1 /* 2 * Security plug functions 3 * 4 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com> 5 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com> 6 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com> 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2 of the License, or 11 * (at your option) any later version. 12 */ 13 14 #include <linux/capability.h> 15 #include <linux/module.h> 16 #include <linux/init.h> 17 #include <linux/kernel.h> 18 #include <linux/security.h> 19 #include <linux/ima.h> 20 21 /* Boot-time LSM user choice */ 22 static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1] = 23 CONFIG_DEFAULT_SECURITY; 24 25 /* things that live in capability.c */ 26 extern void security_fixup_ops(struct security_operations *ops); 27 28 static struct security_operations *security_ops; 29 static struct security_operations default_security_ops = { 30 .name = "default", 31 }; 32 33 static inline int verify(struct security_operations *ops) 34 { 35 /* verify the security_operations structure exists */ 36 if (!ops) 37 return -EINVAL; 38 security_fixup_ops(ops); 39 return 0; 40 } 41 42 static void __init do_security_initcalls(void) 43 { 44 initcall_t *call; 45 call = __security_initcall_start; 46 while (call < __security_initcall_end) { 47 (*call) (); 48 call++; 49 } 50 } 51 52 /** 53 * security_init - initializes the security framework 54 * 55 * This should be called early in the kernel initialization sequence. 56 */ 57 int __init security_init(void) 58 { 59 printk(KERN_INFO "Security Framework initialized\n"); 60 61 security_fixup_ops(&default_security_ops); 62 security_ops = &default_security_ops; 63 do_security_initcalls(); 64 65 return 0; 66 } 67 68 void reset_security_ops(void) 69 { 70 security_ops = &default_security_ops; 71 } 72 73 /* Save user chosen LSM */ 74 static int __init choose_lsm(char *str) 75 { 76 strncpy(chosen_lsm, str, SECURITY_NAME_MAX); 77 return 1; 78 } 79 __setup("security=", choose_lsm); 80 81 /** 82 * security_module_enable - Load given security module on boot ? 83 * @ops: a pointer to the struct security_operations that is to be checked. 84 * 85 * Each LSM must pass this method before registering its own operations 86 * to avoid security registration races. This method may also be used 87 * to check if your LSM is currently loaded during kernel initialization. 88 * 89 * Return true if: 90 * -The passed LSM is the one chosen by user at boot time, 91 * -or the passed LSM is configured as the default and the user did not 92 * choose an alternate LSM at boot time, 93 * -or there is no default LSM set and the user didn't specify a 94 * specific LSM and we're the first to ask for registration permission, 95 * -or the passed LSM is currently loaded. 96 * Otherwise, return false. 97 */ 98 int __init security_module_enable(struct security_operations *ops) 99 { 100 if (!*chosen_lsm) 101 strncpy(chosen_lsm, ops->name, SECURITY_NAME_MAX); 102 else if (strncmp(ops->name, chosen_lsm, SECURITY_NAME_MAX)) 103 return 0; 104 105 return 1; 106 } 107 108 /** 109 * register_security - registers a security framework with the kernel 110 * @ops: a pointer to the struct security_options that is to be registered 111 * 112 * This function allows a security module to register itself with the 113 * kernel security subsystem. Some rudimentary checking is done on the @ops 114 * value passed to this function. You'll need to check first if your LSM 115 * is allowed to register its @ops by calling security_module_enable(@ops). 116 * 117 * If there is already a security module registered with the kernel, 118 * an error will be returned. Otherwise %0 is returned on success. 119 */ 120 int register_security(struct security_operations *ops) 121 { 122 if (verify(ops)) { 123 printk(KERN_DEBUG "%s could not verify " 124 "security_operations structure.\n", __func__); 125 return -EINVAL; 126 } 127 128 if (security_ops != &default_security_ops) 129 return -EAGAIN; 130 131 security_ops = ops; 132 133 return 0; 134 } 135 136 /* Security operations */ 137 138 int security_ptrace_access_check(struct task_struct *child, unsigned int mode) 139 { 140 return security_ops->ptrace_access_check(child, mode); 141 } 142 143 int security_ptrace_traceme(struct task_struct *parent) 144 { 145 return security_ops->ptrace_traceme(parent); 146 } 147 148 int security_capget(struct task_struct *target, 149 kernel_cap_t *effective, 150 kernel_cap_t *inheritable, 151 kernel_cap_t *permitted) 152 { 153 return security_ops->capget(target, effective, inheritable, permitted); 154 } 155 156 int security_capset(struct cred *new, const struct cred *old, 157 const kernel_cap_t *effective, 158 const kernel_cap_t *inheritable, 159 const kernel_cap_t *permitted) 160 { 161 return security_ops->capset(new, old, 