1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Security plug functions 4 * 5 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com> 6 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com> 7 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com> 8 * Copyright (C) 2016 Mellanox Technologies 9 * Copyright (C) 2023 Microsoft Corporation <paul@paul-moore.com> 10 */ 11 12 #define pr_fmt(fmt) "LSM: " fmt 13 14 #include <linux/bpf.h> 15 #include <linux/capability.h> 16 #include <linux/dcache.h> 17 #include <linux/export.h> 18 #include <linux/init.h> 19 #include <linux/kernel.h> 20 #include <linux/kernel_read_file.h> 21 #include <linux/lsm_hooks.h> 22 #include <linux/fsnotify.h> 23 #include <linux/mman.h> 24 #include <linux/mount.h> 25 #include <linux/personality.h> 26 #include <linux/backing-dev.h> 27 #include <linux/string.h> 28 #include <linux/xattr.h> 29 #include <linux/msg.h> 30 #include <linux/overflow.h> 31 #include <net/flow.h> 32 #include <net/sock.h> 33 34 /* How many LSMs were built into the kernel? */ 35 #define LSM_COUNT (__end_lsm_info - __start_lsm_info) 36 37 /* 38 * How many LSMs are built into the kernel as determined at 39 * build time. Used to determine fixed array sizes. 40 * The capability module is accounted for by CONFIG_SECURITY 41 */ 42 #define LSM_CONFIG_COUNT ( \ 43 (IS_ENABLED(CONFIG_SECURITY) ? 1 : 0) + \ 44 (IS_ENABLED(CONFIG_SECURITY_SELINUX) ? 1 : 0) + \ 45 (IS_ENABLED(CONFIG_SECURITY_SMACK) ? 1 : 0) + \ 46 (IS_ENABLED(CONFIG_SECURITY_TOMOYO) ? 1 : 0) + \ 47 (IS_ENABLED(CONFIG_SECURITY_APPARMOR) ? 1 : 0) + \ 48 (IS_ENABLED(CONFIG_SECURITY_YAMA) ? 1 : 0) + \ 49 (IS_ENABLED(CONFIG_SECURITY_LOADPIN) ? 1 : 0) + \ 50 (IS_ENABLED(CONFIG_SECURITY_SAFESETID) ? 1 : 0) + \ 51 (IS_ENABLED(CONFIG_SECURITY_LOCKDOWN_LSM) ? 1 : 0) + \ 52 (IS_ENABLED(CONFIG_BPF_LSM) ? 1 : 0) + \ 53 (IS_ENABLED(CONFIG_SECURITY_LANDLOCK) ? 1 : 0) + \ 54 (IS_ENABLED(CONFIG_IMA) ? 1 : 0) + \ 55 (IS_ENABLED(CONFIG_EVM) ? 1 : 0)) 56 57 /* 58 * These are descriptions of the reasons that can be passed to the 59 * security_locked_down() LSM hook. Placing this array here allows 60 * all security modules to use the same descriptions for auditing 61 * purposes. 62 */ 63 const char *const lockdown_reasons[LOCKDOWN_CONFIDENTIALITY_MAX + 1] = { 64 [LOCKDOWN_NONE] = "none", 65 [LOCKDOWN_MODULE_SIGNATURE] = "unsigned module loading", 66 [LOCKDOWN_DEV_MEM] = "/dev/mem,kmem,port", 67 [LOCKDOWN_EFI_TEST] = "/dev/efi_test access", 68 [LOCKDOWN_KEXEC] = "kexec of unsigned images", 69 [LOCKDOWN_HIBERNATION] = "hibernation", 70 [LOCKDOWN_PCI_ACCESS] = "direct PCI access", 71 [LOCKDOWN_IOPORT] = "raw io port access", 72 [LOCKDOWN_MSR] = "raw MSR access", 73 [LOCKDOWN_ACPI_TABLES] = "modifying ACPI tables", 74 [LOCKDOWN_DEVICE_TREE] = "modifying device tree contents", 75 [LOCKDOWN_PCMCIA_CIS] = "direct PCMCIA CIS storage", 76 [LOCKDOWN_TIOCSSERIAL] = "reconfiguration of serial port IO", 77 [LOCKDOWN_MODULE_PARAMETERS] = "unsafe module parameters", 78 [LOCKDOWN_MMIOTRACE] = "unsafe mmio", 79 [LOCKDOWN_DEBUGFS] = "debugfs access", 80 [LOCKDOWN_XMON_WR] = "xmon write access", 81 [LOCKDOWN_BPF_WRITE_USER] = "use of bpf to write user RAM", 82 [LOCKDOWN_DBG_WRITE_KERNEL] = "use of kgdb/kdb to write kernel RAM", 83 [LOCKDOWN_RTAS_ERROR_INJECTION] = "RTAS error injection", 84 [LOCKDOWN_INTEGRITY_MAX] = "integrity", 85 [LOCKDOWN_KCORE] = "/proc/kcore access", 86 [LOCKDOWN_KPROBES] = "use of kprobes", 87 [LOCKDOWN_BPF_READ_KERNEL] = "use of bpf to read kernel RAM", 88 [LOCKDOWN_DBG_READ_KERNEL] = "use of kgdb/kdb to read kernel RAM", 89 [LOCKDOWN_PERF] = "unsafe use of perf", 90 [LOCKDOWN_TRACEFS] = "use of tracefs", 91 [LOCKDOWN_XMON_RW] = "xmon read and write access", 92 [LOCKDOWN_XFRM_SECRET] = "xfrm SA secret", 93 [LOCKDOWN_CONFIDENTIALITY_MAX] = "confidentiality", 94 }; 95 96 struct security_hook_heads security_hook_heads __ro_after_init; 97 static BLOCKING_NOTIFIER_HEAD(blocking_lsm_notifier_chain); 98 99 static struct kmem_cache *lsm_file_cache; 100 static struct kmem_cache *lsm_inode_cache; 101 102 char *lsm_names; 103 static struct lsm_blob_sizes blob_sizes __ro_after_init; 104 105 /* Boot-time LSM user choice */ 106 static __initdata const char *chosen_lsm_order; 107 static __initdata const char *chosen_major_lsm; 108 109 static __initconst const char *const builtin_lsm_order = CONFIG_LSM; 110 111 /* Ordered list of LSMs to initialize. */ 112 static __initdata struct lsm_info **ordered_lsms; 113 static __initdata struct lsm_info *exclusive; 114 115 static __initdata bool debug; 116 #define init_debug(...) \ 117 do { \ 118 if (debug) \ 119 pr_info(__VA_ARGS__); \ 120 } while (0) 121 122 static bool __init is_enabled(struct lsm_info *lsm) 123 { 124 if (!lsm->enabled) 125 return false; 126 127 return *lsm->enabled; 128 } 129 130 /* Mark an LSM's enabled flag. */ 131 static int lsm_enabled_true __initdata = 1; 132 static int lsm_enabled_false __initdata = 0; 133 static void __init set_enabled(struct lsm_info *lsm, bool enabled) 134 { 135 /* 136 * When an LSM hasn't configured an enable variable, we can use 137 * a hard-coded location for storing the default enabled state. 138 */ 139 if (!lsm->enabled) { 140 if (enabled) 141 lsm->enabled = &lsm_enabled_true; 142 else 143 lsm->enabled = &lsm_enabled_false; 144 } else if (lsm->enabled == &lsm_enabled_true) { 145 if (!enabled) 146 lsm->enabled = &lsm_enabled_false; 147 } else if (lsm->enabled == &lsm_enabled_false) { 148 if (enabled) 149 lsm->enabled = &lsm_enabled_true; 150 } else { 151 *lsm->enabled = enabled; 152 } 153 } 154 155 /* Is an LSM already listed in the ordered LSMs list? */ 156 static bool __init exists_ordered_lsm(struct lsm_info *lsm) 157 { 158 struct lsm_info **check; 159 160 for (check = ordered_lsms; *check; check++) 161 if (*check == lsm) 162 return true; 163 164 return false; 165 } 166 167 /* Append an LSM to the list of ordered LSMs to initialize. */ 168 static int last_lsm __initdata; 169 static void __init append_ordered_lsm(struct lsm_info *lsm, const char *from) 170 { 171 /* Ignore duplicate selections. */ 172 if (exists_ordered_lsm(lsm)) 173 return; 174 175 if (WARN(last_lsm == LSM_COUNT, "%s: out of LSM slots!?\n", from)) 176 return; 177 178 /* Enable this LSM, if it is not already set. */ 179 if (!lsm->enabled) 180 lsm->enabled = &lsm_enabled_true; 181 ordered_lsms[last_lsm++] = lsm; 182 183 init_debug("%s ordered: %s (%s)\n", from, lsm->name, 184 is_enabled(lsm) ? "enabled" : "disabled"); 185 } 186 187 /* Is an LSM allowed to be initialized? */ 188 static bool __init lsm_allowed(struct lsm_info *lsm) 189 { 190 /* Skip if the LSM is disabled. */ 191 if (!is_enabled(lsm)) 192 return false; 193 194 /* Not allowed if another exclusive LSM already initialized. */ 195 if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && exclusive) { 196 init_debug("exclusive disabled: %s\n", lsm->name); 197 return false; 198 } 199 200 return true; 201 } 202 203 static void __init lsm_set_blob_size(int *need, int *lbs) 204 { 205 int offset; 206 207 if (*need <= 0) 208 return; 209 210 offset = ALIGN(*lbs, sizeof(void *)); 211 *lbs = offset + *need; 212 *need = offset; 213 } 214 215 static void __init lsm_set_blob_sizes(struct lsm_blob_sizes *needed) 216 { 217 if (!needed) 218 return; 219 220 lsm_set_blob_size(&needed->lbs_cred, &blob_sizes.lbs_cred); 221 lsm_set_blob_size(&needed->lbs_file, &blob_sizes.lbs_file); 222 /* 223 * The inode blob gets an rcu_head in addition to 224 * what the modules might need. 225 */ 226 if (needed->lbs_inode && blob_sizes.lbs_inode == 0) 227 blob_sizes.lbs_inode = sizeof(struct rcu_head); 228 lsm_set_blob_size(&needed->lbs_inode, &blob_sizes.lbs_inode); 229 lsm_set_blob_size(&needed->lbs_ipc, &blob_sizes.lbs_ipc); 230 lsm_set_blob_size(&needed->lbs_msg_msg, &blob_sizes.lbs_msg_msg); 231 lsm_set_blob_size(&needed->lbs_sock, &blob_sizes.lbs_sock); 232 lsm_set_blob_size(&needed->lbs_superblock, &blob_sizes.lbs_superblock); 233 lsm_set_blob_size(&needed->lbs_task, &blob_sizes.lbs_task); 234 lsm_set_blob_size(&needed->lbs_xattr_count, 235 &blob_sizes.lbs_xattr_count); 236 } 237 238 /* Prepare LSM for initialization. */ 239 static void __init prepare_lsm(struct lsm_info *lsm) 240 { 241 int enabled = lsm_allowed(lsm); 242 243 /* Record enablement (to handle any following exclusive LSMs). */ 244 set_enabled(lsm, enabled); 245 246 /* If enabled, do pre-initialization work. */ 247 if (enabled) { 248 if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && !exclusive) { 249 exclusive = lsm; 250 init_debug("exclusive chosen: %s\n", lsm->name); 251 } 252 253 lsm_set_blob_sizes(lsm->blobs); 254 } 255 } 256 257 /* Initialize a given LSM, if it is enabled. */ 258 static void __init initialize_lsm(struct lsm_info *lsm) 259 { 260 if (is_enabled(lsm)) { 261 int ret; 262 263 init_debug("initializing %s\n", lsm->name); 264 ret = lsm->init(); 265 WARN(ret, "%s failed to initialize: %d\n", lsm->name, ret); 266 } 267 } 268 269 /* 270 * Current index to use while initializing the lsm id list. 271 */ 272 u32 lsm_active_cnt __ro_after_init; 273 const struct lsm_id *lsm_idlist[LSM_CONFIG_COUNT]; 274 275 /* Populate ordered LSMs list from comma-separated LSM name list. */ 276 static void __init ordered_lsm_parse(const char *order, const char *origin) 277 { 278 struct lsm_info *lsm; 279 char *sep, *name, *next; 280 281 /* LSM_ORDER_FIRST is always first. */ 282 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { 283 if (lsm->order == LSM_ORDER_FIRST) 284 append_ordered_lsm(lsm, " first"); 285 } 286 287 /* Process "security=", if given. */ 288 if (chosen_major_lsm) { 289 struct lsm_info *major; 290 291 /* 292 * To match the original "security=" behavior, this 293 * explicitly does NOT fallback to another Legacy Major 294 * if the selected one was separately disabled: disable 295 * all non-matching Legacy Major LSMs. 296 */ 297 for (major = __start_lsm_info; major < __end_lsm_info; 298 major++) { 299 if ((major->flags & LSM_FLAG_LEGACY_MAJOR) && 300 strcmp(major->name, chosen_major_lsm) != 0) { 301 set_enabled(major, false); 302 init_debug("security=%s disabled: %s (only one legacy major LSM)\n", 303 chosen_major_lsm, major->name); 304 } 305 } 306 } 307 308 sep = kstrdup(order, GFP_KERNEL); 309 next = sep; 310 /* Walk the list, looking for matching LSMs. */ 311 while ((name = strsep(&next, ",")) != NULL) { 312 bool found = false; 313 314 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { 315 if (strcmp(lsm->name, name) == 0) { 316 if (lsm->order == LSM_ORDER_MUTABLE) 317 append_ordered_lsm(lsm, origin); 318 found = true; 319 } 320 } 321 322 if (!found) 323 init_debug("%s ignored: %s (not built into kernel)\n", 324 origin, name); 325 } 326 327 /* Process "security=", if given. */ 328 if (chosen_major_lsm) { 329 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { 330 if (exists_ordered_lsm(lsm)) 331 continue; 332 if (strcmp(lsm->name, chosen_major_lsm) == 0) 333 append_ordered_lsm(lsm, "security="); 334 } 335 } 336 337 /* LSM_ORDER_LAST is always last. */ 338 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { 339 if (lsm->order == LSM_ORDER_LAST) 340 append_ordered_lsm(lsm, " last"); 341 } 342 343 /* Disable all LSMs not in the ordered list. */ 344 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) { 345 if (exists_ordered_lsm(lsm)) 346 continue; 347 set_enabled(lsm, false); 348 init_debug("%s skipped: %s (not in requested order)\n", 349 origin, lsm->name); 350 } 351 352 kfree(sep); 353 } 354 355 static void __init lsm_early_cred(struct cred *cred); 356 static void __init lsm_early_task(struct task_struct *task); 357 358 static int lsm_append(const char *new, char **result); 359 360 static void __init report_lsm_order(void) 361 { 362 struct lsm_info **lsm, *early; 363 int first = 0; 364 365 pr_info("initializing lsm="); 366 367 /* Report each enabled LSM name, comma separated. */ 368 for (early = __start_early_lsm_info; 369 early < __end_early_lsm_info; early++) 370 if (is_enabled(early)) 371 pr_cont("%s%s", first++ == 0 ? "" : ",", early->name); 372 for (lsm = ordered_lsms; *lsm; lsm++) 373 if (is_enabled(*lsm)) 374 pr_cont("%s%s", first++ == 0 ? "" : ",", (*lsm)->name); 375 376 pr_cont("\n"); 377 } 378 379 static void __init ordered_lsm_init(void) 380 { 381 struct lsm_info **lsm; 382 383 ordered_lsms = kcalloc(LSM_COUNT + 1, sizeof(*ordered_lsms), 384 GFP_KERNEL); 385 386 if (chosen_lsm_order) { 387 if (chosen_major_lsm) { 388 pr_warn("security=%s is ignored because it is superseded by lsm=%s\n", 389 chosen_major_lsm, chosen_lsm_order); 390 chosen_major_lsm = NULL; 391 } 392 ordered_lsm_parse(chosen_lsm_order, "cmdline"); 393 } else 394 ordered_lsm_parse(builtin_lsm_order, "builtin"); 395 396 for (lsm = ordered_lsms; *lsm; lsm++) 397 prepare_lsm(*lsm); 398 399 report_lsm_order(); 400 401 init_debug("cred blob size = %d\n", blob_sizes.lbs_cred); 402 init_debug("file blob size = %d\n", blob_sizes.lbs_file); 403 init_debug("inode blob size = %d\n", blob_sizes.lbs_inode); 404 init_debug("ipc blob size = %d\n", blob_sizes.lbs_ipc); 405 init_debug("msg_msg blob size = %d\n", blob_sizes.lbs_msg_msg); 406 init_debug("sock blob size = %d\n", blob_sizes.lbs_sock); 407 init_debug("superblock blob size = %d\n", blob_sizes.lbs_superblock); 408 init_debug("task blob size = %d\n", blob_sizes.lbs_task); 409 init_debug("xattr slots = %d\n", blob_sizes.lbs_xattr_count); 410 411 /* 412 * Create any kmem_caches needed for blobs 413 */ 414 if (blob_sizes.lbs_file) 415 lsm_file_cache = kmem_cache_create("lsm_file_cache", 416 blob_sizes.lbs_file, 0, 417 SLAB_PANIC, NULL); 418 if (blob_sizes.lbs_inode) 419 lsm_inode_cache = kmem_cache_create("lsm_inode_cache", 420 blob_sizes.lbs_inode, 0, 421 SLAB_PANIC, NULL); 422 423 lsm_early_cred((struct cred *) current->cred); 424 lsm_early_task(current); 425 for (lsm = ordered_lsms; *lsm; lsm++) 426 initialize_lsm(*lsm); 427 428 kfree(ordered_lsms); 429 } 430 431 int __init early_security_init(void) 432 { 433 struct lsm_info *lsm; 434 435 #define LSM_HOOK(RET, DEFAULT, NAME, ...) \ 436 INIT_HLIST_HEAD(&security_hook_heads.NAME); 437 #include "linux/lsm_hook_defs.h" 438 #undef LSM_HOOK 439 440 for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) { 441 if (!lsm->enabled) 442 lsm->enabled = &lsm_enabled_true; 443 prepare_lsm(lsm); 444 initialize_lsm(lsm); 445 } 446 447 return 0; 448 } 449 450 /** 451 * security_init - initializes the security framework 452 * 453 * This should be called early in the kernel initialization sequence. 454 */ 455 int __init security_init(void) 456 { 457 struct lsm_info *lsm; 458 459 init_debug("legacy security=%s\n", chosen_major_lsm ? : " *unspecified*"); 460 init_debug(" CONFIG_LSM=%s\n", builtin_lsm_order); 461 init_debug("boot arg lsm=%s\n", chosen_lsm_order ? : " *unspecified*"); 462 463 /* 464 * Append the names of the early LSM modules now that kmalloc() is 465 * available 466 */ 467 for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) { 468 init_debug(" early started: %s (%s)\n", lsm->name, 469 is_enabled(lsm) ? "enabled" : "disabled"); 470 if (lsm->enabled) 471 lsm_append(lsm->name, &lsm_names); 472 } 473 474 /* Load LSMs in specified order. */ 475 ordered_lsm_init(); 476 477 return 0; 478 } 479 480 /* Save user chosen LSM */ 481 static int __init choose_major_lsm(char *str) 482 { 483 chosen_major_lsm = str; 484 return 1; 485 } 486 __setup("security=", choose_major_lsm); 487 488 /* Explicitly choose LSM initialization order. */ 489 static int __init choose_lsm_order(char *str) 490 { 491 chosen_lsm_order = str; 492 return 1; 493 } 494 __setup("lsm=", choose_lsm_order); 495 496 /* Enable LSM order debugging. */ 497 static int __init enable_debug(char *str) 498 { 499 debug = true; 500 return 1; 501 } 502 __setup("lsm.debug", enable_debug); 503 504 static bool match_last_lsm(const char *list, const char *lsm) 505 { 506 const char *last; 507 508 if (WARN_ON(!list || !lsm)) 509 return false; 510 last = strrchr(list, ','); 511 if (last) 512 /* Pass the comma, strcmp() will check for '\0' */ 513 last++; 514 else 515 last = list; 516 return !strcmp(last, lsm); 517 } 518 519 static int lsm_append(const char *new, char **result) 520 { 521 char *cp; 522 523 if (*result == NULL) { 524 *result = kstrdup(new, GFP_KERNEL); 525 if (*result == NULL) 526 return -ENOMEM; 527 } else { 528 /* Check if it is the last registered name */ 529 if (match_last_lsm(*result, new)) 530 return 0; 531 cp = kasprintf(GFP_KERNEL, "%s,%s", *result, new); 532 if (cp == NULL) 533 return -ENOMEM; 534 kfree(*result); 535 *result = cp; 536 } 537 return 0; 538 } 539 540 /** 541 * security_add_hooks - Add a modules hooks to the hook lists. 542 * @hooks: the hooks to add 543 * @count: the number of hooks to add 544 * @lsmid: the identification information for the security module 545 * 546 * Each LSM has to register its hooks with the infrastructure. 547 */ 548 void __init security_add_hooks(struct security_hook_list *hooks, int count, 549 const struct lsm_id *lsmid) 550 { 551 int i; 552 553 /* 554 * A security module may call security_add_hooks() more 555 * than once during initialization, and LSM initialization 556 * is serialized. Landlock is one such case. 557 * Look at the previous entry, if there is one, for duplication. 558 */ 559 if (lsm_active_cnt == 0 || lsm_idlist[lsm_active_cnt - 1] != lsmid) { 560 if (lsm_active_cnt >= LSM_CONFIG_COUNT) 561 panic("%s Too many LSMs registered.\n", __func__); 562 lsm_idlist[lsm_active_cnt++] = lsmid; 563 } 564 565 for (i = 0; i < count; i++) { 566 hooks[i].lsmid = lsmid; 567 hlist_add_tail_rcu(&hooks[i].list, hooks[i].head); 568 } 569 570 /* 571 * Don't try to append during early_security_init(), we'll come back 572 * and fix this up afterwards. 573 */ 574 if (slab_is_available()) { 575 if (lsm_append(lsmid->name, &lsm_names) < 0) 576 panic("%s - Cannot get early memory.\n", __func__); 577 } 578 } 579 580 int call_blocking_lsm_notifier(enum lsm_event event, void *data) 581 { 582 return blocking_notifier_call_chain(&blocking_lsm_notifier_chain, 583 event, data); 584 } 585 EXPORT_SYMBOL(call_blocking_lsm_notifier); 586 587 int register_blocking_lsm_notifier(struct notifier_block *nb) 588 { 589 return blocking_notifier_chain_register(&blocking_lsm_notifier_chain, 590 nb); 591 } 592 EXPORT_SYMBOL(register_blocking_lsm_notifier); 593 594 int unregister_blocking_lsm_notifier(struct notifier_block *nb) 595 { 596 return blocking_notifier_chain_unregister(&blocking_lsm_notifier_chain, 597 nb); 598 } 599 EXPORT_SYMBOL(unregister_blocking_lsm_notifier); 600 601 /** 602 * lsm_cred_alloc - allocate a composite cred blob 603 * @cred: the cred that needs a blob 604 * @gfp: allocation type 605 * 606 * Allocate the cred blob for all the modules 607 * 608 * Returns 0, or -ENOMEM if memory can't be allocated. 609 */ 610 static int lsm_cred_alloc(struct cred *cred, gfp_t gfp) 611 { 612 if (blob_sizes.lbs_cred == 0) { 613 cred->security = NULL; 614 return 0; 615 } 616 617 cred->security = kzalloc(blob_sizes.lbs_cred, gfp); 618 if (cred->security == NULL) 619 return -ENOMEM; 620 return 0; 621 } 622 623 /** 624 * lsm_early_cred - during initialization allocate a composite cred blob 625 * @cred: the cred that needs a blob 626 * 627 * Allocate the cred blob for all the modules 628 */ 629 static void __init lsm_early_cred(struct cred *cred) 630 { 631 int rc = lsm_cred_alloc(cred, GFP_KERNEL); 632 633 if (rc) 634 panic("%s: Early cred alloc failed.\n", __func__); 635 } 636 637 /** 638 * lsm_file_alloc - allocate a composite file blob 639 * @file: the file that needs a blob 640 * 641 * Allocate the file blob for all the modules 642 * 643 * Returns 0, or -ENOMEM if memory can't be allocated. 644 */ 645 static int lsm_file_alloc(struct file *file) 646 { 647 if (!lsm_file_cache) { 648 file->f_security = NULL; 649 return 0; 650 } 651 652 file->f_security = kmem_cache_zalloc(lsm_file_cache, GFP_KERNEL); 653 if (file->f_security == NULL) 654 return -ENOMEM; 655 return 0; 656 } 657 658 /** 659 * lsm_inode_alloc - allocate a composite inode blob 660 * @inode: the inode that needs a blob 661 * 662 * Allocate the inode blob for all the modules 663 * 664 * Returns 0, or -ENOMEM if memory can't be allocated. 665 */ 666 int lsm_inode_alloc(struct inode *inode) 667 { 668 if (!lsm_inode_cache) { 669 inode->i_security = NULL; 670 return 0; 671 } 672 673 inode->i_security = kmem_cache_zalloc(lsm_inode_cache, GFP_NOFS); 674 if (inode->i_security == NULL) 675 return -ENOMEM; 676 return 0; 677 } 678 679 /** 680 * lsm_task_alloc - allocate a composite task blob 681 * @task: the task that needs a blob 682 * 683 * Allocate the task blob for all the modules 684 * 685 * Returns 0, or -ENOMEM if memory can't be allocated. 686 */ 687 static int lsm_task_alloc(struct task_struct *task) 688 { 689 if (blob_sizes.lbs_task == 0) { 690 task->security = NULL; 691 return 0; 692 } 693 694 task->security = kzalloc(blob_sizes.lbs_task, GFP_KERNEL); 695 if (task->security == NULL) 696 return -ENOMEM; 697 return 0; 698 } 699 700 /** 701 * lsm_ipc_alloc - allocate a composite ipc blob 702 * @kip: the ipc that needs a blob 703 * 704 * Allocate the ipc blob for all the modules 705 * 706 * Returns 0, or -ENOMEM if memory can't be allocated. 707 */ 708 static int lsm_ipc_alloc(struct kern_ipc_perm *kip) 709 { 710 if (blob_sizes.lbs_ipc == 0) { 711 kip->security = NULL; 712 return 0; 713 } 714 715 kip->security = kzalloc(blob_sizes.lbs_ipc, GFP_KERNEL); 716 if (kip->security == NULL) 717 return -ENOMEM; 718 return 0; 719 } 720 721 /** 722 * lsm_msg_msg_alloc - allocate a composite msg_msg blob 723 * @mp: the msg_msg that needs a blob 724 * 725 * Allocate the ipc blob for all the modules 726 * 727 * Returns 0, or -ENOMEM if memory can't be allocated. 728 */ 729 static int lsm_msg_msg_alloc(struct msg_msg *mp) 730 { 731 if (blob_sizes.lbs_msg_msg == 0) { 732 mp->security = NULL; 733 return 0; 734 } 735 736 mp->security = kzalloc(blob_sizes.lbs_msg_msg, GFP_KERNEL); 737 if (mp->security == NULL) 738 return -ENOMEM; 739 return 0; 740 } 741 742 /** 743 * lsm_early_task - during initialization allocate a composite task blob 744 * @task: the task that needs a blob 745 * 746 * Allocate the task blob for all the modules 747 */ 748 static void __init lsm_early_task(struct task_struct *task) 749 { 750 int rc = lsm_task_alloc(task); 751 752 if (rc) 753 panic("%s: Early task alloc failed.\n", __func__); 754 } 755 756 /** 757 * lsm_superblock_alloc - allocate a composite superblock blob 758 * @sb: the superblock that needs a blob 759 * 760 * Allocate the superblock blob for all the modules 761 * 762 * Returns 0, or -ENOMEM if memory can't be allocated. 763 */ 764 static int lsm_superblock_alloc(struct super_block *sb) 765 { 766 if (blob_sizes.lbs_superblock == 0) { 767 sb->s_security = NULL; 768 return 0; 769 } 770 771 sb->s_security = kzalloc(blob_sizes.lbs_superblock, GFP_KERNEL); 772 if (sb->s_security == NULL) 773 return -ENOMEM; 774 return 0; 775 } 776 777 /** 778 * lsm_fill_user_ctx - Fill a user space lsm_ctx structure 779 * @uctx: a userspace LSM context to be filled 780 * @uctx_len: available uctx size (input), used uctx size (output) 781 * @val: the new LSM context value 782 * @val_len: the size of the new LSM context value 783 * @id: LSM id 784 * @flags: LSM defined flags 785 * 786 * Fill all of the fields in a userspace lsm_ctx structure. If @uctx is NULL 787 * simply calculate the required size to output via @utc_len and return 788 * success. 789 * 790 * Returns 0 on success, -E2BIG if userspace buffer is not large enough, 791 * -EFAULT on a copyout error, -ENOMEM if memory can't be allocated. 