xref: /linux/security/security.c (revision 364eeb79a213fcf9164208b53764223ad522d6b3)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Security plug functions
4  *
5  * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
6  * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
7  * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
8  * Copyright (C) 2016 Mellanox Technologies
9  * Copyright (C) 2023 Microsoft Corporation <paul@paul-moore.com>
10  */
11 
12 #define pr_fmt(fmt) "LSM: " fmt
13 
14 #include <linux/bpf.h>
15 #include <linux/capability.h>
16 #include <linux/dcache.h>
17 #include <linux/export.h>
18 #include <linux/init.h>
19 #include <linux/kernel.h>
20 #include <linux/kernel_read_file.h>
21 #include <linux/lsm_hooks.h>
22 #include <linux/fsnotify.h>
23 #include <linux/mman.h>
24 #include <linux/mount.h>
25 #include <linux/personality.h>
26 #include <linux/backing-dev.h>
27 #include <linux/string.h>
28 #include <linux/xattr.h>
29 #include <linux/msg.h>
30 #include <linux/overflow.h>
31 #include <linux/perf_event.h>
32 #include <linux/fs.h>
33 #include <net/flow.h>
34 #include <net/sock.h>
35 
36 #define SECURITY_HOOK_ACTIVE_KEY(HOOK, IDX) security_hook_active_##HOOK##_##IDX
37 
38 /*
39  * Identifier for the LSM static calls.
40  * HOOK is an LSM hook as defined in linux/lsm_hookdefs.h
41  * IDX is the index of the static call. 0 <= NUM < MAX_LSM_COUNT
42  */
43 #define LSM_STATIC_CALL(HOOK, IDX) lsm_static_call_##HOOK##_##IDX
44 
45 /*
46  * Call the macro M for each LSM hook MAX_LSM_COUNT times.
47  */
48 #define LSM_LOOP_UNROLL(M, ...) 		\
49 do {						\
50 	UNROLL(MAX_LSM_COUNT, M, __VA_ARGS__)	\
51 } while (0)
52 
53 #define LSM_DEFINE_UNROLL(M, ...) UNROLL(MAX_LSM_COUNT, M, __VA_ARGS__)
54 
55 /*
56  * These are descriptions of the reasons that can be passed to the
57  * security_locked_down() LSM hook. Placing this array here allows
58  * all security modules to use the same descriptions for auditing
59  * purposes.
60  */
61 const char *const lockdown_reasons[LOCKDOWN_CONFIDENTIALITY_MAX + 1] = {
62 	[LOCKDOWN_NONE] = "none",
63 	[LOCKDOWN_MODULE_SIGNATURE] = "unsigned module loading",
64 	[LOCKDOWN_DEV_MEM] = "/dev/mem,kmem,port",
65 	[LOCKDOWN_EFI_TEST] = "/dev/efi_test access",
66 	[LOCKDOWN_KEXEC] = "kexec of unsigned images",
67 	[LOCKDOWN_HIBERNATION] = "hibernation",
68 	[LOCKDOWN_PCI_ACCESS] = "direct PCI access",
69 	[LOCKDOWN_IOPORT] = "raw io port access",
70 	[LOCKDOWN_MSR] = "raw MSR access",
71 	[LOCKDOWN_ACPI_TABLES] = "modifying ACPI tables",
72 	[LOCKDOWN_DEVICE_TREE] = "modifying device tree contents",
73 	[LOCKDOWN_PCMCIA_CIS] = "direct PCMCIA CIS storage",
74 	[LOCKDOWN_TIOCSSERIAL] = "reconfiguration of serial port IO",
75 	[LOCKDOWN_MODULE_PARAMETERS] = "unsafe module parameters",
76 	[LOCKDOWN_MMIOTRACE] = "unsafe mmio",
77 	[LOCKDOWN_DEBUGFS] = "debugfs access",
78 	[LOCKDOWN_XMON_WR] = "xmon write access",
79 	[LOCKDOWN_BPF_WRITE_USER] = "use of bpf to write user RAM",
80 	[LOCKDOWN_DBG_WRITE_KERNEL] = "use of kgdb/kdb to write kernel RAM",
81 	[LOCKDOWN_RTAS_ERROR_INJECTION] = "RTAS error injection",
82 	[LOCKDOWN_INTEGRITY_MAX] = "integrity",
83 	[LOCKDOWN_KCORE] = "/proc/kcore access",
84 	[LOCKDOWN_KPROBES] = "use of kprobes",
85 	[LOCKDOWN_BPF_READ_KERNEL] = "use of bpf to read kernel RAM",
86 	[LOCKDOWN_DBG_READ_KERNEL] = "use of kgdb/kdb to read kernel RAM",
87 	[LOCKDOWN_PERF] = "unsafe use of perf",
88 	[LOCKDOWN_TRACEFS] = "use of tracefs",
89 	[LOCKDOWN_XMON_RW] = "xmon read and write access",
90 	[LOCKDOWN_XFRM_SECRET] = "xfrm SA secret",
91 	[LOCKDOWN_CONFIDENTIALITY_MAX] = "confidentiality",
92 };
93 
94 static BLOCKING_NOTIFIER_HEAD(blocking_lsm_notifier_chain);
95 
96 static struct kmem_cache *lsm_file_cache;
97 static struct kmem_cache *lsm_inode_cache;
98 
99 char *lsm_names;
100 static struct lsm_blob_sizes blob_sizes __ro_after_init;
101 
102 /* Boot-time LSM user choice */
103 static __initdata const char *chosen_lsm_order;
104 static __initdata const char *chosen_major_lsm;
105 
106 static __initconst const char *const builtin_lsm_order = CONFIG_LSM;
107 
108 /* Ordered list of LSMs to initialize. */
109 static __initdata struct lsm_info *ordered_lsms[MAX_LSM_COUNT + 1];
110 static __initdata struct lsm_info *exclusive;
111 
112 #ifdef CONFIG_HAVE_STATIC_CALL
113 #define LSM_HOOK_TRAMP(NAME, NUM) \
114 	&STATIC_CALL_TRAMP(LSM_STATIC_CALL(NAME, NUM))
115 #else
116 #define LSM_HOOK_TRAMP(NAME, NUM) NULL
117 #endif
118 
119 /*
120  * Define static calls and static keys for each LSM hook.
121  */
122 #define DEFINE_LSM_STATIC_CALL(NUM, NAME, RET, ...)			\
123 	DEFINE_STATIC_CALL_NULL(LSM_STATIC_CALL(NAME, NUM),		\
124 				*((RET(*)(__VA_ARGS__))NULL));		\
125 	DEFINE_STATIC_KEY_FALSE(SECURITY_HOOK_ACTIVE_KEY(NAME, NUM));
126 
127 #define LSM_HOOK(RET, DEFAULT, NAME, ...)				\
128 	LSM_DEFINE_UNROLL(DEFINE_LSM_STATIC_CALL, NAME, RET, __VA_ARGS__)
129 #include <linux/lsm_hook_defs.h>
130 #undef LSM_HOOK
131 #undef DEFINE_LSM_STATIC_CALL
132 
133 /*
134  * Initialise a table of static calls for each LSM hook.
135  * DEFINE_STATIC_CALL_NULL invocation above generates a key (STATIC_CALL_KEY)
136  * and a trampoline (STATIC_CALL_TRAMP) which are used to call
137  * __static_call_update when updating the static call.
138  *
139  * The static calls table is used by early LSMs, some architectures can fault on
140  * unaligned accesses and the fault handling code may not be ready by then.
141  * Thus, the static calls table should be aligned to avoid any unhandled faults
142  * in early init.
143  */
144 struct lsm_static_calls_table
145 	static_calls_table __ro_after_init __aligned(sizeof(u64)) = {
146 #define INIT_LSM_STATIC_CALL(NUM, NAME)					\
147 	(struct lsm_static_call) {					\
148 		.key = &STATIC_CALL_KEY(LSM_STATIC_CALL(NAME, NUM)),	\
149 		.trampoline = LSM_HOOK_TRAMP(NAME, NUM),		\
150 		.active = &SECURITY_HOOK_ACTIVE_KEY(NAME, NUM),		\
151 	},
152 #define LSM_HOOK(RET, DEFAULT, NAME, ...)				\
153 	.NAME = {							\
154 		LSM_DEFINE_UNROLL(INIT_LSM_STATIC_CALL, NAME)		\
155 	},
156 #include <linux/lsm_hook_defs.h>
157 #undef LSM_HOOK
158 #undef INIT_LSM_STATIC_CALL
159 	};
160 
161 static __initdata bool debug;
162 #define init_debug(...)						\
163 	do {							\
164 		if (debug)					\
165 			pr_info(__VA_ARGS__);			\
166 	} while (0)
167 
168 static bool __init is_enabled(struct lsm_info *lsm)
169 {
170 	if (!lsm->enabled)
171 		return false;
172 
173 	return *lsm->enabled;
174 }
175 
176 /* Mark an LSM's enabled flag. */
177 static int lsm_enabled_true __initdata = 1;
178 static int lsm_enabled_false __initdata = 0;
179 static void __init set_enabled(struct lsm_info *lsm, bool enabled)
180 {
181 	/*
182 	 * When an LSM hasn't configured an enable variable, we can use
183 	 * a hard-coded location for storing the default enabled state.
184 	 */
185 	if (!lsm->enabled) {
186 		if (enabled)
187 			lsm->enabled = &lsm_enabled_true;
188 		else
189 			lsm->enabled = &lsm_enabled_false;
190 	} else if (lsm->enabled == &lsm_enabled_true) {
191 		if (!enabled)
192 			lsm->enabled = &lsm_enabled_false;
193 	} else if (lsm->enabled == &lsm_enabled_false) {
194 		if (enabled)
195 			lsm->enabled = &lsm_enabled_true;
196 	} else {
197 		*lsm->enabled = enabled;
198 	}
199 }
200 
201 /* Is an LSM already listed in the ordered LSMs list? */
202 static bool __init exists_ordered_lsm(struct lsm_info *lsm)
203 {
204 	struct lsm_info **check;
205 
206 	for (check = ordered_lsms; *check; check++)
207 		if (*check == lsm)
208 			return true;
209 
210 	return false;
211 }
212 
213 /* Append an LSM to the list of ordered LSMs to initialize. */
214 static int last_lsm __initdata;
215 static void __init append_ordered_lsm(struct lsm_info *lsm, const char *from)
216 {
217 	/* Ignore duplicate selections. */
218 	if (exists_ordered_lsm(lsm))
219 		return;
220 
221 	if (WARN(last_lsm == MAX_LSM_COUNT, "%s: out of LSM static calls!?\n", from))
222 		return;
223 
224 	/* Enable this LSM, if it is not already set. */
225 	if (!lsm->enabled)
226 		lsm->enabled = &lsm_enabled_true;
227 	ordered_lsms[last_lsm++] = lsm;
228 
229 	init_debug("%s ordered: %s (%s)\n", from, lsm->name,
230 		   is_enabled(lsm) ? "enabled" : "disabled");
231 }
232 
233 /* Is an LSM allowed to be initialized? */
234 static bool __init lsm_allowed(struct lsm_info *lsm)
235 {
236 	/* Skip if the LSM is disabled. */
237 	if (!is_enabled(lsm))
238 		return false;
239 
240 	/* Not allowed if another exclusive LSM already initialized. */
241 	if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && exclusive) {
242 		init_debug("exclusive disabled: %s\n", lsm->name);
243 		return false;
244 	}
245 
246 	return true;
247 }
248 
249 static void __init lsm_set_blob_size(int *need, int *lbs)
250 {
251 	int offset;
252 
253 	if (*need <= 0)
254 		return;
255 
256 	offset = ALIGN(*lbs, sizeof(void *));
257 	*lbs = offset + *need;
258 	*need = offset;
259 }
260 
261 static void __init lsm_set_blob_sizes(struct lsm_blob_sizes *needed)
262 {
263 	if (!needed)
264 		return;
265 
266 	lsm_set_blob_size(&needed->lbs_cred, &blob_sizes.lbs_cred);
267 	lsm_set_blob_size(&needed->lbs_file, &blob_sizes.lbs_file);
268 	lsm_set_blob_size(&needed->lbs_ib, &blob_sizes.lbs_ib);
269 	/*
270 	 * The inode blob gets an rcu_head in addition to
271 	 * what the modules might need.
272 	 */
273 	if (needed->lbs_inode && blob_sizes.lbs_inode == 0)
274 		blob_sizes.lbs_inode = sizeof(struct rcu_head);
275 	lsm_set_blob_size(&needed->lbs_inode, &blob_sizes.lbs_inode);
276 	lsm_set_blob_size(&needed->lbs_ipc, &blob_sizes.lbs_ipc);
277 	lsm_set_blob_size(&needed->lbs_key, &blob_sizes.lbs_key);
278 	lsm_set_blob_size(&needed->lbs_msg_msg, &blob_sizes.lbs_msg_msg);
279 	lsm_set_blob_size(&needed->lbs_perf_event, &blob_sizes.lbs_perf_event);
280 	lsm_set_blob_size(&needed->lbs_sock, &blob_sizes.lbs_sock);
281 	lsm_set_blob_size(&needed->lbs_superblock, &blob_sizes.lbs_superblock);
282 	lsm_set_blob_size(&needed->lbs_task, &blob_sizes.lbs_task);
283 	lsm_set_blob_size(&needed->lbs_tun_dev, &blob_sizes.lbs_tun_dev);
284 	lsm_set_blob_size(&needed->lbs_xattr_count,
285 			  &blob_sizes.lbs_xattr_count);
286 	lsm_set_blob_size(&needed->lbs_bdev, &blob_sizes.lbs_bdev);
287 }
288 
289 /* Prepare LSM for initialization. */
290 static void __init prepare_lsm(struct lsm_info *lsm)
291 {
292 	int enabled = lsm_allowed(lsm);
293 
294 	/* Record enablement (to handle any following exclusive LSMs). */
295 	set_enabled(lsm, enabled);
296 
297 	/* If enabled, do pre-initialization work. */
298 	if (enabled) {
299 		if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && !exclusive) {
300 			exclusive = lsm;
301 			init_debug("exclusive chosen:   %s\n", lsm->name);
302 		}
303 
304 		lsm_set_blob_sizes(lsm->blobs);
305 	}
306 }
307 
308 /* Initialize a given LSM, if it is enabled. */
309 static void __init initialize_lsm(struct lsm_info *lsm)
310 {
311 	if (is_enabled(lsm)) {
312 		int ret;
313 
314 		init_debug("initializing %s\n", lsm->name);
315 		ret = lsm->init();
316 		WARN(ret, "%s failed to initialize: %d\n", lsm->name, ret);
317 	}
318 }
319 
320 /*
321  * Current index to use while initializing the lsm id list.
322  */
323 u32 lsm_active_cnt __ro_after_init;
324 const struct lsm_id *lsm_idlist[MAX_LSM_COUNT];
325 
326 /* Populate ordered LSMs list from comma-separated LSM name list. */
327 static void __init ordered_lsm_parse(const char *order, const char *origin)
328 {
329 	struct lsm_info *lsm;
330 	char *sep, *name, *next;
331 
332 	/* LSM_ORDER_FIRST is always first. */
333 	for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
334 		if (lsm->order == LSM_ORDER_FIRST)
335 			append_ordered_lsm(lsm, "  first");
336 	}
337 
338 	/* Process "security=", if given. */
339 	if (chosen_major_lsm) {
340 		struct lsm_info *major;
341 
342 		/*
343 		 * To match the original "security=" behavior, this
344 		 * explicitly does NOT fallback to another Legacy Major
345 		 * if the selected one was separately disabled: disable
346 		 * all non-matching Legacy Major LSMs.
347 		 */
348 		for (major = __start_lsm_info; major < __end_lsm_info;
349 		     major++) {
350 			if ((major->flags & LSM_FLAG_LEGACY_MAJOR) &&
351 			    strcmp(major->name, chosen_major_lsm) != 0) {
352 				set_enabled(major, false);
353 				init_debug("security=%s disabled: %s (only one legacy major LSM)\n",
354 					   chosen_major_lsm, major->name);
355 			}
356 		}
357 	}
358 
359 	sep = kstrdup(order, GFP_KERNEL);
360 	next = sep;
361 	/* Walk the list, looking for matching LSMs. */
362 	while ((name = strsep(&next, ",")) != NULL) {
363 		bool found = false;
364 
365 		for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
366 			if (strcmp(lsm->name, name) == 0) {
367 				if (lsm->order == LSM_ORDER_MUTABLE)
368 					append_ordered_lsm(lsm, origin);
369 				found = true;
370 			}
371 		}
372 
373 		if (!found)
374 			init_debug("%s ignored: %s (not built into kernel)\n",
375 				   origin, name);
376 	}
377 
378 	/* Process "security=", if given. */
379 	if (chosen_major_lsm) {
380 		for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
381 			if (exists_ordered_lsm(lsm))
382 				continue;
383 			if (strcmp(lsm->name, chosen_major_lsm) == 0)
384 				append_ordered_lsm(lsm, "security=");
385 		}
386 	}
387 
388 	/* LSM_ORDER_LAST is always last. */
389 	for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
390 		if (lsm->order == LSM_ORDER_LAST)
391 			append_ordered_lsm(lsm, "   last");
392 	}
393 
394 	/* Disable all LSMs not in the ordered list. */
395 	for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
396 		if (exists_ordered_lsm(lsm))
397 			continue;
398 		set_enabled(lsm, false);
399 		init_debug("%s skipped: %s (not in requested order)\n",
400 			   origin, lsm->name);
401 	}
402 
403 	kfree(sep);
404 }
405 
406 static void __init lsm_static_call_init(struct security_hook_list *hl)
407 {
408 	struct lsm_static_call *scall = hl->scalls;
409 	int i;
410 
411 	for (i = 0; i < MAX_LSM_COUNT; i++) {
412 		/* Update the first static call that is not used yet */
413 		if (!scall->hl) {
414 			__static_call_update(scall->key, scall->trampoline,
415 					     hl->hook.lsm_func_addr);
416 			scall->hl = hl;
417 			static_branch_enable(scall->active);
418 			return;
419 		}
420 		scall++;
421 	}
422 	panic("%s - Ran out of static slots.\n", __func__);
423 }
424 
425 static void __init lsm_early_cred(struct cred *cred);
426 static void __init lsm_early_task(struct task_struct *task);
427 
428 static int lsm_append(const char *new, char **result);
429 
430 static void __init report_lsm_order(void)
431 {
432 	struct lsm_info **lsm, *early;
433 	int first = 0;
434 
435 	pr_info("initializing lsm=");
436 
437 	/* Report each enabled LSM name, comma separated. */
438 	for (early = __start_early_lsm_info;
439 	     early < __end_early_lsm_info; early++)
440 		if (is_enabled(early))
441 			pr_cont("%s%s", first++ == 0 ? "" : ",", early->name);
442 	for (lsm = ordered_lsms; *lsm; lsm++)
443 		if (is_enabled(*lsm))
444 			pr_cont("%s%s", first++ == 0 ? "" : ",", (*lsm)->name);
445 
446 	pr_cont("\n");
447 }
448 
449 static void __init ordered_lsm_init(void)
450 {
451 	struct lsm_info **lsm;
452 
453 	if (chosen_lsm_order) {
454 		if (chosen_major_lsm) {
455 			pr_warn("security=%s is ignored because it is superseded by lsm=%s\n",
456 				chosen_major_lsm, chosen_lsm_order);
457 			chosen_major_lsm = NULL;
458 		}
459 		ordered_lsm_parse(chosen_lsm_order, "cmdline");
460 	} else
461 		ordered_lsm_parse(builtin_lsm_order, "builtin");
462 
463 	for (lsm = ordered_lsms; *lsm; lsm++)
464 		prepare_lsm(*lsm);
465 
466 	report_lsm_order();
467 
468 	init_debug("cred blob size       = %d\n", blob_sizes.lbs_cred);
469 	init_debug("file blob size       = %d\n", blob_sizes.lbs_file);
470 	init_debug("ib blob size         = %d\n", blob_sizes.lbs_ib);
471 	init_debug("inode blob size      = %d\n", blob_sizes.lbs_inode);
472 	init_debug("ipc blob size        = %d\n", blob_sizes.lbs_ipc);
473 #ifdef CONFIG_KEYS
474 	init_debug("key blob size        = %d\n", blob_sizes.lbs_key);
475 #endif /* CONFIG_KEYS */
476 	init_debug("msg_msg blob size    = %d\n", blob_sizes.lbs_msg_msg);
477 	init_debug("sock blob size       = %d\n", blob_sizes.lbs_sock);
478 	init_debug("superblock blob size = %d\n", blob_sizes.lbs_superblock);
479 	init_debug("perf event blob size = %d\n", blob_sizes.lbs_perf_event);
480 	init_debug("task blob size       = %d\n", blob_sizes.lbs_task);
481 	init_debug("tun device blob size = %d\n", blob_sizes.lbs_tun_dev);
482 	init_debug("xattr slots          = %d\n", blob_sizes.lbs_xattr_count);
483 	init_debug("bdev blob size       = %d\n", blob_sizes.lbs_bdev);
484 
485 	/*
486 	 * Create any kmem_caches needed for blobs
487 	 */
488 	if (blob_sizes.lbs_file)
489 		lsm_file_cache = kmem_cache_create("lsm_file_cache",
490 						   blob_sizes.lbs_file, 0,
491 						   SLAB_PANIC, NULL);
492 	if (blob_sizes.lbs_inode)
493 		lsm_inode_cache = kmem_cache_create("lsm_inode_cache",
494 						    blob_sizes.lbs_inode, 0,
495 						    SLAB_PANIC, NULL);
496 
497 	lsm_early_cred((struct cred *) current->cred);
498 	lsm_early_task(current);
499 	for (lsm = ordered_lsms; *lsm; lsm++)
500 		initialize_lsm(*lsm);
501 }
502 
503 int __init early_security_init(void)
504 {
505 	struct lsm_info *lsm;
506 
507 	for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
508 		if (!lsm->enabled)
509 			lsm->enabled = &lsm_enabled_true;
510 		prepare_lsm(lsm);
511 		initialize_lsm(lsm);
512 	}
513 
514 	return 0;
515 }
516 
517 /**
518  * security_init - initializes the security framework
519  *
520  * This should be called early in the kernel initialization sequence.
521  */
522 int __init security_init(void)
523 {
524 	struct lsm_info *lsm;
525 
526 	init_debug("legacy security=%s\n", chosen_major_lsm ? : " *unspecified*");
527 	init_debug("  CONFIG_LSM=%s\n", builtin_lsm_order);
528 	init_debug("boot arg lsm=%s\n", chosen_lsm_order ? : " *unspecified*");
529 
530 	/*
531 	 * Append the names of the early LSM modules now that kmalloc() is
532 	 * available
533 	 */
534 	for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
535 		init_debug("  early started: %s (%s)\n", lsm->name,
536 			   is_enabled(lsm) ? "enabled" : "disabled");
537 		if (lsm->enabled)
538 			lsm_append(lsm->name, &lsm_names);
539 	}
540 
541 	/* Load LSMs in specified order. */
542 	ordered_lsm_init();
543 
544 	return 0;
545 }
546 
547 /* Save user chosen LSM */
548 static int __init choose_major_lsm(char *str)
549 {
550 	chosen_major_lsm = str;
551 	return 1;
552 }
553 __setup("security=", choose_major_lsm);
554 
555 /* Explicitly choose LSM initialization order. */
556 static int __init choose_lsm_order(char *str)
557 {
558 	chosen_lsm_order = str;
559 	return 1;
560 }
561 __setup("lsm=", choose_lsm_order);
562 
563 /* Enable LSM order debugging. */
564 static int __init enable_debug(char *str)
565 {
566 	debug = true;
567 	return 1;
568 }
569 __setup("lsm.debug", enable_debug);
570 
571 static bool match_last_lsm(const char *list, const char *lsm)
572 {
573 	const char *last;
574 
575 	if (WARN_ON(!list || !lsm))
576 		return false;
577 	last = strrchr(list, ',');
578 	if (last)
579 		/* Pass the comma, strcmp() will check for '\0' */
580 		last++;
581 	else
582 		last = list;
583 	return !strcmp(last, lsm);
584 }
585 
586 static int lsm_append(const char *new, char **result)
587 {
588 	char *cp;
589 
590 	if (*result == NULL) {
591 		*result = kstrdup(new, GFP_KERNEL);
592 		if (*result == NULL)
593 			return -ENOMEM;
594 	} else {
595 		/* Check if it is the last registered name */
596 		if (match_last_lsm(*result, new))
597 			return 0;
598 		cp = kasprintf(GFP_KERNEL, "%s,%s", *result, new);
599 		if (cp == NULL)
600 			return -ENOMEM;
601 		kfree(*result);
602 		*result = cp;
603 	}
604 	return 0;
605 }
606 
607 /**
608  * security_add_hooks - Add a modules hooks to the hook lists.
609  * @hooks: the hooks to add
610  * @count: the number of hooks to add
611  * @lsmid: the identification information for the security module
612  *
613  * Each LSM has to register its hooks with the infrastructure.
614  */
615 void __init security_add_hooks(struct security_hook_list *hooks, int count,
616 			       const struct lsm_id *lsmid)
617 {
618 	int i;
619 
620 	/*
621 	 * A security module may call security_add_hooks() more
622 	 * than once during initialization, and LSM initialization
623 	 * is serialized. Landlock is one such case.
624 	 * Look at the previous entry, if there is one, for duplication.
625 	 */
626 	if (lsm_active_cnt == 0 || lsm_idlist[lsm_active_cnt - 1] != lsmid) {
627 		if (lsm_active_cnt >= MAX_LSM_COUNT)
628 			panic("%s Too many LSMs registered.\n", __func__);
629 		lsm_idlist[lsm_active_cnt++] = lsmid;
630 	}
631 
632 	for (i = 0; i < count; i++) {
633 		hooks[i].lsmid = lsmid;
634 		lsm_static_call_init(&hooks[i]);
635 	}
636 
637 	/*
638 	 * Don't try to append during early_security_init(), we'll come back
639 	 * and fix this up afterwards.
640 	 */
641 	if (slab_is_available()) {
642 		if (lsm_append(lsmid->name, &lsm_names) < 0)
643 			panic("%s - Cannot get early memory.\n", __func__);
644 	}
645 }
646 
647 int call_blocking_lsm_notifier(enum lsm_event event, void *data)
648 {
649 	return blocking_notifier_call_chain(&blocking_lsm_notifier_chain,
650 					    event, data);
651 }
652 EXPORT_SYMBOL(call_blocking_lsm_notifier);
653 
654 int register_blocking_lsm_notifier(struct notifier_block *nb)
655 {
656 	return blocking_notifier_chain_register(&blocking_lsm_notifier_chain,
657 						nb);
658 }
659 EXPORT_SYMBOL(register_blocking_lsm_notifier);
660 
661 int unregister_blocking_lsm_notifier(struct notifier_block *nb)
662 {
663 	return blocking_notifier_chain_unregister(&blocking_lsm_notifier_chain,
664 						  nb);
665 }
666 EXPORT_SYMBOL(unregister_blocking_lsm_notifier);
667 
668 /**
669  * lsm_blob_alloc - allocate a composite blob
670  * @dest: the destination for the blob
671  * @size: the size of the blob
672  * @gfp: allocation type
673  *
674  * Allocate a blob for all the modules
675  *
676  * Returns 0, or -ENOMEM if memory can't be allocated.
