1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Security plug functions 4 * 5 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com> 6 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com> 7 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com> 8 * Copyright (C) 2016 Mellanox Technologies 9 * Copyright (C) 2023 Microsoft Corporation <paul@paul-moore.com> 10 */ 11 12 #define pr_fmt(fmt) "LSM: " fmt 13 14 #include <linux/bpf.h> 15 #include <linux/capability.h> 16 #include <linux/dcache.h> 17 #include <linux/export.h> 18 #include <linux/init.h> 19 #include <linux/kernel.h> 20 #include <linux/kernel_read_file.h> 21 #include <linux/lsm_hooks.h> 22 #include <linux/integrity.h> 23 #include <linux/ima.h> 24 #include <linux/evm.h> 25 #include <linux/fsnotify.h> 26 #include <linux/mman.h> 27 #include <linux/mount.h> 28 #include <linux/personality.h> 29 #include <linux/backing-dev.h> 30 #include <linux/string.h> 31 #include <linux/msg.h> 32 #include <linux/overflow.h> 33 #include <net/flow.h> 34 35 /* How many LSMs were built into the kernel? */ 36 #define LSM_COUNT (__end_lsm_info - __start_lsm_info) 37 38 /* 39 * How many LSMs are built into the kernel as determined at 40 * build time. Used to determine fixed array sizes. 41 * The capability module is accounted for by CONFIG_SECURITY 42 */ 43 #define LSM_CONFIG_COUNT ( \ 44 (IS_ENABLED(CONFIG_SECURITY) ? 1 : 0) + \ 45 (IS_ENABLED(CONFIG_SECURITY_SELINUX) ? 1 : 0) + \ 46 (IS_ENABLED(CONFIG_SECURITY_SMACK) ? 1 : 0) + \ 47 (IS_ENABLED(CONFIG_SECURITY_TOMOYO) ? 1 : 0) + \ 48 (IS_ENABLED(CONFIG_SECURITY_APPARMOR) ? 1 : 0) + \ 49 (IS_ENABLED(CONFIG_SECURITY_YAMA) ? 1 : 0) + \ 50 (IS_ENABLED(CONFIG_SECURITY_LOADPIN) ? 1 : 0) + \ 51 (IS_ENABLED(CONFIG_SECURITY_SAFESETID) ? 1 : 0) + \ 52 (IS_ENABLED(CONFIG_SECURITY_LOCKDOWN_LSM) ? 1 : 0) + \ 53 (IS_ENABLED(CONFIG_BPF_LSM) ? 1 : 0) + \ 54 (IS_ENABLED(CONFIG_SECURITY_LANDLOCK) ? 1 : 0)) 55 56 /* 57 * These are descriptions of the reasons that can be passed to the 58 * security_locked_down() LSM hook. Placing this array here allows 59 * all security modules to use the same descriptions for auditing 60 * purposes. 61 */ 62 const char *const lockdown_reasons[LOCKDOWN_CONFIDENTIALITY_MAX + 1] = { 63 [LOCKDOWN_NONE] = "none", 64 [LOCKDOWN_MODULE_SIGNATURE] = "unsigned module loading", 65 [LOCKDOWN_DEV_MEM] = "/dev/mem,kmem,port", 66 [LOCKDOWN_EFI_TEST] = "/dev/efi_test access", 67 [LOCKDOWN_KEXEC] = "kexec of unsigned images", 68 [LOCKDOWN_HIBERNATION] = "hibernation", 69 [LOCKDOWN_PCI_ACCESS] = "direct PCI access", 70 [LOCKDOWN_IOPORT] = "raw io port access", 71 [LOCKDOWN_MSR] = "raw MSR access", 72 [LOCKDOWN_ACPI_TABLES] = "modifying ACPI tables", 73 [LOCKDOWN_DEVICE_TREE] = "modifying device tree contents", 74 [LOCKDOWN_PCMCIA_CIS] = "direct PCMCIA CIS storage", 75 [LOCKDOWN_TIOCSSERIAL] = "reconfiguration of serial port IO", 76 [LOCKDOWN_MODULE_PARAMETERS] = "unsafe module parameters", 77 [LOCKDOWN_MMIOTRACE] = "unsafe mmio", 78 [LOCKDOWN_DEBUGFS] = "debugfs access", 79 [LOCKDOWN_XMON_WR] = "xmon write access", 80 [LOCKDOWN_BPF_WRITE_USER] = "use of bpf to write user RAM", 81 [LOCKDOWN_DBG_WRITE_KERNEL] = "use of kgdb/kdb to write kernel RAM", 82 [LOCKDOWN_RTAS_ERROR_INJECTION] = "RTAS error injection", 83 [LOCKDOWN_INTEGRITY_MAX] = "integrity", 84 [LOCKDOWN_KCORE] = "/proc/kcore access", 85 [LOCKDOWN_KPROBES] = "use of kprobes", 86 [LOCKDOWN_BPF_READ_KERNEL] = "use of bpf to read kernel RAM", 87 [LOCKDOWN_DBG_READ_KERNEL] = "use of kgdb/kdb to read kernel RAM", 88 [LOCKDOWN_PERF] = "unsafe use of perf", 89 [LOCKDOWN_TRACEFS] = "use of tracefs", 90 [LOCKDOWN_XMON_RW] = "xmon read and write access", 91 [LOCKDOWN_XFRM_SECRET] = "xfrm SA secret", 92 [LOCKDOWN_CONFIDENTIALITY_MAX] = "confidentiality", 93 }; 94 95 struct security_hook_heads security_hook_heads __ro_after_init; 96 static BLOCKING_NOTIFIER_HEAD(blocking_lsm_notifier_chain); 97 98 static struct kmem_cache *lsm_file_cache; 99 static struct kmem_cache *lsm_inode_cache; 100 101 char *lsm_names; 102 static struct lsm_blob_sizes blob_sizes __ro_after_init; 103 104 /* Boot-time LSM user choice */ 105 static __initdata const char *chosen_lsm_order; 106 static __initdata const char *chosen_major_lsm; 107 108 static __initconst const char *const builtin_lsm_order = CONFIG_LSM; 109 110 /* Ordered list of LSMs to initialize. */ 111 static __initdata struct lsm_info **ordered_lsms; 112 static __initdata struct lsm_info *exclusive; 113 114 static __initdata bool debug; 115 #define init_debug(...) \ 116 do { \ 117 if (debug) \ 118 pr_info(__VA_ARGS__); \ 119 } while (0) 120 121 static bool __init is_enabled(struct lsm_info *lsm) 122 { 123 if (!lsm->enabled) 124 return false; 125 126 return *lsm->enabled; 127 } 128 129 /* Mark an LSM's enabled flag. */ 130 static int lsm_enabled_true __initdata = 1; 131 static int lsm_enabled_false __initdata = 0; 132 static void __init set_enabled(struct lsm_info *lsm, bool enabled) 133 { 134 /* 135 * When an LSM hasn't configured an enable variable, we can use 136 * a hard-coded location for storing the default enabled state. 137 */ 138 if (!lsm->enabled) { 139 if (enabled) 140 lsm->enabled = &lsm_enabled_true; 141 else 142 lsm->enabled = &lsm_enabled_false; 143 } else if (lsm->enabled == &lsm_enabled_true) { 144 if (!enabled) 145 lsm->enabled = &lsm_enabled_false; 146 } else if (lsm->enabled == &lsm_enabled_false) { 147 if (enabled) 148 lsm->enabled = &lsm_enabled_true; 149 } else { 150 *lsm->enabled = enabled; 151 } 152 } 153 154 /* Is an LSM already listed in the ordered LSMs list? */ 155 static bool __init exists_ordered_lsm(struct lsm_info *lsm) 156 { 157 struct lsm_info **check; 158 159 for (check = ordered_lsms; *check; check++) 160 if (*check == lsm) 161 return true; 162 163 return false; 164 } 165 166 /* Append an LSM to the list of ordered LSMs to initialize. */ 167 static int last_lsm __initdata; 168 static void __init append_ordered_lsm(struct lsm_info *lsm, const char *from) 169 { 170 /* Ignore duplicate selections. */ 171 if (exists_ordered_lsm(lsm)) 172 return; 173 174 if (WARN(last_lsm == LSM_COUNT, "%s: out of LSM slots!?\n", from)) 175 return; 176 177 /* Enable this LSM, if it is not already set. */ 178 if (!lsm->enabled) 179 lsm->enabled = &lsm_enabled_true; 180 ordered_lsms[last_lsm++] = lsm; 181 182 init_debug("%s ordered: %s (%s)\n", from, lsm->name, 183 is_enabled(lsm) ? "enabled" : "disabled"); 184 } 185 186 /* Is an LSM allowed to be initialized? */ 187 static bool __init lsm_allowed(struct lsm_info *lsm) 188 { 189 /* Skip if the LSM is disabled. */ 190 if (!is_enabled(lsm)) 191 return false; 192 193 /* Not allowed if another exclusive LSM already initialized. */ 194 if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && exclusive) { 195 init_debug("exclusive disabled: %s\n", lsm->name); 196 return false; 197 } 198 199 return true; 200 } 201 202 static void __init lsm_set_blob_size(int *need, int *lbs) 203 { 204 int offset; 205 206 if (*need <= 0) 207 return; 208 209 offset = ALIGN(*lbs, sizeof(void *)); 210 *lbs = offset + *need; 211 *need = offset; 212 } 213 214 static void __init lsm_set_blob_sizes(struct lsm_blob_sizes *needed) 215 { 216 if (!needed) 217 return; 218 219 lsm_set_blob_size(&needed->lbs_cred, &blob_sizes.lbs_cred); 220 lsm_set_blob_size(&needed->lbs_file, &blob_sizes.lbs_file); 221 /* 222 * The inode blob gets an rcu_head in addition to 223 * what the modules might need. 224 */ 225 if (needed->lbs_inode && blob_sizes.lbs_inode == 0) 226 blob_sizes.lbs_inode = sizeof(struct rcu_head); 227 lsm_set_blob_size(&needed->lbs_inode, &blob_sizes.lbs_inode); 228 lsm_set_blob_size(&needed->lbs_ipc, &blob_sizes.lbs_ipc); 229 lsm_set_blob_size(&needed->lbs_msg_msg, &blob_sizes.lbs_msg_msg); 230 lsm_set_blob_size(&needed->lbs_superblock, &blob_sizes.lbs_superblock); 231 lsm_set_blob_size(&needed->lbs_task, &blob_sizes.lbs_task); 232 lsm_set_blob_size(&needed->lbs_xattr_count, 233 &blob_sizes.lbs_xattr_count); 234 } 235 236 /* Prepare LSM for initialization. */ 237 static void __init prepare_lsm(struct lsm_info *lsm) 238 { 239 int enabled = lsm_allowed(lsm); 240 241 /* Record enablement (to handle any following exclusive LSMs). */ 242 set_enabled(lsm, enabled); 243 244 /* If enabled, do pre-initialization work. */ 245 if (enabled) { 246 if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && !exclusive) { 247 exclusive = lsm; 248 init_debug("exclusive chosen: %s\n", lsm->name); 249 } 250 251 lsm_set_blob_sizes(lsm->blobs); 252 } 253 } 254 255 /* Initialize a given LSM, if it is enabled. */ 256 static void __init initialize_lsm(struct lsm_info *lsm) 257 { 258 if (is_enabled(lsm)) { 259 int ret; 260 261 init_debug("initializing %s\n", lsm->name); 262 ret = lsm->init(); 263 WARN(ret, "%s failed to initialize: %d\n", lsm->name, ret); 264 } 265 } 266 267 /* 268 * Current index to use while initializing the lsm id list. 269 */ 270 u32 lsm_active_cnt __ro_after_init; 271 const struct lsm_id *lsm_idlist[LSM_CONFIG_COUNT]; 272 273 /* Populate ordered LSMs list from comma-separated LSM name list. */ 274 static void __init ordered_lsm_parse(const char *order, const char *origin) 275 { 276 struct lsm_info *lsm; 277 char *sep, *name, *next; 278 279 /* LSM_ORDER_FIRST is always first. */ 280 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { 281 if (lsm->order == LSM_ORDER_FIRST) 282 append_ordered_lsm(lsm, " first"); 283 } 284 285 /* Process "security=", if given. */ 286 if (chosen_major_lsm) { 287 struct lsm_info *major; 288 289 /* 290 * To match the original "security=" behavior, this 291 * explicitly does NOT fallback to another Legacy Major 292 * if the selected one was separately disabled: disable 293 * all non-matching Legacy Major LSMs. 294 */ 295 for (major = __start_lsm_info; major < __end_lsm_info; 296 major++) { 297 if ((major->flags & LSM_FLAG_LEGACY_MAJOR) && 298 strcmp(major->name, chosen_major_lsm) != 0) { 299 set_enabled(major, false); 300 init_debug("security=%s disabled: %s (only one legacy major LSM)\n", 301 chosen_major_lsm, major->name); 302 } 303 } 304 } 305 306 sep = kstrdup(order, GFP_KERNEL); 307 next = sep; 308 /* Walk the list, looking for matching LSMs. */ 309 while ((name = strsep(&next, ",")) != NULL) { 310 bool found = false; 311 312 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { 313 if (strcmp(lsm->name, name) == 0) { 314 if (lsm->order == LSM_ORDER_MUTABLE) 315 append_ordered_lsm(lsm, origin); 316 found = true; 317 } 318 } 319 320 if (!found) 321 init_debug("%s ignored: %s (not built into kernel)\n", 322 origin, name); 323 } 324 325 /* Process "security=", if given. */ 326 if (chosen_major_lsm) { 327 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { 328 if (exists_ordered_lsm(lsm)) 329 continue; 330 if (strcmp(lsm->name, chosen_major_lsm) == 0) 331 append_ordered_lsm(lsm, "security="); 332 } 333 } 334 335 /* LSM_ORDER_LAST is always last. */ 336 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { 337 if (lsm->order == LSM_ORDER_LAST) 338 append_ordered_lsm(lsm, " last"); 339 } 340 341 /* Disable all LSMs not in the ordered list. */ 342 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { 343 if (exists_ordered_lsm(lsm)) 344 continue; 345 set_enabled(lsm, false); 346 init_debug("%s skipped: %s (not in requested order)\n", 347 origin, lsm->name); 348 } 349 350 kfree(sep); 351 } 352 353 static void __init lsm_early_cred(struct cred *cred); 354 static void __init lsm_early_task(struct task_struct *task); 355 356 static int lsm_append(const char *new, char **result); 357 358 static void __init report_lsm_order(void) 359 { 360 struct lsm_info **lsm, *early; 361 int first = 0; 362 363 pr_info("initializing lsm="); 364 365 /* Report each enabled LSM name, comma separated. */ 366 for (early = __start_early_lsm_info; 367 early < __end_early_lsm_info; early++) 368 if (is_enabled(early)) 369 pr_cont("%s%s", first++ == 0 ? "" : ",", early->name); 370 for (lsm = ordered_lsms; *lsm; lsm++) 371 if (is_enabled(*lsm)) 372 pr_cont("%s%s", first++ == 0 ? "" : ",", (*lsm)->name); 373 374 pr_cont("\n"); 375 } 376 377 static void __init ordered_lsm_init(void) 378 { 379 struct lsm_info **lsm; 380 381 ordered_lsms = kcalloc(LSM_COUNT + 1, sizeof(*ordered_lsms), 382 GFP_KERNEL); 383 384 if (chosen_lsm_order) { 385 if (chosen_major_lsm) { 386 pr_warn("security=%s is ignored because it is superseded by lsm=%s\n", 387 chosen_major_lsm, chosen_lsm_order); 388 chosen_major_lsm = NULL; 389 } 390 ordered_lsm_parse(chosen_lsm_order, "cmdline"); 391 } else 392 ordered_lsm_parse(builtin_lsm_order, "builtin"); 393 394 for (lsm = ordered_lsms; *lsm; lsm++) 395 prepare_lsm(*lsm); 396 397 report_lsm_order(); 398 399 init_debug("cred blob size = %d\n", blob_sizes.lbs_cred); 400 init_debug("file blob size = %d\n", blob_sizes.lbs_file); 401 init_debug("inode blob size = %d\n", blob_sizes.lbs_inode); 402 init_debug("ipc blob size = %d\n", blob_sizes.lbs_ipc); 403 init_debug("msg_msg blob size = %d\n", blob_sizes.lbs_msg_msg); 404 init_debug("superblock blob size = %d\n", blob_sizes.lbs_superblock); 405 init_debug("task blob size = %d\n", blob_sizes.lbs_task); 406 init_debug("xattr slots = %d\n", blob_sizes.lbs_xattr_count); 407 408 /* 409 * Create any kmem_caches needed for blobs 410 */ 411 if (blob_sizes.lbs_file) 412 lsm_file_cache = kmem_cache_create("lsm_file_cache", 413 blob_sizes.lbs_file, 0, 414 SLAB_PANIC, NULL); 415 if (blob_sizes.lbs_inode) 416 lsm_inode_cache = kmem_cache_create("lsm_inode_cache", 417 blob_sizes.lbs_inode, 0, 418 SLAB_PANIC, NULL); 419 420 lsm_early_cred((struct cred *) current->cred); 421 lsm_early_task(current); 422 for (lsm = ordered_lsms; *lsm; lsm++) 423 initialize_lsm(*lsm); 424 425 kfree(ordered_lsms); 426 } 427 428 int __init early_security_init(void) 429 { 430 struct lsm_info *lsm; 431 432 #define LSM_HOOK(RET, DEFAULT, NAME, ...) \ 433 INIT_HLIST_HEAD(&security_hook_heads.NAME); 434 #include "linux/lsm_hook_defs.h" 435 #undef LSM_HOOK 436 437 for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) { 438 if (!lsm->enabled) 439 lsm->enabled = &lsm_enabled_true; 440 prepare_lsm(lsm); 441 initialize_lsm(lsm); 442 } 443 444 return 0; 445 } 446 447 /** 448 * security_init - initializes the security framework 449 * 450 * This should be called early in the kernel initialization sequence. 451 */ 452 int __init security_init(void) 453 { 454 struct lsm_info *lsm; 455 456 init_debug("legacy security=%s\n", chosen_major_lsm ? : " *unspecified*"); 457 init_debug(" CONFIG_LSM=%s\n", builtin_lsm_order); 458 init_debug("boot arg lsm=%s\n", chosen_lsm_order ? : " *unspecified*"); 459 460 /* 461 * Append the names of the early LSM modules now that kmalloc() is 462 * available 463 */ 464 for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) { 465 init_debug(" early started: %s (%s)\n", lsm->name, 466 is_enabled(lsm) ? "enabled" : "disabled"); 467 if (lsm->enabled) 468 lsm_append(lsm->name, &lsm_names); 469 } 470 471 /* Load LSMs in specified order. */ 472 ordered_lsm_init(); 473 474 return 0; 475 } 476 477 /* Save user chosen LSM */ 478 static int __init choose_major_lsm(char *str) 479 { 480 chosen_major_lsm = str; 481 return 1; 482 } 483 __setup("security=", choose_major_lsm); 484 485 /* Explicitly choose LSM initialization order. */ 486 static int __init choose_lsm_order(char *str) 487 { 488 chosen_lsm_order = str; 489 return 1; 490 } 491 __setup("lsm=", choose_lsm_order); 492 493 /* Enable LSM order debugging. */ 494 static int __init enable_debug(char *str) 495 { 496 debug = true; 497 return 1; 498 } 499 __setup("lsm.debug", enable_debug); 500 501 static bool match_last_lsm(const char *list, const char *lsm) 502 { 503 const char *last; 504 505 if (WARN_ON(!list || !lsm)) 506 return false; 507 last = strrchr(list, ','); 508 if (last) 509 /* Pass the comma, strcmp() will check for '\0' */ 510 last++; 511 else 512 last = list; 513 return !strcmp(last, lsm); 514 } 515 516 static int lsm_append(const char *new, char **result) 517 { 518 char *cp; 519 520 if (*result == NULL) { 521 *result = kstrdup(new, GFP_KERNEL); 522 if (*result == NULL) 523 return -ENOMEM; 524 } else { 525 /* Check if it is the last registered name */ 526 if (match_last_lsm(*result, new)) 527 return 0; 528 cp = kasprintf(GFP_KERNEL, "%s,%s", *result, new); 529 if (cp == NULL) 530 return -ENOMEM; 531 kfree(*result); 532 *result = cp; 533 } 534 return 0; 535 } 536 537 /** 538 * security_add_hooks - Add a modules hooks to the hook lists. 539 * @hooks: the hooks to add 540 * @count: the number of hooks to add 541 * @lsmid: the identification information for the security module 542 * 543 * Each LSM has to register its hooks with the infrastructure. 544 */ 545 void __init security_add_hooks(struct security_hook_list *hooks, int count, 546 const struct lsm_id *lsmid) 547 { 548 int i; 549 550 /* 551 * A security module may call security_add_hooks() more 552 * than once during initialization, and LSM initialization 553 * is serialized. Landlock is one such case. 554 * Look at the previous entry, if there is one, for duplication. 555 */ 556 if (lsm_active_cnt == 0 || lsm_idlist[lsm_active_cnt - 1] != lsmid) { 557 if (lsm_active_cnt >= LSM_CONFIG_COUNT) 558 panic("%s Too many LSMs registered.\n", __func__); 559 lsm_idlist[lsm_active_cnt++] = lsmid; 560 } 561 562 for (i = 0; i < count; i++) { 563 hooks[i].lsmid = lsmid; 564 hlist_add_tail_rcu(&hooks[i].list, hooks[i].head); 565 } 566 567 /* 568 * Don't try to append during early_security_init(), we'll come back 569 * and fix this up afterwards. 570 */ 571 if (slab_is_available()) { 572 if (lsm_append(lsmid->name, &lsm_names) < 0) 573 panic("%s - Cannot get early memory.\n", __func__); 574 } 575 } 576 577 int call_blocking_lsm_notifier(enum lsm_event event, void *data) 578 { 579 return blocking_notifier_call_chain(&blocking_lsm_notifier_chain, 580 event, data); 581 } 582 EXPORT_SYMBOL(call_blocking_lsm_notifier); 583 584 int register_blocking_lsm_notifier(struct notifier_block *nb) 585 { 586 return blocking_notifier_chain_register(&blocking_lsm_notifier_chain, 587 nb); 588 } 589 EXPORT_SYMBOL(register_blocking_lsm_notifier); 590 591 int unregister_blocking_lsm_notifier(struct notifier_block *nb) 592 { 593 return blocking_notifier_chain_unregister(&blocking_lsm_notifier_chain, 594 nb); 595 } 596 EXPORT_SYMBOL(unregister_blocking_lsm_notifier); 597 598 /** 599 * lsm_cred_alloc - allocate a composite cred blob 600 * @cred: the cred that needs a blob 601 * @gfp: allocation type 602 * 603 * Allocate the cred blob for all the modules 604 * 605 * Returns 0, or -ENOMEM if memory can't be allocated. 606 */ 607 static int lsm_cred_alloc(struct cred *cred, gfp_t gfp) 608 { 609 if (blob_sizes.lbs_cred == 0) { 610 cred->security = NULL; 611 return 0; 612 } 613 614 cred->security = kzalloc(blob_sizes.lbs_cred, gfp); 615 if (cred->security == NULL) 616 return -ENOMEM; 617 return 0; 618 } 619 620 /** 621 * lsm_early_cred - during initialization allocate a composite cred blob 622 * @cred: the cred that needs a blob 623 * 624 * Allocate the cred blob for all the modules 625 */ 626 static void __init lsm_early_cred(struct cred *cred) 627 { 628 int rc = lsm_cred_alloc(cred, GFP_KERNEL); 629 630 if (rc) 631 panic("%s: Early cred alloc failed.\n", __func__); 632 } 633 634 /** 635 * lsm_file_alloc - allocate a composite file blob 636 * @file: the file that needs a blob 637 * 638 * Allocate the file blob for all the modules 639 * 640 * Returns 0, or -ENOMEM if memory can't be allocated. 641 */ 642 static int lsm_file_alloc(struct file *file) 643 { 644 if (!lsm_file_cache) { 645 file->f_security = NULL; 646 return 0; 647 } 648 649 file->f_security = kmem_cache_zalloc(lsm_file_cache, GFP_KERNEL); 650 if (file->f_security == NULL) 651 return -ENOMEM; 652 return 0; 653 } 654 655 /** 656 * lsm_inode_alloc - allocate a composite inode blob 657 * @inode: the inode that needs a blob 658 * 659 * Allocate the inode blob for all the modules 660 * 661 * Returns 0, or -ENOMEM if memory can't be allocated. 662 */ 663 int lsm_inode_alloc(struct inode *inode) 664 { 665 if (!lsm_inode_cache) { 666 inode->i_security = NULL; 667 return 0; 668 } 669 670 inode->i_security = kmem_cache_zalloc(lsm_inode_cache, GFP_NOFS); 671 if (inode->i_security == NULL) 672 return -ENOMEM; 673 return 0; 674 } 675 676 /** 677 * lsm_task_alloc - allocate a composite task blob 678 * @task: the task that needs a blob 679 * 680 * Allocate the task blob for all the modules 681 * 682 * Returns 0, or -ENOMEM if memory can't be allocated. 683 */ 684 static int lsm_task_alloc(struct task_struct *task) 685 { 686 if (blob_sizes.lbs_task == 0) { 687 task->security = NULL; 688 return 0; 689 } 690 691 task->security = kzalloc(blob_sizes.lbs_task, GFP_KERNEL); 692 if (task->security == NULL) 693 return -ENOMEM; 694 return 0; 695 } 696 697 /** 698 * lsm_ipc_alloc - allocate a composite ipc blob 699 * @kip: the ipc that needs a blob 700 * 701 * Allocate the ipc blob for all the modules 702 * 703 * Returns 0, or -ENOMEM if memory can't be allocated. 704 */ 705 static int lsm_ipc_alloc(struct kern_ipc_perm *kip) 706 { 707 if (blob_sizes.lbs_ipc == 0) { 708 kip->security = NULL; 709 return 0; 710 } 711 712 kip->security = kzalloc(blob_sizes.lbs_ipc, GFP_KERNEL); 713 if (kip->security == NULL) 714 return -ENOMEM; 715 return 0; 716 } 717 718 /** 719 * lsm_msg_msg_alloc - allocate a composite msg_msg blob 720 * @mp: the msg_msg that needs a blob 721 * 722 * Allocate the ipc blob for all the modules 723 * 724 * Returns 0, or -ENOMEM if memory can't be allocated. 725 */ 726 static int lsm_msg_msg_alloc(struct msg_msg *mp) 727 { 728 if (blob_sizes.lbs_msg_msg == 0) { 729 mp->security = NULL; 730 return 0; 731 } 732 733 mp->security = kzalloc(blob_sizes.lbs_msg_msg, GFP_KERNEL); 734 if (mp->security == NULL) 735 return -ENOMEM; 736 return 0; 737 } 738 739 /** 740 * lsm_early_task - during initialization allocate a composite task blob 741 * @task: the task that needs a blob 742 * 743 * Allocate the task blob for all the modules 744 */ 745 static void __init lsm_early_task(struct task_struct *task) 746 { 747 int rc = lsm_task_alloc(task); 748 749 if (rc) 750 panic("%s: Early task alloc failed.\n", __func__); 751 } 752 753 /** 754 * lsm_superblock_alloc - allocate a composite superblock blob 755 * @sb: the superblock that needs a blob 756 * 757 * Allocate the superblock blob for all the modules 758 * 759 * Returns 0, or -ENOMEM if memory can't be allocated. 760 */ 761 static int lsm_superblock_alloc(struct super_block *sb) 762 { 763 if (blob_sizes.lbs_superblock == 0) { 764 sb->s_security = NULL; 765 return 0; 766 } 767 768 sb->s_security = kzalloc(blob_sizes.lbs_superblock, GFP_KERNEL); 769 if (sb->s_security == NULL) 770 return -ENOMEM; 771 return 0; 772 } 773 774 /** 775 * lsm_fill_user_ctx - Fill a user space lsm_ctx structure 776 * @uctx: a userspace LSM context to be filled 777 * @uctx_len: available uctx size (input), used uctx size (output) 778 * @val: the new LSM context value 779 * @val_len: the size of the new LSM context value 780 * @id: LSM id 781 * @flags: LSM defined flags 782 * 783 * Fill all of the fields in a userspace lsm_ctx structure. 