1510 if (unlikely(rc)) 1511 security_task_free(task); 1512 return rc; 1513 } 1514 1515 void security_task_free(struct task_struct *task) 1516 { 1517 call_void_hook(task_free, task); 1518 1519 kfree(task->security); 1520 task->security = NULL; 1521 } 1522 1523 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp) 1524 { 1525 int rc = lsm_cred_alloc(cred, gfp); 1526 1527 if (rc) 1528 return rc; 1529 1530 rc = call_int_hook(cred_alloc_blank, 0, cred, gfp); 1531 if (unlikely(rc)) 1532 security_cred_free(cred); 1533 return rc; 1534 } 1535 1536 void security_cred_free(struct cred *cred) 1537 { 1538 /* 1539 * There is a failure case in prepare_creds() that 1540 * may result in a call here with ->security being NULL. 1541 */ 1542 if (unlikely(cred->security == NULL)) 1543 return; 1544 1545 call_void_hook(cred_free, cred); 1546 1547 kfree(cred->security); 1548 cred->security = NULL; 1549 } 1550 1551 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp) 1552 { 1553 int rc = lsm_cred_alloc(new, gfp); 1554 1555 if (rc) 1556 return rc; 1557 1558 rc = call_int_hook(cred_prepare, 0, new, old, gfp); 1559 if (unlikely(rc)) 1560 security_cred_free(new); 1561 return rc; 1562 } 1563 1564 void security_transfer_creds(struct cred *new, const struct cred *old) 1565 { 1566 call_void_hook(cred_transfer, new, old); 1567 } 1568 1569 void security_cred_getsecid(const struct cred *c, u32 *secid) 1570 { 1571 *secid = 0; 1572 call_void_hook(cred_getsecid, c, secid); 1573 } 1574 EXPORT_SYMBOL(security_cred_getsecid); 1575 1576 int security_kernel_act_as(struct cred *new, u32 secid) 1577 { 1578 return call_int_hook(kernel_act_as, 0, new, secid); 1579 } 1580 1581 int security_kernel_create_files_as(struct cred *new, struct inode *inode) 1582 { 1583 return call_int_hook(kernel_create_files_as, 0, new, inode); 1584 } 1585 1586 int security_kernel_module_request(char *kmod_name) 1587 { 1588 int ret; 1589 1590 ret = call_int_hook(kernel_module_request, 0, kmod_name); 1591 if (ret) 1592 return ret; 1593 return integrity_kernel_module_request(kmod_name); 1594 } 1595 1596 int security_kernel_read_file(struct file *file, enum kernel_read_file_id id) 1597 { 1598 int ret; 1599 1600 ret = call_int_hook(kernel_read_file, 0, file, id); 1601 if (ret) 1602 return ret; 1603 return ima_read_file(file, id); 1604 } 1605 EXPORT_SYMBOL_GPL(security_kernel_read_file); 1606 1607 int security_kernel_post_read_file(struct file *file, char *buf, loff_t size, 1608 enum kernel_read_file_id id) 1609 { 1610 int ret; 1611 1612 ret = call_int_hook(kernel_post_read_file, 0, file, buf, size, id); 1613 if (ret) 1614 return ret; 1615 return ima_post_read_file(file, buf, size, id); 1616 } 1617 EXPORT_SYMBOL_GPL(security_kernel_post_read_file); 1618 1619 int security_kernel_load_data(enum kernel_load_data_id id) 1620 { 1621 int ret; 1622 1623 ret = call_int_hook(kernel_load_data, 0, id); 1624 if (ret) 1625 return ret; 1626 return ima_load_data(id); 1627 } 1628 EXPORT_SYMBOL_GPL(security_kernel_load_data); 1629 1630 int security_task_fix_setuid(struct cred *new, const struct cred *old, 1631 int flags) 1632 { 1633 return call_int_hook(task_fix_setuid, 0, new, old, flags); 1634 } 1635 1636 int security_task_setpgid(struct