677  */
678 static int lsm_blob_alloc(void **dest, size_t size, gfp_t gfp)
679 {
680 	if (size == 0) {
681 		*dest = NULL;
682 		return 0;
683 	}
684 
685 	*dest = kzalloc(size, gfp);
686 	if (*dest == NULL)
687 		return -ENOMEM;
688 	return 0;
689 }
690 
691 /**
692  * lsm_cred_alloc - allocate a composite cred blob
693  * @cred: the cred that needs a blob
694  * @gfp: allocation type
695  *
696  * Allocate the cred blob for all the modules
697  *
698  * Returns 0, or -ENOMEM if memory can't be allocated.
699  */
700 static int lsm_cred_alloc(struct cred *cred, gfp_t gfp)
701 {
702 	return lsm_blob_alloc(&cred->security, blob_sizes.lbs_cred, gfp);
703 }
704 
705 /**
706  * lsm_early_cred - during initialization allocate a composite cred blob
707  * @cred: the cred that needs a blob
708  *
709  * Allocate the cred blob for all the modules
710  */
711 static void __init lsm_early_cred(struct cred *cred)
712 {
713 	int rc = lsm_cred_alloc(cred, GFP_KERNEL);
714 
715 	if (rc)
716 		panic("%s: Early cred alloc failed.\n", __func__);
717 }
718 
719 /**
720  * lsm_file_alloc - allocate a composite file blob
721  * @file: the file that needs a blob
722  *
723  * Allocate the file blob for all the modules
724  *
725  * Returns 0, or -ENOMEM if memory can't be allocated.
726  */
727 static int lsm_file_alloc(struct file *file)
728 {
729 	if (!lsm_file_cache) {
730 		file->f_security = NULL;
731 		return 0;
732 	}
733 
734 	file->f_security = kmem_cache_zalloc(lsm_file_cache, GFP_KERNEL);
735 	if (file->f_security == NULL)
736 		return -ENOMEM;
737 	return 0;
738 }
739 
740 /**
741  * lsm_inode_alloc - allocate a composite inode blob
742  * @inode: the inode that needs a blob
743  * @gfp: allocation flags
744  *
745  * Allocate the inode blob for all the modules
746  *
747  * Returns 0, or -ENOMEM if memory can't be allocated.
748  */
749 static int lsm_inode_alloc(struct inode *inode, gfp_t gfp)
750 {
751 	if (!lsm_inode_cache) {
752 		inode->i_security = NULL;
753 		return 0;
754 	}
755 
756 	inode->i_security = kmem_cache_zalloc(lsm_inode_cache, gfp);
757 	if (inode->i_security == NULL)
758 		return -ENOMEM;
759 	return 0;
760 }
761 
762 /**
763  * lsm_task_alloc - allocate a composite task blob
764  * @task: the task that needs a blob
765  *
766  * Allocate the task blob for all the modules
767  *
768  * Returns 0, or -ENOMEM if memory can't be allocated.
769  */
770 static int lsm_task_alloc(struct task_struct *task)
771 {
772 	return lsm_blob_alloc(&task->security, blob_sizes.lbs_task, GFP_KERNEL);
773 }
774 
775 /**
776  * lsm_ipc_alloc - allocate a composite ipc blob
777  * @kip: the ipc that needs a blob
778  *
779  * Allocate the ipc blob for all the modules
780  *
781  * Returns 0, or -ENOMEM if memory can't be allocated.
782  */
783 static int lsm_ipc_alloc(struct kern_ipc_perm *kip)
784 {
785 	return lsm_blob_alloc(&kip->security, blob_sizes.lbs_ipc, GFP_KERNEL);
786 }
787 
788 #ifdef CONFIG_KEYS
789 /**
790  * lsm_key_alloc - allocate a composite key blob
791  * @key: the key that needs a blob
792  *
793  * Allocate the key blob for all the modules
794  *
795  * Returns 0, or -ENOMEM if memory can't be allocated.
796  */
797 static int lsm_key_alloc(struct key *key)
798 {
799 	return lsm_blob_alloc(&key->security, blob_sizes.lbs_key, GFP_KERNEL);
800 }
801 #endif /* CONFIG_KEYS */
802 
803 /**
804  * lsm_msg_msg_alloc - allocate a composite msg_msg blob
805  * @mp: the msg_msg that needs a blob
806  *
807  * Allocate the ipc blob for all the modules
808  *
809  * Returns 0, or -ENOMEM if memory can't be allocated.
810  */
811 static int lsm_msg_msg_alloc(struct msg_msg *mp)
812 {
813 	return lsm_blob_alloc(&mp->security, blob_sizes.lbs_msg_msg,
814 			      GFP_KERNEL);
815 }
816 
817 /**
818  * lsm_bdev_alloc - allocate a composite block_device blob
819  * @bdev: the block_device that needs a blob
820  *
821  * Allocate the block_device blob for all the modules
822  *
823  * Returns 0, or -ENOMEM if memory can't be allocated.
824  */
825 static int lsm_bdev_alloc(struct block_device *bdev)
826 {
827 	if (blob_sizes.lbs_bdev == 0) {
828 		bdev->bd_security = NULL;
829 		return 0;
830 	}
831 
832 	bdev->bd_security = kzalloc(blob_sizes.lbs_bdev, GFP_KERNEL);
833 	if (!bdev->bd_security)
834 		return -ENOMEM;
835 
836 	return 0;
837 }
838 
839 /**
840  * lsm_early_task - during initialization allocate a composite task blob
841  * @task: the task that needs a blob
842  *
843  * Allocate the task blob for all the modules
844  */
845 static void __init lsm_early_task(struct task_struct *task)
846 {
847 	int rc = lsm_task_alloc(task);
848 
849 	if (rc)
850 		panic("%s: Early task alloc failed.\n", __func__);
851 }
852 
853 /**
854  * lsm_superblock_alloc - allocate a composite superblock blob
855  * @sb: the superblock that needs a blob
856  *
857  * Allocate the superblock blob for all the modules
858  *
859  * Returns 0, or -ENOMEM if memory can't be allocated.
860  */
861 static int lsm_superblock_alloc(struct super_block *sb)
862 {
863 	return lsm_blob_alloc(&sb->s_security, blob_sizes.lbs_superblock,
864 			      GFP_KERNEL);
865 }
866 
867 /**
868  * lsm_fill_user_ctx - Fill a user space lsm_ctx structure
869  * @uctx: a userspace LSM context to be filled
870  * @uctx_len: available uctx size (input), used uctx size (output)
871  * @val: the new LSM context value
872  * @val_len: the size of the new LSM context value
873  * @id: LSM id
874  * @flags: LSM defined flags
875  *
876  * Fill all of the fields in a userspace lsm_ctx structure.  If @uctx is NULL
877  * simply calculate the required size to output via @utc_len and return
878  * success.
879  *
880  * Returns 0 on success, -E2BIG if userspace buffer is not large enough,
881  * -EFAULT on a copyout error, -ENOMEM if memory can't be allocated.
882  */
883 int lsm_fill_user_ctx(struct lsm_ctx __user *uctx, u32 *uctx_len,
884 		      void *val, size_t val_len,
885 		      u64 id, u64 flags)
886 {
887 	struct lsm_ctx *nctx = NULL;
888 	size_t nctx_len;
889 	int rc = 0;
890 
891 	nctx_len = ALIGN(struct_size(nctx, ctx, val_len), sizeof(void *));
892 	if (nctx_len > *uctx_len) {
893 		rc = -E2BIG;
894 		goto out;
895 	}
896 
897 	/* no buffer - return success/0 and set @uctx_len to the req size */
898 	if (!uctx)
899 		goto out;
900 
901 	nctx = kzalloc(nctx_len, GFP_KERNEL);
902 	if (nctx == NULL) {
903 		rc = -ENOMEM;
904 		goto out;
905 	}
906 	nctx->id = id;
907 	nctx->flags = flags;
908 	nctx->len = nctx_len;
909 	nctx->ctx_len = val_len;
910 	memcpy(nctx->ctx, val, val_len);
911 
912 	if (copy_to_user(uctx, nctx, nctx_len))
913 		rc = -EFAULT;
914 
915 out:
916 	kfree(nctx);
917 	*uctx_len = nctx_len;
918 	return rc;
919 }
920 
921 /*
922  * The default value of the LSM hook is defined in linux/lsm_hook_defs.h and
923  * can be accessed with:
924  *
925  *	LSM_RET_DEFAULT(<hook_name>)
926  *
927  * The macros below define static constants for the default value of each
928  * LSM hook.
929  */
930 #define LSM_RET_DEFAULT(NAME) (NAME##_default)
931 #define DECLARE_LSM_RET_DEFAULT_void(DEFAULT, NAME)
932 #define DECLARE_LSM_RET_DEFAULT_int(DEFAULT, NAME) \
933 	static const int __maybe_unused LSM_RET_DEFAULT(NAME) = (DEFAULT);
934 #define LSM_HOOK(RET, DEFAULT, NAME, ...) \
935 	DECLARE_LSM_RET_DEFAULT_##RET(DEFAULT, NAME)
936 
937 #include <linux/lsm_hook_defs.h>
938 #undef LSM_HOOK
939 
940 /*
941  * Hook list operation macros.
942  *
943  * call_void_hook:
944  *	This is a hook that does not return a value.
945  *
946  * call_int_hook:
947  *	This is a hook that returns a value.
948  */
949 #define __CALL_STATIC_VOID(NUM, HOOK, ...)				     \
950 do {									     \
951 	if (static_branch_unlikely(&SECURITY_HOOK_ACTIVE_KEY(HOOK, NUM))) {    \
952 		static_call(LSM_STATIC_CALL(HOOK, NUM))(__VA_ARGS__);	     \
953 	}								     \
954 } while (0);
955 
956 #define call_void_hook(HOOK, ...)                                 \
957 	do {                                                      \
958 		LSM_LOOP_UNROLL(__CALL_STATIC_VOID, HOOK, __VA_ARGS__); \
959 	} while (0)
960 
961 
962 #define __CALL_STATIC_INT(NUM, R, HOOK, LABEL, ...)			     \
963 do {									     \
964 	if (static_branch_unlikely(&SECURITY_HOOK_ACTIVE_KEY(HOOK, NUM))) {  \
965 		R = static_call(LSM_STATIC_CALL(HOOK, NUM))(__VA_ARGS__);    \
966 		if (R != LSM_RET_DEFAULT(HOOK))				     \
967 			goto LABEL;					     \
968 	}								     \
969 } while (0);
970 
971 #define call_int_hook(HOOK, ...)					\
972 ({									\
973 	__label__ OUT;							\
974 	int RC = LSM_RET_DEFAULT(HOOK);					\
975 									\
976 	LSM_LOOP_UNROLL(__CALL_STATIC_INT, RC, HOOK, OUT, __VA_ARGS__);	\
977 OUT:									\
978 	RC;								\
979 })
980 
981 #define lsm_for_each_hook(scall, NAME)					\
982 	for (scall = static_calls_table.NAME;				\
983 	     scall - static_calls_table.NAME < MAX_LSM_COUNT; scall++)  \
984 		if (static_key_enabled(&scall->active->key))
985 
986 /* Security operations */
987 
988 /**
989  * security_binder_set_context_mgr() - Check if becoming binder ctx mgr is ok
990  * @mgr: task credentials of current binder process
991  *
992  * Check whether @mgr is allowed to be the binder context manager.
993  *
994  * Return: Return 0 if permission is granted.
995  */
996 int security_binder_set_context_mgr(const struct cred *mgr)
997 {
998 	return call_int_hook(binder_set_context_mgr, mgr);
999 }
1000 
1001 /**
1002  * security_binder_transaction() - Check if a binder transaction is allowed
1003  * @from: sending process
1004  * @to: receiving process
1005  *
1006  * Check whether @from is allowed to invoke a binder transaction call to @to.
1007  *
1008  * Return: Returns 0 if permission is granted.
1009  */
1010 int security_binder_transaction(const struct cred *from,
1011 				const struct cred *to)
1012 {
1013 	return call_int_hook(binder_transaction, from, to);
1014 }
1015 
1016 /**
1017  * security_binder_transfer_binder() - Check if a binder transfer is allowed
1018  * @from: sending process
1019  * @to: receiving process
1020  *
1021  * Check whether @from is allowed to transfer a binder reference to @to.
1022  *
1023  * Return: Returns 0 if permission is granted.
1024  */
1025 int security_binder_transfer_binder(const struct cred *from,
1026 				    const struct cred *to)
1027 {
1028 	return call_int_hook(binder_transfer_binder, from, to);
1029 }
1030 
1031 /**
1032  * security_binder_transfer_file() - Check if a binder file xfer is allowed
1033  * @from: sending process
1034  * @to: receiving process
1035  * @file: file being transferred
1036  *
1037  * Check whether @from is allowed to transfer @file to @to.
1038  *
1039  * Return: Returns 0 if permission is granted.
1040  */
1041 int security_binder_transfer_file(const struct cred *from,
1042 				  const struct cred *to, const struct file *file)
1043 {
1044 	return call_int_hook(binder_transfer_file, from, to, file);
1045 }
1046 
1047 /**
1048  * security_ptrace_access_check() - Check if tracing is allowed
1049  * @child: target process
1050  * @mode: PTRACE_MODE flags
1051  *
1052  * Check permission before allowing the current process to trace the @child
1053  * process.  Security modules may also want to perform a process tracing check
1054  * during an execve in the set_security or apply_creds hooks of tracing check
1055  * during an execve in the bprm_set_creds hook of binprm_security_ops if the
1056  * process is being traced and its security attributes would be changed by the
1057  * execve.
1058  *
1059  * Return: Returns 0 if permission is granted.
1060  */
1061 int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
1062 {
1063 	return call_int_hook(ptrace_access_check, child, mode);
1064 }
1065 
1066 /**
1067  * security_ptrace_traceme() - Check if tracing is allowed
1068  * @parent: tracing process
1069  *
1070  * Check that the @parent process has sufficient permission to trace the
1071  * current process before allowing the current process to present itself to the
1072  * @parent process for tracing.
1073  *
1074  * Return: Returns 0 if permission is granted.
1075  */
1076 int security_ptrace_traceme(struct task_struct *parent)
1077 {
1078 	return call_int_hook(ptrace_traceme, parent);
1079 }
1080 
1081 /**
1082  * security_capget() - Get the capability sets for a process
1083  * @target: target process
1084  * @effective: effective capability set
1085  * @inheritable: inheritable capability set
1086  * @permitted: permitted capability set
1087  *
1088  * Get the @effective, @inheritable, and @permitted capability sets for the
1089  * @target process.  The hook may also perform permission checking to determine
1090  * if the current process is allowed to see the capability sets of the @target
1091  * process.
1092  *
1093  * Return: Returns 0 if the capability sets were successfully obtained.
1094  */
1095 int security_capget(const struct task_struct *target,
1096 		    kernel_cap_t *effective,
1097 		    kernel_cap_t *inheritable,
1098 		    kernel_cap_t *permitted)
1099 {
1100 	return call_int_hook(capget, target, effective, inheritable, permitted);
1101 }
1102 
1103 /**
1104  * security_capset() - Set the capability sets for a process
1105  * @new: new credentials for the target process
1106  * @old: current credentials of the target process
1107  * @effective: effective capability set
1108  * @inheritable: inheritable capability set
1109  * @permitted: permitted capability set
1110  *
1111  * Set the @effective, @inheritable, and @permitted capability sets for the
1112  * current process.
1113  *
1114  * Return: Returns 0 and update @new if permission is granted.
1115  */
1116 int security_capset(struct cred *new, const struct cred *old,
1117 		    const kernel_cap_t *effective,
1118 		    const kernel_cap_t *inheritable,
1119 		    const kernel_cap_t *permitted)
1120 {
1121 	return call_int_hook(capset, new, old, effective, inheritable,
1122 			     permitted);
1123 }
1124 
1125 /**
1126  * security_capable() - Check if a process has the necessary capability
1127  * @cred: credentials to examine
1128  * @ns: user namespace
1129  * @cap: capability requested
1130  * @opts: capability check options
1131  *
1132  * Check whether the @tsk process has the @cap capability in the indicated
1133  * credentials.  @cap contains the capability <include/linux/capability.h>.
1134  * @opts contains options for the capable check <include/linux/security.h>.
1135  *
1136  * Return: Returns 0 if the capability is granted.
1137  */
1138 int security_capable(const struct cred *cred,
1139 		     struct user_namespace *ns,
1140 		     int cap,
1141 		     unsigned int opts)
1142 {
1143 	return call_int_hook(capable, cred, ns, cap, opts);
1144 }
1145 
1146 /**
1147  * security_quotactl() - Check if a quotactl() syscall is allowed for this fs
1148  * @cmds: commands
1149  * @type: type
1150  * @id: id
1151  * @sb: filesystem
1152  *
1153  * Check whether the quotactl syscall is allowed for this @sb.
1154  *
1155  * Return: Returns 0 if permission is granted.
1156  */
1157 int security_quotactl(int cmds, int type, int id, const struct super_block *sb)
1158 {
1159 	return call_int_hook(quotactl, cmds, type, id, sb);
1160 }
1161 
1162 /**
1163  * security_quota_on() - Check if QUOTAON is allowed for a dentry
1164  * @dentry: dentry
1165  *
1166  * Check whether QUOTAON is allowed for @dentry.
1167  *
1168  * Return: Returns 0 if permission is granted.
1169  */
1170 int security_quota_on(struct dentry *dentry)
1171 {
1172 	return call_int_hook(quota_on, dentry);
1173 }
1174 
1175 /**
1176  * security_syslog() - Check if accessing the kernel message ring is allowed
1177  * @type: SYSLOG_ACTION_* type
1178  *
1179  * Check permission before accessing the kernel message ring or changing
1180  * logging to the console.  See the syslog(2) manual page for an explanation of
1181  * the @type values.
1182  *
1183  * Return: Return 0 if permission is granted.
1184  */
1185 int security_syslog(int type)
1186 {
1187 	return call_int_hook(syslog, type);
1188 }
1189 
1190 /**
1191  * security_settime64() - Check if changing the system time is allowed
1192  * @ts: new time
1193  * @tz: timezone
1194  *
1195  * Check permission to change the system time, struct timespec64 is defined in
1196  * <include/linux/time64.h> and timezone is defined in <include/linux/time.h>.
1197  *
1198  * Return: Returns 0 if permission is granted.
1199  */
1200 int security_settime64(const struct timespec64 *ts, const struct timezone *tz)
1201 {
1202 	return call_int_hook(settime, ts, tz);
1203 }
1204 
1205 /**
1206  * security_vm_enough_memory_mm() - Check if allocating a new mem map is allowed
1207  * @mm: mm struct
1208  * @pages: number of pages
1209  *
1210  * Check permissions for allocating a new virtual mapping.  If all LSMs return
1211  * a positive value, __vm_enough_memory() will be called with cap_sys_admin
1212  * set. If at least one LSM returns 0 or negative, __vm_enough_memory() will be
1213  * called with cap_sys_admin cleared.
1214  *
1215  * Return: Returns 0 if permission is granted by the LSM infrastructure to the
1216  *         caller.
1217  */
1218 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
1219 {
1220 	struct lsm_static_call *scall;
1221 	int cap_sys_admin = 1;
1222 	int rc;
1223 
1224 	/*
1225 	 * The module will respond with 0 if it thinks the __vm_enough_memory()
1226 	 * call should be made with the cap_sys_admin set. If all of the modules
1227 	 * agree that it should be set it will. If any module thinks it should
1228 	 * not be set it won't.
1229 	 */
1230 	lsm_for_each_hook(scall, vm_enough_memory) {
1231 		rc = scall->hl->hook.vm_enough_memory(mm, pages);
1232 		if (rc < 0) {
1233 			cap_sys_admin = 0;
1234 			break;
1235 		}
1236 	}
1237 	return __vm_enough_memory(mm, pages, cap_sys_admin);
1238 }
1239 
1240 /**
1241  * security_bprm_creds_for_exec() - Prepare the credentials for exec()
1242  * @bprm: binary program information
1243  *
1244  * If the setup in prepare_exec_creds did not setup @bprm->cred->security
1245  * properly for executing @bprm->file, update the LSM's portion of
1246  * @bprm->cred->security to be what commit_creds needs to install for the new
1247  * program.  This hook may also optionally check permissions (e.g. for
1248  * transitions between security domains).  The hook must set @bprm->secureexec
1249  * to 1 if AT_SECURE should be set to request libc enable secure mode.  @bprm
1250  * contains the linux_binprm structure.
1251  *
1252  * Return: Returns 0 if the hook is successful and permission is granted.
1253  */
1254 int security_bprm_creds_for_exec(struct linux_binprm *bprm)
1255 {
1256 	return call_int_hook(bprm_creds_for_exec, bprm);
1257 }
1258 
1259 /**
1260  * security_bprm_creds_from_file() - Update linux_binprm creds based on file
1261  * @bprm: binary program information
1262  * @file: associated file
1263  *
1264  * If @file is setpcap, suid, sgid or otherwise marked to change privilege upon
1265  * exec, update @bprm->cred to reflect that change. This is called after
1266  * finding the binary that will be executed without an interpreter.  This
1267  * ensures that the credentials will not be derived from a script that the
1268  * binary will need to reopen, which when reopend may end up being a completely
1269  * different file.  This hook may also optionally check permissions (e.g. for
1270  * transitions between security domains).  The hook must set @bprm->secureexec
1271  * to 1 if AT_SECURE should be set to request libc enable secure mode.  The
1272  * hook must add to @bprm->per_clear any personality flags that should be
1273  * cleared from current->personality.  @bprm contains the linux_binprm
1274  * structure.
1275  *
1276  * Return: Returns 0 if the hook is successful and permission is granted.
1277  */
1278 int security_bprm_creds_from_file(struct linux_binprm *bprm, const struct file *file)
1279 {
1280 	return call_int_hook(bprm_creds_from_file, bprm, file);
1281 }
1282 
1283 /**
1284  * security_bprm_check() - Mediate binary handler search
1285  * @bprm: binary program information
1286  *
1287  * This hook mediates the point when a search for a binary handler will begin.
1288  * It allows a check against the @bprm->cred->security value which was set in
1289  * the preceding creds_for_exec call.  The argv list and envp list are reliably
1290  * available in @bprm.  This hook may be called multiple times during a single
1291  * execve.  @bprm contains the linux_binprm structure.
1292  *
1293  * Return: Returns 0 if the hook is successful and permission is granted.
1294  */
1295 int security_bprm_check(struct linux_binprm *bprm)
1296 {
1297 	return call_int_hook(bprm_check_security, bprm);
1298 }
1299 
1300 /**
1301  * security_bprm_committing_creds() - Install creds for a process during exec()
1302  * @bprm: binary program information
1303  *
1304  * Prepare to install the new security attributes of a process being
1305  * transformed by an execve operation, based on the old credentials pointed to
1306  * by @current->cred and the information set in @bprm->cred by the
1307  * bprm_creds_for_exec hook.  @bprm points to the linux_binprm structure.  This
1308  * hook is a good place to perform state changes on the process such as closing
1309  * open file descriptors to which access will no longer be granted when the
1310  * attributes are changed.  This is called immediately before commit_creds().
1311  */
1312 void security_bprm_committing_creds(const struct linux_binprm *bprm)
1313 {
1314 	call_void_hook(bprm_committing_creds, bprm);
1315 }
1316 
1317 /**
1318  * security_bprm_committed_creds() - Tidy up after cred install during exec()
1319  * @bprm: binary program information
1320  *
1321  * Tidy up after the installation of the new security attributes of a process
1322  * being transformed by an execve operation.  The new credentials have, by this
1323  * point, been set to @current->cred.  @bprm points to the linux_binprm
1324  * structure.  This hook is a good place to perform state changes on the
1325  * process such as clearing out non-inheritable signal state.  This is called
1326  * immediately after commit_creds().
1327  */
1328 void security_bprm_committed_creds(const struct linux_binprm *bprm)
1329 {
1330 	call_void_hook(bprm_committed_creds, bprm);
1331 }
1332 
1333 /**
1334  * security_fs_context_submount() - Initialise fc->security
1335  * @fc: new filesystem context
1336  * @reference: dentry reference for submount/remount
1337  *
1338  * Fill out the ->security field for a new fs_context.
1339  *
1340  * Return: Returns 0 on success or negative error code on failure.
1341  */
1342 int security_fs_context_submount(struct fs_context *fc, struct super_block *reference)
1343 {
1344 	return call_int_hook(fs_context_submount, fc, reference);
1345 }
1346 
1347 /**
1348  * security_fs_context_dup() - Duplicate a fs_context LSM blob
1349  * @fc: destination filesystem context
1350  * @src_fc: source filesystem context
1351  *
1352  * Allocate and attach a security structure to sc->security.  This pointer is
1353  * initialised to NULL by the caller.  @fc indicates the new filesystem context.
1354  * @src_fc indicates the original filesystem context.
1355  *
1356  * Return: Returns 0 on success or a negative error code on failure.
1357  */
1358 int security_fs_context_dup(struct fs_context *fc, struct fs_context *src_fc)
1359 {
1360 	return call_int_hook(fs_context_dup, fc, src_fc);
1361 }
1362 
1363 /**
1364  * security_fs_context_parse_param() - Configure a filesystem context
1365  * @fc: filesystem context
1366  * @param: filesystem parameter
1367  *
1368  * Userspace provided a parameter to configure a superblock.  The LSM can
1369  * consume the parameter or return it to the caller for use elsewhere.
1370  *
1371  * Return: If the parameter is used by the LSM it should return 0, if it is
1372  *         returned to the caller -ENOPARAM is returned, otherwise a negative
1373  *         error code is returned.
1374  */
1375 int security_fs_context_parse_param(struct fs_context *fc,
1376 				    struct fs_parameter *param)
1377 {
1378 	struct lsm_static_call *scall;
1379 	int trc;
1380 	int rc = -ENOPARAM;
1381 
1382 	lsm_for_each_hook(scall, fs_context_parse_param) {
1383 		trc = scall->hl->hook.fs_context_parse_param(fc, param);
1384 		if (trc == 0)
1385 			rc = 0;
1386 		else if (trc != -ENOPARAM)
1387 			return trc;
1388 	}
1389 	return rc;
1390 }
1391 
1392 /**
1393  * security_sb_alloc() - Allocate a super_block LSM blob
1394  * @sb: filesystem superblock
1395  *
1396  * Allocate and attach a security structure to the sb->s_security field.  The
1397  * s_security field is initialized to NULL when the structure is allocated.
1398  * @sb contains the super_block structure to be modified.
1399  *
1400  * Return: Returns 0 if operation was successful.
1401  */
1402 int security_sb_alloc(struct super_block *sb)
1403 {
1404 	int rc = lsm_superblock_alloc(sb);
1405 
1406 	if (unlikely(rc))
1407 		return rc;
1408 	rc = call_int_hook(sb_alloc_security, sb);
1409 	if (unlikely(rc))
1410 		security_sb_free(sb);
1411 	return rc;
1412 }
1413 
1414 /**
1415  * security_sb_delete() - Release super_block LSM associated objects
1416  * @sb: filesystem superblock
1417  *
1418  * Release objects tied to a superblock (e.g. inodes).  @sb contains the
1419  * super_block structure being released.
1420  */
1421 void security_sb_delete(struct super_block *sb)
1422 {
1423 	call_void_hook(sb_delete, sb);
1424 }
1425 
1426 /**
1427  * security_sb_free() - Free a super_block LSM blob
1428  * @sb: filesystem superblock
1429  *
1430  * Deallocate and clear the sb->s_security field.  @sb contains the super_block
1431  * structure to be modified.
