1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Security plug functions 4 * 5 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com> 6 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com> 7 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com> 8 * Copyright (C) 2016 Mellanox Technologies 9 * Copyright (C) 2023 Microsoft Corporation <paul@paul-moore.com> 10 */ 11 12 #define pr_fmt(fmt) "LSM: " fmt 13 14 #include <linux/bpf.h> 15 #include <linux/capability.h> 16 #include <linux/dcache.h> 17 #include <linux/export.h> 18 #include <linux/init.h> 19 #include <linux/kernel.h> 20 #include <linux/kernel_read_file.h> 21 #include <linux/lsm_hooks.h> 22 #include <linux/integrity.h> 23 #include <linux/ima.h> 24 #include <linux/evm.h> 25 #include <linux/fsnotify.h> 26 #include <linux/mman.h> 27 #include <linux/mount.h> 28 #include <linux/personality.h> 29 #include <linux/backing-dev.h> 30 #include <linux/string.h> 31 #include <linux/msg.h> 32 #include <net/flow.h> 33 34 /* How many LSMs were built into the kernel? */ 35 #define LSM_COUNT (__end_lsm_info - __start_lsm_info) 36 37 /* 38 * These are descriptions of the reasons that can be passed to the 39 * security_locked_down() LSM hook. Placing this array here allows 40 * all security modules to use the same descriptions for auditing 41 * purposes. 42 */ 43 const char *const lockdown_reasons[LOCKDOWN_CONFIDENTIALITY_MAX + 1] = { 44 [LOCKDOWN_NONE] = "none", 45 [LOCKDOWN_MODULE_SIGNATURE] = "unsigned module loading", 46 [LOCKDOWN_DEV_MEM] = "/dev/mem,kmem,port", 47 [LOCKDOWN_EFI_TEST] = "/dev/efi_test access", 48 [LOCKDOWN_KEXEC] = "kexec of unsigned images", 49 [LOCKDOWN_HIBERNATION] = "hibernation", 50 [LOCKDOWN_PCI_ACCESS] = "direct PCI access", 51 [LOCKDOWN_IOPORT] = "raw io port access", 52 [LOCKDOWN_MSR] = "raw MSR access", 53 [LOCKDOWN_ACPI_TABLES] = "modifying ACPI tables", 54 [LOCKDOWN_DEVICE_TREE] = "modifying device tree contents", 55 [LOCKDOWN_PCMCIA_CIS] = "direct PCMCIA CIS storage", 56 [LOCKDOWN_TIOCSSERIAL] = "reconfiguration of serial port IO", 57 [LOCKDOWN_MODULE_PARAMETERS] = "unsafe module parameters", 58 [LOCKDOWN_MMIOTRACE] = "unsafe mmio", 59 [LOCKDOWN_DEBUGFS] = "debugfs access", 60 [LOCKDOWN_XMON_WR] = "xmon write access", 61 [LOCKDOWN_BPF_WRITE_USER] = "use of bpf to write user RAM", 62 [LOCKDOWN_DBG_WRITE_KERNEL] = "use of kgdb/kdb to write kernel RAM", 63 [LOCKDOWN_RTAS_ERROR_INJECTION] = "RTAS error injection", 64 [LOCKDOWN_INTEGRITY_MAX] = "integrity", 65 [LOCKDOWN_KCORE] = "/proc/kcore access", 66 [LOCKDOWN_KPROBES] = "use of kprobes", 67 [LOCKDOWN_BPF_READ_KERNEL] = "use of bpf to read kernel RAM", 68 [LOCKDOWN_DBG_READ_KERNEL] = "use of kgdb/kdb to read kernel RAM", 69 [LOCKDOWN_PERF] = "unsafe use of perf", 70 [LOCKDOWN_TRACEFS] = "use of tracefs", 71 [LOCKDOWN_XMON_RW] = "xmon read and write access", 72 [LOCKDOWN_XFRM_SECRET] = "xfrm SA secret", 73 [LOCKDOWN_CONFIDENTIALITY_MAX] = "confidentiality", 74 }; 75 76 struct security_hook_heads security_hook_heads __ro_after_init; 77 static BLOCKING_NOTIFIER_HEAD(blocking_lsm_notifier_chain); 78 79 static struct kmem_cache *lsm_file_cache; 80 static struct kmem_cache *lsm_inode_cache; 81 82 char *lsm_names; 83 static struct lsm_blob_sizes blob_sizes __ro_after_init; 84 85 /* Boot-time LSM user choice */ 86 static __initdata const char *chosen_lsm_order; 87 static __initdata const char *chosen_major_lsm; 88 89 static __initconst const char *const builtin_lsm_order = CONFIG_LSM; 90 91 /* Ordered list of LSMs to initialize. */ 92 static __initdata struct lsm_info **ordered_lsms; 93 static __initdata struct lsm_info *exclusive; 94 95 static __initdata bool debug; 96 #define init_debug(...) \ 97 do { \ 98 if (debug) \ 99 pr_info(__VA_ARGS__); \ 100 } while (0) 101 102 static bool __init is_enabled(struct lsm_info *lsm) 103 { 104 if (!lsm->enabled) 105 return false; 106 107 return *lsm->enabled; 108 } 109 110 /* Mark an LSM's enabled flag. */ 111 static int lsm_enabled_true __initdata = 1; 112 static int lsm_enabled_false __initdata = 0; 113 static void __init set_enabled(struct lsm_info *lsm, bool enabled) 114 { 115 /* 116 * When an LSM hasn't configured an enable variable, we can use 117 * a hard-coded location for storing the default enabled state. 118 */ 119 if (!lsm->enabled) { 120 if (enabled) 121 lsm->enabled = &lsm_enabled_true; 122 else 123 lsm->enabled = &lsm_enabled_false; 124 } else if (lsm->enabled == &lsm_enabled_true) { 125 if (!enabled) 126 lsm->enabled = &lsm_enabled_false; 127 } else if (lsm->enabled == &lsm_enabled_false) { 128 if (enabled) 129 lsm->enabled = &lsm_enabled_true; 130 } else { 131 *lsm->enabled = enabled; 132 } 133 } 134 135 /* Is an LSM already listed in the ordered LSMs list? */ 136 static bool __init exists_ordered_lsm(struct lsm_info *lsm) 137 { 138 struct lsm_info **check; 139 140 for (check = ordered_lsms; *check; check++) 141 if (*check == lsm) 142 return true; 143 144 return false; 145 } 146 147 /* Append an LSM to the list of ordered LSMs to initialize. */ 148 static int last_lsm __initdata; 149 static void __init append_ordered_lsm(struct lsm_info *lsm, const char *from) 150 { 151 /* Ignore duplicate selections. */ 152 if (exists_ordered_lsm(lsm)) 153 return; 154 155 if (WARN(last_lsm == LSM_COUNT, "%s: out of LSM slots!?\n", from)) 156 return; 157 158 /* Enable this LSM, if it is not already set. */ 159 if (!lsm->enabled) 160 lsm->enabled = &lsm_enabled_true; 161 ordered_lsms[last_lsm++] = lsm; 162 163 init_debug("%s ordered: %s (%s)\n", from, lsm->name, 164 is_enabled(lsm) ? "enabled" : "disabled"); 165 } 166 167 /* Is an LSM allowed to be initialized? */ 168 static bool __init lsm_allowed(struct lsm_info *lsm) 169 { 170 /* Skip if the LSM is disabled. */ 171 if (!is_enabled(lsm)) 172 return false; 173 174 /* Not allowed if another exclusive LSM already initialized. */ 175 if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && exclusive) { 176 init_debug("exclusive disabled: %s\n", lsm->name); 177 return false; 178 } 179 180 return true; 181 } 182 183 static void __init lsm_set_blob_size(int *need, int *lbs) 184 { 185 int offset; 186 187 if (*need <= 0) 188 return; 189 190 offset = ALIGN(*lbs, sizeof(void *)); 191 *lbs = offset + *need; 192 *need = offset; 193 } 194 195 static void __init lsm_set_blob_sizes(struct lsm_blob_sizes *needed) 196 { 197 if (!needed) 198 return; 199 200 lsm_set_blob_size(&needed->lbs_cred, &blob_sizes.lbs_cred); 201 lsm_set_blob_size(&needed->lbs_file, &blob_sizes.lbs_file); 202 /* 203 * The inode blob gets an rcu_head in addition to 204 * what the modules might need. 205 */ 206 if (needed->lbs_inode && blob_sizes.lbs_inode == 0) 207 blob_sizes.lbs_inode = sizeof(struct rcu_head); 208 lsm_set_blob_size(&needed->lbs_inode, &blob_sizes.lbs_inode); 209 lsm_set_blob_size(&needed->lbs_ipc, &blob_sizes.lbs_ipc); 210 lsm_set_blob_size(&needed->lbs_msg_msg, &blob_sizes.lbs_msg_msg); 211 lsm_set_blob_size(&needed->lbs_superblock, &blob_sizes.lbs_superblock); 212 lsm_set_blob_size(&needed->lbs_task, &blob_sizes.lbs_task); 213 lsm_set_blob_size(&needed->lbs_xattr_count, 214 &blob_sizes.lbs_xattr_count); 215 } 216 217 /* Prepare LSM for initialization. */ 218 static void __init prepare_lsm(struct lsm_info *lsm) 219 { 220 int enabled = lsm_allowed(lsm); 221 222 /* Record enablement (to handle any following exclusive LSMs). */ 223 set_enabled(lsm, enabled); 224 225 /* If enabled, do pre-initialization work. */ 226 if (enabled) { 227 if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && !exclusive) { 228 exclusive = lsm; 229 init_debug("exclusive chosen: %s\n", lsm->name); 230 } 231 232 lsm_set_blob_sizes(lsm->blobs); 233 } 234 } 235 236 /* Initialize a given LSM, if it is enabled. */ 237 static void __init initialize_lsm(struct lsm_info *lsm) 238 { 239 if (is_enabled(lsm)) { 240 int ret; 241 242 init_debug("initializing %s\n", lsm->name); 243 ret = lsm->init(); 244 WARN(ret, "%s failed to initialize: %d\n", lsm->name, ret); 245 } 246 } 247 248 /* Populate ordered LSMs list from comma-separated LSM name list. */ 249 static void __init ordered_lsm_parse(const char *order, const char *origin) 250 { 251 struct lsm_info *lsm; 252 char *sep, *name, *next; 253 254 /* LSM_ORDER_FIRST is always first. */ 255 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { 256 if (lsm->order == LSM_ORDER_FIRST) 257 append_ordered_lsm(lsm, " first"); 258 } 259 260 /* Process "security=", if given. */ 261 if (chosen_major_lsm) { 262 struct lsm_info *major; 263 264 /* 265 * To match the original "security=" behavior, this 266 * explicitly does NOT fallback to another Legacy Major 267 * if the selected one was separately disabled: disable 268 * all non-matching Legacy Major LSMs. 269 */ 270 for (major = __start_lsm_info; major < __end_lsm_info; 271 major++) { 272 if ((major->flags & LSM_FLAG_LEGACY_MAJOR) && 273 strcmp(major->name, chosen_major_lsm) != 0) { 274 set_enabled(major, false); 275 init_debug("security=%s disabled: %s (only one legacy major LSM)\n", 276 chosen_major_lsm, major->name); 277 } 278 } 279 } 280 281 sep = kstrdup(order, GFP_KERNEL); 282 next = sep; 283 /* Walk the list, looking for matching LSMs. */ 284 while ((name = strsep(&next, ",")) != NULL) { 285 bool found = false; 286 287 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { 288 if (strcmp(lsm->name, name) == 0) { 289 if (lsm->order == LSM_ORDER_MUTABLE) 290 append_ordered_lsm(lsm, origin); 291 found = true; 292 } 293 } 294 295 if (!found) 296 init_debug("%s ignored: %s (not built into kernel)\n", 297 origin, name); 298 } 299 300 /* Process "security=", if given. */ 301 if (chosen_major_lsm) { 302 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { 303 if (exists_ordered_lsm(lsm)) 304 continue; 305 if (strcmp(lsm->name, chosen_major_lsm) == 0) 306 append_ordered_lsm(lsm, "security="); 307 } 308 } 309 310 /* LSM_ORDER_LAST is always last. */ 311 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { 312 if (lsm->order == LSM_ORDER_LAST) 313 append_ordered_lsm(lsm, " last"); 314 } 315 316 /* Disable all LSMs not in the ordered list. */ 317 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { 318 if (exists_ordered_lsm(lsm)) 319 continue; 320 set_enabled(lsm, false); 321 init_debug("%s skipped: %s (not in requested order)\n", 322 origin, lsm->name); 323 } 324 325 kfree(sep); 326 } 327 328 static void __init lsm_early_cred(struct cred *cred); 329 static void __init lsm_early_task(struct task_struct *task); 330 331 static int lsm_append(const char *new, char **result); 332 333 static void __init report_lsm_order(void) 334 { 335 struct lsm_info **lsm, *early; 336 int first = 0; 337 338 pr_info("initializing lsm="); 339 340 /* Report each enabled LSM name, comma separated. */ 341 for (early = __start_early_lsm_info; 342 early < __end_early_lsm_info; early++) 343 if (is_enabled(early)) 344 pr_cont("%s%s", first++ == 0 ? "" : ",", early->name); 345 for (lsm = ordered_lsms; *lsm; lsm++) 346 if (is_enabled(*lsm)) 347 pr_cont("%s%s", first++ == 0 ? "" : ",", (*lsm)->name); 348 349 pr_cont("\n"); 350 } 351 352 static void __init ordered_lsm_init(void) 353 { 354 struct lsm_info **lsm; 355 356 ordered_lsms = kcalloc(LSM_COUNT + 1, sizeof(*ordered_lsms), 357 GFP_KERNEL); 358 359 if (chosen_lsm_order) { 360 if (chosen_major_lsm) { 361 pr_warn("security=%s is ignored because it is superseded by lsm=%s\n", 362 chosen_major_lsm, chosen_lsm_order); 363 chosen_major_lsm = NULL; 364 } 365 ordered_lsm_parse(chosen_lsm_order, "cmdline"); 366 } else 367 ordered_lsm_parse(builtin_lsm_order, "builtin"); 368 369 for (lsm = ordered_lsms; *lsm; lsm++) 370 prepare_lsm(*lsm); 371 372 report_lsm_order(); 373 374 init_debug("cred blob size = %d\n", blob_sizes.lbs_cred); 375 init_debug("file blob size = %d\n", blob_sizes.lbs_file); 376 init_debug("inode blob size = %d\n", blob_sizes.lbs_inode); 377 init_debug("ipc blob size = %d\n", blob_sizes.lbs_ipc); 378 init_debug("msg_msg blob size = %d\n", blob_sizes.lbs_msg_msg); 379 init_debug("superblock blob size = %d\n", blob_sizes.lbs_superblock); 380 init_debug("task blob size = %d\n", blob_sizes.lbs_task); 381 init_debug("xattr slots = %d\n", blob_sizes.lbs_xattr_count); 382 383 /* 384 * Create any kmem_caches needed for blobs 385 */ 386 if (blob_sizes.lbs_file) 387 lsm_file_cache = kmem_cache_create("lsm_file_cache", 388 blob_sizes.lbs_file, 0, 389 SLAB_PANIC, NULL); 390 if (blob_sizes.lbs_inode) 391 lsm_inode_cache = kmem_cache_create("lsm_inode_cache", 392 blob_sizes.lbs_inode, 0, 393 SLAB_PANIC, NULL); 394 395 lsm_early_cred((struct cred *) current->cred); 396 lsm_early_task(current); 397 for (lsm = ordered_lsms; *lsm; lsm++) 398 initialize_lsm(*lsm); 399 400 kfree(ordered_lsms); 401 } 402 403 int __init early_security_init(void) 404 { 405 struct lsm_info *lsm; 406 407 #define LSM_HOOK(RET, DEFAULT, NAME, ...) \ 408 INIT_HLIST_HEAD(&security_hook_heads.NAME); 409 #include "linux/lsm_hook_defs.h" 410 #undef LSM_HOOK 411 412 for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) { 413 if (!lsm->enabled) 414 lsm->enabled = &lsm_enabled_true; 415 prepare_lsm(lsm); 416 initialize_lsm(lsm); 417 } 418 419 return 0; 420 } 421 422 /** 423 * security_init - initializes the security framework 424 * 425 * This should be called early in the kernel initialization sequence. 426 */ 427 int __init security_init(void) 428 { 429 struct lsm_info *lsm; 430 431 init_debug("legacy security=%s\n", chosen_major_lsm ? : " *unspecified*"); 432 init_debug(" CONFIG_LSM=%s\n", builtin_lsm_order); 433 init_debug("boot arg lsm=%s\n", chosen_lsm_order ? : " *unspecified*"); 434 435 /* 436 * Append the names of the early LSM modules now that kmalloc() is 437 * available 438 */ 439 for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) { 440 init_debug(" early started: %s (%s)\n", lsm->name, 441 is_enabled(lsm) ? "enabled" : "disabled"); 442 if (lsm->enabled) 443 lsm_append(lsm->name, &lsm_names); 444 } 445 446 /* Load LSMs in specified order. */ 447 ordered_lsm_init(); 448 449 return 0; 450 } 451 452 /* Save user chosen LSM */ 453 static int __init choose_major_lsm(char *str) 454 { 455 chosen_major_lsm = str; 456 return 1; 457 } 458 __setup("security=", choose_major_lsm); 459 460 /* Explicitly choose LSM initialization order. */ 461 static int __init choose_lsm_order(char *str) 462 { 463 chosen_lsm_order = str; 464 return 1; 465 } 466 __setup("lsm=", choose_lsm_order); 467 468 /* Enable LSM order debugging. */ 469 static int __init enable_debug(char *str) 470 { 471 debug = true; 472 return 1; 473 } 474 __setup("lsm.debug", enable_debug); 475 476 static bool match_last_lsm(const char *list, const char *lsm) 477 { 478 const char *last; 479 480 if (WARN_ON(!list || !lsm)) 481 return false; 482 last = strrchr(list, ','); 483 if (last) 484 /* Pass the comma, strcmp() will check for '\0' */ 485 last++; 486 else 487 last = list; 488 return !strcmp(last, lsm); 489 } 490 491 static int lsm_append(const char *new, char **result) 492 { 493 char *cp; 494 495 if (*result == NULL) { 496 *result = kstrdup(new, GFP_KERNEL); 497 if (*result == NULL) 498 return -ENOMEM; 499 } else { 500 /* Check if it is the last registered name */ 501 if (match_last_lsm(*result, new)) 502 return 0; 503 cp = kasprintf(GFP_KERNEL, "%s,%s", *result, new); 504 if (cp == NULL) 505 return -ENOMEM; 506 kfree(*result); 507 *result = cp; 508 } 509 return 0; 510 } 511 512 /** 513 * security_add_hooks - Add a modules hooks to the hook lists. 514 * @hooks: the hooks to add 515 * @count: the number of hooks to add 516 * @lsm: the name of the security module 517 * 518 * Each LSM has to register its hooks with the infrastructure. 519 */ 520 void __init security_add_hooks(struct security_hook_list *hooks, int count, 521 const char *lsm) 522 { 523 int i; 524 525 for (i = 0; i < count; i++) { 526 hooks[i].lsm = lsm; 527 hlist_add_tail_rcu(&hooks[i].list, hooks[i].head); 528 } 529 530 /* 531 * Don't try to append during early_security_init(), we'll come back 532 * and fix this up afterwards. 533 */ 534 if (slab_is_available()) { 535 if (lsm_append(lsm, &lsm_names) < 0) 536 panic("%s - Cannot get early memory.\n", __func__); 537 } 538 } 539 540 int call_blocking_lsm_notifier(enum lsm_event event, void *data) 541 { 542 return blocking_notifier_call_chain(&blocking_lsm_notifier_chain, 543 event, data); 544 } 545 EXPORT_SYMBOL(call_blocking_lsm_notifier); 546 547 int register_blocking_lsm_notifier(struct notifier_block *nb) 548 { 549 return blocking_notifier_chain_register(&blocking_lsm_notifier_chain, 550 nb); 551 } 552 EXPORT_SYMBOL(register_blocking_lsm_notifier); 553 554 int unregister_blocking_lsm_notifier(struct notifier_block *nb) 555 { 556 return blocking_notifier_chain_unregister(&blocking_lsm_notifier_chain, 557 nb); 558 } 559 EXPORT_SYMBOL(unregister_blocking_lsm_notifier); 560 561 /** 562 * lsm_cred_alloc - allocate a composite cred blob 563 * @cred: the cred that needs a blob 564 * @gfp: allocation type 565 * 566 * Allocate the cred blob for all the modules 567 * 568 * Returns 0, or -ENOMEM if memory can't be allocated. 569 */ 570 static int lsm_cred_alloc(struct cred *cred, gfp_t gfp) 571 { 572 if (blob_sizes.lbs_cred == 0) { 573 cred->security = NULL; 574 return 0; 575 } 576 577 cred->security = kzalloc(blob_sizes.lbs_cred, gfp); 578 if (cred->security == NULL) 579 return -ENOMEM; 580 return 0; 581 } 582 583 /** 584 * lsm_early_cred - during initialization allocate a composite cred blob 585 * @cred: the cred that needs a blob 586 * 587 * Allocate the cred blob for all the modules 588 */ 589 static void __init lsm_early_cred(struct cred *cred) 590 { 591 int rc = lsm_cred_alloc(cred, GFP_KERNEL); 592 593 if (rc) 594 panic("%s: Early cred alloc failed.\n", __func__); 595 } 596 597 /** 598 * lsm_file_alloc - allocate a composite file blob 599 * @file: the file that needs a blob 600 * 601 * Allocate the file blob for all the modules 602 * 603 * Returns 0, or -ENOMEM if memory can't be allocated. 604 */ 605 static int lsm_file_alloc(struct file *file) 606 { 607 if (!lsm_file_cache) { 608 file->f_security = NULL; 609 return 0; 610 } 611 612 file->f_security = kmem_cache_zalloc(lsm_file_cache, GFP_KERNEL); 613 if (file->f_security == NULL) 614 return -ENOMEM; 615 return 0; 616 } 617 618 /** 619 * lsm_inode_alloc - allocate a composite inode blob 620 * @inode: the inode that needs a blob 621 * 622 * Allocate the inode blob for all the modules 623 * 624 * Returns 0, or -ENOMEM if memory can't be allocated. 625 */ 626 int lsm_inode_alloc(struct inode *inode) 627 { 628 if (!lsm_inode_cache) { 629 inode->i_security = NULL; 630 return 0; 631 } 632 633 inode->i_security = kmem_cache_zalloc(lsm_inode_cache, GFP_NOFS); 634 if (inode->i_security == NULL) 635 return -ENOMEM; 636 return 0; 637 } 638 639 /** 640 * lsm_task_alloc - allocate a composite task blob 641 * @task: the task that needs a blob 642 * 643 * Allocate the task blob for all the modules 644 * 645 * Returns 0, or -ENOMEM if memory can't be allocated. 646 */ 647 static int lsm_task_alloc(struct task_struct *task) 648 { 649 if (blob_sizes.lbs_task == 0) { 650 task->security = NULL; 651 return 0; 652 } 653 654 task->security = kzalloc(blob_sizes.lbs_task, GFP_KERNEL); 655 if (task->security == NULL) 656 return -ENOMEM; 657 return 0; 658 } 659 660 /** 661 * lsm_ipc_alloc - allocate a composite ipc blob 662 * @kip: the ipc that needs a blob 663 * 664 * Allocate the ipc blob for all the modules 665 * 666 * Returns 0, or -ENOMEM if memory can't be allocated. 667 */ 668 static int lsm_ipc_alloc(struct kern_ipc_perm *kip) 669 { 670 if (blob_sizes.lbs_ipc == 0) { 671 kip->security = NULL; 672 return 0; 673 } 674 675 kip->security = kzalloc(blob_sizes.lbs_ipc, GFP_KERNEL); 676 if (kip->security == NULL) 677 return -ENOMEM; 678 return 0; 679 } 680 681 /** 682 * lsm_msg_msg_alloc - allocate a composite msg_msg blob 683 * @mp: the msg_msg that needs a blob 684 * 685 * Allocate the ipc blob for all the modules 686 * 687 * Returns 0, or -ENOMEM if memory can't be allocated. 688 */ 689 static int lsm_msg_msg_alloc(struct msg_msg *mp) 690 { 691 if (blob_sizes.lbs_msg_msg == 0) { 692 mp->security = NULL; 693 return 0; 694 } 695 696 mp->security = kzalloc(blob_sizes.lbs_msg_msg, GFP_KERNEL); 697 if (mp->security == NULL) 698 return -ENOMEM; 699 return 0; 700 } 701 702 /** 703 * lsm_early_task - during initialization allocate a composite task blob 704 * @task: the task that needs a blob 705 * 706 * Allocate the task blob for all the modules 707 */ 708 static void __init lsm_early_task(struct task_struct *task) 709 { 710 int rc = lsm_task_alloc(task); 711 712 if (rc) 713 panic("%s: Early task alloc failed.\n", __func__); 714 } 715 716 /** 717 * lsm_superblock_alloc - allocate a composite superblock blob 718 * @sb: the superblock that needs a blob 719 * 720 * Allocate the superblock blob for all the modules 721 * 722 * Returns 0, or -ENOMEM if memory can't be allocated. 723 */ 724 static int lsm_superblock_alloc(struct super_block *sb) 725 { 726 if (blob_sizes.lbs_superblock == 0) { 727 sb->s_security = NULL; 728 return 0; 729 } 730 731 sb->s_security = kzalloc(blob_sizes.lbs_superblock, GFP_KERNEL); 732 if (sb->s_security == NULL) 733 return -ENOMEM; 734 return 0; 735 } 736 737 /* 738 * The default value of the LSM hook is defined in linux/lsm_hook_defs.h and 739 * can be accessed with: 740 * 741 * LSM_RET_DEFAULT(<hook_name>) 742 * 743 * The macros below define static constants for the default value of each 744 * LSM hook. 745 */ 746 #define LSM_RET_DEFAULT(NAME) (NAME##_default) 747 #define DECLARE_LSM_RET_DEFAULT_void(DEFAULT, NAME) 748 #define DECLARE_LSM_RET_DEFAULT_int(DEFAULT, NAME) \ 749 static const int __maybe_unused LSM_RET_DEFAULT(NAME) = (DEFAULT); 750 #define LSM_HOOK(RET, DEFAULT, NAME, ...) \ 751 DECLARE_LSM_RET_DEFAULT_##RET(DEFAULT, NAME) 752 753 #include <linux/lsm_hook_defs.h> 754 #undef LSM_HOOK 755 756 /* 757 * Hook list operation macros. 