784 * 785 * Returns 0 on success, -E2BIG if userspace buffer is not large enough, 786 * -EFAULT on a copyout error, -ENOMEM if memory can't be allocated. 787 */ 788 int lsm_fill_user_ctx(struct lsm_ctx __user *uctx, size_t *uctx_len, 789 void *val, size_t val_len, 790 u64 id, u64 flags) 791 { 792 struct lsm_ctx *nctx = NULL; 793 size_t nctx_len; 794 int rc = 0; 795 796 nctx_len = ALIGN(struct_size(nctx, ctx, val_len), sizeof(void *)); 797 if (nctx_len > *uctx_len) { 798 rc = -E2BIG; 799 goto out; 800 } 801 802 nctx = kzalloc(nctx_len, GFP_KERNEL); 803 if (nctx == NULL) { 804 rc = -ENOMEM; 805 goto out; 806 } 807 nctx->id = id; 808 nctx->flags = flags; 809 nctx->len = nctx_len; 810 nctx->ctx_len = val_len; 811 memcpy(nctx->ctx, val, val_len); 812 813 if (copy_to_user(uctx, nctx, nctx_len)) 814 rc = -EFAULT; 815 816 out: 817 kfree(nctx); 818 *uctx_len = nctx_len; 819 return rc; 820 } 821 822 /* 823 * The default value of the LSM hook is defined in linux/lsm_hook_defs.h and 824 * can be accessed with: 825 * 826 * LSM_RET_DEFAULT(<hook_name>) 827 * 828 * The macros below define static constants for the default value of each 829 * LSM hook. 830 */ 831 #define LSM_RET_DEFAULT(NAME) (NAME##_default) 832 #define DECLARE_LSM_RET_DEFAULT_void(DEFAULT, NAME) 833 #define DECLARE_LSM_RET_DEFAULT_int(DEFAULT, NAME) \ 834 static const int __maybe_unused LSM_RET_DEFAULT(NAME) = (DEFAULT); 835 #define LSM_HOOK(RET, DEFAULT, NAME, ...) \ 836 DECLARE_LSM_RET_DEFAULT_##RET(DEFAULT, NAME) 837 838 #include <linux/lsm_hook_defs.h> 839 #undef LSM_HOOK 840 841 /* 842 * Hook list operation macros. 843 * 844 * call_void_hook: 845 * This is a hook that does not return a value. 846 * 847 * call_int_hook: 848 * This is a hook that returns a value. 849 */ 850 851 #define call_void_hook(FUNC, ...) \ 852 do { \ 853 struct security_hook_list *P; \ 854 \ 855 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) \ 856 P->hook.FUNC(__VA_ARGS__); \ 857 } while (0) 858 859 #define call_int_hook(FUNC, IRC, ...) ({ \ 860 int RC = IRC; \ 861 do { \ 862 struct security_hook_list *P; \ 863 \ 864 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) { \ 865 RC = P->hook.FUNC(__VA_ARGS__); \ 866 if (RC != 0) \ 867 break; \ 868 } \ 869 } while (0); \ 870 RC; \ 871 }) 872 873 /* Security operations */ 874 875 /** 876 * security_binder_set_context_mgr() - Check if becoming binder ctx mgr is ok 877 * @mgr: task credentials of current binder process 878 * 879 * Check whether @mgr is allowed to be the binder context manager. 880 * 881 * Return: Return 0 if permission is granted. 882 */ 883 int security_binder_set_context_mgr(const struct cred *mgr) 884 { 885 return call_int_hook(binder_set_context_mgr, 0, mgr); 886 } 887 888 /** 889 * security_binder_transaction() - Check if a binder transaction is allowed 890 * @from: sending process 891 * @to: receiving process 892 * 893 * Check whether @from is allowed to invoke a binder transaction call to @to. 894 * 895 * Return: Returns 0 if permission is granted. 896 */ 897 int security_binder_transaction(const struct cred *from, 898 const struct cred *to) 899 { 900 return call_int_hook(binder_transaction, 0, from, to); 901 } 902 903 /** 904 * security_binder_transfer_binder() - Check if a binder transfer is allowed 905 * @from: sending process 906 * @to: receiving process 907 * 908 * Check whether @from is allowed to transfer a binder reference to @to. 909 * 910 * Return: Returns 0 if permission is granted. 911 */ 912 int security_binder_transfer_binder(const struct cred *from, 913 const struct cred *to) 914 { 915 return call_int_hook(binder_transfer_binder, 0, from, to); 916 } 917 918 /** 919 * security_binder_transfer_file() - Check if a binder file xfer is allowed 920 * @from: sending process 921 * @to: receiving process 922 * @file: file being transferred 923 * 924 * Check whether @from is allowed to transfer @file to @to. 925 * 926 * Return: Returns 0 if permission is granted. 927 */ 928 int security_binder_transfer_file(const struct cred *from, 929 const struct cred *to, const struct file *file) 930 { 931 return call_int_hook(binder_transfer_file, 0, from, to, file); 932 } 933 934 /** 935 * security_ptrace_access_check() - Check if tracing is allowed 936 * @child: target process 937 * @mode: PTRACE_MODE flags 938 * 939 * Check permission before allowing the current process to trace the @child 940 * process. Security modules may also want to perform a process tracing check 941 * during an execve in the set_security or apply_creds hooks of tracing check 942 * during an execve in the bprm_set_creds hook of binprm_security_ops if the 943 * process is being traced and its security attributes would be changed by the 944 * execve. 945 * 946 * Return: Returns 0 if permission is granted. 947 */ 948 int security_ptrace_access_check(struct task_struct *child, unsigned int mode) 949 { 950 return call_int_hook(ptrace_access_check, 0, child, mode); 951 } 952 953 /** 954 * security_ptrace_traceme() - Check if tracing is allowed 955 * @parent: tracing process 956 * 957 * Check that the @parent process has sufficient permission to trace the 958 * current process before allowing the current process to present itself to the 959 * @parent process for tracing. 960 * 961 * Return: Returns 0 if permission is granted. 962 */ 963 int security_ptrace_traceme(struct task_struct *parent) 964 { 965 return call_int_hook(ptrace_traceme, 0, parent); 966 } 967 968 /** 969 * security_capget() - Get the capability sets for a process 970 * @target: target process 971 * @effective: effective capability set 972 * @inheritable: inheritable capability set 973 * @permitted: permitted capability set 974 * 975 * Get the @effective, @inheritable, and @permitted capability sets for the 976 * @target process. The hook may also perform permission checking to determine 977 * if the current process is allowed to see the capability sets of the @target 978 * process. 979 * 980 * Return: Returns 0 if the capability sets were successfully obtained. 981 */ 982 int security_capget(const struct task_struct *target, 983 kernel_cap_t *effective, 984 kernel_cap_t *inheritable, 985 kernel_cap_t *permitted) 986 { 987 return call_int_hook(capget, 0, target, 988 effective, inheritable, permitted); 989 } 990 991 /** 992 * security_capset() - Set the capability sets for a process 993 * @new: new credentials for the target process 994 * @old: current credentials of the target process 995 * @effective: effective capability set 996 * @inheritable: inheritable capability set 997 * @permitted: permitted capability set 998 * 999 * Set the @effective, @inheritable, and @permitted capability sets for the 1000 * current process. 1001 * 1002 * Return: Returns 0 and update @new if permission is granted. 1003 */ 1004 int security_capset(struct cred *new, const struct cred *old, 1005 const kernel_cap_t *effective, 1006 const kernel_cap_t *inheritable, 1007 const kernel_cap_t *permitted) 1008 { 1009 return call_int_hook(capset, 0, new, old, 1010 effective, inheritable, permitted); 1011 } 1012 1013 /** 1014 * security_capable() - Check if a process has the necessary capability 1015 * @cred: credentials to examine 1016 * @ns: user namespace 1017 * @cap: capability requested 1018 * @opts: capability check options 1019 * 1020 * Check whether the @tsk process has the @cap capability in the indicated 1021 * credentials. @cap contains the capability <include/linux/capability.h>. 1022 * @opts contains options for the capable check <include/linux/security.h>. 1023 * 1024 * Return: Returns 0 if the capability is granted. 1025 */ 1026 int security_capable(const struct cred *cred, 1027 struct user_namespace *ns, 1028 int cap, 1029 unsigned int opts) 1030 { 1031 return call_int_hook(capable, 0, cred, ns, cap, opts); 1032 } 1033 1034 /** 1035 * security_quotactl() - Check if a quotactl() syscall is allowed for this fs 1036 * @cmds: commands 1037 * @type: type 1038 * @id: id 1039 * @sb: filesystem 1040 * 1041 * Check whether the quotactl syscall is allowed for this @sb. 1042 * 1043 * Return: Returns 0 if permission is granted. 1044 */ 1045 int security_quotactl(int cmds, int type, int id, const struct super_block *sb) 1046 { 1047 return call_int_hook(quotactl, 0, cmds, type, id, sb); 1048 } 1049 1050 /** 1051 * security_quota_on() - Check if QUOTAON is allowed for a dentry 1052 * @dentry: dentry 1053 * 1054 * Check whether QUOTAON is allowed for @dentry. 1055 * 1056 * Return: Returns 0 if permission is granted. 1057 */ 1058 int security_quota_on(struct dentry *dentry) 1059 { 1060 return call_int_hook(quota_on, 0, dentry); 1061 } 1062 1063 /** 1064 * security_syslog() - Check if accessing the kernel message ring is allowed 1065 * @type: SYSLOG_ACTION_* type 1066 * 1067 * Check permission before accessing the kernel message ring or changing 1068 * logging to the console. See the syslog(2) manual page for an explanation of 1069 * the @type values. 1070 * 1071 * Return: Return 0 if permission is granted. 1072 */ 1073 int security_syslog(int type) 1074 { 1075 return call_int_hook(syslog, 0, type); 1076 } 1077 1078 /** 1079 * security_settime64() - Check if changing the system time is allowed 1080 * @ts: new time 1081 * @tz: timezone 1082 * 1083 * Check permission to change the system time, struct timespec64 is defined in 1084 * <include/linux/time64.h> and timezone is defined in <include/linux/time.h>. 1085 * 1086 * Return: Returns 0 if permission is granted. 1087 */ 1088 int security_settime64(const struct timespec64 *ts, const struct timezone *tz) 1089 { 1090 return call_int_hook(settime, 0, ts, tz); 1091 } 1092 1093 /** 1094 * security_vm_enough_memory_mm() - Check if allocating a new mem map is allowed 1095 * @mm: mm struct 1096 * @pages: number of pages 1097 * 1098 * Check permissions for allocating a new virtual mapping. If all LSMs return 1099 * a positive value, __vm_enough_memory() will be called with cap_sys_admin 1100 * set. If at least one LSM returns 0 or negative, __vm_enough_memory() will be 1101 * called with cap_sys_admin cleared. 1102 * 1103 * Return: Returns 0 if permission is granted by the LSM infrastructure to the 1104 * caller. 1105 */ 1106 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages) 1107 { 1108 struct security_hook_list *hp; 1109 int cap_sys_admin = 1; 1110 int rc; 1111 1112 /* 1113 * The module will respond with a positive value if 1114 * it thinks the __vm_enough_memory() call should be 1115 * made with the cap_sys_admin set. If all of the modules 1116 * agree that it should be set it will. If any module 1117 * thinks it should not be set it won't. 1118 */ 1119 hlist_for_each_entry(hp, &security_hook_heads.vm_enough_memory, list) { 1120 rc = hp->hook.vm_enough_memory(mm, pages); 1121 if (rc <= 0) { 1122 cap_sys_admin = 0; 1123 break; 1124 } 1125 } 1126 return __vm_enough_memory(mm, pages, cap_sys_admin); 1127 } 1128 1129 /** 1130 * security_bprm_creds_for_exec() - Prepare the credentials for exec() 1131 * @bprm: binary program information 1132 * 1133 * If the setup in prepare_exec_creds did not setup @bprm->cred->security 1134 * properly for executing @bprm->file, update the LSM's portion of 1135 * @bprm->cred->security to be what commit_creds needs to install for the new 1136 * program. This hook may also optionally check permissions (e.g. for 1137 * transitions between security domains). The hook must set @bprm->secureexec 1138 * to 1 if AT_SECURE should be set to request libc enable secure mode. @bprm 1139 * contains the linux_binprm structure. 1140 * 1141 * Return: Returns 0 if the hook is successful and permission is granted. 1142 */ 1143 int security_bprm_creds_for_exec(struct linux_binprm *bprm) 1144 { 1145 return call_int_hook(bprm_creds_for_exec, 0, bprm); 1146 } 1147 1148 /** 1149 * security_bprm_creds_from_file() - Update linux_binprm creds based on file 1150 * @bprm: binary program information 1151 * @file: associated file 1152 * 1153 * If @file is setpcap, suid, sgid or otherwise marked to change privilege upon 1154 * exec, update @bprm->cred to reflect that change. This is called after 1155 * finding the binary that will be executed without an interpreter. This 1156 * ensures that the credentials will not be derived from a script that the 1157 * binary will need to reopen, which when reopend may end up being a completely 1158 * different file. This hook may also optionally check permissions (e.g. for 1159 * transitions between security domains). The hook must set @bprm->secureexec 1160 * to 1 if AT_SECURE should be set to request libc enable secure mode. The 1161 * hook must add to @bprm->per_clear any personality flags that should be 1162 * cleared from current->personality. @bprm contains the linux_binprm 1163 * structure. 1164 * 1165 * Return: Returns 0 if the hook is successful and permission is granted. 1166 */ 1167 int security_bprm_creds_from_file(struct linux_binprm *bprm, const struct file *file) 1168 { 1169 return call_int_hook(bprm_creds_from_file, 0, bprm, file); 1170 } 1171 1172 /** 1173 * security_bprm_check() - Mediate binary handler search 1174 * @bprm: binary program information 1175 * 1176 * This hook mediates the point when a search for a binary handler will begin. 1177 * It allows a check against the @bprm->cred->security value which was set in 1178 * the preceding creds_for_exec call. The argv list and envp list are reliably 1179 * available in @bprm. This hook may be called multiple times during a single 1180 * execve. @bprm contains the linux_binprm structure. 1181 * 1182 * Return: Returns 0 if the hook is successful and permission is granted. 1183 */ 1184 int security_bprm_check(struct linux_binprm *bprm) 1185 { 1186 int ret; 1187 1188 ret = call_int_hook(bprm_check_security, 0, bprm); 1189 if (ret) 1190 return ret; 1191 return ima_bprm_check(bprm); 1192 } 1193 1194 /** 1195 * security_bprm_committing_creds() - Install creds for a process during exec() 1196 * @bprm: binary program information 1197 * 1198 * Prepare to install the new security attributes of a process being 1199 * transformed by an execve operation, based on the old credentials pointed to 1200 * by @current->cred and the information set in @bprm->cred by the 1201 * bprm_creds_for_exec hook. @bprm points to the linux_binprm structure. This 1202 * hook is a good place to perform state changes on the process such as closing 1203 * open file descriptors to which access will no longer be granted when the 1204 * attributes are changed. This is called immediately before commit_creds(). 1205 */ 1206 void security_bprm_committing_creds(const struct linux_binprm *bprm) 1207 { 1208 call_void_hook(bprm_committing_creds, bprm); 1209 } 1210 1211 /** 1212 * security_bprm_committed_creds() - Tidy up after cred install during exec() 1213 * @bprm: binary program information 1214 * 1215 * Tidy up after the installation of the new security attributes of a process 1216 * being transformed by an execve operation. The new credentials have, by this 1217 * point, been set to @current->cred. @bprm points to the linux_binprm 1218 * structure. This hook is a good place to perform state changes on the 1219 * process such as clearing out non-inheritable signal state. This is called 1220 * immediately after commit_creds(). 1221 */ 1222 void security_bprm_committed_creds(const struct linux_binprm *bprm) 1223 { 1224 call_void_hook(bprm_committed_creds, bprm); 1225 } 1226 1227 /** 1228 * security_fs_context_submount() - Initialise fc->security 1229 * @fc: new filesystem context 1230 * @reference: dentry reference for submount/remount 1231 * 1232 * Fill out the ->security field for a new fs_context. 1233 * 1234 * Return: Returns 0 on success or negative error code on failure. 1235 */ 1236 int security_fs_context_submount(struct fs_context *fc, struct super_block *reference) 1237 { 1238 return call_int_hook(fs_context_submount, 0, fc, reference); 1239 } 1240 1241 /** 1242 * security_fs_context_dup() - Duplicate a fs_context LSM blob 1243 * @fc: destination filesystem context 1244 * @src_fc: source filesystem context 1245 * 1246 * Allocate and attach a security structure to sc->security. This pointer is 1247 * initialised to NULL by the caller. @fc indicates the new filesystem context. 1248 * @src_fc indicates the original filesystem context. 1249 * 1250 * Return: Returns 0 on success or a negative error code on failure. 1251 */ 1252 int security_fs_context_dup(struct fs_context *fc, struct fs_context *src_fc) 1253 { 1254 return call_int_hook(fs_context_dup, 0, fc, src_fc); 1255 } 1256 1257 /** 1258 * security_fs_context_parse_param() - Configure a filesystem context 1259 * @fc: filesystem context 1260 * @param: filesystem parameter 1261 * 1262 * Userspace provided a parameter to configure a superblock. The LSM can 1263 * consume the parameter or return it to the caller for use elsewhere. 1264 * 1265 * Return: If the parameter is used by the LSM it should return 0, if it is 1266 * returned to the caller -ENOPARAM is returned, otherwise a negative 1267 * error code is returned. 1268 */ 1269 int security_fs_context_parse_param(struct fs_context *fc, 1270 struct fs_parameter *param) 1271 { 1272 struct security_hook_list *hp; 1273 int trc; 1274 int rc = -ENOPARAM; 1275 1276 hlist_for_each_entry(hp, &security_hook_heads.fs_context_parse_param, 1277 list) { 1278 trc = hp->hook.fs_context_parse_param(fc, param); 1279 if (trc == 0) 1280 rc = 0; 1281 else if (trc != -ENOPARAM) 1282 return trc; 1283 } 1284 return rc; 1285 } 1286 1287 /** 1288 * security_sb_alloc() - Allocate a super_block LSM blob 1289 * @sb: filesystem superblock 1290 * 1291 * Allocate and attach a security structure to the sb->s_security field. The 1292 * s_security field is initialized to NULL when the structure is allocated. 1293 * @sb contains the super_block structure to be modified. 1294 * 1295 * Return: Returns 0 if operation was successful. 1296 */ 1297 int security_sb_alloc(struct super_block *sb) 1298 { 1299 int rc = lsm_superblock_alloc(sb); 1300 1301 if (unlikely(rc)) 1302 return rc; 1303 rc = call_int_hook(sb_alloc_security, 0, sb); 1304 if (unlikely(rc)) 1305 security_sb_free(sb); 1306 return rc; 1307 } 1308 1309 /** 1310 * security_sb_delete() - Release super_block LSM associated objects 1311 * @sb: filesystem superblock 1312 * 1313 * Release objects tied to a superblock (e.g. inodes). @sb contains the 1314 * super_block structure being released. 1315 */ 1316 void security_sb_delete(struct super_block *sb) 1317 { 1318 call_void_hook(sb_delete, sb); 1319 } 1320 1321 /** 1322 * security_sb_free() - Free a super_block LSM blob 1323 * @sb: filesystem superblock 1324 * 1325 * Deallocate and clear the sb->s_security field. @sb contains the super_block 1326 * structure to be modified. 1327 */ 1328 void security_sb_free(struct super_block *sb) 1329 { 1330 call_void_hook(sb_free_security, sb); 1331 kfree(sb->s_security); 1332 sb->s_security = NULL; 1333 } 1334 1335 /** 1336 * security_free_mnt_opts() - Free memory associated with mount options 1337 * @mnt_opts: LSM processed mount options 1338 * 1339 * Free memory associated with @mnt_ops. 1340 */ 1341 void security_free_mnt_opts(void **mnt_opts) 1342 { 1343 if (!*mnt_opts) 1344 return; 1345 call_void_hook(sb_free_mnt_opts, *mnt_opts); 1346 *mnt_opts = NULL; 1347 } 1348 EXPORT_SYMBOL(security_free_mnt_opts); 1349 1350 /** 1351 * security_sb_eat_lsm_opts() - Consume LSM mount options 1352 * @options: mount options 1353 * @mnt_opts: LSM processed mount options 1354 * 1355 * Eat (scan @options) and save them in @mnt_opts. 1356 * 1357 * Return: Returns 0 on success, negative values on failure. 1358 */ 1359 int security_sb_eat_lsm_opts(char *options, void **mnt_opts) 1360 { 1361 return call_int_hook(sb_eat_lsm_opts, 0, options, mnt_opts); 1362 } 1363 EXPORT_SYMBOL(security_sb_eat_lsm_opts); 1364 1365 /** 1366 * security_sb_mnt_opts_compat() - Check if new mount options are allowed 1367 * @sb: filesystem superblock 1368 * @mnt_opts: new mount options 1369 * 1370 * Determine if the new mount options in @mnt_opts are allowed given the 1371 * existing mounted filesystem at @sb. @sb superblock being compared. 1372 * 1373 * Return: Returns 0 if options are compatible. 1374 */ 1375 int security_sb_mnt_opts_compat(struct super_block *sb, 1376 void *mnt_opts) 1377 { 1378 return call_int_hook(sb_mnt_opts_compat, 0, sb, mnt_opts); 1379 } 1380 EXPORT_SYMBOL(security_sb_mnt_opts_compat); 1381 1382 /** 1383 * security_sb_remount() - Verify no incompatible mount changes during remount 1384 * @sb: filesystem superblock 1385 * @mnt_opts: (re)mount options 1386 * 1387 * Extracts security system specific mount options and verifies no changes are 1388 * being made to those options. 1389 * 1390 * Return: Returns 0 if permission is granted. 1391 */ 1392 int security_sb_remount(struct super_block *sb, 1393 void *mnt_opts) 1394 { 1395 return call_int_hook(sb_remount, 0, sb, mnt_opts); 1396 } 1397 EXPORT_SYMBOL(security_sb_remount); 1398 1399 /** 1400 * security_sb_kern_mount() - Check if a kernel mount is allowed 1401 * @sb: filesystem superblock 1402 * 1403 * Mount this @sb if allowed by permissions. 1404 * 1405 * Return: Returns 0 if permission is granted. 1406 */ 1407 int security_sb_kern_mount(const struct super_block *sb) 1408 { 1409 return call_int_hook(sb_kern_mount, 0, sb); 1410 } 1411 1412 /** 1413 * security_sb_show_options() - Output the mount options for a superblock 1414 * @m: output file 1415 * @sb: filesystem superblock 1416 * 1417 * Show (print on @m) mount options for this @sb. 1418 * 1419 * Return: Returns 0 on success, negative values on failure. 1420 */ 1421 int security_sb_show_options(struct seq_file *m, struct super_block *sb) 1422 { 1423 return call_int_hook(sb_show_options, 0, m, sb); 1424 } 1425 1426 /** 1427 * security_sb_statfs() - Check if accessing fs stats is allowed 1428 * @dentry: superblock handle 1429 * 1430 * Check permission before obtaining filesystem statistics for the @mnt 1431 * mountpoint. @dentry is a handle on the superblock for the filesystem. 1432 * 1433 * Return: Returns 0 if permission is granted. 1434 */ 1435 int security_sb_statfs(struct dentry *dentry) 1436 { 1437 return call_int_hook(sb_statfs, 0, dentry); 1438 } 1439 1440 /** 1441 * security_sb_mount() - Check permission for mounting a filesystem 1442 * @dev_name: filesystem backing device 1443 * @path: mount point 1444 * @type: filesystem type 1445 * @flags: mount flags 1446 * @data: filesystem specific data 1447 * 1448 * Check permission before an object specified by @dev_name is mounted on the 1449 * mount point named by @nd. For an ordinary mount, @dev_name identifies a 1450 * device if the file system type requires a device. For a remount 1451 * (@flags & MS_REMOUNT), @dev_name is irrelevant. For a loopback/bind mount 1452 * (@flags & MS_BIND), @dev_name identifies the pathname of the object being 1453 * mounted. 