xref: /linux/security/security.c (revision 3e707b07f582c12ed78fa5516a97bf701bf0634c)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Security plug functions
4  *
5  * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
6  * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
7  * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
8  * Copyright (C) 2016 Mellanox Technologies
9  * Copyright (C) 2023 Microsoft Corporation <paul@paul-moore.com>
10  */
11 
12 #define pr_fmt(fmt) "LSM: " fmt
13 
14 #include <linux/bpf.h>
15 #include <linux/capability.h>
16 #include <linux/dcache.h>
17 #include <linux/export.h>
18 #include <linux/init.h>
19 #include <linux/kernel.h>
20 #include <linux/kernel_read_file.h>
21 #include <linux/lsm_hooks.h>
22 #include <linux/mman.h>
23 #include <linux/mount.h>
24 #include <linux/personality.h>
25 #include <linux/backing-dev.h>
26 #include <linux/string.h>
27 #include <linux/xattr.h>
28 #include <linux/msg.h>
29 #include <linux/overflow.h>
30 #include <linux/perf_event.h>
31 #include <linux/fs.h>
32 #include <net/flow.h>
33 #include <net/sock.h>
34 
35 #define SECURITY_HOOK_ACTIVE_KEY(HOOK, IDX) security_hook_active_##HOOK##_##IDX
36 
37 /*
38  * Identifier for the LSM static calls.
39  * HOOK is an LSM hook as defined in linux/lsm_hookdefs.h
40  * IDX is the index of the static call. 0 <= NUM < MAX_LSM_COUNT
41  */
42 #define LSM_STATIC_CALL(HOOK, IDX) lsm_static_call_##HOOK##_##IDX
43 
44 /*
45  * Call the macro M for each LSM hook MAX_LSM_COUNT times.
46  */
47 #define LSM_LOOP_UNROLL(M, ...) 		\
48 do {						\
49 	UNROLL(MAX_LSM_COUNT, M, __VA_ARGS__)	\
50 } while (0)
51 
52 #define LSM_DEFINE_UNROLL(M, ...) UNROLL(MAX_LSM_COUNT, M, __VA_ARGS__)
53 
54 /*
55  * These are descriptions of the reasons that can be passed to the
56  * security_locked_down() LSM hook. Placing this array here allows
57  * all security modules to use the same descriptions for auditing
58  * purposes.
59  */
60 const char *const lockdown_reasons[LOCKDOWN_CONFIDENTIALITY_MAX + 1] = {
61 	[LOCKDOWN_NONE] = "none",
62 	[LOCKDOWN_MODULE_SIGNATURE] = "unsigned module loading",
63 	[LOCKDOWN_DEV_MEM] = "/dev/mem,kmem,port",
64 	[LOCKDOWN_EFI_TEST] = "/dev/efi_test access",
65 	[LOCKDOWN_KEXEC] = "kexec of unsigned images",
66 	[LOCKDOWN_HIBERNATION] = "hibernation",
67 	[LOCKDOWN_PCI_ACCESS] = "direct PCI access",
68 	[LOCKDOWN_IOPORT] = "raw io port access",
69 	[LOCKDOWN_MSR] = "raw MSR access",
70 	[LOCKDOWN_ACPI_TABLES] = "modifying ACPI tables",
71 	[LOCKDOWN_DEVICE_TREE] = "modifying device tree contents",
72 	[LOCKDOWN_PCMCIA_CIS] = "direct PCMCIA CIS storage",
73 	[LOCKDOWN_TIOCSSERIAL] = "reconfiguration of serial port IO",
74 	[LOCKDOWN_MODULE_PARAMETERS] = "unsafe module parameters",
75 	[LOCKDOWN_MMIOTRACE] = "unsafe mmio",
76 	[LOCKDOWN_DEBUGFS] = "debugfs access",
77 	[LOCKDOWN_XMON_WR] = "xmon write access",
78 	[LOCKDOWN_BPF_WRITE_USER] = "use of bpf to write user RAM",
79 	[LOCKDOWN_DBG_WRITE_KERNEL] = "use of kgdb/kdb to write kernel RAM",
80 	[LOCKDOWN_RTAS_ERROR_INJECTION] = "RTAS error injection",
81 	[LOCKDOWN_INTEGRITY_MAX] = "integrity",
82 	[LOCKDOWN_KCORE] = "/proc/kcore access",
83 	[LOCKDOWN_KPROBES] = "use of kprobes",
84 	[LOCKDOWN_BPF_READ_KERNEL] = "use of bpf to read kernel RAM",
85 	[LOCKDOWN_DBG_READ_KERNEL] = "use of kgdb/kdb to read kernel RAM",
86 	[LOCKDOWN_PERF] = "unsafe use of perf",
87 	[LOCKDOWN_TRACEFS] = "use of tracefs",
88 	[LOCKDOWN_XMON_RW] = "xmon read and write access",
89 	[LOCKDOWN_XFRM_SECRET] = "xfrm SA secret",
90 	[LOCKDOWN_CONFIDENTIALITY_MAX] = "confidentiality",
91 };
92 
93 static BLOCKING_NOTIFIER_HEAD(blocking_lsm_notifier_chain);
94 
95 static struct kmem_cache *lsm_file_cache;
96 static struct kmem_cache *lsm_inode_cache;
97 
98 char *lsm_names;
99 static struct lsm_blob_sizes blob_sizes __ro_after_init;
100 
101 /* Boot-time LSM user choice */
102 static __initdata const char *chosen_lsm_order;
103 static __initdata const char *chosen_major_lsm;
104 
105 static __initconst const char *const builtin_lsm_order = CONFIG_LSM;
106 
107 /* Ordered list of LSMs to initialize. */
108 static __initdata struct lsm_info *ordered_lsms[MAX_LSM_COUNT + 1];
109 static __initdata struct lsm_info *exclusive;
110 
111 #ifdef CONFIG_HAVE_STATIC_CALL
112 #define LSM_HOOK_TRAMP(NAME, NUM) \
113 	&STATIC_CALL_TRAMP(LSM_STATIC_CALL(NAME, NUM))
114 #else
115 #define LSM_HOOK_TRAMP(NAME, NUM) NULL
116 #endif
117 
118 /*
119  * Define static calls and static keys for each LSM hook.
120  */
121 #define DEFINE_LSM_STATIC_CALL(NUM, NAME, RET, ...)			\
122 	DEFINE_STATIC_CALL_NULL(LSM_STATIC_CALL(NAME, NUM),		\
123 				*((RET(*)(__VA_ARGS__))NULL));		\
124 	DEFINE_STATIC_KEY_FALSE(SECURITY_HOOK_ACTIVE_KEY(NAME, NUM));
125 
126 #define LSM_HOOK(RET, DEFAULT, NAME, ...)				\
127 	LSM_DEFINE_UNROLL(DEFINE_LSM_STATIC_CALL, NAME, RET, __VA_ARGS__)
128 #include <linux/lsm_hook_defs.h>
129 #undef LSM_HOOK
130 #undef DEFINE_LSM_STATIC_CALL
131 
132 /*
133  * Initialise a table of static calls for each LSM hook.
134  * DEFINE_STATIC_CALL_NULL invocation above generates a key (STATIC_CALL_KEY)
135  * and a trampoline (STATIC_CALL_TRAMP) which are used to call
136  * __static_call_update when updating the static call.
137  *
138  * The static calls table is used by early LSMs, some architectures can fault on
139  * unaligned accesses and the fault handling code may not be ready by then.
140  * Thus, the static calls table should be aligned to avoid any unhandled faults
141  * in early init.
142  */
143 struct lsm_static_calls_table
144 	static_calls_table __ro_after_init __aligned(sizeof(u64)) = {
145 #define INIT_LSM_STATIC_CALL(NUM, NAME)					\
146 	(struct lsm_static_call) {					\
147 		.key = &STATIC_CALL_KEY(LSM_STATIC_CALL(NAME, NUM)),	\
148 		.trampoline = LSM_HOOK_TRAMP(NAME, NUM),		\
149 		.active = &SECURITY_HOOK_ACTIVE_KEY(NAME, NUM),		\
150 	},
151 #define LSM_HOOK(RET, DEFAULT, NAME, ...)				\
152 	.NAME = {							\
153 		LSM_DEFINE_UNROLL(INIT_LSM_STATIC_CALL, NAME)		\
154 	},
155 #include <linux/lsm_hook_defs.h>
156 #undef LSM_HOOK
157 #undef INIT_LSM_STATIC_CALL
158 	};
159 
160 static __initdata bool debug;
161 #define init_debug(...)						\
162 	do {							\
163 		if (debug)					\
164 			pr_info(__VA_ARGS__);			\
165 	} while (0)
166 
167 static bool __init is_enabled(struct lsm_info *lsm)
168 {
169 	if (!lsm->enabled)
170 		return false;
171 
172 	return *lsm->enabled;
173 }
174 
175 /* Mark an LSM's enabled flag. */
176 static int lsm_enabled_true __initdata = 1;
177 static int lsm_enabled_false __initdata = 0;
178 static void __init set_enabled(struct lsm_info *lsm, bool enabled)
179 {
180 	/*
181 	 * When an LSM hasn't configured an enable variable, we can use
182 	 * a hard-coded location for storing the default enabled state.
183 	 */
184 	if (!lsm->enabled) {
185 		if (enabled)
186 			lsm->enabled = &lsm_enabled_true;
187 		else
188 			lsm->enabled = &lsm_enabled_false;
189 	} else if (lsm->enabled == &lsm_enabled_true) {
190 		if (!enabled)
191 			lsm->enabled = &lsm_enabled_false;
192 	} else if (lsm->enabled == &lsm_enabled_false) {
193 		if (enabled)
194 			lsm->enabled = &lsm_enabled_true;
195 	} else {
196 		*lsm->enabled = enabled;
197 	}
198 }
199 
200 /* Is an LSM already listed in the ordered LSMs list? */
201 static bool __init exists_ordered_lsm(struct lsm_info *lsm)
202 {
203 	struct lsm_info **check;
204 
205 	for (check = ordered_lsms; *check; check++)
206 		if (*check == lsm)
207 			return true;
208 
209 	return false;
210 }
211 
212 /* Append an LSM to the list of ordered LSMs to initialize. */
213 static int last_lsm __initdata;
214 static void __init append_ordered_lsm(struct lsm_info *lsm, const char *from)
215 {
216 	/* Ignore duplicate selections. */
217 	if (exists_ordered_lsm(lsm))
218 		return;
219 
220 	if (WARN(last_lsm == MAX_LSM_COUNT, "%s: out of LSM static calls!?\n", from))
221 		return;
222 
223 	/* Enable this LSM, if it is not already set. */
224 	if (!lsm->enabled)
225 		lsm->enabled = &lsm_enabled_true;
226 	ordered_lsms[last_lsm++] = lsm;
227 
228 	init_debug("%s ordered: %s (%s)\n", from, lsm->name,
229 		   is_enabled(lsm) ? "enabled" : "disabled");
230 }
231 
232 /* Is an LSM allowed to be initialized? */
233 static bool __init lsm_allowed(struct lsm_info *lsm)
234 {
235 	/* Skip if the LSM is disabled. */
236 	if (!is_enabled(lsm))
237 		return false;
238 
239 	/* Not allowed if another exclusive LSM already initialized. */
240 	if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && exclusive) {
241 		init_debug("exclusive disabled: %s\n", lsm->name);
242 		return false;
243 	}
244 
245 	return true;
246 }
247 
248 static void __init lsm_set_blob_size(int *need, int *lbs)
249 {
250 	int offset;
251 
252 	if (*need <= 0)
253 		return;
254 
255 	offset = ALIGN(*lbs, sizeof(void *));
256 	*lbs = offset + *need;
257 	*need = offset;
258 }
259 
260 static void __init lsm_set_blob_sizes(struct lsm_blob_sizes *needed)
261 {
262 	if (!needed)
263 		return;
264 
265 	lsm_set_blob_size(&needed->lbs_cred, &blob_sizes.lbs_cred);
266 	lsm_set_blob_size(&needed->lbs_file, &blob_sizes.lbs_file);
267 	lsm_set_blob_size(&needed->lbs_ib, &blob_sizes.lbs_ib);
268 	/*
269 	 * The inode blob gets an rcu_head in addition to
270 	 * what the modules might need.
271 	 */
272 	if (needed->lbs_inode && blob_sizes.lbs_inode == 0)
273 		blob_sizes.lbs_inode = sizeof(struct rcu_head);
274 	lsm_set_blob_size(&needed->lbs_inode, &blob_sizes.lbs_inode);
275 	lsm_set_blob_size(&needed->lbs_ipc, &blob_sizes.lbs_ipc);
276 	lsm_set_blob_size(&needed->lbs_key, &blob_sizes.lbs_key);
277 	lsm_set_blob_size(&needed->lbs_msg_msg, &blob_sizes.lbs_msg_msg);
278 	lsm_set_blob_size(&needed->lbs_perf_event, &blob_sizes.lbs_perf_event);
279 	lsm_set_blob_size(&needed->lbs_sock, &blob_sizes.lbs_sock);
280 	lsm_set_blob_size(&needed->lbs_superblock, &blob_sizes.lbs_superblock);
281 	lsm_set_blob_size(&needed->lbs_task, &blob_sizes.lbs_task);
282 	lsm_set_blob_size(&needed->lbs_tun_dev, &blob_sizes.lbs_tun_dev);
283 	lsm_set_blob_size(&needed->lbs_xattr_count,
284 			  &blob_sizes.lbs_xattr_count);
285 	lsm_set_blob_size(&needed->lbs_bdev, &blob_sizes.lbs_bdev);
286 }
287 
288 /* Prepare LSM for initialization. */
289 static void __init prepare_lsm(struct lsm_info *lsm)
290 {
291 	int enabled = lsm_allowed(lsm);
292 
293 	/* Record enablement (to handle any following exclusive LSMs). */
294 	set_enabled(lsm, enabled);
295 
296 	/* If enabled, do pre-initialization work. */
297 	if (enabled) {
298 		if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && !exclusive) {
299 			exclusive = lsm;
300 			init_debug("exclusive chosen:   %s\n", lsm->name);
301 		}
302 
303 		lsm_set_blob_sizes(lsm->blobs);
304 	}
305 }
306 
307 /* Initialize a given LSM, if it is enabled. */
308 static void __init initialize_lsm(struct lsm_info *lsm)
309 {
310 	if (is_enabled(lsm)) {
311 		int ret;
312 
313 		init_debug("initializing %s\n", lsm->name);
314 		ret = lsm->init();
315 		WARN(ret, "%s failed to initialize: %d\n", lsm->name, ret);
316 	}
317 }
318 
319 /*
320  * Current index to use while initializing the lsm id list.
321  */
322 u32 lsm_active_cnt __ro_after_init;
323 const struct lsm_id *lsm_idlist[MAX_LSM_COUNT];
324 
325 /* Populate ordered LSMs list from comma-separated LSM name list. */
326 static void __init ordered_lsm_parse(const char *order, const char *origin)
327 {
328 	struct lsm_info *lsm;
329 	char *sep, *name, *next;
330 
331 	/* LSM_ORDER_FIRST is always first. */
332 	for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
333 		if (lsm->order == LSM_ORDER_FIRST)
334 			append_ordered_lsm(lsm, "  first");
335 	}
336 
337 	/* Process "security=", if given. */
338 	if (chosen_major_lsm) {
339 		struct lsm_info *major;
340 
341 		/*
342 		 * To match the original "security=" behavior, this
343 		 * explicitly does NOT fallback to another Legacy Major
344 		 * if the selected one was separately disabled: disable
345 		 * all non-matching Legacy Major LSMs.
346 		 */
347 		for (major = __start_lsm_info; major < __end_lsm_info;
348 		     major++) {
349 			if ((major->flags & LSM_FLAG_LEGACY_MAJOR) &&
350 			    strcmp(major->name, chosen_major_lsm) != 0) {
351 				set_enabled(major, false);
352 				init_debug("security=%s disabled: %s (only one legacy major LSM)\n",
353 					   chosen_major_lsm, major->name);
354 			}
355 		}
356 	}
357 
358 	sep = kstrdup(order, GFP_KERNEL);
359 	next = sep;
360 	/* Walk the list, looking for matching LSMs. */
361 	while ((name = strsep(&next, ",")) != NULL) {
362 		bool found = false;
363 
364 		for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
365 			if (strcmp(lsm->name, name) == 0) {
366 				if (lsm->order == LSM_ORDER_MUTABLE)
367 					append_ordered_lsm(lsm, origin);
368 				found = true;
369 			}
370 		}
371 
372 		if (!found)
373 			init_debug("%s ignored: %s (not built into kernel)\n",
374 				   origin, name);
375 	}
376 
377 	/* Process "security=", if given. */
378 	if (chosen_major_lsm) {
379 		for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
380 			if (exists_ordered_lsm(lsm))
381 				continue;
382 			if (strcmp(lsm->name, chosen_major_lsm) == 0)
383 				append_ordered_lsm(lsm, "security=");
384 		}
385 	}
386 
387 	/* LSM_ORDER_LAST is always last. */
388 	for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
389 		if (lsm->order == LSM_ORDER_LAST)
390 			append_ordered_lsm(lsm, "   last");
391 	}
392 
393 	/* Disable all LSMs not in the ordered list. */
394 	for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
395 		if (exists_ordered_lsm(lsm))
396 			continue;
397 		set_enabled(lsm, false);
398 		init_debug("%s skipped: %s (not in requested order)\n",
399 			   origin, lsm->name);
400 	}
401 
402 	kfree(sep);
403 }
404 
405 static void __init lsm_static_call_init(struct security_hook_list *hl)
406 {
407 	struct lsm_static_call *scall = hl->scalls;
408 	int i;
409 
410 	for (i = 0; i < MAX_LSM_COUNT; i++) {
411 		/* Update the first static call that is not used yet */
412 		if (!scall->hl) {
413 			__static_call_update(scall->key, scall->trampoline,
414 					     hl->hook.lsm_func_addr);
415 			scall->hl = hl;
416 			static_branch_enable(scall->active);
417 			return;
418 		}
419 		scall++;
420 	}
421 	panic("%s - Ran out of static slots.\n", __func__);
422 }
423 
424 static void __init lsm_early_cred(struct cred *cred);
425 static void __init lsm_early_task(struct task_struct *task);
426 
427 static int lsm_append(const char *new, char **result);
428 
429 static void __init report_lsm_order(void)
430 {
431 	struct lsm_info **lsm, *early;
432 	int first = 0;
433 
434 	pr_info("initializing lsm=");
435 
436 	/* Report each enabled LSM name, comma separated. */
437 	for (early = __start_early_lsm_info;
438 	     early < __end_early_lsm_info; early++)
439 		if (is_enabled(early))
440 			pr_cont("%s%s", first++ == 0 ? "" : ",", early->name);
441 	for (lsm = ordered_lsms; *lsm; lsm++)
442 		if (is_enabled(*lsm))
443 			pr_cont("%s%s", first++ == 0 ? "" : ",", (*lsm)->name);
444 
445 	pr_cont("\n");
446 }
447 
448 static void __init ordered_lsm_init(void)
449 {
450 	struct lsm_info **lsm;
451 
452 	if (chosen_lsm_order) {
453 		if (chosen_major_lsm) {
454 			pr_warn("security=%s is ignored because it is superseded by lsm=%s\n",
455 				chosen_major_lsm, chosen_lsm_order);
456 			chosen_major_lsm = NULL;
457 		}
458 		ordered_lsm_parse(chosen_lsm_order, "cmdline");
459 	} else
460 		ordered_lsm_parse(builtin_lsm_order, "builtin");
461 
462 	for (lsm = ordered_lsms; *lsm; lsm++)
463 		prepare_lsm(*lsm);
464 
465 	report_lsm_order();
466 
467 	init_debug("cred blob size       = %d\n", blob_sizes.lbs_cred);
468 	init_debug("file blob size       = %d\n", blob_sizes.lbs_file);
469 	init_debug("ib blob size         = %d\n", blob_sizes.lbs_ib);
470 	init_debug("inode blob size      = %d\n", blob_sizes.lbs_inode);
471 	init_debug("ipc blob size        = %d\n", blob_sizes.lbs_ipc);
472 #ifdef CONFIG_KEYS
473 	init_debug("key blob size        = %d\n", blob_sizes.lbs_key);
474 #endif /* CONFIG_KEYS */
475 	init_debug("msg_msg blob size    = %d\n", blob_sizes.lbs_msg_msg);
476 	init_debug("sock blob size       = %d\n", blob_sizes.lbs_sock);
477 	init_debug("superblock blob size = %d\n", blob_sizes.lbs_superblock);
478 	init_debug("perf event blob size = %d\n", blob_sizes.lbs_perf_event);
479 	init_debug("task blob size       = %d\n", blob_sizes.lbs_task);
480 	init_debug("tun device blob size = %d\n", blob_sizes.lbs_tun_dev);
481 	init_debug("xattr slots          = %d\n", blob_sizes.lbs_xattr_count);
482 	init_debug("bdev blob size       = %d\n", blob_sizes.lbs_bdev);
483 
484 	/*
485 	 * Create any kmem_caches needed for blobs
486 	 */
487 	if (blob_sizes.lbs_file)
488 		lsm_file_cache = kmem_cache_create("lsm_file_cache",
489 						   blob_sizes.lbs_file, 0,
490 						   SLAB_PANIC, NULL);
491 	if (blob_sizes.lbs_inode)
492 		lsm_inode_cache = kmem_cache_create("lsm_inode_cache",
493 						    blob_sizes.lbs_inode, 0,
494 						    SLAB_PANIC, NULL);
495 
496 	lsm_early_cred((struct cred *) current->cred);
497 	lsm_early_task(current);
498 	for (lsm = ordered_lsms; *lsm; lsm++)
499 		initialize_lsm(*lsm);
500 }
501 
502 int __init early_security_init(void)
503 {
504 	struct lsm_info *lsm;
505 
506 	for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
507 		if (!lsm->enabled)
508 			lsm->enabled = &lsm_enabled_true;
509 		prepare_lsm(lsm);
510 		initialize_lsm(lsm);
511 	}
512 
513 	return 0;
514 }
515 
516 /**
517  * security_init - initializes the security framework
518  *
519  * This should be called early in the kernel initialization sequence.
520  */
521 int __init security_init(void)
522 {
523 	struct lsm_info *lsm;
524 
525 	init_debug("legacy security=%s\n", chosen_major_lsm ? : " *unspecified*");
526 	init_debug("  CONFIG_LSM=%s\n", builtin_lsm_order);
527 	init_debug("boot arg lsm=%s\n", chosen_lsm_order ? : " *unspecified*");
528 
529 	/*
530 	 * Append the names of the early LSM modules now that kmalloc() is
531 	 * available
532 	 */
533 	for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
534 		init_debug("  early started: %s (%s)\n", lsm->name,
535 			   is_enabled(lsm) ? "enabled" : "disabled");
536 		if (lsm->enabled)
537 			lsm_append(lsm->name, &lsm_names);
538 	}
539 
540 	/* Load LSMs in specified order. */
541 	ordered_lsm_init();
542 
543 	return 0;
544 }
545 
546 /* Save user chosen LSM */
547 static int __init choose_major_lsm(char *str)
548 {
549 	chosen_major_lsm = str;
550 	return 1;
551 }
552 __setup("security=", choose_major_lsm);
553 
554 /* Explicitly choose LSM initialization order. */
555 static int __init choose_lsm_order(char *str)
556 {
557 	chosen_lsm_order = str;
558 	return 1;
559 }
560 __setup("lsm=", choose_lsm_order);
561 
562 /* Enable LSM order debugging. */
563 static int __init enable_debug(char *str)
564 {
565 	debug = true;
566 	return 1;
567 }
568 __setup("lsm.debug", enable_debug);
569 
570 static bool match_last_lsm(const char *list, const char *lsm)
571 {
572 	const char *last;
573 
574 	if (WARN_ON(!list || !lsm))
575 		return false;
576 	last = strrchr(list, ',');
577 	if (last)
578 		/* Pass the comma, strcmp() will check for '\0' */
579 		last++;
580 	else
581 		last = list;
582 	return !strcmp(last, lsm);
583 }
584 
585 static int lsm_append(const char *new, char **result)
586 {
587 	char *cp;
588 
589 	if (*result == NULL) {
590 		*result = kstrdup(new, GFP_KERNEL);
591 		if (*result == NULL)
592 			return -ENOMEM;
593 	} else {
594 		/* Check if it is the last registered name */
595 		if (match_last_lsm(*result, new))
596 			return 0;
597 		cp = kasprintf(GFP_KERNEL, "%s,%s", *result, new);
598 		if (cp == NULL)
599 			return -ENOMEM;
600 		kfree(*result);
601 		*result = cp;
602 	}
603 	return 0;
604 }
605 
606 /**
607  * security_add_hooks - Add a modules hooks to the hook lists.
608  * @hooks: the hooks to add
609  * @count: the number of hooks to add
610  * @lsmid: the identification information for the security module
611  *
612  * Each LSM has to register its hooks with the infrastructure.
613  */
614 void __init security_add_hooks(struct security_hook_list *hooks, int count,
615 			       const struct lsm_id *lsmid)
616 {
617 	int i;
618 
619 	/*
620 	 * A security module may call security_add_hooks() more
621 	 * than once during initialization, and LSM initialization
622 	 * is serialized. Landlock is one such case.
623 	 * Look at the previous entry, if there is one, for duplication.
624 	 */
625 	if (lsm_active_cnt == 0 || lsm_idlist[lsm_active_cnt - 1] != lsmid) {
626 		if (lsm_active_cnt >= MAX_LSM_COUNT)
627 			panic("%s Too many LSMs registered.\n", __func__);
628 		lsm_idlist[lsm_active_cnt++] = lsmid;
629 	}
630 
631 	for (i = 0; i < count; i++) {
632 		hooks[i].lsmid = lsmid;
633 		lsm_static_call_init(&hooks[i]);
634 	}
635 
636 	/*
637 	 * Don't try to append during early_security_init(), we'll come back
638 	 * and fix this up afterwards.
639 	 */
640 	if (slab_is_available()) {
641 		if (lsm_append(lsmid->name, &lsm_names) < 0)
642 			panic("%s - Cannot get early memory.\n", __func__);
643 	}
644 }
645 
646 int call_blocking_lsm_notifier(enum lsm_event event, void *data)
647 {
648 	return blocking_notifier_call_chain(&blocking_lsm_notifier_chain,
649 					    event, data);
650 }
651 EXPORT_SYMBOL(call_blocking_lsm_notifier);
652 
653 int register_blocking_lsm_notifier(struct notifier_block *nb)
654 {
655 	return blocking_notifier_chain_register(&blocking_lsm_notifier_chain,
656 						nb);
657 }
658 EXPORT_SYMBOL(register_blocking_lsm_notifier);
659 
660 int unregister_blocking_lsm_notifier(struct notifier_block *nb)
661 {
662 	return blocking_notifier_chain_unregister(&blocking_lsm_notifier_chain,
663 						  nb);
664 }
665 EXPORT_SYMBOL(unregister_blocking_lsm_notifier);
666 
667 /**
668  * lsm_blob_alloc - allocate a composite blob
669  * @dest: the destination for the blob
670  * @size: the size of the blob
671  * @gfp: allocation type
672  *
673  * Allocate a blob for all the modules
674  *
675  * Returns 0, or -ENOMEM if memory can't be allocated.