758 * 759 * call_void_hook: 760 * This is a hook that does not return a value. 761 * 762 * call_int_hook: 763 * This is a hook that returns a value. 764 */ 765 766 #define call_void_hook(FUNC, ...) \ 767 do { \ 768 struct security_hook_list *P; \ 769 \ 770 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) \ 771 P->hook.FUNC(__VA_ARGS__); \ 772 } while (0) 773 774 #define call_int_hook(FUNC, IRC, ...) ({ \ 775 int RC = IRC; \ 776 do { \ 777 struct security_hook_list *P; \ 778 \ 779 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) { \ 780 RC = P->hook.FUNC(__VA_ARGS__); \ 781 if (RC != 0) \ 782 break; \ 783 } \ 784 } while (0); \ 785 RC; \ 786 }) 787 788 /* Security operations */ 789 790 /** 791 * security_binder_set_context_mgr() - Check if becoming binder ctx mgr is ok 792 * @mgr: task credentials of current binder process 793 * 794 * Check whether @mgr is allowed to be the binder context manager. 795 * 796 * Return: Return 0 if permission is granted. 797 */ 798 int security_binder_set_context_mgr(const struct cred *mgr) 799 { 800 return call_int_hook(binder_set_context_mgr, 0, mgr); 801 } 802 803 /** 804 * security_binder_transaction() - Check if a binder transaction is allowed 805 * @from: sending process 806 * @to: receiving process 807 * 808 * Check whether @from is allowed to invoke a binder transaction call to @to. 809 * 810 * Return: Returns 0 if permission is granted. 811 */ 812 int security_binder_transaction(const struct cred *from, 813 const struct cred *to) 814 { 815 return call_int_hook(binder_transaction, 0, from, to); 816 } 817 818 /** 819 * security_binder_transfer_binder() - Check if a binder transfer is allowed 820 * @from: sending process 821 * @to: receiving process 822 * 823 * Check whether @from is allowed to transfer a binder reference to @to. 824 * 825 * Return: Returns 0 if permission is granted. 826 */ 827 int security_binder_transfer_binder(const struct cred *from, 828 const struct cred *to) 829 { 830 return call_int_hook(binder_transfer_binder, 0, from, to); 831 } 832 833 /** 834 * security_binder_transfer_file() - Check if a binder file xfer is allowed 835 * @from: sending process 836 * @to: receiving process 837 * @file: file being transferred 838 * 839 * Check whether @from is allowed to transfer @file to @to. 840 * 841 * Return: Returns 0 if permission is granted. 842 */ 843 int security_binder_transfer_file(const struct cred *from, 844 const struct cred *to, const struct file *file) 845 { 846 return call_int_hook(binder_transfer_file, 0, from, to, file); 847 } 848 849 /** 850 * security_ptrace_access_check() - Check if tracing is allowed 851 * @child: target process 852 * @mode: PTRACE_MODE flags 853 * 854 * Check permission before allowing the current process to trace the @child 855 * process. Security modules may also want to perform a process tracing check 856 * during an execve in the set_security or apply_creds hooks of tracing check 857 * during an execve in the bprm_set_creds hook of binprm_security_ops if the 858 * process is being traced and its security attributes would be changed by the 859 * execve. 860 * 861 * Return: Returns 0 if permission is granted. 862 */ 863 int security_ptrace_access_check(struct task_struct *child, unsigned int mode) 864 { 865 return call_int_hook(ptrace_access_check, 0, child, mode); 866 } 867 868 /** 869 * security_ptrace_traceme() - Check if tracing is allowed 870 * @parent: tracing process 871 * 872 * Check that the @parent process has sufficient permission to trace the 873 * current process before allowing the current process to present itself to the 874 * @parent process for tracing. 875 * 876 * Return: Returns 0 if permission is granted. 877 */ 878 int security_ptrace_traceme(struct task_struct *parent) 879 { 880 return call_int_hook(ptrace_traceme, 0, parent); 881 } 882 883 /** 884 * security_capget() - Get the capability sets for a process 885 * @target: target process 886 * @effective: effective capability set 887 * @inheritable: inheritable capability set 888 * @permitted: permitted capability set 889 * 890 * Get the @effective, @inheritable, and @permitted capability sets for the 891 * @target process. The hook may also perform permission checking to determine 892 * if the current process is allowed to see the capability sets of the @target 893 * process. 894 * 895 * Return: Returns 0 if the capability sets were successfully obtained. 896 */ 897 int security_capget(const struct task_struct *target, 898 kernel_cap_t *effective, 899 kernel_cap_t *inheritable, 900 kernel_cap_t *permitted) 901 { 902 return call_int_hook(capget, 0, target, 903 effective, inheritable, permitted); 904 } 905 906 /** 907 * security_capset() - Set the capability sets for a process 908 * @new: new credentials for the target process 909 * @old: current credentials of the target process 910 * @effective: effective capability set 911 * @inheritable: inheritable capability set 912 * @permitted: permitted capability set 913 * 914 * Set the @effective, @inheritable, and @permitted capability sets for the 915 * current process. 916 * 917 * Return: Returns 0 and update @new if permission is granted. 918 */ 919 int security_capset(struct cred *new, const struct cred *old, 920 const kernel_cap_t *effective, 921 const kernel_cap_t *inheritable, 922 const kernel_cap_t *permitted) 923 { 924 return call_int_hook(capset, 0, new, old, 925 effective, inheritable, permitted); 926 } 927 928 /** 929 * security_capable() - Check if a process has the necessary capability 930 * @cred: credentials to examine 931 * @ns: user namespace 932 * @cap: capability requested 933 * @opts: capability check options 934 * 935 * Check whether the @tsk process has the @cap capability in the indicated 936 * credentials. @cap contains the capability <include/linux/capability.h>. 937 * @opts contains options for the capable check <include/linux/security.h>. 938 * 939 * Return: Returns 0 if the capability is granted. 940 */ 941 int security_capable(const struct cred *cred, 942 struct user_namespace *ns, 943 int cap, 944 unsigned int opts) 945 { 946 return call_int_hook(capable, 0, cred, ns, cap, opts); 947 } 948 949 /** 950 * security_quotactl() - Check if a quotactl() syscall is allowed for this fs 951 * @cmds: commands 952 * @type: type 953 * @id: id 954 * @sb: filesystem 955 * 956 * Check whether the quotactl syscall is allowed for this @sb. 957 * 958 * Return: Returns 0 if permission is granted. 959 */ 960 int security_quotactl(int cmds, int type, int id, const struct super_block *sb) 961 { 962 return call_int_hook(quotactl, 0, cmds, type, id, sb); 963 } 964 965 /** 966 * security_quota_on() - Check if QUOTAON is allowed for a dentry 967 * @dentry: dentry 968 * 969 * Check whether QUOTAON is allowed for @dentry. 970 * 971 * Return: Returns 0 if permission is granted. 972 */ 973 int security_quota_on(struct dentry *dentry) 974 { 975 return call_int_hook(quota_on, 0, dentry); 976 } 977 978 /** 979 * security_syslog() - Check if accessing the kernel message ring is allowed 980 * @type: SYSLOG_ACTION_* type 981 * 982 * Check permission before accessing the kernel message ring or changing 983 * logging to the console. See the syslog(2) manual page for an explanation of 984 * the @type values. 985 * 986 * Return: Return 0 if permission is granted. 987 */ 988 int security_syslog(int type) 989 { 990 return call_int_hook(syslog, 0, type); 991 } 992 993 /** 994 * security_settime64() - Check if changing the system time is allowed 995 * @ts: new time 996 * @tz: timezone 997 * 998 * Check permission to change the system time, struct timespec64 is defined in 999 * <include/linux/time64.h> and timezone is defined in <include/linux/time.h>. 1000 * 1001 * Return: Returns 0 if permission is granted. 1002 */ 1003 int security_settime64(const struct timespec64 *ts, const struct timezone *tz) 1004 { 1005 return call_int_hook(settime, 0, ts, tz); 1006 } 1007 1008 /** 1009 * security_vm_enough_memory_mm() - Check if allocating a new mem map is allowed 1010 * @mm: mm struct 1011 * @pages: number of pages 1012 * 1013 * Check permissions for allocating a new virtual mapping. If all LSMs return 1014 * a positive value, __vm_enough_memory() will be called with cap_sys_admin 1015 * set. If at least one LSM returns 0 or negative, __vm_enough_memory() will be 1016 * called with cap_sys_admin cleared. 1017 * 1018 * Return: Returns 0 if permission is granted by the LSM infrastructure to the 1019 * caller. 1020 */ 1021 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages) 1022 { 1023 struct security_hook_list *hp; 1024 int cap_sys_admin = 1; 1025 int rc; 1026 1027 /* 1028 * The module will respond with a positive value if 1029 * it thinks the __vm_enough_memory() call should be 1030 * made with the cap_sys_admin set. If all of the modules 1031 * agree that it should be set it will. If any module 1032 * thinks it should not be set it won't. 1033 */ 1034 hlist_for_each_entry(hp, &security_hook_heads.vm_enough_memory, list) { 1035 rc = hp->hook.vm_enough_memory(mm, pages); 1036 if (rc <= 0) { 1037 cap_sys_admin = 0; 1038 break; 1039 } 1040 } 1041 return __vm_enough_memory(mm, pages, cap_sys_admin); 1042 } 1043 1044 /** 1045 * security_bprm_creds_for_exec() - Prepare the credentials for exec() 1046 * @bprm: binary program information 1047 * 1048 * If the setup in prepare_exec_creds did not setup @bprm->cred->security 1049 * properly for executing @bprm->file, update the LSM's portion of 1050 * @bprm->cred->security to be what commit_creds needs to install for the new 1051 * program. This hook may also optionally check permissions (e.g. for 1052 * transitions between security domains). The hook must set @bprm->secureexec 1053 * to 1 if AT_SECURE should be set to request libc enable secure mode. @bprm 1054 * contains the linux_binprm structure. 1055 * 1056 * Return: Returns 0 if the hook is successful and permission is granted. 1057 */ 1058 int security_bprm_creds_for_exec(struct linux_binprm *bprm) 1059 { 1060 return call_int_hook(bprm_creds_for_exec, 0, bprm); 1061 } 1062 1063 /** 1064 * security_bprm_creds_from_file() - Update linux_binprm creds based on file 1065 * @bprm: binary program information 1066 * @file: associated file 1067 * 1068 * If @file is setpcap, suid, sgid or otherwise marked to change privilege upon 1069 * exec, update @bprm->cred to reflect that change. This is called after 1070 * finding the binary that will be executed without an interpreter. This 1071 * ensures that the credentials will not be derived from a script that the 1072 * binary will need to reopen, which when reopend may end up being a completely 1073 * different file. This hook may also optionally check permissions (e.g. for 1074 * transitions between security domains). The hook must set @bprm->secureexec 1075 * to 1 if AT_SECURE should be set to request libc enable secure mode. The 1076 * hook must add to @bprm->per_clear any personality flags that should be 1077 * cleared from current->personality. @bprm contains the linux_binprm 1078 * structure. 1079 * 1080 * Return: Returns 0 if the hook is successful and permission is granted. 1081 */ 1082 int security_bprm_creds_from_file(struct linux_binprm *bprm, const struct file *file) 1083 { 1084 return call_int_hook(bprm_creds_from_file, 0, bprm, file); 1085 } 1086 1087 /** 1088 * security_bprm_check() - Mediate binary handler search 1089 * @bprm: binary program information 1090 * 1091 * This hook mediates the point when a search for a binary handler will begin. 1092 * It allows a check against the @bprm->cred->security value which was set in 1093 * the preceding creds_for_exec call. The argv list and envp list are reliably 1094 * available in @bprm. This hook may be called multiple times during a single 1095 * execve. @bprm contains the linux_binprm structure. 1096 * 1097 * Return: Returns 0 if the hook is successful and permission is granted. 1098 */ 1099 int security_bprm_check(struct linux_binprm *bprm) 1100 { 1101 int ret; 1102 1103 ret = call_int_hook(bprm_check_security, 0, bprm); 1104 if (ret) 1105 return ret; 1106 return ima_bprm_check(bprm); 1107 } 1108 1109 /** 1110 * security_bprm_committing_creds() - Install creds for a process during exec() 1111 * @bprm: binary program information 1112 * 1113 * Prepare to install the new security attributes of a process being 1114 * transformed by an execve operation, based on the old credentials pointed to 1115 * by @current->cred and the information set in @bprm->cred by the 1116 * bprm_creds_for_exec hook. @bprm points to the linux_binprm structure. This 1117 * hook is a good place to perform state changes on the process such as closing 1118 * open file descriptors to which access will no longer be granted when the 1119 * attributes are changed. This is called immediately before commit_creds(). 1120 */ 1121 void security_bprm_committing_creds(const struct linux_binprm *bprm) 1122 { 1123 call_void_hook(bprm_committing_creds, bprm); 1124 } 1125 1126 /** 1127 * security_bprm_committed_creds() - Tidy up after cred install during exec() 1128 * @bprm: binary program information 1129 * 1130 * Tidy up after the installation of the new security attributes of a process 1131 * being transformed by an execve operation. The new credentials have, by this 1132 * point, been set to @current->cred. @bprm points to the linux_binprm 1133 * structure. This hook is a good place to perform state changes on the 1134 * process such as clearing out non-inheritable signal state. This is called 1135 * immediately after commit_creds(). 1136 */ 1137 void security_bprm_committed_creds(const struct linux_binprm *bprm) 1138 { 1139 call_void_hook(bprm_committed_creds, bprm); 1140 } 1141 1142 /** 1143 * security_fs_context_submount() - Initialise fc->security 1144 * @fc: new filesystem context 1145 * @reference: dentry reference for submount/remount 1146 * 1147 * Fill out the ->security field for a new fs_context. 1148 * 1149 * Return: Returns 0 on success or negative error code on failure. 1150 */ 1151 int security_fs_context_submount(struct fs_context *fc, struct super_block *reference) 1152 { 1153 return call_int_hook(fs_context_submount, 0, fc, reference); 1154 } 1155 1156 /** 1157 * security_fs_context_dup() - Duplicate a fs_context LSM blob 1158 * @fc: destination filesystem context 1159 * @src_fc: source filesystem context 1160 * 1161 * Allocate and attach a security structure to sc->security. This pointer is 1162 * initialised to NULL by the caller. @fc indicates the new filesystem context. 1163 * @src_fc indicates the original filesystem context. 1164 * 1165 * Return: Returns 0 on success or a negative error code on failure. 1166 */ 1167 int security_fs_context_dup(struct fs_context *fc, struct fs_context *src_fc) 1168 { 1169 return call_int_hook(fs_context_dup, 0, fc, src_fc); 1170 } 1171 1172 /** 1173 * security_fs_context_parse_param() - Configure a filesystem context 1174 * @fc: filesystem context 1175 * @param: filesystem parameter 1176 * 1177 * Userspace provided a parameter to configure a superblock. The LSM can 1178 * consume the parameter or return it to the caller for use elsewhere. 1179 * 1180 * Return: If the parameter is used by the LSM it should return 0, if it is 1181 * returned to the caller -ENOPARAM is returned, otherwise a negative 1182 * error code is returned. 1183 */ 1184 int security_fs_context_parse_param(struct fs_context *fc, 1185 struct fs_parameter *param) 1186 { 1187 struct security_hook_list *hp; 1188 int trc; 1189 int rc = -ENOPARAM; 1190 1191 hlist_for_each_entry(hp, &security_hook_heads.fs_context_parse_param, 1192 list) { 1193 trc = hp->hook.fs_context_parse_param(fc, param); 1194 if (trc == 0) 1195 rc = 0; 1196 else if (trc != -ENOPARAM) 1197 return trc; 1198 } 1199 return rc; 1200 } 1201 1202 /** 1203 * security_sb_alloc() - Allocate a super_block LSM blob 1204 * @sb: filesystem superblock 1205 * 1206 * Allocate and attach a security structure to the sb->s_security field. The 1207 * s_security field is initialized to NULL when the structure is allocated. 1208 * @sb contains the super_block structure to be modified. 1209 * 1210 * Return: Returns 0 if operation was successful. 1211 */ 1212 int security_sb_alloc(struct super_block *sb) 1213 { 1214 int rc = lsm_superblock_alloc(sb); 1215 1216 if (unlikely(rc)) 1217 return rc; 1218 rc = call_int_hook(sb_alloc_security, 0, sb); 1219 if (unlikely(rc)) 1220 security_sb_free(sb); 1221 return rc; 1222 } 1223 1224 /** 1225 * security_sb_delete() - Release super_block LSM associated objects 1226 * @sb: filesystem superblock 1227 * 1228 * Release objects tied to a superblock (e.g. inodes). @sb contains the 1229 * super_block structure being released. 1230 */ 1231 void security_sb_delete(struct super_block *sb) 1232 { 1233 call_void_hook(sb_delete, sb); 1234 } 1235 1236 /** 1237 * security_sb_free() - Free a super_block LSM blob 1238 * @sb: filesystem superblock 1239 * 1240 * Deallocate and clear the sb->s_security field. @sb contains the super_block 1241 * structure to be modified. 1242 */ 1243 void security_sb_free(struct super_block *sb) 1244 { 1245 call_void_hook(sb_free_security, sb); 1246 kfree(sb->s_security); 1247 sb->s_security = NULL; 1248 } 1249 1250 /** 1251 * security_free_mnt_opts() - Free memory associated with mount options 1252 * @mnt_opts: LSM processed mount options 1253 * 1254 * Free memory associated with @mnt_ops. 1255 */ 1256 void security_free_mnt_opts(void **mnt_opts) 1257 { 1258 if (!*mnt_opts) 1259 return; 1260 call_void_hook(sb_free_mnt_opts, *mnt_opts); 1261 *mnt_opts = NULL; 1262 } 1263 EXPORT_SYMBOL(security_free_mnt_opts); 1264 1265 /** 1266 * security_sb_eat_lsm_opts() - Consume LSM mount options 1267 * @options: mount options 1268 * @mnt_opts: LSM processed mount options 1269 * 1270 * Eat (scan @options) and save them in @mnt_opts. 1271 * 1272 * Return: Returns 0 on success, negative values on failure. 1273 */ 1274 int security_sb_eat_lsm_opts(char *options, void **mnt_opts) 1275 { 1276 return call_int_hook(sb_eat_lsm_opts, 0, options, mnt_opts); 1277 } 1278 EXPORT_SYMBOL(security_sb_eat_lsm_opts); 1279 1280 /** 1281 * security_sb_mnt_opts_compat() - Check if new mount options are allowed 1282 * @sb: filesystem superblock 1283 * @mnt_opts: new mount options 1284 * 1285 * Determine if the new mount options in @mnt_opts are allowed given the 1286 * existing mounted filesystem at @sb. @sb superblock being compared. 1287 * 1288 * Return: Returns 0 if options are compatible. 1289 */ 1290 int security_sb_mnt_opts_compat(struct super_block *sb, 1291 void *mnt_opts) 1292 { 1293 return call_int_hook(sb_mnt_opts_compat, 0, sb, mnt_opts); 1294 } 1295 EXPORT_SYMBOL(security_sb_mnt_opts_compat); 1296 1297 /** 1298 * security_sb_remount() - Verify no incompatible mount changes during remount 1299 * @sb: filesystem superblock 1300 * @mnt_opts: (re)mount options 1301 * 1302 * Extracts security system specific mount options and verifies no changes are 1303 * being made to those options. 1304 * 1305 * Return: Returns 0 if permission is granted. 1306 */ 1307 int security_sb_remount(struct super_block *sb, 1308 void *mnt_opts) 1309 { 1310 return call_int_hook(sb_remount, 0, sb, mnt_opts); 1311 } 1312 EXPORT_SYMBOL(security_sb_remount); 1313 1314 /** 1315 * security_sb_kern_mount() - Check if a kernel mount is allowed 1316 * @sb: filesystem superblock 1317 * 1318 * Mount this @sb if allowed by permissions. 1319 * 1320 * Return: Returns 0 if permission is granted. 1321 */ 1322 int security_sb_kern_mount(const struct super_block *sb) 1323 { 1324 return call_int_hook(sb_kern_mount, 0, sb); 1325 } 1326 1327 /** 1328 * security_sb_show_options() - Output the mount options for a superblock 1329 * @m: output file 1330 * @sb: filesystem superblock 1331 * 1332 * Show (print on @m) mount options for this @sb. 1333 * 1334 * Return: Returns 0 on success, negative values on failure. 1335 */ 1336 int security_sb_show_options(struct seq_file *m, struct super_block *sb) 1337 { 1338 return call_int_hook(sb_show_options, 0, m, sb); 1339 } 1340 1341 /** 1342 * security_sb_statfs() - Check if accessing fs stats is allowed 1343 * @dentry: superblock handle 1344 * 1345 * Check permission before obtaining filesystem statistics for the @mnt 1346 * mountpoint. @dentry is a handle on the superblock for the filesystem. 1347 * 1348 * Return: Returns 0 if permission is granted. 1349 */ 1350 int security_sb_statfs(struct dentry *dentry) 1351 { 1352 return call_int_hook(sb_statfs, 0, dentry); 1353 } 1354 1355 /** 1356 * security_sb_mount() - Check permission for mounting a filesystem 1357 * @dev_name: filesystem backing device 1358 * @path: mount point 1359 * @type: filesystem type 1360 * @flags: mount flags 1361 * @data: filesystem specific data 1362 * 1363 * Check permission before an object specified by @dev_name is mounted on the 1364 * mount point named by @nd. For an ordinary mount, @dev_name identifies a 1365 * device if the file system type requires a device. For a remount 1366 * (@flags & MS_REMOUNT), @dev_name is irrelevant. For a loopback/bind mount 1367 * (@flags & MS_BIND), @dev_name identifies the pathname of the object being 1368 * mounted. 1369 * 1370 * Return: Returns 0 if permission is granted. 1371 */ 1372 int security_sb_mount(const char *dev_name, const struct path *path, 1373 const char *type, unsigned long flags, void *data) 1374 { 1375 return call_int_hook(sb_mount, 0, dev_name, path, type, flags, data); 1376 } 1377 1378 /** 1379 * security_sb_umount() - Check permission for unmounting a filesystem 1380 * @mnt: mounted filesystem 1381 * @flags: unmount flags 1382 * 1383 * Check permission before the @mnt file system is unmounted. 1384 * 1385 * Return: Returns 0 if permission is granted. 