792 */ 793 int lsm_fill_user_ctx(struct lsm_ctx __user *uctx, u32 *uctx_len, 794 void *val, size_t val_len, 795 u64 id, u64 flags) 796 { 797 struct lsm_ctx *nctx = NULL; 798 size_t nctx_len; 799 int rc = 0; 800 801 nctx_len = ALIGN(struct_size(nctx, ctx, val_len), sizeof(void *)); 802 if (nctx_len > *uctx_len) { 803 rc = -E2BIG; 804 goto out; 805 } 806 807 /* no buffer - return success/0 and set @uctx_len to the req size */ 808 if (!uctx) 809 goto out; 810 811 nctx = kzalloc(nctx_len, GFP_KERNEL); 812 if (nctx == NULL) { 813 rc = -ENOMEM; 814 goto out; 815 } 816 nctx->id = id; 817 nctx->flags = flags; 818 nctx->len = nctx_len; 819 nctx->ctx_len = val_len; 820 memcpy(nctx->ctx, val, val_len); 821 822 if (copy_to_user(uctx, nctx, nctx_len)) 823 rc = -EFAULT; 824 825 out: 826 kfree(nctx); 827 *uctx_len = nctx_len; 828 return rc; 829 } 830 831 /* 832 * The default value of the LSM hook is defined in linux/lsm_hook_defs.h and 833 * can be accessed with: 834 * 835 * LSM_RET_DEFAULT(<hook_name>) 836 * 837 * The macros below define static constants for the default value of each 838 * LSM hook. 839 */ 840 #define LSM_RET_DEFAULT(NAME) (NAME##_default) 841 #define DECLARE_LSM_RET_DEFAULT_void(DEFAULT, NAME) 842 #define DECLARE_LSM_RET_DEFAULT_int(DEFAULT, NAME) \ 843 static const int __maybe_unused LSM_RET_DEFAULT(NAME) = (DEFAULT); 844 #define LSM_HOOK(RET, DEFAULT, NAME, ...) \ 845 DECLARE_LSM_RET_DEFAULT_##RET(DEFAULT, NAME) 846 847 #include <linux/lsm_hook_defs.h> 848 #undef LSM_HOOK 849 850 /* 851 * Hook list operation macros. 852 * 853 * call_void_hook: 854 * This is a hook that does not return a value. 855 * 856 * call_int_hook: 857 * This is a hook that returns a value. 858 */ 859 860 #define call_void_hook(FUNC, ...) \ 861 do { \ 862 struct security_hook_list *P; \ 863 \ 864 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) \ 865 P->hook.FUNC(__VA_ARGS__); \ 866 } while (0) 867 868 #define call_int_hook(FUNC, ...) ({ \ 869 int RC = LSM_RET_DEFAULT(FUNC); \ 870 do { \ 871 struct security_hook_list *P; \ 872 \ 873 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) { \ 874 RC = P->hook.FUNC(__VA_ARGS__); \ 875 if (RC != LSM_RET_DEFAULT(FUNC)) \ 876 break; \ 877 } \ 878 } while (0); \ 879 RC; \ 880 }) 881 882 /* Security operations */ 883 884 /** 885 * security_binder_set_context_mgr() - Check if becoming binder ctx mgr is ok 886 * @mgr: task credentials of current binder process 887 * 888 * Check whether @mgr is allowed to be the binder context manager. 889 * 890 * Return: Return 0 if permission is granted. 891 */ 892 int security_binder_set_context_mgr(const struct cred *mgr) 893 { 894 return call_int_hook(binder_set_context_mgr, mgr); 895 } 896 897 /** 898 * security_binder_transaction() - Check if a binder transaction is allowed 899 * @from: sending process 900 * @to: receiving process 901 * 902 * Check whether @from is allowed to invoke a binder transaction call to @to. 903 * 904 * Return: Returns 0 if permission is granted. 905 */ 906 int security_binder_transaction(const struct cred *from, 907 const struct cred *to) 908 { 909 return call_int_hook(binder_transaction, from, to); 910 } 911 912 /** 913 * security_binder_transfer_binder() - Check if a binder transfer is allowed 914 * @from: sending process 915 * @to: receiving process 916 * 917 * Check whether @from is allowed to transfer a binder reference to @to. 918 * 919 * Return: Returns 0 if permission is granted. 920 */ 921 int security_binder_transfer_binder(const struct cred *from, 922 const struct cred *to) 923 { 924 return call_int_hook(binder_transfer_binder, from, to); 925 } 926 927 /** 928 * security_binder_transfer_file() - Check if a binder file xfer is allowed 929 * @from: sending process 930 * @to: receiving process 931 * @file: file being transferred 932 * 933 * Check whether @from is allowed to transfer @file to @to. 934 * 935 * Return: Returns 0 if permission is granted. 936 */ 937 int security_binder_transfer_file(const struct cred *from, 938 const struct cred *to, const struct file *file) 939 { 940 return call_int_hook(binder_transfer_file, from, to, file); 941 } 942 943 /** 944 * security_ptrace_access_check() - Check if tracing is allowed 945 * @child: target process 946 * @mode: PTRACE_MODE flags 947 * 948 * Check permission before allowing the current process to trace the @child 949 * process. Security modules may also want to perform a process tracing check 950 * during an execve in the set_security or apply_creds hooks of tracing check 951 * during an execve in the bprm_set_creds hook of binprm_security_ops if the 952 * process is being traced and its security attributes would be changed by the 953 * execve. 954 * 955 * Return: Returns 0 if permission is granted. 956 */ 957 int security_ptrace_access_check(struct task_struct *child, unsigned int mode) 958 { 959 return call_int_hook(ptrace_access_check, child, mode); 960 } 961 962 /** 963 * security_ptrace_traceme() - Check if tracing is allowed 964 * @parent: tracing process 965 * 966 * Check that the @parent process has sufficient permission to trace the 967 * current process before allowing the current process to present itself to the 968 * @parent process for tracing. 969 * 970 * Return: Returns 0 if permission is granted. 971 */ 972 int security_ptrace_traceme(struct task_struct *parent) 973 { 974 return call_int_hook(ptrace_traceme, parent); 975 } 976 977 /** 978 * security_capget() - Get the capability sets for a process 979 * @target: target process 980 * @effective: effective capability set 981 * @inheritable: inheritable capability set 982 * @permitted: permitted capability set 983 * 984 * Get the @effective, @inheritable, and @permitted capability sets for the 985 * @target process. The hook may also perform permission checking to determine 986 * if the current process is allowed to see the capability sets of the @target 987 * process. 988 * 989 * Return: Returns 0 if the capability sets were successfully obtained. 990 */ 991 int security_capget(const struct task_struct *target, 992 kernel_cap_t *effective, 993 kernel_cap_t *inheritable, 994 kernel_cap_t *permitted) 995 { 996 return call_int_hook(capget, target, effective, inheritable, permitted); 997 } 998 999 /** 1000 * security_capset() - Set the capability sets for a process 1001 * @new: new credentials for the target process 1002 * @old: current credentials of the target process 1003 * @effective: effective capability set 1004 * @inheritable: inheritable capability set 1005 * @permitted: permitted capability set 1006 * 1007 * Set the @effective, @inheritable, and @permitted capability sets for the 1008 * current process. 1009 * 1010 * Return: Returns 0 and update @new if permission is granted. 1011 */ 1012 int security_capset(struct cred *new, const struct cred *old, 1013 const kernel_cap_t *effective, 1014 const kernel_cap_t *inheritable, 1015 const kernel_cap_t *permitted) 1016 { 1017 return call_int_hook(capset, new, old, effective, inheritable, 1018 permitted); 1019 } 1020 1021 /** 1022 * security_capable() - Check if a process has the necessary capability 1023 * @cred: credentials to examine 1024 * @ns: user namespace 1025 * @cap: capability requested 1026 * @opts: capability check options 1027 * 1028 * Check whether the @tsk process has the @cap capability in the indicated 1029 * credentials. @cap contains the capability <include/linux/capability.h>. 1030 * @opts contains options for the capable check <include/linux/security.h>. 1031 * 1032 * Return: Returns 0 if the capability is granted. 1033 */ 1034 int security_capable(const struct cred *cred, 1035 struct user_namespace *ns, 1036 int cap, 1037 unsigned int opts) 1038 { 1039 return call_int_hook(capable, cred, ns, cap, opts); 1040 } 1041 1042 /** 1043 * security_quotactl() - Check if a quotactl() syscall is allowed for this fs 1044 * @cmds: commands 1045 * @type: type 1046 * @id: id 1047 * @sb: filesystem 1048 * 1049 * Check whether the quotactl syscall is allowed for this @sb. 1050 * 1051 * Return: Returns 0 if permission is granted. 1052 */ 1053 int security_quotactl(int cmds, int type, int id, const struct super_block *sb) 1054 { 1055 return call_int_hook(quotactl, cmds, type, id, sb); 1056 } 1057 1058 /** 1059 * security_quota_on() - Check if QUOTAON is allowed for a dentry 1060 * @dentry: dentry 1061 * 1062 * Check whether QUOTAON is allowed for @dentry. 1063 * 1064 * Return: Returns 0 if permission is granted. 1065 */ 1066 int security_quota_on(struct dentry *dentry) 1067 { 1068 return call_int_hook(quota_on, dentry); 1069 } 1070 1071 /** 1072 * security_syslog() - Check if accessing the kernel message ring is allowed 1073 * @type: SYSLOG_ACTION_* type 1074 * 1075 * Check permission before accessing the kernel message ring or changing 1076 * logging to the console. See the syslog(2) manual page for an explanation of 1077 * the @type values. 1078 * 1079 * Return: Return 0 if permission is granted. 1080 */ 1081 int security_syslog(int type) 1082 { 1083 return call_int_hook(syslog, type); 1084 } 1085 1086 /** 1087 * security_settime64() - Check if changing the system time is allowed 1088 * @ts: new time 1089 * @tz: timezone 1090 * 1091 * Check permission to change the system time, struct timespec64 is defined in 1092 * <include/linux/time64.h> and timezone is defined in <include/linux/time.h>. 1093 * 1094 * Return: Returns 0 if permission is granted. 1095 */ 1096 int security_settime64(const struct timespec64 *ts, const struct timezone *tz) 1097 { 1098 return call_int_hook(settime, ts, tz); 1099 } 1100 1101 /** 1102 * security_vm_enough_memory_mm() - Check if allocating a new mem map is allowed 1103 * @mm: mm struct 1104 * @pages: number of pages 1105 * 1106 * Check permissions for allocating a new virtual mapping. If all LSMs return 1107 * a positive value, __vm_enough_memory() will be called with cap_sys_admin 1108 * set. If at least one LSM returns 0 or negative, __vm_enough_memory() will be 1109 * called with cap_sys_admin cleared. 1110 * 1111 * Return: Returns 0 if permission is granted by the LSM infrastructure to the 1112 * caller. 1113 */ 1114 int security_vm_enough_memory_mm(struct mm_struct *mm, long pages) 1115 { 1116 struct security_hook_list *hp; 1117 int cap_sys_admin = 1; 1118 int rc; 1119 1120 /* 1121 * The module will respond with a positive value if 1122 * it thinks the __vm_enough_memory() call should be 1123 * made with the cap_sys_admin set. If all of the modules 1124 * agree that it should be set it will. If any module 1125 * thinks it should not be set it won't. 1126 */ 1127 hlist_for_each_entry(hp, &security_hook_heads.vm_enough_memory, list) { 1128 rc = hp->hook.vm_enough_memory(mm, pages); 1129 if (rc <= 0) { 1130 cap_sys_admin = 0; 1131 break; 1132 } 1133 } 1134 return __vm_enough_memory(mm, pages, cap_sys_admin); 1135 } 1136 1137 /** 1138 * security_bprm_creds_for_exec() - Prepare the credentials for exec() 1139 * @bprm: binary program information 1140 * 1141 * If the setup in prepare_exec_creds did not setup @bprm->cred->security 1142 * properly for executing @bprm->file, update the LSM's portion of 1143 * @bprm->cred->security to be what commit_creds needs to install for the new 1144 * program. This hook may also optionally check permissions (e.g. for 1145 * transitions between security domains). The hook must set @bprm->secureexec 1146 * to 1 if AT_SECURE should be set to request libc enable secure mode. @bprm 1147 * contains the linux_binprm structure. 1148 * 1149 * Return: Returns 0 if the hook is successful and permission is granted. 1150 */ 1151 int security_bprm_creds_for_exec(struct linux_binprm *bprm) 1152 { 1153 return call_int_hook(bprm_creds_for_exec, bprm); 1154 } 1155 1156 /** 1157 * security_bprm_creds_from_file() - Update linux_binprm creds based on file 1158 * @bprm: binary program information 1159 * @file: associated file 1160 * 1161 * If @file is setpcap, suid, sgid or otherwise marked to change privilege upon 1162 * exec, update @bprm->cred to reflect that change. This is called after 1163 * finding the binary that will be executed without an interpreter. This 1164 * ensures that the credentials will not be derived from a script that the 1165 * binary will need to reopen, which when reopend may end up being a completely 1166 * different file. This hook may also optionally check permissions (e.g. for 1167 * transitions between security domains). The hook must set @bprm->secureexec 1168 * to 1 if AT_SECURE should be set to request libc enable secure mode. The 1169 * hook must add to @bprm->per_clear any personality flags that should be 1170 * cleared from current->personality. @bprm contains the linux_binprm 1171 * structure. 1172 * 1173 * Return: Returns 0 if the hook is successful and permission is granted. 1174 */ 1175 int security_bprm_creds_from_file(struct linux_binprm *bprm, const struct file *file) 1176 { 1177 return call_int_hook(bprm_creds_from_file, bprm, file); 1178 } 1179 1180 /** 1181 * security_bprm_check() - Mediate binary handler search 1182 * @bprm: binary program information 1183 * 1184 * This hook mediates the point when a search for a binary handler will begin. 1185 * It allows a check against the @bprm->cred->security value which was set in 1186 * the preceding creds_for_exec call. The argv list and envp list are reliably 1187 * available in @bprm. This hook may be called multiple times during a single 1188 * execve. @bprm contains the linux_binprm structure. 1189 * 1190 * Return: Returns 0 if the hook is successful and permission is granted. 1191 */ 1192 int security_bprm_check(struct linux_binprm *bprm) 1193 { 1194 return call_int_hook(bprm_check_security, bprm); 1195 } 1196 1197 /** 1198 * security_bprm_committing_creds() - Install creds for a process during exec() 1199 * @bprm: binary program information 1200 * 1201 * Prepare to install the new security attributes of a process being 1202 * transformed by an execve operation, based on the old credentials pointed to 1203 * by @current->cred and the information set in @bprm->cred by the 1204 * bprm_creds_for_exec hook. @bprm points to the linux_binprm structure. This 1205 * hook is a good place to perform state changes on the process such as closing 1206 * open file descriptors to which access will no longer be granted when the 1207 * attributes are changed. This is called immediately before commit_creds(). 1208 */ 1209 void security_bprm_committing_creds(const struct linux_binprm *bprm) 1210 { 1211 call_void_hook(bprm_committing_creds, bprm); 1212 } 1213 1214 /** 1215 * security_bprm_committed_creds() - Tidy up after cred install during exec() 1216 * @bprm: binary program information 1217 * 1218 * Tidy up after the installation of the new security attributes of a process 1219 * being transformed by an execve operation. The new credentials have, by this 1220 * point, been set to @current->cred. @bprm points to the linux_binprm 1221 * structure. This hook is a good place to perform state changes on the 1222 * process such as clearing out non-inheritable signal state. This is called 1223 * immediately after commit_creds(). 1224 */ 1225 void security_bprm_committed_creds(const struct linux_binprm *bprm) 1226 { 1227 call_void_hook(bprm_committed_creds, bprm); 1228 } 1229 1230 /** 1231 * security_fs_context_submount() - Initialise fc->security 1232 * @fc: new filesystem context 1233 * @reference: dentry reference for submount/remount 1234 * 1235 * Fill out the ->security field for a new fs_context. 1236 * 1237 * Return: Returns 0 on success or negative error code on failure. 1238 */ 1239 int security_fs_context_submount(struct fs_context *fc, struct super_block *reference) 1240 { 1241 return call_int_hook(fs_context_submount, fc, reference); 1242 } 1243 1244 /** 1245 * security_fs_context_dup() - Duplicate a fs_context LSM blob 1246 * @fc: destination filesystem context 1247 * @src_fc: source filesystem context 1248 * 1249 * Allocate and attach a security structure to sc->security. This pointer is 1250 * initialised to NULL by the caller. @fc indicates the new filesystem context. 1251 * @src_fc indicates the original filesystem context. 1252 * 1253 * Return: Returns 0 on success or a negative error code on failure. 1254 */ 1255 int security_fs_context_dup(struct fs_context *fc, struct fs_context *src_fc) 1256 { 1257 return call_int_hook(fs_context_dup, fc, src_fc); 1258 } 1259 1260 /** 1261 * security_fs_context_parse_param() - Configure a filesystem context 1262 * @fc: filesystem context 1263 * @param: filesystem parameter 1264 * 1265 * Userspace provided a parameter to configure a superblock. The LSM can 1266 * consume the parameter or return it to the caller for use elsewhere. 1267 * 1268 * Return: If the parameter is used by the LSM it should return 0, if it is 1269 * returned to the caller -ENOPARAM is returned, otherwise a negative 1270 * error code is returned. 1271 */ 1272 int security_fs_context_parse_param(struct fs_context *fc, 1273 struct fs_parameter *param) 1274 { 1275 struct security_hook_list *hp; 1276 int trc; 1277 int rc = -ENOPARAM; 1278 1279 hlist_for_each_entry(hp, &security_hook_heads.fs_context_parse_param, 1280 list) { 1281 trc = hp->hook.fs_context_parse_param(fc, param); 1282 if (trc == 0) 1283 rc = 0; 1284 else if (trc != -ENOPARAM) 1285 return trc; 1286 } 1287 return rc; 1288 } 1289 1290 /** 1291 * security_sb_alloc() - Allocate a super_block LSM blob 1292 * @sb: filesystem superblock 1293 * 1294 * Allocate and attach a security structure to the sb->s_security field. The 1295 * s_security field is initialized to NULL when the structure is allocated. 1296 * @sb contains the super_block structure to be modified. 1297 * 1298 * Return: Returns 0 if operation was successful. 1299 */ 1300 int security_sb_alloc(struct super_block *sb) 1301 { 1302 int rc = lsm_superblock_alloc(sb); 1303 1304 if (unlikely(rc)) 1305 return rc; 1306 rc = call_int_hook(sb_alloc_security, sb); 1307 if (unlikely(rc)) 1308 security_sb_free(sb); 1309 return rc; 1310 } 1311 1312 /** 1313 * security_sb_delete() - Release super_block LSM associated objects 1314 * @sb: filesystem superblock 1315 * 1316 * Release objects tied to a superblock (e.g. inodes). @sb contains the 1317 * super_block structure being released. 1318 */ 1319 void security_sb_delete(struct super_block *sb) 1320 { 1321 call_void_hook(sb_delete, sb); 1322 } 1323 1324 /** 1325 * security_sb_free() - Free a super_block LSM blob 1326 * @sb: filesystem superblock 1327 * 1328 * Deallocate and clear the sb->s_security field. @sb contains the super_block 1329 * structure to be modified. 1330 */ 1331 void security_sb_free(struct super_block *sb) 1332 { 1333 call_void_hook(sb_free_security, sb); 1334 kfree(sb->s_security); 1335 sb->s_security = NULL; 1336 } 1337 1338 /** 1339 * security_free_mnt_opts() - Free memory associated with mount options 1340 * @mnt_opts: LSM processed mount options 1341 * 1342 * Free memory associated with @mnt_ops. 1343 */ 1344 void security_free_mnt_opts(void **mnt_opts) 1345 { 1346 if (!*mnt_opts) 1347 return; 1348 call_void_hook(sb_free_mnt_opts, *mnt_opts); 1349 *mnt_opts = NULL; 1350 } 1351 EXPORT_SYMBOL(security_free_mnt_opts); 1352 1353 /** 1354 * security_sb_eat_lsm_opts() - Consume LSM mount options 1355 * @options: mount options 1356 * @mnt_opts: LSM processed mount options 1357 * 1358 * Eat (scan @options) and save them in @mnt_opts. 1359 * 1360 * Return: Returns 0 on success, negative values on failure. 1361 */ 1362 int security_sb_eat_lsm_opts(char *options, void **mnt_opts) 1363 { 1364 return call_int_hook(sb_eat_lsm_opts, options, mnt_opts); 1365 } 1366 EXPORT_SYMBOL(security_sb_eat_lsm_opts); 1367 1368 /** 1369 * security_sb_mnt_opts_compat() - Check if new mount options are allowed 1370 * @sb: filesystem superblock 1371 * @mnt_opts: new mount options 1372 * 1373 * Determine if the new mount options in @mnt_opts are allowed given the 1374 * existing mounted filesystem at @sb. @sb superblock being compared. 1375 * 1376 * Return: Returns 0 if options are compatible. 1377 */ 1378 int security_sb_mnt_opts_compat(struct super_block *sb, 1379 void *mnt_opts) 1380 { 1381 return call_int_hook(sb_mnt_opts_compat, sb, mnt_opts); 1382 } 1383 EXPORT_SYMBOL(security_sb_mnt_opts_compat); 1384 1385 /** 1386 * security_sb_remount() - Verify no incompatible mount changes during remount 1387 * @sb: filesystem superblock 1388 * @mnt_opts: (re)mount options 1389 * 1390 * Extracts security system specific mount options and verifies no changes are 1391 * being made to those options. 1392 * 1393 * Return: Returns 0 if permission is granted. 1394 */ 1395 int security_sb_remount(struct super_block *sb, 1396 void *mnt_opts) 1397 { 1398 return call_int_hook(sb_remount, sb, mnt_opts); 1399 } 1400 EXPORT_SYMBOL(security_sb_remount); 1401 1402 /** 1403 * security_sb_kern_mount() - Check if a kernel mount is allowed 1404 * @sb: filesystem superblock 1405 * 1406 * Mount this @sb if allowed by permissions. 1407 * 1408 * Return: Returns 0 if permission is granted. 1409 */ 1410 int security_sb_kern_mount(const struct super_block *sb) 1411 { 1412 return call_int_hook(sb_kern_mount, sb); 1413 } 1414 1415 /** 1416 * security_sb_show_options() - Output the mount options for a superblock 1417 * @m: output file 1418 * @sb: filesystem superblock 1419 * 1420 * Show (print on @m) mount options for this @sb. 1421 * 1422 * Return: Returns 0 on success, negative values on failure. 1423 */ 1424 int security_sb_show_options(struct seq_file *m, struct super_block *sb) 1425 { 1426 return call_int_hook(sb_show_options, m, sb); 1427 } 1428 1429 /** 1430 * security_sb_statfs() - Check if accessing fs stats is allowed 1431 * @dentry: superblock handle 1432 * 1433 * Check permission before obtaining filesystem statistics for the @mnt 1434 * mountpoint. @dentry is a handle on the superblock for the filesystem. 1435 * 1436 * Return: Returns 0 if permission is granted. 1437 */ 1438 int security_sb_statfs(struct dentry *dentry) 1439 { 1440 return call_int_hook(sb_statfs, dentry); 1441 } 1442 1443 /** 1444 * security_sb_mount() - Check permission for mounting a filesystem 1445 * @dev_name: filesystem backing device 1446 * @path: mount point 1447 * @type: filesystem type 1448 * @flags: mount flags 1449 * @data: filesystem specific data 1450 * 1451 * Check permission before an object specified by @dev_name is mounted on the 1452 * mount point named by @nd. For an ordinary mount, @dev_name identifies a 1453 * device if the file system type requires a device. For a remount 1454 * (@flags & MS_REMOUNT), @dev_name is irrelevant. For a loopback/bind mount 1455 * (@flags & MS_BIND), @dev_name identifies the pathname of the object being 1456 * mounted. 1457 * 1458 * Return: Returns 0 if permission is granted. 1459 */ 1460 int security_sb_mount(const char *dev_name, const struct path *path, 1461 const char *type, unsigned long flags, void *data) 1462 { 1463 return call_int_hook(sb_mount, dev_name, path, type, flags, data); 1464 } 1465 1466 /** 1467 * security_sb_umount() - Check permission for unmounting a filesystem 1468 * @mnt: mounted filesystem 1469 * @flags: unmount flags 1470 * 1471 * Check permission before the @mnt file system is unmounted. 1472 * 1473 * Return: Returns 0 if permission is granted. 1474 */ 1475 int security_sb_umount(struct vfsmount *mnt, int flags) 1476 { 1477 return call_int_hook(sb_umount, mnt, flags); 1478 } 1479 1480 /** 1481 * security_sb_pivotroot() - Check permissions for pivoting the rootfs 1482 * @old_path: new location for current rootfs 1483 * @new_path: location of the new rootfs 1484 * 1485 * Check permission before pivoting the root filesystem. 1486 * 1487 * Return: Returns 0 if permission is granted. 