xref: /linux/security/security.c (revision 31f8c8682f30720be25e9b1021caa43c64e8d9ce)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Security plug functions
4  *
5  * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
6  * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
7  * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
8  * Copyright (C) 2016 Mellanox Technologies
9  * Copyright (C) 2023 Microsoft Corporation <paul@paul-moore.com>
10  */
11 
12 #define pr_fmt(fmt) "LSM: " fmt
13 
14 #include <linux/bpf.h>
15 #include <linux/capability.h>
16 #include <linux/dcache.h>
17 #include <linux/export.h>
18 #include <linux/init.h>
19 #include <linux/kernel.h>
20 #include <linux/kernel_read_file.h>
21 #include <linux/lsm_hooks.h>
22 #include <linux/fsnotify.h>
23 #include <linux/mman.h>
24 #include <linux/mount.h>
25 #include <linux/personality.h>
26 #include <linux/backing-dev.h>
27 #include <linux/string.h>
28 #include <linux/xattr.h>
29 #include <linux/msg.h>
30 #include <linux/overflow.h>
31 #include <linux/perf_event.h>
32 #include <linux/fs.h>
33 #include <net/flow.h>
34 #include <net/sock.h>
35 
36 /* How many LSMs were built into the kernel? */
37 #define LSM_COUNT (__end_lsm_info - __start_lsm_info)
38 
39 /*
40  * How many LSMs are built into the kernel as determined at
41  * build time. Used to determine fixed array sizes.
42  * The capability module is accounted for by CONFIG_SECURITY
43  */
44 #define LSM_CONFIG_COUNT ( \
45 	(IS_ENABLED(CONFIG_SECURITY) ? 1 : 0) + \
46 	(IS_ENABLED(CONFIG_SECURITY_SELINUX) ? 1 : 0) + \
47 	(IS_ENABLED(CONFIG_SECURITY_SMACK) ? 1 : 0) + \
48 	(IS_ENABLED(CONFIG_SECURITY_TOMOYO) ? 1 : 0) + \
49 	(IS_ENABLED(CONFIG_SECURITY_APPARMOR) ? 1 : 0) + \
50 	(IS_ENABLED(CONFIG_SECURITY_YAMA) ? 1 : 0) + \
51 	(IS_ENABLED(CONFIG_SECURITY_LOADPIN) ? 1 : 0) + \
52 	(IS_ENABLED(CONFIG_SECURITY_SAFESETID) ? 1 : 0) + \
53 	(IS_ENABLED(CONFIG_SECURITY_LOCKDOWN_LSM) ? 1 : 0) + \
54 	(IS_ENABLED(CONFIG_BPF_LSM) ? 1 : 0) + \
55 	(IS_ENABLED(CONFIG_SECURITY_LANDLOCK) ? 1 : 0) + \
56 	(IS_ENABLED(CONFIG_IMA) ? 1 : 0) + \
57 	(IS_ENABLED(CONFIG_EVM) ? 1 : 0) + \
58 	(IS_ENABLED(CONFIG_SECURITY_IPE) ? 1 : 0))
59 
60 /*
61  * These are descriptions of the reasons that can be passed to the
62  * security_locked_down() LSM hook. Placing this array here allows
63  * all security modules to use the same descriptions for auditing
64  * purposes.
65  */
66 const char *const lockdown_reasons[LOCKDOWN_CONFIDENTIALITY_MAX + 1] = {
67 	[LOCKDOWN_NONE] = "none",
68 	[LOCKDOWN_MODULE_SIGNATURE] = "unsigned module loading",
69 	[LOCKDOWN_DEV_MEM] = "/dev/mem,kmem,port",
70 	[LOCKDOWN_EFI_TEST] = "/dev/efi_test access",
71 	[LOCKDOWN_KEXEC] = "kexec of unsigned images",
72 	[LOCKDOWN_HIBERNATION] = "hibernation",
73 	[LOCKDOWN_PCI_ACCESS] = "direct PCI access",
74 	[LOCKDOWN_IOPORT] = "raw io port access",
75 	[LOCKDOWN_MSR] = "raw MSR access",
76 	[LOCKDOWN_ACPI_TABLES] = "modifying ACPI tables",
77 	[LOCKDOWN_DEVICE_TREE] = "modifying device tree contents",
78 	[LOCKDOWN_PCMCIA_CIS] = "direct PCMCIA CIS storage",
79 	[LOCKDOWN_TIOCSSERIAL] = "reconfiguration of serial port IO",
80 	[LOCKDOWN_MODULE_PARAMETERS] = "unsafe module parameters",
81 	[LOCKDOWN_MMIOTRACE] = "unsafe mmio",
82 	[LOCKDOWN_DEBUGFS] = "debugfs access",
83 	[LOCKDOWN_XMON_WR] = "xmon write access",
84 	[LOCKDOWN_BPF_WRITE_USER] = "use of bpf to write user RAM",
85 	[LOCKDOWN_DBG_WRITE_KERNEL] = "use of kgdb/kdb to write kernel RAM",
86 	[LOCKDOWN_RTAS_ERROR_INJECTION] = "RTAS error injection",
87 	[LOCKDOWN_INTEGRITY_MAX] = "integrity",
88 	[LOCKDOWN_KCORE] = "/proc/kcore access",
89 	[LOCKDOWN_KPROBES] = "use of kprobes",
90 	[LOCKDOWN_BPF_READ_KERNEL] = "use of bpf to read kernel RAM",
91 	[LOCKDOWN_DBG_READ_KERNEL] = "use of kgdb/kdb to read kernel RAM",
92 	[LOCKDOWN_PERF] = "unsafe use of perf",
93 	[LOCKDOWN_TRACEFS] = "use of tracefs",
94 	[LOCKDOWN_XMON_RW] = "xmon read and write access",
95 	[LOCKDOWN_XFRM_SECRET] = "xfrm SA secret",
96 	[LOCKDOWN_CONFIDENTIALITY_MAX] = "confidentiality",
97 };
98 
99 struct security_hook_heads security_hook_heads __ro_after_init;
100 static BLOCKING_NOTIFIER_HEAD(blocking_lsm_notifier_chain);
101 
102 static struct kmem_cache *lsm_file_cache;
103 static struct kmem_cache *lsm_inode_cache;
104 
105 char *lsm_names;
106 static struct lsm_blob_sizes blob_sizes __ro_after_init;
107 
108 /* Boot-time LSM user choice */
109 static __initdata const char *chosen_lsm_order;
110 static __initdata const char *chosen_major_lsm;
111 
112 static __initconst const char *const builtin_lsm_order = CONFIG_LSM;
113 
114 /* Ordered list of LSMs to initialize. */
115 static __initdata struct lsm_info **ordered_lsms;
116 static __initdata struct lsm_info *exclusive;
117 
118 static __initdata bool debug;
119 #define init_debug(...)						\
120 	do {							\
121 		if (debug)					\
122 			pr_info(__VA_ARGS__);			\
123 	} while (0)
124 
125 static bool __init is_enabled(struct lsm_info *lsm)
126 {
127 	if (!lsm->enabled)
128 		return false;
129 
130 	return *lsm->enabled;
131 }
132 
133 /* Mark an LSM's enabled flag. */
134 static int lsm_enabled_true __initdata = 1;
135 static int lsm_enabled_false __initdata = 0;
136 static void __init set_enabled(struct lsm_info *lsm, bool enabled)
137 {
138 	/*
139 	 * When an LSM hasn't configured an enable variable, we can use
140 	 * a hard-coded location for storing the default enabled state.
141 	 */
142 	if (!lsm->enabled) {
143 		if (enabled)
144 			lsm->enabled = &lsm_enabled_true;
145 		else
146 			lsm->enabled = &lsm_enabled_false;
147 	} else if (lsm->enabled == &lsm_enabled_true) {
148 		if (!enabled)
149 			lsm->enabled = &lsm_enabled_false;
150 	} else if (lsm->enabled == &lsm_enabled_false) {
151 		if (enabled)
152 			lsm->enabled = &lsm_enabled_true;
153 	} else {
154 		*lsm->enabled = enabled;
155 	}
156 }
157 
158 /* Is an LSM already listed in the ordered LSMs list? */
159 static bool __init exists_ordered_lsm(struct lsm_info *lsm)
160 {
161 	struct lsm_info **check;
162 
163 	for (check = ordered_lsms; *check; check++)
164 		if (*check == lsm)
165 			return true;
166 
167 	return false;
168 }
169 
170 /* Append an LSM to the list of ordered LSMs to initialize. */
171 static int last_lsm __initdata;
172 static void __init append_ordered_lsm(struct lsm_info *lsm, const char *from)
173 {
174 	/* Ignore duplicate selections. */
175 	if (exists_ordered_lsm(lsm))
176 		return;
177 
178 	if (WARN(last_lsm == LSM_COUNT, "%s: out of LSM slots!?\n", from))
179 		return;
180 
181 	/* Enable this LSM, if it is not already set. */
182 	if (!lsm->enabled)
183 		lsm->enabled = &lsm_enabled_true;
184 	ordered_lsms[last_lsm++] = lsm;
185 
186 	init_debug("%s ordered: %s (%s)\n", from, lsm->name,
187 		   is_enabled(lsm) ? "enabled" : "disabled");
188 }
189 
190 /* Is an LSM allowed to be initialized? */
191 static bool __init lsm_allowed(struct lsm_info *lsm)
192 {
193 	/* Skip if the LSM is disabled. */
194 	if (!is_enabled(lsm))
195 		return false;
196 
197 	/* Not allowed if another exclusive LSM already initialized. */
198 	if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && exclusive) {
199 		init_debug("exclusive disabled: %s\n", lsm->name);
200 		return false;
201 	}
202 
203 	return true;
204 }
205 
206 static void __init lsm_set_blob_size(int *need, int *lbs)
207 {
208 	int offset;
209 
210 	if (*need <= 0)
211 		return;
212 
213 	offset = ALIGN(*lbs, sizeof(void *));
214 	*lbs = offset + *need;
215 	*need = offset;
216 }
217 
218 static void __init lsm_set_blob_sizes(struct lsm_blob_sizes *needed)
219 {
220 	if (!needed)
221 		return;
222 
223 	lsm_set_blob_size(&needed->lbs_cred, &blob_sizes.lbs_cred);
224 	lsm_set_blob_size(&needed->lbs_file, &blob_sizes.lbs_file);
225 	lsm_set_blob_size(&needed->lbs_ib, &blob_sizes.lbs_ib);
226 	/*
227 	 * The inode blob gets an rcu_head in addition to
228 	 * what the modules might need.
229 	 */
230 	if (needed->lbs_inode && blob_sizes.lbs_inode == 0)
231 		blob_sizes.lbs_inode = sizeof(struct rcu_head);
232 	lsm_set_blob_size(&needed->lbs_inode, &blob_sizes.lbs_inode);
233 	lsm_set_blob_size(&needed->lbs_ipc, &blob_sizes.lbs_ipc);
234 	lsm_set_blob_size(&needed->lbs_key, &blob_sizes.lbs_key);
235 	lsm_set_blob_size(&needed->lbs_msg_msg, &blob_sizes.lbs_msg_msg);
236 	lsm_set_blob_size(&needed->lbs_perf_event, &blob_sizes.lbs_perf_event);
237 	lsm_set_blob_size(&needed->lbs_sock, &blob_sizes.lbs_sock);
238 	lsm_set_blob_size(&needed->lbs_superblock, &blob_sizes.lbs_superblock);
239 	lsm_set_blob_size(&needed->lbs_task, &blob_sizes.lbs_task);
240 	lsm_set_blob_size(&needed->lbs_tun_dev, &blob_sizes.lbs_tun_dev);
241 	lsm_set_blob_size(&needed->lbs_xattr_count,
242 			  &blob_sizes.lbs_xattr_count);
243 	lsm_set_blob_size(&needed->lbs_bdev, &blob_sizes.lbs_bdev);
244 }
245 
246 /* Prepare LSM for initialization. */
247 static void __init prepare_lsm(struct lsm_info *lsm)
248 {
249 	int enabled = lsm_allowed(lsm);
250 
251 	/* Record enablement (to handle any following exclusive LSMs). */
252 	set_enabled(lsm, enabled);
253 
254 	/* If enabled, do pre-initialization work. */
255 	if (enabled) {
256 		if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && !exclusive) {
257 			exclusive = lsm;
258 			init_debug("exclusive chosen:   %s\n", lsm->name);
259 		}
260 
261 		lsm_set_blob_sizes(lsm->blobs);
262 	}
263 }
264 
265 /* Initialize a given LSM, if it is enabled. */
266 static void __init initialize_lsm(struct lsm_info *lsm)
267 {
268 	if (is_enabled(lsm)) {
269 		int ret;
270 
271 		init_debug("initializing %s\n", lsm->name);
272 		ret = lsm->init();
273 		WARN(ret, "%s failed to initialize: %d\n", lsm->name, ret);
274 	}
275 }
276 
277 /*
278  * Current index to use while initializing the lsm id list.
279  */
280 u32 lsm_active_cnt __ro_after_init;
281 const struct lsm_id *lsm_idlist[LSM_CONFIG_COUNT];
282 
283 /* Populate ordered LSMs list from comma-separated LSM name list. */
284 static void __init ordered_lsm_parse(const char *order, const char *origin)
285 {
286 	struct lsm_info *lsm;
287 	char *sep, *name, *next;
288 
289 	/* LSM_ORDER_FIRST is always first. */
290 	for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
291 		if (lsm->order == LSM_ORDER_FIRST)
292 			append_ordered_lsm(lsm, "  first");
293 	}
294 
295 	/* Process "security=", if given. */
296 	if (chosen_major_lsm) {
297 		struct lsm_info *major;
298 
299 		/*
300 		 * To match the original "security=" behavior, this
301 		 * explicitly does NOT fallback to another Legacy Major
302 		 * if the selected one was separately disabled: disable
303 		 * all non-matching Legacy Major LSMs.
304 		 */
305 		for (major = __start_lsm_info; major < __end_lsm_info;
306 		     major++) {
307 			if ((major->flags & LSM_FLAG_LEGACY_MAJOR) &&
308 			    strcmp(major->name, chosen_major_lsm) != 0) {
309 				set_enabled(major, false);
310 				init_debug("security=%s disabled: %s (only one legacy major LSM)\n",
311 					   chosen_major_lsm, major->name);
312 			}
313 		}
314 	}
315 
316 	sep = kstrdup(order, GFP_KERNEL);
317 	next = sep;
318 	/* Walk the list, looking for matching LSMs. */
319 	while ((name = strsep(&next, ",")) != NULL) {
320 		bool found = false;
321 
322 		for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
323 			if (strcmp(lsm->name, name) == 0) {
324 				if (lsm->order == LSM_ORDER_MUTABLE)
325 					append_ordered_lsm(lsm, origin);
326 				found = true;
327 			}
328 		}
329 
330 		if (!found)
331 			init_debug("%s ignored: %s (not built into kernel)\n",
332 				   origin, name);
333 	}
334 
335 	/* Process "security=", if given. */
336 	if (chosen_major_lsm) {
337 		for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
338 			if (exists_ordered_lsm(lsm))
339 				continue;
340 			if (strcmp(lsm->name, chosen_major_lsm) == 0)
341 				append_ordered_lsm(lsm, "security=");
342 		}
343 	}
344 
345 	/* LSM_ORDER_LAST is always last. */
346 	for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
347 		if (lsm->order == LSM_ORDER_LAST)
348 			append_ordered_lsm(lsm, "   last");
349 	}
350 
351 	/* Disable all LSMs not in the ordered list. */
352 	for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
353 		if (exists_ordered_lsm(lsm))
354 			continue;
355 		set_enabled(lsm, false);
356 		init_debug("%s skipped: %s (not in requested order)\n",
357 			   origin, lsm->name);
358 	}
359 
360 	kfree(sep);
361 }
362 
363 static void __init lsm_early_cred(struct cred *cred);
364 static void __init lsm_early_task(struct task_struct *task);
365 
366 static int lsm_append(const char *new, char **result);
367 
368 static void __init report_lsm_order(void)
369 {
370 	struct lsm_info **lsm, *early;
371 	int first = 0;
372 
373 	pr_info("initializing lsm=");
374 
375 	/* Report each enabled LSM name, comma separated. */
376 	for (early = __start_early_lsm_info;
377 	     early < __end_early_lsm_info; early++)
378 		if (is_enabled(early))
379 			pr_cont("%s%s", first++ == 0 ? "" : ",", early->name);
380 	for (lsm = ordered_lsms; *lsm; lsm++)
381 		if (is_enabled(*lsm))
382 			pr_cont("%s%s", first++ == 0 ? "" : ",", (*lsm)->name);
383 
384 	pr_cont("\n");
385 }
386 
387 static void __init ordered_lsm_init(void)
388 {
389 	struct lsm_info **lsm;
390 
391 	ordered_lsms = kcalloc(LSM_COUNT + 1, sizeof(*ordered_lsms),
392 			       GFP_KERNEL);
393 
394 	if (chosen_lsm_order) {
395 		if (chosen_major_lsm) {
396 			pr_warn("security=%s is ignored because it is superseded by lsm=%s\n",
397 				chosen_major_lsm, chosen_lsm_order);
398 			chosen_major_lsm = NULL;
399 		}
400 		ordered_lsm_parse(chosen_lsm_order, "cmdline");
401 	} else
402 		ordered_lsm_parse(builtin_lsm_order, "builtin");
403 
404 	for (lsm = ordered_lsms; *lsm; lsm++)
405 		prepare_lsm(*lsm);
406 
407 	report_lsm_order();
408 
409 	init_debug("cred blob size       = %d\n", blob_sizes.lbs_cred);
410 	init_debug("file blob size       = %d\n", blob_sizes.lbs_file);
411 	init_debug("ib blob size         = %d\n", blob_sizes.lbs_ib);
412 	init_debug("inode blob size      = %d\n", blob_sizes.lbs_inode);
413 	init_debug("ipc blob size        = %d\n", blob_sizes.lbs_ipc);
414 #ifdef CONFIG_KEYS
415 	init_debug("key blob size        = %d\n", blob_sizes.lbs_key);
416 #endif /* CONFIG_KEYS */
417 	init_debug("msg_msg blob size    = %d\n", blob_sizes.lbs_msg_msg);
418 	init_debug("sock blob size       = %d\n", blob_sizes.lbs_sock);
419 	init_debug("superblock blob size = %d\n", blob_sizes.lbs_superblock);
420 	init_debug("perf event blob size = %d\n", blob_sizes.lbs_perf_event);
421 	init_debug("task blob size       = %d\n", blob_sizes.lbs_task);
422 	init_debug("tun device blob size = %d\n", blob_sizes.lbs_tun_dev);
423 	init_debug("xattr slots          = %d\n", blob_sizes.lbs_xattr_count);
424 	init_debug("bdev blob size       = %d\n", blob_sizes.lbs_bdev);
425 
426 	/*
427 	 * Create any kmem_caches needed for blobs
428 	 */
429 	if (blob_sizes.lbs_file)
430 		lsm_file_cache = kmem_cache_create("lsm_file_cache",
431 						   blob_sizes.lbs_file, 0,
432 						   SLAB_PANIC, NULL);
433 	if (blob_sizes.lbs_inode)
434 		lsm_inode_cache = kmem_cache_create("lsm_inode_cache",
435 						    blob_sizes.lbs_inode, 0,
436 						    SLAB_PANIC, NULL);
437 
438 	lsm_early_cred((struct cred *) current->cred);
439 	lsm_early_task(current);
440 	for (lsm = ordered_lsms; *lsm; lsm++)
441 		initialize_lsm(*lsm);
442 
443 	kfree(ordered_lsms);
444 }
445 
446 int __init early_security_init(void)
447 {
448 	struct lsm_info *lsm;
449 
450 #define LSM_HOOK(RET, DEFAULT, NAME, ...) \
451 	INIT_HLIST_HEAD(&security_hook_heads.NAME);
452 #include "linux/lsm_hook_defs.h"
453 #undef LSM_HOOK
454 
455 	for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
456 		if (!lsm->enabled)
457 			lsm->enabled = &lsm_enabled_true;
458 		prepare_lsm(lsm);
459 		initialize_lsm(lsm);
460 	}
461 
462 	return 0;
463 }
464 
465 /**
466  * security_init - initializes the security framework
467  *
468  * This should be called early in the kernel initialization sequence.
469  */
470 int __init security_init(void)
471 {
472 	struct lsm_info *lsm;
473 
474 	init_debug("legacy security=%s\n", chosen_major_lsm ? : " *unspecified*");
475 	init_debug("  CONFIG_LSM=%s\n", builtin_lsm_order);
476 	init_debug("boot arg lsm=%s\n", chosen_lsm_order ? : " *unspecified*");
477 
478 	/*
479 	 * Append the names of the early LSM modules now that kmalloc() is
480 	 * available
481 	 */
482 	for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
483 		init_debug("  early started: %s (%s)\n", lsm->name,
484 			   is_enabled(lsm) ? "enabled" : "disabled");
485 		if (lsm->enabled)
486 			lsm_append(lsm->name, &lsm_names);
487 	}
488 
489 	/* Load LSMs in specified order. */
490 	ordered_lsm_init();
491 
492 	return 0;
493 }
494 
495 /* Save user chosen LSM */
496 static int __init choose_major_lsm(char *str)
497 {
498 	chosen_major_lsm = str;
499 	return 1;
500 }
501 __setup("security=", choose_major_lsm);
502 
503 /* Explicitly choose LSM initialization order. */
504 static int __init choose_lsm_order(char *str)
505 {
506 	chosen_lsm_order = str;
507 	return 1;
508 }
509 __setup("lsm=", choose_lsm_order);
510 
511 /* Enable LSM order debugging. */
512 static int __init enable_debug(char *str)
513 {
514 	debug = true;
515 	return 1;
516 }
517 __setup("lsm.debug", enable_debug);
518 
519 static bool match_last_lsm(const char *list, const char *lsm)
520 {
521 	const char *last;
522 
523 	if (WARN_ON(!list || !lsm))
524 		return false;
525 	last = strrchr(list, ',');
526 	if (last)
527 		/* Pass the comma, strcmp() will check for '\0' */
528 		last++;
529 	else
530 		last = list;
531 	return !strcmp(last, lsm);
532 }
533 
534 static int lsm_append(const char *new, char **result)
535 {
536 	char *cp;
537 
538 	if (*result == NULL) {
539 		*result = kstrdup(new, GFP_KERNEL);
540 		if (*result == NULL)
541 			return -ENOMEM;
542 	} else {
543 		/* Check if it is the last registered name */
544 		if (match_last_lsm(*result, new))
545 			return 0;
546 		cp = kasprintf(GFP_KERNEL, "%s,%s", *result, new);
547 		if (cp == NULL)
548 			return -ENOMEM;
549 		kfree(*result);
550 		*result = cp;
551 	}
552 	return 0;
553 }
554 
555 /**
556  * security_add_hooks - Add a modules hooks to the hook lists.
557  * @hooks: the hooks to add
558  * @count: the number of hooks to add
559  * @lsmid: the identification information for the security module
560  *
561  * Each LSM has to register its hooks with the infrastructure.
562  */
563 void __init security_add_hooks(struct security_hook_list *hooks, int count,
564 			       const struct lsm_id *lsmid)
565 {
566 	int i;
567 
568 	/*
569 	 * A security module may call security_add_hooks() more
570 	 * than once during initialization, and LSM initialization
571 	 * is serialized. Landlock is one such case.
572 	 * Look at the previous entry, if there is one, for duplication.
573 	 */
574 	if (lsm_active_cnt == 0 || lsm_idlist[lsm_active_cnt - 1] != lsmid) {
575 		if (lsm_active_cnt >= LSM_CONFIG_COUNT)
576 			panic("%s Too many LSMs registered.\n", __func__);
577 		lsm_idlist[lsm_active_cnt++] = lsmid;
578 	}
579 
580 	for (i = 0; i < count; i++) {
581 		hooks[i].lsmid = lsmid;
582 		hlist_add_tail_rcu(&hooks[i].list, hooks[i].head);
583 	}
584 
585 	/*
586 	 * Don't try to append during early_security_init(), we'll come back
587 	 * and fix this up afterwards.
588 	 */
589 	if (slab_is_available()) {
590 		if (lsm_append(lsmid->name, &lsm_names) < 0)
591 			panic("%s - Cannot get early memory.\n", __func__);
592 	}
593 }
594 
595 int call_blocking_lsm_notifier(enum lsm_event event, void *data)
596 {
597 	return blocking_notifier_call_chain(&blocking_lsm_notifier_chain,
598 					    event, data);
599 }
600 EXPORT_SYMBOL(call_blocking_lsm_notifier);
601 
602 int register_blocking_lsm_notifier(struct notifier_block *nb)
603 {
604 	return blocking_notifier_chain_register(&blocking_lsm_notifier_chain,
605 						nb);
606 }
607 EXPORT_SYMBOL(register_blocking_lsm_notifier);
608 
609 int unregister_blocking_lsm_notifier(struct notifier_block *nb)
610 {
611 	return blocking_notifier_chain_unregister(&blocking_lsm_notifier_chain,
612 						  nb);
613 }
614 EXPORT_SYMBOL(unregister_blocking_lsm_notifier);
615 
616 /**
617  * lsm_blob_alloc - allocate a composite blob
618  * @dest: the destination for the blob
619  * @size: the size of the blob
620  * @gfp: allocation type
621  *
622  * Allocate a blob for all the modules
623  *
624  * Returns 0, or -ENOMEM if memory can't be allocated.
625  */
626 static int lsm_blob_alloc(void **dest, size_t size, gfp_t gfp)
627 {
628 	if (size == 0) {
629 		*dest = NULL;
630 		return 0;
631 	}
632 
633 	*dest = kzalloc(size, gfp);
634 	if (*dest == NULL)
635 		return -ENOMEM;
636 	return 0;
637 }
638 
639 /**
640  * lsm_cred_alloc - allocate a composite cred blob
641  * @cred: the cred that needs a blob
642  * @gfp: allocation type
643  *
644  * Allocate the cred blob for all the modules
645  *
646  * Returns 0, or -ENOMEM if memory can't be allocated.
647  */
648 static int lsm_cred_alloc(struct cred *cred, gfp_t gfp)
649 {
650 	return lsm_blob_alloc(&cred->security, blob_sizes.lbs_cred, gfp);
651 }
652 
653 /**
654  * lsm_early_cred - during initialization allocate a composite cred blob
655  * @cred: the cred that needs a blob
656  *
657  * Allocate the cred blob for all the modules
658  */
659 static void __init lsm_early_cred(struct cred *cred)
660 {
661 	int rc = lsm_cred_alloc(cred, GFP_KERNEL);
662 
663 	if (rc)
664 		panic("%s: Early cred alloc failed.\n", __func__);
665 }
666 
667 /**
668  * lsm_file_alloc - allocate a composite file blob
669  * @file: the file that needs a blob
670  *
671  * Allocate the file blob for all the modules
672  *
673  * Returns 0, or -ENOMEM if memory can't be allocated.