1386 */ 1387 int security_sb_umount(struct vfsmount *mnt, int flags) 1388 { 1389 return call_int_hook(sb_umount, 0, mnt, flags); 1390 } 1391 1392 /** 1393 * security_sb_pivotroot() - Check permissions for pivoting the rootfs 1394 * @old_path: new location for current rootfs 1395 * @new_path: location of the new rootfs 1396 * 1397 * Check permission before pivoting the root filesystem. 1398 * 1399 * Return: Returns 0 if permission is granted. 1400 */ 1401 int security_sb_pivotroot(const struct path *old_path, 1402 const struct path *new_path) 1403 { 1404 return call_int_hook(sb_pivotroot, 0, old_path, new_path); 1405 } 1406 1407 /** 1408 * security_sb_set_mnt_opts() - Set the mount options for a filesystem 1409 * @sb: filesystem superblock 1410 * @mnt_opts: binary mount options 1411 * @kern_flags: kernel flags (in) 1412 * @set_kern_flags: kernel flags (out) 1413 * 1414 * Set the security relevant mount options used for a superblock. 1415 * 1416 * Return: Returns 0 on success, error on failure. 1417 */ 1418 int security_sb_set_mnt_opts(struct super_block *sb, 1419 void *mnt_opts, 1420 unsigned long kern_flags, 1421 unsigned long *set_kern_flags) 1422 { 1423 return call_int_hook(sb_set_mnt_opts, 1424 mnt_opts ? -EOPNOTSUPP : 0, sb, 1425 mnt_opts, kern_flags, set_kern_flags); 1426 } 1427 EXPORT_SYMBOL(security_sb_set_mnt_opts); 1428 1429 /** 1430 * security_sb_clone_mnt_opts() - Duplicate superblock mount options 1431 * @oldsb: source superblock 1432 * @newsb: destination superblock 1433 * @kern_flags: kernel flags (in) 1434 * @set_kern_flags: kernel flags (out) 1435 * 1436 * Copy all security options from a given superblock to another. 1437 * 1438 * Return: Returns 0 on success, error on failure. 1439 */ 1440 int security_sb_clone_mnt_opts(const struct super_block *oldsb, 1441 struct super_block *newsb, 1442 unsigned long kern_flags, 1443 unsigned long *set_kern_flags) 1444 { 1445 return call_int_hook(sb_clone_mnt_opts, 0, oldsb, newsb, 1446 kern_flags, set_kern_flags); 1447 } 1448 EXPORT_SYMBOL(security_sb_clone_mnt_opts); 1449 1450 /** 1451 * security_move_mount() - Check permissions for moving a mount 1452 * @from_path: source mount point 1453 * @to_path: destination mount point 1454 * 1455 * Check permission before a mount is moved. 1456 * 1457 * Return: Returns 0 if permission is granted. 1458 */ 1459 int security_move_mount(const struct path *from_path, 1460 const struct path *to_path) 1461 { 1462 return call_int_hook(move_mount, 0, from_path, to_path); 1463 } 1464 1465 /** 1466 * security_path_notify() - Check if setting a watch is allowed 1467 * @path: file path 1468 * @mask: event mask 1469 * @obj_type: file path type 1470 * 1471 * Check permissions before setting a watch on events as defined by @mask, on 1472 * an object at @path, whose type is defined by @obj_type. 1473 * 1474 * Return: Returns 0 if permission is granted. 1475 */ 1476 int security_path_notify(const struct path *path, u64 mask, 1477 unsigned int obj_type) 1478 { 1479 return call_int_hook(path_notify, 0, path, mask, obj_type); 1480 } 1481 1482 /** 1483 * security_inode_alloc() - Allocate an inode LSM blob 1484 * @inode: the inode 1485 * 1486 * Allocate and attach a security structure to @inode->i_security. The 1487 * i_security field is initialized to NULL when the inode structure is 1488 * allocated. 1489 * 1490 * Return: Return 0 if operation was successful. 1491 */ 1492 int security_inode_alloc(struct inode *inode) 1493 { 1494 int rc = lsm_inode_alloc(inode); 1495 1496 if (unlikely(rc)) 1497 return rc; 1498 rc = call_int_hook(inode_alloc_security, 0, inode); 1499 if (unlikely(rc)) 1500 security_inode_free(inode); 1501 return rc; 1502 } 1503 1504 static void inode_free_by_rcu(struct rcu_head *head) 1505 { 1506 /* 1507 * The rcu head is at the start of the inode blob 1508 */ 1509 kmem_cache_free(lsm_inode_cache, head); 1510 } 1511 1512 /** 1513 * security_inode_free() - Free an inode's LSM blob 1514 * @inode: the inode 1515 * 1516 * Deallocate the inode security structure and set @inode->i_security to NULL. 1517 */ 1518 void security_inode_free(struct inode *inode) 1519 { 1520 integrity_inode_free(inode); 1521 call_void_hook(inode_free_security, inode); 1522 /* 1523 * The inode may still be referenced in a path walk and 1524 * a call to security_inode_permission() can be made 1525 * after inode_free_security() is called. Ideally, the VFS 1526 * wouldn't do this, but fixing that is a much harder 1527 * job. For now, simply free the i_security via RCU, and 1528 * leave the current inode->i_security pointer intact. 1529 * The inode will be freed after the RCU grace period too. 1530 */ 1531 if (inode->i_security) 1532 call_rcu((struct rcu_head *)inode->i_security, 1533 inode_free_by_rcu); 1534 } 1535 1536 /** 1537 * security_dentry_init_security() - Perform dentry initialization 1538 * @dentry: the dentry to initialize 1539 * @mode: mode used to determine resource type 1540 * @name: name of the last path component 1541 * @xattr_name: name of the security/LSM xattr 1542 * @ctx: pointer to the resulting LSM context 1543 * @ctxlen: length of @ctx 1544 * 1545 * Compute a context for a dentry as the inode is not yet available since NFSv4 1546 * has no label backed by an EA anyway. It is important to note that 1547 * @xattr_name does not need to be free'd by the caller, it is a static string. 1548 * 1549 * Return: Returns 0 on success, negative values on failure. 1550 */ 1551 int security_dentry_init_security(struct dentry *dentry, int mode, 1552 const struct qstr *name, 1553 const char **xattr_name, void **ctx, 1554 u32 *ctxlen) 1555 { 1556 struct security_hook_list *hp; 1557 int rc; 1558 1559 /* 1560 * Only one module will provide a security context. 1561 */ 1562 hlist_for_each_entry(hp, &security_hook_heads.dentry_init_security, 1563 list) { 1564 rc = hp->hook.dentry_init_security(dentry, mode, name, 1565 xattr_name, ctx, ctxlen); 1566 if (rc != LSM_RET_DEFAULT(dentry_init_security)) 1567 return rc; 1568 } 1569 return LSM_RET_DEFAULT(dentry_init_security); 1570 } 1571 EXPORT_SYMBOL(security_dentry_init_security); 1572 1573 /** 1574 * security_dentry_create_files_as() - Perform dentry initialization 1575 * @dentry: the dentry to initialize 1576 * @mode: mode used to determine resource type 1577 * @name: name of the last path component 1578 * @old: creds to use for LSM context calculations 1579 * @new: creds to modify 1580 * 1581 * Compute a context for a dentry as the inode is not yet available and set 1582 * that context in passed in creds so that new files are created using that 1583 * context. Context is calculated using the passed in creds and not the creds 1584 * of the caller. 1585 * 1586 * Return: Returns 0 on success, error on failure. 1587 */ 1588 int security_dentry_create_files_as(struct dentry *dentry, int mode, 1589 struct qstr *name, 1590 const struct cred *old, struct cred *new) 1591 { 1592 return call_int_hook(dentry_create_files_as, 0, dentry, mode, 1593 name, old, new); 1594 } 1595 EXPORT_SYMBOL(security_dentry_create_files_as); 1596 1597 /** 1598 * security_inode_init_security() - Initialize an inode's LSM context 1599 * @inode: the inode 1600 * @dir: parent directory 1601 * @qstr: last component of the pathname 1602 * @initxattrs: callback function to write xattrs 1603 * @fs_data: filesystem specific data 1604 * 1605 * Obtain the security attribute name suffix and value to set on a newly 1606 * created inode and set up the incore security field for the new inode. This 1607 * hook is called by the fs code as part of the inode creation transaction and 1608 * provides for atomic labeling of the inode, unlike the post_create/mkdir/... 1609 * hooks called by the VFS. 1610 * 1611 * The hook function is expected to populate the xattrs array, by calling 1612 * lsm_get_xattr_slot() to retrieve the slots reserved by the security module 1613 * with the lbs_xattr_count field of the lsm_blob_sizes structure. For each 1614 * slot, the hook function should set ->name to the attribute name suffix 1615 * (e.g. selinux), to allocate ->value (will be freed by the caller) and set it 1616 * to the attribute value, to set ->value_len to the length of the value. If 1617 * the security module does not use security attributes or does not wish to put 1618 * a security attribute on this particular inode, then it should return 1619 * -EOPNOTSUPP to skip this processing. 1620 * 1621 * Return: Returns 0 if the LSM successfully initialized all of the inode 1622 * security attributes that are required, negative values otherwise. 1623 */ 1624 int security_inode_init_security(struct inode *inode, struct inode *dir, 1625 const struct qstr *qstr, 1626 const initxattrs initxattrs, void *fs_data) 1627 { 1628 struct security_hook_list *hp; 1629 struct xattr *new_xattrs = NULL; 1630 int ret = -EOPNOTSUPP, xattr_count = 0; 1631 1632 if (unlikely(IS_PRIVATE(inode))) 1633 return 0; 1634 1635 if (!blob_sizes.lbs_xattr_count) 1636 return 0; 1637 1638 if (initxattrs) { 1639 /* Allocate +1 for EVM and +1 as terminator. */ 1640 new_xattrs = kcalloc(blob_sizes.lbs_xattr_count + 2, 1641 sizeof(*new_xattrs), GFP_NOFS); 1642 if (!new_xattrs) 1643 return -ENOMEM; 1644 } 1645 1646 hlist_for_each_entry(hp, &security_hook_heads.inode_init_security, 1647 list) { 1648 ret = hp->hook.inode_init_security(inode, dir, qstr, new_xattrs, 1649 &xattr_count); 1650 if (ret && ret != -EOPNOTSUPP) 1651 goto out; 1652 /* 1653 * As documented in lsm_hooks.h, -EOPNOTSUPP in this context 1654 * means that the LSM is not willing to provide an xattr, not 1655 * that it wants to signal an error. Thus, continue to invoke 1656 * the remaining LSMs. 1657 */ 1658 } 1659 1660 /* If initxattrs() is NULL, xattr_count is zero, skip the call. */ 1661 if (!xattr_count) 1662 goto out; 1663 1664 ret = evm_inode_init_security(inode, dir, qstr, new_xattrs, 1665 &xattr_count); 1666 if (ret) 1667 goto out; 1668 ret = initxattrs(inode, new_xattrs, fs_data); 1669 out: 1670 for (; xattr_count > 0; xattr_count--) 1671 kfree(new_xattrs[xattr_count - 1].value); 1672 kfree(new_xattrs); 1673 return (ret == -EOPNOTSUPP) ? 0 : ret; 1674 } 1675 EXPORT_SYMBOL(security_inode_init_security); 1676 1677 /** 1678 * security_inode_init_security_anon() - Initialize an anonymous inode 1679 * @inode: the inode 1680 * @name: the anonymous inode class 1681 * @context_inode: an optional related inode 1682 * 1683 * Set up the incore security field for the new anonymous inode and return 1684 * whether the inode creation is permitted by the security module or not. 1685 * 1686 * Return: Returns 0 on success, -EACCES if the security module denies the 1687 * creation of this inode, or another -errno upon other errors. 1688 */ 1689 int security_inode_init_security_anon(struct inode *inode, 1690 const struct qstr *name, 1691 const struct inode *context_inode) 1692 { 1693 return call_int_hook(inode_init_security_anon, 0, inode, name, 1694 context_inode); 1695 } 1696 1697 #ifdef CONFIG_SECURITY_PATH 1698 /** 1699 * security_path_mknod() - Check if creating a special file is allowed 1700 * @dir: parent directory 1701 * @dentry: new file 1702 * @mode: new file mode 1703 * @dev: device number 1704 * 1705 * Check permissions when creating a file. Note that this hook is called even 1706 * if mknod operation is being done for a regular file. 1707 * 1708 * Return: Returns 0 if permission is granted. 1709 */ 1710 int security_path_mknod(const struct path *dir, struct dentry *dentry, 1711 umode_t mode, unsigned int dev) 1712 { 1713 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 1714 return 0; 1715 return call_int_hook(path_mknod, 0, dir, dentry, mode, dev); 1716 } 1717 EXPORT_SYMBOL(security_path_mknod); 1718 1719 /** 1720 * security_path_mkdir() - Check if creating a new directory is allowed 1721 * @dir: parent directory 1722 * @dentry: new directory 1723 * @mode: new directory mode 1724 * 1725 * Check permissions to create a new directory in the existing directory. 1726 * 1727 * Return: Returns 0 if permission is granted. 1728 */ 1729 int security_path_mkdir(const struct path *dir, struct dentry *dentry, 1730 umode_t mode) 1731 { 1732 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 1733 return 0; 1734 return call_int_hook(path_mkdir, 0, dir, dentry, mode); 1735 } 1736 EXPORT_SYMBOL(security_path_mkdir); 1737 1738 /** 1739 * security_path_rmdir() - Check if removing a directory is allowed 1740 * @dir: parent directory 1741 * @dentry: directory to remove 1742 * 1743 * Check the permission to remove a directory. 1744 * 1745 * Return: Returns 0 if permission is granted. 1746 */ 1747 int security_path_rmdir(const struct path *dir, struct dentry *dentry) 1748 { 1749 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 1750 return 0; 1751 return call_int_hook(path_rmdir, 0, dir, dentry); 1752 } 1753 1754 /** 1755 * security_path_unlink() - Check if removing a hard link is allowed 1756 * @dir: parent directory 1757 * @dentry: file 1758 * 1759 * Check the permission to remove a hard link to a file. 1760 * 1761 * Return: Returns 0 if permission is granted. 1762 */ 1763 int security_path_unlink(const struct path *dir, struct dentry *dentry) 1764 { 1765 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 1766 return 0; 1767 return call_int_hook(path_unlink, 0, dir, dentry); 1768 } 1769 EXPORT_SYMBOL(security_path_unlink); 1770 1771 /** 1772 * security_path_symlink() - Check if creating a symbolic link is allowed 1773 * @dir: parent directory 1774 * @dentry: symbolic link 1775 * @old_name: file pathname 1776 * 1777 * Check the permission to create a symbolic link to a file. 1778 * 1779 * Return: Returns 0 if permission is granted. 1780 */ 1781 int security_path_symlink(const struct path *dir, struct dentry *dentry, 1782 const char *old_name) 1783 { 1784 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 1785 return 0; 1786 return call_int_hook(path_symlink, 0, dir, dentry, old_name); 1787 } 1788 1789 /** 1790 * security_path_link - Check if creating a hard link is allowed 1791 * @old_dentry: existing file 1792 * @new_dir: new parent directory 1793 * @new_dentry: new link 1794 * 1795 * Check permission before creating a new hard link to a file. 1796 * 1797 * Return: Returns 0 if permission is granted. 1798 */ 1799 int security_path_link(struct dentry *old_dentry, const struct path *new_dir, 1800 struct dentry *new_dentry) 1801 { 1802 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)))) 1803 return 0; 1804 return call_int_hook(path_link, 0, old_dentry, new_dir, new_dentry); 1805 } 1806 1807 /** 1808 * security_path_rename() - Check if renaming a file is allowed 1809 * @old_dir: parent directory of the old file 1810 * @old_dentry: the old file 1811 * @new_dir: parent directory of the new file 1812 * @new_dentry: the new file 1813 * @flags: flags 1814 * 1815 * Check for permission to rename a file or directory. 1816 * 1817 * Return: Returns 0 if permission is granted. 1818 */ 1819 int security_path_rename(const struct path *old_dir, struct dentry *old_dentry, 1820 const struct path *new_dir, struct dentry *new_dentry, 1821 unsigned int flags) 1822 { 1823 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) || 1824 (d_is_positive(new_dentry) && 1825 IS_PRIVATE(d_backing_inode(new_dentry))))) 1826 return 0; 1827 1828 return call_int_hook(path_rename, 0, old_dir, old_dentry, new_dir, 1829 new_dentry, flags); 1830 } 1831 EXPORT_SYMBOL(security_path_rename); 1832 1833 /** 1834 * security_path_truncate() - Check if truncating a file is allowed 1835 * @path: file 1836 * 1837 * Check permission before truncating the file indicated by path. Note that 1838 * truncation permissions may also be checked based on already opened files, 1839 * using the security_file_truncate() hook. 1840 * 1841 * Return: Returns 0 if permission is granted. 1842 */ 1843 int security_path_truncate(const struct path *path) 1844 { 1845 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 1846 return 0; 1847 return call_int_hook(path_truncate, 0, path); 1848 } 1849 1850 /** 1851 * security_path_chmod() - Check if changing the file's mode is allowed 1852 * @path: file 1853 * @mode: new mode 1854 * 1855 * Check for permission to change a mode of the file @path. The new mode is 1856 * specified in @mode which is a bitmask of constants from 1857 * <include/uapi/linux/stat.h>. 1858 * 1859 * Return: Returns 0 if permission is granted. 1860 */ 1861 int security_path_chmod(const struct path *path, umode_t mode) 1862 { 1863 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 1864 return 0; 1865 return call_int_hook(path_chmod, 0, path, mode); 1866 } 1867 1868 /** 1869 * security_path_chown() - Check if changing the file's owner/group is allowed 1870 * @path: file 1871 * @uid: file owner 1872 * @gid: file group 1873 * 1874 * Check for permission to change owner/group of a file or directory. 1875 * 1876 * Return: Returns 0 if permission is granted. 1877 */ 1878 int security_path_chown(const struct path *path, kuid_t uid, kgid_t gid) 1879 { 1880 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 1881 return 0; 1882 return call_int_hook(path_chown, 0, path, uid, gid); 1883 } 1884 1885 /** 1886 * security_path_chroot() - Check if changing the root directory is allowed 1887 * @path: directory 1888 * 1889 * Check for permission to change root directory. 1890 * 1891 * Return: Returns 0 if permission is granted. 1892 */ 1893 int security_path_chroot(const struct path *path) 1894 { 1895 return call_int_hook(path_chroot, 0, path); 1896 } 1897 #endif /* CONFIG_SECURITY_PATH */ 1898 1899 /** 1900 * security_inode_create() - Check if creating a file is allowed 1901 * @dir: the parent directory 1902 * @dentry: the file being created 1903 * @mode: requested file mode 1904 * 1905 * Check permission to create a regular file. 1906 * 1907 * Return: Returns 0 if permission is granted. 1908 */ 1909 int security_inode_create(struct inode *dir, struct dentry *dentry, 1910 umode_t mode) 1911 { 1912 if (unlikely(IS_PRIVATE(dir))) 1913 return 0; 1914 return call_int_hook(inode_create, 0, dir, dentry, mode); 1915 } 1916 EXPORT_SYMBOL_GPL(security_inode_create); 1917 1918 /** 1919 * security_inode_link() - Check if creating a hard link is allowed 1920 * @old_dentry: existing file 1921 * @dir: new parent directory 1922 * @new_dentry: new link 1923 * 1924 * Check permission before creating a new hard link to a file. 1925 * 1926 * Return: Returns 0 if permission is granted. 1927 */ 1928 int security_inode_link(struct dentry *old_dentry, struct inode *dir, 1929 struct dentry *new_dentry) 1930 { 1931 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)))) 1932 return 0; 1933 return call_int_hook(inode_link, 0, old_dentry, dir, new_dentry); 1934 } 1935 1936 /** 1937 * security_inode_unlink() - Check if removing a hard link is allowed 1938 * @dir: parent directory 1939 * @dentry: file 1940 * 1941 * Check the permission to remove a hard link to a file. 1942 * 1943 * Return: Returns 0 if permission is granted. 1944 */ 1945 int security_inode_unlink(struct inode *dir, struct dentry *dentry) 1946 { 1947 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1948 return 0; 1949 return call_int_hook(inode_unlink, 0, dir, dentry); 1950 } 1951 1952 /** 1953 * security_inode_symlink() - Check if creating a symbolic link is allowed 1954 * @dir: parent directory 1955 * @dentry: symbolic link 1956 * @old_name: existing filename 1957 * 1958 * Check the permission to create a symbolic link to a file. 1959 * 1960 * Return: Returns 0 if permission is granted. 1961 */ 1962 int security_inode_symlink(struct inode *dir, struct dentry *dentry, 1963 const char *old_name) 1964 { 1965 if (unlikely(IS_PRIVATE(dir))) 1966 return 0; 1967 return call_int_hook(inode_symlink, 0, dir, dentry, old_name); 1968 } 1969 1970 /** 1971 * security_inode_mkdir() - Check if creation a new director is allowed 1972 * @dir: parent directory 1973 * @dentry: new directory 1974 * @mode: new directory mode 1975 * 1976 * Check permissions to create a new directory in the existing directory 1977 * associated with inode structure @dir. 1978 * 1979 * Return: Returns 0 if permission is granted. 1980 */ 1981 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 1982 { 1983 if (unlikely(IS_PRIVATE(dir))) 1984 return 0; 1985 return call_int_hook(inode_mkdir, 0, dir, dentry, mode); 1986 } 1987 EXPORT_SYMBOL_GPL(security_inode_mkdir); 1988 1989 /** 1990 * security_inode_rmdir() - Check if removing a directory is allowed 1991 * @dir: parent directory 1992 * @dentry: directory to be removed 1993 * 1994 * Check the permission to remove a directory. 1995 * 1996 * Return: Returns 0 if permission is granted. 1997 */ 1998 int security_inode_rmdir(struct inode *dir, struct dentry *dentry) 1999 { 2000 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2001 return 0; 2002 return call_int_hook(inode_rmdir, 0, dir, dentry); 2003 } 2004 2005 /** 2006 * security_inode_mknod() - Check if creating a special file is allowed 2007 * @dir: parent directory 2008 * @dentry: new file 2009 * @mode: new file mode 2010 * @dev: device number 2011 * 2012 * Check permissions when creating a special file (or a socket or a fifo file 2013 * created via the mknod system call). Note that if mknod operation is being 2014 * done for a regular file, then the create hook will be called and not this 2015 * hook. 2016 * 2017 * Return: Returns 0 if permission is granted. 2018 */ 2019 int security_inode_mknod(struct inode *dir, struct dentry *dentry, 2020 umode_t mode, dev_t dev) 2021 { 2022 if (unlikely(IS_PRIVATE(dir))) 2023 return 0; 2024 return call_int_hook(inode_mknod, 0, dir, dentry, mode, dev); 2025 } 2026 2027 /** 2028 * security_inode_rename() - Check if renaming a file is allowed 2029 * @old_dir: parent directory of the old file 2030 * @old_dentry: the old file 2031 * @new_dir: parent directory of the new file 2032 * @new_dentry: the new file 2033 * @flags: flags 2034 * 2035 * Check for permission to rename a file or directory. 