1488 */ 1489 int security_sb_pivotroot(const struct path *old_path, 1490 const struct path *new_path) 1491 { 1492 return call_int_hook(sb_pivotroot, old_path, new_path); 1493 } 1494 1495 /** 1496 * security_sb_set_mnt_opts() - Set the mount options for a filesystem 1497 * @sb: filesystem superblock 1498 * @mnt_opts: binary mount options 1499 * @kern_flags: kernel flags (in) 1500 * @set_kern_flags: kernel flags (out) 1501 * 1502 * Set the security relevant mount options used for a superblock. 1503 * 1504 * Return: Returns 0 on success, error on failure. 1505 */ 1506 int security_sb_set_mnt_opts(struct super_block *sb, 1507 void *mnt_opts, 1508 unsigned long kern_flags, 1509 unsigned long *set_kern_flags) 1510 { 1511 struct security_hook_list *hp; 1512 int rc = mnt_opts ? -EOPNOTSUPP : LSM_RET_DEFAULT(sb_set_mnt_opts); 1513 1514 hlist_for_each_entry(hp, &security_hook_heads.sb_set_mnt_opts, 1515 list) { 1516 rc = hp->hook.sb_set_mnt_opts(sb, mnt_opts, kern_flags, 1517 set_kern_flags); 1518 if (rc != LSM_RET_DEFAULT(sb_set_mnt_opts)) 1519 break; 1520 } 1521 return rc; 1522 } 1523 EXPORT_SYMBOL(security_sb_set_mnt_opts); 1524 1525 /** 1526 * security_sb_clone_mnt_opts() - Duplicate superblock mount options 1527 * @oldsb: source superblock 1528 * @newsb: destination superblock 1529 * @kern_flags: kernel flags (in) 1530 * @set_kern_flags: kernel flags (out) 1531 * 1532 * Copy all security options from a given superblock to another. 1533 * 1534 * Return: Returns 0 on success, error on failure. 1535 */ 1536 int security_sb_clone_mnt_opts(const struct super_block *oldsb, 1537 struct super_block *newsb, 1538 unsigned long kern_flags, 1539 unsigned long *set_kern_flags) 1540 { 1541 return call_int_hook(sb_clone_mnt_opts, oldsb, newsb, 1542 kern_flags, set_kern_flags); 1543 } 1544 EXPORT_SYMBOL(security_sb_clone_mnt_opts); 1545 1546 /** 1547 * security_move_mount() - Check permissions for moving a mount 1548 * @from_path: source mount point 1549 * @to_path: destination mount point 1550 * 1551 * Check permission before a mount is moved. 1552 * 1553 * Return: Returns 0 if permission is granted. 1554 */ 1555 int security_move_mount(const struct path *from_path, 1556 const struct path *to_path) 1557 { 1558 return call_int_hook(move_mount, from_path, to_path); 1559 } 1560 1561 /** 1562 * security_path_notify() - Check if setting a watch is allowed 1563 * @path: file path 1564 * @mask: event mask 1565 * @obj_type: file path type 1566 * 1567 * Check permissions before setting a watch on events as defined by @mask, on 1568 * an object at @path, whose type is defined by @obj_type. 1569 * 1570 * Return: Returns 0 if permission is granted. 1571 */ 1572 int security_path_notify(const struct path *path, u64 mask, 1573 unsigned int obj_type) 1574 { 1575 return call_int_hook(path_notify, path, mask, obj_type); 1576 } 1577 1578 /** 1579 * security_inode_alloc() - Allocate an inode LSM blob 1580 * @inode: the inode 1581 * 1582 * Allocate and attach a security structure to @inode->i_security. The 1583 * i_security field is initialized to NULL when the inode structure is 1584 * allocated. 1585 * 1586 * Return: Return 0 if operation was successful. 1587 */ 1588 int security_inode_alloc(struct inode *inode) 1589 { 1590 int rc = lsm_inode_alloc(inode); 1591 1592 if (unlikely(rc)) 1593 return rc; 1594 rc = call_int_hook(inode_alloc_security, inode); 1595 if (unlikely(rc)) 1596 security_inode_free(inode); 1597 return rc; 1598 } 1599 1600 static void inode_free_by_rcu(struct rcu_head *head) 1601 { 1602 /* 1603 * The rcu head is at the start of the inode blob 1604 */ 1605 kmem_cache_free(lsm_inode_cache, head); 1606 } 1607 1608 /** 1609 * security_inode_free() - Free an inode's LSM blob 1610 * @inode: the inode 1611 * 1612 * Deallocate the inode security structure and set @inode->i_security to NULL. 1613 */ 1614 void security_inode_free(struct inode *inode) 1615 { 1616 call_void_hook(inode_free_security, inode); 1617 /* 1618 * The inode may still be referenced in a path walk and 1619 * a call to security_inode_permission() can be made 1620 * after inode_free_security() is called. Ideally, the VFS 1621 * wouldn't do this, but fixing that is a much harder 1622 * job. For now, simply free the i_security via RCU, and 1623 * leave the current inode->i_security pointer intact. 1624 * The inode will be freed after the RCU grace period too. 1625 */ 1626 if (inode->i_security) 1627 call_rcu((struct rcu_head *)inode->i_security, 1628 inode_free_by_rcu); 1629 } 1630 1631 /** 1632 * security_dentry_init_security() - Perform dentry initialization 1633 * @dentry: the dentry to initialize 1634 * @mode: mode used to determine resource type 1635 * @name: name of the last path component 1636 * @xattr_name: name of the security/LSM xattr 1637 * @ctx: pointer to the resulting LSM context 1638 * @ctxlen: length of @ctx 1639 * 1640 * Compute a context for a dentry as the inode is not yet available since NFSv4 1641 * has no label backed by an EA anyway. It is important to note that 1642 * @xattr_name does not need to be free'd by the caller, it is a static string. 1643 * 1644 * Return: Returns 0 on success, negative values on failure. 1645 */ 1646 int security_dentry_init_security(struct dentry *dentry, int mode, 1647 const struct qstr *name, 1648 const char **xattr_name, void **ctx, 1649 u32 *ctxlen) 1650 { 1651 return call_int_hook(dentry_init_security, dentry, mode, name, 1652 xattr_name, ctx, ctxlen); 1653 } 1654 EXPORT_SYMBOL(security_dentry_init_security); 1655 1656 /** 1657 * security_dentry_create_files_as() - Perform dentry initialization 1658 * @dentry: the dentry to initialize 1659 * @mode: mode used to determine resource type 1660 * @name: name of the last path component 1661 * @old: creds to use for LSM context calculations 1662 * @new: creds to modify 1663 * 1664 * Compute a context for a dentry as the inode is not yet available and set 1665 * that context in passed in creds so that new files are created using that 1666 * context. Context is calculated using the passed in creds and not the creds 1667 * of the caller. 1668 * 1669 * Return: Returns 0 on success, error on failure. 1670 */ 1671 int security_dentry_create_files_as(struct dentry *dentry, int mode, 1672 struct qstr *name, 1673 const struct cred *old, struct cred *new) 1674 { 1675 return call_int_hook(dentry_create_files_as, dentry, mode, 1676 name, old, new); 1677 } 1678 EXPORT_SYMBOL(security_dentry_create_files_as); 1679 1680 /** 1681 * security_inode_init_security() - Initialize an inode's LSM context 1682 * @inode: the inode 1683 * @dir: parent directory 1684 * @qstr: last component of the pathname 1685 * @initxattrs: callback function to write xattrs 1686 * @fs_data: filesystem specific data 1687 * 1688 * Obtain the security attribute name suffix and value to set on a newly 1689 * created inode and set up the incore security field for the new inode. This 1690 * hook is called by the fs code as part of the inode creation transaction and 1691 * provides for atomic labeling of the inode, unlike the post_create/mkdir/... 1692 * hooks called by the VFS. 1693 * 1694 * The hook function is expected to populate the xattrs array, by calling 1695 * lsm_get_xattr_slot() to retrieve the slots reserved by the security module 1696 * with the lbs_xattr_count field of the lsm_blob_sizes structure. For each 1697 * slot, the hook function should set ->name to the attribute name suffix 1698 * (e.g. selinux), to allocate ->value (will be freed by the caller) and set it 1699 * to the attribute value, to set ->value_len to the length of the value. If 1700 * the security module does not use security attributes or does not wish to put 1701 * a security attribute on this particular inode, then it should return 1702 * -EOPNOTSUPP to skip this processing. 1703 * 1704 * Return: Returns 0 if the LSM successfully initialized all of the inode 1705 * security attributes that are required, negative values otherwise. 1706 */ 1707 int security_inode_init_security(struct inode *inode, struct inode *dir, 1708 const struct qstr *qstr, 1709 const initxattrs initxattrs, void *fs_data) 1710 { 1711 struct security_hook_list *hp; 1712 struct xattr *new_xattrs = NULL; 1713 int ret = -EOPNOTSUPP, xattr_count = 0; 1714 1715 if (unlikely(IS_PRIVATE(inode))) 1716 return 0; 1717 1718 if (!blob_sizes.lbs_xattr_count) 1719 return 0; 1720 1721 if (initxattrs) { 1722 /* Allocate +1 as terminator. */ 1723 new_xattrs = kcalloc(blob_sizes.lbs_xattr_count + 1, 1724 sizeof(*new_xattrs), GFP_NOFS); 1725 if (!new_xattrs) 1726 return -ENOMEM; 1727 } 1728 1729 hlist_for_each_entry(hp, &security_hook_heads.inode_init_security, 1730 list) { 1731 ret = hp->hook.inode_init_security(inode, dir, qstr, new_xattrs, 1732 &xattr_count); 1733 if (ret && ret != -EOPNOTSUPP) 1734 goto out; 1735 /* 1736 * As documented in lsm_hooks.h, -EOPNOTSUPP in this context 1737 * means that the LSM is not willing to provide an xattr, not 1738 * that it wants to signal an error. Thus, continue to invoke 1739 * the remaining LSMs. 1740 */ 1741 } 1742 1743 /* If initxattrs() is NULL, xattr_count is zero, skip the call. */ 1744 if (!xattr_count) 1745 goto out; 1746 1747 ret = initxattrs(inode, new_xattrs, fs_data); 1748 out: 1749 for (; xattr_count > 0; xattr_count--) 1750 kfree(new_xattrs[xattr_count - 1].value); 1751 kfree(new_xattrs); 1752 return (ret == -EOPNOTSUPP) ? 0 : ret; 1753 } 1754 EXPORT_SYMBOL(security_inode_init_security); 1755 1756 /** 1757 * security_inode_init_security_anon() - Initialize an anonymous inode 1758 * @inode: the inode 1759 * @name: the anonymous inode class 1760 * @context_inode: an optional related inode 1761 * 1762 * Set up the incore security field for the new anonymous inode and return 1763 * whether the inode creation is permitted by the security module or not. 1764 * 1765 * Return: Returns 0 on success, -EACCES if the security module denies the 1766 * creation of this inode, or another -errno upon other errors. 1767 */ 1768 int security_inode_init_security_anon(struct inode *inode, 1769 const struct qstr *name, 1770 const struct inode *context_inode) 1771 { 1772 return call_int_hook(inode_init_security_anon, inode, name, 1773 context_inode); 1774 } 1775 1776 #ifdef CONFIG_SECURITY_PATH 1777 /** 1778 * security_path_mknod() - Check if creating a special file is allowed 1779 * @dir: parent directory 1780 * @dentry: new file 1781 * @mode: new file mode 1782 * @dev: device number 1783 * 1784 * Check permissions when creating a file. Note that this hook is called even 1785 * if mknod operation is being done for a regular file. 1786 * 1787 * Return: Returns 0 if permission is granted. 1788 */ 1789 int security_path_mknod(const struct path *dir, struct dentry *dentry, 1790 umode_t mode, unsigned int dev) 1791 { 1792 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 1793 return 0; 1794 return call_int_hook(path_mknod, dir, dentry, mode, dev); 1795 } 1796 EXPORT_SYMBOL(security_path_mknod); 1797 1798 /** 1799 * security_path_post_mknod() - Update inode security after reg file creation 1800 * @idmap: idmap of the mount 1801 * @dentry: new file 1802 * 1803 * Update inode security field after a regular file has been created. 1804 */ 1805 void security_path_post_mknod(struct mnt_idmap *idmap, struct dentry *dentry) 1806 { 1807 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 1808 return; 1809 call_void_hook(path_post_mknod, idmap, dentry); 1810 } 1811 1812 /** 1813 * security_path_mkdir() - Check if creating a new directory is allowed 1814 * @dir: parent directory 1815 * @dentry: new directory 1816 * @mode: new directory mode 1817 * 1818 * Check permissions to create a new directory in the existing directory. 1819 * 1820 * Return: Returns 0 if permission is granted. 1821 */ 1822 int security_path_mkdir(const struct path *dir, struct dentry *dentry, 1823 umode_t mode) 1824 { 1825 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 1826 return 0; 1827 return call_int_hook(path_mkdir, dir, dentry, mode); 1828 } 1829 EXPORT_SYMBOL(security_path_mkdir); 1830 1831 /** 1832 * security_path_rmdir() - Check if removing a directory is allowed 1833 * @dir: parent directory 1834 * @dentry: directory to remove 1835 * 1836 * Check the permission to remove a directory. 1837 * 1838 * Return: Returns 0 if permission is granted. 1839 */ 1840 int security_path_rmdir(const struct path *dir, struct dentry *dentry) 1841 { 1842 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 1843 return 0; 1844 return call_int_hook(path_rmdir, dir, dentry); 1845 } 1846 1847 /** 1848 * security_path_unlink() - Check if removing a hard link is allowed 1849 * @dir: parent directory 1850 * @dentry: file 1851 * 1852 * Check the permission to remove a hard link to a file. 1853 * 1854 * Return: Returns 0 if permission is granted. 1855 */ 1856 int security_path_unlink(const struct path *dir, struct dentry *dentry) 1857 { 1858 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 1859 return 0; 1860 return call_int_hook(path_unlink, dir, dentry); 1861 } 1862 EXPORT_SYMBOL(security_path_unlink); 1863 1864 /** 1865 * security_path_symlink() - Check if creating a symbolic link is allowed 1866 * @dir: parent directory 1867 * @dentry: symbolic link 1868 * @old_name: file pathname 1869 * 1870 * Check the permission to create a symbolic link to a file. 1871 * 1872 * Return: Returns 0 if permission is granted. 1873 */ 1874 int security_path_symlink(const struct path *dir, struct dentry *dentry, 1875 const char *old_name) 1876 { 1877 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry)))) 1878 return 0; 1879 return call_int_hook(path_symlink, dir, dentry, old_name); 1880 } 1881 1882 /** 1883 * security_path_link - Check if creating a hard link is allowed 1884 * @old_dentry: existing file 1885 * @new_dir: new parent directory 1886 * @new_dentry: new link 1887 * 1888 * Check permission before creating a new hard link to a file. 1889 * 1890 * Return: Returns 0 if permission is granted. 1891 */ 1892 int security_path_link(struct dentry *old_dentry, const struct path *new_dir, 1893 struct dentry *new_dentry) 1894 { 1895 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)))) 1896 return 0; 1897 return call_int_hook(path_link, old_dentry, new_dir, new_dentry); 1898 } 1899 1900 /** 1901 * security_path_rename() - Check if renaming a file is allowed 1902 * @old_dir: parent directory of the old file 1903 * @old_dentry: the old file 1904 * @new_dir: parent directory of the new file 1905 * @new_dentry: the new file 1906 * @flags: flags 1907 * 1908 * Check for permission to rename a file or directory. 1909 * 1910 * Return: Returns 0 if permission is granted. 1911 */ 1912 int security_path_rename(const struct path *old_dir, struct dentry *old_dentry, 1913 const struct path *new_dir, struct dentry *new_dentry, 1914 unsigned int flags) 1915 { 1916 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) || 1917 (d_is_positive(new_dentry) && 1918 IS_PRIVATE(d_backing_inode(new_dentry))))) 1919 return 0; 1920 1921 return call_int_hook(path_rename, old_dir, old_dentry, new_dir, 1922 new_dentry, flags); 1923 } 1924 EXPORT_SYMBOL(security_path_rename); 1925 1926 /** 1927 * security_path_truncate() - Check if truncating a file is allowed 1928 * @path: file 1929 * 1930 * Check permission before truncating the file indicated by path. Note that 1931 * truncation permissions may also be checked based on already opened files, 1932 * using the security_file_truncate() hook. 1933 * 1934 * Return: Returns 0 if permission is granted. 1935 */ 1936 int security_path_truncate(const struct path *path) 1937 { 1938 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 1939 return 0; 1940 return call_int_hook(path_truncate, path); 1941 } 1942 1943 /** 1944 * security_path_chmod() - Check if changing the file's mode is allowed 1945 * @path: file 1946 * @mode: new mode 1947 * 1948 * Check for permission to change a mode of the file @path. The new mode is 1949 * specified in @mode which is a bitmask of constants from 1950 * <include/uapi/linux/stat.h>. 1951 * 1952 * Return: Returns 0 if permission is granted. 1953 */ 1954 int security_path_chmod(const struct path *path, umode_t mode) 1955 { 1956 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 1957 return 0; 1958 return call_int_hook(path_chmod, path, mode); 1959 } 1960 1961 /** 1962 * security_path_chown() - Check if changing the file's owner/group is allowed 1963 * @path: file 1964 * @uid: file owner 1965 * @gid: file group 1966 * 1967 * Check for permission to change owner/group of a file or directory. 1968 * 1969 * Return: Returns 0 if permission is granted. 1970 */ 1971 int security_path_chown(const struct path *path, kuid_t uid, kgid_t gid) 1972 { 1973 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 1974 return 0; 1975 return call_int_hook(path_chown, path, uid, gid); 1976 } 1977 1978 /** 1979 * security_path_chroot() - Check if changing the root directory is allowed 1980 * @path: directory 1981 * 1982 * Check for permission to change root directory. 1983 * 1984 * Return: Returns 0 if permission is granted. 1985 */ 1986 int security_path_chroot(const struct path *path) 1987 { 1988 return call_int_hook(path_chroot, path); 1989 } 1990 #endif /* CONFIG_SECURITY_PATH */ 1991 1992 /** 1993 * security_inode_create() - Check if creating a file is allowed 1994 * @dir: the parent directory 1995 * @dentry: the file being created 1996 * @mode: requested file mode 1997 * 1998 * Check permission to create a regular file. 1999 * 2000 * Return: Returns 0 if permission is granted. 2001 */ 2002 int security_inode_create(struct inode *dir, struct dentry *dentry, 2003 umode_t mode) 2004 { 2005 if (unlikely(IS_PRIVATE(dir))) 2006 return 0; 2007 return call_int_hook(inode_create, dir, dentry, mode); 2008 } 2009 EXPORT_SYMBOL_GPL(security_inode_create); 2010 2011 /** 2012 * security_inode_post_create_tmpfile() - Update inode security of new tmpfile 2013 * @idmap: idmap of the mount 2014 * @inode: inode of the new tmpfile 2015 * 2016 * Update inode security data after a tmpfile has been created. 2017 */ 2018 void security_inode_post_create_tmpfile(struct mnt_idmap *idmap, 2019 struct inode *inode) 2020 { 2021 if (unlikely(IS_PRIVATE(inode))) 2022 return; 2023 call_void_hook(inode_post_create_tmpfile, idmap, inode); 2024 } 2025 2026 /** 2027 * security_inode_link() - Check if creating a hard link is allowed 2028 * @old_dentry: existing file 2029 * @dir: new parent directory 2030 * @new_dentry: new link 2031 * 2032 * Check permission before creating a new hard link to a file. 2033 * 2034 * Return: Returns 0 if permission is granted. 2035 */ 2036 int security_inode_link(struct dentry *old_dentry, struct inode *dir, 2037 struct dentry *new_dentry) 2038 { 2039 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)))) 2040 return 0; 2041 return call_int_hook(inode_link, old_dentry, dir, new_dentry); 2042 } 2043 2044 /** 2045 * security_inode_unlink() - Check if removing a hard link is allowed 2046 * @dir: parent directory 2047 * @dentry: file 2048 * 2049 * Check the permission to remove a hard link to a file. 2050 * 2051 * Return: Returns 0 if permission is granted. 2052 */ 2053 int security_inode_unlink(struct inode *dir, struct dentry *dentry) 2054 { 2055 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2056 return 0; 2057 return call_int_hook(inode_unlink, dir, dentry); 2058 } 2059 2060 /** 2061 * security_inode_symlink() - Check if creating a symbolic link is allowed 2062 * @dir: parent directory 2063 * @dentry: symbolic link 2064 * @old_name: existing filename 2065 * 2066 * Check the permission to create a symbolic link to a file. 2067 * 2068 * Return: Returns 0 if permission is granted. 2069 */ 2070 int security_inode_symlink(struct inode *dir, struct dentry *dentry, 2071 const char *old_name) 2072 { 2073 if (unlikely(IS_PRIVATE(dir))) 2074 return 0; 2075 return call_int_hook(inode_symlink, dir, dentry, old_name); 2076 } 2077 2078 /** 2079 * security_inode_mkdir() - Check if creation a new director is allowed 2080 * @dir: parent directory 2081 * @dentry: new directory 2082 * @mode: new directory mode 2083 * 2084 * Check permissions to create a new directory in the existing directory 2085 * associated with inode structure @dir. 2086 * 2087 * Return: Returns 0 if permission is granted. 2088 */ 2089 int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 2090 { 2091 if (unlikely(IS_PRIVATE(dir))) 2092 return 0; 2093 return call_int_hook(inode_mkdir, dir, dentry, mode); 2094 } 2095 EXPORT_SYMBOL_GPL(security_inode_mkdir); 2096 2097 /** 2098 * security_inode_rmdir() - Check if removing a directory is allowed 2099 * @dir: parent directory 2100 * @dentry: directory to be removed 2101 * 2102 * Check the permission to remove a directory. 2103 * 2104 * Return: Returns 0 if permission is granted. 2105 */ 2106 int security_inode_rmdir(struct inode *dir, struct dentry *dentry) 2107 { 2108 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2109 return 0; 2110 return call_int_hook(inode_rmdir, dir, dentry); 2111 } 2112 2113 /** 2114 * security_inode_mknod() - Check if creating a special file is allowed 2115 * @dir: parent directory 2116 * @dentry: new file 2117 * @mode: new file mode 2118 * @dev: device number 2119 * 2120 * Check permissions when creating a special file (or a socket or a fifo file 2121 * created via the mknod system call). Note that if mknod operation is being 2122 * done for a regular file, then the create hook will be called and not this 2123 * hook. 2124 * 2125 * Return: Returns 0 if permission is granted. 2126 */ 2127 int security_inode_mknod(struct inode *dir, struct dentry *dentry, 2128 umode_t mode, dev_t dev) 2129 { 2130 if (unlikely(IS_PRIVATE(dir))) 2131 return 0; 2132 return call_int_hook(inode_mknod, dir, dentry, mode, dev); 2133 } 2134 2135 /** 2136 * security_inode_rename() - Check if renaming a file is allowed 2137 * @old_dir: parent directory of the old file 2138 * @old_dentry: the old file 2139 * @new_dir: parent directory of the new file 2140 * @new_dentry: the new file 2141 * @flags: flags 2142 * 2143 * Check for permission to rename a file or directory. 2144 * 2145 * Return: Returns 0 if permission is granted. 2146 */ 2147 int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry, 2148 struct inode *new_dir, struct dentry *new_dentry, 2149 unsigned int flags) 2150 { 2151 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) || 2152 (d_is_positive(new_dentry) && 2153 IS_PRIVATE(d_backing_inode(new_dentry))))) 2154 return 0; 2155 2156 if (flags & RENAME_EXCHANGE) { 2157 int err = call_int_hook(inode_rename, new_dir, new_dentry, 2158 old_dir, old_dentry); 2159 if (err) 2160 return err; 2161 } 2162 2163 return call_int_hook(inode_rename, old_dir, old_dentry, 2164 new_dir, new_dentry); 2165 } 2166 2167 /** 2168 * security_inode_readlink() - Check if reading a symbolic link is allowed 2169 * @dentry: link 2170 * 2171 * Check the permission to read the symbolic link. 2172 * 2173 * Return: Returns 0 if permission is granted. 2174 */ 2175 int security_inode_readlink(struct dentry *dentry) 2176 { 2177 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2178 return 0; 2179 return call_int_hook(inode_readlink, dentry); 2180 } 2181 2182 /** 2183 * security_inode_follow_link() - Check if following a symbolic link is allowed 2184 * @dentry: link dentry 2185 * @inode: link inode 2186 * @rcu: true if in RCU-walk mode 2187 * 2188 * Check permission to follow a symbolic link when looking up a pathname. If 2189 * @rcu is true, @inode is not stable. 2190 * 2191 * Return: Returns 0 if permission is granted. 