task_struct *p, pid_t pgid) 1637 { 1638 return call_int_hook(task_setpgid, 0, p, pgid); 1639 } 1640 1641 int security_task_getpgid(struct task_struct *p) 1642 { 1643 return call_int_hook(task_getpgid, 0, p); 1644 } 1645 1646 int security_task_getsid(struct task_struct *p) 1647 { 1648 return call_int_hook(task_getsid, 0, p); 1649 } 1650 1651 void security_task_getsecid(struct task_struct *p, u32 *secid) 1652 { 1653 *secid = 0; 1654 call_void_hook(task_getsecid, p, secid); 1655 } 1656 EXPORT_SYMBOL(security_task_getsecid); 1657 1658 int security_task_setnice(struct task_struct *p, int nice) 1659 { 1660 return call_int_hook(task_setnice, 0, p, nice); 1661 } 1662 1663 int security_task_setioprio(struct task_struct *p, int ioprio) 1664 { 1665 return call_int_hook(task_setioprio, 0, p, ioprio); 1666 } 1667 1668 int security_task_getioprio(struct task_struct *p) 1669 { 1670 return call_int_hook(task_getioprio, 0, p); 1671 } 1672 1673 int security_task_prlimit(const struct cred *cred, const struct cred *tcred, 1674 unsigned int flags) 1675 { 1676 return call_int_hook(task_prlimit, 0, cred, tcred, flags); 1677 } 1678 1679 int security_task_setrlimit(struct task_struct *p, unsigned int resource, 1680 struct rlimit *new_rlim) 1681 { 1682 return call_int_hook(task_setrlimit, 0, p, resource, new_rlim); 1683 } 1684 1685 int security_task_setscheduler(struct task_struct *p) 1686 { 1687 return call_int_hook(task_setscheduler, 0, p); 1688 } 1689 1690 int security_task_getscheduler(struct task_struct *p) 1691 { 1692 return call_int_hook(task_getscheduler, 0, p); 1693 } 1694 1695 int security_task_movememory(struct task_struct *p) 1696 { 1697 return call_int_hook(task_movememory, 0, p); 1698 } 1699 1700 int security_task_kill(struct task_struct *p, struct kernel_siginfo *info, 1701 int sig, const struct cred *cred) 1702 { 1703 return call_int_hook(task_kill, 0, p, info, sig, cred); 1704 } 1705 1706 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3, 1707 unsigned long arg4, unsigned long arg5) 1708 { 1709 int thisrc; 1710 int rc = -ENOSYS; 1711 struct security_hook_list *hp; 1712 1713 hlist_for_each_entry(hp, &security_hook_heads.task_prctl, list) { 1714 thisrc = hp->hook.task_prctl(option, arg2, arg3, arg4, arg5); 1715 if (thisrc != -ENOSYS) { 1716 rc = thisrc; 1717 if (thisrc != 0) 1718 break; 1719 } 1720 } 1721 return rc; 1722 } 1723 1724 void security_task_to_inode(struct task_struct *p, struct inode *inode) 1725 { 1726 call_void_hook(task_to_inode, p, inode); 1727 } 1728 1729 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag) 1730 { 1731 return call_int_hook(ipc_permission, 0, ipcp, flag); 1732 } 1733 1734 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid) 1735 { 1736 *secid = 0; 1737 call_void_hook(ipc_getsecid, ipcp, secid); 1738 } 1739 1740 int security_msg_msg_alloc(struct msg_msg *msg) 1741 { 1742 int rc = lsm_msg_msg_alloc(msg); 1743 1744 if (unlikely(rc)) 1745 return rc; 1746 rc = call_int_hook(msg_msg_alloc_security, 0, msg); 1747 if (unlikely(rc)) 1748 security_msg_msg_free(msg); 1749 return rc; 1750 } 1751 1752 void security_msg_msg_free(struct msg_msg *msg) 1753 { 1754 call_void_hook(msg_msg_free_security, msg); 1755 