162 effective, inheritable, permitted); 163 } 164 165 int security_capable(int cap) 166 { 167 return security_ops->capable(current, current_cred(), cap, 168 SECURITY_CAP_AUDIT); 169 } 170 171 int security_real_capable(struct task_struct *tsk, int cap) 172 { 173 const struct cred *cred; 174 int ret; 175 176 cred = get_task_cred(tsk); 177 ret = security_ops->capable(tsk, cred, cap, SECURITY_CAP_AUDIT); 178 put_cred(cred); 179 return ret; 180 } 181 182 int security_real_capable_noaudit(struct task_struct *tsk, int cap) 183 { 184 const struct cred *cred; 185 int ret; 186 187 cred = get_task_cred(tsk); 188 ret = security_ops->capable(tsk, cred, cap, SECURITY_CAP_NOAUDIT); 189 put_cred(cred); 190 return ret; 191 } 192 193 int security_acct(struct file *file) 194 { 195 return security_ops->acct(file); 196 } 197 198 int security_sysctl(struct ctl_table *table, int op) 199 { 200 return security_ops->sysctl(table, op); 201 } 202 203 int security_quotactl(int cmds, int type, int id, struct super_block *sb) 204 { 205 return security_ops->quotactl(cmds, type, id, sb); 206 } 207 208 int security_quota_on(struct dentry *dentry) 209 { 210 return security_ops->quota_on(dentry); 211 } 212 213 int security_syslog(int type, bool from_file) 214 { 215 return security_ops->syslog(type, from_file); 216 } 217 218 int security_settime(struct timespec *ts, struct timezone *tz) 219 { 220 return security_ops->settime(ts, tz); 221 } 222 223 int security_vm_enough_memory(long pages) 224 { 225 WARN_ON(current->mm == NULL); 226 return security_ops->vm_enough_memory(current->mm, pages); 227 } 228 229 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages) 230 { 231 WARN_ON(mm == NULL); 232 return security_ops->vm_enough_memory(mm, pages); 233 } 234 235 int security_vm_enough_memory_kern(long pages) 236 { 237 /* If current->mm is a kernel thread then we will pass NULL, 238 for this specific case that is fine */ 239 return security_ops->vm_enough_memory(current->mm, pages); 240 } 241 242 int security_bprm_set_creds(struct linux_binprm *bprm) 243 { 244 return security_ops->bprm_set_creds(bprm); 245 } 246 247 int security_bprm_check(struct linux_binprm *bprm) 248 { 249 int ret; 250 251 ret = security_ops->bprm_check_security(bprm); 252 if (ret) 253 return ret; 254 return ima_bprm_check(bprm); 255 } 256 257 void security_bprm_committing_creds(struct linux_binprm *bprm) 258 { 259 security_ops->bprm_committing_creds(bprm); 260 } 261 262 void security_bprm_committed_creds(struct linux_binprm *bprm) 263 { 264 security_ops->bprm_committed_creds(bprm); 265 } 266 267 int security_bprm_secureexec(struct linux_binprm *bprm) 268 { 269 return security_ops->bprm_secureexec(bprm); 270 } 271 272 int security_sb_alloc(struct super_block *sb) 273 { 274 return security_ops->sb_alloc_security(sb); 275 } 276 277 void security_sb_free(struct super_block *sb) 278 { 279 security_ops->sb_free_security(sb); 280 } 281 282 int security_sb_copy_data(char *orig, char *copy) 283 { 284 return security_ops->sb_copy_data(orig, copy); 285 } 286 EXPORT_SYMBOL(security_sb_copy_data); 287 288 int security_sb_kern_mount(struct super_block *sb, int flags, void *data) 289 { 290 return security_ops->sb_kern_mount(sb, flags, data); 291 } 292 293 int security_sb_show_options(struct seq_file *m, struct super_block *sb) 294 { 295 return security_ops->sb_show_options(m, sb); 296 } 297 298 int security_sb_statfs(struct dentry *dentry) 299 { 300 return security_ops->sb_statfs(dentry); 301 } 302 303 int security_sb_mount(char *dev_name, struct path *path, 304 char *type, unsigned long flags, void *data) 305 { 306 return security_ops->sb_mount(dev_name, path, type, flags, data); 307 } 308 309 int security_sb_check_sb(struct vfsmount *mnt, struct path *path) 310 { 311 return security_ops->sb_check_sb(mnt, path); 312 } 313 314 int security_sb_umount(struct vfsmount *mnt, int flags) 315 { 316 return security_ops->sb_umount(mnt, flags); 317 } 318 319 void security_sb_umount_close(struct vfsmount *mnt) 320 { 321 security_ops->sb_umount_close(mnt); 322 } 323 324 void security_sb_umount_busy(struct vfsmount *mnt) 325 { 326 security_ops->sb_umount_busy(mnt); 327 } 328 329 void security_sb_post_remount(struct vfsmount *mnt, unsigned long flags, void *data) 330 { 331 security_ops->sb_post_remount(mnt, flags, data); 332 } 333 334 void security_sb_post_addmount(struct vfsmount *mnt, struct path *mountpoint) 335 { 336 security_ops->sb_post_addmount(mnt, mountpoint); 337 } 338 339 int security_sb_pivotroot(struct path *old_path, struct path *new_path) 340 { 341 return security_ops->sb_pivotroot(old_path, new_path); 342 } 343 344 void security_sb_post_pivotroot(struct path *old_path, struct path *new_path) 345 { 346 security_ops->sb_post_pivotroot(old_path, new_path); 