676  */
677 static int lsm_blob_alloc(void **dest, size_t size, gfp_t gfp)
678 {
679 	if (size == 0) {
680 		*dest = NULL;
681 		return 0;
682 	}
683 
684 	*dest = kzalloc(size, gfp);
685 	if (*dest == NULL)
686 		return -ENOMEM;
687 	return 0;
688 }
689 
690 /**
691  * lsm_cred_alloc - allocate a composite cred blob
692  * @cred: the cred that needs a blob
693  * @gfp: allocation type
694  *
695  * Allocate the cred blob for all the modules
696  *
697  * Returns 0, or -ENOMEM if memory can't be allocated.
698  */
699 static int lsm_cred_alloc(struct cred *cred, gfp_t gfp)
700 {
701 	return lsm_blob_alloc(&cred->security, blob_sizes.lbs_cred, gfp);
702 }
703 
704 /**
705  * lsm_early_cred - during initialization allocate a composite cred blob
706  * @cred: the cred that needs a blob
707  *
708  * Allocate the cred blob for all the modules
709  */
710 static void __init lsm_early_cred(struct cred *cred)
711 {
712 	int rc = lsm_cred_alloc(cred, GFP_KERNEL);
713 
714 	if (rc)
715 		panic("%s: Early cred alloc failed.\n", __func__);
716 }
717 
718 /**
719  * lsm_file_alloc - allocate a composite file blob
720  * @file: the file that needs a blob
721  *
722  * Allocate the file blob for all the modules
723  *
724  * Returns 0, or -ENOMEM if memory can't be allocated.
725  */
726 static int lsm_file_alloc(struct file *file)
727 {
728 	if (!lsm_file_cache) {
729 		file->f_security = NULL;
730 		return 0;
731 	}
732 
733 	file->f_security = kmem_cache_zalloc(lsm_file_cache, GFP_KERNEL);
734 	if (file->f_security == NULL)
735 		return -ENOMEM;
736 	return 0;
737 }
738 
739 /**
740  * lsm_inode_alloc - allocate a composite inode blob
741  * @inode: the inode that needs a blob
742  * @gfp: allocation flags
743  *
744  * Allocate the inode blob for all the modules
745  *
746  * Returns 0, or -ENOMEM if memory can't be allocated.
747  */
748 static int lsm_inode_alloc(struct inode *inode, gfp_t gfp)
749 {
750 	if (!lsm_inode_cache) {
751 		inode->i_security = NULL;
752 		return 0;
753 	}
754 
755 	inode->i_security = kmem_cache_zalloc(lsm_inode_cache, gfp);
756 	if (inode->i_security == NULL)
757 		return -ENOMEM;
758 	return 0;
759 }
760 
761 /**
762  * lsm_task_alloc - allocate a composite task blob
763  * @task: the task that needs a blob
764  *
765  * Allocate the task blob for all the modules
766  *
767  * Returns 0, or -ENOMEM if memory can't be allocated.
768  */
769 static int lsm_task_alloc(struct task_struct *task)
770 {
771 	return lsm_blob_alloc(&task->security, blob_sizes.lbs_task, GFP_KERNEL);
772 }
773 
774 /**
775  * lsm_ipc_alloc - allocate a composite ipc blob
776  * @kip: the ipc that needs a blob
777  *
778  * Allocate the ipc blob for all the modules
779  *
780  * Returns 0, or -ENOMEM if memory can't be allocated.
781  */
782 static int lsm_ipc_alloc(struct kern_ipc_perm *kip)
783 {
784 	return lsm_blob_alloc(&kip->security, blob_sizes.lbs_ipc, GFP_KERNEL);
785 }
786 
787 #ifdef CONFIG_KEYS
788 /**
789  * lsm_key_alloc - allocate a composite key blob
790  * @key: the key that needs a blob
791  *
792  * Allocate the key blob for all the modules
793  *
794  * Returns 0, or -ENOMEM if memory can't be allocated.
795  */
796 static int lsm_key_alloc(struct key *key)
797 {
798 	return lsm_blob_alloc(&key->security, blob_sizes.lbs_key, GFP_KERNEL);
799 }
800 #endif /* CONFIG_KEYS */
801 
802 /**
803  * lsm_msg_msg_alloc - allocate a composite msg_msg blob
804  * @mp: the msg_msg that needs a blob
805  *
806  * Allocate the ipc blob for all the modules
807  *
808  * Returns 0, or -ENOMEM if memory can't be allocated.
809  */
810 static int lsm_msg_msg_alloc(struct msg_msg *mp)
811 {
812 	return lsm_blob_alloc(&mp->security, blob_sizes.lbs_msg_msg,
813 			      GFP_KERNEL);
814 }
815 
816 /**
817  * lsm_bdev_alloc - allocate a composite block_device blob
818  * @bdev: the block_device that needs a blob
819  *
820  * Allocate the block_device blob for all the modules
821  *
822  * Returns 0, or -ENOMEM if memory can't be allocated.
823  */
824 static int lsm_bdev_alloc(struct block_device *bdev)
825 {
826 	if (blob_sizes.lbs_bdev == 0) {
827 		bdev->bd_security = NULL;
828 		return 0;
829 	}
830 
831 	bdev->bd_security = kzalloc(blob_sizes.lbs_bdev, GFP_KERNEL);
832 	if (!bdev->bd_security)
833 		return -ENOMEM;
834 
835 	return 0;
836 }
837 
838 /**
839  * lsm_early_task - during initialization allocate a composite task blob
840  * @task: the task that needs a blob
841  *
842  * Allocate the task blob for all the modules
843  */
844 static void __init lsm_early_task(struct task_struct *task)
845 {
846 	int rc = lsm_task_alloc(task);
847 
848 	if (rc)
849 		panic("%s: Early task alloc failed.\n", __func__);
850 }
851 
852 /**
853  * lsm_superblock_alloc - allocate a composite superblock blob
854  * @sb: the superblock that needs a blob
855  *
856  * Allocate the superblock blob for all the modules
857  *
858  * Returns 0, or -ENOMEM if memory can't be allocated.
859  */
860 static int lsm_superblock_alloc(struct super_block *sb)
861 {
862 	return lsm_blob_alloc(&sb->s_security, blob_sizes.lbs_superblock,
863 			      GFP_KERNEL);
864 }
865 
866 /**
867  * lsm_fill_user_ctx - Fill a user space lsm_ctx structure
868  * @uctx: a userspace LSM context to be filled
869  * @uctx_len: available uctx size (input), used uctx size (output)
870  * @val: the new LSM context value
871  * @val_len: the size of the new LSM context value
872  * @id: LSM id
873  * @flags: LSM defined flags
874  *
875  * Fill all of the fields in a userspace lsm_ctx structure.  If @uctx is NULL
876  * simply calculate the required size to output via @utc_len and return
877  * success.
878  *
879  * Returns 0 on success, -E2BIG if userspace buffer is not large enough,
880  * -EFAULT on a copyout error, -ENOMEM if memory can't be allocated.
881  */
882 int lsm_fill_user_ctx(struct lsm_ctx __user *uctx, u32 *uctx_len,
883 		      void *val, size_t val_len,
884 		      u64 id, u64 flags)
885 {
886 	struct lsm_ctx *nctx = NULL;
887 	size_t nctx_len;
888 	int rc = 0;
889 
890 	nctx_len = ALIGN(struct_size(nctx, ctx, val_len), sizeof(void *));
891 	if (nctx_len > *uctx_len) {
892 		rc = -E2BIG;
893 		goto out;
894 	}
895 
896 	/* no buffer - return success/0 and set @uctx_len to the req size */
897 	if (!uctx)
898 		goto out;
899 
900 	nctx = kzalloc(nctx_len, GFP_KERNEL);
901 	if (nctx == NULL) {
902 		rc = -ENOMEM;
903 		goto out;
904 	}
905 	nctx->id = id;
906 	nctx->flags = flags;
907 	nctx->len = nctx_len;
908 	nctx->ctx_len = val_len;
909 	memcpy(nctx->ctx, val, val_len);
910 
911 	if (copy_to_user(uctx, nctx, nctx_len))
912 		rc = -EFAULT;
913 
914 out:
915 	kfree(nctx);
916 	*uctx_len = nctx_len;
917 	return rc;
918 }
919 
920 /*
921  * The default value of the LSM hook is defined in linux/lsm_hook_defs.h and
922  * can be accessed with:
923  *
924  *	LSM_RET_DEFAULT(<hook_name>)
925  *
926  * The macros below define static constants for the default value of each
927  * LSM hook.
928  */
929 #define LSM_RET_DEFAULT(NAME) (NAME##_default)
930 #define DECLARE_LSM_RET_DEFAULT_void(DEFAULT, NAME)
931 #define DECLARE_LSM_RET_DEFAULT_int(DEFAULT, NAME) \
932 	static const int __maybe_unused LSM_RET_DEFAULT(NAME) = (DEFAULT);
933 #define LSM_HOOK(RET, DEFAULT, NAME, ...) \
934 	DECLARE_LSM_RET_DEFAULT_##RET(DEFAULT, NAME)
935 
936 #include <linux/lsm_hook_defs.h>
937 #undef LSM_HOOK
938 
939 /*
940  * Hook list operation macros.
941  *
942  * call_void_hook:
943  *	This is a hook that does not return a value.
944  *
945  * call_int_hook:
946  *	This is a hook that returns a value.
947  */
948 #define __CALL_STATIC_VOID(NUM, HOOK, ...)				     \
949 do {									     \
950 	if (static_branch_unlikely(&SECURITY_HOOK_ACTIVE_KEY(HOOK, NUM))) {    \
951 		static_call(LSM_STATIC_CALL(HOOK, NUM))(__VA_ARGS__);	     \
952 	}								     \
953 } while (0);
954 
955 #define call_void_hook(HOOK, ...)                                 \
956 	do {                                                      \
957 		LSM_LOOP_UNROLL(__CALL_STATIC_VOID, HOOK, __VA_ARGS__); \
958 	} while (0)
959 
960 
961 #define __CALL_STATIC_INT(NUM, R, HOOK, LABEL, ...)			     \
962 do {									     \
963 	if (static_branch_unlikely(&SECURITY_HOOK_ACTIVE_KEY(HOOK, NUM))) {  \
964 		R = static_call(LSM_STATIC_CALL(HOOK, NUM))(__VA_ARGS__);    \
965 		if (R != LSM_RET_DEFAULT(HOOK))				     \
966 			goto LABEL;					     \
967 	}								     \
968 } while (0);
969 
970 #define call_int_hook(HOOK, ...)					\
971 ({									\
972 	__label__ OUT;							\
973 	int RC = LSM_RET_DEFAULT(HOOK);					\
974 									\
975 	LSM_LOOP_UNROLL(__CALL_STATIC_INT, RC, HOOK, OUT, __VA_ARGS__);	\
976 OUT:									\
977 	RC;								\
978 })
979 
980 #define lsm_for_each_hook(scall, NAME)					\
981 	for (scall = static_calls_table.NAME;				\
982 	     scall - static_calls_table.NAME < MAX_LSM_COUNT; scall++)  \
983 		if (static_key_enabled(&scall->active->key))
984 
985 /* Security operations */
986 
987 /**
988  * security_binder_set_context_mgr() - Check if becoming binder ctx mgr is ok
989  * @mgr: task credentials of current binder process
990  *
991  * Check whether @mgr is allowed to be the binder context manager.
992  *
993  * Return: Return 0 if permission is granted.
994  */
995 int security_binder_set_context_mgr(const struct cred *mgr)
996 {
997 	return call_int_hook(binder_set_context_mgr, mgr);
998 }
999 
1000 /**
1001  * security_binder_transaction() - Check if a binder transaction is allowed
1002  * @from: sending process
1003  * @to: receiving process
1004  *
1005  * Check whether @from is allowed to invoke a binder transaction call to @to.
1006  *
1007  * Return: Returns 0 if permission is granted.
1008  */
1009 int security_binder_transaction(const struct cred *from,
1010 				const struct cred *to)
1011 {
1012 	return call_int_hook(binder_transaction, from, to);
1013 }
1014 
1015 /**
1016  * security_binder_transfer_binder() - Check if a binder transfer is allowed
1017  * @from: sending process
1018  * @to: receiving process
1019  *
1020  * Check whether @from is allowed to transfer a binder reference to @to.
1021  *
1022  * Return: Returns 0 if permission is granted.
1023  */
1024 int security_binder_transfer_binder(const struct cred *from,
1025 				    const struct cred *to)
1026 {
1027 	return call_int_hook(binder_transfer_binder, from, to);
1028 }
1029 
1030 /**
1031  * security_binder_transfer_file() - Check if a binder file xfer is allowed
1032  * @from: sending process
1033  * @to: receiving process
1034  * @file: file being transferred
1035  *
1036  * Check whether @from is allowed to transfer @file to @to.
1037  *
1038  * Return: Returns 0 if permission is granted.
1039  */
1040 int security_binder_transfer_file(const struct cred *from,
1041 				  const struct cred *to, const struct file *file)
1042 {
1043 	return call_int_hook(binder_transfer_file, from, to, file);
1044 }
1045 
1046 /**
1047  * security_ptrace_access_check() - Check if tracing is allowed
1048  * @child: target process
1049  * @mode: PTRACE_MODE flags
1050  *
1051  * Check permission before allowing the current process to trace the @child
1052  * process.  Security modules may also want to perform a process tracing check
1053  * during an execve in the set_security or apply_creds hooks of tracing check
1054  * during an execve in the bprm_set_creds hook of binprm_security_ops if the
1055  * process is being traced and its security attributes would be changed by the
1056  * execve.
1057  *
1058  * Return: Returns 0 if permission is granted.
1059  */
1060 int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
1061 {
1062 	return call_int_hook(ptrace_access_check, child, mode);
1063 }
1064 
1065 /**
1066  * security_ptrace_traceme() - Check if tracing is allowed
1067  * @parent: tracing process
1068  *
1069  * Check that the @parent process has sufficient permission to trace the
1070  * current process before allowing the current process to present itself to the
1071  * @parent process for tracing.
1072  *
1073  * Return: Returns 0 if permission is granted.
1074  */
1075 int security_ptrace_traceme(struct task_struct *parent)
1076 {
1077 	return call_int_hook(ptrace_traceme, parent);
1078 }
1079 
1080 /**
1081  * security_capget() - Get the capability sets for a process
1082  * @target: target process
1083  * @effective: effective capability set
1084  * @inheritable: inheritable capability set
1085  * @permitted: permitted capability set
1086  *
1087  * Get the @effective, @inheritable, and @permitted capability sets for the
1088  * @target process.  The hook may also perform permission checking to determine
1089  * if the current process is allowed to see the capability sets of the @target
1090  * process.
1091  *
1092  * Return: Returns 0 if the capability sets were successfully obtained.
1093  */
1094 int security_capget(const struct task_struct *target,
1095 		    kernel_cap_t *effective,
1096 		    kernel_cap_t *inheritable,
1097 		    kernel_cap_t *permitted)
1098 {
1099 	return call_int_hook(capget, target, effective, inheritable, permitted);
1100 }
1101 
1102 /**
1103  * security_capset() - Set the capability sets for a process
1104  * @new: new credentials for the target process
1105  * @old: current credentials of the target process
1106  * @effective: effective capability set
1107  * @inheritable: inheritable capability set
1108  * @permitted: permitted capability set
1109  *
1110  * Set the @effective, @inheritable, and @permitted capability sets for the
1111  * current process.
1112  *
1113  * Return: Returns 0 and update @new if permission is granted.
1114  */
1115 int security_capset(struct cred *new, const struct cred *old,
1116 		    const kernel_cap_t *effective,
1117 		    const kernel_cap_t *inheritable,
1118 		    const kernel_cap_t *permitted)
1119 {
1120 	return call_int_hook(capset, new, old, effective, inheritable,
1121 			     permitted);
1122 }
1123 
1124 /**
1125  * security_capable() - Check if a process has the necessary capability
1126  * @cred: credentials to examine
1127  * @ns: user namespace
1128  * @cap: capability requested
1129  * @opts: capability check options
1130  *
1131  * Check whether the @tsk process has the @cap capability in the indicated
1132  * credentials.  @cap contains the capability <include/linux/capability.h>.
1133  * @opts contains options for the capable check <include/linux/security.h>.
1134  *
1135  * Return: Returns 0 if the capability is granted.
1136  */
1137 int security_capable(const struct cred *cred,
1138 		     struct user_namespace *ns,
1139 		     int cap,
1140 		     unsigned int opts)
1141 {
1142 	return call_int_hook(capable, cred, ns, cap, opts);
1143 }
1144 
1145 /**
1146  * security_quotactl() - Check if a quotactl() syscall is allowed for this fs
1147  * @cmds: commands
1148  * @type: type
1149  * @id: id
1150  * @sb: filesystem
1151  *
1152  * Check whether the quotactl syscall is allowed for this @sb.
1153  *
1154  * Return: Returns 0 if permission is granted.
1155  */
1156 int security_quotactl(int cmds, int type, int id, const struct super_block *sb)
1157 {
1158 	return call_int_hook(quotactl, cmds, type, id, sb);
1159 }
1160 
1161 /**
1162  * security_quota_on() - Check if QUOTAON is allowed for a dentry
1163  * @dentry: dentry
1164  *
1165  * Check whether QUOTAON is allowed for @dentry.
1166  *
1167  * Return: Returns 0 if permission is granted.
1168  */
1169 int security_quota_on(struct dentry *dentry)
1170 {
1171 	return call_int_hook(quota_on, dentry);
1172 }
1173 
1174 /**
1175  * security_syslog() - Check if accessing the kernel message ring is allowed
1176  * @type: SYSLOG_ACTION_* type
1177  *
1178  * Check permission before accessing the kernel message ring or changing
1179  * logging to the console.  See the syslog(2) manual page for an explanation of
1180  * the @type values.
1181  *
1182  * Return: Return 0 if permission is granted.
1183  */
1184 int security_syslog(int type)
1185 {
1186 	return call_int_hook(syslog, type);
1187 }
1188 
1189 /**
1190  * security_settime64() - Check if changing the system time is allowed
1191  * @ts: new time
1192  * @tz: timezone
1193  *
1194  * Check permission to change the system time, struct timespec64 is defined in
1195  * <include/linux/time64.h> and timezone is defined in <include/linux/time.h>.
1196  *
1197  * Return: Returns 0 if permission is granted.
1198  */
1199 int security_settime64(const struct timespec64 *ts, const struct timezone *tz)
1200 {
1201 	return call_int_hook(settime, ts, tz);
1202 }
1203 
1204 /**
1205  * security_vm_enough_memory_mm() - Check if allocating a new mem map is allowed
1206  * @mm: mm struct
1207  * @pages: number of pages
1208  *
1209  * Check permissions for allocating a new virtual mapping.  If all LSMs return
1210  * a positive value, __vm_enough_memory() will be called with cap_sys_admin
1211  * set. If at least one LSM returns 0 or negative, __vm_enough_memory() will be
1212  * called with cap_sys_admin cleared.
1213  *
1214  * Return: Returns 0 if permission is granted by the LSM infrastructure to the
1215  *         caller.
1216  */
1217 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
1218 {
1219 	struct lsm_static_call *scall;
1220 	int cap_sys_admin = 1;
1221 	int rc;
1222 
1223 	/*
1224 	 * The module will respond with 0 if it thinks the __vm_enough_memory()
1225 	 * call should be made with the cap_sys_admin set. If all of the modules
1226 	 * agree that it should be set it will. If any module thinks it should
1227 	 * not be set it won't.
1228 	 */
1229 	lsm_for_each_hook(scall, vm_enough_memory) {
1230 		rc = scall->hl->hook.vm_enough_memory(mm, pages);
1231 		if (rc < 0) {
1232 			cap_sys_admin = 0;
1233 			break;
1234 		}
1235 	}
1236 	return __vm_enough_memory(mm, pages, cap_sys_admin);
1237 }
1238 
1239 /**
1240  * security_bprm_creds_for_exec() - Prepare the credentials for exec()
1241  * @bprm: binary program information
1242  *
1243  * If the setup in prepare_exec_creds did not setup @bprm->cred->security
1244  * properly for executing @bprm->file, update the LSM's portion of
1245  * @bprm->cred->security to be what commit_creds needs to install for the new
1246  * program.  This hook may also optionally check permissions (e.g. for
1247  * transitions between security domains).  The hook must set @bprm->secureexec
1248  * to 1 if AT_SECURE should be set to request libc enable secure mode.  @bprm
1249  * contains the linux_binprm structure.
1250  *
1251  * If execveat(2) is called with the AT_EXECVE_CHECK flag, bprm->is_check is
1252  * set.  The result must be the same as without this flag even if the execution
1253  * will never really happen and @bprm will always be dropped.
1254  *
1255  * This hook must not change current->cred, only @bprm->cred.
1256  *
1257  * Return: Returns 0 if the hook is successful and permission is granted.
1258  */
1259 int security_bprm_creds_for_exec(struct linux_binprm *bprm)
1260 {
1261 	return call_int_hook(bprm_creds_for_exec, bprm);
1262 }
1263 
1264 /**
1265  * security_bprm_creds_from_file() - Update linux_binprm creds based on file
1266  * @bprm: binary program information
1267  * @file: associated file
1268  *
1269  * If @file is setpcap, suid, sgid or otherwise marked to change privilege upon
1270  * exec, update @bprm->cred to reflect that change. This is called after
1271  * finding the binary that will be executed without an interpreter.  This
1272  * ensures that the credentials will not be derived from a script that the
1273  * binary will need to reopen, which when reopend may end up being a completely
1274  * different file.  This hook may also optionally check permissions (e.g. for
1275  * transitions between security domains).  The hook must set @bprm->secureexec
1276  * to 1 if AT_SECURE should be set to request libc enable secure mode.  The
1277  * hook must add to @bprm->per_clear any personality flags that should be
1278  * cleared from current->personality.  @bprm contains the linux_binprm
1279  * structure.
1280  *
1281  * Return: Returns 0 if the hook is successful and permission is granted.
1282  */
1283 int security_bprm_creds_from_file(struct linux_binprm *bprm, const struct file *file)
1284 {
1285 	return call_int_hook(bprm_creds_from_file, bprm, file);
1286 }
1287 
1288 /**
1289  * security_bprm_check() - Mediate binary handler search
1290  * @bprm: binary program information
1291  *
1292  * This hook mediates the point when a search for a binary handler will begin.
1293  * It allows a check against the @bprm->cred->security value which was set in
1294  * the preceding creds_for_exec call.  The argv list and envp list are reliably
1295  * available in @bprm.  This hook may be called multiple times during a single
1296  * execve.  @bprm contains the linux_binprm structure.
1297  *
1298  * Return: Returns 0 if the hook is successful and permission is granted.
1299  */
1300 int security_bprm_check(struct linux_binprm *bprm)
1301 {
1302 	return call_int_hook(bprm_check_security, bprm);
1303 }
1304 
1305 /**
1306  * security_bprm_committing_creds() - Install creds for a process during exec()
1307  * @bprm: binary program information
1308  *
1309  * Prepare to install the new security attributes of a process being
1310  * transformed by an execve operation, based on the old credentials pointed to
1311  * by @current->cred and the information set in @bprm->cred by the
1312  * bprm_creds_for_exec hook.  @bprm points to the linux_binprm structure.  This
1313  * hook is a good place to perform state changes on the process such as closing
1314  * open file descriptors to which access will no longer be granted when the
1315  * attributes are changed.  This is called immediately before commit_creds().
1316  */
1317 void security_bprm_committing_creds(const struct linux_binprm *bprm)
1318 {
1319 	call_void_hook(bprm_committing_creds, bprm);
1320 }
1321 
1322 /**
1323  * security_bprm_committed_creds() - Tidy up after cred install during exec()
1324  * @bprm: binary program information
1325  *
1326  * Tidy up after the installation of the new security attributes of a process
1327  * being transformed by an execve operation.  The new credentials have, by this
1328  * point, been set to @current->cred.  @bprm points to the linux_binprm
1329  * structure.  This hook is a good place to perform state changes on the
1330  * process such as clearing out non-inheritable signal state.  This is called
1331  * immediately after commit_creds().
1332  */
1333 void security_bprm_committed_creds(const struct linux_binprm *bprm)
1334 {
1335 	call_void_hook(bprm_committed_creds, bprm);
1336 }
1337 
1338 /**
1339  * security_fs_context_submount() - Initialise fc->security
1340  * @fc: new filesystem context
1341  * @reference: dentry reference for submount/remount
1342  *
1343  * Fill out the ->security field for a new fs_context.
1344  *
1345  * Return: Returns 0 on success or negative error code on failure.
1346  */
1347 int security_fs_context_submount(struct fs_context *fc, struct super_block *reference)
1348 {
1349 	return call_int_hook(fs_context_submount, fc, reference);
1350 }
1351 
1352 /**
1353  * security_fs_context_dup() - Duplicate a fs_context LSM blob
1354  * @fc: destination filesystem context
1355  * @src_fc: source filesystem context
1356  *
1357  * Allocate and attach a security structure to sc->security.  This pointer is
1358  * initialised to NULL by the caller.  @fc indicates the new filesystem context.
1359  * @src_fc indicates the original filesystem context.
1360  *
1361  * Return: Returns 0 on success or a negative error code on failure.
1362  */
1363 int security_fs_context_dup(struct fs_context *fc, struct fs_context *src_fc)
1364 {
1365 	return call_int_hook(fs_context_dup, fc, src_fc);
1366 }
1367 
1368 /**
1369  * security_fs_context_parse_param() - Configure a filesystem context
1370  * @fc: filesystem context
1371  * @param: filesystem parameter
1372  *
1373  * Userspace provided a parameter to configure a superblock.  The LSM can
1374  * consume the parameter or return it to the caller for use elsewhere.
1375  *
1376  * Return: If the parameter is used by the LSM it should return 0, if it is
1377  *         returned to the caller -ENOPARAM is returned, otherwise a negative
1378  *         error code is returned.
1379  */
1380 int security_fs_context_parse_param(struct fs_context *fc,
1381 				    struct fs_parameter *param)
1382 {
1383 	struct lsm_static_call *scall;
1384 	int trc;
1385 	int rc = -ENOPARAM;
1386 
1387 	lsm_for_each_hook(scall, fs_context_parse_param) {
1388 		trc = scall->hl->hook.fs_context_parse_param(fc, param);
1389 		if (trc == 0)
1390 			rc = 0;
1391 		else if (trc != -ENOPARAM)
1392 			return trc;
1393 	}
1394 	return rc;
1395 }
1396 
1397 /**
1398  * security_sb_alloc() - Allocate a super_block LSM blob
1399  * @sb: filesystem superblock
1400  *
1401  * Allocate and attach a security structure to the sb->s_security field.  The
1402  * s_security field is initialized to NULL when the structure is allocated.
1403  * @sb contains the super_block structure to be modified.
1404  *
1405  * Return: Returns 0 if operation was successful.
1406  */
1407 int security_sb_alloc(struct super_block *sb)
1408 {
1409 	int rc = lsm_superblock_alloc(sb);
1410 
1411 	if (unlikely(rc))
1412 		return rc;
1413 	rc = call_int_hook(sb_alloc_security, sb);
1414 	if (unlikely(rc))
1415 		security_sb_free(sb);
1416 	return rc;
1417 }
1418 
1419 /**
1420  * security_sb_delete() - Release super_block LSM associated objects
1421  * @sb: filesystem superblock
1422  *
1423  * Release objects tied to a superblock (e.g. inodes).  @sb contains the
1424  * super_block structure being released.
1425  */
1426 void security_sb_delete(struct super_block *sb)
1427 {
1428 	call_void_hook(sb_delete, sb);
1429 }
1430 
1431 /**
1432  * security_sb_free() - Free a super_block LSM blob
1433  * @sb: filesystem superblock
1434  *
1435  * Deallocate and clear the sb->s_security field.  @sb contains the super_block
1436  * structure to be modified.