kfree(msg->security); 1756 msg->security = NULL; 1757 } 1758 1759 int security_msg_queue_alloc(struct kern_ipc_perm *msq) 1760 { 1761 int rc = lsm_ipc_alloc(msq); 1762 1763 if (unlikely(rc)) 1764 return rc; 1765 rc = call_int_hook(msg_queue_alloc_security, 0, msq); 1766 if (unlikely(rc)) 1767 security_msg_queue_free(msq); 1768 return rc; 1769 } 1770 1771 void security_msg_queue_free(struct kern_ipc_perm *msq) 1772 { 1773 call_void_hook(msg_queue_free_security, msq); 1774 kfree(msq->security); 1775 msq->security = NULL; 1776 } 1777 1778 int security_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg) 1779 { 1780 return call_int_hook(msg_queue_associate, 0, msq, msqflg); 1781 } 1782 1783 int security_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd) 1784 { 1785 return call_int_hook(msg_queue_msgctl, 0, msq, cmd); 1786 } 1787 1788 int security_msg_queue_msgsnd(struct kern_ipc_perm *msq, 1789 struct msg_msg *msg, int msqflg) 1790 { 1791 return call_int_hook(msg_queue_msgsnd, 0, msq, msg, msqflg); 1792 } 1793 1794 int security_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg, 1795 struct task_struct *target, long type, int mode) 1796 { 1797 return call_int_hook(msg_queue_msgrcv, 0, msq, msg, target, type, mode); 1798 } 1799 1800 int security_shm_alloc(struct kern_ipc_perm *shp) 1801 { 1802 int rc = lsm_ipc_alloc(shp); 1803 1804 if (unlikely(rc)) 1805 return rc; 1806 rc = call_int_hook(shm_alloc_security, 0, shp); 1807 if (unlikely(rc)) 1808 security_shm_free(shp); 1809 return rc; 1810 } 1811 1812 void security_shm_free(struct kern_ipc_perm *shp) 1813 { 1814 call_void_hook(shm_free_security, shp); 1815 kfree(shp->security); 1816 shp->security = NULL; 1817 } 1818 1819 int security_shm_associate(struct kern_ipc_perm *shp, int shmflg) 1820 { 1821 return call_int_hook(shm_associate, 0, shp, shmflg); 1822 } 1823 1824 int security_shm_shmctl(struct kern_ipc_perm *shp, int cmd) 1825 { 1826 return call_int_hook(shm_shmctl, 0, shp, cmd); 1827 } 1828 1829 int security_shm_shmat(struct kern_ipc_perm *shp, char __user *shmaddr, int shmflg) 1830 { 1831 return call_int_hook(shm_shmat, 0, shp, shmaddr, shmflg); 1832 } 1833 1834 int security_sem_alloc(struct kern_ipc_perm *sma) 1835 { 1836 int rc = lsm_ipc_alloc(sma); 1837 1838 if (unlikely(rc)) 1839 return rc; 1840 rc = call_int_hook(sem_alloc_security, 0, sma); 1841 if (unlikely(rc)) 1842 security_sem_free(sma); 1843 return rc; 1844 } 1845 1846 void security_sem_free(struct kern_ipc_perm *sma) 1847 { 1848 call_void_hook(sem_free_security, sma); 1849 kfree(sma->security); 1850 sma->security = NULL; 1851 } 1852 1853 int security_sem_associate(struct kern_ipc_perm *sma, int semflg) 1854 { 1855 return call_int_hook(sem_associate, 0, sma, semflg); 1856 } 1857 1858 int security_sem_semctl(struct kern_ipc_perm *sma, int cmd) 1859 { 1860 return call_int_hook(sem_semctl, 0, sma, cmd); 1861 } 1862 1863 int security_sem_semop(struct kern_ipc_perm *sma, struct sembuf *sops, 1864 unsigned nsops, int alter) 1865 { 1866 return call_int_hook(sem_semop, 0, sma, sops, nsops, alter); 1867 } 1868 1869 void security_d_instantiate(struct dentry *dentry, struct inode *inode) 1870 { 1871 if (unlikely(inode && IS_PRIVATE(inode))) 