1432  */
1433 void security_sb_free(struct super_block *sb)
1434 {
1435 	call_void_hook(sb_free_security, sb);
1436 	kfree(sb->s_security);
1437 	sb->s_security = NULL;
1438 }
1439 
1440 /**
1441  * security_free_mnt_opts() - Free memory associated with mount options
1442  * @mnt_opts: LSM processed mount options
1443  *
1444  * Free memory associated with @mnt_ops.
1445  */
1446 void security_free_mnt_opts(void **mnt_opts)
1447 {
1448 	if (!*mnt_opts)
1449 		return;
1450 	call_void_hook(sb_free_mnt_opts, *mnt_opts);
1451 	*mnt_opts = NULL;
1452 }
1453 EXPORT_SYMBOL(security_free_mnt_opts);
1454 
1455 /**
1456  * security_sb_eat_lsm_opts() - Consume LSM mount options
1457  * @options: mount options
1458  * @mnt_opts: LSM processed mount options
1459  *
1460  * Eat (scan @options) and save them in @mnt_opts.
1461  *
1462  * Return: Returns 0 on success, negative values on failure.
1463  */
1464 int security_sb_eat_lsm_opts(char *options, void **mnt_opts)
1465 {
1466 	return call_int_hook(sb_eat_lsm_opts, options, mnt_opts);
1467 }
1468 EXPORT_SYMBOL(security_sb_eat_lsm_opts);
1469 
1470 /**
1471  * security_sb_mnt_opts_compat() - Check if new mount options are allowed
1472  * @sb: filesystem superblock
1473  * @mnt_opts: new mount options
1474  *
1475  * Determine if the new mount options in @mnt_opts are allowed given the
1476  * existing mounted filesystem at @sb.  @sb superblock being compared.
1477  *
1478  * Return: Returns 0 if options are compatible.
1479  */
1480 int security_sb_mnt_opts_compat(struct super_block *sb,
1481 				void *mnt_opts)
1482 {
1483 	return call_int_hook(sb_mnt_opts_compat, sb, mnt_opts);
1484 }
1485 EXPORT_SYMBOL(security_sb_mnt_opts_compat);
1486 
1487 /**
1488  * security_sb_remount() - Verify no incompatible mount changes during remount
1489  * @sb: filesystem superblock
1490  * @mnt_opts: (re)mount options
1491  *
1492  * Extracts security system specific mount options and verifies no changes are
1493  * being made to those options.
1494  *
1495  * Return: Returns 0 if permission is granted.
1496  */
1497 int security_sb_remount(struct super_block *sb,
1498 			void *mnt_opts)
1499 {
1500 	return call_int_hook(sb_remount, sb, mnt_opts);
1501 }
1502 EXPORT_SYMBOL(security_sb_remount);
1503 
1504 /**
1505  * security_sb_kern_mount() - Check if a kernel mount is allowed
1506  * @sb: filesystem superblock
1507  *
1508  * Mount this @sb if allowed by permissions.
1509  *
1510  * Return: Returns 0 if permission is granted.
1511  */
1512 int security_sb_kern_mount(const struct super_block *sb)
1513 {
1514 	return call_int_hook(sb_kern_mount, sb);
1515 }
1516 
1517 /**
1518  * security_sb_show_options() - Output the mount options for a superblock
1519  * @m: output file
1520  * @sb: filesystem superblock
1521  *
1522  * Show (print on @m) mount options for this @sb.
1523  *
1524  * Return: Returns 0 on success, negative values on failure.
1525  */
1526 int security_sb_show_options(struct seq_file *m, struct super_block *sb)
1527 {
1528 	return call_int_hook(sb_show_options, m, sb);
1529 }
1530 
1531 /**
1532  * security_sb_statfs() - Check if accessing fs stats is allowed
1533  * @dentry: superblock handle
1534  *
1535  * Check permission before obtaining filesystem statistics for the @mnt
1536  * mountpoint.  @dentry is a handle on the superblock for the filesystem.
1537  *
1538  * Return: Returns 0 if permission is granted.
1539  */
1540 int security_sb_statfs(struct dentry *dentry)
1541 {
1542 	return call_int_hook(sb_statfs, dentry);
1543 }
1544 
1545 /**
1546  * security_sb_mount() - Check permission for mounting a filesystem
1547  * @dev_name: filesystem backing device
1548  * @path: mount point
1549  * @type: filesystem type
1550  * @flags: mount flags
1551  * @data: filesystem specific data
1552  *
1553  * Check permission before an object specified by @dev_name is mounted on the
1554  * mount point named by @nd.  For an ordinary mount, @dev_name identifies a
1555  * device if the file system type requires a device.  For a remount
1556  * (@flags & MS_REMOUNT), @dev_name is irrelevant.  For a loopback/bind mount
1557  * (@flags & MS_BIND), @dev_name identifies the	pathname of the object being
1558  * mounted.
1559  *
1560  * Return: Returns 0 if permission is granted.
1561  */
1562 int security_sb_mount(const char *dev_name, const struct path *path,
1563 		      const char *type, unsigned long flags, void *data)
1564 {
1565 	return call_int_hook(sb_mount, dev_name, path, type, flags, data);
1566 }
1567 
1568 /**
1569  * security_sb_umount() - Check permission for unmounting a filesystem
1570  * @mnt: mounted filesystem
1571  * @flags: unmount flags
1572  *
1573  * Check permission before the @mnt file system is unmounted.
1574  *
1575  * Return: Returns 0 if permission is granted.
1576  */
1577 int security_sb_umount(struct vfsmount *mnt, int flags)
1578 {
1579 	return call_int_hook(sb_umount, mnt, flags);
1580 }
1581 
1582 /**
1583  * security_sb_pivotroot() - Check permissions for pivoting the rootfs
1584  * @old_path: new location for current rootfs
1585  * @new_path: location of the new rootfs
1586  *
1587  * Check permission before pivoting the root filesystem.
1588  *
1589  * Return: Returns 0 if permission is granted.
1590  */
1591 int security_sb_pivotroot(const struct path *old_path,
1592 			  const struct path *new_path)
1593 {
1594 	return call_int_hook(sb_pivotroot, old_path, new_path);
1595 }
1596 
1597 /**
1598  * security_sb_set_mnt_opts() - Set the mount options for a filesystem
1599  * @sb: filesystem superblock
1600  * @mnt_opts: binary mount options
1601  * @kern_flags: kernel flags (in)
1602  * @set_kern_flags: kernel flags (out)
1603  *
1604  * Set the security relevant mount options used for a superblock.
1605  *
1606  * Return: Returns 0 on success, error on failure.
1607  */
1608 int security_sb_set_mnt_opts(struct super_block *sb,
1609 			     void *mnt_opts,
1610 			     unsigned long kern_flags,
1611 			     unsigned long *set_kern_flags)
1612 {
1613 	struct lsm_static_call *scall;
1614 	int rc = mnt_opts ? -EOPNOTSUPP : LSM_RET_DEFAULT(sb_set_mnt_opts);
1615 
1616 	lsm_for_each_hook(scall, sb_set_mnt_opts) {
1617 		rc = scall->hl->hook.sb_set_mnt_opts(sb, mnt_opts, kern_flags,
1618 					      set_kern_flags);
1619 		if (rc != LSM_RET_DEFAULT(sb_set_mnt_opts))
1620 			break;
1621 	}
1622 	return rc;
1623 }
1624 EXPORT_SYMBOL(security_sb_set_mnt_opts);
1625 
1626 /**
1627  * security_sb_clone_mnt_opts() - Duplicate superblock mount options
1628  * @oldsb: source superblock
1629  * @newsb: destination superblock
1630  * @kern_flags: kernel flags (in)
1631  * @set_kern_flags: kernel flags (out)
1632  *
1633  * Copy all security options from a given superblock to another.
1634  *
1635  * Return: Returns 0 on success, error on failure.
1636  */
1637 int security_sb_clone_mnt_opts(const struct super_block *oldsb,
1638 			       struct super_block *newsb,
1639 			       unsigned long kern_flags,
1640 			       unsigned long *set_kern_flags)
1641 {
1642 	return call_int_hook(sb_clone_mnt_opts, oldsb, newsb,
1643 			     kern_flags, set_kern_flags);
1644 }
1645 EXPORT_SYMBOL(security_sb_clone_mnt_opts);
1646 
1647 /**
1648  * security_move_mount() - Check permissions for moving a mount
1649  * @from_path: source mount point
1650  * @to_path: destination mount point
1651  *
1652  * Check permission before a mount is moved.
1653  *
1654  * Return: Returns 0 if permission is granted.
1655  */
1656 int security_move_mount(const struct path *from_path,
1657 			const struct path *to_path)
1658 {
1659 	return call_int_hook(move_mount, from_path, to_path);
1660 }
1661 
1662 /**
1663  * security_path_notify() - Check if setting a watch is allowed
1664  * @path: file path
1665  * @mask: event mask
1666  * @obj_type: file path type
1667  *
1668  * Check permissions before setting a watch on events as defined by @mask, on
1669  * an object at @path, whose type is defined by @obj_type.
1670  *
1671  * Return: Returns 0 if permission is granted.
1672  */
1673 int security_path_notify(const struct path *path, u64 mask,
1674 			 unsigned int obj_type)
1675 {
1676 	return call_int_hook(path_notify, path, mask, obj_type);
1677 }
1678 
1679 /**
1680  * security_inode_alloc() - Allocate an inode LSM blob
1681  * @inode: the inode
1682  * @gfp: allocation flags
1683  *
1684  * Allocate and attach a security structure to @inode->i_security.  The
1685  * i_security field is initialized to NULL when the inode structure is
1686  * allocated.
1687  *
1688  * Return: Return 0 if operation was successful.
1689  */
1690 int security_inode_alloc(struct inode *inode, gfp_t gfp)
1691 {
1692 	int rc = lsm_inode_alloc(inode, gfp);
1693 
1694 	if (unlikely(rc))
1695 		return rc;
1696 	rc = call_int_hook(inode_alloc_security, inode);
1697 	if (unlikely(rc))
1698 		security_inode_free(inode);
1699 	return rc;
1700 }
1701 
1702 static void inode_free_by_rcu(struct rcu_head *head)
1703 {
1704 	/* The rcu head is at the start of the inode blob */
1705 	call_void_hook(inode_free_security_rcu, head);
1706 	kmem_cache_free(lsm_inode_cache, head);
1707 }
1708 
1709 /**
1710  * security_inode_free() - Free an inode's LSM blob
1711  * @inode: the inode
1712  *
1713  * Release any LSM resources associated with @inode, although due to the
1714  * inode's RCU protections it is possible that the resources will not be
1715  * fully released until after the current RCU grace period has elapsed.
1716  *
1717  * It is important for LSMs to note that despite being present in a call to
1718  * security_inode_free(), @inode may still be referenced in a VFS path walk
1719  * and calls to security_inode_permission() may be made during, or after,
1720  * a call to security_inode_free().  For this reason the inode->i_security
1721  * field is released via a call_rcu() callback and any LSMs which need to
1722  * retain inode state for use in security_inode_permission() should only
1723  * release that state in the inode_free_security_rcu() LSM hook callback.
1724  */
1725 void security_inode_free(struct inode *inode)
1726 {
1727 	call_void_hook(inode_free_security, inode);
1728 	if (!inode->i_security)
1729 		return;
1730 	call_rcu((struct rcu_head *)inode->i_security, inode_free_by_rcu);
1731 }
1732 
1733 /**
1734  * security_dentry_init_security() - Perform dentry initialization
1735  * @dentry: the dentry to initialize
1736  * @mode: mode used to determine resource type
1737  * @name: name of the last path component
1738  * @xattr_name: name of the security/LSM xattr
1739  * @ctx: pointer to the resulting LSM context
1740  * @ctxlen: length of @ctx
1741  *
1742  * Compute a context for a dentry as the inode is not yet available since NFSv4
1743  * has no label backed by an EA anyway.  It is important to note that
1744  * @xattr_name does not need to be free'd by the caller, it is a static string.
1745  *
1746  * Return: Returns 0 on success, negative values on failure.
1747  */
1748 int security_dentry_init_security(struct dentry *dentry, int mode,
1749 				  const struct qstr *name,
1750 				  const char **xattr_name, void **ctx,
1751 				  u32 *ctxlen)
1752 {
1753 	return call_int_hook(dentry_init_security, dentry, mode, name,
1754 			     xattr_name, ctx, ctxlen);
1755 }
1756 EXPORT_SYMBOL(security_dentry_init_security);
1757 
1758 /**
1759  * security_dentry_create_files_as() - Perform dentry initialization
1760  * @dentry: the dentry to initialize
1761  * @mode: mode used to determine resource type
1762  * @name: name of the last path component
1763  * @old: creds to use for LSM context calculations
1764  * @new: creds to modify
1765  *
1766  * Compute a context for a dentry as the inode is not yet available and set
1767  * that context in passed in creds so that new files are created using that
1768  * context. Context is calculated using the passed in creds and not the creds
1769  * of the caller.
1770  *
1771  * Return: Returns 0 on success, error on failure.
1772  */
1773 int security_dentry_create_files_as(struct dentry *dentry, int mode,
1774 				    struct qstr *name,
1775 				    const struct cred *old, struct cred *new)
1776 {
1777 	return call_int_hook(dentry_create_files_as, dentry, mode,
1778 			     name, old, new);
1779 }
1780 EXPORT_SYMBOL(security_dentry_create_files_as);
1781 
1782 /**
1783  * security_inode_init_security() - Initialize an inode's LSM context
1784  * @inode: the inode
1785  * @dir: parent directory
1786  * @qstr: last component of the pathname
1787  * @initxattrs: callback function to write xattrs
1788  * @fs_data: filesystem specific data
1789  *
1790  * Obtain the security attribute name suffix and value to set on a newly
1791  * created inode and set up the incore security field for the new inode.  This
1792  * hook is called by the fs code as part of the inode creation transaction and
1793  * provides for atomic labeling of the inode, unlike the post_create/mkdir/...
1794  * hooks called by the VFS.
1795  *
1796  * The hook function is expected to populate the xattrs array, by calling
1797  * lsm_get_xattr_slot() to retrieve the slots reserved by the security module
1798  * with the lbs_xattr_count field of the lsm_blob_sizes structure.  For each
1799  * slot, the hook function should set ->name to the attribute name suffix
1800  * (e.g. selinux), to allocate ->value (will be freed by the caller) and set it
1801  * to the attribute value, to set ->value_len to the length of the value.  If
1802  * the security module does not use security attributes or does not wish to put
1803  * a security attribute on this particular inode, then it should return
1804  * -EOPNOTSUPP to skip this processing.
1805  *
1806  * Return: Returns 0 if the LSM successfully initialized all of the inode
1807  *         security attributes that are required, negative values otherwise.
1808  */
1809 int security_inode_init_security(struct inode *inode, struct inode *dir,
1810 				 const struct qstr *qstr,
1811 				 const initxattrs initxattrs, void *fs_data)
1812 {
1813 	struct lsm_static_call *scall;
1814 	struct xattr *new_xattrs = NULL;
1815 	int ret = -EOPNOTSUPP, xattr_count = 0;
1816 
1817 	if (unlikely(IS_PRIVATE(inode)))
1818 		return 0;
1819 
1820 	if (!blob_sizes.lbs_xattr_count)
1821 		return 0;
1822 
1823 	if (initxattrs) {
1824 		/* Allocate +1 as terminator. */
1825 		new_xattrs = kcalloc(blob_sizes.lbs_xattr_count + 1,
1826 				     sizeof(*new_xattrs), GFP_NOFS);
1827 		if (!new_xattrs)
1828 			return -ENOMEM;
1829 	}
1830 
1831 	lsm_for_each_hook(scall, inode_init_security) {
1832 		ret = scall->hl->hook.inode_init_security(inode, dir, qstr, new_xattrs,
1833 						  &xattr_count);
1834 		if (ret && ret != -EOPNOTSUPP)
1835 			goto out;
1836 		/*
1837 		 * As documented in lsm_hooks.h, -EOPNOTSUPP in this context
1838 		 * means that the LSM is not willing to provide an xattr, not
1839 		 * that it wants to signal an error. Thus, continue to invoke
1840 		 * the remaining LSMs.
1841 		 */
1842 	}
1843 
1844 	/* If initxattrs() is NULL, xattr_count is zero, skip the call. */
1845 	if (!xattr_count)
1846 		goto out;
1847 
1848 	ret = initxattrs(inode, new_xattrs, fs_data);
1849 out:
1850 	for (; xattr_count > 0; xattr_count--)
1851 		kfree(new_xattrs[xattr_count - 1].value);
1852 	kfree(new_xattrs);
1853 	return (ret == -EOPNOTSUPP) ? 0 : ret;
1854 }
1855 EXPORT_SYMBOL(security_inode_init_security);
1856 
1857 /**
1858  * security_inode_init_security_anon() - Initialize an anonymous inode
1859  * @inode: the inode
1860  * @name: the anonymous inode class
1861  * @context_inode: an optional related inode
1862  *
1863  * Set up the incore security field for the new anonymous inode and return
1864  * whether the inode creation is permitted by the security module or not.
1865  *
1866  * Return: Returns 0 on success, -EACCES if the security module denies the
1867  * creation of this inode, or another -errno upon other errors.
1868  */
1869 int security_inode_init_security_anon(struct inode *inode,
1870 				      const struct qstr *name,
1871 				      const struct inode *context_inode)
1872 {
1873 	return call_int_hook(inode_init_security_anon, inode, name,
1874 			     context_inode);
1875 }
1876 
1877 #ifdef CONFIG_SECURITY_PATH
1878 /**
1879  * security_path_mknod() - Check if creating a special file is allowed
1880  * @dir: parent directory
1881  * @dentry: new file
1882  * @mode: new file mode
1883  * @dev: device number
1884  *
1885  * Check permissions when creating a file. Note that this hook is called even
1886  * if mknod operation is being done for a regular file.
1887  *
1888  * Return: Returns 0 if permission is granted.
1889  */
1890 int security_path_mknod(const struct path *dir, struct dentry *dentry,
1891 			umode_t mode, unsigned int dev)
1892 {
1893 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1894 		return 0;
1895 	return call_int_hook(path_mknod, dir, dentry, mode, dev);
1896 }
1897 EXPORT_SYMBOL(security_path_mknod);
1898 
1899 /**
1900  * security_path_post_mknod() - Update inode security after reg file creation
1901  * @idmap: idmap of the mount
1902  * @dentry: new file
1903  *
1904  * Update inode security field after a regular file has been created.
1905  */
1906 void security_path_post_mknod(struct mnt_idmap *idmap, struct dentry *dentry)
1907 {
1908 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1909 		return;
1910 	call_void_hook(path_post_mknod, idmap, dentry);
1911 }
1912 
1913 /**
1914  * security_path_mkdir() - Check if creating a new directory is allowed
1915  * @dir: parent directory
1916  * @dentry: new directory
1917  * @mode: new directory mode
1918  *
1919  * Check permissions to create a new directory in the existing directory.
1920  *
1921  * Return: Returns 0 if permission is granted.
1922  */
1923 int security_path_mkdir(const struct path *dir, struct dentry *dentry,
1924 			umode_t mode)
1925 {
1926 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1927 		return 0;
1928 	return call_int_hook(path_mkdir, dir, dentry, mode);
1929 }
1930 EXPORT_SYMBOL(security_path_mkdir);
1931 
1932 /**
1933  * security_path_rmdir() - Check if removing a directory is allowed
1934  * @dir: parent directory
1935  * @dentry: directory to remove
1936  *
1937  * Check the permission to remove a directory.
1938  *
1939  * Return: Returns 0 if permission is granted.
1940  */
1941 int security_path_rmdir(const struct path *dir, struct dentry *dentry)
1942 {
1943 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1944 		return 0;
1945 	return call_int_hook(path_rmdir, dir, dentry);
1946 }
1947 
1948 /**
1949  * security_path_unlink() - Check if removing a hard link is allowed
1950  * @dir: parent directory
1951  * @dentry: file
1952  *
1953  * Check the permission to remove a hard link to a file.
1954  *
1955  * Return: Returns 0 if permission is granted.
1956  */
1957 int security_path_unlink(const struct path *dir, struct dentry *dentry)
1958 {
1959 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1960 		return 0;
1961 	return call_int_hook(path_unlink, dir, dentry);
1962 }
1963 EXPORT_SYMBOL(security_path_unlink);
1964 
1965 /**
1966  * security_path_symlink() - Check if creating a symbolic link is allowed
1967  * @dir: parent directory
1968  * @dentry: symbolic link
1969  * @old_name: file pathname
1970  *
1971  * Check the permission to create a symbolic link to a file.
1972  *
1973  * Return: Returns 0 if permission is granted.
1974  */
1975 int security_path_symlink(const struct path *dir, struct dentry *dentry,
1976 			  const char *old_name)
1977 {
1978 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1979 		return 0;
1980 	return call_int_hook(path_symlink, dir, dentry, old_name);
1981 }
1982 
1983 /**
1984  * security_path_link - Check if creating a hard link is allowed
1985  * @old_dentry: existing file
1986  * @new_dir: new parent directory
1987  * @new_dentry: new link
1988  *
1989  * Check permission before creating a new hard link to a file.
1990  *
1991  * Return: Returns 0 if permission is granted.
1992  */
1993 int security_path_link(struct dentry *old_dentry, const struct path *new_dir,
1994 		       struct dentry *new_dentry)
1995 {
1996 	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
1997 		return 0;
1998 	return call_int_hook(path_link, old_dentry, new_dir, new_dentry);
1999 }
2000 
2001 /**
2002  * security_path_rename() - Check if renaming a file is allowed
2003  * @old_dir: parent directory of the old file
2004  * @old_dentry: the old file
2005  * @new_dir: parent directory of the new file
2006  * @new_dentry: the new file
2007  * @flags: flags
2008  *
2009  * Check for permission to rename a file or directory.
2010  *
2011  * Return: Returns 0 if permission is granted.
2012  */
2013 int security_path_rename(const struct path *old_dir, struct dentry *old_dentry,
2014 			 const struct path *new_dir, struct dentry *new_dentry,
2015 			 unsigned int flags)
2016 {
2017 	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
2018 		     (d_is_positive(new_dentry) &&
2019 		      IS_PRIVATE(d_backing_inode(new_dentry)))))
2020 		return 0;
2021 
2022 	return call_int_hook(path_rename, old_dir, old_dentry, new_dir,
2023 			     new_dentry, flags);
2024 }
2025 EXPORT_SYMBOL(security_path_rename);
2026 
2027 /**
2028  * security_path_truncate() - Check if truncating a file is allowed
2029  * @path: file
2030  *
2031  * Check permission before truncating the file indicated by path.  Note that
2032  * truncation permissions may also be checked based on already opened files,
2033  * using the security_file_truncate() hook.
2034  *
2035  * Return: Returns 0 if permission is granted.
2036  */
2037 int security_path_truncate(const struct path *path)
2038 {
2039 	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
2040 		return 0;
2041 	return call_int_hook(path_truncate, path);
2042 }
2043 
2044 /**
2045  * security_path_chmod() - Check if changing the file's mode is allowed
2046  * @path: file
2047  * @mode: new mode
2048  *
2049  * Check for permission to change a mode of the file @path. The new mode is
2050  * specified in @mode which is a bitmask of constants from
2051  * <include/uapi/linux/stat.h>.
2052  *
2053  * Return: Returns 0 if permission is granted.
2054  */
2055 int security_path_chmod(const struct path *path, umode_t mode)
2056 {
2057 	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
2058 		return 0;
2059 	return call_int_hook(path_chmod, path, mode);
2060 }
2061 
2062 /**
2063  * security_path_chown() - Check if changing the file's owner/group is allowed
2064  * @path: file
2065  * @uid: file owner
2066  * @gid: file group
2067  *
2068  * Check for permission to change owner/group of a file or directory.
2069  *
2070  * Return: Returns 0 if permission is granted.
2071  */
2072 int security_path_chown(const struct path *path, kuid_t uid, kgid_t gid)
2073 {
2074 	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
2075 		return 0;
2076 	return call_int_hook(path_chown, path, uid, gid);
2077 }
2078 
2079 /**
2080  * security_path_chroot() - Check if changing the root directory is allowed
2081  * @path: directory
2082  *
2083  * Check for permission to change root directory.
2084  *
2085  * Return: Returns 0 if permission is granted.
2086  */
2087 int security_path_chroot(const struct path *path)
2088 {
2089 	return call_int_hook(path_chroot, path);
2090 }
2091 #endif /* CONFIG_SECURITY_PATH */
2092 
2093 /**
2094  * security_inode_create() - Check if creating a file is allowed
2095  * @dir: the parent directory
2096  * @dentry: the file being created
2097  * @mode: requested file mode
2098  *
2099  * Check permission to create a regular file.
2100  *
2101  * Return: Returns 0 if permission is granted.
2102  */
2103 int security_inode_create(struct inode *dir, struct dentry *dentry,
2104 			  umode_t mode)
2105 {
2106 	if (unlikely(IS_PRIVATE(dir)))
2107 		return 0;
2108 	return call_int_hook(inode_create, dir, dentry, mode);
2109 }
2110 EXPORT_SYMBOL_GPL(security_inode_create);
2111 
2112 /**
2113  * security_inode_post_create_tmpfile() - Update inode security of new tmpfile
2114  * @idmap: idmap of the mount
2115  * @inode: inode of the new tmpfile
2116  *
2117  * Update inode security data after a tmpfile has been created.
2118  */
2119 void security_inode_post_create_tmpfile(struct mnt_idmap *idmap,
2120 					struct inode *inode)
2121 {
2122 	if (unlikely(IS_PRIVATE(inode)))
2123 		return;
2124 	call_void_hook(inode_post_create_tmpfile, idmap, inode);
2125 }
2126 
2127 /**
2128  * security_inode_link() - Check if creating a hard link is allowed
2129  * @old_dentry: existing file
2130  * @dir: new parent directory
2131  * @new_dentry: new link
2132  *
2133  * Check permission before creating a new hard link to a file.
2134  *
2135  * Return: Returns 0 if permission is granted.
2136  */
2137 int security_inode_link(struct dentry *old_dentry, struct inode *dir,
2138 			struct dentry *new_dentry)
2139 {
2140 	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
2141 		return 0;
2142 	return call_int_hook(inode_link, old_dentry, dir, new_dentry);
2143 }
2144 
2145 /**
2146  * security_inode_unlink() - Check if removing a hard link is allowed
2147  * @dir: parent directory
2148  * @dentry: file
2149  *
2150  * Check the permission to remove a hard link to a file.
2151  *
2152  * Return: Returns 0 if permission is granted.
2153  */
2154 int security_inode_unlink(struct inode *dir, struct dentry *dentry)
2155 {
2156 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2157 		return 0;
2158 	return call_int_hook(inode_unlink, dir, dentry);
2159 }
2160 
2161 /**
2162  * security_inode_symlink() - Check if creating a symbolic link is allowed
2163  * @dir: parent directory
2164  * @dentry: symbolic link
2165  * @old_name: existing filename
2166  *
2167  * Check the permission to create a symbolic link to a file.
2168  *
2169  * Return: Returns 0 if permission is granted.
2170  */
2171 int security_inode_symlink(struct inode *dir, struct dentry *dentry,
2172 			   const char *old_name)
2173 {
2174 	if (unlikely(IS_PRIVATE(dir)))
2175 		return 0;
2176 	return call_int_hook(inode_symlink, dir, dentry, old_name);
2177 }
2178 
2179 /**
2180  * security_inode_mkdir() - Check if creation a new director is allowed
2181  * @dir: parent directory
2182  * @dentry: new directory
2183  * @mode: new directory mode
2184  *
2185  * Check permissions to create a new directory in the existing directory
2186  * associated with inode structure @dir.
