xref: /linux/security/security.c (revision 59438b46471ae6cdfb761afc8c9beaf1e428a331)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Security plug functions
4  *
5  * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
6  * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
7  * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
8  * Copyright (C) 2016 Mellanox Technologies
9  */
10 
11 #define pr_fmt(fmt) "LSM: " fmt
12 
13 #include <linux/bpf.h>
14 #include <linux/capability.h>
15 #include <linux/dcache.h>
16 #include <linux/export.h>
17 #include <linux/init.h>
18 #include <linux/kernel.h>
19 #include <linux/lsm_hooks.h>
20 #include <linux/integrity.h>
21 #include <linux/ima.h>
22 #include <linux/evm.h>
23 #include <linux/fsnotify.h>
24 #include <linux/mman.h>
25 #include <linux/mount.h>
26 #include <linux/personality.h>
27 #include <linux/backing-dev.h>
28 #include <linux/string.h>
29 #include <linux/msg.h>
30 #include <net/flow.h>
31 
32 #define MAX_LSM_EVM_XATTR	2
33 
34 /* How many LSMs were built into the kernel? */
35 #define LSM_COUNT (__end_lsm_info - __start_lsm_info)
36 #define EARLY_LSM_COUNT (__end_early_lsm_info - __start_early_lsm_info)
37 
38 /*
39  * These are descriptions of the reasons that can be passed to the
40  * security_locked_down() LSM hook. Placing this array here allows
41  * all security modules to use the same descriptions for auditing
42  * purposes.
43  */
44 const char *const lockdown_reasons[LOCKDOWN_CONFIDENTIALITY_MAX+1] = {
45 	[LOCKDOWN_NONE] = "none",
46 	[LOCKDOWN_MODULE_SIGNATURE] = "unsigned module loading",
47 	[LOCKDOWN_DEV_MEM] = "/dev/mem,kmem,port",
48 	[LOCKDOWN_EFI_TEST] = "/dev/efi_test access",
49 	[LOCKDOWN_KEXEC] = "kexec of unsigned images",
50 	[LOCKDOWN_HIBERNATION] = "hibernation",
51 	[LOCKDOWN_PCI_ACCESS] = "direct PCI access",
52 	[LOCKDOWN_IOPORT] = "raw io port access",
53 	[LOCKDOWN_MSR] = "raw MSR access",
54 	[LOCKDOWN_ACPI_TABLES] = "modifying ACPI tables",
55 	[LOCKDOWN_PCMCIA_CIS] = "direct PCMCIA CIS storage",
56 	[LOCKDOWN_TIOCSSERIAL] = "reconfiguration of serial port IO",
57 	[LOCKDOWN_MODULE_PARAMETERS] = "unsafe module parameters",
58 	[LOCKDOWN_MMIOTRACE] = "unsafe mmio",
59 	[LOCKDOWN_DEBUGFS] = "debugfs access",
60 	[LOCKDOWN_XMON_WR] = "xmon write access",
61 	[LOCKDOWN_INTEGRITY_MAX] = "integrity",
62 	[LOCKDOWN_KCORE] = "/proc/kcore access",
63 	[LOCKDOWN_KPROBES] = "use of kprobes",
64 	[LOCKDOWN_BPF_READ] = "use of bpf to read kernel RAM",
65 	[LOCKDOWN_PERF] = "unsafe use of perf",
66 	[LOCKDOWN_TRACEFS] = "use of tracefs",
67 	[LOCKDOWN_XMON_RW] = "xmon read and write access",
68 	[LOCKDOWN_CONFIDENTIALITY_MAX] = "confidentiality",
69 };
70 
71 struct security_hook_heads security_hook_heads __lsm_ro_after_init;
72 static BLOCKING_NOTIFIER_HEAD(blocking_lsm_notifier_chain);
73 
74 static struct kmem_cache *lsm_file_cache;
75 static struct kmem_cache *lsm_inode_cache;
76 
77 char *lsm_names;
78 static struct lsm_blob_sizes blob_sizes __lsm_ro_after_init;
79 
80 /* Boot-time LSM user choice */
81 static __initdata const char *chosen_lsm_order;
82 static __initdata const char *chosen_major_lsm;
83 
84 static __initconst const char * const builtin_lsm_order = CONFIG_LSM;
85 
86 /* Ordered list of LSMs to initialize. */
87 static __initdata struct lsm_info **ordered_lsms;
88 static __initdata struct lsm_info *exclusive;
89 
90 static __initdata bool debug;
91 #define init_debug(...)						\
92 	do {							\
93 		if (debug)					\
94 			pr_info(__VA_ARGS__);			\
95 	} while (0)
96 
97 static bool __init is_enabled(struct lsm_info *lsm)
98 {
99 	if (!lsm->enabled)
100 		return false;
101 
102 	return *lsm->enabled;
103 }
104 
105 /* Mark an LSM's enabled flag. */
106 static int lsm_enabled_true __initdata = 1;
107 static int lsm_enabled_false __initdata = 0;
108 static void __init set_enabled(struct lsm_info *lsm, bool enabled)
109 {
110 	/*
111 	 * When an LSM hasn't configured an enable variable, we can use
112 	 * a hard-coded location for storing the default enabled state.
113 	 */
114 	if (!lsm->enabled) {
115 		if (enabled)
116 			lsm->enabled = &lsm_enabled_true;
117 		else
118 			lsm->enabled = &lsm_enabled_false;
119 	} else if (lsm->enabled == &lsm_enabled_true) {
120 		if (!enabled)
121 			lsm->enabled = &lsm_enabled_false;
122 	} else if (lsm->enabled == &lsm_enabled_false) {
123 		if (enabled)
124 			lsm->enabled = &lsm_enabled_true;
125 	} else {
126 		*lsm->enabled = enabled;
127 	}
128 }
129 
130 /* Is an LSM already listed in the ordered LSMs list? */
131 static bool __init exists_ordered_lsm(struct lsm_info *lsm)
132 {
133 	struct lsm_info **check;
134 
135 	for (check = ordered_lsms; *check; check++)
136 		if (*check == lsm)
137 			return true;
138 
139 	return false;
140 }
141 
142 /* Append an LSM to the list of ordered LSMs to initialize. */
143 static int last_lsm __initdata;
144 static void __init append_ordered_lsm(struct lsm_info *lsm, const char *from)
145 {
146 	/* Ignore duplicate selections. */
147 	if (exists_ordered_lsm(lsm))
148 		return;
149 
150 	if (WARN(last_lsm == LSM_COUNT, "%s: out of LSM slots!?\n", from))
151 		return;
152 
153 	/* Enable this LSM, if it is not already set. */
154 	if (!lsm->enabled)
155 		lsm->enabled = &lsm_enabled_true;
156 	ordered_lsms[last_lsm++] = lsm;
157 
158 	init_debug("%s ordering: %s (%sabled)\n", from, lsm->name,
159 		   is_enabled(lsm) ? "en" : "dis");
160 }
161 
162 /* Is an LSM allowed to be initialized? */
163 static bool __init lsm_allowed(struct lsm_info *lsm)
164 {
165 	/* Skip if the LSM is disabled. */
166 	if (!is_enabled(lsm))
167 		return false;
168 
169 	/* Not allowed if another exclusive LSM already initialized. */
170 	if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && exclusive) {
171 		init_debug("exclusive disabled: %s\n", lsm->name);
172 		return false;
173 	}
174 
175 	return true;
176 }
177 
178 static void __init lsm_set_blob_size(int *need, int *lbs)
179 {
180 	int offset;
181 
182 	if (*need > 0) {
183 		offset = *lbs;
184 		*lbs += *need;
185 		*need = offset;
186 	}
187 }
188 
189 static void __init lsm_set_blob_sizes(struct lsm_blob_sizes *needed)
190 {
191 	if (!needed)
192 		return;
193 
194 	lsm_set_blob_size(&needed->lbs_cred, &blob_sizes.lbs_cred);
195 	lsm_set_blob_size(&needed->lbs_file, &blob_sizes.lbs_file);
196 	/*
197 	 * The inode blob gets an rcu_head in addition to
198 	 * what the modules might need.
199 	 */
200 	if (needed->lbs_inode && blob_sizes.lbs_inode == 0)
201 		blob_sizes.lbs_inode = sizeof(struct rcu_head);
202 	lsm_set_blob_size(&needed->lbs_inode, &blob_sizes.lbs_inode);
203 	lsm_set_blob_size(&needed->lbs_ipc, &blob_sizes.lbs_ipc);
204 	lsm_set_blob_size(&needed->lbs_msg_msg, &blob_sizes.lbs_msg_msg);
205 	lsm_set_blob_size(&needed->lbs_task, &blob_sizes.lbs_task);
206 }
207 
208 /* Prepare LSM for initialization. */
209 static void __init prepare_lsm(struct lsm_info *lsm)
210 {
211 	int enabled = lsm_allowed(lsm);
212 
213 	/* Record enablement (to handle any following exclusive LSMs). */
214 	set_enabled(lsm, enabled);
215 
216 	/* If enabled, do pre-initialization work. */
217 	if (enabled) {
218 		if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && !exclusive) {
219 			exclusive = lsm;
220 			init_debug("exclusive chosen: %s\n", lsm->name);
221 		}
222 
223 		lsm_set_blob_sizes(lsm->blobs);
224 	}
225 }
226 
227 /* Initialize a given LSM, if it is enabled. */
228 static void __init initialize_lsm(struct lsm_info *lsm)
229 {
230 	if (is_enabled(lsm)) {
231 		int ret;
232 
233 		init_debug("initializing %s\n", lsm->name);
234 		ret = lsm->init();
235 		WARN(ret, "%s failed to initialize: %d\n", lsm->name, ret);
236 	}
237 }
238 
239 /* Populate ordered LSMs list from comma-separated LSM name list. */
240 static void __init ordered_lsm_parse(const char *order, const char *origin)
241 {
242 	struct lsm_info *lsm;
243 	char *sep, *name, *next;
244 
245 	/* LSM_ORDER_FIRST is always first. */
246 	for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
247 		if (lsm->order == LSM_ORDER_FIRST)
248 			append_ordered_lsm(lsm, "first");
249 	}
250 
251 	/* Process "security=", if given. */
252 	if (chosen_major_lsm) {
253 		struct lsm_info *major;
254 
255 		/*
256 		 * To match the original "security=" behavior, this
257 		 * explicitly does NOT fallback to another Legacy Major
258 		 * if the selected one was separately disabled: disable
259 		 * all non-matching Legacy Major LSMs.