1454 * 1455 * Return: Returns 0 if permission is granted. 1456 */ 1457 int security_sb_mount(const char *dev_name, const struct path *path, 1458 const char *type, unsigned long flags, void *data) 1459 { 1460 return call_int_hook(sb_mount, 0, dev_name, path, type, flags, data); 1461 } 1462 1463 /** 1464 * security_sb_umount() - Check permission for unmounting a filesystem 1465 * @mnt: mounted filesystem 1466 * @flags: unmount flags 1467 * 1468 * Check permission before the @mnt file system is unmounted. 1469 * 1470 * Return: Returns 0 if permission is granted. 1471 */ 1472 int security_sb_umount(struct vfsmount *mnt, int flags) 1473 { 1474 return call_int_hook(sb_umount, 0, mnt, flags); 1475 } 1476 1477 /** 1478 * security_sb_pivotroot() - Check permissions for pivoting the rootfs 1479 * @old_path: new location for current rootfs 1480 * @new_path: location of the new rootfs 1481 * 1482 * Check permission before pivoting the root filesystem. 1483 * 1484 * Return: Returns 0 if permission is granted. 1485 */ 1486 int security_sb_pivotroot(const struct path *old_path, 1487 const struct path *new_path) 1488 { 1489 return call_int_hook(sb_pivotroot, 0, old_path, new_path); 1490 } 1491 1492 /** 1493 * security_sb_set_mnt_opts() - Set the mount options for a filesystem 1494 * @sb: filesystem superblock 1495 * @mnt_opts: binary mount options 1496 * @kern_flags: kernel flags (in) 1497 * @set_kern_flags: kernel flags (out) 1498 * 1499 * Set the security relevant mount options used for a superblock. 1500 * 1501 * Return: Returns 0 on success, error on failure. 1502 */ 1503 int security_sb_set_mnt_opts(struct super_block *sb, 1504 void *mnt_opts, 1505 unsigned long kern_flags, 1506 unsigned long *set_kern_flags) 1507 { 1508 return call_int_hook(sb_set_mnt_opts, 1509 mnt_opts ? -EOPNOTSUPP : 0, sb, 1510 mnt_opts, kern_flags, set_kern_flags); 1511 } 1512 EXPORT_SYMBOL(security_sb_set_mnt_opts); 1513 1514 /** 1515 * security_sb_clone_mnt_opts() - Duplicate superblock mount options 1516 * @oldsb: source superblock 1517 * @newsb: destination superblock 1518 * @kern_flags: kernel flags (in) 1519 * @set_kern_flags: kernel flags (out) 1520 * 1521 * Copy all security options from a given superblock to another. 1522 * 1523 * Return: Returns 0 on success, error on failure. 1524 */ 1525 int security_sb_clone_mnt_opts(const struct super_block *oldsb, 1526 struct super_block *newsb, 1527 unsigned long kern_flags, 1528 unsigned long *set_kern_flags) 1529 { 1530 return call_int_hook(sb_clone_mnt_opts, 0, oldsb, newsb, 1531 kern_flags, set_kern_flags); 1532 } 1533 EXPORT_SYMBOL(security_sb_clone_mnt_opts); 1534 1535 /** 1536 * security_move_mount() - Check permissions for moving a mount 1537 * @from_path: source mount point 1538 * @to_path: destination mount point 1539 * 1540 * Check permission before a mount is moved. 1541 * 1542 * Return: Returns 0 if permission is granted. 1543 */ 1544 int security_move_mount(const struct path *from_path, 1545 const struct path *to_path) 1546 { 1547 return call_int_hook(move_mount, 0, from_path, to_path); 1548 } 1549 1550 /** 1551 * security_path_notify() - Check if setting a watch is allowed 1552 * @path: file path 1553 * @mask: event mask 1554 * @obj_type: file path type 1555 * 1556 * Check permissions before setting a watch on events as defined by @mask, on 1557 * an object at @path, whose type is defined by @obj_type. 1558 * 1559 * Return: Returns 0 if permission is granted. 1560 */ 1561 int security_path_notify(const struct path *path, u64 mask, 1562 unsigned int obj_type) 1563 { 1564 return call_int_hook(path_notify, 0, path, mask, obj_type); 1565 } 1566 1567 /** 1568 * security_inode_alloc() - Allocate an inode LSM blob 1569 * @inode: the inode 1570 * 1571 * Allocate and attach a security structure to @inode->i_security. The 1572 * i_security field is initialized to NULL when the inode structure is 1573 * allocated. 1574 * 1575 * Return: Return 0 if operation was successful. 1576 */ 1577 int security_inode_alloc(struct inode *inode) 1578 { 1579 int rc = lsm_inode_alloc(inode); 1580 1581 if (unlikely(rc)) 1582 return rc; 1583 rc = call_int_hook(inode_alloc_security, 0, inode); 1584 if (unlikely(rc)) 1585 security_inode_free(inode); 1586 return rc; 1587 } 1588 1589 static void inode_free_by_rcu(struct rcu_head *head) 1590 { 1591 /* 1592 * The rcu head is at the start of the inode blob 1593 */ 1594 kmem_cache_free(lsm_inode_cache, head); 1595 } 1596 1597 /** 1598 * security_inode_free() - Free an inode's LSM blob 1599 * @inode: the inode 1600 * 1601 * Deallocate the inode security structure and set @inode->i_security to NULL. 1602 */ 1603 void security_inode_free(struct inode *inode) 1604 { 1605 integrity_inode_free(inode); 1606 call_void_hook(inode_free_security, inode); 1607 /* 1608 * The inode may still be referenced in a path walk and 1609 * a call to security_inode_permission() can be made 1610 * after inode_free_security() is called. Ideally, the VFS 1611 * wouldn't do this, but fixing that is a much harder 1612 * job. For now, simply free the i_security via RCU, and 1613 * leave the current inode->i_security pointer intact. 1614 * The inode will be freed after the RCU grace period too. 1615 */ 1616 if (inode->i_security) 1617 call_rcu((struct rcu_head *)inode->i_security, 1618 inode_free_by_rcu); 1619 } 1620 1621 /** 1622 * security_dentry_init_security() - Perform dentry initialization 1623 * @dentry: the dentry to initialize 1624 * @mode: mode used to determine resource type 1625 * @name: name of the last path component 1626 * @xattr_name: name of the security/LSM xattr 1627 * @ctx: pointer to the resulting LSM context 1628 * @ctxlen: length of @ctx 1629 * 1630 * Compute a context for a dentry as the inode is not yet available since NFSv4 1631 * has no label backed by an EA anyway. It is important to note that 1632 * @xattr_name does not need to be free'd by the caller, it is a static string. 1633 * 1634 * Return: Returns 0 on success, negative values on failure. 1635 */ 1636 int security_dentry_init_security(struct dentry *dentry, int mode, 1637 const struct qstr *name, 1638 const char **xattr_name, void **ctx, 1639 u32 *ctxlen) 1640 { 1641 struct security_hook_list *hp; 1642 int rc; 1643 1644 /* 1645 * Only one module will provide a security context. 1646 */ 1647 hlist_for_each_entry(hp, &security_hook_heads.dentry_init_security, 1648 list) { 1649 rc = hp->hook.dentry_init_security(dentry, mode, name, 1650 xattr_name, ctx, ctxlen); 1651 if (rc != LSM_RET_DEFAULT(dentry_init_security)) 1652 return rc; 1653 } 1654 return LSM_RET_DEFAULT(dentry_init_security); 1655 } 1656 EXPORT_SYMBOL(security_dentry_init_security); 1657 1658 /** 1659 * security_dentry_create_files_as() - Perform dentry initialization 1660 * @dentry: the dentry to initialize 1661 * @mode: mode used to determine resource type 1662 * @name: name of the last path component 1663 * @old: creds to use for LSM context calculations 1664 * @new: creds to modify 1665 * 1666 * Compute a context for a dentry as the inode is not yet available and set 1667 * that context in passed in creds so that new files are created using that 1668 * context. Context is calculated using the passed in creds and not the creds 1669 * of the caller. 1670 * 1671 * Return: Returns 0 on success, error on failure. 1672 */ 1673 int security_dentry_create_files_as(struct dentry *dentry, int mode, 1674 struct qstr *name, 1675 const struct cred *old, struct cred *new) 1676 { 1677 return call_int_hook(dentry_create_files_as, 0, dentry, mode, 1678 name, old, new); 1679 } 1680 EXPORT_SYMBOL(security_dentry_create_files_as); 1681 1682 /** 1683 * security_inode_init_security() - Initialize an inode's LSM context 1684 * @inode: the inode 1685 * @dir: parent directory 1686 * @qstr: last component of the pathname 1687 * @initxattrs: callback function to write xattrs 1688 * @fs_data: filesystem specific data 1689 * 1690 * Obtain the security attribute name suffix and value to set on a newly 1691 * created inode and set up the incore security field for the new inode. This 1692 * hook is called by the fs code as part of the inode creation transaction and 1693 * provides for atomic labeling of the inode, unlike the post_create/mkdir/... 1694 * hooks called by the VFS. 1695 * 1696 * The hook function is expected to populate the xattrs array, by calling 1697 * lsm_get_xattr_slot() to retrieve the slots reserved by the security module 1698 * with the lbs_xattr_count field of the lsm_blob_sizes structure. For each 1699 * slot, the hook function should set ->name to the attribute name suffix 1700 * (e.g. selinux), to allocate ->value (will be freed by the caller) and set it 1701 * to the attribute value, to set ->value_len to the length of the value. If 1702 * the security module does not use security attributes or does not wish to put 1703 * a security attribute on this particular inode, then it should return 1704 * -EOPNOTSUPP to skip this processing. 1705 * 1706 * Return: Returns 0 if the LSM successfully initialized all of the inode 1707 * security attributes that are required, negative values otherwise. 1708 */ 1709 int security_inode_init_security(struct inode *inode, struct inode *dir, 1710 const struct qstr *qstr, 1711 const initxattrs initxattrs, void *fs_data) 1712 { 1713 struct security_hook_list *hp; 1714 struct xattr *new_xattrs = NULL; 1715 int ret = -EOPNOTSUPP, xattr_count = 0; 1716 1717 if (unlikely(IS_PRIVATE(inode))) 1718 return 0; 1719 1720 if (!blob_sizes.lbs_xattr_count) 1721 return 0; 1722 1723 if (initxattrs) { 1724 /* Allocate +1 for EVM and +1 as terminator. */ 1725 new_xattrs = kcalloc(blob_sizes.lbs_xattr_count + 2, 1726 sizeof(*new_xattrs), GFP_NOFS); 1727 if (!new_xattrs) 1728 return -ENOMEM; 1729 } 1730 1731 hlist_for_each_entry(hp, &security_hook_heads.inode_init_security, 1732 list) { 1733 ret = hp->hook.inode_init_security(inode, dir, qstr, new_xattrs, 1734 &xattr_count); 1735 if (ret && ret != -EOPNOTSUPP) 1736 goto out; 1737 /* 1738 * As documented in lsm_hooks.h, -EOPNOTSUPP in this context 1739 * means that the LSM is not willing to provide an xattr, not 1740 * that it wants to signal an error. Thus, continue to invoke 1741 * the remaining LSMs. 1742 */ 1743 } 1744 1745 /* If initxattrs() is NULL, xattr_count is zero, skip the call. */ 1746 if (!xattr_count) 1747 goto out; 1748 1749 ret = evm_inode_init_security(inode, dir, qstr, new_xattrs, 1750 &xattr_count); 1751 if (ret) 1752 goto out; 1753 ret = initxattrs(inode, new_xattrs, fs_data); 1754 out: 1755 for (; xattr_count > 0; xattr_count--) 1756 kfree(new_xattrs[xattr_count - 1].value); 1757 kfree(new_xattrs); 1758 return (ret == -EOPNOTSUPP) ? 0 : ret; 1759 } 1760 EXPORT_SYMBOL(security_inode_init_security); 1761 1762 /** 1763 * security_inode_init_security_anon() - Initialize an anonymous inode 1764 * @inode: the inode 1765 * @name: the anonymous inode class 1766 * @context_inode: an optional related inode 1767 * 1768 * Set up the incore security field for the new anonymous inode and return 1769 * whether the inode creation is permitted by the security module or not. 1770 * 1771 * Return: Returns 0 on success, -EACCES if the security module denies the 1772 * creation of this inode, or another -errno upon other errors. 1773 */ 1774 int security_inode_init_security_anon(struct inode *inode, 1775 const struct qstr *name, 1776 const struct inode *context_inode) 1777 { 1778 return call_int_hook(inode_init_security_anon, 0, inode, name, 1779 context_inode); 1780 } 1781 1782 #ifdef CONFIG_SECURITY_PATH 1783 /** 1784 * security_path_mknod() - Check if creating a special file is allowed 1785 * @dir: parent directory 1786 * @dentry: new file 1787 * @mode: new file mode 1788 * @dev: device number 1789 * 1790 * Check permissions when creating a file. Note that this hook is called even 1791 * if mknod operation is being done for a regular file. 1792 * 1793 * Return: Returns 0 if permission is granted. 1794 */ 1795 int security_path_mknod(const struct path *dir, struct dentry *dentry, 1796 umode_t mode, unsigned int dev) 1797 { 1798 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 1799 return 0; 1800 return call_int_hook(path_mknod, 0, dir, dentry, mode, dev); 1801 } 1802 EXPORT_SYMBOL(security_path_mknod); 1803 1804 /** 1805 * security_path_mkdir() - Check if creating a new directory is allowed 1806 * @dir: parent directory 1807 * @dentry: new directory 1808 * @mode: new directory mode 1809 * 1810 * Check permissions to create a new directory in the existing directory. 1811 * 1812 * Return: Returns 0 if permission is granted. 1813 */ 1814 int security_path_mkdir(const struct path *dir, struct dentry *dentry, 1815 umode_t mode) 1816 { 1817 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 1818 return 0; 1819 return call_int_hook(path_mkdir, 0, dir, dentry, mode); 1820 } 1821 EXPORT_SYMBOL(security_path_mkdir); 1822 1823 /** 1824 * security_path_rmdir() - Check if removing a directory is allowed 1825 * @dir: parent directory 1826 * @dentry: directory to remove 1827 * 1828 * Check the permission to remove a directory. 1829 * 1830 * Return: Returns 0 if permission is granted. 1831 */ 1832 int security_path_rmdir(const struct path *dir, struct dentry *dentry) 1833 { 1834 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 1835 return 0; 1836 return call_int_hook(path_rmdir, 0, dir, dentry); 1837 } 1838 1839 /** 1840 * security_path_unlink() - Check if removing a hard link is allowed 1841 * @dir: parent directory 1842 * @dentry: file 1843 * 1844 * Check the permission to remove a hard link to a file. 1845 * 1846 * Return: Returns 0 if permission is granted. 1847 */ 1848 int security_path_unlink(const struct path *dir, struct dentry *dentry) 1849 { 1850 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 1851 return 0; 1852 return call_int_hook(path_unlink, 0, dir, dentry); 1853 } 1854 EXPORT_SYMBOL(security_path_unlink); 1855 1856 /** 1857 * security_path_symlink() - Check if creating a symbolic link is allowed 1858 * @dir: parent directory 1859 * @dentry: symbolic link 1860 * @old_name: file pathname 1861 * 1862 * Check the permission to create a symbolic link to a file. 1863 * 1864 * Return: Returns 0 if permission is granted. 1865 */ 1866 int security_path_symlink(const struct path *dir, struct dentry *dentry, 1867 const char *old_name) 1868 { 1869 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 1870 return 0; 1871 return call_int_hook(path_symlink, 0, dir, dentry, old_name); 1872 } 1873 1874 /** 1875 * security_path_link - Check if creating a hard link is allowed 1876 * @old_dentry: existing file 1877 * @new_dir: new parent directory 1878 * @new_dentry: new link 1879 * 1880 * Check permission before creating a new hard link to a file. 1881 * 1882 * Return: Returns 0 if permission is granted. 1883 */ 1884 int security_path_link(struct dentry *old_dentry, const struct path *new_dir, 1885 struct dentry *new_dentry) 1886 { 1887 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)))) 1888 return 0; 1889 return call_int_hook(path_link, 0, old_dentry, new_dir, new_dentry); 1890 } 1891 1892 /** 1893 * security_path_rename() - Check if renaming a file is allowed 1894 * @old_dir: parent directory of the old file 1895 * @old_dentry: the old file 1896 * @new_dir: parent directory of the new file 1897 * @new_dentry: the new file 1898 * @flags: flags 1899 * 1900 * Check for permission to rename a file or directory. 1901 * 1902 * Return: Returns 0 if permission is granted. 1903 */ 1904 int security_path_rename(const struct path *old_dir, struct dentry *old_dentry, 1905 const struct path *new_dir, struct dentry *new_dentry, 1906 unsigned int flags) 1907 { 1908 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) || 1909 (d_is_positive(new_dentry) && 1910 IS_PRIVATE(d_backing_inode(new_dentry))))) 1911 return 0; 1912 1913 return call_int_hook(path_rename, 0, old_dir, old_dentry, new_dir, 1914 new_dentry, flags); 1915 } 1916 EXPORT_SYMBOL(security_path_rename); 1917 1918 /** 1919 * security_path_truncate() - Check if truncating a file is allowed 1920 * @path: file 1921 * 1922 * Check permission before truncating the file indicated by path. Note that 1923 * truncation permissions may also be checked based on already opened files, 1924 * using the security_file_truncate() hook. 1925 * 1926 * Return: Returns 0 if permission is granted. 1927 */ 1928 int security_path_truncate(const struct path *path) 1929 { 1930 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 1931 return 0; 1932 return call_int_hook(path_truncate, 0, path); 1933 } 1934 1935 /** 1936 * security_path_chmod() - Check if changing the file's mode is allowed 1937 * @path: file 1938 * @mode: new mode 1939 * 1940 * Check for permission to change a mode of the file @path. The new mode is 1941 * specified in @mode which is a bitmask of constants from 1942 * <include/uapi/linux/stat.h>. 1943 * 1944 * Return: Returns 0 if permission is granted. 1945 */ 1946 int security_path_chmod(const struct path *path, umode_t mode) 1947 { 1948 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 1949 return 0; 1950 return call_int_hook(path_chmod, 0, path, mode); 1951 } 1952 1953 /** 1954 * security_path_chown() - Check if changing the file's owner/group is allowed 1955 * @path: file 1956 * @uid: file owner 1957 * @gid: file group 1958 * 1959 * Check for permission to change owner/group of a file or directory. 1960 * 1961 * Return: Returns 0 if permission is granted. 1962 */ 1963 int security_path_chown(const struct path *path, kuid_t uid, kgid_t gid) 1964 { 1965 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 1966 return 0; 1967 return call_int_hook(path_chown, 0, path, uid, gid); 1968 } 1969 1970 /** 1971 * security_path_chroot() - Check if changing the root directory is allowed 1972 * @path: directory 1973 * 1974 * Check for permission to change root directory. 1975 * 1976 * Return: Returns 0 if permission is granted. 1977 */ 1978 int security_path_chroot(const struct path *path) 1979 { 1980 return call_int_hook(path_chroot, 0, path); 1981 } 1982 #endif /* CONFIG_SECURITY_PATH */ 1983 1984 /** 1985 * security_inode_create() - Check if creating a file is allowed 1986 * @dir: the parent directory 1987 * @dentry: the file being created 1988 * @mode: requested file mode 1989 * 1990 * Check permission to create a regular file. 1991 * 1992 * Return: Returns 0 if permission is granted. 1993 */ 1994 int security_inode_create(struct inode *dir, struct dentry *dentry, 1995 umode_t mode) 1996 { 1997 if (unlikely(IS_PRIVATE(dir))) 1998 return 0; 1999 return call_int_hook(inode_create, 0, dir, dentry, mode); 2000 } 2001 EXPORT_SYMBOL_GPL(security_inode_create); 2002 2003 /** 2004 * security_inode_link() - Check if creating a hard link is allowed 2005 * @old_dentry: existing file 2006 * @dir: new parent directory 2007 * @new_dentry: new link 2008 * 2009 * Check permission before creating a new hard link to a file. 2010 * 2011 * Return: Returns 0 if permission is granted. 2012 */ 2013 int security_inode_link(struct dentry *old_dentry, struct inode *dir, 2014 struct dentry *new_dentry) 2015 { 2016 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)))) 2017 return 0; 2018 return call_int_hook(inode_link, 0, old_dentry, dir, new_dentry); 2019 } 2020 2021 /** 2022 * security_inode_unlink() - Check if removing a hard link is allowed 2023 * @dir: parent directory 2024 * @dentry: file 2025 * 2026 * Check the permission to remove a hard link to a file. 2027 * 2028 * Return: Returns 0 if permission is granted. 2029 */ 2030 int security_inode_unlink(struct inode *dir, struct dentry *dentry) 2031 { 2032 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2033 return 0; 2034 return call_int_hook(inode_unlink, 0, dir, dentry); 2035 } 2036 2037 /** 2038 * security_inode_symlink() - Check if creating a symbolic link is allowed 2039 * @dir: parent directory 2040 * @dentry: symbolic link 2041 * @old_name: existing filename 2042 * 2043 * Check the permission to create a symbolic link to a file. 2044 * 2045 * Return: Returns 0 if permission is granted. 2046 */ 2047 int security_inode_symlink(struct inode *dir, struct dentry *dentry, 2048 const char *old_name) 2049 { 2050 if (unlikely(IS_PRIVATE(dir))) 2051 return 0; 2052 return call_int_hook(inode_symlink, 0, dir, dentry, old_name); 2053 } 2054 2055 /** 2056 * security_inode_mkdir() - Check if creation a new director is allowed 2057 * @dir: parent directory 2058 * @dentry: new directory 2059 * @mode: new directory mode 2060 * 2061 * Check permissions to create a new directory in the existing directory 2062 * associated with inode structure @dir. 2063 * 2064 * Return: Returns 0 if permission is granted. 2065 */ 2066 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 2067 { 2068 if (unlikely(IS_PRIVATE(dir))) 2069 return 0; 2070 return call_int_hook(inode_mkdir, 0, dir, dentry, mode); 2071 } 2072 EXPORT_SYMBOL_GPL(security_inode_mkdir); 2073 2074 /** 2075 * security_inode_rmdir() - Check if removing a directory is allowed 2076 * @dir: parent directory 2077 * @dentry: directory to be removed 2078 * 2079 * Check the permission to remove a directory. 2080 * 2081 * Return: Returns 0 if permission is granted. 2082 */ 2083 int security_inode_rmdir(struct inode *dir, struct dentry *dentry) 2084 { 2085 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2086 return 0; 2087 return call_int_hook(inode_rmdir, 0, dir, dentry); 2088 } 2089 2090 /** 2091 * security_inode_mknod() - Check if creating a special file is allowed 2092 * @dir: parent directory 2093 * @dentry: new file 2094 * @mode: new file mode 2095 * @dev: device number 2096 * 2097 * Check permissions when creating a special file (or a socket or a fifo file 2098 * created via the mknod system call). Note that if mknod operation is being 2099 * done for a regular file, then the create hook will be called and not this 2100 * hook. 2101 * 2102 * Return: Returns 0 if permission is granted. 2103 */ 2104 int security_inode_mknod(struct inode *dir, struct dentry *dentry, 2105 umode_t mode, dev_t dev) 2106 { 2107 if (unlikely(IS_PRIVATE(dir))) 2108 return 0; 2109 return call_int_hook(inode_mknod, 0, dir, dentry, mode, dev); 2110 } 2111 2112 /** 2113 * security_inode_rename() - Check if renaming a file is allowed 2114 * @old_dir: parent directory of the old file 2115 * @old_dentry: the old file 2116 * @new_dir: parent directory of the new file 2117 * @new_dentry: the new file 2118 * @flags: flags 2119 * 2120 * Check for permission to rename a file or directory. 2121 * 2122 * Return: Returns 0 if permission is granted. 