1872 return; 1873 call_void_hook(d_instantiate, dentry, inode); 1874 } 1875 EXPORT_SYMBOL(security_d_instantiate); 1876 1877 int security_getprocattr(struct task_struct *p, const char *lsm, char *name, 1878 char **value) 1879 { 1880 struct security_hook_list *hp; 1881 1882 hlist_for_each_entry(hp, &security_hook_heads.getprocattr, list) { 1883 if (lsm != NULL && strcmp(lsm, hp->lsm)) 1884 continue; 1885 return hp->hook.getprocattr(p, name, value); 1886 } 1887 return -EINVAL; 1888 } 1889 1890 int security_setprocattr(const char *lsm, const char *name, void *value, 1891 size_t size) 1892 { 1893 struct security_hook_list *hp; 1894 1895 hlist_for_each_entry(hp, &security_hook_heads.setprocattr, list) { 1896 if (lsm != NULL && strcmp(lsm, hp->lsm)) 1897 continue; 1898 return hp->hook.setprocattr(name, value, size); 1899 } 1900 return -EINVAL; 1901 } 1902 1903 int security_netlink_send(struct sock *sk, struct sk_buff *skb) 1904 { 1905 return call_int_hook(netlink_send, 0, sk, skb); 1906 } 1907 1908 int security_ismaclabel(const char *name) 1909 { 1910 return call_int_hook(ismaclabel, 0, name); 1911 } 1912 EXPORT_SYMBOL(security_ismaclabel); 1913 1914 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen) 1915 { 1916 return call_int_hook(secid_to_secctx, -EOPNOTSUPP, secid, secdata, 1917 seclen); 1918 } 1919 EXPORT_SYMBOL(security_secid_to_secctx); 1920 1921 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid) 1922 { 1923 *secid = 0; 1924 return call_int_hook(secctx_to_secid, 0, secdata, seclen, secid); 1925 } 1926 EXPORT_SYMBOL(security_secctx_to_secid); 1927 1928 void security_release_secctx(char *secdata, u32 seclen) 1929 { 1930 call_void_hook(release_secctx, secdata, seclen); 1931 } 1932 EXPORT_SYMBOL(security_release_secctx); 1933 1934 void security_inode_invalidate_secctx(struct inode *inode) 1935 { 1936 call_void_hook(inode_invalidate_secctx, inode); 1937 } 1938 EXPORT_SYMBOL(security_inode_invalidate_secctx); 1939 1940 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen) 1941 { 1942 return call_int_hook(inode_notifysecctx, 0, inode, ctx, ctxlen); 1943 } 1944 EXPORT_SYMBOL(security_inode_notifysecctx); 1945 1946 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen) 1947 { 1948 return call_int_hook(inode_setsecctx, 0, dentry, ctx, ctxlen); 1949 } 1950 EXPORT_SYMBOL(security_inode_setsecctx); 1951 1952 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen) 1953 { 1954 return call_int_hook(inode_getsecctx, -EOPNOTSUPP, inode, ctx, ctxlen); 1955 } 1956 EXPORT_SYMBOL(security_inode_getsecctx); 1957 1958 #ifdef CONFIG_SECURITY_NETWORK 1959 1960 int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk) 1961 { 1962 return call_int_hook(unix_stream_connect, 0, sock, other, newsk); 1963 } 1964 EXPORT_SYMBOL(security_unix_stream_connect); 1965 1966 int security_unix_may_send(struct socket *sock, struct socket *other) 1967 { 1968 return call_int_hook(unix_may_send, 0, sock, other); 1969 } 1970 EXPORT_SYMBOL(security_unix_may_send); 1971 1972 int security_socket_create(int family, int type, int protocol, int kern) 1973 { 1974 return call_int_hook(socket_create, 0, family, type, protocol, kern); 1975 } 1976 1977 int security_socket_post_create(struct