2036 * 2037 * Return: Returns 0 if permission is granted. 2038 */ 2039 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry, 2040 struct inode *new_dir, struct dentry *new_dentry, 2041 unsigned int flags) 2042 { 2043 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) || 2044 (d_is_positive(new_dentry) && 2045 IS_PRIVATE(d_backing_inode(new_dentry))))) 2046 return 0; 2047 2048 if (flags & RENAME_EXCHANGE) { 2049 int err = call_int_hook(inode_rename, 0, new_dir, new_dentry, 2050 old_dir, old_dentry); 2051 if (err) 2052 return err; 2053 } 2054 2055 return call_int_hook(inode_rename, 0, old_dir, old_dentry, 2056 new_dir, new_dentry); 2057 } 2058 2059 /** 2060 * security_inode_readlink() - Check if reading a symbolic link is allowed 2061 * @dentry: link 2062 * 2063 * Check the permission to read the symbolic link. 2064 * 2065 * Return: Returns 0 if permission is granted. 2066 */ 2067 int security_inode_readlink(struct dentry *dentry) 2068 { 2069 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2070 return 0; 2071 return call_int_hook(inode_readlink, 0, dentry); 2072 } 2073 2074 /** 2075 * security_inode_follow_link() - Check if following a symbolic link is allowed 2076 * @dentry: link dentry 2077 * @inode: link inode 2078 * @rcu: true if in RCU-walk mode 2079 * 2080 * Check permission to follow a symbolic link when looking up a pathname. If 2081 * @rcu is true, @inode is not stable. 2082 * 2083 * Return: Returns 0 if permission is granted. 2084 */ 2085 int security_inode_follow_link(struct dentry *dentry, struct inode *inode, 2086 bool rcu) 2087 { 2088 if (unlikely(IS_PRIVATE(inode))) 2089 return 0; 2090 return call_int_hook(inode_follow_link, 0, dentry, inode, rcu); 2091 } 2092 2093 /** 2094 * security_inode_permission() - Check if accessing an inode is allowed 2095 * @inode: inode 2096 * @mask: access mask 2097 * 2098 * Check permission before accessing an inode. This hook is called by the 2099 * existing Linux permission function, so a security module can use it to 2100 * provide additional checking for existing Linux permission checks. Notice 2101 * that this hook is called when a file is opened (as well as many other 2102 * operations), whereas the file_security_ops permission hook is called when 2103 * the actual read/write operations are performed. 2104 * 2105 * Return: Returns 0 if permission is granted. 2106 */ 2107 int security_inode_permission(struct inode *inode, int mask) 2108 { 2109 if (unlikely(IS_PRIVATE(inode))) 2110 return 0; 2111 return call_int_hook(inode_permission, 0, inode, mask); 2112 } 2113 2114 /** 2115 * security_inode_setattr() - Check if setting file attributes is allowed 2116 * @idmap: idmap of the mount 2117 * @dentry: file 2118 * @attr: new attributes 2119 * 2120 * Check permission before setting file attributes. Note that the kernel call 2121 * to notify_change is performed from several locations, whenever file 2122 * attributes change (such as when a file is truncated, chown/chmod operations, 2123 * transferring disk quotas, etc). 2124 * 2125 * Return: Returns 0 if permission is granted. 2126 */ 2127 int security_inode_setattr(struct mnt_idmap *idmap, 2128 struct dentry *dentry, struct iattr *attr) 2129 { 2130 int ret; 2131 2132 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2133 return 0; 2134 ret = call_int_hook(inode_setattr, 0, dentry, attr); 2135 if (ret) 2136 return ret; 2137 return evm_inode_setattr(idmap, dentry, attr); 2138 } 2139 EXPORT_SYMBOL_GPL(security_inode_setattr); 2140 2141 /** 2142 * security_inode_getattr() - Check if getting file attributes is allowed 2143 * @path: file 2144 * 2145 * Check permission before obtaining file attributes. 2146 * 2147 * Return: Returns 0 if permission is granted. 2148 */ 2149 int security_inode_getattr(const struct path *path) 2150 { 2151 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 2152 return 0; 2153 return call_int_hook(inode_getattr, 0, path); 2154 } 2155 2156 /** 2157 * security_inode_setxattr() - Check if setting file xattrs is allowed 2158 * @idmap: idmap of the mount 2159 * @dentry: file 2160 * @name: xattr name 2161 * @value: xattr value 2162 * @size: size of xattr value 2163 * @flags: flags 2164 * 2165 * Check permission before setting the extended attributes. 2166 * 2167 * Return: Returns 0 if permission is granted. 2168 */ 2169 int security_inode_setxattr(struct mnt_idmap *idmap, 2170 struct dentry *dentry, const char *name, 2171 const void *value, size_t size, int flags) 2172 { 2173 int ret; 2174 2175 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2176 return 0; 2177 /* 2178 * SELinux and Smack integrate the cap call, 2179 * so assume that all LSMs supplying this call do so. 2180 */ 2181 ret = call_int_hook(inode_setxattr, 1, idmap, dentry, name, value, 2182 size, flags); 2183 2184 if (ret == 1) 2185 ret = cap_inode_setxattr(dentry, name, value, size, flags); 2186 if (ret) 2187 return ret; 2188 ret = ima_inode_setxattr(dentry, name, value, size); 2189 if (ret) 2190 return ret; 2191 return evm_inode_setxattr(idmap, dentry, name, value, size); 2192 } 2193 2194 /** 2195 * security_inode_set_acl() - Check if setting posix acls is allowed 2196 * @idmap: idmap of the mount 2197 * @dentry: file 2198 * @acl_name: acl name 2199 * @kacl: acl struct 2200 * 2201 * Check permission before setting posix acls, the posix acls in @kacl are 2202 * identified by @acl_name. 2203 * 2204 * Return: Returns 0 if permission is granted. 2205 */ 2206 int security_inode_set_acl(struct mnt_idmap *idmap, 2207 struct dentry *dentry, const char *acl_name, 2208 struct posix_acl *kacl) 2209 { 2210 int ret; 2211 2212 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2213 return 0; 2214 ret = call_int_hook(inode_set_acl, 0, idmap, dentry, acl_name, 2215 kacl); 2216 if (ret) 2217 return ret; 2218 ret = ima_inode_set_acl(idmap, dentry, acl_name, kacl); 2219 if (ret) 2220 return ret; 2221 return evm_inode_set_acl(idmap, dentry, acl_name, kacl); 2222 } 2223 2224 /** 2225 * security_inode_get_acl() - Check if reading posix acls is allowed 2226 * @idmap: idmap of the mount 2227 * @dentry: file 2228 * @acl_name: acl name 2229 * 2230 * Check permission before getting osix acls, the posix acls are identified by 2231 * @acl_name. 2232 * 2233 * Return: Returns 0 if permission is granted. 2234 */ 2235 int security_inode_get_acl(struct mnt_idmap *idmap, 2236 struct dentry *dentry, const char *acl_name) 2237 { 2238 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2239 return 0; 2240 return call_int_hook(inode_get_acl, 0, idmap, dentry, acl_name); 2241 } 2242 2243 /** 2244 * security_inode_remove_acl() - Check if removing a posix acl is allowed 2245 * @idmap: idmap of the mount 2246 * @dentry: file 2247 * @acl_name: acl name 2248 * 2249 * Check permission before removing posix acls, the posix acls are identified 2250 * by @acl_name. 2251 * 2252 * Return: Returns 0 if permission is granted. 2253 */ 2254 int security_inode_remove_acl(struct mnt_idmap *idmap, 2255 struct dentry *dentry, const char *acl_name) 2256 { 2257 int ret; 2258 2259 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2260 return 0; 2261 ret = call_int_hook(inode_remove_acl, 0, idmap, dentry, acl_name); 2262 if (ret) 2263 return ret; 2264 ret = ima_inode_remove_acl(idmap, dentry, acl_name); 2265 if (ret) 2266 return ret; 2267 return evm_inode_remove_acl(idmap, dentry, acl_name); 2268 } 2269 2270 /** 2271 * security_inode_post_setxattr() - Update the inode after a setxattr operation 2272 * @dentry: file 2273 * @name: xattr name 2274 * @value: xattr value 2275 * @size: xattr value size 2276 * @flags: flags 2277 * 2278 * Update inode security field after successful setxattr operation. 2279 */ 2280 void security_inode_post_setxattr(struct dentry *dentry, const char *name, 2281 const void *value, size_t size, int flags) 2282 { 2283 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2284 return; 2285 call_void_hook(inode_post_setxattr, dentry, name, value, size, flags); 2286 evm_inode_post_setxattr(dentry, name, value, size); 2287 } 2288 2289 /** 2290 * security_inode_getxattr() - Check if xattr access is allowed 2291 * @dentry: file 2292 * @name: xattr name 2293 * 2294 * Check permission before obtaining the extended attributes identified by 2295 * @name for @dentry. 2296 * 2297 * Return: Returns 0 if permission is granted. 2298 */ 2299 int security_inode_getxattr(struct dentry *dentry, const char *name) 2300 { 2301 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2302 return 0; 2303 return call_int_hook(inode_getxattr, 0, dentry, name); 2304 } 2305 2306 /** 2307 * security_inode_listxattr() - Check if listing xattrs is allowed 2308 * @dentry: file 2309 * 2310 * Check permission before obtaining the list of extended attribute names for 2311 * @dentry. 2312 * 2313 * Return: Returns 0 if permission is granted. 2314 */ 2315 int security_inode_listxattr(struct dentry *dentry) 2316 { 2317 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2318 return 0; 2319 return call_int_hook(inode_listxattr, 0, dentry); 2320 } 2321 2322 /** 2323 * security_inode_removexattr() - Check if removing an xattr is allowed 2324 * @idmap: idmap of the mount 2325 * @dentry: file 2326 * @name: xattr name 2327 * 2328 * Check permission before removing the extended attribute identified by @name 2329 * for @dentry. 2330 * 2331 * Return: Returns 0 if permission is granted. 2332 */ 2333 int security_inode_removexattr(struct mnt_idmap *idmap, 2334 struct dentry *dentry, const char *name) 2335 { 2336 int ret; 2337 2338 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2339 return 0; 2340 /* 2341 * SELinux and Smack integrate the cap call, 2342 * so assume that all LSMs supplying this call do so. 2343 */ 2344 ret = call_int_hook(inode_removexattr, 1, idmap, dentry, name); 2345 if (ret == 1) 2346 ret = cap_inode_removexattr(idmap, dentry, name); 2347 if (ret) 2348 return ret; 2349 ret = ima_inode_removexattr(dentry, name); 2350 if (ret) 2351 return ret; 2352 return evm_inode_removexattr(idmap, dentry, name); 2353 } 2354 2355 /** 2356 * security_inode_need_killpriv() - Check if security_inode_killpriv() required 2357 * @dentry: associated dentry 2358 * 2359 * Called when an inode has been changed to determine if 2360 * security_inode_killpriv() should be called. 2361 * 2362 * Return: Return <0 on error to abort the inode change operation, return 0 if 2363 * security_inode_killpriv() does not need to be called, return >0 if 2364 * security_inode_killpriv() does need to be called. 2365 */ 2366 int security_inode_need_killpriv(struct dentry *dentry) 2367 { 2368 return call_int_hook(inode_need_killpriv, 0, dentry); 2369 } 2370 2371 /** 2372 * security_inode_killpriv() - The setuid bit is removed, update LSM state 2373 * @idmap: idmap of the mount 2374 * @dentry: associated dentry 2375 * 2376 * The @dentry's setuid bit is being removed. Remove similar security labels. 2377 * Called with the dentry->d_inode->i_mutex held. 2378 * 2379 * Return: Return 0 on success. If error is returned, then the operation 2380 * causing setuid bit removal is failed. 2381 */ 2382 int security_inode_killpriv(struct mnt_idmap *idmap, 2383 struct dentry *dentry) 2384 { 2385 return call_int_hook(inode_killpriv, 0, idmap, dentry); 2386 } 2387 2388 /** 2389 * security_inode_getsecurity() - Get the xattr security label of an inode 2390 * @idmap: idmap of the mount 2391 * @inode: inode 2392 * @name: xattr name 2393 * @buffer: security label buffer 2394 * @alloc: allocation flag 2395 * 2396 * Retrieve a copy of the extended attribute representation of the security 2397 * label associated with @name for @inode via @buffer. Note that @name is the 2398 * remainder of the attribute name after the security prefix has been removed. 2399 * @alloc is used to specify if the call should return a value via the buffer 2400 * or just the value length. 2401 * 2402 * Return: Returns size of buffer on success. 2403 */ 2404 int security_inode_getsecurity(struct mnt_idmap *idmap, 2405 struct inode *inode, const char *name, 2406 void **buffer, bool alloc) 2407 { 2408 struct security_hook_list *hp; 2409 int rc; 2410 2411 if (unlikely(IS_PRIVATE(inode))) 2412 return LSM_RET_DEFAULT(inode_getsecurity); 2413 /* 2414 * Only one module will provide an attribute with a given name. 2415 */ 2416 hlist_for_each_entry(hp, &security_hook_heads.inode_getsecurity, list) { 2417 rc = hp->hook.inode_getsecurity(idmap, inode, name, buffer, 2418 alloc); 2419 if (rc != LSM_RET_DEFAULT(inode_getsecurity)) 2420 return rc; 2421 } 2422 return LSM_RET_DEFAULT(inode_getsecurity); 2423 } 2424 2425 /** 2426 * security_inode_setsecurity() - Set the xattr security label of an inode 2427 * @inode: inode 2428 * @name: xattr name 2429 * @value: security label 2430 * @size: length of security label 2431 * @flags: flags 2432 * 2433 * Set the security label associated with @name for @inode from the extended 2434 * attribute value @value. @size indicates the size of the @value in bytes. 2435 * @flags may be XATTR_CREATE, XATTR_REPLACE, or 0. Note that @name is the 2436 * remainder of the attribute name after the security. prefix has been removed. 2437 * 2438 * Return: Returns 0 on success. 2439 */ 2440 int security_inode_setsecurity(struct inode *inode, const char *name, 2441 const void *value, size_t size, int flags) 2442 { 2443 struct security_hook_list *hp; 2444 int rc; 2445 2446 if (unlikely(IS_PRIVATE(inode))) 2447 return LSM_RET_DEFAULT(inode_setsecurity); 2448 /* 2449 * Only one module will provide an attribute with a given name. 2450 */ 2451 hlist_for_each_entry(hp, &security_hook_heads.inode_setsecurity, list) { 2452 rc = hp->hook.inode_setsecurity(inode, name, value, size, 2453 flags); 2454 if (rc != LSM_RET_DEFAULT(inode_setsecurity)) 2455 return rc; 2456 } 2457 return LSM_RET_DEFAULT(inode_setsecurity); 2458 } 2459 2460 /** 2461 * security_inode_listsecurity() - List the xattr security label names 2462 * @inode: inode 2463 * @buffer: buffer 2464 * @buffer_size: size of buffer 2465 * 2466 * Copy the extended attribute names for the security labels associated with 2467 * @inode into @buffer. The maximum size of @buffer is specified by 2468 * @buffer_size. @buffer may be NULL to request the size of the buffer 2469 * required. 2470 * 2471 * Return: Returns number of bytes used/required on success. 2472 */ 2473 int security_inode_listsecurity(struct inode *inode, 2474 char *buffer, size_t buffer_size) 2475 { 2476 if (unlikely(IS_PRIVATE(inode))) 2477 return 0; 2478 return call_int_hook(inode_listsecurity, 0, inode, buffer, buffer_size); 2479 } 2480 EXPORT_SYMBOL(security_inode_listsecurity); 2481 2482 /** 2483 * security_inode_getsecid() - Get an inode's secid 2484 * @inode: inode 2485 * @secid: secid to return 2486 * 2487 * Get the secid associated with the node. In case of failure, @secid will be 2488 * set to zero. 2489 */ 2490 void security_inode_getsecid(struct inode *inode, u32 *secid) 2491 { 2492 call_void_hook(inode_getsecid, inode, secid); 2493 } 2494 2495 /** 2496 * security_inode_copy_up() - Create new creds for an overlayfs copy-up op 2497 * @src: union dentry of copy-up file 2498 * @new: newly created creds 2499 * 2500 * A file is about to be copied up from lower layer to upper layer of overlay 2501 * filesystem. Security module can prepare a set of new creds and modify as 2502 * need be and return new creds. Caller will switch to new creds temporarily to 2503 * create new file and release newly allocated creds. 2504 * 2505 * Return: Returns 0 on success or a negative error code on error. 2506 */ 2507 int security_inode_copy_up(struct dentry *src, struct cred **new) 2508 { 2509 return call_int_hook(inode_copy_up, 0, src, new); 2510 } 2511 EXPORT_SYMBOL(security_inode_copy_up); 2512 2513 /** 2514 * security_inode_copy_up_xattr() - Filter xattrs in an overlayfs copy-up op 2515 * @name: xattr name 2516 * 2517 * Filter the xattrs being copied up when a unioned file is copied up from a 2518 * lower layer to the union/overlay layer. The caller is responsible for 2519 * reading and writing the xattrs, this hook is merely a filter. 2520 * 2521 * Return: Returns 0 to accept the xattr, 1 to discard the xattr, -EOPNOTSUPP 2522 * if the security module does not know about attribute, or a negative 2523 * error code to abort the copy up. 2524 */ 2525 int security_inode_copy_up_xattr(const char *name) 2526 { 2527 struct security_hook_list *hp; 2528 int rc; 2529 2530 /* 2531 * The implementation can return 0 (accept the xattr), 1 (discard the 2532 * xattr), -EOPNOTSUPP if it does not know anything about the xattr or 2533 * any other error code in case of an error. 2534 */ 2535 hlist_for_each_entry(hp, 2536 &security_hook_heads.inode_copy_up_xattr, list) { 2537 rc = hp->hook.inode_copy_up_xattr(name); 2538 if (rc != LSM_RET_DEFAULT(inode_copy_up_xattr)) 2539 return rc; 2540 } 2541 2542 return LSM_RET_DEFAULT(inode_copy_up_xattr); 2543 } 2544 EXPORT_SYMBOL(security_inode_copy_up_xattr); 2545 2546 /** 2547 * security_kernfs_init_security() - Init LSM context for a kernfs node 2548 * @kn_dir: parent kernfs node 2549 * @kn: the kernfs node to initialize 2550 * 2551 * Initialize the security context of a newly created kernfs node based on its 2552 * own and its parent's attributes. 2553 * 2554 * Return: Returns 0 if permission is granted. 2555 */ 2556 int security_kernfs_init_security(struct kernfs_node *kn_dir, 2557 struct kernfs_node *kn) 2558 { 2559 return call_int_hook(kernfs_init_security, 0, kn_dir, kn); 2560 } 2561 2562 /** 2563 * security_file_permission() - Check file permissions 2564 * @file: file 2565 * @mask: requested permissions 2566 * 2567 * Check file permissions before accessing an open file. This hook is called 2568 * by various operations that read or write files. A security module can use 2569 * this hook to perform additional checking on these operations, e.g. to 2570 * revalidate permissions on use to support privilege bracketing or policy 2571 * changes. Notice that this hook is used when the actual read/write 2572 * operations are performed, whereas the inode_security_ops hook is called when 2573 * a file is opened (as well as many other operations). Although this hook can 2574 * be used to revalidate permissions for various system call operations that 2575 * read or write files, it does not address the revalidation of permissions for 2576 * memory-mapped files. Security modules must handle this separately if they 2577 * need such revalidation. 2578 * 2579 * Return: Returns 0 if permission is granted. 2580 */ 2581 int security_file_permission(struct file *file, int mask) 2582 { 2583 int ret; 2584 2585 ret = call_int_hook(file_permission, 0, file, mask); 2586 if (ret) 2587 return ret; 2588 2589 return fsnotify_perm(file, mask); 2590 } 2591 2592 /** 2593 * security_file_alloc() - Allocate and init a file's LSM blob 2594 * @file: the file 2595 * 2596 * Allocate and attach a security structure to the file->f_security field. The 2597 * security field is initialized to NULL when the structure is first created. 2598 * 2599 * Return: Return 0 if the hook is successful and permission is granted. 2600 */ 2601 int security_file_alloc(struct file *file) 2602 { 2603 int rc = lsm_file_alloc(file); 2604 2605 if (rc) 2606 return rc; 2607 rc = call_int_hook(file_alloc_security, 0, file); 2608 if (unlikely(rc)) 2609 security_file_free(file); 2610 return rc; 2611 } 2612 2613 /** 2614 * security_file_free() - Free a file's LSM blob 2615 * @file: the file 2616 * 2617 * Deallocate and free any security structures stored in file->f_security. 2618 */ 2619 void security_file_free(struct file *file) 2620 { 2621 void *blob; 2622 2623 call_void_hook(file_free_security, file); 2624 2625 blob = file->f_security; 2626 if (blob) { 2627 file->f_security = NULL; 2628 kmem_cache_free(lsm_file_cache, blob); 2629 } 2630 } 2631 2632 /** 2633 * security_file_ioctl() - Check if an ioctl is allowed 2634 * @file: associated file 2635 * @cmd: ioctl cmd 2636 * @arg: ioctl arguments 2637 * 2638 * Check permission for an ioctl operation on @file. Note that @arg sometimes 2639 * represents a user space pointer; in other cases, it may be a simple integer 2640 * value. When @arg represents a user space pointer, it should never be used 2641 * by the security module. 2642 * 2643 * Return: Returns 0 if permission is granted. 2644 */ 2645 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 2646 { 2647 return call_int_hook(file_ioctl, 0, file, cmd, arg); 2648 } 2649 EXPORT_SYMBOL_GPL(security_file_ioctl); 2650 2651 static inline unsigned long mmap_prot(struct file *file, unsigned long prot) 2652 { 2653 /* 2654 * Does we have PROT_READ and does the application expect 2655 * it to imply PROT_EXEC? If not, nothing to talk about... 2656 */ 2657 if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ) 2658 return prot; 2659 if (!(current->personality & READ_IMPLIES_EXEC)) 2660 return prot; 2661 /* 2662 * if that's an anonymous mapping, let it. 2663 */ 2664 if (!file) 2665 return prot | PROT_EXEC; 2666 /* 2667 * ditto if it's not on noexec mount, except that on !MMU we need 2668 * NOMMU_MAP_EXEC (== VM_MAYEXEC) in this case 2669 */ 2670 if (!path_noexec(&file->f_path)) { 2671 #ifndef CONFIG_MMU 2672 if (file->f_op->mmap_capabilities) { 2673 unsigned caps = file->f_op->mmap_capabilities(file); 2674 if (!(caps & NOMMU_MAP_EXEC)) 2675 return prot; 2676 } 2677 #endif 2678 return prot | PROT_EXEC; 2679 } 2680 /* anything on noexec mount won't get PROT_EXEC */ 2681 return prot; 2682 } 2683 2684 /** 2685 * security_mmap_file() - Check if mmap'ing a file is allowed 2686 * @file: file 2687 * @prot: protection applied by the kernel 2688 * @flags: flags 2689 * 2690 * Check permissions for a mmap operation. The @file may be NULL, e.g. if 2691 * mapping anonymous memory. 2692 * 2693 * Return: Returns 0 if permission is granted. 