1437  */
1438 void security_sb_free(struct super_block *sb)
1439 {
1440 	call_void_hook(sb_free_security, sb);
1441 	kfree(sb->s_security);
1442 	sb->s_security = NULL;
1443 }
1444 
1445 /**
1446  * security_free_mnt_opts() - Free memory associated with mount options
1447  * @mnt_opts: LSM processed mount options
1448  *
1449  * Free memory associated with @mnt_ops.
1450  */
1451 void security_free_mnt_opts(void **mnt_opts)
1452 {
1453 	if (!*mnt_opts)
1454 		return;
1455 	call_void_hook(sb_free_mnt_opts, *mnt_opts);
1456 	*mnt_opts = NULL;
1457 }
1458 EXPORT_SYMBOL(security_free_mnt_opts);
1459 
1460 /**
1461  * security_sb_eat_lsm_opts() - Consume LSM mount options
1462  * @options: mount options
1463  * @mnt_opts: LSM processed mount options
1464  *
1465  * Eat (scan @options) and save them in @mnt_opts.
1466  *
1467  * Return: Returns 0 on success, negative values on failure.
1468  */
1469 int security_sb_eat_lsm_opts(char *options, void **mnt_opts)
1470 {
1471 	return call_int_hook(sb_eat_lsm_opts, options, mnt_opts);
1472 }
1473 EXPORT_SYMBOL(security_sb_eat_lsm_opts);
1474 
1475 /**
1476  * security_sb_mnt_opts_compat() - Check if new mount options are allowed
1477  * @sb: filesystem superblock
1478  * @mnt_opts: new mount options
1479  *
1480  * Determine if the new mount options in @mnt_opts are allowed given the
1481  * existing mounted filesystem at @sb.  @sb superblock being compared.
1482  *
1483  * Return: Returns 0 if options are compatible.
1484  */
1485 int security_sb_mnt_opts_compat(struct super_block *sb,
1486 				void *mnt_opts)
1487 {
1488 	return call_int_hook(sb_mnt_opts_compat, sb, mnt_opts);
1489 }
1490 EXPORT_SYMBOL(security_sb_mnt_opts_compat);
1491 
1492 /**
1493  * security_sb_remount() - Verify no incompatible mount changes during remount
1494  * @sb: filesystem superblock
1495  * @mnt_opts: (re)mount options
1496  *
1497  * Extracts security system specific mount options and verifies no changes are
1498  * being made to those options.
1499  *
1500  * Return: Returns 0 if permission is granted.
1501  */
1502 int security_sb_remount(struct super_block *sb,
1503 			void *mnt_opts)
1504 {
1505 	return call_int_hook(sb_remount, sb, mnt_opts);
1506 }
1507 EXPORT_SYMBOL(security_sb_remount);
1508 
1509 /**
1510  * security_sb_kern_mount() - Check if a kernel mount is allowed
1511  * @sb: filesystem superblock
1512  *
1513  * Mount this @sb if allowed by permissions.
1514  *
1515  * Return: Returns 0 if permission is granted.
1516  */
1517 int security_sb_kern_mount(const struct super_block *sb)
1518 {
1519 	return call_int_hook(sb_kern_mount, sb);
1520 }
1521 
1522 /**
1523  * security_sb_show_options() - Output the mount options for a superblock
1524  * @m: output file
1525  * @sb: filesystem superblock
1526  *
1527  * Show (print on @m) mount options for this @sb.
1528  *
1529  * Return: Returns 0 on success, negative values on failure.
1530  */
1531 int security_sb_show_options(struct seq_file *m, struct super_block *sb)
1532 {
1533 	return call_int_hook(sb_show_options, m, sb);
1534 }
1535 
1536 /**
1537  * security_sb_statfs() - Check if accessing fs stats is allowed
1538  * @dentry: superblock handle
1539  *
1540  * Check permission before obtaining filesystem statistics for the @mnt
1541  * mountpoint.  @dentry is a handle on the superblock for the filesystem.
1542  *
1543  * Return: Returns 0 if permission is granted.
1544  */
1545 int security_sb_statfs(struct dentry *dentry)
1546 {
1547 	return call_int_hook(sb_statfs, dentry);
1548 }
1549 
1550 /**
1551  * security_sb_mount() - Check permission for mounting a filesystem
1552  * @dev_name: filesystem backing device
1553  * @path: mount point
1554  * @type: filesystem type
1555  * @flags: mount flags
1556  * @data: filesystem specific data
1557  *
1558  * Check permission before an object specified by @dev_name is mounted on the
1559  * mount point named by @nd.  For an ordinary mount, @dev_name identifies a
1560  * device if the file system type requires a device.  For a remount
1561  * (@flags & MS_REMOUNT), @dev_name is irrelevant.  For a loopback/bind mount
1562  * (@flags & MS_BIND), @dev_name identifies the	pathname of the object being
1563  * mounted.
1564  *
1565  * Return: Returns 0 if permission is granted.
1566  */
1567 int security_sb_mount(const char *dev_name, const struct path *path,
1568 		      const char *type, unsigned long flags, void *data)
1569 {
1570 	return call_int_hook(sb_mount, dev_name, path, type, flags, data);
1571 }
1572 
1573 /**
1574  * security_sb_umount() - Check permission for unmounting a filesystem
1575  * @mnt: mounted filesystem
1576  * @flags: unmount flags
1577  *
1578  * Check permission before the @mnt file system is unmounted.
1579  *
1580  * Return: Returns 0 if permission is granted.
1581  */
1582 int security_sb_umount(struct vfsmount *mnt, int flags)
1583 {
1584 	return call_int_hook(sb_umount, mnt, flags);
1585 }
1586 
1587 /**
1588  * security_sb_pivotroot() - Check permissions for pivoting the rootfs
1589  * @old_path: new location for current rootfs
1590  * @new_path: location of the new rootfs
1591  *
1592  * Check permission before pivoting the root filesystem.
1593  *
1594  * Return: Returns 0 if permission is granted.
1595  */
1596 int security_sb_pivotroot(const struct path *old_path,
1597 			  const struct path *new_path)
1598 {
1599 	return call_int_hook(sb_pivotroot, old_path, new_path);
1600 }
1601 
1602 /**
1603  * security_sb_set_mnt_opts() - Set the mount options for a filesystem
1604  * @sb: filesystem superblock
1605  * @mnt_opts: binary mount options
1606  * @kern_flags: kernel flags (in)
1607  * @set_kern_flags: kernel flags (out)
1608  *
1609  * Set the security relevant mount options used for a superblock.
1610  *
1611  * Return: Returns 0 on success, error on failure.
1612  */
1613 int security_sb_set_mnt_opts(struct super_block *sb,
1614 			     void *mnt_opts,
1615 			     unsigned long kern_flags,
1616 			     unsigned long *set_kern_flags)
1617 {
1618 	struct lsm_static_call *scall;
1619 	int rc = mnt_opts ? -EOPNOTSUPP : LSM_RET_DEFAULT(sb_set_mnt_opts);
1620 
1621 	lsm_for_each_hook(scall, sb_set_mnt_opts) {
1622 		rc = scall->hl->hook.sb_set_mnt_opts(sb, mnt_opts, kern_flags,
1623 					      set_kern_flags);
1624 		if (rc != LSM_RET_DEFAULT(sb_set_mnt_opts))
1625 			break;
1626 	}
1627 	return rc;
1628 }
1629 EXPORT_SYMBOL(security_sb_set_mnt_opts);
1630 
1631 /**
1632  * security_sb_clone_mnt_opts() - Duplicate superblock mount options
1633  * @oldsb: source superblock
1634  * @newsb: destination superblock
1635  * @kern_flags: kernel flags (in)
1636  * @set_kern_flags: kernel flags (out)
1637  *
1638  * Copy all security options from a given superblock to another.
1639  *
1640  * Return: Returns 0 on success, error on failure.
1641  */
1642 int security_sb_clone_mnt_opts(const struct super_block *oldsb,
1643 			       struct super_block *newsb,
1644 			       unsigned long kern_flags,
1645 			       unsigned long *set_kern_flags)
1646 {
1647 	return call_int_hook(sb_clone_mnt_opts, oldsb, newsb,
1648 			     kern_flags, set_kern_flags);
1649 }
1650 EXPORT_SYMBOL(security_sb_clone_mnt_opts);
1651 
1652 /**
1653  * security_move_mount() - Check permissions for moving a mount
1654  * @from_path: source mount point
1655  * @to_path: destination mount point
1656  *
1657  * Check permission before a mount is moved.
1658  *
1659  * Return: Returns 0 if permission is granted.
1660  */
1661 int security_move_mount(const struct path *from_path,
1662 			const struct path *to_path)
1663 {
1664 	return call_int_hook(move_mount, from_path, to_path);
1665 }
1666 
1667 /**
1668  * security_path_notify() - Check if setting a watch is allowed
1669  * @path: file path
1670  * @mask: event mask
1671  * @obj_type: file path type
1672  *
1673  * Check permissions before setting a watch on events as defined by @mask, on
1674  * an object at @path, whose type is defined by @obj_type.
1675  *
1676  * Return: Returns 0 if permission is granted.
1677  */
1678 int security_path_notify(const struct path *path, u64 mask,
1679 			 unsigned int obj_type)
1680 {
1681 	return call_int_hook(path_notify, path, mask, obj_type);
1682 }
1683 
1684 /**
1685  * security_inode_alloc() - Allocate an inode LSM blob
1686  * @inode: the inode
1687  * @gfp: allocation flags
1688  *
1689  * Allocate and attach a security structure to @inode->i_security.  The
1690  * i_security field is initialized to NULL when the inode structure is
1691  * allocated.
1692  *
1693  * Return: Return 0 if operation was successful.
1694  */
1695 int security_inode_alloc(struct inode *inode, gfp_t gfp)
1696 {
1697 	int rc = lsm_inode_alloc(inode, gfp);
1698 
1699 	if (unlikely(rc))
1700 		return rc;
1701 	rc = call_int_hook(inode_alloc_security, inode);
1702 	if (unlikely(rc))
1703 		security_inode_free(inode);
1704 	return rc;
1705 }
1706 
1707 static void inode_free_by_rcu(struct rcu_head *head)
1708 {
1709 	/* The rcu head is at the start of the inode blob */
1710 	call_void_hook(inode_free_security_rcu, head);
1711 	kmem_cache_free(lsm_inode_cache, head);
1712 }
1713 
1714 /**
1715  * security_inode_free() - Free an inode's LSM blob
1716  * @inode: the inode
1717  *
1718  * Release any LSM resources associated with @inode, although due to the
1719  * inode's RCU protections it is possible that the resources will not be
1720  * fully released until after the current RCU grace period has elapsed.
1721  *
1722  * It is important for LSMs to note that despite being present in a call to
1723  * security_inode_free(), @inode may still be referenced in a VFS path walk
1724  * and calls to security_inode_permission() may be made during, or after,
1725  * a call to security_inode_free().  For this reason the inode->i_security
1726  * field is released via a call_rcu() callback and any LSMs which need to
1727  * retain inode state for use in security_inode_permission() should only
1728  * release that state in the inode_free_security_rcu() LSM hook callback.
1729  */
1730 void security_inode_free(struct inode *inode)
1731 {
1732 	call_void_hook(inode_free_security, inode);
1733 	if (!inode->i_security)
1734 		return;
1735 	call_rcu((struct rcu_head *)inode->i_security, inode_free_by_rcu);
1736 }
1737 
1738 /**
1739  * security_dentry_init_security() - Perform dentry initialization
1740  * @dentry: the dentry to initialize
1741  * @mode: mode used to determine resource type
1742  * @name: name of the last path component
1743  * @xattr_name: name of the security/LSM xattr
1744  * @ctx: pointer to the resulting LSM context
1745  * @ctxlen: length of @ctx
1746  *
1747  * Compute a context for a dentry as the inode is not yet available since NFSv4
1748  * has no label backed by an EA anyway.  It is important to note that
1749  * @xattr_name does not need to be free'd by the caller, it is a static string.
1750  *
1751  * Return: Returns 0 on success, negative values on failure.
1752  */
1753 int security_dentry_init_security(struct dentry *dentry, int mode,
1754 				  const struct qstr *name,
1755 				  const char **xattr_name, void **ctx,
1756 				  u32 *ctxlen)
1757 {
1758 	return call_int_hook(dentry_init_security, dentry, mode, name,
1759 			     xattr_name, ctx, ctxlen);
1760 }
1761 EXPORT_SYMBOL(security_dentry_init_security);
1762 
1763 /**
1764  * security_dentry_create_files_as() - Perform dentry initialization
1765  * @dentry: the dentry to initialize
1766  * @mode: mode used to determine resource type
1767  * @name: name of the last path component
1768  * @old: creds to use for LSM context calculations
1769  * @new: creds to modify
1770  *
1771  * Compute a context for a dentry as the inode is not yet available and set
1772  * that context in passed in creds so that new files are created using that
1773  * context. Context is calculated using the passed in creds and not the creds
1774  * of the caller.
1775  *
1776  * Return: Returns 0 on success, error on failure.
1777  */
1778 int security_dentry_create_files_as(struct dentry *dentry, int mode,
1779 				    struct qstr *name,
1780 				    const struct cred *old, struct cred *new)
1781 {
1782 	return call_int_hook(dentry_create_files_as, dentry, mode,
1783 			     name, old, new);
1784 }
1785 EXPORT_SYMBOL(security_dentry_create_files_as);
1786 
1787 /**
1788  * security_inode_init_security() - Initialize an inode's LSM context
1789  * @inode: the inode
1790  * @dir: parent directory
1791  * @qstr: last component of the pathname
1792  * @initxattrs: callback function to write xattrs
1793  * @fs_data: filesystem specific data
1794  *
1795  * Obtain the security attribute name suffix and value to set on a newly
1796  * created inode and set up the incore security field for the new inode.  This
1797  * hook is called by the fs code as part of the inode creation transaction and
1798  * provides for atomic labeling of the inode, unlike the post_create/mkdir/...
1799  * hooks called by the VFS.
1800  *
1801  * The hook function is expected to populate the xattrs array, by calling
1802  * lsm_get_xattr_slot() to retrieve the slots reserved by the security module
1803  * with the lbs_xattr_count field of the lsm_blob_sizes structure.  For each
1804  * slot, the hook function should set ->name to the attribute name suffix
1805  * (e.g. selinux), to allocate ->value (will be freed by the caller) and set it
1806  * to the attribute value, to set ->value_len to the length of the value.  If
1807  * the security module does not use security attributes or does not wish to put
1808  * a security attribute on this particular inode, then it should return
1809  * -EOPNOTSUPP to skip this processing.
1810  *
1811  * Return: Returns 0 if the LSM successfully initialized all of the inode
1812  *         security attributes that are required, negative values otherwise.
1813  */
1814 int security_inode_init_security(struct inode *inode, struct inode *dir,
1815 				 const struct qstr *qstr,
1816 				 const initxattrs initxattrs, void *fs_data)
1817 {
1818 	struct lsm_static_call *scall;
1819 	struct xattr *new_xattrs = NULL;
1820 	int ret = -EOPNOTSUPP, xattr_count = 0;
1821 
1822 	if (unlikely(IS_PRIVATE(inode)))
1823 		return 0;
1824 
1825 	if (!blob_sizes.lbs_xattr_count)
1826 		return 0;
1827 
1828 	if (initxattrs) {
1829 		/* Allocate +1 as terminator. */
1830 		new_xattrs = kcalloc(blob_sizes.lbs_xattr_count + 1,
1831 				     sizeof(*new_xattrs), GFP_NOFS);
1832 		if (!new_xattrs)
1833 			return -ENOMEM;
1834 	}
1835 
1836 	lsm_for_each_hook(scall, inode_init_security) {
1837 		ret = scall->hl->hook.inode_init_security(inode, dir, qstr, new_xattrs,
1838 						  &xattr_count);
1839 		if (ret && ret != -EOPNOTSUPP)
1840 			goto out;
1841 		/*
1842 		 * As documented in lsm_hooks.h, -EOPNOTSUPP in this context
1843 		 * means that the LSM is not willing to provide an xattr, not
1844 		 * that it wants to signal an error. Thus, continue to invoke
1845 		 * the remaining LSMs.
1846 		 */
1847 	}
1848 
1849 	/* If initxattrs() is NULL, xattr_count is zero, skip the call. */
1850 	if (!xattr_count)
1851 		goto out;
1852 
1853 	ret = initxattrs(inode, new_xattrs, fs_data);
1854 out:
1855 	for (; xattr_count > 0; xattr_count--)
1856 		kfree(new_xattrs[xattr_count - 1].value);
1857 	kfree(new_xattrs);
1858 	return (ret == -EOPNOTSUPP) ? 0 : ret;
1859 }
1860 EXPORT_SYMBOL(security_inode_init_security);
1861 
1862 /**
1863  * security_inode_init_security_anon() - Initialize an anonymous inode
1864  * @inode: the inode
1865  * @name: the anonymous inode class
1866  * @context_inode: an optional related inode
1867  *
1868  * Set up the incore security field for the new anonymous inode and return
1869  * whether the inode creation is permitted by the security module or not.
1870  *
1871  * Return: Returns 0 on success, -EACCES if the security module denies the
1872  * creation of this inode, or another -errno upon other errors.
1873  */
1874 int security_inode_init_security_anon(struct inode *inode,
1875 				      const struct qstr *name,
1876 				      const struct inode *context_inode)
1877 {
1878 	return call_int_hook(inode_init_security_anon, inode, name,
1879 			     context_inode);
1880 }
1881 
1882 #ifdef CONFIG_SECURITY_PATH
1883 /**
1884  * security_path_mknod() - Check if creating a special file is allowed
1885  * @dir: parent directory
1886  * @dentry: new file
1887  * @mode: new file mode
1888  * @dev: device number
1889  *
1890  * Check permissions when creating a file. Note that this hook is called even
1891  * if mknod operation is being done for a regular file.
1892  *
1893  * Return: Returns 0 if permission is granted.
1894  */
1895 int security_path_mknod(const struct path *dir, struct dentry *dentry,
1896 			umode_t mode, unsigned int dev)
1897 {
1898 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1899 		return 0;
1900 	return call_int_hook(path_mknod, dir, dentry, mode, dev);
1901 }
1902 EXPORT_SYMBOL(security_path_mknod);
1903 
1904 /**
1905  * security_path_post_mknod() - Update inode security after reg file creation
1906  * @idmap: idmap of the mount
1907  * @dentry: new file
1908  *
1909  * Update inode security field after a regular file has been created.
1910  */
1911 void security_path_post_mknod(struct mnt_idmap *idmap, struct dentry *dentry)
1912 {
1913 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1914 		return;
1915 	call_void_hook(path_post_mknod, idmap, dentry);
1916 }
1917 
1918 /**
1919  * security_path_mkdir() - Check if creating a new directory is allowed
1920  * @dir: parent directory
1921  * @dentry: new directory
1922  * @mode: new directory mode
1923  *
1924  * Check permissions to create a new directory in the existing directory.
1925  *
1926  * Return: Returns 0 if permission is granted.
1927  */
1928 int security_path_mkdir(const struct path *dir, struct dentry *dentry,
1929 			umode_t mode)
1930 {
1931 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1932 		return 0;
1933 	return call_int_hook(path_mkdir, dir, dentry, mode);
1934 }
1935 EXPORT_SYMBOL(security_path_mkdir);
1936 
1937 /**
1938  * security_path_rmdir() - Check if removing a directory is allowed
1939  * @dir: parent directory
1940  * @dentry: directory to remove
1941  *
1942  * Check the permission to remove a directory.
1943  *
1944  * Return: Returns 0 if permission is granted.
1945  */
1946 int security_path_rmdir(const struct path *dir, struct dentry *dentry)
1947 {
1948 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1949 		return 0;
1950 	return call_int_hook(path_rmdir, dir, dentry);
1951 }
1952 
1953 /**
1954  * security_path_unlink() - Check if removing a hard link is allowed
1955  * @dir: parent directory
1956  * @dentry: file
1957  *
1958  * Check the permission to remove a hard link to a file.
1959  *
1960  * Return: Returns 0 if permission is granted.
1961  */
1962 int security_path_unlink(const struct path *dir, struct dentry *dentry)
1963 {
1964 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1965 		return 0;
1966 	return call_int_hook(path_unlink, dir, dentry);
1967 }
1968 EXPORT_SYMBOL(security_path_unlink);
1969 
1970 /**
1971  * security_path_symlink() - Check if creating a symbolic link is allowed
1972  * @dir: parent directory
1973  * @dentry: symbolic link
1974  * @old_name: file pathname
1975  *
1976  * Check the permission to create a symbolic link to a file.
1977  *
1978  * Return: Returns 0 if permission is granted.
1979  */
1980 int security_path_symlink(const struct path *dir, struct dentry *dentry,
1981 			  const char *old_name)
1982 {
1983 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1984 		return 0;
1985 	return call_int_hook(path_symlink, dir, dentry, old_name);
1986 }
1987 
1988 /**
1989  * security_path_link - Check if creating a hard link is allowed
1990  * @old_dentry: existing file
1991  * @new_dir: new parent directory
1992  * @new_dentry: new link
1993  *
1994  * Check permission before creating a new hard link to a file.
1995  *
1996  * Return: Returns 0 if permission is granted.
1997  */
1998 int security_path_link(struct dentry *old_dentry, const struct path *new_dir,
1999 		       struct dentry *new_dentry)
2000 {
2001 	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
2002 		return 0;
2003 	return call_int_hook(path_link, old_dentry, new_dir, new_dentry);
2004 }
2005 
2006 /**
2007  * security_path_rename() - Check if renaming a file is allowed
2008  * @old_dir: parent directory of the old file
2009  * @old_dentry: the old file
2010  * @new_dir: parent directory of the new file
2011  * @new_dentry: the new file
2012  * @flags: flags
2013  *
2014  * Check for permission to rename a file or directory.
2015  *
2016  * Return: Returns 0 if permission is granted.
2017  */
2018 int security_path_rename(const struct path *old_dir, struct dentry *old_dentry,
2019 			 const struct path *new_dir, struct dentry *new_dentry,
2020 			 unsigned int flags)
2021 {
2022 	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
2023 		     (d_is_positive(new_dentry) &&
2024 		      IS_PRIVATE(d_backing_inode(new_dentry)))))
2025 		return 0;
2026 
2027 	return call_int_hook(path_rename, old_dir, old_dentry, new_dir,
2028 			     new_dentry, flags);
2029 }
2030 EXPORT_SYMBOL(security_path_rename);
2031 
2032 /**
2033  * security_path_truncate() - Check if truncating a file is allowed
2034  * @path: file
2035  *
2036  * Check permission before truncating the file indicated by path.  Note that
2037  * truncation permissions may also be checked based on already opened files,
2038  * using the security_file_truncate() hook.
2039  *
2040  * Return: Returns 0 if permission is granted.
2041  */
2042 int security_path_truncate(const struct path *path)
2043 {
2044 	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
2045 		return 0;
2046 	return call_int_hook(path_truncate, path);
2047 }
2048 
2049 /**
2050  * security_path_chmod() - Check if changing the file's mode is allowed
2051  * @path: file
2052  * @mode: new mode
2053  *
2054  * Check for permission to change a mode of the file @path. The new mode is
2055  * specified in @mode which is a bitmask of constants from
2056  * <include/uapi/linux/stat.h>.
2057  *
2058  * Return: Returns 0 if permission is granted.
2059  */
2060 int security_path_chmod(const struct path *path, umode_t mode)
2061 {
2062 	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
2063 		return 0;
2064 	return call_int_hook(path_chmod, path, mode);
2065 }
2066 
2067 /**
2068  * security_path_chown() - Check if changing the file's owner/group is allowed
2069  * @path: file
2070  * @uid: file owner
2071  * @gid: file group
2072  *
2073  * Check for permission to change owner/group of a file or directory.
2074  *
2075  * Return: Returns 0 if permission is granted.
2076  */
2077 int security_path_chown(const struct path *path, kuid_t uid, kgid_t gid)
2078 {
2079 	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
2080 		return 0;
2081 	return call_int_hook(path_chown, path, uid, gid);
2082 }
2083 
2084 /**
2085  * security_path_chroot() - Check if changing the root directory is allowed
2086  * @path: directory
2087  *
2088  * Check for permission to change root directory.
2089  *
2090  * Return: Returns 0 if permission is granted.
2091  */
2092 int security_path_chroot(const struct path *path)
2093 {
2094 	return call_int_hook(path_chroot, path);
2095 }
2096 #endif /* CONFIG_SECURITY_PATH */
2097 
2098 /**
2099  * security_inode_create() - Check if creating a file is allowed
2100  * @dir: the parent directory
2101  * @dentry: the file being created
2102  * @mode: requested file mode
2103  *
2104  * Check permission to create a regular file.
2105  *
2106  * Return: Returns 0 if permission is granted.
2107  */
2108 int security_inode_create(struct inode *dir, struct dentry *dentry,
2109 			  umode_t mode)
2110 {
2111 	if (unlikely(IS_PRIVATE(dir)))
2112 		return 0;
2113 	return call_int_hook(inode_create, dir, dentry, mode);
2114 }
2115 EXPORT_SYMBOL_GPL(security_inode_create);
2116 
2117 /**
2118  * security_inode_post_create_tmpfile() - Update inode security of new tmpfile
2119  * @idmap: idmap of the mount
2120  * @inode: inode of the new tmpfile
2121  *
2122  * Update inode security data after a tmpfile has been created.
2123  */
2124 void security_inode_post_create_tmpfile(struct mnt_idmap *idmap,
2125 					struct inode *inode)
2126 {
2127 	if (unlikely(IS_PRIVATE(inode)))
2128 		return;
2129 	call_void_hook(inode_post_create_tmpfile, idmap, inode);
2130 }
2131 
2132 /**
2133  * security_inode_link() - Check if creating a hard link is allowed
2134  * @old_dentry: existing file
2135  * @dir: new parent directory
2136  * @new_dentry: new link
2137  *
2138  * Check permission before creating a new hard link to a file.
2139  *
2140  * Return: Returns 0 if permission is granted.
2141  */
2142 int security_inode_link(struct dentry *old_dentry, struct inode *dir,
2143 			struct dentry *new_dentry)
2144 {
2145 	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
2146 		return 0;
2147 	return call_int_hook(inode_link, old_dentry, dir, new_dentry);
2148 }
2149 
2150 /**
2151  * security_inode_unlink() - Check if removing a hard link is allowed
2152  * @dir: parent directory
2153  * @dentry: file
2154  *
2155  * Check the permission to remove a hard link to a file.
2156  *
2157  * Return: Returns 0 if permission is granted.
2158  */
2159 int security_inode_unlink(struct inode *dir, struct dentry *dentry)
2160 {
2161 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2162 		return 0;
2163 	return call_int_hook(inode_unlink, dir, dentry);
2164 }
2165 
2166 /**
2167  * security_inode_symlink() - Check if creating a symbolic link is allowed
2168  * @dir: parent directory
2169  * @dentry: symbolic link
2170  * @old_name: existing filename
2171  *
2172  * Check the permission to create a symbolic link to a file.
2173  *
2174  * Return: Returns 0 if permission is granted.
2175  */
2176 int security_inode_symlink(struct inode *dir, struct dentry *dentry,
2177 			   const char *old_name)
2178 {
2179 	if (unlikely(IS_PRIVATE(dir)))
2180 		return 0;
2181 	return call_int_hook(inode_symlink, dir, dentry, old_name);
2182 }
2183 
2184 /**
2185  * security_inode_mkdir() - Check if creation a new director is allowed
2186  * @dir: parent directory
2187  * @dentry: new directory
2188  * @mode: new directory mode
2189  *
2190  * Check permissions to create a new directory in the existing directory
2191  * associated with inode structure @dir.