674  */
675 static int lsm_file_alloc(struct file *file)
676 {
677 	if (!lsm_file_cache) {
678 		file->f_security = NULL;
679 		return 0;
680 	}
681 
682 	file->f_security = kmem_cache_zalloc(lsm_file_cache, GFP_KERNEL);
683 	if (file->f_security == NULL)
684 		return -ENOMEM;
685 	return 0;
686 }
687 
688 /**
689  * lsm_inode_alloc - allocate a composite inode blob
690  * @inode: the inode that needs a blob
691  *
692  * Allocate the inode blob for all the modules
693  *
694  * Returns 0, or -ENOMEM if memory can't be allocated.
695  */
696 static int lsm_inode_alloc(struct inode *inode)
697 {
698 	if (!lsm_inode_cache) {
699 		inode->i_security = NULL;
700 		return 0;
701 	}
702 
703 	inode->i_security = kmem_cache_zalloc(lsm_inode_cache, GFP_NOFS);
704 	if (inode->i_security == NULL)
705 		return -ENOMEM;
706 	return 0;
707 }
708 
709 /**
710  * lsm_task_alloc - allocate a composite task blob
711  * @task: the task that needs a blob
712  *
713  * Allocate the task blob for all the modules
714  *
715  * Returns 0, or -ENOMEM if memory can't be allocated.
716  */
717 static int lsm_task_alloc(struct task_struct *task)
718 {
719 	return lsm_blob_alloc(&task->security, blob_sizes.lbs_task, GFP_KERNEL);
720 }
721 
722 /**
723  * lsm_ipc_alloc - allocate a composite ipc blob
724  * @kip: the ipc that needs a blob
725  *
726  * Allocate the ipc blob for all the modules
727  *
728  * Returns 0, or -ENOMEM if memory can't be allocated.
729  */
730 static int lsm_ipc_alloc(struct kern_ipc_perm *kip)
731 {
732 	return lsm_blob_alloc(&kip->security, blob_sizes.lbs_ipc, GFP_KERNEL);
733 }
734 
735 #ifdef CONFIG_KEYS
736 /**
737  * lsm_key_alloc - allocate a composite key blob
738  * @key: the key that needs a blob
739  *
740  * Allocate the key blob for all the modules
741  *
742  * Returns 0, or -ENOMEM if memory can't be allocated.
743  */
744 static int lsm_key_alloc(struct key *key)
745 {
746 	return lsm_blob_alloc(&key->security, blob_sizes.lbs_key, GFP_KERNEL);
747 }
748 #endif /* CONFIG_KEYS */
749 
750 /**
751  * lsm_msg_msg_alloc - allocate a composite msg_msg blob
752  * @mp: the msg_msg that needs a blob
753  *
754  * Allocate the ipc blob for all the modules
755  *
756  * Returns 0, or -ENOMEM if memory can't be allocated.
757  */
758 static int lsm_msg_msg_alloc(struct msg_msg *mp)
759 {
760 	return lsm_blob_alloc(&mp->security, blob_sizes.lbs_msg_msg,
761 			      GFP_KERNEL);
762 }
763 
764 /**
765  * lsm_bdev_alloc - allocate a composite block_device blob
766  * @bdev: the block_device that needs a blob
767  *
768  * Allocate the block_device blob for all the modules
769  *
770  * Returns 0, or -ENOMEM if memory can't be allocated.
771  */
772 static int lsm_bdev_alloc(struct block_device *bdev)
773 {
774 	if (blob_sizes.lbs_bdev == 0) {
775 		bdev->bd_security = NULL;
776 		return 0;
777 	}
778 
779 	bdev->bd_security = kzalloc(blob_sizes.lbs_bdev, GFP_KERNEL);
780 	if (!bdev->bd_security)
781 		return -ENOMEM;
782 
783 	return 0;
784 }
785 
786 /**
787  * lsm_early_task - during initialization allocate a composite task blob
788  * @task: the task that needs a blob
789  *
790  * Allocate the task blob for all the modules
791  */
792 static void __init lsm_early_task(struct task_struct *task)
793 {
794 	int rc = lsm_task_alloc(task);
795 
796 	if (rc)
797 		panic("%s: Early task alloc failed.\n", __func__);
798 }
799 
800 /**
801  * lsm_superblock_alloc - allocate a composite superblock blob
802  * @sb: the superblock that needs a blob
803  *
804  * Allocate the superblock blob for all the modules
805  *
806  * Returns 0, or -ENOMEM if memory can't be allocated.
807  */
808 static int lsm_superblock_alloc(struct super_block *sb)
809 {
810 	return lsm_blob_alloc(&sb->s_security, blob_sizes.lbs_superblock,
811 			      GFP_KERNEL);
812 }
813 
814 /**
815  * lsm_fill_user_ctx - Fill a user space lsm_ctx structure
816  * @uctx: a userspace LSM context to be filled
817  * @uctx_len: available uctx size (input), used uctx size (output)
818  * @val: the new LSM context value
819  * @val_len: the size of the new LSM context value
820  * @id: LSM id
821  * @flags: LSM defined flags
822  *
823  * Fill all of the fields in a userspace lsm_ctx structure.  If @uctx is NULL
824  * simply calculate the required size to output via @utc_len and return
825  * success.
826  *
827  * Returns 0 on success, -E2BIG if userspace buffer is not large enough,
828  * -EFAULT on a copyout error, -ENOMEM if memory can't be allocated.
829  */
830 int lsm_fill_user_ctx(struct lsm_ctx __user *uctx, u32 *uctx_len,
831 		      void *val, size_t val_len,
832 		      u64 id, u64 flags)
833 {
834 	struct lsm_ctx *nctx = NULL;
835 	size_t nctx_len;
836 	int rc = 0;
837 
838 	nctx_len = ALIGN(struct_size(nctx, ctx, val_len), sizeof(void *));
839 	if (nctx_len > *uctx_len) {
840 		rc = -E2BIG;
841 		goto out;
842 	}
843 
844 	/* no buffer - return success/0 and set @uctx_len to the req size */
845 	if (!uctx)
846 		goto out;
847 
848 	nctx = kzalloc(nctx_len, GFP_KERNEL);
849 	if (nctx == NULL) {
850 		rc = -ENOMEM;
851 		goto out;
852 	}
853 	nctx->id = id;
854 	nctx->flags = flags;
855 	nctx->len = nctx_len;
856 	nctx->ctx_len = val_len;
857 	memcpy(nctx->ctx, val, val_len);
858 
859 	if (copy_to_user(uctx, nctx, nctx_len))
860 		rc = -EFAULT;
861 
862 out:
863 	kfree(nctx);
864 	*uctx_len = nctx_len;
865 	return rc;
866 }
867 
868 /*
869  * The default value of the LSM hook is defined in linux/lsm_hook_defs.h and
870  * can be accessed with:
871  *
872  *	LSM_RET_DEFAULT(<hook_name>)
873  *
874  * The macros below define static constants for the default value of each
875  * LSM hook.
876  */
877 #define LSM_RET_DEFAULT(NAME) (NAME##_default)
878 #define DECLARE_LSM_RET_DEFAULT_void(DEFAULT, NAME)
879 #define DECLARE_LSM_RET_DEFAULT_int(DEFAULT, NAME) \
880 	static const int __maybe_unused LSM_RET_DEFAULT(NAME) = (DEFAULT);
881 #define LSM_HOOK(RET, DEFAULT, NAME, ...) \
882 	DECLARE_LSM_RET_DEFAULT_##RET(DEFAULT, NAME)
883 
884 #include <linux/lsm_hook_defs.h>
885 #undef LSM_HOOK
886 
887 /*
888  * Hook list operation macros.
889  *
890  * call_void_hook:
891  *	This is a hook that does not return a value.
892  *
893  * call_int_hook:
894  *	This is a hook that returns a value.
895  */
896 
897 #define call_void_hook(FUNC, ...)				\
898 	do {							\
899 		struct security_hook_list *P;			\
900 								\
901 		hlist_for_each_entry(P, &security_hook_heads.FUNC, list) \
902 			P->hook.FUNC(__VA_ARGS__);		\
903 	} while (0)
904 
905 #define call_int_hook(FUNC, ...) ({				\
906 	int RC = LSM_RET_DEFAULT(FUNC);				\
907 	do {							\
908 		struct security_hook_list *P;			\
909 								\
910 		hlist_for_each_entry(P, &security_hook_heads.FUNC, list) { \
911 			RC = P->hook.FUNC(__VA_ARGS__);		\
912 			if (RC != LSM_RET_DEFAULT(FUNC))	\
913 				break;				\
914 		}						\
915 	} while (0);						\
916 	RC;							\
917 })
918 
919 /* Security operations */
920 
921 /**
922  * security_binder_set_context_mgr() - Check if becoming binder ctx mgr is ok
923  * @mgr: task credentials of current binder process
924  *
925  * Check whether @mgr is allowed to be the binder context manager.
926  *
927  * Return: Return 0 if permission is granted.
928  */
929 int security_binder_set_context_mgr(const struct cred *mgr)
930 {
931 	return call_int_hook(binder_set_context_mgr, mgr);
932 }
933 
934 /**
935  * security_binder_transaction() - Check if a binder transaction is allowed
936  * @from: sending process
937  * @to: receiving process
938  *
939  * Check whether @from is allowed to invoke a binder transaction call to @to.
940  *
941  * Return: Returns 0 if permission is granted.
942  */
943 int security_binder_transaction(const struct cred *from,
944 				const struct cred *to)
945 {
946 	return call_int_hook(binder_transaction, from, to);
947 }
948 
949 /**
950  * security_binder_transfer_binder() - Check if a binder transfer is allowed
951  * @from: sending process
952  * @to: receiving process
953  *
954  * Check whether @from is allowed to transfer a binder reference to @to.
955  *
956  * Return: Returns 0 if permission is granted.
957  */
958 int security_binder_transfer_binder(const struct cred *from,
959 				    const struct cred *to)
960 {
961 	return call_int_hook(binder_transfer_binder, from, to);
962 }
963 
964 /**
965  * security_binder_transfer_file() - Check if a binder file xfer is allowed
966  * @from: sending process
967  * @to: receiving process
968  * @file: file being transferred
969  *
970  * Check whether @from is allowed to transfer @file to @to.
971  *
972  * Return: Returns 0 if permission is granted.
973  */
974 int security_binder_transfer_file(const struct cred *from,
975 				  const struct cred *to, const struct file *file)
976 {
977 	return call_int_hook(binder_transfer_file, from, to, file);
978 }
979 
980 /**
981  * security_ptrace_access_check() - Check if tracing is allowed
982  * @child: target process
983  * @mode: PTRACE_MODE flags
984  *
985  * Check permission before allowing the current process to trace the @child
986  * process.  Security modules may also want to perform a process tracing check
987  * during an execve in the set_security or apply_creds hooks of tracing check
988  * during an execve in the bprm_set_creds hook of binprm_security_ops if the
989  * process is being traced and its security attributes would be changed by the
990  * execve.
991  *
992  * Return: Returns 0 if permission is granted.
993  */
994 int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
995 {
996 	return call_int_hook(ptrace_access_check, child, mode);
997 }
998 
999 /**
1000  * security_ptrace_traceme() - Check if tracing is allowed
1001  * @parent: tracing process
1002  *
1003  * Check that the @parent process has sufficient permission to trace the
1004  * current process before allowing the current process to present itself to the
1005  * @parent process for tracing.
1006  *
1007  * Return: Returns 0 if permission is granted.
1008  */
1009 int security_ptrace_traceme(struct task_struct *parent)
1010 {
1011 	return call_int_hook(ptrace_traceme, parent);
1012 }
1013 
1014 /**
1015  * security_capget() - Get the capability sets for a process
1016  * @target: target process
1017  * @effective: effective capability set
1018  * @inheritable: inheritable capability set
1019  * @permitted: permitted capability set
1020  *
1021  * Get the @effective, @inheritable, and @permitted capability sets for the
1022  * @target process.  The hook may also perform permission checking to determine
1023  * if the current process is allowed to see the capability sets of the @target
1024  * process.
1025  *
1026  * Return: Returns 0 if the capability sets were successfully obtained.
1027  */
1028 int security_capget(const struct task_struct *target,
1029 		    kernel_cap_t *effective,
1030 		    kernel_cap_t *inheritable,
1031 		    kernel_cap_t *permitted)
1032 {
1033 	return call_int_hook(capget, target, effective, inheritable, permitted);
1034 }
1035 
1036 /**
1037  * security_capset() - Set the capability sets for a process
1038  * @new: new credentials for the target process
1039  * @old: current credentials of the target process
1040  * @effective: effective capability set
1041  * @inheritable: inheritable capability set
1042  * @permitted: permitted capability set
1043  *
1044  * Set the @effective, @inheritable, and @permitted capability sets for the
1045  * current process.
1046  *
1047  * Return: Returns 0 and update @new if permission is granted.
1048  */
1049 int security_capset(struct cred *new, const struct cred *old,
1050 		    const kernel_cap_t *effective,
1051 		    const kernel_cap_t *inheritable,
1052 		    const kernel_cap_t *permitted)
1053 {
1054 	return call_int_hook(capset, new, old, effective, inheritable,
1055 			     permitted);
1056 }
1057 
1058 /**
1059  * security_capable() - Check if a process has the necessary capability
1060  * @cred: credentials to examine
1061  * @ns: user namespace
1062  * @cap: capability requested
1063  * @opts: capability check options
1064  *
1065  * Check whether the @tsk process has the @cap capability in the indicated
1066  * credentials.  @cap contains the capability <include/linux/capability.h>.
1067  * @opts contains options for the capable check <include/linux/security.h>.
1068  *
1069  * Return: Returns 0 if the capability is granted.
1070  */
1071 int security_capable(const struct cred *cred,
1072 		     struct user_namespace *ns,
1073 		     int cap,
1074 		     unsigned int opts)
1075 {
1076 	return call_int_hook(capable, cred, ns, cap, opts);
1077 }
1078 
1079 /**
1080  * security_quotactl() - Check if a quotactl() syscall is allowed for this fs
1081  * @cmds: commands
1082  * @type: type
1083  * @id: id
1084  * @sb: filesystem
1085  *
1086  * Check whether the quotactl syscall is allowed for this @sb.
1087  *
1088  * Return: Returns 0 if permission is granted.
1089  */
1090 int security_quotactl(int cmds, int type, int id, const struct super_block *sb)
1091 {
1092 	return call_int_hook(quotactl, cmds, type, id, sb);
1093 }
1094 
1095 /**
1096  * security_quota_on() - Check if QUOTAON is allowed for a dentry
1097  * @dentry: dentry
1098  *
1099  * Check whether QUOTAON is allowed for @dentry.
1100  *
1101  * Return: Returns 0 if permission is granted.
1102  */
1103 int security_quota_on(struct dentry *dentry)
1104 {
1105 	return call_int_hook(quota_on, dentry);
1106 }
1107 
1108 /**
1109  * security_syslog() - Check if accessing the kernel message ring is allowed
1110  * @type: SYSLOG_ACTION_* type
1111  *
1112  * Check permission before accessing the kernel message ring or changing
1113  * logging to the console.  See the syslog(2) manual page for an explanation of
1114  * the @type values.
1115  *
1116  * Return: Return 0 if permission is granted.
1117  */
1118 int security_syslog(int type)
1119 {
1120 	return call_int_hook(syslog, type);
1121 }
1122 
1123 /**
1124  * security_settime64() - Check if changing the system time is allowed
1125  * @ts: new time
1126  * @tz: timezone
1127  *
1128  * Check permission to change the system time, struct timespec64 is defined in
1129  * <include/linux/time64.h> and timezone is defined in <include/linux/time.h>.
1130  *
1131  * Return: Returns 0 if permission is granted.
1132  */
1133 int security_settime64(const struct timespec64 *ts, const struct timezone *tz)
1134 {
1135 	return call_int_hook(settime, ts, tz);
1136 }
1137 
1138 /**
1139  * security_vm_enough_memory_mm() - Check if allocating a new mem map is allowed
1140  * @mm: mm struct
1141  * @pages: number of pages
1142  *
1143  * Check permissions for allocating a new virtual mapping.  If all LSMs return
1144  * a positive value, __vm_enough_memory() will be called with cap_sys_admin
1145  * set. If at least one LSM returns 0 or negative, __vm_enough_memory() will be
1146  * called with cap_sys_admin cleared.
1147  *
1148  * Return: Returns 0 if permission is granted by the LSM infrastructure to the
1149  *         caller.
1150  */
1151 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
1152 {
1153 	struct security_hook_list *hp;
1154 	int cap_sys_admin = 1;
1155 	int rc;
1156 
1157 	/*
1158 	 * The module will respond with 0 if it thinks the __vm_enough_memory()
1159 	 * call should be made with the cap_sys_admin set. If all of the modules
1160 	 * agree that it should be set it will. If any module thinks it should
1161 	 * not be set it won't.
1162 	 */
1163 	hlist_for_each_entry(hp, &security_hook_heads.vm_enough_memory, list) {
1164 		rc = hp->hook.vm_enough_memory(mm, pages);
1165 		if (rc < 0) {
1166 			cap_sys_admin = 0;
1167 			break;
1168 		}
1169 	}
1170 	return __vm_enough_memory(mm, pages, cap_sys_admin);
1171 }
1172 
1173 /**
1174  * security_bprm_creds_for_exec() - Prepare the credentials for exec()
1175  * @bprm: binary program information
1176  *
1177  * If the setup in prepare_exec_creds did not setup @bprm->cred->security
1178  * properly for executing @bprm->file, update the LSM's portion of
1179  * @bprm->cred->security to be what commit_creds needs to install for the new
1180  * program.  This hook may also optionally check permissions (e.g. for
1181  * transitions between security domains).  The hook must set @bprm->secureexec
1182  * to 1 if AT_SECURE should be set to request libc enable secure mode.  @bprm
1183  * contains the linux_binprm structure.
1184  *
1185  * Return: Returns 0 if the hook is successful and permission is granted.
1186  */
1187 int security_bprm_creds_for_exec(struct linux_binprm *bprm)
1188 {
1189 	return call_int_hook(bprm_creds_for_exec, bprm);
1190 }
1191 
1192 /**
1193  * security_bprm_creds_from_file() - Update linux_binprm creds based on file
1194  * @bprm: binary program information
1195  * @file: associated file
1196  *
1197  * If @file is setpcap, suid, sgid or otherwise marked to change privilege upon
1198  * exec, update @bprm->cred to reflect that change. This is called after
1199  * finding the binary that will be executed without an interpreter.  This
1200  * ensures that the credentials will not be derived from a script that the
1201  * binary will need to reopen, which when reopend may end up being a completely
1202  * different file.  This hook may also optionally check permissions (e.g. for
1203  * transitions between security domains).  The hook must set @bprm->secureexec
1204  * to 1 if AT_SECURE should be set to request libc enable secure mode.  The
1205  * hook must add to @bprm->per_clear any personality flags that should be
1206  * cleared from current->personality.  @bprm contains the linux_binprm
1207  * structure.
1208  *
1209  * Return: Returns 0 if the hook is successful and permission is granted.
1210  */
1211 int security_bprm_creds_from_file(struct linux_binprm *bprm, const struct file *file)
1212 {
1213 	return call_int_hook(bprm_creds_from_file, bprm, file);
1214 }
1215 
1216 /**
1217  * security_bprm_check() - Mediate binary handler search
1218  * @bprm: binary program information
1219  *
1220  * This hook mediates the point when a search for a binary handler will begin.
1221  * It allows a check against the @bprm->cred->security value which was set in
1222  * the preceding creds_for_exec call.  The argv list and envp list are reliably
1223  * available in @bprm.  This hook may be called multiple times during a single
1224  * execve.  @bprm contains the linux_binprm structure.
1225  *
1226  * Return: Returns 0 if the hook is successful and permission is granted.
1227  */
1228 int security_bprm_check(struct linux_binprm *bprm)
1229 {
1230 	return call_int_hook(bprm_check_security, bprm);
1231 }
1232 
1233 /**
1234  * security_bprm_committing_creds() - Install creds for a process during exec()
1235  * @bprm: binary program information
1236  *
1237  * Prepare to install the new security attributes of a process being
1238  * transformed by an execve operation, based on the old credentials pointed to
1239  * by @current->cred and the information set in @bprm->cred by the
1240  * bprm_creds_for_exec hook.  @bprm points to the linux_binprm structure.  This
1241  * hook is a good place to perform state changes on the process such as closing
1242  * open file descriptors to which access will no longer be granted when the
1243  * attributes are changed.  This is called immediately before commit_creds().
1244  */
1245 void security_bprm_committing_creds(const struct linux_binprm *bprm)
1246 {
1247 	call_void_hook(bprm_committing_creds, bprm);
1248 }
1249 
1250 /**
1251  * security_bprm_committed_creds() - Tidy up after cred install during exec()
1252  * @bprm: binary program information
1253  *
1254  * Tidy up after the installation of the new security attributes of a process
1255  * being transformed by an execve operation.  The new credentials have, by this
1256  * point, been set to @current->cred.  @bprm points to the linux_binprm
1257  * structure.  This hook is a good place to perform state changes on the
1258  * process such as clearing out non-inheritable signal state.  This is called
1259  * immediately after commit_creds().
1260  */
1261 void security_bprm_committed_creds(const struct linux_binprm *bprm)
1262 {
1263 	call_void_hook(bprm_committed_creds, bprm);
1264 }
1265 
1266 /**
1267  * security_fs_context_submount() - Initialise fc->security
1268  * @fc: new filesystem context
1269  * @reference: dentry reference for submount/remount
1270  *
1271  * Fill out the ->security field for a new fs_context.
1272  *
1273  * Return: Returns 0 on success or negative error code on failure.
1274  */
1275 int security_fs_context_submount(struct fs_context *fc, struct super_block *reference)
1276 {
1277 	return call_int_hook(fs_context_submount, fc, reference);
1278 }
1279 
1280 /**
1281  * security_fs_context_dup() - Duplicate a fs_context LSM blob
1282  * @fc: destination filesystem context
1283  * @src_fc: source filesystem context
1284  *
1285  * Allocate and attach a security structure to sc->security.  This pointer is
1286  * initialised to NULL by the caller.  @fc indicates the new filesystem context.
1287  * @src_fc indicates the original filesystem context.
1288  *
1289  * Return: Returns 0 on success or a negative error code on failure.
1290  */
1291 int security_fs_context_dup(struct fs_context *fc, struct fs_context *src_fc)
1292 {
1293 	return call_int_hook(fs_context_dup, fc, src_fc);
1294 }
1295 
1296 /**
1297  * security_fs_context_parse_param() - Configure a filesystem context
1298  * @fc: filesystem context
1299  * @param: filesystem parameter
1300  *
1301  * Userspace provided a parameter to configure a superblock.  The LSM can
1302  * consume the parameter or return it to the caller for use elsewhere.
1303  *
1304  * Return: If the parameter is used by the LSM it should return 0, if it is
1305  *         returned to the caller -ENOPARAM is returned, otherwise a negative
1306  *         error code is returned.
1307  */
1308 int security_fs_context_parse_param(struct fs_context *fc,
1309 				    struct fs_parameter *param)
1310 {
1311 	struct security_hook_list *hp;
1312 	int trc;
1313 	int rc = -ENOPARAM;
1314 
1315 	hlist_for_each_entry(hp, &security_hook_heads.fs_context_parse_param,
1316 			     list) {
1317 		trc = hp->hook.fs_context_parse_param(fc, param);
1318 		if (trc == 0)
1319 			rc = 0;
1320 		else if (trc != -ENOPARAM)
1321 			return trc;
1322 	}
1323 	return rc;
1324 }
1325 
1326 /**
1327  * security_sb_alloc() - Allocate a super_block LSM blob
1328  * @sb: filesystem superblock
1329  *
1330  * Allocate and attach a security structure to the sb->s_security field.  The
1331  * s_security field is initialized to NULL when the structure is allocated.
1332  * @sb contains the super_block structure to be modified.
1333  *
1334  * Return: Returns 0 if operation was successful.
1335  */
1336 int security_sb_alloc(struct super_block *sb)
1337 {
1338 	int rc = lsm_superblock_alloc(sb);
1339 
1340 	if (unlikely(rc))
1341 		return rc;
1342 	rc = call_int_hook(sb_alloc_security, sb);
1343 	if (unlikely(rc))
1344 		security_sb_free(sb);
1345 	return rc;
1346 }
1347 
1348 /**
1349  * security_sb_delete() - Release super_block LSM associated objects
1350  * @sb: filesystem superblock
1351  *
1352  * Release objects tied to a superblock (e.g. inodes).  @sb contains the
1353  * super_block structure being released.
1354  */
1355 void security_sb_delete(struct super_block *sb)
1356 {
1357 	call_void_hook(sb_delete, sb);
1358 }
1359 
1360 /**
1361  * security_sb_free() - Free a super_block LSM blob
1362  * @sb: filesystem superblock
1363  *
1364  * Deallocate and clear the sb->s_security field.  @sb contains the super_block
1365  * structure to be modified.
1366  */
1367 void security_sb_free(struct super_block *sb)
1368 {
1369 	call_void_hook(sb_free_security, sb);
1370 	kfree(sb->s_security);
1371 	sb->s_security = NULL;
1372 }
1373 
1374 /**
1375  * security_free_mnt_opts() - Free memory associated with mount options
1376  * @mnt_opts: LSM processed mount options
1377  *
1378  * Free memory associated with @mnt_ops.
1379  */
1380 void security_free_mnt_opts(void **mnt_opts)
1381 {
1382 	if (!*mnt_opts)
1383 		return;
1384 	call_void_hook(sb_free_mnt_opts, *mnt_opts);
1385 	*mnt_opts = NULL;
1386 }
1387 EXPORT_SYMBOL(security_free_mnt_opts);
1388 
1389 /**
1390  * security_sb_eat_lsm_opts() - Consume LSM mount options
1391  * @options: mount options
1392  * @mnt_opts: LSM processed mount options
1393  *
1394  * Eat (scan @options) and save them in @mnt_opts.
1395  *
1396  * Return: Returns 0 on success, negative values on failure.
1397  */
1398 int security_sb_eat_lsm_opts(char *options, void **mnt_opts)
1399 {
1400 	return call_int_hook(sb_eat_lsm_opts, options, mnt_opts);
1401 }
1402 EXPORT_SYMBOL(security_sb_eat_lsm_opts);
1403 
1404 /**
1405  * security_sb_mnt_opts_compat() - Check if new mount options are allowed
1406  * @sb: filesystem superblock
1407  * @mnt_opts: new mount options
1408  *
1409  * Determine if the new mount options in @mnt_opts are allowed given the
1410  * existing mounted filesystem at @sb.  @sb superblock being compared.
1411  *
1412  * Return: Returns 0 if options are compatible.