2694 */ 2695 int security_mmap_file(struct file *file, unsigned long prot, 2696 unsigned long flags) 2697 { 2698 unsigned long prot_adj = mmap_prot(file, prot); 2699 int ret; 2700 2701 ret = call_int_hook(mmap_file, 0, file, prot, prot_adj, flags); 2702 if (ret) 2703 return ret; 2704 return ima_file_mmap(file, prot, prot_adj, flags); 2705 } 2706 2707 /** 2708 * security_mmap_addr() - Check if mmap'ing an address is allowed 2709 * @addr: address 2710 * 2711 * Check permissions for a mmap operation at @addr. 2712 * 2713 * Return: Returns 0 if permission is granted. 2714 */ 2715 int security_mmap_addr(unsigned long addr) 2716 { 2717 return call_int_hook(mmap_addr, 0, addr); 2718 } 2719 2720 /** 2721 * security_file_mprotect() - Check if changing memory protections is allowed 2722 * @vma: memory region 2723 * @reqprot: application requested protection 2724 * @prot: protection applied by the kernel 2725 * 2726 * Check permissions before changing memory access permissions. 2727 * 2728 * Return: Returns 0 if permission is granted. 2729 */ 2730 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot, 2731 unsigned long prot) 2732 { 2733 int ret; 2734 2735 ret = call_int_hook(file_mprotect, 0, vma, reqprot, prot); 2736 if (ret) 2737 return ret; 2738 return ima_file_mprotect(vma, prot); 2739 } 2740 2741 /** 2742 * security_file_lock() - Check if a file lock is allowed 2743 * @file: file 2744 * @cmd: lock operation (e.g. F_RDLCK, F_WRLCK) 2745 * 2746 * Check permission before performing file locking operations. Note the hook 2747 * mediates both flock and fcntl style locks. 2748 * 2749 * Return: Returns 0 if permission is granted. 2750 */ 2751 int security_file_lock(struct file *file, unsigned int cmd) 2752 { 2753 return call_int_hook(file_lock, 0, file, cmd); 2754 } 2755 2756 /** 2757 * security_file_fcntl() - Check if fcntl() op is allowed 2758 * @file: file 2759 * @cmd: fcntl command 2760 * @arg: command argument 2761 * 2762 * Check permission before allowing the file operation specified by @cmd from 2763 * being performed on the file @file. Note that @arg sometimes represents a 2764 * user space pointer; in other cases, it may be a simple integer value. When 2765 * @arg represents a user space pointer, it should never be used by the 2766 * security module. 2767 * 2768 * Return: Returns 0 if permission is granted. 2769 */ 2770 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg) 2771 { 2772 return call_int_hook(file_fcntl, 0, file, cmd, arg); 2773 } 2774 2775 /** 2776 * security_file_set_fowner() - Set the file owner info in the LSM blob 2777 * @file: the file 2778 * 2779 * Save owner security information (typically from current->security) in 2780 * file->f_security for later use by the send_sigiotask hook. 2781 * 2782 * Return: Returns 0 on success. 2783 */ 2784 void security_file_set_fowner(struct file *file) 2785 { 2786 call_void_hook(file_set_fowner, file); 2787 } 2788 2789 /** 2790 * security_file_send_sigiotask() - Check if sending SIGIO/SIGURG is allowed 2791 * @tsk: target task 2792 * @fown: signal sender 2793 * @sig: signal to be sent, SIGIO is sent if 0 2794 * 2795 * Check permission for the file owner @fown to send SIGIO or SIGURG to the 2796 * process @tsk. Note that this hook is sometimes called from interrupt. Note 2797 * that the fown_struct, @fown, is never outside the context of a struct file, 2798 * so the file structure (and associated security information) can always be 2799 * obtained: container_of(fown, struct file, f_owner). 2800 * 2801 * Return: Returns 0 if permission is granted. 2802 */ 2803 int security_file_send_sigiotask(struct task_struct *tsk, 2804 struct fown_struct *fown, int sig) 2805 { 2806 return call_int_hook(file_send_sigiotask, 0, tsk, fown, sig); 2807 } 2808 2809 /** 2810 * security_file_receive() - Check is receiving a file via IPC is allowed 2811 * @file: file being received 2812 * 2813 * This hook allows security modules to control the ability of a process to 2814 * receive an open file descriptor via socket IPC. 2815 * 2816 * Return: Returns 0 if permission is granted. 2817 */ 2818 int security_file_receive(struct file *file) 2819 { 2820 return call_int_hook(file_receive, 0, file); 2821 } 2822 2823 /** 2824 * security_file_open() - Save open() time state for late use by the LSM 2825 * @file: 2826 * 2827 * Save open-time permission checking state for later use upon file_permission, 2828 * and recheck access if anything has changed since inode_permission. 2829 * 2830 * Return: Returns 0 if permission is granted. 2831 */ 2832 int security_file_open(struct file *file) 2833 { 2834 int ret; 2835 2836 ret = call_int_hook(file_open, 0, file); 2837 if (ret) 2838 return ret; 2839 2840 return fsnotify_perm(file, MAY_OPEN); 2841 } 2842 2843 /** 2844 * security_file_truncate() - Check if truncating a file is allowed 2845 * @file: file 2846 * 2847 * Check permission before truncating a file, i.e. using ftruncate. Note that 2848 * truncation permission may also be checked based on the path, using the 2849 * @path_truncate hook. 2850 * 2851 * Return: Returns 0 if permission is granted. 2852 */ 2853 int security_file_truncate(struct file *file) 2854 { 2855 return call_int_hook(file_truncate, 0, file); 2856 } 2857 2858 /** 2859 * security_task_alloc() - Allocate a task's LSM blob 2860 * @task: the task 2861 * @clone_flags: flags indicating what is being shared 2862 * 2863 * Handle allocation of task-related resources. 2864 * 2865 * Return: Returns a zero on success, negative values on failure. 2866 */ 2867 int security_task_alloc(struct task_struct *task, unsigned long clone_flags) 2868 { 2869 int rc = lsm_task_alloc(task); 2870 2871 if (rc) 2872 return rc; 2873 rc = call_int_hook(task_alloc, 0, task, clone_flags); 2874 if (unlikely(rc)) 2875 security_task_free(task); 2876 return rc; 2877 } 2878 2879 /** 2880 * security_task_free() - Free a task's LSM blob and related resources 2881 * @task: task 2882 * 2883 * Handle release of task-related resources. Note that this can be called from 2884 * interrupt context. 2885 */ 2886 void security_task_free(struct task_struct *task) 2887 { 2888 call_void_hook(task_free, task); 2889 2890 kfree(task->security); 2891 task->security = NULL; 2892 } 2893 2894 /** 2895 * security_cred_alloc_blank() - Allocate the min memory to allow cred_transfer 2896 * @cred: credentials 2897 * @gfp: gfp flags 2898 * 2899 * Only allocate sufficient memory and attach to @cred such that 2900 * cred_transfer() will not get ENOMEM. 2901 * 2902 * Return: Returns 0 on success, negative values on failure. 2903 */ 2904 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp) 2905 { 2906 int rc = lsm_cred_alloc(cred, gfp); 2907 2908 if (rc) 2909 return rc; 2910 2911 rc = call_int_hook(cred_alloc_blank, 0, cred, gfp); 2912 if (unlikely(rc)) 2913 security_cred_free(cred); 2914 return rc; 2915 } 2916 2917 /** 2918 * security_cred_free() - Free the cred's LSM blob and associated resources 2919 * @cred: credentials 2920 * 2921 * Deallocate and clear the cred->security field in a set of credentials. 2922 */ 2923 void security_cred_free(struct cred *cred) 2924 { 2925 /* 2926 * There is a failure case in prepare_creds() that 2927 * may result in a call here with ->security being NULL. 2928 */ 2929 if (unlikely(cred->security == NULL)) 2930 return; 2931 2932 call_void_hook(cred_free, cred); 2933 2934 kfree(cred->security); 2935 cred->security = NULL; 2936 } 2937 2938 /** 2939 * security_prepare_creds() - Prepare a new set of credentials 2940 * @new: new credentials 2941 * @old: original credentials 2942 * @gfp: gfp flags 2943 * 2944 * Prepare a new set of credentials by copying the data from the old set. 2945 * 2946 * Return: Returns 0 on success, negative values on failure. 2947 */ 2948 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp) 2949 { 2950 int rc = lsm_cred_alloc(new, gfp); 2951 2952 if (rc) 2953 return rc; 2954 2955 rc = call_int_hook(cred_prepare, 0, new, old, gfp); 2956 if (unlikely(rc)) 2957 security_cred_free(new); 2958 return rc; 2959 } 2960 2961 /** 2962 * security_transfer_creds() - Transfer creds 2963 * @new: target credentials 2964 * @old: original credentials 2965 * 2966 * Transfer data from original creds to new creds. 2967 */ 2968 void security_transfer_creds(struct cred *new, const struct cred *old) 2969 { 2970 call_void_hook(cred_transfer, new, old); 2971 } 2972 2973 /** 2974 * security_cred_getsecid() - Get the secid from a set of credentials 2975 * @c: credentials 2976 * @secid: secid value 2977 * 2978 * Retrieve the security identifier of the cred structure @c. In case of 2979 * failure, @secid will be set to zero. 2980 */ 2981 void security_cred_getsecid(const struct cred *c, u32 *secid) 2982 { 2983 *secid = 0; 2984 call_void_hook(cred_getsecid, c, secid); 2985 } 2986 EXPORT_SYMBOL(security_cred_getsecid); 2987 2988 /** 2989 * security_kernel_act_as() - Set the kernel credentials to act as secid 2990 * @new: credentials 2991 * @secid: secid 2992 * 2993 * Set the credentials for a kernel service to act as (subjective context). 2994 * The current task must be the one that nominated @secid. 2995 * 2996 * Return: Returns 0 if successful. 2997 */ 2998 int security_kernel_act_as(struct cred *new, u32 secid) 2999 { 3000 return call_int_hook(kernel_act_as, 0, new, secid); 3001 } 3002 3003 /** 3004 * security_kernel_create_files_as() - Set file creation context using an inode 3005 * @new: target credentials 3006 * @inode: reference inode 3007 * 3008 * Set the file creation context in a set of credentials to be the same as the 3009 * objective context of the specified inode. The current task must be the one 3010 * that nominated @inode. 3011 * 3012 * Return: Returns 0 if successful. 3013 */ 3014 int security_kernel_create_files_as(struct cred *new, struct inode *inode) 3015 { 3016 return call_int_hook(kernel_create_files_as, 0, new, inode); 3017 } 3018 3019 /** 3020 * security_kernel_module_request() - Check is loading a module is allowed 3021 * @kmod_name: module name 3022 * 3023 * Ability to trigger the kernel to automatically upcall to userspace for 3024 * userspace to load a kernel module with the given name. 3025 * 3026 * Return: Returns 0 if successful. 3027 */ 3028 int security_kernel_module_request(char *kmod_name) 3029 { 3030 int ret; 3031 3032 ret = call_int_hook(kernel_module_request, 0, kmod_name); 3033 if (ret) 3034 return ret; 3035 return integrity_kernel_module_request(kmod_name); 3036 } 3037 3038 /** 3039 * security_kernel_read_file() - Read a file specified by userspace 3040 * @file: file 3041 * @id: file identifier 3042 * @contents: trust if security_kernel_post_read_file() will be called 3043 * 3044 * Read a file specified by userspace. 3045 * 3046 * Return: Returns 0 if permission is granted. 3047 */ 3048 int security_kernel_read_file(struct file *file, enum kernel_read_file_id id, 3049 bool contents) 3050 { 3051 int ret; 3052 3053 ret = call_int_hook(kernel_read_file, 0, file, id, contents); 3054 if (ret) 3055 return ret; 3056 return ima_read_file(file, id, contents); 3057 } 3058 EXPORT_SYMBOL_GPL(security_kernel_read_file); 3059 3060 /** 3061 * security_kernel_post_read_file() - Read a file specified by userspace 3062 * @file: file 3063 * @buf: file contents 3064 * @size: size of file contents 3065 * @id: file identifier 3066 * 3067 * Read a file specified by userspace. This must be paired with a prior call 3068 * to security_kernel_read_file() call that indicated this hook would also be 3069 * called, see security_kernel_read_file() for more information. 3070 * 3071 * Return: Returns 0 if permission is granted. 3072 */ 3073 int security_kernel_post_read_file(struct file *file, char *buf, loff_t size, 3074 enum kernel_read_file_id id) 3075 { 3076 int ret; 3077 3078 ret = call_int_hook(kernel_post_read_file, 0, file, buf, size, id); 3079 if (ret) 3080 return ret; 3081 return ima_post_read_file(file, buf, size, id); 3082 } 3083 EXPORT_SYMBOL_GPL(security_kernel_post_read_file); 3084 3085 /** 3086 * security_kernel_load_data() - Load data provided by userspace 3087 * @id: data identifier 3088 * @contents: true if security_kernel_post_load_data() will be called 3089 * 3090 * Load data provided by userspace. 3091 * 3092 * Return: Returns 0 if permission is granted. 3093 */ 3094 int security_kernel_load_data(enum kernel_load_data_id id, bool contents) 3095 { 3096 int ret; 3097 3098 ret = call_int_hook(kernel_load_data, 0, id, contents); 3099 if (ret) 3100 return ret; 3101 return ima_load_data(id, contents); 3102 } 3103 EXPORT_SYMBOL_GPL(security_kernel_load_data); 3104 3105 /** 3106 * security_kernel_post_load_data() - Load userspace data from a non-file source 3107 * @buf: data 3108 * @size: size of data 3109 * @id: data identifier 3110 * @description: text description of data, specific to the id value 3111 * 3112 * Load data provided by a non-file source (usually userspace buffer). This 3113 * must be paired with a prior security_kernel_load_data() call that indicated 3114 * this hook would also be called, see security_kernel_load_data() for more 3115 * information. 3116 * 3117 * Return: Returns 0 if permission is granted. 3118 */ 3119 int security_kernel_post_load_data(char *buf, loff_t size, 3120 enum kernel_load_data_id id, 3121 char *description) 3122 { 3123 int ret; 3124 3125 ret = call_int_hook(kernel_post_load_data, 0, buf, size, id, 3126 description); 3127 if (ret) 3128 return ret; 3129 return ima_post_load_data(buf, size, id, description); 3130 } 3131 EXPORT_SYMBOL_GPL(security_kernel_post_load_data); 3132 3133 /** 3134 * security_task_fix_setuid() - Update LSM with new user id attributes 3135 * @new: updated credentials 3136 * @old: credentials being replaced 3137 * @flags: LSM_SETID_* flag values 3138 * 3139 * Update the module's state after setting one or more of the user identity 3140 * attributes of the current process. The @flags parameter indicates which of 3141 * the set*uid system calls invoked this hook. If @new is the set of 3142 * credentials that will be installed. Modifications should be made to this 3143 * rather than to @current->cred. 3144 * 3145 * Return: Returns 0 on success. 3146 */ 3147 int security_task_fix_setuid(struct cred *new, const struct cred *old, 3148 int flags) 3149 { 3150 return call_int_hook(task_fix_setuid, 0, new, old, flags); 3151 } 3152 3153 /** 3154 * security_task_fix_setgid() - Update LSM with new group id attributes 3155 * @new: updated credentials 3156 * @old: credentials being replaced 3157 * @flags: LSM_SETID_* flag value 3158 * 3159 * Update the module's state after setting one or more of the group identity 3160 * attributes of the current process. The @flags parameter indicates which of 3161 * the set*gid system calls invoked this hook. @new is the set of credentials 3162 * that will be installed. Modifications should be made to this rather than to 3163 * @current->cred. 3164 * 3165 * Return: Returns 0 on success. 3166 */ 3167 int security_task_fix_setgid(struct cred *new, const struct cred *old, 3168 int flags) 3169 { 3170 return call_int_hook(task_fix_setgid, 0, new, old, flags); 3171 } 3172 3173 /** 3174 * security_task_fix_setgroups() - Update LSM with new supplementary groups 3175 * @new: updated credentials 3176 * @old: credentials being replaced 3177 * 3178 * Update the module's state after setting the supplementary group identity 3179 * attributes of the current process. @new is the set of credentials that will 3180 * be installed. Modifications should be made to this rather than to 3181 * @current->cred. 3182 * 3183 * Return: Returns 0 on success. 3184 */ 3185 int security_task_fix_setgroups(struct cred *new, const struct cred *old) 3186 { 3187 return call_int_hook(task_fix_setgroups, 0, new, old); 3188 } 3189 3190 /** 3191 * security_task_setpgid() - Check if setting the pgid is allowed 3192 * @p: task being modified 3193 * @pgid: new pgid 3194 * 3195 * Check permission before setting the process group identifier of the process 3196 * @p to @pgid. 3197 * 3198 * Return: Returns 0 if permission is granted. 3199 */ 3200 int security_task_setpgid(struct task_struct *p, pid_t pgid) 3201 { 3202 return call_int_hook(task_setpgid, 0, p, pgid); 3203 } 3204 3205 /** 3206 * security_task_getpgid() - Check if getting the pgid is allowed 3207 * @p: task 3208 * 3209 * Check permission before getting the process group identifier of the process 3210 * @p. 3211 * 3212 * Return: Returns 0 if permission is granted. 3213 */ 3214 int security_task_getpgid(struct task_struct *p) 3215 { 3216 return call_int_hook(task_getpgid, 0, p); 3217 } 3218 3219 /** 3220 * security_task_getsid() - Check if getting the session id is allowed 3221 * @p: task 3222 * 3223 * Check permission before getting the session identifier of the process @p. 3224 * 3225 * Return: Returns 0 if permission is granted. 3226 */ 3227 int security_task_getsid(struct task_struct *p) 3228 { 3229 return call_int_hook(task_getsid, 0, p); 3230 } 3231 3232 /** 3233 * security_current_getsecid_subj() - Get the current task's subjective secid 3234 * @secid: secid value 3235 * 3236 * Retrieve the subjective security identifier of the current task and return 3237 * it in @secid. In case of failure, @secid will be set to zero. 3238 */ 3239 void security_current_getsecid_subj(u32 *secid) 3240 { 3241 *secid = 0; 3242 call_void_hook(current_getsecid_subj, secid); 3243 } 3244 EXPORT_SYMBOL(security_current_getsecid_subj); 3245 3246 /** 3247 * security_task_getsecid_obj() - Get a task's objective secid 3248 * @p: target task 3249 * @secid: secid value 3250 * 3251 * Retrieve the objective security identifier of the task_struct in @p and 3252 * return it in @secid. In case of failure, @secid will be set to zero. 3253 */ 3254 void security_task_getsecid_obj(struct task_struct *p, u32 *secid) 3255 { 3256 *secid = 0; 3257 call_void_hook(task_getsecid_obj, p, secid); 3258 } 3259 EXPORT_SYMBOL(security_task_getsecid_obj); 3260 3261 /** 3262 * security_task_setnice() - Check if setting a task's nice value is allowed 3263 * @p: target task 3264 * @nice: nice value 3265 * 3266 * Check permission before setting the nice value of @p to @nice. 3267 * 3268 * Return: Returns 0 if permission is granted. 3269 */ 3270 int security_task_setnice(struct task_struct *p, int nice) 3271 { 3272 return call_int_hook(task_setnice, 0, p, nice); 3273 } 3274 3275 /** 3276 * security_task_setioprio() - Check if setting a task's ioprio is allowed 3277 * @p: target task 3278 * @ioprio: ioprio value 3279 * 3280 * Check permission before setting the ioprio value of @p to @ioprio. 3281 * 3282 * Return: Returns 0 if permission is granted. 3283 */ 3284 int security_task_setioprio(struct task_struct *p, int ioprio) 3285 { 3286 return call_int_hook(task_setioprio, 0, p, ioprio); 3287 } 3288 3289 /** 3290 * security_task_getioprio() - Check if getting a task's ioprio is allowed 3291 * @p: task 3292 * 3293 * Check permission before getting the ioprio value of @p. 3294 * 3295 * Return: Returns 0 if permission is granted. 3296 */ 3297 int security_task_getioprio(struct task_struct *p) 3298 { 3299 return call_int_hook(task_getioprio, 0, p); 3300 } 3301 3302 /** 3303 * security_task_prlimit() - Check if get/setting resources limits is allowed 3304 * @cred: current task credentials 3305 * @tcred: target task credentials 3306 * @flags: LSM_PRLIMIT_* flag bits indicating a get/set/both 3307 * 3308 * Check permission before getting and/or setting the resource limits of 3309 * another task. 3310 * 3311 * Return: Returns 0 if permission is granted. 3312 */ 3313 int security_task_prlimit(const struct cred *cred, const struct cred *tcred, 3314 unsigned int flags) 3315 { 3316 return call_int_hook(task_prlimit, 0, cred, tcred, flags); 3317 } 3318 3319 /** 3320 * security_task_setrlimit() - Check if setting a new rlimit value is allowed 3321 * @p: target task's group leader 3322 * @resource: resource whose limit is being set 3323 * @new_rlim: new resource limit 3324 * 3325 * Check permission before setting the resource limits of process @p for 3326 * @resource to @new_rlim. The old resource limit values can be examined by 3327 * dereferencing (p->signal->rlim + resource). 3328 * 3329 * Return: Returns 0 if permission is granted. 3330 */ 3331 int security_task_setrlimit(struct task_struct *p, unsigned int resource, 3332 struct rlimit *new_rlim) 3333 { 3334 return call_int_hook(task_setrlimit, 0, p, resource, new_rlim); 3335 } 3336 3337 /** 3338 * security_task_setscheduler() - Check if setting sched policy/param is allowed 3339 * @p: target task 3340 * 3341 * Check permission before setting scheduling policy and/or parameters of 3342 * process @p. 3343 * 3344 * Return: Returns 0 if permission is granted. 3345 */ 3346 int security_task_setscheduler(struct task_struct *p) 3347 { 3348 return call_int_hook(task_setscheduler, 0, p); 3349 } 3350 3351 /** 3352 * security_task_getscheduler() - Check if getting scheduling info is allowed 3353 * @p: target task 3354 * 3355 * Check permission before obtaining scheduling information for process @p. 3356 * 3357 * Return: Returns 0 if permission is granted. 3358 */ 3359 int security_task_getscheduler(struct task_struct *p) 3360 { 3361 return call_int_hook(task_getscheduler, 0, p); 3362 } 3363 3364 /** 3365 * security_task_movememory() - Check if moving memory is allowed 3366 * @p: task 3367 * 3368 * Check permission before moving memory owned by process @p. 3369 * 3370 * Return: Returns 0 if permission is granted. 3371 */ 3372 int security_task_movememory(struct task_struct *p) 3373 { 3374 return call_int_hook(task_movememory, 0, p); 3375 } 3376 3377 /** 3378 * security_task_kill() - Check if sending a signal is allowed 3379 * @p: target process 3380 * @info: signal information 3381 * @sig: signal value 3382 * @cred: credentials of the signal sender, NULL if @current 3383 * 3384 * Check permission before sending signal @sig to @p. @info can be NULL, the 3385 * constant 1, or a pointer to a kernel_siginfo structure. If @info is 1 or 3386 * SI_FROMKERNEL(info) is true, then the signal should be viewed as coming from 3387 * the kernel and should typically be permitted. SIGIO signals are handled 3388 * separately by the send_sigiotask hook in file_security_ops. 3389 * 3390 * Return: Returns 0 if permission is granted. 