2192  *
2193  * Return: Returns 0 if permission is granted.
2194  */
2195 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2196 {
2197 	if (unlikely(IS_PRIVATE(dir)))
2198 		return 0;
2199 	return call_int_hook(inode_mkdir, dir, dentry, mode);
2200 }
2201 EXPORT_SYMBOL_GPL(security_inode_mkdir);
2202 
2203 /**
2204  * security_inode_rmdir() - Check if removing a directory is allowed
2205  * @dir: parent directory
2206  * @dentry: directory to be removed
2207  *
2208  * Check the permission to remove a directory.
2209  *
2210  * Return: Returns 0 if permission is granted.
2211  */
2212 int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
2213 {
2214 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2215 		return 0;
2216 	return call_int_hook(inode_rmdir, dir, dentry);
2217 }
2218 
2219 /**
2220  * security_inode_mknod() - Check if creating a special file is allowed
2221  * @dir: parent directory
2222  * @dentry: new file
2223  * @mode: new file mode
2224  * @dev: device number
2225  *
2226  * Check permissions when creating a special file (or a socket or a fifo file
2227  * created via the mknod system call).  Note that if mknod operation is being
2228  * done for a regular file, then the create hook will be called and not this
2229  * hook.
2230  *
2231  * Return: Returns 0 if permission is granted.
2232  */
2233 int security_inode_mknod(struct inode *dir, struct dentry *dentry,
2234 			 umode_t mode, dev_t dev)
2235 {
2236 	if (unlikely(IS_PRIVATE(dir)))
2237 		return 0;
2238 	return call_int_hook(inode_mknod, dir, dentry, mode, dev);
2239 }
2240 
2241 /**
2242  * security_inode_rename() - Check if renaming a file is allowed
2243  * @old_dir: parent directory of the old file
2244  * @old_dentry: the old file
2245  * @new_dir: parent directory of the new file
2246  * @new_dentry: the new file
2247  * @flags: flags
2248  *
2249  * Check for permission to rename a file or directory.
2250  *
2251  * Return: Returns 0 if permission is granted.
2252  */
2253 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
2254 			  struct inode *new_dir, struct dentry *new_dentry,
2255 			  unsigned int flags)
2256 {
2257 	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
2258 		     (d_is_positive(new_dentry) &&
2259 		      IS_PRIVATE(d_backing_inode(new_dentry)))))
2260 		return 0;
2261 
2262 	if (flags & RENAME_EXCHANGE) {
2263 		int err = call_int_hook(inode_rename, new_dir, new_dentry,
2264 					old_dir, old_dentry);
2265 		if (err)
2266 			return err;
2267 	}
2268 
2269 	return call_int_hook(inode_rename, old_dir, old_dentry,
2270 			     new_dir, new_dentry);
2271 }
2272 
2273 /**
2274  * security_inode_readlink() - Check if reading a symbolic link is allowed
2275  * @dentry: link
2276  *
2277  * Check the permission to read the symbolic link.
2278  *
2279  * Return: Returns 0 if permission is granted.
2280  */
2281 int security_inode_readlink(struct dentry *dentry)
2282 {
2283 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2284 		return 0;
2285 	return call_int_hook(inode_readlink, dentry);
2286 }
2287 
2288 /**
2289  * security_inode_follow_link() - Check if following a symbolic link is allowed
2290  * @dentry: link dentry
2291  * @inode: link inode
2292  * @rcu: true if in RCU-walk mode
2293  *
2294  * Check permission to follow a symbolic link when looking up a pathname.  If
2295  * @rcu is true, @inode is not stable.
2296  *
2297  * Return: Returns 0 if permission is granted.
2298  */
2299 int security_inode_follow_link(struct dentry *dentry, struct inode *inode,
2300 			       bool rcu)
2301 {
2302 	if (unlikely(IS_PRIVATE(inode)))
2303 		return 0;
2304 	return call_int_hook(inode_follow_link, dentry, inode, rcu);
2305 }
2306 
2307 /**
2308  * security_inode_permission() - Check if accessing an inode is allowed
2309  * @inode: inode
2310  * @mask: access mask
2311  *
2312  * Check permission before accessing an inode.  This hook is called by the
2313  * existing Linux permission function, so a security module can use it to
2314  * provide additional checking for existing Linux permission checks.  Notice
2315  * that this hook is called when a file is opened (as well as many other
2316  * operations), whereas the file_security_ops permission hook is called when
2317  * the actual read/write operations are performed.
2318  *
2319  * Return: Returns 0 if permission is granted.
2320  */
2321 int security_inode_permission(struct inode *inode, int mask)
2322 {
2323 	if (unlikely(IS_PRIVATE(inode)))
2324 		return 0;
2325 	return call_int_hook(inode_permission, inode, mask);
2326 }
2327 
2328 /**
2329  * security_inode_setattr() - Check if setting file attributes is allowed
2330  * @idmap: idmap of the mount
2331  * @dentry: file
2332  * @attr: new attributes
2333  *
2334  * Check permission before setting file attributes.  Note that the kernel call
2335  * to notify_change is performed from several locations, whenever file
2336  * attributes change (such as when a file is truncated, chown/chmod operations,
2337  * transferring disk quotas, etc).
2338  *
2339  * Return: Returns 0 if permission is granted.
2340  */
2341 int security_inode_setattr(struct mnt_idmap *idmap,
2342 			   struct dentry *dentry, struct iattr *attr)
2343 {
2344 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2345 		return 0;
2346 	return call_int_hook(inode_setattr, idmap, dentry, attr);
2347 }
2348 EXPORT_SYMBOL_GPL(security_inode_setattr);
2349 
2350 /**
2351  * security_inode_post_setattr() - Update the inode after a setattr operation
2352  * @idmap: idmap of the mount
2353  * @dentry: file
2354  * @ia_valid: file attributes set
2355  *
2356  * Update inode security field after successful setting file attributes.
2357  */
2358 void security_inode_post_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
2359 				 int ia_valid)
2360 {
2361 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2362 		return;
2363 	call_void_hook(inode_post_setattr, idmap, dentry, ia_valid);
2364 }
2365 
2366 /**
2367  * security_inode_getattr() - Check if getting file attributes is allowed
2368  * @path: file
2369  *
2370  * Check permission before obtaining file attributes.
2371  *
2372  * Return: Returns 0 if permission is granted.
2373  */
2374 int security_inode_getattr(const struct path *path)
2375 {
2376 	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
2377 		return 0;
2378 	return call_int_hook(inode_getattr, path);
2379 }
2380 
2381 /**
2382  * security_inode_setxattr() - Check if setting file xattrs is allowed
2383  * @idmap: idmap of the mount
2384  * @dentry: file
2385  * @name: xattr name
2386  * @value: xattr value
2387  * @size: size of xattr value
2388  * @flags: flags
2389  *
2390  * This hook performs the desired permission checks before setting the extended
2391  * attributes (xattrs) on @dentry.  It is important to note that we have some
2392  * additional logic before the main LSM implementation calls to detect if we
2393  * need to perform an additional capability check at the LSM layer.
2394  *
2395  * Normally we enforce a capability check prior to executing the various LSM
2396  * hook implementations, but if a LSM wants to avoid this capability check,
2397  * it can register a 'inode_xattr_skipcap' hook and return a value of 1 for
2398  * xattrs that it wants to avoid the capability check, leaving the LSM fully
2399  * responsible for enforcing the access control for the specific xattr.  If all
2400  * of the enabled LSMs refrain from registering a 'inode_xattr_skipcap' hook,
2401  * or return a 0 (the default return value), the capability check is still
2402  * performed.  If no 'inode_xattr_skipcap' hooks are registered the capability
2403  * check is performed.
2404  *
2405  * Return: Returns 0 if permission is granted.
2406  */
2407 int security_inode_setxattr(struct mnt_idmap *idmap,
2408 			    struct dentry *dentry, const char *name,
2409 			    const void *value, size_t size, int flags)
2410 {
2411 	int rc;
2412 
2413 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2414 		return 0;
2415 
2416 	/* enforce the capability checks at the lsm layer, if needed */
2417 	if (!call_int_hook(inode_xattr_skipcap, name)) {
2418 		rc = cap_inode_setxattr(dentry, name, value, size, flags);
2419 		if (rc)
2420 			return rc;
2421 	}
2422 
2423 	return call_int_hook(inode_setxattr, idmap, dentry, name, value, size,
2424 			     flags);
2425 }
2426 
2427 /**
2428  * security_inode_set_acl() - Check if setting posix acls is allowed
2429  * @idmap: idmap of the mount
2430  * @dentry: file
2431  * @acl_name: acl name
2432  * @kacl: acl struct
2433  *
2434  * Check permission before setting posix acls, the posix acls in @kacl are
2435  * identified by @acl_name.
2436  *
2437  * Return: Returns 0 if permission is granted.
2438  */
2439 int security_inode_set_acl(struct mnt_idmap *idmap,
2440 			   struct dentry *dentry, const char *acl_name,
2441 			   struct posix_acl *kacl)
2442 {
2443 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2444 		return 0;
2445 	return call_int_hook(inode_set_acl, idmap, dentry, acl_name, kacl);
2446 }
2447 
2448 /**
2449  * security_inode_post_set_acl() - Update inode security from posix acls set
2450  * @dentry: file
2451  * @acl_name: acl name
2452  * @kacl: acl struct
2453  *
2454  * Update inode security data after successfully setting posix acls on @dentry.
2455  * The posix acls in @kacl are identified by @acl_name.
2456  */
2457 void security_inode_post_set_acl(struct dentry *dentry, const char *acl_name,
2458 				 struct posix_acl *kacl)
2459 {
2460 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2461 		return;
2462 	call_void_hook(inode_post_set_acl, dentry, acl_name, kacl);
2463 }
2464 
2465 /**
2466  * security_inode_get_acl() - Check if reading posix acls is allowed
2467  * @idmap: idmap of the mount
2468  * @dentry: file
2469  * @acl_name: acl name
2470  *
2471  * Check permission before getting osix acls, the posix acls are identified by
2472  * @acl_name.
2473  *
2474  * Return: Returns 0 if permission is granted.
2475  */
2476 int security_inode_get_acl(struct mnt_idmap *idmap,
2477 			   struct dentry *dentry, const char *acl_name)
2478 {
2479 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2480 		return 0;
2481 	return call_int_hook(inode_get_acl, idmap, dentry, acl_name);
2482 }
2483 
2484 /**
2485  * security_inode_remove_acl() - Check if removing a posix acl is allowed
2486  * @idmap: idmap of the mount
2487  * @dentry: file
2488  * @acl_name: acl name
2489  *
2490  * Check permission before removing posix acls, the posix acls are identified
2491  * by @acl_name.
2492  *
2493  * Return: Returns 0 if permission is granted.
2494  */
2495 int security_inode_remove_acl(struct mnt_idmap *idmap,
2496 			      struct dentry *dentry, const char *acl_name)
2497 {
2498 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2499 		return 0;
2500 	return call_int_hook(inode_remove_acl, idmap, dentry, acl_name);
2501 }
2502 
2503 /**
2504  * security_inode_post_remove_acl() - Update inode security after rm posix acls
2505  * @idmap: idmap of the mount
2506  * @dentry: file
2507  * @acl_name: acl name
2508  *
2509  * Update inode security data after successfully removing posix acls on
2510  * @dentry in @idmap. The posix acls are identified by @acl_name.
2511  */
2512 void security_inode_post_remove_acl(struct mnt_idmap *idmap,
2513 				    struct dentry *dentry, const char *acl_name)
2514 {
2515 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2516 		return;
2517 	call_void_hook(inode_post_remove_acl, idmap, dentry, acl_name);
2518 }
2519 
2520 /**
2521  * security_inode_post_setxattr() - Update the inode after a setxattr operation
2522  * @dentry: file
2523  * @name: xattr name
2524  * @value: xattr value
2525  * @size: xattr value size
2526  * @flags: flags
2527  *
2528  * Update inode security field after successful setxattr operation.
2529  */
2530 void security_inode_post_setxattr(struct dentry *dentry, const char *name,
2531 				  const void *value, size_t size, int flags)
2532 {
2533 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2534 		return;
2535 	call_void_hook(inode_post_setxattr, dentry, name, value, size, flags);
2536 }
2537 
2538 /**
2539  * security_inode_getxattr() - Check if xattr access is allowed
2540  * @dentry: file
2541  * @name: xattr name
2542  *
2543  * Check permission before obtaining the extended attributes identified by
2544  * @name for @dentry.
2545  *
2546  * Return: Returns 0 if permission is granted.
2547  */
2548 int security_inode_getxattr(struct dentry *dentry, const char *name)
2549 {
2550 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2551 		return 0;
2552 	return call_int_hook(inode_getxattr, dentry, name);
2553 }
2554 
2555 /**
2556  * security_inode_listxattr() - Check if listing xattrs is allowed
2557  * @dentry: file
2558  *
2559  * Check permission before obtaining the list of extended attribute names for
2560  * @dentry.
2561  *
2562  * Return: Returns 0 if permission is granted.
2563  */
2564 int security_inode_listxattr(struct dentry *dentry)
2565 {
2566 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2567 		return 0;
2568 	return call_int_hook(inode_listxattr, dentry);
2569 }
2570 
2571 /**
2572  * security_inode_removexattr() - Check if removing an xattr is allowed
2573  * @idmap: idmap of the mount
2574  * @dentry: file
2575  * @name: xattr name
2576  *
2577  * This hook performs the desired permission checks before setting the extended
2578  * attributes (xattrs) on @dentry.  It is important to note that we have some
2579  * additional logic before the main LSM implementation calls to detect if we
2580  * need to perform an additional capability check at the LSM layer.
2581  *
2582  * Normally we enforce a capability check prior to executing the various LSM
2583  * hook implementations, but if a LSM wants to avoid this capability check,
2584  * it can register a 'inode_xattr_skipcap' hook and return a value of 1 for
2585  * xattrs that it wants to avoid the capability check, leaving the LSM fully
2586  * responsible for enforcing the access control for the specific xattr.  If all
2587  * of the enabled LSMs refrain from registering a 'inode_xattr_skipcap' hook,
2588  * or return a 0 (the default return value), the capability check is still
2589  * performed.  If no 'inode_xattr_skipcap' hooks are registered the capability
2590  * check is performed.
2591  *
2592  * Return: Returns 0 if permission is granted.
2593  */
2594 int security_inode_removexattr(struct mnt_idmap *idmap,
2595 			       struct dentry *dentry, const char *name)
2596 {
2597 	int rc;
2598 
2599 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2600 		return 0;
2601 
2602 	/* enforce the capability checks at the lsm layer, if needed */
2603 	if (!call_int_hook(inode_xattr_skipcap, name)) {
2604 		rc = cap_inode_removexattr(idmap, dentry, name);
2605 		if (rc)
2606 			return rc;
2607 	}
2608 
2609 	return call_int_hook(inode_removexattr, idmap, dentry, name);
2610 }
2611 
2612 /**
2613  * security_inode_post_removexattr() - Update the inode after a removexattr op
2614  * @dentry: file
2615  * @name: xattr name
2616  *
2617  * Update the inode after a successful removexattr operation.
2618  */
2619 void security_inode_post_removexattr(struct dentry *dentry, const char *name)
2620 {
2621 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2622 		return;
2623 	call_void_hook(inode_post_removexattr, dentry, name);
2624 }
2625 
2626 /**
2627  * security_inode_need_killpriv() - Check if security_inode_killpriv() required
2628  * @dentry: associated dentry
2629  *
2630  * Called when an inode has been changed to determine if
2631  * security_inode_killpriv() should be called.
2632  *
2633  * Return: Return <0 on error to abort the inode change operation, return 0 if
2634  *         security_inode_killpriv() does not need to be called, return >0 if
2635  *         security_inode_killpriv() does need to be called.
2636  */
2637 int security_inode_need_killpriv(struct dentry *dentry)
2638 {
2639 	return call_int_hook(inode_need_killpriv, dentry);
2640 }
2641 
2642 /**
2643  * security_inode_killpriv() - The setuid bit is removed, update LSM state
2644  * @idmap: idmap of the mount
2645  * @dentry: associated dentry
2646  *
2647  * The @dentry's setuid bit is being removed.  Remove similar security labels.
2648  * Called with the dentry->d_inode->i_mutex held.
2649  *
2650  * Return: Return 0 on success.  If error is returned, then the operation
2651  *         causing setuid bit removal is failed.
2652  */
2653 int security_inode_killpriv(struct mnt_idmap *idmap,
2654 			    struct dentry *dentry)
2655 {
2656 	return call_int_hook(inode_killpriv, idmap, dentry);
2657 }
2658 
2659 /**
2660  * security_inode_getsecurity() - Get the xattr security label of an inode
2661  * @idmap: idmap of the mount
2662  * @inode: inode
2663  * @name: xattr name
2664  * @buffer: security label buffer
2665  * @alloc: allocation flag
2666  *
2667  * Retrieve a copy of the extended attribute representation of the security
2668  * label associated with @name for @inode via @buffer.  Note that @name is the
2669  * remainder of the attribute name after the security prefix has been removed.
2670  * @alloc is used to specify if the call should return a value via the buffer
2671  * or just the value length.
2672  *
2673  * Return: Returns size of buffer on success.
2674  */
2675 int security_inode_getsecurity(struct mnt_idmap *idmap,
2676 			       struct inode *inode, const char *name,
2677 			       void **buffer, bool alloc)
2678 {
2679 	if (unlikely(IS_PRIVATE(inode)))
2680 		return LSM_RET_DEFAULT(inode_getsecurity);
2681 
2682 	return call_int_hook(inode_getsecurity, idmap, inode, name, buffer,
2683 			     alloc);
2684 }
2685 
2686 /**
2687  * security_inode_setsecurity() - Set the xattr security label of an inode
2688  * @inode: inode
2689  * @name: xattr name
2690  * @value: security label
2691  * @size: length of security label
2692  * @flags: flags
2693  *
2694  * Set the security label associated with @name for @inode from the extended
2695  * attribute value @value.  @size indicates the size of the @value in bytes.
2696  * @flags may be XATTR_CREATE, XATTR_REPLACE, or 0. Note that @name is the
2697  * remainder of the attribute name after the security. prefix has been removed.
2698  *
2699  * Return: Returns 0 on success.
2700  */
2701 int security_inode_setsecurity(struct inode *inode, const char *name,
2702 			       const void *value, size_t size, int flags)
2703 {
2704 	if (unlikely(IS_PRIVATE(inode)))
2705 		return LSM_RET_DEFAULT(inode_setsecurity);
2706 
2707 	return call_int_hook(inode_setsecurity, inode, name, value, size,
2708 			     flags);
2709 }
2710 
2711 /**
2712  * security_inode_listsecurity() - List the xattr security label names
2713  * @inode: inode
2714  * @buffer: buffer
2715  * @buffer_size: size of buffer
2716  *
2717  * Copy the extended attribute names for the security labels associated with
2718  * @inode into @buffer.  The maximum size of @buffer is specified by
2719  * @buffer_size.  @buffer may be NULL to request the size of the buffer
2720  * required.
2721  *
2722  * Return: Returns number of bytes used/required on success.
2723  */
2724 int security_inode_listsecurity(struct inode *inode,
2725 				char *buffer, size_t buffer_size)
2726 {
2727 	if (unlikely(IS_PRIVATE(inode)))
2728 		return 0;
2729 	return call_int_hook(inode_listsecurity, inode, buffer, buffer_size);
2730 }
2731 EXPORT_SYMBOL(security_inode_listsecurity);
2732 
2733 /**
2734  * security_inode_getlsmprop() - Get an inode's LSM data
2735  * @inode: inode
2736  * @prop: lsm specific information to return
2737  *
2738  * Get the lsm specific information associated with the node.
2739  */
2740 void security_inode_getlsmprop(struct inode *inode, struct lsm_prop *prop)
2741 {
2742 	call_void_hook(inode_getlsmprop, inode, prop);
2743 }
2744 
2745 /**
2746  * security_inode_copy_up() - Create new creds for an overlayfs copy-up op
2747  * @src: union dentry of copy-up file
2748  * @new: newly created creds
2749  *
2750  * A file is about to be copied up from lower layer to upper layer of overlay
2751  * filesystem. Security module can prepare a set of new creds and modify as
2752  * need be and return new creds. Caller will switch to new creds temporarily to
2753  * create new file and release newly allocated creds.
2754  *
2755  * Return: Returns 0 on success or a negative error code on error.
2756  */
2757 int security_inode_copy_up(struct dentry *src, struct cred **new)
2758 {
2759 	return call_int_hook(inode_copy_up, src, new);
2760 }
2761 EXPORT_SYMBOL(security_inode_copy_up);
2762 
2763 /**
2764  * security_inode_copy_up_xattr() - Filter xattrs in an overlayfs copy-up op
2765  * @src: union dentry of copy-up file
2766  * @name: xattr name
2767  *
2768  * Filter the xattrs being copied up when a unioned file is copied up from a
2769  * lower layer to the union/overlay layer.   The caller is responsible for
2770  * reading and writing the xattrs, this hook is merely a filter.
2771  *
2772  * Return: Returns 0 to accept the xattr, -ECANCELED to discard the xattr,
2773  *         -EOPNOTSUPP if the security module does not know about attribute,
2774  *         or a negative error code to abort the copy up.
2775  */
2776 int security_inode_copy_up_xattr(struct dentry *src, const char *name)
2777 {
2778 	int rc;
2779 
2780 	rc = call_int_hook(inode_copy_up_xattr, src, name);
2781 	if (rc != LSM_RET_DEFAULT(inode_copy_up_xattr))
2782 		return rc;
2783 
2784 	return LSM_RET_DEFAULT(inode_copy_up_xattr);
2785 }
2786 EXPORT_SYMBOL(security_inode_copy_up_xattr);
2787 
2788 /**
2789  * security_inode_setintegrity() - Set the inode's integrity data
2790  * @inode: inode
2791  * @type: type of integrity, e.g. hash digest, signature, etc
2792  * @value: the integrity value
2793  * @size: size of the integrity value
2794  *
2795  * Register a verified integrity measurement of a inode with LSMs.
2796  * LSMs should free the previously saved data if @value is NULL.
2797  *
2798  * Return: Returns 0 on success, negative values on failure.
2799  */
2800 int security_inode_setintegrity(const struct inode *inode,
2801 				enum lsm_integrity_type type, const void *value,
2802 				size_t size)
2803 {
2804 	return call_int_hook(inode_setintegrity, inode, type, value, size);
2805 }
2806 EXPORT_SYMBOL(security_inode_setintegrity);
2807 
2808 /**
2809  * security_kernfs_init_security() - Init LSM context for a kernfs node
2810  * @kn_dir: parent kernfs node
2811  * @kn: the kernfs node to initialize
2812  *
2813  * Initialize the security context of a newly created kernfs node based on its
2814  * own and its parent's attributes.
2815  *
2816  * Return: Returns 0 if permission is granted.
2817  */
2818 int security_kernfs_init_security(struct kernfs_node *kn_dir,
2819 				  struct kernfs_node *kn)
2820 {
2821 	return call_int_hook(kernfs_init_security, kn_dir, kn);
2822 }
2823 
2824 /**
2825  * security_file_permission() - Check file permissions
2826  * @file: file
2827  * @mask: requested permissions
2828  *
2829  * Check file permissions before accessing an open file.  This hook is called
2830  * by various operations that read or write files.  A security module can use
2831  * this hook to perform additional checking on these operations, e.g. to
2832  * revalidate permissions on use to support privilege bracketing or policy
2833  * changes.  Notice that this hook is used when the actual read/write
2834  * operations are performed, whereas the inode_security_ops hook is called when
2835  * a file is opened (as well as many other operations).  Although this hook can
2836  * be used to revalidate permissions for various system call operations that
2837  * read or write files, it does not address the revalidation of permissions for
2838  * memory-mapped files.  Security modules must handle this separately if they
2839  * need such revalidation.
2840  *
2841  * Return: Returns 0 if permission is granted.
2842  */
2843 int security_file_permission(struct file *file, int mask)
2844 {
2845 	return call_int_hook(file_permission, file, mask);
2846 }
2847 
2848 /**
2849  * security_file_alloc() - Allocate and init a file's LSM blob
2850  * @file: the file
2851  *
2852  * Allocate and attach a security structure to the file->f_security field.  The
2853  * security field is initialized to NULL when the structure is first created.
2854  *
2855  * Return: Return 0 if the hook is successful and permission is granted.
2856  */
2857 int security_file_alloc(struct file *file)
2858 {
2859 	int rc = lsm_file_alloc(file);
2860 
2861 	if (rc)
2862 		return rc;
2863 	rc = call_int_hook(file_alloc_security, file);
2864 	if (unlikely(rc))
2865 		security_file_free(file);
2866 	return rc;
2867 }
2868 
2869 /**
2870  * security_file_release() - Perform actions before releasing the file ref
2871  * @file: the file
2872  *
2873  * Perform actions before releasing the last reference to a file.
2874  */
2875 void security_file_release(struct file *file)
2876 {
2877 	call_void_hook(file_release, file);
2878 }
2879 
2880 /**
2881  * security_file_free() - Free a file's LSM blob
2882  * @file: the file
2883  *
2884  * Deallocate and free any security structures stored in file->f_security.
2885  */
2886 void security_file_free(struct file *file)
2887 {
2888 	void *blob;
2889 
2890 	call_void_hook(file_free_security, file);
2891 
2892 	blob = file->f_security;
2893 	if (blob) {
2894 		file->f_security = NULL;
2895 		kmem_cache_free(lsm_file_cache, blob);
2896 	}
2897 }
2898 
2899 /**
2900  * security_file_ioctl() - Check if an ioctl is allowed
2901  * @file: associated file
2902  * @cmd: ioctl cmd
2903  * @arg: ioctl arguments
2904  *
2905  * Check permission for an ioctl operation on @file.  Note that @arg sometimes
2906  * represents a user space pointer; in other cases, it may be a simple integer
2907  * value.  When @arg represents a user space pointer, it should never be used
2908  * by the security module.
2909  *
2910  * Return: Returns 0 if permission is granted.
2911  */
2912 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2913 {
2914 	return call_int_hook(file_ioctl, file, cmd, arg);
2915 }
2916 EXPORT_SYMBOL_GPL(security_file_ioctl);
2917 
2918 /**
2919  * security_file_ioctl_compat() - Check if an ioctl is allowed in compat mode
2920  * @file: associated file
2921  * @cmd: ioctl cmd
2922  * @arg: ioctl arguments
2923  *
2924  * Compat version of security_file_ioctl() that correctly handles 32-bit
2925  * processes running on 64-bit kernels.
2926  *
2927  * Return: Returns 0 if permission is granted.
2928  */
2929 int security_file_ioctl_compat(struct file *file, unsigned int cmd,
2930 			       unsigned long arg)
2931 {
2932 	return call_int_hook(file_ioctl_compat, file, cmd, arg);
2933 }
2934 EXPORT_SYMBOL_GPL(security_file_ioctl_compat);
2935 
2936 static inline unsigned long mmap_prot(struct file *file, unsigned long prot)
2937 {
2938 	/*
2939 	 * Does we have PROT_READ and does the application expect
2940 	 * it to imply PROT_EXEC?  If not, nothing to talk about...
2941 	 */
2942 	if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ)
2943 		return prot;
2944 	if (!(current->personality & READ_IMPLIES_EXEC))
2945 		return prot;
2946 	/*
2947 	 * if that's an anonymous mapping, let it.