347 } 348 349 int security_sb_set_mnt_opts(struct super_block *sb, 350 struct security_mnt_opts *opts) 351 { 352 return security_ops->sb_set_mnt_opts(sb, opts); 353 } 354 EXPORT_SYMBOL(security_sb_set_mnt_opts); 355 356 void security_sb_clone_mnt_opts(const struct super_block *oldsb, 357 struct super_block *newsb) 358 { 359 security_ops->sb_clone_mnt_opts(oldsb, newsb); 360 } 361 EXPORT_SYMBOL(security_sb_clone_mnt_opts); 362 363 int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts) 364 { 365 return security_ops->sb_parse_opts_str(options, opts); 366 } 367 EXPORT_SYMBOL(security_sb_parse_opts_str); 368 369 int security_inode_alloc(struct inode *inode) 370 { 371 int ret; 372 373 inode->i_security = NULL; 374 ret = security_ops->inode_alloc_security(inode); 375 if (ret) 376 return ret; 377 ret = ima_inode_alloc(inode); 378 if (ret) 379 security_inode_free(inode); 380 return ret; 381 } 382 383 void security_inode_free(struct inode *inode) 384 { 385 ima_inode_free(inode); 386 security_ops->inode_free_security(inode); 387 } 388 389 int security_inode_init_security(struct inode *inode, struct inode *dir, 390 char **name, void **value, size_t *len) 391 { 392 if (unlikely(IS_PRIVATE(inode))) 393 return -EOPNOTSUPP; 394 return security_ops->inode_init_security(inode, dir, name, value, len); 395 } 396 EXPORT_SYMBOL(security_inode_init_security); 397 398 #ifdef CONFIG_SECURITY_PATH 399 int security_path_mknod(struct path *dir, struct dentry *dentry, int mode, 400 unsigned int dev) 401 { 402 if (unlikely(IS_PRIVATE(dir->dentry->d_inode))) 403 return 0; 404 return security_ops->path_mknod(dir, dentry, mode, dev); 405 } 406 EXPORT_SYMBOL(security_path_mknod); 407 408 int security_path_mkdir(struct path *dir, struct dentry *dentry, int mode) 409 { 410 if (unlikely(IS_PRIVATE(dir->dentry->d_inode))) 411 return 0; 412 return security_ops->path_mkdir(dir, dentry, mode); 413 } 414 415 int security_path_rmdir(struct path *dir, struct dentry *dentry) 416 { 417 if (unlikely(IS_PRIVATE(dir->dentry->d_inode))) 418 return 0; 419 return security_ops->path_rmdir(dir, dentry); 420 } 421 422 int security_path_unlink(struct path *dir, struct dentry *dentry) 423 { 424 if (unlikely(IS_PRIVATE(dir->dentry->d_inode))) 425 return 0; 426 return security_ops->path_unlink(dir, dentry); 427 } 428 429 int security_path_symlink(struct path *dir, struct dentry *dentry, 430 const char *old_name) 431 { 432 if (unlikely(IS_PRIVATE(dir->dentry->d_inode))) 433 return 0; 434 return security_ops->path_symlink(dir, dentry, old_name); 435 } 436 437 int security_path_link(struct dentry *old_dentry, struct path *new_dir, 438 struct dentry *new_dentry) 439 { 440 if (unlikely(IS_PRIVATE(old_dentry->d_inode))) 441 return 0; 442 return security_ops->path_link(old_dentry, new_dir, new_dentry); 443 } 444 445 int security_path_rename(struct path *old_dir, struct dentry *old_dentry, 446 struct path *new_dir, struct dentry *new_dentry) 447 { 448 if (unlikely(IS_PRIVATE(old_dentry->d_inode) || 449 (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode)))) 450 return 0; 451 return security_ops->path_rename(old_dir, old_dentry, new_dir, 452 new_dentry); 453 } 454 455 int security_path_truncate(struct path *path, loff_t length, 456 unsigned int time_attrs) 457 { 458 if (unlikely(IS_PRIVATE(path->dentry->d_inode))) 459 return 0; 460 return security_ops->path_truncate(path, length, time_attrs); 461 } 462 463 int security_path_chmod(struct dentry *dentry, struct vfsmount *mnt, 464 mode_t mode) 465 { 466 if (unlikely(IS_PRIVATE(dentry->d_inode))) 467 return 0; 468 return security_ops->path_chmod(dentry, mnt, mode); 469 } 470 471 int security_path_chown(struct path *path, uid_t uid, gid_t gid) 472 { 473 if (unlikely(IS_PRIVATE(path->dentry->d_inode))) 474 return 0; 475 return security_ops->path_chown(path, uid, gid); 476 } 477 478 int security_path_chroot(struct path *path) 479 { 480 return security_ops->path_chroot(path); 481 } 482 #endif 483 484 int security_inode_create(struct inode *dir, struct dentry *dentry, int mode) 485 { 486 if (unlikely(IS_PRIVATE(dir))) 487 return 0; 488 return security_ops->inode_create(dir, dentry, mode); 489 } 490 EXPORT_SYMBOL_GPL(security_inode_create); 491 492 int security_inode_link(struct dentry *old_dentry, struct inode *dir, 493 struct dentry *new_dentry) 494 { 495 if (unlikely(IS_PRIVATE(old_dentry->d_inode))) 496 return 0; 497 return security_ops->inode_link(old_dentry, dir, new_dentry); 498 } 499 500 int security_inode_unlink(struct inode *dir, struct dentry *dentry) 501 { 502 if (unlikely(IS_PRIVATE(dentry->d_inode))) 503 return 0; 504 return security_ops->inode_unlink(dir, dentry); 505 } 506 507 int security_inode_symlink(struct inode *dir, struct dentry *dentry, 508 const char *old_name) 509 { 510 if (unlikely(IS_PRIVATE(dir))) 511 return 0; 512 return security_ops->inode_symlink(dir, dentry, old_name); 513 } 514 515 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, int mode) 516 { 517 if (unlikely(IS_PRIVATE(dir))) 518 return 0; 519 return security_ops->inode_mkdir(dir, dentry, mode); 520 } 521 EXPORT_SYMBOL_GPL(security_inode_mkdir); 522 523 int security_inode_rmdir(struct inode *dir, struct dentry *dentry) 524 { 525 if (unlikely(IS_PRIVATE(dentry->d_inode))) 526 return 0; 527 return security_ops->inode_rmdir(dir, dentry); 528 } 529 530 int security_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev) 531 { 532 if (unlikely(IS_PRIVATE(dir))) 533 return 0; 534 return security_ops->inode_mknod(dir, dentry, mode, dev); 535 } 536 537 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry, 538 struct inode *new_dir, struct dentry *new_dentry) 539 { 540 if (unlikely(IS_PRIVATE(old_dentry->d_inode) || 541 (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode)))) 542 return 0; 543 return security_ops->inode_rename(old_dir, old_dentry, 544 new_dir, new_dentry); 545 } 546 547 int security_inode_readlink(struct dentry *dentry) 548 { 549 if (unlikely(IS_PRIVATE(dentry->d_inode))) 550 return 0; 551 return security_ops->inode_readlink(dentry); 552 } 553 554 int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd) 555 { 556 if (unlikely(IS_PRIVATE(dentry->d_inode))) 557 return 0; 558 return security_ops->inode_follow_link(dentry, nd); 559 } 560 561 int security_inode_permission(struct inode *inode, int mask) 562 { 563 if (unlikely(IS_PRIVATE(inode))) 564 return 0; 565 return security_ops->inode_permission(inode, mask); 566 } 567 568 int security_inode_setattr(struct dentry *dentry, struct iattr *attr) 569 { 570 if (unlikely(IS_PRIVATE(dentry->d_inode))) 571 return 0; 572 return security_ops->inode_setattr(dentry, attr); 573 } 574 EXPORT_SYMBOL_GPL(security_inode_setattr); 575 576 int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry) 577 { 578 if (unlikely(IS_PRIVATE(dentry->d_inode))) 579 return 0; 580 return security_ops->inode_getattr(mnt, dentry); 581 } 582 583 void security_inode_delete(struct inode *inode) 584 { 585 if (unlikely(IS_PRIVATE(inode))) 586 return; 587 security_ops->inode_delete(inode); 588 } 589 590 int security_inode_setxattr(struct dentry *dentry, const char *name, 591 const void *value, size_t size, int flags) 592 { 593 if (unlikely(IS_PRIVATE(dentry->d_inode))) 594 return 0; 595 return security_ops->inode_setxattr(dentry, name, value, size, flags); 596 } 597 598 void security_inode_post_setxattr(struct dentry *dentry, const char *name, 599 const void *value, size_t size, int flags) 600 { 601 if (unlikely(IS_PRIVATE(dentry->d_inode))) 602 return; 603 security_ops->inode_post_setxattr(dentry, name, value, size, flags); 604 } 605 606 int security_inode_getxattr(struct dentry *dentry, const char *name) 607 { 608 if (unlikely(IS_PRIVATE(dentry->d_inode))) 609 return 0; 610 return security_ops->inode_getxattr(dentry, name); 611 } 612 613 int security_inode_listxattr(struct dentry *dentry) 614 { 615 if (unlikely(IS_PRIVATE(dentry->d_inode))) 616 return 0; 617 return security_ops->inode_listxattr(dentry); 618 } 619 620 int security_inode_removexattr(struct dentry *dentry, const char *name) 621 { 622 if (unlikely(IS_PRIVATE(dentry->d_inode))) 623 return 0; 624 return security_ops->inode_removexattr(dentry, name); 625 } 626 627 int security_inode_need_killpriv(struct dentry *dentry) 628 { 629 return security_ops->inode_need_killpriv(dentry); 630 } 631 632 int security_inode_killpriv(struct dentry *dentry) 633 { 634 return security_ops->inode_killpriv(dentry); 635 } 636 637 int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc) 638 { 639 if (unlikely(IS_PRIVATE(inode))) 640 return -EOPNOTSUPP; 641 return security_ops->inode_getsecurity(inode, name, buffer, alloc); 642 } 643 644 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags) 645 { 646 if (unlikely(IS_PRIVATE(inode))) 647 return -EOPNOTSUPP; 648 return security_ops->inode_setsecurity(inode, name, value, size, flags); 649 } 650 651 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size) 652 { 653 if (unlikely(IS_PRIVATE(inode))) 654 return 0; 655 return security_ops->inode_listsecurity(inode, buffer, buffer_size); 656 } 657 658 void security_inode_getsecid(const struct inode *inode, u32 *secid) 659 { 660 security_ops->inode_getsecid(inode, secid); 661 } 662 663 int security_file_permission(struct file *file, int mask) 664 { 665 return security_ops->file_permission(file, mask); 666 } 667 668 int security_file_alloc(struct file *file) 669 { 670 return security_ops->file_alloc_security(file); 671 } 672 673 void security_file_free(struct