socket *sock, int family, 1978 int type, int protocol, int kern) 1979 { 1980 return call_int_hook(socket_post_create, 0, sock, family, type, 1981 protocol, kern); 1982 } 1983 1984 int security_socket_socketpair(struct socket *socka, struct socket *sockb) 1985 { 1986 return call_int_hook(socket_socketpair, 0, socka, sockb); 1987 } 1988 EXPORT_SYMBOL(security_socket_socketpair); 1989 1990 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen) 1991 { 1992 return call_int_hook(socket_bind, 0, sock, address, addrlen); 1993 } 1994 1995 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen) 1996 { 1997 return call_int_hook(socket_connect, 0, sock, address, addrlen); 1998 } 1999 2000 int security_socket_listen(struct socket *sock, int backlog) 2001 { 2002 return call_int_hook(socket_listen, 0, sock, backlog); 2003 } 2004 2005 int security_socket_accept(struct socket *sock, struct socket *newsock) 2006 { 2007 return call_int_hook(socket_accept, 0, sock, newsock); 2008 } 2009 2010 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size) 2011 { 2012 return call_int_hook(socket_sendmsg, 0, sock, msg, size); 2013 } 2014 2015 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg, 2016 int size, int flags) 2017 { 2018 return call_int_hook(socket_recvmsg, 0, sock, msg, size, flags); 2019 } 2020 2021 int security_socket_getsockname(struct socket *sock) 2022 { 2023 return call_int_hook(socket_getsockname, 0, sock); 2024 } 2025 2026 int security_socket_getpeername(struct socket *sock) 2027 { 2028 return call_int_hook(socket_getpeername, 0, sock); 2029 } 2030 2031 int security_socket_getsockopt(struct socket *sock, int level, int optname) 2032 { 2033 return call_int_hook(socket_getsockopt, 0, sock, level, optname); 2034 } 2035 2036 int security_socket_setsockopt(struct socket *sock, int level, int optname) 2037 { 2038 return call_int_hook(socket_setsockopt, 0, sock, level, optname); 2039 } 2040 2041 int security_socket_shutdown(struct socket *sock, int how) 2042 { 2043 return call_int_hook(socket_shutdown, 0, sock, how); 2044 } 2045 2046 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb) 2047 { 2048 return call_int_hook(socket_sock_rcv_skb, 0, sk, skb); 2049 } 2050 EXPORT_SYMBOL(security_sock_rcv_skb); 2051 2052 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval, 2053 int __user *optlen, unsigned len) 2054 { 2055 return call_int_hook(socket_getpeersec_stream, -ENOPROTOOPT, sock, 2056 optval, optlen, len); 2057 } 2058 2059 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid) 2060 { 2061 return call_int_hook(socket_getpeersec_dgram, -ENOPROTOOPT, sock, 2062 skb, secid); 2063 } 2064 EXPORT_SYMBOL(security_socket_getpeersec_dgram); 2065 2066 int security_sk_alloc(struct sock *sk, int family, gfp_t priority) 2067 { 2068 return call_int_hook(sk_alloc_security, 0, sk, family, priority); 2069 } 2070 2071 void security_sk_free(struct sock *sk) 2072 { 2073 call_void_hook(sk_free_security, sk); 2074 } 2075 2076 void security_sk_clone(const struct sock *sk, struct sock *newsk) 2077 { 2078 call_void_hook(sk_clone_security, sk, newsk); 2079 } 2080 EXPORT_SYMBOL(security_sk_clone); 2081 2082 void security_sk_classify_flow(struct sock *sk, struct