260 		 */
261 		for (major = __start_lsm_info; major < __end_lsm_info;
262 		     major++) {
263 			if ((major->flags & LSM_FLAG_LEGACY_MAJOR) &&
264 			    strcmp(major->name, chosen_major_lsm) != 0) {
265 				set_enabled(major, false);
266 				init_debug("security=%s disabled: %s\n",
267 					   chosen_major_lsm, major->name);
268 			}
269 		}
270 	}
271 
272 	sep = kstrdup(order, GFP_KERNEL);
273 	next = sep;
274 	/* Walk the list, looking for matching LSMs. */
275 	while ((name = strsep(&next, ",")) != NULL) {
276 		bool found = false;
277 
278 		for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
279 			if (lsm->order == LSM_ORDER_MUTABLE &&
280 			    strcmp(lsm->name, name) == 0) {
281 				append_ordered_lsm(lsm, origin);
282 				found = true;
283 			}
284 		}
285 
286 		if (!found)
287 			init_debug("%s ignored: %s\n", origin, name);
288 	}
289 
290 	/* Process "security=", if given. */
291 	if (chosen_major_lsm) {
292 		for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
293 			if (exists_ordered_lsm(lsm))
294 				continue;
295 			if (strcmp(lsm->name, chosen_major_lsm) == 0)
296 				append_ordered_lsm(lsm, "security=");
297 		}
298 	}
299 
300 	/* Disable all LSMs not in the ordered list. */
301 	for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
302 		if (exists_ordered_lsm(lsm))
303 			continue;
304 		set_enabled(lsm, false);
305 		init_debug("%s disabled: %s\n", origin, lsm->name);
306 	}
307 
308 	kfree(sep);
309 }
310 
311 static void __init lsm_early_cred(struct cred *cred);
312 static void __init lsm_early_task(struct task_struct *task);
313 
314 static int lsm_append(const char *new, char **result);
315 
316 static void __init ordered_lsm_init(void)
317 {
318 	struct lsm_info **lsm;
319 
320 	ordered_lsms = kcalloc(LSM_COUNT + 1, sizeof(*ordered_lsms),
321 				GFP_KERNEL);
322 
323 	if (chosen_lsm_order) {
324 		if (chosen_major_lsm) {
325 			pr_info("security= is ignored because it is superseded by lsm=\n");
326 			chosen_major_lsm = NULL;
327 		}
328 		ordered_lsm_parse(chosen_lsm_order, "cmdline");
329 	} else
330 		ordered_lsm_parse(builtin_lsm_order, "builtin");
331 
332 	for (lsm = ordered_lsms; *lsm; lsm++)
333 		prepare_lsm(*lsm);
334 
335 	init_debug("cred blob size     = %d\n", blob_sizes.lbs_cred);
336 	init_debug("file blob size     = %d\n", blob_sizes.lbs_file);
337 	init_debug("inode blob size    = %d\n", blob_sizes.lbs_inode);
338 	init_debug("ipc blob size      = %d\n", blob_sizes.lbs_ipc);
339 	init_debug("msg_msg blob size  = %d\n", blob_sizes.lbs_msg_msg);
340 	init_debug("task blob size     = %d\n", blob_sizes.lbs_task);
341 
342 	/*
343 	 * Create any kmem_caches needed for blobs
344 	 */
345 	if (blob_sizes.lbs_file)
346 		lsm_file_cache = kmem_cache_create("lsm_file_cache",
347 						   blob_sizes.lbs_file, 0,
348 						   SLAB_PANIC, NULL);
349 	if (blob_sizes.lbs_inode)
350 		lsm_inode_cache = kmem_cache_create("lsm_inode_cache",
351 						    blob_sizes.lbs_inode, 0,
352 						    SLAB_PANIC, NULL);
353 
354 	lsm_early_cred((struct cred *) current->cred);
355 	lsm_early_task(current);
356 	for (lsm = ordered_lsms; *lsm; lsm++)
357 		initialize_lsm(*lsm);
358 
359 	kfree(ordered_lsms);
360 }
361 
362 int __init early_security_init(void)
363 {
364 	int i;
365 	struct hlist_head *list = (struct hlist_head *) &security_hook_heads;
366 	struct lsm_info *lsm;
367 
368 	for (i = 0; i < sizeof(security_hook_heads) / sizeof(struct hlist_head);
369 	     i++)
370 		INIT_HLIST_HEAD(&list[i]);
371 
372 	for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
373 		if (!lsm->enabled)
374 			lsm->enabled = &lsm_enabled_true;
375 		prepare_lsm(lsm);
376 		initialize_lsm(lsm);
377 	}
378 
379 	return 0;
380 }
381 
382 /**
383  * security_init - initializes the security framework
384  *
385  * This should be called early in the kernel initialization sequence.
386  */
387 int __init security_init(void)
388 {
389 	struct lsm_info *lsm;
390 
391 	pr_info("Security Framework initializing\n");
392 
393 	/*
394 	 * Append the names of the early LSM modules now that kmalloc() is
395 	 * available
396 	 */
397 	for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
398 		if (lsm->enabled)
399 			lsm_append(lsm->name, &lsm_names);
400 	}
401 
402 	/* Load LSMs in specified order. */
403 	ordered_lsm_init();
404 
405 	return 0;
406 }
407 
408 /* Save user chosen LSM */
409 static int __init choose_major_lsm(char *str)
410 {
411 	chosen_major_lsm = str;
412 	return 1;
413 }
414 __setup("security=", choose_major_lsm);
415 
416 /* Explicitly choose LSM initialization order. */
417 static int __init choose_lsm_order(char *str)
418 {
419 	chosen_lsm_order = str;
420 	return 1;
421 }
422 __setup("lsm=", choose_lsm_order);
423 
424 /* Enable LSM order debugging. */
425 static int __init enable_debug(char *str)
426 {
427 	debug = true;
428 	return 1;
429 }
430 __setup("lsm.debug", enable_debug);
431 
432 static bool match_last_lsm(const char *list, const char *lsm)
433 {
434 	const char *last;
435 
436 	if (WARN_ON(!list || !lsm))
437 		return false;
438 	last = strrchr(list, ',');
439 	if (last)
440 		/* Pass the comma, strcmp() will check for '\0' */
441 		last++;
442 	else
443 		last = list;
444 	return !strcmp(last, lsm);
445 }
446 
447 static int lsm_append(const char *new, char **result)
448 {
449 	char *cp;
450 
451 	if (*result == NULL) {
452 		*result = kstrdup(new, GFP_KERNEL);
453 		if (*result == NULL)
454 			return -ENOMEM;
455 	} else {
456 		/* Check if it is the last registered name */
457 		if (match_last_lsm(*result, new))
458 			return 0;
459 		cp = kasprintf(GFP_KERNEL, "%s,%s", *result, new);
460 		if (cp == NULL)
461 			return -ENOMEM;
462 		kfree(*result);
463 		*result = cp;
464 	}
465 	return 0;
466 }
467 
468 /**
469  * security_add_hooks - Add a modules hooks to the hook lists.
470  * @hooks: the hooks to add
471  * @count: the number of hooks to add
472  * @lsm: the name of the security module
473  *
474  * Each LSM has to register its hooks with the infrastructure.
475  */
476 void __init security_add_hooks(struct security_hook_list *hooks, int count,
477 				char *lsm)
478 {
479 	int i;
480 
481 	for (i = 0; i < count; i++) {
482 		hooks[i].lsm = lsm;
483 		hlist_add_tail_rcu(&hooks[i].list, hooks[i].head);
484 	}
485 
486 	/*
487 	 * Don't try to append during early_security_init(), we'll come back
488 	 * and fix this up afterwards.
489 	 */
490 	if (slab_is_available()) {
491 		if (lsm_append(lsm, &lsm_names) < 0)
492 			panic("%s - Cannot get early memory.\n", __func__);
493 	}
494 }
495 
496 int call_blocking_lsm_notifier(enum lsm_event event, void *data)
497 {
498 	return blocking_notifier_call_chain(&blocking_lsm_notifier_chain,
499 					    event, data);
500 }
501 EXPORT_SYMBOL(call_blocking_lsm_notifier);
502 
503 int register_blocking_lsm_notifier(struct notifier_block *nb)
504 {
505 	return blocking_notifier_chain_register(&blocking_lsm_notifier_chain,
506 						nb);
507 }
508 EXPORT_SYMBOL(register_blocking_lsm_notifier);
509 
510 int unregister_blocking_lsm_notifier(struct notifier_block *nb)
511 {
512 	return blocking_notifier_chain_unregister(&blocking_lsm_notifier_chain,
513 						  nb);
514 }
515 EXPORT_SYMBOL(unregister_blocking_lsm_notifier);
516 
517 /**
518  * lsm_cred_alloc - allocate a composite cred blob
519  * @cred: the cred that needs a blob
520  * @gfp: allocation type
521  *
522  * Allocate the cred blob for all the modules
523  *
524  * Returns 0, or -ENOMEM if memory can't be allocated.
525  */
526 static int lsm_cred_alloc(struct cred *cred, gfp_t gfp)
527 {
528 	if (blob_sizes.lbs_cred == 0) {
529 		cred->security = NULL;
530 		return 0;
531 	}
532 
533 	cred->security = kzalloc(blob_sizes.lbs_cred, gfp);
534 	if (cred->security == NULL)
535 		return -ENOMEM;
536 	return 0;
537 }
538 
539 /**
540  * lsm_early_cred - during initialization allocate a composite cred blob
541  * @cred: the cred that needs a blob
542  *
543  * Allocate the cred blob for all the modules
544  */
545 static void __init lsm_early_cred(struct cred *cred)
546 {
547 	int rc = lsm_cred_alloc(cred, GFP_KERNEL);
548 
549 	if (rc)
550 		panic("%s: Early cred alloc failed.\n", __func__);
551 }
552 
553 /**
554  * lsm_file_alloc - allocate a composite file blob
555  * @file: the file that needs a blob
556  *
557  * Allocate the file blob for all the modules
558  *
559  * Returns 0, or -ENOMEM if memory can't be allocated.
560  */
561 static int lsm_file_alloc(struct file *file)
562 {
563 	if (!lsm_file_cache) {
564 		file->f_security = NULL;
565 		return 0;
566 	}
567 
568 	file->f_security = kmem_cache_zalloc(lsm_file_cache, GFP_KERNEL);
569 	if (file->f_security == NULL)
570 		return -ENOMEM;
571 	return 0;
572 }
573 
574 /**
575  * lsm_inode_alloc - allocate a composite inode blob
576  * @inode: the inode that needs a blob
577  *
578  * Allocate the inode blob for all the modules
579  *
580  * Returns 0, or -ENOMEM if memory can't be allocated.
581  */
582 int lsm_inode_alloc(struct inode *inode)
583 {
584 	if (!lsm_inode_cache) {
585 		inode->i_security = NULL;
586 		return 0;
587 	}
588 
589 	inode->i_security = kmem_cache_zalloc(lsm_inode_cache, GFP_NOFS);
590 	if (inode->i_security == NULL)
591 		return -ENOMEM;
592 	return 0;
593 }
594 
595 /**
596  * lsm_task_alloc - allocate a composite task blob
597  * @task: the task that needs a blob
598  *
599  * Allocate the task blob for all the modules
600  *
601  * Returns 0, or -ENOMEM if memory can't be allocated.