1413  */
1414 int security_sb_mnt_opts_compat(struct super_block *sb,
1415 				void *mnt_opts)
1416 {
1417 	return call_int_hook(sb_mnt_opts_compat, sb, mnt_opts);
1418 }
1419 EXPORT_SYMBOL(security_sb_mnt_opts_compat);
1420 
1421 /**
1422  * security_sb_remount() - Verify no incompatible mount changes during remount
1423  * @sb: filesystem superblock
1424  * @mnt_opts: (re)mount options
1425  *
1426  * Extracts security system specific mount options and verifies no changes are
1427  * being made to those options.
1428  *
1429  * Return: Returns 0 if permission is granted.
1430  */
1431 int security_sb_remount(struct super_block *sb,
1432 			void *mnt_opts)
1433 {
1434 	return call_int_hook(sb_remount, sb, mnt_opts);
1435 }
1436 EXPORT_SYMBOL(security_sb_remount);
1437 
1438 /**
1439  * security_sb_kern_mount() - Check if a kernel mount is allowed
1440  * @sb: filesystem superblock
1441  *
1442  * Mount this @sb if allowed by permissions.
1443  *
1444  * Return: Returns 0 if permission is granted.
1445  */
1446 int security_sb_kern_mount(const struct super_block *sb)
1447 {
1448 	return call_int_hook(sb_kern_mount, sb);
1449 }
1450 
1451 /**
1452  * security_sb_show_options() - Output the mount options for a superblock
1453  * @m: output file
1454  * @sb: filesystem superblock
1455  *
1456  * Show (print on @m) mount options for this @sb.
1457  *
1458  * Return: Returns 0 on success, negative values on failure.
1459  */
1460 int security_sb_show_options(struct seq_file *m, struct super_block *sb)
1461 {
1462 	return call_int_hook(sb_show_options, m, sb);
1463 }
1464 
1465 /**
1466  * security_sb_statfs() - Check if accessing fs stats is allowed
1467  * @dentry: superblock handle
1468  *
1469  * Check permission before obtaining filesystem statistics for the @mnt
1470  * mountpoint.  @dentry is a handle on the superblock for the filesystem.
1471  *
1472  * Return: Returns 0 if permission is granted.
1473  */
1474 int security_sb_statfs(struct dentry *dentry)
1475 {
1476 	return call_int_hook(sb_statfs, dentry);
1477 }
1478 
1479 /**
1480  * security_sb_mount() - Check permission for mounting a filesystem
1481  * @dev_name: filesystem backing device
1482  * @path: mount point
1483  * @type: filesystem type
1484  * @flags: mount flags
1485  * @data: filesystem specific data
1486  *
1487  * Check permission before an object specified by @dev_name is mounted on the
1488  * mount point named by @nd.  For an ordinary mount, @dev_name identifies a
1489  * device if the file system type requires a device.  For a remount
1490  * (@flags & MS_REMOUNT), @dev_name is irrelevant.  For a loopback/bind mount
1491  * (@flags & MS_BIND), @dev_name identifies the	pathname of the object being
1492  * mounted.
1493  *
1494  * Return: Returns 0 if permission is granted.
1495  */
1496 int security_sb_mount(const char *dev_name, const struct path *path,
1497 		      const char *type, unsigned long flags, void *data)
1498 {
1499 	return call_int_hook(sb_mount, dev_name, path, type, flags, data);
1500 }
1501 
1502 /**
1503  * security_sb_umount() - Check permission for unmounting a filesystem
1504  * @mnt: mounted filesystem
1505  * @flags: unmount flags
1506  *
1507  * Check permission before the @mnt file system is unmounted.
1508  *
1509  * Return: Returns 0 if permission is granted.
1510  */
1511 int security_sb_umount(struct vfsmount *mnt, int flags)
1512 {
1513 	return call_int_hook(sb_umount, mnt, flags);
1514 }
1515 
1516 /**
1517  * security_sb_pivotroot() - Check permissions for pivoting the rootfs
1518  * @old_path: new location for current rootfs
1519  * @new_path: location of the new rootfs
1520  *
1521  * Check permission before pivoting the root filesystem.
1522  *
1523  * Return: Returns 0 if permission is granted.
1524  */
1525 int security_sb_pivotroot(const struct path *old_path,
1526 			  const struct path *new_path)
1527 {
1528 	return call_int_hook(sb_pivotroot, old_path, new_path);
1529 }
1530 
1531 /**
1532  * security_sb_set_mnt_opts() - Set the mount options for a filesystem
1533  * @sb: filesystem superblock
1534  * @mnt_opts: binary mount options
1535  * @kern_flags: kernel flags (in)
1536  * @set_kern_flags: kernel flags (out)
1537  *
1538  * Set the security relevant mount options used for a superblock.
1539  *
1540  * Return: Returns 0 on success, error on failure.
1541  */
1542 int security_sb_set_mnt_opts(struct super_block *sb,
1543 			     void *mnt_opts,
1544 			     unsigned long kern_flags,
1545 			     unsigned long *set_kern_flags)
1546 {
1547 	struct security_hook_list *hp;
1548 	int rc = mnt_opts ? -EOPNOTSUPP : LSM_RET_DEFAULT(sb_set_mnt_opts);
1549 
1550 	hlist_for_each_entry(hp, &security_hook_heads.sb_set_mnt_opts,
1551 			     list) {
1552 		rc = hp->hook.sb_set_mnt_opts(sb, mnt_opts, kern_flags,
1553 					      set_kern_flags);
1554 		if (rc != LSM_RET_DEFAULT(sb_set_mnt_opts))
1555 			break;
1556 	}
1557 	return rc;
1558 }
1559 EXPORT_SYMBOL(security_sb_set_mnt_opts);
1560 
1561 /**
1562  * security_sb_clone_mnt_opts() - Duplicate superblock mount options
1563  * @oldsb: source superblock
1564  * @newsb: destination superblock
1565  * @kern_flags: kernel flags (in)
1566  * @set_kern_flags: kernel flags (out)
1567  *
1568  * Copy all security options from a given superblock to another.
1569  *
1570  * Return: Returns 0 on success, error on failure.
1571  */
1572 int security_sb_clone_mnt_opts(const struct super_block *oldsb,
1573 			       struct super_block *newsb,
1574 			       unsigned long kern_flags,
1575 			       unsigned long *set_kern_flags)
1576 {
1577 	return call_int_hook(sb_clone_mnt_opts, oldsb, newsb,
1578 			     kern_flags, set_kern_flags);
1579 }
1580 EXPORT_SYMBOL(security_sb_clone_mnt_opts);
1581 
1582 /**
1583  * security_move_mount() - Check permissions for moving a mount
1584  * @from_path: source mount point
1585  * @to_path: destination mount point
1586  *
1587  * Check permission before a mount is moved.
1588  *
1589  * Return: Returns 0 if permission is granted.
1590  */
1591 int security_move_mount(const struct path *from_path,
1592 			const struct path *to_path)
1593 {
1594 	return call_int_hook(move_mount, from_path, to_path);
1595 }
1596 
1597 /**
1598  * security_path_notify() - Check if setting a watch is allowed
1599  * @path: file path
1600  * @mask: event mask
1601  * @obj_type: file path type
1602  *
1603  * Check permissions before setting a watch on events as defined by @mask, on
1604  * an object at @path, whose type is defined by @obj_type.
1605  *
1606  * Return: Returns 0 if permission is granted.
1607  */
1608 int security_path_notify(const struct path *path, u64 mask,
1609 			 unsigned int obj_type)
1610 {
1611 	return call_int_hook(path_notify, path, mask, obj_type);
1612 }
1613 
1614 /**
1615  * security_inode_alloc() - Allocate an inode LSM blob
1616  * @inode: the inode
1617  *
1618  * Allocate and attach a security structure to @inode->i_security.  The
1619  * i_security field is initialized to NULL when the inode structure is
1620  * allocated.
1621  *
1622  * Return: Return 0 if operation was successful.
1623  */
1624 int security_inode_alloc(struct inode *inode)
1625 {
1626 	int rc = lsm_inode_alloc(inode);
1627 
1628 	if (unlikely(rc))
1629 		return rc;
1630 	rc = call_int_hook(inode_alloc_security, inode);
1631 	if (unlikely(rc))
1632 		security_inode_free(inode);
1633 	return rc;
1634 }
1635 
1636 static void inode_free_by_rcu(struct rcu_head *head)
1637 {
1638 	/* The rcu head is at the start of the inode blob */
1639 	call_void_hook(inode_free_security_rcu, head);
1640 	kmem_cache_free(lsm_inode_cache, head);
1641 }
1642 
1643 /**
1644  * security_inode_free() - Free an inode's LSM blob
1645  * @inode: the inode
1646  *
1647  * Release any LSM resources associated with @inode, although due to the
1648  * inode's RCU protections it is possible that the resources will not be
1649  * fully released until after the current RCU grace period has elapsed.
1650  *
1651  * It is important for LSMs to note that despite being present in a call to
1652  * security_inode_free(), @inode may still be referenced in a VFS path walk
1653  * and calls to security_inode_permission() may be made during, or after,
1654  * a call to security_inode_free().  For this reason the inode->i_security
1655  * field is released via a call_rcu() callback and any LSMs which need to
1656  * retain inode state for use in security_inode_permission() should only
1657  * release that state in the inode_free_security_rcu() LSM hook callback.
1658  */
1659 void security_inode_free(struct inode *inode)
1660 {
1661 	call_void_hook(inode_free_security, inode);
1662 	if (!inode->i_security)
1663 		return;
1664 	call_rcu((struct rcu_head *)inode->i_security, inode_free_by_rcu);
1665 }
1666 
1667 /**
1668  * security_dentry_init_security() - Perform dentry initialization
1669  * @dentry: the dentry to initialize
1670  * @mode: mode used to determine resource type
1671  * @name: name of the last path component
1672  * @xattr_name: name of the security/LSM xattr
1673  * @ctx: pointer to the resulting LSM context
1674  * @ctxlen: length of @ctx
1675  *
1676  * Compute a context for a dentry as the inode is not yet available since NFSv4
1677  * has no label backed by an EA anyway.  It is important to note that
1678  * @xattr_name does not need to be free'd by the caller, it is a static string.
1679  *
1680  * Return: Returns 0 on success, negative values on failure.
1681  */
1682 int security_dentry_init_security(struct dentry *dentry, int mode,
1683 				  const struct qstr *name,
1684 				  const char **xattr_name, void **ctx,
1685 				  u32 *ctxlen)
1686 {
1687 	return call_int_hook(dentry_init_security, dentry, mode, name,
1688 			     xattr_name, ctx, ctxlen);
1689 }
1690 EXPORT_SYMBOL(security_dentry_init_security);
1691 
1692 /**
1693  * security_dentry_create_files_as() - Perform dentry initialization
1694  * @dentry: the dentry to initialize
1695  * @mode: mode used to determine resource type
1696  * @name: name of the last path component
1697  * @old: creds to use for LSM context calculations
1698  * @new: creds to modify
1699  *
1700  * Compute a context for a dentry as the inode is not yet available and set
1701  * that context in passed in creds so that new files are created using that
1702  * context. Context is calculated using the passed in creds and not the creds
1703  * of the caller.
1704  *
1705  * Return: Returns 0 on success, error on failure.
1706  */
1707 int security_dentry_create_files_as(struct dentry *dentry, int mode,
1708 				    struct qstr *name,
1709 				    const struct cred *old, struct cred *new)
1710 {
1711 	return call_int_hook(dentry_create_files_as, dentry, mode,
1712 			     name, old, new);
1713 }
1714 EXPORT_SYMBOL(security_dentry_create_files_as);
1715 
1716 /**
1717  * security_inode_init_security() - Initialize an inode's LSM context
1718  * @inode: the inode
1719  * @dir: parent directory
1720  * @qstr: last component of the pathname
1721  * @initxattrs: callback function to write xattrs
1722  * @fs_data: filesystem specific data
1723  *
1724  * Obtain the security attribute name suffix and value to set on a newly
1725  * created inode and set up the incore security field for the new inode.  This
1726  * hook is called by the fs code as part of the inode creation transaction and
1727  * provides for atomic labeling of the inode, unlike the post_create/mkdir/...
1728  * hooks called by the VFS.
1729  *
1730  * The hook function is expected to populate the xattrs array, by calling
1731  * lsm_get_xattr_slot() to retrieve the slots reserved by the security module
1732  * with the lbs_xattr_count field of the lsm_blob_sizes structure.  For each
1733  * slot, the hook function should set ->name to the attribute name suffix
1734  * (e.g. selinux), to allocate ->value (will be freed by the caller) and set it
1735  * to the attribute value, to set ->value_len to the length of the value.  If
1736  * the security module does not use security attributes or does not wish to put
1737  * a security attribute on this particular inode, then it should return
1738  * -EOPNOTSUPP to skip this processing.
1739  *
1740  * Return: Returns 0 if the LSM successfully initialized all of the inode
1741  *         security attributes that are required, negative values otherwise.
1742  */
1743 int security_inode_init_security(struct inode *inode, struct inode *dir,
1744 				 const struct qstr *qstr,
1745 				 const initxattrs initxattrs, void *fs_data)
1746 {
1747 	struct security_hook_list *hp;
1748 	struct xattr *new_xattrs = NULL;
1749 	int ret = -EOPNOTSUPP, xattr_count = 0;
1750 
1751 	if (unlikely(IS_PRIVATE(inode)))
1752 		return 0;
1753 
1754 	if (!blob_sizes.lbs_xattr_count)
1755 		return 0;
1756 
1757 	if (initxattrs) {
1758 		/* Allocate +1 as terminator. */
1759 		new_xattrs = kcalloc(blob_sizes.lbs_xattr_count + 1,
1760 				     sizeof(*new_xattrs), GFP_NOFS);
1761 		if (!new_xattrs)
1762 			return -ENOMEM;
1763 	}
1764 
1765 	hlist_for_each_entry(hp, &security_hook_heads.inode_init_security,
1766 			     list) {
1767 		ret = hp->hook.inode_init_security(inode, dir, qstr, new_xattrs,
1768 						  &xattr_count);
1769 		if (ret && ret != -EOPNOTSUPP)
1770 			goto out;
1771 		/*
1772 		 * As documented in lsm_hooks.h, -EOPNOTSUPP in this context
1773 		 * means that the LSM is not willing to provide an xattr, not
1774 		 * that it wants to signal an error. Thus, continue to invoke
1775 		 * the remaining LSMs.
1776 		 */
1777 	}
1778 
1779 	/* If initxattrs() is NULL, xattr_count is zero, skip the call. */
1780 	if (!xattr_count)
1781 		goto out;
1782 
1783 	ret = initxattrs(inode, new_xattrs, fs_data);
1784 out:
1785 	for (; xattr_count > 0; xattr_count--)
1786 		kfree(new_xattrs[xattr_count - 1].value);
1787 	kfree(new_xattrs);
1788 	return (ret == -EOPNOTSUPP) ? 0 : ret;
1789 }
1790 EXPORT_SYMBOL(security_inode_init_security);
1791 
1792 /**
1793  * security_inode_init_security_anon() - Initialize an anonymous inode
1794  * @inode: the inode
1795  * @name: the anonymous inode class
1796  * @context_inode: an optional related inode
1797  *
1798  * Set up the incore security field for the new anonymous inode and return
1799  * whether the inode creation is permitted by the security module or not.
1800  *
1801  * Return: Returns 0 on success, -EACCES if the security module denies the
1802  * creation of this inode, or another -errno upon other errors.
1803  */
1804 int security_inode_init_security_anon(struct inode *inode,
1805 				      const struct qstr *name,
1806 				      const struct inode *context_inode)
1807 {
1808 	return call_int_hook(inode_init_security_anon, inode, name,
1809 			     context_inode);
1810 }
1811 
1812 #ifdef CONFIG_SECURITY_PATH
1813 /**
1814  * security_path_mknod() - Check if creating a special file is allowed
1815  * @dir: parent directory
1816  * @dentry: new file
1817  * @mode: new file mode
1818  * @dev: device number
1819  *
1820  * Check permissions when creating a file. Note that this hook is called even
1821  * if mknod operation is being done for a regular file.
1822  *
1823  * Return: Returns 0 if permission is granted.
1824  */
1825 int security_path_mknod(const struct path *dir, struct dentry *dentry,
1826 			umode_t mode, unsigned int dev)
1827 {
1828 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1829 		return 0;
1830 	return call_int_hook(path_mknod, dir, dentry, mode, dev);
1831 }
1832 EXPORT_SYMBOL(security_path_mknod);
1833 
1834 /**
1835  * security_path_post_mknod() - Update inode security after reg file creation
1836  * @idmap: idmap of the mount
1837  * @dentry: new file
1838  *
1839  * Update inode security field after a regular file has been created.
1840  */
1841 void security_path_post_mknod(struct mnt_idmap *idmap, struct dentry *dentry)
1842 {
1843 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1844 		return;
1845 	call_void_hook(path_post_mknod, idmap, dentry);
1846 }
1847 
1848 /**
1849  * security_path_mkdir() - Check if creating a new directory is allowed
1850  * @dir: parent directory
1851  * @dentry: new directory
1852  * @mode: new directory mode
1853  *
1854  * Check permissions to create a new directory in the existing directory.
1855  *
1856  * Return: Returns 0 if permission is granted.
1857  */
1858 int security_path_mkdir(const struct path *dir, struct dentry *dentry,
1859 			umode_t mode)
1860 {
1861 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1862 		return 0;
1863 	return call_int_hook(path_mkdir, dir, dentry, mode);
1864 }
1865 EXPORT_SYMBOL(security_path_mkdir);
1866 
1867 /**
1868  * security_path_rmdir() - Check if removing a directory is allowed
1869  * @dir: parent directory
1870  * @dentry: directory to remove
1871  *
1872  * Check the permission to remove a directory.
1873  *
1874  * Return: Returns 0 if permission is granted.
1875  */
1876 int security_path_rmdir(const struct path *dir, struct dentry *dentry)
1877 {
1878 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1879 		return 0;
1880 	return call_int_hook(path_rmdir, dir, dentry);
1881 }
1882 
1883 /**
1884  * security_path_unlink() - Check if removing a hard link is allowed
1885  * @dir: parent directory
1886  * @dentry: file
1887  *
1888  * Check the permission to remove a hard link to a file.
1889  *
1890  * Return: Returns 0 if permission is granted.
1891  */
1892 int security_path_unlink(const struct path *dir, struct dentry *dentry)
1893 {
1894 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1895 		return 0;
1896 	return call_int_hook(path_unlink, dir, dentry);
1897 }
1898 EXPORT_SYMBOL(security_path_unlink);
1899 
1900 /**
1901  * security_path_symlink() - Check if creating a symbolic link is allowed
1902  * @dir: parent directory
1903  * @dentry: symbolic link
1904  * @old_name: file pathname
1905  *
1906  * Check the permission to create a symbolic link to a file.
1907  *
1908  * Return: Returns 0 if permission is granted.
1909  */
1910 int security_path_symlink(const struct path *dir, struct dentry *dentry,
1911 			  const char *old_name)
1912 {
1913 	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1914 		return 0;
1915 	return call_int_hook(path_symlink, dir, dentry, old_name);
1916 }
1917 
1918 /**
1919  * security_path_link - Check if creating a hard link is allowed
1920  * @old_dentry: existing file
1921  * @new_dir: new parent directory
1922  * @new_dentry: new link
1923  *
1924  * Check permission before creating a new hard link to a file.
1925  *
1926  * Return: Returns 0 if permission is granted.
1927  */
1928 int security_path_link(struct dentry *old_dentry, const struct path *new_dir,
1929 		       struct dentry *new_dentry)
1930 {
1931 	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
1932 		return 0;
1933 	return call_int_hook(path_link, old_dentry, new_dir, new_dentry);
1934 }
1935 
1936 /**
1937  * security_path_rename() - Check if renaming a file is allowed
1938  * @old_dir: parent directory of the old file
1939  * @old_dentry: the old file
1940  * @new_dir: parent directory of the new file
1941  * @new_dentry: the new file
1942  * @flags: flags
1943  *
1944  * Check for permission to rename a file or directory.
1945  *
1946  * Return: Returns 0 if permission is granted.
1947  */
1948 int security_path_rename(const struct path *old_dir, struct dentry *old_dentry,
1949 			 const struct path *new_dir, struct dentry *new_dentry,
1950 			 unsigned int flags)
1951 {
1952 	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
1953 		     (d_is_positive(new_dentry) &&
1954 		      IS_PRIVATE(d_backing_inode(new_dentry)))))
1955 		return 0;
1956 
1957 	return call_int_hook(path_rename, old_dir, old_dentry, new_dir,
1958 			     new_dentry, flags);
1959 }
1960 EXPORT_SYMBOL(security_path_rename);
1961 
1962 /**
1963  * security_path_truncate() - Check if truncating a file is allowed
1964  * @path: file
1965  *
1966  * Check permission before truncating the file indicated by path.  Note that
1967  * truncation permissions may also be checked based on already opened files,
1968  * using the security_file_truncate() hook.
1969  *
1970  * Return: Returns 0 if permission is granted.
1971  */
1972 int security_path_truncate(const struct path *path)
1973 {
1974 	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1975 		return 0;
1976 	return call_int_hook(path_truncate, path);
1977 }
1978 
1979 /**
1980  * security_path_chmod() - Check if changing the file's mode is allowed
1981  * @path: file
1982  * @mode: new mode
1983  *
1984  * Check for permission to change a mode of the file @path. The new mode is
1985  * specified in @mode which is a bitmask of constants from
1986  * <include/uapi/linux/stat.h>.
1987  *
1988  * Return: Returns 0 if permission is granted.
1989  */
1990 int security_path_chmod(const struct path *path, umode_t mode)
1991 {
1992 	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1993 		return 0;
1994 	return call_int_hook(path_chmod, path, mode);
1995 }
1996 
1997 /**
1998  * security_path_chown() - Check if changing the file's owner/group is allowed
1999  * @path: file
2000  * @uid: file owner
2001  * @gid: file group
2002  *
2003  * Check for permission to change owner/group of a file or directory.
2004  *
2005  * Return: Returns 0 if permission is granted.
2006  */
2007 int security_path_chown(const struct path *path, kuid_t uid, kgid_t gid)
2008 {
2009 	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
2010 		return 0;
2011 	return call_int_hook(path_chown, path, uid, gid);
2012 }
2013 
2014 /**
2015  * security_path_chroot() - Check if changing the root directory is allowed
2016  * @path: directory
2017  *
2018  * Check for permission to change root directory.
2019  *
2020  * Return: Returns 0 if permission is granted.
2021  */
2022 int security_path_chroot(const struct path *path)
2023 {
2024 	return call_int_hook(path_chroot, path);
2025 }
2026 #endif /* CONFIG_SECURITY_PATH */
2027 
2028 /**
2029  * security_inode_create() - Check if creating a file is allowed
2030  * @dir: the parent directory
2031  * @dentry: the file being created
2032  * @mode: requested file mode
2033  *
2034  * Check permission to create a regular file.
2035  *
2036  * Return: Returns 0 if permission is granted.
2037  */
2038 int security_inode_create(struct inode *dir, struct dentry *dentry,
2039 			  umode_t mode)
2040 {
2041 	if (unlikely(IS_PRIVATE(dir)))
2042 		return 0;
2043 	return call_int_hook(inode_create, dir, dentry, mode);
2044 }
2045 EXPORT_SYMBOL_GPL(security_inode_create);
2046 
2047 /**
2048  * security_inode_post_create_tmpfile() - Update inode security of new tmpfile
2049  * @idmap: idmap of the mount
2050  * @inode: inode of the new tmpfile
2051  *
2052  * Update inode security data after a tmpfile has been created.
2053  */
2054 void security_inode_post_create_tmpfile(struct mnt_idmap *idmap,
2055 					struct inode *inode)
2056 {
2057 	if (unlikely(IS_PRIVATE(inode)))
2058 		return;
2059 	call_void_hook(inode_post_create_tmpfile, idmap, inode);
2060 }
2061 
2062 /**
2063  * security_inode_link() - Check if creating a hard link is allowed
2064  * @old_dentry: existing file
2065  * @dir: new parent directory
2066  * @new_dentry: new link
2067  *
2068  * Check permission before creating a new hard link to a file.
2069  *
2070  * Return: Returns 0 if permission is granted.
2071  */
2072 int security_inode_link(struct dentry *old_dentry, struct inode *dir,
2073 			struct dentry *new_dentry)
2074 {
2075 	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
2076 		return 0;
2077 	return call_int_hook(inode_link, old_dentry, dir, new_dentry);
2078 }
2079 
2080 /**
2081  * security_inode_unlink() - Check if removing a hard link is allowed
2082  * @dir: parent directory
2083  * @dentry: file
2084  *
2085  * Check the permission to remove a hard link to a file.
2086  *
2087  * Return: Returns 0 if permission is granted.
2088  */
2089 int security_inode_unlink(struct inode *dir, struct dentry *dentry)
2090 {
2091 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2092 		return 0;
2093 	return call_int_hook(inode_unlink, dir, dentry);
2094 }
2095 
2096 /**
2097  * security_inode_symlink() - Check if creating a symbolic link is allowed
2098  * @dir: parent directory
2099  * @dentry: symbolic link
2100  * @old_name: existing filename
2101  *
2102  * Check the permission to create a symbolic link to a file.
2103  *
2104  * Return: Returns 0 if permission is granted.
2105  */
2106 int security_inode_symlink(struct inode *dir, struct dentry *dentry,
2107 			   const char *old_name)
2108 {
2109 	if (unlikely(IS_PRIVATE(dir)))
2110 		return 0;
2111 	return call_int_hook(inode_symlink, dir, dentry, old_name);
2112 }
2113 
2114 /**
2115  * security_inode_mkdir() - Check if creation a new director is allowed
2116  * @dir: parent directory
2117  * @dentry: new directory
2118  * @mode: new directory mode
2119  *
2120  * Check permissions to create a new directory in the existing directory
2121  * associated with inode structure @dir.
2122  *
2123  * Return: Returns 0 if permission is granted.
2124  */
2125 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
2126 {
2127 	if (unlikely(IS_PRIVATE(dir)))
2128 		return 0;
2129 	return call_int_hook(inode_mkdir, dir, dentry, mode);
2130 }
2131 EXPORT_SYMBOL_GPL(security_inode_mkdir);
2132 
2133 /**
2134  * security_inode_rmdir() - Check if removing a directory is allowed
2135  * @dir: parent directory
2136  * @dentry: directory to be removed
2137  *
2138  * Check the permission to remove a directory.
2139  *
2140  * Return: Returns 0 if permission is granted.
2141  */
2142 int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
2143 {
2144 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2145 		return 0;
2146 	return call_int_hook(inode_rmdir, dir, dentry);
2147 }
2148 
2149 /**
2150  * security_inode_mknod() - Check if creating a special file is allowed
2151  * @dir: parent directory
2152  * @dentry: new file
2153  * @mode: new file mode
2154  * @dev: device number
2155  *
2156  * Check permissions when creating a special file (or a socket or a fifo file
2157  * created via the mknod system call).  Note that if mknod operation is being
2158  * done for a regular file, then the create hook will be called and not this
2159  * hook.