2192 */ 2193 int security_inode_follow_link(struct dentry *dentry, struct inode *inode, 2194 bool rcu) 2195 { 2196 if (unlikely(IS_PRIVATE(inode))) 2197 return 0; 2198 return call_int_hook(inode_follow_link, dentry, inode, rcu); 2199 } 2200 2201 /** 2202 * security_inode_permission() - Check if accessing an inode is allowed 2203 * @inode: inode 2204 * @mask: access mask 2205 * 2206 * Check permission before accessing an inode. This hook is called by the 2207 * existing Linux permission function, so a security module can use it to 2208 * provide additional checking for existing Linux permission checks. Notice 2209 * that this hook is called when a file is opened (as well as many other 2210 * operations), whereas the file_security_ops permission hook is called when 2211 * the actual read/write operations are performed. 2212 * 2213 * Return: Returns 0 if permission is granted. 2214 */ 2215 int security_inode_permission(struct inode *inode, int mask) 2216 { 2217 if (unlikely(IS_PRIVATE(inode))) 2218 return 0; 2219 return call_int_hook(inode_permission, inode, mask); 2220 } 2221 2222 /** 2223 * security_inode_setattr() - Check if setting file attributes is allowed 2224 * @idmap: idmap of the mount 2225 * @dentry: file 2226 * @attr: new attributes 2227 * 2228 * Check permission before setting file attributes. Note that the kernel call 2229 * to notify_change is performed from several locations, whenever file 2230 * attributes change (such as when a file is truncated, chown/chmod operations, 2231 * transferring disk quotas, etc). 2232 * 2233 * Return: Returns 0 if permission is granted. 2234 */ 2235 int security_inode_setattr(struct mnt_idmap *idmap, 2236 struct dentry *dentry, struct iattr *attr) 2237 { 2238 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2239 return 0; 2240 return call_int_hook(inode_setattr, idmap, dentry, attr); 2241 } 2242 EXPORT_SYMBOL_GPL(security_inode_setattr); 2243 2244 /** 2245 * security_inode_post_setattr() - Update the inode after a setattr operation 2246 * @idmap: idmap of the mount 2247 * @dentry: file 2248 * @ia_valid: file attributes set 2249 * 2250 * Update inode security field after successful setting file attributes. 2251 */ 2252 void security_inode_post_setattr(struct mnt_idmap *idmap, struct dentry *dentry, 2253 int ia_valid) 2254 { 2255 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2256 return; 2257 call_void_hook(inode_post_setattr, idmap, dentry, ia_valid); 2258 } 2259 2260 /** 2261 * security_inode_getattr() - Check if getting file attributes is allowed 2262 * @path: file 2263 * 2264 * Check permission before obtaining file attributes. 2265 * 2266 * Return: Returns 0 if permission is granted. 2267 */ 2268 int security_inode_getattr(const struct path *path) 2269 { 2270 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry)))) 2271 return 0; 2272 return call_int_hook(inode_getattr, path); 2273 } 2274 2275 /** 2276 * security_inode_setxattr() - Check if setting file xattrs is allowed 2277 * @idmap: idmap of the mount 2278 * @dentry: file 2279 * @name: xattr name 2280 * @value: xattr value 2281 * @size: size of xattr value 2282 * @flags: flags 2283 * 2284 * This hook performs the desired permission checks before setting the extended 2285 * attributes (xattrs) on @dentry. It is important to note that we have some 2286 * additional logic before the main LSM implementation calls to detect if we 2287 * need to perform an additional capability check at the LSM layer. 2288 * 2289 * Normally we enforce a capability check prior to executing the various LSM 2290 * hook implementations, but if a LSM wants to avoid this capability check, 2291 * it can register a 'inode_xattr_skipcap' hook and return a value of 1 for 2292 * xattrs that it wants to avoid the capability check, leaving the LSM fully 2293 * responsible for enforcing the access control for the specific xattr. If all 2294 * of the enabled LSMs refrain from registering a 'inode_xattr_skipcap' hook, 2295 * or return a 0 (the default return value), the capability check is still 2296 * performed. If no 'inode_xattr_skipcap' hooks are registered the capability 2297 * check is performed. 2298 * 2299 * Return: Returns 0 if permission is granted. 2300 */ 2301 int security_inode_setxattr(struct mnt_idmap *idmap, 2302 struct dentry *dentry, const char *name, 2303 const void *value, size_t size, int flags) 2304 { 2305 int rc; 2306 2307 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2308 return 0; 2309 2310 /* enforce the capability checks at the lsm layer, if needed */ 2311 if (!call_int_hook(inode_xattr_skipcap, name)) { 2312 rc = cap_inode_setxattr(dentry, name, value, size, flags); 2313 if (rc) 2314 return rc; 2315 } 2316 2317 return call_int_hook(inode_setxattr, idmap, dentry, name, value, size, 2318 flags); 2319 } 2320 2321 /** 2322 * security_inode_set_acl() - Check if setting posix acls is allowed 2323 * @idmap: idmap of the mount 2324 * @dentry: file 2325 * @acl_name: acl name 2326 * @kacl: acl struct 2327 * 2328 * Check permission before setting posix acls, the posix acls in @kacl are 2329 * identified by @acl_name. 2330 * 2331 * Return: Returns 0 if permission is granted. 2332 */ 2333 int security_inode_set_acl(struct mnt_idmap *idmap, 2334 struct dentry *dentry, const char *acl_name, 2335 struct posix_acl *kacl) 2336 { 2337 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2338 return 0; 2339 return call_int_hook(inode_set_acl, idmap, dentry, acl_name, kacl); 2340 } 2341 2342 /** 2343 * security_inode_post_set_acl() - Update inode security from posix acls set 2344 * @dentry: file 2345 * @acl_name: acl name 2346 * @kacl: acl struct 2347 * 2348 * Update inode security data after successfully setting posix acls on @dentry. 2349 * The posix acls in @kacl are identified by @acl_name. 2350 */ 2351 void security_inode_post_set_acl(struct dentry *dentry, const char *acl_name, 2352 struct posix_acl *kacl) 2353 { 2354 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2355 return; 2356 call_void_hook(inode_post_set_acl, dentry, acl_name, kacl); 2357 } 2358 2359 /** 2360 * security_inode_get_acl() - Check if reading posix acls is allowed 2361 * @idmap: idmap of the mount 2362 * @dentry: file 2363 * @acl_name: acl name 2364 * 2365 * Check permission before getting osix acls, the posix acls are identified by 2366 * @acl_name. 2367 * 2368 * Return: Returns 0 if permission is granted. 2369 */ 2370 int security_inode_get_acl(struct mnt_idmap *idmap, 2371 struct dentry *dentry, const char *acl_name) 2372 { 2373 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2374 return 0; 2375 return call_int_hook(inode_get_acl, idmap, dentry, acl_name); 2376 } 2377 2378 /** 2379 * security_inode_remove_acl() - Check if removing a posix acl is allowed 2380 * @idmap: idmap of the mount 2381 * @dentry: file 2382 * @acl_name: acl name 2383 * 2384 * Check permission before removing posix acls, the posix acls are identified 2385 * by @acl_name. 2386 * 2387 * Return: Returns 0 if permission is granted. 2388 */ 2389 int security_inode_remove_acl(struct mnt_idmap *idmap, 2390 struct dentry *dentry, const char *acl_name) 2391 { 2392 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2393 return 0; 2394 return call_int_hook(inode_remove_acl, idmap, dentry, acl_name); 2395 } 2396 2397 /** 2398 * security_inode_post_remove_acl() - Update inode security after rm posix acls 2399 * @idmap: idmap of the mount 2400 * @dentry: file 2401 * @acl_name: acl name 2402 * 2403 * Update inode security data after successfully removing posix acls on 2404 * @dentry in @idmap. The posix acls are identified by @acl_name. 2405 */ 2406 void security_inode_post_remove_acl(struct mnt_idmap *idmap, 2407 struct dentry *dentry, const char *acl_name) 2408 { 2409 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2410 return; 2411 call_void_hook(inode_post_remove_acl, idmap, dentry, acl_name); 2412 } 2413 2414 /** 2415 * security_inode_post_setxattr() - Update the inode after a setxattr operation 2416 * @dentry: file 2417 * @name: xattr name 2418 * @value: xattr value 2419 * @size: xattr value size 2420 * @flags: flags 2421 * 2422 * Update inode security field after successful setxattr operation. 2423 */ 2424 void security_inode_post_setxattr(struct dentry *dentry, const char *name, 2425 const void *value, size_t size, int flags) 2426 { 2427 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2428 return; 2429 call_void_hook(inode_post_setxattr, dentry, name, value, size, flags); 2430 } 2431 2432 /** 2433 * security_inode_getxattr() - Check if xattr access is allowed 2434 * @dentry: file 2435 * @name: xattr name 2436 * 2437 * Check permission before obtaining the extended attributes identified by 2438 * @name for @dentry. 2439 * 2440 * Return: Returns 0 if permission is granted. 2441 */ 2442 int security_inode_getxattr(struct dentry *dentry, const char *name) 2443 { 2444 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2445 return 0; 2446 return call_int_hook(inode_getxattr, dentry, name); 2447 } 2448 2449 /** 2450 * security_inode_listxattr() - Check if listing xattrs is allowed 2451 * @dentry: file 2452 * 2453 * Check permission before obtaining the list of extended attribute names for 2454 * @dentry. 2455 * 2456 * Return: Returns 0 if permission is granted. 2457 */ 2458 int security_inode_listxattr(struct dentry *dentry) 2459 { 2460 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2461 return 0; 2462 return call_int_hook(inode_listxattr, dentry); 2463 } 2464 2465 /** 2466 * security_inode_removexattr() - Check if removing an xattr is allowed 2467 * @idmap: idmap of the mount 2468 * @dentry: file 2469 * @name: xattr name 2470 * 2471 * This hook performs the desired permission checks before setting the extended 2472 * attributes (xattrs) on @dentry. It is important to note that we have some 2473 * additional logic before the main LSM implementation calls to detect if we 2474 * need to perform an additional capability check at the LSM layer. 2475 * 2476 * Normally we enforce a capability check prior to executing the various LSM 2477 * hook implementations, but if a LSM wants to avoid this capability check, 2478 * it can register a 'inode_xattr_skipcap' hook and return a value of 1 for 2479 * xattrs that it wants to avoid the capability check, leaving the LSM fully 2480 * responsible for enforcing the access control for the specific xattr. If all 2481 * of the enabled LSMs refrain from registering a 'inode_xattr_skipcap' hook, 2482 * or return a 0 (the default return value), the capability check is still 2483 * performed. If no 'inode_xattr_skipcap' hooks are registered the capability 2484 * check is performed. 2485 * 2486 * Return: Returns 0 if permission is granted. 2487 */ 2488 int security_inode_removexattr(struct mnt_idmap *idmap, 2489 struct dentry *dentry, const char *name) 2490 { 2491 int rc; 2492 2493 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2494 return 0; 2495 2496 /* enforce the capability checks at the lsm layer, if needed */ 2497 if (!call_int_hook(inode_xattr_skipcap, name)) { 2498 rc = cap_inode_removexattr(idmap, dentry, name); 2499 if (rc) 2500 return rc; 2501 } 2502 2503 return call_int_hook(inode_removexattr, idmap, dentry, name); 2504 } 2505 2506 /** 2507 * security_inode_post_removexattr() - Update the inode after a removexattr op 2508 * @dentry: file 2509 * @name: xattr name 2510 * 2511 * Update the inode after a successful removexattr operation. 2512 */ 2513 void security_inode_post_removexattr(struct dentry *dentry, const char *name) 2514 { 2515 if (unlikely(IS_PRIVATE(d_backing_inode(dentry)))) 2516 return; 2517 call_void_hook(inode_post_removexattr, dentry, name); 2518 } 2519 2520 /** 2521 * security_inode_need_killpriv() - Check if security_inode_killpriv() required 2522 * @dentry: associated dentry 2523 * 2524 * Called when an inode has been changed to determine if 2525 * security_inode_killpriv() should be called. 2526 * 2527 * Return: Return <0 on error to abort the inode change operation, return 0 if 2528 * security_inode_killpriv() does not need to be called, return >0 if 2529 * security_inode_killpriv() does need to be called. 2530 */ 2531 int security_inode_need_killpriv(struct dentry *dentry) 2532 { 2533 return call_int_hook(inode_need_killpriv, dentry); 2534 } 2535 2536 /** 2537 * security_inode_killpriv() - The setuid bit is removed, update LSM state 2538 * @idmap: idmap of the mount 2539 * @dentry: associated dentry 2540 * 2541 * The @dentry's setuid bit is being removed. Remove similar security labels. 2542 * Called with the dentry->d_inode->i_mutex held. 2543 * 2544 * Return: Return 0 on success. If error is returned, then the operation 2545 * causing setuid bit removal is failed. 2546 */ 2547 int security_inode_killpriv(struct mnt_idmap *idmap, 2548 struct dentry *dentry) 2549 { 2550 return call_int_hook(inode_killpriv, idmap, dentry); 2551 } 2552 2553 /** 2554 * security_inode_getsecurity() - Get the xattr security label of an inode 2555 * @idmap: idmap of the mount 2556 * @inode: inode 2557 * @name: xattr name 2558 * @buffer: security label buffer 2559 * @alloc: allocation flag 2560 * 2561 * Retrieve a copy of the extended attribute representation of the security 2562 * label associated with @name for @inode via @buffer. Note that @name is the 2563 * remainder of the attribute name after the security prefix has been removed. 2564 * @alloc is used to specify if the call should return a value via the buffer 2565 * or just the value length. 2566 * 2567 * Return: Returns size of buffer on success. 2568 */ 2569 int security_inode_getsecurity(struct mnt_idmap *idmap, 2570 struct inode *inode, const char *name, 2571 void **buffer, bool alloc) 2572 { 2573 if (unlikely(IS_PRIVATE(inode))) 2574 return LSM_RET_DEFAULT(inode_getsecurity); 2575 2576 return call_int_hook(inode_getsecurity, idmap, inode, name, buffer, 2577 alloc); 2578 } 2579 2580 /** 2581 * security_inode_setsecurity() - Set the xattr security label of an inode 2582 * @inode: inode 2583 * @name: xattr name 2584 * @value: security label 2585 * @size: length of security label 2586 * @flags: flags 2587 * 2588 * Set the security label associated with @name for @inode from the extended 2589 * attribute value @value. @size indicates the size of the @value in bytes. 2590 * @flags may be XATTR_CREATE, XATTR_REPLACE, or 0. Note that @name is the 2591 * remainder of the attribute name after the security. prefix has been removed. 2592 * 2593 * Return: Returns 0 on success. 2594 */ 2595 int security_inode_setsecurity(struct inode *inode, const char *name, 2596 const void *value, size_t size, int flags) 2597 { 2598 if (unlikely(IS_PRIVATE(inode))) 2599 return LSM_RET_DEFAULT(inode_setsecurity); 2600 2601 return call_int_hook(inode_setsecurity, inode, name, value, size, 2602 flags); 2603 } 2604 2605 /** 2606 * security_inode_listsecurity() - List the xattr security label names 2607 * @inode: inode 2608 * @buffer: buffer 2609 * @buffer_size: size of buffer 2610 * 2611 * Copy the extended attribute names for the security labels associated with 2612 * @inode into @buffer. The maximum size of @buffer is specified by 2613 * @buffer_size. @buffer may be NULL to request the size of the buffer 2614 * required. 2615 * 2616 * Return: Returns number of bytes used/required on success. 2617 */ 2618 int security_inode_listsecurity(struct inode *inode, 2619 char *buffer, size_t buffer_size) 2620 { 2621 if (unlikely(IS_PRIVATE(inode))) 2622 return 0; 2623 return call_int_hook(inode_listsecurity, inode, buffer, buffer_size); 2624 } 2625 EXPORT_SYMBOL(security_inode_listsecurity); 2626 2627 /** 2628 * security_inode_getsecid() - Get an inode's secid 2629 * @inode: inode 2630 * @secid: secid to return 2631 * 2632 * Get the secid associated with the node. In case of failure, @secid will be 2633 * set to zero. 2634 */ 2635 void security_inode_getsecid(struct inode *inode, u32 *secid) 2636 { 2637 call_void_hook(inode_getsecid, inode, secid); 2638 } 2639 2640 /** 2641 * security_inode_copy_up() - Create new creds for an overlayfs copy-up op 2642 * @src: union dentry of copy-up file 2643 * @new: newly created creds 2644 * 2645 * A file is about to be copied up from lower layer to upper layer of overlay 2646 * filesystem. Security module can prepare a set of new creds and modify as 2647 * need be and return new creds. Caller will switch to new creds temporarily to 2648 * create new file and release newly allocated creds. 2649 * 2650 * Return: Returns 0 on success or a negative error code on error. 2651 */ 2652 int security_inode_copy_up(struct dentry *src, struct cred **new) 2653 { 2654 return call_int_hook(inode_copy_up, src, new); 2655 } 2656 EXPORT_SYMBOL(security_inode_copy_up); 2657 2658 /** 2659 * security_inode_copy_up_xattr() - Filter xattrs in an overlayfs copy-up op 2660 * @src: union dentry of copy-up file 2661 * @name: xattr name 2662 * 2663 * Filter the xattrs being copied up when a unioned file is copied up from a 2664 * lower layer to the union/overlay layer. The caller is responsible for 2665 * reading and writing the xattrs, this hook is merely a filter. 2666 * 2667 * Return: Returns 0 to accept the xattr, 1 to discard the xattr, -EOPNOTSUPP 2668 * if the security module does not know about attribute, or a negative 2669 * error code to abort the copy up. 2670 */ 2671 int security_inode_copy_up_xattr(struct dentry *src, const char *name) 2672 { 2673 int rc; 2674 2675 /* 2676 * The implementation can return 0 (accept the xattr), 1 (discard the 2677 * xattr), -EOPNOTSUPP if it does not know anything about the xattr or 2678 * any other error code in case of an error. 2679 */ 2680 rc = call_int_hook(inode_copy_up_xattr, src, name); 2681 if (rc != LSM_RET_DEFAULT(inode_copy_up_xattr)) 2682 return rc; 2683 2684 return LSM_RET_DEFAULT(inode_copy_up_xattr); 2685 } 2686 EXPORT_SYMBOL(security_inode_copy_up_xattr); 2687 2688 /** 2689 * security_kernfs_init_security() - Init LSM context for a kernfs node 2690 * @kn_dir: parent kernfs node 2691 * @kn: the kernfs node to initialize 2692 * 2693 * Initialize the security context of a newly created kernfs node based on its 2694 * own and its parent's attributes. 2695 * 2696 * Return: Returns 0 if permission is granted. 2697 */ 2698 int security_kernfs_init_security(struct kernfs_node *kn_dir, 2699 struct kernfs_node *kn) 2700 { 2701 return call_int_hook(kernfs_init_security, kn_dir, kn); 2702 } 2703 2704 /** 2705 * security_file_permission() - Check file permissions 2706 * @file: file 2707 * @mask: requested permissions 2708 * 2709 * Check file permissions before accessing an open file. This hook is called 2710 * by various operations that read or write files. A security module can use 2711 * this hook to perform additional checking on these operations, e.g. to 2712 * revalidate permissions on use to support privilege bracketing or policy 2713 * changes. Notice that this hook is used when the actual read/write 2714 * operations are performed, whereas the inode_security_ops hook is called when 2715 * a file is opened (as well as many other operations). Although this hook can 2716 * be used to revalidate permissions for various system call operations that 2717 * read or write files, it does not address the revalidation of permissions for 2718 * memory-mapped files. Security modules must handle this separately if they 2719 * need such revalidation. 2720 * 2721 * Return: Returns 0 if permission is granted. 2722 */ 2723 int security_file_permission(struct file *file, int mask) 2724 { 2725 return call_int_hook(file_permission, file, mask); 2726 } 2727 2728 /** 2729 * security_file_alloc() - Allocate and init a file's LSM blob 2730 * @file: the file 2731 * 2732 * Allocate and attach a security structure to the file->f_security field. The 2733 * security field is initialized to NULL when the structure is first created. 2734 * 2735 * Return: Return 0 if the hook is successful and permission is granted. 2736 */ 2737 int security_file_alloc(struct file *file) 2738 { 2739 int rc = lsm_file_alloc(file); 2740 2741 if (rc) 2742 return rc; 2743 rc = call_int_hook(file_alloc_security, file); 2744 if (unlikely(rc)) 2745 security_file_free(file); 2746 return rc; 2747 } 2748 2749 /** 2750 * security_file_release() - Perform actions before releasing the file ref 2751 * @file: the file 2752 * 2753 * Perform actions before releasing the last reference to a file. 2754 */ 2755 void security_file_release(struct file *file) 2756 { 2757 call_void_hook(file_release, file); 2758 } 2759 2760 /** 2761 * security_file_free() - Free a file's LSM blob 2762 * @file: the file 2763 * 2764 * Deallocate and free any security structures stored in file->f_security. 2765 */ 2766 void security_file_free(struct file *file) 2767 { 2768 void *blob; 2769 2770 call_void_hook(file_free_security, file); 2771 2772 blob = file->f_security; 2773 if (blob) { 2774 file->f_security = NULL; 2775 kmem_cache_free(lsm_file_cache, blob); 2776 } 2777 } 2778 2779 /** 2780 * security_file_ioctl() - Check if an ioctl is allowed 2781 * @file: associated file 2782 * @cmd: ioctl cmd 2783 * @arg: ioctl arguments 2784 * 2785 * Check permission for an ioctl operation on @file. Note that @arg sometimes 2786 * represents a user space pointer; in other cases, it may be a simple integer 2787 * value. When @arg represents a user space pointer, it should never be used 2788 * by the security module. 2789 * 2790 * Return: Returns 0 if permission is granted. 2791 */ 2792 int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 2793 { 2794 return call_int_hook(file_ioctl, file, cmd, arg); 2795 } 2796 EXPORT_SYMBOL_GPL(security_file_ioctl); 2797 2798 /** 2799 * security_file_ioctl_compat() - Check if an ioctl is allowed in compat mode 2800 * @file: associated file 2801 * @cmd: ioctl cmd 2802 * @arg: ioctl arguments 2803 * 2804 * Compat version of security_file_ioctl() that correctly handles 32-bit 2805 * processes running on 64-bit kernels. 2806 * 2807 * Return: Returns 0 if permission is granted. 2808 */ 2809 int security_file_ioctl_compat(struct file *file, unsigned int cmd, 2810 unsigned long arg) 2811 { 2812 return call_int_hook(file_ioctl_compat, file, cmd, arg); 2813 } 2814 EXPORT_SYMBOL_GPL(security_file_ioctl_compat); 2815 2816 static inline unsigned long mmap_prot(struct file *file, unsigned long prot) 2817 { 2818 /* 2819 * Does we have PROT_READ and does the application expect 2820 * it to imply PROT_EXEC? If not, nothing to talk about... 2821 */ 2822 if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ) 2823 return prot; 2824 if (!(current->personality & READ_IMPLIES_EXEC)) 2825 return prot; 2826 /* 2827 * if that's an anonymous mapping, let it. 2828 */ 2829 if (!file) 2830 return prot | PROT_EXEC; 2831 /* 2832 * ditto if it's not on noexec mount, except that on !MMU we need 2833 * NOMMU_MAP_EXEC (== VM_MAYEXEC) in this case 2834 */ 2835 if (!path_noexec(&file->f_path)) { 2836 #ifndef CONFIG_MMU 2837 if (file->f_op->mmap_capabilities) { 2838 unsigned caps = file->f_op->mmap_capabilities(file); 2839 if (!(caps & NOMMU_MAP_EXEC)) 2840 return prot; 2841 } 2842 #endif 2843 return prot | PROT_EXEC; 2844 } 2845 /* anything on noexec mount won't get PROT_EXEC */ 2846 return prot; 2847 } 2848 2849 /** 2850 * security_mmap_file() - Check if mmap'ing a file is allowed 2851 * @file: file 2852 * @prot: protection applied by the kernel 2853 * @flags: flags 2854 * 2855 * Check permissions for a mmap operation. The @file may be NULL, e.g. if 2856 * mapping anonymous memory. 2857 * 2858 * Return: Returns 0 if permission is granted. 2859 */ 2860 int security_mmap_file(struct file *file, unsigned long prot, 2861 unsigned long flags) 2862 { 2863 return call_int_hook(mmap_file, file, prot, mmap_prot(file, prot), 2864 flags); 2865 } 2866 2867 /** 2868 * security_mmap_addr() - Check if mmap'ing an address is allowed 2869 * @addr: address 2870 * 2871 * Check permissions for a mmap operation at @addr. 2872 * 2873 * Return: Returns 0 if permission is granted. 