3391 */ 3392 int security_task_kill(struct task_struct *p, struct kernel_siginfo *info, 3393 int sig, const struct cred *cred) 3394 { 3395 return call_int_hook(task_kill, 0, p, info, sig, cred); 3396 } 3397 3398 /** 3399 * security_task_prctl() - Check if a prctl op is allowed 3400 * @option: operation 3401 * @arg2: argument 3402 * @arg3: argument 3403 * @arg4: argument 3404 * @arg5: argument 3405 * 3406 * Check permission before performing a process control operation on the 3407 * current process. 3408 * 3409 * Return: Return -ENOSYS if no-one wanted to handle this op, any other value 3410 * to cause prctl() to return immediately with that value. 3411 */ 3412 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3, 3413 unsigned long arg4, unsigned long arg5) 3414 { 3415 int thisrc; 3416 int rc = LSM_RET_DEFAULT(task_prctl); 3417 struct security_hook_list *hp; 3418 3419 hlist_for_each_entry(hp, &security_hook_heads.task_prctl, list) { 3420 thisrc = hp->hook.task_prctl(option, arg2, arg3, arg4, arg5); 3421 if (thisrc != LSM_RET_DEFAULT(task_prctl)) { 3422 rc = thisrc; 3423 if (thisrc != 0) 3424 break; 3425 } 3426 } 3427 return rc; 3428 } 3429 3430 /** 3431 * security_task_to_inode() - Set the security attributes of a task's inode 3432 * @p: task 3433 * @inode: inode 3434 * 3435 * Set the security attributes for an inode based on an associated task's 3436 * security attributes, e.g. for /proc/pid inodes. 3437 */ 3438 void security_task_to_inode(struct task_struct *p, struct inode *inode) 3439 { 3440 call_void_hook(task_to_inode, p, inode); 3441 } 3442 3443 /** 3444 * security_create_user_ns() - Check if creating a new userns is allowed 3445 * @cred: prepared creds 3446 * 3447 * Check permission prior to creating a new user namespace. 3448 * 3449 * Return: Returns 0 if successful, otherwise < 0 error code. 3450 */ 3451 int security_create_user_ns(const struct cred *cred) 3452 { 3453 return call_int_hook(userns_create, 0, cred); 3454 } 3455 3456 /** 3457 * security_ipc_permission() - Check if sysv ipc access is allowed 3458 * @ipcp: ipc permission structure 3459 * @flag: requested permissions 3460 * 3461 * Check permissions for access to IPC. 3462 * 3463 * Return: Returns 0 if permission is granted. 3464 */ 3465 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag) 3466 { 3467 return call_int_hook(ipc_permission, 0, ipcp, flag); 3468 } 3469 3470 /** 3471 * security_ipc_getsecid() - Get the sysv ipc object's secid 3472 * @ipcp: ipc permission structure 3473 * @secid: secid pointer 3474 * 3475 * Get the secid associated with the ipc object. In case of failure, @secid 3476 * will be set to zero. 3477 */ 3478 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid) 3479 { 3480 *secid = 0; 3481 call_void_hook(ipc_getsecid, ipcp, secid); 3482 } 3483 3484 /** 3485 * security_msg_msg_alloc() - Allocate a sysv ipc message LSM blob 3486 * @msg: message structure 3487 * 3488 * Allocate and attach a security structure to the msg->security field. The 3489 * security field is initialized to NULL when the structure is first created. 3490 * 3491 * Return: Return 0 if operation was successful and permission is granted. 3492 */ 3493 int security_msg_msg_alloc(struct msg_msg *msg) 3494 { 3495 int rc = lsm_msg_msg_alloc(msg); 3496 3497 if (unlikely(rc)) 3498 return rc; 3499 rc = call_int_hook(msg_msg_alloc_security, 0, msg); 3500 if (unlikely(rc)) 3501 security_msg_msg_free(msg); 3502 return rc; 3503 } 3504 3505 /** 3506 * security_msg_msg_free() - Free a sysv ipc message LSM blob 3507 * @msg: message structure 3508 * 3509 * Deallocate the security structure for this message. 3510 */ 3511 void security_msg_msg_free(struct msg_msg *msg) 3512 { 3513 call_void_hook(msg_msg_free_security, msg); 3514 kfree(msg->security); 3515 msg->security = NULL; 3516 } 3517 3518 /** 3519 * security_msg_queue_alloc() - Allocate a sysv ipc msg queue LSM blob 3520 * @msq: sysv ipc permission structure 3521 * 3522 * Allocate and attach a security structure to @msg. The security field is 3523 * initialized to NULL when the structure is first created. 3524 * 3525 * Return: Returns 0 if operation was successful and permission is granted. 3526 */ 3527 int security_msg_queue_alloc(struct kern_ipc_perm *msq) 3528 { 3529 int rc = lsm_ipc_alloc(msq); 3530 3531 if (unlikely(rc)) 3532 return rc; 3533 rc = call_int_hook(msg_queue_alloc_security, 0, msq); 3534 if (unlikely(rc)) 3535 security_msg_queue_free(msq); 3536 return rc; 3537 } 3538 3539 /** 3540 * security_msg_queue_free() - Free a sysv ipc msg queue LSM blob 3541 * @msq: sysv ipc permission structure 3542 * 3543 * Deallocate security field @perm->security for the message queue. 3544 */ 3545 void security_msg_queue_free(struct kern_ipc_perm *msq) 3546 { 3547 call_void_hook(msg_queue_free_security, msq); 3548 kfree(msq->security); 3549 msq->security = NULL; 3550 } 3551 3552 /** 3553 * security_msg_queue_associate() - Check if a msg queue operation is allowed 3554 * @msq: sysv ipc permission structure 3555 * @msqflg: operation flags 3556 * 3557 * Check permission when a message queue is requested through the msgget system 3558 * call. This hook is only called when returning the message queue identifier 3559 * for an existing message queue, not when a new message queue is created. 3560 * 3561 * Return: Return 0 if permission is granted. 3562 */ 3563 int security_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg) 3564 { 3565 return call_int_hook(msg_queue_associate, 0, msq, msqflg); 3566 } 3567 3568 /** 3569 * security_msg_queue_msgctl() - Check if a msg queue operation is allowed 3570 * @msq: sysv ipc permission structure 3571 * @cmd: operation 3572 * 3573 * Check permission when a message control operation specified by @cmd is to be 3574 * performed on the message queue with permissions. 3575 * 3576 * Return: Returns 0 if permission is granted. 3577 */ 3578 int security_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd) 3579 { 3580 return call_int_hook(msg_queue_msgctl, 0, msq, cmd); 3581 } 3582 3583 /** 3584 * security_msg_queue_msgsnd() - Check if sending a sysv ipc message is allowed 3585 * @msq: sysv ipc permission structure 3586 * @msg: message 3587 * @msqflg: operation flags 3588 * 3589 * Check permission before a message, @msg, is enqueued on the message queue 3590 * with permissions specified in @msq. 3591 * 3592 * Return: Returns 0 if permission is granted. 3593 */ 3594 int security_msg_queue_msgsnd(struct kern_ipc_perm *msq, 3595 struct msg_msg *msg, int msqflg) 3596 { 3597 return call_int_hook(msg_queue_msgsnd, 0, msq, msg, msqflg); 3598 } 3599 3600 /** 3601 * security_msg_queue_msgrcv() - Check if receiving a sysv ipc msg is allowed 3602 * @msq: sysv ipc permission structure 3603 * @msg: message 3604 * @target: target task 3605 * @type: type of message requested 3606 * @mode: operation flags 3607 * 3608 * Check permission before a message, @msg, is removed from the message queue. 3609 * The @target task structure contains a pointer to the process that will be 3610 * receiving the message (not equal to the current process when inline receives 3611 * are being performed). 3612 * 3613 * Return: Returns 0 if permission is granted. 3614 */ 3615 int security_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg, 3616 struct task_struct *target, long type, int mode) 3617 { 3618 return call_int_hook(msg_queue_msgrcv, 0, msq, msg, target, type, mode); 3619 } 3620 3621 /** 3622 * security_shm_alloc() - Allocate a sysv shm LSM blob 3623 * @shp: sysv ipc permission structure 3624 * 3625 * Allocate and attach a security structure to the @shp security field. The 3626 * security field is initialized to NULL when the structure is first created. 3627 * 3628 * Return: Returns 0 if operation was successful and permission is granted. 3629 */ 3630 int security_shm_alloc(struct kern_ipc_perm *shp) 3631 { 3632 int rc = lsm_ipc_alloc(shp); 3633 3634 if (unlikely(rc)) 3635 return rc; 3636 rc = call_int_hook(shm_alloc_security, 0, shp); 3637 if (unlikely(rc)) 3638 security_shm_free(shp); 3639 return rc; 3640 } 3641 3642 /** 3643 * security_shm_free() - Free a sysv shm LSM blob 3644 * @shp: sysv ipc permission structure 3645 * 3646 * Deallocate the security structure @perm->security for the memory segment. 3647 */ 3648 void security_shm_free(struct kern_ipc_perm *shp) 3649 { 3650 call_void_hook(shm_free_security, shp); 3651 kfree(shp->security); 3652 shp->security = NULL; 3653 } 3654 3655 /** 3656 * security_shm_associate() - Check if a sysv shm operation is allowed 3657 * @shp: sysv ipc permission structure 3658 * @shmflg: operation flags 3659 * 3660 * Check permission when a shared memory region is requested through the shmget 3661 * system call. This hook is only called when returning the shared memory 3662 * region identifier for an existing region, not when a new shared memory 3663 * region is created. 3664 * 3665 * Return: Returns 0 if permission is granted. 3666 */ 3667 int security_shm_associate(struct kern_ipc_perm *shp, int shmflg) 3668 { 3669 return call_int_hook(shm_associate, 0, shp, shmflg); 3670 } 3671 3672 /** 3673 * security_shm_shmctl() - Check if a sysv shm operation is allowed 3674 * @shp: sysv ipc permission structure 3675 * @cmd: operation 3676 * 3677 * Check permission when a shared memory control operation specified by @cmd is 3678 * to be performed on the shared memory region with permissions in @shp. 3679 * 3680 * Return: Return 0 if permission is granted. 3681 */ 3682 int security_shm_shmctl(struct kern_ipc_perm *shp, int cmd) 3683 { 3684 return call_int_hook(shm_shmctl, 0, shp, cmd); 3685 } 3686 3687 /** 3688 * security_shm_shmat() - Check if a sysv shm attach operation is allowed 3689 * @shp: sysv ipc permission structure 3690 * @shmaddr: address of memory region to attach 3691 * @shmflg: operation flags 3692 * 3693 * Check permissions prior to allowing the shmat system call to attach the 3694 * shared memory segment with permissions @shp to the data segment of the 3695 * calling process. The attaching address is specified by @shmaddr. 3696 * 3697 * Return: Returns 0 if permission is granted. 3698 */ 3699 int security_shm_shmat(struct kern_ipc_perm *shp, 3700 char __user *shmaddr, int shmflg) 3701 { 3702 return call_int_hook(shm_shmat, 0, shp, shmaddr, shmflg); 3703 } 3704 3705 /** 3706 * security_sem_alloc() - Allocate a sysv semaphore LSM blob 3707 * @sma: sysv ipc permission structure 3708 * 3709 * Allocate and attach a security structure to the @sma security field. The 3710 * security field is initialized to NULL when the structure is first created. 3711 * 3712 * Return: Returns 0 if operation was successful and permission is granted. 3713 */ 3714 int security_sem_alloc(struct kern_ipc_perm *sma) 3715 { 3716 int rc = lsm_ipc_alloc(sma); 3717 3718 if (unlikely(rc)) 3719 return rc; 3720 rc = call_int_hook(sem_alloc_security, 0, sma); 3721 if (unlikely(rc)) 3722 security_sem_free(sma); 3723 return rc; 3724 } 3725 3726 /** 3727 * security_sem_free() - Free a sysv semaphore LSM blob 3728 * @sma: sysv ipc permission structure 3729 * 3730 * Deallocate security structure @sma->security for the semaphore. 3731 */ 3732 void security_sem_free(struct kern_ipc_perm *sma) 3733 { 3734 call_void_hook(sem_free_security, sma); 3735 kfree(sma->security); 3736 sma->security = NULL; 3737 } 3738 3739 /** 3740 * security_sem_associate() - Check if a sysv semaphore operation is allowed 3741 * @sma: sysv ipc permission structure 3742 * @semflg: operation flags 3743 * 3744 * Check permission when a semaphore is requested through the semget system 3745 * call. This hook is only called when returning the semaphore identifier for 3746 * an existing semaphore, not when a new one must be created. 3747 * 3748 * Return: Returns 0 if permission is granted. 3749 */ 3750 int security_sem_associate(struct kern_ipc_perm *sma, int semflg) 3751 { 3752 return call_int_hook(sem_associate, 0, sma, semflg); 3753 } 3754 3755 /** 3756 * security_sem_semctl() - Check if a sysv semaphore operation is allowed 3757 * @sma: sysv ipc permission structure 3758 * @cmd: operation 3759 * 3760 * Check permission when a semaphore operation specified by @cmd is to be 3761 * performed on the semaphore. 3762 * 3763 * Return: Returns 0 if permission is granted. 3764 */ 3765 int security_sem_semctl(struct kern_ipc_perm *sma, int cmd) 3766 { 3767 return call_int_hook(sem_semctl, 0, sma, cmd); 3768 } 3769 3770 /** 3771 * security_sem_semop() - Check if a sysv semaphore operation is allowed 3772 * @sma: sysv ipc permission structure 3773 * @sops: operations to perform 3774 * @nsops: number of operations 3775 * @alter: flag indicating changes will be made 3776 * 3777 * Check permissions before performing operations on members of the semaphore 3778 * set. If the @alter flag is nonzero, the semaphore set may be modified. 3779 * 3780 * Return: Returns 0 if permission is granted. 3781 */ 3782 int security_sem_semop(struct kern_ipc_perm *sma, struct sembuf *sops, 3783 unsigned nsops, int alter) 3784 { 3785 return call_int_hook(sem_semop, 0, sma, sops, nsops, alter); 3786 } 3787 3788 /** 3789 * security_d_instantiate() - Populate an inode's LSM state based on a dentry 3790 * @dentry: dentry 3791 * @inode: inode 3792 * 3793 * Fill in @inode security information for a @dentry if allowed. 3794 */ 3795 void security_d_instantiate(struct dentry *dentry, struct inode *inode) 3796 { 3797 if (unlikely(inode && IS_PRIVATE(inode))) 3798 return; 3799 call_void_hook(d_instantiate, dentry, inode); 3800 } 3801 EXPORT_SYMBOL(security_d_instantiate); 3802 3803 /** 3804 * security_getprocattr() - Read an attribute for a task 3805 * @p: the task 3806 * @lsm: LSM name 3807 * @name: attribute name 3808 * @value: attribute value 3809 * 3810 * Read attribute @name for task @p and store it into @value if allowed. 3811 * 3812 * Return: Returns the length of @value on success, a negative value otherwise. 3813 */ 3814 int security_getprocattr(struct task_struct *p, const char *lsm, 3815 const char *name, char **value) 3816 { 3817 struct security_hook_list *hp; 3818 3819 hlist_for_each_entry(hp, &security_hook_heads.getprocattr, list) { 3820 if (lsm != NULL && strcmp(lsm, hp->lsm)) 3821 continue; 3822 return hp->hook.getprocattr(p, name, value); 3823 } 3824 return LSM_RET_DEFAULT(getprocattr); 3825 } 3826 3827 /** 3828 * security_setprocattr() - Set an attribute for a task 3829 * @lsm: LSM name 3830 * @name: attribute name 3831 * @value: attribute value 3832 * @size: attribute value size 3833 * 3834 * Write (set) the current task's attribute @name to @value, size @size if 3835 * allowed. 3836 * 3837 * Return: Returns bytes written on success, a negative value otherwise. 3838 */ 3839 int security_setprocattr(const char *lsm, const char *name, void *value, 3840 size_t size) 3841 { 3842 struct security_hook_list *hp; 3843 3844 hlist_for_each_entry(hp, &security_hook_heads.setprocattr, list) { 3845 if (lsm != NULL && strcmp(lsm, hp->lsm)) 3846 continue; 3847 return hp->hook.setprocattr(name, value, size); 3848 } 3849 return LSM_RET_DEFAULT(setprocattr); 3850 } 3851 3852 /** 3853 * security_netlink_send() - Save info and check if netlink sending is allowed 3854 * @sk: sending socket 3855 * @skb: netlink message 3856 * 3857 * Save security information for a netlink message so that permission checking 3858 * can be performed when the message is processed. The security information 3859 * can be saved using the eff_cap field of the netlink_skb_parms structure. 3860 * Also may be used to provide fine grained control over message transmission. 3861 * 3862 * Return: Returns 0 if the information was successfully saved and message is 3863 * allowed to be transmitted. 3864 */ 3865 int security_netlink_send(struct sock *sk, struct sk_buff *skb) 3866 { 3867 return call_int_hook(netlink_send, 0, sk, skb); 3868 } 3869 3870 /** 3871 * security_ismaclabel() - Check is the named attribute is a MAC label 3872 * @name: full extended attribute name 3873 * 3874 * Check if the extended attribute specified by @name represents a MAC label. 3875 * 3876 * Return: Returns 1 if name is a MAC attribute otherwise returns 0. 3877 */ 3878 int security_ismaclabel(const char *name) 3879 { 3880 return call_int_hook(ismaclabel, 0, name); 3881 } 3882 EXPORT_SYMBOL(security_ismaclabel); 3883 3884 /** 3885 * security_secid_to_secctx() - Convert a secid to a secctx 3886 * @secid: secid 3887 * @secdata: secctx 3888 * @seclen: secctx length 3889 * 3890 * Convert secid to security context. If @secdata is NULL the length of the 3891 * result will be returned in @seclen, but no @secdata will be returned. This 3892 * does mean that the length could change between calls to check the length and 3893 * the next call which actually allocates and returns the @secdata. 3894 * 3895 * Return: Return 0 on success, error on failure. 3896 */ 3897 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen) 3898 { 3899 struct security_hook_list *hp; 3900 int rc; 3901 3902 /* 3903 * Currently, only one LSM can implement secid_to_secctx (i.e this 3904 * LSM hook is not "stackable"). 3905 */ 3906 hlist_for_each_entry(hp, &security_hook_heads.secid_to_secctx, list) { 3907 rc = hp->hook.secid_to_secctx(secid, secdata, seclen); 3908 if (rc != LSM_RET_DEFAULT(secid_to_secctx)) 3909 return rc; 3910 } 3911 3912 return LSM_RET_DEFAULT(secid_to_secctx); 3913 } 3914 EXPORT_SYMBOL(security_secid_to_secctx); 3915 3916 /** 3917 * security_secctx_to_secid() - Convert a secctx to a secid 3918 * @secdata: secctx 3919 * @seclen: length of secctx 3920 * @secid: secid 3921 * 3922 * Convert security context to secid. 3923 * 3924 * Return: Returns 0 on success, error on failure. 3925 */ 3926 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid) 3927 { 3928 *secid = 0; 3929 return call_int_hook(secctx_to_secid, 0, secdata, seclen, secid); 3930 } 3931 EXPORT_SYMBOL(security_secctx_to_secid); 3932 3933 /** 3934 * security_release_secctx() - Free a secctx buffer 3935 * @secdata: secctx 3936 * @seclen: length of secctx 3937 * 3938 * Release the security context. 3939 */ 3940 void security_release_secctx(char *secdata, u32 seclen) 3941 { 3942 call_void_hook(release_secctx, secdata, seclen); 3943 } 3944 EXPORT_SYMBOL(security_release_secctx); 3945 3946 /** 3947 * security_inode_invalidate_secctx() - Invalidate an inode's security label 3948 * @inode: inode 3949 * 3950 * Notify the security module that it must revalidate the security context of 3951 * an inode. 3952 */ 3953 void security_inode_invalidate_secctx(struct inode *inode) 3954 { 3955 call_void_hook(inode_invalidate_secctx, inode); 3956 } 3957 EXPORT_SYMBOL(security_inode_invalidate_secctx); 3958 3959 /** 3960 * security_inode_notifysecctx() - Notify the LSM of an inode's security label 3961 * @inode: inode 3962 * @ctx: secctx 3963 * @ctxlen: length of secctx 3964 * 3965 * Notify the security module of what the security context of an inode should 3966 * be. Initializes the incore security context managed by the security module 3967 * for this inode. Example usage: NFS client invokes this hook to initialize 3968 * the security context in its incore inode to the value provided by the server 3969 * for the file when the server returned the file's attributes to the client. 3970 * Must be called with inode->i_mutex locked. 3971 * 3972 * Return: Returns 0 on success, error on failure. 3973 */ 3974 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen) 3975 { 3976 return call_int_hook(inode_notifysecctx, 0, inode, ctx, ctxlen); 3977 } 3978 EXPORT_SYMBOL(security_inode_notifysecctx); 3979 3980 /** 3981 * security_inode_setsecctx() - Change the security label of an inode 3982 * @dentry: inode 3983 * @ctx: secctx 3984 * @ctxlen: length of secctx 3985 * 3986 * Change the security context of an inode. Updates the incore security 3987 * context managed by the security module and invokes the fs code as needed 3988 * (via __vfs_setxattr_noperm) to update any backing xattrs that represent the 3989 * context. Example usage: NFS server invokes this hook to change the security 3990 * context in its incore inode and on the backing filesystem to a value 3991 * provided by the client on a SETATTR operation. Must be called with 3992 * inode->i_mutex locked. 3993 * 3994 * Return: Returns 0 on success, error on failure. 3995 */ 3996 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen) 3997 { 3998 return call_int_hook(inode_setsecctx, 0, dentry, ctx, ctxlen); 3999 } 4000 EXPORT_SYMBOL(security_inode_setsecctx); 4001 4002 /** 4003 * security_inode_getsecctx() - Get the security label of an inode 4004 * @inode: inode 4005 * @ctx: secctx 4006 * @ctxlen: length of secctx 4007 * 4008 * On success, returns 0 and fills out @ctx and @ctxlen with the security 4009 * context for the given @inode. 4010 * 4011 * Return: Returns 0 on success, error on failure. 4012 */ 4013 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen) 4014 { 4015 return call_int_hook(inode_getsecctx, -EOPNOTSUPP, inode, ctx, ctxlen); 4016 } 4017 EXPORT_SYMBOL(security_inode_getsecctx); 4018 4019 #ifdef CONFIG_WATCH_QUEUE 4020 /** 4021 * security_post_notification() - Check if a watch notification can be posted 4022 * @w_cred: credentials of the task that set the watch 4023 * @cred: credentials of the task which triggered the watch 4024 * @n: the notification 4025 * 4026 * Check to see if a watch notification can be posted to a particular queue. 4027 * 4028 * Return: Returns 0 if permission is granted. 