2187  *
2188  * Return: Returns 0 if permission is granted.
2189  */
2190 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2191 {
2192 	if (unlikely(IS_PRIVATE(dir)))
2193 		return 0;
2194 	return call_int_hook(inode_mkdir, dir, dentry, mode);
2195 }
2196 EXPORT_SYMBOL_GPL(security_inode_mkdir);
2197 
2198 /**
2199  * security_inode_rmdir() - Check if removing a directory is allowed
2200  * @dir: parent directory
2201  * @dentry: directory to be removed
2202  *
2203  * Check the permission to remove a directory.
2204  *
2205  * Return: Returns 0 if permission is granted.
2206  */
2207 int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
2208 {
2209 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2210 		return 0;
2211 	return call_int_hook(inode_rmdir, dir, dentry);
2212 }
2213 
2214 /**
2215  * security_inode_mknod() - Check if creating a special file is allowed
2216  * @dir: parent directory
2217  * @dentry: new file
2218  * @mode: new file mode
2219  * @dev: device number
2220  *
2221  * Check permissions when creating a special file (or a socket or a fifo file
2222  * created via the mknod system call).  Note that if mknod operation is being
2223  * done for a regular file, then the create hook will be called and not this
2224  * hook.
2225  *
2226  * Return: Returns 0 if permission is granted.
2227  */
2228 int security_inode_mknod(struct inode *dir, struct dentry *dentry,
2229 			 umode_t mode, dev_t dev)
2230 {
2231 	if (unlikely(IS_PRIVATE(dir)))
2232 		return 0;
2233 	return call_int_hook(inode_mknod, dir, dentry, mode, dev);
2234 }
2235 
2236 /**
2237  * security_inode_rename() - Check if renaming a file is allowed
2238  * @old_dir: parent directory of the old file
2239  * @old_dentry: the old file
2240  * @new_dir: parent directory of the new file
2241  * @new_dentry: the new file
2242  * @flags: flags
2243  *
2244  * Check for permission to rename a file or directory.
2245  *
2246  * Return: Returns 0 if permission is granted.
2247  */
2248 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
2249 			  struct inode *new_dir, struct dentry *new_dentry,
2250 			  unsigned int flags)
2251 {
2252 	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
2253 		     (d_is_positive(new_dentry) &&
2254 		      IS_PRIVATE(d_backing_inode(new_dentry)))))
2255 		return 0;
2256 
2257 	if (flags & RENAME_EXCHANGE) {
2258 		int err = call_int_hook(inode_rename, new_dir, new_dentry,
2259 					old_dir, old_dentry);
2260 		if (err)
2261 			return err;
2262 	}
2263 
2264 	return call_int_hook(inode_rename, old_dir, old_dentry,
2265 			     new_dir, new_dentry);
2266 }
2267 
2268 /**
2269  * security_inode_readlink() - Check if reading a symbolic link is allowed
2270  * @dentry: link
2271  *
2272  * Check the permission to read the symbolic link.
2273  *
2274  * Return: Returns 0 if permission is granted.
2275  */
2276 int security_inode_readlink(struct dentry *dentry)
2277 {
2278 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2279 		return 0;
2280 	return call_int_hook(inode_readlink, dentry);
2281 }
2282 
2283 /**
2284  * security_inode_follow_link() - Check if following a symbolic link is allowed
2285  * @dentry: link dentry
2286  * @inode: link inode
2287  * @rcu: true if in RCU-walk mode
2288  *
2289  * Check permission to follow a symbolic link when looking up a pathname.  If
2290  * @rcu is true, @inode is not stable.
2291  *
2292  * Return: Returns 0 if permission is granted.
2293  */
2294 int security_inode_follow_link(struct dentry *dentry, struct inode *inode,
2295 			       bool rcu)
2296 {
2297 	if (unlikely(IS_PRIVATE(inode)))
2298 		return 0;
2299 	return call_int_hook(inode_follow_link, dentry, inode, rcu);
2300 }
2301 
2302 /**
2303  * security_inode_permission() - Check if accessing an inode is allowed
2304  * @inode: inode
2305  * @mask: access mask
2306  *
2307  * Check permission before accessing an inode.  This hook is called by the
2308  * existing Linux permission function, so a security module can use it to
2309  * provide additional checking for existing Linux permission checks.  Notice
2310  * that this hook is called when a file is opened (as well as many other
2311  * operations), whereas the file_security_ops permission hook is called when
2312  * the actual read/write operations are performed.
2313  *
2314  * Return: Returns 0 if permission is granted.
2315  */
2316 int security_inode_permission(struct inode *inode, int mask)
2317 {
2318 	if (unlikely(IS_PRIVATE(inode)))
2319 		return 0;
2320 	return call_int_hook(inode_permission, inode, mask);
2321 }
2322 
2323 /**
2324  * security_inode_setattr() - Check if setting file attributes is allowed
2325  * @idmap: idmap of the mount
2326  * @dentry: file
2327  * @attr: new attributes
2328  *
2329  * Check permission before setting file attributes.  Note that the kernel call
2330  * to notify_change is performed from several locations, whenever file
2331  * attributes change (such as when a file is truncated, chown/chmod operations,
2332  * transferring disk quotas, etc).
2333  *
2334  * Return: Returns 0 if permission is granted.
2335  */
2336 int security_inode_setattr(struct mnt_idmap *idmap,
2337 			   struct dentry *dentry, struct iattr *attr)
2338 {
2339 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2340 		return 0;
2341 	return call_int_hook(inode_setattr, idmap, dentry, attr);
2342 }
2343 EXPORT_SYMBOL_GPL(security_inode_setattr);
2344 
2345 /**
2346  * security_inode_post_setattr() - Update the inode after a setattr operation
2347  * @idmap: idmap of the mount
2348  * @dentry: file
2349  * @ia_valid: file attributes set
2350  *
2351  * Update inode security field after successful setting file attributes.
2352  */
2353 void security_inode_post_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
2354 				 int ia_valid)
2355 {
2356 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2357 		return;
2358 	call_void_hook(inode_post_setattr, idmap, dentry, ia_valid);
2359 }
2360 
2361 /**
2362  * security_inode_getattr() - Check if getting file attributes is allowed
2363  * @path: file
2364  *
2365  * Check permission before obtaining file attributes.
2366  *
2367  * Return: Returns 0 if permission is granted.
2368  */
2369 int security_inode_getattr(const struct path *path)
2370 {
2371 	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
2372 		return 0;
2373 	return call_int_hook(inode_getattr, path);
2374 }
2375 
2376 /**
2377  * security_inode_setxattr() - Check if setting file xattrs is allowed
2378  * @idmap: idmap of the mount
2379  * @dentry: file
2380  * @name: xattr name
2381  * @value: xattr value
2382  * @size: size of xattr value
2383  * @flags: flags
2384  *
2385  * This hook performs the desired permission checks before setting the extended
2386  * attributes (xattrs) on @dentry.  It is important to note that we have some
2387  * additional logic before the main LSM implementation calls to detect if we
2388  * need to perform an additional capability check at the LSM layer.
2389  *
2390  * Normally we enforce a capability check prior to executing the various LSM
2391  * hook implementations, but if a LSM wants to avoid this capability check,
2392  * it can register a 'inode_xattr_skipcap' hook and return a value of 1 for
2393  * xattrs that it wants to avoid the capability check, leaving the LSM fully
2394  * responsible for enforcing the access control for the specific xattr.  If all
2395  * of the enabled LSMs refrain from registering a 'inode_xattr_skipcap' hook,
2396  * or return a 0 (the default return value), the capability check is still
2397  * performed.  If no 'inode_xattr_skipcap' hooks are registered the capability
2398  * check is performed.
2399  *
2400  * Return: Returns 0 if permission is granted.
2401  */
2402 int security_inode_setxattr(struct mnt_idmap *idmap,
2403 			    struct dentry *dentry, const char *name,
2404 			    const void *value, size_t size, int flags)
2405 {
2406 	int rc;
2407 
2408 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2409 		return 0;
2410 
2411 	/* enforce the capability checks at the lsm layer, if needed */
2412 	if (!call_int_hook(inode_xattr_skipcap, name)) {
2413 		rc = cap_inode_setxattr(dentry, name, value, size, flags);
2414 		if (rc)
2415 			return rc;
2416 	}
2417 
2418 	return call_int_hook(inode_setxattr, idmap, dentry, name, value, size,
2419 			     flags);
2420 }
2421 
2422 /**
2423  * security_inode_set_acl() - Check if setting posix acls is allowed
2424  * @idmap: idmap of the mount
2425  * @dentry: file
2426  * @acl_name: acl name
2427  * @kacl: acl struct
2428  *
2429  * Check permission before setting posix acls, the posix acls in @kacl are
2430  * identified by @acl_name.
2431  *
2432  * Return: Returns 0 if permission is granted.
2433  */
2434 int security_inode_set_acl(struct mnt_idmap *idmap,
2435 			   struct dentry *dentry, const char *acl_name,
2436 			   struct posix_acl *kacl)
2437 {
2438 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2439 		return 0;
2440 	return call_int_hook(inode_set_acl, idmap, dentry, acl_name, kacl);
2441 }
2442 
2443 /**
2444  * security_inode_post_set_acl() - Update inode security from posix acls set
2445  * @dentry: file
2446  * @acl_name: acl name
2447  * @kacl: acl struct
2448  *
2449  * Update inode security data after successfully setting posix acls on @dentry.
2450  * The posix acls in @kacl are identified by @acl_name.
2451  */
2452 void security_inode_post_set_acl(struct dentry *dentry, const char *acl_name,
2453 				 struct posix_acl *kacl)
2454 {
2455 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2456 		return;
2457 	call_void_hook(inode_post_set_acl, dentry, acl_name, kacl);
2458 }
2459 
2460 /**
2461  * security_inode_get_acl() - Check if reading posix acls is allowed
2462  * @idmap: idmap of the mount
2463  * @dentry: file
2464  * @acl_name: acl name
2465  *
2466  * Check permission before getting osix acls, the posix acls are identified by
2467  * @acl_name.
2468  *
2469  * Return: Returns 0 if permission is granted.
2470  */
2471 int security_inode_get_acl(struct mnt_idmap *idmap,
2472 			   struct dentry *dentry, const char *acl_name)
2473 {
2474 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2475 		return 0;
2476 	return call_int_hook(inode_get_acl, idmap, dentry, acl_name);
2477 }
2478 
2479 /**
2480  * security_inode_remove_acl() - Check if removing a posix acl is allowed
2481  * @idmap: idmap of the mount
2482  * @dentry: file
2483  * @acl_name: acl name
2484  *
2485  * Check permission before removing posix acls, the posix acls are identified
2486  * by @acl_name.
2487  *
2488  * Return: Returns 0 if permission is granted.
2489  */
2490 int security_inode_remove_acl(struct mnt_idmap *idmap,
2491 			      struct dentry *dentry, const char *acl_name)
2492 {
2493 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2494 		return 0;
2495 	return call_int_hook(inode_remove_acl, idmap, dentry, acl_name);
2496 }
2497 
2498 /**
2499  * security_inode_post_remove_acl() - Update inode security after rm posix acls
2500  * @idmap: idmap of the mount
2501  * @dentry: file
2502  * @acl_name: acl name
2503  *
2504  * Update inode security data after successfully removing posix acls on
2505  * @dentry in @idmap. The posix acls are identified by @acl_name.
2506  */
2507 void security_inode_post_remove_acl(struct mnt_idmap *idmap,
2508 				    struct dentry *dentry, const char *acl_name)
2509 {
2510 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2511 		return;
2512 	call_void_hook(inode_post_remove_acl, idmap, dentry, acl_name);
2513 }
2514 
2515 /**
2516  * security_inode_post_setxattr() - Update the inode after a setxattr operation
2517  * @dentry: file
2518  * @name: xattr name
2519  * @value: xattr value
2520  * @size: xattr value size
2521  * @flags: flags
2522  *
2523  * Update inode security field after successful setxattr operation.
2524  */
2525 void security_inode_post_setxattr(struct dentry *dentry, const char *name,
2526 				  const void *value, size_t size, int flags)
2527 {
2528 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2529 		return;
2530 	call_void_hook(inode_post_setxattr, dentry, name, value, size, flags);
2531 }
2532 
2533 /**
2534  * security_inode_getxattr() - Check if xattr access is allowed
2535  * @dentry: file
2536  * @name: xattr name
2537  *
2538  * Check permission before obtaining the extended attributes identified by
2539  * @name for @dentry.
2540  *
2541  * Return: Returns 0 if permission is granted.
2542  */
2543 int security_inode_getxattr(struct dentry *dentry, const char *name)
2544 {
2545 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2546 		return 0;
2547 	return call_int_hook(inode_getxattr, dentry, name);
2548 }
2549 
2550 /**
2551  * security_inode_listxattr() - Check if listing xattrs is allowed
2552  * @dentry: file
2553  *
2554  * Check permission before obtaining the list of extended attribute names for
2555  * @dentry.
2556  *
2557  * Return: Returns 0 if permission is granted.
2558  */
2559 int security_inode_listxattr(struct dentry *dentry)
2560 {
2561 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2562 		return 0;
2563 	return call_int_hook(inode_listxattr, dentry);
2564 }
2565 
2566 /**
2567  * security_inode_removexattr() - Check if removing an xattr is allowed
2568  * @idmap: idmap of the mount
2569  * @dentry: file
2570  * @name: xattr name
2571  *
2572  * This hook performs the desired permission checks before setting the extended
2573  * attributes (xattrs) on @dentry.  It is important to note that we have some
2574  * additional logic before the main LSM implementation calls to detect if we
2575  * need to perform an additional capability check at the LSM layer.
2576  *
2577  * Normally we enforce a capability check prior to executing the various LSM
2578  * hook implementations, but if a LSM wants to avoid this capability check,
2579  * it can register a 'inode_xattr_skipcap' hook and return a value of 1 for
2580  * xattrs that it wants to avoid the capability check, leaving the LSM fully
2581  * responsible for enforcing the access control for the specific xattr.  If all
2582  * of the enabled LSMs refrain from registering a 'inode_xattr_skipcap' hook,
2583  * or return a 0 (the default return value), the capability check is still
2584  * performed.  If no 'inode_xattr_skipcap' hooks are registered the capability
2585  * check is performed.
2586  *
2587  * Return: Returns 0 if permission is granted.
2588  */
2589 int security_inode_removexattr(struct mnt_idmap *idmap,
2590 			       struct dentry *dentry, const char *name)
2591 {
2592 	int rc;
2593 
2594 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2595 		return 0;
2596 
2597 	/* enforce the capability checks at the lsm layer, if needed */
2598 	if (!call_int_hook(inode_xattr_skipcap, name)) {
2599 		rc = cap_inode_removexattr(idmap, dentry, name);
2600 		if (rc)
2601 			return rc;
2602 	}
2603 
2604 	return call_int_hook(inode_removexattr, idmap, dentry, name);
2605 }
2606 
2607 /**
2608  * security_inode_post_removexattr() - Update the inode after a removexattr op
2609  * @dentry: file
2610  * @name: xattr name
2611  *
2612  * Update the inode after a successful removexattr operation.
2613  */
2614 void security_inode_post_removexattr(struct dentry *dentry, const char *name)
2615 {
2616 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2617 		return;
2618 	call_void_hook(inode_post_removexattr, dentry, name);
2619 }
2620 
2621 /**
2622  * security_inode_need_killpriv() - Check if security_inode_killpriv() required
2623  * @dentry: associated dentry
2624  *
2625  * Called when an inode has been changed to determine if
2626  * security_inode_killpriv() should be called.
2627  *
2628  * Return: Return <0 on error to abort the inode change operation, return 0 if
2629  *         security_inode_killpriv() does not need to be called, return >0 if
2630  *         security_inode_killpriv() does need to be called.
2631  */
2632 int security_inode_need_killpriv(struct dentry *dentry)
2633 {
2634 	return call_int_hook(inode_need_killpriv, dentry);
2635 }
2636 
2637 /**
2638  * security_inode_killpriv() - The setuid bit is removed, update LSM state
2639  * @idmap: idmap of the mount
2640  * @dentry: associated dentry
2641  *
2642  * The @dentry's setuid bit is being removed.  Remove similar security labels.
2643  * Called with the dentry->d_inode->i_mutex held.
2644  *
2645  * Return: Return 0 on success.  If error is returned, then the operation
2646  *         causing setuid bit removal is failed.
2647  */
2648 int security_inode_killpriv(struct mnt_idmap *idmap,
2649 			    struct dentry *dentry)
2650 {
2651 	return call_int_hook(inode_killpriv, idmap, dentry);
2652 }
2653 
2654 /**
2655  * security_inode_getsecurity() - Get the xattr security label of an inode
2656  * @idmap: idmap of the mount
2657  * @inode: inode
2658  * @name: xattr name
2659  * @buffer: security label buffer
2660  * @alloc: allocation flag
2661  *
2662  * Retrieve a copy of the extended attribute representation of the security
2663  * label associated with @name for @inode via @buffer.  Note that @name is the
2664  * remainder of the attribute name after the security prefix has been removed.
2665  * @alloc is used to specify if the call should return a value via the buffer
2666  * or just the value length.
2667  *
2668  * Return: Returns size of buffer on success.
2669  */
2670 int security_inode_getsecurity(struct mnt_idmap *idmap,
2671 			       struct inode *inode, const char *name,
2672 			       void **buffer, bool alloc)
2673 {
2674 	if (unlikely(IS_PRIVATE(inode)))
2675 		return LSM_RET_DEFAULT(inode_getsecurity);
2676 
2677 	return call_int_hook(inode_getsecurity, idmap, inode, name, buffer,
2678 			     alloc);
2679 }
2680 
2681 /**
2682  * security_inode_setsecurity() - Set the xattr security label of an inode
2683  * @inode: inode
2684  * @name: xattr name
2685  * @value: security label
2686  * @size: length of security label
2687  * @flags: flags
2688  *
2689  * Set the security label associated with @name for @inode from the extended
2690  * attribute value @value.  @size indicates the size of the @value in bytes.
2691  * @flags may be XATTR_CREATE, XATTR_REPLACE, or 0. Note that @name is the
2692  * remainder of the attribute name after the security. prefix has been removed.
2693  *
2694  * Return: Returns 0 on success.
2695  */
2696 int security_inode_setsecurity(struct inode *inode, const char *name,
2697 			       const void *value, size_t size, int flags)
2698 {
2699 	if (unlikely(IS_PRIVATE(inode)))
2700 		return LSM_RET_DEFAULT(inode_setsecurity);
2701 
2702 	return call_int_hook(inode_setsecurity, inode, name, value, size,
2703 			     flags);
2704 }
2705 
2706 /**
2707  * security_inode_listsecurity() - List the xattr security label names
2708  * @inode: inode
2709  * @buffer: buffer
2710  * @buffer_size: size of buffer
2711  *
2712  * Copy the extended attribute names for the security labels associated with
2713  * @inode into @buffer.  The maximum size of @buffer is specified by
2714  * @buffer_size.  @buffer may be NULL to request the size of the buffer
2715  * required.
2716  *
2717  * Return: Returns number of bytes used/required on success.
2718  */
2719 int security_inode_listsecurity(struct inode *inode,
2720 				char *buffer, size_t buffer_size)
2721 {
2722 	if (unlikely(IS_PRIVATE(inode)))
2723 		return 0;
2724 	return call_int_hook(inode_listsecurity, inode, buffer, buffer_size);
2725 }
2726 EXPORT_SYMBOL(security_inode_listsecurity);
2727 
2728 /**
2729  * security_inode_getlsmprop() - Get an inode's LSM data
2730  * @inode: inode
2731  * @prop: lsm specific information to return
2732  *
2733  * Get the lsm specific information associated with the node.
2734  */
2735 void security_inode_getlsmprop(struct inode *inode, struct lsm_prop *prop)
2736 {
2737 	call_void_hook(inode_getlsmprop, inode, prop);
2738 }
2739 
2740 /**
2741  * security_inode_copy_up() - Create new creds for an overlayfs copy-up op
2742  * @src: union dentry of copy-up file
2743  * @new: newly created creds
2744  *
2745  * A file is about to be copied up from lower layer to upper layer of overlay
2746  * filesystem. Security module can prepare a set of new creds and modify as
2747  * need be and return new creds. Caller will switch to new creds temporarily to
2748  * create new file and release newly allocated creds.
2749  *
2750  * Return: Returns 0 on success or a negative error code on error.
2751  */
2752 int security_inode_copy_up(struct dentry *src, struct cred **new)
2753 {
2754 	return call_int_hook(inode_copy_up, src, new);
2755 }
2756 EXPORT_SYMBOL(security_inode_copy_up);
2757 
2758 /**
2759  * security_inode_copy_up_xattr() - Filter xattrs in an overlayfs copy-up op
2760  * @src: union dentry of copy-up file
2761  * @name: xattr name
2762  *
2763  * Filter the xattrs being copied up when a unioned file is copied up from a
2764  * lower layer to the union/overlay layer.   The caller is responsible for
2765  * reading and writing the xattrs, this hook is merely a filter.
2766  *
2767  * Return: Returns 0 to accept the xattr, -ECANCELED to discard the xattr,
2768  *         -EOPNOTSUPP if the security module does not know about attribute,
2769  *         or a negative error code to abort the copy up.
2770  */
2771 int security_inode_copy_up_xattr(struct dentry *src, const char *name)
2772 {
2773 	int rc;
2774 
2775 	rc = call_int_hook(inode_copy_up_xattr, src, name);
2776 	if (rc != LSM_RET_DEFAULT(inode_copy_up_xattr))
2777 		return rc;
2778 
2779 	return LSM_RET_DEFAULT(inode_copy_up_xattr);
2780 }
2781 EXPORT_SYMBOL(security_inode_copy_up_xattr);
2782 
2783 /**
2784  * security_inode_setintegrity() - Set the inode's integrity data
2785  * @inode: inode
2786  * @type: type of integrity, e.g. hash digest, signature, etc
2787  * @value: the integrity value
2788  * @size: size of the integrity value
2789  *
2790  * Register a verified integrity measurement of a inode with LSMs.
2791  * LSMs should free the previously saved data if @value is NULL.
2792  *
2793  * Return: Returns 0 on success, negative values on failure.
2794  */
2795 int security_inode_setintegrity(const struct inode *inode,
2796 				enum lsm_integrity_type type, const void *value,
2797 				size_t size)
2798 {
2799 	return call_int_hook(inode_setintegrity, inode, type, value, size);
2800 }
2801 EXPORT_SYMBOL(security_inode_setintegrity);
2802 
2803 /**
2804  * security_kernfs_init_security() - Init LSM context for a kernfs node
2805  * @kn_dir: parent kernfs node
2806  * @kn: the kernfs node to initialize
2807  *
2808  * Initialize the security context of a newly created kernfs node based on its
2809  * own and its parent's attributes.
2810  *
2811  * Return: Returns 0 if permission is granted.
2812  */
2813 int security_kernfs_init_security(struct kernfs_node *kn_dir,
2814 				  struct kernfs_node *kn)
2815 {
2816 	return call_int_hook(kernfs_init_security, kn_dir, kn);
2817 }
2818 
2819 /**
2820  * security_file_permission() - Check file permissions
2821  * @file: file
2822  * @mask: requested permissions
2823  *
2824  * Check file permissions before accessing an open file.  This hook is called
2825  * by various operations that read or write files.  A security module can use
2826  * this hook to perform additional checking on these operations, e.g. to
2827  * revalidate permissions on use to support privilege bracketing or policy
2828  * changes.  Notice that this hook is used when the actual read/write
2829  * operations are performed, whereas the inode_security_ops hook is called when
2830  * a file is opened (as well as many other operations).  Although this hook can
2831  * be used to revalidate permissions for various system call operations that
2832  * read or write files, it does not address the revalidation of permissions for
2833  * memory-mapped files.  Security modules must handle this separately if they
2834  * need such revalidation.
2835  *
2836  * Return: Returns 0 if permission is granted.
2837  */
2838 int security_file_permission(struct file *file, int mask)
2839 {
2840 	return call_int_hook(file_permission, file, mask);
2841 }
2842 
2843 /**
2844  * security_file_alloc() - Allocate and init a file's LSM blob
2845  * @file: the file
2846  *
2847  * Allocate and attach a security structure to the file->f_security field.  The
2848  * security field is initialized to NULL when the structure is first created.
2849  *
2850  * Return: Return 0 if the hook is successful and permission is granted.
2851  */
2852 int security_file_alloc(struct file *file)
2853 {
2854 	int rc = lsm_file_alloc(file);
2855 
2856 	if (rc)
2857 		return rc;
2858 	rc = call_int_hook(file_alloc_security, file);
2859 	if (unlikely(rc))
2860 		security_file_free(file);
2861 	return rc;
2862 }
2863 
2864 /**
2865  * security_file_release() - Perform actions before releasing the file ref
2866  * @file: the file
2867  *
2868  * Perform actions before releasing the last reference to a file.
2869  */
2870 void security_file_release(struct file *file)
2871 {
2872 	call_void_hook(file_release, file);
2873 }
2874 
2875 /**
2876  * security_file_free() - Free a file's LSM blob
2877  * @file: the file
2878  *
2879  * Deallocate and free any security structures stored in file->f_security.
2880  */
2881 void security_file_free(struct file *file)
2882 {
2883 	void *blob;
2884 
2885 	call_void_hook(file_free_security, file);
2886 
2887 	blob = file->f_security;
2888 	if (blob) {
2889 		file->f_security = NULL;
2890 		kmem_cache_free(lsm_file_cache, blob);
2891 	}
2892 }
2893 
2894 /**
2895  * security_file_ioctl() - Check if an ioctl is allowed
2896  * @file: associated file
2897  * @cmd: ioctl cmd
2898  * @arg: ioctl arguments
2899  *
2900  * Check permission for an ioctl operation on @file.  Note that @arg sometimes
2901  * represents a user space pointer; in other cases, it may be a simple integer
2902  * value.  When @arg represents a user space pointer, it should never be used
2903  * by the security module.
2904  *
2905  * Return: Returns 0 if permission is granted.
2906  */
2907 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2908 {
2909 	return call_int_hook(file_ioctl, file, cmd, arg);
2910 }
2911 EXPORT_SYMBOL_GPL(security_file_ioctl);
2912 
2913 /**
2914  * security_file_ioctl_compat() - Check if an ioctl is allowed in compat mode
2915  * @file: associated file
2916  * @cmd: ioctl cmd
2917  * @arg: ioctl arguments
2918  *
2919  * Compat version of security_file_ioctl() that correctly handles 32-bit
2920  * processes running on 64-bit kernels.
2921  *
2922  * Return: Returns 0 if permission is granted.
2923  */
2924 int security_file_ioctl_compat(struct file *file, unsigned int cmd,
2925 			       unsigned long arg)
2926 {
2927 	return call_int_hook(file_ioctl_compat, file, cmd, arg);
2928 }
2929 EXPORT_SYMBOL_GPL(security_file_ioctl_compat);
2930 
2931 static inline unsigned long mmap_prot(struct file *file, unsigned long prot)
2932 {
2933 	/*
2934 	 * Does we have PROT_READ and does the application expect
2935 	 * it to imply PROT_EXEC?  If not, nothing to talk about...
2936 	 */
2937 	if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ)
2938 		return prot;
2939 	if (!(current->personality & READ_IMPLIES_EXEC))
2940 		return prot;
2941 	/*
2942 	 * if that's an anonymous mapping, let it.