2874 */ 2875 int security_mmap_addr(unsigned long addr) 2876 { 2877 return call_int_hook(mmap_addr, addr); 2878 } 2879 2880 /** 2881 * security_file_mprotect() - Check if changing memory protections is allowed 2882 * @vma: memory region 2883 * @reqprot: application requested protection 2884 * @prot: protection applied by the kernel 2885 * 2886 * Check permissions before changing memory access permissions. 2887 * 2888 * Return: Returns 0 if permission is granted. 2889 */ 2890 int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot, 2891 unsigned long prot) 2892 { 2893 return call_int_hook(file_mprotect, vma, reqprot, prot); 2894 } 2895 2896 /** 2897 * security_file_lock() - Check if a file lock is allowed 2898 * @file: file 2899 * @cmd: lock operation (e.g. F_RDLCK, F_WRLCK) 2900 * 2901 * Check permission before performing file locking operations. Note the hook 2902 * mediates both flock and fcntl style locks. 2903 * 2904 * Return: Returns 0 if permission is granted. 2905 */ 2906 int security_file_lock(struct file *file, unsigned int cmd) 2907 { 2908 return call_int_hook(file_lock, file, cmd); 2909 } 2910 2911 /** 2912 * security_file_fcntl() - Check if fcntl() op is allowed 2913 * @file: file 2914 * @cmd: fcntl command 2915 * @arg: command argument 2916 * 2917 * Check permission before allowing the file operation specified by @cmd from 2918 * being performed on the file @file. Note that @arg sometimes represents a 2919 * user space pointer; in other cases, it may be a simple integer value. When 2920 * @arg represents a user space pointer, it should never be used by the 2921 * security module. 2922 * 2923 * Return: Returns 0 if permission is granted. 2924 */ 2925 int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg) 2926 { 2927 return call_int_hook(file_fcntl, file, cmd, arg); 2928 } 2929 2930 /** 2931 * security_file_set_fowner() - Set the file owner info in the LSM blob 2932 * @file: the file 2933 * 2934 * Save owner security information (typically from current->security) in 2935 * file->f_security for later use by the send_sigiotask hook. 2936 * 2937 * Return: Returns 0 on success. 2938 */ 2939 void security_file_set_fowner(struct file *file) 2940 { 2941 call_void_hook(file_set_fowner, file); 2942 } 2943 2944 /** 2945 * security_file_send_sigiotask() - Check if sending SIGIO/SIGURG is allowed 2946 * @tsk: target task 2947 * @fown: signal sender 2948 * @sig: signal to be sent, SIGIO is sent if 0 2949 * 2950 * Check permission for the file owner @fown to send SIGIO or SIGURG to the 2951 * process @tsk. Note that this hook is sometimes called from interrupt. Note 2952 * that the fown_struct, @fown, is never outside the context of a struct file, 2953 * so the file structure (and associated security information) can always be 2954 * obtained: container_of(fown, struct file, f_owner). 2955 * 2956 * Return: Returns 0 if permission is granted. 2957 */ 2958 int security_file_send_sigiotask(struct task_struct *tsk, 2959 struct fown_struct *fown, int sig) 2960 { 2961 return call_int_hook(file_send_sigiotask, tsk, fown, sig); 2962 } 2963 2964 /** 2965 * security_file_receive() - Check if receiving a file via IPC is allowed 2966 * @file: file being received 2967 * 2968 * This hook allows security modules to control the ability of a process to 2969 * receive an open file descriptor via socket IPC. 2970 * 2971 * Return: Returns 0 if permission is granted. 2972 */ 2973 int security_file_receive(struct file *file) 2974 { 2975 return call_int_hook(file_receive, file); 2976 } 2977 2978 /** 2979 * security_file_open() - Save open() time state for late use by the LSM 2980 * @file: 2981 * 2982 * Save open-time permission checking state for later use upon file_permission, 2983 * and recheck access if anything has changed since inode_permission. 2984 * 2985 * Return: Returns 0 if permission is granted. 2986 */ 2987 int security_file_open(struct file *file) 2988 { 2989 int ret; 2990 2991 ret = call_int_hook(file_open, file); 2992 if (ret) 2993 return ret; 2994 2995 return fsnotify_open_perm(file); 2996 } 2997 2998 /** 2999 * security_file_post_open() - Evaluate a file after it has been opened 3000 * @file: the file 3001 * @mask: access mask 3002 * 3003 * Evaluate an opened file and the access mask requested with open(). The hook 3004 * is useful for LSMs that require the file content to be available in order to 3005 * make decisions. 3006 * 3007 * Return: Returns 0 if permission is granted. 3008 */ 3009 int security_file_post_open(struct file *file, int mask) 3010 { 3011 return call_int_hook(file_post_open, file, mask); 3012 } 3013 EXPORT_SYMBOL_GPL(security_file_post_open); 3014 3015 /** 3016 * security_file_truncate() - Check if truncating a file is allowed 3017 * @file: file 3018 * 3019 * Check permission before truncating a file, i.e. using ftruncate. Note that 3020 * truncation permission may also be checked based on the path, using the 3021 * @path_truncate hook. 3022 * 3023 * Return: Returns 0 if permission is granted. 3024 */ 3025 int security_file_truncate(struct file *file) 3026 { 3027 return call_int_hook(file_truncate, file); 3028 } 3029 3030 /** 3031 * security_task_alloc() - Allocate a task's LSM blob 3032 * @task: the task 3033 * @clone_flags: flags indicating what is being shared 3034 * 3035 * Handle allocation of task-related resources. 3036 * 3037 * Return: Returns a zero on success, negative values on failure. 3038 */ 3039 int security_task_alloc(struct task_struct *task, unsigned long clone_flags) 3040 { 3041 int rc = lsm_task_alloc(task); 3042 3043 if (rc) 3044 return rc; 3045 rc = call_int_hook(task_alloc, task, clone_flags); 3046 if (unlikely(rc)) 3047 security_task_free(task); 3048 return rc; 3049 } 3050 3051 /** 3052 * security_task_free() - Free a task's LSM blob and related resources 3053 * @task: task 3054 * 3055 * Handle release of task-related resources. Note that this can be called from 3056 * interrupt context. 3057 */ 3058 void security_task_free(struct task_struct *task) 3059 { 3060 call_void_hook(task_free, task); 3061 3062 kfree(task->security); 3063 task->security = NULL; 3064 } 3065 3066 /** 3067 * security_cred_alloc_blank() - Allocate the min memory to allow cred_transfer 3068 * @cred: credentials 3069 * @gfp: gfp flags 3070 * 3071 * Only allocate sufficient memory and attach to @cred such that 3072 * cred_transfer() will not get ENOMEM. 3073 * 3074 * Return: Returns 0 on success, negative values on failure. 3075 */ 3076 int security_cred_alloc_blank(struct cred *cred, gfp_t gfp) 3077 { 3078 int rc = lsm_cred_alloc(cred, gfp); 3079 3080 if (rc) 3081 return rc; 3082 3083 rc = call_int_hook(cred_alloc_blank, cred, gfp); 3084 if (unlikely(rc)) 3085 security_cred_free(cred); 3086 return rc; 3087 } 3088 3089 /** 3090 * security_cred_free() - Free the cred's LSM blob and associated resources 3091 * @cred: credentials 3092 * 3093 * Deallocate and clear the cred->security field in a set of credentials. 3094 */ 3095 void security_cred_free(struct cred *cred) 3096 { 3097 /* 3098 * There is a failure case in prepare_creds() that 3099 * may result in a call here with ->security being NULL. 3100 */ 3101 if (unlikely(cred->security == NULL)) 3102 return; 3103 3104 call_void_hook(cred_free, cred); 3105 3106 kfree(cred->security); 3107 cred->security = NULL; 3108 } 3109 3110 /** 3111 * security_prepare_creds() - Prepare a new set of credentials 3112 * @new: new credentials 3113 * @old: original credentials 3114 * @gfp: gfp flags 3115 * 3116 * Prepare a new set of credentials by copying the data from the old set. 3117 * 3118 * Return: Returns 0 on success, negative values on failure. 3119 */ 3120 int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp) 3121 { 3122 int rc = lsm_cred_alloc(new, gfp); 3123 3124 if (rc) 3125 return rc; 3126 3127 rc = call_int_hook(cred_prepare, new, old, gfp); 3128 if (unlikely(rc)) 3129 security_cred_free(new); 3130 return rc; 3131 } 3132 3133 /** 3134 * security_transfer_creds() - Transfer creds 3135 * @new: target credentials 3136 * @old: original credentials 3137 * 3138 * Transfer data from original creds to new creds. 3139 */ 3140 void security_transfer_creds(struct cred *new, const struct cred *old) 3141 { 3142 call_void_hook(cred_transfer, new, old); 3143 } 3144 3145 /** 3146 * security_cred_getsecid() - Get the secid from a set of credentials 3147 * @c: credentials 3148 * @secid: secid value 3149 * 3150 * Retrieve the security identifier of the cred structure @c. In case of 3151 * failure, @secid will be set to zero. 3152 */ 3153 void security_cred_getsecid(const struct cred *c, u32 *secid) 3154 { 3155 *secid = 0; 3156 call_void_hook(cred_getsecid, c, secid); 3157 } 3158 EXPORT_SYMBOL(security_cred_getsecid); 3159 3160 /** 3161 * security_kernel_act_as() - Set the kernel credentials to act as secid 3162 * @new: credentials 3163 * @secid: secid 3164 * 3165 * Set the credentials for a kernel service to act as (subjective context). 3166 * The current task must be the one that nominated @secid. 3167 * 3168 * Return: Returns 0 if successful. 3169 */ 3170 int security_kernel_act_as(struct cred *new, u32 secid) 3171 { 3172 return call_int_hook(kernel_act_as, new, secid); 3173 } 3174 3175 /** 3176 * security_kernel_create_files_as() - Set file creation context using an inode 3177 * @new: target credentials 3178 * @inode: reference inode 3179 * 3180 * Set the file creation context in a set of credentials to be the same as the 3181 * objective context of the specified inode. The current task must be the one 3182 * that nominated @inode. 3183 * 3184 * Return: Returns 0 if successful. 3185 */ 3186 int security_kernel_create_files_as(struct cred *new, struct inode *inode) 3187 { 3188 return call_int_hook(kernel_create_files_as, new, inode); 3189 } 3190 3191 /** 3192 * security_kernel_module_request() - Check if loading a module is allowed 3193 * @kmod_name: module name 3194 * 3195 * Ability to trigger the kernel to automatically upcall to userspace for 3196 * userspace to load a kernel module with the given name. 3197 * 3198 * Return: Returns 0 if successful. 3199 */ 3200 int security_kernel_module_request(char *kmod_name) 3201 { 3202 return call_int_hook(kernel_module_request, kmod_name); 3203 } 3204 3205 /** 3206 * security_kernel_read_file() - Read a file specified by userspace 3207 * @file: file 3208 * @id: file identifier 3209 * @contents: trust if security_kernel_post_read_file() will be called 3210 * 3211 * Read a file specified by userspace. 3212 * 3213 * Return: Returns 0 if permission is granted. 3214 */ 3215 int security_kernel_read_file(struct file *file, enum kernel_read_file_id id, 3216 bool contents) 3217 { 3218 return call_int_hook(kernel_read_file, file, id, contents); 3219 } 3220 EXPORT_SYMBOL_GPL(security_kernel_read_file); 3221 3222 /** 3223 * security_kernel_post_read_file() - Read a file specified by userspace 3224 * @file: file 3225 * @buf: file contents 3226 * @size: size of file contents 3227 * @id: file identifier 3228 * 3229 * Read a file specified by userspace. This must be paired with a prior call 3230 * to security_kernel_read_file() call that indicated this hook would also be 3231 * called, see security_kernel_read_file() for more information. 3232 * 3233 * Return: Returns 0 if permission is granted. 3234 */ 3235 int security_kernel_post_read_file(struct file *file, char *buf, loff_t size, 3236 enum kernel_read_file_id id) 3237 { 3238 return call_int_hook(kernel_post_read_file, file, buf, size, id); 3239 } 3240 EXPORT_SYMBOL_GPL(security_kernel_post_read_file); 3241 3242 /** 3243 * security_kernel_load_data() - Load data provided by userspace 3244 * @id: data identifier 3245 * @contents: true if security_kernel_post_load_data() will be called 3246 * 3247 * Load data provided by userspace. 3248 * 3249 * Return: Returns 0 if permission is granted. 3250 */ 3251 int security_kernel_load_data(enum kernel_load_data_id id, bool contents) 3252 { 3253 return call_int_hook(kernel_load_data, id, contents); 3254 } 3255 EXPORT_SYMBOL_GPL(security_kernel_load_data); 3256 3257 /** 3258 * security_kernel_post_load_data() - Load userspace data from a non-file source 3259 * @buf: data 3260 * @size: size of data 3261 * @id: data identifier 3262 * @description: text description of data, specific to the id value 3263 * 3264 * Load data provided by a non-file source (usually userspace buffer). This 3265 * must be paired with a prior security_kernel_load_data() call that indicated 3266 * this hook would also be called, see security_kernel_load_data() for more 3267 * information. 3268 * 3269 * Return: Returns 0 if permission is granted. 3270 */ 3271 int security_kernel_post_load_data(char *buf, loff_t size, 3272 enum kernel_load_data_id id, 3273 char *description) 3274 { 3275 return call_int_hook(kernel_post_load_data, buf, size, id, description); 3276 } 3277 EXPORT_SYMBOL_GPL(security_kernel_post_load_data); 3278 3279 /** 3280 * security_task_fix_setuid() - Update LSM with new user id attributes 3281 * @new: updated credentials 3282 * @old: credentials being replaced 3283 * @flags: LSM_SETID_* flag values 3284 * 3285 * Update the module's state after setting one or more of the user identity 3286 * attributes of the current process. The @flags parameter indicates which of 3287 * the set*uid system calls invoked this hook. If @new is the set of 3288 * credentials that will be installed. Modifications should be made to this 3289 * rather than to @current->cred. 3290 * 3291 * Return: Returns 0 on success. 3292 */ 3293 int security_task_fix_setuid(struct cred *new, const struct cred *old, 3294 int flags) 3295 { 3296 return call_int_hook(task_fix_setuid, new, old, flags); 3297 } 3298 3299 /** 3300 * security_task_fix_setgid() - Update LSM with new group id attributes 3301 * @new: updated credentials 3302 * @old: credentials being replaced 3303 * @flags: LSM_SETID_* flag value 3304 * 3305 * Update the module's state after setting one or more of the group identity 3306 * attributes of the current process. The @flags parameter indicates which of 3307 * the set*gid system calls invoked this hook. @new is the set of credentials 3308 * that will be installed. Modifications should be made to this rather than to 3309 * @current->cred. 3310 * 3311 * Return: Returns 0 on success. 3312 */ 3313 int security_task_fix_setgid(struct cred *new, const struct cred *old, 3314 int flags) 3315 { 3316 return call_int_hook(task_fix_setgid, new, old, flags); 3317 } 3318 3319 /** 3320 * security_task_fix_setgroups() - Update LSM with new supplementary groups 3321 * @new: updated credentials 3322 * @old: credentials being replaced 3323 * 3324 * Update the module's state after setting the supplementary group identity 3325 * attributes of the current process. @new is the set of credentials that will 3326 * be installed. Modifications should be made to this rather than to 3327 * @current->cred. 3328 * 3329 * Return: Returns 0 on success. 3330 */ 3331 int security_task_fix_setgroups(struct cred *new, const struct cred *old) 3332 { 3333 return call_int_hook(task_fix_setgroups, new, old); 3334 } 3335 3336 /** 3337 * security_task_setpgid() - Check if setting the pgid is allowed 3338 * @p: task being modified 3339 * @pgid: new pgid 3340 * 3341 * Check permission before setting the process group identifier of the process 3342 * @p to @pgid. 3343 * 3344 * Return: Returns 0 if permission is granted. 3345 */ 3346 int security_task_setpgid(struct task_struct *p, pid_t pgid) 3347 { 3348 return call_int_hook(task_setpgid, p, pgid); 3349 } 3350 3351 /** 3352 * security_task_getpgid() - Check if getting the pgid is allowed 3353 * @p: task 3354 * 3355 * Check permission before getting the process group identifier of the process 3356 * @p. 3357 * 3358 * Return: Returns 0 if permission is granted. 3359 */ 3360 int security_task_getpgid(struct task_struct *p) 3361 { 3362 return call_int_hook(task_getpgid, p); 3363 } 3364 3365 /** 3366 * security_task_getsid() - Check if getting the session id is allowed 3367 * @p: task 3368 * 3369 * Check permission before getting the session identifier of the process @p. 3370 * 3371 * Return: Returns 0 if permission is granted. 3372 */ 3373 int security_task_getsid(struct task_struct *p) 3374 { 3375 return call_int_hook(task_getsid, p); 3376 } 3377 3378 /** 3379 * security_current_getsecid_subj() - Get the current task's subjective secid 3380 * @secid: secid value 3381 * 3382 * Retrieve the subjective security identifier of the current task and return 3383 * it in @secid. In case of failure, @secid will be set to zero. 3384 */ 3385 void security_current_getsecid_subj(u32 *secid) 3386 { 3387 *secid = 0; 3388 call_void_hook(current_getsecid_subj, secid); 3389 } 3390 EXPORT_SYMBOL(security_current_getsecid_subj); 3391 3392 /** 3393 * security_task_getsecid_obj() - Get a task's objective secid 3394 * @p: target task 3395 * @secid: secid value 3396 * 3397 * Retrieve the objective security identifier of the task_struct in @p and 3398 * return it in @secid. In case of failure, @secid will be set to zero. 3399 */ 3400 void security_task_getsecid_obj(struct task_struct *p, u32 *secid) 3401 { 3402 *secid = 0; 3403 call_void_hook(task_getsecid_obj, p, secid); 3404 } 3405 EXPORT_SYMBOL(security_task_getsecid_obj); 3406 3407 /** 3408 * security_task_setnice() - Check if setting a task's nice value is allowed 3409 * @p: target task 3410 * @nice: nice value 3411 * 3412 * Check permission before setting the nice value of @p to @nice. 3413 * 3414 * Return: Returns 0 if permission is granted. 3415 */ 3416 int security_task_setnice(struct task_struct *p, int nice) 3417 { 3418 return call_int_hook(task_setnice, p, nice); 3419 } 3420 3421 /** 3422 * security_task_setioprio() - Check if setting a task's ioprio is allowed 3423 * @p: target task 3424 * @ioprio: ioprio value 3425 * 3426 * Check permission before setting the ioprio value of @p to @ioprio. 3427 * 3428 * Return: Returns 0 if permission is granted. 3429 */ 3430 int security_task_setioprio(struct task_struct *p, int ioprio) 3431 { 3432 return call_int_hook(task_setioprio, p, ioprio); 3433 } 3434 3435 /** 3436 * security_task_getioprio() - Check if getting a task's ioprio is allowed 3437 * @p: task 3438 * 3439 * Check permission before getting the ioprio value of @p. 3440 * 3441 * Return: Returns 0 if permission is granted. 3442 */ 3443 int security_task_getioprio(struct task_struct *p) 3444 { 3445 return call_int_hook(task_getioprio, p); 3446 } 3447 3448 /** 3449 * security_task_prlimit() - Check if get/setting resources limits is allowed 3450 * @cred: current task credentials 3451 * @tcred: target task credentials 3452 * @flags: LSM_PRLIMIT_* flag bits indicating a get/set/both 3453 * 3454 * Check permission before getting and/or setting the resource limits of 3455 * another task. 3456 * 3457 * Return: Returns 0 if permission is granted. 3458 */ 3459 int security_task_prlimit(const struct cred *cred, const struct cred *tcred, 3460 unsigned int flags) 3461 { 3462 return call_int_hook(task_prlimit, cred, tcred, flags); 3463 } 3464 3465 /** 3466 * security_task_setrlimit() - Check if setting a new rlimit value is allowed 3467 * @p: target task's group leader 3468 * @resource: resource whose limit is being set 3469 * @new_rlim: new resource limit 3470 * 3471 * Check permission before setting the resource limits of process @p for 3472 * @resource to @new_rlim. The old resource limit values can be examined by 3473 * dereferencing (p->signal->rlim + resource). 3474 * 3475 * Return: Returns 0 if permission is granted. 3476 */ 3477 int security_task_setrlimit(struct task_struct *p, unsigned int resource, 3478 struct rlimit *new_rlim) 3479 { 3480 return call_int_hook(task_setrlimit, p, resource, new_rlim); 3481 } 3482 3483 /** 3484 * security_task_setscheduler() - Check if setting sched policy/param is allowed 3485 * @p: target task 3486 * 3487 * Check permission before setting scheduling policy and/or parameters of 3488 * process @p. 3489 * 3490 * Return: Returns 0 if permission is granted. 3491 */ 3492 int security_task_setscheduler(struct task_struct *p) 3493 { 3494 return call_int_hook(task_setscheduler, p); 3495 } 3496 3497 /** 3498 * security_task_getscheduler() - Check if getting scheduling info is allowed 3499 * @p: target task 3500 * 3501 * Check permission before obtaining scheduling information for process @p. 3502 * 3503 * Return: Returns 0 if permission is granted. 3504 */ 3505 int security_task_getscheduler(struct task_struct *p) 3506 { 3507 return call_int_hook(task_getscheduler, p); 3508 } 3509 3510 /** 3511 * security_task_movememory() - Check if moving memory is allowed 3512 * @p: task 3513 * 3514 * Check permission before moving memory owned by process @p. 3515 * 3516 * Return: Returns 0 if permission is granted. 3517 */ 3518 int security_task_movememory(struct task_struct *p) 3519 { 3520 return call_int_hook(task_movememory, p); 3521 } 3522 3523 /** 3524 * security_task_kill() - Check if sending a signal is allowed 3525 * @p: target process 3526 * @info: signal information 3527 * @sig: signal value 3528 * @cred: credentials of the signal sender, NULL if @current 3529 * 3530 * Check permission before sending signal @sig to @p. @info can be NULL, the 3531 * constant 1, or a pointer to a kernel_siginfo structure. If @info is 1 or 3532 * SI_FROMKERNEL(info) is true, then the signal should be viewed as coming from 3533 * the kernel and should typically be permitted. SIGIO signals are handled 3534 * separately by the send_sigiotask hook in file_security_ops. 3535 * 3536 * Return: Returns 0 if permission is granted. 3537 */ 3538 int security_task_kill(struct task_struct *p, struct kernel_siginfo *info, 3539 int sig, const struct cred *cred) 3540 { 3541 return call_int_hook(task_kill, p, info, sig, cred); 3542 } 3543 3544 /** 3545 * security_task_prctl() - Check if a prctl op is allowed 3546 * @option: operation 3547 * @arg2: argument 3548 * @arg3: argument 3549 * @arg4: argument 3550 * @arg5: argument 3551 * 3552 * Check permission before performing a process control operation on the 3553 * current process. 3554 * 3555 * Return: Return -ENOSYS if no-one wanted to handle this op, any other value 3556 * to cause prctl() to return immediately with that value. 3557 */ 3558 int security_task_prctl(int option, unsigned long arg2, unsigned long arg3, 3559 unsigned long arg4, unsigned long arg5) 3560 { 3561 int thisrc; 3562 int rc = LSM_RET_DEFAULT(task_prctl); 3563 struct security_hook_list *hp; 3564 3565 hlist_for_each_entry(hp, &security_hook_heads.task_prctl, list) { 3566 thisrc = hp->hook.task_prctl(option, arg2, arg3, arg4, arg5); 3567 if (thisrc != LSM_RET_DEFAULT(task_prctl)) { 3568 rc = thisrc; 3569 if (thisrc != 0) 3570 break; 3571 } 3572 } 3573 return rc; 3574 } 3575 3576 /** 3577 * security_task_to_inode() - Set the security attributes of a task's inode 3578 * @p: task 3579 * @inode: inode 3580 * 3581 * Set the security attributes for an inode based on an associated task's 3582 * security attributes, e.g. for /proc/pid inodes. 3583 */ 3584 void security_task_to_inode(struct task_struct *p, struct inode *inode) 3585 { 3586 call_void_hook(task_to_inode, p, inode); 3587 } 3588 3589 /** 3590 * security_create_user_ns() - Check if creating a new userns is allowed 3591 * @cred: prepared creds 3592 * 3593 * Check permission prior to creating a new user namespace. 3594 * 3595 * Return: Returns 0 if successful, otherwise < 0 error code. 3596 */ 3597 int security_create_user_ns(const struct cred *cred) 3598 { 3599 return call_int_hook(userns_create, cred); 3600 } 3601 3602 /** 3603 * security_ipc_permission() - Check if sysv ipc access is allowed 3604 * @ipcp: ipc permission structure 3605 * @flag: requested permissions 3606 * 3607 * Check permissions for access to IPC. 3608 * 3609 * Return: Returns 0 if permission is granted. 