2160  *
2161  * Return: Returns 0 if permission is granted.
2162  */
2163 int security_inode_mknod(struct inode *dir, struct dentry *dentry,
2164 			 umode_t mode, dev_t dev)
2165 {
2166 	if (unlikely(IS_PRIVATE(dir)))
2167 		return 0;
2168 	return call_int_hook(inode_mknod, dir, dentry, mode, dev);
2169 }
2170 
2171 /**
2172  * security_inode_rename() - Check if renaming a file is allowed
2173  * @old_dir: parent directory of the old file
2174  * @old_dentry: the old file
2175  * @new_dir: parent directory of the new file
2176  * @new_dentry: the new file
2177  * @flags: flags
2178  *
2179  * Check for permission to rename a file or directory.
2180  *
2181  * Return: Returns 0 if permission is granted.
2182  */
2183 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
2184 			  struct inode *new_dir, struct dentry *new_dentry,
2185 			  unsigned int flags)
2186 {
2187 	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
2188 		     (d_is_positive(new_dentry) &&
2189 		      IS_PRIVATE(d_backing_inode(new_dentry)))))
2190 		return 0;
2191 
2192 	if (flags & RENAME_EXCHANGE) {
2193 		int err = call_int_hook(inode_rename, new_dir, new_dentry,
2194 					old_dir, old_dentry);
2195 		if (err)
2196 			return err;
2197 	}
2198 
2199 	return call_int_hook(inode_rename, old_dir, old_dentry,
2200 			     new_dir, new_dentry);
2201 }
2202 
2203 /**
2204  * security_inode_readlink() - Check if reading a symbolic link is allowed
2205  * @dentry: link
2206  *
2207  * Check the permission to read the symbolic link.
2208  *
2209  * Return: Returns 0 if permission is granted.
2210  */
2211 int security_inode_readlink(struct dentry *dentry)
2212 {
2213 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2214 		return 0;
2215 	return call_int_hook(inode_readlink, dentry);
2216 }
2217 
2218 /**
2219  * security_inode_follow_link() - Check if following a symbolic link is allowed
2220  * @dentry: link dentry
2221  * @inode: link inode
2222  * @rcu: true if in RCU-walk mode
2223  *
2224  * Check permission to follow a symbolic link when looking up a pathname.  If
2225  * @rcu is true, @inode is not stable.
2226  *
2227  * Return: Returns 0 if permission is granted.
2228  */
2229 int security_inode_follow_link(struct dentry *dentry, struct inode *inode,
2230 			       bool rcu)
2231 {
2232 	if (unlikely(IS_PRIVATE(inode)))
2233 		return 0;
2234 	return call_int_hook(inode_follow_link, dentry, inode, rcu);
2235 }
2236 
2237 /**
2238  * security_inode_permission() - Check if accessing an inode is allowed
2239  * @inode: inode
2240  * @mask: access mask
2241  *
2242  * Check permission before accessing an inode.  This hook is called by the
2243  * existing Linux permission function, so a security module can use it to
2244  * provide additional checking for existing Linux permission checks.  Notice
2245  * that this hook is called when a file is opened (as well as many other
2246  * operations), whereas the file_security_ops permission hook is called when
2247  * the actual read/write operations are performed.
2248  *
2249  * Return: Returns 0 if permission is granted.
2250  */
2251 int security_inode_permission(struct inode *inode, int mask)
2252 {
2253 	if (unlikely(IS_PRIVATE(inode)))
2254 		return 0;
2255 	return call_int_hook(inode_permission, inode, mask);
2256 }
2257 
2258 /**
2259  * security_inode_setattr() - Check if setting file attributes is allowed
2260  * @idmap: idmap of the mount
2261  * @dentry: file
2262  * @attr: new attributes
2263  *
2264  * Check permission before setting file attributes.  Note that the kernel call
2265  * to notify_change is performed from several locations, whenever file
2266  * attributes change (such as when a file is truncated, chown/chmod operations,
2267  * transferring disk quotas, etc).
2268  *
2269  * Return: Returns 0 if permission is granted.
2270  */
2271 int security_inode_setattr(struct mnt_idmap *idmap,
2272 			   struct dentry *dentry, struct iattr *attr)
2273 {
2274 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2275 		return 0;
2276 	return call_int_hook(inode_setattr, idmap, dentry, attr);
2277 }
2278 EXPORT_SYMBOL_GPL(security_inode_setattr);
2279 
2280 /**
2281  * security_inode_post_setattr() - Update the inode after a setattr operation
2282  * @idmap: idmap of the mount
2283  * @dentry: file
2284  * @ia_valid: file attributes set
2285  *
2286  * Update inode security field after successful setting file attributes.
2287  */
2288 void security_inode_post_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
2289 				 int ia_valid)
2290 {
2291 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2292 		return;
2293 	call_void_hook(inode_post_setattr, idmap, dentry, ia_valid);
2294 }
2295 
2296 /**
2297  * security_inode_getattr() - Check if getting file attributes is allowed
2298  * @path: file
2299  *
2300  * Check permission before obtaining file attributes.
2301  *
2302  * Return: Returns 0 if permission is granted.
2303  */
2304 int security_inode_getattr(const struct path *path)
2305 {
2306 	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
2307 		return 0;
2308 	return call_int_hook(inode_getattr, path);
2309 }
2310 
2311 /**
2312  * security_inode_setxattr() - Check if setting file xattrs is allowed
2313  * @idmap: idmap of the mount
2314  * @dentry: file
2315  * @name: xattr name
2316  * @value: xattr value
2317  * @size: size of xattr value
2318  * @flags: flags
2319  *
2320  * This hook performs the desired permission checks before setting the extended
2321  * attributes (xattrs) on @dentry.  It is important to note that we have some
2322  * additional logic before the main LSM implementation calls to detect if we
2323  * need to perform an additional capability check at the LSM layer.
2324  *
2325  * Normally we enforce a capability check prior to executing the various LSM
2326  * hook implementations, but if a LSM wants to avoid this capability check,
2327  * it can register a 'inode_xattr_skipcap' hook and return a value of 1 for
2328  * xattrs that it wants to avoid the capability check, leaving the LSM fully
2329  * responsible for enforcing the access control for the specific xattr.  If all
2330  * of the enabled LSMs refrain from registering a 'inode_xattr_skipcap' hook,
2331  * or return a 0 (the default return value), the capability check is still
2332  * performed.  If no 'inode_xattr_skipcap' hooks are registered the capability
2333  * check is performed.
2334  *
2335  * Return: Returns 0 if permission is granted.
2336  */
2337 int security_inode_setxattr(struct mnt_idmap *idmap,
2338 			    struct dentry *dentry, const char *name,
2339 			    const void *value, size_t size, int flags)
2340 {
2341 	int rc;
2342 
2343 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2344 		return 0;
2345 
2346 	/* enforce the capability checks at the lsm layer, if needed */
2347 	if (!call_int_hook(inode_xattr_skipcap, name)) {
2348 		rc = cap_inode_setxattr(dentry, name, value, size, flags);
2349 		if (rc)
2350 			return rc;
2351 	}
2352 
2353 	return call_int_hook(inode_setxattr, idmap, dentry, name, value, size,
2354 			     flags);
2355 }
2356 
2357 /**
2358  * security_inode_set_acl() - Check if setting posix acls is allowed
2359  * @idmap: idmap of the mount
2360  * @dentry: file
2361  * @acl_name: acl name
2362  * @kacl: acl struct
2363  *
2364  * Check permission before setting posix acls, the posix acls in @kacl are
2365  * identified by @acl_name.
2366  *
2367  * Return: Returns 0 if permission is granted.
2368  */
2369 int security_inode_set_acl(struct mnt_idmap *idmap,
2370 			   struct dentry *dentry, const char *acl_name,
2371 			   struct posix_acl *kacl)
2372 {
2373 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2374 		return 0;
2375 	return call_int_hook(inode_set_acl, idmap, dentry, acl_name, kacl);
2376 }
2377 
2378 /**
2379  * security_inode_post_set_acl() - Update inode security from posix acls set
2380  * @dentry: file
2381  * @acl_name: acl name
2382  * @kacl: acl struct
2383  *
2384  * Update inode security data after successfully setting posix acls on @dentry.
2385  * The posix acls in @kacl are identified by @acl_name.
2386  */
2387 void security_inode_post_set_acl(struct dentry *dentry, const char *acl_name,
2388 				 struct posix_acl *kacl)
2389 {
2390 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2391 		return;
2392 	call_void_hook(inode_post_set_acl, dentry, acl_name, kacl);
2393 }
2394 
2395 /**
2396  * security_inode_get_acl() - Check if reading posix acls is allowed
2397  * @idmap: idmap of the mount
2398  * @dentry: file
2399  * @acl_name: acl name
2400  *
2401  * Check permission before getting osix acls, the posix acls are identified by
2402  * @acl_name.
2403  *
2404  * Return: Returns 0 if permission is granted.
2405  */
2406 int security_inode_get_acl(struct mnt_idmap *idmap,
2407 			   struct dentry *dentry, const char *acl_name)
2408 {
2409 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2410 		return 0;
2411 	return call_int_hook(inode_get_acl, idmap, dentry, acl_name);
2412 }
2413 
2414 /**
2415  * security_inode_remove_acl() - Check if removing a posix acl is allowed
2416  * @idmap: idmap of the mount
2417  * @dentry: file
2418  * @acl_name: acl name
2419  *
2420  * Check permission before removing posix acls, the posix acls are identified
2421  * by @acl_name.
2422  *
2423  * Return: Returns 0 if permission is granted.
2424  */
2425 int security_inode_remove_acl(struct mnt_idmap *idmap,
2426 			      struct dentry *dentry, const char *acl_name)
2427 {
2428 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2429 		return 0;
2430 	return call_int_hook(inode_remove_acl, idmap, dentry, acl_name);
2431 }
2432 
2433 /**
2434  * security_inode_post_remove_acl() - Update inode security after rm posix acls
2435  * @idmap: idmap of the mount
2436  * @dentry: file
2437  * @acl_name: acl name
2438  *
2439  * Update inode security data after successfully removing posix acls on
2440  * @dentry in @idmap. The posix acls are identified by @acl_name.
2441  */
2442 void security_inode_post_remove_acl(struct mnt_idmap *idmap,
2443 				    struct dentry *dentry, const char *acl_name)
2444 {
2445 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2446 		return;
2447 	call_void_hook(inode_post_remove_acl, idmap, dentry, acl_name);
2448 }
2449 
2450 /**
2451  * security_inode_post_setxattr() - Update the inode after a setxattr operation
2452  * @dentry: file
2453  * @name: xattr name
2454  * @value: xattr value
2455  * @size: xattr value size
2456  * @flags: flags
2457  *
2458  * Update inode security field after successful setxattr operation.
2459  */
2460 void security_inode_post_setxattr(struct dentry *dentry, const char *name,
2461 				  const void *value, size_t size, int flags)
2462 {
2463 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2464 		return;
2465 	call_void_hook(inode_post_setxattr, dentry, name, value, size, flags);
2466 }
2467 
2468 /**
2469  * security_inode_getxattr() - Check if xattr access is allowed
2470  * @dentry: file
2471  * @name: xattr name
2472  *
2473  * Check permission before obtaining the extended attributes identified by
2474  * @name for @dentry.
2475  *
2476  * Return: Returns 0 if permission is granted.
2477  */
2478 int security_inode_getxattr(struct dentry *dentry, const char *name)
2479 {
2480 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2481 		return 0;
2482 	return call_int_hook(inode_getxattr, dentry, name);
2483 }
2484 
2485 /**
2486  * security_inode_listxattr() - Check if listing xattrs is allowed
2487  * @dentry: file
2488  *
2489  * Check permission before obtaining the list of extended attribute names for
2490  * @dentry.
2491  *
2492  * Return: Returns 0 if permission is granted.
2493  */
2494 int security_inode_listxattr(struct dentry *dentry)
2495 {
2496 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2497 		return 0;
2498 	return call_int_hook(inode_listxattr, dentry);
2499 }
2500 
2501 /**
2502  * security_inode_removexattr() - Check if removing an xattr is allowed
2503  * @idmap: idmap of the mount
2504  * @dentry: file
2505  * @name: xattr name
2506  *
2507  * This hook performs the desired permission checks before setting the extended
2508  * attributes (xattrs) on @dentry.  It is important to note that we have some
2509  * additional logic before the main LSM implementation calls to detect if we
2510  * need to perform an additional capability check at the LSM layer.
2511  *
2512  * Normally we enforce a capability check prior to executing the various LSM
2513  * hook implementations, but if a LSM wants to avoid this capability check,
2514  * it can register a 'inode_xattr_skipcap' hook and return a value of 1 for
2515  * xattrs that it wants to avoid the capability check, leaving the LSM fully
2516  * responsible for enforcing the access control for the specific xattr.  If all
2517  * of the enabled LSMs refrain from registering a 'inode_xattr_skipcap' hook,
2518  * or return a 0 (the default return value), the capability check is still
2519  * performed.  If no 'inode_xattr_skipcap' hooks are registered the capability
2520  * check is performed.
2521  *
2522  * Return: Returns 0 if permission is granted.
2523  */
2524 int security_inode_removexattr(struct mnt_idmap *idmap,
2525 			       struct dentry *dentry, const char *name)
2526 {
2527 	int rc;
2528 
2529 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2530 		return 0;
2531 
2532 	/* enforce the capability checks at the lsm layer, if needed */
2533 	if (!call_int_hook(inode_xattr_skipcap, name)) {
2534 		rc = cap_inode_removexattr(idmap, dentry, name);
2535 		if (rc)
2536 			return rc;
2537 	}
2538 
2539 	return call_int_hook(inode_removexattr, idmap, dentry, name);
2540 }
2541 
2542 /**
2543  * security_inode_post_removexattr() - Update the inode after a removexattr op
2544  * @dentry: file
2545  * @name: xattr name
2546  *
2547  * Update the inode after a successful removexattr operation.
2548  */
2549 void security_inode_post_removexattr(struct dentry *dentry, const char *name)
2550 {
2551 	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
2552 		return;
2553 	call_void_hook(inode_post_removexattr, dentry, name);
2554 }
2555 
2556 /**
2557  * security_inode_need_killpriv() - Check if security_inode_killpriv() required
2558  * @dentry: associated dentry
2559  *
2560  * Called when an inode has been changed to determine if
2561  * security_inode_killpriv() should be called.
2562  *
2563  * Return: Return <0 on error to abort the inode change operation, return 0 if
2564  *         security_inode_killpriv() does not need to be called, return >0 if
2565  *         security_inode_killpriv() does need to be called.
2566  */
2567 int security_inode_need_killpriv(struct dentry *dentry)
2568 {
2569 	return call_int_hook(inode_need_killpriv, dentry);
2570 }
2571 
2572 /**
2573  * security_inode_killpriv() - The setuid bit is removed, update LSM state
2574  * @idmap: idmap of the mount
2575  * @dentry: associated dentry
2576  *
2577  * The @dentry's setuid bit is being removed.  Remove similar security labels.
2578  * Called with the dentry->d_inode->i_mutex held.
2579  *
2580  * Return: Return 0 on success.  If error is returned, then the operation
2581  *         causing setuid bit removal is failed.
2582  */
2583 int security_inode_killpriv(struct mnt_idmap *idmap,
2584 			    struct dentry *dentry)
2585 {
2586 	return call_int_hook(inode_killpriv, idmap, dentry);
2587 }
2588 
2589 /**
2590  * security_inode_getsecurity() - Get the xattr security label of an inode
2591  * @idmap: idmap of the mount
2592  * @inode: inode
2593  * @name: xattr name
2594  * @buffer: security label buffer
2595  * @alloc: allocation flag
2596  *
2597  * Retrieve a copy of the extended attribute representation of the security
2598  * label associated with @name for @inode via @buffer.  Note that @name is the
2599  * remainder of the attribute name after the security prefix has been removed.
2600  * @alloc is used to specify if the call should return a value via the buffer
2601  * or just the value length.
2602  *
2603  * Return: Returns size of buffer on success.
2604  */
2605 int security_inode_getsecurity(struct mnt_idmap *idmap,
2606 			       struct inode *inode, const char *name,
2607 			       void **buffer, bool alloc)
2608 {
2609 	if (unlikely(IS_PRIVATE(inode)))
2610 		return LSM_RET_DEFAULT(inode_getsecurity);
2611 
2612 	return call_int_hook(inode_getsecurity, idmap, inode, name, buffer,
2613 			     alloc);
2614 }
2615 
2616 /**
2617  * security_inode_setsecurity() - Set the xattr security label of an inode
2618  * @inode: inode
2619  * @name: xattr name
2620  * @value: security label
2621  * @size: length of security label
2622  * @flags: flags
2623  *
2624  * Set the security label associated with @name for @inode from the extended
2625  * attribute value @value.  @size indicates the size of the @value in bytes.
2626  * @flags may be XATTR_CREATE, XATTR_REPLACE, or 0. Note that @name is the
2627  * remainder of the attribute name after the security. prefix has been removed.
2628  *
2629  * Return: Returns 0 on success.
2630  */
2631 int security_inode_setsecurity(struct inode *inode, const char *name,
2632 			       const void *value, size_t size, int flags)
2633 {
2634 	if (unlikely(IS_PRIVATE(inode)))
2635 		return LSM_RET_DEFAULT(inode_setsecurity);
2636 
2637 	return call_int_hook(inode_setsecurity, inode, name, value, size,
2638 			     flags);
2639 }
2640 
2641 /**
2642  * security_inode_listsecurity() - List the xattr security label names
2643  * @inode: inode
2644  * @buffer: buffer
2645  * @buffer_size: size of buffer
2646  *
2647  * Copy the extended attribute names for the security labels associated with
2648  * @inode into @buffer.  The maximum size of @buffer is specified by
2649  * @buffer_size.  @buffer may be NULL to request the size of the buffer
2650  * required.
2651  *
2652  * Return: Returns number of bytes used/required on success.
2653  */
2654 int security_inode_listsecurity(struct inode *inode,
2655 				char *buffer, size_t buffer_size)
2656 {
2657 	if (unlikely(IS_PRIVATE(inode)))
2658 		return 0;
2659 	return call_int_hook(inode_listsecurity, inode, buffer, buffer_size);
2660 }
2661 EXPORT_SYMBOL(security_inode_listsecurity);
2662 
2663 /**
2664  * security_inode_getsecid() - Get an inode's secid
2665  * @inode: inode
2666  * @secid: secid to return
2667  *
2668  * Get the secid associated with the node.  In case of failure, @secid will be
2669  * set to zero.
2670  */
2671 void security_inode_getsecid(struct inode *inode, u32 *secid)
2672 {
2673 	call_void_hook(inode_getsecid, inode, secid);
2674 }
2675 
2676 /**
2677  * security_inode_copy_up() - Create new creds for an overlayfs copy-up op
2678  * @src: union dentry of copy-up file
2679  * @new: newly created creds
2680  *
2681  * A file is about to be copied up from lower layer to upper layer of overlay
2682  * filesystem. Security module can prepare a set of new creds and modify as
2683  * need be and return new creds. Caller will switch to new creds temporarily to
2684  * create new file and release newly allocated creds.
2685  *
2686  * Return: Returns 0 on success or a negative error code on error.
2687  */
2688 int security_inode_copy_up(struct dentry *src, struct cred **new)
2689 {
2690 	return call_int_hook(inode_copy_up, src, new);
2691 }
2692 EXPORT_SYMBOL(security_inode_copy_up);
2693 
2694 /**
2695  * security_inode_copy_up_xattr() - Filter xattrs in an overlayfs copy-up op
2696  * @src: union dentry of copy-up file
2697  * @name: xattr name
2698  *
2699  * Filter the xattrs being copied up when a unioned file is copied up from a
2700  * lower layer to the union/overlay layer.   The caller is responsible for
2701  * reading and writing the xattrs, this hook is merely a filter.
2702  *
2703  * Return: Returns 0 to accept the xattr, -ECANCELED to discard the xattr,
2704  *         -EOPNOTSUPP if the security module does not know about attribute,
2705  *         or a negative error code to abort the copy up.
2706  */
2707 int security_inode_copy_up_xattr(struct dentry *src, const char *name)
2708 {
2709 	int rc;
2710 
2711 	rc = call_int_hook(inode_copy_up_xattr, src, name);
2712 	if (rc != LSM_RET_DEFAULT(inode_copy_up_xattr))
2713 		return rc;
2714 
2715 	return LSM_RET_DEFAULT(inode_copy_up_xattr);
2716 }
2717 EXPORT_SYMBOL(security_inode_copy_up_xattr);
2718 
2719 /**
2720  * security_inode_setintegrity() - Set the inode's integrity data
2721  * @inode: inode
2722  * @type: type of integrity, e.g. hash digest, signature, etc
2723  * @value: the integrity value
2724  * @size: size of the integrity value
2725  *
2726  * Register a verified integrity measurement of a inode with LSMs.
2727  * LSMs should free the previously saved data if @value is NULL.
2728  *
2729  * Return: Returns 0 on success, negative values on failure.
2730  */
2731 int security_inode_setintegrity(const struct inode *inode,
2732 				enum lsm_integrity_type type, const void *value,
2733 				size_t size)
2734 {
2735 	return call_int_hook(inode_setintegrity, inode, type, value, size);
2736 }
2737 EXPORT_SYMBOL(security_inode_setintegrity);
2738 
2739 /**
2740  * security_kernfs_init_security() - Init LSM context for a kernfs node
2741  * @kn_dir: parent kernfs node
2742  * @kn: the kernfs node to initialize
2743  *
2744  * Initialize the security context of a newly created kernfs node based on its
2745  * own and its parent's attributes.
2746  *
2747  * Return: Returns 0 if permission is granted.
2748  */
2749 int security_kernfs_init_security(struct kernfs_node *kn_dir,
2750 				  struct kernfs_node *kn)
2751 {
2752 	return call_int_hook(kernfs_init_security, kn_dir, kn);
2753 }
2754 
2755 /**
2756  * security_file_permission() - Check file permissions
2757  * @file: file
2758  * @mask: requested permissions
2759  *
2760  * Check file permissions before accessing an open file.  This hook is called
2761  * by various operations that read or write files.  A security module can use
2762  * this hook to perform additional checking on these operations, e.g. to
2763  * revalidate permissions on use to support privilege bracketing or policy
2764  * changes.  Notice that this hook is used when the actual read/write
2765  * operations are performed, whereas the inode_security_ops hook is called when
2766  * a file is opened (as well as many other operations).  Although this hook can
2767  * be used to revalidate permissions for various system call operations that
2768  * read or write files, it does not address the revalidation of permissions for
2769  * memory-mapped files.  Security modules must handle this separately if they
2770  * need such revalidation.
2771  *
2772  * Return: Returns 0 if permission is granted.
2773  */
2774 int security_file_permission(struct file *file, int mask)
2775 {
2776 	return call_int_hook(file_permission, file, mask);
2777 }
2778 
2779 /**
2780  * security_file_alloc() - Allocate and init a file's LSM blob
2781  * @file: the file
2782  *
2783  * Allocate and attach a security structure to the file->f_security field.  The
2784  * security field is initialized to NULL when the structure is first created.
2785  *
2786  * Return: Return 0 if the hook is successful and permission is granted.
2787  */
2788 int security_file_alloc(struct file *file)
2789 {
2790 	int rc = lsm_file_alloc(file);
2791 
2792 	if (rc)
2793 		return rc;
2794 	rc = call_int_hook(file_alloc_security, file);
2795 	if (unlikely(rc))
2796 		security_file_free(file);
2797 	return rc;
2798 }
2799 
2800 /**
2801  * security_file_release() - Perform actions before releasing the file ref
2802  * @file: the file
2803  *
2804  * Perform actions before releasing the last reference to a file.
2805  */
2806 void security_file_release(struct file *file)
2807 {
2808 	call_void_hook(file_release, file);
2809 }
2810 
2811 /**
2812  * security_file_free() - Free a file's LSM blob
2813  * @file: the file
2814  *
2815  * Deallocate and free any security structures stored in file->f_security.
2816  */
2817 void security_file_free(struct file *file)
2818 {
2819 	void *blob;
2820 
2821 	call_void_hook(file_free_security, file);
2822 
2823 	blob = file->f_security;
2824 	if (blob) {
2825 		file->f_security = NULL;
2826 		kmem_cache_free(lsm_file_cache, blob);
2827 	}
2828 }
2829 
2830 /**
2831  * security_file_ioctl() - Check if an ioctl is allowed
2832  * @file: associated file
2833  * @cmd: ioctl cmd
2834  * @arg: ioctl arguments
2835  *
2836  * Check permission for an ioctl operation on @file.  Note that @arg sometimes
2837  * represents a user space pointer; in other cases, it may be a simple integer
2838  * value.  When @arg represents a user space pointer, it should never be used
2839  * by the security module.
2840  *
2841  * Return: Returns 0 if permission is granted.
2842  */
2843 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2844 {
2845 	return call_int_hook(file_ioctl, file, cmd, arg);
2846 }
2847 EXPORT_SYMBOL_GPL(security_file_ioctl);
2848 
2849 /**
2850  * security_file_ioctl_compat() - Check if an ioctl is allowed in compat mode
2851  * @file: associated file
2852  * @cmd: ioctl cmd
2853  * @arg: ioctl arguments
2854  *
2855  * Compat version of security_file_ioctl() that correctly handles 32-bit
2856  * processes running on 64-bit kernels.
2857  *
2858  * Return: Returns 0 if permission is granted.
2859  */
2860 int security_file_ioctl_compat(struct file *file, unsigned int cmd,
2861 			       unsigned long arg)
2862 {
2863 	return call_int_hook(file_ioctl_compat, file, cmd, arg);
2864 }
2865 EXPORT_SYMBOL_GPL(security_file_ioctl_compat);
2866 
2867 static inline unsigned long mmap_prot(struct file *file, unsigned long prot)
2868 {
2869 	/*
2870 	 * Does we have PROT_READ and does the application expect
2871 	 * it to imply PROT_EXEC?  If not, nothing to talk about...
2872 	 */
2873 	if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ)
2874 		return prot;
2875 	if (!(current->personality & READ_IMPLIES_EXEC))
2876 		return prot;
2877 	/*
2878 	 * if that's an anonymous mapping, let it.
2879 	 */
2880 	if (!file)
2881 		return prot | PROT_EXEC;
2882 	/*
2883 	 * ditto if it's not on noexec mount, except that on !MMU we need
2884 	 * NOMMU_MAP_EXEC (== VM_MAYEXEC) in this case
2885 	 */
2886 	if (!path_noexec(&file->f_path)) {
2887 #ifndef CONFIG_MMU
2888 		if (file->f_op->mmap_capabilities) {
2889 			unsigned caps = file->f_op->mmap_capabilities(file);
2890 			if (!(caps & NOMMU_MAP_EXEC))
2891 				return prot;
2892 		}
2893 #endif
2894 		return prot | PROT_EXEC;
2895 	}
2896 	/* anything on noexec mount won't get PROT_EXEC */
2897 	return prot;
2898 }
2899 
2900 /**
2901  * security_mmap_file() - Check if mmap'ing a file is allowed
2902  * @file: file
2903  * @prot: protection applied by the kernel
2904  * @flags: flags
2905  *
2906  * Check permissions for a mmap operation.  The @file may be NULL, e.g. if
2907  * mapping anonymous memory.