file *file) 674 { 675 security_ops->file_free_security(file); 676 } 677 678 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 679 { 680 return security_ops->file_ioctl(file, cmd, arg); 681 } 682 683 int security_file_mmap(struct file *file, unsigned long reqprot, 684 unsigned long prot, unsigned long flags, 685 unsigned long addr, unsigned long addr_only) 686 { 687 int ret; 688 689 ret = security_ops->file_mmap(file, reqprot, prot, flags, addr, addr_only); 690 if (ret) 691 return ret; 692 return ima_file_mmap(file, prot); 693 } 694 695 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot, 696 unsigned long prot) 697 { 698 return security_ops->file_mprotect(vma, reqprot, prot); 699 } 700 701 int security_file_lock(struct file *file, unsigned int cmd) 702 { 703 return security_ops->file_lock(file, cmd); 704 } 705 706 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg) 707 { 708 return security_ops->file_fcntl(file, cmd, arg); 709 } 710 711 int security_file_set_fowner(struct file *file) 712 { 713 return security_ops->file_set_fowner(file); 714 } 715 716 int security_file_send_sigiotask(struct task_struct *tsk, 717 struct fown_struct *fown, int sig) 718 { 719 return security_ops->file_send_sigiotask(tsk, fown, sig); 720 } 721 722 int security_file_receive(struct file *file) 723 { 724 return security_ops->file_receive(file); 725 } 726 727 int security_dentry_open(struct file *file, const struct cred *cred) 728 { 729 return security_ops->dentry_open(file, cred); 730 } 731 732 int security_task_create(unsigned long clone_flags) 733 { 734 return security_ops->task_create(clone_flags); 735 } 736 737 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp) 738 { 739 return security_ops->cred_alloc_blank(cred, gfp); 740 } 741 742 void security_cred_free(struct cred *cred) 743 { 744 security_ops->cred_free(cred); 745 } 746 747 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp) 748 { 749 return security_ops->cred_prepare(new, old, gfp); 750 } 751 752 void security_commit_creds(struct cred *new, const struct cred *old) 753 { 754 security_ops->cred_commit(new, old); 755 } 756 757 void security_transfer_creds(struct cred *new, const struct cred *old) 758 { 759 security_ops->cred_transfer(new, old); 760 } 761 762 int security_kernel_act_as(struct cred *new, u32 secid) 763 { 764 return security_ops->kernel_act_as(new, secid); 765 } 766 767 int security_kernel_create_files_as(struct cred *new, struct inode *inode) 768 { 769 return security_ops->kernel_create_files_as(new, inode); 770 } 771 772 int security_kernel_module_request(char *kmod_name) 773 { 774 return security_ops->kernel_module_request(kmod_name); 775 } 776 777 int security_task_setuid(uid_t id0, uid_t id1, uid_t id2, int flags) 778 { 779 return security_ops->task_setuid(id0, id1, id2, flags); 780 } 781 782 int security_task_fix_setuid(struct cred *new, const struct cred *old, 783 int flags) 784 { 785 return security_ops->task_fix_setuid(new, old, flags); 786 } 787 788 int security_task_setgid(gid_t id0, gid_t id1, gid_t id2, int flags) 789 { 790 return security_ops->task_setgid(id0, id1, id2, flags); 791 } 792 793 int security_task_setpgid(struct task_struct *p, pid_t pgid) 794 { 795 return security_ops->task_setpgid(p, pgid); 796 } 797 798 int security_task_getpgid(struct task_struct *p) 799 { 800 return security_ops->task_getpgid(p); 801 } 802 803 int security_task_getsid(struct task_struct *p) 804 { 805 return security_ops->task_getsid(p); 806 } 807 808 void security_task_getsecid(struct task_struct *p, u32 *secid) 809 { 810 security_ops->task_getsecid(p, secid); 811 } 812 EXPORT_SYMBOL(security_task_getsecid); 813 814 int security_task_setgroups(struct group_info *group_info) 815 { 816 return security_ops->task_setgroups(group_info); 817 } 818 819 int security_task_setnice(struct task_struct *p, int nice) 820 { 821 return security_ops->task_setnice(p, nice); 822 } 823 824 int security_task_setioprio(struct task_struct *p, int ioprio) 825 { 826 return security_ops->task_setioprio(p, ioprio); 827 } 828 829 int security_task_getioprio(struct task_struct *p) 830 { 831 return security_ops->task_getioprio(p); 832 } 833 834 int security_task_setrlimit(unsigned int resource, struct rlimit *new_rlim) 835 { 836 return security_ops->task_setrlimit(resource, new_rlim); 837 } 838 839 int security_task_setscheduler(struct task_struct *p, 840 int policy, struct sched_param *lp) 841 { 842 return security_ops->task_setscheduler(p, policy, lp); 843 } 844 845 int security_task_getscheduler(struct task_struct *p) 846 { 847 return security_ops->task_getscheduler(p); 848 } 849 850 int security_task_movememory(struct task_struct *p) 851 { 852 return security_ops->task_movememory(p); 853 } 854 855 int security_task_kill(struct