2943 	 */
2944 	if (!file)
2945 		return prot | PROT_EXEC;
2946 	/*
2947 	 * ditto if it's not on noexec mount, except that on !MMU we need
2948 	 * NOMMU_MAP_EXEC (== VM_MAYEXEC) in this case
2949 	 */
2950 	if (!path_noexec(&file->f_path)) {
2951 #ifndef CONFIG_MMU
2952 		if (file->f_op->mmap_capabilities) {
2953 			unsigned caps = file->f_op->mmap_capabilities(file);
2954 			if (!(caps & NOMMU_MAP_EXEC))
2955 				return prot;
2956 		}
2957 #endif
2958 		return prot | PROT_EXEC;
2959 	}
2960 	/* anything on noexec mount won't get PROT_EXEC */
2961 	return prot;
2962 }
2963 
2964 /**
2965  * security_mmap_file() - Check if mmap'ing a file is allowed
2966  * @file: file
2967  * @prot: protection applied by the kernel
2968  * @flags: flags
2969  *
2970  * Check permissions for a mmap operation.  The @file may be NULL, e.g. if
2971  * mapping anonymous memory.
2972  *
2973  * Return: Returns 0 if permission is granted.
2974  */
2975 int security_mmap_file(struct file *file, unsigned long prot,
2976 		       unsigned long flags)
2977 {
2978 	return call_int_hook(mmap_file, file, prot, mmap_prot(file, prot),
2979 			     flags);
2980 }
2981 
2982 /**
2983  * security_mmap_addr() - Check if mmap'ing an address is allowed
2984  * @addr: address
2985  *
2986  * Check permissions for a mmap operation at @addr.
2987  *
2988  * Return: Returns 0 if permission is granted.
2989  */
2990 int security_mmap_addr(unsigned long addr)
2991 {
2992 	return call_int_hook(mmap_addr, addr);
2993 }
2994 
2995 /**
2996  * security_file_mprotect() - Check if changing memory protections is allowed
2997  * @vma: memory region
2998  * @reqprot: application requested protection
2999  * @prot: protection applied by the kernel
3000  *
3001  * Check permissions before changing memory access permissions.
3002  *
3003  * Return: Returns 0 if permission is granted.
3004  */
3005 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
3006 			   unsigned long prot)
3007 {
3008 	return call_int_hook(file_mprotect, vma, reqprot, prot);
3009 }
3010 
3011 /**
3012  * security_file_lock() - Check if a file lock is allowed
3013  * @file: file
3014  * @cmd: lock operation (e.g. F_RDLCK, F_WRLCK)
3015  *
3016  * Check permission before performing file locking operations.  Note the hook
3017  * mediates both flock and fcntl style locks.
3018  *
3019  * Return: Returns 0 if permission is granted.
3020  */
3021 int security_file_lock(struct file *file, unsigned int cmd)
3022 {
3023 	return call_int_hook(file_lock, file, cmd);
3024 }
3025 
3026 /**
3027  * security_file_fcntl() - Check if fcntl() op is allowed
3028  * @file: file
3029  * @cmd: fcntl command
3030  * @arg: command argument
3031  *
3032  * Check permission before allowing the file operation specified by @cmd from
3033  * being performed on the file @file.  Note that @arg sometimes represents a
3034  * user space pointer; in other cases, it may be a simple integer value.  When
3035  * @arg represents a user space pointer, it should never be used by the
3036  * security module.
3037  *
3038  * Return: Returns 0 if permission is granted.
3039  */
3040 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
3041 {
3042 	return call_int_hook(file_fcntl, file, cmd, arg);
3043 }
3044 
3045 /**
3046  * security_file_set_fowner() - Set the file owner info in the LSM blob
3047  * @file: the file
3048  *
3049  * Save owner security information (typically from current->security) in
3050  * file->f_security for later use by the send_sigiotask hook.
3051  *
3052  * This hook is called with file->f_owner.lock held.
3053  *
3054  * Return: Returns 0 on success.
3055  */
3056 void security_file_set_fowner(struct file *file)
3057 {
3058 	call_void_hook(file_set_fowner, file);
3059 }
3060 
3061 /**
3062  * security_file_send_sigiotask() - Check if sending SIGIO/SIGURG is allowed
3063  * @tsk: target task
3064  * @fown: signal sender
3065  * @sig: signal to be sent, SIGIO is sent if 0
3066  *
3067  * Check permission for the file owner @fown to send SIGIO or SIGURG to the
3068  * process @tsk.  Note that this hook is sometimes called from interrupt.  Note
3069  * that the fown_struct, @fown, is never outside the context of a struct file,
3070  * so the file structure (and associated security information) can always be
3071  * obtained: container_of(fown, struct file, f_owner).
3072  *
3073  * Return: Returns 0 if permission is granted.
3074  */
3075 int security_file_send_sigiotask(struct task_struct *tsk,
3076 				 struct fown_struct *fown, int sig)
3077 {
3078 	return call_int_hook(file_send_sigiotask, tsk, fown, sig);
3079 }
3080 
3081 /**
3082  * security_file_receive() - Check if receiving a file via IPC is allowed
3083  * @file: file being received
3084  *
3085  * This hook allows security modules to control the ability of a process to
3086  * receive an open file descriptor via socket IPC.
3087  *
3088  * Return: Returns 0 if permission is granted.
3089  */
3090 int security_file_receive(struct file *file)
3091 {
3092 	return call_int_hook(file_receive, file);
3093 }
3094 
3095 /**
3096  * security_file_open() - Save open() time state for late use by the LSM
3097  * @file:
3098  *
3099  * Save open-time permission checking state for later use upon file_permission,
3100  * and recheck access if anything has changed since inode_permission.
3101  *
3102  * Return: Returns 0 if permission is granted.
3103  */
3104 int security_file_open(struct file *file)
3105 {
3106 	int ret;
3107 
3108 	ret = call_int_hook(file_open, file);
3109 	if (ret)
3110 		return ret;
3111 
3112 	return fsnotify_open_perm(file);
3113 }
3114 
3115 /**
3116  * security_file_post_open() - Evaluate a file after it has been opened
3117  * @file: the file
3118  * @mask: access mask
3119  *
3120  * Evaluate an opened file and the access mask requested with open(). The hook
3121  * is useful for LSMs that require the file content to be available in order to
3122  * make decisions.
3123  *
3124  * Return: Returns 0 if permission is granted.
3125  */
3126 int security_file_post_open(struct file *file, int mask)
3127 {
3128 	return call_int_hook(file_post_open, file, mask);
3129 }
3130 EXPORT_SYMBOL_GPL(security_file_post_open);
3131 
3132 /**
3133  * security_file_truncate() - Check if truncating a file is allowed
3134  * @file: file
3135  *
3136  * Check permission before truncating a file, i.e. using ftruncate.  Note that
3137  * truncation permission may also be checked based on the path, using the
3138  * @path_truncate hook.
3139  *
3140  * Return: Returns 0 if permission is granted.
3141  */
3142 int security_file_truncate(struct file *file)
3143 {
3144 	return call_int_hook(file_truncate, file);
3145 }
3146 
3147 /**
3148  * security_task_alloc() - Allocate a task's LSM blob
3149  * @task: the task
3150  * @clone_flags: flags indicating what is being shared
3151  *
3152  * Handle allocation of task-related resources.
3153  *
3154  * Return: Returns a zero on success, negative values on failure.
3155  */
3156 int security_task_alloc(struct task_struct *task, unsigned long clone_flags)
3157 {
3158 	int rc = lsm_task_alloc(task);
3159 
3160 	if (rc)
3161 		return rc;
3162 	rc = call_int_hook(task_alloc, task, clone_flags);
3163 	if (unlikely(rc))
3164 		security_task_free(task);
3165 	return rc;
3166 }
3167 
3168 /**
3169  * security_task_free() - Free a task's LSM blob and related resources
3170  * @task: task
3171  *
3172  * Handle release of task-related resources.  Note that this can be called from
3173  * interrupt context.
3174  */
3175 void security_task_free(struct task_struct *task)
3176 {
3177 	call_void_hook(task_free, task);
3178 
3179 	kfree(task->security);
3180 	task->security = NULL;
3181 }
3182 
3183 /**
3184  * security_cred_alloc_blank() - Allocate the min memory to allow cred_transfer
3185  * @cred: credentials
3186  * @gfp: gfp flags
3187  *
3188  * Only allocate sufficient memory and attach to @cred such that
3189  * cred_transfer() will not get ENOMEM.
3190  *
3191  * Return: Returns 0 on success, negative values on failure.
3192  */
3193 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
3194 {
3195 	int rc = lsm_cred_alloc(cred, gfp);
3196 
3197 	if (rc)
3198 		return rc;
3199 
3200 	rc = call_int_hook(cred_alloc_blank, cred, gfp);
3201 	if (unlikely(rc))
3202 		security_cred_free(cred);
3203 	return rc;
3204 }
3205 
3206 /**
3207  * security_cred_free() - Free the cred's LSM blob and associated resources
3208  * @cred: credentials
3209  *
3210  * Deallocate and clear the cred->security field in a set of credentials.
3211  */
3212 void security_cred_free(struct cred *cred)
3213 {
3214 	/*
3215 	 * There is a failure case in prepare_creds() that
3216 	 * may result in a call here with ->security being NULL.
3217 	 */
3218 	if (unlikely(cred->security == NULL))
3219 		return;
3220 
3221 	call_void_hook(cred_free, cred);
3222 
3223 	kfree(cred->security);
3224 	cred->security = NULL;
3225 }
3226 
3227 /**
3228  * security_prepare_creds() - Prepare a new set of credentials
3229  * @new: new credentials
3230  * @old: original credentials
3231  * @gfp: gfp flags
3232  *
3233  * Prepare a new set of credentials by copying the data from the old set.
3234  *
3235  * Return: Returns 0 on success, negative values on failure.
3236  */
3237 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
3238 {
3239 	int rc = lsm_cred_alloc(new, gfp);
3240 
3241 	if (rc)
3242 		return rc;
3243 
3244 	rc = call_int_hook(cred_prepare, new, old, gfp);
3245 	if (unlikely(rc))
3246 		security_cred_free(new);
3247 	return rc;
3248 }
3249 
3250 /**
3251  * security_transfer_creds() - Transfer creds
3252  * @new: target credentials
3253  * @old: original credentials
3254  *
3255  * Transfer data from original creds to new creds.
3256  */
3257 void security_transfer_creds(struct cred *new, const struct cred *old)
3258 {
3259 	call_void_hook(cred_transfer, new, old);
3260 }
3261 
3262 /**
3263  * security_cred_getsecid() - Get the secid from a set of credentials
3264  * @c: credentials
3265  * @secid: secid value
3266  *
3267  * Retrieve the security identifier of the cred structure @c.  In case of
3268  * failure, @secid will be set to zero.
3269  */
3270 void security_cred_getsecid(const struct cred *c, u32 *secid)
3271 {
3272 	*secid = 0;
3273 	call_void_hook(cred_getsecid, c, secid);
3274 }
3275 EXPORT_SYMBOL(security_cred_getsecid);
3276 
3277 /**
3278  * security_cred_getlsmprop() - Get the LSM data from a set of credentials
3279  * @c: credentials
3280  * @prop: destination for the LSM data
3281  *
3282  * Retrieve the security data of the cred structure @c.  In case of
3283  * failure, @prop will be cleared.
3284  */
3285 void security_cred_getlsmprop(const struct cred *c, struct lsm_prop *prop)
3286 {
3287 	lsmprop_init(prop);
3288 	call_void_hook(cred_getlsmprop, c, prop);
3289 }
3290 EXPORT_SYMBOL(security_cred_getlsmprop);
3291 
3292 /**
3293  * security_kernel_act_as() - Set the kernel credentials to act as secid
3294  * @new: credentials
3295  * @secid: secid
3296  *
3297  * Set the credentials for a kernel service to act as (subjective context).
3298  * The current task must be the one that nominated @secid.
3299  *
3300  * Return: Returns 0 if successful.
3301  */
3302 int security_kernel_act_as(struct cred *new, u32 secid)
3303 {
3304 	return call_int_hook(kernel_act_as, new, secid);
3305 }
3306 
3307 /**
3308  * security_kernel_create_files_as() - Set file creation context using an inode
3309  * @new: target credentials
3310  * @inode: reference inode
3311  *
3312  * Set the file creation context in a set of credentials to be the same as the
3313  * objective context of the specified inode.  The current task must be the one
3314  * that nominated @inode.
3315  *
3316  * Return: Returns 0 if successful.
3317  */
3318 int security_kernel_create_files_as(struct cred *new, struct inode *inode)
3319 {
3320 	return call_int_hook(kernel_create_files_as, new, inode);
3321 }
3322 
3323 /**
3324  * security_kernel_module_request() - Check if loading a module is allowed
3325  * @kmod_name: module name
3326  *
3327  * Ability to trigger the kernel to automatically upcall to userspace for
3328  * userspace to load a kernel module with the given name.
3329  *
3330  * Return: Returns 0 if successful.
3331  */
3332 int security_kernel_module_request(char *kmod_name)
3333 {
3334 	return call_int_hook(kernel_module_request, kmod_name);
3335 }
3336 
3337 /**
3338  * security_kernel_read_file() - Read a file specified by userspace
3339  * @file: file
3340  * @id: file identifier
3341  * @contents: trust if security_kernel_post_read_file() will be called
3342  *
3343  * Read a file specified by userspace.
3344  *
3345  * Return: Returns 0 if permission is granted.
3346  */
3347 int security_kernel_read_file(struct file *file, enum kernel_read_file_id id,
3348 			      bool contents)
3349 {
3350 	return call_int_hook(kernel_read_file, file, id, contents);
3351 }
3352 EXPORT_SYMBOL_GPL(security_kernel_read_file);
3353 
3354 /**
3355  * security_kernel_post_read_file() - Read a file specified by userspace
3356  * @file: file
3357  * @buf: file contents
3358  * @size: size of file contents
3359  * @id: file identifier
3360  *
3361  * Read a file specified by userspace.  This must be paired with a prior call
3362  * to security_kernel_read_file() call that indicated this hook would also be
3363  * called, see security_kernel_read_file() for more information.
3364  *
3365  * Return: Returns 0 if permission is granted.
3366  */
3367 int security_kernel_post_read_file(struct file *file, char *buf, loff_t size,
3368 				   enum kernel_read_file_id id)
3369 {
3370 	return call_int_hook(kernel_post_read_file, file, buf, size, id);
3371 }
3372 EXPORT_SYMBOL_GPL(security_kernel_post_read_file);
3373 
3374 /**
3375  * security_kernel_load_data() - Load data provided by userspace
3376  * @id: data identifier
3377  * @contents: true if security_kernel_post_load_data() will be called
3378  *
3379  * Load data provided by userspace.
3380  *
3381  * Return: Returns 0 if permission is granted.
3382  */
3383 int security_kernel_load_data(enum kernel_load_data_id id, bool contents)
3384 {
3385 	return call_int_hook(kernel_load_data, id, contents);
3386 }
3387 EXPORT_SYMBOL_GPL(security_kernel_load_data);
3388 
3389 /**
3390  * security_kernel_post_load_data() - Load userspace data from a non-file source
3391  * @buf: data
3392  * @size: size of data
3393  * @id: data identifier
3394  * @description: text description of data, specific to the id value
3395  *
3396  * Load data provided by a non-file source (usually userspace buffer).  This
3397  * must be paired with a prior security_kernel_load_data() call that indicated
3398  * this hook would also be called, see security_kernel_load_data() for more
3399  * information.
3400  *
3401  * Return: Returns 0 if permission is granted.
3402  */
3403 int security_kernel_post_load_data(char *buf, loff_t size,
3404 				   enum kernel_load_data_id id,
3405 				   char *description)
3406 {
3407 	return call_int_hook(kernel_post_load_data, buf, size, id, description);
3408 }
3409 EXPORT_SYMBOL_GPL(security_kernel_post_load_data);
3410 
3411 /**
3412  * security_task_fix_setuid() - Update LSM with new user id attributes
3413  * @new: updated credentials
3414  * @old: credentials being replaced
3415  * @flags: LSM_SETID_* flag values
3416  *
3417  * Update the module's state after setting one or more of the user identity
3418  * attributes of the current process.  The @flags parameter indicates which of
3419  * the set*uid system calls invoked this hook.  If @new is the set of
3420  * credentials that will be installed.  Modifications should be made to this
3421  * rather than to @current->cred.
3422  *
3423  * Return: Returns 0 on success.
3424  */
3425 int security_task_fix_setuid(struct cred *new, const struct cred *old,
3426 			     int flags)
3427 {
3428 	return call_int_hook(task_fix_setuid, new, old, flags);
3429 }
3430 
3431 /**
3432  * security_task_fix_setgid() - Update LSM with new group id attributes
3433  * @new: updated credentials
3434  * @old: credentials being replaced
3435  * @flags: LSM_SETID_* flag value
3436  *
3437  * Update the module's state after setting one or more of the group identity
3438  * attributes of the current process.  The @flags parameter indicates which of
3439  * the set*gid system calls invoked this hook.  @new is the set of credentials
3440  * that will be installed.  Modifications should be made to this rather than to
3441  * @current->cred.
3442  *
3443  * Return: Returns 0 on success.
3444  */
3445 int security_task_fix_setgid(struct cred *new, const struct cred *old,
3446 			     int flags)
3447 {
3448 	return call_int_hook(task_fix_setgid, new, old, flags);
3449 }
3450 
3451 /**
3452  * security_task_fix_setgroups() - Update LSM with new supplementary groups
3453  * @new: updated credentials
3454  * @old: credentials being replaced
3455  *
3456  * Update the module's state after setting the supplementary group identity
3457  * attributes of the current process.  @new is the set of credentials that will
3458  * be installed.  Modifications should be made to this rather than to
3459  * @current->cred.
3460  *
3461  * Return: Returns 0 on success.
3462  */
3463 int security_task_fix_setgroups(struct cred *new, const struct cred *old)
3464 {
3465 	return call_int_hook(task_fix_setgroups, new, old);
3466 }
3467 
3468 /**
3469  * security_task_setpgid() - Check if setting the pgid is allowed
3470  * @p: task being modified
3471  * @pgid: new pgid
3472  *
3473  * Check permission before setting the process group identifier of the process
3474  * @p to @pgid.
3475  *
3476  * Return: Returns 0 if permission is granted.
3477  */
3478 int security_task_setpgid(struct task_struct *p, pid_t pgid)
3479 {
3480 	return call_int_hook(task_setpgid, p, pgid);
3481 }
3482 
3483 /**
3484  * security_task_getpgid() - Check if getting the pgid is allowed
3485  * @p: task
3486  *
3487  * Check permission before getting the process group identifier of the process
3488  * @p.
3489  *
3490  * Return: Returns 0 if permission is granted.
3491  */
3492 int security_task_getpgid(struct task_struct *p)
3493 {
3494 	return call_int_hook(task_getpgid, p);
3495 }
3496 
3497 /**
3498  * security_task_getsid() - Check if getting the session id is allowed
3499  * @p: task
3500  *
3501  * Check permission before getting the session identifier of the process @p.
3502  *
3503  * Return: Returns 0 if permission is granted.
3504  */
3505 int security_task_getsid(struct task_struct *p)
3506 {
3507 	return call_int_hook(task_getsid, p);
3508 }
3509 
3510 /**
3511  * security_current_getlsmprop_subj() - Current task's subjective LSM data
3512  * @prop: lsm specific information
3513  *
3514  * Retrieve the subjective security identifier of the current task and return
3515  * it in @prop.
3516  */
3517 void security_current_getlsmprop_subj(struct lsm_prop *prop)
3518 {
3519 	lsmprop_init(prop);
3520 	call_void_hook(current_getlsmprop_subj, prop);
3521 }
3522 EXPORT_SYMBOL(security_current_getlsmprop_subj);
3523 
3524 /**
3525  * security_task_getlsmprop_obj() - Get a task's objective LSM data
3526  * @p: target task
3527  * @prop: lsm specific information
3528  *
3529  * Retrieve the objective security identifier of the task_struct in @p and
3530  * return it in @prop.
3531  */
3532 void security_task_getlsmprop_obj(struct task_struct *p, struct lsm_prop *prop)
3533 {
3534 	lsmprop_init(prop);
3535 	call_void_hook(task_getlsmprop_obj, p, prop);
3536 }
3537 EXPORT_SYMBOL(security_task_getlsmprop_obj);
3538 
3539 /**
3540  * security_task_setnice() - Check if setting a task's nice value is allowed
3541  * @p: target task
3542  * @nice: nice value
3543  *
3544  * Check permission before setting the nice value of @p to @nice.
3545  *
3546  * Return: Returns 0 if permission is granted.
3547  */
3548 int security_task_setnice(struct task_struct *p, int nice)
3549 {
3550 	return call_int_hook(task_setnice, p, nice);
3551 }
3552 
3553 /**
3554  * security_task_setioprio() - Check if setting a task's ioprio is allowed
3555  * @p: target task
3556  * @ioprio: ioprio value
3557  *
3558  * Check permission before setting the ioprio value of @p to @ioprio.
3559  *
3560  * Return: Returns 0 if permission is granted.
3561  */
3562 int security_task_setioprio(struct task_struct *p, int ioprio)
3563 {
3564 	return call_int_hook(task_setioprio, p, ioprio);
3565 }
3566 
3567 /**
3568  * security_task_getioprio() - Check if getting a task's ioprio is allowed
3569  * @p: task
3570  *
3571  * Check permission before getting the ioprio value of @p.
3572  *
3573  * Return: Returns 0 if permission is granted.
3574  */
3575 int security_task_getioprio(struct task_struct *p)
3576 {
3577 	return call_int_hook(task_getioprio, p);
3578 }
3579 
3580 /**
3581  * security_task_prlimit() - Check if get/setting resources limits is allowed
3582  * @cred: current task credentials
3583  * @tcred: target task credentials
3584  * @flags: LSM_PRLIMIT_* flag bits indicating a get/set/both
3585  *
3586  * Check permission before getting and/or setting the resource limits of
3587  * another task.
3588  *
3589  * Return: Returns 0 if permission is granted.
3590  */
3591 int security_task_prlimit(const struct cred *cred, const struct cred *tcred,
3592 			  unsigned int flags)
3593 {
3594 	return call_int_hook(task_prlimit, cred, tcred, flags);
3595 }
3596 
3597 /**
3598  * security_task_setrlimit() - Check if setting a new rlimit value is allowed
3599  * @p: target task's group leader
3600  * @resource: resource whose limit is being set
3601  * @new_rlim: new resource limit
3602  *
3603  * Check permission before setting the resource limits of process @p for
3604  * @resource to @new_rlim.  The old resource limit values can be examined by
3605  * dereferencing (p->signal->rlim + resource).
3606  *
3607  * Return: Returns 0 if permission is granted.
3608  */
3609 int security_task_setrlimit(struct task_struct *p, unsigned int resource,
3610 			    struct rlimit *new_rlim)
3611 {
3612 	return call_int_hook(task_setrlimit, p, resource, new_rlim);
3613 }
3614 
3615 /**
3616  * security_task_setscheduler() - Check if setting sched policy/param is allowed
3617  * @p: target task
3618  *
3619  * Check permission before setting scheduling policy and/or parameters of
3620  * process @p.
3621  *
3622  * Return: Returns 0 if permission is granted.
3623  */
3624 int security_task_setscheduler(struct task_struct *p)
3625 {
3626 	return call_int_hook(task_setscheduler, p);
3627 }
3628 
3629 /**
3630  * security_task_getscheduler() - Check if getting scheduling info is allowed
3631  * @p: target task
3632  *
3633  * Check permission before obtaining scheduling information for process @p.
3634  *
3635  * Return: Returns 0 if permission is granted.
3636  */
3637 int security_task_getscheduler(struct task_struct *p)
3638 {
3639 	return call_int_hook(task_getscheduler, p);
3640 }
3641 
3642 /**
3643  * security_task_movememory() - Check if moving memory is allowed
3644  * @p: task
3645  *
3646  * Check permission before moving memory owned by process @p.
3647  *
3648  * Return: Returns 0 if permission is granted.
3649  */
3650 int security_task_movememory(struct task_struct *p)
3651 {
3652 	return call_int_hook(task_movememory, p);
3653 }
3654 
3655 /**
3656  * security_task_kill() - Check if sending a signal is allowed
3657  * @p: target process
3658  * @info: signal information
3659  * @sig: signal value
3660  * @cred: credentials of the signal sender, NULL if @current
3661  *
3662  * Check permission before sending signal @sig to @p.  @info can be NULL, the
3663  * constant 1, or a pointer to a kernel_siginfo structure.  If @info is 1 or
3664  * SI_FROMKERNEL(info) is true, then the signal should be viewed as coming from
3665  * the kernel and should typically be permitted.  SIGIO signals are handled
3666  * separately by the send_sigiotask hook in file_security_ops.
3667  *
3668  * Return: Returns 0 if permission is granted.
3669  */
3670 int security_task_kill(struct task_struct *p, struct kernel_siginfo *info,
3671 		       int sig, const struct cred *cred)
3672 {
3673 	return call_int_hook(task_kill, p, info, sig, cred);
3674 }
3675 
3676 /**
3677  * security_task_prctl() - Check if a prctl op is allowed
3678  * @option: operation
3679  * @arg2: argument
3680  * @arg3: argument
3681  * @arg4: argument
3682  * @arg5: argument
3683  *
3684  * Check permission before performing a process control operation on the
3685  * current process.
3686  *
3687  * Return: Return -ENOSYS if no-one wanted to handle this op, any other value
3688  *         to cause prctl() to return immediately with that value.
3689  */
3690 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
3691 			unsigned long arg4, unsigned long arg5)
3692 {
3693 	int thisrc;
3694 	int rc = LSM_RET_DEFAULT(task_prctl);
3695 	struct lsm_static_call *scall;
3696 
3697 	lsm_for_each_hook(scall, task_prctl) {
3698 		thisrc = scall->hl->hook.task_prctl(option, arg2, arg3, arg4, arg5);
3699 		if (thisrc != LSM_RET_DEFAULT(task_prctl)) {
3700 			rc = thisrc;
3701 			if (thisrc != 0)
3702 				break;
3703 		}
3704 	}
3705 	return rc;
3706 }
3707 
3708 /**
3709  * security_task_to_inode() - Set the security attributes of a task's inode
3710  * @p: task
3711  * @inode: inode
3712  *
3713  * Set the security attributes for an inode based on an associated task's
3714  * security attributes, e.g. for /proc/pid inodes.
3715  */
3716 void security_task_to_inode(struct task_struct *p, struct inode *inode)
3717 {
3718 	call_void_hook(task_to_inode, p, inode);
3719 }
3720 
3721 /**
3722  * security_create_user_ns() - Check if creating a new userns is allowed
3723  * @cred: prepared creds
3724  *
3725  * Check permission prior to creating a new user namespace.
3726  *
3727  * Return: Returns 0 if successful, otherwise < 0 error code.
3728  */
3729 int security_create_user_ns(const struct cred *cred)
3730 {
3731 	return call_int_hook(userns_create, cred);
3732 }
3733 
3734 /**
3735  * security_ipc_permission() - Check if sysv ipc access is allowed
3736  * @ipcp: ipc permission structure
3737  * @flag: requested permissions
3738  *
3739  * Check permissions for access to IPC.
3740  *
3741  * Return: Returns 0 if permission is granted.