flowi *fl) 2083 { 2084 call_void_hook(sk_getsecid, sk, &fl->flowi_secid); 2085 } 2086 EXPORT_SYMBOL(security_sk_classify_flow); 2087 2088 void security_req_classify_flow(const struct request_sock *req, struct flowi *fl) 2089 { 2090 call_void_hook(req_classify_flow, req, fl); 2091 } 2092 EXPORT_SYMBOL(security_req_classify_flow); 2093 2094 void security_sock_graft(struct sock *sk, struct socket *parent) 2095 { 2096 call_void_hook(sock_graft, sk, parent); 2097 } 2098 EXPORT_SYMBOL(security_sock_graft); 2099 2100 int security_inet_conn_request(struct sock *sk, 2101 struct sk_buff *skb, struct request_sock *req) 2102 { 2103 return call_int_hook(inet_conn_request, 0, sk, skb, req); 2104 } 2105 EXPORT_SYMBOL(security_inet_conn_request); 2106 2107 void security_inet_csk_clone(struct sock *newsk, 2108 const struct request_sock *req) 2109 { 2110 call_void_hook(inet_csk_clone, newsk, req); 2111 } 2112 2113 void security_inet_conn_established(struct sock *sk, 2114 struct sk_buff *skb) 2115 { 2116 call_void_hook(inet_conn_established, sk, skb); 2117 } 2118 EXPORT_SYMBOL(security_inet_conn_established); 2119 2120 int security_secmark_relabel_packet(u32 secid) 2121 { 2122 return call_int_hook(secmark_relabel_packet, 0, secid); 2123 } 2124 EXPORT_SYMBOL(security_secmark_relabel_packet); 2125 2126 void security_secmark_refcount_inc(void) 2127 { 2128 call_void_hook(secmark_refcount_inc); 2129 } 2130 EXPORT_SYMBOL(security_secmark_refcount_inc); 2131 2132 void security_secmark_refcount_dec(void) 2133 { 2134 call_void_hook(secmark_refcount_dec); 2135 } 2136 EXPORT_SYMBOL(security_secmark_refcount_dec); 2137 2138 int security_tun_dev_alloc_security(void **security) 2139 { 2140 return call_int_hook(tun_dev_alloc_security, 0, security); 2141 } 2142 EXPORT_SYMBOL(security_tun_dev_alloc_security); 2143 2144 void security_tun_dev_free_security(void *security) 2145 { 2146 call_void_hook(tun_dev_free_security, security); 2147 } 2148 EXPORT_SYMBOL(security_tun_dev_free_security); 2149 2150 int security_tun_dev_create(void) 2151 { 2152 return call_int_hook(tun_dev_create, 0); 2153 } 2154 EXPORT_SYMBOL(security_tun_dev_create); 2155 2156 int security_tun_dev_attach_queue(void *security) 2157 { 2158 return call_int_hook(tun_dev_attach_queue, 0, security); 2159 } 2160 EXPORT_SYMBOL(security_tun_dev_attach_queue); 2161 2162 int security_tun_dev_attach(struct sock *sk, void *security) 2163 { 2164 return call_int_hook(tun_dev_attach, 0, sk, security); 2165 } 2166 EXPORT_SYMBOL(security_tun_dev_attach); 2167 2168 int security_tun_dev_open(void *security) 2169 { 2170 return call_int_hook(tun_dev_open, 0, security); 2171 } 2172 EXPORT_SYMBOL(security_tun_dev_open); 2173 2174 int security_sctp_assoc_request(struct sctp_endpoint *ep, struct sk_buff *skb) 2175 { 2176 return call_int_hook(sctp_assoc_request, 0, ep, skb); 2177 } 2178 EXPORT_SYMBOL(security_sctp_assoc_request); 2179 2180 int security_sctp_bind_connect(struct sock *sk, int optname, 2181 struct sockaddr *address, int addrlen) 2182 { 2183 return call_int_hook(sctp_bind_connect, 0, sk, optname, 2184 address, addrlen); 2185 } 2186 EXPORT_SYMBOL(security_sctp_bind_connect); 2187 2188 void security_sctp_sk_clone(struct sctp_endpoint *ep, struct sock *sk, 2189 struct sock *newsk) 2190 { 2191 call_void_hook(sctp_sk_clone, ep, sk, newsk); 2192 } 2193 EXPORT_SYMBOL(security_sctp_sk_clone); 2194 2195 #endif /* CONFIG_SECURITY_NETWORK */ 2196 2197 #ifdef CONFIG_SECURITY_INFINIBAND 2198 2199 int security_ib_pkey_access(void *sec, u64 subnet_prefix, u16 pkey) 2200 { 2201 return call_int_hook(ib_pkey_access, 0, sec, subnet_prefix, pkey); 2202 } 2203 EXPORT_SYMBOL(security_ib_pkey_access); 2204 2205 int security_ib_endport_manage_subnet(void *sec, const char *dev_name, u8 port_num) 2206 { 2207 return call_int_hook(ib_endport_manage_subnet, 0, sec, dev_name, port_num); 2208 } 2209 EXPORT_SYMBOL(security_ib_endport_manage_subnet); 2210 2211 int security_ib_alloc_security(void **sec) 2212 { 2213 return call_int_hook(ib_alloc_security, 0, sec); 2214 } 2215 EXPORT_SYMBOL(security_ib_alloc_security); 2216 2217 void security_ib_free_security(void *sec) 2218 { 2219 call_void_hook(ib_free_security, sec); 2220 } 2221 EXPORT_SYMBOL(security_ib_free_security); 2222 #endif /* CONFIG_SECURITY_INFINIBAND */ 2223 2224 #ifdef CONFIG_SECURITY_NETWORK_XFRM 2225 2226 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, 2227 struct xfrm_user_sec_ctx *sec_ctx, 2228 gfp_t gfp) 2229 { 2230 return call_int_hook(xfrm_policy_alloc_security, 0, ctxp, sec_ctx, gfp); 2231 } 2232 EXPORT_SYMBOL(security_xfrm_policy_alloc); 2233 2234 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx, 2235 struct xfrm_sec_ctx **new_ctxp) 2236 { 2237 return call_int_hook(xfrm_policy_clone_security, 0, old_ctx, new_ctxp); 2238 } 2239 2240 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx) 2241 { 2242 call_void_hook(xfrm_policy_free_security, ctx); 2243 } 2244 EXPORT_SYMBOL(security_xfrm_policy_free); 2245 2246 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx) 2247 { 2248 return call_int_hook(xfrm_policy_delete_security, 0, ctx); 2249 } 2250 2251 int security_xfrm_state_alloc(struct xfrm_state *x, 2252 struct xfrm_user_sec_ctx *sec_ctx) 2253 { 2254 return call_int_hook(xfrm_state_alloc, 0, x, sec_ctx); 2255 } 2256 EXPORT_SYMBOL(security_xfrm_state_alloc); 2257 2258 int security_xfrm_state_alloc_acquire(struct xfrm_state *x, 2259 struct xfrm_sec_ctx *polsec, u32 secid) 2260 { 2261 return call_int_hook(xfrm_state_alloc_acquire, 0, x, polsec, secid); 2262 } 2263 2264 int security_xfrm_state_delete(struct xfrm_state *x) 2265 { 2266 return call_int_hook(xfrm_state_delete_security, 0, x); 2267 } 2268 EXPORT_SYMBOL(security_xfrm_state_delete); 2269 2270 void security_xfrm_state_free(struct xfrm_state *x) 2271 { 2272 call_void_hook(xfrm_state_free_security, x); 2273 } 2274 2275 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir) 2276 { 2277 return call_int_hook(xfrm_policy_lookup, 0, ctx, fl_secid, dir); 2278 } 2279 2280 int security_xfrm_state_pol_flow_match(struct xfrm_state *x, 2281 struct xfrm_policy *xp, 2282 const struct flowi *fl) 2283 { 2284 struct security_hook_list *hp; 2285 int rc = 1; 2286 2287 /* 2288 * Since this function is expected to return 0 or 1, the judgment 2289 * becomes difficult if multiple LSMs supply this call. Fortunately, 2290 * we can use the first LSM's judgment because currently only SELinux 