task_struct *p, struct siginfo *info, 856 int sig, u32 secid) 857 { 858 return security_ops->task_kill(p, info, sig, secid); 859 } 860 861 int security_task_wait(struct task_struct *p) 862 { 863 return security_ops->task_wait(p); 864 } 865 866 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3, 867 unsigned long arg4, unsigned long arg5) 868 { 869 return security_ops->task_prctl(option, arg2, arg3, arg4, arg5); 870 } 871 872 void security_task_to_inode(struct task_struct *p, struct inode *inode) 873 { 874 security_ops->task_to_inode(p, inode); 875 } 876 877 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag) 878 { 879 return security_ops->ipc_permission(ipcp, flag); 880 } 881 882 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid) 883 { 884 security_ops->ipc_getsecid(ipcp, secid); 885 } 886 887 int security_msg_msg_alloc(struct msg_msg *msg) 888 { 889 return security_ops->msg_msg_alloc_security(msg); 890 } 891 892 void security_msg_msg_free(struct msg_msg *msg) 893 { 894 security_ops->msg_msg_free_security(msg); 895 } 896 897 int security_msg_queue_alloc(struct msg_queue *msq) 898 { 899 return security_ops->msg_queue_alloc_security(msq); 900 } 901 902 void security_msg_queue_free(struct msg_queue *msq) 903 { 904 security_ops->msg_queue_free_security(msq); 905 } 906 907 int security_msg_queue_associate(struct msg_queue *msq, int msqflg) 908 { 909 return security_ops->msg_queue_associate(msq, msqflg); 910 } 911 912 int security_msg_queue_msgctl(struct msg_queue *msq, int cmd) 913 { 914 return security_ops->msg_queue_msgctl(msq, cmd); 915 } 916 917 int security_msg_queue_msgsnd(struct msg_queue *msq, 918 struct msg_msg *msg, int msqflg) 919 { 920 return security_ops->msg_queue_msgsnd(msq, msg, msqflg); 921 } 922 923 int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg, 924 struct task_struct *target, long type, int mode) 925 { 926 return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode); 927 } 928 929 int security_shm_alloc(struct shmid_kernel *shp) 930 { 931 return security_ops->shm_alloc_security(shp); 932 } 933 934 void security_shm_free(struct shmid_kernel *shp) 935 { 936 security_ops->shm_free_security(shp); 937 } 938 939 int security_shm_associate(struct shmid_kernel *shp, int shmflg) 940 { 941 return security_ops->shm_associate(shp, shmflg); 942 } 943 944 int security_shm_shmctl(struct shmid_kernel *shp, int cmd) 945 { 946 return security_ops->shm_shmctl(shp, cmd); 947 } 948 949 int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg) 950 { 951 return security_ops->shm_shmat(shp, shmaddr, shmflg); 952 } 953 954 int security_sem_alloc(struct sem_array *sma) 955 { 956 return security_ops->sem_alloc_security(sma); 957 } 958 959 void security_sem_free(struct sem_array *sma) 960 { 961 security_ops->sem_free_security(sma); 962 } 963 964 int security_sem_associate(struct sem_array *sma, int semflg) 965 { 966 return security_ops->sem_associate(sma, semflg); 967 } 968 969 int security_sem_semctl(struct sem_array *sma, int cmd) 970 { 971 return security_ops->sem_semctl(sma, cmd); 972 } 973 974 int security_sem_semop(struct sem_array *sma, struct sembuf *sops, 975 unsigned nsops, int alter) 976 { 977 return security_ops->sem_semop(sma, sops, nsops, alter); 978 } 979 980 void security_d_instantiate(struct dentry *dentry, struct inode *inode) 981 { 982 if (unlikely(inode && IS_PRIVATE(inode))) 983 return; 984 security_ops->d_instantiate(dentry, inode); 985 } 986 EXPORT_SYMBOL(security_d_instantiate); 987 988 int security_getprocattr(struct task_struct *p, char *name, char **value) 989 { 990 return security_ops->getprocattr(p, name, value); 991 } 992 993 int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size) 994 { 995 return security_ops->setprocattr(p, name, value, size); 996 } 997 998 int security_netlink_send(struct sock *sk, struct sk_buff *skb) 999 { 1000 return security_ops->netlink_send(sk, skb); 1001 } 1002 1003 int security_netlink_recv(struct sk_buff *skb, int cap) 1004 { 1005 return security_ops->netlink_recv(skb, cap); 1006 } 1007 EXPORT_SYMBOL(security_netlink_recv); 1008 1009 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen) 1010 { 1011 return security_ops->secid_to_secctx(secid, secdata, seclen); 1012 } 1013 EXPORT_SYMBOL(security_secid_to_secctx); 1014 1015 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid) 1016 { 1017 return security_ops->secctx_to_secid(secdata, seclen, secid); 1018 } 1019 EXPORT_SYMBOL(security_secctx_to_secid); 1020 1021 void security_release_secctx(char *secdata, u32 seclen) 1022 { 1023 security_ops->release_secctx(secdata, seclen); 1024 } 1025 EXPORT_SYMBOL(security_release_secctx); 1026 1027 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen) 1028 { 1029 return