3742  */
3743 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
3744 {
3745 	return call_int_hook(ipc_permission, ipcp, flag);
3746 }
3747 
3748 /**
3749  * security_ipc_getlsmprop() - Get the sysv ipc object LSM data
3750  * @ipcp: ipc permission structure
3751  * @prop: pointer to lsm information
3752  *
3753  * Get the lsm information associated with the ipc object.
3754  */
3755 
3756 void security_ipc_getlsmprop(struct kern_ipc_perm *ipcp, struct lsm_prop *prop)
3757 {
3758 	lsmprop_init(prop);
3759 	call_void_hook(ipc_getlsmprop, ipcp, prop);
3760 }
3761 
3762 /**
3763  * security_msg_msg_alloc() - Allocate a sysv ipc message LSM blob
3764  * @msg: message structure
3765  *
3766  * Allocate and attach a security structure to the msg->security field.  The
3767  * security field is initialized to NULL when the structure is first created.
3768  *
3769  * Return: Return 0 if operation was successful and permission is granted.
3770  */
3771 int security_msg_msg_alloc(struct msg_msg *msg)
3772 {
3773 	int rc = lsm_msg_msg_alloc(msg);
3774 
3775 	if (unlikely(rc))
3776 		return rc;
3777 	rc = call_int_hook(msg_msg_alloc_security, msg);
3778 	if (unlikely(rc))
3779 		security_msg_msg_free(msg);
3780 	return rc;
3781 }
3782 
3783 /**
3784  * security_msg_msg_free() - Free a sysv ipc message LSM blob
3785  * @msg: message structure
3786  *
3787  * Deallocate the security structure for this message.
3788  */
3789 void security_msg_msg_free(struct msg_msg *msg)
3790 {
3791 	call_void_hook(msg_msg_free_security, msg);
3792 	kfree(msg->security);
3793 	msg->security = NULL;
3794 }
3795 
3796 /**
3797  * security_msg_queue_alloc() - Allocate a sysv ipc msg queue LSM blob
3798  * @msq: sysv ipc permission structure
3799  *
3800  * Allocate and attach a security structure to @msg. The security field is
3801  * initialized to NULL when the structure is first created.
3802  *
3803  * Return: Returns 0 if operation was successful and permission is granted.
3804  */
3805 int security_msg_queue_alloc(struct kern_ipc_perm *msq)
3806 {
3807 	int rc = lsm_ipc_alloc(msq);
3808 
3809 	if (unlikely(rc))
3810 		return rc;
3811 	rc = call_int_hook(msg_queue_alloc_security, msq);
3812 	if (unlikely(rc))
3813 		security_msg_queue_free(msq);
3814 	return rc;
3815 }
3816 
3817 /**
3818  * security_msg_queue_free() - Free a sysv ipc msg queue LSM blob
3819  * @msq: sysv ipc permission structure
3820  *
3821  * Deallocate security field @perm->security for the message queue.
3822  */
3823 void security_msg_queue_free(struct kern_ipc_perm *msq)
3824 {
3825 	call_void_hook(msg_queue_free_security, msq);
3826 	kfree(msq->security);
3827 	msq->security = NULL;
3828 }
3829 
3830 /**
3831  * security_msg_queue_associate() - Check if a msg queue operation is allowed
3832  * @msq: sysv ipc permission structure
3833  * @msqflg: operation flags
3834  *
3835  * Check permission when a message queue is requested through the msgget system
3836  * call. This hook is only called when returning the message queue identifier
3837  * for an existing message queue, not when a new message queue is created.
3838  *
3839  * Return: Return 0 if permission is granted.
3840  */
3841 int security_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
3842 {
3843 	return call_int_hook(msg_queue_associate, msq, msqflg);
3844 }
3845 
3846 /**
3847  * security_msg_queue_msgctl() - Check if a msg queue operation is allowed
3848  * @msq: sysv ipc permission structure
3849  * @cmd: operation
3850  *
3851  * Check permission when a message control operation specified by @cmd is to be
3852  * performed on the message queue with permissions.
3853  *
3854  * Return: Returns 0 if permission is granted.
3855  */
3856 int security_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
3857 {
3858 	return call_int_hook(msg_queue_msgctl, msq, cmd);
3859 }
3860 
3861 /**
3862  * security_msg_queue_msgsnd() - Check if sending a sysv ipc message is allowed
3863  * @msq: sysv ipc permission structure
3864  * @msg: message
3865  * @msqflg: operation flags
3866  *
3867  * Check permission before a message, @msg, is enqueued on the message queue
3868  * with permissions specified in @msq.
3869  *
3870  * Return: Returns 0 if permission is granted.
3871  */
3872 int security_msg_queue_msgsnd(struct kern_ipc_perm *msq,
3873 			      struct msg_msg *msg, int msqflg)
3874 {
3875 	return call_int_hook(msg_queue_msgsnd, msq, msg, msqflg);
3876 }
3877 
3878 /**
3879  * security_msg_queue_msgrcv() - Check if receiving a sysv ipc msg is allowed
3880  * @msq: sysv ipc permission structure
3881  * @msg: message
3882  * @target: target task
3883  * @type: type of message requested
3884  * @mode: operation flags
3885  *
3886  * Check permission before a message, @msg, is removed from the message	queue.
3887  * The @target task structure contains a pointer to the process that will be
3888  * receiving the message (not equal to the current process when inline receives
3889  * are being performed).
3890  *
3891  * Return: Returns 0 if permission is granted.
3892  */
3893 int security_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
3894 			      struct task_struct *target, long type, int mode)
3895 {
3896 	return call_int_hook(msg_queue_msgrcv, msq, msg, target, type, mode);
3897 }
3898 
3899 /**
3900  * security_shm_alloc() - Allocate a sysv shm LSM blob
3901  * @shp: sysv ipc permission structure
3902  *
3903  * Allocate and attach a security structure to the @shp security field.  The
3904  * security field is initialized to NULL when the structure is first created.
3905  *
3906  * Return: Returns 0 if operation was successful and permission is granted.
3907  */
3908 int security_shm_alloc(struct kern_ipc_perm *shp)
3909 {
3910 	int rc = lsm_ipc_alloc(shp);
3911 
3912 	if (unlikely(rc))
3913 		return rc;
3914 	rc = call_int_hook(shm_alloc_security, shp);
3915 	if (unlikely(rc))
3916 		security_shm_free(shp);
3917 	return rc;
3918 }
3919 
3920 /**
3921  * security_shm_free() - Free a sysv shm LSM blob
3922  * @shp: sysv ipc permission structure
3923  *
3924  * Deallocate the security structure @perm->security for the memory segment.
3925  */
3926 void security_shm_free(struct kern_ipc_perm *shp)
3927 {
3928 	call_void_hook(shm_free_security, shp);
3929 	kfree(shp->security);
3930 	shp->security = NULL;
3931 }
3932 
3933 /**
3934  * security_shm_associate() - Check if a sysv shm operation is allowed
3935  * @shp: sysv ipc permission structure
3936  * @shmflg: operation flags
3937  *
3938  * Check permission when a shared memory region is requested through the shmget
3939  * system call. This hook is only called when returning the shared memory
3940  * region identifier for an existing region, not when a new shared memory
3941  * region is created.
3942  *
3943  * Return: Returns 0 if permission is granted.
3944  */
3945 int security_shm_associate(struct kern_ipc_perm *shp, int shmflg)
3946 {
3947 	return call_int_hook(shm_associate, shp, shmflg);
3948 }
3949 
3950 /**
3951  * security_shm_shmctl() - Check if a sysv shm operation is allowed
3952  * @shp: sysv ipc permission structure
3953  * @cmd: operation
3954  *
3955  * Check permission when a shared memory control operation specified by @cmd is
3956  * to be performed on the shared memory region with permissions in @shp.
3957  *
3958  * Return: Return 0 if permission is granted.
3959  */
3960 int security_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
3961 {
3962 	return call_int_hook(shm_shmctl, shp, cmd);
3963 }
3964 
3965 /**
3966  * security_shm_shmat() - Check if a sysv shm attach operation is allowed
3967  * @shp: sysv ipc permission structure
3968  * @shmaddr: address of memory region to attach
3969  * @shmflg: operation flags
3970  *
3971  * Check permissions prior to allowing the shmat system call to attach the
3972  * shared memory segment with permissions @shp to the data segment of the
3973  * calling process. The attaching address is specified by @shmaddr.
3974  *
3975  * Return: Returns 0 if permission is granted.
3976  */
3977 int security_shm_shmat(struct kern_ipc_perm *shp,
3978 		       char __user *shmaddr, int shmflg)
3979 {
3980 	return call_int_hook(shm_shmat, shp, shmaddr, shmflg);
3981 }
3982 
3983 /**
3984  * security_sem_alloc() - Allocate a sysv semaphore LSM blob
3985  * @sma: sysv ipc permission structure
3986  *
3987  * Allocate and attach a security structure to the @sma security field. The
3988  * security field is initialized to NULL when the structure is first created.
3989  *
3990  * Return: Returns 0 if operation was successful and permission is granted.
3991  */
3992 int security_sem_alloc(struct kern_ipc_perm *sma)
3993 {
3994 	int rc = lsm_ipc_alloc(sma);
3995 
3996 	if (unlikely(rc))
3997 		return rc;
3998 	rc = call_int_hook(sem_alloc_security, sma);
3999 	if (unlikely(rc))
4000 		security_sem_free(sma);
4001 	return rc;
4002 }
4003 
4004 /**
4005  * security_sem_free() - Free a sysv semaphore LSM blob
4006  * @sma: sysv ipc permission structure
4007  *
4008  * Deallocate security structure @sma->security for the semaphore.
4009  */
4010 void security_sem_free(struct kern_ipc_perm *sma)
4011 {
4012 	call_void_hook(sem_free_security, sma);
4013 	kfree(sma->security);
4014 	sma->security = NULL;
4015 }
4016 
4017 /**
4018  * security_sem_associate() - Check if a sysv semaphore operation is allowed
4019  * @sma: sysv ipc permission structure
4020  * @semflg: operation flags
4021  *
4022  * Check permission when a semaphore is requested through the semget system
4023  * call. This hook is only called when returning the semaphore identifier for
4024  * an existing semaphore, not when a new one must be created.
4025  *
4026  * Return: Returns 0 if permission is granted.
4027  */
4028 int security_sem_associate(struct kern_ipc_perm *sma, int semflg)
4029 {
4030 	return call_int_hook(sem_associate, sma, semflg);
4031 }
4032 
4033 /**
4034  * security_sem_semctl() - Check if a sysv semaphore operation is allowed
4035  * @sma: sysv ipc permission structure
4036  * @cmd: operation
4037  *
4038  * Check permission when a semaphore operation specified by @cmd is to be
4039  * performed on the semaphore.
4040  *
4041  * Return: Returns 0 if permission is granted.
4042  */
4043 int security_sem_semctl(struct kern_ipc_perm *sma, int cmd)
4044 {
4045 	return call_int_hook(sem_semctl, sma, cmd);
4046 }
4047 
4048 /**
4049  * security_sem_semop() - Check if a sysv semaphore operation is allowed
4050  * @sma: sysv ipc permission structure
4051  * @sops: operations to perform
4052  * @nsops: number of operations
4053  * @alter: flag indicating changes will be made
4054  *
4055  * Check permissions before performing operations on members of the semaphore
4056  * set. If the @alter flag is nonzero, the semaphore set may be modified.
4057  *
4058  * Return: Returns 0 if permission is granted.
4059  */
4060 int security_sem_semop(struct kern_ipc_perm *sma, struct sembuf *sops,
4061 		       unsigned nsops, int alter)
4062 {
4063 	return call_int_hook(sem_semop, sma, sops, nsops, alter);
4064 }
4065 
4066 /**
4067  * security_d_instantiate() - Populate an inode's LSM state based on a dentry
4068  * @dentry: dentry
4069  * @inode: inode
4070  *
4071  * Fill in @inode security information for a @dentry if allowed.
4072  */
4073 void security_d_instantiate(struct dentry *dentry, struct inode *inode)
4074 {
4075 	if (unlikely(inode && IS_PRIVATE(inode)))
4076 		return;
4077 	call_void_hook(d_instantiate, dentry, inode);
4078 }
4079 EXPORT_SYMBOL(security_d_instantiate);
4080 
4081 /*
4082  * Please keep this in sync with it's counterpart in security/lsm_syscalls.c
4083  */
4084 
4085 /**
4086  * security_getselfattr - Read an LSM attribute of the current process.
4087  * @attr: which attribute to return
4088  * @uctx: the user-space destination for the information, or NULL
4089  * @size: pointer to the size of space available to receive the data
4090  * @flags: special handling options. LSM_FLAG_SINGLE indicates that only
4091  * attributes associated with the LSM identified in the passed @ctx be
4092  * reported.
4093  *
4094  * A NULL value for @uctx can be used to get both the number of attributes
4095  * and the size of the data.
4096  *
4097  * Returns the number of attributes found on success, negative value
4098  * on error. @size is reset to the total size of the data.
4099  * If @size is insufficient to contain the data -E2BIG is returned.
4100  */
4101 int security_getselfattr(unsigned int attr, struct lsm_ctx __user *uctx,
4102 			 u32 __user *size, u32 flags)
4103 {
4104 	struct lsm_static_call *scall;
4105 	struct lsm_ctx lctx = { .id = LSM_ID_UNDEF, };
4106 	u8 __user *base = (u8 __user *)uctx;
4107 	u32 entrysize;
4108 	u32 total = 0;
4109 	u32 left;
4110 	bool toobig = false;
4111 	bool single = false;
4112 	int count = 0;
4113 	int rc;
4114 
4115 	if (attr == LSM_ATTR_UNDEF)
4116 		return -EINVAL;
4117 	if (size == NULL)
4118 		return -EINVAL;
4119 	if (get_user(left, size))
4120 		return -EFAULT;
4121 
4122 	if (flags) {
4123 		/*
4124 		 * Only flag supported is LSM_FLAG_SINGLE
4125 		 */
4126 		if (flags != LSM_FLAG_SINGLE || !uctx)
4127 			return -EINVAL;
4128 		if (copy_from_user(&lctx, uctx, sizeof(lctx)))
4129 			return -EFAULT;
4130 		/*
4131 		 * If the LSM ID isn't specified it is an error.
4132 		 */
4133 		if (lctx.id == LSM_ID_UNDEF)
4134 			return -EINVAL;
4135 		single = true;
4136 	}
4137 
4138 	/*
4139 	 * In the usual case gather all the data from the LSMs.
4140 	 * In the single case only get the data from the LSM specified.
4141 	 */
4142 	lsm_for_each_hook(scall, getselfattr) {
4143 		if (single && lctx.id != scall->hl->lsmid->id)
4144 			continue;
4145 		entrysize = left;
4146 		if (base)
4147 			uctx = (struct lsm_ctx __user *)(base + total);
4148 		rc = scall->hl->hook.getselfattr(attr, uctx, &entrysize, flags);
4149 		if (rc == -EOPNOTSUPP) {
4150 			rc = 0;
4151 			continue;
4152 		}
4153 		if (rc == -E2BIG) {
4154 			rc = 0;
4155 			left = 0;
4156 			toobig = true;
4157 		} else if (rc < 0)
4158 			return rc;
4159 		else
4160 			left -= entrysize;
4161 
4162 		total += entrysize;
4163 		count += rc;
4164 		if (single)
4165 			break;
4166 	}
4167 	if (put_user(total, size))
4168 		return -EFAULT;
4169 	if (toobig)
4170 		return -E2BIG;
4171 	if (count == 0)
4172 		return LSM_RET_DEFAULT(getselfattr);
4173 	return count;
4174 }
4175 
4176 /*
4177  * Please keep this in sync with it's counterpart in security/lsm_syscalls.c
4178  */
4179 
4180 /**
4181  * security_setselfattr - Set an LSM attribute on the current process.
4182  * @attr: which attribute to set
4183  * @uctx: the user-space source for the information
4184  * @size: the size of the data
4185  * @flags: reserved for future use, must be 0
4186  *
4187  * Set an LSM attribute for the current process. The LSM, attribute
4188  * and new value are included in @uctx.
4189  *
4190  * Returns 0 on success, -EINVAL if the input is inconsistent, -EFAULT
4191  * if the user buffer is inaccessible, E2BIG if size is too big, or an
4192  * LSM specific failure.
4193  */
4194 int security_setselfattr(unsigned int attr, struct lsm_ctx __user *uctx,
4195 			 u32 size, u32 flags)
4196 {
4197 	struct lsm_static_call *scall;
4198 	struct lsm_ctx *lctx;
4199 	int rc = LSM_RET_DEFAULT(setselfattr);
4200 	u64 required_len;
4201 
4202 	if (flags)
4203 		return -EINVAL;
4204 	if (size < sizeof(*lctx))
4205 		return -EINVAL;
4206 	if (size > PAGE_SIZE)
4207 		return -E2BIG;
4208 
4209 	lctx = memdup_user(uctx, size);
4210 	if (IS_ERR(lctx))
4211 		return PTR_ERR(lctx);
4212 
4213 	if (size < lctx->len ||
4214 	    check_add_overflow(sizeof(*lctx), lctx->ctx_len, &required_len) ||
4215 	    lctx->len < required_len) {
4216 		rc = -EINVAL;
4217 		goto free_out;
4218 	}
4219 
4220 	lsm_for_each_hook(scall, setselfattr)
4221 		if ((scall->hl->lsmid->id) == lctx->id) {
4222 			rc = scall->hl->hook.setselfattr(attr, lctx, size, flags);
4223 			break;
4224 		}
4225 
4226 free_out:
4227 	kfree(lctx);
4228 	return rc;
4229 }
4230 
4231 /**
4232  * security_getprocattr() - Read an attribute for a task
4233  * @p: the task
4234  * @lsmid: LSM identification
4235  * @name: attribute name
4236  * @value: attribute value
4237  *
4238  * Read attribute @name for task @p and store it into @value if allowed.
4239  *
4240  * Return: Returns the length of @value on success, a negative value otherwise.
4241  */
4242 int security_getprocattr(struct task_struct *p, int lsmid, const char *name,
4243 			 char **value)
4244 {
4245 	struct lsm_static_call *scall;
4246 
4247 	lsm_for_each_hook(scall, getprocattr) {
4248 		if (lsmid != 0 && lsmid != scall->hl->lsmid->id)
4249 			continue;
4250 		return scall->hl->hook.getprocattr(p, name, value);
4251 	}
4252 	return LSM_RET_DEFAULT(getprocattr);
4253 }
4254 
4255 /**
4256  * security_setprocattr() - Set an attribute for a task
4257  * @lsmid: LSM identification
4258  * @name: attribute name
4259  * @value: attribute value
4260  * @size: attribute value size
4261  *
4262  * Write (set) the current task's attribute @name to @value, size @size if
4263  * allowed.
4264  *
4265  * Return: Returns bytes written on success, a negative value otherwise.
4266  */
4267 int security_setprocattr(int lsmid, const char *name, void *value, size_t size)
4268 {
4269 	struct lsm_static_call *scall;
4270 
4271 	lsm_for_each_hook(scall, setprocattr) {
4272 		if (lsmid != 0 && lsmid != scall->hl->lsmid->id)
4273 			continue;
4274 		return scall->hl->hook.setprocattr(name, value, size);
4275 	}
4276 	return LSM_RET_DEFAULT(setprocattr);
4277 }
4278 
4279 /**
4280  * security_netlink_send() - Save info and check if netlink sending is allowed
4281  * @sk: sending socket
4282  * @skb: netlink message
4283  *
4284  * Save security information for a netlink message so that permission checking
4285  * can be performed when the message is processed.  The security information
4286  * can be saved using the eff_cap field of the netlink_skb_parms structure.
4287  * Also may be used to provide fine grained control over message transmission.
4288  *
4289  * Return: Returns 0 if the information was successfully saved and message is
4290  *         allowed to be transmitted.
4291  */
4292 int security_netlink_send(struct sock *sk, struct sk_buff *skb)
4293 {
4294 	return call_int_hook(netlink_send, sk, skb);
4295 }
4296 
4297 /**
4298  * security_ismaclabel() - Check if the named attribute is a MAC label
4299  * @name: full extended attribute name
4300  *
4301  * Check if the extended attribute specified by @name represents a MAC label.
4302  *
4303  * Return: Returns 1 if name is a MAC attribute otherwise returns 0.
4304  */
4305 int security_ismaclabel(const char *name)
4306 {
4307 	return call_int_hook(ismaclabel, name);
4308 }
4309 EXPORT_SYMBOL(security_ismaclabel);
4310 
4311 /**
4312  * security_secid_to_secctx() - Convert a secid to a secctx
4313  * @secid: secid
4314  * @secdata: secctx
4315  * @seclen: secctx length
4316  *
4317  * Convert secid to security context.  If @secdata is NULL the length of the
4318  * result will be returned in @seclen, but no @secdata will be returned.  This
4319  * does mean that the length could change between calls to check the length and
4320  * the next call which actually allocates and returns the @secdata.
4321  *
4322  * Return: Return 0 on success, error on failure.
4323  */
4324 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
4325 {
4326 	return call_int_hook(secid_to_secctx, secid, secdata, seclen);
4327 }
4328 EXPORT_SYMBOL(security_secid_to_secctx);
4329 
4330 /**
4331  * security_lsmprop_to_secctx() - Convert a lsm_prop to a secctx
4332  * @prop: lsm specific information
4333  * @secdata: secctx
4334  * @seclen: secctx length
4335  *
4336  * Convert a @prop entry to security context.  If @secdata is NULL the
4337  * length of the result will be returned in @seclen, but no @secdata
4338  * will be returned.  This does mean that the length could change between
4339  * calls to check the length and the next call which actually allocates
4340  * and returns the @secdata.
4341  *
4342  * Return: Return 0 on success, error on failure.
4343  */
4344 int security_lsmprop_to_secctx(struct lsm_prop *prop, char **secdata,
4345 			       u32 *seclen)
4346 {
4347 	return call_int_hook(lsmprop_to_secctx, prop, secdata, seclen);
4348 }
4349 EXPORT_SYMBOL(security_lsmprop_to_secctx);
4350 
4351 /**
4352  * security_secctx_to_secid() - Convert a secctx to a secid
4353  * @secdata: secctx
4354  * @seclen: length of secctx
4355  * @secid: secid
4356  *
4357  * Convert security context to secid.
4358  *
4359  * Return: Returns 0 on success, error on failure.
4360  */
4361 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
4362 {
4363 	*secid = 0;
4364 	return call_int_hook(secctx_to_secid, secdata, seclen, secid);
4365 }
4366 EXPORT_SYMBOL(security_secctx_to_secid);
4367 
4368 /**
4369  * security_release_secctx() - Free a secctx buffer
4370  * @secdata: secctx
4371  * @seclen: length of secctx
4372  *
4373  * Release the security context.
4374  */
4375 void security_release_secctx(char *secdata, u32 seclen)
4376 {
4377 	call_void_hook(release_secctx, secdata, seclen);
4378 }
4379 EXPORT_SYMBOL(security_release_secctx);
4380 
4381 /**
4382  * security_inode_invalidate_secctx() - Invalidate an inode's security label
4383  * @inode: inode
4384  *
4385  * Notify the security module that it must revalidate the security context of
4386  * an inode.
4387  */
4388 void security_inode_invalidate_secctx(struct inode *inode)
4389 {
4390 	call_void_hook(inode_invalidate_secctx, inode);
4391 }
4392 EXPORT_SYMBOL(security_inode_invalidate_secctx);
4393 
4394 /**
4395  * security_inode_notifysecctx() - Notify the LSM of an inode's security label
4396  * @inode: inode
4397  * @ctx: secctx
4398  * @ctxlen: length of secctx
4399  *
4400  * Notify the security module of what the security context of an inode should
4401  * be.  Initializes the incore security context managed by the security module
4402  * for this inode.  Example usage: NFS client invokes this hook to initialize
4403  * the security context in its incore inode to the value provided by the server
4404  * for the file when the server returned the file's attributes to the client.
4405  * Must be called with inode->i_mutex locked.
4406  *
4407  * Return: Returns 0 on success, error on failure.
4408  */
4409 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
4410 {
4411 	return call_int_hook(inode_notifysecctx, inode, ctx, ctxlen);
4412 }
4413 EXPORT_SYMBOL(security_inode_notifysecctx);
4414 
4415 /**
4416  * security_inode_setsecctx() - Change the security label of an inode
4417  * @dentry: inode
4418  * @ctx: secctx
4419  * @ctxlen: length of secctx
4420  *
4421  * Change the security context of an inode.  Updates the incore security
4422  * context managed by the security module and invokes the fs code as needed
4423  * (via __vfs_setxattr_noperm) to update any backing xattrs that represent the
4424  * context.  Example usage: NFS server invokes this hook to change the security
4425  * context in its incore inode and on the backing filesystem to a value
4426  * provided by the client on a SETATTR operation.  Must be called with
4427  * inode->i_mutex locked.
4428  *
4429  * Return: Returns 0 on success, error on failure.
4430  */
4431 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
4432 {
4433 	return call_int_hook(inode_setsecctx, dentry, ctx, ctxlen);
4434 }
4435 EXPORT_SYMBOL(security_inode_setsecctx);
4436 
4437 /**
4438  * security_inode_getsecctx() - Get the security label of an inode
4439  * @inode: inode
4440  * @ctx: secctx
4441  * @ctxlen: length of secctx
4442  *
4443  * On success, returns 0 and fills out @ctx and @ctxlen with the security
4444  * context for the given @inode.
4445  *
4446  * Return: Returns 0 on success, error on failure.
4447  */
4448 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
4449 {
4450 	return call_int_hook(inode_getsecctx, inode, ctx, ctxlen);
4451 }
4452 EXPORT_SYMBOL(security_inode_getsecctx);
4453 
4454 #ifdef CONFIG_WATCH_QUEUE
4455 /**
4456  * security_post_notification() - Check if a watch notification can be posted
4457  * @w_cred: credentials of the task that set the watch
4458  * @cred: credentials of the task which triggered the watch
4459  * @n: the notification
4460  *
4461  * Check to see if a watch notification can be posted to a particular queue.
4462  *
4463  * Return: Returns 0 if permission is granted.
4464  */
4465 int security_post_notification(const struct cred *w_cred,
4466 			       const struct cred *cred,
4467 			       struct watch_notification *n)
4468 {
4469 	return call_int_hook(post_notification, w_cred, cred, n);
4470 }
4471 #endif /* CONFIG_WATCH_QUEUE */
4472 
4473 #ifdef CONFIG_KEY_NOTIFICATIONS
4474 /**
4475  * security_watch_key() - Check if a task is allowed to watch for key events
4476  * @key: the key to watch
4477  *
4478  * Check to see if a process is allowed to watch for event notifications from
4479  * a key or keyring.
4480  *
4481  * Return: Returns 0 if permission is granted.
4482  */
4483 int security_watch_key(struct key *key)
4484 {
4485 	return call_int_hook(watch_key, key);
4486 }
4487 #endif /* CONFIG_KEY_NOTIFICATIONS */
4488 
4489 #ifdef CONFIG_SECURITY_NETWORK
4490 /**
4491  * security_unix_stream_connect() - Check if a AF_UNIX stream is allowed
4492  * @sock: originating sock
4493  * @other: peer sock
4494  * @newsk: new sock
4495  *
4496  * Check permissions before establishing a Unix domain stream connection
4497  * between @sock and @other.