602  */
603 static int lsm_task_alloc(struct task_struct *task)
604 {
605 	if (blob_sizes.lbs_task == 0) {
606 		task->security = NULL;
607 		return 0;
608 	}
609 
610 	task->security = kzalloc(blob_sizes.lbs_task, GFP_KERNEL);
611 	if (task->security == NULL)
612 		return -ENOMEM;
613 	return 0;
614 }
615 
616 /**
617  * lsm_ipc_alloc - allocate a composite ipc blob
618  * @kip: the ipc that needs a blob
619  *
620  * Allocate the ipc blob for all the modules
621  *
622  * Returns 0, or -ENOMEM if memory can't be allocated.
623  */
624 static int lsm_ipc_alloc(struct kern_ipc_perm *kip)
625 {
626 	if (blob_sizes.lbs_ipc == 0) {
627 		kip->security = NULL;
628 		return 0;
629 	}
630 
631 	kip->security = kzalloc(blob_sizes.lbs_ipc, GFP_KERNEL);
632 	if (kip->security == NULL)
633 		return -ENOMEM;
634 	return 0;
635 }
636 
637 /**
638  * lsm_msg_msg_alloc - allocate a composite msg_msg blob
639  * @mp: the msg_msg that needs a blob
640  *
641  * Allocate the ipc blob for all the modules
642  *
643  * Returns 0, or -ENOMEM if memory can't be allocated.
644  */
645 static int lsm_msg_msg_alloc(struct msg_msg *mp)
646 {
647 	if (blob_sizes.lbs_msg_msg == 0) {
648 		mp->security = NULL;
649 		return 0;
650 	}
651 
652 	mp->security = kzalloc(blob_sizes.lbs_msg_msg, GFP_KERNEL);
653 	if (mp->security == NULL)
654 		return -ENOMEM;
655 	return 0;
656 }
657 
658 /**
659  * lsm_early_task - during initialization allocate a composite task blob
660  * @task: the task that needs a blob
661  *
662  * Allocate the task blob for all the modules
663  */
664 static void __init lsm_early_task(struct task_struct *task)
665 {
666 	int rc = lsm_task_alloc(task);
667 
668 	if (rc)
669 		panic("%s: Early task alloc failed.\n", __func__);
670 }
671 
672 /*
673  * Hook list operation macros.
674  *
675  * call_void_hook:
676  *	This is a hook that does not return a value.
677  *
678  * call_int_hook:
679  *	This is a hook that returns a value.
680  */
681 
682 #define call_void_hook(FUNC, ...)				\
683 	do {							\
684 		struct security_hook_list *P;			\
685 								\
686 		hlist_for_each_entry(P, &security_hook_heads.FUNC, list) \
687 			P->hook.FUNC(__VA_ARGS__);		\
688 	} while (0)
689 
690 #define call_int_hook(FUNC, IRC, ...) ({			\
691 	int RC = IRC;						\
692 	do {							\
693 		struct security_hook_list *P;			\
694 								\
695 		hlist_for_each_entry(P, &security_hook_heads.FUNC, list) { \
696 			RC = P->hook.FUNC(__VA_ARGS__);		\
697 			if (RC != 0)				\
698 				break;				\
699 		}						\
700 	} while (0);						\
701 	RC;							\
702 })
703 
704 /* Security operations */
705 
706 int security_binder_set_context_mgr(struct task_struct *mgr)
707 {
708 	return call_int_hook(binder_set_context_mgr, 0, mgr);
709 }
710 
711 int security_binder_transaction(struct task_struct *from,
712 				struct task_struct *to)
713 {
714 	return call_int_hook(binder_transaction, 0, from, to);
715 }
716 
717 int security_binder_transfer_binder(struct task_struct *from,
718 				    struct task_struct *to)
719 {
720 	return call_int_hook(binder_transfer_binder, 0, from, to);
721 }
722 
723 int security_binder_transfer_file(struct task_struct *from,
724 				  struct task_struct *to, struct file *file)
725 {
726 	return call_int_hook(binder_transfer_file, 0, from, to, file);
727 }
728 
729 int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
730 {
731 	return call_int_hook(ptrace_access_check, 0, child, mode);
732 }
733 
734 int security_ptrace_traceme(struct task_struct *parent)
735 {
736 	return call_int_hook(ptrace_traceme, 0, parent);
737 }
738 
739 int security_capget(struct task_struct *target,
740 		     kernel_cap_t *effective,
741 		     kernel_cap_t *inheritable,
742 		     kernel_cap_t *permitted)
743 {
744 	return call_int_hook(capget, 0, target,
745 				effective, inheritable, permitted);
746 }
747 
748 int security_capset(struct cred *new, const struct cred *old,
749 		    const kernel_cap_t *effective,
750 		    const kernel_cap_t *inheritable,
751 		    const kernel_cap_t *permitted)
752 {
753 	return call_int_hook(capset, 0, new, old,
754 				effective, inheritable, permitted);
755 }
756 
757 int security_capable(const struct cred *cred,
758 		     struct user_namespace *ns,
759 		     int cap,
760 		     unsigned int opts)
761 {
762 	return call_int_hook(capable, 0, cred, ns, cap, opts);
763 }
764 
765 int security_quotactl(int cmds, int type, int id, struct super_block *sb)
766 {
767 	return call_int_hook(quotactl, 0, cmds, type, id, sb);
768 }
769 
770 int security_quota_on(struct dentry *dentry)
771 {
772 	return call_int_hook(quota_on, 0, dentry);
773 }
774 
775 int security_syslog(int type)
776 {
777 	return call_int_hook(syslog, 0, type);
778 }
779 
780 int security_settime64(const struct timespec64 *ts, const struct timezone *tz)
781 {
782 	return call_int_hook(settime, 0, ts, tz);
783 }
784 
785 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
786 {
787 	struct security_hook_list *hp;
788 	int cap_sys_admin = 1;
789 	int rc;
790 
791 	/*
792 	 * The module will respond with a positive value if
793 	 * it thinks the __vm_enough_memory() call should be
794 	 * made with the cap_sys_admin set. If all of the modules
795 	 * agree that it should be set it will. If any module
796 	 * thinks it should not be set it won't.
797 	 */
798 	hlist_for_each_entry(hp, &security_hook_heads.vm_enough_memory, list) {
799 		rc = hp->hook.vm_enough_memory(mm, pages);
800 		if (rc <= 0) {
801 			cap_sys_admin = 0;
802 			break;
803 		}
804 	}
805 	return __vm_enough_memory(mm, pages, cap_sys_admin);
806 }
807 
808 int security_bprm_set_creds(struct linux_binprm *bprm)
809 {
810 	return call_int_hook(bprm_set_creds, 0, bprm);
811 }
812 
813 int security_bprm_check(struct linux_binprm *bprm)
814 {
815 	int ret;
816 
817 	ret = call_int_hook(bprm_check_security, 0, bprm);
818 	if (ret)
819 		return ret;
820 	return ima_bprm_check(bprm);
821 }
822 
823 void security_bprm_committing_creds(struct linux_binprm *bprm)
824 {
825 	call_void_hook(bprm_committing_creds, bprm);
826 }
827 
828 void security_bprm_committed_creds(struct linux_binprm *bprm)
829 {
830 	call_void_hook(bprm_committed_creds, bprm);
831 }
832 
833 int security_fs_context_dup(struct fs_context *fc, struct fs_context *src_fc)
834 {
835 	return call_int_hook(fs_context_dup, 0, fc, src_fc);
836 }
837 
838 int security_fs_context_parse_param(struct fs_context *fc, struct fs_parameter *param)
839 {
840 	return call_int_hook(fs_context_parse_param, -ENOPARAM, fc, param);
841 }
842 
843 int security_sb_alloc(struct super_block *sb)
844 {
845 	return call_int_hook(sb_alloc_security, 0, sb);
846 }
847 
848 void security_sb_free(struct super_block *sb)
849 {
850 	call_void_hook(sb_free_security, sb);
851 }
852 
853 void security_free_mnt_opts(void **mnt_opts)
854 {
855 	if (!*mnt_opts)
856 		return;
857 	call_void_hook(sb_free_mnt_opts, *mnt_opts);
858 	*mnt_opts = NULL;
859 }
860 EXPORT_SYMBOL(security_free_mnt_opts);
861 
862 int security_sb_eat_lsm_opts(char *options, void **mnt_opts)
863 {
864 	return call_int_hook(sb_eat_lsm_opts, 0, options, mnt_opts);
865 }
866 EXPORT_SYMBOL(security_sb_eat_lsm_opts);
867 
868 int security_sb_remount(struct super_block *sb,
869 			void *mnt_opts)
870 {
871 	return call_int_hook(sb_remount, 0, sb, mnt_opts);
872 }
873 EXPORT_SYMBOL(security_sb_remount);
874 
875 int security_sb_kern_mount(struct super_block *sb)
876 {
877 	return call_int_hook(sb_kern_mount, 0, sb);
878 }
879 
880 int security_sb_show_options(struct seq_file *m, struct super_block *sb)
881 {
882 	return call_int_hook(sb_show_options, 0, m, sb);
883 }
884 
885 int security_sb_statfs(struct dentry *dentry)
886 {
887 	return call_int_hook(sb_statfs, 0, dentry);
888 }
889 
890 int security_sb_mount(const char *dev_name, const struct path *path,
891                        const char *type, unsigned long flags, void *data)
892 {
893 	return call_int_hook(sb_mount, 0, dev_name, path, type, flags, data);
894 }
895 
896 int security_sb_umount(struct vfsmount *mnt, int flags)
897 {
898 	return call_int_hook(sb_umount, 0, mnt, flags);
899 }
900 
901 int security_sb_pivotroot(const struct path *old_path, const struct path *new_path)
902 {
903 	return call_int_hook(sb_pivotroot, 0, old_path, new_path);
904 }
905 
906 int security_sb_set_mnt_opts(struct super_block *sb,
907 				void *mnt_opts,
908 				unsigned long kern_flags,
909 				unsigned long *set_kern_flags)
910 {
911 	return call_int_hook(sb_set_mnt_opts,
912 				mnt_opts ? -EOPNOTSUPP : 0, sb,
913 				mnt_opts, kern_flags, set_kern_flags);
914 }
915 EXPORT_SYMBOL(security_sb_set_mnt_opts);
916 
917 int security_sb_clone_mnt_opts(const struct super_block *oldsb,
918 				struct super_block *newsb,
919 				unsigned long kern_flags,
920 				unsigned long *set_kern_flags)
921 {
922 	return call_int_hook(sb_clone_mnt_opts, 0, oldsb, newsb,
923 				kern_flags, set_kern_flags);
924 }
925 EXPORT_SYMBOL(security_sb_clone_mnt_opts);
926 
927 int security_add_mnt_opt(const char *option, const char *val, int len,
928 			 void **mnt_opts)
929 {
930 	return call_int_hook(sb_add_mnt_opt, -EINVAL,
931 					option, val, len, mnt_opts);
932 }
933 EXPORT_SYMBOL(security_add_mnt_opt);
934 
935 int security_move_mount(const struct path *from_path, const struct path *to_path)
936 {
937 	return call_int_hook(move_mount, 0, from_path, to_path);
938 }
939 
940 int security_path_notify(const struct path *path, u64 mask,
941 				unsigned int obj_type)
942 {
943 	return call_int_hook(path_notify, 0, path, mask, obj_type);
944 }
945 
946 int security_inode_alloc(struct inode *inode)
947 {
948 	int rc = lsm_inode_alloc(inode);
949 
950 	if (unlikely(rc))
951 		return rc;
952 	rc = call_int_hook(inode_alloc_security, 0, inode);
953 	if (unlikely(rc))
954 		security_inode_free(inode);
955 	return rc;
956 }
957 
958 static void inode_free_by_rcu(struct rcu_head *head)
959 {
960 	/*
961 	 * The rcu head is at the start of the inode blob
962 	 */
963 	kmem_cache_free(lsm_inode_cache, head);
964 }
965 
966 void security_inode_free(struct inode *inode)
967 {
968 	integrity_inode_free(inode);
969 	call_void_hook(inode_free_security, inode);
970 	/*
971 	 * The inode may still be referenced in a path walk and
972 	 * a call to security_inode_permission() can be made
973 	 * after inode_free_security() is called. Ideally, the VFS
974 	 * wouldn't do this, but fixing that is a much harder
975 	 * job. For now, simply free the i_security via RCU, and
976 	 * leave the current inode->i_security pointer intact.