3610 */ 3611 int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag) 3612 { 3613 return call_int_hook(ipc_permission, ipcp, flag); 3614 } 3615 3616 /** 3617 * security_ipc_getsecid() - Get the sysv ipc object's secid 3618 * @ipcp: ipc permission structure 3619 * @secid: secid pointer 3620 * 3621 * Get the secid associated with the ipc object. In case of failure, @secid 3622 * will be set to zero. 3623 */ 3624 void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid) 3625 { 3626 *secid = 0; 3627 call_void_hook(ipc_getsecid, ipcp, secid); 3628 } 3629 3630 /** 3631 * security_msg_msg_alloc() - Allocate a sysv ipc message LSM blob 3632 * @msg: message structure 3633 * 3634 * Allocate and attach a security structure to the msg->security field. The 3635 * security field is initialized to NULL when the structure is first created. 3636 * 3637 * Return: Return 0 if operation was successful and permission is granted. 3638 */ 3639 int security_msg_msg_alloc(struct msg_msg *msg) 3640 { 3641 int rc = lsm_msg_msg_alloc(msg); 3642 3643 if (unlikely(rc)) 3644 return rc; 3645 rc = call_int_hook(msg_msg_alloc_security, msg); 3646 if (unlikely(rc)) 3647 security_msg_msg_free(msg); 3648 return rc; 3649 } 3650 3651 /** 3652 * security_msg_msg_free() - Free a sysv ipc message LSM blob 3653 * @msg: message structure 3654 * 3655 * Deallocate the security structure for this message. 3656 */ 3657 void security_msg_msg_free(struct msg_msg *msg) 3658 { 3659 call_void_hook(msg_msg_free_security, msg); 3660 kfree(msg->security); 3661 msg->security = NULL; 3662 } 3663 3664 /** 3665 * security_msg_queue_alloc() - Allocate a sysv ipc msg queue LSM blob 3666 * @msq: sysv ipc permission structure 3667 * 3668 * Allocate and attach a security structure to @msg. The security field is 3669 * initialized to NULL when the structure is first created. 3670 * 3671 * Return: Returns 0 if operation was successful and permission is granted. 3672 */ 3673 int security_msg_queue_alloc(struct kern_ipc_perm *msq) 3674 { 3675 int rc = lsm_ipc_alloc(msq); 3676 3677 if (unlikely(rc)) 3678 return rc; 3679 rc = call_int_hook(msg_queue_alloc_security, msq); 3680 if (unlikely(rc)) 3681 security_msg_queue_free(msq); 3682 return rc; 3683 } 3684 3685 /** 3686 * security_msg_queue_free() - Free a sysv ipc msg queue LSM blob 3687 * @msq: sysv ipc permission structure 3688 * 3689 * Deallocate security field @perm->security for the message queue. 3690 */ 3691 void security_msg_queue_free(struct kern_ipc_perm *msq) 3692 { 3693 call_void_hook(msg_queue_free_security, msq); 3694 kfree(msq->security); 3695 msq->security = NULL; 3696 } 3697 3698 /** 3699 * security_msg_queue_associate() - Check if a msg queue operation is allowed 3700 * @msq: sysv ipc permission structure 3701 * @msqflg: operation flags 3702 * 3703 * Check permission when a message queue is requested through the msgget system 3704 * call. This hook is only called when returning the message queue identifier 3705 * for an existing message queue, not when a new message queue is created. 3706 * 3707 * Return: Return 0 if permission is granted. 3708 */ 3709 int security_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg) 3710 { 3711 return call_int_hook(msg_queue_associate, msq, msqflg); 3712 } 3713 3714 /** 3715 * security_msg_queue_msgctl() - Check if a msg queue operation is allowed 3716 * @msq: sysv ipc permission structure 3717 * @cmd: operation 3718 * 3719 * Check permission when a message control operation specified by @cmd is to be 3720 * performed on the message queue with permissions. 3721 * 3722 * Return: Returns 0 if permission is granted. 3723 */ 3724 int security_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd) 3725 { 3726 return call_int_hook(msg_queue_msgctl, msq, cmd); 3727 } 3728 3729 /** 3730 * security_msg_queue_msgsnd() - Check if sending a sysv ipc message is allowed 3731 * @msq: sysv ipc permission structure 3732 * @msg: message 3733 * @msqflg: operation flags 3734 * 3735 * Check permission before a message, @msg, is enqueued on the message queue 3736 * with permissions specified in @msq. 3737 * 3738 * Return: Returns 0 if permission is granted. 3739 */ 3740 int security_msg_queue_msgsnd(struct kern_ipc_perm *msq, 3741 struct msg_msg *msg, int msqflg) 3742 { 3743 return call_int_hook(msg_queue_msgsnd, msq, msg, msqflg); 3744 } 3745 3746 /** 3747 * security_msg_queue_msgrcv() - Check if receiving a sysv ipc msg is allowed 3748 * @msq: sysv ipc permission structure 3749 * @msg: message 3750 * @target: target task 3751 * @type: type of message requested 3752 * @mode: operation flags 3753 * 3754 * Check permission before a message, @msg, is removed from the message queue. 3755 * The @target task structure contains a pointer to the process that will be 3756 * receiving the message (not equal to the current process when inline receives 3757 * are being performed). 3758 * 3759 * Return: Returns 0 if permission is granted. 3760 */ 3761 int security_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg, 3762 struct task_struct *target, long type, int mode) 3763 { 3764 return call_int_hook(msg_queue_msgrcv, msq, msg, target, type, mode); 3765 } 3766 3767 /** 3768 * security_shm_alloc() - Allocate a sysv shm LSM blob 3769 * @shp: sysv ipc permission structure 3770 * 3771 * Allocate and attach a security structure to the @shp security field. The 3772 * security field is initialized to NULL when the structure is first created. 3773 * 3774 * Return: Returns 0 if operation was successful and permission is granted. 3775 */ 3776 int security_shm_alloc(struct kern_ipc_perm *shp) 3777 { 3778 int rc = lsm_ipc_alloc(shp); 3779 3780 if (unlikely(rc)) 3781 return rc; 3782 rc = call_int_hook(shm_alloc_security, shp); 3783 if (unlikely(rc)) 3784 security_shm_free(shp); 3785 return rc; 3786 } 3787 3788 /** 3789 * security_shm_free() - Free a sysv shm LSM blob 3790 * @shp: sysv ipc permission structure 3791 * 3792 * Deallocate the security structure @perm->security for the memory segment. 3793 */ 3794 void security_shm_free(struct kern_ipc_perm *shp) 3795 { 3796 call_void_hook(shm_free_security, shp); 3797 kfree(shp->security); 3798 shp->security = NULL; 3799 } 3800 3801 /** 3802 * security_shm_associate() - Check if a sysv shm operation is allowed 3803 * @shp: sysv ipc permission structure 3804 * @shmflg: operation flags 3805 * 3806 * Check permission when a shared memory region is requested through the shmget 3807 * system call. This hook is only called when returning the shared memory 3808 * region identifier for an existing region, not when a new shared memory 3809 * region is created. 3810 * 3811 * Return: Returns 0 if permission is granted. 3812 */ 3813 int security_shm_associate(struct kern_ipc_perm *shp, int shmflg) 3814 { 3815 return call_int_hook(shm_associate, shp, shmflg); 3816 } 3817 3818 /** 3819 * security_shm_shmctl() - Check if a sysv shm operation is allowed 3820 * @shp: sysv ipc permission structure 3821 * @cmd: operation 3822 * 3823 * Check permission when a shared memory control operation specified by @cmd is 3824 * to be performed on the shared memory region with permissions in @shp. 3825 * 3826 * Return: Return 0 if permission is granted. 3827 */ 3828 int security_shm_shmctl(struct kern_ipc_perm *shp, int cmd) 3829 { 3830 return call_int_hook(shm_shmctl, shp, cmd); 3831 } 3832 3833 /** 3834 * security_shm_shmat() - Check if a sysv shm attach operation is allowed 3835 * @shp: sysv ipc permission structure 3836 * @shmaddr: address of memory region to attach 3837 * @shmflg: operation flags 3838 * 3839 * Check permissions prior to allowing the shmat system call to attach the 3840 * shared memory segment with permissions @shp to the data segment of the 3841 * calling process. The attaching address is specified by @shmaddr. 3842 * 3843 * Return: Returns 0 if permission is granted. 3844 */ 3845 int security_shm_shmat(struct kern_ipc_perm *shp, 3846 char __user *shmaddr, int shmflg) 3847 { 3848 return call_int_hook(shm_shmat, shp, shmaddr, shmflg); 3849 } 3850 3851 /** 3852 * security_sem_alloc() - Allocate a sysv semaphore LSM blob 3853 * @sma: sysv ipc permission structure 3854 * 3855 * Allocate and attach a security structure to the @sma security field. The 3856 * security field is initialized to NULL when the structure is first created. 3857 * 3858 * Return: Returns 0 if operation was successful and permission is granted. 3859 */ 3860 int security_sem_alloc(struct kern_ipc_perm *sma) 3861 { 3862 int rc = lsm_ipc_alloc(sma); 3863 3864 if (unlikely(rc)) 3865 return rc; 3866 rc = call_int_hook(sem_alloc_security, sma); 3867 if (unlikely(rc)) 3868 security_sem_free(sma); 3869 return rc; 3870 } 3871 3872 /** 3873 * security_sem_free() - Free a sysv semaphore LSM blob 3874 * @sma: sysv ipc permission structure 3875 * 3876 * Deallocate security structure @sma->security for the semaphore. 3877 */ 3878 void security_sem_free(struct kern_ipc_perm *sma) 3879 { 3880 call_void_hook(sem_free_security, sma); 3881 kfree(sma->security); 3882 sma->security = NULL; 3883 } 3884 3885 /** 3886 * security_sem_associate() - Check if a sysv semaphore operation is allowed 3887 * @sma: sysv ipc permission structure 3888 * @semflg: operation flags 3889 * 3890 * Check permission when a semaphore is requested through the semget system 3891 * call. This hook is only called when returning the semaphore identifier for 3892 * an existing semaphore, not when a new one must be created. 3893 * 3894 * Return: Returns 0 if permission is granted. 3895 */ 3896 int security_sem_associate(struct kern_ipc_perm *sma, int semflg) 3897 { 3898 return call_int_hook(sem_associate, sma, semflg); 3899 } 3900 3901 /** 3902 * security_sem_semctl() - Check if a sysv semaphore operation is allowed 3903 * @sma: sysv ipc permission structure 3904 * @cmd: operation 3905 * 3906 * Check permission when a semaphore operation specified by @cmd is to be 3907 * performed on the semaphore. 3908 * 3909 * Return: Returns 0 if permission is granted. 3910 */ 3911 int security_sem_semctl(struct kern_ipc_perm *sma, int cmd) 3912 { 3913 return call_int_hook(sem_semctl, sma, cmd); 3914 } 3915 3916 /** 3917 * security_sem_semop() - Check if a sysv semaphore operation is allowed 3918 * @sma: sysv ipc permission structure 3919 * @sops: operations to perform 3920 * @nsops: number of operations 3921 * @alter: flag indicating changes will be made 3922 * 3923 * Check permissions before performing operations on members of the semaphore 3924 * set. If the @alter flag is nonzero, the semaphore set may be modified. 3925 * 3926 * Return: Returns 0 if permission is granted. 3927 */ 3928 int security_sem_semop(struct kern_ipc_perm *sma, struct sembuf *sops, 3929 unsigned nsops, int alter) 3930 { 3931 return call_int_hook(sem_semop, sma, sops, nsops, alter); 3932 } 3933 3934 /** 3935 * security_d_instantiate() - Populate an inode's LSM state based on a dentry 3936 * @dentry: dentry 3937 * @inode: inode 3938 * 3939 * Fill in @inode security information for a @dentry if allowed. 3940 */ 3941 void security_d_instantiate(struct dentry *dentry, struct inode *inode) 3942 { 3943 if (unlikely(inode && IS_PRIVATE(inode))) 3944 return; 3945 call_void_hook(d_instantiate, dentry, inode); 3946 } 3947 EXPORT_SYMBOL(security_d_instantiate); 3948 3949 /* 3950 * Please keep this in sync with it's counterpart in security/lsm_syscalls.c 3951 */ 3952 3953 /** 3954 * security_getselfattr - Read an LSM attribute of the current process. 3955 * @attr: which attribute to return 3956 * @uctx: the user-space destination for the information, or NULL 3957 * @size: pointer to the size of space available to receive the data 3958 * @flags: special handling options. LSM_FLAG_SINGLE indicates that only 3959 * attributes associated with the LSM identified in the passed @ctx be 3960 * reported. 3961 * 3962 * A NULL value for @uctx can be used to get both the number of attributes 3963 * and the size of the data. 3964 * 3965 * Returns the number of attributes found on success, negative value 3966 * on error. @size is reset to the total size of the data. 3967 * If @size is insufficient to contain the data -E2BIG is returned. 3968 */ 3969 int security_getselfattr(unsigned int attr, struct lsm_ctx __user *uctx, 3970 u32 __user *size, u32 flags) 3971 { 3972 struct security_hook_list *hp; 3973 struct lsm_ctx lctx = { .id = LSM_ID_UNDEF, }; 3974 u8 __user *base = (u8 __user *)uctx; 3975 u32 entrysize; 3976 u32 total = 0; 3977 u32 left; 3978 bool toobig = false; 3979 bool single = false; 3980 int count = 0; 3981 int rc; 3982 3983 if (attr == LSM_ATTR_UNDEF) 3984 return -EINVAL; 3985 if (size == NULL) 3986 return -EINVAL; 3987 if (get_user(left, size)) 3988 return -EFAULT; 3989 3990 if (flags) { 3991 /* 3992 * Only flag supported is LSM_FLAG_SINGLE 3993 */ 3994 if (flags != LSM_FLAG_SINGLE || !uctx) 3995 return -EINVAL; 3996 if (copy_from_user(&lctx, uctx, sizeof(lctx))) 3997 return -EFAULT; 3998 /* 3999 * If the LSM ID isn't specified it is an error. 4000 */ 4001 if (lctx.id == LSM_ID_UNDEF) 4002 return -EINVAL; 4003 single = true; 4004 } 4005 4006 /* 4007 * In the usual case gather all the data from the LSMs. 4008 * In the single case only get the data from the LSM specified. 4009 */ 4010 hlist_for_each_entry(hp, &security_hook_heads.getselfattr, list) { 4011 if (single && lctx.id != hp->lsmid->id) 4012 continue; 4013 entrysize = left; 4014 if (base) 4015 uctx = (struct lsm_ctx __user *)(base + total); 4016 rc = hp->hook.getselfattr(attr, uctx, &entrysize, flags); 4017 if (rc == -EOPNOTSUPP) { 4018 rc = 0; 4019 continue; 4020 } 4021 if (rc == -E2BIG) { 4022 rc = 0; 4023 left = 0; 4024 toobig = true; 4025 } else if (rc < 0) 4026 return rc; 4027 else 4028 left -= entrysize; 4029 4030 total += entrysize; 4031 count += rc; 4032 if (single) 4033 break; 4034 } 4035 if (put_user(total, size)) 4036 return -EFAULT; 4037 if (toobig) 4038 return -E2BIG; 4039 if (count == 0) 4040 return LSM_RET_DEFAULT(getselfattr); 4041 return count; 4042 } 4043 4044 /* 4045 * Please keep this in sync with it's counterpart in security/lsm_syscalls.c 4046 */ 4047 4048 /** 4049 * security_setselfattr - Set an LSM attribute on the current process. 4050 * @attr: which attribute to set 4051 * @uctx: the user-space source for the information 4052 * @size: the size of the data 4053 * @flags: reserved for future use, must be 0 4054 * 4055 * Set an LSM attribute for the current process. The LSM, attribute 4056 * and new value are included in @uctx. 4057 * 4058 * Returns 0 on success, -EINVAL if the input is inconsistent, -EFAULT 4059 * if the user buffer is inaccessible, E2BIG if size is too big, or an 4060 * LSM specific failure. 4061 */ 4062 int security_setselfattr(unsigned int attr, struct lsm_ctx __user *uctx, 4063 u32 size, u32 flags) 4064 { 4065 struct security_hook_list *hp; 4066 struct lsm_ctx *lctx; 4067 int rc = LSM_RET_DEFAULT(setselfattr); 4068 u64 required_len; 4069 4070 if (flags) 4071 return -EINVAL; 4072 if (size < sizeof(*lctx)) 4073 return -EINVAL; 4074 if (size > PAGE_SIZE) 4075 return -E2BIG; 4076 4077 lctx = memdup_user(uctx, size); 4078 if (IS_ERR(lctx)) 4079 return PTR_ERR(lctx); 4080 4081 if (size < lctx->len || 4082 check_add_overflow(sizeof(*lctx), lctx->ctx_len, &required_len) || 4083 lctx->len < required_len) { 4084 rc = -EINVAL; 4085 goto free_out; 4086 } 4087 4088 hlist_for_each_entry(hp, &security_hook_heads.setselfattr, list) 4089 if ((hp->lsmid->id) == lctx->id) { 4090 rc = hp->hook.setselfattr(attr, lctx, size, flags); 4091 break; 4092 } 4093 4094 free_out: 4095 kfree(lctx); 4096 return rc; 4097 } 4098 4099 /** 4100 * security_getprocattr() - Read an attribute for a task 4101 * @p: the task 4102 * @lsmid: LSM identification 4103 * @name: attribute name 4104 * @value: attribute value 4105 * 4106 * Read attribute @name for task @p and store it into @value if allowed. 4107 * 4108 * Return: Returns the length of @value on success, a negative value otherwise. 4109 */ 4110 int security_getprocattr(struct task_struct *p, int lsmid, const char *name, 4111 char **value) 4112 { 4113 struct security_hook_list *hp; 4114 4115 hlist_for_each_entry(hp, &security_hook_heads.getprocattr, list) { 4116 if (lsmid != 0 && lsmid != hp->lsmid->id) 4117 continue; 4118 return hp->hook.getprocattr(p, name, value); 4119 } 4120 return LSM_RET_DEFAULT(getprocattr); 4121 } 4122 4123 /** 4124 * security_setprocattr() - Set an attribute for a task 4125 * @lsmid: LSM identification 4126 * @name: attribute name 4127 * @value: attribute value 4128 * @size: attribute value size 4129 * 4130 * Write (set) the current task's attribute @name to @value, size @size if 4131 * allowed. 4132 * 4133 * Return: Returns bytes written on success, a negative value otherwise. 4134 */ 4135 int security_setprocattr(int lsmid, const char *name, void *value, size_t size) 4136 { 4137 struct security_hook_list *hp; 4138 4139 hlist_for_each_entry(hp, &security_hook_heads.setprocattr, list) { 4140 if (lsmid != 0 && lsmid != hp->lsmid->id) 4141 continue; 4142 return hp->hook.setprocattr(name, value, size); 4143 } 4144 return LSM_RET_DEFAULT(setprocattr); 4145 } 4146 4147 /** 4148 * security_netlink_send() - Save info and check if netlink sending is allowed 4149 * @sk: sending socket 4150 * @skb: netlink message 4151 * 4152 * Save security information for a netlink message so that permission checking 4153 * can be performed when the message is processed. The security information 4154 * can be saved using the eff_cap field of the netlink_skb_parms structure. 4155 * Also may be used to provide fine grained control over message transmission. 4156 * 4157 * Return: Returns 0 if the information was successfully saved and message is 4158 * allowed to be transmitted. 4159 */ 4160 int security_netlink_send(struct sock *sk, struct sk_buff *skb) 4161 { 4162 return call_int_hook(netlink_send, sk, skb); 4163 } 4164 4165 /** 4166 * security_ismaclabel() - Check if the named attribute is a MAC label 4167 * @name: full extended attribute name 4168 * 4169 * Check if the extended attribute specified by @name represents a MAC label. 4170 * 4171 * Return: Returns 1 if name is a MAC attribute otherwise returns 0. 4172 */ 4173 int security_ismaclabel(const char *name) 4174 { 4175 return call_int_hook(ismaclabel, name); 4176 } 4177 EXPORT_SYMBOL(security_ismaclabel); 4178 4179 /** 4180 * security_secid_to_secctx() - Convert a secid to a secctx 4181 * @secid: secid 4182 * @secdata: secctx 4183 * @seclen: secctx length 4184 * 4185 * Convert secid to security context. If @secdata is NULL the length of the 4186 * result will be returned in @seclen, but no @secdata will be returned. This 4187 * does mean that the length could change between calls to check the length and 4188 * the next call which actually allocates and returns the @secdata. 4189 * 4190 * Return: Return 0 on success, error on failure. 4191 */ 4192 int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen) 4193 { 4194 return call_int_hook(secid_to_secctx, secid, secdata, seclen); 4195 } 4196 EXPORT_SYMBOL(security_secid_to_secctx); 4197 4198 /** 4199 * security_secctx_to_secid() - Convert a secctx to a secid 4200 * @secdata: secctx 4201 * @seclen: length of secctx 4202 * @secid: secid 4203 * 4204 * Convert security context to secid. 4205 * 4206 * Return: Returns 0 on success, error on failure. 4207 */ 4208 int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid) 4209 { 4210 *secid = 0; 4211 return call_int_hook(secctx_to_secid, secdata, seclen, secid); 4212 } 4213 EXPORT_SYMBOL(security_secctx_to_secid); 4214 4215 /** 4216 * security_release_secctx() - Free a secctx buffer 4217 * @secdata: secctx 4218 * @seclen: length of secctx 4219 * 4220 * Release the security context. 4221 */ 4222 void security_release_secctx(char *secdata, u32 seclen) 4223 { 4224 call_void_hook(release_secctx, secdata, seclen); 4225 } 4226 EXPORT_SYMBOL(security_release_secctx); 4227 4228 /** 4229 * security_inode_invalidate_secctx() - Invalidate an inode's security label 4230 * @inode: inode 4231 * 4232 * Notify the security module that it must revalidate the security context of 4233 * an inode. 4234 */ 4235 void security_inode_invalidate_secctx(struct inode *inode) 4236 { 4237 call_void_hook(inode_invalidate_secctx, inode); 4238 } 4239 EXPORT_SYMBOL(security_inode_invalidate_secctx); 4240 4241 /** 4242 * security_inode_notifysecctx() - Notify the LSM of an inode's security label 4243 * @inode: inode 4244 * @ctx: secctx 4245 * @ctxlen: length of secctx 4246 * 4247 * Notify the security module of what the security context of an inode should 4248 * be. Initializes the incore security context managed by the security module 4249 * for this inode. Example usage: NFS client invokes this hook to initialize 4250 * the security context in its incore inode to the value provided by the server 4251 * for the file when the server returned the file's attributes to the client. 4252 * Must be called with inode->i_mutex locked. 4253 * 4254 * Return: Returns 0 on success, error on failure. 4255 */ 4256 int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen) 4257 { 4258 return call_int_hook(inode_notifysecctx, inode, ctx, ctxlen); 4259 } 4260 EXPORT_SYMBOL(security_inode_notifysecctx); 4261 4262 /** 4263 * security_inode_setsecctx() - Change the security label of an inode 4264 * @dentry: inode 4265 * @ctx: secctx 4266 * @ctxlen: length of secctx 4267 * 4268 * Change the security context of an inode. Updates the incore security 4269 * context managed by the security module and invokes the fs code as needed 4270 * (via __vfs_setxattr_noperm) to update any backing xattrs that represent the 4271 * context. Example usage: NFS server invokes this hook to change the security 4272 * context in its incore inode and on the backing filesystem to a value 4273 * provided by the client on a SETATTR operation. Must be called with 4274 * inode->i_mutex locked. 4275 * 4276 * Return: Returns 0 on success, error on failure. 4277 */ 4278 int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen) 4279 { 4280 return call_int_hook(inode_setsecctx, dentry, ctx, ctxlen); 4281 } 4282 EXPORT_SYMBOL(security_inode_setsecctx); 4283 4284 /** 4285 * security_inode_getsecctx() - Get the security label of an inode 4286 * @inode: inode 4287 * @ctx: secctx 4288 * @ctxlen: length of secctx 4289 * 4290 * On success, returns 0 and fills out @ctx and @ctxlen with the security 4291 * context for the given @inode. 4292 * 4293 * Return: Returns 0 on success, error on failure. 4294 */ 4295 int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen) 4296 { 4297 return call_int_hook(inode_getsecctx, inode, ctx, ctxlen); 4298 } 4299 EXPORT_SYMBOL(security_inode_getsecctx); 4300 4301 #ifdef CONFIG_WATCH_QUEUE 4302 /** 4303 * security_post_notification() - Check if a watch notification can be posted 4304 * @w_cred: credentials of the task that set the watch 4305 * @cred: credentials of the task which triggered the watch 4306 * @n: the notification 4307 * 4308 * Check to see if a watch notification can be posted to a particular queue. 4309 * 4310 * Return: Returns 0 if permission is granted. 4311 */ 4312 int security_post_notification(const struct cred *w_cred, 4313 const struct cred *cred, 4314 struct watch_notification *n) 4315 { 4316 return call_int_hook(post_notification, w_cred, cred, n); 4317 } 4318 #endif /* CONFIG_WATCH_QUEUE */ 4319 4320 #ifdef CONFIG_KEY_NOTIFICATIONS 4321 /** 4322 * security_watch_key() - Check if a task is allowed to watch for key events 4323 * @key: the key to watch 4324 * 4325 * Check to see if a process is allowed to watch for event notifications from 4326 * a key or keyring. 