2123 */ 2124 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry, 2125 struct inode *new_dir, struct dentry *new_dentry, 2126 unsigned int flags) 2127 { 2128 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) || 2129 (d_is_positive(new_dentry) && 2130 IS_PRIVATE(d_backing_inode(new_dentry))))) 2131 return 0; 2132 2133 if (flags & RENAME_EXCHANGE) { 2134 int err = call_int_hook(inode_rename, 0, new_dir, new_dentry, 2135 old_dir, old_dentry); 2136 if (err) 2137 return err; 2138 } 2139 2140 return call_int_hook(inode_rename, 0, old_dir, old_dentry, 2141 new_dir, new_dentry); 2142 } 2143 2144 /** 2145 * security_inode_readlink() - Check if reading a symbolic link is allowed 2146 * @dentry: link 2147 * 2148 * Check the permission to read the symbolic link. 2149 * 2150 * Return: Returns 0 if permission is granted. 2151 */ 2152 int security_inode_readlink(struct dentry *dentry) 2153 { 2154 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2155 return 0; 2156 return call_int_hook(inode_readlink, 0, dentry); 2157 } 2158 2159 /** 2160 * security_inode_follow_link() - Check if following a symbolic link is allowed 2161 * @dentry: link dentry 2162 * @inode: link inode 2163 * @rcu: true if in RCU-walk mode 2164 * 2165 * Check permission to follow a symbolic link when looking up a pathname. If 2166 * @rcu is true, @inode is not stable. 2167 * 2168 * Return: Returns 0 if permission is granted. 2169 */ 2170 int security_inode_follow_link(struct dentry *dentry, struct inode *inode, 2171 bool rcu) 2172 { 2173 if (unlikely(IS_PRIVATE(inode))) 2174 return 0; 2175 return call_int_hook(inode_follow_link, 0, dentry, inode, rcu); 2176 } 2177 2178 /** 2179 * security_inode_permission() - Check if accessing an inode is allowed 2180 * @inode: inode 2181 * @mask: access mask 2182 * 2183 * Check permission before accessing an inode. This hook is called by the 2184 * existing Linux permission function, so a security module can use it to 2185 * provide additional checking for existing Linux permission checks. Notice 2186 * that this hook is called when a file is opened (as well as many other 2187 * operations), whereas the file_security_ops permission hook is called when 2188 * the actual read/write operations are performed. 2189 * 2190 * Return: Returns 0 if permission is granted. 2191 */ 2192 int security_inode_permission(struct inode *inode, int mask) 2193 { 2194 if (unlikely(IS_PRIVATE(inode))) 2195 return 0; 2196 return call_int_hook(inode_permission, 0, inode, mask); 2197 } 2198 2199 /** 2200 * security_inode_setattr() - Check if setting file attributes is allowed 2201 * @idmap: idmap of the mount 2202 * @dentry: file 2203 * @attr: new attributes 2204 * 2205 * Check permission before setting file attributes. Note that the kernel call 2206 * to notify_change is performed from several locations, whenever file 2207 * attributes change (such as when a file is truncated, chown/chmod operations, 2208 * transferring disk quotas, etc). 2209 * 2210 * Return: Returns 0 if permission is granted. 2211 */ 2212 int security_inode_setattr(struct mnt_idmap *idmap, 2213 struct dentry *dentry, struct iattr *attr) 2214 { 2215 int ret; 2216 2217 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2218 return 0; 2219 ret = call_int_hook(inode_setattr, 0, dentry, attr); 2220 if (ret) 2221 return ret; 2222 return evm_inode_setattr(idmap, dentry, attr); 2223 } 2224 EXPORT_SYMBOL_GPL(security_inode_setattr); 2225 2226 /** 2227 * security_inode_getattr() - Check if getting file attributes is allowed 2228 * @path: file 2229 * 2230 * Check permission before obtaining file attributes. 2231 * 2232 * Return: Returns 0 if permission is granted. 2233 */ 2234 int security_inode_getattr(const struct path *path) 2235 { 2236 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 2237 return 0; 2238 return call_int_hook(inode_getattr, 0, path); 2239 } 2240 2241 /** 2242 * security_inode_setxattr() - Check if setting file xattrs is allowed 2243 * @idmap: idmap of the mount 2244 * @dentry: file 2245 * @name: xattr name 2246 * @value: xattr value 2247 * @size: size of xattr value 2248 * @flags: flags 2249 * 2250 * Check permission before setting the extended attributes. 2251 * 2252 * Return: Returns 0 if permission is granted. 2253 */ 2254 int security_inode_setxattr(struct mnt_idmap *idmap, 2255 struct dentry *dentry, const char *name, 2256 const void *value, size_t size, int flags) 2257 { 2258 int ret; 2259 2260 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2261 return 0; 2262 /* 2263 * SELinux and Smack integrate the cap call, 2264 * so assume that all LSMs supplying this call do so. 2265 */ 2266 ret = call_int_hook(inode_setxattr, 1, idmap, dentry, name, value, 2267 size, flags); 2268 2269 if (ret == 1) 2270 ret = cap_inode_setxattr(dentry, name, value, size, flags); 2271 if (ret) 2272 return ret; 2273 ret = ima_inode_setxattr(dentry, name, value, size); 2274 if (ret) 2275 return ret; 2276 return evm_inode_setxattr(idmap, dentry, name, value, size); 2277 } 2278 2279 /** 2280 * security_inode_set_acl() - Check if setting posix acls is allowed 2281 * @idmap: idmap of the mount 2282 * @dentry: file 2283 * @acl_name: acl name 2284 * @kacl: acl struct 2285 * 2286 * Check permission before setting posix acls, the posix acls in @kacl are 2287 * identified by @acl_name. 2288 * 2289 * Return: Returns 0 if permission is granted. 2290 */ 2291 int security_inode_set_acl(struct mnt_idmap *idmap, 2292 struct dentry *dentry, const char *acl_name, 2293 struct posix_acl *kacl) 2294 { 2295 int ret; 2296 2297 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2298 return 0; 2299 ret = call_int_hook(inode_set_acl, 0, idmap, dentry, acl_name, 2300 kacl); 2301 if (ret) 2302 return ret; 2303 ret = ima_inode_set_acl(idmap, dentry, acl_name, kacl); 2304 if (ret) 2305 return ret; 2306 return evm_inode_set_acl(idmap, dentry, acl_name, kacl); 2307 } 2308 2309 /** 2310 * security_inode_get_acl() - Check if reading posix acls is allowed 2311 * @idmap: idmap of the mount 2312 * @dentry: file 2313 * @acl_name: acl name 2314 * 2315 * Check permission before getting osix acls, the posix acls are identified by 2316 * @acl_name. 2317 * 2318 * Return: Returns 0 if permission is granted. 2319 */ 2320 int security_inode_get_acl(struct mnt_idmap *idmap, 2321 struct dentry *dentry, const char *acl_name) 2322 { 2323 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2324 return 0; 2325 return call_int_hook(inode_get_acl, 0, idmap, dentry, acl_name); 2326 } 2327 2328 /** 2329 * security_inode_remove_acl() - Check if removing a posix acl is allowed 2330 * @idmap: idmap of the mount 2331 * @dentry: file 2332 * @acl_name: acl name 2333 * 2334 * Check permission before removing posix acls, the posix acls are identified 2335 * by @acl_name. 2336 * 2337 * Return: Returns 0 if permission is granted. 2338 */ 2339 int security_inode_remove_acl(struct mnt_idmap *idmap, 2340 struct dentry *dentry, const char *acl_name) 2341 { 2342 int ret; 2343 2344 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2345 return 0; 2346 ret = call_int_hook(inode_remove_acl, 0, idmap, dentry, acl_name); 2347 if (ret) 2348 return ret; 2349 ret = ima_inode_remove_acl(idmap, dentry, acl_name); 2350 if (ret) 2351 return ret; 2352 return evm_inode_remove_acl(idmap, dentry, acl_name); 2353 } 2354 2355 /** 2356 * security_inode_post_setxattr() - Update the inode after a setxattr operation 2357 * @dentry: file 2358 * @name: xattr name 2359 * @value: xattr value 2360 * @size: xattr value size 2361 * @flags: flags 2362 * 2363 * Update inode security field after successful setxattr operation. 2364 */ 2365 void security_inode_post_setxattr(struct dentry *dentry, const char *name, 2366 const void *value, size_t size, int flags) 2367 { 2368 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2369 return; 2370 call_void_hook(inode_post_setxattr, dentry, name, value, size, flags); 2371 evm_inode_post_setxattr(dentry, name, value, size); 2372 } 2373 2374 /** 2375 * security_inode_getxattr() - Check if xattr access is allowed 2376 * @dentry: file 2377 * @name: xattr name 2378 * 2379 * Check permission before obtaining the extended attributes identified by 2380 * @name for @dentry. 2381 * 2382 * Return: Returns 0 if permission is granted. 2383 */ 2384 int security_inode_getxattr(struct dentry *dentry, const char *name) 2385 { 2386 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2387 return 0; 2388 return call_int_hook(inode_getxattr, 0, dentry, name); 2389 } 2390 2391 /** 2392 * security_inode_listxattr() - Check if listing xattrs is allowed 2393 * @dentry: file 2394 * 2395 * Check permission before obtaining the list of extended attribute names for 2396 * @dentry. 2397 * 2398 * Return: Returns 0 if permission is granted. 2399 */ 2400 int security_inode_listxattr(struct dentry *dentry) 2401 { 2402 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2403 return 0; 2404 return call_int_hook(inode_listxattr, 0, dentry); 2405 } 2406 2407 /** 2408 * security_inode_removexattr() - Check if removing an xattr is allowed 2409 * @idmap: idmap of the mount 2410 * @dentry: file 2411 * @name: xattr name 2412 * 2413 * Check permission before removing the extended attribute identified by @name 2414 * for @dentry. 2415 * 2416 * Return: Returns 0 if permission is granted. 2417 */ 2418 int security_inode_removexattr(struct mnt_idmap *idmap, 2419 struct dentry *dentry, const char *name) 2420 { 2421 int ret; 2422 2423 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2424 return 0; 2425 /* 2426 * SELinux and Smack integrate the cap call, 2427 * so assume that all LSMs supplying this call do so. 2428 */ 2429 ret = call_int_hook(inode_removexattr, 1, idmap, dentry, name); 2430 if (ret == 1) 2431 ret = cap_inode_removexattr(idmap, dentry, name); 2432 if (ret) 2433 return ret; 2434 ret = ima_inode_removexattr(dentry, name); 2435 if (ret) 2436 return ret; 2437 return evm_inode_removexattr(idmap, dentry, name); 2438 } 2439 2440 /** 2441 * security_inode_need_killpriv() - Check if security_inode_killpriv() required 2442 * @dentry: associated dentry 2443 * 2444 * Called when an inode has been changed to determine if 2445 * security_inode_killpriv() should be called. 2446 * 2447 * Return: Return <0 on error to abort the inode change operation, return 0 if 2448 * security_inode_killpriv() does not need to be called, return >0 if 2449 * security_inode_killpriv() does need to be called. 2450 */ 2451 int security_inode_need_killpriv(struct dentry *dentry) 2452 { 2453 return call_int_hook(inode_need_killpriv, 0, dentry); 2454 } 2455 2456 /** 2457 * security_inode_killpriv() - The setuid bit is removed, update LSM state 2458 * @idmap: idmap of the mount 2459 * @dentry: associated dentry 2460 * 2461 * The @dentry's setuid bit is being removed. Remove similar security labels. 2462 * Called with the dentry->d_inode->i_mutex held. 2463 * 2464 * Return: Return 0 on success. If error is returned, then the operation 2465 * causing setuid bit removal is failed. 2466 */ 2467 int security_inode_killpriv(struct mnt_idmap *idmap, 2468 struct dentry *dentry) 2469 { 2470 return call_int_hook(inode_killpriv, 0, idmap, dentry); 2471 } 2472 2473 /** 2474 * security_inode_getsecurity() - Get the xattr security label of an inode 2475 * @idmap: idmap of the mount 2476 * @inode: inode 2477 * @name: xattr name 2478 * @buffer: security label buffer 2479 * @alloc: allocation flag 2480 * 2481 * Retrieve a copy of the extended attribute representation of the security 2482 * label associated with @name for @inode via @buffer. Note that @name is the 2483 * remainder of the attribute name after the security prefix has been removed. 2484 * @alloc is used to specify if the call should return a value via the buffer 2485 * or just the value length. 2486 * 2487 * Return: Returns size of buffer on success. 2488 */ 2489 int security_inode_getsecurity(struct mnt_idmap *idmap, 2490 struct inode *inode, const char *name, 2491 void **buffer, bool alloc) 2492 { 2493 struct security_hook_list *hp; 2494 int rc; 2495 2496 if (unlikely(IS_PRIVATE(inode))) 2497 return LSM_RET_DEFAULT(inode_getsecurity); 2498 /* 2499 * Only one module will provide an attribute with a given name. 2500 */ 2501 hlist_for_each_entry(hp, &security_hook_heads.inode_getsecurity, list) { 2502 rc = hp->hook.inode_getsecurity(idmap, inode, name, buffer, 2503 alloc); 2504 if (rc != LSM_RET_DEFAULT(inode_getsecurity)) 2505 return rc; 2506 } 2507 return LSM_RET_DEFAULT(inode_getsecurity); 2508 } 2509 2510 /** 2511 * security_inode_setsecurity() - Set the xattr security label of an inode 2512 * @inode: inode 2513 * @name: xattr name 2514 * @value: security label 2515 * @size: length of security label 2516 * @flags: flags 2517 * 2518 * Set the security label associated with @name for @inode from the extended 2519 * attribute value @value. @size indicates the size of the @value in bytes. 2520 * @flags may be XATTR_CREATE, XATTR_REPLACE, or 0. Note that @name is the 2521 * remainder of the attribute name after the security. prefix has been removed. 2522 * 2523 * Return: Returns 0 on success. 2524 */ 2525 int security_inode_setsecurity(struct inode *inode, const char *name, 2526 const void *value, size_t size, int flags) 2527 { 2528 struct security_hook_list *hp; 2529 int rc; 2530 2531 if (unlikely(IS_PRIVATE(inode))) 2532 return LSM_RET_DEFAULT(inode_setsecurity); 2533 /* 2534 * Only one module will provide an attribute with a given name. 2535 */ 2536 hlist_for_each_entry(hp, &security_hook_heads.inode_setsecurity, list) { 2537 rc = hp->hook.inode_setsecurity(inode, name, value, size, 2538 flags); 2539 if (rc != LSM_RET_DEFAULT(inode_setsecurity)) 2540 return rc; 2541 } 2542 return LSM_RET_DEFAULT(inode_setsecurity); 2543 } 2544 2545 /** 2546 * security_inode_listsecurity() - List the xattr security label names 2547 * @inode: inode 2548 * @buffer: buffer 2549 * @buffer_size: size of buffer 2550 * 2551 * Copy the extended attribute names for the security labels associated with 2552 * @inode into @buffer. The maximum size of @buffer is specified by 2553 * @buffer_size. @buffer may be NULL to request the size of the buffer 2554 * required. 2555 * 2556 * Return: Returns number of bytes used/required on success. 2557 */ 2558 int security_inode_listsecurity(struct inode *inode, 2559 char *buffer, size_t buffer_size) 2560 { 2561 if (unlikely(IS_PRIVATE(inode))) 2562 return 0; 2563 return call_int_hook(inode_listsecurity, 0, inode, buffer, buffer_size); 2564 } 2565 EXPORT_SYMBOL(security_inode_listsecurity); 2566 2567 /** 2568 * security_inode_getsecid() - Get an inode's secid 2569 * @inode: inode 2570 * @secid: secid to return 2571 * 2572 * Get the secid associated with the node. In case of failure, @secid will be 2573 * set to zero. 2574 */ 2575 void security_inode_getsecid(struct inode *inode, u32 *secid) 2576 { 2577 call_void_hook(inode_getsecid, inode, secid); 2578 } 2579 2580 /** 2581 * security_inode_copy_up() - Create new creds for an overlayfs copy-up op 2582 * @src: union dentry of copy-up file 2583 * @new: newly created creds 2584 * 2585 * A file is about to be copied up from lower layer to upper layer of overlay 2586 * filesystem. Security module can prepare a set of new creds and modify as 2587 * need be and return new creds. Caller will switch to new creds temporarily to 2588 * create new file and release newly allocated creds. 2589 * 2590 * Return: Returns 0 on success or a negative error code on error. 2591 */ 2592 int security_inode_copy_up(struct dentry *src, struct cred **new) 2593 { 2594 return call_int_hook(inode_copy_up, 0, src, new); 2595 } 2596 EXPORT_SYMBOL(security_inode_copy_up); 2597 2598 /** 2599 * security_inode_copy_up_xattr() - Filter xattrs in an overlayfs copy-up op 2600 * @name: xattr name 2601 * 2602 * Filter the xattrs being copied up when a unioned file is copied up from a 2603 * lower layer to the union/overlay layer. The caller is responsible for 2604 * reading and writing the xattrs, this hook is merely a filter. 2605 * 2606 * Return: Returns 0 to accept the xattr, 1 to discard the xattr, -EOPNOTSUPP 2607 * if the security module does not know about attribute, or a negative 2608 * error code to abort the copy up. 2609 */ 2610 int security_inode_copy_up_xattr(const char *name) 2611 { 2612 struct security_hook_list *hp; 2613 int rc; 2614 2615 /* 2616 * The implementation can return 0 (accept the xattr), 1 (discard the 2617 * xattr), -EOPNOTSUPP if it does not know anything about the xattr or 2618 * any other error code in case of an error. 2619 */ 2620 hlist_for_each_entry(hp, 2621 &security_hook_heads.inode_copy_up_xattr, list) { 2622 rc = hp->hook.inode_copy_up_xattr(name); 2623 if (rc != LSM_RET_DEFAULT(inode_copy_up_xattr)) 2624 return rc; 2625 } 2626 2627 return evm_inode_copy_up_xattr(name); 2628 } 2629 EXPORT_SYMBOL(security_inode_copy_up_xattr); 2630 2631 /** 2632 * security_kernfs_init_security() - Init LSM context for a kernfs node 2633 * @kn_dir: parent kernfs node 2634 * @kn: the kernfs node to initialize 2635 * 2636 * Initialize the security context of a newly created kernfs node based on its 2637 * own and its parent's attributes. 2638 * 2639 * Return: Returns 0 if permission is granted. 2640 */ 2641 int security_kernfs_init_security(struct kernfs_node *kn_dir, 2642 struct kernfs_node *kn) 2643 { 2644 return call_int_hook(kernfs_init_security, 0, kn_dir, kn); 2645 } 2646 2647 /** 2648 * security_file_permission() - Check file permissions 2649 * @file: file 2650 * @mask: requested permissions 2651 * 2652 * Check file permissions before accessing an open file. This hook is called 2653 * by various operations that read or write files. A security module can use 2654 * this hook to perform additional checking on these operations, e.g. to 2655 * revalidate permissions on use to support privilege bracketing or policy 2656 * changes. Notice that this hook is used when the actual read/write 2657 * operations are performed, whereas the inode_security_ops hook is called when 2658 * a file is opened (as well as many other operations). Although this hook can 2659 * be used to revalidate permissions for various system call operations that 2660 * read or write files, it does not address the revalidation of permissions for 2661 * memory-mapped files. Security modules must handle this separately if they 2662 * need such revalidation. 2663 * 2664 * Return: Returns 0 if permission is granted. 2665 */ 2666 int security_file_permission(struct file *file, int mask) 2667 { 2668 return call_int_hook(file_permission, 0, file, mask); 2669 } 2670 2671 /** 2672 * security_file_alloc() - Allocate and init a file's LSM blob 2673 * @file: the file 2674 * 2675 * Allocate and attach a security structure to the file->f_security field. The 2676 * security field is initialized to NULL when the structure is first created. 2677 * 2678 * Return: Return 0 if the hook is successful and permission is granted. 2679 */ 2680 int security_file_alloc(struct file *file) 2681 { 2682 int rc = lsm_file_alloc(file); 2683 2684 if (rc) 2685 return rc; 2686 rc = call_int_hook(file_alloc_security, 0, file); 2687 if (unlikely(rc)) 2688 security_file_free(file); 2689 return rc; 2690 } 2691 2692 /** 2693 * security_file_free() - Free a file's LSM blob 2694 * @file: the file 2695 * 2696 * Deallocate and free any security structures stored in file->f_security. 2697 */ 2698 void security_file_free(struct file *file) 2699 { 2700 void *blob; 2701 2702 call_void_hook(file_free_security, file); 2703 2704 blob = file->f_security; 2705 if (blob) { 2706 file->f_security = NULL; 2707 kmem_cache_free(lsm_file_cache, blob); 2708 } 2709 } 2710 2711 /** 2712 * security_file_ioctl() - Check if an ioctl is allowed 2713 * @file: associated file 2714 * @cmd: ioctl cmd 2715 * @arg: ioctl arguments 2716 * 2717 * Check permission for an ioctl operation on @file. Note that @arg sometimes 2718 * represents a user space pointer; in other cases, it may be a simple integer 2719 * value. When @arg represents a user space pointer, it should never be used 2720 * by the security module. 2721 * 2722 * Return: Returns 0 if permission is granted. 2723 */ 2724 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 2725 { 2726 return call_int_hook(file_ioctl, 0, file, cmd, arg); 2727 } 2728 EXPORT_SYMBOL_GPL(security_file_ioctl); 2729 2730 /** 2731 * security_file_ioctl_compat() - Check if an ioctl is allowed in compat mode 2732 * @file: associated file 2733 * @cmd: ioctl cmd 2734 * @arg: ioctl arguments 2735 * 2736 * Compat version of security_file_ioctl() that correctly handles 32-bit 2737 * processes running on 64-bit kernels. 2738 * 2739 * Return: Returns 0 if permission is granted. 2740 */ 2741 int security_file_ioctl_compat(struct file *file, unsigned int cmd, 2742 unsigned long arg) 2743 { 2744 return call_int_hook(file_ioctl_compat, 0, file, cmd, arg); 2745 } 2746 EXPORT_SYMBOL_GPL(security_file_ioctl_compat); 2747 2748 static inline unsigned long mmap_prot(struct file *file, unsigned long prot) 2749 { 2750 /* 2751 * Does we have PROT_READ and does the application expect 2752 * it to imply PROT_EXEC? If not, nothing to talk about... 2753 */ 2754 if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ) 2755 return prot; 2756 if (!(current->personality & READ_IMPLIES_EXEC)) 2757 return prot; 2758 /* 2759 * if that's an anonymous mapping, let it. 2760 */ 2761 if (!file) 2762 return prot | PROT_EXEC; 2763 /* 2764 * ditto if it's not on noexec mount, except that on !MMU we need 2765 * NOMMU_MAP_EXEC (== VM_MAYEXEC) in this case 2766 */ 2767 if (!path_noexec(&file->f_path)) { 2768 #ifndef CONFIG_MMU 2769 if (file->f_op->mmap_capabilities) { 2770 unsigned caps = file->f_op->mmap_capabilities(file); 2771 if (!(caps & NOMMU_MAP_EXEC)) 2772 return prot; 2773 } 2774 #endif 2775 return prot | PROT_EXEC; 2776 } 2777 /* anything on noexec mount won't get PROT_EXEC */ 2778 return prot; 2779 } 2780 2781 /** 2782 * security_mmap_file() - Check if mmap'ing a file is allowed 2783 * @file: file 2784 * @prot: protection applied by the kernel 2785 * @flags: flags 2786 * 2787 * Check permissions for a mmap operation. The @file may be NULL, e.g. if 2788 * mapping anonymous memory. 2789 * 2790 * Return: Returns 0 if permission is granted. 2791 */ 2792 int security_mmap_file(struct file *file, unsigned long prot, 2793 unsigned long flags) 2794 { 2795 unsigned long prot_adj = mmap_prot(file, prot); 2796 int ret; 2797 2798 ret = call_int_hook(mmap_file, 0, file, prot, prot_adj, flags); 2799 if (ret) 2800 return ret; 2801 return ima_file_mmap(file, prot, prot_adj, flags); 2802 } 2803 2804 /** 2805 * security_mmap_addr() - Check if mmap'ing an address is allowed 2806 * @addr: address 2807 * 2808 * Check permissions for a mmap operation at @addr. 2809 * 2810 * Return: Returns 0 if permission is granted. 2811 */ 2812 int security_mmap_addr(unsigned long addr) 2813 { 2814 return call_int_hook(mmap_addr, 0, addr); 2815 } 2816 2817 /** 2818 * security_file_mprotect() - Check if changing memory protections is allowed 2819 * @vma: memory region 2820 * @reqprot: application requested protection 2821 * @prot: protection applied by the kernel 2822 * 2823 * Check permissions before changing memory access permissions. 