977 	 * The inode will be freed after the RCU grace period too.
978 	 */
979 	if (inode->i_security)
980 		call_rcu((struct rcu_head *)inode->i_security,
981 				inode_free_by_rcu);
982 }
983 
984 int security_dentry_init_security(struct dentry *dentry, int mode,
985 					const struct qstr *name, void **ctx,
986 					u32 *ctxlen)
987 {
988 	return call_int_hook(dentry_init_security, -EOPNOTSUPP, dentry, mode,
989 				name, ctx, ctxlen);
990 }
991 EXPORT_SYMBOL(security_dentry_init_security);
992 
993 int security_dentry_create_files_as(struct dentry *dentry, int mode,
994 				    struct qstr *name,
995 				    const struct cred *old, struct cred *new)
996 {
997 	return call_int_hook(dentry_create_files_as, 0, dentry, mode,
998 				name, old, new);
999 }
1000 EXPORT_SYMBOL(security_dentry_create_files_as);
1001 
1002 int security_inode_init_security(struct inode *inode, struct inode *dir,
1003 				 const struct qstr *qstr,
1004 				 const initxattrs initxattrs, void *fs_data)
1005 {
1006 	struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1];
1007 	struct xattr *lsm_xattr, *evm_xattr, *xattr;
1008 	int ret;
1009 
1010 	if (unlikely(IS_PRIVATE(inode)))
1011 		return 0;
1012 
1013 	if (!initxattrs)
1014 		return call_int_hook(inode_init_security, -EOPNOTSUPP, inode,
1015 				     dir, qstr, NULL, NULL, NULL);
1016 	memset(new_xattrs, 0, sizeof(new_xattrs));
1017 	lsm_xattr = new_xattrs;
1018 	ret = call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir, qstr,
1019 						&lsm_xattr->name,
1020 						&lsm_xattr->value,
1021 						&lsm_xattr->value_len);
1022 	if (ret)
1023 		goto out;
1024 
1025 	evm_xattr = lsm_xattr + 1;
1026 	ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr);
1027 	if (ret)
1028 		goto out;
1029 	ret = initxattrs(inode, new_xattrs, fs_data);
1030 out:
1031 	for (xattr = new_xattrs; xattr->value != NULL; xattr++)
1032 		kfree(xattr->value);
1033 	return (ret == -EOPNOTSUPP) ? 0 : ret;
1034 }
1035 EXPORT_SYMBOL(security_inode_init_security);
1036 
1037 int security_old_inode_init_security(struct inode *inode, struct inode *dir,
1038 				     const struct qstr *qstr, const char **name,
1039 				     void **value, size_t *len)
1040 {
1041 	if (unlikely(IS_PRIVATE(inode)))
1042 		return -EOPNOTSUPP;
1043 	return call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir,
1044 			     qstr, name, value, len);
1045 }
1046 EXPORT_SYMBOL(security_old_inode_init_security);
1047 
1048 #ifdef CONFIG_SECURITY_PATH
1049 int security_path_mknod(const struct path *dir, struct dentry *dentry, umode_t mode,
1050 			unsigned int dev)
1051 {
1052 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1053 		return 0;
1054 	return call_int_hook(path_mknod, 0, dir, dentry, mode, dev);
1055 }
1056 EXPORT_SYMBOL(security_path_mknod);
1057 
1058 int security_path_mkdir(const struct path *dir, struct dentry *dentry, umode_t mode)
1059 {
1060 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1061 		return 0;
1062 	return call_int_hook(path_mkdir, 0, dir, dentry, mode);
1063 }
1064 EXPORT_SYMBOL(security_path_mkdir);
1065 
1066 int security_path_rmdir(const struct path *dir, struct dentry *dentry)
1067 {
1068 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1069 		return 0;
1070 	return call_int_hook(path_rmdir, 0, dir, dentry);
1071 }
1072 
1073 int security_path_unlink(const struct path *dir, struct dentry *dentry)
1074 {
1075 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1076 		return 0;
1077 	return call_int_hook(path_unlink, 0, dir, dentry);
1078 }
1079 EXPORT_SYMBOL(security_path_unlink);
1080 
1081 int security_path_symlink(const struct path *dir, struct dentry *dentry,
1082 			  const char *old_name)
1083 {
1084 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1085 		return 0;
1086 	return call_int_hook(path_symlink, 0, dir, dentry, old_name);
1087 }
1088 
1089 int security_path_link(struct dentry *old_dentry, const struct path *new_dir,
1090 		       struct dentry *new_dentry)
1091 {
1092 	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
1093 		return 0;
1094 	return call_int_hook(path_link, 0, old_dentry, new_dir, new_dentry);
1095 }
1096 
1097 int security_path_rename(const struct path *old_dir, struct dentry *old_dentry,
1098 			 const struct path *new_dir, struct dentry *new_dentry,
1099 			 unsigned int flags)
1100 {
1101 	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
1102 		     (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
1103 		return 0;
1104 
1105 	if (flags & RENAME_EXCHANGE) {
1106 		int err = call_int_hook(path_rename, 0, new_dir, new_dentry,
1107 					old_dir, old_dentry);
1108 		if (err)
1109 			return err;
1110 	}
1111 
1112 	return call_int_hook(path_rename, 0, old_dir, old_dentry, new_dir,
1113 				new_dentry);
1114 }
1115 EXPORT_SYMBOL(security_path_rename);
1116 
1117 int security_path_truncate(const struct path *path)
1118 {
1119 	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1120 		return 0;
1121 	return call_int_hook(path_truncate, 0, path);
1122 }
1123 
1124 int security_path_chmod(const struct path *path, umode_t mode)
1125 {
1126 	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1127 		return 0;
1128 	return call_int_hook(path_chmod, 0, path, mode);
1129 }
1130 
1131 int security_path_chown(const struct path *path, kuid_t uid, kgid_t gid)
1132 {
1133 	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1134 		return 0;
1135 	return call_int_hook(path_chown, 0, path, uid, gid);
1136 }
1137 
1138 int security_path_chroot(const struct path *path)
1139 {
1140 	return call_int_hook(path_chroot, 0, path);
1141 }
1142 #endif
1143 
1144 int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
1145 {
1146 	if (unlikely(IS_PRIVATE(dir)))
1147 		return 0;
1148 	return call_int_hook(inode_create, 0, dir, dentry, mode);
1149 }
1150 EXPORT_SYMBOL_GPL(security_inode_create);
1151 
1152 int security_inode_link(struct dentry *old_dentry, struct inode *dir,
1153 			 struct dentry *new_dentry)
1154 {
1155 	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
1156 		return 0;
1157 	return call_int_hook(inode_link, 0, old_dentry, dir, new_dentry);
1158 }
1159 
1160 int security_inode_unlink(struct inode *dir, struct dentry *dentry)
1161 {
1162 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1163 		return 0;
1164 	return call_int_hook(inode_unlink, 0, dir, dentry);
1165 }
1166 
1167 int security_inode_symlink(struct inode *dir, struct dentry *dentry,
1168 			    const char *old_name)
1169 {
1170 	if (unlikely(IS_PRIVATE(dir)))
1171 		return 0;
1172 	return call_int_hook(inode_symlink, 0, dir, dentry, old_name);
1173 }
1174 
1175 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1176 {
1177 	if (unlikely(IS_PRIVATE(dir)))
1178 		return 0;
1179 	return call_int_hook(inode_mkdir, 0, dir, dentry, mode);
1180 }
1181 EXPORT_SYMBOL_GPL(security_inode_mkdir);
1182 
1183 int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
1184 {
1185 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1186 		return 0;
1187 	return call_int_hook(inode_rmdir, 0, dir, dentry);
1188 }
1189 
1190 int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1191 {
1192 	if (unlikely(IS_PRIVATE(dir)))
1193 		return 0;
1194 	return call_int_hook(inode_mknod, 0, dir, dentry, mode, dev);
1195 }
1196 
1197 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
1198 			   struct inode *new_dir, struct dentry *new_dentry,
1199 			   unsigned int flags)
1200 {
1201         if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
1202             (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
1203 		return 0;
1204 
1205 	if (flags & RENAME_EXCHANGE) {
1206 		int err = call_int_hook(inode_rename, 0, new_dir, new_dentry,
1207 						     old_dir, old_dentry);
1208 		if (err)
1209 			return err;
1210 	}
1211 
1212 	return call_int_hook(inode_rename, 0, old_dir, old_dentry,
1213 					   new_dir, new_dentry);
1214 }
1215 
1216 int security_inode_readlink(struct dentry *dentry)
1217 {
1218 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1219 		return 0;
1220 	return call_int_hook(inode_readlink, 0, dentry);
1221 }
1222 
1223 int security_inode_follow_link(struct dentry *dentry, struct inode *inode,
1224 			       bool rcu)
1225 {
1226 	if (unlikely(IS_PRIVATE(inode)))
1227 		return 0;
1228 	return call_int_hook(inode_follow_link, 0, dentry, inode, rcu);
1229 }
1230 
1231 int security_inode_permission(struct inode *inode, int mask)
1232 {
1233 	if (unlikely(IS_PRIVATE(inode)))
1234 		return 0;
1235 	return call_int_hook(inode_permission, 0, inode, mask);
1236 }
1237 
1238 int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
1239 {
1240 	int ret;
1241 
1242 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1243 		return 0;
1244 	ret = call_int_hook(inode_setattr, 0, dentry, attr);
1245 	if (ret)
1246 		return ret;
1247 	return evm_inode_setattr(dentry, attr);
1248 }
1249 EXPORT_SYMBOL_GPL(security_inode_setattr);
1250 
1251 int security_inode_getattr(const struct path *path)
1252 {
1253 	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1254 		return 0;
1255 	return call_int_hook(inode_getattr, 0, path);
1256 }
1257 
1258 int security_inode_setxattr(struct dentry *dentry, const char *name,
1259 			    const void *value, size_t size, int flags)
1260 {
1261 	int ret;
1262 
1263 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1264 		return 0;
1265 	/*
1266 	 * SELinux and Smack integrate the cap call,
1267 	 * so assume that all LSMs supplying this call do so.