2948 	 */
2949 	if (!file)
2950 		return prot | PROT_EXEC;
2951 	/*
2952 	 * ditto if it's not on noexec mount, except that on !MMU we need
2953 	 * NOMMU_MAP_EXEC (== VM_MAYEXEC) in this case
2954 	 */
2955 	if (!path_noexec(&file->f_path)) {
2956 #ifndef CONFIG_MMU
2957 		if (file->f_op->mmap_capabilities) {
2958 			unsigned caps = file->f_op->mmap_capabilities(file);
2959 			if (!(caps & NOMMU_MAP_EXEC))
2960 				return prot;
2961 		}
2962 #endif
2963 		return prot | PROT_EXEC;
2964 	}
2965 	/* anything on noexec mount won't get PROT_EXEC */
2966 	return prot;
2967 }
2968 
2969 /**
2970  * security_mmap_file() - Check if mmap'ing a file is allowed
2971  * @file: file
2972  * @prot: protection applied by the kernel
2973  * @flags: flags
2974  *
2975  * Check permissions for a mmap operation.  The @file may be NULL, e.g. if
2976  * mapping anonymous memory.
2977  *
2978  * Return: Returns 0 if permission is granted.
2979  */
2980 int security_mmap_file(struct file *file, unsigned long prot,
2981 		       unsigned long flags)
2982 {
2983 	return call_int_hook(mmap_file, file, prot, mmap_prot(file, prot),
2984 			     flags);
2985 }
2986 
2987 /**
2988  * security_mmap_addr() - Check if mmap'ing an address is allowed
2989  * @addr: address
2990  *
2991  * Check permissions for a mmap operation at @addr.
2992  *
2993  * Return: Returns 0 if permission is granted.
2994  */
2995 int security_mmap_addr(unsigned long addr)
2996 {
2997 	return call_int_hook(mmap_addr, addr);
2998 }
2999 
3000 /**
3001  * security_file_mprotect() - Check if changing memory protections is allowed
3002  * @vma: memory region
3003  * @reqprot: application requested protection
3004  * @prot: protection applied by the kernel
3005  *
3006  * Check permissions before changing memory access permissions.
3007  *
3008  * Return: Returns 0 if permission is granted.
3009  */
3010 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
3011 			   unsigned long prot)
3012 {
3013 	return call_int_hook(file_mprotect, vma, reqprot, prot);
3014 }
3015 
3016 /**
3017  * security_file_lock() - Check if a file lock is allowed
3018  * @file: file
3019  * @cmd: lock operation (e.g. F_RDLCK, F_WRLCK)
3020  *
3021  * Check permission before performing file locking operations.  Note the hook
3022  * mediates both flock and fcntl style locks.
3023  *
3024  * Return: Returns 0 if permission is granted.
3025  */
3026 int security_file_lock(struct file *file, unsigned int cmd)
3027 {
3028 	return call_int_hook(file_lock, file, cmd);
3029 }
3030 
3031 /**
3032  * security_file_fcntl() - Check if fcntl() op is allowed
3033  * @file: file
3034  * @cmd: fcntl command
3035  * @arg: command argument
3036  *
3037  * Check permission before allowing the file operation specified by @cmd from
3038  * being performed on the file @file.  Note that @arg sometimes represents a
3039  * user space pointer; in other cases, it may be a simple integer value.  When
3040  * @arg represents a user space pointer, it should never be used by the
3041  * security module.
3042  *
3043  * Return: Returns 0 if permission is granted.
3044  */
3045 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
3046 {
3047 	return call_int_hook(file_fcntl, file, cmd, arg);
3048 }
3049 
3050 /**
3051  * security_file_set_fowner() - Set the file owner info in the LSM blob
3052  * @file: the file
3053  *
3054  * Save owner security information (typically from current->security) in
3055  * file->f_security for later use by the send_sigiotask hook.
3056  *
3057  * This hook is called with file->f_owner.lock held.
3058  *
3059  * Return: Returns 0 on success.
3060  */
3061 void security_file_set_fowner(struct file *file)
3062 {
3063 	call_void_hook(file_set_fowner, file);
3064 }
3065 
3066 /**
3067  * security_file_send_sigiotask() - Check if sending SIGIO/SIGURG is allowed
3068  * @tsk: target task
3069  * @fown: signal sender
3070  * @sig: signal to be sent, SIGIO is sent if 0
3071  *
3072  * Check permission for the file owner @fown to send SIGIO or SIGURG to the
3073  * process @tsk.  Note that this hook is sometimes called from interrupt.  Note
3074  * that the fown_struct, @fown, is never outside the context of a struct file,
3075  * so the file structure (and associated security information) can always be
3076  * obtained: container_of(fown, struct file, f_owner).
3077  *
3078  * Return: Returns 0 if permission is granted.
3079  */
3080 int security_file_send_sigiotask(struct task_struct *tsk,
3081 				 struct fown_struct *fown, int sig)
3082 {
3083 	return call_int_hook(file_send_sigiotask, tsk, fown, sig);
3084 }
3085 
3086 /**
3087  * security_file_receive() - Check if receiving a file via IPC is allowed
3088  * @file: file being received
3089  *
3090  * This hook allows security modules to control the ability of a process to
3091  * receive an open file descriptor via socket IPC.
3092  *
3093  * Return: Returns 0 if permission is granted.
3094  */
3095 int security_file_receive(struct file *file)
3096 {
3097 	return call_int_hook(file_receive, file);
3098 }
3099 
3100 /**
3101  * security_file_open() - Save open() time state for late use by the LSM
3102  * @file:
3103  *
3104  * Save open-time permission checking state for later use upon file_permission,
3105  * and recheck access if anything has changed since inode_permission.
3106  *
3107  * We can check if a file is opened for execution (e.g. execve(2) call), either
3108  * directly or indirectly (e.g. ELF's ld.so) by checking file->f_flags &
3109  * __FMODE_EXEC .
3110  *
3111  * Return: Returns 0 if permission is granted.
3112  */
3113 int security_file_open(struct file *file)
3114 {
3115 	return call_int_hook(file_open, file);
3116 }
3117 
3118 /**
3119  * security_file_post_open() - Evaluate a file after it has been opened
3120  * @file: the file
3121  * @mask: access mask
3122  *
3123  * Evaluate an opened file and the access mask requested with open(). The hook
3124  * is useful for LSMs that require the file content to be available in order to
3125  * make decisions.
3126  *
3127  * Return: Returns 0 if permission is granted.
3128  */
3129 int security_file_post_open(struct file *file, int mask)
3130 {
3131 	return call_int_hook(file_post_open, file, mask);
3132 }
3133 EXPORT_SYMBOL_GPL(security_file_post_open);
3134 
3135 /**
3136  * security_file_truncate() - Check if truncating a file is allowed
3137  * @file: file
3138  *
3139  * Check permission before truncating a file, i.e. using ftruncate.  Note that
3140  * truncation permission may also be checked based on the path, using the
3141  * @path_truncate hook.
3142  *
3143  * Return: Returns 0 if permission is granted.
3144  */
3145 int security_file_truncate(struct file *file)
3146 {
3147 	return call_int_hook(file_truncate, file);
3148 }
3149 
3150 /**
3151  * security_task_alloc() - Allocate a task's LSM blob
3152  * @task: the task
3153  * @clone_flags: flags indicating what is being shared
3154  *
3155  * Handle allocation of task-related resources.
3156  *
3157  * Return: Returns a zero on success, negative values on failure.
3158  */
3159 int security_task_alloc(struct task_struct *task, unsigned long clone_flags)
3160 {
3161 	int rc = lsm_task_alloc(task);
3162 
3163 	if (rc)
3164 		return rc;
3165 	rc = call_int_hook(task_alloc, task, clone_flags);
3166 	if (unlikely(rc))
3167 		security_task_free(task);
3168 	return rc;
3169 }
3170 
3171 /**
3172  * security_task_free() - Free a task's LSM blob and related resources
3173  * @task: task
3174  *
3175  * Handle release of task-related resources.  Note that this can be called from
3176  * interrupt context.
3177  */
3178 void security_task_free(struct task_struct *task)
3179 {
3180 	call_void_hook(task_free, task);
3181 
3182 	kfree(task->security);
3183 	task->security = NULL;
3184 }
3185 
3186 /**
3187  * security_cred_alloc_blank() - Allocate the min memory to allow cred_transfer
3188  * @cred: credentials
3189  * @gfp: gfp flags
3190  *
3191  * Only allocate sufficient memory and attach to @cred such that
3192  * cred_transfer() will not get ENOMEM.
3193  *
3194  * Return: Returns 0 on success, negative values on failure.
3195  */
3196 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
3197 {
3198 	int rc = lsm_cred_alloc(cred, gfp);
3199 
3200 	if (rc)
3201 		return rc;
3202 
3203 	rc = call_int_hook(cred_alloc_blank, cred, gfp);
3204 	if (unlikely(rc))
3205 		security_cred_free(cred);
3206 	return rc;
3207 }
3208 
3209 /**
3210  * security_cred_free() - Free the cred's LSM blob and associated resources
3211  * @cred: credentials
3212  *
3213  * Deallocate and clear the cred->security field in a set of credentials.
3214  */
3215 void security_cred_free(struct cred *cred)
3216 {
3217 	/*
3218 	 * There is a failure case in prepare_creds() that
3219 	 * may result in a call here with ->security being NULL.
3220 	 */
3221 	if (unlikely(cred->security == NULL))
3222 		return;
3223 
3224 	call_void_hook(cred_free, cred);
3225 
3226 	kfree(cred->security);
3227 	cred->security = NULL;
3228 }
3229 
3230 /**
3231  * security_prepare_creds() - Prepare a new set of credentials
3232  * @new: new credentials
3233  * @old: original credentials
3234  * @gfp: gfp flags
3235  *
3236  * Prepare a new set of credentials by copying the data from the old set.
3237  *
3238  * Return: Returns 0 on success, negative values on failure.
3239  */
3240 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
3241 {
3242 	int rc = lsm_cred_alloc(new, gfp);
3243 
3244 	if (rc)
3245 		return rc;
3246 
3247 	rc = call_int_hook(cred_prepare, new, old, gfp);
3248 	if (unlikely(rc))
3249 		security_cred_free(new);
3250 	return rc;
3251 }
3252 
3253 /**
3254  * security_transfer_creds() - Transfer creds
3255  * @new: target credentials
3256  * @old: original credentials
3257  *
3258  * Transfer data from original creds to new creds.
3259  */
3260 void security_transfer_creds(struct cred *new, const struct cred *old)
3261 {
3262 	call_void_hook(cred_transfer, new, old);
3263 }
3264 
3265 /**
3266  * security_cred_getsecid() - Get the secid from a set of credentials
3267  * @c: credentials
3268  * @secid: secid value
3269  *
3270  * Retrieve the security identifier of the cred structure @c.  In case of
3271  * failure, @secid will be set to zero.
3272  */
3273 void security_cred_getsecid(const struct cred *c, u32 *secid)
3274 {
3275 	*secid = 0;
3276 	call_void_hook(cred_getsecid, c, secid);
3277 }
3278 EXPORT_SYMBOL(security_cred_getsecid);
3279 
3280 /**
3281  * security_cred_getlsmprop() - Get the LSM data from a set of credentials
3282  * @c: credentials
3283  * @prop: destination for the LSM data
3284  *
3285  * Retrieve the security data of the cred structure @c.  In case of
3286  * failure, @prop will be cleared.
3287  */
3288 void security_cred_getlsmprop(const struct cred *c, struct lsm_prop *prop)
3289 {
3290 	lsmprop_init(prop);
3291 	call_void_hook(cred_getlsmprop, c, prop);
3292 }
3293 EXPORT_SYMBOL(security_cred_getlsmprop);
3294 
3295 /**
3296  * security_kernel_act_as() - Set the kernel credentials to act as secid
3297  * @new: credentials
3298  * @secid: secid
3299  *
3300  * Set the credentials for a kernel service to act as (subjective context).
3301  * The current task must be the one that nominated @secid.
3302  *
3303  * Return: Returns 0 if successful.
3304  */
3305 int security_kernel_act_as(struct cred *new, u32 secid)
3306 {
3307 	return call_int_hook(kernel_act_as, new, secid);
3308 }
3309 
3310 /**
3311  * security_kernel_create_files_as() - Set file creation context using an inode
3312  * @new: target credentials
3313  * @inode: reference inode
3314  *
3315  * Set the file creation context in a set of credentials to be the same as the
3316  * objective context of the specified inode.  The current task must be the one
3317  * that nominated @inode.
3318  *
3319  * Return: Returns 0 if successful.
3320  */
3321 int security_kernel_create_files_as(struct cred *new, struct inode *inode)
3322 {
3323 	return call_int_hook(kernel_create_files_as, new, inode);
3324 }
3325 
3326 /**
3327  * security_kernel_module_request() - Check if loading a module is allowed
3328  * @kmod_name: module name
3329  *
3330  * Ability to trigger the kernel to automatically upcall to userspace for
3331  * userspace to load a kernel module with the given name.
3332  *
3333  * Return: Returns 0 if successful.
3334  */
3335 int security_kernel_module_request(char *kmod_name)
3336 {
3337 	return call_int_hook(kernel_module_request, kmod_name);
3338 }
3339 
3340 /**
3341  * security_kernel_read_file() - Read a file specified by userspace
3342  * @file: file
3343  * @id: file identifier
3344  * @contents: trust if security_kernel_post_read_file() will be called
3345  *
3346  * Read a file specified by userspace.
3347  *
3348  * Return: Returns 0 if permission is granted.
3349  */
3350 int security_kernel_read_file(struct file *file, enum kernel_read_file_id id,
3351 			      bool contents)
3352 {
3353 	return call_int_hook(kernel_read_file, file, id, contents);
3354 }
3355 EXPORT_SYMBOL_GPL(security_kernel_read_file);
3356 
3357 /**
3358  * security_kernel_post_read_file() - Read a file specified by userspace
3359  * @file: file
3360  * @buf: file contents
3361  * @size: size of file contents
3362  * @id: file identifier
3363  *
3364  * Read a file specified by userspace.  This must be paired with a prior call
3365  * to security_kernel_read_file() call that indicated this hook would also be
3366  * called, see security_kernel_read_file() for more information.
3367  *
3368  * Return: Returns 0 if permission is granted.
3369  */
3370 int security_kernel_post_read_file(struct file *file, char *buf, loff_t size,
3371 				   enum kernel_read_file_id id)
3372 {
3373 	return call_int_hook(kernel_post_read_file, file, buf, size, id);
3374 }
3375 EXPORT_SYMBOL_GPL(security_kernel_post_read_file);
3376 
3377 /**
3378  * security_kernel_load_data() - Load data provided by userspace
3379  * @id: data identifier
3380  * @contents: true if security_kernel_post_load_data() will be called
3381  *
3382  * Load data provided by userspace.
3383  *
3384  * Return: Returns 0 if permission is granted.
3385  */
3386 int security_kernel_load_data(enum kernel_load_data_id id, bool contents)
3387 {
3388 	return call_int_hook(kernel_load_data, id, contents);
3389 }
3390 EXPORT_SYMBOL_GPL(security_kernel_load_data);
3391 
3392 /**
3393  * security_kernel_post_load_data() - Load userspace data from a non-file source
3394  * @buf: data
3395  * @size: size of data
3396  * @id: data identifier
3397  * @description: text description of data, specific to the id value
3398  *
3399  * Load data provided by a non-file source (usually userspace buffer).  This
3400  * must be paired with a prior security_kernel_load_data() call that indicated
3401  * this hook would also be called, see security_kernel_load_data() for more
3402  * information.
3403  *
3404  * Return: Returns 0 if permission is granted.
3405  */
3406 int security_kernel_post_load_data(char *buf, loff_t size,
3407 				   enum kernel_load_data_id id,
3408 				   char *description)
3409 {
3410 	return call_int_hook(kernel_post_load_data, buf, size, id, description);
3411 }
3412 EXPORT_SYMBOL_GPL(security_kernel_post_load_data);
3413 
3414 /**
3415  * security_task_fix_setuid() - Update LSM with new user id attributes
3416  * @new: updated credentials
3417  * @old: credentials being replaced
3418  * @flags: LSM_SETID_* flag values
3419  *
3420  * Update the module's state after setting one or more of the user identity
3421  * attributes of the current process.  The @flags parameter indicates which of
3422  * the set*uid system calls invoked this hook.  If @new is the set of
3423  * credentials that will be installed.  Modifications should be made to this
3424  * rather than to @current->cred.
3425  *
3426  * Return: Returns 0 on success.
3427  */
3428 int security_task_fix_setuid(struct cred *new, const struct cred *old,
3429 			     int flags)
3430 {
3431 	return call_int_hook(task_fix_setuid, new, old, flags);
3432 }
3433 
3434 /**
3435  * security_task_fix_setgid() - Update LSM with new group id attributes
3436  * @new: updated credentials
3437  * @old: credentials being replaced
3438  * @flags: LSM_SETID_* flag value
3439  *
3440  * Update the module's state after setting one or more of the group identity
3441  * attributes of the current process.  The @flags parameter indicates which of
3442  * the set*gid system calls invoked this hook.  @new is the set of credentials
3443  * that will be installed.  Modifications should be made to this rather than to
3444  * @current->cred.
3445  *
3446  * Return: Returns 0 on success.
3447  */
3448 int security_task_fix_setgid(struct cred *new, const struct cred *old,
3449 			     int flags)
3450 {
3451 	return call_int_hook(task_fix_setgid, new, old, flags);
3452 }
3453 
3454 /**
3455  * security_task_fix_setgroups() - Update LSM with new supplementary groups
3456  * @new: updated credentials
3457  * @old: credentials being replaced
3458  *
3459  * Update the module's state after setting the supplementary group identity
3460  * attributes of the current process.  @new is the set of credentials that will
3461  * be installed.  Modifications should be made to this rather than to
3462  * @current->cred.
3463  *
3464  * Return: Returns 0 on success.
3465  */
3466 int security_task_fix_setgroups(struct cred *new, const struct cred *old)
3467 {
3468 	return call_int_hook(task_fix_setgroups, new, old);
3469 }
3470 
3471 /**
3472  * security_task_setpgid() - Check if setting the pgid is allowed
3473  * @p: task being modified
3474  * @pgid: new pgid
3475  *
3476  * Check permission before setting the process group identifier of the process
3477  * @p to @pgid.
3478  *
3479  * Return: Returns 0 if permission is granted.
3480  */
3481 int security_task_setpgid(struct task_struct *p, pid_t pgid)
3482 {
3483 	return call_int_hook(task_setpgid, p, pgid);
3484 }
3485 
3486 /**
3487  * security_task_getpgid() - Check if getting the pgid is allowed
3488  * @p: task
3489  *
3490  * Check permission before getting the process group identifier of the process
3491  * @p.
3492  *
3493  * Return: Returns 0 if permission is granted.
3494  */
3495 int security_task_getpgid(struct task_struct *p)
3496 {
3497 	return call_int_hook(task_getpgid, p);
3498 }
3499 
3500 /**
3501  * security_task_getsid() - Check if getting the session id is allowed
3502  * @p: task
3503  *
3504  * Check permission before getting the session identifier of the process @p.
3505  *
3506  * Return: Returns 0 if permission is granted.
3507  */
3508 int security_task_getsid(struct task_struct *p)
3509 {
3510 	return call_int_hook(task_getsid, p);
3511 }
3512 
3513 /**
3514  * security_current_getlsmprop_subj() - Current task's subjective LSM data
3515  * @prop: lsm specific information
3516  *
3517  * Retrieve the subjective security identifier of the current task and return
3518  * it in @prop.
3519  */
3520 void security_current_getlsmprop_subj(struct lsm_prop *prop)
3521 {
3522 	lsmprop_init(prop);
3523 	call_void_hook(current_getlsmprop_subj, prop);
3524 }
3525 EXPORT_SYMBOL(security_current_getlsmprop_subj);
3526 
3527 /**
3528  * security_task_getlsmprop_obj() - Get a task's objective LSM data
3529  * @p: target task
3530  * @prop: lsm specific information
3531  *
3532  * Retrieve the objective security identifier of the task_struct in @p and
3533  * return it in @prop.
3534  */
3535 void security_task_getlsmprop_obj(struct task_struct *p, struct lsm_prop *prop)
3536 {
3537 	lsmprop_init(prop);
3538 	call_void_hook(task_getlsmprop_obj, p, prop);
3539 }
3540 EXPORT_SYMBOL(security_task_getlsmprop_obj);
3541 
3542 /**
3543  * security_task_setnice() - Check if setting a task's nice value is allowed
3544  * @p: target task
3545  * @nice: nice value
3546  *
3547  * Check permission before setting the nice value of @p to @nice.
3548  *
3549  * Return: Returns 0 if permission is granted.
3550  */
3551 int security_task_setnice(struct task_struct *p, int nice)
3552 {
3553 	return call_int_hook(task_setnice, p, nice);
3554 }
3555 
3556 /**
3557  * security_task_setioprio() - Check if setting a task's ioprio is allowed
3558  * @p: target task
3559  * @ioprio: ioprio value
3560  *
3561  * Check permission before setting the ioprio value of @p to @ioprio.
3562  *
3563  * Return: Returns 0 if permission is granted.
3564  */
3565 int security_task_setioprio(struct task_struct *p, int ioprio)
3566 {
3567 	return call_int_hook(task_setioprio, p, ioprio);
3568 }
3569 
3570 /**
3571  * security_task_getioprio() - Check if getting a task's ioprio is allowed
3572  * @p: task
3573  *
3574  * Check permission before getting the ioprio value of @p.
3575  *
3576  * Return: Returns 0 if permission is granted.
3577  */
3578 int security_task_getioprio(struct task_struct *p)
3579 {
3580 	return call_int_hook(task_getioprio, p);
3581 }
3582 
3583 /**
3584  * security_task_prlimit() - Check if get/setting resources limits is allowed
3585  * @cred: current task credentials
3586  * @tcred: target task credentials
3587  * @flags: LSM_PRLIMIT_* flag bits indicating a get/set/both
3588  *
3589  * Check permission before getting and/or setting the resource limits of
3590  * another task.
3591  *
3592  * Return: Returns 0 if permission is granted.
3593  */
3594 int security_task_prlimit(const struct cred *cred, const struct cred *tcred,
3595 			  unsigned int flags)
3596 {
3597 	return call_int_hook(task_prlimit, cred, tcred, flags);
3598 }
3599 
3600 /**
3601  * security_task_setrlimit() - Check if setting a new rlimit value is allowed
3602  * @p: target task's group leader
3603  * @resource: resource whose limit is being set
3604  * @new_rlim: new resource limit
3605  *
3606  * Check permission before setting the resource limits of process @p for
3607  * @resource to @new_rlim.  The old resource limit values can be examined by
3608  * dereferencing (p->signal->rlim + resource).
3609  *
3610  * Return: Returns 0 if permission is granted.
3611  */
3612 int security_task_setrlimit(struct task_struct *p, unsigned int resource,
3613 			    struct rlimit *new_rlim)
3614 {
3615 	return call_int_hook(task_setrlimit, p, resource, new_rlim);
3616 }
3617 
3618 /**
3619  * security_task_setscheduler() - Check if setting sched policy/param is allowed
3620  * @p: target task
3621  *
3622  * Check permission before setting scheduling policy and/or parameters of
3623  * process @p.
3624  *
3625  * Return: Returns 0 if permission is granted.
3626  */
3627 int security_task_setscheduler(struct task_struct *p)
3628 {
3629 	return call_int_hook(task_setscheduler, p);
3630 }
3631 
3632 /**
3633  * security_task_getscheduler() - Check if getting scheduling info is allowed
3634  * @p: target task
3635  *
3636  * Check permission before obtaining scheduling information for process @p.
3637  *
3638  * Return: Returns 0 if permission is granted.
3639  */
3640 int security_task_getscheduler(struct task_struct *p)
3641 {
3642 	return call_int_hook(task_getscheduler, p);
3643 }
3644 
3645 /**
3646  * security_task_movememory() - Check if moving memory is allowed
3647  * @p: task
3648  *
3649  * Check permission before moving memory owned by process @p.
3650  *
3651  * Return: Returns 0 if permission is granted.
3652  */
3653 int security_task_movememory(struct task_struct *p)
3654 {
3655 	return call_int_hook(task_movememory, p);
3656 }
3657 
3658 /**
3659  * security_task_kill() - Check if sending a signal is allowed
3660  * @p: target process
3661  * @info: signal information
3662  * @sig: signal value
3663  * @cred: credentials of the signal sender, NULL if @current
3664  *
3665  * Check permission before sending signal @sig to @p.  @info can be NULL, the
3666  * constant 1, or a pointer to a kernel_siginfo structure.  If @info is 1 or
3667  * SI_FROMKERNEL(info) is true, then the signal should be viewed as coming from
3668  * the kernel and should typically be permitted.  SIGIO signals are handled
3669  * separately by the send_sigiotask hook in file_security_ops.
3670  *
3671  * Return: Returns 0 if permission is granted.
3672  */
3673 int security_task_kill(struct task_struct *p, struct kernel_siginfo *info,
3674 		       int sig, const struct cred *cred)
3675 {
3676 	return call_int_hook(task_kill, p, info, sig, cred);
3677 }
3678 
3679 /**
3680  * security_task_prctl() - Check if a prctl op is allowed
3681  * @option: operation
3682  * @arg2: argument
3683  * @arg3: argument
3684  * @arg4: argument
3685  * @arg5: argument
3686  *
3687  * Check permission before performing a process control operation on the
3688  * current process.
3689  *
3690  * Return: Return -ENOSYS if no-one wanted to handle this op, any other value
3691  *         to cause prctl() to return immediately with that value.
3692  */
3693 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
3694 			unsigned long arg4, unsigned long arg5)
3695 {
3696 	int thisrc;
3697 	int rc = LSM_RET_DEFAULT(task_prctl);
3698 	struct lsm_static_call *scall;
3699 
3700 	lsm_for_each_hook(scall, task_prctl) {
3701 		thisrc = scall->hl->hook.task_prctl(option, arg2, arg3, arg4, arg5);
3702 		if (thisrc != LSM_RET_DEFAULT(task_prctl)) {
3703 			rc = thisrc;
3704 			if (thisrc != 0)
3705 				break;
3706 		}
3707 	}
3708 	return rc;
3709 }
3710 
3711 /**
3712  * security_task_to_inode() - Set the security attributes of a task's inode
3713  * @p: task
3714  * @inode: inode
3715  *
3716  * Set the security attributes for an inode based on an associated task's
3717  * security attributes, e.g. for /proc/pid inodes.
3718  */
3719 void security_task_to_inode(struct task_struct *p, struct inode *inode)
3720 {
3721 	call_void_hook(task_to_inode, p, inode);
3722 }
3723 
3724 /**
3725  * security_create_user_ns() - Check if creating a new userns is allowed
3726  * @cred: prepared creds
3727  *
3728  * Check permission prior to creating a new user namespace.
3729  *
3730  * Return: Returns 0 if successful, otherwise < 0 error code.
3731  */
3732 int security_create_user_ns(const struct cred *cred)
3733 {
3734 	return call_int_hook(userns_create, cred);
3735 }
3736 
3737 /**
3738  * security_ipc_permission() - Check if sysv ipc access is allowed
3739  * @ipcp: ipc permission structure
3740  * @flag: requested permissions
3741  *
3742  * Check permissions for access to IPC.
3743  *
3744  * Return: Returns 0 if permission is granted.