security_ops->inode_notifysecctx(inode, ctx, ctxlen); 1030 } 1031 EXPORT_SYMBOL(security_inode_notifysecctx); 1032 1033 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen) 1034 { 1035 return security_ops->inode_setsecctx(dentry, ctx, ctxlen); 1036 } 1037 EXPORT_SYMBOL(security_inode_setsecctx); 1038 1039 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen) 1040 { 1041 return security_ops->inode_getsecctx(inode, ctx, ctxlen); 1042 } 1043 EXPORT_SYMBOL(security_inode_getsecctx); 1044 1045 #ifdef CONFIG_SECURITY_NETWORK 1046 1047 int security_unix_stream_connect(struct socket *sock, struct socket *other, 1048 struct sock *newsk) 1049 { 1050 return security_ops->unix_stream_connect(sock, other, newsk); 1051 } 1052 EXPORT_SYMBOL(security_unix_stream_connect); 1053 1054 int security_unix_may_send(struct socket *sock, struct socket *other) 1055 { 1056 return security_ops->unix_may_send(sock, other); 1057 } 1058 EXPORT_SYMBOL(security_unix_may_send); 1059 1060 int security_socket_create(int family, int type, int protocol, int kern) 1061 { 1062 return security_ops->socket_create(family, type, protocol, kern); 1063 } 1064 1065 int security_socket_post_create(struct socket *sock, int family, 1066 int type, int protocol, int kern) 1067 { 1068 return security_ops->socket_post_create(sock, family, type, 1069 protocol, kern); 1070 } 1071 1072 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen) 1073 { 1074 return security_ops->socket_bind(sock, address, addrlen); 1075 } 1076 1077 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen) 1078 { 1079 return security_ops->socket_connect(sock, address, addrlen); 1080 } 1081 1082 int security_socket_listen(struct socket *sock, int backlog) 1083 { 1084 return security_ops->socket_listen(sock, backlog); 1085 } 1086 1087 int security_socket_accept(struct socket *sock, struct socket *newsock) 1088 { 1089 return security_ops->socket_accept(sock, newsock); 1090 } 1091 1092 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size) 1093 { 1094 return security_ops->socket_sendmsg(sock, msg, size); 1095 } 1096 1097 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg, 1098 int size, int flags) 1099 { 1100 return security_ops->socket_recvmsg(sock, msg, size, flags); 1101 } 1102 1103 int security_socket_getsockname(struct socket *sock) 1104 { 1105 return security_ops->socket_getsockname(sock); 1106 } 1107 1108 int security_socket_getpeername(struct socket *sock) 1109 { 1110 return security_ops->socket_getpeername(sock); 1111 } 1112 1113 int security_socket_getsockopt(struct socket *sock, int level, int optname) 1114 { 1115 return security_ops->socket_getsockopt(sock, level, optname); 1116 } 1117 1118 int security_socket_setsockopt(struct socket *sock, int level, int optname) 1119 { 1120 return security_ops->socket_setsockopt(sock, level, optname); 1121 } 1122 1123 int security_socket_shutdown(struct socket *sock, int how) 1124 { 1125 return security_ops->socket_shutdown(sock, how); 1126 } 1127 1128 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb) 1129 { 1130 return security_ops->socket_sock_rcv_skb(sk, skb); 1131 } 1132 EXPORT_SYMBOL(security_sock_rcv_skb); 1133 1134 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval, 1135 int __user *optlen, unsigned len) 1136 { 1137 return security_ops->socket_getpeersec_stream(sock, optval, optlen, len); 1138 } 1139 1140 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid) 1141 { 1142 return security_ops->socket_getpeersec_dgram(sock, skb, secid); 1143 } 1144 EXPORT_SYMBOL(security_socket_getpeersec_dgram); 1145 1146 int security_sk_alloc(struct sock *sk, int family, gfp_t priority) 1147 { 1148 return security_ops->sk_alloc_security(sk, family, priority); 1149 } 1150 1151 void security_sk_free(struct sock *sk) 1152 { 1153 security_ops->sk_free_security(sk); 1154 } 1155 1156 void security_sk_clone(const struct sock *sk, struct sock *newsk) 1157 { 1158 security_ops->sk_clone_security(sk, newsk); 1159 } 1160 1161 void security_sk_classify_flow(struct sock *sk, struct flowi *fl) 1162 { 1163 security_ops->sk_getsecid(sk, &fl->secid); 1164 } 1165 EXPORT_SYMBOL(security_sk_classify_flow); 1166 1167 void security_req_classify_flow(const struct request_sock *req, struct flowi *fl) 1168 { 1169 security_ops->req_classify_flow(req, fl); 1170 } 1171 EXPORT_SYMBOL(security_req_classify_flow); 1172 1173 void security_sock_graft(struct sock *sk, struct socket *parent) 1174 { 1175 security_ops->sock_graft(sk, parent); 1176 } 1177 EXPORT_SYMBOL(security_sock_graft); 1178 1179 int security_inet_conn_request(struct sock *sk, 1180 struct sk_buff *skb, struct request_sock *req) 1181 { 1182 return security_ops->inet_conn_request(sk, skb, req); 1183 } 1184 EXPORT_SYMBOL(security_inet_conn_request); 1185 