4327 * 4328 * Return: Returns 0 if permission is granted. 4329 */ 4330 int security_watch_key(struct key *key) 4331 { 4332 return call_int_hook(watch_key, key); 4333 } 4334 #endif /* CONFIG_KEY_NOTIFICATIONS */ 4335 4336 #ifdef CONFIG_SECURITY_NETWORK 4337 /** 4338 * security_unix_stream_connect() - Check if a AF_UNIX stream is allowed 4339 * @sock: originating sock 4340 * @other: peer sock 4341 * @newsk: new sock 4342 * 4343 * Check permissions before establishing a Unix domain stream connection 4344 * between @sock and @other. 4345 * 4346 * The @unix_stream_connect and @unix_may_send hooks were necessary because 4347 * Linux provides an alternative to the conventional file name space for Unix 4348 * domain sockets. Whereas binding and connecting to sockets in the file name 4349 * space is mediated by the typical file permissions (and caught by the mknod 4350 * and permission hooks in inode_security_ops), binding and connecting to 4351 * sockets in the abstract name space is completely unmediated. Sufficient 4352 * control of Unix domain sockets in the abstract name space isn't possible 4353 * using only the socket layer hooks, since we need to know the actual target 4354 * socket, which is not looked up until we are inside the af_unix code. 4355 * 4356 * Return: Returns 0 if permission is granted. 4357 */ 4358 int security_unix_stream_connect(struct sock *sock, struct sock *other, 4359 struct sock *newsk) 4360 { 4361 return call_int_hook(unix_stream_connect, sock, other, newsk); 4362 } 4363 EXPORT_SYMBOL(security_unix_stream_connect); 4364 4365 /** 4366 * security_unix_may_send() - Check if AF_UNIX socket can send datagrams 4367 * @sock: originating sock 4368 * @other: peer sock 4369 * 4370 * Check permissions before connecting or sending datagrams from @sock to 4371 * @other. 4372 * 4373 * The @unix_stream_connect and @unix_may_send hooks were necessary because 4374 * Linux provides an alternative to the conventional file name space for Unix 4375 * domain sockets. Whereas binding and connecting to sockets in the file name 4376 * space is mediated by the typical file permissions (and caught by the mknod 4377 * and permission hooks in inode_security_ops), binding and connecting to 4378 * sockets in the abstract name space is completely unmediated. Sufficient 4379 * control of Unix domain sockets in the abstract name space isn't possible 4380 * using only the socket layer hooks, since we need to know the actual target 4381 * socket, which is not looked up until we are inside the af_unix code. 4382 * 4383 * Return: Returns 0 if permission is granted. 4384 */ 4385 int security_unix_may_send(struct socket *sock, struct socket *other) 4386 { 4387 return call_int_hook(unix_may_send, sock, other); 4388 } 4389 EXPORT_SYMBOL(security_unix_may_send); 4390 4391 /** 4392 * security_socket_create() - Check if creating a new socket is allowed 4393 * @family: protocol family 4394 * @type: communications type 4395 * @protocol: requested protocol 4396 * @kern: set to 1 if a kernel socket is requested 4397 * 4398 * Check permissions prior to creating a new socket. 4399 * 4400 * Return: Returns 0 if permission is granted. 4401 */ 4402 int security_socket_create(int family, int type, int protocol, int kern) 4403 { 4404 return call_int_hook(socket_create, family, type, protocol, kern); 4405 } 4406 4407 /** 4408 * security_socket_post_create() - Initialize a newly created socket 4409 * @sock: socket 4410 * @family: protocol family 4411 * @type: communications type 4412 * @protocol: requested protocol 4413 * @kern: set to 1 if a kernel socket is requested 4414 * 4415 * This hook allows a module to update or allocate a per-socket security 4416 * structure. Note that the security field was not added directly to the socket 4417 * structure, but rather, the socket security information is stored in the 4418 * associated inode. Typically, the inode alloc_security hook will allocate 4419 * and attach security information to SOCK_INODE(sock)->i_security. This hook 4420 * may be used to update the SOCK_INODE(sock)->i_security field with additional 4421 * information that wasn't available when the inode was allocated. 4422 * 4423 * Return: Returns 0 if permission is granted. 4424 */ 4425 int security_socket_post_create(struct socket *sock, int family, 4426 int type, int protocol, int kern) 4427 { 4428 return call_int_hook(socket_post_create, sock, family, type, 4429 protocol, kern); 4430 } 4431 4432 /** 4433 * security_socket_socketpair() - Check if creating a socketpair is allowed 4434 * @socka: first socket 4435 * @sockb: second socket 4436 * 4437 * Check permissions before creating a fresh pair of sockets. 4438 * 4439 * Return: Returns 0 if permission is granted and the connection was 4440 * established. 4441 */ 4442 int security_socket_socketpair(struct socket *socka, struct socket *sockb) 4443 { 4444 return call_int_hook(socket_socketpair, socka, sockb); 4445 } 4446 EXPORT_SYMBOL(security_socket_socketpair); 4447 4448 /** 4449 * security_socket_bind() - Check if a socket bind operation is allowed 4450 * @sock: socket 4451 * @address: requested bind address 4452 * @addrlen: length of address 4453 * 4454 * Check permission before socket protocol layer bind operation is performed 4455 * and the socket @sock is bound to the address specified in the @address 4456 * parameter. 4457 * 4458 * Return: Returns 0 if permission is granted. 4459 */ 4460 int security_socket_bind(struct socket *sock, 4461 struct sockaddr *address, int addrlen) 4462 { 4463 return call_int_hook(socket_bind, sock, address, addrlen); 4464 } 4465 4466 /** 4467 * security_socket_connect() - Check if a socket connect operation is allowed 4468 * @sock: socket 4469 * @address: address of remote connection point 4470 * @addrlen: length of address 4471 * 4472 * Check permission before socket protocol layer connect operation attempts to 4473 * connect socket @sock to a remote address, @address. 4474 * 4475 * Return: Returns 0 if permission is granted. 4476 */ 4477 int security_socket_connect(struct socket *sock, 4478 struct sockaddr *address, int addrlen) 4479 { 4480 return call_int_hook(socket_connect, sock, address, addrlen); 4481 } 4482 4483 /** 4484 * security_socket_listen() - Check if a socket is allowed to listen 4485 * @sock: socket 4486 * @backlog: connection queue size 4487 * 4488 * Check permission before socket protocol layer listen operation. 4489 * 4490 * Return: Returns 0 if permission is granted. 4491 */ 4492 int security_socket_listen(struct socket *sock, int backlog) 4493 { 4494 return call_int_hook(socket_listen, sock, backlog); 4495 } 4496 4497 /** 4498 * security_socket_accept() - Check if a socket is allowed to accept connections 4499 * @sock: listening socket 4500 * @newsock: newly creation connection socket 4501 * 4502 * Check permission before accepting a new connection. Note that the new 4503 * socket, @newsock, has been created and some information copied to it, but 4504 * the accept operation has not actually been performed. 4505 * 4506 * Return: Returns 0 if permission is granted. 4507 */ 4508 int security_socket_accept(struct socket *sock, struct socket *newsock) 4509 { 4510 return call_int_hook(socket_accept, sock, newsock); 4511 } 4512 4513 /** 4514 * security_socket_sendmsg() - Check if sending a message is allowed 4515 * @sock: sending socket 4516 * @msg: message to send 4517 * @size: size of message 4518 * 4519 * Check permission before transmitting a message to another socket. 4520 * 4521 * Return: Returns 0 if permission is granted. 4522 */ 4523 int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size) 4524 { 4525 return call_int_hook(socket_sendmsg, sock, msg, size); 4526 } 4527 4528 /** 4529 * security_socket_recvmsg() - Check if receiving a message is allowed 4530 * @sock: receiving socket 4531 * @msg: message to receive 4532 * @size: size of message 4533 * @flags: operational flags 4534 * 4535 * Check permission before receiving a message from a socket. 4536 * 4537 * Return: Returns 0 if permission is granted. 4538 */ 4539 int security_socket_recvmsg(struct socket *sock, struct msghdr *msg, 4540 int size, int flags) 4541 { 4542 return call_int_hook(socket_recvmsg, sock, msg, size, flags); 4543 } 4544 4545 /** 4546 * security_socket_getsockname() - Check if reading the socket addr is allowed 4547 * @sock: socket 4548 * 4549 * Check permission before reading the local address (name) of the socket 4550 * object. 4551 * 4552 * Return: Returns 0 if permission is granted. 4553 */ 4554 int security_socket_getsockname(struct socket *sock) 4555 { 4556 return call_int_hook(socket_getsockname, sock); 4557 } 4558 4559 /** 4560 * security_socket_getpeername() - Check if reading the peer's addr is allowed 4561 * @sock: socket 4562 * 4563 * Check permission before the remote address (name) of a socket object. 4564 * 4565 * Return: Returns 0 if permission is granted. 4566 */ 4567 int security_socket_getpeername(struct socket *sock) 4568 { 4569 return call_int_hook(socket_getpeername, sock); 4570 } 4571 4572 /** 4573 * security_socket_getsockopt() - Check if reading a socket option is allowed 4574 * @sock: socket 4575 * @level: option's protocol level 4576 * @optname: option name 4577 * 4578 * Check permissions before retrieving the options associated with socket 4579 * @sock. 4580 * 4581 * Return: Returns 0 if permission is granted. 4582 */ 4583 int security_socket_getsockopt(struct socket *sock, int level, int optname) 4584 { 4585 return call_int_hook(socket_getsockopt, sock, level, optname); 4586 } 4587 4588 /** 4589 * security_socket_setsockopt() - Check if setting a socket option is allowed 4590 * @sock: socket 4591 * @level: option's protocol level 4592 * @optname: option name 4593 * 4594 * Check permissions before setting the options associated with socket @sock. 4595 * 4596 * Return: Returns 0 if permission is granted. 4597 */ 4598 int security_socket_setsockopt(struct socket *sock, int level, int optname) 4599 { 4600 return call_int_hook(socket_setsockopt, sock, level, optname); 4601 } 4602 4603 /** 4604 * security_socket_shutdown() - Checks if shutting down the socket is allowed 4605 * @sock: socket 4606 * @how: flag indicating how sends and receives are handled 4607 * 4608 * Checks permission before all or part of a connection on the socket @sock is 4609 * shut down. 4610 * 4611 * Return: Returns 0 if permission is granted. 4612 */ 4613 int security_socket_shutdown(struct socket *sock, int how) 4614 { 4615 return call_int_hook(socket_shutdown, sock, how); 4616 } 4617 4618 /** 4619 * security_sock_rcv_skb() - Check if an incoming network packet is allowed 4620 * @sk: destination sock 4621 * @skb: incoming packet 4622 * 4623 * Check permissions on incoming network packets. This hook is distinct from 4624 * Netfilter's IP input hooks since it is the first time that the incoming 4625 * sk_buff @skb has been associated with a particular socket, @sk. Must not 4626 * sleep inside this hook because some callers hold spinlocks. 4627 * 4628 * Return: Returns 0 if permission is granted. 4629 */ 4630 int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb) 4631 { 4632 return call_int_hook(socket_sock_rcv_skb, sk, skb); 4633 } 4634 EXPORT_SYMBOL(security_sock_rcv_skb); 4635 4636 /** 4637 * security_socket_getpeersec_stream() - Get the remote peer label 4638 * @sock: socket 4639 * @optval: destination buffer 4640 * @optlen: size of peer label copied into the buffer 4641 * @len: maximum size of the destination buffer 4642 * 4643 * This hook allows the security module to provide peer socket security state 4644 * for unix or connected tcp sockets to userspace via getsockopt SO_GETPEERSEC. 4645 * For tcp sockets this can be meaningful if the socket is associated with an 4646 * ipsec SA. 4647 * 4648 * Return: Returns 0 if all is well, otherwise, typical getsockopt return 4649 * values. 4650 */ 4651 int security_socket_getpeersec_stream(struct socket *sock, sockptr_t optval, 4652 sockptr_t optlen, unsigned int len) 4653 { 4654 return call_int_hook(socket_getpeersec_stream, sock, optval, optlen, 4655 len); 4656 } 4657 4658 /** 4659 * security_socket_getpeersec_dgram() - Get the remote peer label 4660 * @sock: socket 4661 * @skb: datagram packet 4662 * @secid: remote peer label secid 4663 * 4664 * This hook allows the security module to provide peer socket security state 4665 * for udp sockets on a per-packet basis to userspace via getsockopt 4666 * SO_GETPEERSEC. The application must first have indicated the IP_PASSSEC 4667 * option via getsockopt. It can then retrieve the security state returned by 4668 * this hook for a packet via the SCM_SECURITY ancillary message type. 4669 * 4670 * Return: Returns 0 on success, error on failure. 4671 */ 4672 int security_socket_getpeersec_dgram(struct socket *sock, 4673 struct sk_buff *skb, u32 *secid) 4674 { 4675 return call_int_hook(socket_getpeersec_dgram, sock, skb, secid); 4676 } 4677 EXPORT_SYMBOL(security_socket_getpeersec_dgram); 4678 4679 /** 4680 * lsm_sock_alloc - allocate a composite sock blob 4681 * @sock: the sock that needs a blob 4682 * @priority: allocation mode 4683 * 4684 * Allocate the sock blob for all the modules 4685 * 4686 * Returns 0, or -ENOMEM if memory can't be allocated. 4687 */ 4688 static int lsm_sock_alloc(struct sock *sock, gfp_t priority) 4689 { 4690 if (blob_sizes.lbs_sock == 0) { 4691 sock->sk_security = NULL; 4692 return 0; 4693 } 4694 4695 sock->sk_security = kzalloc(blob_sizes.lbs_sock, priority); 4696 if (sock->sk_security == NULL) 4697 return -ENOMEM; 4698 return 0; 4699 } 4700 4701 /** 4702 * security_sk_alloc() - Allocate and initialize a sock's LSM blob 4703 * @sk: sock 4704 * @family: protocol family 4705 * @priority: gfp flags 4706 * 4707 * Allocate and attach a security structure to the sk->sk_security field, which 4708 * is used to copy security attributes between local stream sockets. 4709 * 4710 * Return: Returns 0 on success, error on failure. 4711 */ 4712 int security_sk_alloc(struct sock *sk, int family, gfp_t priority) 4713 { 4714 int rc = lsm_sock_alloc(sk, priority); 4715 4716 if (unlikely(rc)) 4717 return rc; 4718 rc = call_int_hook(sk_alloc_security, sk, family, priority); 4719 if (unlikely(rc)) 4720 security_sk_free(sk); 4721 return rc; 4722 } 4723 4724 /** 4725 * security_sk_free() - Free the sock's LSM blob 4726 * @sk: sock 4727 * 4728 * Deallocate security structure. 4729 */ 4730 void security_sk_free(struct sock *sk) 4731 { 4732 call_void_hook(sk_free_security, sk); 4733 kfree(sk->sk_security); 4734 sk->sk_security = NULL; 4735 } 4736 4737 /** 4738 * security_sk_clone() - Clone a sock's LSM state 4739 * @sk: original sock 4740 * @newsk: target sock 4741 * 4742 * Clone/copy security structure. 4743 */ 4744 void security_sk_clone(const struct sock *sk, struct sock *newsk) 4745 { 4746 call_void_hook(sk_clone_security, sk, newsk); 4747 } 4748 EXPORT_SYMBOL(security_sk_clone); 4749 4750 /** 4751 * security_sk_classify_flow() - Set a flow's secid based on socket 4752 * @sk: original socket 4753 * @flic: target flow 4754 * 4755 * Set the target flow's secid to socket's secid. 4756 */ 4757 void security_sk_classify_flow(const struct sock *sk, struct flowi_common *flic) 4758 { 4759 call_void_hook(sk_getsecid, sk, &flic->flowic_secid); 4760 } 4761 EXPORT_SYMBOL(security_sk_classify_flow); 4762 4763 /** 4764 * security_req_classify_flow() - Set a flow's secid based on request_sock 4765 * @req: request_sock 4766 * @flic: target flow 4767 * 4768 * Sets @flic's secid to @req's secid. 4769 */ 4770 void security_req_classify_flow(const struct request_sock *req, 4771 struct flowi_common *flic) 4772 { 4773 call_void_hook(req_classify_flow, req, flic); 4774 } 4775 EXPORT_SYMBOL(security_req_classify_flow); 4776 4777 /** 4778 * security_sock_graft() - Reconcile LSM state when grafting a sock on a socket 4779 * @sk: sock being grafted 4780 * @parent: target parent socket 4781 * 4782 * Sets @parent's inode secid to @sk's secid and update @sk with any necessary 4783 * LSM state from @parent. 4784 */ 4785 void security_sock_graft(struct sock *sk, struct socket *parent) 4786 { 4787 call_void_hook(sock_graft, sk, parent); 4788 } 4789 EXPORT_SYMBOL(security_sock_graft); 4790 4791 /** 4792 * security_inet_conn_request() - Set request_sock state using incoming connect 4793 * @sk: parent listening sock 4794 * @skb: incoming connection 4795 * @req: new request_sock 4796 * 4797 * Initialize the @req LSM state based on @sk and the incoming connect in @skb. 4798 * 4799 * Return: Returns 0 if permission is granted. 4800 */ 4801 int security_inet_conn_request(const struct sock *sk, 4802 struct sk_buff *skb, struct request_sock *req) 4803 { 4804 return call_int_hook(inet_conn_request, sk, skb, req); 4805 } 4806 EXPORT_SYMBOL(security_inet_conn_request); 4807 4808 /** 4809 * security_inet_csk_clone() - Set new sock LSM state based on request_sock 4810 * @newsk: new sock 4811 * @req: connection request_sock 4812 * 4813 * Set that LSM state of @sock using the LSM state from @req. 4814 */ 4815 void security_inet_csk_clone(struct sock *newsk, 4816 const struct request_sock *req) 4817 { 4818 call_void_hook(inet_csk_clone, newsk, req); 4819 } 4820 4821 /** 4822 * security_inet_conn_established() - Update sock's LSM state with connection 4823 * @sk: sock 4824 * @skb: connection packet 4825 * 4826 * Update @sock's LSM state to represent a new connection from @skb. 4827 */ 4828 void security_inet_conn_established(struct sock *sk, 4829 struct sk_buff *skb) 4830 { 4831 call_void_hook(inet_conn_established, sk, skb); 4832 } 4833 EXPORT_SYMBOL(security_inet_conn_established); 4834 4835 /** 4836 * security_secmark_relabel_packet() - Check if setting a secmark is allowed 4837 * @secid: new secmark value 4838 * 4839 * Check if the process should be allowed to relabel packets to @secid. 4840 * 4841 * Return: Returns 0 if permission is granted. 4842 */ 4843 int security_secmark_relabel_packet(u32 secid) 4844 { 4845 return call_int_hook(secmark_relabel_packet, secid); 4846 } 4847 EXPORT_SYMBOL(security_secmark_relabel_packet); 4848 4849 /** 4850 * security_secmark_refcount_inc() - Increment the secmark labeling rule count 4851 * 4852 * Tells the LSM to increment the number of secmark labeling rules loaded. 4853 */ 4854 void security_secmark_refcount_inc(void) 4855 { 4856 call_void_hook(secmark_refcount_inc); 4857 } 4858 EXPORT_SYMBOL(security_secmark_refcount_inc); 4859 4860 /** 4861 * security_secmark_refcount_dec() - Decrement the secmark labeling rule count 4862 * 4863 * Tells the LSM to decrement the number of secmark labeling rules loaded. 4864 */ 4865 void security_secmark_refcount_dec(void) 4866 { 4867 call_void_hook(secmark_refcount_dec); 4868 } 4869 EXPORT_SYMBOL(security_secmark_refcount_dec); 4870 4871 /** 4872 * security_tun_dev_alloc_security() - Allocate a LSM blob for a TUN device 4873 * @security: pointer to the LSM blob 4874 * 4875 * This hook allows a module to allocate a security structure for a TUN device, 4876 * returning the pointer in @security. 4877 * 4878 * Return: Returns a zero on success, negative values on failure. 4879 */ 4880 int security_tun_dev_alloc_security(void **security) 4881 { 4882 return call_int_hook(tun_dev_alloc_security, security); 4883 } 4884 EXPORT_SYMBOL(security_tun_dev_alloc_security); 4885 4886 /** 4887 * security_tun_dev_free_security() - Free a TUN device LSM blob 4888 * @security: LSM blob 4889 * 4890 * This hook allows a module to free the security structure for a TUN device. 4891 */ 4892 void security_tun_dev_free_security(void *security) 4893 { 4894 call_void_hook(tun_dev_free_security, security); 4895 } 4896 EXPORT_SYMBOL(security_tun_dev_free_security); 4897 4898 /** 4899 * security_tun_dev_create() - Check if creating a TUN device is allowed 4900 * 4901 * Check permissions prior to creating a new TUN device. 4902 * 4903 * Return: Returns 0 if permission is granted. 4904 */ 4905 int security_tun_dev_create(void) 4906 { 4907 return call_int_hook(tun_dev_create); 4908 } 4909 EXPORT_SYMBOL(security_tun_dev_create); 4910 4911 /** 4912 * security_tun_dev_attach_queue() - Check if attaching a TUN queue is allowed 4913 * @security: TUN device LSM blob 4914 * 4915 * Check permissions prior to attaching to a TUN device queue. 4916 * 4917 * Return: Returns 0 if permission is granted. 4918 */ 4919 int security_tun_dev_attach_queue(void *security) 4920 { 4921 return call_int_hook(tun_dev_attach_queue, security); 4922 } 4923 EXPORT_SYMBOL(security_tun_dev_attach_queue); 4924 4925 /** 4926 * security_tun_dev_attach() - Update TUN device LSM state on attach 4927 * @sk: associated sock 4928 * @security: TUN device LSM blob 4929 * 4930 * This hook can be used by the module to update any security state associated 4931 * with the TUN device's sock structure. 4932 * 4933 * Return: Returns 0 if permission is granted. 4934 */ 4935 int security_tun_dev_attach(struct sock *sk, void *security) 4936 { 4937 return call_int_hook(tun_dev_attach, sk, security); 4938 } 4939 EXPORT_SYMBOL(security_tun_dev_attach); 4940 4941 /** 4942 * security_tun_dev_open() - Update TUN device LSM state on open 4943 * @security: TUN device LSM blob 4944 * 4945 * This hook can be used by the module to update any security state associated 4946 * with the TUN device's security structure. 4947 * 4948 * Return: Returns 0 if permission is granted. 4949 */ 4950 int security_tun_dev_open(void *security) 4951 { 4952 return call_int_hook(tun_dev_open, security); 4953 } 4954 EXPORT_SYMBOL(security_tun_dev_open); 4955 4956 /** 4957 * security_sctp_assoc_request() - Update the LSM on a SCTP association req 4958 * @asoc: SCTP association 4959 * @skb: packet requesting the association 4960 * 4961 * Passes the @asoc and @chunk->skb of the association INIT packet to the LSM. 4962 * 4963 * Return: Returns 0 on success, error on failure. 4964 */ 4965 int security_sctp_assoc_request(struct sctp_association *asoc, 4966 struct sk_buff *skb) 4967 { 4968 return call_int_hook(sctp_assoc_request, asoc, skb); 4969 } 4970 EXPORT_SYMBOL(security_sctp_assoc_request); 4971 4972 /** 4973 * security_sctp_bind_connect() - Validate a list of addrs for a SCTP option 4974 * @sk: socket 4975 * @optname: SCTP option to validate 4976 * @address: list of IP addresses to validate 4977 * @addrlen: length of the address list 4978 * 4979 * Validiate permissions required for each address associated with sock @sk. 4980 * Depending on @optname, the addresses will be treated as either a connect or 4981 * bind service. The @addrlen is calculated on each IPv4 and IPv6 address using 4982 * sizeof(struct sockaddr_in) or sizeof(struct sockaddr_in6). 4983 * 4984 * Return: Returns 0 on success, error on failure. 4985 */ 4986 int security_sctp_bind_connect(struct sock *sk, int optname, 4987 struct sockaddr *address, int addrlen) 4988 { 4989 return call_int_hook(sctp_bind_connect, sk, optname, address, addrlen); 4990 } 4991 EXPORT_SYMBOL(security_sctp_bind_connect); 4992 4993 /** 4994 * security_sctp_sk_clone() - Clone a SCTP sock's LSM state 4995 * @asoc: SCTP association 4996 * @sk: original sock 4997 * @newsk: target sock 4998 * 4999 * Called whenever a new socket is created by accept(2) (i.e. a TCP style 5000 * socket) or when a socket is 'peeled off' e.g userspace calls 5001 * sctp_peeloff(3). 5002 */ 5003 void security_sctp_sk_clone(struct sctp_association *asoc, struct sock *sk, 5004 struct sock *newsk) 5005 { 5006 call_void_hook(sctp_sk_clone, asoc, sk, newsk); 5007 } 5008 EXPORT_SYMBOL(security_sctp_sk_clone); 5009 5010 /** 5011 * security_sctp_assoc_established() - Update LSM state when assoc established 5012 * @asoc: SCTP association 5013 * @skb: packet establishing the association 5014 * 5015 * Passes the @asoc and @chunk->skb of the association COOKIE_ACK packet to the 5016 * security module. 