2824 * 2825 * Return: Returns 0 if permission is granted. 2826 */ 2827 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot, 2828 unsigned long prot) 2829 { 2830 int ret; 2831 2832 ret = call_int_hook(file_mprotect, 0, vma, reqprot, prot); 2833 if (ret) 2834 return ret; 2835 return ima_file_mprotect(vma, prot); 2836 } 2837 2838 /** 2839 * security_file_lock() - Check if a file lock is allowed 2840 * @file: file 2841 * @cmd: lock operation (e.g. F_RDLCK, F_WRLCK) 2842 * 2843 * Check permission before performing file locking operations. Note the hook 2844 * mediates both flock and fcntl style locks. 2845 * 2846 * Return: Returns 0 if permission is granted. 2847 */ 2848 int security_file_lock(struct file *file, unsigned int cmd) 2849 { 2850 return call_int_hook(file_lock, 0, file, cmd); 2851 } 2852 2853 /** 2854 * security_file_fcntl() - Check if fcntl() op is allowed 2855 * @file: file 2856 * @cmd: fcntl command 2857 * @arg: command argument 2858 * 2859 * Check permission before allowing the file operation specified by @cmd from 2860 * being performed on the file @file. Note that @arg sometimes represents a 2861 * user space pointer; in other cases, it may be a simple integer value. When 2862 * @arg represents a user space pointer, it should never be used by the 2863 * security module. 2864 * 2865 * Return: Returns 0 if permission is granted. 2866 */ 2867 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg) 2868 { 2869 return call_int_hook(file_fcntl, 0, file, cmd, arg); 2870 } 2871 2872 /** 2873 * security_file_set_fowner() - Set the file owner info in the LSM blob 2874 * @file: the file 2875 * 2876 * Save owner security information (typically from current->security) in 2877 * file->f_security for later use by the send_sigiotask hook. 2878 * 2879 * Return: Returns 0 on success. 2880 */ 2881 void security_file_set_fowner(struct file *file) 2882 { 2883 call_void_hook(file_set_fowner, file); 2884 } 2885 2886 /** 2887 * security_file_send_sigiotask() - Check if sending SIGIO/SIGURG is allowed 2888 * @tsk: target task 2889 * @fown: signal sender 2890 * @sig: signal to be sent, SIGIO is sent if 0 2891 * 2892 * Check permission for the file owner @fown to send SIGIO or SIGURG to the 2893 * process @tsk. Note that this hook is sometimes called from interrupt. Note 2894 * that the fown_struct, @fown, is never outside the context of a struct file, 2895 * so the file structure (and associated security information) can always be 2896 * obtained: container_of(fown, struct file, f_owner). 2897 * 2898 * Return: Returns 0 if permission is granted. 2899 */ 2900 int security_file_send_sigiotask(struct task_struct *tsk, 2901 struct fown_struct *fown, int sig) 2902 { 2903 return call_int_hook(file_send_sigiotask, 0, tsk, fown, sig); 2904 } 2905 2906 /** 2907 * security_file_receive() - Check is receiving a file via IPC is allowed 2908 * @file: file being received 2909 * 2910 * This hook allows security modules to control the ability of a process to 2911 * receive an open file descriptor via socket IPC. 2912 * 2913 * Return: Returns 0 if permission is granted. 2914 */ 2915 int security_file_receive(struct file *file) 2916 { 2917 return call_int_hook(file_receive, 0, file); 2918 } 2919 2920 /** 2921 * security_file_open() - Save open() time state for late use by the LSM 2922 * @file: 2923 * 2924 * Save open-time permission checking state for later use upon file_permission, 2925 * and recheck access if anything has changed since inode_permission. 2926 * 2927 * Return: Returns 0 if permission is granted. 2928 */ 2929 int security_file_open(struct file *file) 2930 { 2931 int ret; 2932 2933 ret = call_int_hook(file_open, 0, file); 2934 if (ret) 2935 return ret; 2936 2937 return fsnotify_open_perm(file); 2938 } 2939 2940 /** 2941 * security_file_truncate() - Check if truncating a file is allowed 2942 * @file: file 2943 * 2944 * Check permission before truncating a file, i.e. using ftruncate. Note that 2945 * truncation permission may also be checked based on the path, using the 2946 * @path_truncate hook. 2947 * 2948 * Return: Returns 0 if permission is granted. 2949 */ 2950 int security_file_truncate(struct file *file) 2951 { 2952 return call_int_hook(file_truncate, 0, file); 2953 } 2954 2955 /** 2956 * security_task_alloc() - Allocate a task's LSM blob 2957 * @task: the task 2958 * @clone_flags: flags indicating what is being shared 2959 * 2960 * Handle allocation of task-related resources. 2961 * 2962 * Return: Returns a zero on success, negative values on failure. 2963 */ 2964 int security_task_alloc(struct task_struct *task, unsigned long clone_flags) 2965 { 2966 int rc = lsm_task_alloc(task); 2967 2968 if (rc) 2969 return rc; 2970 rc = call_int_hook(task_alloc, 0, task, clone_flags); 2971 if (unlikely(rc)) 2972 security_task_free(task); 2973 return rc; 2974 } 2975 2976 /** 2977 * security_task_free() - Free a task's LSM blob and related resources 2978 * @task: task 2979 * 2980 * Handle release of task-related resources. Note that this can be called from 2981 * interrupt context. 2982 */ 2983 void security_task_free(struct task_struct *task) 2984 { 2985 call_void_hook(task_free, task); 2986 2987 kfree(task->security); 2988 task->security = NULL; 2989 } 2990 2991 /** 2992 * security_cred_alloc_blank() - Allocate the min memory to allow cred_transfer 2993 * @cred: credentials 2994 * @gfp: gfp flags 2995 * 2996 * Only allocate sufficient memory and attach to @cred such that 2997 * cred_transfer() will not get ENOMEM. 2998 * 2999 * Return: Returns 0 on success, negative values on failure. 3000 */ 3001 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp) 3002 { 3003 int rc = lsm_cred_alloc(cred, gfp); 3004 3005 if (rc) 3006 return rc; 3007 3008 rc = call_int_hook(cred_alloc_blank, 0, cred, gfp); 3009 if (unlikely(rc)) 3010 security_cred_free(cred); 3011 return rc; 3012 } 3013 3014 /** 3015 * security_cred_free() - Free the cred's LSM blob and associated resources 3016 * @cred: credentials 3017 * 3018 * Deallocate and clear the cred->security field in a set of credentials. 3019 */ 3020 void security_cred_free(struct cred *cred) 3021 { 3022 /* 3023 * There is a failure case in prepare_creds() that 3024 * may result in a call here with ->security being NULL. 3025 */ 3026 if (unlikely(cred->security == NULL)) 3027 return; 3028 3029 call_void_hook(cred_free, cred); 3030 3031 kfree(cred->security); 3032 cred->security = NULL; 3033 } 3034 3035 /** 3036 * security_prepare_creds() - Prepare a new set of credentials 3037 * @new: new credentials 3038 * @old: original credentials 3039 * @gfp: gfp flags 3040 * 3041 * Prepare a new set of credentials by copying the data from the old set. 3042 * 3043 * Return: Returns 0 on success, negative values on failure. 3044 */ 3045 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp) 3046 { 3047 int rc = lsm_cred_alloc(new, gfp); 3048 3049 if (rc) 3050 return rc; 3051 3052 rc = call_int_hook(cred_prepare, 0, new, old, gfp); 3053 if (unlikely(rc)) 3054 security_cred_free(new); 3055 return rc; 3056 } 3057 3058 /** 3059 * security_transfer_creds() - Transfer creds 3060 * @new: target credentials 3061 * @old: original credentials 3062 * 3063 * Transfer data from original creds to new creds. 3064 */ 3065 void security_transfer_creds(struct cred *new, const struct cred *old) 3066 { 3067 call_void_hook(cred_transfer, new, old); 3068 } 3069 3070 /** 3071 * security_cred_getsecid() - Get the secid from a set of credentials 3072 * @c: credentials 3073 * @secid: secid value 3074 * 3075 * Retrieve the security identifier of the cred structure @c. In case of 3076 * failure, @secid will be set to zero. 3077 */ 3078 void security_cred_getsecid(const struct cred *c, u32 *secid) 3079 { 3080 *secid = 0; 3081 call_void_hook(cred_getsecid, c, secid); 3082 } 3083 EXPORT_SYMBOL(security_cred_getsecid); 3084 3085 /** 3086 * security_kernel_act_as() - Set the kernel credentials to act as secid 3087 * @new: credentials 3088 * @secid: secid 3089 * 3090 * Set the credentials for a kernel service to act as (subjective context). 3091 * The current task must be the one that nominated @secid. 3092 * 3093 * Return: Returns 0 if successful. 3094 */ 3095 int security_kernel_act_as(struct cred *new, u32 secid) 3096 { 3097 return call_int_hook(kernel_act_as, 0, new, secid); 3098 } 3099 3100 /** 3101 * security_kernel_create_files_as() - Set file creation context using an inode 3102 * @new: target credentials 3103 * @inode: reference inode 3104 * 3105 * Set the file creation context in a set of credentials to be the same as the 3106 * objective context of the specified inode. The current task must be the one 3107 * that nominated @inode. 3108 * 3109 * Return: Returns 0 if successful. 3110 */ 3111 int security_kernel_create_files_as(struct cred *new, struct inode *inode) 3112 { 3113 return call_int_hook(kernel_create_files_as, 0, new, inode); 3114 } 3115 3116 /** 3117 * security_kernel_module_request() - Check is loading a module is allowed 3118 * @kmod_name: module name 3119 * 3120 * Ability to trigger the kernel to automatically upcall to userspace for 3121 * userspace to load a kernel module with the given name. 3122 * 3123 * Return: Returns 0 if successful. 3124 */ 3125 int security_kernel_module_request(char *kmod_name) 3126 { 3127 int ret; 3128 3129 ret = call_int_hook(kernel_module_request, 0, kmod_name); 3130 if (ret) 3131 return ret; 3132 return integrity_kernel_module_request(kmod_name); 3133 } 3134 3135 /** 3136 * security_kernel_read_file() - Read a file specified by userspace 3137 * @file: file 3138 * @id: file identifier 3139 * @contents: trust if security_kernel_post_read_file() will be called 3140 * 3141 * Read a file specified by userspace. 3142 * 3143 * Return: Returns 0 if permission is granted. 3144 */ 3145 int security_kernel_read_file(struct file *file, enum kernel_read_file_id id, 3146 bool contents) 3147 { 3148 int ret; 3149 3150 ret = call_int_hook(kernel_read_file, 0, file, id, contents); 3151 if (ret) 3152 return ret; 3153 return ima_read_file(file, id, contents); 3154 } 3155 EXPORT_SYMBOL_GPL(security_kernel_read_file); 3156 3157 /** 3158 * security_kernel_post_read_file() - Read a file specified by userspace 3159 * @file: file 3160 * @buf: file contents 3161 * @size: size of file contents 3162 * @id: file identifier 3163 * 3164 * Read a file specified by userspace. This must be paired with a prior call 3165 * to security_kernel_read_file() call that indicated this hook would also be 3166 * called, see security_kernel_read_file() for more information. 3167 * 3168 * Return: Returns 0 if permission is granted. 3169 */ 3170 int security_kernel_post_read_file(struct file *file, char *buf, loff_t size, 3171 enum kernel_read_file_id id) 3172 { 3173 int ret; 3174 3175 ret = call_int_hook(kernel_post_read_file, 0, file, buf, size, id); 3176 if (ret) 3177 return ret; 3178 return ima_post_read_file(file, buf, size, id); 3179 } 3180 EXPORT_SYMBOL_GPL(security_kernel_post_read_file); 3181 3182 /** 3183 * security_kernel_load_data() - Load data provided by userspace 3184 * @id: data identifier 3185 * @contents: true if security_kernel_post_load_data() will be called 3186 * 3187 * Load data provided by userspace. 3188 * 3189 * Return: Returns 0 if permission is granted. 3190 */ 3191 int security_kernel_load_data(enum kernel_load_data_id id, bool contents) 3192 { 3193 int ret; 3194 3195 ret = call_int_hook(kernel_load_data, 0, id, contents); 3196 if (ret) 3197 return ret; 3198 return ima_load_data(id, contents); 3199 } 3200 EXPORT_SYMBOL_GPL(security_kernel_load_data); 3201 3202 /** 3203 * security_kernel_post_load_data() - Load userspace data from a non-file source 3204 * @buf: data 3205 * @size: size of data 3206 * @id: data identifier 3207 * @description: text description of data, specific to the id value 3208 * 3209 * Load data provided by a non-file source (usually userspace buffer). This 3210 * must be paired with a prior security_kernel_load_data() call that indicated 3211 * this hook would also be called, see security_kernel_load_data() for more 3212 * information. 3213 * 3214 * Return: Returns 0 if permission is granted. 3215 */ 3216 int security_kernel_post_load_data(char *buf, loff_t size, 3217 enum kernel_load_data_id id, 3218 char *description) 3219 { 3220 int ret; 3221 3222 ret = call_int_hook(kernel_post_load_data, 0, buf, size, id, 3223 description); 3224 if (ret) 3225 return ret; 3226 return ima_post_load_data(buf, size, id, description); 3227 } 3228 EXPORT_SYMBOL_GPL(security_kernel_post_load_data); 3229 3230 /** 3231 * security_task_fix_setuid() - Update LSM with new user id attributes 3232 * @new: updated credentials 3233 * @old: credentials being replaced 3234 * @flags: LSM_SETID_* flag values 3235 * 3236 * Update the module's state after setting one or more of the user identity 3237 * attributes of the current process. The @flags parameter indicates which of 3238 * the set*uid system calls invoked this hook. If @new is the set of 3239 * credentials that will be installed. Modifications should be made to this 3240 * rather than to @current->cred. 3241 * 3242 * Return: Returns 0 on success. 3243 */ 3244 int security_task_fix_setuid(struct cred *new, const struct cred *old, 3245 int flags) 3246 { 3247 return call_int_hook(task_fix_setuid, 0, new, old, flags); 3248 } 3249 3250 /** 3251 * security_task_fix_setgid() - Update LSM with new group id attributes 3252 * @new: updated credentials 3253 * @old: credentials being replaced 3254 * @flags: LSM_SETID_* flag value 3255 * 3256 * Update the module's state after setting one or more of the group identity 3257 * attributes of the current process. The @flags parameter indicates which of 3258 * the set*gid system calls invoked this hook. @new is the set of credentials 3259 * that will be installed. Modifications should be made to this rather than to 3260 * @current->cred. 3261 * 3262 * Return: Returns 0 on success. 3263 */ 3264 int security_task_fix_setgid(struct cred *new, const struct cred *old, 3265 int flags) 3266 { 3267 return call_int_hook(task_fix_setgid, 0, new, old, flags); 3268 } 3269 3270 /** 3271 * security_task_fix_setgroups() - Update LSM with new supplementary groups 3272 * @new: updated credentials 3273 * @old: credentials being replaced 3274 * 3275 * Update the module's state after setting the supplementary group identity 3276 * attributes of the current process. @new is the set of credentials that will 3277 * be installed. Modifications should be made to this rather than to 3278 * @current->cred. 3279 * 3280 * Return: Returns 0 on success. 3281 */ 3282 int security_task_fix_setgroups(struct cred *new, const struct cred *old) 3283 { 3284 return call_int_hook(task_fix_setgroups, 0, new, old); 3285 } 3286 3287 /** 3288 * security_task_setpgid() - Check if setting the pgid is allowed 3289 * @p: task being modified 3290 * @pgid: new pgid 3291 * 3292 * Check permission before setting the process group identifier of the process 3293 * @p to @pgid. 3294 * 3295 * Return: Returns 0 if permission is granted. 3296 */ 3297 int security_task_setpgid(struct task_struct *p, pid_t pgid) 3298 { 3299 return call_int_hook(task_setpgid, 0, p, pgid); 3300 } 3301 3302 /** 3303 * security_task_getpgid() - Check if getting the pgid is allowed 3304 * @p: task 3305 * 3306 * Check permission before getting the process group identifier of the process 3307 * @p. 3308 * 3309 * Return: Returns 0 if permission is granted. 3310 */ 3311 int security_task_getpgid(struct task_struct *p) 3312 { 3313 return call_int_hook(task_getpgid, 0, p); 3314 } 3315 3316 /** 3317 * security_task_getsid() - Check if getting the session id is allowed 3318 * @p: task 3319 * 3320 * Check permission before getting the session identifier of the process @p. 3321 * 3322 * Return: Returns 0 if permission is granted. 3323 */ 3324 int security_task_getsid(struct task_struct *p) 3325 { 3326 return call_int_hook(task_getsid, 0, p); 3327 } 3328 3329 /** 3330 * security_current_getsecid_subj() - Get the current task's subjective secid 3331 * @secid: secid value 3332 * 3333 * Retrieve the subjective security identifier of the current task and return 3334 * it in @secid. In case of failure, @secid will be set to zero. 3335 */ 3336 void security_current_getsecid_subj(u32 *secid) 3337 { 3338 *secid = 0; 3339 call_void_hook(current_getsecid_subj, secid); 3340 } 3341 EXPORT_SYMBOL(security_current_getsecid_subj); 3342 3343 /** 3344 * security_task_getsecid_obj() - Get a task's objective secid 3345 * @p: target task 3346 * @secid: secid value 3347 * 3348 * Retrieve the objective security identifier of the task_struct in @p and 3349 * return it in @secid. In case of failure, @secid will be set to zero. 3350 */ 3351 void security_task_getsecid_obj(struct task_struct *p, u32 *secid) 3352 { 3353 *secid = 0; 3354 call_void_hook(task_getsecid_obj, p, secid); 3355 } 3356 EXPORT_SYMBOL(security_task_getsecid_obj); 3357 3358 /** 3359 * security_task_setnice() - Check if setting a task's nice value is allowed 3360 * @p: target task 3361 * @nice: nice value 3362 * 3363 * Check permission before setting the nice value of @p to @nice. 3364 * 3365 * Return: Returns 0 if permission is granted. 3366 */ 3367 int security_task_setnice(struct task_struct *p, int nice) 3368 { 3369 return call_int_hook(task_setnice, 0, p, nice); 3370 } 3371 3372 /** 3373 * security_task_setioprio() - Check if setting a task's ioprio is allowed 3374 * @p: target task 3375 * @ioprio: ioprio value 3376 * 3377 * Check permission before setting the ioprio value of @p to @ioprio. 3378 * 3379 * Return: Returns 0 if permission is granted. 3380 */ 3381 int security_task_setioprio(struct task_struct *p, int ioprio) 3382 { 3383 return call_int_hook(task_setioprio, 0, p, ioprio); 3384 } 3385 3386 /** 3387 * security_task_getioprio() - Check if getting a task's ioprio is allowed 3388 * @p: task 3389 * 3390 * Check permission before getting the ioprio value of @p. 3391 * 3392 * Return: Returns 0 if permission is granted. 3393 */ 3394 int security_task_getioprio(struct task_struct *p) 3395 { 3396 return call_int_hook(task_getioprio, 0, p); 3397 } 3398 3399 /** 3400 * security_task_prlimit() - Check if get/setting resources limits is allowed 3401 * @cred: current task credentials 3402 * @tcred: target task credentials 3403 * @flags: LSM_PRLIMIT_* flag bits indicating a get/set/both 3404 * 3405 * Check permission before getting and/or setting the resource limits of 3406 * another task. 3407 * 3408 * Return: Returns 0 if permission is granted. 3409 */ 3410 int security_task_prlimit(const struct cred *cred, const struct cred *tcred, 3411 unsigned int flags) 3412 { 3413 return call_int_hook(task_prlimit, 0, cred, tcred, flags); 3414 } 3415 3416 /** 3417 * security_task_setrlimit() - Check if setting a new rlimit value is allowed 3418 * @p: target task's group leader 3419 * @resource: resource whose limit is being set 3420 * @new_rlim: new resource limit 3421 * 3422 * Check permission before setting the resource limits of process @p for 3423 * @resource to @new_rlim. The old resource limit values can be examined by 3424 * dereferencing (p->signal->rlim + resource). 3425 * 3426 * Return: Returns 0 if permission is granted. 3427 */ 3428 int security_task_setrlimit(struct task_struct *p, unsigned int resource, 3429 struct rlimit *new_rlim) 3430 { 3431 return call_int_hook(task_setrlimit, 0, p, resource, new_rlim); 3432 } 3433 3434 /** 3435 * security_task_setscheduler() - Check if setting sched policy/param is allowed 3436 * @p: target task 3437 * 3438 * Check permission before setting scheduling policy and/or parameters of 3439 * process @p. 3440 * 3441 * Return: Returns 0 if permission is granted. 3442 */ 3443 int security_task_setscheduler(struct task_struct *p) 3444 { 3445 return call_int_hook(task_setscheduler, 0, p); 3446 } 3447 3448 /** 3449 * security_task_getscheduler() - Check if getting scheduling info is allowed 3450 * @p: target task 3451 * 3452 * Check permission before obtaining scheduling information for process @p. 3453 * 3454 * Return: Returns 0 if permission is granted. 3455 */ 3456 int security_task_getscheduler(struct task_struct *p) 3457 { 3458 return call_int_hook(task_getscheduler, 0, p); 3459 } 3460 3461 /** 3462 * security_task_movememory() - Check if moving memory is allowed 3463 * @p: task 3464 * 3465 * Check permission before moving memory owned by process @p. 3466 * 3467 * Return: Returns 0 if permission is granted. 3468 */ 3469 int security_task_movememory(struct task_struct *p) 3470 { 3471 return call_int_hook(task_movememory, 0, p); 3472 } 3473 3474 /** 3475 * security_task_kill() - Check if sending a signal is allowed 3476 * @p: target process 3477 * @info: signal information 3478 * @sig: signal value 3479 * @cred: credentials of the signal sender, NULL if @current 3480 * 3481 * Check permission before sending signal @sig to @p. @info can be NULL, the 3482 * constant 1, or a pointer to a kernel_siginfo structure. If @info is 1 or 3483 * SI_FROMKERNEL(info) is true, then the signal should be viewed as coming from 3484 * the kernel and should typically be permitted. SIGIO signals are handled 3485 * separately by the send_sigiotask hook in file_security_ops. 3486 * 3487 * Return: Returns 0 if permission is granted. 3488 */ 3489 int security_task_kill(struct task_struct *p, struct kernel_siginfo *info, 3490 int sig, const struct cred *cred) 3491 { 3492 return call_int_hook(task_kill, 0, p, info, sig, cred); 3493 } 3494 3495 /** 3496 * security_task_prctl() - Check if a prctl op is allowed 3497 * @option: operation 3498 * @arg2: argument 3499 * @arg3: argument 3500 * @arg4: argument 3501 * @arg5: argument 3502 * 3503 * Check permission before performing a process control operation on the 3504 * current process. 3505 * 3506 * Return: Return -ENOSYS if no-one wanted to handle this op, any other value 3507 * to cause prctl() to return immediately with that value. 3508 */ 3509 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3, 3510 unsigned long arg4, unsigned long arg5) 3511 { 3512 int thisrc; 3513 int rc = LSM_RET_DEFAULT(task_prctl); 3514 struct security_hook_list *hp; 3515 3516 hlist_for_each_entry(hp, &security_hook_heads.task_prctl, list) { 3517 thisrc = hp->hook.task_prctl(option, arg2, arg3, arg4, arg5); 3518 if (thisrc != LSM_RET_DEFAULT(task_prctl)) { 3519 rc = thisrc; 3520 if (thisrc != 0) 3521 break; 3522 } 3523 } 3524 return rc; 3525 } 3526 3527 /** 3528 * security_task_to_inode() - Set the security attributes of a task's inode 3529 * @p: task 3530 * @inode: inode 3531 * 3532 * Set the security attributes for an inode based on an associated task's 3533 * security attributes, e.g. for /proc/pid inodes. 3534 */ 3535 void security_task_to_inode(struct task_struct *p, struct inode *inode) 3536 { 3537 call_void_hook(task_to_inode, p, inode); 3538 } 3539 3540 /** 3541 * security_create_user_ns() - Check if creating a new userns is allowed 3542 * @cred: prepared creds 3543 * 3544 * Check permission prior to creating a new user namespace. 