2908  *
2909  * Return: Returns 0 if permission is granted.
2910  */
2911 int security_mmap_file(struct file *file, unsigned long prot,
2912 		       unsigned long flags)
2913 {
2914 	return call_int_hook(mmap_file, file, prot, mmap_prot(file, prot),
2915 			     flags);
2916 }
2917 
2918 /**
2919  * security_mmap_addr() - Check if mmap'ing an address is allowed
2920  * @addr: address
2921  *
2922  * Check permissions for a mmap operation at @addr.
2923  *
2924  * Return: Returns 0 if permission is granted.
2925  */
2926 int security_mmap_addr(unsigned long addr)
2927 {
2928 	return call_int_hook(mmap_addr, addr);
2929 }
2930 
2931 /**
2932  * security_file_mprotect() - Check if changing memory protections is allowed
2933  * @vma: memory region
2934  * @reqprot: application requested protection
2935  * @prot: protection applied by the kernel
2936  *
2937  * Check permissions before changing memory access permissions.
2938  *
2939  * Return: Returns 0 if permission is granted.
2940  */
2941 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
2942 			   unsigned long prot)
2943 {
2944 	return call_int_hook(file_mprotect, vma, reqprot, prot);
2945 }
2946 
2947 /**
2948  * security_file_lock() - Check if a file lock is allowed
2949  * @file: file
2950  * @cmd: lock operation (e.g. F_RDLCK, F_WRLCK)
2951  *
2952  * Check permission before performing file locking operations.  Note the hook
2953  * mediates both flock and fcntl style locks.
2954  *
2955  * Return: Returns 0 if permission is granted.
2956  */
2957 int security_file_lock(struct file *file, unsigned int cmd)
2958 {
2959 	return call_int_hook(file_lock, file, cmd);
2960 }
2961 
2962 /**
2963  * security_file_fcntl() - Check if fcntl() op is allowed
2964  * @file: file
2965  * @cmd: fcntl command
2966  * @arg: command argument
2967  *
2968  * Check permission before allowing the file operation specified by @cmd from
2969  * being performed on the file @file.  Note that @arg sometimes represents a
2970  * user space pointer; in other cases, it may be a simple integer value.  When
2971  * @arg represents a user space pointer, it should never be used by the
2972  * security module.
2973  *
2974  * Return: Returns 0 if permission is granted.
2975  */
2976 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
2977 {
2978 	return call_int_hook(file_fcntl, file, cmd, arg);
2979 }
2980 
2981 /**
2982  * security_file_set_fowner() - Set the file owner info in the LSM blob
2983  * @file: the file
2984  *
2985  * Save owner security information (typically from current->security) in
2986  * file->f_security for later use by the send_sigiotask hook.
2987  *
2988  * Return: Returns 0 on success.
2989  */
2990 void security_file_set_fowner(struct file *file)
2991 {
2992 	call_void_hook(file_set_fowner, file);
2993 }
2994 
2995 /**
2996  * security_file_send_sigiotask() - Check if sending SIGIO/SIGURG is allowed
2997  * @tsk: target task
2998  * @fown: signal sender
2999  * @sig: signal to be sent, SIGIO is sent if 0
3000  *
3001  * Check permission for the file owner @fown to send SIGIO or SIGURG to the
3002  * process @tsk.  Note that this hook is sometimes called from interrupt.  Note
3003  * that the fown_struct, @fown, is never outside the context of a struct file,
3004  * so the file structure (and associated security information) can always be
3005  * obtained: container_of(fown, struct file, f_owner).
3006  *
3007  * Return: Returns 0 if permission is granted.
3008  */
3009 int security_file_send_sigiotask(struct task_struct *tsk,
3010 				 struct fown_struct *fown, int sig)
3011 {
3012 	return call_int_hook(file_send_sigiotask, tsk, fown, sig);
3013 }
3014 
3015 /**
3016  * security_file_receive() - Check if receiving a file via IPC is allowed
3017  * @file: file being received
3018  *
3019  * This hook allows security modules to control the ability of a process to
3020  * receive an open file descriptor via socket IPC.
3021  *
3022  * Return: Returns 0 if permission is granted.
3023  */
3024 int security_file_receive(struct file *file)
3025 {
3026 	return call_int_hook(file_receive, file);
3027 }
3028 
3029 /**
3030  * security_file_open() - Save open() time state for late use by the LSM
3031  * @file:
3032  *
3033  * Save open-time permission checking state for later use upon file_permission,
3034  * and recheck access if anything has changed since inode_permission.
3035  *
3036  * Return: Returns 0 if permission is granted.
3037  */
3038 int security_file_open(struct file *file)
3039 {
3040 	int ret;
3041 
3042 	ret = call_int_hook(file_open, file);
3043 	if (ret)
3044 		return ret;
3045 
3046 	return fsnotify_open_perm(file);
3047 }
3048 
3049 /**
3050  * security_file_post_open() - Evaluate a file after it has been opened
3051  * @file: the file
3052  * @mask: access mask
3053  *
3054  * Evaluate an opened file and the access mask requested with open(). The hook
3055  * is useful for LSMs that require the file content to be available in order to
3056  * make decisions.
3057  *
3058  * Return: Returns 0 if permission is granted.
3059  */
3060 int security_file_post_open(struct file *file, int mask)
3061 {
3062 	return call_int_hook(file_post_open, file, mask);
3063 }
3064 EXPORT_SYMBOL_GPL(security_file_post_open);
3065 
3066 /**
3067  * security_file_truncate() - Check if truncating a file is allowed
3068  * @file: file
3069  *
3070  * Check permission before truncating a file, i.e. using ftruncate.  Note that
3071  * truncation permission may also be checked based on the path, using the
3072  * @path_truncate hook.
3073  *
3074  * Return: Returns 0 if permission is granted.
3075  */
3076 int security_file_truncate(struct file *file)
3077 {
3078 	return call_int_hook(file_truncate, file);
3079 }
3080 
3081 /**
3082  * security_task_alloc() - Allocate a task's LSM blob
3083  * @task: the task
3084  * @clone_flags: flags indicating what is being shared
3085  *
3086  * Handle allocation of task-related resources.
3087  *
3088  * Return: Returns a zero on success, negative values on failure.
3089  */
3090 int security_task_alloc(struct task_struct *task, unsigned long clone_flags)
3091 {
3092 	int rc = lsm_task_alloc(task);
3093 
3094 	if (rc)
3095 		return rc;
3096 	rc = call_int_hook(task_alloc, task, clone_flags);
3097 	if (unlikely(rc))
3098 		security_task_free(task);
3099 	return rc;
3100 }
3101 
3102 /**
3103  * security_task_free() - Free a task's LSM blob and related resources
3104  * @task: task
3105  *
3106  * Handle release of task-related resources.  Note that this can be called from
3107  * interrupt context.
3108  */
3109 void security_task_free(struct task_struct *task)
3110 {
3111 	call_void_hook(task_free, task);
3112 
3113 	kfree(task->security);
3114 	task->security = NULL;
3115 }
3116 
3117 /**
3118  * security_cred_alloc_blank() - Allocate the min memory to allow cred_transfer
3119  * @cred: credentials
3120  * @gfp: gfp flags
3121  *
3122  * Only allocate sufficient memory and attach to @cred such that
3123  * cred_transfer() will not get ENOMEM.
3124  *
3125  * Return: Returns 0 on success, negative values on failure.
3126  */
3127 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
3128 {
3129 	int rc = lsm_cred_alloc(cred, gfp);
3130 
3131 	if (rc)
3132 		return rc;
3133 
3134 	rc = call_int_hook(cred_alloc_blank, cred, gfp);
3135 	if (unlikely(rc))
3136 		security_cred_free(cred);
3137 	return rc;
3138 }
3139 
3140 /**
3141  * security_cred_free() - Free the cred's LSM blob and associated resources
3142  * @cred: credentials
3143  *
3144  * Deallocate and clear the cred->security field in a set of credentials.
3145  */
3146 void security_cred_free(struct cred *cred)
3147 {
3148 	/*
3149 	 * There is a failure case in prepare_creds() that
3150 	 * may result in a call here with ->security being NULL.
3151 	 */
3152 	if (unlikely(cred->security == NULL))
3153 		return;
3154 
3155 	call_void_hook(cred_free, cred);
3156 
3157 	kfree(cred->security);
3158 	cred->security = NULL;
3159 }
3160 
3161 /**
3162  * security_prepare_creds() - Prepare a new set of credentials
3163  * @new: new credentials
3164  * @old: original credentials
3165  * @gfp: gfp flags
3166  *
3167  * Prepare a new set of credentials by copying the data from the old set.
3168  *
3169  * Return: Returns 0 on success, negative values on failure.
3170  */
3171 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
3172 {
3173 	int rc = lsm_cred_alloc(new, gfp);
3174 
3175 	if (rc)
3176 		return rc;
3177 
3178 	rc = call_int_hook(cred_prepare, new, old, gfp);
3179 	if (unlikely(rc))
3180 		security_cred_free(new);
3181 	return rc;
3182 }
3183 
3184 /**
3185  * security_transfer_creds() - Transfer creds
3186  * @new: target credentials
3187  * @old: original credentials
3188  *
3189  * Transfer data from original creds to new creds.
3190  */
3191 void security_transfer_creds(struct cred *new, const struct cred *old)
3192 {
3193 	call_void_hook(cred_transfer, new, old);
3194 }
3195 
3196 /**
3197  * security_cred_getsecid() - Get the secid from a set of credentials
3198  * @c: credentials
3199  * @secid: secid value
3200  *
3201  * Retrieve the security identifier of the cred structure @c.  In case of
3202  * failure, @secid will be set to zero.
3203  */
3204 void security_cred_getsecid(const struct cred *c, u32 *secid)
3205 {
3206 	*secid = 0;
3207 	call_void_hook(cred_getsecid, c, secid);
3208 }
3209 EXPORT_SYMBOL(security_cred_getsecid);
3210 
3211 /**
3212  * security_kernel_act_as() - Set the kernel credentials to act as secid
3213  * @new: credentials
3214  * @secid: secid
3215  *
3216  * Set the credentials for a kernel service to act as (subjective context).
3217  * The current task must be the one that nominated @secid.
3218  *
3219  * Return: Returns 0 if successful.
3220  */
3221 int security_kernel_act_as(struct cred *new, u32 secid)
3222 {
3223 	return call_int_hook(kernel_act_as, new, secid);
3224 }
3225 
3226 /**
3227  * security_kernel_create_files_as() - Set file creation context using an inode
3228  * @new: target credentials
3229  * @inode: reference inode
3230  *
3231  * Set the file creation context in a set of credentials to be the same as the
3232  * objective context of the specified inode.  The current task must be the one
3233  * that nominated @inode.
3234  *
3235  * Return: Returns 0 if successful.
3236  */
3237 int security_kernel_create_files_as(struct cred *new, struct inode *inode)
3238 {
3239 	return call_int_hook(kernel_create_files_as, new, inode);
3240 }
3241 
3242 /**
3243  * security_kernel_module_request() - Check if loading a module is allowed
3244  * @kmod_name: module name
3245  *
3246  * Ability to trigger the kernel to automatically upcall to userspace for
3247  * userspace to load a kernel module with the given name.
3248  *
3249  * Return: Returns 0 if successful.
3250  */
3251 int security_kernel_module_request(char *kmod_name)
3252 {
3253 	return call_int_hook(kernel_module_request, kmod_name);
3254 }
3255 
3256 /**
3257  * security_kernel_read_file() - Read a file specified by userspace
3258  * @file: file
3259  * @id: file identifier
3260  * @contents: trust if security_kernel_post_read_file() will be called
3261  *
3262  * Read a file specified by userspace.
3263  *
3264  * Return: Returns 0 if permission is granted.
3265  */
3266 int security_kernel_read_file(struct file *file, enum kernel_read_file_id id,
3267 			      bool contents)
3268 {
3269 	return call_int_hook(kernel_read_file, file, id, contents);
3270 }
3271 EXPORT_SYMBOL_GPL(security_kernel_read_file);
3272 
3273 /**
3274  * security_kernel_post_read_file() - Read a file specified by userspace
3275  * @file: file
3276  * @buf: file contents
3277  * @size: size of file contents
3278  * @id: file identifier
3279  *
3280  * Read a file specified by userspace.  This must be paired with a prior call
3281  * to security_kernel_read_file() call that indicated this hook would also be
3282  * called, see security_kernel_read_file() for more information.
3283  *
3284  * Return: Returns 0 if permission is granted.
3285  */
3286 int security_kernel_post_read_file(struct file *file, char *buf, loff_t size,
3287 				   enum kernel_read_file_id id)
3288 {
3289 	return call_int_hook(kernel_post_read_file, file, buf, size, id);
3290 }
3291 EXPORT_SYMBOL_GPL(security_kernel_post_read_file);
3292 
3293 /**
3294  * security_kernel_load_data() - Load data provided by userspace
3295  * @id: data identifier
3296  * @contents: true if security_kernel_post_load_data() will be called
3297  *
3298  * Load data provided by userspace.
3299  *
3300  * Return: Returns 0 if permission is granted.
3301  */
3302 int security_kernel_load_data(enum kernel_load_data_id id, bool contents)
3303 {
3304 	return call_int_hook(kernel_load_data, id, contents);
3305 }
3306 EXPORT_SYMBOL_GPL(security_kernel_load_data);
3307 
3308 /**
3309  * security_kernel_post_load_data() - Load userspace data from a non-file source
3310  * @buf: data
3311  * @size: size of data
3312  * @id: data identifier
3313  * @description: text description of data, specific to the id value
3314  *
3315  * Load data provided by a non-file source (usually userspace buffer).  This
3316  * must be paired with a prior security_kernel_load_data() call that indicated
3317  * this hook would also be called, see security_kernel_load_data() for more
3318  * information.
3319  *
3320  * Return: Returns 0 if permission is granted.
3321  */
3322 int security_kernel_post_load_data(char *buf, loff_t size,
3323 				   enum kernel_load_data_id id,
3324 				   char *description)
3325 {
3326 	return call_int_hook(kernel_post_load_data, buf, size, id, description);
3327 }
3328 EXPORT_SYMBOL_GPL(security_kernel_post_load_data);
3329 
3330 /**
3331  * security_task_fix_setuid() - Update LSM with new user id attributes
3332  * @new: updated credentials
3333  * @old: credentials being replaced
3334  * @flags: LSM_SETID_* flag values
3335  *
3336  * Update the module's state after setting one or more of the user identity
3337  * attributes of the current process.  The @flags parameter indicates which of
3338  * the set*uid system calls invoked this hook.  If @new is the set of
3339  * credentials that will be installed.  Modifications should be made to this
3340  * rather than to @current->cred.
3341  *
3342  * Return: Returns 0 on success.
3343  */
3344 int security_task_fix_setuid(struct cred *new, const struct cred *old,
3345 			     int flags)
3346 {
3347 	return call_int_hook(task_fix_setuid, new, old, flags);
3348 }
3349 
3350 /**
3351  * security_task_fix_setgid() - Update LSM with new group id attributes
3352  * @new: updated credentials
3353  * @old: credentials being replaced
3354  * @flags: LSM_SETID_* flag value
3355  *
3356  * Update the module's state after setting one or more of the group identity
3357  * attributes of the current process.  The @flags parameter indicates which of
3358  * the set*gid system calls invoked this hook.  @new is the set of credentials
3359  * that will be installed.  Modifications should be made to this rather than to
3360  * @current->cred.
3361  *
3362  * Return: Returns 0 on success.
3363  */
3364 int security_task_fix_setgid(struct cred *new, const struct cred *old,
3365 			     int flags)
3366 {
3367 	return call_int_hook(task_fix_setgid, new, old, flags);
3368 }
3369 
3370 /**
3371  * security_task_fix_setgroups() - Update LSM with new supplementary groups
3372  * @new: updated credentials
3373  * @old: credentials being replaced
3374  *
3375  * Update the module's state after setting the supplementary group identity
3376  * attributes of the current process.  @new is the set of credentials that will
3377  * be installed.  Modifications should be made to this rather than to
3378  * @current->cred.
3379  *
3380  * Return: Returns 0 on success.
3381  */
3382 int security_task_fix_setgroups(struct cred *new, const struct cred *old)
3383 {
3384 	return call_int_hook(task_fix_setgroups, new, old);
3385 }
3386 
3387 /**
3388  * security_task_setpgid() - Check if setting the pgid is allowed
3389  * @p: task being modified
3390  * @pgid: new pgid
3391  *
3392  * Check permission before setting the process group identifier of the process
3393  * @p to @pgid.
3394  *
3395  * Return: Returns 0 if permission is granted.
3396  */
3397 int security_task_setpgid(struct task_struct *p, pid_t pgid)
3398 {
3399 	return call_int_hook(task_setpgid, p, pgid);
3400 }
3401 
3402 /**
3403  * security_task_getpgid() - Check if getting the pgid is allowed
3404  * @p: task
3405  *
3406  * Check permission before getting the process group identifier of the process
3407  * @p.
3408  *
3409  * Return: Returns 0 if permission is granted.
3410  */
3411 int security_task_getpgid(struct task_struct *p)
3412 {
3413 	return call_int_hook(task_getpgid, p);
3414 }
3415 
3416 /**
3417  * security_task_getsid() - Check if getting the session id is allowed
3418  * @p: task
3419  *
3420  * Check permission before getting the session identifier of the process @p.
3421  *
3422  * Return: Returns 0 if permission is granted.
3423  */
3424 int security_task_getsid(struct task_struct *p)
3425 {
3426 	return call_int_hook(task_getsid, p);
3427 }
3428 
3429 /**
3430  * security_current_getsecid_subj() - Get the current task's subjective secid
3431  * @secid: secid value
3432  *
3433  * Retrieve the subjective security identifier of the current task and return
3434  * it in @secid.  In case of failure, @secid will be set to zero.
3435  */
3436 void security_current_getsecid_subj(u32 *secid)
3437 {
3438 	*secid = 0;
3439 	call_void_hook(current_getsecid_subj, secid);
3440 }
3441 EXPORT_SYMBOL(security_current_getsecid_subj);
3442 
3443 /**
3444  * security_task_getsecid_obj() - Get a task's objective secid
3445  * @p: target task
3446  * @secid: secid value
3447  *
3448  * Retrieve the objective security identifier of the task_struct in @p and
3449  * return it in @secid. In case of failure, @secid will be set to zero.
3450  */
3451 void security_task_getsecid_obj(struct task_struct *p, u32 *secid)
3452 {
3453 	*secid = 0;
3454 	call_void_hook(task_getsecid_obj, p, secid);
3455 }
3456 EXPORT_SYMBOL(security_task_getsecid_obj);
3457 
3458 /**
3459  * security_task_setnice() - Check if setting a task's nice value is allowed
3460  * @p: target task
3461  * @nice: nice value
3462  *
3463  * Check permission before setting the nice value of @p to @nice.
3464  *
3465  * Return: Returns 0 if permission is granted.
3466  */
3467 int security_task_setnice(struct task_struct *p, int nice)
3468 {
3469 	return call_int_hook(task_setnice, p, nice);
3470 }
3471 
3472 /**
3473  * security_task_setioprio() - Check if setting a task's ioprio is allowed
3474  * @p: target task
3475  * @ioprio: ioprio value
3476  *
3477  * Check permission before setting the ioprio value of @p to @ioprio.
3478  *
3479  * Return: Returns 0 if permission is granted.
3480  */
3481 int security_task_setioprio(struct task_struct *p, int ioprio)
3482 {
3483 	return call_int_hook(task_setioprio, p, ioprio);
3484 }
3485 
3486 /**
3487  * security_task_getioprio() - Check if getting a task's ioprio is allowed
3488  * @p: task
3489  *
3490  * Check permission before getting the ioprio value of @p.
3491  *
3492  * Return: Returns 0 if permission is granted.
3493  */
3494 int security_task_getioprio(struct task_struct *p)
3495 {
3496 	return call_int_hook(task_getioprio, p);
3497 }
3498 
3499 /**
3500  * security_task_prlimit() - Check if get/setting resources limits is allowed
3501  * @cred: current task credentials
3502  * @tcred: target task credentials
3503  * @flags: LSM_PRLIMIT_* flag bits indicating a get/set/both
3504  *
3505  * Check permission before getting and/or setting the resource limits of
3506  * another task.
3507  *
3508  * Return: Returns 0 if permission is granted.
3509  */
3510 int security_task_prlimit(const struct cred *cred, const struct cred *tcred,
3511 			  unsigned int flags)
3512 {
3513 	return call_int_hook(task_prlimit, cred, tcred, flags);
3514 }
3515 
3516 /**
3517  * security_task_setrlimit() - Check if setting a new rlimit value is allowed
3518  * @p: target task's group leader
3519  * @resource: resource whose limit is being set
3520  * @new_rlim: new resource limit
3521  *
3522  * Check permission before setting the resource limits of process @p for
3523  * @resource to @new_rlim.  The old resource limit values can be examined by
3524  * dereferencing (p->signal->rlim + resource).
3525  *
3526  * Return: Returns 0 if permission is granted.
3527  */
3528 int security_task_setrlimit(struct task_struct *p, unsigned int resource,
3529 			    struct rlimit *new_rlim)
3530 {
3531 	return call_int_hook(task_setrlimit, p, resource, new_rlim);
3532 }
3533 
3534 /**
3535  * security_task_setscheduler() - Check if setting sched policy/param is allowed
3536  * @p: target task
3537  *
3538  * Check permission before setting scheduling policy and/or parameters of
3539  * process @p.
3540  *
3541  * Return: Returns 0 if permission is granted.
3542  */
3543 int security_task_setscheduler(struct task_struct *p)
3544 {
3545 	return call_int_hook(task_setscheduler, p);
3546 }
3547 
3548 /**
3549  * security_task_getscheduler() - Check if getting scheduling info is allowed
3550  * @p: target task
3551  *
3552  * Check permission before obtaining scheduling information for process @p.
3553  *
3554  * Return: Returns 0 if permission is granted.
3555  */
3556 int security_task_getscheduler(struct task_struct *p)
3557 {
3558 	return call_int_hook(task_getscheduler, p);
3559 }
3560 
3561 /**
3562  * security_task_movememory() - Check if moving memory is allowed
3563  * @p: task
3564  *
3565  * Check permission before moving memory owned by process @p.
3566  *
3567  * Return: Returns 0 if permission is granted.
3568  */
3569 int security_task_movememory(struct task_struct *p)
3570 {
3571 	return call_int_hook(task_movememory, p);
3572 }
3573 
3574 /**
3575  * security_task_kill() - Check if sending a signal is allowed
3576  * @p: target process
3577  * @info: signal information
3578  * @sig: signal value
3579  * @cred: credentials of the signal sender, NULL if @current
3580  *
3581  * Check permission before sending signal @sig to @p.  @info can be NULL, the
3582  * constant 1, or a pointer to a kernel_siginfo structure.  If @info is 1 or
3583  * SI_FROMKERNEL(info) is true, then the signal should be viewed as coming from
3584  * the kernel and should typically be permitted.  SIGIO signals are handled
3585  * separately by the send_sigiotask hook in file_security_ops.
3586  *
3587  * Return: Returns 0 if permission is granted.
3588  */
3589 int security_task_kill(struct task_struct *p, struct kernel_siginfo *info,
3590 		       int sig, const struct cred *cred)
3591 {
3592 	return call_int_hook(task_kill, p, info, sig, cred);
3593 }
3594 
3595 /**
3596  * security_task_prctl() - Check if a prctl op is allowed
3597  * @option: operation
3598  * @arg2: argument
3599  * @arg3: argument
3600  * @arg4: argument
3601  * @arg5: argument
3602  *
3603  * Check permission before performing a process control operation on the
3604  * current process.
3605  *
3606  * Return: Return -ENOSYS if no-one wanted to handle this op, any other value
3607  *         to cause prctl() to return immediately with that value.
3608  */
3609 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
3610 			unsigned long arg4, unsigned long arg5)
3611 {
3612 	int thisrc;
3613 	int rc = LSM_RET_DEFAULT(task_prctl);
3614 	struct security_hook_list *hp;
3615 
3616 	hlist_for_each_entry(hp, &security_hook_heads.task_prctl, list) {
3617 		thisrc = hp->hook.task_prctl(option, arg2, arg3, arg4, arg5);
3618 		if (thisrc != LSM_RET_DEFAULT(task_prctl)) {
3619 			rc = thisrc;
3620 			if (thisrc != 0)
3621 				break;
3622 		}
3623 	}
3624 	return rc;
3625 }
3626 
3627 /**
3628  * security_task_to_inode() - Set the security attributes of a task's inode
3629  * @p: task
3630  * @inode: inode
3631  *
3632  * Set the security attributes for an inode based on an associated task's
3633  * security attributes, e.g. for /proc/pid inodes.
3634  */
3635 void security_task_to_inode(struct task_struct *p, struct inode *inode)
3636 {
3637 	call_void_hook(task_to_inode, p, inode);
3638 }
3639 
3640 /**
3641  * security_create_user_ns() - Check if creating a new userns is allowed
3642  * @cred: prepared creds
3643  *
3644  * Check permission prior to creating a new user namespace.
3645  *
3646  * Return: Returns 0 if successful, otherwise < 0 error code.
3647  */
3648 int security_create_user_ns(const struct cred *cred)
3649 {
3650 	return call_int_hook(userns_create, cred);
3651 }
3652 
3653 /**
3654  * security_ipc_permission() - Check if sysv ipc access is allowed
3655  * @ipcp: ipc permission structure
3656  * @flag: requested permissions
3657  *
3658  * Check permissions for access to IPC.
3659  *
3660  * Return: Returns 0 if permission is granted.
3661  */
3662 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
3663 {
3664 	return call_int_hook(ipc_permission, ipcp, flag);
3665 }
3666 
3667 /**
3668  * security_ipc_getsecid() - Get the sysv ipc object's secid
3669  * @ipcp: ipc permission structure
3670  * @secid: secid pointer
3671  *
3672  * Get the secid associated with the ipc object.  In case of failure, @secid
3673  * will be set to zero.
3674  */
3675 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
3676 {
3677 	*secid = 0;
3678 	call_void_hook(ipc_getsecid, ipcp, secid);
3679 }
3680 
3681 /**
3682  * security_msg_msg_alloc() - Allocate a sysv ipc message LSM blob
3683  * @msg: message structure
3684  *
3685  * Allocate and attach a security structure to the msg->security field.  The
3686  * security field is initialized to NULL when the structure is first created.
3687  *
3688  * Return: Return 0 if operation was successful and permission is granted.