3745  */
3746 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
3747 {
3748 	return call_int_hook(ipc_permission, ipcp, flag);
3749 }
3750 
3751 /**
3752  * security_ipc_getlsmprop() - Get the sysv ipc object LSM data
3753  * @ipcp: ipc permission structure
3754  * @prop: pointer to lsm information
3755  *
3756  * Get the lsm information associated with the ipc object.
3757  */
3758 
3759 void security_ipc_getlsmprop(struct kern_ipc_perm *ipcp, struct lsm_prop *prop)
3760 {
3761 	lsmprop_init(prop);
3762 	call_void_hook(ipc_getlsmprop, ipcp, prop);
3763 }
3764 
3765 /**
3766  * security_msg_msg_alloc() - Allocate a sysv ipc message LSM blob
3767  * @msg: message structure
3768  *
3769  * Allocate and attach a security structure to the msg->security field.  The
3770  * security field is initialized to NULL when the structure is first created.
3771  *
3772  * Return: Return 0 if operation was successful and permission is granted.
3773  */
3774 int security_msg_msg_alloc(struct msg_msg *msg)
3775 {
3776 	int rc = lsm_msg_msg_alloc(msg);
3777 
3778 	if (unlikely(rc))
3779 		return rc;
3780 	rc = call_int_hook(msg_msg_alloc_security, msg);
3781 	if (unlikely(rc))
3782 		security_msg_msg_free(msg);
3783 	return rc;
3784 }
3785 
3786 /**
3787  * security_msg_msg_free() - Free a sysv ipc message LSM blob
3788  * @msg: message structure
3789  *
3790  * Deallocate the security structure for this message.
3791  */
3792 void security_msg_msg_free(struct msg_msg *msg)
3793 {
3794 	call_void_hook(msg_msg_free_security, msg);
3795 	kfree(msg->security);
3796 	msg->security = NULL;
3797 }
3798 
3799 /**
3800  * security_msg_queue_alloc() - Allocate a sysv ipc msg queue LSM blob
3801  * @msq: sysv ipc permission structure
3802  *
3803  * Allocate and attach a security structure to @msg. The security field is
3804  * initialized to NULL when the structure is first created.
3805  *
3806  * Return: Returns 0 if operation was successful and permission is granted.
3807  */
3808 int security_msg_queue_alloc(struct kern_ipc_perm *msq)
3809 {
3810 	int rc = lsm_ipc_alloc(msq);
3811 
3812 	if (unlikely(rc))
3813 		return rc;
3814 	rc = call_int_hook(msg_queue_alloc_security, msq);
3815 	if (unlikely(rc))
3816 		security_msg_queue_free(msq);
3817 	return rc;
3818 }
3819 
3820 /**
3821  * security_msg_queue_free() - Free a sysv ipc msg queue LSM blob
3822  * @msq: sysv ipc permission structure
3823  *
3824  * Deallocate security field @perm->security for the message queue.
3825  */
3826 void security_msg_queue_free(struct kern_ipc_perm *msq)
3827 {
3828 	call_void_hook(msg_queue_free_security, msq);
3829 	kfree(msq->security);
3830 	msq->security = NULL;
3831 }
3832 
3833 /**
3834  * security_msg_queue_associate() - Check if a msg queue operation is allowed
3835  * @msq: sysv ipc permission structure
3836  * @msqflg: operation flags
3837  *
3838  * Check permission when a message queue is requested through the msgget system
3839  * call. This hook is only called when returning the message queue identifier
3840  * for an existing message queue, not when a new message queue is created.
3841  *
3842  * Return: Return 0 if permission is granted.
3843  */
3844 int security_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
3845 {
3846 	return call_int_hook(msg_queue_associate, msq, msqflg);
3847 }
3848 
3849 /**
3850  * security_msg_queue_msgctl() - Check if a msg queue operation is allowed
3851  * @msq: sysv ipc permission structure
3852  * @cmd: operation
3853  *
3854  * Check permission when a message control operation specified by @cmd is to be
3855  * performed on the message queue with permissions.
3856  *
3857  * Return: Returns 0 if permission is granted.
3858  */
3859 int security_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
3860 {
3861 	return call_int_hook(msg_queue_msgctl, msq, cmd);
3862 }
3863 
3864 /**
3865  * security_msg_queue_msgsnd() - Check if sending a sysv ipc message is allowed
3866  * @msq: sysv ipc permission structure
3867  * @msg: message
3868  * @msqflg: operation flags
3869  *
3870  * Check permission before a message, @msg, is enqueued on the message queue
3871  * with permissions specified in @msq.
3872  *
3873  * Return: Returns 0 if permission is granted.
3874  */
3875 int security_msg_queue_msgsnd(struct kern_ipc_perm *msq,
3876 			      struct msg_msg *msg, int msqflg)
3877 {
3878 	return call_int_hook(msg_queue_msgsnd, msq, msg, msqflg);
3879 }
3880 
3881 /**
3882  * security_msg_queue_msgrcv() - Check if receiving a sysv ipc msg is allowed
3883  * @msq: sysv ipc permission structure
3884  * @msg: message
3885  * @target: target task
3886  * @type: type of message requested
3887  * @mode: operation flags
3888  *
3889  * Check permission before a message, @msg, is removed from the message	queue.
3890  * The @target task structure contains a pointer to the process that will be
3891  * receiving the message (not equal to the current process when inline receives
3892  * are being performed).
3893  *
3894  * Return: Returns 0 if permission is granted.
3895  */
3896 int security_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
3897 			      struct task_struct *target, long type, int mode)
3898 {
3899 	return call_int_hook(msg_queue_msgrcv, msq, msg, target, type, mode);
3900 }
3901 
3902 /**
3903  * security_shm_alloc() - Allocate a sysv shm LSM blob
3904  * @shp: sysv ipc permission structure
3905  *
3906  * Allocate and attach a security structure to the @shp security field.  The
3907  * security field is initialized to NULL when the structure is first created.
3908  *
3909  * Return: Returns 0 if operation was successful and permission is granted.
3910  */
3911 int security_shm_alloc(struct kern_ipc_perm *shp)
3912 {
3913 	int rc = lsm_ipc_alloc(shp);
3914 
3915 	if (unlikely(rc))
3916 		return rc;
3917 	rc = call_int_hook(shm_alloc_security, shp);
3918 	if (unlikely(rc))
3919 		security_shm_free(shp);
3920 	return rc;
3921 }
3922 
3923 /**
3924  * security_shm_free() - Free a sysv shm LSM blob
3925  * @shp: sysv ipc permission structure
3926  *
3927  * Deallocate the security structure @perm->security for the memory segment.
3928  */
3929 void security_shm_free(struct kern_ipc_perm *shp)
3930 {
3931 	call_void_hook(shm_free_security, shp);
3932 	kfree(shp->security);
3933 	shp->security = NULL;
3934 }
3935 
3936 /**
3937  * security_shm_associate() - Check if a sysv shm operation is allowed
3938  * @shp: sysv ipc permission structure
3939  * @shmflg: operation flags
3940  *
3941  * Check permission when a shared memory region is requested through the shmget
3942  * system call. This hook is only called when returning the shared memory
3943  * region identifier for an existing region, not when a new shared memory
3944  * region is created.
3945  *
3946  * Return: Returns 0 if permission is granted.
3947  */
3948 int security_shm_associate(struct kern_ipc_perm *shp, int shmflg)
3949 {
3950 	return call_int_hook(shm_associate, shp, shmflg);
3951 }
3952 
3953 /**
3954  * security_shm_shmctl() - Check if a sysv shm operation is allowed
3955  * @shp: sysv ipc permission structure
3956  * @cmd: operation
3957  *
3958  * Check permission when a shared memory control operation specified by @cmd is
3959  * to be performed on the shared memory region with permissions in @shp.
3960  *
3961  * Return: Return 0 if permission is granted.
3962  */
3963 int security_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
3964 {
3965 	return call_int_hook(shm_shmctl, shp, cmd);
3966 }
3967 
3968 /**
3969  * security_shm_shmat() - Check if a sysv shm attach operation is allowed
3970  * @shp: sysv ipc permission structure
3971  * @shmaddr: address of memory region to attach
3972  * @shmflg: operation flags
3973  *
3974  * Check permissions prior to allowing the shmat system call to attach the
3975  * shared memory segment with permissions @shp to the data segment of the
3976  * calling process. The attaching address is specified by @shmaddr.
3977  *
3978  * Return: Returns 0 if permission is granted.
3979  */
3980 int security_shm_shmat(struct kern_ipc_perm *shp,
3981 		       char __user *shmaddr, int shmflg)
3982 {
3983 	return call_int_hook(shm_shmat, shp, shmaddr, shmflg);
3984 }
3985 
3986 /**
3987  * security_sem_alloc() - Allocate a sysv semaphore LSM blob
3988  * @sma: sysv ipc permission structure
3989  *
3990  * Allocate and attach a security structure to the @sma security field. The
3991  * security field is initialized to NULL when the structure is first created.
3992  *
3993  * Return: Returns 0 if operation was successful and permission is granted.
3994  */
3995 int security_sem_alloc(struct kern_ipc_perm *sma)
3996 {
3997 	int rc = lsm_ipc_alloc(sma);
3998 
3999 	if (unlikely(rc))
4000 		return rc;
4001 	rc = call_int_hook(sem_alloc_security, sma);
4002 	if (unlikely(rc))
4003 		security_sem_free(sma);
4004 	return rc;
4005 }
4006 
4007 /**
4008  * security_sem_free() - Free a sysv semaphore LSM blob
4009  * @sma: sysv ipc permission structure
4010  *
4011  * Deallocate security structure @sma->security for the semaphore.
4012  */
4013 void security_sem_free(struct kern_ipc_perm *sma)
4014 {
4015 	call_void_hook(sem_free_security, sma);
4016 	kfree(sma->security);
4017 	sma->security = NULL;
4018 }
4019 
4020 /**
4021  * security_sem_associate() - Check if a sysv semaphore operation is allowed
4022  * @sma: sysv ipc permission structure
4023  * @semflg: operation flags
4024  *
4025  * Check permission when a semaphore is requested through the semget system
4026  * call. This hook is only called when returning the semaphore identifier for
4027  * an existing semaphore, not when a new one must be created.
4028  *
4029  * Return: Returns 0 if permission is granted.
4030  */
4031 int security_sem_associate(struct kern_ipc_perm *sma, int semflg)
4032 {
4033 	return call_int_hook(sem_associate, sma, semflg);
4034 }
4035 
4036 /**
4037  * security_sem_semctl() - Check if a sysv semaphore operation is allowed
4038  * @sma: sysv ipc permission structure
4039  * @cmd: operation
4040  *
4041  * Check permission when a semaphore operation specified by @cmd is to be
4042  * performed on the semaphore.
4043  *
4044  * Return: Returns 0 if permission is granted.
4045  */
4046 int security_sem_semctl(struct kern_ipc_perm *sma, int cmd)
4047 {
4048 	return call_int_hook(sem_semctl, sma, cmd);
4049 }
4050 
4051 /**
4052  * security_sem_semop() - Check if a sysv semaphore operation is allowed
4053  * @sma: sysv ipc permission structure
4054  * @sops: operations to perform
4055  * @nsops: number of operations
4056  * @alter: flag indicating changes will be made
4057  *
4058  * Check permissions before performing operations on members of the semaphore
4059  * set. If the @alter flag is nonzero, the semaphore set may be modified.
4060  *
4061  * Return: Returns 0 if permission is granted.
4062  */
4063 int security_sem_semop(struct kern_ipc_perm *sma, struct sembuf *sops,
4064 		       unsigned nsops, int alter)
4065 {
4066 	return call_int_hook(sem_semop, sma, sops, nsops, alter);
4067 }
4068 
4069 /**
4070  * security_d_instantiate() - Populate an inode's LSM state based on a dentry
4071  * @dentry: dentry
4072  * @inode: inode
4073  *
4074  * Fill in @inode security information for a @dentry if allowed.
4075  */
4076 void security_d_instantiate(struct dentry *dentry, struct inode *inode)
4077 {
4078 	if (unlikely(inode && IS_PRIVATE(inode)))
4079 		return;
4080 	call_void_hook(d_instantiate, dentry, inode);
4081 }
4082 EXPORT_SYMBOL(security_d_instantiate);
4083 
4084 /*
4085  * Please keep this in sync with it's counterpart in security/lsm_syscalls.c
4086  */
4087 
4088 /**
4089  * security_getselfattr - Read an LSM attribute of the current process.
4090  * @attr: which attribute to return
4091  * @uctx: the user-space destination for the information, or NULL
4092  * @size: pointer to the size of space available to receive the data
4093  * @flags: special handling options. LSM_FLAG_SINGLE indicates that only
4094  * attributes associated with the LSM identified in the passed @ctx be
4095  * reported.
4096  *
4097  * A NULL value for @uctx can be used to get both the number of attributes
4098  * and the size of the data.
4099  *
4100  * Returns the number of attributes found on success, negative value
4101  * on error. @size is reset to the total size of the data.
4102  * If @size is insufficient to contain the data -E2BIG is returned.
4103  */
4104 int security_getselfattr(unsigned int attr, struct lsm_ctx __user *uctx,
4105 			 u32 __user *size, u32 flags)
4106 {
4107 	struct lsm_static_call *scall;
4108 	struct lsm_ctx lctx = { .id = LSM_ID_UNDEF, };
4109 	u8 __user *base = (u8 __user *)uctx;
4110 	u32 entrysize;
4111 	u32 total = 0;
4112 	u32 left;
4113 	bool toobig = false;
4114 	bool single = false;
4115 	int count = 0;
4116 	int rc;
4117 
4118 	if (attr == LSM_ATTR_UNDEF)
4119 		return -EINVAL;
4120 	if (size == NULL)
4121 		return -EINVAL;
4122 	if (get_user(left, size))
4123 		return -EFAULT;
4124 
4125 	if (flags) {
4126 		/*
4127 		 * Only flag supported is LSM_FLAG_SINGLE
4128 		 */
4129 		if (flags != LSM_FLAG_SINGLE || !uctx)
4130 			return -EINVAL;
4131 		if (copy_from_user(&lctx, uctx, sizeof(lctx)))
4132 			return -EFAULT;
4133 		/*
4134 		 * If the LSM ID isn't specified it is an error.
4135 		 */
4136 		if (lctx.id == LSM_ID_UNDEF)
4137 			return -EINVAL;
4138 		single = true;
4139 	}
4140 
4141 	/*
4142 	 * In the usual case gather all the data from the LSMs.
4143 	 * In the single case only get the data from the LSM specified.
4144 	 */
4145 	lsm_for_each_hook(scall, getselfattr) {
4146 		if (single && lctx.id != scall->hl->lsmid->id)
4147 			continue;
4148 		entrysize = left;
4149 		if (base)
4150 			uctx = (struct lsm_ctx __user *)(base + total);
4151 		rc = scall->hl->hook.getselfattr(attr, uctx, &entrysize, flags);
4152 		if (rc == -EOPNOTSUPP) {
4153 			rc = 0;
4154 			continue;
4155 		}
4156 		if (rc == -E2BIG) {
4157 			rc = 0;
4158 			left = 0;
4159 			toobig = true;
4160 		} else if (rc < 0)
4161 			return rc;
4162 		else
4163 			left -= entrysize;
4164 
4165 		total += entrysize;
4166 		count += rc;
4167 		if (single)
4168 			break;
4169 	}
4170 	if (put_user(total, size))
4171 		return -EFAULT;
4172 	if (toobig)
4173 		return -E2BIG;
4174 	if (count == 0)
4175 		return LSM_RET_DEFAULT(getselfattr);
4176 	return count;
4177 }
4178 
4179 /*
4180  * Please keep this in sync with it's counterpart in security/lsm_syscalls.c
4181  */
4182 
4183 /**
4184  * security_setselfattr - Set an LSM attribute on the current process.
4185  * @attr: which attribute to set
4186  * @uctx: the user-space source for the information
4187  * @size: the size of the data
4188  * @flags: reserved for future use, must be 0
4189  *
4190  * Set an LSM attribute for the current process. The LSM, attribute
4191  * and new value are included in @uctx.
4192  *
4193  * Returns 0 on success, -EINVAL if the input is inconsistent, -EFAULT
4194  * if the user buffer is inaccessible, E2BIG if size is too big, or an
4195  * LSM specific failure.
4196  */
4197 int security_setselfattr(unsigned int attr, struct lsm_ctx __user *uctx,
4198 			 u32 size, u32 flags)
4199 {
4200 	struct lsm_static_call *scall;
4201 	struct lsm_ctx *lctx;
4202 	int rc = LSM_RET_DEFAULT(setselfattr);
4203 	u64 required_len;
4204 
4205 	if (flags)
4206 		return -EINVAL;
4207 	if (size < sizeof(*lctx))
4208 		return -EINVAL;
4209 	if (size > PAGE_SIZE)
4210 		return -E2BIG;
4211 
4212 	lctx = memdup_user(uctx, size);
4213 	if (IS_ERR(lctx))
4214 		return PTR_ERR(lctx);
4215 
4216 	if (size < lctx->len ||
4217 	    check_add_overflow(sizeof(*lctx), lctx->ctx_len, &required_len) ||
4218 	    lctx->len < required_len) {
4219 		rc = -EINVAL;
4220 		goto free_out;
4221 	}
4222 
4223 	lsm_for_each_hook(scall, setselfattr)
4224 		if ((scall->hl->lsmid->id) == lctx->id) {
4225 			rc = scall->hl->hook.setselfattr(attr, lctx, size, flags);
4226 			break;
4227 		}
4228 
4229 free_out:
4230 	kfree(lctx);
4231 	return rc;
4232 }
4233 
4234 /**
4235  * security_getprocattr() - Read an attribute for a task
4236  * @p: the task
4237  * @lsmid: LSM identification
4238  * @name: attribute name
4239  * @value: attribute value
4240  *
4241  * Read attribute @name for task @p and store it into @value if allowed.
4242  *
4243  * Return: Returns the length of @value on success, a negative value otherwise.
4244  */
4245 int security_getprocattr(struct task_struct *p, int lsmid, const char *name,
4246 			 char **value)
4247 {
4248 	struct lsm_static_call *scall;
4249 
4250 	lsm_for_each_hook(scall, getprocattr) {
4251 		if (lsmid != 0 && lsmid != scall->hl->lsmid->id)
4252 			continue;
4253 		return scall->hl->hook.getprocattr(p, name, value);
4254 	}
4255 	return LSM_RET_DEFAULT(getprocattr);
4256 }
4257 
4258 /**
4259  * security_setprocattr() - Set an attribute for a task
4260  * @lsmid: LSM identification
4261  * @name: attribute name
4262  * @value: attribute value
4263  * @size: attribute value size
4264  *
4265  * Write (set) the current task's attribute @name to @value, size @size if
4266  * allowed.
4267  *
4268  * Return: Returns bytes written on success, a negative value otherwise.
4269  */
4270 int security_setprocattr(int lsmid, const char *name, void *value, size_t size)
4271 {
4272 	struct lsm_static_call *scall;
4273 
4274 	lsm_for_each_hook(scall, setprocattr) {
4275 		if (lsmid != 0 && lsmid != scall->hl->lsmid->id)
4276 			continue;
4277 		return scall->hl->hook.setprocattr(name, value, size);
4278 	}
4279 	return LSM_RET_DEFAULT(setprocattr);
4280 }
4281 
4282 /**
4283  * security_netlink_send() - Save info and check if netlink sending is allowed
4284  * @sk: sending socket
4285  * @skb: netlink message
4286  *
4287  * Save security information for a netlink message so that permission checking
4288  * can be performed when the message is processed.  The security information
4289  * can be saved using the eff_cap field of the netlink_skb_parms structure.
4290  * Also may be used to provide fine grained control over message transmission.
4291  *
4292  * Return: Returns 0 if the information was successfully saved and message is
4293  *         allowed to be transmitted.
4294  */
4295 int security_netlink_send(struct sock *sk, struct sk_buff *skb)
4296 {
4297 	return call_int_hook(netlink_send, sk, skb);
4298 }
4299 
4300 /**
4301  * security_ismaclabel() - Check if the named attribute is a MAC label
4302  * @name: full extended attribute name
4303  *
4304  * Check if the extended attribute specified by @name represents a MAC label.
4305  *
4306  * Return: Returns 1 if name is a MAC attribute otherwise returns 0.
4307  */
4308 int security_ismaclabel(const char *name)
4309 {
4310 	return call_int_hook(ismaclabel, name);
4311 }
4312 EXPORT_SYMBOL(security_ismaclabel);
4313 
4314 /**
4315  * security_secid_to_secctx() - Convert a secid to a secctx
4316  * @secid: secid
4317  * @secdata: secctx
4318  * @seclen: secctx length
4319  *
4320  * Convert secid to security context.  If @secdata is NULL the length of the
4321  * result will be returned in @seclen, but no @secdata will be returned.  This
4322  * does mean that the length could change between calls to check the length and
4323  * the next call which actually allocates and returns the @secdata.
4324  *
4325  * Return: Return 0 on success, error on failure.
4326  */
4327 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
4328 {
4329 	return call_int_hook(secid_to_secctx, secid, secdata, seclen);
4330 }
4331 EXPORT_SYMBOL(security_secid_to_secctx);
4332 
4333 /**
4334  * security_lsmprop_to_secctx() - Convert a lsm_prop to a secctx
4335  * @prop: lsm specific information
4336  * @secdata: secctx
4337  * @seclen: secctx length
4338  *
4339  * Convert a @prop entry to security context.  If @secdata is NULL the
4340  * length of the result will be returned in @seclen, but no @secdata
4341  * will be returned.  This does mean that the length could change between
4342  * calls to check the length and the next call which actually allocates
4343  * and returns the @secdata.
4344  *
4345  * Return: Return 0 on success, error on failure.
4346  */
4347 int security_lsmprop_to_secctx(struct lsm_prop *prop, char **secdata,
4348 			       u32 *seclen)
4349 {
4350 	return call_int_hook(lsmprop_to_secctx, prop, secdata, seclen);
4351 }
4352 EXPORT_SYMBOL(security_lsmprop_to_secctx);
4353 
4354 /**
4355  * security_secctx_to_secid() - Convert a secctx to a secid
4356  * @secdata: secctx
4357  * @seclen: length of secctx
4358  * @secid: secid
4359  *
4360  * Convert security context to secid.
4361  *
4362  * Return: Returns 0 on success, error on failure.
4363  */
4364 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
4365 {
4366 	*secid = 0;
4367 	return call_int_hook(secctx_to_secid, secdata, seclen, secid);
4368 }
4369 EXPORT_SYMBOL(security_secctx_to_secid);
4370 
4371 /**
4372  * security_release_secctx() - Free a secctx buffer
4373  * @secdata: secctx
4374  * @seclen: length of secctx
4375  *
4376  * Release the security context.
4377  */
4378 void security_release_secctx(char *secdata, u32 seclen)
4379 {
4380 	call_void_hook(release_secctx, secdata, seclen);
4381 }
4382 EXPORT_SYMBOL(security_release_secctx);
4383 
4384 /**
4385  * security_inode_invalidate_secctx() - Invalidate an inode's security label
4386  * @inode: inode
4387  *
4388  * Notify the security module that it must revalidate the security context of
4389  * an inode.
4390  */
4391 void security_inode_invalidate_secctx(struct inode *inode)
4392 {
4393 	call_void_hook(inode_invalidate_secctx, inode);
4394 }
4395 EXPORT_SYMBOL(security_inode_invalidate_secctx);
4396 
4397 /**
4398  * security_inode_notifysecctx() - Notify the LSM of an inode's security label
4399  * @inode: inode
4400  * @ctx: secctx
4401  * @ctxlen: length of secctx
4402  *
4403  * Notify the security module of what the security context of an inode should
4404  * be.  Initializes the incore security context managed by the security module
4405  * for this inode.  Example usage: NFS client invokes this hook to initialize
4406  * the security context in its incore inode to the value provided by the server
4407  * for the file when the server returned the file's attributes to the client.
4408  * Must be called with inode->i_mutex locked.
4409  *
4410  * Return: Returns 0 on success, error on failure.
4411  */
4412 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
4413 {
4414 	return call_int_hook(inode_notifysecctx, inode, ctx, ctxlen);
4415 }
4416 EXPORT_SYMBOL(security_inode_notifysecctx);
4417 
4418 /**
4419  * security_inode_setsecctx() - Change the security label of an inode
4420  * @dentry: inode
4421  * @ctx: secctx
4422  * @ctxlen: length of secctx
4423  *
4424  * Change the security context of an inode.  Updates the incore security
4425  * context managed by the security module and invokes the fs code as needed
4426  * (via __vfs_setxattr_noperm) to update any backing xattrs that represent the
4427  * context.  Example usage: NFS server invokes this hook to change the security
4428  * context in its incore inode and on the backing filesystem to a value
4429  * provided by the client on a SETATTR operation.  Must be called with
4430  * inode->i_mutex locked.
4431  *
4432  * Return: Returns 0 on success, error on failure.
4433  */
4434 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
4435 {
4436 	return call_int_hook(inode_setsecctx, dentry, ctx, ctxlen);
4437 }
4438 EXPORT_SYMBOL(security_inode_setsecctx);
4439 
4440 /**
4441  * security_inode_getsecctx() - Get the security label of an inode
4442  * @inode: inode
4443  * @ctx: secctx
4444  * @ctxlen: length of secctx
4445  *
4446  * On success, returns 0 and fills out @ctx and @ctxlen with the security
4447  * context for the given @inode.
4448  *
4449  * Return: Returns 0 on success, error on failure.
4450  */
4451 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
4452 {
4453 	return call_int_hook(inode_getsecctx, inode, ctx, ctxlen);
4454 }
4455 EXPORT_SYMBOL(security_inode_getsecctx);
4456 
4457 #ifdef CONFIG_WATCH_QUEUE
4458 /**
4459  * security_post_notification() - Check if a watch notification can be posted
4460  * @w_cred: credentials of the task that set the watch
4461  * @cred: credentials of the task which triggered the watch
4462  * @n: the notification
4463  *
4464  * Check to see if a watch notification can be posted to a particular queue.
4465  *
4466  * Return: Returns 0 if permission is granted.
4467  */
4468 int security_post_notification(const struct cred *w_cred,
4469 			       const struct cred *cred,
4470 			       struct watch_notification *n)
4471 {
4472 	return call_int_hook(post_notification, w_cred, cred, n);
4473 }
4474 #endif /* CONFIG_WATCH_QUEUE */
4475 
4476 #ifdef CONFIG_KEY_NOTIFICATIONS
4477 /**
4478  * security_watch_key() - Check if a task is allowed to watch for key events
4479  * @key: the key to watch
4480  *
4481  * Check to see if a process is allowed to watch for event notifications from
4482  * a key or keyring.
4483  *
4484  * Return: Returns 0 if permission is granted.
4485  */
4486 int security_watch_key(struct key *key)
4487 {
4488 	return call_int_hook(watch_key, key);
4489 }
4490 #endif /* CONFIG_KEY_NOTIFICATIONS */
4491 
4492 #ifdef CONFIG_SECURITY_NETWORK
4493 /**
4494  * security_unix_stream_connect() - Check if a AF_UNIX stream is allowed
4495  * @sock: originating sock
4496  * @other: peer sock
4497  * @newsk: new sock
4498  *
4499  * Check permissions before establishing a Unix domain stream connection
4500  * between @sock and @other.