4498  *
4499  * The @unix_stream_connect and @unix_may_send hooks were necessary because
4500  * Linux provides an alternative to the conventional file name space for Unix
4501  * domain sockets.  Whereas binding and connecting to sockets in the file name
4502  * space is mediated by the typical file permissions (and caught by the mknod
4503  * and permission hooks in inode_security_ops), binding and connecting to
4504  * sockets in the abstract name space is completely unmediated.  Sufficient
4505  * control of Unix domain sockets in the abstract name space isn't possible
4506  * using only the socket layer hooks, since we need to know the actual target
4507  * socket, which is not looked up until we are inside the af_unix code.
4508  *
4509  * Return: Returns 0 if permission is granted.
4510  */
4511 int security_unix_stream_connect(struct sock *sock, struct sock *other,
4512 				 struct sock *newsk)
4513 {
4514 	return call_int_hook(unix_stream_connect, sock, other, newsk);
4515 }
4516 EXPORT_SYMBOL(security_unix_stream_connect);
4517 
4518 /**
4519  * security_unix_may_send() - Check if AF_UNIX socket can send datagrams
4520  * @sock: originating sock
4521  * @other: peer sock
4522  *
4523  * Check permissions before connecting or sending datagrams from @sock to
4524  * @other.
4525  *
4526  * The @unix_stream_connect and @unix_may_send hooks were necessary because
4527  * Linux provides an alternative to the conventional file name space for Unix
4528  * domain sockets.  Whereas binding and connecting to sockets in the file name
4529  * space is mediated by the typical file permissions (and caught by the mknod
4530  * and permission hooks in inode_security_ops), binding and connecting to
4531  * sockets in the abstract name space is completely unmediated.  Sufficient
4532  * control of Unix domain sockets in the abstract name space isn't possible
4533  * using only the socket layer hooks, since we need to know the actual target
4534  * socket, which is not looked up until we are inside the af_unix code.
4535  *
4536  * Return: Returns 0 if permission is granted.
4537  */
4538 int security_unix_may_send(struct socket *sock,  struct socket *other)
4539 {
4540 	return call_int_hook(unix_may_send, sock, other);
4541 }
4542 EXPORT_SYMBOL(security_unix_may_send);
4543 
4544 /**
4545  * security_socket_create() - Check if creating a new socket is allowed
4546  * @family: protocol family
4547  * @type: communications type
4548  * @protocol: requested protocol
4549  * @kern: set to 1 if a kernel socket is requested
4550  *
4551  * Check permissions prior to creating a new socket.
4552  *
4553  * Return: Returns 0 if permission is granted.
4554  */
4555 int security_socket_create(int family, int type, int protocol, int kern)
4556 {
4557 	return call_int_hook(socket_create, family, type, protocol, kern);
4558 }
4559 
4560 /**
4561  * security_socket_post_create() - Initialize a newly created socket
4562  * @sock: socket
4563  * @family: protocol family
4564  * @type: communications type
4565  * @protocol: requested protocol
4566  * @kern: set to 1 if a kernel socket is requested
4567  *
4568  * This hook allows a module to update or allocate a per-socket security
4569  * structure. Note that the security field was not added directly to the socket
4570  * structure, but rather, the socket security information is stored in the
4571  * associated inode.  Typically, the inode alloc_security hook will allocate
4572  * and attach security information to SOCK_INODE(sock)->i_security.  This hook
4573  * may be used to update the SOCK_INODE(sock)->i_security field with additional
4574  * information that wasn't available when the inode was allocated.
4575  *
4576  * Return: Returns 0 if permission is granted.
4577  */
4578 int security_socket_post_create(struct socket *sock, int family,
4579 				int type, int protocol, int kern)
4580 {
4581 	return call_int_hook(socket_post_create, sock, family, type,
4582 			     protocol, kern);
4583 }
4584 
4585 /**
4586  * security_socket_socketpair() - Check if creating a socketpair is allowed
4587  * @socka: first socket
4588  * @sockb: second socket
4589  *
4590  * Check permissions before creating a fresh pair of sockets.
4591  *
4592  * Return: Returns 0 if permission is granted and the connection was
4593  *         established.
4594  */
4595 int security_socket_socketpair(struct socket *socka, struct socket *sockb)
4596 {
4597 	return call_int_hook(socket_socketpair, socka, sockb);
4598 }
4599 EXPORT_SYMBOL(security_socket_socketpair);
4600 
4601 /**
4602  * security_socket_bind() - Check if a socket bind operation is allowed
4603  * @sock: socket
4604  * @address: requested bind address
4605  * @addrlen: length of address
4606  *
4607  * Check permission before socket protocol layer bind operation is performed
4608  * and the socket @sock is bound to the address specified in the @address
4609  * parameter.
4610  *
4611  * Return: Returns 0 if permission is granted.
4612  */
4613 int security_socket_bind(struct socket *sock,
4614 			 struct sockaddr *address, int addrlen)
4615 {
4616 	return call_int_hook(socket_bind, sock, address, addrlen);
4617 }
4618 
4619 /**
4620  * security_socket_connect() - Check if a socket connect operation is allowed
4621  * @sock: socket
4622  * @address: address of remote connection point
4623  * @addrlen: length of address
4624  *
4625  * Check permission before socket protocol layer connect operation attempts to
4626  * connect socket @sock to a remote address, @address.
4627  *
4628  * Return: Returns 0 if permission is granted.
4629  */
4630 int security_socket_connect(struct socket *sock,
4631 			    struct sockaddr *address, int addrlen)
4632 {
4633 	return call_int_hook(socket_connect, sock, address, addrlen);
4634 }
4635 
4636 /**
4637  * security_socket_listen() - Check if a socket is allowed to listen
4638  * @sock: socket
4639  * @backlog: connection queue size
4640  *
4641  * Check permission before socket protocol layer listen operation.
4642  *
4643  * Return: Returns 0 if permission is granted.
4644  */
4645 int security_socket_listen(struct socket *sock, int backlog)
4646 {
4647 	return call_int_hook(socket_listen, sock, backlog);
4648 }
4649 
4650 /**
4651  * security_socket_accept() - Check if a socket is allowed to accept connections
4652  * @sock: listening socket
4653  * @newsock: newly creation connection socket
4654  *
4655  * Check permission before accepting a new connection.  Note that the new
4656  * socket, @newsock, has been created and some information copied to it, but
4657  * the accept operation has not actually been performed.
4658  *
4659  * Return: Returns 0 if permission is granted.
4660  */
4661 int security_socket_accept(struct socket *sock, struct socket *newsock)
4662 {
4663 	return call_int_hook(socket_accept, sock, newsock);
4664 }
4665 
4666 /**
4667  * security_socket_sendmsg() - Check if sending a message is allowed
4668  * @sock: sending socket
4669  * @msg: message to send
4670  * @size: size of message
4671  *
4672  * Check permission before transmitting a message to another socket.
4673  *
4674  * Return: Returns 0 if permission is granted.
4675  */
4676 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
4677 {
4678 	return call_int_hook(socket_sendmsg, sock, msg, size);
4679 }
4680 
4681 /**
4682  * security_socket_recvmsg() - Check if receiving a message is allowed
4683  * @sock: receiving socket
4684  * @msg: message to receive
4685  * @size: size of message
4686  * @flags: operational flags
4687  *
4688  * Check permission before receiving a message from a socket.
4689  *
4690  * Return: Returns 0 if permission is granted.
4691  */
4692 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
4693 			    int size, int flags)
4694 {
4695 	return call_int_hook(socket_recvmsg, sock, msg, size, flags);
4696 }
4697 
4698 /**
4699  * security_socket_getsockname() - Check if reading the socket addr is allowed
4700  * @sock: socket
4701  *
4702  * Check permission before reading the local address (name) of the socket
4703  * object.
4704  *
4705  * Return: Returns 0 if permission is granted.
4706  */
4707 int security_socket_getsockname(struct socket *sock)
4708 {
4709 	return call_int_hook(socket_getsockname, sock);
4710 }
4711 
4712 /**
4713  * security_socket_getpeername() - Check if reading the peer's addr is allowed
4714  * @sock: socket
4715  *
4716  * Check permission before the remote address (name) of a socket object.
4717  *
4718  * Return: Returns 0 if permission is granted.
4719  */
4720 int security_socket_getpeername(struct socket *sock)
4721 {
4722 	return call_int_hook(socket_getpeername, sock);
4723 }
4724 
4725 /**
4726  * security_socket_getsockopt() - Check if reading a socket option is allowed
4727  * @sock: socket
4728  * @level: option's protocol level
4729  * @optname: option name
4730  *
4731  * Check permissions before retrieving the options associated with socket
4732  * @sock.
4733  *
4734  * Return: Returns 0 if permission is granted.
4735  */
4736 int security_socket_getsockopt(struct socket *sock, int level, int optname)
4737 {
4738 	return call_int_hook(socket_getsockopt, sock, level, optname);
4739 }
4740 
4741 /**
4742  * security_socket_setsockopt() - Check if setting a socket option is allowed
4743  * @sock: socket
4744  * @level: option's protocol level
4745  * @optname: option name
4746  *
4747  * Check permissions before setting the options associated with socket @sock.
4748  *
4749  * Return: Returns 0 if permission is granted.
4750  */
4751 int security_socket_setsockopt(struct socket *sock, int level, int optname)
4752 {
4753 	return call_int_hook(socket_setsockopt, sock, level, optname);
4754 }
4755 
4756 /**
4757  * security_socket_shutdown() - Checks if shutting down the socket is allowed
4758  * @sock: socket
4759  * @how: flag indicating how sends and receives are handled
4760  *
4761  * Checks permission before all or part of a connection on the socket @sock is
4762  * shut down.
4763  *
4764  * Return: Returns 0 if permission is granted.
4765  */
4766 int security_socket_shutdown(struct socket *sock, int how)
4767 {
4768 	return call_int_hook(socket_shutdown, sock, how);
4769 }
4770 
4771 /**
4772  * security_sock_rcv_skb() - Check if an incoming network packet is allowed
4773  * @sk: destination sock
4774  * @skb: incoming packet
4775  *
4776  * Check permissions on incoming network packets.  This hook is distinct from
4777  * Netfilter's IP input hooks since it is the first time that the incoming
4778  * sk_buff @skb has been associated with a particular socket, @sk.  Must not
4779  * sleep inside this hook because some callers hold spinlocks.
4780  *
4781  * Return: Returns 0 if permission is granted.
4782  */
4783 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4784 {
4785 	return call_int_hook(socket_sock_rcv_skb, sk, skb);
4786 }
4787 EXPORT_SYMBOL(security_sock_rcv_skb);
4788 
4789 /**
4790  * security_socket_getpeersec_stream() - Get the remote peer label
4791  * @sock: socket
4792  * @optval: destination buffer
4793  * @optlen: size of peer label copied into the buffer
4794  * @len: maximum size of the destination buffer
4795  *
4796  * This hook allows the security module to provide peer socket security state
4797  * for unix or connected tcp sockets to userspace via getsockopt SO_GETPEERSEC.
4798  * For tcp sockets this can be meaningful if the socket is associated with an
4799  * ipsec SA.
4800  *
4801  * Return: Returns 0 if all is well, otherwise, typical getsockopt return
4802  *         values.
4803  */
4804 int security_socket_getpeersec_stream(struct socket *sock, sockptr_t optval,
4805 				      sockptr_t optlen, unsigned int len)
4806 {
4807 	return call_int_hook(socket_getpeersec_stream, sock, optval, optlen,
4808 			     len);
4809 }
4810 
4811 /**
4812  * security_socket_getpeersec_dgram() - Get the remote peer label
4813  * @sock: socket
4814  * @skb: datagram packet
4815  * @secid: remote peer label secid
4816  *
4817  * This hook allows the security module to provide peer socket security state
4818  * for udp sockets on a per-packet basis to userspace via getsockopt
4819  * SO_GETPEERSEC. The application must first have indicated the IP_PASSSEC
4820  * option via getsockopt. It can then retrieve the security state returned by
4821  * this hook for a packet via the SCM_SECURITY ancillary message type.
4822  *
4823  * Return: Returns 0 on success, error on failure.
4824  */
4825 int security_socket_getpeersec_dgram(struct socket *sock,
4826 				     struct sk_buff *skb, u32 *secid)
4827 {
4828 	return call_int_hook(socket_getpeersec_dgram, sock, skb, secid);
4829 }
4830 EXPORT_SYMBOL(security_socket_getpeersec_dgram);
4831 
4832 /**
4833  * lsm_sock_alloc - allocate a composite sock blob
4834  * @sock: the sock that needs a blob
4835  * @gfp: allocation mode
4836  *
4837  * Allocate the sock blob for all the modules
4838  *
4839  * Returns 0, or -ENOMEM if memory can't be allocated.
4840  */
4841 static int lsm_sock_alloc(struct sock *sock, gfp_t gfp)
4842 {
4843 	return lsm_blob_alloc(&sock->sk_security, blob_sizes.lbs_sock, gfp);
4844 }
4845 
4846 /**
4847  * security_sk_alloc() - Allocate and initialize a sock's LSM blob
4848  * @sk: sock
4849  * @family: protocol family
4850  * @priority: gfp flags
4851  *
4852  * Allocate and attach a security structure to the sk->sk_security field, which
4853  * is used to copy security attributes between local stream sockets.
4854  *
4855  * Return: Returns 0 on success, error on failure.
4856  */
4857 int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
4858 {
4859 	int rc = lsm_sock_alloc(sk, priority);
4860 
4861 	if (unlikely(rc))
4862 		return rc;
4863 	rc = call_int_hook(sk_alloc_security, sk, family, priority);
4864 	if (unlikely(rc))
4865 		security_sk_free(sk);
4866 	return rc;
4867 }
4868 
4869 /**
4870  * security_sk_free() - Free the sock's LSM blob
4871  * @sk: sock
4872  *
4873  * Deallocate security structure.
4874  */
4875 void security_sk_free(struct sock *sk)
4876 {
4877 	call_void_hook(sk_free_security, sk);
4878 	kfree(sk->sk_security);
4879 	sk->sk_security = NULL;
4880 }
4881 
4882 /**
4883  * security_sk_clone() - Clone a sock's LSM state
4884  * @sk: original sock
4885  * @newsk: target sock
4886  *
4887  * Clone/copy security structure.
4888  */
4889 void security_sk_clone(const struct sock *sk, struct sock *newsk)
4890 {
4891 	call_void_hook(sk_clone_security, sk, newsk);
4892 }
4893 EXPORT_SYMBOL(security_sk_clone);
4894 
4895 /**
4896  * security_sk_classify_flow() - Set a flow's secid based on socket
4897  * @sk: original socket
4898  * @flic: target flow
4899  *
4900  * Set the target flow's secid to socket's secid.
4901  */
4902 void security_sk_classify_flow(const struct sock *sk, struct flowi_common *flic)
4903 {
4904 	call_void_hook(sk_getsecid, sk, &flic->flowic_secid);
4905 }
4906 EXPORT_SYMBOL(security_sk_classify_flow);
4907 
4908 /**
4909  * security_req_classify_flow() - Set a flow's secid based on request_sock
4910  * @req: request_sock
4911  * @flic: target flow
4912  *
4913  * Sets @flic's secid to @req's secid.
4914  */
4915 void security_req_classify_flow(const struct request_sock *req,
4916 				struct flowi_common *flic)
4917 {
4918 	call_void_hook(req_classify_flow, req, flic);
4919 }
4920 EXPORT_SYMBOL(security_req_classify_flow);
4921 
4922 /**
4923  * security_sock_graft() - Reconcile LSM state when grafting a sock on a socket
4924  * @sk: sock being grafted
4925  * @parent: target parent socket
4926  *
4927  * Sets @parent's inode secid to @sk's secid and update @sk with any necessary
4928  * LSM state from @parent.
4929  */
4930 void security_sock_graft(struct sock *sk, struct socket *parent)
4931 {
4932 	call_void_hook(sock_graft, sk, parent);
4933 }
4934 EXPORT_SYMBOL(security_sock_graft);
4935 
4936 /**
4937  * security_inet_conn_request() - Set request_sock state using incoming connect
4938  * @sk: parent listening sock
4939  * @skb: incoming connection
4940  * @req: new request_sock
4941  *
4942  * Initialize the @req LSM state based on @sk and the incoming connect in @skb.
4943  *
4944  * Return: Returns 0 if permission is granted.
4945  */
4946 int security_inet_conn_request(const struct sock *sk,
4947 			       struct sk_buff *skb, struct request_sock *req)
4948 {
4949 	return call_int_hook(inet_conn_request, sk, skb, req);
4950 }
4951 EXPORT_SYMBOL(security_inet_conn_request);
4952 
4953 /**
4954  * security_inet_csk_clone() - Set new sock LSM state based on request_sock
4955  * @newsk: new sock
4956  * @req: connection request_sock
4957  *
4958  * Set that LSM state of @sock using the LSM state from @req.
4959  */
4960 void security_inet_csk_clone(struct sock *newsk,
4961 			     const struct request_sock *req)
4962 {
4963 	call_void_hook(inet_csk_clone, newsk, req);
4964 }
4965 
4966 /**
4967  * security_inet_conn_established() - Update sock's LSM state with connection
4968  * @sk: sock
4969  * @skb: connection packet
4970  *
4971  * Update @sock's LSM state to represent a new connection from @skb.
4972  */
4973 void security_inet_conn_established(struct sock *sk,
4974 				    struct sk_buff *skb)
4975 {
4976 	call_void_hook(inet_conn_established, sk, skb);
4977 }
4978 EXPORT_SYMBOL(security_inet_conn_established);
4979 
4980 /**
4981  * security_secmark_relabel_packet() - Check if setting a secmark is allowed
4982  * @secid: new secmark value
4983  *
4984  * Check if the process should be allowed to relabel packets to @secid.
4985  *
4986  * Return: Returns 0 if permission is granted.
4987  */
4988 int security_secmark_relabel_packet(u32 secid)
4989 {
4990 	return call_int_hook(secmark_relabel_packet, secid);
4991 }
4992 EXPORT_SYMBOL(security_secmark_relabel_packet);
4993 
4994 /**
4995  * security_secmark_refcount_inc() - Increment the secmark labeling rule count
4996  *
4997  * Tells the LSM to increment the number of secmark labeling rules loaded.
4998  */
4999 void security_secmark_refcount_inc(void)
5000 {
5001 	call_void_hook(secmark_refcount_inc);
5002 }
5003 EXPORT_SYMBOL(security_secmark_refcount_inc);
5004 
5005 /**
5006  * security_secmark_refcount_dec() - Decrement the secmark labeling rule count
5007  *
5008  * Tells the LSM to decrement the number of secmark labeling rules loaded.
5009  */
5010 void security_secmark_refcount_dec(void)
5011 {
5012 	call_void_hook(secmark_refcount_dec);
5013 }
5014 EXPORT_SYMBOL(security_secmark_refcount_dec);
5015 
5016 /**
5017  * security_tun_dev_alloc_security() - Allocate a LSM blob for a TUN device
5018  * @security: pointer to the LSM blob
5019  *
5020  * This hook allows a module to allocate a security structure for a TUN	device,
5021  * returning the pointer in @security.
5022  *
5023  * Return: Returns a zero on success, negative values on failure.
5024  */
5025 int security_tun_dev_alloc_security(void **security)
5026 {
5027 	int rc;
5028 
5029 	rc = lsm_blob_alloc(security, blob_sizes.lbs_tun_dev, GFP_KERNEL);
5030 	if (rc)
5031 		return rc;
5032 
5033 	rc = call_int_hook(tun_dev_alloc_security, *security);
5034 	if (rc) {
5035 		kfree(*security);
5036 		*security = NULL;
5037 	}
5038 	return rc;
5039 }
5040 EXPORT_SYMBOL(security_tun_dev_alloc_security);
5041 
5042 /**
5043  * security_tun_dev_free_security() - Free a TUN device LSM blob
5044  * @security: LSM blob
5045  *
5046  * This hook allows a module to free the security structure for a TUN device.
5047  */
5048 void security_tun_dev_free_security(void *security)
5049 {
5050 	kfree(security);
5051 }
5052 EXPORT_SYMBOL(security_tun_dev_free_security);
5053 
5054 /**
5055  * security_tun_dev_create() - Check if creating a TUN device is allowed
5056  *
5057  * Check permissions prior to creating a new TUN device.
5058  *
5059  * Return: Returns 0 if permission is granted.
5060  */
5061 int security_tun_dev_create(void)
5062 {
5063 	return call_int_hook(tun_dev_create);
5064 }
5065 EXPORT_SYMBOL(security_tun_dev_create);
5066 
5067 /**
5068  * security_tun_dev_attach_queue() - Check if attaching a TUN queue is allowed
5069  * @security: TUN device LSM blob
5070  *
5071  * Check permissions prior to attaching to a TUN device queue.
5072  *
5073  * Return: Returns 0 if permission is granted.
5074  */
5075 int security_tun_dev_attach_queue(void *security)
5076 {
5077 	return call_int_hook(tun_dev_attach_queue, security);
5078 }
5079 EXPORT_SYMBOL(security_tun_dev_attach_queue);
5080 
5081 /**
5082  * security_tun_dev_attach() - Update TUN device LSM state on attach
5083  * @sk: associated sock
5084  * @security: TUN device LSM blob
5085  *
5086  * This hook can be used by the module to update any security state associated
5087  * with the TUN device's sock structure.
5088  *
5089  * Return: Returns 0 if permission is granted.
5090  */
5091 int security_tun_dev_attach(struct sock *sk, void *security)
5092 {
5093 	return call_int_hook(tun_dev_attach, sk, security);
5094 }
5095 EXPORT_SYMBOL(security_tun_dev_attach);
5096 
5097 /**
5098  * security_tun_dev_open() - Update TUN device LSM state on open
5099  * @security: TUN device LSM blob
5100  *
5101  * This hook can be used by the module to update any security state associated
5102  * with the TUN device's security structure.
5103  *
5104  * Return: Returns 0 if permission is granted.
5105  */
5106 int security_tun_dev_open(void *security)
5107 {
5108 	return call_int_hook(tun_dev_open, security);
5109 }
5110 EXPORT_SYMBOL(security_tun_dev_open);
5111 
5112 /**
5113  * security_sctp_assoc_request() - Update the LSM on a SCTP association req
5114  * @asoc: SCTP association
5115  * @skb: packet requesting the association
5116  *
5117  * Passes the @asoc and @chunk->skb of the association INIT packet to the LSM.
5118  *
5119  * Return: Returns 0 on success, error on failure.
5120  */
5121 int security_sctp_assoc_request(struct sctp_association *asoc,
5122 				struct sk_buff *skb)
5123 {
5124 	return call_int_hook(sctp_assoc_request, asoc, skb);
5125 }
5126 EXPORT_SYMBOL(security_sctp_assoc_request);
5127 
5128 /**
5129  * security_sctp_bind_connect() - Validate a list of addrs for a SCTP option
5130  * @sk: socket
5131  * @optname: SCTP option to validate
5132  * @address: list of IP addresses to validate
5133  * @addrlen: length of the address list
5134  *
5135  * Validiate permissions required for each address associated with sock	@sk.
5136  * Depending on @optname, the addresses will be treated as either a connect or
5137  * bind service. The @addrlen is calculated on each IPv4 and IPv6 address using
5138  * sizeof(struct sockaddr_in) or sizeof(struct sockaddr_in6).
5139  *
5140  * Return: Returns 0 on success, error on failure.
5141  */
5142 int security_sctp_bind_connect(struct sock *sk, int optname,
5143 			       struct sockaddr *address, int addrlen)
5144 {
5145 	return call_int_hook(sctp_bind_connect, sk, optname, address, addrlen);
5146 }
5147 EXPORT_SYMBOL(security_sctp_bind_connect);
5148 
5149 /**
5150  * security_sctp_sk_clone() - Clone a SCTP sock's LSM state
5151  * @asoc: SCTP association
5152  * @sk: original sock
5153  * @newsk: target sock
5154  *
5155  * Called whenever a new socket is created by accept(2) (i.e. a TCP style
5156  * socket) or when a socket is 'peeled off' e.g userspace calls
5157  * sctp_peeloff(3).
5158  */
5159 void security_sctp_sk_clone(struct sctp_association *asoc, struct sock *sk,
5160 			    struct sock *newsk)
5161 {
5162 	call_void_hook(sctp_sk_clone, asoc, sk, newsk);
5163 }
5164 EXPORT_SYMBOL(security_sctp_sk_clone);
5165 
5166 /**
5167  * security_sctp_assoc_established() - Update LSM state when assoc established
5168  * @asoc: SCTP association
5169  * @skb: packet establishing the association
5170  *
5171  * Passes the @asoc and @chunk->skb of the association COOKIE_ACK packet to the
5172  * security module.
5173  *
5174  * Return: Returns 0 if permission is granted.
5175  */
5176 int security_sctp_assoc_established(struct sctp_association *asoc,
5177 				    struct sk_buff *skb)
5178 {
5179 	return call_int_hook(sctp_assoc_established, asoc, skb);
5180 }
5181 EXPORT_SYMBOL(security_sctp_assoc_established);
5182 
5183 /**
5184  * security_mptcp_add_subflow() - Inherit the LSM label from the MPTCP socket
5185  * @sk: the owning MPTCP socket
5186  * @ssk: the new subflow
5187  *
5188  * Update the labeling for the given MPTCP subflow, to match the one of the
5189  * owning MPTCP socket. This hook has to be called after the socket creation and
5190  * initialization via the security_socket_create() and
5191  * security_socket_post_create() LSM hooks.
5192  *
5193  * Return: Returns 0 on success or a negative error code on failure.
5194  */
5195 int security_mptcp_add_subflow(struct sock *sk, struct sock *ssk)
5196 {
5197 	return call_int_hook(mptcp_add_subflow, sk, ssk);
5198 }
5199 
5200 #endif	/* CONFIG_SECURITY_NETWORK */
5201 
5202 #ifdef CONFIG_SECURITY_INFINIBAND
5203 /**
5204  * security_ib_pkey_access() - Check if access to an IB pkey is allowed
5205  * @sec: LSM blob
5206  * @subnet_prefix: subnet prefix of the port
5207  * @pkey: IB pkey
5208  *
5209  * Check permission to access a pkey when modifying a QP.
5210  *
5211  * Return: Returns 0 if permission is granted.
5212  */
5213 int security_ib_pkey_access(void *sec, u64 subnet_prefix, u16 pkey)
5214 {
5215 	return call_int_hook(ib_pkey_access, sec, subnet_prefix, pkey);
5216 }
5217 EXPORT_SYMBOL(security_ib_pkey_access);
5218 
5219 /**
5220  * security_ib_endport_manage_subnet() - Check if SMPs traffic is allowed
5221  * @sec: LSM blob
5222  * @dev_name: IB device name
5223  * @port_num: port number
5224  *
5225  * Check permissions to send and receive SMPs on a end port.
5226  *
5227  * Return: Returns 0 if permission is granted.
5228  */
5229 int security_ib_endport_manage_subnet(void *sec,
5230 				      const char *dev_name, u8 port_num)
5231 {
5232 	return call_int_hook(ib_endport_manage_subnet, sec, dev_name, port_num);
5233 }
5234 EXPORT_SYMBOL(security_ib_endport_manage_subnet);
5235 
5236 /**
5237  * security_ib_alloc_security() - Allocate an Infiniband LSM blob
5238  * @sec: LSM blob
5239  *
5240  * Allocate a security structure for Infiniband objects.
5241  *
5242  * Return: Returns 0 on success, non-zero on failure.