3689  */
3690 int security_msg_msg_alloc(struct msg_msg *msg)
3691 {
3692 	int rc = lsm_msg_msg_alloc(msg);
3693 
3694 	if (unlikely(rc))
3695 		return rc;
3696 	rc = call_int_hook(msg_msg_alloc_security, msg);
3697 	if (unlikely(rc))
3698 		security_msg_msg_free(msg);
3699 	return rc;
3700 }
3701 
3702 /**
3703  * security_msg_msg_free() - Free a sysv ipc message LSM blob
3704  * @msg: message structure
3705  *
3706  * Deallocate the security structure for this message.
3707  */
3708 void security_msg_msg_free(struct msg_msg *msg)
3709 {
3710 	call_void_hook(msg_msg_free_security, msg);
3711 	kfree(msg->security);
3712 	msg->security = NULL;
3713 }
3714 
3715 /**
3716  * security_msg_queue_alloc() - Allocate a sysv ipc msg queue LSM blob
3717  * @msq: sysv ipc permission structure
3718  *
3719  * Allocate and attach a security structure to @msg. The security field is
3720  * initialized to NULL when the structure is first created.
3721  *
3722  * Return: Returns 0 if operation was successful and permission is granted.
3723  */
3724 int security_msg_queue_alloc(struct kern_ipc_perm *msq)
3725 {
3726 	int rc = lsm_ipc_alloc(msq);
3727 
3728 	if (unlikely(rc))
3729 		return rc;
3730 	rc = call_int_hook(msg_queue_alloc_security, msq);
3731 	if (unlikely(rc))
3732 		security_msg_queue_free(msq);
3733 	return rc;
3734 }
3735 
3736 /**
3737  * security_msg_queue_free() - Free a sysv ipc msg queue LSM blob
3738  * @msq: sysv ipc permission structure
3739  *
3740  * Deallocate security field @perm->security for the message queue.
3741  */
3742 void security_msg_queue_free(struct kern_ipc_perm *msq)
3743 {
3744 	call_void_hook(msg_queue_free_security, msq);
3745 	kfree(msq->security);
3746 	msq->security = NULL;
3747 }
3748 
3749 /**
3750  * security_msg_queue_associate() - Check if a msg queue operation is allowed
3751  * @msq: sysv ipc permission structure
3752  * @msqflg: operation flags
3753  *
3754  * Check permission when a message queue is requested through the msgget system
3755  * call. This hook is only called when returning the message queue identifier
3756  * for an existing message queue, not when a new message queue is created.
3757  *
3758  * Return: Return 0 if permission is granted.
3759  */
3760 int security_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
3761 {
3762 	return call_int_hook(msg_queue_associate, msq, msqflg);
3763 }
3764 
3765 /**
3766  * security_msg_queue_msgctl() - Check if a msg queue operation is allowed
3767  * @msq: sysv ipc permission structure
3768  * @cmd: operation
3769  *
3770  * Check permission when a message control operation specified by @cmd is to be
3771  * performed on the message queue with permissions.
3772  *
3773  * Return: Returns 0 if permission is granted.
3774  */
3775 int security_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
3776 {
3777 	return call_int_hook(msg_queue_msgctl, msq, cmd);
3778 }
3779 
3780 /**
3781  * security_msg_queue_msgsnd() - Check if sending a sysv ipc message is allowed
3782  * @msq: sysv ipc permission structure
3783  * @msg: message
3784  * @msqflg: operation flags
3785  *
3786  * Check permission before a message, @msg, is enqueued on the message queue
3787  * with permissions specified in @msq.
3788  *
3789  * Return: Returns 0 if permission is granted.
3790  */
3791 int security_msg_queue_msgsnd(struct kern_ipc_perm *msq,
3792 			      struct msg_msg *msg, int msqflg)
3793 {
3794 	return call_int_hook(msg_queue_msgsnd, msq, msg, msqflg);
3795 }
3796 
3797 /**
3798  * security_msg_queue_msgrcv() - Check if receiving a sysv ipc msg is allowed
3799  * @msq: sysv ipc permission structure
3800  * @msg: message
3801  * @target: target task
3802  * @type: type of message requested
3803  * @mode: operation flags
3804  *
3805  * Check permission before a message, @msg, is removed from the message	queue.
3806  * The @target task structure contains a pointer to the process that will be
3807  * receiving the message (not equal to the current process when inline receives
3808  * are being performed).
3809  *
3810  * Return: Returns 0 if permission is granted.
3811  */
3812 int security_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
3813 			      struct task_struct *target, long type, int mode)
3814 {
3815 	return call_int_hook(msg_queue_msgrcv, msq, msg, target, type, mode);
3816 }
3817 
3818 /**
3819  * security_shm_alloc() - Allocate a sysv shm LSM blob
3820  * @shp: sysv ipc permission structure
3821  *
3822  * Allocate and attach a security structure to the @shp security field.  The
3823  * security field is initialized to NULL when the structure is first created.
3824  *
3825  * Return: Returns 0 if operation was successful and permission is granted.
3826  */
3827 int security_shm_alloc(struct kern_ipc_perm *shp)
3828 {
3829 	int rc = lsm_ipc_alloc(shp);
3830 
3831 	if (unlikely(rc))
3832 		return rc;
3833 	rc = call_int_hook(shm_alloc_security, shp);
3834 	if (unlikely(rc))
3835 		security_shm_free(shp);
3836 	return rc;
3837 }
3838 
3839 /**
3840  * security_shm_free() - Free a sysv shm LSM blob
3841  * @shp: sysv ipc permission structure
3842  *
3843  * Deallocate the security structure @perm->security for the memory segment.
3844  */
3845 void security_shm_free(struct kern_ipc_perm *shp)
3846 {
3847 	call_void_hook(shm_free_security, shp);
3848 	kfree(shp->security);
3849 	shp->security = NULL;
3850 }
3851 
3852 /**
3853  * security_shm_associate() - Check if a sysv shm operation is allowed
3854  * @shp: sysv ipc permission structure
3855  * @shmflg: operation flags
3856  *
3857  * Check permission when a shared memory region is requested through the shmget
3858  * system call. This hook is only called when returning the shared memory
3859  * region identifier for an existing region, not when a new shared memory
3860  * region is created.
3861  *
3862  * Return: Returns 0 if permission is granted.
3863  */
3864 int security_shm_associate(struct kern_ipc_perm *shp, int shmflg)
3865 {
3866 	return call_int_hook(shm_associate, shp, shmflg);
3867 }
3868 
3869 /**
3870  * security_shm_shmctl() - Check if a sysv shm operation is allowed
3871  * @shp: sysv ipc permission structure
3872  * @cmd: operation
3873  *
3874  * Check permission when a shared memory control operation specified by @cmd is
3875  * to be performed on the shared memory region with permissions in @shp.
3876  *
3877  * Return: Return 0 if permission is granted.
3878  */
3879 int security_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
3880 {
3881 	return call_int_hook(shm_shmctl, shp, cmd);
3882 }
3883 
3884 /**
3885  * security_shm_shmat() - Check if a sysv shm attach operation is allowed
3886  * @shp: sysv ipc permission structure
3887  * @shmaddr: address of memory region to attach
3888  * @shmflg: operation flags
3889  *
3890  * Check permissions prior to allowing the shmat system call to attach the
3891  * shared memory segment with permissions @shp to the data segment of the
3892  * calling process. The attaching address is specified by @shmaddr.
3893  *
3894  * Return: Returns 0 if permission is granted.
3895  */
3896 int security_shm_shmat(struct kern_ipc_perm *shp,
3897 		       char __user *shmaddr, int shmflg)
3898 {
3899 	return call_int_hook(shm_shmat, shp, shmaddr, shmflg);
3900 }
3901 
3902 /**
3903  * security_sem_alloc() - Allocate a sysv semaphore LSM blob
3904  * @sma: sysv ipc permission structure
3905  *
3906  * Allocate and attach a security structure to the @sma security field. The
3907  * security field is initialized to NULL when the structure is first created.
3908  *
3909  * Return: Returns 0 if operation was successful and permission is granted.
3910  */
3911 int security_sem_alloc(struct kern_ipc_perm *sma)
3912 {
3913 	int rc = lsm_ipc_alloc(sma);
3914 
3915 	if (unlikely(rc))
3916 		return rc;
3917 	rc = call_int_hook(sem_alloc_security, sma);
3918 	if (unlikely(rc))
3919 		security_sem_free(sma);
3920 	return rc;
3921 }
3922 
3923 /**
3924  * security_sem_free() - Free a sysv semaphore LSM blob
3925  * @sma: sysv ipc permission structure
3926  *
3927  * Deallocate security structure @sma->security for the semaphore.
3928  */
3929 void security_sem_free(struct kern_ipc_perm *sma)
3930 {
3931 	call_void_hook(sem_free_security, sma);
3932 	kfree(sma->security);
3933 	sma->security = NULL;
3934 }
3935 
3936 /**
3937  * security_sem_associate() - Check if a sysv semaphore operation is allowed
3938  * @sma: sysv ipc permission structure
3939  * @semflg: operation flags
3940  *
3941  * Check permission when a semaphore is requested through the semget system
3942  * call. This hook is only called when returning the semaphore identifier for
3943  * an existing semaphore, not when a new one must be created.
3944  *
3945  * Return: Returns 0 if permission is granted.
3946  */
3947 int security_sem_associate(struct kern_ipc_perm *sma, int semflg)
3948 {
3949 	return call_int_hook(sem_associate, sma, semflg);
3950 }
3951 
3952 /**
3953  * security_sem_semctl() - Check if a sysv semaphore operation is allowed
3954  * @sma: sysv ipc permission structure
3955  * @cmd: operation
3956  *
3957  * Check permission when a semaphore operation specified by @cmd is to be
3958  * performed on the semaphore.
3959  *
3960  * Return: Returns 0 if permission is granted.
3961  */
3962 int security_sem_semctl(struct kern_ipc_perm *sma, int cmd)
3963 {
3964 	return call_int_hook(sem_semctl, sma, cmd);
3965 }
3966 
3967 /**
3968  * security_sem_semop() - Check if a sysv semaphore operation is allowed
3969  * @sma: sysv ipc permission structure
3970  * @sops: operations to perform
3971  * @nsops: number of operations
3972  * @alter: flag indicating changes will be made
3973  *
3974  * Check permissions before performing operations on members of the semaphore
3975  * set. If the @alter flag is nonzero, the semaphore set may be modified.
3976  *
3977  * Return: Returns 0 if permission is granted.
3978  */
3979 int security_sem_semop(struct kern_ipc_perm *sma, struct sembuf *sops,
3980 		       unsigned nsops, int alter)
3981 {
3982 	return call_int_hook(sem_semop, sma, sops, nsops, alter);
3983 }
3984 
3985 /**
3986  * security_d_instantiate() - Populate an inode's LSM state based on a dentry
3987  * @dentry: dentry
3988  * @inode: inode
3989  *
3990  * Fill in @inode security information for a @dentry if allowed.
3991  */
3992 void security_d_instantiate(struct dentry *dentry, struct inode *inode)
3993 {
3994 	if (unlikely(inode && IS_PRIVATE(inode)))
3995 		return;
3996 	call_void_hook(d_instantiate, dentry, inode);
3997 }
3998 EXPORT_SYMBOL(security_d_instantiate);
3999 
4000 /*
4001  * Please keep this in sync with it's counterpart in security/lsm_syscalls.c
4002  */
4003 
4004 /**
4005  * security_getselfattr - Read an LSM attribute of the current process.
4006  * @attr: which attribute to return
4007  * @uctx: the user-space destination for the information, or NULL
4008  * @size: pointer to the size of space available to receive the data
4009  * @flags: special handling options. LSM_FLAG_SINGLE indicates that only
4010  * attributes associated with the LSM identified in the passed @ctx be
4011  * reported.
4012  *
4013  * A NULL value for @uctx can be used to get both the number of attributes
4014  * and the size of the data.
4015  *
4016  * Returns the number of attributes found on success, negative value
4017  * on error. @size is reset to the total size of the data.
4018  * If @size is insufficient to contain the data -E2BIG is returned.
4019  */
4020 int security_getselfattr(unsigned int attr, struct lsm_ctx __user *uctx,
4021 			 u32 __user *size, u32 flags)
4022 {
4023 	struct security_hook_list *hp;
4024 	struct lsm_ctx lctx = { .id = LSM_ID_UNDEF, };
4025 	u8 __user *base = (u8 __user *)uctx;
4026 	u32 entrysize;
4027 	u32 total = 0;
4028 	u32 left;
4029 	bool toobig = false;
4030 	bool single = false;
4031 	int count = 0;
4032 	int rc;
4033 
4034 	if (attr == LSM_ATTR_UNDEF)
4035 		return -EINVAL;
4036 	if (size == NULL)
4037 		return -EINVAL;
4038 	if (get_user(left, size))
4039 		return -EFAULT;
4040 
4041 	if (flags) {
4042 		/*
4043 		 * Only flag supported is LSM_FLAG_SINGLE
4044 		 */
4045 		if (flags != LSM_FLAG_SINGLE || !uctx)
4046 			return -EINVAL;
4047 		if (copy_from_user(&lctx, uctx, sizeof(lctx)))
4048 			return -EFAULT;
4049 		/*
4050 		 * If the LSM ID isn't specified it is an error.
4051 		 */
4052 		if (lctx.id == LSM_ID_UNDEF)
4053 			return -EINVAL;
4054 		single = true;
4055 	}
4056 
4057 	/*
4058 	 * In the usual case gather all the data from the LSMs.
4059 	 * In the single case only get the data from the LSM specified.
4060 	 */
4061 	hlist_for_each_entry(hp, &security_hook_heads.getselfattr, list) {
4062 		if (single && lctx.id != hp->lsmid->id)
4063 			continue;
4064 		entrysize = left;
4065 		if (base)
4066 			uctx = (struct lsm_ctx __user *)(base + total);
4067 		rc = hp->hook.getselfattr(attr, uctx, &entrysize, flags);
4068 		if (rc == -EOPNOTSUPP) {
4069 			rc = 0;
4070 			continue;
4071 		}
4072 		if (rc == -E2BIG) {
4073 			rc = 0;
4074 			left = 0;
4075 			toobig = true;
4076 		} else if (rc < 0)
4077 			return rc;
4078 		else
4079 			left -= entrysize;
4080 
4081 		total += entrysize;
4082 		count += rc;
4083 		if (single)
4084 			break;
4085 	}
4086 	if (put_user(total, size))
4087 		return -EFAULT;
4088 	if (toobig)
4089 		return -E2BIG;
4090 	if (count == 0)
4091 		return LSM_RET_DEFAULT(getselfattr);
4092 	return count;
4093 }
4094 
4095 /*
4096  * Please keep this in sync with it's counterpart in security/lsm_syscalls.c
4097  */
4098 
4099 /**
4100  * security_setselfattr - Set an LSM attribute on the current process.
4101  * @attr: which attribute to set
4102  * @uctx: the user-space source for the information
4103  * @size: the size of the data
4104  * @flags: reserved for future use, must be 0
4105  *
4106  * Set an LSM attribute for the current process. The LSM, attribute
4107  * and new value are included in @uctx.
4108  *
4109  * Returns 0 on success, -EINVAL if the input is inconsistent, -EFAULT
4110  * if the user buffer is inaccessible, E2BIG if size is too big, or an
4111  * LSM specific failure.
4112  */
4113 int security_setselfattr(unsigned int attr, struct lsm_ctx __user *uctx,
4114 			 u32 size, u32 flags)
4115 {
4116 	struct security_hook_list *hp;
4117 	struct lsm_ctx *lctx;
4118 	int rc = LSM_RET_DEFAULT(setselfattr);
4119 	u64 required_len;
4120 
4121 	if (flags)
4122 		return -EINVAL;
4123 	if (size < sizeof(*lctx))
4124 		return -EINVAL;
4125 	if (size > PAGE_SIZE)
4126 		return -E2BIG;
4127 
4128 	lctx = memdup_user(uctx, size);
4129 	if (IS_ERR(lctx))
4130 		return PTR_ERR(lctx);
4131 
4132 	if (size < lctx->len ||
4133 	    check_add_overflow(sizeof(*lctx), lctx->ctx_len, &required_len) ||
4134 	    lctx->len < required_len) {
4135 		rc = -EINVAL;
4136 		goto free_out;
4137 	}
4138 
4139 	hlist_for_each_entry(hp, &security_hook_heads.setselfattr, list)
4140 		if ((hp->lsmid->id) == lctx->id) {
4141 			rc = hp->hook.setselfattr(attr, lctx, size, flags);
4142 			break;
4143 		}
4144 
4145 free_out:
4146 	kfree(lctx);
4147 	return rc;
4148 }
4149 
4150 /**
4151  * security_getprocattr() - Read an attribute for a task
4152  * @p: the task
4153  * @lsmid: LSM identification
4154  * @name: attribute name
4155  * @value: attribute value
4156  *
4157  * Read attribute @name for task @p and store it into @value if allowed.
4158  *
4159  * Return: Returns the length of @value on success, a negative value otherwise.
4160  */
4161 int security_getprocattr(struct task_struct *p, int lsmid, const char *name,
4162 			 char **value)
4163 {
4164 	struct security_hook_list *hp;
4165 
4166 	hlist_for_each_entry(hp, &security_hook_heads.getprocattr, list) {
4167 		if (lsmid != 0 && lsmid != hp->lsmid->id)
4168 			continue;
4169 		return hp->hook.getprocattr(p, name, value);
4170 	}
4171 	return LSM_RET_DEFAULT(getprocattr);
4172 }
4173 
4174 /**
4175  * security_setprocattr() - Set an attribute for a task
4176  * @lsmid: LSM identification
4177  * @name: attribute name
4178  * @value: attribute value
4179  * @size: attribute value size
4180  *
4181  * Write (set) the current task's attribute @name to @value, size @size if
4182  * allowed.
4183  *
4184  * Return: Returns bytes written on success, a negative value otherwise.
4185  */
4186 int security_setprocattr(int lsmid, const char *name, void *value, size_t size)
4187 {
4188 	struct security_hook_list *hp;
4189 
4190 	hlist_for_each_entry(hp, &security_hook_heads.setprocattr, list) {
4191 		if (lsmid != 0 && lsmid != hp->lsmid->id)
4192 			continue;
4193 		return hp->hook.setprocattr(name, value, size);
4194 	}
4195 	return LSM_RET_DEFAULT(setprocattr);
4196 }
4197 
4198 /**
4199  * security_netlink_send() - Save info and check if netlink sending is allowed
4200  * @sk: sending socket
4201  * @skb: netlink message
4202  *
4203  * Save security information for a netlink message so that permission checking
4204  * can be performed when the message is processed.  The security information
4205  * can be saved using the eff_cap field of the netlink_skb_parms structure.
4206  * Also may be used to provide fine grained control over message transmission.
4207  *
4208  * Return: Returns 0 if the information was successfully saved and message is
4209  *         allowed to be transmitted.
4210  */
4211 int security_netlink_send(struct sock *sk, struct sk_buff *skb)
4212 {
4213 	return call_int_hook(netlink_send, sk, skb);
4214 }
4215 
4216 /**
4217  * security_ismaclabel() - Check if the named attribute is a MAC label
4218  * @name: full extended attribute name
4219  *
4220  * Check if the extended attribute specified by @name represents a MAC label.
4221  *
4222  * Return: Returns 1 if name is a MAC attribute otherwise returns 0.
4223  */
4224 int security_ismaclabel(const char *name)
4225 {
4226 	return call_int_hook(ismaclabel, name);
4227 }
4228 EXPORT_SYMBOL(security_ismaclabel);
4229 
4230 /**
4231  * security_secid_to_secctx() - Convert a secid to a secctx
4232  * @secid: secid
4233  * @secdata: secctx
4234  * @seclen: secctx length
4235  *
4236  * Convert secid to security context.  If @secdata is NULL the length of the
4237  * result will be returned in @seclen, but no @secdata will be returned.  This
4238  * does mean that the length could change between calls to check the length and
4239  * the next call which actually allocates and returns the @secdata.
4240  *
4241  * Return: Return 0 on success, error on failure.
4242  */
4243 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
4244 {
4245 	return call_int_hook(secid_to_secctx, secid, secdata, seclen);
4246 }
4247 EXPORT_SYMBOL(security_secid_to_secctx);
4248 
4249 /**
4250  * security_secctx_to_secid() - Convert a secctx to a secid
4251  * @secdata: secctx
4252  * @seclen: length of secctx
4253  * @secid: secid
4254  *
4255  * Convert security context to secid.
4256  *
4257  * Return: Returns 0 on success, error on failure.
4258  */
4259 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
4260 {
4261 	*secid = 0;
4262 	return call_int_hook(secctx_to_secid, secdata, seclen, secid);
4263 }
4264 EXPORT_SYMBOL(security_secctx_to_secid);
4265 
4266 /**
4267  * security_release_secctx() - Free a secctx buffer
4268  * @secdata: secctx
4269  * @seclen: length of secctx
4270  *
4271  * Release the security context.
4272  */
4273 void security_release_secctx(char *secdata, u32 seclen)
4274 {
4275 	call_void_hook(release_secctx, secdata, seclen);
4276 }
4277 EXPORT_SYMBOL(security_release_secctx);
4278 
4279 /**
4280  * security_inode_invalidate_secctx() - Invalidate an inode's security label
4281  * @inode: inode
4282  *
4283  * Notify the security module that it must revalidate the security context of
4284  * an inode.
4285  */
4286 void security_inode_invalidate_secctx(struct inode *inode)
4287 {
4288 	call_void_hook(inode_invalidate_secctx, inode);
4289 }
4290 EXPORT_SYMBOL(security_inode_invalidate_secctx);
4291 
4292 /**
4293  * security_inode_notifysecctx() - Notify the LSM of an inode's security label
4294  * @inode: inode
4295  * @ctx: secctx
4296  * @ctxlen: length of secctx
4297  *
4298  * Notify the security module of what the security context of an inode should
4299  * be.  Initializes the incore security context managed by the security module
4300  * for this inode.  Example usage: NFS client invokes this hook to initialize
4301  * the security context in its incore inode to the value provided by the server
4302  * for the file when the server returned the file's attributes to the client.
4303  * Must be called with inode->i_mutex locked.
4304  *
4305  * Return: Returns 0 on success, error on failure.
4306  */
4307 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
4308 {
4309 	return call_int_hook(inode_notifysecctx, inode, ctx, ctxlen);
4310 }
4311 EXPORT_SYMBOL(security_inode_notifysecctx);
4312 
4313 /**
4314  * security_inode_setsecctx() - Change the security label of an inode
4315  * @dentry: inode
4316  * @ctx: secctx
4317  * @ctxlen: length of secctx
4318  *
4319  * Change the security context of an inode.  Updates the incore security
4320  * context managed by the security module and invokes the fs code as needed
4321  * (via __vfs_setxattr_noperm) to update any backing xattrs that represent the
4322  * context.  Example usage: NFS server invokes this hook to change the security
4323  * context in its incore inode and on the backing filesystem to a value
4324  * provided by the client on a SETATTR operation.  Must be called with
4325  * inode->i_mutex locked.
4326  *
4327  * Return: Returns 0 on success, error on failure.
4328  */
4329 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
4330 {
4331 	return call_int_hook(inode_setsecctx, dentry, ctx, ctxlen);
4332 }
4333 EXPORT_SYMBOL(security_inode_setsecctx);
4334 
4335 /**
4336  * security_inode_getsecctx() - Get the security label of an inode
4337  * @inode: inode
4338  * @ctx: secctx
4339  * @ctxlen: length of secctx
4340  *
4341  * On success, returns 0 and fills out @ctx and @ctxlen with the security
4342  * context for the given @inode.
4343  *
4344  * Return: Returns 0 on success, error on failure.
4345  */
4346 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
4347 {
4348 	return call_int_hook(inode_getsecctx, inode, ctx, ctxlen);
4349 }
4350 EXPORT_SYMBOL(security_inode_getsecctx);
4351 
4352 #ifdef CONFIG_WATCH_QUEUE
4353 /**
4354  * security_post_notification() - Check if a watch notification can be posted
4355  * @w_cred: credentials of the task that set the watch
4356  * @cred: credentials of the task which triggered the watch
4357  * @n: the notification
4358  *
4359  * Check to see if a watch notification can be posted to a particular queue.
4360  *
4361  * Return: Returns 0 if permission is granted.
4362  */
4363 int security_post_notification(const struct cred *w_cred,
4364 			       const struct cred *cred,
4365 			       struct watch_notification *n)
4366 {
4367 	return call_int_hook(post_notification, w_cred, cred, n);
4368 }
4369 #endif /* CONFIG_WATCH_QUEUE */
4370 
4371 #ifdef CONFIG_KEY_NOTIFICATIONS
4372 /**
4373  * security_watch_key() - Check if a task is allowed to watch for key events
4374  * @key: the key to watch
4375  *
4376  * Check to see if a process is allowed to watch for event notifications from
4377  * a key or keyring.
4378  *
4379  * Return: Returns 0 if permission is granted.
4380  */
4381 int security_watch_key(struct key *key)
4382 {
4383 	return call_int_hook(watch_key, key);
4384 }
4385 #endif /* CONFIG_KEY_NOTIFICATIONS */
4386 
4387 #ifdef CONFIG_SECURITY_NETWORK
4388 /**
4389  * security_unix_stream_connect() - Check if a AF_UNIX stream is allowed
4390  * @sock: originating sock
4391  * @other: peer sock
4392  * @newsk: new sock
4393  *
4394  * Check permissions before establishing a Unix domain stream connection
4395  * between @sock and @other.
4396  *
4397  * The @unix_stream_connect and @unix_may_send hooks were necessary because
4398  * Linux provides an alternative to the conventional file name space for Unix
4399  * domain sockets.  Whereas binding and connecting to sockets in the file name
4400  * space is mediated by the typical file permissions (and caught by the mknod
4401  * and permission hooks in inode_security_ops), binding and connecting to
4402  * sockets in the abstract name space is completely unmediated.  Sufficient
4403  * control of Unix domain sockets in the abstract name space isn't possible
4404  * using only the socket layer hooks, since we need to know the actual target
4405  * socket, which is not looked up until we are inside the af_unix code.
4406  *
4407  * Return: Returns 0 if permission is granted.
4408  */
4409 int security_unix_stream_connect(struct sock *sock, struct sock *other,
4410 				 struct sock *newsk)
4411 {
4412 	return call_int_hook(unix_stream_connect, sock, other, newsk);
4413 }
4414 EXPORT_SYMBOL(security_unix_stream_connect);
4415 
4416 /**
4417  * security_unix_may_send() - Check if AF_UNIX socket can send datagrams
4418  * @sock: originating sock
4419  * @other: peer sock
4420  *
4421  * Check permissions before connecting or sending datagrams from @sock to
4422  * @other.