2291 * supplies this call. 2292 * 2293 * For speed optimization, we explicitly break the loop rather than 2294 * using the macro 2295 */ 2296 hlist_for_each_entry(hp, &security_hook_heads.xfrm_state_pol_flow_match, 2297 list) { 2298 rc = hp->hook.xfrm_state_pol_flow_match(x, xp, fl); 2299 break; 2300 } 2301 return rc; 2302 } 2303 2304 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid) 2305 { 2306 return call_int_hook(xfrm_decode_session, 0, skb, secid, 1); 2307 } 2308 2309 void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl) 2310 { 2311 int rc = call_int_hook(xfrm_decode_session, 0, skb, &fl->flowi_secid, 2312 0); 2313 2314 BUG_ON(rc); 2315 } 2316 EXPORT_SYMBOL(security_skb_classify_flow); 2317 2318 #endif /* CONFIG_SECURITY_NETWORK_XFRM */ 2319 2320 #ifdef CONFIG_KEYS 2321 2322 int security_key_alloc(struct key *key, const struct cred *cred, 2323 unsigned long flags) 2324 { 2325 return call_int_hook(key_alloc, 0, key, cred, flags); 2326 } 2327 2328 void security_key_free(struct key *key) 2329 { 2330 call_void_hook(key_free, key); 2331 } 2332 2333 int security_key_permission(key_ref_t key_ref, 2334 const struct cred *cred, unsigned perm) 2335 { 2336 return call_int_hook(key_permission, 0, key_ref, cred, perm); 2337 } 2338 2339 int security_key_getsecurity(struct key *key, char **_buffer) 2340 { 2341 *_buffer = NULL; 2342 return call_int_hook(key_getsecurity, 0, key, _buffer); 2343 } 2344 2345 #endif /* CONFIG_KEYS */ 2346 2347 #ifdef CONFIG_AUDIT 2348 2349 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule) 2350 { 2351 return call_int_hook(audit_rule_init, 0, field, op, rulestr, lsmrule); 2352 } 2353 2354 int security_audit_rule_known(struct audit_krule *krule) 2355 { 2356 return call_int_hook(audit_rule_known, 0, krule); 2357 } 2358 2359 void security_audit_rule_free(void *lsmrule) 2360 { 2361 call_void_hook(audit_rule_free, lsmrule); 2362 } 2363 2364 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule) 2365 { 2366 return call_int_hook(audit_rule_match, 0, secid, field, op, lsmrule); 2367 } 2368 #endif /* CONFIG_AUDIT */ 2369 2370 #ifdef CONFIG_BPF_SYSCALL 2371 int security_bpf(int cmd, union bpf_attr *attr, unsigned int size) 2372 { 2373 return call_int_hook(bpf, 0, cmd, attr, size); 2374 } 2375 int security_bpf_map(struct bpf_map *map, fmode_t fmode) 2376 { 2377 return call_int_hook(bpf_map, 0, map, fmode); 2378 } 2379 int security_bpf_prog(struct bpf_prog *prog) 2380 { 2381 return call_int_hook(bpf_prog, 0, prog); 2382 } 2383 int security_bpf_map_alloc(struct bpf_map *map) 2384 { 2385 return call_int_hook(bpf_map_alloc_security, 0, map); 2386 } 2387 int security_bpf_prog_alloc(struct bpf_prog_aux *aux) 2388 { 2389 return call_int_hook(bpf_prog_alloc_security, 0, aux); 2390 } 2391 void security_bpf_map_free(struct bpf_map *map) 2392 { 2393 call_void_hook(bpf_map_free_security, map); 2394 } 2395 void security_bpf_prog_free(struct bpf_prog_aux *aux) 2396 { 2397 call_void_hook(bpf_prog_free_security, aux); 2398 } 2399 #endif /* CONFIG_BPF_SYSCALL */ 2400 2401 int security_locked_down(enum lockdown_reason what) 2402 { 2403 return call_int_hook(locked_down, 0, what); 2404 } 2405 EXPORT_SYMBOL(security_locked_down); 2406