1268 	 */
1269 	ret = call_int_hook(inode_setxattr, 1, dentry, name, value, size,
1270 				flags);
1271 
1272 	if (ret == 1)
1273 		ret = cap_inode_setxattr(dentry, name, value, size, flags);
1274 	if (ret)
1275 		return ret;
1276 	ret = ima_inode_setxattr(dentry, name, value, size);
1277 	if (ret)
1278 		return ret;
1279 	return evm_inode_setxattr(dentry, name, value, size);
1280 }
1281 
1282 void security_inode_post_setxattr(struct dentry *dentry, const char *name,
1283 				  const void *value, size_t size, int flags)
1284 {
1285 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1286 		return;
1287 	call_void_hook(inode_post_setxattr, dentry, name, value, size, flags);
1288 	evm_inode_post_setxattr(dentry, name, value, size);
1289 }
1290 
1291 int security_inode_getxattr(struct dentry *dentry, const char *name)
1292 {
1293 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1294 		return 0;
1295 	return call_int_hook(inode_getxattr, 0, dentry, name);
1296 }
1297 
1298 int security_inode_listxattr(struct dentry *dentry)
1299 {
1300 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1301 		return 0;
1302 	return call_int_hook(inode_listxattr, 0, dentry);
1303 }
1304 
1305 int security_inode_removexattr(struct dentry *dentry, const char *name)
1306 {
1307 	int ret;
1308 
1309 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1310 		return 0;
1311 	/*
1312 	 * SELinux and Smack integrate the cap call,
1313 	 * so assume that all LSMs supplying this call do so.
1314 	 */
1315 	ret = call_int_hook(inode_removexattr, 1, dentry, name);
1316 	if (ret == 1)
1317 		ret = cap_inode_removexattr(dentry, name);
1318 	if (ret)
1319 		return ret;
1320 	ret = ima_inode_removexattr(dentry, name);
1321 	if (ret)
1322 		return ret;
1323 	return evm_inode_removexattr(dentry, name);
1324 }
1325 
1326 int security_inode_need_killpriv(struct dentry *dentry)
1327 {
1328 	return call_int_hook(inode_need_killpriv, 0, dentry);
1329 }
1330 
1331 int security_inode_killpriv(struct dentry *dentry)
1332 {
1333 	return call_int_hook(inode_killpriv, 0, dentry);
1334 }
1335 
1336 int security_inode_getsecurity(struct inode *inode, const char *name, void **buffer, bool alloc)
1337 {
1338 	struct security_hook_list *hp;
1339 	int rc;
1340 
1341 	if (unlikely(IS_PRIVATE(inode)))
1342 		return -EOPNOTSUPP;
1343 	/*
1344 	 * Only one module will provide an attribute with a given name.
1345 	 */
1346 	hlist_for_each_entry(hp, &security_hook_heads.inode_getsecurity, list) {
1347 		rc = hp->hook.inode_getsecurity(inode, name, buffer, alloc);
1348 		if (rc != -EOPNOTSUPP)
1349 			return rc;
1350 	}
1351 	return -EOPNOTSUPP;
1352 }
1353 
1354 int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
1355 {
1356 	struct security_hook_list *hp;
1357 	int rc;
1358 
1359 	if (unlikely(IS_PRIVATE(inode)))
1360 		return -EOPNOTSUPP;
1361 	/*
1362 	 * Only one module will provide an attribute with a given name.
1363 	 */
1364 	hlist_for_each_entry(hp, &security_hook_heads.inode_setsecurity, list) {
1365 		rc = hp->hook.inode_setsecurity(inode, name, value, size,
1366 								flags);
1367 		if (rc != -EOPNOTSUPP)
1368 			return rc;
1369 	}
1370 	return -EOPNOTSUPP;
1371 }
1372 
1373 int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
1374 {
1375 	if (unlikely(IS_PRIVATE(inode)))
1376 		return 0;
1377 	return call_int_hook(inode_listsecurity, 0, inode, buffer, buffer_size);
1378 }
1379 EXPORT_SYMBOL(security_inode_listsecurity);
1380 
1381 void security_inode_getsecid(struct inode *inode, u32 *secid)
1382 {
1383 	call_void_hook(inode_getsecid, inode, secid);
1384 }
1385 
1386 int security_inode_copy_up(struct dentry *src, struct cred **new)
1387 {
1388 	return call_int_hook(inode_copy_up, 0, src, new);
1389 }
1390 EXPORT_SYMBOL(security_inode_copy_up);
1391 
1392 int security_inode_copy_up_xattr(const char *name)
1393 {
1394 	return call_int_hook(inode_copy_up_xattr, -EOPNOTSUPP, name);
1395 }
1396 EXPORT_SYMBOL(security_inode_copy_up_xattr);
1397 
1398 int security_kernfs_init_security(struct kernfs_node *kn_dir,
1399 				  struct kernfs_node *kn)
1400 {
1401 	return call_int_hook(kernfs_init_security, 0, kn_dir, kn);
1402 }
1403 
1404 int security_file_permission(struct file *file, int mask)
1405 {
1406 	int ret;
1407 
1408 	ret = call_int_hook(file_permission, 0, file, mask);
1409 	if (ret)
1410 		return ret;
1411 
1412 	return fsnotify_perm(file, mask);
1413 }
1414 
1415 int security_file_alloc(struct file *file)
1416 {
1417 	int rc = lsm_file_alloc(file);
1418 
1419 	if (rc)
1420 		return rc;
1421 	rc = call_int_hook(file_alloc_security, 0, file);
1422 	if (unlikely(rc))
1423 		security_file_free(file);
1424 	return rc;
1425 }
1426 
1427 void security_file_free(struct file *file)
1428 {
1429 	void *blob;
1430 
1431 	call_void_hook(file_free_security, file);
1432 
1433 	blob = file->f_security;
1434 	if (blob) {
1435 		file->f_security = NULL;
1436 		kmem_cache_free(lsm_file_cache, blob);
1437 	}
1438 }
1439 
1440 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1441 {
1442 	return call_int_hook(file_ioctl, 0, file, cmd, arg);
1443 }
1444 
1445 static inline unsigned long mmap_prot(struct file *file, unsigned long prot)
1446 {
1447 	/*
1448 	 * Does we have PROT_READ and does the application expect
1449 	 * it to imply PROT_EXEC?  If not, nothing to talk about...
1450 	 */
1451 	if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ)
1452 		return prot;
1453 	if (!(current->personality & READ_IMPLIES_EXEC))
1454 		return prot;
1455 	/*
1456 	 * if that's an anonymous mapping, let it.
1457 	 */
1458 	if (!file)
1459 		return prot | PROT_EXEC;
1460 	/*
1461 	 * ditto if it's not on noexec mount, except that on !MMU we need
1462 	 * NOMMU_MAP_EXEC (== VM_MAYEXEC) in this case
1463 	 */
1464 	if (!path_noexec(&file->f_path)) {
1465 #ifndef CONFIG_MMU
1466 		if (file->f_op->mmap_capabilities) {
1467 			unsigned caps = file->f_op->mmap_capabilities(file);
1468 			if (!(caps & NOMMU_MAP_EXEC))
1469 				return prot;
1470 		}
1471 #endif
1472 		return prot | PROT_EXEC;
1473 	}
1474 	/* anything on noexec mount won't get PROT_EXEC */
1475 	return prot;
1476 }
1477 
1478 int security_mmap_file(struct file *file, unsigned long prot,
1479 			unsigned long flags)
1480 {
1481 	int ret;
1482 	ret = call_int_hook(mmap_file, 0, file, prot,
1483 					mmap_prot(file, prot), flags);
1484 	if (ret)
1485 		return ret;
1486 	return ima_file_mmap(file, prot);
1487 }
1488 
1489 int security_mmap_addr(unsigned long addr)
1490 {
1491 	return call_int_hook(mmap_addr, 0, addr);
1492 }
1493 
1494 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
1495 			    unsigned long prot)
1496 {
1497 	return call_int_hook(file_mprotect, 0, vma, reqprot, prot);
1498 }
1499 
1500 int security_file_lock(struct file *file, unsigned int cmd)
1501 {
1502 	return call_int_hook(file_lock, 0, file, cmd);
1503 }
1504 
1505 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
1506 {
1507 	return call_int_hook(file_fcntl, 0, file, cmd, arg);
1508 }
1509 
1510 void security_file_set_fowner(struct file *file)
1511 {
1512 	call_void_hook(file_set_fowner, file);
1513 }
1514 
1515 int security_file_send_sigiotask(struct task_struct *tsk,
1516 				  struct fown_struct *fown, int sig)
1517 {
1518 	return call_int_hook(file_send_sigiotask, 0, tsk, fown, sig);
1519 }
1520 
1521 int security_file_receive(struct file *file)
1522 {
1523 	return call_int_hook(file_receive, 0, file);
1524 }
1525 
1526 int security_file_open(struct file *file)
1527 {
1528 	int ret;
1529 
1530 	ret = call_int_hook(file_open, 0, file);
1531 	if (ret)
1532 		return ret;
1533 
1534 	return fsnotify_perm(file, MAY_OPEN);
1535 }
1536 
1537 int security_task_alloc(struct task_struct *task, unsigned long clone_flags)
1538 {
1539 	int rc = lsm_task_alloc(task);
1540 
1541 	if (rc)
1542 		return rc;
1543 	rc = call_int_hook(task_alloc, 0, task, clone_flags);
1544 	if (unlikely(rc))
1545 		security_task_free(task);
1546 	return rc;
1547 }
1548 
1549 void security_task_free(struct task_struct *task)
1550 {
1551 	call_void_hook(task_free, task);
1552 
1553 	kfree(task->security);
1554 	task->security = NULL;
1555 }
1556 
1557 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
1558 {
1559 	int rc = lsm_cred_alloc(cred, gfp);
1560 
1561 	if (rc)
1562 		return rc;
1563 
1564 	rc = call_int_hook(cred_alloc_blank, 0, cred, gfp);
1565 	if (unlikely(rc))
1566 		security_cred_free(cred);
1567 	return rc;
1568 }
1569 
1570 void security_cred_free(struct cred *cred)
1571 {
1572 	/*
1573 	 * There is a failure case in prepare_creds() that
1574 	 * may result in a call here with ->security being NULL.