3545 * 3546 * Return: Returns 0 if successful, otherwise < 0 error code. 3547 */ 3548 int security_create_user_ns(const struct cred *cred) 3549 { 3550 return call_int_hook(userns_create, 0, cred); 3551 } 3552 3553 /** 3554 * security_ipc_permission() - Check if sysv ipc access is allowed 3555 * @ipcp: ipc permission structure 3556 * @flag: requested permissions 3557 * 3558 * Check permissions for access to IPC. 3559 * 3560 * Return: Returns 0 if permission is granted. 3561 */ 3562 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag) 3563 { 3564 return call_int_hook(ipc_permission, 0, ipcp, flag); 3565 } 3566 3567 /** 3568 * security_ipc_getsecid() - Get the sysv ipc object's secid 3569 * @ipcp: ipc permission structure 3570 * @secid: secid pointer 3571 * 3572 * Get the secid associated with the ipc object. In case of failure, @secid 3573 * will be set to zero. 3574 */ 3575 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid) 3576 { 3577 *secid = 0; 3578 call_void_hook(ipc_getsecid, ipcp, secid); 3579 } 3580 3581 /** 3582 * security_msg_msg_alloc() - Allocate a sysv ipc message LSM blob 3583 * @msg: message structure 3584 * 3585 * Allocate and attach a security structure to the msg->security field. The 3586 * security field is initialized to NULL when the structure is first created. 3587 * 3588 * Return: Return 0 if operation was successful and permission is granted. 3589 */ 3590 int security_msg_msg_alloc(struct msg_msg *msg) 3591 { 3592 int rc = lsm_msg_msg_alloc(msg); 3593 3594 if (unlikely(rc)) 3595 return rc; 3596 rc = call_int_hook(msg_msg_alloc_security, 0, msg); 3597 if (unlikely(rc)) 3598 security_msg_msg_free(msg); 3599 return rc; 3600 } 3601 3602 /** 3603 * security_msg_msg_free() - Free a sysv ipc message LSM blob 3604 * @msg: message structure 3605 * 3606 * Deallocate the security structure for this message. 3607 */ 3608 void security_msg_msg_free(struct msg_msg *msg) 3609 { 3610 call_void_hook(msg_msg_free_security, msg); 3611 kfree(msg->security); 3612 msg->security = NULL; 3613 } 3614 3615 /** 3616 * security_msg_queue_alloc() - Allocate a sysv ipc msg queue LSM blob 3617 * @msq: sysv ipc permission structure 3618 * 3619 * Allocate and attach a security structure to @msg. The security field is 3620 * initialized to NULL when the structure is first created. 3621 * 3622 * Return: Returns 0 if operation was successful and permission is granted. 3623 */ 3624 int security_msg_queue_alloc(struct kern_ipc_perm *msq) 3625 { 3626 int rc = lsm_ipc_alloc(msq); 3627 3628 if (unlikely(rc)) 3629 return rc; 3630 rc = call_int_hook(msg_queue_alloc_security, 0, msq); 3631 if (unlikely(rc)) 3632 security_msg_queue_free(msq); 3633 return rc; 3634 } 3635 3636 /** 3637 * security_msg_queue_free() - Free a sysv ipc msg queue LSM blob 3638 * @msq: sysv ipc permission structure 3639 * 3640 * Deallocate security field @perm->security for the message queue. 3641 */ 3642 void security_msg_queue_free(struct kern_ipc_perm *msq) 3643 { 3644 call_void_hook(msg_queue_free_security, msq); 3645 kfree(msq->security); 3646 msq->security = NULL; 3647 } 3648 3649 /** 3650 * security_msg_queue_associate() - Check if a msg queue operation is allowed 3651 * @msq: sysv ipc permission structure 3652 * @msqflg: operation flags 3653 * 3654 * Check permission when a message queue is requested through the msgget system 3655 * call. This hook is only called when returning the message queue identifier 3656 * for an existing message queue, not when a new message queue is created. 3657 * 3658 * Return: Return 0 if permission is granted. 3659 */ 3660 int security_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg) 3661 { 3662 return call_int_hook(msg_queue_associate, 0, msq, msqflg); 3663 } 3664 3665 /** 3666 * security_msg_queue_msgctl() - Check if a msg queue operation is allowed 3667 * @msq: sysv ipc permission structure 3668 * @cmd: operation 3669 * 3670 * Check permission when a message control operation specified by @cmd is to be 3671 * performed on the message queue with permissions. 3672 * 3673 * Return: Returns 0 if permission is granted. 3674 */ 3675 int security_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd) 3676 { 3677 return call_int_hook(msg_queue_msgctl, 0, msq, cmd); 3678 } 3679 3680 /** 3681 * security_msg_queue_msgsnd() - Check if sending a sysv ipc message is allowed 3682 * @msq: sysv ipc permission structure 3683 * @msg: message 3684 * @msqflg: operation flags 3685 * 3686 * Check permission before a message, @msg, is enqueued on the message queue 3687 * with permissions specified in @msq. 3688 * 3689 * Return: Returns 0 if permission is granted. 3690 */ 3691 int security_msg_queue_msgsnd(struct kern_ipc_perm *msq, 3692 struct msg_msg *msg, int msqflg) 3693 { 3694 return call_int_hook(msg_queue_msgsnd, 0, msq, msg, msqflg); 3695 } 3696 3697 /** 3698 * security_msg_queue_msgrcv() - Check if receiving a sysv ipc msg is allowed 3699 * @msq: sysv ipc permission structure 3700 * @msg: message 3701 * @target: target task 3702 * @type: type of message requested 3703 * @mode: operation flags 3704 * 3705 * Check permission before a message, @msg, is removed from the message queue. 3706 * The @target task structure contains a pointer to the process that will be 3707 * receiving the message (not equal to the current process when inline receives 3708 * are being performed). 3709 * 3710 * Return: Returns 0 if permission is granted. 3711 */ 3712 int security_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg, 3713 struct task_struct *target, long type, int mode) 3714 { 3715 return call_int_hook(msg_queue_msgrcv, 0, msq, msg, target, type, mode); 3716 } 3717 3718 /** 3719 * security_shm_alloc() - Allocate a sysv shm LSM blob 3720 * @shp: sysv ipc permission structure 3721 * 3722 * Allocate and attach a security structure to the @shp security field. The 3723 * security field is initialized to NULL when the structure is first created. 3724 * 3725 * Return: Returns 0 if operation was successful and permission is granted. 3726 */ 3727 int security_shm_alloc(struct kern_ipc_perm *shp) 3728 { 3729 int rc = lsm_ipc_alloc(shp); 3730 3731 if (unlikely(rc)) 3732 return rc; 3733 rc = call_int_hook(shm_alloc_security, 0, shp); 3734 if (unlikely(rc)) 3735 security_shm_free(shp); 3736 return rc; 3737 } 3738 3739 /** 3740 * security_shm_free() - Free a sysv shm LSM blob 3741 * @shp: sysv ipc permission structure 3742 * 3743 * Deallocate the security structure @perm->security for the memory segment. 3744 */ 3745 void security_shm_free(struct kern_ipc_perm *shp) 3746 { 3747 call_void_hook(shm_free_security, shp); 3748 kfree(shp->security); 3749 shp->security = NULL; 3750 } 3751 3752 /** 3753 * security_shm_associate() - Check if a sysv shm operation is allowed 3754 * @shp: sysv ipc permission structure 3755 * @shmflg: operation flags 3756 * 3757 * Check permission when a shared memory region is requested through the shmget 3758 * system call. This hook is only called when returning the shared memory 3759 * region identifier for an existing region, not when a new shared memory 3760 * region is created. 3761 * 3762 * Return: Returns 0 if permission is granted. 3763 */ 3764 int security_shm_associate(struct kern_ipc_perm *shp, int shmflg) 3765 { 3766 return call_int_hook(shm_associate, 0, shp, shmflg); 3767 } 3768 3769 /** 3770 * security_shm_shmctl() - Check if a sysv shm operation is allowed 3771 * @shp: sysv ipc permission structure 3772 * @cmd: operation 3773 * 3774 * Check permission when a shared memory control operation specified by @cmd is 3775 * to be performed on the shared memory region with permissions in @shp. 3776 * 3777 * Return: Return 0 if permission is granted. 3778 */ 3779 int security_shm_shmctl(struct kern_ipc_perm *shp, int cmd) 3780 { 3781 return call_int_hook(shm_shmctl, 0, shp, cmd); 3782 } 3783 3784 /** 3785 * security_shm_shmat() - Check if a sysv shm attach operation is allowed 3786 * @shp: sysv ipc permission structure 3787 * @shmaddr: address of memory region to attach 3788 * @shmflg: operation flags 3789 * 3790 * Check permissions prior to allowing the shmat system call to attach the 3791 * shared memory segment with permissions @shp to the data segment of the 3792 * calling process. The attaching address is specified by @shmaddr. 3793 * 3794 * Return: Returns 0 if permission is granted. 3795 */ 3796 int security_shm_shmat(struct kern_ipc_perm *shp, 3797 char __user *shmaddr, int shmflg) 3798 { 3799 return call_int_hook(shm_shmat, 0, shp, shmaddr, shmflg); 3800 } 3801 3802 /** 3803 * security_sem_alloc() - Allocate a sysv semaphore LSM blob 3804 * @sma: sysv ipc permission structure 3805 * 3806 * Allocate and attach a security structure to the @sma security field. The 3807 * security field is initialized to NULL when the structure is first created. 3808 * 3809 * Return: Returns 0 if operation was successful and permission is granted. 3810 */ 3811 int security_sem_alloc(struct kern_ipc_perm *sma) 3812 { 3813 int rc = lsm_ipc_alloc(sma); 3814 3815 if (unlikely(rc)) 3816 return rc; 3817 rc = call_int_hook(sem_alloc_security, 0, sma); 3818 if (unlikely(rc)) 3819 security_sem_free(sma); 3820 return rc; 3821 } 3822 3823 /** 3824 * security_sem_free() - Free a sysv semaphore LSM blob 3825 * @sma: sysv ipc permission structure 3826 * 3827 * Deallocate security structure @sma->security for the semaphore. 3828 */ 3829 void security_sem_free(struct kern_ipc_perm *sma) 3830 { 3831 call_void_hook(sem_free_security, sma); 3832 kfree(sma->security); 3833 sma->security = NULL; 3834 } 3835 3836 /** 3837 * security_sem_associate() - Check if a sysv semaphore operation is allowed 3838 * @sma: sysv ipc permission structure 3839 * @semflg: operation flags 3840 * 3841 * Check permission when a semaphore is requested through the semget system 3842 * call. This hook is only called when returning the semaphore identifier for 3843 * an existing semaphore, not when a new one must be created. 3844 * 3845 * Return: Returns 0 if permission is granted. 3846 */ 3847 int security_sem_associate(struct kern_ipc_perm *sma, int semflg) 3848 { 3849 return call_int_hook(sem_associate, 0, sma, semflg); 3850 } 3851 3852 /** 3853 * security_sem_semctl() - Check if a sysv semaphore operation is allowed 3854 * @sma: sysv ipc permission structure 3855 * @cmd: operation 3856 * 3857 * Check permission when a semaphore operation specified by @cmd is to be 3858 * performed on the semaphore. 3859 * 3860 * Return: Returns 0 if permission is granted. 3861 */ 3862 int security_sem_semctl(struct kern_ipc_perm *sma, int cmd) 3863 { 3864 return call_int_hook(sem_semctl, 0, sma, cmd); 3865 } 3866 3867 /** 3868 * security_sem_semop() - Check if a sysv semaphore operation is allowed 3869 * @sma: sysv ipc permission structure 3870 * @sops: operations to perform 3871 * @nsops: number of operations 3872 * @alter: flag indicating changes will be made 3873 * 3874 * Check permissions before performing operations on members of the semaphore 3875 * set. If the @alter flag is nonzero, the semaphore set may be modified. 3876 * 3877 * Return: Returns 0 if permission is granted. 3878 */ 3879 int security_sem_semop(struct kern_ipc_perm *sma, struct sembuf *sops, 3880 unsigned nsops, int alter) 3881 { 3882 return call_int_hook(sem_semop, 0, sma, sops, nsops, alter); 3883 } 3884 3885 /** 3886 * security_d_instantiate() - Populate an inode's LSM state based on a dentry 3887 * @dentry: dentry 3888 * @inode: inode 3889 * 3890 * Fill in @inode security information for a @dentry if allowed. 3891 */ 3892 void security_d_instantiate(struct dentry *dentry, struct inode *inode) 3893 { 3894 if (unlikely(inode && IS_PRIVATE(inode))) 3895 return; 3896 call_void_hook(d_instantiate, dentry, inode); 3897 } 3898 EXPORT_SYMBOL(security_d_instantiate); 3899 3900 /* 3901 * Please keep this in sync with it's counterpart in security/lsm_syscalls.c 3902 */ 3903 3904 /** 3905 * security_getselfattr - Read an LSM attribute of the current process. 3906 * @attr: which attribute to return 3907 * @uctx: the user-space destination for the information, or NULL 3908 * @size: pointer to the size of space available to receive the data 3909 * @flags: special handling options. LSM_FLAG_SINGLE indicates that only 3910 * attributes associated with the LSM identified in the passed @ctx be 3911 * reported. 3912 * 3913 * A NULL value for @uctx can be used to get both the number of attributes 3914 * and the size of the data. 3915 * 3916 * Returns the number of attributes found on success, negative value 3917 * on error. @size is reset to the total size of the data. 3918 * If @size is insufficient to contain the data -E2BIG is returned. 3919 */ 3920 int security_getselfattr(unsigned int attr, struct lsm_ctx __user *uctx, 3921 size_t __user *size, u32 flags) 3922 { 3923 struct security_hook_list *hp; 3924 struct lsm_ctx lctx = { .id = LSM_ID_UNDEF, }; 3925 u8 __user *base = (u8 __user *)uctx; 3926 size_t total = 0; 3927 size_t entrysize; 3928 size_t left; 3929 bool toobig = false; 3930 bool single = false; 3931 int count = 0; 3932 int rc; 3933 3934 if (attr == LSM_ATTR_UNDEF) 3935 return -EINVAL; 3936 if (size == NULL) 3937 return -EINVAL; 3938 if (get_user(left, size)) 3939 return -EFAULT; 3940 3941 if (flags) { 3942 /* 3943 * Only flag supported is LSM_FLAG_SINGLE 3944 */ 3945 if (flags != LSM_FLAG_SINGLE || !uctx) 3946 return -EINVAL; 3947 if (copy_from_user(&lctx, uctx, sizeof(lctx))) 3948 return -EFAULT; 3949 /* 3950 * If the LSM ID isn't specified it is an error. 3951 */ 3952 if (lctx.id == LSM_ID_UNDEF) 3953 return -EINVAL; 3954 single = true; 3955 } 3956 3957 /* 3958 * In the usual case gather all the data from the LSMs. 3959 * In the single case only get the data from the LSM specified. 3960 */ 3961 hlist_for_each_entry(hp, &security_hook_heads.getselfattr, list) { 3962 if (single && lctx.id != hp->lsmid->id) 3963 continue; 3964 entrysize = left; 3965 if (base) 3966 uctx = (struct lsm_ctx __user *)(base + total); 3967 rc = hp->hook.getselfattr(attr, uctx, &entrysize, flags); 3968 if (rc == -EOPNOTSUPP) { 3969 rc = 0; 3970 continue; 3971 } 3972 if (rc == -E2BIG) { 3973 rc = 0; 3974 left = 0; 3975 toobig = true; 3976 } else if (rc < 0) 3977 return rc; 3978 else 3979 left -= entrysize; 3980 3981 total += entrysize; 3982 count += rc; 3983 if (single) 3984 break; 3985 } 3986 if (put_user(total, size)) 3987 return -EFAULT; 3988 if (toobig) 3989 return -E2BIG; 3990 if (count == 0) 3991 return LSM_RET_DEFAULT(getselfattr); 3992 return count; 3993 } 3994 3995 /* 3996 * Please keep this in sync with it's counterpart in security/lsm_syscalls.c 3997 */ 3998 3999 /** 4000 * security_setselfattr - Set an LSM attribute on the current process. 4001 * @attr: which attribute to set 4002 * @uctx: the user-space source for the information 4003 * @size: the size of the data 4004 * @flags: reserved for future use, must be 0 4005 * 4006 * Set an LSM attribute for the current process. The LSM, attribute 4007 * and new value are included in @uctx. 4008 * 4009 * Returns 0 on success, -EINVAL if the input is inconsistent, -EFAULT 4010 * if the user buffer is inaccessible, E2BIG if size is too big, or an 4011 * LSM specific failure. 4012 */ 4013 int security_setselfattr(unsigned int attr, struct lsm_ctx __user *uctx, 4014 size_t size, u32 flags) 4015 { 4016 struct security_hook_list *hp; 4017 struct lsm_ctx *lctx; 4018 int rc = LSM_RET_DEFAULT(setselfattr); 4019 u64 required_len; 4020 4021 if (flags) 4022 return -EINVAL; 4023 if (size < sizeof(*lctx)) 4024 return -EINVAL; 4025 if (size > PAGE_SIZE) 4026 return -E2BIG; 4027 4028 lctx = memdup_user(uctx, size); 4029 if (IS_ERR(lctx)) 4030 return PTR_ERR(lctx); 4031 4032 if (size < lctx->len || 4033 check_add_overflow(sizeof(*lctx), lctx->ctx_len, &required_len) || 4034 lctx->len < required_len) { 4035 rc = -EINVAL; 4036 goto free_out; 4037 } 4038 4039 hlist_for_each_entry(hp, &security_hook_heads.setselfattr, list) 4040 if ((hp->lsmid->id) == lctx->id) { 4041 rc = hp->hook.setselfattr(attr, lctx, size, flags); 4042 break; 4043 } 4044 4045 free_out: 4046 kfree(lctx); 4047 return rc; 4048 } 4049 4050 /** 4051 * security_getprocattr() - Read an attribute for a task 4052 * @p: the task 4053 * @lsmid: LSM identification 4054 * @name: attribute name 4055 * @value: attribute value 4056 * 4057 * Read attribute @name for task @p and store it into @value if allowed. 4058 * 4059 * Return: Returns the length of @value on success, a negative value otherwise. 4060 */ 4061 int security_getprocattr(struct task_struct *p, int lsmid, const char *name, 4062 char **value) 4063 { 4064 struct security_hook_list *hp; 4065 4066 hlist_for_each_entry(hp, &security_hook_heads.getprocattr, list) { 4067 if (lsmid != 0 && lsmid != hp->lsmid->id) 4068 continue; 4069 return hp->hook.getprocattr(p, name, value); 4070 } 4071 return LSM_RET_DEFAULT(getprocattr); 4072 } 4073 4074 /** 4075 * security_setprocattr() - Set an attribute for a task 4076 * @lsmid: LSM identification 4077 * @name: attribute name 4078 * @value: attribute value 4079 * @size: attribute value size 4080 * 4081 * Write (set) the current task's attribute @name to @value, size @size if 4082 * allowed. 4083 * 4084 * Return: Returns bytes written on success, a negative value otherwise. 4085 */ 4086 int security_setprocattr(int lsmid, const char *name, void *value, size_t size) 4087 { 4088 struct security_hook_list *hp; 4089 4090 hlist_for_each_entry(hp, &security_hook_heads.setprocattr, list) { 4091 if (lsmid != 0 && lsmid != hp->lsmid->id) 4092 continue; 4093 return hp->hook.setprocattr(name, value, size); 4094 } 4095 return LSM_RET_DEFAULT(setprocattr); 4096 } 4097 4098 /** 4099 * security_netlink_send() - Save info and check if netlink sending is allowed 4100 * @sk: sending socket 4101 * @skb: netlink message 4102 * 4103 * Save security information for a netlink message so that permission checking 4104 * can be performed when the message is processed. The security information 4105 * can be saved using the eff_cap field of the netlink_skb_parms structure. 4106 * Also may be used to provide fine grained control over message transmission. 4107 * 4108 * Return: Returns 0 if the information was successfully saved and message is 4109 * allowed to be transmitted. 4110 */ 4111 int security_netlink_send(struct sock *sk, struct sk_buff *skb) 4112 { 4113 return call_int_hook(netlink_send, 0, sk, skb); 4114 } 4115 4116 /** 4117 * security_ismaclabel() - Check is the named attribute is a MAC label 4118 * @name: full extended attribute name 4119 * 4120 * Check if the extended attribute specified by @name represents a MAC label. 4121 * 4122 * Return: Returns 1 if name is a MAC attribute otherwise returns 0. 4123 */ 4124 int security_ismaclabel(const char *name) 4125 { 4126 return call_int_hook(ismaclabel, 0, name); 4127 } 4128 EXPORT_SYMBOL(security_ismaclabel); 4129 4130 /** 4131 * security_secid_to_secctx() - Convert a secid to a secctx 4132 * @secid: secid 4133 * @secdata: secctx 4134 * @seclen: secctx length 4135 * 4136 * Convert secid to security context. If @secdata is NULL the length of the 4137 * result will be returned in @seclen, but no @secdata will be returned. This 4138 * does mean that the length could change between calls to check the length and 4139 * the next call which actually allocates and returns the @secdata. 4140 * 4141 * Return: Return 0 on success, error on failure. 4142 */ 4143 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen) 4144 { 4145 struct security_hook_list *hp; 4146 int rc; 4147 4148 /* 4149 * Currently, only one LSM can implement secid_to_secctx (i.e this 4150 * LSM hook is not "stackable"). 4151 */ 4152 hlist_for_each_entry(hp, &security_hook_heads.secid_to_secctx, list) { 4153 rc = hp->hook.secid_to_secctx(secid, secdata, seclen); 4154 if (rc != LSM_RET_DEFAULT(secid_to_secctx)) 4155 return rc; 4156 } 4157 4158 return LSM_RET_DEFAULT(secid_to_secctx); 4159 } 4160 EXPORT_SYMBOL(security_secid_to_secctx); 4161 4162 /** 4163 * security_secctx_to_secid() - Convert a secctx to a secid 4164 * @secdata: secctx 4165 * @seclen: length of secctx 4166 * @secid: secid 4167 * 4168 * Convert security context to secid. 4169 * 4170 * Return: Returns 0 on success, error on failure. 4171 */ 4172 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid) 4173 { 4174 *secid = 0; 4175 return call_int_hook(secctx_to_secid, 0, secdata, seclen, secid); 4176 } 4177 EXPORT_SYMBOL(security_secctx_to_secid); 4178 4179 /** 4180 * security_release_secctx() - Free a secctx buffer 4181 * @secdata: secctx 4182 * @seclen: length of secctx 4183 * 4184 * Release the security context. 4185 */ 4186 void security_release_secctx(char *secdata, u32 seclen) 4187 { 4188 call_void_hook(release_secctx, secdata, seclen); 4189 } 4190 EXPORT_SYMBOL(security_release_secctx); 4191 4192 /** 4193 * security_inode_invalidate_secctx() - Invalidate an inode's security label 4194 * @inode: inode 4195 * 4196 * Notify the security module that it must revalidate the security context of 4197 * an inode. 4198 */ 4199 void security_inode_invalidate_secctx(struct inode *inode) 4200 { 4201 call_void_hook(inode_invalidate_secctx, inode); 4202 } 4203 EXPORT_SYMBOL(security_inode_invalidate_secctx); 4204 4205 /** 4206 * security_inode_notifysecctx() - Notify the LSM of an inode's security label 4207 * @inode: inode 4208 * @ctx: secctx 4209 * @ctxlen: length of secctx 4210 * 4211 * Notify the security module of what the security context of an inode should 4212 * be. Initializes the incore security context managed by the security module 4213 * for this inode. Example usage: NFS client invokes this hook to initialize 4214 * the security context in its incore inode to the value provided by the server 4215 * for the file when the server returned the file's attributes to the client. 4216 * Must be called with inode->i_mutex locked. 4217 * 4218 * Return: Returns 0 on success, error on failure. 4219 */ 4220 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen) 4221 { 4222 return call_int_hook(inode_notifysecctx, 0, inode, ctx, ctxlen); 4223 } 4224 EXPORT_SYMBOL(security_inode_notifysecctx); 4225 4226 /** 4227 * security_inode_setsecctx() - Change the security label of an inode 4228 * @dentry: inode 4229 * @ctx: secctx 4230 * @ctxlen: length of secctx 4231 * 4232 * Change the security context of an inode. Updates the incore security 4233 * context managed by the security module and invokes the fs code as needed 4234 * (via __vfs_setxattr_noperm) to update any backing xattrs that represent the 4235 * context. Example usage: NFS server invokes this hook to change the security 4236 * context in its incore inode and on the backing filesystem to a value 4237 * provided by the client on a SETATTR operation. Must be called with 4238 * inode->i_mutex locked. 4239 * 4240 * Return: Returns 0 on success, error on failure. 