4029 */ 4030 int security_post_notification(const struct cred *w_cred, 4031 const struct cred *cred, 4032 struct watch_notification *n) 4033 { 4034 return call_int_hook(post_notification, 0, w_cred, cred, n); 4035 } 4036 #endif /* CONFIG_WATCH_QUEUE */ 4037 4038 #ifdef CONFIG_KEY_NOTIFICATIONS 4039 /** 4040 * security_watch_key() - Check if a task is allowed to watch for key events 4041 * @key: the key to watch 4042 * 4043 * Check to see if a process is allowed to watch for event notifications from 4044 * a key or keyring. 4045 * 4046 * Return: Returns 0 if permission is granted. 4047 */ 4048 int security_watch_key(struct key *key) 4049 { 4050 return call_int_hook(watch_key, 0, key); 4051 } 4052 #endif /* CONFIG_KEY_NOTIFICATIONS */ 4053 4054 #ifdef CONFIG_SECURITY_NETWORK 4055 /** 4056 * security_unix_stream_connect() - Check if a AF_UNIX stream is allowed 4057 * @sock: originating sock 4058 * @other: peer sock 4059 * @newsk: new sock 4060 * 4061 * Check permissions before establishing a Unix domain stream connection 4062 * between @sock and @other. 4063 * 4064 * The @unix_stream_connect and @unix_may_send hooks were necessary because 4065 * Linux provides an alternative to the conventional file name space for Unix 4066 * domain sockets. Whereas binding and connecting to sockets in the file name 4067 * space is mediated by the typical file permissions (and caught by the mknod 4068 * and permission hooks in inode_security_ops), binding and connecting to 4069 * sockets in the abstract name space is completely unmediated. Sufficient 4070 * control of Unix domain sockets in the abstract name space isn't possible 4071 * using only the socket layer hooks, since we need to know the actual target 4072 * socket, which is not looked up until we are inside the af_unix code. 4073 * 4074 * Return: Returns 0 if permission is granted. 4075 */ 4076 int security_unix_stream_connect(struct sock *sock, struct sock *other, 4077 struct sock *newsk) 4078 { 4079 return call_int_hook(unix_stream_connect, 0, sock, other, newsk); 4080 } 4081 EXPORT_SYMBOL(security_unix_stream_connect); 4082 4083 /** 4084 * security_unix_may_send() - Check if AF_UNIX socket can send datagrams 4085 * @sock: originating sock 4086 * @other: peer sock 4087 * 4088 * Check permissions before connecting or sending datagrams from @sock to 4089 * @other. 4090 * 4091 * The @unix_stream_connect and @unix_may_send hooks were necessary because 4092 * Linux provides an alternative to the conventional file name space for Unix 4093 * domain sockets. Whereas binding and connecting to sockets in the file name 4094 * space is mediated by the typical file permissions (and caught by the mknod 4095 * and permission hooks in inode_security_ops), binding and connecting to 4096 * sockets in the abstract name space is completely unmediated. Sufficient 4097 * control of Unix domain sockets in the abstract name space isn't possible 4098 * using only the socket layer hooks, since we need to know the actual target 4099 * socket, which is not looked up until we are inside the af_unix code. 4100 * 4101 * Return: Returns 0 if permission is granted. 4102 */ 4103 int security_unix_may_send(struct socket *sock, struct socket *other) 4104 { 4105 return call_int_hook(unix_may_send, 0, sock, other); 4106 } 4107 EXPORT_SYMBOL(security_unix_may_send); 4108 4109 /** 4110 * security_socket_create() - Check if creating a new socket is allowed 4111 * @family: protocol family 4112 * @type: communications type 4113 * @protocol: requested protocol 4114 * @kern: set to 1 if a kernel socket is requested 4115 * 4116 * Check permissions prior to creating a new socket. 4117 * 4118 * Return: Returns 0 if permission is granted. 4119 */ 4120 int security_socket_create(int family, int type, int protocol, int kern) 4121 { 4122 return call_int_hook(socket_create, 0, family, type, protocol, kern); 4123 } 4124 4125 /** 4126 * security_socket_post_create() - Initialize a newly created socket 4127 * @sock: socket 4128 * @family: protocol family 4129 * @type: communications type 4130 * @protocol: requested protocol 4131 * @kern: set to 1 if a kernel socket is requested 4132 * 4133 * This hook allows a module to update or allocate a per-socket security 4134 * structure. Note that the security field was not added directly to the socket 4135 * structure, but rather, the socket security information is stored in the 4136 * associated inode. Typically, the inode alloc_security hook will allocate 4137 * and attach security information to SOCK_INODE(sock)->i_security. This hook 4138 * may be used to update the SOCK_INODE(sock)->i_security field with additional 4139 * information that wasn't available when the inode was allocated. 4140 * 4141 * Return: Returns 0 if permission is granted. 4142 */ 4143 int security_socket_post_create(struct socket *sock, int family, 4144 int type, int protocol, int kern) 4145 { 4146 return call_int_hook(socket_post_create, 0, sock, family, type, 4147 protocol, kern); 4148 } 4149 4150 /** 4151 * security_socket_socketpair() - Check if creating a socketpair is allowed 4152 * @socka: first socket 4153 * @sockb: second socket 4154 * 4155 * Check permissions before creating a fresh pair of sockets. 4156 * 4157 * Return: Returns 0 if permission is granted and the connection was 4158 * established. 4159 */ 4160 int security_socket_socketpair(struct socket *socka, struct socket *sockb) 4161 { 4162 return call_int_hook(socket_socketpair, 0, socka, sockb); 4163 } 4164 EXPORT_SYMBOL(security_socket_socketpair); 4165 4166 /** 4167 * security_socket_bind() - Check if a socket bind operation is allowed 4168 * @sock: socket 4169 * @address: requested bind address 4170 * @addrlen: length of address 4171 * 4172 * Check permission before socket protocol layer bind operation is performed 4173 * and the socket @sock is bound to the address specified in the @address 4174 * parameter. 4175 * 4176 * Return: Returns 0 if permission is granted. 4177 */ 4178 int security_socket_bind(struct socket *sock, 4179 struct sockaddr *address, int addrlen) 4180 { 4181 return call_int_hook(socket_bind, 0, sock, address, addrlen); 4182 } 4183 4184 /** 4185 * security_socket_connect() - Check if a socket connect operation is allowed 4186 * @sock: socket 4187 * @address: address of remote connection point 4188 * @addrlen: length of address 4189 * 4190 * Check permission before socket protocol layer connect operation attempts to 4191 * connect socket @sock to a remote address, @address. 4192 * 4193 * Return: Returns 0 if permission is granted. 4194 */ 4195 int security_socket_connect(struct socket *sock, 4196 struct sockaddr *address, int addrlen) 4197 { 4198 return call_int_hook(socket_connect, 0, sock, address, addrlen); 4199 } 4200 4201 /** 4202 * security_socket_listen() - Check if a socket is allowed to listen 4203 * @sock: socket 4204 * @backlog: connection queue size 4205 * 4206 * Check permission before socket protocol layer listen operation. 4207 * 4208 * Return: Returns 0 if permission is granted. 4209 */ 4210 int security_socket_listen(struct socket *sock, int backlog) 4211 { 4212 return call_int_hook(socket_listen, 0, sock, backlog); 4213 } 4214 4215 /** 4216 * security_socket_accept() - Check if a socket is allowed to accept connections 4217 * @sock: listening socket 4218 * @newsock: newly creation connection socket 4219 * 4220 * Check permission before accepting a new connection. Note that the new 4221 * socket, @newsock, has been created and some information copied to it, but 4222 * the accept operation has not actually been performed. 4223 * 4224 * Return: Returns 0 if permission is granted. 4225 */ 4226 int security_socket_accept(struct socket *sock, struct socket *newsock) 4227 { 4228 return call_int_hook(socket_accept, 0, sock, newsock); 4229 } 4230 4231 /** 4232 * security_socket_sendmsg() - Check is sending a message is allowed 4233 * @sock: sending socket 4234 * @msg: message to send 4235 * @size: size of message 4236 * 4237 * Check permission before transmitting a message to another socket. 4238 * 4239 * Return: Returns 0 if permission is granted. 4240 */ 4241 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size) 4242 { 4243 return call_int_hook(socket_sendmsg, 0, sock, msg, size); 4244 } 4245 4246 /** 4247 * security_socket_recvmsg() - Check if receiving a message is allowed 4248 * @sock: receiving socket 4249 * @msg: message to receive 4250 * @size: size of message 4251 * @flags: operational flags 4252 * 4253 * Check permission before receiving a message from a socket. 4254 * 4255 * Return: Returns 0 if permission is granted. 4256 */ 4257 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg, 4258 int size, int flags) 4259 { 4260 return call_int_hook(socket_recvmsg, 0, sock, msg, size, flags); 4261 } 4262 4263 /** 4264 * security_socket_getsockname() - Check if reading the socket addr is allowed 4265 * @sock: socket 4266 * 4267 * Check permission before reading the local address (name) of the socket 4268 * object. 4269 * 4270 * Return: Returns 0 if permission is granted. 4271 */ 4272 int security_socket_getsockname(struct socket *sock) 4273 { 4274 return call_int_hook(socket_getsockname, 0, sock); 4275 } 4276 4277 /** 4278 * security_socket_getpeername() - Check if reading the peer's addr is allowed 4279 * @sock: socket 4280 * 4281 * Check permission before the remote address (name) of a socket object. 4282 * 4283 * Return: Returns 0 if permission is granted. 4284 */ 4285 int security_socket_getpeername(struct socket *sock) 4286 { 4287 return call_int_hook(socket_getpeername, 0, sock); 4288 } 4289 4290 /** 4291 * security_socket_getsockopt() - Check if reading a socket option is allowed 4292 * @sock: socket 4293 * @level: option's protocol level 4294 * @optname: option name 4295 * 4296 * Check permissions before retrieving the options associated with socket 4297 * @sock. 4298 * 4299 * Return: Returns 0 if permission is granted. 4300 */ 4301 int security_socket_getsockopt(struct socket *sock, int level, int optname) 4302 { 4303 return call_int_hook(socket_getsockopt, 0, sock, level, optname); 4304 } 4305 4306 /** 4307 * security_socket_setsockopt() - Check if setting a socket option is allowed 4308 * @sock: socket 4309 * @level: option's protocol level 4310 * @optname: option name 4311 * 4312 * Check permissions before setting the options associated with socket @sock. 4313 * 4314 * Return: Returns 0 if permission is granted. 4315 */ 4316 int security_socket_setsockopt(struct socket *sock, int level, int optname) 4317 { 4318 return call_int_hook(socket_setsockopt, 0, sock, level, optname); 4319 } 4320 4321 /** 4322 * security_socket_shutdown() - Checks if shutting down the socket is allowed 4323 * @sock: socket 4324 * @how: flag indicating how sends and receives are handled 4325 * 4326 * Checks permission before all or part of a connection on the socket @sock is 4327 * shut down. 4328 * 4329 * Return: Returns 0 if permission is granted. 4330 */ 4331 int security_socket_shutdown(struct socket *sock, int how) 4332 { 4333 return call_int_hook(socket_shutdown, 0, sock, how); 4334 } 4335 4336 /** 4337 * security_sock_rcv_skb() - Check if an incoming network packet is allowed 4338 * @sk: destination sock 4339 * @skb: incoming packet 4340 * 4341 * Check permissions on incoming network packets. This hook is distinct from 4342 * Netfilter's IP input hooks since it is the first time that the incoming 4343 * sk_buff @skb has been associated with a particular socket, @sk. Must not 4344 * sleep inside this hook because some callers hold spinlocks. 4345 * 4346 * Return: Returns 0 if permission is granted. 4347 */ 4348 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb) 4349 { 4350 return call_int_hook(socket_sock_rcv_skb, 0, sk, skb); 4351 } 4352 EXPORT_SYMBOL(security_sock_rcv_skb); 4353 4354 /** 4355 * security_socket_getpeersec_stream() - Get the remote peer label 4356 * @sock: socket 4357 * @optval: destination buffer 4358 * @optlen: size of peer label copied into the buffer 4359 * @len: maximum size of the destination buffer 4360 * 4361 * This hook allows the security module to provide peer socket security state 4362 * for unix or connected tcp sockets to userspace via getsockopt SO_GETPEERSEC. 4363 * For tcp sockets this can be meaningful if the socket is associated with an 4364 * ipsec SA. 4365 * 4366 * Return: Returns 0 if all is well, otherwise, typical getsockopt return 4367 * values. 4368 */ 4369 int security_socket_getpeersec_stream(struct socket *sock, sockptr_t optval, 4370 sockptr_t optlen, unsigned int len) 4371 { 4372 return call_int_hook(socket_getpeersec_stream, -ENOPROTOOPT, sock, 4373 optval, optlen, len); 4374 } 4375 4376 /** 4377 * security_socket_getpeersec_dgram() - Get the remote peer label 4378 * @sock: socket 4379 * @skb: datagram packet 4380 * @secid: remote peer label secid 4381 * 4382 * This hook allows the security module to provide peer socket security state 4383 * for udp sockets on a per-packet basis to userspace via getsockopt 4384 * SO_GETPEERSEC. The application must first have indicated the IP_PASSSEC 4385 * option via getsockopt. It can then retrieve the security state returned by 4386 * this hook for a packet via the SCM_SECURITY ancillary message type. 4387 * 4388 * Return: Returns 0 on success, error on failure. 4389 */ 4390 int security_socket_getpeersec_dgram(struct socket *sock, 4391 struct sk_buff *skb, u32 *secid) 4392 { 4393 return call_int_hook(socket_getpeersec_dgram, -ENOPROTOOPT, sock, 4394 skb, secid); 4395 } 4396 EXPORT_SYMBOL(security_socket_getpeersec_dgram); 4397 4398 /** 4399 * security_sk_alloc() - Allocate and initialize a sock's LSM blob 4400 * @sk: sock 4401 * @family: protocol family 4402 * @priority: gfp flags 4403 * 4404 * Allocate and attach a security structure to the sk->sk_security field, which 4405 * is used to copy security attributes between local stream sockets. 4406 * 4407 * Return: Returns 0 on success, error on failure. 4408 */ 4409 int security_sk_alloc(struct sock *sk, int family, gfp_t priority) 4410 { 4411 return call_int_hook(sk_alloc_security, 0, sk, family, priority); 4412 } 4413 4414 /** 4415 * security_sk_free() - Free the sock's LSM blob 4416 * @sk: sock 4417 * 4418 * Deallocate security structure. 4419 */ 4420 void security_sk_free(struct sock *sk) 4421 { 4422 call_void_hook(sk_free_security, sk); 4423 } 4424 4425 /** 4426 * security_sk_clone() - Clone a sock's LSM state 4427 * @sk: original sock 4428 * @newsk: target sock 4429 * 4430 * Clone/copy security structure. 4431 */ 4432 void security_sk_clone(const struct sock *sk, struct sock *newsk) 4433 { 4434 call_void_hook(sk_clone_security, sk, newsk); 4435 } 4436 EXPORT_SYMBOL(security_sk_clone); 4437 4438 /** 4439 * security_sk_classify_flow() - Set a flow's secid based on socket 4440 * @sk: original socket 4441 * @flic: target flow 4442 * 4443 * Set the target flow's secid to socket's secid. 4444 */ 4445 void security_sk_classify_flow(const struct sock *sk, struct flowi_common *flic) 4446 { 4447 call_void_hook(sk_getsecid, sk, &flic->flowic_secid); 4448 } 4449 EXPORT_SYMBOL(security_sk_classify_flow); 4450 4451 /** 4452 * security_req_classify_flow() - Set a flow's secid based on request_sock 4453 * @req: request_sock 4454 * @flic: target flow 4455 * 4456 * Sets @flic's secid to @req's secid. 4457 */ 4458 void security_req_classify_flow(const struct request_sock *req, 4459 struct flowi_common *flic) 4460 { 4461 call_void_hook(req_classify_flow, req, flic); 4462 } 4463 EXPORT_SYMBOL(security_req_classify_flow); 4464 4465 /** 4466 * security_sock_graft() - Reconcile LSM state when grafting a sock on a socket 4467 * @sk: sock being grafted 4468 * @parent: target parent socket 4469 * 4470 * Sets @parent's inode secid to @sk's secid and update @sk with any necessary 4471 * LSM state from @parent. 4472 */ 4473 void security_sock_graft(struct sock *sk, struct socket *parent) 4474 { 4475 call_void_hook(sock_graft, sk, parent); 4476 } 4477 EXPORT_SYMBOL(security_sock_graft); 4478 4479 /** 4480 * security_inet_conn_request() - Set request_sock state using incoming connect 4481 * @sk: parent listening sock 4482 * @skb: incoming connection 4483 * @req: new request_sock 4484 * 4485 * Initialize the @req LSM state based on @sk and the incoming connect in @skb. 4486 * 4487 * Return: Returns 0 if permission is granted. 4488 */ 4489 int security_inet_conn_request(const struct sock *sk, 4490 struct sk_buff *skb, struct request_sock *req) 4491 { 4492 return call_int_hook(inet_conn_request, 0, sk, skb, req); 4493 } 4494 EXPORT_SYMBOL(security_inet_conn_request); 4495 4496 /** 4497 * security_inet_csk_clone() - Set new sock LSM state based on request_sock 4498 * @newsk: new sock 4499 * @req: connection request_sock 4500 * 4501 * Set that LSM state of @sock using the LSM state from @req. 4502 */ 4503 void security_inet_csk_clone(struct sock *newsk, 4504 const struct request_sock *req) 4505 { 4506 call_void_hook(inet_csk_clone, newsk, req); 4507 } 4508 4509 /** 4510 * security_inet_conn_established() - Update sock's LSM state with connection 4511 * @sk: sock 4512 * @skb: connection packet 4513 * 4514 * Update @sock's LSM state to represent a new connection from @skb. 4515 */ 4516 void security_inet_conn_established(struct sock *sk, 4517 struct sk_buff *skb) 4518 { 4519 call_void_hook(inet_conn_established, sk, skb); 4520 } 4521 EXPORT_SYMBOL(security_inet_conn_established); 4522 4523 /** 4524 * security_secmark_relabel_packet() - Check if setting a secmark is allowed 4525 * @secid: new secmark value 4526 * 4527 * Check if the process should be allowed to relabel packets to @secid. 4528 * 4529 * Return: Returns 0 if permission is granted. 4530 */ 4531 int security_secmark_relabel_packet(u32 secid) 4532 { 4533 return call_int_hook(secmark_relabel_packet, 0, secid); 4534 } 4535 EXPORT_SYMBOL(security_secmark_relabel_packet); 4536 4537 /** 4538 * security_secmark_refcount_inc() - Increment the secmark labeling rule count 4539 * 4540 * Tells the LSM to increment the number of secmark labeling rules loaded. 4541 */ 4542 void security_secmark_refcount_inc(void) 4543 { 4544 call_void_hook(secmark_refcount_inc); 4545 } 4546 EXPORT_SYMBOL(security_secmark_refcount_inc); 4547 4548 /** 4549 * security_secmark_refcount_dec() - Decrement the secmark labeling rule count 4550 * 4551 * Tells the LSM to decrement the number of secmark labeling rules loaded. 4552 */ 4553 void security_secmark_refcount_dec(void) 4554 { 4555 call_void_hook(secmark_refcount_dec); 4556 } 4557 EXPORT_SYMBOL(security_secmark_refcount_dec); 4558 4559 /** 4560 * security_tun_dev_alloc_security() - Allocate a LSM blob for a TUN device 4561 * @security: pointer to the LSM blob 4562 * 4563 * This hook allows a module to allocate a security structure for a TUN device, 4564 * returning the pointer in @security. 4565 * 4566 * Return: Returns a zero on success, negative values on failure. 4567 */ 4568 int security_tun_dev_alloc_security(void **security) 4569 { 4570 return call_int_hook(tun_dev_alloc_security, 0, security); 4571 } 4572 EXPORT_SYMBOL(security_tun_dev_alloc_security); 4573 4574 /** 4575 * security_tun_dev_free_security() - Free a TUN device LSM blob 4576 * @security: LSM blob 4577 * 4578 * This hook allows a module to free the security structure for a TUN device. 4579 */ 4580 void security_tun_dev_free_security(void *security) 4581 { 4582 call_void_hook(tun_dev_free_security, security); 4583 } 4584 EXPORT_SYMBOL(security_tun_dev_free_security); 4585 4586 /** 4587 * security_tun_dev_create() - Check if creating a TUN device is allowed 4588 * 4589 * Check permissions prior to creating a new TUN device. 4590 * 4591 * Return: Returns 0 if permission is granted. 4592 */ 4593 int security_tun_dev_create(void) 4594 { 4595 return call_int_hook(tun_dev_create, 0); 4596 } 4597 EXPORT_SYMBOL(security_tun_dev_create); 4598 4599 /** 4600 * security_tun_dev_attach_queue() - Check if attaching a TUN queue is allowed 4601 * @security: TUN device LSM blob 4602 * 4603 * Check permissions prior to attaching to a TUN device queue. 4604 * 4605 * Return: Returns 0 if permission is granted. 4606 */ 4607 int security_tun_dev_attach_queue(void *security) 4608 { 4609 return call_int_hook(tun_dev_attach_queue, 0, security); 4610 } 4611 EXPORT_SYMBOL(security_tun_dev_attach_queue); 4612 4613 /** 4614 * security_tun_dev_attach() - Update TUN device LSM state on attach 4615 * @sk: associated sock 4616 * @security: TUN device LSM blob 4617 * 4618 * This hook can be used by the module to update any security state associated 4619 * with the TUN device's sock structure. 4620 * 4621 * Return: Returns 0 if permission is granted. 4622 */ 4623 int security_tun_dev_attach(struct sock *sk, void *security) 4624 { 4625 return call_int_hook(tun_dev_attach, 0, sk, security); 4626 } 4627 EXPORT_SYMBOL(security_tun_dev_attach); 4628 4629 /** 4630 * security_tun_dev_open() - Update TUN device LSM state on open 4631 * @security: TUN device LSM blob 4632 * 4633 * This hook can be used by the module to update any security state associated 4634 * with the TUN device's security structure. 4635 * 4636 * Return: Returns 0 if permission is granted. 4637 */ 4638 int security_tun_dev_open(void *security) 4639 { 4640 return call_int_hook(tun_dev_open, 0, security); 4641 } 4642 EXPORT_SYMBOL(security_tun_dev_open); 4643 4644 /** 4645 * security_sctp_assoc_request() - Update the LSM on a SCTP association req 4646 * @asoc: SCTP association 4647 * @skb: packet requesting the association 4648 * 4649 * Passes the @asoc and @chunk->skb of the association INIT packet to the LSM. 4650 * 4651 * Return: Returns 0 on success, error on failure. 