4423  *
4424  * The @unix_stream_connect and @unix_may_send hooks were necessary because
4425  * Linux provides an alternative to the conventional file name space for Unix
4426  * domain sockets.  Whereas binding and connecting to sockets in the file name
4427  * space is mediated by the typical file permissions (and caught by the mknod
4428  * and permission hooks in inode_security_ops), binding and connecting to
4429  * sockets in the abstract name space is completely unmediated.  Sufficient
4430  * control of Unix domain sockets in the abstract name space isn't possible
4431  * using only the socket layer hooks, since we need to know the actual target
4432  * socket, which is not looked up until we are inside the af_unix code.
4433  *
4434  * Return: Returns 0 if permission is granted.
4435  */
4436 int security_unix_may_send(struct socket *sock,  struct socket *other)
4437 {
4438 	return call_int_hook(unix_may_send, sock, other);
4439 }
4440 EXPORT_SYMBOL(security_unix_may_send);
4441 
4442 /**
4443  * security_socket_create() - Check if creating a new socket is allowed
4444  * @family: protocol family
4445  * @type: communications type
4446  * @protocol: requested protocol
4447  * @kern: set to 1 if a kernel socket is requested
4448  *
4449  * Check permissions prior to creating a new socket.
4450  *
4451  * Return: Returns 0 if permission is granted.
4452  */
4453 int security_socket_create(int family, int type, int protocol, int kern)
4454 {
4455 	return call_int_hook(socket_create, family, type, protocol, kern);
4456 }
4457 
4458 /**
4459  * security_socket_post_create() - Initialize a newly created socket
4460  * @sock: socket
4461  * @family: protocol family
4462  * @type: communications type
4463  * @protocol: requested protocol
4464  * @kern: set to 1 if a kernel socket is requested
4465  *
4466  * This hook allows a module to update or allocate a per-socket security
4467  * structure. Note that the security field was not added directly to the socket
4468  * structure, but rather, the socket security information is stored in the
4469  * associated inode.  Typically, the inode alloc_security hook will allocate
4470  * and attach security information to SOCK_INODE(sock)->i_security.  This hook
4471  * may be used to update the SOCK_INODE(sock)->i_security field with additional
4472  * information that wasn't available when the inode was allocated.
4473  *
4474  * Return: Returns 0 if permission is granted.
4475  */
4476 int security_socket_post_create(struct socket *sock, int family,
4477 				int type, int protocol, int kern)
4478 {
4479 	return call_int_hook(socket_post_create, sock, family, type,
4480 			     protocol, kern);
4481 }
4482 
4483 /**
4484  * security_socket_socketpair() - Check if creating a socketpair is allowed
4485  * @socka: first socket
4486  * @sockb: second socket
4487  *
4488  * Check permissions before creating a fresh pair of sockets.
4489  *
4490  * Return: Returns 0 if permission is granted and the connection was
4491  *         established.
4492  */
4493 int security_socket_socketpair(struct socket *socka, struct socket *sockb)
4494 {
4495 	return call_int_hook(socket_socketpair, socka, sockb);
4496 }
4497 EXPORT_SYMBOL(security_socket_socketpair);
4498 
4499 /**
4500  * security_socket_bind() - Check if a socket bind operation is allowed
4501  * @sock: socket
4502  * @address: requested bind address
4503  * @addrlen: length of address
4504  *
4505  * Check permission before socket protocol layer bind operation is performed
4506  * and the socket @sock is bound to the address specified in the @address
4507  * parameter.
4508  *
4509  * Return: Returns 0 if permission is granted.
4510  */
4511 int security_socket_bind(struct socket *sock,
4512 			 struct sockaddr *address, int addrlen)
4513 {
4514 	return call_int_hook(socket_bind, sock, address, addrlen);
4515 }
4516 
4517 /**
4518  * security_socket_connect() - Check if a socket connect operation is allowed
4519  * @sock: socket
4520  * @address: address of remote connection point
4521  * @addrlen: length of address
4522  *
4523  * Check permission before socket protocol layer connect operation attempts to
4524  * connect socket @sock to a remote address, @address.
4525  *
4526  * Return: Returns 0 if permission is granted.
4527  */
4528 int security_socket_connect(struct socket *sock,
4529 			    struct sockaddr *address, int addrlen)
4530 {
4531 	return call_int_hook(socket_connect, sock, address, addrlen);
4532 }
4533 
4534 /**
4535  * security_socket_listen() - Check if a socket is allowed to listen
4536  * @sock: socket
4537  * @backlog: connection queue size
4538  *
4539  * Check permission before socket protocol layer listen operation.
4540  *
4541  * Return: Returns 0 if permission is granted.
4542  */
4543 int security_socket_listen(struct socket *sock, int backlog)
4544 {
4545 	return call_int_hook(socket_listen, sock, backlog);
4546 }
4547 
4548 /**
4549  * security_socket_accept() - Check if a socket is allowed to accept connections
4550  * @sock: listening socket
4551  * @newsock: newly creation connection socket
4552  *
4553  * Check permission before accepting a new connection.  Note that the new
4554  * socket, @newsock, has been created and some information copied to it, but
4555  * the accept operation has not actually been performed.
4556  *
4557  * Return: Returns 0 if permission is granted.
4558  */
4559 int security_socket_accept(struct socket *sock, struct socket *newsock)
4560 {
4561 	return call_int_hook(socket_accept, sock, newsock);
4562 }
4563 
4564 /**
4565  * security_socket_sendmsg() - Check if sending a message is allowed
4566  * @sock: sending socket
4567  * @msg: message to send
4568  * @size: size of message
4569  *
4570  * Check permission before transmitting a message to another socket.
4571  *
4572  * Return: Returns 0 if permission is granted.
4573  */
4574 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
4575 {
4576 	return call_int_hook(socket_sendmsg, sock, msg, size);
4577 }
4578 
4579 /**
4580  * security_socket_recvmsg() - Check if receiving a message is allowed
4581  * @sock: receiving socket
4582  * @msg: message to receive
4583  * @size: size of message
4584  * @flags: operational flags
4585  *
4586  * Check permission before receiving a message from a socket.
4587  *
4588  * Return: Returns 0 if permission is granted.
4589  */
4590 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
4591 			    int size, int flags)
4592 {
4593 	return call_int_hook(socket_recvmsg, sock, msg, size, flags);
4594 }
4595 
4596 /**
4597  * security_socket_getsockname() - Check if reading the socket addr is allowed
4598  * @sock: socket
4599  *
4600  * Check permission before reading the local address (name) of the socket
4601  * object.
4602  *
4603  * Return: Returns 0 if permission is granted.
4604  */
4605 int security_socket_getsockname(struct socket *sock)
4606 {
4607 	return call_int_hook(socket_getsockname, sock);
4608 }
4609 
4610 /**
4611  * security_socket_getpeername() - Check if reading the peer's addr is allowed
4612  * @sock: socket
4613  *
4614  * Check permission before the remote address (name) of a socket object.
4615  *
4616  * Return: Returns 0 if permission is granted.
4617  */
4618 int security_socket_getpeername(struct socket *sock)
4619 {
4620 	return call_int_hook(socket_getpeername, sock);
4621 }
4622 
4623 /**
4624  * security_socket_getsockopt() - Check if reading a socket option is allowed
4625  * @sock: socket
4626  * @level: option's protocol level
4627  * @optname: option name
4628  *
4629  * Check permissions before retrieving the options associated with socket
4630  * @sock.
4631  *
4632  * Return: Returns 0 if permission is granted.
4633  */
4634 int security_socket_getsockopt(struct socket *sock, int level, int optname)
4635 {
4636 	return call_int_hook(socket_getsockopt, sock, level, optname);
4637 }
4638 
4639 /**
4640  * security_socket_setsockopt() - Check if setting a socket option is allowed
4641  * @sock: socket
4642  * @level: option's protocol level
4643  * @optname: option name
4644  *
4645  * Check permissions before setting the options associated with socket @sock.
4646  *
4647  * Return: Returns 0 if permission is granted.
4648  */
4649 int security_socket_setsockopt(struct socket *sock, int level, int optname)
4650 {
4651 	return call_int_hook(socket_setsockopt, sock, level, optname);
4652 }
4653 
4654 /**
4655  * security_socket_shutdown() - Checks if shutting down the socket is allowed
4656  * @sock: socket
4657  * @how: flag indicating how sends and receives are handled
4658  *
4659  * Checks permission before all or part of a connection on the socket @sock is
4660  * shut down.
4661  *
4662  * Return: Returns 0 if permission is granted.
4663  */
4664 int security_socket_shutdown(struct socket *sock, int how)
4665 {
4666 	return call_int_hook(socket_shutdown, sock, how);
4667 }
4668 
4669 /**
4670  * security_sock_rcv_skb() - Check if an incoming network packet is allowed
4671  * @sk: destination sock
4672  * @skb: incoming packet
4673  *
4674  * Check permissions on incoming network packets.  This hook is distinct from
4675  * Netfilter's IP input hooks since it is the first time that the incoming
4676  * sk_buff @skb has been associated with a particular socket, @sk.  Must not
4677  * sleep inside this hook because some callers hold spinlocks.
4678  *
4679  * Return: Returns 0 if permission is granted.
4680  */
4681 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
4682 {
4683 	return call_int_hook(socket_sock_rcv_skb, sk, skb);
4684 }
4685 EXPORT_SYMBOL(security_sock_rcv_skb);
4686 
4687 /**
4688  * security_socket_getpeersec_stream() - Get the remote peer label
4689  * @sock: socket
4690  * @optval: destination buffer
4691  * @optlen: size of peer label copied into the buffer
4692  * @len: maximum size of the destination buffer
4693  *
4694  * This hook allows the security module to provide peer socket security state
4695  * for unix or connected tcp sockets to userspace via getsockopt SO_GETPEERSEC.
4696  * For tcp sockets this can be meaningful if the socket is associated with an
4697  * ipsec SA.
4698  *
4699  * Return: Returns 0 if all is well, otherwise, typical getsockopt return
4700  *         values.
4701  */
4702 int security_socket_getpeersec_stream(struct socket *sock, sockptr_t optval,
4703 				      sockptr_t optlen, unsigned int len)
4704 {
4705 	return call_int_hook(socket_getpeersec_stream, sock, optval, optlen,
4706 			     len);
4707 }
4708 
4709 /**
4710  * security_socket_getpeersec_dgram() - Get the remote peer label
4711  * @sock: socket
4712  * @skb: datagram packet
4713  * @secid: remote peer label secid
4714  *
4715  * This hook allows the security module to provide peer socket security state
4716  * for udp sockets on a per-packet basis to userspace via getsockopt
4717  * SO_GETPEERSEC. The application must first have indicated the IP_PASSSEC
4718  * option via getsockopt. It can then retrieve the security state returned by
4719  * this hook for a packet via the SCM_SECURITY ancillary message type.
4720  *
4721  * Return: Returns 0 on success, error on failure.
4722  */
4723 int security_socket_getpeersec_dgram(struct socket *sock,
4724 				     struct sk_buff *skb, u32 *secid)
4725 {
4726 	return call_int_hook(socket_getpeersec_dgram, sock, skb, secid);
4727 }
4728 EXPORT_SYMBOL(security_socket_getpeersec_dgram);
4729 
4730 /**
4731  * lsm_sock_alloc - allocate a composite sock blob
4732  * @sock: the sock that needs a blob
4733  * @gfp: allocation mode
4734  *
4735  * Allocate the sock blob for all the modules
4736  *
4737  * Returns 0, or -ENOMEM if memory can't be allocated.
4738  */
4739 static int lsm_sock_alloc(struct sock *sock, gfp_t gfp)
4740 {
4741 	return lsm_blob_alloc(&sock->sk_security, blob_sizes.lbs_sock, gfp);
4742 }
4743 
4744 /**
4745  * security_sk_alloc() - Allocate and initialize a sock's LSM blob
4746  * @sk: sock
4747  * @family: protocol family
4748  * @priority: gfp flags
4749  *
4750  * Allocate and attach a security structure to the sk->sk_security field, which
4751  * is used to copy security attributes between local stream sockets.
4752  *
4753  * Return: Returns 0 on success, error on failure.
4754  */
4755 int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
4756 {
4757 	int rc = lsm_sock_alloc(sk, priority);
4758 
4759 	if (unlikely(rc))
4760 		return rc;
4761 	rc = call_int_hook(sk_alloc_security, sk, family, priority);
4762 	if (unlikely(rc))
4763 		security_sk_free(sk);
4764 	return rc;
4765 }
4766 
4767 /**
4768  * security_sk_free() - Free the sock's LSM blob
4769  * @sk: sock
4770  *
4771  * Deallocate security structure.
4772  */
4773 void security_sk_free(struct sock *sk)
4774 {
4775 	call_void_hook(sk_free_security, sk);
4776 	kfree(sk->sk_security);
4777 	sk->sk_security = NULL;
4778 }
4779 
4780 /**
4781  * security_sk_clone() - Clone a sock's LSM state
4782  * @sk: original sock
4783  * @newsk: target sock
4784  *
4785  * Clone/copy security structure.
4786  */
4787 void security_sk_clone(const struct sock *sk, struct sock *newsk)
4788 {
4789 	call_void_hook(sk_clone_security, sk, newsk);
4790 }
4791 EXPORT_SYMBOL(security_sk_clone);
4792 
4793 /**
4794  * security_sk_classify_flow() - Set a flow's secid based on socket
4795  * @sk: original socket
4796  * @flic: target flow
4797  *
4798  * Set the target flow's secid to socket's secid.
4799  */
4800 void security_sk_classify_flow(const struct sock *sk, struct flowi_common *flic)
4801 {
4802 	call_void_hook(sk_getsecid, sk, &flic->flowic_secid);
4803 }
4804 EXPORT_SYMBOL(security_sk_classify_flow);
4805 
4806 /**
4807  * security_req_classify_flow() - Set a flow's secid based on request_sock
4808  * @req: request_sock
4809  * @flic: target flow
4810  *
4811  * Sets @flic's secid to @req's secid.
4812  */
4813 void security_req_classify_flow(const struct request_sock *req,
4814 				struct flowi_common *flic)
4815 {
4816 	call_void_hook(req_classify_flow, req, flic);
4817 }
4818 EXPORT_SYMBOL(security_req_classify_flow);
4819 
4820 /**
4821  * security_sock_graft() - Reconcile LSM state when grafting a sock on a socket
4822  * @sk: sock being grafted
4823  * @parent: target parent socket
4824  *
4825  * Sets @parent's inode secid to @sk's secid and update @sk with any necessary
4826  * LSM state from @parent.
4827  */
4828 void security_sock_graft(struct sock *sk, struct socket *parent)
4829 {
4830 	call_void_hook(sock_graft, sk, parent);
4831 }
4832 EXPORT_SYMBOL(security_sock_graft);
4833 
4834 /**
4835  * security_inet_conn_request() - Set request_sock state using incoming connect
4836  * @sk: parent listening sock
4837  * @skb: incoming connection
4838  * @req: new request_sock
4839  *
4840  * Initialize the @req LSM state based on @sk and the incoming connect in @skb.
4841  *
4842  * Return: Returns 0 if permission is granted.
4843  */
4844 int security_inet_conn_request(const struct sock *sk,
4845 			       struct sk_buff *skb, struct request_sock *req)
4846 {
4847 	return call_int_hook(inet_conn_request, sk, skb, req);
4848 }
4849 EXPORT_SYMBOL(security_inet_conn_request);
4850 
4851 /**
4852  * security_inet_csk_clone() - Set new sock LSM state based on request_sock
4853  * @newsk: new sock
4854  * @req: connection request_sock
4855  *
4856  * Set that LSM state of @sock using the LSM state from @req.
4857  */
4858 void security_inet_csk_clone(struct sock *newsk,
4859 			     const struct request_sock *req)
4860 {
4861 	call_void_hook(inet_csk_clone, newsk, req);
4862 }
4863 
4864 /**
4865  * security_inet_conn_established() - Update sock's LSM state with connection
4866  * @sk: sock
4867  * @skb: connection packet
4868  *
4869  * Update @sock's LSM state to represent a new connection from @skb.
4870  */
4871 void security_inet_conn_established(struct sock *sk,
4872 				    struct sk_buff *skb)
4873 {
4874 	call_void_hook(inet_conn_established, sk, skb);
4875 }
4876 EXPORT_SYMBOL(security_inet_conn_established);
4877 
4878 /**
4879  * security_secmark_relabel_packet() - Check if setting a secmark is allowed
4880  * @secid: new secmark value
4881  *
4882  * Check if the process should be allowed to relabel packets to @secid.
4883  *
4884  * Return: Returns 0 if permission is granted.
4885  */
4886 int security_secmark_relabel_packet(u32 secid)
4887 {
4888 	return call_int_hook(secmark_relabel_packet, secid);
4889 }
4890 EXPORT_SYMBOL(security_secmark_relabel_packet);
4891 
4892 /**
4893  * security_secmark_refcount_inc() - Increment the secmark labeling rule count
4894  *
4895  * Tells the LSM to increment the number of secmark labeling rules loaded.
4896  */
4897 void security_secmark_refcount_inc(void)
4898 {
4899 	call_void_hook(secmark_refcount_inc);
4900 }
4901 EXPORT_SYMBOL(security_secmark_refcount_inc);
4902 
4903 /**
4904  * security_secmark_refcount_dec() - Decrement the secmark labeling rule count
4905  *
4906  * Tells the LSM to decrement the number of secmark labeling rules loaded.
4907  */
4908 void security_secmark_refcount_dec(void)
4909 {
4910 	call_void_hook(secmark_refcount_dec);
4911 }
4912 EXPORT_SYMBOL(security_secmark_refcount_dec);
4913 
4914 /**
4915  * security_tun_dev_alloc_security() - Allocate a LSM blob for a TUN device
4916  * @security: pointer to the LSM blob
4917  *
4918  * This hook allows a module to allocate a security structure for a TUN	device,
4919  * returning the pointer in @security.
4920  *
4921  * Return: Returns a zero on success, negative values on failure.
4922  */
4923 int security_tun_dev_alloc_security(void **security)
4924 {
4925 	int rc;
4926 
4927 	rc = lsm_blob_alloc(security, blob_sizes.lbs_tun_dev, GFP_KERNEL);
4928 	if (rc)
4929 		return rc;
4930 
4931 	rc = call_int_hook(tun_dev_alloc_security, *security);
4932 	if (rc) {
4933 		kfree(*security);
4934 		*security = NULL;
4935 	}
4936 	return rc;
4937 }
4938 EXPORT_SYMBOL(security_tun_dev_alloc_security);
4939 
4940 /**
4941  * security_tun_dev_free_security() - Free a TUN device LSM blob
4942  * @security: LSM blob
4943  *
4944  * This hook allows a module to free the security structure for a TUN device.
4945  */
4946 void security_tun_dev_free_security(void *security)
4947 {
4948 	kfree(security);
4949 }
4950 EXPORT_SYMBOL(security_tun_dev_free_security);
4951 
4952 /**
4953  * security_tun_dev_create() - Check if creating a TUN device is allowed
4954  *
4955  * Check permissions prior to creating a new TUN device.
4956  *
4957  * Return: Returns 0 if permission is granted.
4958  */
4959 int security_tun_dev_create(void)
4960 {
4961 	return call_int_hook(tun_dev_create);
4962 }
4963 EXPORT_SYMBOL(security_tun_dev_create);
4964 
4965 /**
4966  * security_tun_dev_attach_queue() - Check if attaching a TUN queue is allowed
4967  * @security: TUN device LSM blob
4968  *
4969  * Check permissions prior to attaching to a TUN device queue.
4970  *
4971  * Return: Returns 0 if permission is granted.
4972  */
4973 int security_tun_dev_attach_queue(void *security)
4974 {
4975 	return call_int_hook(tun_dev_attach_queue, security);
4976 }
4977 EXPORT_SYMBOL(security_tun_dev_attach_queue);
4978 
4979 /**
4980  * security_tun_dev_attach() - Update TUN device LSM state on attach
4981  * @sk: associated sock
4982  * @security: TUN device LSM blob
4983  *
4984  * This hook can be used by the module to update any security state associated
4985  * with the TUN device's sock structure.
4986  *
4987  * Return: Returns 0 if permission is granted.
4988  */
4989 int security_tun_dev_attach(struct sock *sk, void *security)
4990 {
4991 	return call_int_hook(tun_dev_attach, sk, security);
4992 }
4993 EXPORT_SYMBOL(security_tun_dev_attach);
4994 
4995 /**
4996  * security_tun_dev_open() - Update TUN device LSM state on open
4997  * @security: TUN device LSM blob
4998  *
4999  * This hook can be used by the module to update any security state associated
5000  * with the TUN device's security structure.
5001  *
5002  * Return: Returns 0 if permission is granted.
5003  */
5004 int security_tun_dev_open(void *security)
5005 {
5006 	return call_int_hook(tun_dev_open, security);
5007 }
5008 EXPORT_SYMBOL(security_tun_dev_open);
5009 
5010 /**
5011  * security_sctp_assoc_request() - Update the LSM on a SCTP association req
5012  * @asoc: SCTP association
5013  * @skb: packet requesting the association
5014  *
5015  * Passes the @asoc and @chunk->skb of the association INIT packet to the LSM.
5016  *
5017  * Return: Returns 0 on success, error on failure.
5018  */
5019 int security_sctp_assoc_request(struct sctp_association *asoc,
5020 				struct sk_buff *skb)
5021 {
5022 	return call_int_hook(sctp_assoc_request, asoc, skb);
5023 }
5024 EXPORT_SYMBOL(security_sctp_assoc_request);
5025 
5026 /**
5027  * security_sctp_bind_connect() - Validate a list of addrs for a SCTP option
5028  * @sk: socket
5029  * @optname: SCTP option to validate
5030  * @address: list of IP addresses to validate
5031  * @addrlen: length of the address list
5032  *
5033  * Validiate permissions required for each address associated with sock	@sk.
5034  * Depending on @optname, the addresses will be treated as either a connect or
5035  * bind service. The @addrlen is calculated on each IPv4 and IPv6 address using
5036  * sizeof(struct sockaddr_in) or sizeof(struct sockaddr_in6).
5037  *
5038  * Return: Returns 0 on success, error on failure.
5039  */
5040 int security_sctp_bind_connect(struct sock *sk, int optname,
5041 			       struct sockaddr *address, int addrlen)
5042 {
5043 	return call_int_hook(sctp_bind_connect, sk, optname, address, addrlen);
5044 }
5045 EXPORT_SYMBOL(security_sctp_bind_connect);
5046 
5047 /**
5048  * security_sctp_sk_clone() - Clone a SCTP sock's LSM state
5049  * @asoc: SCTP association
5050  * @sk: original sock
5051  * @newsk: target sock
5052  *
5053  * Called whenever a new socket is created by accept(2) (i.e. a TCP style
5054  * socket) or when a socket is 'peeled off' e.g userspace calls
5055  * sctp_peeloff(3).
5056  */
5057 void security_sctp_sk_clone(struct sctp_association *asoc, struct sock *sk,
5058 			    struct sock *newsk)
5059 {
5060 	call_void_hook(sctp_sk_clone, asoc, sk, newsk);
5061 }
5062 EXPORT_SYMBOL(security_sctp_sk_clone);
5063 
5064 /**
5065  * security_sctp_assoc_established() - Update LSM state when assoc established
5066  * @asoc: SCTP association
5067  * @skb: packet establishing the association
5068  *
5069  * Passes the @asoc and @chunk->skb of the association COOKIE_ACK packet to the
5070  * security module.
5071  *
5072  * Return: Returns 0 if permission is granted.
5073  */
5074 int security_sctp_assoc_established(struct sctp_association *asoc,
5075 				    struct sk_buff *skb)
5076 {
5077 	return call_int_hook(sctp_assoc_established, asoc, skb);
5078 }
5079 EXPORT_SYMBOL(security_sctp_assoc_established);
5080 
5081 /**
5082  * security_mptcp_add_subflow() - Inherit the LSM label from the MPTCP socket
5083  * @sk: the owning MPTCP socket
5084  * @ssk: the new subflow
5085  *
5086  * Update the labeling for the given MPTCP subflow, to match the one of the
5087  * owning MPTCP socket. This hook has to be called after the socket creation and
5088  * initialization via the security_socket_create() and
5089  * security_socket_post_create() LSM hooks.
5090  *
5091  * Return: Returns 0 on success or a negative error code on failure.
5092  */
5093 int security_mptcp_add_subflow(struct sock *sk, struct sock *ssk)
5094 {
5095 	return call_int_hook(mptcp_add_subflow, sk, ssk);
5096 }
5097 
5098 #endif	/* CONFIG_SECURITY_NETWORK */
5099 
5100 #ifdef CONFIG_SECURITY_INFINIBAND
5101 /**
5102  * security_ib_pkey_access() - Check if access to an IB pkey is allowed
5103  * @sec: LSM blob
5104  * @subnet_prefix: subnet prefix of the port
5105  * @pkey: IB pkey
5106  *
5107  * Check permission to access a pkey when modifying a QP.
5108  *
5109  * Return: Returns 0 if permission is granted.
5110  */
5111 int security_ib_pkey_access(void *sec, u64 subnet_prefix, u16 pkey)
5112 {
5113 	return call_int_hook(ib_pkey_access, sec, subnet_prefix, pkey);
5114 }
5115 EXPORT_SYMBOL(security_ib_pkey_access);
5116 
5117 /**
5118  * security_ib_endport_manage_subnet() - Check if SMPs traffic is allowed
5119  * @sec: LSM blob
5120  * @dev_name: IB device name
5121  * @port_num: port number
5122  *
5123  * Check permissions to send and receive SMPs on a end port.
5124  *
5125  * Return: Returns 0 if permission is granted.
5126  */
5127 int security_ib_endport_manage_subnet(void *sec,
5128 				      const char *dev_name, u8 port_num)
5129 {
5130 	return call_int_hook(ib_endport_manage_subnet, sec, dev_name, port_num);
5131 }
5132 EXPORT_SYMBOL(security_ib_endport_manage_subnet);
5133 
5134 /**
5135  * security_ib_alloc_security() - Allocate an Infiniband LSM blob
5136  * @sec: LSM blob
5137  *
5138  * Allocate a security structure for Infiniband objects.
5139  *
5140  * Return: Returns 0 on success, non-zero on failure.
5141  */
5142 int security_ib_alloc_security(void **sec)
5143 {
5144 	int rc;
5145 
5146 	rc = lsm_blob_alloc(sec, blob_sizes.lbs_ib, GFP_KERNEL);
5147 	if (rc)
5148 		return rc;
5149 
5150 	rc = call_int_hook(ib_alloc_security, *sec);
5151 	if (rc) {
5152 		kfree(*sec);
5153 		*sec = NULL;
5154 	}
5155 	return rc;
5156 }
5157 EXPORT_SYMBOL(security_ib_alloc_security);
5158 
5159 /**
5160  * security_ib_free_security() - Free an Infiniband LSM blob
5161  * @sec: LSM blob
5162  *
5163  * Deallocate an Infiniband security structure.