1575 	 */
1576 	if (unlikely(cred->security == NULL))
1577 		return;
1578 
1579 	call_void_hook(cred_free, cred);
1580 
1581 	kfree(cred->security);
1582 	cred->security = NULL;
1583 }
1584 
1585 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
1586 {
1587 	int rc = lsm_cred_alloc(new, gfp);
1588 
1589 	if (rc)
1590 		return rc;
1591 
1592 	rc = call_int_hook(cred_prepare, 0, new, old, gfp);
1593 	if (unlikely(rc))
1594 		security_cred_free(new);
1595 	return rc;
1596 }
1597 
1598 void security_transfer_creds(struct cred *new, const struct cred *old)
1599 {
1600 	call_void_hook(cred_transfer, new, old);
1601 }
1602 
1603 void security_cred_getsecid(const struct cred *c, u32 *secid)
1604 {
1605 	*secid = 0;
1606 	call_void_hook(cred_getsecid, c, secid);
1607 }
1608 EXPORT_SYMBOL(security_cred_getsecid);
1609 
1610 int security_kernel_act_as(struct cred *new, u32 secid)
1611 {
1612 	return call_int_hook(kernel_act_as, 0, new, secid);
1613 }
1614 
1615 int security_kernel_create_files_as(struct cred *new, struct inode *inode)
1616 {
1617 	return call_int_hook(kernel_create_files_as, 0, new, inode);
1618 }
1619 
1620 int security_kernel_module_request(char *kmod_name)
1621 {
1622 	int ret;
1623 
1624 	ret = call_int_hook(kernel_module_request, 0, kmod_name);
1625 	if (ret)
1626 		return ret;
1627 	return integrity_kernel_module_request(kmod_name);
1628 }
1629 
1630 int security_kernel_read_file(struct file *file, enum kernel_read_file_id id)
1631 {
1632 	int ret;
1633 
1634 	ret = call_int_hook(kernel_read_file, 0, file, id);
1635 	if (ret)
1636 		return ret;
1637 	return ima_read_file(file, id);
1638 }
1639 EXPORT_SYMBOL_GPL(security_kernel_read_file);
1640 
1641 int security_kernel_post_read_file(struct file *file, char *buf, loff_t size,
1642 				   enum kernel_read_file_id id)
1643 {
1644 	int ret;
1645 
1646 	ret = call_int_hook(kernel_post_read_file, 0, file, buf, size, id);
1647 	if (ret)
1648 		return ret;
1649 	return ima_post_read_file(file, buf, size, id);
1650 }
1651 EXPORT_SYMBOL_GPL(security_kernel_post_read_file);
1652 
1653 int security_kernel_load_data(enum kernel_load_data_id id)
1654 {
1655 	int ret;
1656 
1657 	ret = call_int_hook(kernel_load_data, 0, id);
1658 	if (ret)
1659 		return ret;
1660 	return ima_load_data(id);
1661 }
1662 EXPORT_SYMBOL_GPL(security_kernel_load_data);
1663 
1664 int security_task_fix_setuid(struct cred *new, const struct cred *old,
1665 			     int flags)
1666 {
1667 	return call_int_hook(task_fix_setuid, 0, new, old, flags);
1668 }
1669 
1670 int security_task_setpgid(struct task_struct *p, pid_t pgid)
1671 {
1672 	return call_int_hook(task_setpgid, 0, p, pgid);
1673 }
1674 
1675 int security_task_getpgid(struct task_struct *p)
1676 {
1677 	return call_int_hook(task_getpgid, 0, p);
1678 }
1679 
1680 int security_task_getsid(struct task_struct *p)
1681 {
1682 	return call_int_hook(task_getsid, 0, p);
1683 }
1684 
1685 void security_task_getsecid(struct task_struct *p, u32 *secid)
1686 {
1687 	*secid = 0;
1688 	call_void_hook(task_getsecid, p, secid);
1689 }
1690 EXPORT_SYMBOL(security_task_getsecid);
1691 
1692 int security_task_setnice(struct task_struct *p, int nice)
1693 {
1694 	return call_int_hook(task_setnice, 0, p, nice);
1695 }
1696 
1697 int security_task_setioprio(struct task_struct *p, int ioprio)
1698 {
1699 	return call_int_hook(task_setioprio, 0, p, ioprio);
1700 }
1701 
1702 int security_task_getioprio(struct task_struct *p)
1703 {
1704 	return call_int_hook(task_getioprio, 0, p);
1705 }
1706 
1707 int security_task_prlimit(const struct cred *cred, const struct cred *tcred,
1708 			  unsigned int flags)
1709 {
1710 	return call_int_hook(task_prlimit, 0, cred, tcred, flags);
1711 }
1712 
1713 int security_task_setrlimit(struct task_struct *p, unsigned int resource,
1714 		struct rlimit *new_rlim)
1715 {
1716 	return call_int_hook(task_setrlimit, 0, p, resource, new_rlim);
1717 }
1718 
1719 int security_task_setscheduler(struct task_struct *p)
1720 {
1721 	return call_int_hook(task_setscheduler, 0, p);
1722 }
1723 
1724 int security_task_getscheduler(struct task_struct *p)
1725 {
1726 	return call_int_hook(task_getscheduler, 0, p);
1727 }
1728 
1729 int security_task_movememory(struct task_struct *p)
1730 {
1731 	return call_int_hook(task_movememory, 0, p);
1732 }
1733 
1734 int security_task_kill(struct task_struct *p, struct kernel_siginfo *info,
1735 			int sig, const struct cred *cred)
1736 {
1737 	return call_int_hook(task_kill, 0, p, info, sig, cred);
1738 }
1739 
1740 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
1741 			 unsigned long arg4, unsigned long arg5)
1742 {
1743 	int thisrc;
1744 	int rc = -ENOSYS;
1745 	struct security_hook_list *hp;
1746 
1747 	hlist_for_each_entry(hp, &security_hook_heads.task_prctl, list) {
1748 		thisrc = hp->hook.task_prctl(option, arg2, arg3, arg4, arg5);
1749 		if (thisrc != -ENOSYS) {
1750 			rc = thisrc;
1751 			if (thisrc != 0)
1752 				break;
1753 		}
1754 	}
1755 	return rc;
1756 }
1757 
1758 void security_task_to_inode(struct task_struct *p, struct inode *inode)
1759 {
1760 	call_void_hook(task_to_inode, p, inode);
1761 }
1762 
1763 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
1764 {
1765 	return call_int_hook(ipc_permission, 0, ipcp, flag);
1766 }
1767 
1768 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
1769 {
1770 	*secid = 0;
1771 	call_void_hook(ipc_getsecid, ipcp, secid);
1772 }
1773 
1774 int security_msg_msg_alloc(struct msg_msg *msg)
1775 {
1776 	int rc = lsm_msg_msg_alloc(msg);
1777 
1778 	if (unlikely(rc))
1779 		return rc;
1780 	rc = call_int_hook(msg_msg_alloc_security, 0, msg);
1781 	if (unlikely(rc))
1782 		security_msg_msg_free(msg);
1783 	return rc;
1784 }
1785 
1786 void security_msg_msg_free(struct msg_msg *msg)
1787 {
1788 	call_void_hook(msg_msg_free_security, msg);
1789 	kfree(msg->security);
1790 	msg->security = NULL;
1791 }
1792 
1793 int security_msg_queue_alloc(struct kern_ipc_perm *msq)
1794 {
1795 	int rc = lsm_ipc_alloc(msq);
1796 
1797 	if (unlikely(rc))
1798 		return rc;
1799 	rc = call_int_hook(msg_queue_alloc_security, 0, msq);
1800 	if (unlikely(rc))
1801 		security_msg_queue_free(msq);
1802 	return rc;
1803 }
1804 
1805 void security_msg_queue_free(struct kern_ipc_perm *msq)
1806 {
1807 	call_void_hook(msg_queue_free_security, msq);
1808 	kfree(msq->security);
1809 	msq->security = NULL;
1810 }
1811 
1812 int security_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
1813 {
1814 	return call_int_hook(msg_queue_associate, 0, msq, msqflg);
1815 }
1816 
1817 int security_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
1818 {
1819 	return call_int_hook(msg_queue_msgctl, 0, msq, cmd);
1820 }
1821 
1822 int security_msg_queue_msgsnd(struct kern_ipc_perm *msq,
1823 			       struct msg_msg *msg, int msqflg)
1824 {
1825 	return call_int_hook(msg_queue_msgsnd, 0, msq, msg, msqflg);
1826 }
1827 
1828 int security_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
1829 			       struct task_struct *target, long type, int mode)
1830 {
1831 	return call_int_hook(msg_queue_msgrcv, 0, msq, msg, target, type, mode);
1832 }
1833 
1834 int security_shm_alloc(struct kern_ipc_perm *shp)
1835 {
1836 	int rc = lsm_ipc_alloc(shp);
1837 
1838 	if (unlikely(rc))
1839 		return rc;
1840 	rc = call_int_hook(shm_alloc_security, 0, shp);
1841 	if (unlikely(rc))
1842 		security_shm_free(shp);
1843 	return rc;
1844 }
1845 
1846 void security_shm_free(struct kern_ipc_perm *shp)
1847 {
1848 	call_void_hook(shm_free_security, shp);
1849 	kfree(shp->security);
1850 	shp->security = NULL;
1851 }
1852 
1853 int security_shm_associate(struct kern_ipc_perm *shp, int shmflg)
1854 {
1855 	return call_int_hook(shm_associate, 0, shp, shmflg);
1856 }
1857 
1858 int security_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
1859 {
1860 	return call_int_hook(shm_shmctl, 0, shp, cmd);
1861 }
1862 
1863 int security_shm_shmat(struct kern_ipc_perm *shp, char __user *shmaddr, int shmflg)
1864 {
1865 	return call_int_hook(shm_shmat, 0, shp, shmaddr, shmflg);
1866 }
1867 
1868 int security_sem_alloc(struct kern_ipc_perm *sma)
1869 {
1870 	int rc = lsm_ipc_alloc(sma);
1871 
1872 	if (unlikely(rc))
1873 		return rc;
1874 	rc = call_int_hook(sem_alloc_security, 0, sma);
1875 	if (unlikely(rc))
1876 		security_sem_free(sma);
1877 	return rc;
1878 }
1879 
1880 void security_sem_free(struct kern_ipc_perm *sma)
1881 {
1882 	call_void_hook(sem_free_security, sma);
1883 	kfree(sma->security);
1884 	sma->security = NULL;
1885 }
1886 
1887 int security_sem_associate(struct kern_ipc_perm *sma, int semflg)
1888 {
1889 	return call_int_hook(sem_associate, 0, sma, semflg);
1890 }
1891 
1892 int security_sem_semctl(struct kern_ipc_perm *sma, int cmd)
1893 {