5017 * 5018 * Return: Returns 0 if permission is granted. 5019 */ 5020 int security_sctp_assoc_established(struct sctp_association *asoc, 5021 struct sk_buff *skb) 5022 { 5023 return call_int_hook(sctp_assoc_established, asoc, skb); 5024 } 5025 EXPORT_SYMBOL(security_sctp_assoc_established); 5026 5027 /** 5028 * security_mptcp_add_subflow() - Inherit the LSM label from the MPTCP socket 5029 * @sk: the owning MPTCP socket 5030 * @ssk: the new subflow 5031 * 5032 * Update the labeling for the given MPTCP subflow, to match the one of the 5033 * owning MPTCP socket. This hook has to be called after the socket creation and 5034 * initialization via the security_socket_create() and 5035 * security_socket_post_create() LSM hooks. 5036 * 5037 * Return: Returns 0 on success or a negative error code on failure. 5038 */ 5039 int security_mptcp_add_subflow(struct sock *sk, struct sock *ssk) 5040 { 5041 return call_int_hook(mptcp_add_subflow, sk, ssk); 5042 } 5043 5044 #endif /* CONFIG_SECURITY_NETWORK */ 5045 5046 #ifdef CONFIG_SECURITY_INFINIBAND 5047 /** 5048 * security_ib_pkey_access() - Check if access to an IB pkey is allowed 5049 * @sec: LSM blob 5050 * @subnet_prefix: subnet prefix of the port 5051 * @pkey: IB pkey 5052 * 5053 * Check permission to access a pkey when modifying a QP. 5054 * 5055 * Return: Returns 0 if permission is granted. 5056 */ 5057 int security_ib_pkey_access(void *sec, u64 subnet_prefix, u16 pkey) 5058 { 5059 return call_int_hook(ib_pkey_access, sec, subnet_prefix, pkey); 5060 } 5061 EXPORT_SYMBOL(security_ib_pkey_access); 5062 5063 /** 5064 * security_ib_endport_manage_subnet() - Check if SMPs traffic is allowed 5065 * @sec: LSM blob 5066 * @dev_name: IB device name 5067 * @port_num: port number 5068 * 5069 * Check permissions to send and receive SMPs on a end port. 5070 * 5071 * Return: Returns 0 if permission is granted. 5072 */ 5073 int security_ib_endport_manage_subnet(void *sec, 5074 const char *dev_name, u8 port_num) 5075 { 5076 return call_int_hook(ib_endport_manage_subnet, sec, dev_name, port_num); 5077 } 5078 EXPORT_SYMBOL(security_ib_endport_manage_subnet); 5079 5080 /** 5081 * security_ib_alloc_security() - Allocate an Infiniband LSM blob 5082 * @sec: LSM blob 5083 * 5084 * Allocate a security structure for Infiniband objects. 5085 * 5086 * Return: Returns 0 on success, non-zero on failure. 5087 */ 5088 int security_ib_alloc_security(void **sec) 5089 { 5090 return call_int_hook(ib_alloc_security, sec); 5091 } 5092 EXPORT_SYMBOL(security_ib_alloc_security); 5093 5094 /** 5095 * security_ib_free_security() - Free an Infiniband LSM blob 5096 * @sec: LSM blob 5097 * 5098 * Deallocate an Infiniband security structure. 5099 */ 5100 void security_ib_free_security(void *sec) 5101 { 5102 call_void_hook(ib_free_security, sec); 5103 } 5104 EXPORT_SYMBOL(security_ib_free_security); 5105 #endif /* CONFIG_SECURITY_INFINIBAND */ 5106 5107 #ifdef CONFIG_SECURITY_NETWORK_XFRM 5108 /** 5109 * security_xfrm_policy_alloc() - Allocate a xfrm policy LSM blob 5110 * @ctxp: xfrm security context being added to the SPD 5111 * @sec_ctx: security label provided by userspace 5112 * @gfp: gfp flags 5113 * 5114 * Allocate a security structure to the xp->security field; the security field 5115 * is initialized to NULL when the xfrm_policy is allocated. 5116 * 5117 * Return: Return 0 if operation was successful. 5118 */ 5119 int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, 5120 struct xfrm_user_sec_ctx *sec_ctx, 5121 gfp_t gfp) 5122 { 5123 return call_int_hook(xfrm_policy_alloc_security, ctxp, sec_ctx, gfp); 5124 } 5125 EXPORT_SYMBOL(security_xfrm_policy_alloc); 5126 5127 /** 5128 * security_xfrm_policy_clone() - Clone xfrm policy LSM state 5129 * @old_ctx: xfrm security context 5130 * @new_ctxp: target xfrm security context 5131 * 5132 * Allocate a security structure in new_ctxp that contains the information from 5133 * the old_ctx structure. 5134 * 5135 * Return: Return 0 if operation was successful. 5136 */ 5137 int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx, 5138 struct xfrm_sec_ctx **new_ctxp) 5139 { 5140 return call_int_hook(xfrm_policy_clone_security, old_ctx, new_ctxp); 5141 } 5142 5143 /** 5144 * security_xfrm_policy_free() - Free a xfrm security context 5145 * @ctx: xfrm security context 5146 * 5147 * Free LSM resources associated with @ctx. 5148 */ 5149 void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx) 5150 { 5151 call_void_hook(xfrm_policy_free_security, ctx); 5152 } 5153 EXPORT_SYMBOL(security_xfrm_policy_free); 5154 5155 /** 5156 * security_xfrm_policy_delete() - Check if deleting a xfrm policy is allowed 5157 * @ctx: xfrm security context 5158 * 5159 * Authorize deletion of a SPD entry. 5160 * 5161 * Return: Returns 0 if permission is granted. 5162 */ 5163 int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx) 5164 { 5165 return call_int_hook(xfrm_policy_delete_security, ctx); 5166 } 5167 5168 /** 5169 * security_xfrm_state_alloc() - Allocate a xfrm state LSM blob 5170 * @x: xfrm state being added to the SAD 5171 * @sec_ctx: security label provided by userspace 5172 * 5173 * Allocate a security structure to the @x->security field; the security field 5174 * is initialized to NULL when the xfrm_state is allocated. Set the context to 5175 * correspond to @sec_ctx. 5176 * 5177 * Return: Return 0 if operation was successful. 5178 */ 5179 int security_xfrm_state_alloc(struct xfrm_state *x, 5180 struct xfrm_user_sec_ctx *sec_ctx) 5181 { 5182 return call_int_hook(xfrm_state_alloc, x, sec_ctx); 5183 } 5184 EXPORT_SYMBOL(security_xfrm_state_alloc); 5185 5186 /** 5187 * security_xfrm_state_alloc_acquire() - Allocate a xfrm state LSM blob 5188 * @x: xfrm state being added to the SAD 5189 * @polsec: associated policy's security context 5190 * @secid: secid from the flow 5191 * 5192 * Allocate a security structure to the x->security field; the security field 5193 * is initialized to NULL when the xfrm_state is allocated. Set the context to 5194 * correspond to secid. 5195 * 5196 * Return: Returns 0 if operation was successful. 5197 */ 5198 int security_xfrm_state_alloc_acquire(struct xfrm_state *x, 5199 struct xfrm_sec_ctx *polsec, u32 secid) 5200 { 5201 return call_int_hook(xfrm_state_alloc_acquire, x, polsec, secid); 5202 } 5203 5204 /** 5205 * security_xfrm_state_delete() - Check if deleting a xfrm state is allowed 5206 * @x: xfrm state 5207 * 5208 * Authorize deletion of x->security. 5209 * 5210 * Return: Returns 0 if permission is granted. 5211 */ 5212 int security_xfrm_state_delete(struct xfrm_state *x) 5213 { 5214 return call_int_hook(xfrm_state_delete_security, x); 5215 } 5216 EXPORT_SYMBOL(security_xfrm_state_delete); 5217 5218 /** 5219 * security_xfrm_state_free() - Free a xfrm state 5220 * @x: xfrm state 5221 * 5222 * Deallocate x->security. 5223 */ 5224 void security_xfrm_state_free(struct xfrm_state *x) 5225 { 5226 call_void_hook(xfrm_state_free_security, x); 5227 } 5228 5229 /** 5230 * security_xfrm_policy_lookup() - Check if using a xfrm policy is allowed 5231 * @ctx: target xfrm security context 5232 * @fl_secid: flow secid used to authorize access 5233 * 5234 * Check permission when a flow selects a xfrm_policy for processing XFRMs on a 5235 * packet. The hook is called when selecting either a per-socket policy or a 5236 * generic xfrm policy. 5237 * 5238 * Return: Return 0 if permission is granted, -ESRCH otherwise, or -errno on 5239 * other errors. 5240 */ 5241 int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid) 5242 { 5243 return call_int_hook(xfrm_policy_lookup, ctx, fl_secid); 5244 } 5245 5246 /** 5247 * security_xfrm_state_pol_flow_match() - Check for a xfrm match 5248 * @x: xfrm state to match 5249 * @xp: xfrm policy to check for a match 5250 * @flic: flow to check for a match. 5251 * 5252 * Check @xp and @flic for a match with @x. 5253 * 5254 * Return: Returns 1 if there is a match. 5255 */ 5256 int security_xfrm_state_pol_flow_match(struct xfrm_state *x, 5257 struct xfrm_policy *xp, 5258 const struct flowi_common *flic) 5259 { 5260 struct security_hook_list *hp; 5261 int rc = LSM_RET_DEFAULT(xfrm_state_pol_flow_match); 5262 5263 /* 5264 * Since this function is expected to return 0 or 1, the judgment 5265 * becomes difficult if multiple LSMs supply this call. Fortunately, 5266 * we can use the first LSM's judgment because currently only SELinux 5267 * supplies this call. 5268 * 5269 * For speed optimization, we explicitly break the loop rather than 5270 * using the macro 5271 */ 5272 hlist_for_each_entry(hp, &security_hook_heads.xfrm_state_pol_flow_match, 5273 list) { 5274 rc = hp->hook.xfrm_state_pol_flow_match(x, xp, flic); 5275 break; 5276 } 5277 return rc; 5278 } 5279 5280 /** 5281 * security_xfrm_decode_session() - Determine the xfrm secid for a packet 5282 * @skb: xfrm packet 5283 * @secid: secid 5284 * 5285 * Decode the packet in @skb and return the security label in @secid. 5286 * 5287 * Return: Return 0 if all xfrms used have the same secid. 5288 */ 5289 int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid) 5290 { 5291 return call_int_hook(xfrm_decode_session, skb, secid, 1); 5292 } 5293 5294 void security_skb_classify_flow(struct sk_buff *skb, struct flowi_common *flic) 5295 { 5296 int rc = call_int_hook(xfrm_decode_session, skb, &flic->flowic_secid, 5297 0); 5298 5299 BUG_ON(rc); 5300 } 5301 EXPORT_SYMBOL(security_skb_classify_flow); 5302 #endif /* CONFIG_SECURITY_NETWORK_XFRM */ 5303 5304 #ifdef CONFIG_KEYS 5305 /** 5306 * security_key_alloc() - Allocate and initialize a kernel key LSM blob 5307 * @key: key 5308 * @cred: credentials 5309 * @flags: allocation flags 5310 * 5311 * Permit allocation of a key and assign security data. Note that key does not 5312 * have a serial number assigned at this point. 5313 * 5314 * Return: Return 0 if permission is granted, -ve error otherwise. 5315 */ 5316 int security_key_alloc(struct key *key, const struct cred *cred, 5317 unsigned long flags) 5318 { 5319 return call_int_hook(key_alloc, key, cred, flags); 5320 } 5321 5322 /** 5323 * security_key_free() - Free a kernel key LSM blob 5324 * @key: key 5325 * 5326 * Notification of destruction; free security data. 5327 */ 5328 void security_key_free(struct key *key) 5329 { 5330 call_void_hook(key_free, key); 5331 } 5332 5333 /** 5334 * security_key_permission() - Check if a kernel key operation is allowed 5335 * @key_ref: key reference 5336 * @cred: credentials of actor requesting access 5337 * @need_perm: requested permissions 5338 * 5339 * See whether a specific operational right is granted to a process on a key. 5340 * 5341 * Return: Return 0 if permission is granted, -ve error otherwise. 5342 */ 5343 int security_key_permission(key_ref_t key_ref, const struct cred *cred, 5344 enum key_need_perm need_perm) 5345 { 5346 return call_int_hook(key_permission, key_ref, cred, need_perm); 5347 } 5348 5349 /** 5350 * security_key_getsecurity() - Get the key's security label 5351 * @key: key 5352 * @buffer: security label buffer 5353 * 5354 * Get a textual representation of the security context attached to a key for 5355 * the purposes of honouring KEYCTL_GETSECURITY. This function allocates the 5356 * storage for the NUL-terminated string and the caller should free it. 5357 * 5358 * Return: Returns the length of @buffer (including terminating NUL) or -ve if 5359 * an error occurs. May also return 0 (and a NULL buffer pointer) if 5360 * there is no security label assigned to the key. 5361 */ 5362 int security_key_getsecurity(struct key *key, char **buffer) 5363 { 5364 *buffer = NULL; 5365 return call_int_hook(key_getsecurity, key, buffer); 5366 } 5367 5368 /** 5369 * security_key_post_create_or_update() - Notification of key create or update 5370 * @keyring: keyring to which the key is linked to 5371 * @key: created or updated key 5372 * @payload: data used to instantiate or update the key 5373 * @payload_len: length of payload 5374 * @flags: key flags 5375 * @create: flag indicating whether the key was created or updated 5376 * 5377 * Notify the caller of a key creation or update. 5378 */ 5379 void security_key_post_create_or_update(struct key *keyring, struct key *key, 5380 const void *payload, size_t payload_len, 5381 unsigned long flags, bool create) 5382 { 5383 call_void_hook(key_post_create_or_update, keyring, key, payload, 5384 payload_len, flags, create); 5385 } 5386 #endif /* CONFIG_KEYS */ 5387 5388 #ifdef CONFIG_AUDIT 5389 /** 5390 * security_audit_rule_init() - Allocate and init an LSM audit rule struct 5391 * @field: audit action 5392 * @op: rule operator 5393 * @rulestr: rule context 5394 * @lsmrule: receive buffer for audit rule struct 5395 * @gfp: GFP flag used for kmalloc 5396 * 5397 * Allocate and initialize an LSM audit rule structure. 5398 * 5399 * Return: Return 0 if @lsmrule has been successfully set, -EINVAL in case of 5400 * an invalid rule. 5401 */ 5402 int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule, 5403 gfp_t gfp) 5404 { 5405 return call_int_hook(audit_rule_init, field, op, rulestr, lsmrule, gfp); 5406 } 5407 5408 /** 5409 * security_audit_rule_known() - Check if an audit rule contains LSM fields 5410 * @krule: audit rule 5411 * 5412 * Specifies whether given @krule contains any fields related to the current 5413 * LSM. 5414 * 5415 * Return: Returns 1 in case of relation found, 0 otherwise. 5416 */ 5417 int security_audit_rule_known(struct audit_krule *krule) 5418 { 5419 return call_int_hook(audit_rule_known, krule); 5420 } 5421 5422 /** 5423 * security_audit_rule_free() - Free an LSM audit rule struct 5424 * @lsmrule: audit rule struct 5425 * 5426 * Deallocate the LSM audit rule structure previously allocated by 5427 * audit_rule_init(). 5428 */ 5429 void security_audit_rule_free(void *lsmrule) 5430 { 5431 call_void_hook(audit_rule_free, lsmrule); 5432 } 5433 5434 /** 5435 * security_audit_rule_match() - Check if a label matches an audit rule 5436 * @secid: security label 5437 * @field: LSM audit field 5438 * @op: matching operator 5439 * @lsmrule: audit rule 5440 * 5441 * Determine if given @secid matches a rule previously approved by 5442 * security_audit_rule_known(). 5443 * 5444 * Return: Returns 1 if secid matches the rule, 0 if it does not, -ERRNO on 5445 * failure. 5446 */ 5447 int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule) 5448 { 5449 return call_int_hook(audit_rule_match, secid, field, op, lsmrule); 5450 } 5451 #endif /* CONFIG_AUDIT */ 5452 5453 #ifdef CONFIG_BPF_SYSCALL 5454 /** 5455 * security_bpf() - Check if the bpf syscall operation is allowed 5456 * @cmd: command 5457 * @attr: bpf attribute 5458 * @size: size 5459 * 5460 * Do a initial check for all bpf syscalls after the attribute is copied into 5461 * the kernel. The actual security module can implement their own rules to 5462 * check the specific cmd they need. 5463 * 5464 * Return: Returns 0 if permission is granted. 5465 */ 5466 int security_bpf(int cmd, union bpf_attr *attr, unsigned int size) 5467 { 5468 return call_int_hook(bpf, cmd, attr, size); 5469 } 5470 5471 /** 5472 * security_bpf_map() - Check if access to a bpf map is allowed 5473 * @map: bpf map 5474 * @fmode: mode 5475 * 5476 * Do a check when the kernel generates and returns a file descriptor for eBPF 5477 * maps. 5478 * 5479 * Return: Returns 0 if permission is granted. 5480 */ 5481 int security_bpf_map(struct bpf_map *map, fmode_t fmode) 5482 { 5483 return call_int_hook(bpf_map, map, fmode); 5484 } 5485 5486 /** 5487 * security_bpf_prog() - Check if access to a bpf program is allowed 5488 * @prog: bpf program 5489 * 5490 * Do a check when the kernel generates and returns a file descriptor for eBPF 5491 * programs. 5492 * 5493 * Return: Returns 0 if permission is granted. 5494 */ 5495 int security_bpf_prog(struct bpf_prog *prog) 5496 { 5497 return call_int_hook(bpf_prog, prog); 5498 } 5499 5500 /** 5501 * security_bpf_map_create() - Check if BPF map creation is allowed 5502 * @map: BPF map object 5503 * @attr: BPF syscall attributes used to create BPF map 5504 * @token: BPF token used to grant user access 5505 * 5506 * Do a check when the kernel creates a new BPF map. This is also the 5507 * point where LSM blob is allocated for LSMs that need them. 5508 * 5509 * Return: Returns 0 on success, error on failure. 5510 */ 5511 int security_bpf_map_create(struct bpf_map *map, union bpf_attr *attr, 5512 struct bpf_token *token) 5513 { 5514 return call_int_hook(bpf_map_create, map, attr, token); 5515 } 5516 5517 /** 5518 * security_bpf_prog_load() - Check if loading of BPF program is allowed 5519 * @prog: BPF program object 5520 * @attr: BPF syscall attributes used to create BPF program 5521 * @token: BPF token used to grant user access to BPF subsystem 5522 * 5523 * Perform an access control check when the kernel loads a BPF program and 5524 * allocates associated BPF program object. This hook is also responsible for 5525 * allocating any required LSM state for the BPF program. 5526 * 5527 * Return: Returns 0 on success, error on failure. 5528 */ 5529 int security_bpf_prog_load(struct bpf_prog *prog, union bpf_attr *attr, 5530 struct bpf_token *token) 5531 { 5532 return call_int_hook(bpf_prog_load, prog, attr, token); 5533 } 5534 5535 /** 5536 * security_bpf_token_create() - Check if creating of BPF token is allowed 5537 * @token: BPF token object 5538 * @attr: BPF syscall attributes used to create BPF token 5539 * @path: path pointing to BPF FS mount point from which BPF token is created 5540 * 5541 * Do a check when the kernel instantiates a new BPF token object from BPF FS 5542 * instance. This is also the point where LSM blob can be allocated for LSMs. 5543 * 5544 * Return: Returns 0 on success, error on failure. 5545 */ 5546 int security_bpf_token_create(struct bpf_token *token, union bpf_attr *attr, 5547 struct path *path) 5548 { 5549 return call_int_hook(bpf_token_create, token, attr, path); 5550 } 5551 5552 /** 5553 * security_bpf_token_cmd() - Check if BPF token is allowed to delegate 5554 * requested BPF syscall command 5555 * @token: BPF token object 5556 * @cmd: BPF syscall command requested to be delegated by BPF token 5557 * 5558 * Do a check when the kernel decides whether provided BPF token should allow 5559 * delegation of requested BPF syscall command. 5560 * 5561 * Return: Returns 0 on success, error on failure. 5562 */ 5563 int security_bpf_token_cmd(const struct bpf_token *token, enum bpf_cmd cmd) 5564 { 5565 return call_int_hook(bpf_token_cmd, token, cmd); 5566 } 5567 5568 /** 5569 * security_bpf_token_capable() - Check if BPF token is allowed to delegate 5570 * requested BPF-related capability 5571 * @token: BPF token object 5572 * @cap: capabilities requested to be delegated by BPF token 5573 * 5574 * Do a check when the kernel decides whether provided BPF token should allow 5575 * delegation of requested BPF-related capabilities. 5576 * 5577 * Return: Returns 0 on success, error on failure. 5578 */ 5579 int security_bpf_token_capable(const struct bpf_token *token, int cap) 5580 { 5581 return call_int_hook(bpf_token_capable, token, cap); 5582 } 5583 5584 /** 5585 * security_bpf_map_free() - Free a bpf map's LSM blob 5586 * @map: bpf map 5587 * 5588 * Clean up the security information stored inside bpf map. 5589 */ 5590 void security_bpf_map_free(struct bpf_map *map) 5591 { 5592 call_void_hook(bpf_map_free, map); 5593 } 5594 5595 /** 5596 * security_bpf_prog_free() - Free a BPF program's LSM blob 5597 * @prog: BPF program struct 5598 * 5599 * Clean up the security information stored inside BPF program. 5600 */ 5601 void security_bpf_prog_free(struct bpf_prog *prog) 5602 { 5603 call_void_hook(bpf_prog_free, prog); 5604 } 5605 5606 /** 5607 * security_bpf_token_free() - Free a BPF token's LSM blob 5608 * @token: BPF token struct 5609 * 5610 * Clean up the security information stored inside BPF token. 5611 */ 5612 void security_bpf_token_free(struct bpf_token *token) 5613 { 5614 call_void_hook(bpf_token_free, token); 5615 } 5616 #endif /* CONFIG_BPF_SYSCALL */ 5617 5618 /** 5619 * security_locked_down() - Check if a kernel feature is allowed 5620 * @what: requested kernel feature 5621 * 5622 * Determine whether a kernel feature that potentially enables arbitrary code 5623 * execution in kernel space should be permitted. 5624 * 5625 * Return: Returns 0 if permission is granted. 5626 */ 5627 int security_locked_down(enum lockdown_reason what) 5628 { 5629 return call_int_hook(locked_down, what); 5630 } 5631 EXPORT_SYMBOL(security_locked_down); 5632 5633 #ifdef CONFIG_PERF_EVENTS 5634 /** 5635 * security_perf_event_open() - Check if a perf event open is allowed 5636 * @attr: perf event attribute 5637 * @type: type of event 5638 * 5639 * Check whether the @type of perf_event_open syscall is allowed. 5640 * 5641 * Return: Returns 0 if permission is granted. 5642 */ 5643 int security_perf_event_open(struct perf_event_attr *attr, int type) 5644 { 5645 return call_int_hook(perf_event_open, attr, type); 5646 } 5647 5648 /** 5649 * security_perf_event_alloc() - Allocate a perf event LSM blob 5650 * @event: perf event 5651 * 5652 * Allocate and save perf_event security info. 5653 * 5654 * Return: Returns 0 on success, error on failure. 5655 */ 5656 int security_perf_event_alloc(struct perf_event *event) 5657 { 5658 return call_int_hook(perf_event_alloc, event); 5659 } 5660 5661 /** 5662 * security_perf_event_free() - Free a perf event LSM blob 5663 * @event: perf event 5664 * 5665 * Release (free) perf_event security info. 5666 */ 5667 void security_perf_event_free(struct perf_event *event) 5668 { 5669 call_void_hook(perf_event_free, event); 5670 } 5671 5672 /** 5673 * security_perf_event_read() - Check if reading a perf event label is allowed 5674 * @event: perf event 5675 * 5676 * Read perf_event security info if allowed. 5677 * 5678 * Return: Returns 0 if permission is granted. 5679 */ 5680 int security_perf_event_read(struct perf_event *event) 5681 { 5682 return call_int_hook(perf_event_read, event); 5683 } 5684 5685 /** 5686 * security_perf_event_write() - Check if writing a perf event label is allowed 5687 * @event: perf event 5688 * 5689 * Write perf_event security info if allowed. 5690 * 5691 * Return: Returns 0 if permission is granted. 5692 */ 5693 int security_perf_event_write(struct perf_event *event) 5694 { 5695 return call_int_hook(perf_event_write, event); 5696 } 5697 #endif /* CONFIG_PERF_EVENTS */ 5698 5699 #ifdef CONFIG_IO_URING 5700 /** 5701 * security_uring_override_creds() - Check if overriding creds is allowed 5702 * @new: new credentials 5703 * 5704 * Check if the current task, executing an io_uring operation, is allowed to 5705 * override it's credentials with @new. 5706 * 5707 * Return: Returns 0 if permission is granted. 5708 */ 5709 int security_uring_override_creds(const struct cred *new) 5710 { 5711 return call_int_hook(uring_override_creds, new); 5712 } 5713 5714 /** 5715 * security_uring_sqpoll() - Check if IORING_SETUP_SQPOLL is allowed 5716 * 5717 * Check whether the current task is allowed to spawn a io_uring polling thread 5718 * (IORING_SETUP_SQPOLL). 5719 * 5720 * Return: Returns 0 if permission is granted. 5721 */ 5722 int security_uring_sqpoll(void) 5723 { 5724 return call_int_hook(uring_sqpoll); 5725 } 5726 5727 /** 5728 * security_uring_cmd() - Check if a io_uring passthrough command is allowed 5729 * @ioucmd: command 5730 * 5731 * Check whether the file_operations uring_cmd is allowed to run. 5732 * 5733 * Return: Returns 0 if permission is granted. 5734 */ 5735 int security_uring_cmd(struct io_uring_cmd *ioucmd) 5736 { 5737 return call_int_hook(uring_cmd, ioucmd); 5738 } 5739 #endif /* CONFIG_IO_URING */ 5740