4652 */ 4653 int security_sctp_assoc_request(struct sctp_association *asoc, 4654 struct sk_buff *skb) 4655 { 4656 return call_int_hook(sctp_assoc_request, 0, asoc, skb); 4657 } 4658 EXPORT_SYMBOL(security_sctp_assoc_request); 4659 4660 /** 4661 * security_sctp_bind_connect() - Validate a list of addrs for a SCTP option 4662 * @sk: socket 4663 * @optname: SCTP option to validate 4664 * @address: list of IP addresses to validate 4665 * @addrlen: length of the address list 4666 * 4667 * Validiate permissions required for each address associated with sock @sk. 4668 * Depending on @optname, the addresses will be treated as either a connect or 4669 * bind service. The @addrlen is calculated on each IPv4 and IPv6 address using 4670 * sizeof(struct sockaddr_in) or sizeof(struct sockaddr_in6). 4671 * 4672 * Return: Returns 0 on success, error on failure. 4673 */ 4674 int security_sctp_bind_connect(struct sock *sk, int optname, 4675 struct sockaddr *address, int addrlen) 4676 { 4677 return call_int_hook(sctp_bind_connect, 0, sk, optname, 4678 address, addrlen); 4679 } 4680 EXPORT_SYMBOL(security_sctp_bind_connect); 4681 4682 /** 4683 * security_sctp_sk_clone() - Clone a SCTP sock's LSM state 4684 * @asoc: SCTP association 4685 * @sk: original sock 4686 * @newsk: target sock 4687 * 4688 * Called whenever a new socket is created by accept(2) (i.e. a TCP style 4689 * socket) or when a socket is 'peeled off' e.g userspace calls 4690 * sctp_peeloff(3). 4691 */ 4692 void security_sctp_sk_clone(struct sctp_association *asoc, struct sock *sk, 4693 struct sock *newsk) 4694 { 4695 call_void_hook(sctp_sk_clone, asoc, sk, newsk); 4696 } 4697 EXPORT_SYMBOL(security_sctp_sk_clone); 4698 4699 /** 4700 * security_sctp_assoc_established() - Update LSM state when assoc established 4701 * @asoc: SCTP association 4702 * @skb: packet establishing the association 4703 * 4704 * Passes the @asoc and @chunk->skb of the association COOKIE_ACK packet to the 4705 * security module. 4706 * 4707 * Return: Returns 0 if permission is granted. 4708 */ 4709 int security_sctp_assoc_established(struct sctp_association *asoc, 4710 struct sk_buff *skb) 4711 { 4712 return call_int_hook(sctp_assoc_established, 0, asoc, skb); 4713 } 4714 EXPORT_SYMBOL(security_sctp_assoc_established); 4715 4716 /** 4717 * security_mptcp_add_subflow() - Inherit the LSM label from the MPTCP socket 4718 * @sk: the owning MPTCP socket 4719 * @ssk: the new subflow 4720 * 4721 * Update the labeling for the given MPTCP subflow, to match the one of the 4722 * owning MPTCP socket. This hook has to be called after the socket creation and 4723 * initialization via the security_socket_create() and 4724 * security_socket_post_create() LSM hooks. 4725 * 4726 * Return: Returns 0 on success or a negative error code on failure. 4727 */ 4728 int security_mptcp_add_subflow(struct sock *sk, struct sock *ssk) 4729 { 4730 return call_int_hook(mptcp_add_subflow, 0, sk, ssk); 4731 } 4732 4733 #endif /* CONFIG_SECURITY_NETWORK */ 4734 4735 #ifdef CONFIG_SECURITY_INFINIBAND 4736 /** 4737 * security_ib_pkey_access() - Check if access to an IB pkey is allowed 4738 * @sec: LSM blob 4739 * @subnet_prefix: subnet prefix of the port 4740 * @pkey: IB pkey 4741 * 4742 * Check permission to access a pkey when modifying a QP. 4743 * 4744 * Return: Returns 0 if permission is granted. 4745 */ 4746 int security_ib_pkey_access(void *sec, u64 subnet_prefix, u16 pkey) 4747 { 4748 return call_int_hook(ib_pkey_access, 0, sec, subnet_prefix, pkey); 4749 } 4750 EXPORT_SYMBOL(security_ib_pkey_access); 4751 4752 /** 4753 * security_ib_endport_manage_subnet() - Check if SMPs traffic is allowed 4754 * @sec: LSM blob 4755 * @dev_name: IB device name 4756 * @port_num: port number 4757 * 4758 * Check permissions to send and receive SMPs on a end port. 4759 * 4760 * Return: Returns 0 if permission is granted. 4761 */ 4762 int security_ib_endport_manage_subnet(void *sec, 4763 const char *dev_name, u8 port_num) 4764 { 4765 return call_int_hook(ib_endport_manage_subnet, 0, sec, 4766 dev_name, port_num); 4767 } 4768 EXPORT_SYMBOL(security_ib_endport_manage_subnet); 4769 4770 /** 4771 * security_ib_alloc_security() - Allocate an Infiniband LSM blob 4772 * @sec: LSM blob 4773 * 4774 * Allocate a security structure for Infiniband objects. 4775 * 4776 * Return: Returns 0 on success, non-zero on failure. 4777 */ 4778 int security_ib_alloc_security(void **sec) 4779 { 4780 return call_int_hook(ib_alloc_security, 0, sec); 4781 } 4782 EXPORT_SYMBOL(security_ib_alloc_security); 4783 4784 /** 4785 * security_ib_free_security() - Free an Infiniband LSM blob 4786 * @sec: LSM blob 4787 * 4788 * Deallocate an Infiniband security structure. 4789 */ 4790 void security_ib_free_security(void *sec) 4791 { 4792 call_void_hook(ib_free_security, sec); 4793 } 4794 EXPORT_SYMBOL(security_ib_free_security); 4795 #endif /* CONFIG_SECURITY_INFINIBAND */ 4796 4797 #ifdef CONFIG_SECURITY_NETWORK_XFRM 4798 /** 4799 * security_xfrm_policy_alloc() - Allocate a xfrm policy LSM blob 4800 * @ctxp: xfrm security context being added to the SPD 4801 * @sec_ctx: security label provided by userspace 4802 * @gfp: gfp flags 4803 * 4804 * Allocate a security structure to the xp->security field; the security field 4805 * is initialized to NULL when the xfrm_policy is allocated. 4806 * 4807 * Return: Return 0 if operation was successful. 4808 */ 4809 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, 4810 struct xfrm_user_sec_ctx *sec_ctx, 4811 gfp_t gfp) 4812 { 4813 return call_int_hook(xfrm_policy_alloc_security, 0, ctxp, sec_ctx, gfp); 4814 } 4815 EXPORT_SYMBOL(security_xfrm_policy_alloc); 4816 4817 /** 4818 * security_xfrm_policy_clone() - Clone xfrm policy LSM state 4819 * @old_ctx: xfrm security context 4820 * @new_ctxp: target xfrm security context 4821 * 4822 * Allocate a security structure in new_ctxp that contains the information from 4823 * the old_ctx structure. 4824 * 4825 * Return: Return 0 if operation was successful. 4826 */ 4827 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx, 4828 struct xfrm_sec_ctx **new_ctxp) 4829 { 4830 return call_int_hook(xfrm_policy_clone_security, 0, old_ctx, new_ctxp); 4831 } 4832 4833 /** 4834 * security_xfrm_policy_free() - Free a xfrm security context 4835 * @ctx: xfrm security context 4836 * 4837 * Free LSM resources associated with @ctx. 4838 */ 4839 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx) 4840 { 4841 call_void_hook(xfrm_policy_free_security, ctx); 4842 } 4843 EXPORT_SYMBOL(security_xfrm_policy_free); 4844 4845 /** 4846 * security_xfrm_policy_delete() - Check if deleting a xfrm policy is allowed 4847 * @ctx: xfrm security context 4848 * 4849 * Authorize deletion of a SPD entry. 4850 * 4851 * Return: Returns 0 if permission is granted. 4852 */ 4853 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx) 4854 { 4855 return call_int_hook(xfrm_policy_delete_security, 0, ctx); 4856 } 4857 4858 /** 4859 * security_xfrm_state_alloc() - Allocate a xfrm state LSM blob 4860 * @x: xfrm state being added to the SAD 4861 * @sec_ctx: security label provided by userspace 4862 * 4863 * Allocate a security structure to the @x->security field; the security field 4864 * is initialized to NULL when the xfrm_state is allocated. Set the context to 4865 * correspond to @sec_ctx. 4866 * 4867 * Return: Return 0 if operation was successful. 4868 */ 4869 int security_xfrm_state_alloc(struct xfrm_state *x, 4870 struct xfrm_user_sec_ctx *sec_ctx) 4871 { 4872 return call_int_hook(xfrm_state_alloc, 0, x, sec_ctx); 4873 } 4874 EXPORT_SYMBOL(security_xfrm_state_alloc); 4875 4876 /** 4877 * security_xfrm_state_alloc_acquire() - Allocate a xfrm state LSM blob 4878 * @x: xfrm state being added to the SAD 4879 * @polsec: associated policy's security context 4880 * @secid: secid from the flow 4881 * 4882 * Allocate a security structure to the x->security field; the security field 4883 * is initialized to NULL when the xfrm_state is allocated. Set the context to 4884 * correspond to secid. 4885 * 4886 * Return: Returns 0 if operation was successful. 4887 */ 4888 int security_xfrm_state_alloc_acquire(struct xfrm_state *x, 4889 struct xfrm_sec_ctx *polsec, u32 secid) 4890 { 4891 return call_int_hook(xfrm_state_alloc_acquire, 0, x, polsec, secid); 4892 } 4893 4894 /** 4895 * security_xfrm_state_delete() - Check if deleting a xfrm state is allowed 4896 * @x: xfrm state 4897 * 4898 * Authorize deletion of x->security. 4899 * 4900 * Return: Returns 0 if permission is granted. 4901 */ 4902 int security_xfrm_state_delete(struct xfrm_state *x) 4903 { 4904 return call_int_hook(xfrm_state_delete_security, 0, x); 4905 } 4906 EXPORT_SYMBOL(security_xfrm_state_delete); 4907 4908 /** 4909 * security_xfrm_state_free() - Free a xfrm state 4910 * @x: xfrm state 4911 * 4912 * Deallocate x->security. 4913 */ 4914 void security_xfrm_state_free(struct xfrm_state *x) 4915 { 4916 call_void_hook(xfrm_state_free_security, x); 4917 } 4918 4919 /** 4920 * security_xfrm_policy_lookup() - Check if using a xfrm policy is allowed 4921 * @ctx: target xfrm security context 4922 * @fl_secid: flow secid used to authorize access 4923 * 4924 * Check permission when a flow selects a xfrm_policy for processing XFRMs on a 4925 * packet. The hook is called when selecting either a per-socket policy or a 4926 * generic xfrm policy. 4927 * 4928 * Return: Return 0 if permission is granted, -ESRCH otherwise, or -errno on 4929 * other errors. 4930 */ 4931 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid) 4932 { 4933 return call_int_hook(xfrm_policy_lookup, 0, ctx, fl_secid); 4934 } 4935 4936 /** 4937 * security_xfrm_state_pol_flow_match() - Check for a xfrm match 4938 * @x: xfrm state to match 4939 * @xp: xfrm policy to check for a match 4940 * @flic: flow to check for a match. 4941 * 4942 * Check @xp and @flic for a match with @x. 4943 * 4944 * Return: Returns 1 if there is a match. 4945 */ 4946 int security_xfrm_state_pol_flow_match(struct xfrm_state *x, 4947 struct xfrm_policy *xp, 4948 const struct flowi_common *flic) 4949 { 4950 struct security_hook_list *hp; 4951 int rc = LSM_RET_DEFAULT(xfrm_state_pol_flow_match); 4952 4953 /* 4954 * Since this function is expected to return 0 or 1, the judgment 4955 * becomes difficult if multiple LSMs supply this call. Fortunately, 4956 * we can use the first LSM's judgment because currently only SELinux 4957 * supplies this call. 4958 * 4959 * For speed optimization, we explicitly break the loop rather than 4960 * using the macro 4961 */ 4962 hlist_for_each_entry(hp, &security_hook_heads.xfrm_state_pol_flow_match, 4963 list) { 4964 rc = hp->hook.xfrm_state_pol_flow_match(x, xp, flic); 4965 break; 4966 } 4967 return rc; 4968 } 4969 4970 /** 4971 * security_xfrm_decode_session() - Determine the xfrm secid for a packet 4972 * @skb: xfrm packet 4973 * @secid: secid 4974 * 4975 * Decode the packet in @skb and return the security label in @secid. 4976 * 4977 * Return: Return 0 if all xfrms used have the same secid. 4978 */ 4979 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid) 4980 { 4981 return call_int_hook(xfrm_decode_session, 0, skb, secid, 1); 4982 } 4983 4984 void security_skb_classify_flow(struct sk_buff *skb, struct flowi_common *flic) 4985 { 4986 int rc = call_int_hook(xfrm_decode_session, 0, skb, &flic->flowic_secid, 4987 0); 4988 4989 BUG_ON(rc); 4990 } 4991 EXPORT_SYMBOL(security_skb_classify_flow); 4992 #endif /* CONFIG_SECURITY_NETWORK_XFRM */ 4993 4994 #ifdef CONFIG_KEYS 4995 /** 4996 * security_key_alloc() - Allocate and initialize a kernel key LSM blob 4997 * @key: key 4998 * @cred: credentials 4999 * @flags: allocation flags 5000 * 5001 * Permit allocation of a key and assign security data. Note that key does not 5002 * have a serial number assigned at this point. 5003 * 5004 * Return: Return 0 if permission is granted, -ve error otherwise. 5005 */ 5006 int security_key_alloc(struct key *key, const struct cred *cred, 5007 unsigned long flags) 5008 { 5009 return call_int_hook(key_alloc, 0, key, cred, flags); 5010 } 5011 5012 /** 5013 * security_key_free() - Free a kernel key LSM blob 5014 * @key: key 5015 * 5016 * Notification of destruction; free security data. 5017 */ 5018 void security_key_free(struct key *key) 5019 { 5020 call_void_hook(key_free, key); 5021 } 5022 5023 /** 5024 * security_key_permission() - Check if a kernel key operation is allowed 5025 * @key_ref: key reference 5026 * @cred: credentials of actor requesting access 5027 * @need_perm: requested permissions 5028 * 5029 * See whether a specific operational right is granted to a process on a key. 5030 * 5031 * Return: Return 0 if permission is granted, -ve error otherwise. 5032 */ 5033 int security_key_permission(key_ref_t key_ref, const struct cred *cred, 5034 enum key_need_perm need_perm) 5035 { 5036 return call_int_hook(key_permission, 0, key_ref, cred, need_perm); 5037 } 5038 5039 /** 5040 * security_key_getsecurity() - Get the key's security label 5041 * @key: key 5042 * @buffer: security label buffer 5043 * 5044 * Get a textual representation of the security context attached to a key for 5045 * the purposes of honouring KEYCTL_GETSECURITY. This function allocates the 5046 * storage for the NUL-terminated string and the caller should free it. 5047 * 5048 * Return: Returns the length of @buffer (including terminating NUL) or -ve if 5049 * an error occurs. May also return 0 (and a NULL buffer pointer) if 5050 * there is no security label assigned to the key. 5051 */ 5052 int security_key_getsecurity(struct key *key, char **buffer) 5053 { 5054 *buffer = NULL; 5055 return call_int_hook(key_getsecurity, 0, key, buffer); 5056 } 5057 #endif /* CONFIG_KEYS */ 5058 5059 #ifdef CONFIG_AUDIT 5060 /** 5061 * security_audit_rule_init() - Allocate and init an LSM audit rule struct 5062 * @field: audit action 5063 * @op: rule operator 5064 * @rulestr: rule context 5065 * @lsmrule: receive buffer for audit rule struct 5066 * 5067 * Allocate and initialize an LSM audit rule structure. 5068 * 5069 * Return: Return 0 if @lsmrule has been successfully set, -EINVAL in case of 5070 * an invalid rule. 5071 */ 5072 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule) 5073 { 5074 return call_int_hook(audit_rule_init, 0, field, op, rulestr, lsmrule); 5075 } 5076 5077 /** 5078 * security_audit_rule_known() - Check if an audit rule contains LSM fields 5079 * @krule: audit rule 5080 * 5081 * Specifies whether given @krule contains any fields related to the current 5082 * LSM. 5083 * 5084 * Return: Returns 1 in case of relation found, 0 otherwise. 5085 */ 5086 int security_audit_rule_known(struct audit_krule *krule) 5087 { 5088 return call_int_hook(audit_rule_known, 0, krule); 5089 } 5090 5091 /** 5092 * security_audit_rule_free() - Free an LSM audit rule struct 5093 * @lsmrule: audit rule struct 5094 * 5095 * Deallocate the LSM audit rule structure previously allocated by 5096 * audit_rule_init(). 5097 */ 5098 void security_audit_rule_free(void *lsmrule) 5099 { 5100 call_void_hook(audit_rule_free, lsmrule); 5101 } 5102 5103 /** 5104 * security_audit_rule_match() - Check if a label matches an audit rule 5105 * @secid: security label 5106 * @field: LSM audit field 5107 * @op: matching operator 5108 * @lsmrule: audit rule 5109 * 5110 * Determine if given @secid matches a rule previously approved by 5111 * security_audit_rule_known(). 5112 * 5113 * Return: Returns 1 if secid matches the rule, 0 if it does not, -ERRNO on 5114 * failure. 5115 */ 5116 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule) 5117 { 5118 return call_int_hook(audit_rule_match, 0, secid, field, op, lsmrule); 5119 } 5120 #endif /* CONFIG_AUDIT */ 5121 5122 #ifdef CONFIG_BPF_SYSCALL 5123 /** 5124 * security_bpf() - Check if the bpf syscall operation is allowed 5125 * @cmd: command 5126 * @attr: bpf attribute 5127 * @size: size 5128 * 5129 * Do a initial check for all bpf syscalls after the attribute is copied into 5130 * the kernel. The actual security module can implement their own rules to 5131 * check the specific cmd they need. 5132 * 5133 * Return: Returns 0 if permission is granted. 5134 */ 5135 int security_bpf(int cmd, union bpf_attr *attr, unsigned int size) 5136 { 5137 return call_int_hook(bpf, 0, cmd, attr, size); 5138 } 5139 5140 /** 5141 * security_bpf_map() - Check if access to a bpf map is allowed 5142 * @map: bpf map 5143 * @fmode: mode 5144 * 5145 * Do a check when the kernel generates and returns a file descriptor for eBPF 5146 * maps. 5147 * 5148 * Return: Returns 0 if permission is granted. 5149 */ 5150 int security_bpf_map(struct bpf_map *map, fmode_t fmode) 5151 { 5152 return call_int_hook(bpf_map, 0, map, fmode); 5153 } 5154 5155 /** 5156 * security_bpf_prog() - Check if access to a bpf program is allowed 5157 * @prog: bpf program 5158 * 5159 * Do a check when the kernel generates and returns a file descriptor for eBPF 5160 * programs. 5161 * 5162 * Return: Returns 0 if permission is granted. 5163 */ 5164 int security_bpf_prog(struct bpf_prog *prog) 5165 { 5166 return call_int_hook(bpf_prog, 0, prog); 5167 } 5168 5169 /** 5170 * security_bpf_map_alloc() - Allocate a bpf map LSM blob 5171 * @map: bpf map 5172 * 5173 * Initialize the security field inside bpf map. 5174 * 5175 * Return: Returns 0 on success, error on failure. 5176 */ 5177 int security_bpf_map_alloc(struct bpf_map *map) 5178 { 5179 return call_int_hook(bpf_map_alloc_security, 0, map); 5180 } 5181 5182 /** 5183 * security_bpf_prog_alloc() - Allocate a bpf program LSM blob 5184 * @aux: bpf program aux info struct 5185 * 5186 * Initialize the security field inside bpf program. 5187 * 5188 * Return: Returns 0 on success, error on failure. 5189 */ 5190 int security_bpf_prog_alloc(struct bpf_prog_aux *aux) 5191 { 5192 return call_int_hook(bpf_prog_alloc_security, 0, aux); 5193 } 5194 5195 /** 5196 * security_bpf_map_free() - Free a bpf map's LSM blob 5197 * @map: bpf map 5198 * 5199 * Clean up the security information stored inside bpf map. 5200 */ 5201 void security_bpf_map_free(struct bpf_map *map) 5202 { 5203 call_void_hook(bpf_map_free_security, map); 5204 } 5205 5206 /** 5207 * security_bpf_prog_free() - Free a bpf program's LSM blob 5208 * @aux: bpf program aux info struct 5209 * 5210 * Clean up the security information stored inside bpf prog. 5211 */ 5212 void security_bpf_prog_free(struct bpf_prog_aux *aux) 5213 { 5214 call_void_hook(bpf_prog_free_security, aux); 5215 } 5216 #endif /* CONFIG_BPF_SYSCALL */ 5217 5218 /** 5219 * security_locked_down() - Check if a kernel feature is allowed 5220 * @what: requested kernel feature 5221 * 5222 * Determine whether a kernel feature that potentially enables arbitrary code 5223 * execution in kernel space should be permitted. 5224 * 5225 * Return: Returns 0 if permission is granted. 5226 */ 5227 int security_locked_down(enum lockdown_reason what) 5228 { 5229 return call_int_hook(locked_down, 0, what); 5230 } 5231 EXPORT_SYMBOL(security_locked_down); 5232 5233 #ifdef CONFIG_PERF_EVENTS 5234 /** 5235 * security_perf_event_open() - Check if a perf event open is allowed 5236 * @attr: perf event attribute 5237 * @type: type of event 5238 * 5239 * Check whether the @type of perf_event_open syscall is allowed. 5240 * 5241 * Return: Returns 0 if permission is granted. 5242 */ 5243 int security_perf_event_open(struct perf_event_attr *attr, int type) 5244 { 5245 return call_int_hook(perf_event_open, 0, attr, type); 5246 } 5247 5248 /** 5249 * security_perf_event_alloc() - Allocate a perf event LSM blob 5250 * @event: perf event 5251 * 5252 * Allocate and save perf_event security info. 5253 * 5254 * Return: Returns 0 on success, error on failure. 5255 */ 5256 int security_perf_event_alloc(struct perf_event *event) 5257 { 5258 return call_int_hook(perf_event_alloc, 0, event); 5259 } 5260 5261 /** 5262 * security_perf_event_free() - Free a perf event LSM blob 5263 * @event: perf event 5264 * 5265 * Release (free) perf_event security info. 5266 */ 5267 void security_perf_event_free(struct perf_event *event) 5268 { 5269 call_void_hook(perf_event_free, event); 5270 } 5271 5272 /** 5273 * security_perf_event_read() - Check if reading a perf event label is allowed 5274 * @event: perf event 5275 * 5276 * Read perf_event security info if allowed. 5277 * 5278 * Return: Returns 0 if permission is granted. 5279 */ 5280 int security_perf_event_read(struct perf_event *event) 5281 { 5282 return call_int_hook(perf_event_read, 0, event); 5283 } 5284 5285 /** 5286 * security_perf_event_write() - Check if writing a perf event label is allowed 5287 * @event: perf event 5288 * 5289 * Write perf_event security info if allowed. 5290 * 5291 * Return: Returns 0 if permission is granted. 5292 */ 5293 int security_perf_event_write(struct perf_event *event) 5294 { 5295 return call_int_hook(perf_event_write, 0, event); 5296 } 5297 #endif /* CONFIG_PERF_EVENTS */ 5298 5299 #ifdef CONFIG_IO_URING 5300 /** 5301 * security_uring_override_creds() - Check if overriding creds is allowed 5302 * @new: new credentials 5303 * 5304 * Check if the current task, executing an io_uring operation, is allowed to 5305 * override it's credentials with @new. 5306 * 5307 * Return: Returns 0 if permission is granted. 5308 */ 5309 int security_uring_override_creds(const struct cred *new) 5310 { 5311 return call_int_hook(uring_override_creds, 0, new); 5312 } 5313 5314 /** 5315 * security_uring_sqpoll() - Check if IORING_SETUP_SQPOLL is allowed 5316 * 5317 * Check whether the current task is allowed to spawn a io_uring polling thread 5318 * (IORING_SETUP_SQPOLL). 5319 * 5320 * Return: Returns 0 if permission is granted. 5321 */ 5322 int security_uring_sqpoll(void) 5323 { 5324 return call_int_hook(uring_sqpoll, 0); 5325 } 5326 5327 /** 5328 * security_uring_cmd() - Check if a io_uring passthrough command is allowed 5329 * @ioucmd: command 5330 * 5331 * Check whether the file_operations uring_cmd is allowed to run. 5332 * 5333 * Return: Returns 0 if permission is granted. 5334 */ 5335 int security_uring_cmd(struct io_uring_cmd *ioucmd) 5336 { 5337 return call_int_hook(uring_cmd, 0, ioucmd); 5338 } 5339 #endif /* CONFIG_IO_URING */ 5340