4241 */ 4242 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen) 4243 { 4244 return call_int_hook(inode_setsecctx, 0, dentry, ctx, ctxlen); 4245 } 4246 EXPORT_SYMBOL(security_inode_setsecctx); 4247 4248 /** 4249 * security_inode_getsecctx() - Get the security label of an inode 4250 * @inode: inode 4251 * @ctx: secctx 4252 * @ctxlen: length of secctx 4253 * 4254 * On success, returns 0 and fills out @ctx and @ctxlen with the security 4255 * context for the given @inode. 4256 * 4257 * Return: Returns 0 on success, error on failure. 4258 */ 4259 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen) 4260 { 4261 struct security_hook_list *hp; 4262 int rc; 4263 4264 /* 4265 * Only one module will provide a security context. 4266 */ 4267 hlist_for_each_entry(hp, &security_hook_heads.inode_getsecctx, list) { 4268 rc = hp->hook.inode_getsecctx(inode, ctx, ctxlen); 4269 if (rc != LSM_RET_DEFAULT(inode_getsecctx)) 4270 return rc; 4271 } 4272 4273 return LSM_RET_DEFAULT(inode_getsecctx); 4274 } 4275 EXPORT_SYMBOL(security_inode_getsecctx); 4276 4277 #ifdef CONFIG_WATCH_QUEUE 4278 /** 4279 * security_post_notification() - Check if a watch notification can be posted 4280 * @w_cred: credentials of the task that set the watch 4281 * @cred: credentials of the task which triggered the watch 4282 * @n: the notification 4283 * 4284 * Check to see if a watch notification can be posted to a particular queue. 4285 * 4286 * Return: Returns 0 if permission is granted. 4287 */ 4288 int security_post_notification(const struct cred *w_cred, 4289 const struct cred *cred, 4290 struct watch_notification *n) 4291 { 4292 return call_int_hook(post_notification, 0, w_cred, cred, n); 4293 } 4294 #endif /* CONFIG_WATCH_QUEUE */ 4295 4296 #ifdef CONFIG_KEY_NOTIFICATIONS 4297 /** 4298 * security_watch_key() - Check if a task is allowed to watch for key events 4299 * @key: the key to watch 4300 * 4301 * Check to see if a process is allowed to watch for event notifications from 4302 * a key or keyring. 4303 * 4304 * Return: Returns 0 if permission is granted. 4305 */ 4306 int security_watch_key(struct key *key) 4307 { 4308 return call_int_hook(watch_key, 0, key); 4309 } 4310 #endif /* CONFIG_KEY_NOTIFICATIONS */ 4311 4312 #ifdef CONFIG_SECURITY_NETWORK 4313 /** 4314 * security_unix_stream_connect() - Check if a AF_UNIX stream is allowed 4315 * @sock: originating sock 4316 * @other: peer sock 4317 * @newsk: new sock 4318 * 4319 * Check permissions before establishing a Unix domain stream connection 4320 * between @sock and @other. 4321 * 4322 * The @unix_stream_connect and @unix_may_send hooks were necessary because 4323 * Linux provides an alternative to the conventional file name space for Unix 4324 * domain sockets. Whereas binding and connecting to sockets in the file name 4325 * space is mediated by the typical file permissions (and caught by the mknod 4326 * and permission hooks in inode_security_ops), binding and connecting to 4327 * sockets in the abstract name space is completely unmediated. Sufficient 4328 * control of Unix domain sockets in the abstract name space isn't possible 4329 * using only the socket layer hooks, since we need to know the actual target 4330 * socket, which is not looked up until we are inside the af_unix code. 4331 * 4332 * Return: Returns 0 if permission is granted. 4333 */ 4334 int security_unix_stream_connect(struct sock *sock, struct sock *other, 4335 struct sock *newsk) 4336 { 4337 return call_int_hook(unix_stream_connect, 0, sock, other, newsk); 4338 } 4339 EXPORT_SYMBOL(security_unix_stream_connect); 4340 4341 /** 4342 * security_unix_may_send() - Check if AF_UNIX socket can send datagrams 4343 * @sock: originating sock 4344 * @other: peer sock 4345 * 4346 * Check permissions before connecting or sending datagrams from @sock to 4347 * @other. 4348 * 4349 * The @unix_stream_connect and @unix_may_send hooks were necessary because 4350 * Linux provides an alternative to the conventional file name space for Unix 4351 * domain sockets. Whereas binding and connecting to sockets in the file name 4352 * space is mediated by the typical file permissions (and caught by the mknod 4353 * and permission hooks in inode_security_ops), binding and connecting to 4354 * sockets in the abstract name space is completely unmediated. Sufficient 4355 * control of Unix domain sockets in the abstract name space isn't possible 4356 * using only the socket layer hooks, since we need to know the actual target 4357 * socket, which is not looked up until we are inside the af_unix code. 4358 * 4359 * Return: Returns 0 if permission is granted. 4360 */ 4361 int security_unix_may_send(struct socket *sock, struct socket *other) 4362 { 4363 return call_int_hook(unix_may_send, 0, sock, other); 4364 } 4365 EXPORT_SYMBOL(security_unix_may_send); 4366 4367 /** 4368 * security_socket_create() - Check if creating a new socket is allowed 4369 * @family: protocol family 4370 * @type: communications type 4371 * @protocol: requested protocol 4372 * @kern: set to 1 if a kernel socket is requested 4373 * 4374 * Check permissions prior to creating a new socket. 4375 * 4376 * Return: Returns 0 if permission is granted. 4377 */ 4378 int security_socket_create(int family, int type, int protocol, int kern) 4379 { 4380 return call_int_hook(socket_create, 0, family, type, protocol, kern); 4381 } 4382 4383 /** 4384 * security_socket_post_create() - Initialize a newly created socket 4385 * @sock: socket 4386 * @family: protocol family 4387 * @type: communications type 4388 * @protocol: requested protocol 4389 * @kern: set to 1 if a kernel socket is requested 4390 * 4391 * This hook allows a module to update or allocate a per-socket security 4392 * structure. Note that the security field was not added directly to the socket 4393 * structure, but rather, the socket security information is stored in the 4394 * associated inode. Typically, the inode alloc_security hook will allocate 4395 * and attach security information to SOCK_INODE(sock)->i_security. This hook 4396 * may be used to update the SOCK_INODE(sock)->i_security field with additional 4397 * information that wasn't available when the inode was allocated. 4398 * 4399 * Return: Returns 0 if permission is granted. 4400 */ 4401 int security_socket_post_create(struct socket *sock, int family, 4402 int type, int protocol, int kern) 4403 { 4404 return call_int_hook(socket_post_create, 0, sock, family, type, 4405 protocol, kern); 4406 } 4407 4408 /** 4409 * security_socket_socketpair() - Check if creating a socketpair is allowed 4410 * @socka: first socket 4411 * @sockb: second socket 4412 * 4413 * Check permissions before creating a fresh pair of sockets. 4414 * 4415 * Return: Returns 0 if permission is granted and the connection was 4416 * established. 4417 */ 4418 int security_socket_socketpair(struct socket *socka, struct socket *sockb) 4419 { 4420 return call_int_hook(socket_socketpair, 0, socka, sockb); 4421 } 4422 EXPORT_SYMBOL(security_socket_socketpair); 4423 4424 /** 4425 * security_socket_bind() - Check if a socket bind operation is allowed 4426 * @sock: socket 4427 * @address: requested bind address 4428 * @addrlen: length of address 4429 * 4430 * Check permission before socket protocol layer bind operation is performed 4431 * and the socket @sock is bound to the address specified in the @address 4432 * parameter. 4433 * 4434 * Return: Returns 0 if permission is granted. 4435 */ 4436 int security_socket_bind(struct socket *sock, 4437 struct sockaddr *address, int addrlen) 4438 { 4439 return call_int_hook(socket_bind, 0, sock, address, addrlen); 4440 } 4441 4442 /** 4443 * security_socket_connect() - Check if a socket connect operation is allowed 4444 * @sock: socket 4445 * @address: address of remote connection point 4446 * @addrlen: length of address 4447 * 4448 * Check permission before socket protocol layer connect operation attempts to 4449 * connect socket @sock to a remote address, @address. 4450 * 4451 * Return: Returns 0 if permission is granted. 4452 */ 4453 int security_socket_connect(struct socket *sock, 4454 struct sockaddr *address, int addrlen) 4455 { 4456 return call_int_hook(socket_connect, 0, sock, address, addrlen); 4457 } 4458 4459 /** 4460 * security_socket_listen() - Check if a socket is allowed to listen 4461 * @sock: socket 4462 * @backlog: connection queue size 4463 * 4464 * Check permission before socket protocol layer listen operation. 4465 * 4466 * Return: Returns 0 if permission is granted. 4467 */ 4468 int security_socket_listen(struct socket *sock, int backlog) 4469 { 4470 return call_int_hook(socket_listen, 0, sock, backlog); 4471 } 4472 4473 /** 4474 * security_socket_accept() - Check if a socket is allowed to accept connections 4475 * @sock: listening socket 4476 * @newsock: newly creation connection socket 4477 * 4478 * Check permission before accepting a new connection. Note that the new 4479 * socket, @newsock, has been created and some information copied to it, but 4480 * the accept operation has not actually been performed. 4481 * 4482 * Return: Returns 0 if permission is granted. 4483 */ 4484 int security_socket_accept(struct socket *sock, struct socket *newsock) 4485 { 4486 return call_int_hook(socket_accept, 0, sock, newsock); 4487 } 4488 4489 /** 4490 * security_socket_sendmsg() - Check is sending a message is allowed 4491 * @sock: sending socket 4492 * @msg: message to send 4493 * @size: size of message 4494 * 4495 * Check permission before transmitting a message to another socket. 4496 * 4497 * Return: Returns 0 if permission is granted. 4498 */ 4499 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size) 4500 { 4501 return call_int_hook(socket_sendmsg, 0, sock, msg, size); 4502 } 4503 4504 /** 4505 * security_socket_recvmsg() - Check if receiving a message is allowed 4506 * @sock: receiving socket 4507 * @msg: message to receive 4508 * @size: size of message 4509 * @flags: operational flags 4510 * 4511 * Check permission before receiving a message from a socket. 4512 * 4513 * Return: Returns 0 if permission is granted. 4514 */ 4515 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg, 4516 int size, int flags) 4517 { 4518 return call_int_hook(socket_recvmsg, 0, sock, msg, size, flags); 4519 } 4520 4521 /** 4522 * security_socket_getsockname() - Check if reading the socket addr is allowed 4523 * @sock: socket 4524 * 4525 * Check permission before reading the local address (name) of the socket 4526 * object. 4527 * 4528 * Return: Returns 0 if permission is granted. 4529 */ 4530 int security_socket_getsockname(struct socket *sock) 4531 { 4532 return call_int_hook(socket_getsockname, 0, sock); 4533 } 4534 4535 /** 4536 * security_socket_getpeername() - Check if reading the peer's addr is allowed 4537 * @sock: socket 4538 * 4539 * Check permission before the remote address (name) of a socket object. 4540 * 4541 * Return: Returns 0 if permission is granted. 4542 */ 4543 int security_socket_getpeername(struct socket *sock) 4544 { 4545 return call_int_hook(socket_getpeername, 0, sock); 4546 } 4547 4548 /** 4549 * security_socket_getsockopt() - Check if reading a socket option is allowed 4550 * @sock: socket 4551 * @level: option's protocol level 4552 * @optname: option name 4553 * 4554 * Check permissions before retrieving the options associated with socket 4555 * @sock. 4556 * 4557 * Return: Returns 0 if permission is granted. 4558 */ 4559 int security_socket_getsockopt(struct socket *sock, int level, int optname) 4560 { 4561 return call_int_hook(socket_getsockopt, 0, sock, level, optname); 4562 } 4563 4564 /** 4565 * security_socket_setsockopt() - Check if setting a socket option is allowed 4566 * @sock: socket 4567 * @level: option's protocol level 4568 * @optname: option name 4569 * 4570 * Check permissions before setting the options associated with socket @sock. 4571 * 4572 * Return: Returns 0 if permission is granted. 4573 */ 4574 int security_socket_setsockopt(struct socket *sock, int level, int optname) 4575 { 4576 return call_int_hook(socket_setsockopt, 0, sock, level, optname); 4577 } 4578 4579 /** 4580 * security_socket_shutdown() - Checks if shutting down the socket is allowed 4581 * @sock: socket 4582 * @how: flag indicating how sends and receives are handled 4583 * 4584 * Checks permission before all or part of a connection on the socket @sock is 4585 * shut down. 4586 * 4587 * Return: Returns 0 if permission is granted. 4588 */ 4589 int security_socket_shutdown(struct socket *sock, int how) 4590 { 4591 return call_int_hook(socket_shutdown, 0, sock, how); 4592 } 4593 4594 /** 4595 * security_sock_rcv_skb() - Check if an incoming network packet is allowed 4596 * @sk: destination sock 4597 * @skb: incoming packet 4598 * 4599 * Check permissions on incoming network packets. This hook is distinct from 4600 * Netfilter's IP input hooks since it is the first time that the incoming 4601 * sk_buff @skb has been associated with a particular socket, @sk. Must not 4602 * sleep inside this hook because some callers hold spinlocks. 4603 * 4604 * Return: Returns 0 if permission is granted. 4605 */ 4606 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb) 4607 { 4608 return call_int_hook(socket_sock_rcv_skb, 0, sk, skb); 4609 } 4610 EXPORT_SYMBOL(security_sock_rcv_skb); 4611 4612 /** 4613 * security_socket_getpeersec_stream() - Get the remote peer label 4614 * @sock: socket 4615 * @optval: destination buffer 4616 * @optlen: size of peer label copied into the buffer 4617 * @len: maximum size of the destination buffer 4618 * 4619 * This hook allows the security module to provide peer socket security state 4620 * for unix or connected tcp sockets to userspace via getsockopt SO_GETPEERSEC. 4621 * For tcp sockets this can be meaningful if the socket is associated with an 4622 * ipsec SA. 4623 * 4624 * Return: Returns 0 if all is well, otherwise, typical getsockopt return 4625 * values. 4626 */ 4627 int security_socket_getpeersec_stream(struct socket *sock, sockptr_t optval, 4628 sockptr_t optlen, unsigned int len) 4629 { 4630 struct security_hook_list *hp; 4631 int rc; 4632 4633 /* 4634 * Only one module will provide a security context. 4635 */ 4636 hlist_for_each_entry(hp, &security_hook_heads.socket_getpeersec_stream, 4637 list) { 4638 rc = hp->hook.socket_getpeersec_stream(sock, optval, optlen, 4639 len); 4640 if (rc != LSM_RET_DEFAULT(socket_getpeersec_stream)) 4641 return rc; 4642 } 4643 return LSM_RET_DEFAULT(socket_getpeersec_stream); 4644 } 4645 4646 /** 4647 * security_socket_getpeersec_dgram() - Get the remote peer label 4648 * @sock: socket 4649 * @skb: datagram packet 4650 * @secid: remote peer label secid 4651 * 4652 * This hook allows the security module to provide peer socket security state 4653 * for udp sockets on a per-packet basis to userspace via getsockopt 4654 * SO_GETPEERSEC. The application must first have indicated the IP_PASSSEC 4655 * option via getsockopt. It can then retrieve the security state returned by 4656 * this hook for a packet via the SCM_SECURITY ancillary message type. 4657 * 4658 * Return: Returns 0 on success, error on failure. 4659 */ 4660 int security_socket_getpeersec_dgram(struct socket *sock, 4661 struct sk_buff *skb, u32 *secid) 4662 { 4663 struct security_hook_list *hp; 4664 int rc; 4665 4666 /* 4667 * Only one module will provide a security context. 4668 */ 4669 hlist_for_each_entry(hp, &security_hook_heads.socket_getpeersec_dgram, 4670 list) { 4671 rc = hp->hook.socket_getpeersec_dgram(sock, skb, secid); 4672 if (rc != LSM_RET_DEFAULT(socket_getpeersec_dgram)) 4673 return rc; 4674 } 4675 return LSM_RET_DEFAULT(socket_getpeersec_dgram); 4676 } 4677 EXPORT_SYMBOL(security_socket_getpeersec_dgram); 4678 4679 /** 4680 * security_sk_alloc() - Allocate and initialize a sock's LSM blob 4681 * @sk: sock 4682 * @family: protocol family 4683 * @priority: gfp flags 4684 * 4685 * Allocate and attach a security structure to the sk->sk_security field, which 4686 * is used to copy security attributes between local stream sockets. 4687 * 4688 * Return: Returns 0 on success, error on failure. 4689 */ 4690 int security_sk_alloc(struct sock *sk, int family, gfp_t priority) 4691 { 4692 return call_int_hook(sk_alloc_security, 0, sk, family, priority); 4693 } 4694 4695 /** 4696 * security_sk_free() - Free the sock's LSM blob 4697 * @sk: sock 4698 * 4699 * Deallocate security structure. 4700 */ 4701 void security_sk_free(struct sock *sk) 4702 { 4703 call_void_hook(sk_free_security, sk); 4704 } 4705 4706 /** 4707 * security_sk_clone() - Clone a sock's LSM state 4708 * @sk: original sock 4709 * @newsk: target sock 4710 * 4711 * Clone/copy security structure. 4712 */ 4713 void security_sk_clone(const struct sock *sk, struct sock *newsk) 4714 { 4715 call_void_hook(sk_clone_security, sk, newsk); 4716 } 4717 EXPORT_SYMBOL(security_sk_clone); 4718 4719 /** 4720 * security_sk_classify_flow() - Set a flow's secid based on socket 4721 * @sk: original socket 4722 * @flic: target flow 4723 * 4724 * Set the target flow's secid to socket's secid. 4725 */ 4726 void security_sk_classify_flow(const struct sock *sk, struct flowi_common *flic) 4727 { 4728 call_void_hook(sk_getsecid, sk, &flic->flowic_secid); 4729 } 4730 EXPORT_SYMBOL(security_sk_classify_flow); 4731 4732 /** 4733 * security_req_classify_flow() - Set a flow's secid based on request_sock 4734 * @req: request_sock 4735 * @flic: target flow 4736 * 4737 * Sets @flic's secid to @req's secid. 4738 */ 4739 void security_req_classify_flow(const struct request_sock *req, 4740 struct flowi_common *flic) 4741 { 4742 call_void_hook(req_classify_flow, req, flic); 4743 } 4744 EXPORT_SYMBOL(security_req_classify_flow); 4745 4746 /** 4747 * security_sock_graft() - Reconcile LSM state when grafting a sock on a socket 4748 * @sk: sock being grafted 4749 * @parent: target parent socket 4750 * 4751 * Sets @parent's inode secid to @sk's secid and update @sk with any necessary 4752 * LSM state from @parent. 4753 */ 4754 void security_sock_graft(struct sock *sk, struct socket *parent) 4755 { 4756 call_void_hook(sock_graft, sk, parent); 4757 } 4758 EXPORT_SYMBOL(security_sock_graft); 4759 4760 /** 4761 * security_inet_conn_request() - Set request_sock state using incoming connect 4762 * @sk: parent listening sock 4763 * @skb: incoming connection 4764 * @req: new request_sock 4765 * 4766 * Initialize the @req LSM state based on @sk and the incoming connect in @skb. 4767 * 4768 * Return: Returns 0 if permission is granted. 4769 */ 4770 int security_inet_conn_request(const struct sock *sk, 4771 struct sk_buff *skb, struct request_sock *req) 4772 { 4773 return call_int_hook(inet_conn_request, 0, sk, skb, req); 4774 } 4775 EXPORT_SYMBOL(security_inet_conn_request); 4776 4777 /** 4778 * security_inet_csk_clone() - Set new sock LSM state based on request_sock 4779 * @newsk: new sock 4780 * @req: connection request_sock 4781 * 4782 * Set that LSM state of @sock using the LSM state from @req. 4783 */ 4784 void security_inet_csk_clone(struct sock *newsk, 4785 const struct request_sock *req) 4786 { 4787 call_void_hook(inet_csk_clone, newsk, req); 4788 } 4789 4790 /** 4791 * security_inet_conn_established() - Update sock's LSM state with connection 4792 * @sk: sock 4793 * @skb: connection packet 4794 * 4795 * Update @sock's LSM state to represent a new connection from @skb. 4796 */ 4797 void security_inet_conn_established(struct sock *sk, 4798 struct sk_buff *skb) 4799 { 4800 call_void_hook(inet_conn_established, sk, skb); 4801 } 4802 EXPORT_SYMBOL(security_inet_conn_established); 4803 4804 /** 4805 * security_secmark_relabel_packet() - Check if setting a secmark is allowed 4806 * @secid: new secmark value 4807 * 4808 * Check if the process should be allowed to relabel packets to @secid. 4809 * 4810 * Return: Returns 0 if permission is granted. 4811 */ 4812 int security_secmark_relabel_packet(u32 secid) 4813 { 4814 return call_int_hook(secmark_relabel_packet, 0, secid); 4815 } 4816 EXPORT_SYMBOL(security_secmark_relabel_packet); 4817 4818 /** 4819 * security_secmark_refcount_inc() - Increment the secmark labeling rule count 4820 * 4821 * Tells the LSM to increment the number of secmark labeling rules loaded. 4822 */ 4823 void security_secmark_refcount_inc(void) 4824 { 4825 call_void_hook(secmark_refcount_inc); 4826 } 4827 EXPORT_SYMBOL(security_secmark_refcount_inc); 4828 4829 /** 4830 * security_secmark_refcount_dec() - Decrement the secmark labeling rule count 4831 * 4832 * Tells the LSM to decrement the number of secmark labeling rules loaded. 4833 */ 4834 void security_secmark_refcount_dec(void) 4835 { 4836 call_void_hook(secmark_refcount_dec); 4837 } 4838 EXPORT_SYMBOL(security_secmark_refcount_dec); 4839 4840 /** 4841 * security_tun_dev_alloc_security() - Allocate a LSM blob for a TUN device 4842 * @security: pointer to the LSM blob 4843 * 4844 * This hook allows a module to allocate a security structure for a TUN device, 4845 * returning the pointer in @security. 4846 * 4847 * Return: Returns a zero on success, negative values on failure. 4848 */ 4849 int security_tun_dev_alloc_security(void **security) 4850 { 4851 return call_int_hook(tun_dev_alloc_security, 0, security); 4852 } 4853 EXPORT_SYMBOL(security_tun_dev_alloc_security); 4854 4855 /** 4856 * security_tun_dev_free_security() - Free a TUN device LSM blob 4857 * @security: LSM blob 4858 * 4859 * This hook allows a module to free the security structure for a TUN device. 4860 */ 4861 void security_tun_dev_free_security(void *security) 4862 { 4863 call_void_hook(tun_dev_free_security, security); 4864 } 4865 EXPORT_SYMBOL(security_tun_dev_free_security); 4866 4867 /** 4868 * security_tun_dev_create() - Check if creating a TUN device is allowed 4869 * 4870 * Check permissions prior to creating a new TUN device. 4871 * 4872 * Return: Returns 0 if permission is granted. 4873 */ 4874 int security_tun_dev_create(void) 4875 { 4876 return call_int_hook(tun_dev_create, 0); 4877 } 4878 EXPORT_SYMBOL(security_tun_dev_create); 4879 4880 /** 4881 * security_tun_dev_attach_queue() - Check if attaching a TUN queue is allowed 4882 * @security: TUN device LSM blob 4883 * 4884 * Check permissions prior to attaching to a TUN device queue. 4885 * 4886 * Return: Returns 0 if permission is granted. 4887 */ 4888 int security_tun_dev_attach_queue(void *security) 4889 { 4890 return call_int_hook(tun_dev_attach_queue, 0, security); 4891 } 4892 EXPORT_SYMBOL(security_tun_dev_attach_queue); 4893 4894 /** 4895 * security_tun_dev_attach() - Update TUN device LSM state on attach 4896 * @sk: associated sock 4897 * @security: TUN device LSM blob 4898 * 4899 * This hook can be used by the module to update any security state associated 4900 * with the TUN device's sock structure. 4901 * 4902 * Return: Returns 0 if permission is granted. 