1894 	return call_int_hook(sem_semctl, 0, sma, cmd);
1895 }
1896 
1897 int security_sem_semop(struct kern_ipc_perm *sma, struct sembuf *sops,
1898 			unsigned nsops, int alter)
1899 {
1900 	return call_int_hook(sem_semop, 0, sma, sops, nsops, alter);
1901 }
1902 
1903 void security_d_instantiate(struct dentry *dentry, struct inode *inode)
1904 {
1905 	if (unlikely(inode && IS_PRIVATE(inode)))
1906 		return;
1907 	call_void_hook(d_instantiate, dentry, inode);
1908 }
1909 EXPORT_SYMBOL(security_d_instantiate);
1910 
1911 int security_getprocattr(struct task_struct *p, const char *lsm, char *name,
1912 				char **value)
1913 {
1914 	struct security_hook_list *hp;
1915 
1916 	hlist_for_each_entry(hp, &security_hook_heads.getprocattr, list) {
1917 		if (lsm != NULL && strcmp(lsm, hp->lsm))
1918 			continue;
1919 		return hp->hook.getprocattr(p, name, value);
1920 	}
1921 	return -EINVAL;
1922 }
1923 
1924 int security_setprocattr(const char *lsm, const char *name, void *value,
1925 			 size_t size)
1926 {
1927 	struct security_hook_list *hp;
1928 
1929 	hlist_for_each_entry(hp, &security_hook_heads.setprocattr, list) {
1930 		if (lsm != NULL && strcmp(lsm, hp->lsm))
1931 			continue;
1932 		return hp->hook.setprocattr(name, value, size);
1933 	}
1934 	return -EINVAL;
1935 }
1936 
1937 int security_netlink_send(struct sock *sk, struct sk_buff *skb)
1938 {
1939 	return call_int_hook(netlink_send, 0, sk, skb);
1940 }
1941 
1942 int security_ismaclabel(const char *name)
1943 {
1944 	return call_int_hook(ismaclabel, 0, name);
1945 }
1946 EXPORT_SYMBOL(security_ismaclabel);
1947 
1948 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
1949 {
1950 	return call_int_hook(secid_to_secctx, -EOPNOTSUPP, secid, secdata,
1951 				seclen);
1952 }
1953 EXPORT_SYMBOL(security_secid_to_secctx);
1954 
1955 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
1956 {
1957 	*secid = 0;
1958 	return call_int_hook(secctx_to_secid, 0, secdata, seclen, secid);
1959 }
1960 EXPORT_SYMBOL(security_secctx_to_secid);
1961 
1962 void security_release_secctx(char *secdata, u32 seclen)
1963 {
1964 	call_void_hook(release_secctx, secdata, seclen);
1965 }
1966 EXPORT_SYMBOL(security_release_secctx);
1967 
1968 void security_inode_invalidate_secctx(struct inode *inode)
1969 {
1970 	call_void_hook(inode_invalidate_secctx, inode);
1971 }
1972 EXPORT_SYMBOL(security_inode_invalidate_secctx);
1973 
1974 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
1975 {
1976 	return call_int_hook(inode_notifysecctx, 0, inode, ctx, ctxlen);
1977 }
1978 EXPORT_SYMBOL(security_inode_notifysecctx);
1979 
1980 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
1981 {
1982 	return call_int_hook(inode_setsecctx, 0, dentry, ctx, ctxlen);
1983 }
1984 EXPORT_SYMBOL(security_inode_setsecctx);
1985 
1986 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
1987 {
1988 	return call_int_hook(inode_getsecctx, -EOPNOTSUPP, inode, ctx, ctxlen);
1989 }
1990 EXPORT_SYMBOL(security_inode_getsecctx);
1991 
1992 #ifdef CONFIG_SECURITY_NETWORK
1993 
1994 int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk)
1995 {
1996 	return call_int_hook(unix_stream_connect, 0, sock, other, newsk);
1997 }
1998 EXPORT_SYMBOL(security_unix_stream_connect);
1999 
2000 int security_unix_may_send(struct socket *sock,  struct socket *other)
2001 {
2002 	return call_int_hook(unix_may_send, 0, sock, other);
2003 }
2004 EXPORT_SYMBOL(security_unix_may_send);
2005 
2006 int security_socket_create(int family, int type, int protocol, int kern)
2007 {
2008 	return call_int_hook(socket_create, 0, family, type, protocol, kern);
2009 }
2010 
2011 int security_socket_post_create(struct socket *sock, int family,
2012 				int type, int protocol, int kern)
2013 {
2014 	return call_int_hook(socket_post_create, 0, sock, family, type,
2015 						protocol, kern);
2016 }
2017 
2018 int security_socket_socketpair(struct socket *socka, struct socket *sockb)
2019 {
2020 	return call_int_hook(socket_socketpair, 0, socka, sockb);
2021 }
2022 EXPORT_SYMBOL(security_socket_socketpair);
2023 
2024 int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
2025 {
2026 	return call_int_hook(socket_bind, 0, sock, address, addrlen);
2027 }
2028 
2029 int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
2030 {
2031 	return call_int_hook(socket_connect, 0, sock, address, addrlen);
2032 }
2033 
2034 int security_socket_listen(struct socket *sock, int backlog)
2035 {
2036 	return call_int_hook(socket_listen, 0, sock, backlog);
2037 }
2038 
2039 int security_socket_accept(struct socket *sock, struct socket *newsock)
2040 {
2041 	return call_int_hook(socket_accept, 0, sock, newsock);
2042 }
2043 
2044 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
2045 {
2046 	return call_int_hook(socket_sendmsg, 0, sock, msg, size);
2047 }
2048 
2049 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
2050 			    int size, int flags)
2051 {
2052 	return call_int_hook(socket_recvmsg, 0, sock, msg, size, flags);
2053 }
2054 
2055 int security_socket_getsockname(struct socket *sock)
2056 {
2057 	return call_int_hook(socket_getsockname, 0, sock);
2058 }
2059 
2060 int security_socket_getpeername(struct socket *sock)
2061 {
2062 	return call_int_hook(socket_getpeername, 0, sock);
2063 }
2064 
2065 int security_socket_getsockopt(struct socket *sock, int level, int optname)
2066 {
2067 	return call_int_hook(socket_getsockopt, 0, sock, level, optname);
2068 }
2069 
2070 int security_socket_setsockopt(struct socket *sock, int level, int optname)
2071 {
2072 	return call_int_hook(socket_setsockopt, 0, sock, level, optname);
2073 }
2074 
2075 int security_socket_shutdown(struct socket *sock, int how)
2076 {
2077 	return call_int_hook(socket_shutdown, 0, sock, how);
2078 }
2079 
2080 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
2081 {
2082 	return call_int_hook(socket_sock_rcv_skb, 0, sk, skb);
2083 }
2084 EXPORT_SYMBOL(security_sock_rcv_skb);
2085 
2086 int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
2087 				      int __user *optlen, unsigned len)
2088 {
2089 	return call_int_hook(socket_getpeersec_stream, -ENOPROTOOPT, sock,
2090 				optval, optlen, len);
2091 }
2092 
2093 int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
2094 {
2095 	return call_int_hook(socket_getpeersec_dgram, -ENOPROTOOPT, sock,
2096 			     skb, secid);
2097 }
2098 EXPORT_SYMBOL(security_socket_getpeersec_dgram);
2099 
2100 int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
2101 {
2102 	return call_int_hook(sk_alloc_security, 0, sk, family, priority);
2103 }
2104 
2105 void security_sk_free(struct sock *sk)
2106 {
2107 	call_void_hook(sk_free_security, sk);
2108 }
2109 
2110 void security_sk_clone(const struct sock *sk, struct sock *newsk)
2111 {
2112 	call_void_hook(sk_clone_security, sk, newsk);
2113 }
2114 EXPORT_SYMBOL(security_sk_clone);
2115 
2116 void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
2117 {
2118 	call_void_hook(sk_getsecid, sk, &fl->flowi_secid);
2119 }
2120 EXPORT_SYMBOL(security_sk_classify_flow);
2121 
2122 void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
2123 {
2124 	call_void_hook(req_classify_flow, req, fl);
2125 }
2126 EXPORT_SYMBOL(security_req_classify_flow);
2127 
2128 void security_sock_graft(struct sock *sk, struct socket *parent)
2129 {
2130 	call_void_hook(sock_graft, sk, parent);
2131 }
2132 EXPORT_SYMBOL(security_sock_graft);
2133 
2134 int security_inet_conn_request(struct sock *sk,
2135 			struct sk_buff *skb, struct request_sock *req)
2136 {
2137 	return call_int_hook(inet_conn_request, 0, sk, skb, req);
2138 }
2139 EXPORT_SYMBOL(security_inet_conn_request);
2140 
2141 void security_inet_csk_clone(struct sock *newsk,
2142 			const struct request_sock *req)
2143 {
2144 	call_void_hook(inet_csk_clone, newsk, req);
2145 }
2146 
2147 void security_inet_conn_established(struct sock *sk,
2148 			struct sk_buff *skb)
2149 {
2150 	call_void_hook(inet_conn_established, sk, skb);
2151 }
2152 EXPORT_SYMBOL(security_inet_conn_established);
2153 
2154 int security_secmark_relabel_packet(u32 secid)
2155 {
2156 	return call_int_hook(secmark_relabel_packet, 0, secid);
2157 }
2158 EXPORT_SYMBOL(security_secmark_relabel_packet);
2159 
2160 void security_secmark_refcount_inc(void)
2161 {
2162 	call_void_hook(secmark_refcount_inc);
2163 }
2164 EXPORT_SYMBOL(security_secmark_refcount_inc);
2165 
2166 void security_secmark_refcount_dec(void)
2167 {
2168 	call_void_hook(secmark_refcount_dec);
2169 }
2170 EXPORT_SYMBOL(security_secmark_refcount_dec);
2171 
2172 int security_tun_dev_alloc_security(void **security)
2173 {
2174 	return call_int_hook(tun_dev_alloc_security, 0, security);
2175 }
2176 EXPORT_SYMBOL(security_tun_dev_alloc_security);
2177 