4501  *
4502  * The @unix_stream_connect and @unix_may_send hooks were necessary because
4503  * Linux provides an alternative to the conventional file name space for Unix
4504  * domain sockets.  Whereas binding and connecting to sockets in the file name
4505  * space is mediated by the typical file permissions (and caught by the mknod
4506  * and permission hooks in inode_security_ops), binding and connecting to
4507  * sockets in the abstract name space is completely unmediated.  Sufficient
4508  * control of Unix domain sockets in the abstract name space isn't possible
4509  * using only the socket layer hooks, since we need to know the actual target
4510  * socket, which is not looked up until we are inside the af_unix code.
4511  *
4512  * Return: Returns 0 if permission is granted.
4513  */
4514 int security_unix_stream_connect(struct sock *sock, struct sock *other,
4515 				 struct sock *newsk)
4516 {
4517 	return call_int_hook(unix_stream_connect, sock, other, newsk);
4518 }
4519 EXPORT_SYMBOL(security_unix_stream_connect);
4520 
4521 /**
4522  * security_unix_may_send() - Check if AF_UNIX socket can send datagrams
4523  * @sock: originating sock
4524  * @other: peer sock
4525  *
4526  * Check permissions before connecting or sending datagrams from @sock to
4527  * @other.
4528  *
4529  * The @unix_stream_connect and @unix_may_send hooks were necessary because
4530  * Linux provides an alternative to the conventional file name space for Unix
4531  * domain sockets.  Whereas binding and connecting to sockets in the file name
4532  * space is mediated by the typical file permissions (and caught by the mknod
4533  * and permission hooks in inode_security_ops), binding and connecting to
4534  * sockets in the abstract name space is completely unmediated.  Sufficient
4535  * control of Unix domain sockets in the abstract name space isn't possible
4536  * using only the socket layer hooks, since we need to know the actual target
4537  * socket, which is not looked up until we are inside the af_unix code.
4538  *
4539  * Return: Returns 0 if permission is granted.
4540  */
4541 int security_unix_may_send(struct socket *sock,  struct socket *other)
4542 {
4543 	return call_int_hook(unix_may_send, sock, other);
4544 }
4545 EXPORT_SYMBOL(security_unix_may_send);
4546 
4547 /**
4548  * security_socket_create() - Check if creating a new socket is allowed
4549  * @family: protocol family
4550  * @type: communications type
4551  * @protocol: requested protocol
4552  * @kern: set to 1 if a kernel socket is requested
4553  *
4554  * Check permissions prior to creating a new socket.
4555  *
4556  * Return: Returns 0 if permission is granted.
4557  */
4558 int security_socket_create(int family, int type, int protocol, int kern)
4559 {
4560 	return call_int_hook(socket_create, family, type, protocol, kern);
4561 }
4562 
4563 /**
4564  * security_socket_post_create() - Initialize a newly created socket
4565  * @sock: socket
4566  * @family: protocol family
4567  * @type: communications type
4568  * @protocol: requested protocol
4569  * @kern: set to 1 if a kernel socket is requested
4570  *
4571  * This hook allows a module to update or allocate a per-socket security
4572  * structure. Note that the security field was not added directly to the socket
4573  * structure, but rather, the socket security information is stored in the
4574  * associated inode.  Typically, the inode alloc_security hook will allocate
4575  * and attach security information to SOCK_INODE(sock)->i_security.  This hook
4576  * may be used to update the SOCK_INODE(sock)->i_security field with additional
4577  * information that wasn't available when the inode was allocated.
4578  *
4579  * Return: Returns 0 if permission is granted.
4580  */
4581 int security_socket_post_create(struct socket *sock, int family,
4582 				int type, int protocol, int kern)
4583 {
4584 	return call_int_hook(socket_post_create, sock, family, type,
4585 			     protocol, kern);
4586 }
4587 
4588 /**
4589  * security_socket_socketpair() - Check if creating a socketpair is allowed
4590  * @socka: first socket
4591  * @sockb: second socket
4592  *
4593  * Check permissions before creating a fresh pair of sockets.
4594  *
4595  * Return: Returns 0 if permission is granted and the connection was
4596  *         established.
4597  */
4598 int security_socket_socketpair(struct socket *socka, struct socket *sockb)
4599 {
4600 	return call_int_hook(socket_socketpair, socka, sockb);
4601 }
4602 EXPORT_SYMBOL(security_socket_socketpair);
4603 
4604 /**
4605  * security_socket_bind() - Check if a socket bind operation is allowed
4606  * @sock: socket
4607  * @address: requested bind address
4608  * @addrlen: length of address
4609  *
4610  * Check permission before socket protocol layer bind operation is performed
4611  * and the socket @sock is bound to the address specified in the @address
4612  * parameter.
4613  *
4614  * Return: Returns 0 if permission is granted.
4615  */
4616 int security_socket_bind(struct socket *sock,
4617 			 struct sockaddr *address, int addrlen)
4618 {
4619 	return call_int_hook(socket_bind, sock, address, addrlen);
4620 }
4621 
4622 /**
4623  * security_socket_connect() - Check if a socket connect operation is allowed
4624  * @sock: socket
4625  * @address: address of remote connection point
4626  * @addrlen: length of address
4627  *
4628  * Check permission before socket protocol layer connect operation attempts to
4629  * connect socket @sock to a remote address, @address.
4630  *
4631  * Return: Returns 0 if permission is granted.
4632  */
4633 int security_socket_connect(struct socket *sock,
4634 			    struct sockaddr *address, int addrlen)
4635 {
4636 	return call_int_hook(socket_connect, sock, address, addrlen);
4637 }
4638 
4639 /**
4640  * security_socket_listen() - Check if a socket is allowed to listen
4641  * @sock: socket
4642  * @backlog: connection queue size
4643  *
4644  * Check permission before socket protocol layer listen operation.
4645  *
4646  * Return: Returns 0 if permission is granted.
4647  */
4648 int security_socket_listen(struct socket *sock, int backlog)
4649 {
4650 	return call_int_hook(socket_listen, sock, backlog);
4651 }
4652 
4653 /**
4654  * security_socket_accept() - Check if a socket is allowed to accept connections
4655  * @sock: listening socket
4656  * @newsock: newly creation connection socket
4657  *
4658  * Check permission before accepting a new connection.  Note that the new
4659  * socket, @newsock, has been created and some information copied to it, but
4660  * the accept operation has not actually been performed.
4661  *
4662  * Return: Returns 0 if permission is granted.
4663  */
4664 int security_socket_accept(struct socket *sock, struct socket *newsock)
4665 {
4666 	return call_int_hook(socket_accept, sock, newsock);
4667 }
4668 
4669 /**
4670  * security_socket_sendmsg() - Check if sending a message is allowed
4671  * @sock: sending socket
4672  * @msg: message to send
4673  * @size: size of message
4674  *
4675  * Check permission before transmitting a message to another socket.
4676  *
4677  * Return: Returns 0 if permission is granted.
4678  */
4679 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
4680 {
4681 	return call_int_hook(socket_sendmsg, sock, msg, size);
4682 }
4683 
4684 /**
4685  * security_socket_recvmsg() - Check if receiving a message is allowed
4686  * @sock: receiving socket
4687  * @msg: message to receive
4688  * @size: size of message
4689  * @flags: operational flags
4690  *
4691  * Check permission before receiving a message from a socket.
4692  *
4693  * Return: Returns 0 if permission is granted.
4694  */
4695 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
4696 			    int size, int flags)
4697 {
4698 	return call_int_hook(socket_recvmsg, sock, msg, size, flags);
4699 }
4700 
4701 /**
4702  * security_socket_getsockname() - Check if reading the socket addr is allowed
4703  * @sock: socket
4704  *
4705  * Check permission before reading the local address (name) of the socket
4706  * object.
4707  *
4708  * Return: Returns 0 if permission is granted.
4709  */
4710 int security_socket_getsockname(struct socket *sock)
4711 {
4712 	return call_int_hook(socket_getsockname, sock);
4713 }
4714 
4715 /**
4716  * security_socket_getpeername() - Check if reading the peer's addr is allowed
4717  * @sock: socket
4718  *
4719  * Check permission before the remote address (name) of a socket object.
4720  *
4721  * Return: Returns 0 if permission is granted.
4722  */
4723 int security_socket_getpeername(struct socket *sock)
4724 {
4725 	return call_int_hook(socket_getpeername, sock);
4726 }
4727 
4728 /**
4729  * security_socket_getsockopt() - Check if reading a socket option is allowed
4730  * @sock: socket
4731  * @level: option's protocol level
4732  * @optname: option name
4733  *
4734  * Check permissions before retrieving the options associated with socket
4735  * @sock.
4736  *
4737  * Return: Returns 0 if permission is granted.
4738  */
4739 int security_socket_getsockopt(struct socket *sock, int level, int optname)
4740 {
4741 	return call_int_hook(socket_getsockopt, sock, level, optname);
4742 }
4743 
4744 /**
4745  * security_socket_setsockopt() - Check if setting a socket option is allowed
4746  * @sock: socket
4747  * @level: option's protocol level
4748  * @optname: option name
4749  *
4750  * Check permissions before setting the options associated with socket @sock.
4751  *
4752  * Return: Returns 0 if permission is granted.
4753  */
4754 int security_socket_setsockopt(struct socket *sock, int level, int optname)
4755 {
4756 	return call_int_hook(socket_setsockopt, sock, level, optname);
4757 }
4758 
4759 /**
4760  * security_socket_shutdown() - Checks if shutting down the socket is allowed
4761  * @sock: socket
4762  * @how: flag indicating how sends and receives are handled
4763  *
4764  * Checks permission before all or part of a connection on the socket @sock is
4765  * shut down.
4766  *
4767  * Return: Returns 0 if permission is granted.
4768  */
4769 int security_socket_shutdown(struct socket *sock, int how)
4770 {
4771 	return call_int_hook(socket_shutdown, sock, how);
4772 }
4773 
4774 /**
4775  * security_sock_rcv_skb() - Check if an incoming network packet is allowed
4776  * @sk: destination sock
4777  * @skb: incoming packet
4778  *
4779  * Check permissions on incoming network packets.  This hook is distinct from
4780  * Netfilter's IP input hooks since it is the first time that the incoming
4781  * sk_buff @skb has been associated with a particular socket, @sk.  Must not
4782  * sleep inside this hook because some callers hold spinlocks.
4783  *
4784  * Return: Returns 0 if permission is granted.
4785  */
4786 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4787 {
4788 	return call_int_hook(socket_sock_rcv_skb, sk, skb);
4789 }
4790 EXPORT_SYMBOL(security_sock_rcv_skb);
4791 
4792 /**
4793  * security_socket_getpeersec_stream() - Get the remote peer label
4794  * @sock: socket
4795  * @optval: destination buffer
4796  * @optlen: size of peer label copied into the buffer
4797  * @len: maximum size of the destination buffer
4798  *
4799  * This hook allows the security module to provide peer socket security state
4800  * for unix or connected tcp sockets to userspace via getsockopt SO_GETPEERSEC.
4801  * For tcp sockets this can be meaningful if the socket is associated with an
4802  * ipsec SA.
4803  *
4804  * Return: Returns 0 if all is well, otherwise, typical getsockopt return
4805  *         values.
4806  */
4807 int security_socket_getpeersec_stream(struct socket *sock, sockptr_t optval,
4808 				      sockptr_t optlen, unsigned int len)
4809 {
4810 	return call_int_hook(socket_getpeersec_stream, sock, optval, optlen,
4811 			     len);
4812 }
4813 
4814 /**
4815  * security_socket_getpeersec_dgram() - Get the remote peer label
4816  * @sock: socket
4817  * @skb: datagram packet
4818  * @secid: remote peer label secid
4819  *
4820  * This hook allows the security module to provide peer socket security state
4821  * for udp sockets on a per-packet basis to userspace via getsockopt
4822  * SO_GETPEERSEC. The application must first have indicated the IP_PASSSEC
4823  * option via getsockopt. It can then retrieve the security state returned by
4824  * this hook for a packet via the SCM_SECURITY ancillary message type.
4825  *
4826  * Return: Returns 0 on success, error on failure.
4827  */
4828 int security_socket_getpeersec_dgram(struct socket *sock,
4829 				     struct sk_buff *skb, u32 *secid)
4830 {
4831 	return call_int_hook(socket_getpeersec_dgram, sock, skb, secid);
4832 }
4833 EXPORT_SYMBOL(security_socket_getpeersec_dgram);
4834 
4835 /**
4836  * lsm_sock_alloc - allocate a composite sock blob
4837  * @sock: the sock that needs a blob
4838  * @gfp: allocation mode
4839  *
4840  * Allocate the sock blob for all the modules
4841  *
4842  * Returns 0, or -ENOMEM if memory can't be allocated.
4843  */
4844 static int lsm_sock_alloc(struct sock *sock, gfp_t gfp)
4845 {
4846 	return lsm_blob_alloc(&sock->sk_security, blob_sizes.lbs_sock, gfp);
4847 }
4848 
4849 /**
4850  * security_sk_alloc() - Allocate and initialize a sock's LSM blob
4851  * @sk: sock
4852  * @family: protocol family
4853  * @priority: gfp flags
4854  *
4855  * Allocate and attach a security structure to the sk->sk_security field, which
4856  * is used to copy security attributes between local stream sockets.
4857  *
4858  * Return: Returns 0 on success, error on failure.
4859  */
4860 int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
4861 {
4862 	int rc = lsm_sock_alloc(sk, priority);
4863 
4864 	if (unlikely(rc))
4865 		return rc;
4866 	rc = call_int_hook(sk_alloc_security, sk, family, priority);
4867 	if (unlikely(rc))
4868 		security_sk_free(sk);
4869 	return rc;
4870 }
4871 
4872 /**
4873  * security_sk_free() - Free the sock's LSM blob
4874  * @sk: sock
4875  *
4876  * Deallocate security structure.
4877  */
4878 void security_sk_free(struct sock *sk)
4879 {
4880 	call_void_hook(sk_free_security, sk);
4881 	kfree(sk->sk_security);
4882 	sk->sk_security = NULL;
4883 }
4884 
4885 /**
4886  * security_sk_clone() - Clone a sock's LSM state
4887  * @sk: original sock
4888  * @newsk: target sock
4889  *
4890  * Clone/copy security structure.
4891  */
4892 void security_sk_clone(const struct sock *sk, struct sock *newsk)
4893 {
4894 	call_void_hook(sk_clone_security, sk, newsk);
4895 }
4896 EXPORT_SYMBOL(security_sk_clone);
4897 
4898 /**
4899  * security_sk_classify_flow() - Set a flow's secid based on socket
4900  * @sk: original socket
4901  * @flic: target flow
4902  *
4903  * Set the target flow's secid to socket's secid.
4904  */
4905 void security_sk_classify_flow(const struct sock *sk, struct flowi_common *flic)
4906 {
4907 	call_void_hook(sk_getsecid, sk, &flic->flowic_secid);
4908 }
4909 EXPORT_SYMBOL(security_sk_classify_flow);
4910 
4911 /**
4912  * security_req_classify_flow() - Set a flow's secid based on request_sock
4913  * @req: request_sock
4914  * @flic: target flow
4915  *
4916  * Sets @flic's secid to @req's secid.
4917  */
4918 void security_req_classify_flow(const struct request_sock *req,
4919 				struct flowi_common *flic)
4920 {
4921 	call_void_hook(req_classify_flow, req, flic);
4922 }
4923 EXPORT_SYMBOL(security_req_classify_flow);
4924 
4925 /**
4926  * security_sock_graft() - Reconcile LSM state when grafting a sock on a socket
4927  * @sk: sock being grafted
4928  * @parent: target parent socket
4929  *
4930  * Sets @parent's inode secid to @sk's secid and update @sk with any necessary
4931  * LSM state from @parent.
4932  */
4933 void security_sock_graft(struct sock *sk, struct socket *parent)
4934 {
4935 	call_void_hook(sock_graft, sk, parent);
4936 }
4937 EXPORT_SYMBOL(security_sock_graft);
4938 
4939 /**
4940  * security_inet_conn_request() - Set request_sock state using incoming connect
4941  * @sk: parent listening sock
4942  * @skb: incoming connection
4943  * @req: new request_sock
4944  *
4945  * Initialize the @req LSM state based on @sk and the incoming connect in @skb.
4946  *
4947  * Return: Returns 0 if permission is granted.
4948  */
4949 int security_inet_conn_request(const struct sock *sk,
4950 			       struct sk_buff *skb, struct request_sock *req)
4951 {
4952 	return call_int_hook(inet_conn_request, sk, skb, req);
4953 }
4954 EXPORT_SYMBOL(security_inet_conn_request);
4955 
4956 /**
4957  * security_inet_csk_clone() - Set new sock LSM state based on request_sock
4958  * @newsk: new sock
4959  * @req: connection request_sock
4960  *
4961  * Set that LSM state of @sock using the LSM state from @req.
4962  */
4963 void security_inet_csk_clone(struct sock *newsk,
4964 			     const struct request_sock *req)
4965 {
4966 	call_void_hook(inet_csk_clone, newsk, req);
4967 }
4968 
4969 /**
4970  * security_inet_conn_established() - Update sock's LSM state with connection
4971  * @sk: sock
4972  * @skb: connection packet
4973  *
4974  * Update @sock's LSM state to represent a new connection from @skb.
4975  */
4976 void security_inet_conn_established(struct sock *sk,
4977 				    struct sk_buff *skb)
4978 {
4979 	call_void_hook(inet_conn_established, sk, skb);
4980 }
4981 EXPORT_SYMBOL(security_inet_conn_established);
4982 
4983 /**
4984  * security_secmark_relabel_packet() - Check if setting a secmark is allowed
4985  * @secid: new secmark value
4986  *
4987  * Check if the process should be allowed to relabel packets to @secid.
4988  *
4989  * Return: Returns 0 if permission is granted.
4990  */
4991 int security_secmark_relabel_packet(u32 secid)
4992 {
4993 	return call_int_hook(secmark_relabel_packet, secid);
4994 }
4995 EXPORT_SYMBOL(security_secmark_relabel_packet);
4996 
4997 /**
4998  * security_secmark_refcount_inc() - Increment the secmark labeling rule count
4999  *
5000  * Tells the LSM to increment the number of secmark labeling rules loaded.
5001  */
5002 void security_secmark_refcount_inc(void)
5003 {
5004 	call_void_hook(secmark_refcount_inc);
5005 }
5006 EXPORT_SYMBOL(security_secmark_refcount_inc);
5007 
5008 /**
5009  * security_secmark_refcount_dec() - Decrement the secmark labeling rule count
5010  *
5011  * Tells the LSM to decrement the number of secmark labeling rules loaded.
5012  */
5013 void security_secmark_refcount_dec(void)
5014 {
5015 	call_void_hook(secmark_refcount_dec);
5016 }
5017 EXPORT_SYMBOL(security_secmark_refcount_dec);
5018 
5019 /**
5020  * security_tun_dev_alloc_security() - Allocate a LSM blob for a TUN device
5021  * @security: pointer to the LSM blob
5022  *
5023  * This hook allows a module to allocate a security structure for a TUN	device,
5024  * returning the pointer in @security.
5025  *
5026  * Return: Returns a zero on success, negative values on failure.
5027  */
5028 int security_tun_dev_alloc_security(void **security)
5029 {
5030 	int rc;
5031 
5032 	rc = lsm_blob_alloc(security, blob_sizes.lbs_tun_dev, GFP_KERNEL);
5033 	if (rc)
5034 		return rc;
5035 
5036 	rc = call_int_hook(tun_dev_alloc_security, *security);
5037 	if (rc) {
5038 		kfree(*security);
5039 		*security = NULL;
5040 	}
5041 	return rc;
5042 }
5043 EXPORT_SYMBOL(security_tun_dev_alloc_security);
5044 
5045 /**
5046  * security_tun_dev_free_security() - Free a TUN device LSM blob
5047  * @security: LSM blob
5048  *
5049  * This hook allows a module to free the security structure for a TUN device.
5050  */
5051 void security_tun_dev_free_security(void *security)
5052 {
5053 	kfree(security);
5054 }
5055 EXPORT_SYMBOL(security_tun_dev_free_security);
5056 
5057 /**
5058  * security_tun_dev_create() - Check if creating a TUN device is allowed
5059  *
5060  * Check permissions prior to creating a new TUN device.
5061  *
5062  * Return: Returns 0 if permission is granted.
5063  */
5064 int security_tun_dev_create(void)
5065 {
5066 	return call_int_hook(tun_dev_create);
5067 }
5068 EXPORT_SYMBOL(security_tun_dev_create);
5069 
5070 /**
5071  * security_tun_dev_attach_queue() - Check if attaching a TUN queue is allowed
5072  * @security: TUN device LSM blob
5073  *
5074  * Check permissions prior to attaching to a TUN device queue.
5075  *
5076  * Return: Returns 0 if permission is granted.
5077  */
5078 int security_tun_dev_attach_queue(void *security)
5079 {
5080 	return call_int_hook(tun_dev_attach_queue, security);
5081 }
5082 EXPORT_SYMBOL(security_tun_dev_attach_queue);
5083 
5084 /**
5085  * security_tun_dev_attach() - Update TUN device LSM state on attach
5086  * @sk: associated sock
5087  * @security: TUN device LSM blob
5088  *
5089  * This hook can be used by the module to update any security state associated
5090  * with the TUN device's sock structure.
5091  *
5092  * Return: Returns 0 if permission is granted.
5093  */
5094 int security_tun_dev_attach(struct sock *sk, void *security)
5095 {
5096 	return call_int_hook(tun_dev_attach, sk, security);
5097 }
5098 EXPORT_SYMBOL(security_tun_dev_attach);
5099 
5100 /**
5101  * security_tun_dev_open() - Update TUN device LSM state on open
5102  * @security: TUN device LSM blob
5103  *
5104  * This hook can be used by the module to update any security state associated
5105  * with the TUN device's security structure.
5106  *
5107  * Return: Returns 0 if permission is granted.
5108  */
5109 int security_tun_dev_open(void *security)
5110 {
5111 	return call_int_hook(tun_dev_open, security);
5112 }
5113 EXPORT_SYMBOL(security_tun_dev_open);
5114 
5115 /**
5116  * security_sctp_assoc_request() - Update the LSM on a SCTP association req
5117  * @asoc: SCTP association
5118  * @skb: packet requesting the association
5119  *
5120  * Passes the @asoc and @chunk->skb of the association INIT packet to the LSM.
5121  *
5122  * Return: Returns 0 on success, error on failure.
5123  */
5124 int security_sctp_assoc_request(struct sctp_association *asoc,
5125 				struct sk_buff *skb)
5126 {
5127 	return call_int_hook(sctp_assoc_request, asoc, skb);
5128 }
5129 EXPORT_SYMBOL(security_sctp_assoc_request);
5130 
5131 /**
5132  * security_sctp_bind_connect() - Validate a list of addrs for a SCTP option
5133  * @sk: socket
5134  * @optname: SCTP option to validate
5135  * @address: list of IP addresses to validate
5136  * @addrlen: length of the address list
5137  *
5138  * Validiate permissions required for each address associated with sock	@sk.
5139  * Depending on @optname, the addresses will be treated as either a connect or
5140  * bind service. The @addrlen is calculated on each IPv4 and IPv6 address using
5141  * sizeof(struct sockaddr_in) or sizeof(struct sockaddr_in6).
5142  *
5143  * Return: Returns 0 on success, error on failure.
5144  */
5145 int security_sctp_bind_connect(struct sock *sk, int optname,
5146 			       struct sockaddr *address, int addrlen)
5147 {
5148 	return call_int_hook(sctp_bind_connect, sk, optname, address, addrlen);
5149 }
5150 EXPORT_SYMBOL(security_sctp_bind_connect);
5151 
5152 /**
5153  * security_sctp_sk_clone() - Clone a SCTP sock's LSM state
5154  * @asoc: SCTP association
5155  * @sk: original sock
5156  * @newsk: target sock
5157  *
5158  * Called whenever a new socket is created by accept(2) (i.e. a TCP style
5159  * socket) or when a socket is 'peeled off' e.g userspace calls
5160  * sctp_peeloff(3).
5161  */
5162 void security_sctp_sk_clone(struct sctp_association *asoc, struct sock *sk,
5163 			    struct sock *newsk)
5164 {
5165 	call_void_hook(sctp_sk_clone, asoc, sk, newsk);
5166 }
5167 EXPORT_SYMBOL(security_sctp_sk_clone);
5168 
5169 /**
5170  * security_sctp_assoc_established() - Update LSM state when assoc established
5171  * @asoc: SCTP association
5172  * @skb: packet establishing the association
5173  *
5174  * Passes the @asoc and @chunk->skb of the association COOKIE_ACK packet to the
5175  * security module.
5176  *
5177  * Return: Returns 0 if permission is granted.
5178  */
5179 int security_sctp_assoc_established(struct sctp_association *asoc,
5180 				    struct sk_buff *skb)
5181 {
5182 	return call_int_hook(sctp_assoc_established, asoc, skb);
5183 }
5184 EXPORT_SYMBOL(security_sctp_assoc_established);
5185 
5186 /**
5187  * security_mptcp_add_subflow() - Inherit the LSM label from the MPTCP socket
5188  * @sk: the owning MPTCP socket
5189  * @ssk: the new subflow
5190  *
5191  * Update the labeling for the given MPTCP subflow, to match the one of the
5192  * owning MPTCP socket. This hook has to be called after the socket creation and
5193  * initialization via the security_socket_create() and
5194  * security_socket_post_create() LSM hooks.
5195  *
5196  * Return: Returns 0 on success or a negative error code on failure.
5197  */
5198 int security_mptcp_add_subflow(struct sock *sk, struct sock *ssk)
5199 {
5200 	return call_int_hook(mptcp_add_subflow, sk, ssk);
5201 }
5202 
5203 #endif	/* CONFIG_SECURITY_NETWORK */
5204 
5205 #ifdef CONFIG_SECURITY_INFINIBAND
5206 /**
5207  * security_ib_pkey_access() - Check if access to an IB pkey is allowed
5208  * @sec: LSM blob
5209  * @subnet_prefix: subnet prefix of the port
5210  * @pkey: IB pkey
5211  *
5212  * Check permission to access a pkey when modifying a QP.
5213  *
5214  * Return: Returns 0 if permission is granted.
5215  */
5216 int security_ib_pkey_access(void *sec, u64 subnet_prefix, u16 pkey)
5217 {
5218 	return call_int_hook(ib_pkey_access, sec, subnet_prefix, pkey);
5219 }
5220 EXPORT_SYMBOL(security_ib_pkey_access);
5221 
5222 /**
5223  * security_ib_endport_manage_subnet() - Check if SMPs traffic is allowed
5224  * @sec: LSM blob
5225  * @dev_name: IB device name
5226  * @port_num: port number
5227  *
5228  * Check permissions to send and receive SMPs on a end port.
5229  *
5230  * Return: Returns 0 if permission is granted.
5231  */
5232 int security_ib_endport_manage_subnet(void *sec,
5233 				      const char *dev_name, u8 port_num)
5234 {
5235 	return call_int_hook(ib_endport_manage_subnet, sec, dev_name, port_num);
5236 }
5237 EXPORT_SYMBOL(security_ib_endport_manage_subnet);
5238 
5239 /**
5240  * security_ib_alloc_security() - Allocate an Infiniband LSM blob
5241  * @sec: LSM blob
5242  *
5243  * Allocate a security structure for Infiniband objects.
5244  *
5245  * Return: Returns 0 on success, non-zero on failure.