4903 */ 4904 int security_tun_dev_attach(struct sock *sk, void *security) 4905 { 4906 return call_int_hook(tun_dev_attach, 0, sk, security); 4907 } 4908 EXPORT_SYMBOL(security_tun_dev_attach); 4909 4910 /** 4911 * security_tun_dev_open() - Update TUN device LSM state on open 4912 * @security: TUN device LSM blob 4913 * 4914 * This hook can be used by the module to update any security state associated 4915 * with the TUN device's security structure. 4916 * 4917 * Return: Returns 0 if permission is granted. 4918 */ 4919 int security_tun_dev_open(void *security) 4920 { 4921 return call_int_hook(tun_dev_open, 0, security); 4922 } 4923 EXPORT_SYMBOL(security_tun_dev_open); 4924 4925 /** 4926 * security_sctp_assoc_request() - Update the LSM on a SCTP association req 4927 * @asoc: SCTP association 4928 * @skb: packet requesting the association 4929 * 4930 * Passes the @asoc and @chunk->skb of the association INIT packet to the LSM. 4931 * 4932 * Return: Returns 0 on success, error on failure. 4933 */ 4934 int security_sctp_assoc_request(struct sctp_association *asoc, 4935 struct sk_buff *skb) 4936 { 4937 return call_int_hook(sctp_assoc_request, 0, asoc, skb); 4938 } 4939 EXPORT_SYMBOL(security_sctp_assoc_request); 4940 4941 /** 4942 * security_sctp_bind_connect() - Validate a list of addrs for a SCTP option 4943 * @sk: socket 4944 * @optname: SCTP option to validate 4945 * @address: list of IP addresses to validate 4946 * @addrlen: length of the address list 4947 * 4948 * Validiate permissions required for each address associated with sock @sk. 4949 * Depending on @optname, the addresses will be treated as either a connect or 4950 * bind service. The @addrlen is calculated on each IPv4 and IPv6 address using 4951 * sizeof(struct sockaddr_in) or sizeof(struct sockaddr_in6). 4952 * 4953 * Return: Returns 0 on success, error on failure. 4954 */ 4955 int security_sctp_bind_connect(struct sock *sk, int optname, 4956 struct sockaddr *address, int addrlen) 4957 { 4958 return call_int_hook(sctp_bind_connect, 0, sk, optname, 4959 address, addrlen); 4960 } 4961 EXPORT_SYMBOL(security_sctp_bind_connect); 4962 4963 /** 4964 * security_sctp_sk_clone() - Clone a SCTP sock's LSM state 4965 * @asoc: SCTP association 4966 * @sk: original sock 4967 * @newsk: target sock 4968 * 4969 * Called whenever a new socket is created by accept(2) (i.e. a TCP style 4970 * socket) or when a socket is 'peeled off' e.g userspace calls 4971 * sctp_peeloff(3). 4972 */ 4973 void security_sctp_sk_clone(struct sctp_association *asoc, struct sock *sk, 4974 struct sock *newsk) 4975 { 4976 call_void_hook(sctp_sk_clone, asoc, sk, newsk); 4977 } 4978 EXPORT_SYMBOL(security_sctp_sk_clone); 4979 4980 /** 4981 * security_sctp_assoc_established() - Update LSM state when assoc established 4982 * @asoc: SCTP association 4983 * @skb: packet establishing the association 4984 * 4985 * Passes the @asoc and @chunk->skb of the association COOKIE_ACK packet to the 4986 * security module. 4987 * 4988 * Return: Returns 0 if permission is granted. 4989 */ 4990 int security_sctp_assoc_established(struct sctp_association *asoc, 4991 struct sk_buff *skb) 4992 { 4993 return call_int_hook(sctp_assoc_established, 0, asoc, skb); 4994 } 4995 EXPORT_SYMBOL(security_sctp_assoc_established); 4996 4997 /** 4998 * security_mptcp_add_subflow() - Inherit the LSM label from the MPTCP socket 4999 * @sk: the owning MPTCP socket 5000 * @ssk: the new subflow 5001 * 5002 * Update the labeling for the given MPTCP subflow, to match the one of the 5003 * owning MPTCP socket. This hook has to be called after the socket creation and 5004 * initialization via the security_socket_create() and 5005 * security_socket_post_create() LSM hooks. 5006 * 5007 * Return: Returns 0 on success or a negative error code on failure. 5008 */ 5009 int security_mptcp_add_subflow(struct sock *sk, struct sock *ssk) 5010 { 5011 return call_int_hook(mptcp_add_subflow, 0, sk, ssk); 5012 } 5013 5014 #endif /* CONFIG_SECURITY_NETWORK */ 5015 5016 #ifdef CONFIG_SECURITY_INFINIBAND 5017 /** 5018 * security_ib_pkey_access() - Check if access to an IB pkey is allowed 5019 * @sec: LSM blob 5020 * @subnet_prefix: subnet prefix of the port 5021 * @pkey: IB pkey 5022 * 5023 * Check permission to access a pkey when modifying a QP. 5024 * 5025 * Return: Returns 0 if permission is granted. 5026 */ 5027 int security_ib_pkey_access(void *sec, u64 subnet_prefix, u16 pkey) 5028 { 5029 return call_int_hook(ib_pkey_access, 0, sec, subnet_prefix, pkey); 5030 } 5031 EXPORT_SYMBOL(security_ib_pkey_access); 5032 5033 /** 5034 * security_ib_endport_manage_subnet() - Check if SMPs traffic is allowed 5035 * @sec: LSM blob 5036 * @dev_name: IB device name 5037 * @port_num: port number 5038 * 5039 * Check permissions to send and receive SMPs on a end port. 5040 * 5041 * Return: Returns 0 if permission is granted. 5042 */ 5043 int security_ib_endport_manage_subnet(void *sec, 5044 const char *dev_name, u8 port_num) 5045 { 5046 return call_int_hook(ib_endport_manage_subnet, 0, sec, 5047 dev_name, port_num); 5048 } 5049 EXPORT_SYMBOL(security_ib_endport_manage_subnet); 5050 5051 /** 5052 * security_ib_alloc_security() - Allocate an Infiniband LSM blob 5053 * @sec: LSM blob 5054 * 5055 * Allocate a security structure for Infiniband objects. 5056 * 5057 * Return: Returns 0 on success, non-zero on failure. 5058 */ 5059 int security_ib_alloc_security(void **sec) 5060 { 5061 return call_int_hook(ib_alloc_security, 0, sec); 5062 } 5063 EXPORT_SYMBOL(security_ib_alloc_security); 5064 5065 /** 5066 * security_ib_free_security() - Free an Infiniband LSM blob 5067 * @sec: LSM blob 5068 * 5069 * Deallocate an Infiniband security structure. 5070 */ 5071 void security_ib_free_security(void *sec) 5072 { 5073 call_void_hook(ib_free_security, sec); 5074 } 5075 EXPORT_SYMBOL(security_ib_free_security); 5076 #endif /* CONFIG_SECURITY_INFINIBAND */ 5077 5078 #ifdef CONFIG_SECURITY_NETWORK_XFRM 5079 /** 5080 * security_xfrm_policy_alloc() - Allocate a xfrm policy LSM blob 5081 * @ctxp: xfrm security context being added to the SPD 5082 * @sec_ctx: security label provided by userspace 5083 * @gfp: gfp flags 5084 * 5085 * Allocate a security structure to the xp->security field; the security field 5086 * is initialized to NULL when the xfrm_policy is allocated. 5087 * 5088 * Return: Return 0 if operation was successful. 5089 */ 5090 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, 5091 struct xfrm_user_sec_ctx *sec_ctx, 5092 gfp_t gfp) 5093 { 5094 return call_int_hook(xfrm_policy_alloc_security, 0, ctxp, sec_ctx, gfp); 5095 } 5096 EXPORT_SYMBOL(security_xfrm_policy_alloc); 5097 5098 /** 5099 * security_xfrm_policy_clone() - Clone xfrm policy LSM state 5100 * @old_ctx: xfrm security context 5101 * @new_ctxp: target xfrm security context 5102 * 5103 * Allocate a security structure in new_ctxp that contains the information from 5104 * the old_ctx structure. 5105 * 5106 * Return: Return 0 if operation was successful. 5107 */ 5108 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx, 5109 struct xfrm_sec_ctx **new_ctxp) 5110 { 5111 return call_int_hook(xfrm_policy_clone_security, 0, old_ctx, new_ctxp); 5112 } 5113 5114 /** 5115 * security_xfrm_policy_free() - Free a xfrm security context 5116 * @ctx: xfrm security context 5117 * 5118 * Free LSM resources associated with @ctx. 5119 */ 5120 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx) 5121 { 5122 call_void_hook(xfrm_policy_free_security, ctx); 5123 } 5124 EXPORT_SYMBOL(security_xfrm_policy_free); 5125 5126 /** 5127 * security_xfrm_policy_delete() - Check if deleting a xfrm policy is allowed 5128 * @ctx: xfrm security context 5129 * 5130 * Authorize deletion of a SPD entry. 5131 * 5132 * Return: Returns 0 if permission is granted. 5133 */ 5134 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx) 5135 { 5136 return call_int_hook(xfrm_policy_delete_security, 0, ctx); 5137 } 5138 5139 /** 5140 * security_xfrm_state_alloc() - Allocate a xfrm state LSM blob 5141 * @x: xfrm state being added to the SAD 5142 * @sec_ctx: security label provided by userspace 5143 * 5144 * Allocate a security structure to the @x->security field; the security field 5145 * is initialized to NULL when the xfrm_state is allocated. Set the context to 5146 * correspond to @sec_ctx. 5147 * 5148 * Return: Return 0 if operation was successful. 5149 */ 5150 int security_xfrm_state_alloc(struct xfrm_state *x, 5151 struct xfrm_user_sec_ctx *sec_ctx) 5152 { 5153 return call_int_hook(xfrm_state_alloc, 0, x, sec_ctx); 5154 } 5155 EXPORT_SYMBOL(security_xfrm_state_alloc); 5156 5157 /** 5158 * security_xfrm_state_alloc_acquire() - Allocate a xfrm state LSM blob 5159 * @x: xfrm state being added to the SAD 5160 * @polsec: associated policy's security context 5161 * @secid: secid from the flow 5162 * 5163 * Allocate a security structure to the x->security field; the security field 5164 * is initialized to NULL when the xfrm_state is allocated. Set the context to 5165 * correspond to secid. 5166 * 5167 * Return: Returns 0 if operation was successful. 5168 */ 5169 int security_xfrm_state_alloc_acquire(struct xfrm_state *x, 5170 struct xfrm_sec_ctx *polsec, u32 secid) 5171 { 5172 return call_int_hook(xfrm_state_alloc_acquire, 0, x, polsec, secid); 5173 } 5174 5175 /** 5176 * security_xfrm_state_delete() - Check if deleting a xfrm state is allowed 5177 * @x: xfrm state 5178 * 5179 * Authorize deletion of x->security. 5180 * 5181 * Return: Returns 0 if permission is granted. 5182 */ 5183 int security_xfrm_state_delete(struct xfrm_state *x) 5184 { 5185 return call_int_hook(xfrm_state_delete_security, 0, x); 5186 } 5187 EXPORT_SYMBOL(security_xfrm_state_delete); 5188 5189 /** 5190 * security_xfrm_state_free() - Free a xfrm state 5191 * @x: xfrm state 5192 * 5193 * Deallocate x->security. 5194 */ 5195 void security_xfrm_state_free(struct xfrm_state *x) 5196 { 5197 call_void_hook(xfrm_state_free_security, x); 5198 } 5199 5200 /** 5201 * security_xfrm_policy_lookup() - Check if using a xfrm policy is allowed 5202 * @ctx: target xfrm security context 5203 * @fl_secid: flow secid used to authorize access 5204 * 5205 * Check permission when a flow selects a xfrm_policy for processing XFRMs on a 5206 * packet. The hook is called when selecting either a per-socket policy or a 5207 * generic xfrm policy. 5208 * 5209 * Return: Return 0 if permission is granted, -ESRCH otherwise, or -errno on 5210 * other errors. 5211 */ 5212 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid) 5213 { 5214 return call_int_hook(xfrm_policy_lookup, 0, ctx, fl_secid); 5215 } 5216 5217 /** 5218 * security_xfrm_state_pol_flow_match() - Check for a xfrm match 5219 * @x: xfrm state to match 5220 * @xp: xfrm policy to check for a match 5221 * @flic: flow to check for a match. 5222 * 5223 * Check @xp and @flic for a match with @x. 5224 * 5225 * Return: Returns 1 if there is a match. 5226 */ 5227 int security_xfrm_state_pol_flow_match(struct xfrm_state *x, 5228 struct xfrm_policy *xp, 5229 const struct flowi_common *flic) 5230 { 5231 struct security_hook_list *hp; 5232 int rc = LSM_RET_DEFAULT(xfrm_state_pol_flow_match); 5233 5234 /* 5235 * Since this function is expected to return 0 or 1, the judgment 5236 * becomes difficult if multiple LSMs supply this call. Fortunately, 5237 * we can use the first LSM's judgment because currently only SELinux 5238 * supplies this call. 5239 * 5240 * For speed optimization, we explicitly break the loop rather than 5241 * using the macro 5242 */ 5243 hlist_for_each_entry(hp, &security_hook_heads.xfrm_state_pol_flow_match, 5244 list) { 5245 rc = hp->hook.xfrm_state_pol_flow_match(x, xp, flic); 5246 break; 5247 } 5248 return rc; 5249 } 5250 5251 /** 5252 * security_xfrm_decode_session() - Determine the xfrm secid for a packet 5253 * @skb: xfrm packet 5254 * @secid: secid 5255 * 5256 * Decode the packet in @skb and return the security label in @secid. 5257 * 5258 * Return: Return 0 if all xfrms used have the same secid. 5259 */ 5260 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid) 5261 { 5262 return call_int_hook(xfrm_decode_session, 0, skb, secid, 1); 5263 } 5264 5265 void security_skb_classify_flow(struct sk_buff *skb, struct flowi_common *flic) 5266 { 5267 int rc = call_int_hook(xfrm_decode_session, 0, skb, &flic->flowic_secid, 5268 0); 5269 5270 BUG_ON(rc); 5271 } 5272 EXPORT_SYMBOL(security_skb_classify_flow); 5273 #endif /* CONFIG_SECURITY_NETWORK_XFRM */ 5274 5275 #ifdef CONFIG_KEYS 5276 /** 5277 * security_key_alloc() - Allocate and initialize a kernel key LSM blob 5278 * @key: key 5279 * @cred: credentials 5280 * @flags: allocation flags 5281 * 5282 * Permit allocation of a key and assign security data. Note that key does not 5283 * have a serial number assigned at this point. 5284 * 5285 * Return: Return 0 if permission is granted, -ve error otherwise. 5286 */ 5287 int security_key_alloc(struct key *key, const struct cred *cred, 5288 unsigned long flags) 5289 { 5290 return call_int_hook(key_alloc, 0, key, cred, flags); 5291 } 5292 5293 /** 5294 * security_key_free() - Free a kernel key LSM blob 5295 * @key: key 5296 * 5297 * Notification of destruction; free security data. 5298 */ 5299 void security_key_free(struct key *key) 5300 { 5301 call_void_hook(key_free, key); 5302 } 5303 5304 /** 5305 * security_key_permission() - Check if a kernel key operation is allowed 5306 * @key_ref: key reference 5307 * @cred: credentials of actor requesting access 5308 * @need_perm: requested permissions 5309 * 5310 * See whether a specific operational right is granted to a process on a key. 5311 * 5312 * Return: Return 0 if permission is granted, -ve error otherwise. 5313 */ 5314 int security_key_permission(key_ref_t key_ref, const struct cred *cred, 5315 enum key_need_perm need_perm) 5316 { 5317 return call_int_hook(key_permission, 0, key_ref, cred, need_perm); 5318 } 5319 5320 /** 5321 * security_key_getsecurity() - Get the key's security label 5322 * @key: key 5323 * @buffer: security label buffer 5324 * 5325 * Get a textual representation of the security context attached to a key for 5326 * the purposes of honouring KEYCTL_GETSECURITY. This function allocates the 5327 * storage for the NUL-terminated string and the caller should free it. 5328 * 5329 * Return: Returns the length of @buffer (including terminating NUL) or -ve if 5330 * an error occurs. May also return 0 (and a NULL buffer pointer) if 5331 * there is no security label assigned to the key. 5332 */ 5333 int security_key_getsecurity(struct key *key, char **buffer) 5334 { 5335 *buffer = NULL; 5336 return call_int_hook(key_getsecurity, 0, key, buffer); 5337 } 5338 #endif /* CONFIG_KEYS */ 5339 5340 #ifdef CONFIG_AUDIT 5341 /** 5342 * security_audit_rule_init() - Allocate and init an LSM audit rule struct 5343 * @field: audit action 5344 * @op: rule operator 5345 * @rulestr: rule context 5346 * @lsmrule: receive buffer for audit rule struct 5347 * 5348 * Allocate and initialize an LSM audit rule structure. 5349 * 5350 * Return: Return 0 if @lsmrule has been successfully set, -EINVAL in case of 5351 * an invalid rule. 5352 */ 5353 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule) 5354 { 5355 return call_int_hook(audit_rule_init, 0, field, op, rulestr, lsmrule); 5356 } 5357 5358 /** 5359 * security_audit_rule_known() - Check if an audit rule contains LSM fields 5360 * @krule: audit rule 5361 * 5362 * Specifies whether given @krule contains any fields related to the current 5363 * LSM. 5364 * 5365 * Return: Returns 1 in case of relation found, 0 otherwise. 5366 */ 5367 int security_audit_rule_known(struct audit_krule *krule) 5368 { 5369 return call_int_hook(audit_rule_known, 0, krule); 5370 } 5371 5372 /** 5373 * security_audit_rule_free() - Free an LSM audit rule struct 5374 * @lsmrule: audit rule struct 5375 * 5376 * Deallocate the LSM audit rule structure previously allocated by 5377 * audit_rule_init(). 5378 */ 5379 void security_audit_rule_free(void *lsmrule) 5380 { 5381 call_void_hook(audit_rule_free, lsmrule); 5382 } 5383 5384 /** 5385 * security_audit_rule_match() - Check if a label matches an audit rule 5386 * @secid: security label 5387 * @field: LSM audit field 5388 * @op: matching operator 5389 * @lsmrule: audit rule 5390 * 5391 * Determine if given @secid matches a rule previously approved by 5392 * security_audit_rule_known(). 5393 * 5394 * Return: Returns 1 if secid matches the rule, 0 if it does not, -ERRNO on 5395 * failure. 5396 */ 5397 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule) 5398 { 5399 return call_int_hook(audit_rule_match, 0, secid, field, op, lsmrule); 5400 } 5401 #endif /* CONFIG_AUDIT */ 5402 5403 #ifdef CONFIG_BPF_SYSCALL 5404 /** 5405 * security_bpf() - Check if the bpf syscall operation is allowed 5406 * @cmd: command 5407 * @attr: bpf attribute 5408 * @size: size 5409 * 5410 * Do a initial check for all bpf syscalls after the attribute is copied into 5411 * the kernel. The actual security module can implement their own rules to 5412 * check the specific cmd they need. 5413 * 5414 * Return: Returns 0 if permission is granted. 5415 */ 5416 int security_bpf(int cmd, union bpf_attr *attr, unsigned int size) 5417 { 5418 return call_int_hook(bpf, 0, cmd, attr, size); 5419 } 5420 5421 /** 5422 * security_bpf_map() - Check if access to a bpf map is allowed 5423 * @map: bpf map 5424 * @fmode: mode 5425 * 5426 * Do a check when the kernel generates and returns a file descriptor for eBPF 5427 * maps. 5428 * 5429 * Return: Returns 0 if permission is granted. 5430 */ 5431 int security_bpf_map(struct bpf_map *map, fmode_t fmode) 5432 { 5433 return call_int_hook(bpf_map, 0, map, fmode); 5434 } 5435 5436 /** 5437 * security_bpf_prog() - Check if access to a bpf program is allowed 5438 * @prog: bpf program 5439 * 5440 * Do a check when the kernel generates and returns a file descriptor for eBPF 5441 * programs. 5442 * 5443 * Return: Returns 0 if permission is granted. 5444 */ 5445 int security_bpf_prog(struct bpf_prog *prog) 5446 { 5447 return call_int_hook(bpf_prog, 0, prog); 5448 } 5449 5450 /** 5451 * security_bpf_map_alloc() - Allocate a bpf map LSM blob 5452 * @map: bpf map 5453 * 5454 * Initialize the security field inside bpf map. 5455 * 5456 * Return: Returns 0 on success, error on failure. 5457 */ 5458 int security_bpf_map_alloc(struct bpf_map *map) 5459 { 5460 return call_int_hook(bpf_map_alloc_security, 0, map); 5461 } 5462 5463 /** 5464 * security_bpf_prog_alloc() - Allocate a bpf program LSM blob 5465 * @aux: bpf program aux info struct 5466 * 5467 * Initialize the security field inside bpf program. 5468 * 5469 * Return: Returns 0 on success, error on failure. 5470 */ 5471 int security_bpf_prog_alloc(struct bpf_prog_aux *aux) 5472 { 5473 return call_int_hook(bpf_prog_alloc_security, 0, aux); 5474 } 5475 5476 /** 5477 * security_bpf_map_free() - Free a bpf map's LSM blob 5478 * @map: bpf map 5479 * 5480 * Clean up the security information stored inside bpf map. 5481 */ 5482 void security_bpf_map_free(struct bpf_map *map) 5483 { 5484 call_void_hook(bpf_map_free_security, map); 5485 } 5486 5487 /** 5488 * security_bpf_prog_free() - Free a bpf program's LSM blob 5489 * @aux: bpf program aux info struct 5490 * 5491 * Clean up the security information stored inside bpf prog. 5492 */ 5493 void security_bpf_prog_free(struct bpf_prog_aux *aux) 5494 { 5495 call_void_hook(bpf_prog_free_security, aux); 5496 } 5497 #endif /* CONFIG_BPF_SYSCALL */ 5498 5499 /** 5500 * security_locked_down() - Check if a kernel feature is allowed 5501 * @what: requested kernel feature 5502 * 5503 * Determine whether a kernel feature that potentially enables arbitrary code 5504 * execution in kernel space should be permitted. 5505 * 5506 * Return: Returns 0 if permission is granted. 5507 */ 5508 int security_locked_down(enum lockdown_reason what) 5509 { 5510 return call_int_hook(locked_down, 0, what); 5511 } 5512 EXPORT_SYMBOL(security_locked_down); 5513 5514 #ifdef CONFIG_PERF_EVENTS 5515 /** 5516 * security_perf_event_open() - Check if a perf event open is allowed 5517 * @attr: perf event attribute 5518 * @type: type of event 5519 * 5520 * Check whether the @type of perf_event_open syscall is allowed. 5521 * 5522 * Return: Returns 0 if permission is granted. 5523 */ 5524 int security_perf_event_open(struct perf_event_attr *attr, int type) 5525 { 5526 return call_int_hook(perf_event_open, 0, attr, type); 5527 } 5528 5529 /** 5530 * security_perf_event_alloc() - Allocate a perf event LSM blob 5531 * @event: perf event 5532 * 5533 * Allocate and save perf_event security info. 5534 * 5535 * Return: Returns 0 on success, error on failure. 5536 */ 5537 int security_perf_event_alloc(struct perf_event *event) 5538 { 5539 return call_int_hook(perf_event_alloc, 0, event); 5540 } 5541 5542 /** 5543 * security_perf_event_free() - Free a perf event LSM blob 5544 * @event: perf event 5545 * 5546 * Release (free) perf_event security info. 5547 */ 5548 void security_perf_event_free(struct perf_event *event) 5549 { 5550 call_void_hook(perf_event_free, event); 5551 } 5552 5553 /** 5554 * security_perf_event_read() - Check if reading a perf event label is allowed 5555 * @event: perf event 5556 * 5557 * Read perf_event security info if allowed. 5558 * 5559 * Return: Returns 0 if permission is granted. 5560 */ 5561 int security_perf_event_read(struct perf_event *event) 5562 { 5563 return call_int_hook(perf_event_read, 0, event); 5564 } 5565 5566 /** 5567 * security_perf_event_write() - Check if writing a perf event label is allowed 5568 * @event: perf event 5569 * 5570 * Write perf_event security info if allowed. 5571 * 5572 * Return: Returns 0 if permission is granted. 5573 */ 5574 int security_perf_event_write(struct perf_event *event) 5575 { 5576 return call_int_hook(perf_event_write, 0, event); 5577 } 5578 #endif /* CONFIG_PERF_EVENTS */ 5579 5580 #ifdef CONFIG_IO_URING 5581 /** 5582 * security_uring_override_creds() - Check if overriding creds is allowed 5583 * @new: new credentials 5584 * 5585 * Check if the current task, executing an io_uring operation, is allowed to 5586 * override it's credentials with @new. 5587 * 5588 * Return: Returns 0 if permission is granted. 5589 */ 5590 int security_uring_override_creds(const struct cred *new) 5591 { 5592 return call_int_hook(uring_override_creds, 0, new); 5593 } 5594 5595 /** 5596 * security_uring_sqpoll() - Check if IORING_SETUP_SQPOLL is allowed 5597 * 5598 * Check whether the current task is allowed to spawn a io_uring polling thread 5599 * (IORING_SETUP_SQPOLL). 5600 * 5601 * Return: Returns 0 if permission is granted. 5602 */ 5603 int security_uring_sqpoll(void) 5604 { 5605 return call_int_hook(uring_sqpoll, 0); 5606 } 5607 5608 /** 5609 * security_uring_cmd() - Check if a io_uring passthrough command is allowed 5610 * @ioucmd: command 5611 * 5612 * Check whether the file_operations uring_cmd is allowed to run. 5613 * 5614 * Return: Returns 0 if permission is granted. 5615 */ 5616 int security_uring_cmd(struct io_uring_cmd *ioucmd) 5617 { 5618 return call_int_hook(uring_cmd, 0, ioucmd); 5619 } 5620 #endif /* CONFIG_IO_URING */ 5621