2178 void security_tun_dev_free_security(void *security)
2179 {
2180 	call_void_hook(tun_dev_free_security, security);
2181 }
2182 EXPORT_SYMBOL(security_tun_dev_free_security);
2183 
2184 int security_tun_dev_create(void)
2185 {
2186 	return call_int_hook(tun_dev_create, 0);
2187 }
2188 EXPORT_SYMBOL(security_tun_dev_create);
2189 
2190 int security_tun_dev_attach_queue(void *security)
2191 {
2192 	return call_int_hook(tun_dev_attach_queue, 0, security);
2193 }
2194 EXPORT_SYMBOL(security_tun_dev_attach_queue);
2195 
2196 int security_tun_dev_attach(struct sock *sk, void *security)
2197 {
2198 	return call_int_hook(tun_dev_attach, 0, sk, security);
2199 }
2200 EXPORT_SYMBOL(security_tun_dev_attach);
2201 
2202 int security_tun_dev_open(void *security)
2203 {
2204 	return call_int_hook(tun_dev_open, 0, security);
2205 }
2206 EXPORT_SYMBOL(security_tun_dev_open);
2207 
2208 int security_sctp_assoc_request(struct sctp_endpoint *ep, struct sk_buff *skb)
2209 {
2210 	return call_int_hook(sctp_assoc_request, 0, ep, skb);
2211 }
2212 EXPORT_SYMBOL(security_sctp_assoc_request);
2213 
2214 int security_sctp_bind_connect(struct sock *sk, int optname,
2215 			       struct sockaddr *address, int addrlen)
2216 {
2217 	return call_int_hook(sctp_bind_connect, 0, sk, optname,
2218 			     address, addrlen);
2219 }
2220 EXPORT_SYMBOL(security_sctp_bind_connect);
2221 
2222 void security_sctp_sk_clone(struct sctp_endpoint *ep, struct sock *sk,
2223 			    struct sock *newsk)
2224 {
2225 	call_void_hook(sctp_sk_clone, ep, sk, newsk);
2226 }
2227 EXPORT_SYMBOL(security_sctp_sk_clone);
2228 
2229 #endif	/* CONFIG_SECURITY_NETWORK */
2230 
2231 #ifdef CONFIG_SECURITY_INFINIBAND
2232 
2233 int security_ib_pkey_access(void *sec, u64 subnet_prefix, u16 pkey)
2234 {
2235 	return call_int_hook(ib_pkey_access, 0, sec, subnet_prefix, pkey);
2236 }
2237 EXPORT_SYMBOL(security_ib_pkey_access);
2238 
2239 int security_ib_endport_manage_subnet(void *sec, const char *dev_name, u8 port_num)
2240 {
2241 	return call_int_hook(ib_endport_manage_subnet, 0, sec, dev_name, port_num);
2242 }
2243 EXPORT_SYMBOL(security_ib_endport_manage_subnet);
2244 
2245 int security_ib_alloc_security(void **sec)
2246 {
2247 	return call_int_hook(ib_alloc_security, 0, sec);
2248 }
2249 EXPORT_SYMBOL(security_ib_alloc_security);
2250 
2251 void security_ib_free_security(void *sec)
2252 {
2253 	call_void_hook(ib_free_security, sec);
2254 }
2255 EXPORT_SYMBOL(security_ib_free_security);
2256 #endif	/* CONFIG_SECURITY_INFINIBAND */
2257 
2258 #ifdef CONFIG_SECURITY_NETWORK_XFRM
2259 
2260 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp,
2261 			       struct xfrm_user_sec_ctx *sec_ctx,
2262 			       gfp_t gfp)
2263 {
2264 	return call_int_hook(xfrm_policy_alloc_security, 0, ctxp, sec_ctx, gfp);
2265 }
2266 EXPORT_SYMBOL(security_xfrm_policy_alloc);
2267 
2268 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
2269 			      struct xfrm_sec_ctx **new_ctxp)
2270 {
2271 	return call_int_hook(xfrm_policy_clone_security, 0, old_ctx, new_ctxp);
2272 }
2273 
2274 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
2275 {
2276 	call_void_hook(xfrm_policy_free_security, ctx);
2277 }
2278 EXPORT_SYMBOL(security_xfrm_policy_free);
2279 
2280 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
2281 {
2282 	return call_int_hook(xfrm_policy_delete_security, 0, ctx);
2283 }
2284 
2285 int security_xfrm_state_alloc(struct xfrm_state *x,
2286 			      struct xfrm_user_sec_ctx *sec_ctx)
2287 {
2288 	return call_int_hook(xfrm_state_alloc, 0, x, sec_ctx);
2289 }
2290 EXPORT_SYMBOL(security_xfrm_state_alloc);
2291 
2292 int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
2293 				      struct xfrm_sec_ctx *polsec, u32 secid)
2294 {
2295 	return call_int_hook(xfrm_state_alloc_acquire, 0, x, polsec, secid);
2296 }
2297 
2298 int security_xfrm_state_delete(struct xfrm_state *x)
2299 {
2300 	return call_int_hook(xfrm_state_delete_security, 0, x);
2301 }
2302 EXPORT_SYMBOL(security_xfrm_state_delete);
2303 
2304 void security_xfrm_state_free(struct xfrm_state *x)
2305 {
2306 	call_void_hook(xfrm_state_free_security, x);
2307 }
2308 
2309 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
2310 {
2311 	return call_int_hook(xfrm_policy_lookup, 0, ctx, fl_secid, dir);
2312 }
2313 
2314 int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
2315 				       struct xfrm_policy *xp,
2316 				       const struct flowi *fl)
2317 {
2318 	struct security_hook_list *hp;
2319 	int rc = 1;
2320 
2321 	/*
2322 	 * Since this function is expected to return 0 or 1, the judgment
2323 	 * becomes difficult if multiple LSMs supply this call. Fortunately,
2324 	 * we can use the first LSM's judgment because currently only SELinux
2325 	 * supplies this call.
2326 	 *
2327 	 * For speed optimization, we explicitly break the loop rather than
2328 	 * using the macro
2329 	 */
2330 	hlist_for_each_entry(hp, &security_hook_heads.xfrm_state_pol_flow_match,
2331 				list) {
2332 		rc = hp->hook.xfrm_state_pol_flow_match(x, xp, fl);
2333 		break;
2334 	}
2335 	return rc;
2336 }
2337 
2338 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
2339 {
2340 	return call_int_hook(xfrm_decode_session, 0, skb, secid, 1);
2341 }
2342 
2343 void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
2344 {
2345 	int rc = call_int_hook(xfrm_decode_session, 0, skb, &fl->flowi_secid,
2346 				0);
2347 
2348 	BUG_ON(rc);
2349 }
2350 EXPORT_SYMBOL(security_skb_classify_flow);
2351 
2352 #endif	/* CONFIG_SECURITY_NETWORK_XFRM */
2353 
2354 #ifdef CONFIG_KEYS
2355 
2356 int security_key_alloc(struct key *key, const struct cred *cred,
2357 		       unsigned long flags)
2358 {
2359 	return call_int_hook(key_alloc, 0, key, cred, flags);
2360 }
2361 
2362 void security_key_free(struct key *key)
2363 {
2364 	call_void_hook(key_free, key);
2365 }
2366 
2367 int security_key_permission(key_ref_t key_ref,
2368 			    const struct cred *cred, unsigned perm)
2369 {
2370 	return call_int_hook(key_permission, 0, key_ref, cred, perm);
2371 }
2372 
2373 int security_key_getsecurity(struct key *key, char **_buffer)
2374 {
2375 	*_buffer = NULL;
2376 	return call_int_hook(key_getsecurity, 0, key, _buffer);
2377 }
2378 
2379 #endif	/* CONFIG_KEYS */
2380 
2381 #ifdef CONFIG_AUDIT
2382 
2383 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
2384 {
2385 	return call_int_hook(audit_rule_init, 0, field, op, rulestr, lsmrule);
2386 }
2387 
2388 int security_audit_rule_known(struct audit_krule *krule)
2389 {
2390 	return call_int_hook(audit_rule_known, 0, krule);
2391 }
2392 
2393 void security_audit_rule_free(void *lsmrule)
2394 {
2395 	call_void_hook(audit_rule_free, lsmrule);
2396 }
2397 
2398 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule)
2399 {
2400 	return call_int_hook(audit_rule_match, 0, secid, field, op, lsmrule);
2401 }
2402 #endif /* CONFIG_AUDIT */
2403 
2404 #ifdef CONFIG_BPF_SYSCALL
2405 int security_bpf(int cmd, union bpf_attr *attr, unsigned int size)
2406 {
2407 	return call_int_hook(bpf, 0, cmd, attr, size);
2408 }
2409 int security_bpf_map(struct bpf_map *map, fmode_t fmode)
2410 {
2411 	return call_int_hook(bpf_map, 0, map, fmode);
2412 }
2413 int security_bpf_prog(struct bpf_prog *prog)
2414 {
2415 	return call_int_hook(bpf_prog, 0, prog);
2416 }
2417 int security_bpf_map_alloc(struct bpf_map *map)
2418 {
2419 	return call_int_hook(bpf_map_alloc_security, 0, map);
2420 }
2421 int security_bpf_prog_alloc(struct bpf_prog_aux *aux)
2422 {
2423 	return call_int_hook(bpf_prog_alloc_security, 0, aux);
2424 }
2425 void security_bpf_map_free(struct bpf_map *map)
2426 {
2427 	call_void_hook(bpf_map_free_security, map);
2428 }
2429 void security_bpf_prog_free(struct bpf_prog_aux *aux)
2430 {
2431 	call_void_hook(bpf_prog_free_security, aux);
2432 }
2433 #endif /* CONFIG_BPF_SYSCALL */
2434 
2435 int security_locked_down(enum lockdown_reason what)
2436 {
2437 	return call_int_hook(locked_down, 0, what);
2438 }
2439 EXPORT_SYMBOL(security_locked_down);
2440 
2441 #ifdef CONFIG_PERF_EVENTS
2442 int security_perf_event_open(struct perf_event_attr *attr, int type)
2443 {
2444 	return call_int_hook(perf_event_open, 0, attr, type);
2445 }
2446 
2447 int security_perf_event_alloc(struct perf_event *event)
2448 {
2449 	return call_int_hook(perf_event_alloc, 0, event);
2450 }
2451 
2452 void security_perf_event_free(struct perf_event *event)
2453 {
2454 	call_void_hook(perf_event_free, event);
2455 }
2456 
2457 int security_perf_event_read(struct perf_event *event)
2458 {
2459 	return call_int_hook(perf_event_read, 0, event);
2460 }
2461 
2462 int security_perf_event_write(struct perf_event *event)
2463 {
2464 	return call_int_hook(perf_event_write, 0, event);
2465 }
2466 #endif /* CONFIG_PERF_EVENTS */
2467