1186 void security_inet_csk_clone(struct sock *newsk, 1187 const struct request_sock *req) 1188 { 1189 security_ops->inet_csk_clone(newsk, req); 1190 } 1191 1192 void security_inet_conn_established(struct sock *sk, 1193 struct sk_buff *skb) 1194 { 1195 security_ops->inet_conn_established(sk, skb); 1196 } 1197 1198 int security_tun_dev_create(void) 1199 { 1200 return security_ops->tun_dev_create(); 1201 } 1202 EXPORT_SYMBOL(security_tun_dev_create); 1203 1204 void security_tun_dev_post_create(struct sock *sk) 1205 { 1206 return security_ops->tun_dev_post_create(sk); 1207 } 1208 EXPORT_SYMBOL(security_tun_dev_post_create); 1209 1210 int security_tun_dev_attach(struct sock *sk) 1211 { 1212 return security_ops->tun_dev_attach(sk); 1213 } 1214 EXPORT_SYMBOL(security_tun_dev_attach); 1215 1216 #endif /* CONFIG_SECURITY_NETWORK */ 1217 1218 #ifdef CONFIG_SECURITY_NETWORK_XFRM 1219 1220 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct xfrm_user_sec_ctx *sec_ctx) 1221 { 1222 return security_ops->xfrm_policy_alloc_security(ctxp, sec_ctx); 1223 } 1224 EXPORT_SYMBOL(security_xfrm_policy_alloc); 1225 1226 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx, 1227 struct xfrm_sec_ctx **new_ctxp) 1228 { 1229 return security_ops->xfrm_policy_clone_security(old_ctx, new_ctxp); 1230 } 1231 1232 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx) 1233 { 1234 security_ops->xfrm_policy_free_security(ctx); 1235 } 1236 EXPORT_SYMBOL(security_xfrm_policy_free); 1237 1238 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx) 1239 { 1240 return security_ops->xfrm_policy_delete_security(ctx); 1241 } 1242 1243 int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx) 1244 { 1245 return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0); 1246 } 1247 EXPORT_SYMBOL(security_xfrm_state_alloc); 1248 1249 int security_xfrm_state_alloc_acquire(struct xfrm_state *x, 1250 struct xfrm_sec_ctx *polsec, u32 secid) 1251 { 1252 if (!polsec) 1253 return 0; 1254 /* 1255 * We want the context to be taken from secid which is usually 1256 * from the sock. 1257 */ 1258 return security_ops->xfrm_state_alloc_security(x, NULL, secid); 1259 } 1260 1261 int security_xfrm_state_delete(struct xfrm_state *x) 1262 { 1263 return security_ops->xfrm_state_delete_security(x); 1264 } 1265 EXPORT_SYMBOL(security_xfrm_state_delete); 1266 1267 void security_xfrm_state_free(struct xfrm_state *x) 1268 { 1269 security_ops->xfrm_state_free_security(x); 1270 } 1271 1272 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir) 1273 { 1274 return security_ops->xfrm_policy_lookup(ctx, fl_secid, dir); 1275 } 1276 1277 int security_xfrm_state_pol_flow_match(struct xfrm_state *x, 1278 struct xfrm_policy *xp, struct flowi *fl) 1279 { 1280 return security_ops->xfrm_state_pol_flow_match(x, xp, fl); 1281 } 1282 1283 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid) 1284 { 1285 return security_ops->xfrm_decode_session(skb, secid, 1); 1286 } 1287 1288 void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl) 1289 { 1290 int rc = security_ops->xfrm_decode_session(skb, &fl->secid, 0); 1291 1292 BUG_ON(rc); 1293 } 1294 EXPORT_SYMBOL(security_skb_classify_flow); 1295 1296 #endif /* CONFIG_SECURITY_NETWORK_XFRM */ 1297 1298 #ifdef CONFIG_KEYS 1299 1300 int security_key_alloc(struct key *key, const struct cred *cred, 1301 unsigned long flags) 1302 { 1303 return security_ops->key_alloc(key, cred, flags); 1304 } 1305 1306 void security_key_free(struct key *key) 1307 { 1308 security_ops->key_free(key); 1309 } 1310 1311 int security_key_permission(key_ref_t key_ref, 1312 const struct cred *cred, key_perm_t perm) 1313 { 1314 return security_ops->key_permission(key_ref, cred, perm); 1315 } 1316 1317 int security_key_getsecurity(struct key *key, char **_buffer) 1318 { 1319 return security_ops->key_getsecurity(key, _buffer); 1320 } 1321 1322 int security_key_session_to_parent(const struct cred *cred, 1323 const struct cred *parent_cred, 1324 struct key *key) 1325 { 1326 return security_ops->key_session_to_parent(cred, parent_cred, key); 1327 } 1328 1329 #endif /* CONFIG_KEYS */ 1330 1331 #ifdef CONFIG_AUDIT 1332 1333 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule) 1334 { 1335 return security_ops->audit_rule_init(field, op, rulestr, lsmrule); 1336 } 1337 1338 int security_audit_rule_known(struct audit_krule *krule) 1339 { 1340 return security_ops->audit_rule_known(krule); 1341 } 1342 1343 void security_audit_rule_free(void *lsmrule) 1344 { 1345 security_ops->audit_rule_free(lsmrule); 1346 } 1347 1348 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule, 1349 struct audit_context *actx) 1350 { 1351 return security_ops->audit_rule_match(secid, field, op, lsmrule, actx); 1352 } 1353 1354 #endif /* CONFIG_AUDIT */ 1355