5243  */
5244 int security_ib_alloc_security(void **sec)
5245 {
5246 	int rc;
5247 
5248 	rc = lsm_blob_alloc(sec, blob_sizes.lbs_ib, GFP_KERNEL);
5249 	if (rc)
5250 		return rc;
5251 
5252 	rc = call_int_hook(ib_alloc_security, *sec);
5253 	if (rc) {
5254 		kfree(*sec);
5255 		*sec = NULL;
5256 	}
5257 	return rc;
5258 }
5259 EXPORT_SYMBOL(security_ib_alloc_security);
5260 
5261 /**
5262  * security_ib_free_security() - Free an Infiniband LSM blob
5263  * @sec: LSM blob
5264  *
5265  * Deallocate an Infiniband security structure.
5266  */
5267 void security_ib_free_security(void *sec)
5268 {
5269 	kfree(sec);
5270 }
5271 EXPORT_SYMBOL(security_ib_free_security);
5272 #endif	/* CONFIG_SECURITY_INFINIBAND */
5273 
5274 #ifdef CONFIG_SECURITY_NETWORK_XFRM
5275 /**
5276  * security_xfrm_policy_alloc() - Allocate a xfrm policy LSM blob
5277  * @ctxp: xfrm security context being added to the SPD
5278  * @sec_ctx: security label provided by userspace
5279  * @gfp: gfp flags
5280  *
5281  * Allocate a security structure to the xp->security field; the security field
5282  * is initialized to NULL when the xfrm_policy is allocated.
5283  *
5284  * Return:  Return 0 if operation was successful.
5285  */
5286 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp,
5287 			       struct xfrm_user_sec_ctx *sec_ctx,
5288 			       gfp_t gfp)
5289 {
5290 	return call_int_hook(xfrm_policy_alloc_security, ctxp, sec_ctx, gfp);
5291 }
5292 EXPORT_SYMBOL(security_xfrm_policy_alloc);
5293 
5294 /**
5295  * security_xfrm_policy_clone() - Clone xfrm policy LSM state
5296  * @old_ctx: xfrm security context
5297  * @new_ctxp: target xfrm security context
5298  *
5299  * Allocate a security structure in new_ctxp that contains the information from
5300  * the old_ctx structure.
5301  *
5302  * Return: Return 0 if operation was successful.
5303  */
5304 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
5305 			       struct xfrm_sec_ctx **new_ctxp)
5306 {
5307 	return call_int_hook(xfrm_policy_clone_security, old_ctx, new_ctxp);
5308 }
5309 
5310 /**
5311  * security_xfrm_policy_free() - Free a xfrm security context
5312  * @ctx: xfrm security context
5313  *
5314  * Free LSM resources associated with @ctx.
5315  */
5316 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
5317 {
5318 	call_void_hook(xfrm_policy_free_security, ctx);
5319 }
5320 EXPORT_SYMBOL(security_xfrm_policy_free);
5321 
5322 /**
5323  * security_xfrm_policy_delete() - Check if deleting a xfrm policy is allowed
5324  * @ctx: xfrm security context
5325  *
5326  * Authorize deletion of a SPD entry.
5327  *
5328  * Return: Returns 0 if permission is granted.
5329  */
5330 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
5331 {
5332 	return call_int_hook(xfrm_policy_delete_security, ctx);
5333 }
5334 
5335 /**
5336  * security_xfrm_state_alloc() - Allocate a xfrm state LSM blob
5337  * @x: xfrm state being added to the SAD
5338  * @sec_ctx: security label provided by userspace
5339  *
5340  * Allocate a security structure to the @x->security field; the security field
5341  * is initialized to NULL when the xfrm_state is allocated. Set the context to
5342  * correspond to @sec_ctx.
5343  *
5344  * Return: Return 0 if operation was successful.
5345  */
5346 int security_xfrm_state_alloc(struct xfrm_state *x,
5347 			      struct xfrm_user_sec_ctx *sec_ctx)
5348 {
5349 	return call_int_hook(xfrm_state_alloc, x, sec_ctx);
5350 }
5351 EXPORT_SYMBOL(security_xfrm_state_alloc);
5352 
5353 /**
5354  * security_xfrm_state_alloc_acquire() - Allocate a xfrm state LSM blob
5355  * @x: xfrm state being added to the SAD
5356  * @polsec: associated policy's security context
5357  * @secid: secid from the flow
5358  *
5359  * Allocate a security structure to the x->security field; the security field
5360  * is initialized to NULL when the xfrm_state is allocated.  Set the context to
5361  * correspond to secid.
5362  *
5363  * Return: Returns 0 if operation was successful.
5364  */
5365 int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
5366 				      struct xfrm_sec_ctx *polsec, u32 secid)
5367 {
5368 	return call_int_hook(xfrm_state_alloc_acquire, x, polsec, secid);
5369 }
5370 
5371 /**
5372  * security_xfrm_state_delete() - Check if deleting a xfrm state is allowed
5373  * @x: xfrm state
5374  *
5375  * Authorize deletion of x->security.
5376  *
5377  * Return: Returns 0 if permission is granted.
5378  */
5379 int security_xfrm_state_delete(struct xfrm_state *x)
5380 {
5381 	return call_int_hook(xfrm_state_delete_security, x);
5382 }
5383 EXPORT_SYMBOL(security_xfrm_state_delete);
5384 
5385 /**
5386  * security_xfrm_state_free() - Free a xfrm state
5387  * @x: xfrm state
5388  *
5389  * Deallocate x->security.
5390  */
5391 void security_xfrm_state_free(struct xfrm_state *x)
5392 {
5393 	call_void_hook(xfrm_state_free_security, x);
5394 }
5395 
5396 /**
5397  * security_xfrm_policy_lookup() - Check if using a xfrm policy is allowed
5398  * @ctx: target xfrm security context
5399  * @fl_secid: flow secid used to authorize access
5400  *
5401  * Check permission when a flow selects a xfrm_policy for processing XFRMs on a
5402  * packet.  The hook is called when selecting either a per-socket policy or a
5403  * generic xfrm policy.
5404  *
5405  * Return: Return 0 if permission is granted, -ESRCH otherwise, or -errno on
5406  *         other errors.
5407  */
5408 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid)
5409 {
5410 	return call_int_hook(xfrm_policy_lookup, ctx, fl_secid);
5411 }
5412 
5413 /**
5414  * security_xfrm_state_pol_flow_match() - Check for a xfrm match
5415  * @x: xfrm state to match
5416  * @xp: xfrm policy to check for a match
5417  * @flic: flow to check for a match.
5418  *
5419  * Check @xp and @flic for a match with @x.
5420  *
5421  * Return: Returns 1 if there is a match.
5422  */
5423 int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
5424 				       struct xfrm_policy *xp,
5425 				       const struct flowi_common *flic)
5426 {
5427 	struct lsm_static_call *scall;
5428 	int rc = LSM_RET_DEFAULT(xfrm_state_pol_flow_match);
5429 
5430 	/*
5431 	 * Since this function is expected to return 0 or 1, the judgment
5432 	 * becomes difficult if multiple LSMs supply this call. Fortunately,
5433 	 * we can use the first LSM's judgment because currently only SELinux
5434 	 * supplies this call.
5435 	 *
5436 	 * For speed optimization, we explicitly break the loop rather than
5437 	 * using the macro
5438 	 */
5439 	lsm_for_each_hook(scall, xfrm_state_pol_flow_match) {
5440 		rc = scall->hl->hook.xfrm_state_pol_flow_match(x, xp, flic);
5441 		break;
5442 	}
5443 	return rc;
5444 }
5445 
5446 /**
5447  * security_xfrm_decode_session() - Determine the xfrm secid for a packet
5448  * @skb: xfrm packet
5449  * @secid: secid
5450  *
5451  * Decode the packet in @skb and return the security label in @secid.
5452  *
5453  * Return: Return 0 if all xfrms used have the same secid.
5454  */
5455 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
5456 {
5457 	return call_int_hook(xfrm_decode_session, skb, secid, 1);
5458 }
5459 
5460 void security_skb_classify_flow(struct sk_buff *skb, struct flowi_common *flic)
5461 {
5462 	int rc = call_int_hook(xfrm_decode_session, skb, &flic->flowic_secid,
5463 			       0);
5464 
5465 	BUG_ON(rc);
5466 }
5467 EXPORT_SYMBOL(security_skb_classify_flow);
5468 #endif	/* CONFIG_SECURITY_NETWORK_XFRM */
5469 
5470 #ifdef CONFIG_KEYS
5471 /**
5472  * security_key_alloc() - Allocate and initialize a kernel key LSM blob
5473  * @key: key
5474  * @cred: credentials
5475  * @flags: allocation flags
5476  *
5477  * Permit allocation of a key and assign security data. Note that key does not
5478  * have a serial number assigned at this point.
5479  *
5480  * Return: Return 0 if permission is granted, -ve error otherwise.
5481  */
5482 int security_key_alloc(struct key *key, const struct cred *cred,
5483 		       unsigned long flags)
5484 {
5485 	int rc = lsm_key_alloc(key);
5486 
5487 	if (unlikely(rc))
5488 		return rc;
5489 	rc = call_int_hook(key_alloc, key, cred, flags);
5490 	if (unlikely(rc))
5491 		security_key_free(key);
5492 	return rc;
5493 }
5494 
5495 /**
5496  * security_key_free() - Free a kernel key LSM blob
5497  * @key: key
5498  *
5499  * Notification of destruction; free security data.
5500  */
5501 void security_key_free(struct key *key)
5502 {
5503 	kfree(key->security);
5504 	key->security = NULL;
5505 }
5506 
5507 /**
5508  * security_key_permission() - Check if a kernel key operation is allowed
5509  * @key_ref: key reference
5510  * @cred: credentials of actor requesting access
5511  * @need_perm: requested permissions
5512  *
5513  * See whether a specific operational right is granted to a process on a key.
5514  *
5515  * Return: Return 0 if permission is granted, -ve error otherwise.
5516  */
5517 int security_key_permission(key_ref_t key_ref, const struct cred *cred,
5518 			    enum key_need_perm need_perm)
5519 {
5520 	return call_int_hook(key_permission, key_ref, cred, need_perm);
5521 }
5522 
5523 /**
5524  * security_key_getsecurity() - Get the key's security label
5525  * @key: key
5526  * @buffer: security label buffer
5527  *
5528  * Get a textual representation of the security context attached to a key for
5529  * the purposes of honouring KEYCTL_GETSECURITY.  This function allocates the
5530  * storage for the NUL-terminated string and the caller should free it.
5531  *
5532  * Return: Returns the length of @buffer (including terminating NUL) or -ve if
5533  *         an error occurs.  May also return 0 (and a NULL buffer pointer) if
5534  *         there is no security label assigned to the key.
5535  */
5536 int security_key_getsecurity(struct key *key, char **buffer)
5537 {
5538 	*buffer = NULL;
5539 	return call_int_hook(key_getsecurity, key, buffer);
5540 }
5541 
5542 /**
5543  * security_key_post_create_or_update() - Notification of key create or update
5544  * @keyring: keyring to which the key is linked to
5545  * @key: created or updated key
5546  * @payload: data used to instantiate or update the key
5547  * @payload_len: length of payload
5548  * @flags: key flags
5549  * @create: flag indicating whether the key was created or updated
5550  *
5551  * Notify the caller of a key creation or update.
5552  */
5553 void security_key_post_create_or_update(struct key *keyring, struct key *key,
5554 					const void *payload, size_t payload_len,
5555 					unsigned long flags, bool create)
5556 {
5557 	call_void_hook(key_post_create_or_update, keyring, key, payload,
5558 		       payload_len, flags, create);
5559 }
5560 #endif	/* CONFIG_KEYS */
5561 
5562 #ifdef CONFIG_AUDIT
5563 /**
5564  * security_audit_rule_init() - Allocate and init an LSM audit rule struct
5565  * @field: audit action
5566  * @op: rule operator
5567  * @rulestr: rule context
5568  * @lsmrule: receive buffer for audit rule struct
5569  * @gfp: GFP flag used for kmalloc
5570  *
5571  * Allocate and initialize an LSM audit rule structure.
5572  *
5573  * Return: Return 0 if @lsmrule has been successfully set, -EINVAL in case of
5574  *         an invalid rule.
5575  */
5576 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule,
5577 			     gfp_t gfp)
5578 {
5579 	return call_int_hook(audit_rule_init, field, op, rulestr, lsmrule, gfp);
5580 }
5581 
5582 /**
5583  * security_audit_rule_known() - Check if an audit rule contains LSM fields
5584  * @krule: audit rule
5585  *
5586  * Specifies whether given @krule contains any fields related to the current
5587  * LSM.
5588  *
5589  * Return: Returns 1 in case of relation found, 0 otherwise.
5590  */
5591 int security_audit_rule_known(struct audit_krule *krule)
5592 {
5593 	return call_int_hook(audit_rule_known, krule);
5594 }
5595 
5596 /**
5597  * security_audit_rule_free() - Free an LSM audit rule struct
5598  * @lsmrule: audit rule struct
5599  *
5600  * Deallocate the LSM audit rule structure previously allocated by
5601  * audit_rule_init().
5602  */
5603 void security_audit_rule_free(void *lsmrule)
5604 {
5605 	call_void_hook(audit_rule_free, lsmrule);
5606 }
5607 
5608 /**
5609  * security_audit_rule_match() - Check if a label matches an audit rule
5610  * @prop: security label
5611  * @field: LSM audit field
5612  * @op: matching operator
5613  * @lsmrule: audit rule
5614  *
5615  * Determine if given @secid matches a rule previously approved by
5616  * security_audit_rule_known().
5617  *
5618  * Return: Returns 1 if secid matches the rule, 0 if it does not, -ERRNO on
5619  *         failure.
5620  */
5621 int security_audit_rule_match(struct lsm_prop *prop, u32 field, u32 op,
5622 			      void *lsmrule)
5623 {
5624 	return call_int_hook(audit_rule_match, prop, field, op, lsmrule);
5625 }
5626 #endif /* CONFIG_AUDIT */
5627 
5628 #ifdef CONFIG_BPF_SYSCALL
5629 /**
5630  * security_bpf() - Check if the bpf syscall operation is allowed
5631  * @cmd: command
5632  * @attr: bpf attribute
5633  * @size: size
5634  *
5635  * Do a initial check for all bpf syscalls after the attribute is copied into
5636  * the kernel. The actual security module can implement their own rules to
5637  * check the specific cmd they need.
5638  *
5639  * Return: Returns 0 if permission is granted.
5640  */
5641 int security_bpf(int cmd, union bpf_attr *attr, unsigned int size)
5642 {
5643 	return call_int_hook(bpf, cmd, attr, size);
5644 }
5645 
5646 /**
5647  * security_bpf_map() - Check if access to a bpf map is allowed
5648  * @map: bpf map
5649  * @fmode: mode
5650  *
5651  * Do a check when the kernel generates and returns a file descriptor for eBPF
5652  * maps.
5653  *
5654  * Return: Returns 0 if permission is granted.
5655  */
5656 int security_bpf_map(struct bpf_map *map, fmode_t fmode)
5657 {
5658 	return call_int_hook(bpf_map, map, fmode);
5659 }
5660 
5661 /**
5662  * security_bpf_prog() - Check if access to a bpf program is allowed
5663  * @prog: bpf program
5664  *
5665  * Do a check when the kernel generates and returns a file descriptor for eBPF
5666  * programs.
5667  *
5668  * Return: Returns 0 if permission is granted.
5669  */
5670 int security_bpf_prog(struct bpf_prog *prog)
5671 {
5672 	return call_int_hook(bpf_prog, prog);
5673 }
5674 
5675 /**
5676  * security_bpf_map_create() - Check if BPF map creation is allowed
5677  * @map: BPF map object
5678  * @attr: BPF syscall attributes used to create BPF map
5679  * @token: BPF token used to grant user access
5680  *
5681  * Do a check when the kernel creates a new BPF map. This is also the
5682  * point where LSM blob is allocated for LSMs that need them.
5683  *
5684  * Return: Returns 0 on success, error on failure.
5685  */
5686 int security_bpf_map_create(struct bpf_map *map, union bpf_attr *attr,
5687 			    struct bpf_token *token)
5688 {
5689 	return call_int_hook(bpf_map_create, map, attr, token);
5690 }
5691 
5692 /**
5693  * security_bpf_prog_load() - Check if loading of BPF program is allowed
5694  * @prog: BPF program object
5695  * @attr: BPF syscall attributes used to create BPF program
5696  * @token: BPF token used to grant user access to BPF subsystem
5697  *
5698  * Perform an access control check when the kernel loads a BPF program and
5699  * allocates associated BPF program object. This hook is also responsible for
5700  * allocating any required LSM state for the BPF program.
5701  *
5702  * Return: Returns 0 on success, error on failure.
5703  */
5704 int security_bpf_prog_load(struct bpf_prog *prog, union bpf_attr *attr,
5705 			   struct bpf_token *token)
5706 {
5707 	return call_int_hook(bpf_prog_load, prog, attr, token);
5708 }
5709 
5710 /**
5711  * security_bpf_token_create() - Check if creating of BPF token is allowed
5712  * @token: BPF token object
5713  * @attr: BPF syscall attributes used to create BPF token
5714  * @path: path pointing to BPF FS mount point from which BPF token is created
5715  *
5716  * Do a check when the kernel instantiates a new BPF token object from BPF FS
5717  * instance. This is also the point where LSM blob can be allocated for LSMs.
5718  *
5719  * Return: Returns 0 on success, error on failure.
5720  */
5721 int security_bpf_token_create(struct bpf_token *token, union bpf_attr *attr,
5722 			      const struct path *path)
5723 {
5724 	return call_int_hook(bpf_token_create, token, attr, path);
5725 }
5726 
5727 /**
5728  * security_bpf_token_cmd() - Check if BPF token is allowed to delegate
5729  * requested BPF syscall command
5730  * @token: BPF token object
5731  * @cmd: BPF syscall command requested to be delegated by BPF token
5732  *
5733  * Do a check when the kernel decides whether provided BPF token should allow
5734  * delegation of requested BPF syscall command.
5735  *
5736  * Return: Returns 0 on success, error on failure.
5737  */
5738 int security_bpf_token_cmd(const struct bpf_token *token, enum bpf_cmd cmd)
5739 {
5740 	return call_int_hook(bpf_token_cmd, token, cmd);
5741 }
5742 
5743 /**
5744  * security_bpf_token_capable() - Check if BPF token is allowed to delegate
5745  * requested BPF-related capability
5746  * @token: BPF token object
5747  * @cap: capabilities requested to be delegated by BPF token
5748  *
5749  * Do a check when the kernel decides whether provided BPF token should allow
5750  * delegation of requested BPF-related capabilities.
5751  *
5752  * Return: Returns 0 on success, error on failure.
5753  */
5754 int security_bpf_token_capable(const struct bpf_token *token, int cap)
5755 {
5756 	return call_int_hook(bpf_token_capable, token, cap);
5757 }
5758 
5759 /**
5760  * security_bpf_map_free() - Free a bpf map's LSM blob
5761  * @map: bpf map
5762  *
5763  * Clean up the security information stored inside bpf map.
5764  */
5765 void security_bpf_map_free(struct bpf_map *map)
5766 {
5767 	call_void_hook(bpf_map_free, map);
5768 }
5769 
5770 /**
5771  * security_bpf_prog_free() - Free a BPF program's LSM blob
5772  * @prog: BPF program struct
5773  *
5774  * Clean up the security information stored inside BPF program.
5775  */
5776 void security_bpf_prog_free(struct bpf_prog *prog)
5777 {
5778 	call_void_hook(bpf_prog_free, prog);
5779 }
5780 
5781 /**
5782  * security_bpf_token_free() - Free a BPF token's LSM blob
5783  * @token: BPF token struct
5784  *
5785  * Clean up the security information stored inside BPF token.
5786  */
5787 void security_bpf_token_free(struct bpf_token *token)
5788 {
5789 	call_void_hook(bpf_token_free, token);
5790 }
5791 #endif /* CONFIG_BPF_SYSCALL */
5792 
5793 /**
5794  * security_locked_down() - Check if a kernel feature is allowed
5795  * @what: requested kernel feature
5796  *
5797  * Determine whether a kernel feature that potentially enables arbitrary code
5798  * execution in kernel space should be permitted.
5799  *
5800  * Return: Returns 0 if permission is granted.
5801  */
5802 int security_locked_down(enum lockdown_reason what)
5803 {
5804 	return call_int_hook(locked_down, what);
5805 }
5806 EXPORT_SYMBOL(security_locked_down);
5807 
5808 /**
5809  * security_bdev_alloc() - Allocate a block device LSM blob
5810  * @bdev: block device
5811  *
5812  * Allocate and attach a security structure to @bdev->bd_security.  The
5813  * security field is initialized to NULL when the bdev structure is
5814  * allocated.
5815  *
5816  * Return: Return 0 if operation was successful.
5817  */
5818 int security_bdev_alloc(struct block_device *bdev)
5819 {
5820 	int rc = 0;
5821 
5822 	rc = lsm_bdev_alloc(bdev);
5823 	if (unlikely(rc))
5824 		return rc;
5825 
5826 	rc = call_int_hook(bdev_alloc_security, bdev);
5827 	if (unlikely(rc))
5828 		security_bdev_free(bdev);
5829 
5830 	return rc;
5831 }
5832 EXPORT_SYMBOL(security_bdev_alloc);
5833 
5834 /**
5835  * security_bdev_free() - Free a block device's LSM blob
5836  * @bdev: block device
5837  *
5838  * Deallocate the bdev security structure and set @bdev->bd_security to NULL.
5839  */
5840 void security_bdev_free(struct block_device *bdev)
5841 {
5842 	if (!bdev->bd_security)
5843 		return;
5844 
5845 	call_void_hook(bdev_free_security, bdev);
5846 
5847 	kfree(bdev->bd_security);
5848 	bdev->bd_security = NULL;
5849 }
5850 EXPORT_SYMBOL(security_bdev_free);
5851 
5852 /**
5853  * security_bdev_setintegrity() - Set the device's integrity data
5854  * @bdev: block device
5855  * @type: type of integrity, e.g. hash digest, signature, etc
5856  * @value: the integrity value
5857  * @size: size of the integrity value
5858  *
5859  * Register a verified integrity measurement of a bdev with LSMs.
5860  * LSMs should free the previously saved data if @value is NULL.
5861  * Please note that the new hook should be invoked every time the security
5862  * information is updated to keep these data current. For example, in dm-verity,
5863  * if the mapping table is reloaded and configured to use a different dm-verity
5864  * target with a new roothash and signing information, the previously stored
5865  * data in the LSM blob will become obsolete. It is crucial to re-invoke the
5866  * hook to refresh these data and ensure they are up to date. This necessity
5867  * arises from the design of device-mapper, where a device-mapper device is
5868  * first created, and then targets are subsequently loaded into it. These
5869  * targets can be modified multiple times during the device's lifetime.
5870  * Therefore, while the LSM blob is allocated during the creation of the block
5871  * device, its actual contents are not initialized at this stage and can change
5872  * substantially over time. This includes alterations from data that the LSMs
5873  * 'trusts' to those they do not, making it essential to handle these changes
5874  * correctly. Failure to address this dynamic aspect could potentially allow
5875  * for bypassing LSM checks.
5876  *
5877  * Return: Returns 0 on success, negative values on failure.
5878  */
5879 int security_bdev_setintegrity(struct block_device *bdev,
5880 			       enum lsm_integrity_type type, const void *value,
5881 			       size_t size)
5882 {
5883 	return call_int_hook(bdev_setintegrity, bdev, type, value, size);
5884 }
5885 EXPORT_SYMBOL(security_bdev_setintegrity);
5886 
5887 #ifdef CONFIG_PERF_EVENTS
5888 /**
5889  * security_perf_event_open() - Check if a perf event open is allowed
5890  * @attr: perf event attribute
5891  * @type: type of event
5892  *
5893  * Check whether the @type of perf_event_open syscall is allowed.
5894  *
5895  * Return: Returns 0 if permission is granted.
5896  */
5897 int security_perf_event_open(struct perf_event_attr *attr, int type)
5898 {
5899 	return call_int_hook(perf_event_open, attr, type);
5900 }
5901 
5902 /**
5903  * security_perf_event_alloc() - Allocate a perf event LSM blob
5904  * @event: perf event
5905  *
5906  * Allocate and save perf_event security info.
5907  *
5908  * Return: Returns 0 on success, error on failure.
5909  */
5910 int security_perf_event_alloc(struct perf_event *event)
5911 {
5912 	int rc;
5913 
5914 	rc = lsm_blob_alloc(&event->security, blob_sizes.lbs_perf_event,
5915 			    GFP_KERNEL);
5916 	if (rc)
5917 		return rc;
5918 
5919 	rc = call_int_hook(perf_event_alloc, event);
5920 	if (rc) {
5921 		kfree(event->security);
5922 		event->security = NULL;
5923 	}
5924 	return rc;
5925 }
5926 
5927 /**
5928  * security_perf_event_free() - Free a perf event LSM blob
5929  * @event: perf event
5930  *
5931  * Release (free) perf_event security info.
5932  */
5933 void security_perf_event_free(struct perf_event *event)
5934 {
5935 	kfree(event->security);
5936 	event->security = NULL;
5937 }
5938 
5939 /**
5940  * security_perf_event_read() - Check if reading a perf event label is allowed
5941  * @event: perf event
5942  *
5943  * Read perf_event security info if allowed.
5944  *
5945  * Return: Returns 0 if permission is granted.
5946  */
5947 int security_perf_event_read(struct perf_event *event)
5948 {
5949 	return call_int_hook(perf_event_read, event);
5950 }
5951 
5952 /**
5953  * security_perf_event_write() - Check if writing a perf event label is allowed
5954  * @event: perf event
5955  *
5956  * Write perf_event security info if allowed.
5957  *
5958  * Return: Returns 0 if permission is granted.
5959  */
5960 int security_perf_event_write(struct perf_event *event)
5961 {
5962 	return call_int_hook(perf_event_write, event);
5963 }
5964 #endif /* CONFIG_PERF_EVENTS */
5965 
5966 #ifdef CONFIG_IO_URING
5967 /**
5968  * security_uring_override_creds() - Check if overriding creds is allowed
5969  * @new: new credentials
5970  *
5971  * Check if the current task, executing an io_uring operation, is allowed to
5972  * override it's credentials with @new.
5973  *
5974  * Return: Returns 0 if permission is granted.
5975  */
5976 int security_uring_override_creds(const struct cred *new)
5977 {
5978 	return call_int_hook(uring_override_creds, new);
5979 }
5980 
5981 /**
5982  * security_uring_sqpoll() - Check if IORING_SETUP_SQPOLL is allowed
5983  *
5984  * Check whether the current task is allowed to spawn a io_uring polling thread
5985  * (IORING_SETUP_SQPOLL).
5986  *
5987  * Return: Returns 0 if permission is granted.
5988  */
5989 int security_uring_sqpoll(void)
5990 {
5991 	return call_int_hook(uring_sqpoll);
5992 }
5993 
5994 /**
5995  * security_uring_cmd() - Check if a io_uring passthrough command is allowed
5996  * @ioucmd: command
5997  *
5998  * Check whether the file_operations uring_cmd is allowed to run.
5999  *
6000  * Return: Returns 0 if permission is granted.
6001  */
6002 int security_uring_cmd(struct io_uring_cmd *ioucmd)
6003 {
6004 	return call_int_hook(uring_cmd, ioucmd);
6005 }
6006 #endif /* CONFIG_IO_URING */
6007 
6008 /**
6009  * security_initramfs_populated() - Notify LSMs that initramfs has been loaded
6010  *
6011  * Tells the LSMs the initramfs has been unpacked into the rootfs.
6012  */
6013 void security_initramfs_populated(void)
6014 {
6015 	call_void_hook(initramfs_populated);
6016 }
6017