5246  */
5247 int security_ib_alloc_security(void **sec)
5248 {
5249 	int rc;
5250 
5251 	rc = lsm_blob_alloc(sec, blob_sizes.lbs_ib, GFP_KERNEL);
5252 	if (rc)
5253 		return rc;
5254 
5255 	rc = call_int_hook(ib_alloc_security, *sec);
5256 	if (rc) {
5257 		kfree(*sec);
5258 		*sec = NULL;
5259 	}
5260 	return rc;
5261 }
5262 EXPORT_SYMBOL(security_ib_alloc_security);
5263 
5264 /**
5265  * security_ib_free_security() - Free an Infiniband LSM blob
5266  * @sec: LSM blob
5267  *
5268  * Deallocate an Infiniband security structure.
5269  */
5270 void security_ib_free_security(void *sec)
5271 {
5272 	kfree(sec);
5273 }
5274 EXPORT_SYMBOL(security_ib_free_security);
5275 #endif	/* CONFIG_SECURITY_INFINIBAND */
5276 
5277 #ifdef CONFIG_SECURITY_NETWORK_XFRM
5278 /**
5279  * security_xfrm_policy_alloc() - Allocate a xfrm policy LSM blob
5280  * @ctxp: xfrm security context being added to the SPD
5281  * @sec_ctx: security label provided by userspace
5282  * @gfp: gfp flags
5283  *
5284  * Allocate a security structure to the xp->security field; the security field
5285  * is initialized to NULL when the xfrm_policy is allocated.
5286  *
5287  * Return:  Return 0 if operation was successful.
5288  */
5289 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp,
5290 			       struct xfrm_user_sec_ctx *sec_ctx,
5291 			       gfp_t gfp)
5292 {
5293 	return call_int_hook(xfrm_policy_alloc_security, ctxp, sec_ctx, gfp);
5294 }
5295 EXPORT_SYMBOL(security_xfrm_policy_alloc);
5296 
5297 /**
5298  * security_xfrm_policy_clone() - Clone xfrm policy LSM state
5299  * @old_ctx: xfrm security context
5300  * @new_ctxp: target xfrm security context
5301  *
5302  * Allocate a security structure in new_ctxp that contains the information from
5303  * the old_ctx structure.
5304  *
5305  * Return: Return 0 if operation was successful.
5306  */
5307 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
5308 			       struct xfrm_sec_ctx **new_ctxp)
5309 {
5310 	return call_int_hook(xfrm_policy_clone_security, old_ctx, new_ctxp);
5311 }
5312 
5313 /**
5314  * security_xfrm_policy_free() - Free a xfrm security context
5315  * @ctx: xfrm security context
5316  *
5317  * Free LSM resources associated with @ctx.
5318  */
5319 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
5320 {
5321 	call_void_hook(xfrm_policy_free_security, ctx);
5322 }
5323 EXPORT_SYMBOL(security_xfrm_policy_free);
5324 
5325 /**
5326  * security_xfrm_policy_delete() - Check if deleting a xfrm policy is allowed
5327  * @ctx: xfrm security context
5328  *
5329  * Authorize deletion of a SPD entry.
5330  *
5331  * Return: Returns 0 if permission is granted.
5332  */
5333 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
5334 {
5335 	return call_int_hook(xfrm_policy_delete_security, ctx);
5336 }
5337 
5338 /**
5339  * security_xfrm_state_alloc() - Allocate a xfrm state LSM blob
5340  * @x: xfrm state being added to the SAD
5341  * @sec_ctx: security label provided by userspace
5342  *
5343  * Allocate a security structure to the @x->security field; the security field
5344  * is initialized to NULL when the xfrm_state is allocated. Set the context to
5345  * correspond to @sec_ctx.
5346  *
5347  * Return: Return 0 if operation was successful.
5348  */
5349 int security_xfrm_state_alloc(struct xfrm_state *x,
5350 			      struct xfrm_user_sec_ctx *sec_ctx)
5351 {
5352 	return call_int_hook(xfrm_state_alloc, x, sec_ctx);
5353 }
5354 EXPORT_SYMBOL(security_xfrm_state_alloc);
5355 
5356 /**
5357  * security_xfrm_state_alloc_acquire() - Allocate a xfrm state LSM blob
5358  * @x: xfrm state being added to the SAD
5359  * @polsec: associated policy's security context
5360  * @secid: secid from the flow
5361  *
5362  * Allocate a security structure to the x->security field; the security field
5363  * is initialized to NULL when the xfrm_state is allocated.  Set the context to
5364  * correspond to secid.
5365  *
5366  * Return: Returns 0 if operation was successful.
5367  */
5368 int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
5369 				      struct xfrm_sec_ctx *polsec, u32 secid)
5370 {
5371 	return call_int_hook(xfrm_state_alloc_acquire, x, polsec, secid);
5372 }
5373 
5374 /**
5375  * security_xfrm_state_delete() - Check if deleting a xfrm state is allowed
5376  * @x: xfrm state
5377  *
5378  * Authorize deletion of x->security.
5379  *
5380  * Return: Returns 0 if permission is granted.
5381  */
5382 int security_xfrm_state_delete(struct xfrm_state *x)
5383 {
5384 	return call_int_hook(xfrm_state_delete_security, x);
5385 }
5386 EXPORT_SYMBOL(security_xfrm_state_delete);
5387 
5388 /**
5389  * security_xfrm_state_free() - Free a xfrm state
5390  * @x: xfrm state
5391  *
5392  * Deallocate x->security.
5393  */
5394 void security_xfrm_state_free(struct xfrm_state *x)
5395 {
5396 	call_void_hook(xfrm_state_free_security, x);
5397 }
5398 
5399 /**
5400  * security_xfrm_policy_lookup() - Check if using a xfrm policy is allowed
5401  * @ctx: target xfrm security context
5402  * @fl_secid: flow secid used to authorize access
5403  *
5404  * Check permission when a flow selects a xfrm_policy for processing XFRMs on a
5405  * packet.  The hook is called when selecting either a per-socket policy or a
5406  * generic xfrm policy.
5407  *
5408  * Return: Return 0 if permission is granted, -ESRCH otherwise, or -errno on
5409  *         other errors.
5410  */
5411 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid)
5412 {
5413 	return call_int_hook(xfrm_policy_lookup, ctx, fl_secid);
5414 }
5415 
5416 /**
5417  * security_xfrm_state_pol_flow_match() - Check for a xfrm match
5418  * @x: xfrm state to match
5419  * @xp: xfrm policy to check for a match
5420  * @flic: flow to check for a match.
5421  *
5422  * Check @xp and @flic for a match with @x.
5423  *
5424  * Return: Returns 1 if there is a match.
5425  */
5426 int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
5427 				       struct xfrm_policy *xp,
5428 				       const struct flowi_common *flic)
5429 {
5430 	struct lsm_static_call *scall;
5431 	int rc = LSM_RET_DEFAULT(xfrm_state_pol_flow_match);
5432 
5433 	/*
5434 	 * Since this function is expected to return 0 or 1, the judgment
5435 	 * becomes difficult if multiple LSMs supply this call. Fortunately,
5436 	 * we can use the first LSM's judgment because currently only SELinux
5437 	 * supplies this call.
5438 	 *
5439 	 * For speed optimization, we explicitly break the loop rather than
5440 	 * using the macro
5441 	 */
5442 	lsm_for_each_hook(scall, xfrm_state_pol_flow_match) {
5443 		rc = scall->hl->hook.xfrm_state_pol_flow_match(x, xp, flic);
5444 		break;
5445 	}
5446 	return rc;
5447 }
5448 
5449 /**
5450  * security_xfrm_decode_session() - Determine the xfrm secid for a packet
5451  * @skb: xfrm packet
5452  * @secid: secid
5453  *
5454  * Decode the packet in @skb and return the security label in @secid.
5455  *
5456  * Return: Return 0 if all xfrms used have the same secid.
5457  */
5458 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
5459 {
5460 	return call_int_hook(xfrm_decode_session, skb, secid, 1);
5461 }
5462 
5463 void security_skb_classify_flow(struct sk_buff *skb, struct flowi_common *flic)
5464 {
5465 	int rc = call_int_hook(xfrm_decode_session, skb, &flic->flowic_secid,
5466 			       0);
5467 
5468 	BUG_ON(rc);
5469 }
5470 EXPORT_SYMBOL(security_skb_classify_flow);
5471 #endif	/* CONFIG_SECURITY_NETWORK_XFRM */
5472 
5473 #ifdef CONFIG_KEYS
5474 /**
5475  * security_key_alloc() - Allocate and initialize a kernel key LSM blob
5476  * @key: key
5477  * @cred: credentials
5478  * @flags: allocation flags
5479  *
5480  * Permit allocation of a key and assign security data. Note that key does not
5481  * have a serial number assigned at this point.
5482  *
5483  * Return: Return 0 if permission is granted, -ve error otherwise.
5484  */
5485 int security_key_alloc(struct key *key, const struct cred *cred,
5486 		       unsigned long flags)
5487 {
5488 	int rc = lsm_key_alloc(key);
5489 
5490 	if (unlikely(rc))
5491 		return rc;
5492 	rc = call_int_hook(key_alloc, key, cred, flags);
5493 	if (unlikely(rc))
5494 		security_key_free(key);
5495 	return rc;
5496 }
5497 
5498 /**
5499  * security_key_free() - Free a kernel key LSM blob
5500  * @key: key
5501  *
5502  * Notification of destruction; free security data.
5503  */
5504 void security_key_free(struct key *key)
5505 {
5506 	kfree(key->security);
5507 	key->security = NULL;
5508 }
5509 
5510 /**
5511  * security_key_permission() - Check if a kernel key operation is allowed
5512  * @key_ref: key reference
5513  * @cred: credentials of actor requesting access
5514  * @need_perm: requested permissions
5515  *
5516  * See whether a specific operational right is granted to a process on a key.
5517  *
5518  * Return: Return 0 if permission is granted, -ve error otherwise.
5519  */
5520 int security_key_permission(key_ref_t key_ref, const struct cred *cred,
5521 			    enum key_need_perm need_perm)
5522 {
5523 	return call_int_hook(key_permission, key_ref, cred, need_perm);
5524 }
5525 
5526 /**
5527  * security_key_getsecurity() - Get the key's security label
5528  * @key: key
5529  * @buffer: security label buffer
5530  *
5531  * Get a textual representation of the security context attached to a key for
5532  * the purposes of honouring KEYCTL_GETSECURITY.  This function allocates the
5533  * storage for the NUL-terminated string and the caller should free it.
5534  *
5535  * Return: Returns the length of @buffer (including terminating NUL) or -ve if
5536  *         an error occurs.  May also return 0 (and a NULL buffer pointer) if
5537  *         there is no security label assigned to the key.
5538  */
5539 int security_key_getsecurity(struct key *key, char **buffer)
5540 {
5541 	*buffer = NULL;
5542 	return call_int_hook(key_getsecurity, key, buffer);
5543 }
5544 
5545 /**
5546  * security_key_post_create_or_update() - Notification of key create or update
5547  * @keyring: keyring to which the key is linked to
5548  * @key: created or updated key
5549  * @payload: data used to instantiate or update the key
5550  * @payload_len: length of payload
5551  * @flags: key flags
5552  * @create: flag indicating whether the key was created or updated
5553  *
5554  * Notify the caller of a key creation or update.
5555  */
5556 void security_key_post_create_or_update(struct key *keyring, struct key *key,
5557 					const void *payload, size_t payload_len,
5558 					unsigned long flags, bool create)
5559 {
5560 	call_void_hook(key_post_create_or_update, keyring, key, payload,
5561 		       payload_len, flags, create);
5562 }
5563 #endif	/* CONFIG_KEYS */
5564 
5565 #ifdef CONFIG_AUDIT
5566 /**
5567  * security_audit_rule_init() - Allocate and init an LSM audit rule struct
5568  * @field: audit action
5569  * @op: rule operator
5570  * @rulestr: rule context
5571  * @lsmrule: receive buffer for audit rule struct
5572  * @gfp: GFP flag used for kmalloc
5573  *
5574  * Allocate and initialize an LSM audit rule structure.
5575  *
5576  * Return: Return 0 if @lsmrule has been successfully set, -EINVAL in case of
5577  *         an invalid rule.
5578  */
5579 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule,
5580 			     gfp_t gfp)
5581 {
5582 	return call_int_hook(audit_rule_init, field, op, rulestr, lsmrule, gfp);
5583 }
5584 
5585 /**
5586  * security_audit_rule_known() - Check if an audit rule contains LSM fields
5587  * @krule: audit rule
5588  *
5589  * Specifies whether given @krule contains any fields related to the current
5590  * LSM.
5591  *
5592  * Return: Returns 1 in case of relation found, 0 otherwise.
5593  */
5594 int security_audit_rule_known(struct audit_krule *krule)
5595 {
5596 	return call_int_hook(audit_rule_known, krule);
5597 }
5598 
5599 /**
5600  * security_audit_rule_free() - Free an LSM audit rule struct
5601  * @lsmrule: audit rule struct
5602  *
5603  * Deallocate the LSM audit rule structure previously allocated by
5604  * audit_rule_init().
5605  */
5606 void security_audit_rule_free(void *lsmrule)
5607 {
5608 	call_void_hook(audit_rule_free, lsmrule);
5609 }
5610 
5611 /**
5612  * security_audit_rule_match() - Check if a label matches an audit rule
5613  * @prop: security label
5614  * @field: LSM audit field
5615  * @op: matching operator
5616  * @lsmrule: audit rule
5617  *
5618  * Determine if given @secid matches a rule previously approved by
5619  * security_audit_rule_known().
5620  *
5621  * Return: Returns 1 if secid matches the rule, 0 if it does not, -ERRNO on
5622  *         failure.
5623  */
5624 int security_audit_rule_match(struct lsm_prop *prop, u32 field, u32 op,
5625 			      void *lsmrule)
5626 {
5627 	return call_int_hook(audit_rule_match, prop, field, op, lsmrule);
5628 }
5629 #endif /* CONFIG_AUDIT */
5630 
5631 #ifdef CONFIG_BPF_SYSCALL
5632 /**
5633  * security_bpf() - Check if the bpf syscall operation is allowed
5634  * @cmd: command
5635  * @attr: bpf attribute
5636  * @size: size
5637  *
5638  * Do a initial check for all bpf syscalls after the attribute is copied into
5639  * the kernel. The actual security module can implement their own rules to
5640  * check the specific cmd they need.
5641  *
5642  * Return: Returns 0 if permission is granted.
5643  */
5644 int security_bpf(int cmd, union bpf_attr *attr, unsigned int size)
5645 {
5646 	return call_int_hook(bpf, cmd, attr, size);
5647 }
5648 
5649 /**
5650  * security_bpf_map() - Check if access to a bpf map is allowed
5651  * @map: bpf map
5652  * @fmode: mode
5653  *
5654  * Do a check when the kernel generates and returns a file descriptor for eBPF
5655  * maps.
5656  *
5657  * Return: Returns 0 if permission is granted.
5658  */
5659 int security_bpf_map(struct bpf_map *map, fmode_t fmode)
5660 {
5661 	return call_int_hook(bpf_map, map, fmode);
5662 }
5663 
5664 /**
5665  * security_bpf_prog() - Check if access to a bpf program is allowed
5666  * @prog: bpf program
5667  *
5668  * Do a check when the kernel generates and returns a file descriptor for eBPF
5669  * programs.
5670  *
5671  * Return: Returns 0 if permission is granted.
5672  */
5673 int security_bpf_prog(struct bpf_prog *prog)
5674 {
5675 	return call_int_hook(bpf_prog, prog);
5676 }
5677 
5678 /**
5679  * security_bpf_map_create() - Check if BPF map creation is allowed
5680  * @map: BPF map object
5681  * @attr: BPF syscall attributes used to create BPF map
5682  * @token: BPF token used to grant user access
5683  *
5684  * Do a check when the kernel creates a new BPF map. This is also the
5685  * point where LSM blob is allocated for LSMs that need them.
5686  *
5687  * Return: Returns 0 on success, error on failure.
5688  */
5689 int security_bpf_map_create(struct bpf_map *map, union bpf_attr *attr,
5690 			    struct bpf_token *token)
5691 {
5692 	return call_int_hook(bpf_map_create, map, attr, token);
5693 }
5694 
5695 /**
5696  * security_bpf_prog_load() - Check if loading of BPF program is allowed
5697  * @prog: BPF program object
5698  * @attr: BPF syscall attributes used to create BPF program
5699  * @token: BPF token used to grant user access to BPF subsystem
5700  *
5701  * Perform an access control check when the kernel loads a BPF program and
5702  * allocates associated BPF program object. This hook is also responsible for
5703  * allocating any required LSM state for the BPF program.
5704  *
5705  * Return: Returns 0 on success, error on failure.
5706  */
5707 int security_bpf_prog_load(struct bpf_prog *prog, union bpf_attr *attr,
5708 			   struct bpf_token *token)
5709 {
5710 	return call_int_hook(bpf_prog_load, prog, attr, token);
5711 }
5712 
5713 /**
5714  * security_bpf_token_create() - Check if creating of BPF token is allowed
5715  * @token: BPF token object
5716  * @attr: BPF syscall attributes used to create BPF token
5717  * @path: path pointing to BPF FS mount point from which BPF token is created
5718  *
5719  * Do a check when the kernel instantiates a new BPF token object from BPF FS
5720  * instance. This is also the point where LSM blob can be allocated for LSMs.
5721  *
5722  * Return: Returns 0 on success, error on failure.
5723  */
5724 int security_bpf_token_create(struct bpf_token *token, union bpf_attr *attr,
5725 			      const struct path *path)
5726 {
5727 	return call_int_hook(bpf_token_create, token, attr, path);
5728 }
5729 
5730 /**
5731  * security_bpf_token_cmd() - Check if BPF token is allowed to delegate
5732  * requested BPF syscall command
5733  * @token: BPF token object
5734  * @cmd: BPF syscall command requested to be delegated by BPF token
5735  *
5736  * Do a check when the kernel decides whether provided BPF token should allow
5737  * delegation of requested BPF syscall command.
5738  *
5739  * Return: Returns 0 on success, error on failure.
5740  */
5741 int security_bpf_token_cmd(const struct bpf_token *token, enum bpf_cmd cmd)
5742 {
5743 	return call_int_hook(bpf_token_cmd, token, cmd);
5744 }
5745 
5746 /**
5747  * security_bpf_token_capable() - Check if BPF token is allowed to delegate
5748  * requested BPF-related capability
5749  * @token: BPF token object
5750  * @cap: capabilities requested to be delegated by BPF token
5751  *
5752  * Do a check when the kernel decides whether provided BPF token should allow
5753  * delegation of requested BPF-related capabilities.
5754  *
5755  * Return: Returns 0 on success, error on failure.
5756  */
5757 int security_bpf_token_capable(const struct bpf_token *token, int cap)
5758 {
5759 	return call_int_hook(bpf_token_capable, token, cap);
5760 }
5761 
5762 /**
5763  * security_bpf_map_free() - Free a bpf map's LSM blob
5764  * @map: bpf map
5765  *
5766  * Clean up the security information stored inside bpf map.
5767  */
5768 void security_bpf_map_free(struct bpf_map *map)
5769 {
5770 	call_void_hook(bpf_map_free, map);
5771 }
5772 
5773 /**
5774  * security_bpf_prog_free() - Free a BPF program's LSM blob
5775  * @prog: BPF program struct
5776  *
5777  * Clean up the security information stored inside BPF program.
5778  */
5779 void security_bpf_prog_free(struct bpf_prog *prog)
5780 {
5781 	call_void_hook(bpf_prog_free, prog);
5782 }
5783 
5784 /**
5785  * security_bpf_token_free() - Free a BPF token's LSM blob
5786  * @token: BPF token struct
5787  *
5788  * Clean up the security information stored inside BPF token.
5789  */
5790 void security_bpf_token_free(struct bpf_token *token)
5791 {
5792 	call_void_hook(bpf_token_free, token);
5793 }
5794 #endif /* CONFIG_BPF_SYSCALL */
5795 
5796 /**
5797  * security_locked_down() - Check if a kernel feature is allowed
5798  * @what: requested kernel feature
5799  *
5800  * Determine whether a kernel feature that potentially enables arbitrary code
5801  * execution in kernel space should be permitted.
5802  *
5803  * Return: Returns 0 if permission is granted.
5804  */
5805 int security_locked_down(enum lockdown_reason what)
5806 {
5807 	return call_int_hook(locked_down, what);
5808 }
5809 EXPORT_SYMBOL(security_locked_down);
5810 
5811 /**
5812  * security_bdev_alloc() - Allocate a block device LSM blob
5813  * @bdev: block device
5814  *
5815  * Allocate and attach a security structure to @bdev->bd_security.  The
5816  * security field is initialized to NULL when the bdev structure is
5817  * allocated.
5818  *
5819  * Return: Return 0 if operation was successful.
5820  */
5821 int security_bdev_alloc(struct block_device *bdev)
5822 {
5823 	int rc = 0;
5824 
5825 	rc = lsm_bdev_alloc(bdev);
5826 	if (unlikely(rc))
5827 		return rc;
5828 
5829 	rc = call_int_hook(bdev_alloc_security, bdev);
5830 	if (unlikely(rc))
5831 		security_bdev_free(bdev);
5832 
5833 	return rc;
5834 }
5835 EXPORT_SYMBOL(security_bdev_alloc);
5836 
5837 /**
5838  * security_bdev_free() - Free a block device's LSM blob
5839  * @bdev: block device
5840  *
5841  * Deallocate the bdev security structure and set @bdev->bd_security to NULL.
5842  */
5843 void security_bdev_free(struct block_device *bdev)
5844 {
5845 	if (!bdev->bd_security)
5846 		return;
5847 
5848 	call_void_hook(bdev_free_security, bdev);
5849 
5850 	kfree(bdev->bd_security);
5851 	bdev->bd_security = NULL;
5852 }
5853 EXPORT_SYMBOL(security_bdev_free);
5854 
5855 /**
5856  * security_bdev_setintegrity() - Set the device's integrity data
5857  * @bdev: block device
5858  * @type: type of integrity, e.g. hash digest, signature, etc
5859  * @value: the integrity value
5860  * @size: size of the integrity value
5861  *
5862  * Register a verified integrity measurement of a bdev with LSMs.
5863  * LSMs should free the previously saved data if @value is NULL.
5864  * Please note that the new hook should be invoked every time the security
5865  * information is updated to keep these data current. For example, in dm-verity,
5866  * if the mapping table is reloaded and configured to use a different dm-verity
5867  * target with a new roothash and signing information, the previously stored
5868  * data in the LSM blob will become obsolete. It is crucial to re-invoke the
5869  * hook to refresh these data and ensure they are up to date. This necessity
5870  * arises from the design of device-mapper, where a device-mapper device is
5871  * first created, and then targets are subsequently loaded into it. These
5872  * targets can be modified multiple times during the device's lifetime.
5873  * Therefore, while the LSM blob is allocated during the creation of the block
5874  * device, its actual contents are not initialized at this stage and can change
5875  * substantially over time. This includes alterations from data that the LSMs
5876  * 'trusts' to those they do not, making it essential to handle these changes
5877  * correctly. Failure to address this dynamic aspect could potentially allow
5878  * for bypassing LSM checks.
5879  *
5880  * Return: Returns 0 on success, negative values on failure.
5881  */
5882 int security_bdev_setintegrity(struct block_device *bdev,
5883 			       enum lsm_integrity_type type, const void *value,
5884 			       size_t size)
5885 {
5886 	return call_int_hook(bdev_setintegrity, bdev, type, value, size);
5887 }
5888 EXPORT_SYMBOL(security_bdev_setintegrity);
5889 
5890 #ifdef CONFIG_PERF_EVENTS
5891 /**
5892  * security_perf_event_open() - Check if a perf event open is allowed
5893  * @attr: perf event attribute
5894  * @type: type of event
5895  *
5896  * Check whether the @type of perf_event_open syscall is allowed.
5897  *
5898  * Return: Returns 0 if permission is granted.
5899  */
5900 int security_perf_event_open(struct perf_event_attr *attr, int type)
5901 {
5902 	return call_int_hook(perf_event_open, attr, type);
5903 }
5904 
5905 /**
5906  * security_perf_event_alloc() - Allocate a perf event LSM blob
5907  * @event: perf event
5908  *
5909  * Allocate and save perf_event security info.
5910  *
5911  * Return: Returns 0 on success, error on failure.
5912  */
5913 int security_perf_event_alloc(struct perf_event *event)
5914 {
5915 	int rc;
5916 
5917 	rc = lsm_blob_alloc(&event->security, blob_sizes.lbs_perf_event,
5918 			    GFP_KERNEL);
5919 	if (rc)
5920 		return rc;
5921 
5922 	rc = call_int_hook(perf_event_alloc, event);
5923 	if (rc) {
5924 		kfree(event->security);
5925 		event->security = NULL;
5926 	}
5927 	return rc;
5928 }
5929 
5930 /**
5931  * security_perf_event_free() - Free a perf event LSM blob
5932  * @event: perf event
5933  *
5934  * Release (free) perf_event security info.
5935  */
5936 void security_perf_event_free(struct perf_event *event)
5937 {
5938 	kfree(event->security);
5939 	event->security = NULL;
5940 }
5941 
5942 /**
5943  * security_perf_event_read() - Check if reading a perf event label is allowed
5944  * @event: perf event
5945  *
5946  * Read perf_event security info if allowed.
5947  *
5948  * Return: Returns 0 if permission is granted.
5949  */
5950 int security_perf_event_read(struct perf_event *event)
5951 {
5952 	return call_int_hook(perf_event_read, event);
5953 }
5954 
5955 /**
5956  * security_perf_event_write() - Check if writing a perf event label is allowed
5957  * @event: perf event
5958  *
5959  * Write perf_event security info if allowed.
5960  *
5961  * Return: Returns 0 if permission is granted.
5962  */
5963 int security_perf_event_write(struct perf_event *event)
5964 {
5965 	return call_int_hook(perf_event_write, event);
5966 }
5967 #endif /* CONFIG_PERF_EVENTS */
5968 
5969 #ifdef CONFIG_IO_URING
5970 /**
5971  * security_uring_override_creds() - Check if overriding creds is allowed
5972  * @new: new credentials
5973  *
5974  * Check if the current task, executing an io_uring operation, is allowed to
5975  * override it's credentials with @new.
5976  *
5977  * Return: Returns 0 if permission is granted.
5978  */
5979 int security_uring_override_creds(const struct cred *new)
5980 {
5981 	return call_int_hook(uring_override_creds, new);
5982 }
5983 
5984 /**
5985  * security_uring_sqpoll() - Check if IORING_SETUP_SQPOLL is allowed
5986  *
5987  * Check whether the current task is allowed to spawn a io_uring polling thread
5988  * (IORING_SETUP_SQPOLL).
5989  *
5990  * Return: Returns 0 if permission is granted.
5991  */
5992 int security_uring_sqpoll(void)
5993 {
5994 	return call_int_hook(uring_sqpoll);
5995 }
5996 
5997 /**
5998  * security_uring_cmd() - Check if a io_uring passthrough command is allowed
5999  * @ioucmd: command
6000  *
6001  * Check whether the file_operations uring_cmd is allowed to run.
6002  *
6003  * Return: Returns 0 if permission is granted.
6004  */
6005 int security_uring_cmd(struct io_uring_cmd *ioucmd)
6006 {
6007 	return call_int_hook(uring_cmd, ioucmd);
6008 }
6009 #endif /* CONFIG_IO_URING */
6010 
6011 /**
6012  * security_initramfs_populated() - Notify LSMs that initramfs has been loaded
6013  *
6014  * Tells the LSMs the initramfs has been unpacked into the rootfs.
6015  */
6016 void security_initramfs_populated(void)
6017 {
6018 	call_void_hook(initramfs_populated);
6019 }
6020