5164  */
5165 void security_ib_free_security(void *sec)
5166 {
5167 	kfree(sec);
5168 }
5169 EXPORT_SYMBOL(security_ib_free_security);
5170 #endif	/* CONFIG_SECURITY_INFINIBAND */
5171 
5172 #ifdef CONFIG_SECURITY_NETWORK_XFRM
5173 /**
5174  * security_xfrm_policy_alloc() - Allocate a xfrm policy LSM blob
5175  * @ctxp: xfrm security context being added to the SPD
5176  * @sec_ctx: security label provided by userspace
5177  * @gfp: gfp flags
5178  *
5179  * Allocate a security structure to the xp->security field; the security field
5180  * is initialized to NULL when the xfrm_policy is allocated.
5181  *
5182  * Return:  Return 0 if operation was successful.
5183  */
5184 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp,
5185 			       struct xfrm_user_sec_ctx *sec_ctx,
5186 			       gfp_t gfp)
5187 {
5188 	return call_int_hook(xfrm_policy_alloc_security, ctxp, sec_ctx, gfp);
5189 }
5190 EXPORT_SYMBOL(security_xfrm_policy_alloc);
5191 
5192 /**
5193  * security_xfrm_policy_clone() - Clone xfrm policy LSM state
5194  * @old_ctx: xfrm security context
5195  * @new_ctxp: target xfrm security context
5196  *
5197  * Allocate a security structure in new_ctxp that contains the information from
5198  * the old_ctx structure.
5199  *
5200  * Return: Return 0 if operation was successful.
5201  */
5202 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
5203 			       struct xfrm_sec_ctx **new_ctxp)
5204 {
5205 	return call_int_hook(xfrm_policy_clone_security, old_ctx, new_ctxp);
5206 }
5207 
5208 /**
5209  * security_xfrm_policy_free() - Free a xfrm security context
5210  * @ctx: xfrm security context
5211  *
5212  * Free LSM resources associated with @ctx.
5213  */
5214 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
5215 {
5216 	call_void_hook(xfrm_policy_free_security, ctx);
5217 }
5218 EXPORT_SYMBOL(security_xfrm_policy_free);
5219 
5220 /**
5221  * security_xfrm_policy_delete() - Check if deleting a xfrm policy is allowed
5222  * @ctx: xfrm security context
5223  *
5224  * Authorize deletion of a SPD entry.
5225  *
5226  * Return: Returns 0 if permission is granted.
5227  */
5228 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
5229 {
5230 	return call_int_hook(xfrm_policy_delete_security, ctx);
5231 }
5232 
5233 /**
5234  * security_xfrm_state_alloc() - Allocate a xfrm state LSM blob
5235  * @x: xfrm state being added to the SAD
5236  * @sec_ctx: security label provided by userspace
5237  *
5238  * Allocate a security structure to the @x->security field; the security field
5239  * is initialized to NULL when the xfrm_state is allocated. Set the context to
5240  * correspond to @sec_ctx.
5241  *
5242  * Return: Return 0 if operation was successful.
5243  */
5244 int security_xfrm_state_alloc(struct xfrm_state *x,
5245 			      struct xfrm_user_sec_ctx *sec_ctx)
5246 {
5247 	return call_int_hook(xfrm_state_alloc, x, sec_ctx);
5248 }
5249 EXPORT_SYMBOL(security_xfrm_state_alloc);
5250 
5251 /**
5252  * security_xfrm_state_alloc_acquire() - Allocate a xfrm state LSM blob
5253  * @x: xfrm state being added to the SAD
5254  * @polsec: associated policy's security context
5255  * @secid: secid from the flow
5256  *
5257  * Allocate a security structure to the x->security field; the security field
5258  * is initialized to NULL when the xfrm_state is allocated.  Set the context to
5259  * correspond to secid.
5260  *
5261  * Return: Returns 0 if operation was successful.
5262  */
5263 int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
5264 				      struct xfrm_sec_ctx *polsec, u32 secid)
5265 {
5266 	return call_int_hook(xfrm_state_alloc_acquire, x, polsec, secid);
5267 }
5268 
5269 /**
5270  * security_xfrm_state_delete() - Check if deleting a xfrm state is allowed
5271  * @x: xfrm state
5272  *
5273  * Authorize deletion of x->security.
5274  *
5275  * Return: Returns 0 if permission is granted.
5276  */
5277 int security_xfrm_state_delete(struct xfrm_state *x)
5278 {
5279 	return call_int_hook(xfrm_state_delete_security, x);
5280 }
5281 EXPORT_SYMBOL(security_xfrm_state_delete);
5282 
5283 /**
5284  * security_xfrm_state_free() - Free a xfrm state
5285  * @x: xfrm state
5286  *
5287  * Deallocate x->security.
5288  */
5289 void security_xfrm_state_free(struct xfrm_state *x)
5290 {
5291 	call_void_hook(xfrm_state_free_security, x);
5292 }
5293 
5294 /**
5295  * security_xfrm_policy_lookup() - Check if using a xfrm policy is allowed
5296  * @ctx: target xfrm security context
5297  * @fl_secid: flow secid used to authorize access
5298  *
5299  * Check permission when a flow selects a xfrm_policy for processing XFRMs on a
5300  * packet.  The hook is called when selecting either a per-socket policy or a
5301  * generic xfrm policy.
5302  *
5303  * Return: Return 0 if permission is granted, -ESRCH otherwise, or -errno on
5304  *         other errors.
5305  */
5306 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid)
5307 {
5308 	return call_int_hook(xfrm_policy_lookup, ctx, fl_secid);
5309 }
5310 
5311 /**
5312  * security_xfrm_state_pol_flow_match() - Check for a xfrm match
5313  * @x: xfrm state to match
5314  * @xp: xfrm policy to check for a match
5315  * @flic: flow to check for a match.
5316  *
5317  * Check @xp and @flic for a match with @x.
5318  *
5319  * Return: Returns 1 if there is a match.
5320  */
5321 int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
5322 				       struct xfrm_policy *xp,
5323 				       const struct flowi_common *flic)
5324 {
5325 	struct security_hook_list *hp;
5326 	int rc = LSM_RET_DEFAULT(xfrm_state_pol_flow_match);
5327 
5328 	/*
5329 	 * Since this function is expected to return 0 or 1, the judgment
5330 	 * becomes difficult if multiple LSMs supply this call. Fortunately,
5331 	 * we can use the first LSM's judgment because currently only SELinux
5332 	 * supplies this call.
5333 	 *
5334 	 * For speed optimization, we explicitly break the loop rather than
5335 	 * using the macro
5336 	 */
5337 	hlist_for_each_entry(hp, &security_hook_heads.xfrm_state_pol_flow_match,
5338 			     list) {
5339 		rc = hp->hook.xfrm_state_pol_flow_match(x, xp, flic);
5340 		break;
5341 	}
5342 	return rc;
5343 }
5344 
5345 /**
5346  * security_xfrm_decode_session() - Determine the xfrm secid for a packet
5347  * @skb: xfrm packet
5348  * @secid: secid
5349  *
5350  * Decode the packet in @skb and return the security label in @secid.
5351  *
5352  * Return: Return 0 if all xfrms used have the same secid.
5353  */
5354 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
5355 {
5356 	return call_int_hook(xfrm_decode_session, skb, secid, 1);
5357 }
5358 
5359 void security_skb_classify_flow(struct sk_buff *skb, struct flowi_common *flic)
5360 {
5361 	int rc = call_int_hook(xfrm_decode_session, skb, &flic->flowic_secid,
5362 			       0);
5363 
5364 	BUG_ON(rc);
5365 }
5366 EXPORT_SYMBOL(security_skb_classify_flow);
5367 #endif	/* CONFIG_SECURITY_NETWORK_XFRM */
5368 
5369 #ifdef CONFIG_KEYS
5370 /**
5371  * security_key_alloc() - Allocate and initialize a kernel key LSM blob
5372  * @key: key
5373  * @cred: credentials
5374  * @flags: allocation flags
5375  *
5376  * Permit allocation of a key and assign security data. Note that key does not
5377  * have a serial number assigned at this point.
5378  *
5379  * Return: Return 0 if permission is granted, -ve error otherwise.
5380  */
5381 int security_key_alloc(struct key *key, const struct cred *cred,
5382 		       unsigned long flags)
5383 {
5384 	int rc = lsm_key_alloc(key);
5385 
5386 	if (unlikely(rc))
5387 		return rc;
5388 	rc = call_int_hook(key_alloc, key, cred, flags);
5389 	if (unlikely(rc))
5390 		security_key_free(key);
5391 	return rc;
5392 }
5393 
5394 /**
5395  * security_key_free() - Free a kernel key LSM blob
5396  * @key: key
5397  *
5398  * Notification of destruction; free security data.
5399  */
5400 void security_key_free(struct key *key)
5401 {
5402 	kfree(key->security);
5403 	key->security = NULL;
5404 }
5405 
5406 /**
5407  * security_key_permission() - Check if a kernel key operation is allowed
5408  * @key_ref: key reference
5409  * @cred: credentials of actor requesting access
5410  * @need_perm: requested permissions
5411  *
5412  * See whether a specific operational right is granted to a process on a key.
5413  *
5414  * Return: Return 0 if permission is granted, -ve error otherwise.
5415  */
5416 int security_key_permission(key_ref_t key_ref, const struct cred *cred,
5417 			    enum key_need_perm need_perm)
5418 {
5419 	return call_int_hook(key_permission, key_ref, cred, need_perm);
5420 }
5421 
5422 /**
5423  * security_key_getsecurity() - Get the key's security label
5424  * @key: key
5425  * @buffer: security label buffer
5426  *
5427  * Get a textual representation of the security context attached to a key for
5428  * the purposes of honouring KEYCTL_GETSECURITY.  This function allocates the
5429  * storage for the NUL-terminated string and the caller should free it.
5430  *
5431  * Return: Returns the length of @buffer (including terminating NUL) or -ve if
5432  *         an error occurs.  May also return 0 (and a NULL buffer pointer) if
5433  *         there is no security label assigned to the key.
5434  */
5435 int security_key_getsecurity(struct key *key, char **buffer)
5436 {
5437 	*buffer = NULL;
5438 	return call_int_hook(key_getsecurity, key, buffer);
5439 }
5440 
5441 /**
5442  * security_key_post_create_or_update() - Notification of key create or update
5443  * @keyring: keyring to which the key is linked to
5444  * @key: created or updated key
5445  * @payload: data used to instantiate or update the key
5446  * @payload_len: length of payload
5447  * @flags: key flags
5448  * @create: flag indicating whether the key was created or updated
5449  *
5450  * Notify the caller of a key creation or update.
5451  */
5452 void security_key_post_create_or_update(struct key *keyring, struct key *key,
5453 					const void *payload, size_t payload_len,
5454 					unsigned long flags, bool create)
5455 {
5456 	call_void_hook(key_post_create_or_update, keyring, key, payload,
5457 		       payload_len, flags, create);
5458 }
5459 #endif	/* CONFIG_KEYS */
5460 
5461 #ifdef CONFIG_AUDIT
5462 /**
5463  * security_audit_rule_init() - Allocate and init an LSM audit rule struct
5464  * @field: audit action
5465  * @op: rule operator
5466  * @rulestr: rule context
5467  * @lsmrule: receive buffer for audit rule struct
5468  * @gfp: GFP flag used for kmalloc
5469  *
5470  * Allocate and initialize an LSM audit rule structure.
5471  *
5472  * Return: Return 0 if @lsmrule has been successfully set, -EINVAL in case of
5473  *         an invalid rule.
5474  */
5475 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule,
5476 			     gfp_t gfp)
5477 {
5478 	return call_int_hook(audit_rule_init, field, op, rulestr, lsmrule, gfp);
5479 }
5480 
5481 /**
5482  * security_audit_rule_known() - Check if an audit rule contains LSM fields
5483  * @krule: audit rule
5484  *
5485  * Specifies whether given @krule contains any fields related to the current
5486  * LSM.
5487  *
5488  * Return: Returns 1 in case of relation found, 0 otherwise.
5489  */
5490 int security_audit_rule_known(struct audit_krule *krule)
5491 {
5492 	return call_int_hook(audit_rule_known, krule);
5493 }
5494 
5495 /**
5496  * security_audit_rule_free() - Free an LSM audit rule struct
5497  * @lsmrule: audit rule struct
5498  *
5499  * Deallocate the LSM audit rule structure previously allocated by
5500  * audit_rule_init().
5501  */
5502 void security_audit_rule_free(void *lsmrule)
5503 {
5504 	call_void_hook(audit_rule_free, lsmrule);
5505 }
5506 
5507 /**
5508  * security_audit_rule_match() - Check if a label matches an audit rule
5509  * @secid: security label
5510  * @field: LSM audit field
5511  * @op: matching operator
5512  * @lsmrule: audit rule
5513  *
5514  * Determine if given @secid matches a rule previously approved by
5515  * security_audit_rule_known().
5516  *
5517  * Return: Returns 1 if secid matches the rule, 0 if it does not, -ERRNO on
5518  *         failure.
5519  */
5520 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule)
5521 {
5522 	return call_int_hook(audit_rule_match, secid, field, op, lsmrule);
5523 }
5524 #endif /* CONFIG_AUDIT */
5525 
5526 #ifdef CONFIG_BPF_SYSCALL
5527 /**
5528  * security_bpf() - Check if the bpf syscall operation is allowed
5529  * @cmd: command
5530  * @attr: bpf attribute
5531  * @size: size
5532  *
5533  * Do a initial check for all bpf syscalls after the attribute is copied into
5534  * the kernel. The actual security module can implement their own rules to
5535  * check the specific cmd they need.
5536  *
5537  * Return: Returns 0 if permission is granted.
5538  */
5539 int security_bpf(int cmd, union bpf_attr *attr, unsigned int size)
5540 {
5541 	return call_int_hook(bpf, cmd, attr, size);
5542 }
5543 
5544 /**
5545  * security_bpf_map() - Check if access to a bpf map is allowed
5546  * @map: bpf map
5547  * @fmode: mode
5548  *
5549  * Do a check when the kernel generates and returns a file descriptor for eBPF
5550  * maps.
5551  *
5552  * Return: Returns 0 if permission is granted.
5553  */
5554 int security_bpf_map(struct bpf_map *map, fmode_t fmode)
5555 {
5556 	return call_int_hook(bpf_map, map, fmode);
5557 }
5558 
5559 /**
5560  * security_bpf_prog() - Check if access to a bpf program is allowed
5561  * @prog: bpf program
5562  *
5563  * Do a check when the kernel generates and returns a file descriptor for eBPF
5564  * programs.
5565  *
5566  * Return: Returns 0 if permission is granted.
5567  */
5568 int security_bpf_prog(struct bpf_prog *prog)
5569 {
5570 	return call_int_hook(bpf_prog, prog);
5571 }
5572 
5573 /**
5574  * security_bpf_map_create() - Check if BPF map creation is allowed
5575  * @map: BPF map object
5576  * @attr: BPF syscall attributes used to create BPF map
5577  * @token: BPF token used to grant user access
5578  *
5579  * Do a check when the kernel creates a new BPF map. This is also the
5580  * point where LSM blob is allocated for LSMs that need them.
5581  *
5582  * Return: Returns 0 on success, error on failure.
5583  */
5584 int security_bpf_map_create(struct bpf_map *map, union bpf_attr *attr,
5585 			    struct bpf_token *token)
5586 {
5587 	return call_int_hook(bpf_map_create, map, attr, token);
5588 }
5589 
5590 /**
5591  * security_bpf_prog_load() - Check if loading of BPF program is allowed
5592  * @prog: BPF program object
5593  * @attr: BPF syscall attributes used to create BPF program
5594  * @token: BPF token used to grant user access to BPF subsystem
5595  *
5596  * Perform an access control check when the kernel loads a BPF program and
5597  * allocates associated BPF program object. This hook is also responsible for
5598  * allocating any required LSM state for the BPF program.
5599  *
5600  * Return: Returns 0 on success, error on failure.
5601  */
5602 int security_bpf_prog_load(struct bpf_prog *prog, union bpf_attr *attr,
5603 			   struct bpf_token *token)
5604 {
5605 	return call_int_hook(bpf_prog_load, prog, attr, token);
5606 }
5607 
5608 /**
5609  * security_bpf_token_create() - Check if creating of BPF token is allowed
5610  * @token: BPF token object
5611  * @attr: BPF syscall attributes used to create BPF token
5612  * @path: path pointing to BPF FS mount point from which BPF token is created
5613  *
5614  * Do a check when the kernel instantiates a new BPF token object from BPF FS
5615  * instance. This is also the point where LSM blob can be allocated for LSMs.
5616  *
5617  * Return: Returns 0 on success, error on failure.
5618  */
5619 int security_bpf_token_create(struct bpf_token *token, union bpf_attr *attr,
5620 			      struct path *path)
5621 {
5622 	return call_int_hook(bpf_token_create, token, attr, path);
5623 }
5624 
5625 /**
5626  * security_bpf_token_cmd() - Check if BPF token is allowed to delegate
5627  * requested BPF syscall command
5628  * @token: BPF token object
5629  * @cmd: BPF syscall command requested to be delegated by BPF token
5630  *
5631  * Do a check when the kernel decides whether provided BPF token should allow
5632  * delegation of requested BPF syscall command.
5633  *
5634  * Return: Returns 0 on success, error on failure.
5635  */
5636 int security_bpf_token_cmd(const struct bpf_token *token, enum bpf_cmd cmd)
5637 {
5638 	return call_int_hook(bpf_token_cmd, token, cmd);
5639 }
5640 
5641 /**
5642  * security_bpf_token_capable() - Check if BPF token is allowed to delegate
5643  * requested BPF-related capability
5644  * @token: BPF token object
5645  * @cap: capabilities requested to be delegated by BPF token
5646  *
5647  * Do a check when the kernel decides whether provided BPF token should allow
5648  * delegation of requested BPF-related capabilities.
5649  *
5650  * Return: Returns 0 on success, error on failure.
5651  */
5652 int security_bpf_token_capable(const struct bpf_token *token, int cap)
5653 {
5654 	return call_int_hook(bpf_token_capable, token, cap);
5655 }
5656 
5657 /**
5658  * security_bpf_map_free() - Free a bpf map's LSM blob
5659  * @map: bpf map
5660  *
5661  * Clean up the security information stored inside bpf map.
5662  */
5663 void security_bpf_map_free(struct bpf_map *map)
5664 {
5665 	call_void_hook(bpf_map_free, map);
5666 }
5667 
5668 /**
5669  * security_bpf_prog_free() - Free a BPF program's LSM blob
5670  * @prog: BPF program struct
5671  *
5672  * Clean up the security information stored inside BPF program.
5673  */
5674 void security_bpf_prog_free(struct bpf_prog *prog)
5675 {
5676 	call_void_hook(bpf_prog_free, prog);
5677 }
5678 
5679 /**
5680  * security_bpf_token_free() - Free a BPF token's LSM blob
5681  * @token: BPF token struct
5682  *
5683  * Clean up the security information stored inside BPF token.
5684  */
5685 void security_bpf_token_free(struct bpf_token *token)
5686 {
5687 	call_void_hook(bpf_token_free, token);
5688 }
5689 #endif /* CONFIG_BPF_SYSCALL */
5690 
5691 /**
5692  * security_locked_down() - Check if a kernel feature is allowed
5693  * @what: requested kernel feature
5694  *
5695  * Determine whether a kernel feature that potentially enables arbitrary code
5696  * execution in kernel space should be permitted.
5697  *
5698  * Return: Returns 0 if permission is granted.
5699  */
5700 int security_locked_down(enum lockdown_reason what)
5701 {
5702 	return call_int_hook(locked_down, what);
5703 }
5704 EXPORT_SYMBOL(security_locked_down);
5705 
5706 /**
5707  * security_bdev_alloc() - Allocate a block device LSM blob
5708  * @bdev: block device
5709  *
5710  * Allocate and attach a security structure to @bdev->bd_security.  The
5711  * security field is initialized to NULL when the bdev structure is
5712  * allocated.
5713  *
5714  * Return: Return 0 if operation was successful.
5715  */
5716 int security_bdev_alloc(struct block_device *bdev)
5717 {
5718 	int rc = 0;
5719 
5720 	rc = lsm_bdev_alloc(bdev);
5721 	if (unlikely(rc))
5722 		return rc;
5723 
5724 	rc = call_int_hook(bdev_alloc_security, bdev);
5725 	if (unlikely(rc))
5726 		security_bdev_free(bdev);
5727 
5728 	return rc;
5729 }
5730 EXPORT_SYMBOL(security_bdev_alloc);
5731 
5732 /**
5733  * security_bdev_free() - Free a block device's LSM blob
5734  * @bdev: block device
5735  *
5736  * Deallocate the bdev security structure and set @bdev->bd_security to NULL.
5737  */
5738 void security_bdev_free(struct block_device *bdev)
5739 {
5740 	if (!bdev->bd_security)
5741 		return;
5742 
5743 	call_void_hook(bdev_free_security, bdev);
5744 
5745 	kfree(bdev->bd_security);
5746 	bdev->bd_security = NULL;
5747 }
5748 EXPORT_SYMBOL(security_bdev_free);
5749 
5750 /**
5751  * security_bdev_setintegrity() - Set the device's integrity data
5752  * @bdev: block device
5753  * @type: type of integrity, e.g. hash digest, signature, etc
5754  * @value: the integrity value
5755  * @size: size of the integrity value
5756  *
5757  * Register a verified integrity measurement of a bdev with LSMs.
5758  * LSMs should free the previously saved data if @value is NULL.
5759  * Please note that the new hook should be invoked every time the security
5760  * information is updated to keep these data current. For example, in dm-verity,
5761  * if the mapping table is reloaded and configured to use a different dm-verity
5762  * target with a new roothash and signing information, the previously stored
5763  * data in the LSM blob will become obsolete. It is crucial to re-invoke the
5764  * hook to refresh these data and ensure they are up to date. This necessity
5765  * arises from the design of device-mapper, where a device-mapper device is
5766  * first created, and then targets are subsequently loaded into it. These
5767  * targets can be modified multiple times during the device's lifetime.
5768  * Therefore, while the LSM blob is allocated during the creation of the block
5769  * device, its actual contents are not initialized at this stage and can change
5770  * substantially over time. This includes alterations from data that the LSMs
5771  * 'trusts' to those they do not, making it essential to handle these changes
5772  * correctly. Failure to address this dynamic aspect could potentially allow
5773  * for bypassing LSM checks.
5774  *
5775  * Return: Returns 0 on success, negative values on failure.
5776  */
5777 int security_bdev_setintegrity(struct block_device *bdev,
5778 			       enum lsm_integrity_type type, const void *value,
5779 			       size_t size)
5780 {
5781 	return call_int_hook(bdev_setintegrity, bdev, type, value, size);
5782 }
5783 EXPORT_SYMBOL(security_bdev_setintegrity);
5784 
5785 #ifdef CONFIG_PERF_EVENTS
5786 /**
5787  * security_perf_event_open() - Check if a perf event open is allowed
5788  * @attr: perf event attribute
5789  * @type: type of event
5790  *
5791  * Check whether the @type of perf_event_open syscall is allowed.
5792  *
5793  * Return: Returns 0 if permission is granted.
5794  */
5795 int security_perf_event_open(struct perf_event_attr *attr, int type)
5796 {
5797 	return call_int_hook(perf_event_open, attr, type);
5798 }
5799 
5800 /**
5801  * security_perf_event_alloc() - Allocate a perf event LSM blob
5802  * @event: perf event
5803  *
5804  * Allocate and save perf_event security info.
5805  *
5806  * Return: Returns 0 on success, error on failure.
5807  */
5808 int security_perf_event_alloc(struct perf_event *event)
5809 {
5810 	int rc;
5811 
5812 	rc = lsm_blob_alloc(&event->security, blob_sizes.lbs_perf_event,
5813 			    GFP_KERNEL);
5814 	if (rc)
5815 		return rc;
5816 
5817 	rc = call_int_hook(perf_event_alloc, event);
5818 	if (rc) {
5819 		kfree(event->security);
5820 		event->security = NULL;
5821 	}
5822 	return rc;
5823 }
5824 
5825 /**
5826  * security_perf_event_free() - Free a perf event LSM blob
5827  * @event: perf event
5828  *
5829  * Release (free) perf_event security info.
5830  */
5831 void security_perf_event_free(struct perf_event *event)
5832 {
5833 	kfree(event->security);
5834 	event->security = NULL;
5835 }
5836 
5837 /**
5838  * security_perf_event_read() - Check if reading a perf event label is allowed
5839  * @event: perf event
5840  *
5841  * Read perf_event security info if allowed.
5842  *
5843  * Return: Returns 0 if permission is granted.
5844  */
5845 int security_perf_event_read(struct perf_event *event)
5846 {
5847 	return call_int_hook(perf_event_read, event);
5848 }
5849 
5850 /**
5851  * security_perf_event_write() - Check if writing a perf event label is allowed
5852  * @event: perf event
5853  *
5854  * Write perf_event security info if allowed.
5855  *
5856  * Return: Returns 0 if permission is granted.
5857  */
5858 int security_perf_event_write(struct perf_event *event)
5859 {
5860 	return call_int_hook(perf_event_write, event);
5861 }
5862 #endif /* CONFIG_PERF_EVENTS */
5863 
5864 #ifdef CONFIG_IO_URING
5865 /**
5866  * security_uring_override_creds() - Check if overriding creds is allowed
5867  * @new: new credentials
5868  *
5869  * Check if the current task, executing an io_uring operation, is allowed to
5870  * override it's credentials with @new.
5871  *
5872  * Return: Returns 0 if permission is granted.
5873  */
5874 int security_uring_override_creds(const struct cred *new)
5875 {
5876 	return call_int_hook(uring_override_creds, new);
5877 }
5878 
5879 /**
5880  * security_uring_sqpoll() - Check if IORING_SETUP_SQPOLL is allowed
5881  *
5882  * Check whether the current task is allowed to spawn a io_uring polling thread
5883  * (IORING_SETUP_SQPOLL).
5884  *
5885  * Return: Returns 0 if permission is granted.
5886  */
5887 int security_uring_sqpoll(void)
5888 {
5889 	return call_int_hook(uring_sqpoll);
5890 }
5891 
5892 /**
5893  * security_uring_cmd() - Check if a io_uring passthrough command is allowed
5894  * @ioucmd: command
5895  *
5896  * Check whether the file_operations uring_cmd is allowed to run.
5897  *
5898  * Return: Returns 0 if permission is granted.
5899  */
5900 int security_uring_cmd(struct io_uring_cmd *ioucmd)
5901 {
5902 	return call_int_hook(uring_cmd, ioucmd);
5903 }
5904 #endif /* CONFIG_IO_URING */
5905 
5906 /**
5907  * security_initramfs_populated() - Notify LSMs that initramfs has been loaded
5908  *
5909  * Tells the LSMs the initramfs has been unpacked into the rootfs.
5910  */
5911 void security_initramfs_populated(void)
5912 {
5913 	call_void_hook(initramfs_populated);
5914 }
5915